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Introduction


Functional programming is gathering momentum. Mainstream languages such as Java and C# are adopting features from this paradigm; and languages such as Haskell, Scala, Clojure, or OCaml, which embody functional programming from the very beginning, are being used in industry. Haskell is a noise-free, pure functional language with a long history, having a huge number of library contributors and an active community. This makes Haskell a great tool for both learning and applying functional programming.

Why You Should Learn Functional Programming

The rise in functional programming comes from two fronts. Nowadays, most applications are heavily concurrent or need to be parallelized to perform better. Think of any web server that needs to handle thousands of connections at the same time. The way you express the intent of your code using Haskell makes it easier to move from a single-thread application to a multi-threaded one at a negligible cost.

Apart from becoming more concurrent, applications are becoming much larger. You would like your development environment to help you catch bugs and ensure interoperation between all modules of your system. Haskell has a very strong type system, which means that you can express a wide range of invariants in your code, which are checked at compile time. Many of the bugs, which previously would be caught using tests, are now completely forbidden by the compiler. Refactoring becomes easier, as you can ensure that changes in your code do not affect those invariants.

Learning functional programming will put you in a much better position as a developer. Functional thinking will continue permeating through mainstream programming in the near future. You’ll be prepared to develop larger and faster applications that bring satisfaction to your customers.

Why You Should Read this Book

This book focuses both on the ideas underlying and in the practicalities of Haskell programming. The chapters show you how to apply functional programming concepts in real-world scenarios. They also teach you about the tools and libraries that Haskell provides for each specific task. Newcomers to functional programming will not be the only ones who will benefit from reading this book. Developers of Scala, Clojure, Lisp, or ML will be also able to see what sets Haskell apart from other languages.

The book revolves around the project of building a web-based strorefront. In each of the five parts the focus is on a subsystem of this store: representing clients and products in-memory, data mining (including parallelization and concurrency), persistent storage, discount and offers, and the general architecture of the application. The topics have been carefully selected for you to get a glimpse of the whole Haskell ecosystem.





PART 1
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First Steps




CHAPTER 1
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Going Functional


Welcome to the world of Haskell. Before going deeply into the language itself, we will look at what makes Haskell different from other languages, and which benefits come with those changes. Haskell belongs to the family of functional languages, a broad set which includes ML, Lisp, Scala or Clojure. If you have a background in imperative or object-oriented languages, such as C, C++, or Java, you will be introduced to the new ideas present in languages of this family. If you already have experience with functional languages, you will see how other features in Haskell, such as lazy evaluation or type classes, gives this language a different taste to any other.

This book requires no previous experience about the functional paradigm. However, some general knowledge about programming, such as the concept of loops and conditionals, and some minimal practice with the shell or console, is assumed.

After introducing Haskell, we will review the process of getting a ready and complete Haskell installation in your system, including the EclipseFP development environment that brings Haskell and Eclipse IDE together. Finally, you will take your first steps with the language in the Glasgow Haskell Compiler (GHC) interpreter, a powerful tool that executes expressions in an interactive way. Throuhout the book we will develop parts of a time machine web store: as with many things in life, the best way to learn Haskell is by writing Haskell programs!

Why Haskell?

If you are reading this book it means that you are interested in learning Haskell. But what makes this language special? Its approach to programming can be summarized in five points:



	Haskell belongs to the family of functional languages,

	It embodies in its core the concept of purity, separating the code with side-effects from the rest of the application,

	The evaluation model is based on laziness,

	Types are statically checked by the compiler. Also, Haskell features a type system which is much stronger and expressive than usual,

	Its approach to polymorphism is based on parametricity (similar to generics in Java and C#) and type classes.



In the rest of this section you will understand what the terms in this list mean and their implications. Also, you will get a broad view of the entire Haskell ecosystem: the compiler, the libraries, and the available tools in a typical distribution.


Why Pure Functional Programming?

Functional programming is one of the styles or paradigms of programming. A programming paradigm is a set of ideas and concepts shared by different programming languages. For example, Pascal and C are part of the imperative paradigm, and Java and C++ mix the imperative paradigm with the object-oriented one. The fundamental emphasis of functional programming is the empowerment of functions as first-class citizens. This means that functions can be manipulated as any other data in a program. Functions can be passed as argument to another function, returned as a result, or assigned to a variable. This ability to treat functions as data allows a higher level of abstraction, and therefore more opportunities for reuse.

For example, consider the task of iterating through a data structure, performing some action over each element. In an object-oriented language, the implementor of the structure would have surely followed the iterator pattern, and you as a consumer would write code similar to the following Java code:

Iterator it = listOfThings.iterator();
while (it.hasNext()) {
    Element e = it.next();
    action(e); // perform the action
}

As you can see, there is a lot of boilerplate code in the example. In Haskell, you would use the map function, which takes as argument the action to perform on each element. The corresponding code is:

map listOfThings action

The code now is much more concise, and the actual intention of the programmer is explicit from the use of the map function. Furthermore, you prevent any possible issue related to a bad application of the the iterator pattern, because all the details have been abstracted in a function. Actually, a function like map is very common in functional code, which gives us confidence that any bug in its implementation will be found quickly.

Performing the same task in Java requires, in the provider side, creating an interface for containing the function performing the operation. Then, on the user side, you need to implement that interface through a class, or use an anonymous class. This code will be much larger than the one-line version you have seen above. In fact, new versions of Java, C++ or C# are embracing functional concepts and will allow writing code much more similar to the previous one.

In Haskell, a piece of code consists of expressions which are evaluated in a similar fashion to mathematical expressions. On the other hand, in an imperative language, methods consist of statements that change a global state. This is an important distinction, because in an imperative program the same piece of code may have different results depending on the initial state when it is executed. It’s important to notice here that elements outside of the program control, known as side effects, like input and output, network communication or randomness are also part of this global state that may change between executions of the same function.

Expressions in Haskell cannot have side effects by default: we say that these expressions are pure. A common misunderstanding about functional programming is that it disallows any kind of change to the outer state. This is not true: side-effects are possible in Haskell, but the language forces the programmer to separate the pure, side-effect free, parts from the impure ones.

The main benefit of purity is the improved ability to reason about the code and an easier approach towards testing the code. We can be sure that the outcome of a pure function only depends on its parameters and that every run with the same inputs will give the same result. This property is called referential transparency, and it’s the ground for the application of formal verification techniques, as we will see briefly in Chapter 3 and into detail in Chapter 15.

Pure functions are easier to compose, as it is sure that no interference comes to life in their execution. Actually, the evaluation of pure expressions is not dependent on the order in which it is done, so it opens the door to different execution strategiesfor the same piece of code. This is taken advantage of by the Haskell libraries providing parallel and concurrent execution, and has been even used for scheduling code in a GPU in the Accelerate library.

By default, Haskell uses an execution strategy called lazy evaluation. Under laziness, an expression is never evaluated until it is needed for the evaluation of a larger one. Once it has been evaluated, the result is saved for further computation, or discarded if it’s not needed in any other running code. This has a obvious benefit, because only the minimal amount of computation is performed during program execution, but also has drawbacks because all the suspended expressions that have not yet been evaluated must be saved in memory. Laz evaluation is very powerful but can become tricky, as we will see in Chapter 5.




Why Strong Static Typing?

Type systems come in various formats in almost all programming languages. A type system is an abstraction that categorizes the values that could appear during execution, tagging them with a so-called type. These types are normally used to restrict the possible set of actions that could be applied to a value. For example, it may allow concatenating two strings, but forbid using the division operator between them.

This tagging can be checked, broadly speaking, at two times: at execution time (dynamic typing), which usually comes with languages with looser typing and which admits implicit conversions between things like integers and string; or at the moment of compilation (static typing), in which case programs must be validated to be completely well-typed in terms of the language rules before generating the target outputcode (usually machine code or byecode) and being allowed to run. Haskell falls into this second category: all your programs will be typechecked before executed. Within statically typed languages, some of them, like Java or C#, need to perform extra type checking at run-time. In contrast, once a Haskell program has been compiled, no more type checks have to be done, so performance is vastly increased.

Haskell’s type system is very strong. Strength here means the amount of invariants that can be caught at compile time, before an error materializes while the application is running. This increases the confidence in code that is type checked, and it’s very common to hear in Haskell circles: “once it compiles, it works”. This strong typing gives rise to a way of programming dubbed type-oriented programming. Basically, the programmer knows the type of the function she is developing, and has a broad idea of the structure of the code. Then, she “fills the holes” with those expressions from the surrounding environment that fit into it. This approach has actually been formalized, and there is another language similar to Haskell, called Agda,1 which comes with an interactive programming environment which helps in filling the holes, and even does so automatically if only one option is available at one place.

By the end of the book we will move a bit from Haskell to Idris,2 a language with a similar syntax, which features dependent typing. Dependent typing is an even stronger form of type checking, where you can actually express invariants such as “if I concatenate a list of n elements to a list with m elements, I get back a list with n+m element” or “I cannot get the first element of an empty list”. Then, you will see how some of these techniques can be transferred as patterns into Haskell.

The last difference in Haskell with respect to typing comes from polymorphism. The problem is two-fold. First of all, we want to write functions on lists without caring about the type of the elements contained in them. This is known as parametric polymorphism, and you will explore it in Chapter 3. In other cases, we want to express the fact that some types allow some specific operations on their values. For example, the idea of applying a function to all elements in a list, as you did before with map, can be generalized into the concept of having an operation that applies a function to all elements in some data structure, like a tree or a graph. The solution here is called type classes, which group different types with a common interface. We will look at it in Chapter 4, where we will also realize that this concept is a very high-level one, and allows expressing several abstract ideas (functors, monads) that gives an interesting flavor to Haskell code.




The Haskell Ecosystem

Until now we have only spoken about Haskell, the languge. But the benefits of Haskell don’t come only from the language, but also from the large and growing set of tools and libraries that can be used with the language.

There are several compilers for Haskell available, which usually take the name of a city: GHC3 (from Glasgow), UHC4 (from Utrecht) and JHC5 are the maintained ones at the moment of writing. Of those, GHC is usually taken as the standard, and it’s the one with the biggest number of features. We will follow this path, and will work with GHC all throughout the book.

As any other popular programming language, Haskell has an on-line repository of libraries. It is called Hackage and it’s available at http://hackage.haskell.org/. Hackage integrates seamlessly with Cabal, the building tool specific for Haskell projects. In Hackage you can find libraries ranging from bioinformatics to game programming, window managers and much more.

Apart from GHC and Cabal, in the book we will look at some tools that aim to help the developer writing better code faster. The first one will be the GHC profiler: we will learn about it in Chapter 5 to detect space and time leaks. We will also look at Hoogle and Haddock, which are used to browse and create documentation. In the last part, in Chapter 14, we will use the UU Attribute Grammar System to help us building domain specific languages.



The History of Haskell

Haskell is usually considered the successor of the Miranda programming language, which was one of the most important lazy functional programming languages in the 1980s. However, at that time lots of other languages of the same kind existed in the wild. That made difficult for researchers to have a common base in which to perform experiments in this paradigm. So, by the end of that decade, they decided to build a completely new language that would become the ground for that research.

During the 1990s, several versions of the language were produced. During this time Haskell evolved and incorporated some of the features that give the language its particular taste, like type classes and monads for managing input and output. In 1998, a report defined Haskell 98, which was taken as the standard for any compliant Haskell compiler. This is the version targeted by most of library developers.

However, new ideas from researchers and compiler writers had been integrated in Haskell compilers, mostly in GHC. Some of these extensions have become very widely used, which make the case for a revised Haskell standard, which came of in 2010. By the time of writing, GHC targets this version of the language.

As the language has become more popular, more extensions have been added to GHC and other compilers, which usually can be switched on or off at the developer’s will. As a result, a more disciplined schedule has been created for issuing revised Haskell standards in a timely basis.

Your Working Environment

At this point you must be feeling the need to actually try Haskell on your own computer. The first step for this is, of course, to have a working Haskell installation in your system. Haskell developers have worried in the past about how to get people ready fast and easily. And they have created the Haskell Platform, a distribution containing the GHC compiler, the Cabal build and library system, and a comprehensive set of libraries. To get the Platform, go to http://www.haskell.org/platform/. Then, follow the steps that correspond to the operating system you will be using.


Installing on Windows

Installing on the Microsoft operating system is very easy: the file you download is an executable that will take care of everything.




Installing on Mac OS X

To develop with Haskell in the Apple operating system, you need XCode as prerequisite, which contains the basic developer tools for the environment. XCode component is free, but Apple asks for registration before being able to download it. The website to visit is https://developer.apple.com/xcode/. 

Installing Apple’s XCode package will give you the graphical tools, but what you need are the console tools. To get them, open the XCode IDE and go to the Preferences window. There, click on the Downloads tab. You will see an item called Command Line Tools, which is the one that you must install. See Figure 1-1 where you’ll see this tool highlighted, and also the Install button that you must click to accomplish the install.
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Figure 1-1. Installing XCode Command Line Tools



The next decision you need to make regarding to the Haskell Platform installer is whether you need the 32- or the 64-bit version. There is no important difference between them. However, if you plan to interface some external libraries with the Haskell compiler, be sure to download the version which matches the architecture those libraries were compiled in.




Installing on Linux

The world of Linux distributions is very diverse, so it’s difficult to suggest the best way to get a working Haskell installation in these systems. If you use a distribution supporting some sort of package-management system, it’s better to stick with that system. For example, Debian-based systems, like Ubuntu, support apt-get. Thus, you can run6:

$ sudo apt-get install haskell-platform

In Fedora and other Red Hat-based distros, the line to run would be:

$ yum install haskell-platform

And similarly for the rest of the common distributions. You can also check the whole list of distributions which have Haskell Platform out of the box in the Platform website.




Installing on Linux from Source

In case you want or need to perform a complete installation from source code, you must follow these steps:



	Go to the GHC compiler webpage, http://www.haskell.org/ghc/. Click on the Download link and get the binary package for the latest stable release.

	Just uncompress the file you just downloaded into the place you want it to live. It’s recommended that you add that folder to your PATH. You may need to install some libraries, like GMP, to be able to run this binary.

[image: image] Note  You can also build GHC from source. However, this is a tedious and error-prone process, so using just the binary distribution is recommended. In case you want to follow that path, the Haskell wiki has a detailed description of the process at http://hackage.haskell.org/trac/ghc/wiki/Building



	Now return to the Haskell Platform page to download its source.

	Uncompress, build and install it, which is usually accomplished by running:
$ tar -xzvf haskell-platform-*.tar.gz
$ cd haskell-platform-*
$ ./configure
$ make
$ make install







Checking That the Installation is Successful

It’s now time to see whether your Haskell Platform is correctly installed. To do so open a console, type ghci –e 5+3 and press Enter. You should see 8 as output.




Installing EclipseFP

One of the most powerful environments for programming in Haskell is the one integrated in the Eclipse IDE, called EclipseFP. It provides syntax highlighting, code autocompletion, integrated documentation, profiling and unit testing, and graphical wizards for managing Cabal projects and creating new applications and modules. EclipseFP provides an easy bridge for those developers coming from other environments such as Java or .NET, where the use of integrated programming environments is the norm. Being integrated in Eclipse, it benefits from the great range of plug-ins available, which includes Subversion and Git support. During the book, we will learn in parallel how to use the command line and EclipseFP to manage Haskell projects.


[image: image] Note  Almost all text editors targeted to developers have some mode or plug-in for Haskell. Emacs and Vim have very powerful modes with features such as autocompletion. Others such as Sublime Text, Notepad++, Kate or Gedit are mostly limited to syntax highlighting.


To get EclipseFP working, you must first get Eclipse. (Eclipse FP runs in any release of Eclipse from 3.7 onwards). Go to http://eclipse.org/downloads. As you can see, there are several options, which depend on the language support that is bundled by default with each package. In this case, it doesn’t matter the choice, as we will be adding Haskell support by hand. After downloading, just uncompress the file and execute the Eclipse binary. In Mac OS X, you may want to move the entire folder to Applications. In case it doesn’t work out-of-the-box, check whether your system has a Java Virtual Machine available, version 6 or above.

Eclipse uses the concept of workspaces. A workspace is a set of related projects in which you work at the same time, and which share preferences such asactive plug-ins or location of the windows. The first time you open the IDE, it will ask you where to create your workspace. We recommend creating a new one for working thorughout the examples in this book.

The next step is getting the EclipseFP plug-in. For that, click on the Eclipse Help menu, and select the Install New Software option. In the Work with field, enter http://eclipsefp.sf.net/updates and press Enter. After some seconds, a list containing Functional programming should appear. Select the FP: Haskell Support for Eclipse option shown in Figure 1-2, and click Next a couple of times. Eclipse will start downloading this new feature and integrating it with the environment.


[image: 9781430262503_Fig01-02.jpg]

Figure 1-2. Eclipse plug-in installation window



After installation is finished, you will be asked to restart Eclipse. Click OK to agree. Once the IDE starts again, EclipseFP will ask you about installing helper executables; you’ll receive the dialog shown in Figure 1-3. These are programs that are not needed by the core of Haskell editing, but greatly enhance the experience of the plug-in. Check the boxes to install them. Depending on your machine, this process may take a long time, as several libraries and programs must be downloaded and compiled. You can check the progress in the Console tab.



[image: 9781430262503_Fig01-03.jpg]

Figure 1-3. EclipseFP helper executables



The final step is to go into the Haskell mode. In the top right corner, there is a small button named Open Perspective. Once you click on it, a list of different supported environments for Eclipse it shown. Click on Haskell. This first time of running EclipseFP you will be prompted to download information from autocompletion from Internet. It’s very recommended you do so to get better feedback messages.



First steps with GHCi

Following installation of Haskell, you verified the installation’s success by running GHCi. This application is one instance of a Read Eval Print Loop (REPL), or more succintly, an interpreter. In GHCi, you input an expression and press Enter. The expression gets evaluated, and the result is shown in the screen. This allows for a programming methodology where you navigate into and discover the functionality of a library by issuing commands in the interpreter, and also test your code interactively.

To open an interpreter in a console, just run ghci. A prompt with Prelude> at the beginning should appear. This line tells you that the interpreter is ready to accept commands, and that the only loaded module at this moment is the Prelude, which contains the most basic functions and data types in Haskell. As a first approximation, GHCi can work as a very fancy calculator:

Prelude> 5 * 3
15
Prelude> 1/2 + 1/3
0.8333333333333333

If you now write s and press the Tab key, you will see a list of all possible functions beginning with that letter. If you then type q and press Tab again, only one possibility is left, sqrt, which is automatically written for you. One distinguishing choice made by Haskell creators was that parentheses are not used when applying a function. This means that if you want to find the square root of 7, you just write:

Prelude> sqrt 7
2.6457513110645907

There are many other arithmetic operations you can perform in the interpreter: sin, cos, log, exp, and so forth. In the next chapter we will learn to use strings and lists, and how to define functions, which will make our experience with the interpreter much more rewarding.

GHCi does not by default allow you to input several lines of code. For example, if you want to break the previous addition of two rational numbers into two lines, you cannot so easily do it. Try entering the expression again, but press Enter after inputting the plus sign. If you press Enter, an error message will be produced:

Prelude> 1/2 +
<interactive>:2:6:
    parse error (possibly incorrect indentation or mismatched brackets)

The solution is to start a multiline block. A multiline block is an expression that is allowed to span more than one line. To do so, enter :{ and then press the Return key. The prompt will change into Prelude|, showing that the input is expected to fill several lines. To end the block, enter the opposite of the beginning symbol, :}. For example:

Prelude>:{
Prelude| 1/2 +
Prelude| 1/3
Prelude| :}
0.8333333333333333


[image: image] Warning  To start a multiline block :{ must be the only text entered in the first line.


All the internal actions of the interpreter (that is, those which are not functions on any library) start with a colon. For example, typing :? and Enter gives you a list of all the available commands. Other possibilities are looking at the language standard version we are using: in this case, Haskell 2010 with some customizations. For example:

Prelude> :show language
base language is: Haskell2010
with the following modifiers:
  -XNoDatatypeContexts
  -XNondecreasingIndentation

I stated before that Haskell has a strong static type system. You can check that it forbids dividing two strings (which are written between double quotes), producing an error when input in the interpreter. In this case:

Prelude> "hello" / "world"
<interactive>:2:9:
    No instance for (Fractional [Char]) arising from a use of `/'
    Possible fix: add an instance declaration for (Fractional [Char])
    In the expression: "hello" / "world"
    In an equation for `it': it = "hello" / "world"

Fractional is the name of the type class that provides support for the / operator. The error message is saying that in order to be able to divide two strings, you should tell the compiler how to do so, by adding a declaration with the code for the Fractional type class in the case of strings.

To close the interpreter and go back to the console, you can issue the command :quit or just press the key combination Ctrl+D. In both cases the result is the same:

Prelude> :quit
Leaving GHCi.


[image: image] Note  GHCi is a very powerful and customizable tool. You can find lots of tips and tricks in the Haskell wiki page devoted to the interpreter, http://www.haskell.org/haskellwiki/GHC/GHCi.


The Time Machine Store

If you have already had a look at the Table of Contents of the book, you will have noticed that it is divided in four parts. Each part is devoted to a different module of a small web store:



In this first part, we will look at how to define the basic blocks of our application, representing clients, products and orders, and how to manage them in-memory.

In Part II, we will develop some data mining algorithms to get a better knowledge of the clients. In particular, we will develop a classification algorithm based on K-means and a recommendation algorithm.

Part III will deal with saving data into a persistent store: for product data we will use a custom file format, and for clients and orders a more traditional database solution. With all of this, we will be able to build the initial application by Chapter 12.

Part IV shows how a domain-specific language can be used to model special offers that are made to customers. An example could be to offer a 20% discount to all European customers under the age of 30 years. Here you will see Haskell’s strong type system working in your favor.

Finally, Part V talks about software engineering practices. These include creating documentation and unit testing. Excellent tools exist in the Haskell environment to help with good practices in documenting and testing your code.



What do we sell in our store? We sell time machines:


Welcome to the exciting world of time machines! These machines are quite special, and our clients come from all parts of the Universe to get one. We would like to have a web store to handle all the orders. And we would also like to be developed in a language as special as our machines, like Haskell.



Sound exciting? Throughout this book you’ll be using Haskell to build your very own store for selling time machines. It’s a fun example, and hopefully keeps the book interesting.

Summary

In this chapter you got in touch with Haskell:


	You have learnt about the distinguishing features of pure functional programming and how it helps to build code that is more concise, more maintainable and less error-prone.

	You have look at the benefits of having a strong, statically checked, type system, as the one embodied in Haskell, and how dependent typing makes possible to express invariants in very powerful way.

	The major tools in the Haskell ecosystem have been introduced: the GHC compiler, the Cabal build tool, the Hackage library repository and the GHC interpreter. You have also made our first steps in the latter.

	You have looked at the installation process of the Haskell Platform in the most usual computer environments, as well as the Haskell plug-in for the Eclipse integrated development environment.

	You have been presented our main target in the book (apart from learning Haskell): building a web store focused on selling time machines, with modules for simple data mining and offer descriptions.



1Agda 2 website: http://wiki.portal.chalmers.se/agda

2Idris website: http://www.idris-lang.org/

3GHC website: http://www.haskell.org/ghc/

4UHC website: http://www.cs.uu.nl/wiki/UHC

5JHC website: http://repetae.net/computer/jhc/

6The book will follow the convention of leading anything to be input in the console with the $ sign.




CHAPTER 2

[image: image]

Declaring the Data Model


You already know how to get a working installation of the Haskell Platform, and of the EclipseFP development environment. The next step toward our Time Machine Store is to create the initial set of values and functions that will represent the data in the system: clients, machines, and orders.

This chapter will give you the basic ingredients to do so. In a first approximation, you will create functions operating on basic types. You already know numbers, and we will add lists and tuples to the mix. Afterward, you will see how to create your own algebraic data types (ADTs) to better represent the kind of values we are interested in. As part of this learning, you will find pattern matching for the first time, a powerful idiom to write concise code that follows closely the shape of the types.

Sometimes ADTs and pattern matching give code that it’s not clear enough. Records introduce some syntactic forms that make values easier to create and modify and is a well-known tool of the Haskell programmer. Apart from that, you will look at two design patterns that are common in Haskell libraries, namely smart constructors and default values.

This chapter will also be your introduction to the management of projects using Cabal and EclipseFP. In particular you will see how to create a new project using both systems, which is the usual structure in folders, and how to load the code into the GHC interpreter to interactively test it.

Working with Characters, Numbers, and Lists

Characters and numbers are universally accepted as the most basic kind of values that a language should provide to programmers. Haskell follows this tradition and offers dedicated character and number types that will be introduced in this section. Afterward, you will see how to put together several of these values to create strings or lists of numbers, as well as the basic operations on any kind of list.


Characters

In some programming languages, numbers are also used to represent characters, usually in some encoding like ASCII or Unicode. But following its tradition of clearly separating different concerns of a value, Haskell has a special type called Char for representing character data. To prevent problems with locales and languages, a Char value contains one Unicode character. These values can be created in two different ways:


	Writing the character itself between single quotes, like 'a'

	Writing the code point as defined in the Unicode standard, in decimal between '\ and ', or in hexadecimal between '\x and '. For example, the same 'a' character can be written as '\97' or '\x61'.



Using GHCi, you can check the actual type of each expression you introduce in the system. To do so, you have to use the :t command, followed by the expression itself. Let’s check that characters indeed are:

Prelude Data.Char> :t 'a'
'a' :: Char

Let’s now explore some of the functionality that Haskell provides for Chars. Only a few functions are loaded by default, so let’s import a module with a lot more functions, in this case Data.Char:

Prelude> import Data.Char
Prelude Data.Char>

The prompt of the interpreter changes to reflect the fact that now two different modules are loaded. Furthermore, if you now write “to” and press Tab, you will see a greater number of functions than before. In Haskell, everything has its own type, so let’s try to find out toUpper’s:

Prelude Data.Char> :t toUpper
toUpper :: Char -> Char

The arrow->syntax is used to specify types of functions. In this case, toUpper is a function taking a character (the Char on the left side) and returning another one (because of the Char in the right side). Of course, types don’t have to be equal. For example, chr takes an integer and gives the character with that code point:

Prelude Data.Char> chr 97
'a'
Prelude Data.Char> :t chr
chr :: Int -> Char

For functions with more than one parameter, each argument type is separated from the next with a single arrow. In case we had a “min” function taking two integers and returning the smallest one, the type would be:

min :: Integer -> Integer -> Integer

I mentioned in previous chapter that Haskell is very strict at checking types. You can indeed check that: if you try to apply that chr function to a character, the interpreter refuses to continue:

Prelude Data.Char> chr 'a'
<interactive>:7:5:
    Couldn't match expected type `Int' with actual type `Char'
    In the first argument of `chr', namely 'a'
    In the expression: chr 'a'
    In an equation for `it': it = chr 'a'





Numbers

In the previous chapter you may have noticed that several kinds of numeric constants are used. As most programming languages, Haskell supports a great variety of number types, depending on the width, precision and support for decimal parts:



	Int is the bounded integer type. It supports values between at least ±536870911 (even though GHC uses a much wider range). Usually, values of the Int type have the native width of the architecture, which make them the fastest among all.

	Integer is an unbounded integer type: it can represent any value without a decimal part without underflow or overflow. This property makes is very useful for writing code without caring about bounds, but it comes at the price of speed.

	Haskell base library also bundles exact rational numbers using the Ratio type. Rational values are created using n % m.

	Float and Double are floating-point types of single and double precision, respectively.



Haskell is very strict with the types. In case you need to convert between different numeric representations, the functions fromInteger, toInteger, fromRational, and toRational will help you dealing with conversions.

You can switch between rational and floating-point representation of values: the toRational function tries to create a Ratio not very far from the original value (this depends on its width), and you can move from rational to floating-point by dividing the numerator by the denominator of the ratio. Be aware that many of these functions are found in the Data.Ratio module, so you should import it first.

Prelude> import Data.Ratio
Prelude Data.Ratio> 1 % 2 + 1 % 3
5 % 6
Prelude Data.Ratio> toRational 1.3
5854679515581645 % 4503599627370496
Prelude Data.Ratio> toRational (fromRational (13 % 10))
5854679515581645 % 4503599627370496

As you can check from the examples, perfect round tripping between rational and floating-point values is not always possible.

If you try to find the type of numeric constants, you may get a puzzling result:

Prelude> :t 5
5 :: Num a => a
Prelude> :t 3.4
3.4 :: Fractional a => a

Instead of making numeric constant of a specific type, Haskell has a very clever solution for supporting constants for different types: they are called polymorphic. For example, 5 is a constant that can be used for creating values of every type supporting the Num type class (which includes all types we have introduced before). On the other hand, 3.4 can be used for creating values of any type that is Fractional (which includes Float and Double, but not Int or Integer). You will read in detail about type classes in Chapter 4, but right now you can think of a type class as a way to group sets of types that support the same operations.


[image: image] Warning  Since Haskell doesn’t use parenthesis in the function application, you must be a bit more careful than usual when using negative numbers. For example, if you write atan -4 in GHCi, you will get an error indicating No instance for (Num (a0 -> a0)) arising from a use of '-'. This means that it has interpreted that you are trying to compute the subtraction of atan and 4. To get the arctangent of -4 you should instead write atan (-4).





Strings

After playing for some time with characters, you may wonder whether we can have a bunch of them together, forming what is commonly known as string. The syntax for strings in Haskell is similar to C: wrapping letters in double quotes. The following code creates a string: if you ask the interpreter its type, what do you expect to get back?

Prelude Data.Char> :t "Hello world!"
"Hello world!" :: [Char]

Instead of some new type, like String, we see our old friend Char, but wrapped into squarebrackets. Those brackets are there to indicate that "Hello world!" is not a character, but a list of characters. In general, given a type τ, the notation [τ] refers to the type of all lists whose elements are all of type τ. Lists are the most used data structure in functional programming. The fact that a type like a list depends on other types is known as parametric polymorphism, and we will delve into details in the next chapter. Right now, let’s focus on the practical side.




Lists

List literals, that is, lists whose values are explicitly set into the program code are written separating each of the elements between commas, while wrapping everything between square brackets. As I have said before, there’s also special string syntax for list of characters. Let’s look at the types of some of these literals and the functions reverse, which gives a list in reverse order, and (++), which concatenates two lists.

Prelude> :t [1,2,3]
[1, 2, 3] :: Num t => [t]
Prelude> :t reverse
reverse :: [a] -> [a]
Prelude> :t (++)
(++) :: [a] -> [a] -> [a]
Prelude> reverse [1,2,3]
[3,2,1]
Prelude> reverse "abc"
"cba"
Prelude> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

Notice from this example that there are functions, such as reverse and (++), which are able to operate on any kind of list. This means that once you know them, you can apply your knowledge of them to any list (including strings of characters). To tell this fact, these functions show in its type a type variable. It is a variable because it can be replaced by any type, as regular variables can take different values. Type variables must be written in code starting with lowercase letters, and consist usually of one or two letters. Here, the type variable is shown as a.


[image: image] Note  Functions whose name is built entirely by symbols, like ++, must be called using infix syntax: writing them between the arguments, instead of in front of them. So you write a ++ b, not ++ a b. In the case where you want to use the function in the normal fashion, you must use parenthesis. So you can write (++) a b.


Lists in Haskell are homogeneous: each list can only handle elements of one single type. Because of that, you are forbidden to create a list containing integers and characters, and also to concatenate two lists with different kind of elements:

Prelude> [1,2,3,'a','b','c']
<interactive>:13:2:
    No instance for (Num Char) arising from the literal `1'
    Possible fix: add an instance declaration for (Num Char)
Prelude> "abc" ++ [1,2,3]
<interactive>:11:11:
    No instance for (Num Char) arising from the literal `1'
    Possible fix: add an instance declaration for (Num Char)





Lists Operations

As in most functional languages, lists in Haskell are linked lists. Such lists are composed of a series of cells that hold the values in a list and a reference to the next cell, and a special marker for the end of the list. The basic operations to construct lists are [](pronounced “nil”) to create an empty list, and (:) (pronounced “cons”) to append an element to an already existing list, that is, elt:lst is the list resulting of putting the value elt in front of the list lst. So list literals can also be written as:

Prelude> 1 : 2 : 3 : []
[1,2,3]
Prelude> 'a' : 'b' : 'c' : []
"abc"

The functions that get information about the shape and the contents of the list are null, to check whether a list is empty or not: head, to get the first element, and tail, to get the list without that first element, also known as the rest of the list. Below you can find some examples of application of these functions:

Prelude> null [1,2,3]
False
Prelude> null []
True
Prelude> head [1,2,3]
1
Prelude> tail [1,2,3]
[2,3]
Prelude> head []
*** Exception: Prelude.head: empty list

Figure 2-1 shows a graphical representation about the operators and functions on lists we have talked about. The (:) operator is used to bind together an element with some rest of the list, and we can split those elements apart again using head and tail. You can also see how a list is always a series of cons operations that always end with the empty list constructor, [].


[image: 9781430262503_Fig02-01.jpg]

Figure 2-1. Graphical representation of list constructors and destructors



If you try to get the head or the tail of an empty list, we get an error, as you may expect. Be aware that exceptions are not the preferred way to handle errors in Haskell (you will see why in more detail in subsequent chapters) and by default make the entire program crash when found. To prevent errors from operations on empty lists, just be sure to check for non-emptiness before applying functions such as head and tail (or use pattern matching, another syntax that will be introduced shortly).

In fact, looking at the output of null, you may have noticed two new values we have talked about before: True and False. These are the only two elements of the Bool type, which represent Boolean values. Several standard functions for combining these two values (and &&, or || and not) are provided in the Prelude. Most programming languages originating from C, like C++ and Java, inherit from the former two kinds of boolean operators. You’ll find long-circuiting (& and |) operators, which always evaluate both sides of the expression, and short-circuiting (&& and ||) operators, which may stop after evaluating only one side. In Haskell, due to its lazy evaluation model, these operators always perform their job in the short-circuiting manner. Apart from that, there exists and and or functions which take a list of Booleans and perform the operations.

Prelude> (True && False) || (False && not False)
False
Prelude> or [True, False, and [False, True, True]]
True
Prelude> (2 == 2.1) || (2 < 2.1) || (2 > 2.1)
True


[image: image] Warning  The usual warnings about comparison of floating-point values apply here. Computers are not able to represent with exact precision all the values, so you may find that equalities that you expect not to hold actually do. For example, in my system the expression (4.00000000000000003 - 4) == 0 evaluates to True.


Along with these functions, another important construction related to Booleans is if-then-else. An expression with the form if b then t else f evaluates to t if the value of b is True, and to f otherwise. This structure looks very similar to the one found in imperative languages, but has important differences:


	t and f must be expression themselves, in accordance to the rest of the language, because the entire if expression must have a value at the end. Writing something like if True then 1 else 2 is the common pattern in Haskell.

	Both then and else branches must be present along with the if. If such was not the case, then the expression wouldn’t be evaluable for some of the values of b. Other languages opt to return a default value for inexistent else, but Haskell makes no commitment.

	The entire expression must have a defined type. The way how Haskell manages to ensure that is by forcing both t and f expressions to have the same type. Thus, an expression such as if True then 1 else "hello" won’t be accepted by either the compiler or the interpreter.



To make real use of if expressions functions that return type Bool are needed. A great bag of them are the comparison functions between numbers: == (equality), /= (inequality, but be aware that this function doesn’t share name with its C and Java counterpart, which is !=), >= (greater or equal), > (greater than), <= (less or equal) and < (less than). Following is an example of an if expression:

Prelude> if 3 < 4.5 then "3 is less than 4.5" else "3 is not less than 4.5"
"3 is less than 4.5"

Let’s make the interpreter return the head of a list of strings if it is not empty, or "empty" otherwise:

Prelude> if not (null ["hello","hola"]) then (head ["hello","hola"]) else "empty"
"hello"
Prelude> if not (null []) then (head []) else "empty"
"empty"

Lists can contain other lists as elements (or to any level of nesting). As [τ] are lists of type τ, lists or lists would be [[τ]]. The inner lists inside the outer lists need not to be of the same length (so they are not equivalent to arrays of multiple dimensions). One important thing to remember is that an empty list can be a member of a larger list of lists, so [] and [[]] are not equivalent: the first is a completely empty list of lists, whereas the second is a list which contains only one element, which is an empty list.

Prelude> :t [['a','b','c'],['d','e']]
[['a','b','c'],['d','e']] :: [[Char]]
Prelude> head [['a','b','c'],['d','e']]
"abc"
Prelude> head (head [['a','b','c'],['d','e']])
'a'
Prelude> head [[]]
[]

For sure you have become bored while typing more than once the same constant list in the interpreter. To overcome this, we are going to look at the essential ways to re-use functionality across all programming languages: defining functions that would on different input values, and creating temporal bindings. But before that, EXERCISE 2-2 includes some tasks to see whether you have understood the concepts up to this point. In the next section, I will introduce Cabal, the tool used to manage and build Haskell projects.


EXERCISE 2-1. LISTS OF LISTS

A lot of material about the most basic types and expressions in Haskell has been covered up to this point. The following tasks exercise the knowledge you have gained in this section. In all cases, the solution is an expression that can be typed inside the interpreter to check whether it works or not.


	Rewrite the previous list literals using only (:) and the empty list constructor [].

	Write an expression that checks whether a list is empty, [], or its first element is empty, like [[],['a','b']].

	Write an expression that checks whether a list has only one element. It should return True for ['a'] and False for [] or ['a','b'].

	Write an expression that concatenates two lists given inside another lists. For example, it should return "abcde" for ["abc","de"].







Creating a New Project

You create a new project through a program known as Cabal. Cabal is the packaging and building system for Haskell projects. You can choose other tools, but the advantage of using Cabal is that it has been especially tailored for Haskell and its package repository, Hackage. Apart from that, the Cabal description file saves interesting metadata about the project, such as its name, maintainer or license. In this section you will see how to use Cabal both from command line and from EclipseFP. You can choose any alternative and even change, because project structure is compatible.


Creating a Project from the Command Line

If you want to create a project using the command line, the first thing to do is to create the folder where the files will reside, usually named the same as the package name. Then move inside the folder in the shell (usually by issuing a series of cd commands) and run cabal init. You will need to answer some questions:

$ cd path/to/my/haskell/projects
$ mkdir chapter2
$ cd chapter2
$ cabal init
Package name? [default: chapter2]
Package version? [default: 0.1.0.0] 0.0.1
Please choose a license:
 * 1) (none)
   ...
Your choice? [default: (none)]
Author name? Alejandro Serrano
Maintainer email? my@email-address.com
Project homepage URL? http://my-web-page.com
Project synopsis? Project example for Chapter 2
Project category:
 * 1) (none)
   ...
Your choice? [default: (none)]
What does the package build:
   1) Library
   2) Executable
Your choice? 1
Include documentation on what each field means (y/n)? [default: n]

The most important answers to give are the package name and whether you want to create a library or an executable, because which you create affects the name and structure of the project file. The essential difference between a library and an executable project is whether a final program will be produced (in the latter case) or the code is just for consumption of other libraries or executables. Right now, it does not matter which one you choose, because we will be testing the code using the GHC interpreter. Furthermore, the project can be refined later to add more library or executable descriptions.




Creating a Project from EclipseFP

To start a new project inside EclipseFP, go to the File menu, and then click New and Haskell Project. You will be presented the screen in Figure 2-2 asking for the important information we mentioned earlier. You will also be given the option to choose where your project will live:


[image: 9781430262503_Fig02-02.jpg]

Figure 2-2. Starting a new project in EclipseFP




EXERCISE 2-2. YOUR FIRST PROJECT

Create a new library project called chapter2 using either of the methods explained so far.



When doing EXERCISE 2-2, a pair of files named Setup.hs and package_name.cabal will be created in the folder. The file Setup.hs is not very useful, so we will focus on the latter. Go ahead an open the .cabal file that you have just created. If you are working in EclipseFP, a graphical tool for editing the file will appear, as shown in Figure 2-3.


[image: 9781430262503_Fig02-03.jpg]

Figure 2-3. Graphical Cabal editing tool in EclipseFP



In source form, a Cabal project file is composed of a series of package properties followed by several blocks of code, called stanzas in Cabal terminology, defining the components (libraries and executables) to be built, the source files making each of them, and the options for compilation (like flags or enabled extensions). If you are familiar with the JSON format or with Python code, you will find Cabal syntax very comfortable to read and interpret. Following are two important rules of interpretation:



	Each property is given a value in the form name: value. The name is case-insensitive (it doesn’t matter whether you write name, Name or nAmE), and the value is written without any kind of quotes or marks. In case of the value being a list, the elements are separated by commas.

	Stanzas begin with a header, usually library or executable, followed by an application name. Be aware that there is no colon (:)character after the header. All properties making the stanza must be indented an equal number of space or tab characters.



For example, the Cabal file created by EclipseFP for EXERCISE 2-3 looks like:

name:           chapter2
version:        0.1
cabal-version:  >=1.2
build-type:     Simple
author:         Alejandro Serrano
 
library
  hs-source-dirs:  src
  build-depends:   base >= 4
  ghc-options:     -Wall





Understanding Modules

You build Haskell projects by writing what are termed modules. Each module contains a set of definitions, like functions and data types, and groups them under a common umbrella. The names of modules are nested in a hierarchical fashion: for example, inside Data there are a bunch of different modules, like Data.Bool, Data.Ratio, and so forth. This nesting makes modules very similar to packages in Java, or to namespaces in C#.

You define each module in its own file. The file name should be equal to the last component of the module name (the part after the last dot), and must be nested in folders named like the rest of the components. For example, you would create a module named Chapter2.Section2.Example in the path Chapter2/Section2/Example.hs. In the top of the project, create a folder named Chapter2. Inside it, another folder named Section2. Finally, inside Section2 create the Example.hs file.

Always begin a module file with a module declaration giving its name. For example, you would begin the Example.hs module just mentioned by writing the following line:

module Chapter2.Section2.Example where

Then, you can start writing the definitions for that module.

To tell Cabal to compile a module file, you must include that module in some stanza. To do so, include a new property under the stanza adding the module either to the exposed-modules or to the other-modules property (the difference is that when using your library from another project, only exposed modules will be available, the others remain as internal). For example:

library
  exposed-modules: Chapter2.Section2.Example
  -- or
  other-modules:   Chapter2.Section2.Example

If you are using the command line, you can now compile the project by running cabal configure and then cabal build. At this point you shouldn’t encounter any compiling errors.

In summary, to add a new module to your project you should follow these steps:


	Choose a name for the module, for example A.B.C.

	Create a folder for each component of its name but the last one, in this case a folder A and inside a folder B.

	Create a file with the same name of the last component ending in .hs (here C.hs) and write the module declaration we’ve seen above.

	Tell Cabal to include the file in your project.



Because having all the files in the root of the project makes them difficult to manage, it’s customary to create a folder to hold all the source files of a project, as t is done in other build tools such as Maven for Java. I strongly recommend placing your files in a src folder. But if you move your files from the root of the project, you must tell that to Cabal by adding a new property to your stanza:

library
  hs-source-dirs:  src

If you are using EclipseFP, the management of modules is greatly simplified. First of all, the structure for keeping the source files from the root is created by default. Also, you can right-click on the src folder and select New Haskell Module from the menu. In the Folder textbox, you should include the initial components of your module (in our case Chapter2.Section2), and in the Name textbox include the last one (here, Example). In the next window, you can select in which stanzas the new module will be included. After clicking Finish, the file will be created in the correct place, and will be listed in the Cabal file.


[image: image] Note  From now on, create a new project for each chapter in the book. Create a new module or set of modules for each section. This convention will help keep your work organized.




Defining Simple Functions

Now you are going to start creating functions in a module file. Function declarations include the following:



	A name, which in Haskell starts always with a lowercase letter

	The list of parameters, each of which must also begin with a lowercase letter, separated from the rest by spaces (not by commas, like in most languages), and not surrounded by parenthesis

	An = sign and the body of the function itself.




Creating a Simple Function

Let’s try to abstract the last function created in the earlier section “List operations”. Given a list of strings, that function returns either the first string in the list, or the string "empty" if there is nothing in the list. We can reuse most of the expression, replacing the constant lists by the parameter name:

firstOrEmpty lst = if not (null lst) then head lst else "empty"

To test the function, first create a new module Chapter2.SimpleFunctions for holding it. Then, load the file in the interpreter by issuing the command :l followed by the entire path to the file. Afterward, you can call firstOrEmpty directly:

Prelude> :l src/Chapter2/SimpleFunctions.hs
[1 of 1] Compiling Chapter2.SimpleFunctions ( src/Chapter2/SimpleFunctions.hs, interpreted )
Warning: Top-level binding with no type signature:
      firstOrEmpty :: [[Char]] -> [Char]
Ok, modules loaded: Chapter2.SimpleFunctions.
*Chapter2.SimpleFunctions> firstOrEmpty []
"empty"
*Chapter2.SimpleFunctions> firstOrEmpty ["hello","hola"]
"hello"

In EclipseFP you can get the same result by right clicking the file to load, selecting Run As from the menu, and then selecting GHCi session. In the bottom part of the screen a Console tab will receive focus, and that tab will have an interpreter running within it.

You surely have noticed that loading the file has resulted in a warning, or in case of EclipseFP, that a yellow warning sign appears next to the function definition. The warning tells us that we have given no type signature, that is, that we haven’t specified the type of the function.




Specifying the Function’s Type

I made strong emphasis in Chapter 1 about Haskell being a strong, static typed language, and now we are writing functions without any kind of type annotation. How is this possible? The answer is in the same warning message: we didn’t tell anything to Haskell and it inferred the correct type for the function. Type inference, that is, the automatic determination of the type of each expression based on the functions and syntax construct being used, is a key point that makes a strong type system such as Haskell’s still manageable to the developer. This is a big contrast with other programming languages, such as Java or C#, which until their last revisions asked the developer to write the types of all variables in the code.

However, it’s not considered a good practice to leave a function definition without an annotation about its type: that’s the reason why a warning shows up even when the interpreter was able to realize the type of the function. The way to solve this is by adding a type signature: the name of the function being defined followed by :: and its type. Type signatures are conventionally added just before the definition of the element being typed. Being reminded that function types are written using ->, the type signature for firstOrEmpty is:

firstOrEmpty :: [[Char]] -> [Char]
firstOrEmpty lst = if not (null lst) then head lst else "empty"


[image: image] Note  If you are using EclipseFP, you can automatically add the type signature by clicking on the yellow warning sign and selecting Add type signature in the menu.





Developing a Robust Example

Let’s try to define our own functions for concatenating and reversing a list, which we will call (+++) and reverse2 respectively. A general way to define functions over lists (and most of the other data structures) in Haskell is by using recursion. In this case defining a function by recursion boils down to considering two general cases:


	What to do when the list is empty

	What to do when the list has some initial element and some tail



The basic skeleton is the same in both cases:

if null list then <case for empty list> else <do something with (head list) and (tail list)>

Let’s start with the concatenation function. First of all, due to its symbolic name of (+++) you have to write the name infix. So in the definition you shall write: 

lst1 +++ lst2

Remember our two general cases from the earlier list. Now that we are implementing a specific function, those cases can be stated in more specific terms:


	When concatenating an empty list with any other list, just return the second list, because the first one adds no elements.

	When having a non-empty list, and appending it to a second list. In this case, you have to think about what to do with the head and tail of the first list. Using recursion, you can call (+++) to append the tail of the first list and the second one. The return value from this call will be the list you need, but without the first element. To solve this problem, you can just plug the head of the first list using the (:) operator.



When this definition is translated into code, the result is:

lst1 +++ lst2 = if null lst1  {- check emptyness -}
                then lst2      -- base case
                else (head lst1) : (tail lst1 +++ lst2)

This example also showcases for the first time the use of comments in Haskell code. Comments can include any kind of text and are completely ignored by both interpreter and compiler (although some tools like Haddock get information from the comments). As in many programming languages, there are two kinds of comments in Haskell. The first one is multiline comments, which span from {- to the nearest -}. Multiline comments are not affected by carriage returns, as single line comments do. Single line comments span from -- to the first new line symbol found in the source code.

If you have problems understanding this recursive definition, I encourage you to try applying it to some small lists. For example, following are the steps when evaluating [1, 2] +++ [3, 4]:


	The initial expression comes in as: [1,2] +++ [3,4]

	It evaluates recursively to: 1:([2] +++ [3,4])

	And that evaluates recursively to: 1:(2:([] +++ [3,4]))

	The first list is now empty, so the recursion ends with: 1:(2:[3,4])

	The colon operators simply append list items. Thus, 2:[3,4] evaluates to [2,3,4], and so forth.

	The final result is: [1,2,3,4]



From now on, you will go through traces of execution somehow often. To make the examples more concise, the book will use the convention of showing the steps separated by the => symbol. For the previous example:[1,2] +++ [3,4] => 1:([2] +++ [3,4]) => 1:(2:([] +++ [3,4])) => 1:(2:[3,4]) = [1,2,3,4]

Now let’s move on to the reverse2 function. Once again you will follow the methodology of separating the work by the possible cases of a list to be passed as input. Reversing an empty list is quite easy: you simply return an empty list. To reverse a list with some amount of elements, you could take the following approach:


	Reverse the tail of the list.

	Then concatenate the head of the list to the end of the reversed tail.



The recursion occurs in Step 1. To reverse the tail of a list means to reverse a list that is shorter by one element than the original input list. That shorter-by-one-element list is itself passed to the reversal function, creating yet another list, shorter by one more element. This process continues until the tail becomes empty.

Since you have no direct way to add elements at the end of a list, we will use the (+++) function just defined to concatenate a list with a single element. The result in this case is:

reverse2 list = if null list
                then []
                else reverse2 (tail list) +++ [head list]

We mentioned in Chapter 1 that a very useful feature of the Haskell ecosystem is the ability to interactively test functions. EXERCISE 2-3 points you at the steps you should follow for the functions in this section.


EXERCISE 2-3. TESTING FUNCTIONS

Load the file where you defined the functions into GHCi and call them with different arguments to test them. Based on the warnings that will appear, add type signatures to your code.






Returning More than One Value

Step by step you move toward the definition of larger functions. The next one will compute the maximum and minimum of a list of numbers. The first question you may have is: how can I return more than one value in a function? In other programming languages, doing so would require defining some kind of structure or data type to hold the result. Doing the same is a valid approach in Haskell, but for easy cases like this one you can use a built-in type called the tuple. A tuple is just a type having a fixed number of components, each of them holding a value, not necessarily of the same type. Tuple values are written between parentheses and separated by commas, and the same notation is used for tuple types. For example, the following code creates a tuple with two elements: the first one is just the string "hello", and the second one is the result of evaluating a numeric condition:

Prelude> :t ("hello", True, if 2 > 3 then 'a' else 'b')
("hello", True, if 2 > 3 then 'a' else 'b') :: ([Char], Bool, Char)


[image: image] Warning  Tuple types of different lengths are completely different types. For example, a function working on tuples in the form (a,b) cannot be applied to tuples such as (a,b,c) having some other number of values.


Right now you will only work with pairs, that is, tuples of two components. For those tuples, there are two destructor functions: fst gives the first component, and snd gives the second one. Now you have all the ingredients to create a function computing both maximum and minimum of a list. If you forget for now the case of empty lists that don’t have a well-defined maximum or minimum, you can proceed again by cases. The first case is the list with a single element, and that element should be returned as both the maximum and the minimum, and thus in both components of the tuple. If the list has more than one element, you can get the maximum and minimum of the tail of the list, and then compare those values with the head. Thus, our recursive solution looks as follows:

maxmin list = if null (tail list)
              then (head list, head list)
              else ( if (head list) > fst (maxmin (tail list))
                     then head list
                     else fst (maxmin (tail list))
                   , if (head list) < snd (maxmin (tail list))
                     then head list
                     else snd (maxmin (tail list))
                   )

Wow! Somehow a function for such an easy task has become completely incomprehensible and unmaintainable: the code is full of repetition, and even worse, maxmin (tail list) is recomputed four times per recursive call, which is not very performant. The solution is to use a local binding, which gives name to an expression to be used in a larger one. There are two kinds of binding constructs in Haskell: let and where. In both cases a binding is introduced by name = expression. The difference lies in the position over the main expression: let introduces bindings before the main expression, and must end with the in keyword. On the other hand where does so after the expression. The following code is a rewriting of the previous one, but using local bindings to refer to the head of the list and the return values of the recursive case:

maxmin list = let h = head list
              in if null (tail list)
                 then (h, h)
                 else ( if h > t_max then h else t_max
                      , if h < t_min then h else t_min )
                      where t = maxmin (tail list)
                            t_max = fst t
                            t_min = snd t

The special position of the code in all of these examples is not random or just aesthetic, as you have noticed if you’ve tried to copy the code by hand into an editor. A first guess about the reason may lead you to think about indentation-sensitive languages like Python. However, Haskell uses a different solution, called layout. In a layout-based syntax how a line is indented isn’t as important as the fact that all elements in the same block start in the same column. For example:


	In an if block, the lines for then and else must be indented the same way.

	In a let or a where block, all local bindings must start in the same position.




[image: image] Note  When reading Haskell code, you will notice that Haskellers also tend to align other symbols, like the = signs in a local bindings block. The layout rule applies only to the beginning of expressions, so alignment is not enforced. However, it’s a common convention that you should follow or at least get used to.


As a final remark, Haskell also allows grouping blocks with { and } and separating expressions by ;. For example, you can rewrite the last where clause in the example as:

where { t = maxmin (tail list) ; t_max = fst t ; t_min = snd t }

Be aware that this kind of syntax is highly discouraged when writing new code (it was thought for cases where Haskell code is produced automatically by some other program).



Working with Data Types

Haskell provides tuples to group a fixed number of components of different types and lists to contain an unlimited number of elements of a homogeneous type. It seems that this is enough to start modeling the data for the web application. For example, a client named Paul, age 25 and buyer of two time machines, could be represented as:

("Paul", 25, ["Super Time Machine 2013", "Medieval Machine"])

There are two problems with using this approach: first of all, code is difficult to read because of nested calls to fst, snd, or head. Second, it defies strong typing because the compiler cannot distinguish a client from, say, the description of a fish with its common name, its length, and a list of seas where it is found. The solution is to introduce a new data type specific for representing clients. The most basic kind of data types that you can create in Haskell are called algebraic data types (or ADTs for short) and will be the focus of this section. An ADT is defined by two pieces of data:



	A name for the type that will be used to represent its values,

	A set of constructors that are used to create new values. These constructors may have arguments that will hold values of the specified types.



In many languages different constructors can be defined for a data type (or a class, if you are working on an object-oriented language). However, these constructors are somehow linked, and tend to be more like a shortcut for default values. In most of the functional languages, where Haskell belongs to, different constructors are used to represent completely different alternatives to construct values.

To make the ideas clear, let’s begin modeling clients. There are three kinds of clients:



	Government organizations, which are known by their name

	Companies, for which you need to record its name, an identification number, a contact person and its position within the company hierarchy

	Individual clients, known by their name, surname and whether they want to receive further information about offers and discounts



The way to represent these three client types in Haskell is:

data Client = GovOrg     String
            | Company    String Integer String String
            | Individual String String Bool

As you can see, the syntax for declaring data types starts with the data keyword, followed by the type name. After that, constructors are listed separated by |. Each of them starts with a constructor name, and then the types of the arguments to that constructor.


CAPITALIZATION IN HASKELL

One of the special characteristics of Haskell syntax is that names given by the user must follow some capitalization rules. Here is a brief summary of the conventions:


	Functions, parameters and bindings must start with a lowercase letter. In case of an operator name, it must not start with :.

	Types, constructors, type classes and kinds must start with an uppercase letter. If using an operator name, it must start with :.



These rules make it easier to determine the kind of element you are looking at.



Using the constructors, you can create values of type Client, just writing the constructor name and the value for each of the parameters in the order in which they appear in the declaration:

*Chapter2.DataTypes> :t GovOrg "Nasa"
GovOrg "Nasa" :: Client
*Chapter2.DataTypes> :t Company "Pear Inc." 342 "Mr. Sparrow" "CEO"
Company "Pear Inc." 342 "Mr. Sparrow" "CEO" :: Client

But when you try to print the values themselves, something wrong happens:

*Chapter2.DataTypes> Individual "Jack" "Smith" True
    No instance for (Show Client) arising from a use of `print'
    Possible fix: add an instance declaration for (Show Client)
    In a stmt of an interactive GHCi command: print it

For showing the values on the screen, the interpreter calls internally a print function over them. However, you haven’t written the corresponding code for this data type, so an error arises. To fix this problem, you can use a facility in Haskell called default deriving that allows adding some functionality to an ADT without writing any code. In this case, you want to able to get a string representation of the values, so you need to derive Show. Show is a type class: implementing it means that there’s a way to get a string out of any value of this type. You can write the code yourself, or you can allow Haskell to write it for you. The following example specifies deriving Show, causing Haskell to generate it automatically:

data Client = GovOrg String
            | Company    String Integer String String
            | Individual String String Bool
            deriving Show

Now the interpreter can display the values on the screen:

*Chapter2.DataTypes> Individual "Jack" "Smith" True
Individual "Jack" "Smith" True

There’s no impediment when using one ADT that you define inside another one. For example, in the previous code we have some divergent options for representing a person as a member of a company and as individual. One path you can take is defining a completely new data type Person and using it inside Client:

data Client = GovOrg     String
            | Company    String Integer Person String
            | Individual Person Bool
            deriving Show
data Person = Person String String
            deriving Show

There are some remarks to make about this refactoring:



	If you tried to create a completely new ADT, for example named Client2, but you used the same constructor names, you will get a build error. This is because inside a module all constructors must have different names. If you think about it, it’s sensible to ask for that condition, because otherwise the compiler wouldn’t be able to distinguish which type you are willing to create,

	Data types and constructor names live in different worlds. That means that it is possible to create a constructor with the same names as a data type. Indeed, it’s a common convention for one-alternative types, such as Person, to have the two names coincide,

	For being able to use the default deriving functionality, all types used inside another one must be showable. For example, if you didn’t include deriving Show in Person, a compilation error will be signaled.



Sometimes you are just interested in the alternatives themselves, without saving any extra information apart from the constructors. For example, you could add gender information to people. Instead of using a raw Boolean value, for which we can forget which value corresponds to men and which to women, you can create new a Gender data type. This kind of data types with empty alternatives are similar to enumerations in other languages.

data Gender = Male | Female | Unknown

EXERCISE 2-4 provides a step-by-step recipe on how to integrate this new Gender data type in the existing code base, and how to modify the existing functionality for covering it.


EXERCISE 2-4. MORE TYPES OF VALUES

You have just defined a new Gender data type. The reason we defined it was to include such information in a person record, so you should add a new field in Person.


	Add a Gender argument to Person and make it Show able.

	Create new values of the new Client data types with the enhanced definition we worked throughout this section.



You have learned how to define new data types, so it’s time to look at other types that could be useful for our Time Machine Store. Time machines are defined by its manufacturer, its model (which is an integer), its name, whether they can travel to the past and to the future and a price (which can be represented as a floating-point number). Define a TimeMachine data type holding that information. Try to use more than one ADT to structure the values.



Pattern Matching

Now it’s time to define functions over your shiny new data types. The bad news is that I haven’t taught you how to extract the information from the constructors, as you have been taught using head and tail for lists, and fst and snd for tuples. The general solution for this task is pattern matching. Matching a value against a pattern allows discerning the structure of the value, including the constructor that was used to create the value, and to create bindings to the values encoded inside it. When entering the body of the match, the pattern variables will hold the actual inner values, and we can work with them.


Simple Patterns

To see a first example, let’s create a function giving the name of a client. In case of a company or a government organization, the client name will be the first component of the constructor. In the case of an individual, you will have to look inside the Person and concatenate the first and last name. As you can see, the patterns in this case look exactly like the ADT constructors, but with the parameters replaced by bindings:

clientName :: Client -> String
clientName client = case client of
                      GovOrg  name                -> name
                      Company name id person resp -> name
                      Individual person ads       ->
                          case person of Person fName lName gender -> fName ++ " " ++ lName

Let’s see how the execution of a call to clientName (Individual [Person "Jack" "Smith" Male]) False proceeds. First the system finds a case expression. So it tries to match with the first and second patterns, but in both cases the constructor is not the same as the value. In the third case the system finds the same constructor, and it binds the values: person now holds Person "Jack" "Smith" Male and ads hold the value False. In the body of the match there’s again a case expression, from which a match is done to the Person constructor, binding fName to "Jack", lName to "Smith", and gender to Male. Finally, the system proceeds into the innermost body and executes the concatenation, giving "Jack Smith" as result.


[image: image] Note  When loading this definition into the interpreter, you will receive a collection of warnings looking like Defined but not used: 'id'. This is telling you that you created a binding that was not used in the body of the match. The solution for this warning is telling the compiler that you won’t use that binding in your code, and this is done by replacing its binding variable by a single underscore _. For example, the non-warning pattern for Company name id person resp would have been Company name _ _ _, because you are only using the first pattern variable in the subsequent matching code.


For this first example I have used the simplest kind of match, which just looks at the constructors and binds the values of the parameters. But you can specify more complex patterns, in which some inner parts of the value will have to match also against other patterns. Using this approach, you can rewrite the match in clientName to be shorter:

clientName :: Client -> String
clientName client = case client of
                      -- other patterns
                      Individual (Person fName lName _) _ -> fName ++ " " ++ lName

One important question that arises here is: what happens if no pattern matches the value that is given? The best way to find it out is by an easy example. Let’s consider a companyName function:

companyName :: Client -> String
companyName client = case client of
                       Company name _ _ _ -> name

The interpreter already warns about the pattern not covering all the cases, that is, not being exhaustive:

Warning: Pattern match(es) are non-exhaustive
In a case alternative:
    Patterns not matched:
        GovOrg _
        Individual _ _

Applying the function to a value that is not expected yields an exception. This is similar to what happens if you try to get the head of an empty list:

*Chapter2.DataTypes> companyName (GovOrg "NATO")
"*** Exception: Non-exhaustive patterns in case

These functions which are not defined over the complete domain of their arguments are called partial (the other side of the coin are the total functions). In some cases, a default value can be returned when we don’t get an applicable value (for example, returning "unknown" in companyName if the input is not a Company). However, this problem is so common in practice that the Haskell Platform already bundles a special data type for this matter: Maybe τ. As lists and tuples, the Maybe type is parameterized by the type of value it holds, so you have Maybe Integer, Maybe String, Maybe [Integer] and so on. There are only two kinds of values that this type can have: Nothing, with no arguments, usually signaling that the function doesn’t have nothing sensible to return forthat specific value, and Just v, that holds a single value v of the corresponding type. Let’s rewrite companyName:

companyName :: Client -> Maybe String
companyName client = case client of
                       Company name _ _ _ -> Just name
                       _                  -> Nothing

One interesting fact is that you can pattern match directly on let and where bindings. In that case you can only handle one pattern, but it is very useful when you know that only one kind of value can happen in a specific place. Let’s say you are sure at some point that the client you are working with is a company. Instead of the not very clear code:

let name = match companyName client of
             Just n -> n

You can write a much more concise version:

let Just name = companyName client

Constants are also patterns, which match the exact values written. Let’s focus on a very archetypical example for programming languages teaching: the Fibonacci numbers. The n-th Fibonacci number F(n) is defined as F(0) = 0, F(1) = 1 and F(n) = F(n-1) + F(n-2) for a larger value of n. This is very easily expressed in terms of patterns and recursion:

fibonacci :: Integer -> Integer
fibonacci n = case n of
                0 -> 0
                1 -> 1
                _ -> fibonacci (n-1) + fibonacci (n-2)

In this case you have implicitly used the fact that patterns are checked in the same order they appear in the code. This order-dependant behavior can lead to very subtle bugs, and sometimes even to programs that don’t terminate or run out of resources. As an exercise, rewrite the fibonacci function putting the last pattern in the first position. Now try to test the function in the interpreter. You will see that it never terminates.

Also, once a pattern has matched, it completely stops trying other alternatives, even if a further match raises an error. For example, the following two functions are not equivalent:

f :: Client -> String
f client = case client of
             Company _ _ (Person name _ _) "Boss" -> name ++ " is the boss"
             _                                  -> "There is no boss"
 
g :: Client -> String
g client = case client of
             Company _ _ (Person name _ _) pos ->
               case pos of "Boss" -> name ++ " is the boss"
             _                               -> "There is no boss"
 
*Chapter2.DataTypes> f (Company "A" 5 (Person "John" "Jefferson" Male) "Director")
"There is no boss"
*Chapter2.DataTypes> g (Company "A" 5 (Person "John" "Jefferson" Male) "Director")
"*** Exception: Non-exhaustive patterns in case

When the value is given to f, the first pattern does not match, because "Director" is not equal to "Boss". So the system goes into the second black-hole match and sees that there is no boss. However, on g it first matches into being a Company, which the value satisfies, and in this point it enters the body of the match and forgets about other alternatives. Then, the inner match fails, raising the exception.


[image: image] Note  I strongly emphasize the fact that pattern matching does not backtrack when something goes wrong in the body of a match. This is important to remember, especially if you are coming from a logic programming background in which unification with backtracking is the norm.


You may have noticed that most of the case expressions just pattern match on some parameter to a function. For these cases, Haskell allows you to encode the pattern directly in the definition. You include several lines for the function, each defining it for a pattern. This approach creates code that is very similar to the way that you write mathematical functions. For example, new versions of clientName and fibonacci look like:

clientName (GovOrg name)                         = name
clientName (Company name _ _ _)                  = name
clientName (Individual (Person fName lName _) _) = fName ++ " " ++ lName
 
fibonacci 0 = 0
fibonacci 1 = 1
fibonacci n = fibonacci (n-1) + fibonacci (n-2)

Try to use this new syntax when writing the solution for EXERCISE 2-5, which provides a set of tasks to practice pattern matching on different kind of values, both clients and time machines.


EXERCISE 2-5. THE PERFECT MATCH FOR YOUR TIME MACHINES

These exercises focus on pattern matching on data types defined by you. For working with lists, follow the pattern of having different branches for the empty and general case. Also, think carefully about the order of the patterns. Afterward, test the functions in the interpreter.


	For statistical purposes, write a function that returns the number of clients of each gender. You may need to define an auxiliary data type to hold the results of this function.

	Every year a time comes when time machines are sold with a big discount to encourage potential buyers. Write a function that given a list of time machines, decreases their price by some percentage. Use the TimeMachine data type you defined in the previous set of exercises.








Lists and Tuples

One question that may have naturally arisen while doing the previous exercises is whether it’s also possible to use pattern matching on lists and tuples, because it seems that doing so will lead to more concise code. It’s indeed possible, because lists and tuples are no more special than any other user-defined data type. Lists constructors are [] and (:), and those are the ones that we can use to pattern match. Furthermore, using pattern matching in lists allows to get rid of all the null checks and calls to head and tail. For example, the function (+++) defined before could be rewritten as:

(+++) :: [a] -> [a] -> [a]
list1 +++ list2 = case list1 of
                    []   -> list2
                    x:xs -> x:(xs +++ list2)

Or directly matching in the function declaration:

[]     +++ list2 = list2
(x:xs) +++ list2 = x:(xs +++ list2)


[image: image] Note  It’s customary in Haskell to write pattern matching on lists using a letter or a small word followed by the same identifier in plural, like x:xs.


The Prelude function’s empty, head and tail have no special magic inside them: they can be defined easily using pattern matching. Are you able to do so?

Sometimes you need to match on lists of more than one element. A possible function where you would need these is one that checks whether a list of integers is sorted or not. To check for sorted data, three cases need to be considered. The first two are the empty or singleton cases, and those are always sorted. But if more than one element is contained in a list, you need to compare the first with the second, and then see whether the list comprised of the second and subsequent elements is sorted. That check on the second and subsequent elements is done recursively. The implementation of such a sorted function is:

sorted :: [Integer] -> Bool
sorted []       = True
sorted [_]      = True
sorted (x:y:zs) = x < y && sorted (y:zs)

There is still some repetition in this code: I am matching on y:zs just to later reconstruct it. This sequence of checking whether some value conforms to some pattern, but later to use the value as a whole and not its components, is quite common in Haskell code. For that reason, Haskell introduces a syntactic form referred to by the term as patterns. The as patterns allows you to bind some value in the match, while at the same time allowing you to match on inner components of that value. To use it, you have to wrap into parentheses the whole pattern you want to give a name to, and prepend it by the variable that will be used to refer to the whole pattern and the @ symbol. A new definition of sorted which uses as patterns for y:zs looks like:

sorted []            = True
sorted [_]           = True
sorted (x : r@(y:_)) = x < y && sorted r

One last remark about matching on lists: in many cases you have a function that at first sight only makes sense on non-empty list. For example, computing the sum of all elements in a list. However, in most cases this function can be extended in a sensible way to empty lists. For example, you can assign the value 0 to the sum of an empty list, because if you add that value to any number it does not change. Values like 0, which can be safely applied with respect to an operation, like sum, are called the neutral elements of that operation. We will look at such neutral elements in more detail in Chapter 3 when discussing folds, and again in Chapter 4 when discussing monoids.

Matching on tuples is also easy: just use the syntax of a comma-separated list of components between parentheses. Rewriting the maxmin example from last section is this style makes the algorithm much more apparent to the reader or maintainer of that code:

maxmin [x]    = (x,x)
maxmin (x:xs) = ( if x > xs_max then x else xs_max
                , if x < xs_min then x else xs_min
                ) where (xs_max, xs_min) = maxmin xs





Guards

A guard is part of the pattern matching syntax that allows you to refine a pattern using Boolean conditions that must be fulfilled by the bound values after a successful match. It is very useful for writing clearer code and avoiding certain problems, helping you to obtain full power of pattern matching.

Two examples can help make the need for guards clear. The first is the extension of the Fibonacci function to any integer value: we will wrap the value on a Just if we are asked to get the Fibonacci number of a non-negative number, and return Nothing otherwise. With the syntax introduced up to this point the following code could be obtained:

ifibonacci :: Integer -> Maybe Integer
ifibonacci n = if n < 0
               then Nothing
               else case n of
                     0 -> Just 0
                     1 -> Just 1
                     n -> let Just f1 = ifibonacci (n-1)
                              Just f2 = ifibonacci (n-2)
                          in Just (f1 + f2)

At this time your developing sense of clear code signals you that the initial check for negativeness hides part of the algorithm, which is mostly expressed in a pattern match. And that is true.

Another mathematical function we will look at is the binomial coefficient of n and k, usually written [image: pg38.jpg]. This coefficient gives the number of ways in which we can get k balls from a bag of n without repetition. Using the famous Pascal’s triangle, you can give a closed definition of this coefficient as:

[image: pg38a.jpg]

Your task is translating this mathematical definition into Haskell code. A first approximation could be:

binom _ 0 = 1
binom x x = 1
binom n k = (binom (n-1) (k-1)) + (binom (n-1) k)

But sadly this approach doesn’t make the interpreter happy, which shows the error Conflicting definitions for 'x'. This error is due to the restriction imposed on patterns in which a variable can appear only once in each of them. A possible solution is to change the entire shape of the function. Once again, it seems that pattern matching is not giving us all the power that we are asking from it.

The solution to the problems found in both functions is to use guards. The guard is itself part of a pattern, so it allows backtracking (choosing other alternative) if it fails, in contrast of matching a pattern and later checking for a condition. The Boolean conditions in a guard are separated by a | sign from the rest of the pattern, and allow use of the variables bound during the match. Following is how we would rewrite the Fibonacci and binomial functions using guards:

ifibonacci n | n < 0     = Nothing
ifibonacci 0             = Just 0
ifibonacci 1             = Just 1
ifibonacci n | otherwise = let (Just f1, Just f2) = (ifibonacci (n-1), ifibonacci (n-2))
                           in Just (f1 + f2)
binom _ 0          = 1
binom x y | x == y = 1
binom n k          = (binom (n-1) (k-1)) + (binom (n-1) k)

Apart from the use of guards, you should notice two tidbits in the code above. First of all, the first pattern for Fibonacci has used a binding n'. We could have re-used n, but the interpreter would complain about shadowing a previous definition. Even though the interpreter knows completely well which n the code refers to, the fact that you have used the same name twice may create confusion for another developer. It’s customary in Haskell code to use the same identifier but with ’ (pronounced prime) afterward to refer to a highly related binding. Another Haskell convention is the use of otherwise in the last pattern when using guards. While using otherwise doesn’t add anything to the code itself (using no guard is equivalent), it signals very clearly that the pattern while take all the cases not handled by other cases.

Any expression returning a Boolean value can be used in a guard. This means that you can also call function that you have defined. For example, the following code returns special strings when a number is a multiple of 2, 3, or 5, and a default string otherwise:

multipleOf :: Integer -> Integer -> Bool
multipleOf x y = (mod x y) == 0
 
specialMultiples :: Integer -> String
specialMultiples n | multipleOf n 2 = show n ++ " is multiple of 2"
specialMultiples n | multipleOf n 3 = show n ++ " is multiple of 3"
specialMultiples n | multipleOf n 5 = show n ++ " is multiple of 5"
specialMultiples n | otherwise      = show n ++ " is a beautiful number"

For this example where we are checking several conditions on the same argument, Haskell allows an even more compact declaration: you don’t need to write specialMultiples n every time:

specialMultiples n
  | multipleOf n 2 = show n ++ " is multiple of 2"
  | multipleOf n 3 = show n ++ " is multiple of 3"
  | multipleOf n 5 = show n ++ " is multiple of 5"
  | otherwise      = show n ++ " is a beautiful number"


EXERCISE 2-6. MORE MATCHES AND GUARDS

Up to this point we have introduced matching on lists and tuples, and guards. The following tasks will help you ensure that you have understood those concepts.


	Define the famous Ackermann function. Try using guard:
[image: pg40.jpg]


	Define the unzip function, which takes a list of tuples and returns two lists, one with all the first components and other one with the seconds. For example, unzip [(1,2),(3,4)] = ([1,3],[2,4])








View Patterns

Sometimes you want to look for patterns in a value, but in some way they are not directly encoded. So you need to preprocess the value before matching. For those cases, we can use view patterns. These patterns extend all of those previously seen with a new syntax element, (function -> pattern), which applies function to the value and then matches the result with the pattern. For example, remember the clientName function from the beginning of the chapter, and let’s add a responsibility one:

responsibility :: Client -> String
responsibility (Company _ _ _ r) = r
responsibility _                 = "Unknown"

Now you can create a function returning whether a given client is special or not. Let’s consider a client special if it is the director of a company or its name is "Mr. Alejandro". View patterns allow very clear code:

specialClient :: Client -> Bool
specialClient ( clientName -> "Mr. Alejandro") = True
specialClient ( responsibility -> "Director")  = True
specialClient _                               = False

Oops! It seems that we rushed into making some sort of mistake. Notice the following interpreter error:

    Illegal view pattern:  clientName -> "Mr. Alejandro"
    Use -XViewPatterns to enable view patterns

This problem arises because view patterns are not part of the Haskell 2010 specification, but rather an extension made by GHC developers. For that reason, you are asked to explicitly enable compatibility with this extension. You can do so adding special options to the compiler or interpreter, but the suggested approach is to add a pragma to the file. A pragma is a special comment that is interpreter by the compiler, and which is used to enable or disable some flags. In this case you need to include the following at the beginning of the source:

{-# LANGUAGE ViewPatterns #-}

If you are working in the interpreter, you need to execute a :set command to enable an extension. Notice that the extension name must be prefixed by –X:

Prelude> :set -XViewPatterns


[image: image] Note  GHC includes a great many extensions (more than 30 at the moment of writing). They range simple extensions to the syntax (as the view patterns discussed above) to complete overhauls of the type system. Being so different in power, some of them are accepted by the community while others are still very controversial. All the GHC extensions that will be introduced during this book belong to the first set: they are seen as beneficial because they make code more elegant and easier to understand, whithout runnning in any problem. The main con of extensions, even with not-controversial ones, is that they are not part of the Haskell 2010 Report, so it would make your code less interoperable between different Haskell compilers. However, this interoperability is almost never a problem.




Records

In most programming languages you can find the idea of a field as something that holds a value in a larger structure. Furthermore, fields can be accessed or changed very easily (for example, in C or Java using structure.field). From what you have learned so far, you can see that pattern matching on big structure may get unwidely very soon, because it forces to write long matches to retrieve just a single value, and to re-create entire data structures for changing just a single field.


Creation and Use

The concept of a data structure that fields which can be accessed by name does exist in Haskell. Records make accessing or updating part of a structure much easier than otherwise. Records are defined using data declarations, but instead of just using a type for each parameter, we write parameter name :: parameter type. These declarations are the only exception to the layout rule: we always need to write the set of fields between { and } and to separate them by commas.

Let’s write the Client and Person definitions, but now using record syntax. In order to leave all the previous functions from this chapter unchanged, you are going to encode the new records in new ClientR and PersonR types. Remember, constructor names should not clash, that’s why you need to use new names for the record types. But field names can, so you are allowed to use clientRName for fields in different alternatives, given that they have the same type. Here are the new record definitions:

data ClientR = GovOrgR  { clientRName :: String }
             | CompanyR { clientRName :: String
                        , companyId :: Integer
                        , person :: PersonR
                        , duty :: String }
             | IndividualR { person :: PersonR }
             deriving Show
 
data PersonR = PersonR { firstName :: String
                       , lastName :: String
                       } deriving Show

You can create values from these types using the same constructor syntax that you’ve been using. However, if the data is declared as a record, you can also use the constructor name followed by a list of each field name, followed by a = sign and the corresponding value. There are two benefits deriving from doing so: first, the construction of the new value is better documented, as you can see directly to which field each value corresponds. Also, this syntax allows writing the field names in any order, giving you more freedom. Here’s an example showing this named notation:

*Chapter2.DataTypes> IndividualR { person = PersonR { lastName = "Smith", firstName = "John" } }
IndividualR {person = PersonR {firstName = "John", lastName = "Smith"}}
*Chapter2.DataTypes> GovOrgR "NATO"
GovOrgR {clientRName = "NATO"}

Field names are also used to create special functions that access those particular fields. For example:

*Chapter2.DataTypes> clientRName (GovOrgR "NATO")
"NATO"
*Chapter2.DataTypes> :t duty
duty :: ClientR -> String

As these functions will be automatically created, Haskell enforces two extra restrictions on field names:


	They must not clash with any other field or function name.

	As I mentioned before, you are allowed to use the same field name in more than one of the alternatives of your data type. However, if you do so, all those fields must have the same type. If such is not the case, no correct type can be given to the corresponding function.



Records are useful when pattern matching. For a traditional constructor, you need to write a binding or another pattern for each field in it. Thus, in many cases the code ends up with a collection of _ bindings, which are difficult to maintain. With a record, you can use a new pattern that resembles the building one: the constructor, plus a list of field name = pattern elements enclosed in brackets. You don’t need to include all the fields: only those for which you want to bind or match. You are even allowed to write an empty list of fields, as this example highlights:

greet :: ClientR -> String
greet IndividualR { person = PersonR { firstName = fn } } = "Hi, " ++ fn
greet CompanyR    { clientRName = c }                     = "Hello, " ++ c
greet GovOrgR     { }                                     = "Welcome"

There are two very interesting additions in GHC to record matching that encode very usual patterns, allowing for a lesser amount of boilerplate. The first addition is record puns, which are enabled by the pragma NamedFieldPuns. When using record puns, you can replace all field patterns of the form field name = field name, which creates a binding for the corresponding field available with the same name in the body of the match, with a single field name. You can interleave this kind of matching with the more usual one. For example:

greet IndividualR { person = PersonR { firstName } } = "Hi, " ++ firstName
greet CompanyR    { clientRName }                    = "Hello, " ++ clientRName
greet GovOrgR     { }                                = "Welcome"

Another very common idiom is making some field obey a pattern, and binding the rest of fields to use them in the body of the match. Even with record puns, doing so can take a large amount of code. But GHC can take advantage of its knowledge of the fields’ names and automatically generate all of that code for you. In particular, the extension RecordWildCards allows to use .. (two dots) to automatically create bindings for all variables that haven’t been mentioned in the pattern up to that point. The previous example could get a minimal form such as:

greet IndividualR { person = PersonR { .. } } = "Hi, " ++ firstName
greet CompanyR    { .. }                      = "Hello, " ++ clientRName
greet GovOrgR     { }                         = "Welcome"


[image: image] Note  Remember that to use these extensions, you need to include a {-# LANGUAGE Extension #-} declaration at the beginning of your source code.


I have spoken about facilities for record building and matching. The last step is using record syntax for updating a record: if r is a binding containing a value of a record type, you can use r { field name = new value } to create an exact copy of r where the corresponding field has been changed. For example, here is a function which ensures that a PersonR’s first name always starts with a capital letter:

nameInCapitals :: PersonR -> PersonR
nameInCapitals p@(PersonR { firstName = initial:rest }) =
        let newName = (toUpper initial):rest
        in  p { firstName = newName }
nameInCapitals p@(PersonR { firstName = "" }) = p

Take time to understand this last example, because it shows a lot of features from this chapter: record syntax is used to pattern match on PersonR. Inside it, x:xs is used to match a list. As you later want to refer to the entire value to update it, an as pattern is used to bind it to p. Finally, the new name is computed inside a let expression, which is used to update p using record updating syntax.

As you have done for clients, you can also benefit from record syntax when describing time machines. That is exactly the purpose of EXERCISE 2-7.


EXERCISE 2-7. TIME MACHINE RECORDS

Rewrite the TimeMachine data type defined earlier using records. You should find that updating the prices of time machines is now much more concise.






The “Default Values” Idiom

I am going to end this chapter showing a particularly helful convention the Haskell community has come with to support a common use case. You will look at functions that can take a very long list of parameters, but most of the time those parameters take on default values. Take an example a network library. For creating a connection you need information about:


	URL to connect to

	Connection type: TCP or UDP

	Connection speed

	Whether to use a proxy

	Whether to use caching

	Whether to use keep-alive

	Time-out lapse



These elements can be encoded as:

data ConnType = TCP | UDP
data UseProxy = NoProxy | Proxy String
data TimeOut = NoTimeOut | TimeOut Integer
 
data Connection = ...  -- Definition omitted
 
connect :: String -> ConnType -> Integer -> UseProxy -> Bool -> Bool -> TimeOut -> Connection

Of course, most people simply want to connect to a target URL using TCP at the highest speed, with some sensible defaults for proxying, caching, keep-alive, and time-out lapse. A first solution is to create a special function for that case:

connectUrl :: String -> Connection
connectUrl u = connect u TCP 0 NoProxy False False NoTimeOut

This solution makes it very easy to connect in the simple case, but poses two problems:


	Maintainability is harmed. If at some point we need to add a new connection parameter, all users of the function need to change their calls to connect. Or if the default value changes, all the uses must be reconsidered and rewritten.

	Using the library is easy only for the simplest case. If you want to connect to a URL using a proxy, you need to step back and use the fullconnect function, passing all the parameters. In some cases, knowing which the sensible defaults are may be difficult.



Records come to our rescue. Instead of passing parameters one by one, you can group all or most of them into a record, and use the record as a parameter. For the connection example:

data ConnOptions = ConnOptions { connType      :: ConnType
                               , connSpeed     :: Integer
                               , connProxy     :: UseProxy
                               , connCaching   :: Bool
                               , connKeepAlive :: Bool
                               , connTimeOut   :: TimeOut
                               }
 
connect' :: String -> ConnOptions -> Connection
connect' url options = ...

The second step is creating a constant, which encodes some sensible defaults:

connDefault :: ConnOptions
connDefault = ConnOptions TCP 0 NoProxy False False NoTimeOut

Now creating a connection with the default parameters takes just a tad more code, but you gain in return the possibility to just change one parameter (like the type to UDP) without having to write all the default values. The following examples show the simplest case, and also the case of specifying UDP as the connection type:

*Chapter2.DefaultValues> connect' "http://apress.com" connDefault
*Chapter2.DefaultValues> connect' "http://apress.com" connDefault { connType = UDP }

There is only one problem left: if we add a new option, and the developer has made direct use of the constructor for the record type, that use must be changed. The solution is to forbid calling the constructor directly, forcing use of connDefault in some way or another. This can be done by not exporting the constructor. You will see how to do it in the next chapter, where you will also learn about smart constructors.



Summary

In this chapter you have learned the basics of first-order Haskell programming:


	Basic data types have been introduced: characters, Booleans, lists, and tuples.

	You have learned how to define new functions, and how to use let and where to create temporary bindings that allows re-using expressions and thus writing better code. Afterward, you learned how to define a function by cases.

	You have defined your first own data types, introducing the concept of ADT and constructor, and played with creating new values in the interpreter.

	Pattern matching is a fundamental tool for Haskell programming, which we have touched upon in this chapter. You have seen how to match both primitive and user-defined types and how guards, as patterns and view patterns, make matching more concise.

	Records have been introduced as a better syntax for building, accessing, and updating fields in a Haskell value. You have seen the “default values” design pattern, which uses records at its very core.






CHAPTER 3

[image: image]

Reusing Code Through Lists


The first chapter explained that a functional language like Haskell is characterized by its profuse use of functions as parameters or return values. However, in the previous chapter nothing was mentioned about this topic. This will be solved in this chapter, where you will focus on not one, but three different ways in which Haskell allows for a great amount of re-use.

One of the ways in which Haskell shines in re-use is through the creation of functions that can work over values of any type that respects a certain form, or design. List functions like head can operate on any type of the form [τ], whatever type τ is. This concept is also applicable to data types that can store values on any possible type, and it’s known as parametric polymorphism.

Another way in which Haskell allows for re-use is exactly this ability of using functions as any other value of the language. Functions that manipulate other functions are called higher-order functions. In contrast, the concepts in the previous chapter belong to first-order Haskell.

The third way in which code can be re-used (and shared) is by taking functions or data types from one module and applying them in another. You will learn how to do that from both sides: exporting definitions to make them available, and importing them later on.

This chapter focuses especially on lists and the functions in the module Data.List. The intention is two-fold: lists illustrate the new concepts to be introduced, and at the same time are very practical tools in daily programming with Haskell. As a proof of their importance, the language includes special syntax to create and manage them, namely the syntax of comprehensions. Its whole use will be shown before we move to the last stop of the list train: how to fold and unfold lists properly.

Parametric Polymorphism

You may have noticed that in the previous chapters all the functions we have defined operate on some particular data types. However, some built-in functions like head or empty seem to be able to operate in any kind of list: [Integer], [Client], and so forth.A fair question is whether list functions are somehow treated differently by the compiler and interpreter, or do you as a developer also have the power to create such function that can operate on any type? The correct answer is the second: you could have defined the list functions by yourself with no problem. You do have the power.

Let’s look at the type of a function like head:

*Chapter3.ParamPoly> :t head
head :: [a] -> a

In the previous chapter you have learned that type names must start with an uppercase letter. However, you see a lowercase identifier in this particular signature. If you remember the conventions, lowercase identifiers are reserved for function definitions, bindings, and parameters. Indeed, that identifier is an a type of parameter that can be bound to different types depending on each use.

For example, consider the application of head to the string "Hello". The type of the string is [Char]. At the moment of application, you need to find the value for the a type parameter. The solution in this case is a = Char. So the type that head gets when applied to "Hello" is [Char] -> Char (once a type parameter gets assigned to a value, it must be replaced all throughout the type). Figure 3-1 illustrates the logic I’ve just described, where a type variable and a concrete type are unified to be the same one.


[image: 9781430262503_Fig03-01.jpg]

Figure 3-1. Inferring the type of head "Hello"



Functions like head are said to work for any value of the type parameter a: they don’t care about the shape of the inner elements. This is parametric polymorphism, and it allows multiple (“poly”) types (“morphos” is Greek for “shape”) as parameters. The etymology for the concept is actually a bit misleading, because a polymorphic function must work for all types, not just for some. Haskell also allows functions to be applicable just for a subset of all types. That is referred to as ad-hoc polymorphism and will be presented in the next chapter.


[image: image] Note  Parametric polymorphism is available in many programming languages under different names: templates in C++ and generics in Java or C# provide similar functionality.


It should be remarked here that a function may have more than one type parameter, and each of them will take its value independently from the others. One example of this kind of function is fst, which gives the first component of a tuple of two elements:

*Chapter3.ParamPoly> :t fst
fst :: (a, b) -> a

When you supply a concrete tuple to fst, the type of (a, b) is inferred from the types within that tuple. For example, you can supply the tuple ([3,8], "Hello"), and the type (a, b) becomes ([Integer], Char).

There is no special syntax, apart from type parameters, for writing polymorphic functions. When you do not use a value in a way in which its type plays a role (for example, pattern matching on its possible constructors), Haskell will infer a parametric type. For example, let’s write a function that returns a different string depending on a Maybe value:

maybeString (Just _) = "Just"
maybeString Nothing  = "Nothing"

If you try to load this function into the interpreter, a warning will be issued. However, the inferred type for maybeString will be shown in the corresponding message: 

Warning: Top-level binding with no type signature:
      maybeString :: forall t. Maybe t -> [Char]


[image: image] Remark  In the warning message you may notice that the type is prefixed by forall t. That prefix indicates ­explicitly that t can be instantiated to any type but otherwise adds no information. Furthermore, this kind of type signature is not allowed in Haskell 2010. In the current Haskell standard, you should always write the type as Maybe t -> [Char]. To be able to write explicit foralls, you must enable the ExplicitForAll language pragma, or any other which implies it, such as RankNTypes.


Polymorphism is not only available in functions but also in data types. It has been already implicitly assumed that when you have written [t] to refer to a list of any possible type t. As you can see from the examples, a polymorphic type is written with its name along with a list of all its type parameters, like Maybe Integer. The definition of polymorphic types is similar to that of basic types, but after the name of the type you write the names of the type parameters for that declaration. Later on, you can use those names in the constructors in the position of any other type. For example, you may decide to give a unique identifier to each client in your program, but it does not matter which kind of identifier you are using (integers or strings are usual choices), because you never manipulate the identifier directly.

The following is a good example showing polymorphism:

data Client i = GovOrg  { clientId :: i , clientName :: String }
              | Company { clientId :: i , clientName :: String
                         , person :: Person, duty :: String }
              | Individual { clientId :: i , person :: Person }
              deriving Show
 
data Person = Person { firstName :: String, lastName  :: String }
              deriving Show

When you create a value, the type parameter will be instantiated to a specific type, in this case Char:

*Chapter3.ParamPoly> :t GovOrg 'n' "NTTF"  -- National Time Travel Foundation
GovOrg 'n' "NTTF" :: Client Char

More than one type variable can be used in a data type. This is the case for tuples. For example, those with three components have type (a,b,c). If you were to define triples by yourself, the data declaration would look like:

data Triple a b c = Triple a b c

It should be noted that you can use the same type variable multiple times in the definition of your ADT. But that doesn’t mean that the values on the fields must be the same, just that they must have the same type. This is a typical source of confusion when learning Haskell, but a counterexample is easy to build: ('a','b') has type (Char,Char), both type variables holding the same type Char, but the value 'a' is different from the value 'b'. Another tidbit to remember is that even though a type parameter may appear several times in a constructor, it is a single type variable. For example, let’s declare a type for a pair of elements, with each element being of the same type. Here’s how we would do that:

data SamePair a = SamePair a a

A value like SamePair 1 2 will have type SamePair Integer, not SamePair Integer Integer. Admittedly, the fact that the same identifier is usually re-used for both the type name and its constructor adds more confusion to the mix, but it’s something you must get used to. The following EXERCISE 3-1 will help you build this intuition.


EXERCISE 3-1. A NEW LIFE AS TYPE CHECKER

Try to understand what the following functions do, and which type will be inferred by the interpreter. Give the most polymorphic answer from all possible ones.

swapTriple (x,y,z) = (y,z,x)

duplicate x = (x,x)

nothing _ = Nothing

index []     = []
index [x]    = [(0,x)]
index (x:xs) = let indexed@((n,_):_) = index xs
                                      in  (n+1,x):indexed

maybeA [] = 'a'

Remember that you can use GHCi to check your answers. Refer to the previous chapter if you need a reminder on how to do that.



Functions as Parameters

This is finally the point where you start learning how to treat functions as any other value in the language and the great power that it conveys to be able to do so.


Higher-Order Functions

The first, most basic, function we are going to look at is map, which applies another function throughout an entire list. Consider the function succ, which adds 1 to a number:

*Chapter3.FnsParams> succ 1
2


[image: image] Warning  It may be the case that the interpreter shows warning messages about Defaulting the following constraint(s) to type `Integer'. I mentioned in the previous chapter that a constant like 1 is polymorphic on the number type, so the interpreter has to make a choice in order to run the code. The warning is telling you that Integer is its default choice. You can safely ignore these warnings, although it can also be disabled by running the interpreter using ghci -fno-warn-type-defaults. In the rest of the book, I will omit this kind of warnings in the output.


You can now add 1 to all members of the list [1,2,3] using map along with succ:

*Chapter3.FnsParams> map succ [1,2,3]
[2,3,4]

How does it work? First let’s look at the type:

*Chapter3.FnsParams> :t map
map :: (a -> b) -> [a] -> [b]

You can see the notation for functions, a -> b, but now in the position of a parameter. This type signatures encodes the fact that map takes a function from a to b, and a list of a's, and returns a list of b's. Functions like map, which take other functions as parameters, are known as higher-order functions.

In the declaration of functions, other functions given as parameters follow the same naming conventions as any other argument to a function. You don’t need any special marker to distinguish a parameter for having a functional type. But being a function, you can apply the parameter to any other parameter or value as if it was defined elsewhere. For example, the definition of map looks like:

map _ []     = []
map f (x:xs) = ( f x ) : (map f xs)

This is also an example of parametric polymorphism. However, polymorphism and higher-order functions are completely separate concepts: you could define a function that applies another function, but to an integer two units higher, and then multiplies it by three, that is, 3f (x + 2). In this case, reasonable fs should take and return a number, so the function should have an Integer -> Integer type:

apply3f2 :: (Integer -> Integer) -> Integer -> Integer
apply3f2 f x = 3 * f (x + 2)

Let’s follow the steps for a call to this function using succ as a value for f:

apply3f2 succ 7 => 3 * succ ( 7 + 2) => 3 * succ 9 => 3 * ( 9 + 1 ) => 3 * 10 => 30

Now that you’re in touch with higher-order functions, it’s time to introduce a very popular idiom in Haskell code. The idiom works around the ($) function, which performs function application:

($) :: (a -> b) -> a -> b
f $ a = f a

Why is this ($) function useful at all? At first glance, it seems like a rather cumbersome way to apply a function to some arguments, given that that is the main use of functions. But apart from this definition, Haskell gives a very low precedence to ($), so both sides of this operator will be evaluated before f is applied to a. Therefore, we can omit a lot of parenthesis when using ($). This is very common in Haskell. For example, the following:

maximum (map succ [1, 2, 3])

...would usually be written as:

maximum $ map succ [1, 2, 3]





Anonymous Functions

Until now, you have always used as parameters other functions that were defined elsewhere. However, it may be the case that you want to create a very small function just to be applied via map to a list. It wouldn’t make sense to add an entire new declaration, polluting your module. You already know a solution, which is to define the function inside a let or where block. The following example demonstrates this solution by adding 2 to every number in a list:

*Chapter3.FnsParams> :{
*Chapter3.FnsParams| let f x = x + 2
*Chapter3.FnsParams| in  map f [1,2,3]
*Chapter3.FnsParams| :}
[3,4,5]

This solution is not completely satisfactory: Haskell encourages passing and returning functions, so with this design the code would be full of let blocks. Instead, Haskell includes anonymous functions. These are function bodies that are not given a name and that can be written anywhere in the code where a function is expected. The function body syntax is:

\param1 param2 ... -> body

The previous map operation can then be written as:

map ( \x -> x + 2 ) [1,2,3]


[image: image] Historical note  The notation \... -> ... comes from a mathematical theory of computation called lambda calculus. In that formalism, an expression like \x -> x + 2 is called an abstraction and is written λx. x  + 2 (Haskell designers chose the symbol \ because it resembles λ but it’s easier to type). Due to these historical roots, anonymous functions are sometimes called lambda abstractions, or simply abstractions.


In anonymous functions, as in any other function, you can pattern match directly on the parameters. For example, you can build a function checking whether pairs of integers are equal:

equalTuples :: [(Integer,Integer)] -> [Bool]
equalTuples t = map ( \(x,y) -> x == y) t

However, not all forms of regular function declarations are allowed when used anonymously. Anonymous functions don’t have a name, so they cannot call themselves, thus forbidding recursion. Furthermore, only one pattern can be matched. So if you want to match several patterns, you must resort to a case statement:

sayHello :: [String] -> [String]
sayHello names = map (\name -> case name of
                                 "Alejandro" -> "Hello, writer"
                                 _           -> "Welcome, " ++ name
                     ) names

This last restriction is lifted if you are using GHC and enable the LambdaCase extension. Then, you can use the special syntax \case to create an anonymous function with only one parameter to match on. For example:

sayHello names = map (\case "Alejandro" -> "Hello, writer"
                            name        -> "Welcome, " ++ name
                     ) names

Abstractions are also useful for returning functional values. For example, say you want to define a function that takes a number n and returns another function which multiplies by n:

multiplyByN :: Integer -> (Integer -> Integer)
multiplyByN n = \x -> n*x

You can now use that returned function in places which take one, such as map:

*Chapter3.FnsParams> map (multiplyByN 5) [1,2,3]
[5,10,15]

As you can see, the function multiplyByN 5 “remembers” the value given to n when it is applied. We say that the function encloses the values from the surrounding environment (in this case, only n) along with the body. For that reason, these functions are usually known as closures in almost all languages supporting functional features.

filter is another function operating on lists. In this case, filter takes a function of type a -> Bool, that is, a function returning a Boolean value, and applies it to each element, returning just those that fulfill the condition. For example, you can filter a list of numbers and keep only the even ones using the aforementioned function and giving as argument the even function from the standard libraries:

*Chapter3.FnsParams> filter even [1,2,3,4,5]
[2,4]


EXERCISE 3-2. WORKING WITH FILTERS

Using the function filter as the basis for your solution, write the following functions:


	filterOnes, which returns only the elements equal to the constant 1.

	filterANumber, which returns only the elements equal to some number which is given via a parameter.

	filterNot, which performs the reverse duty of filter: it returns only those elements of the list which do not fulfill the condition.

	filterGovOrgs, which takes a list of Clients (as defined before) and returns only those which are government organizations. Write it using both an auxiliary function isGovOrg and a \case expression.



Hint: search for documentation of the function not :: Bool -> Bool.1






Partial Application of a Function

Let’s get back to map. We already know two ways to write a function that doubles all elements in a list:

double list = map (\x -> x * 2) list
double       = \list -> map (\x -> x * 2) list

Haskell allows a third approach.The keyword list is in the end of both parameter lists, so you can just omit it:

double      = map (\x -> x * 2)

To better understand the reason why omitting list makes sense, let’s look at the process in which the compiler infers the type of the double function. First of all, start with map :: (a -> b) -> [a] -> [b]. (\x -> x * 2) is a function taking and returning a number, for example it may be typed as Integer -> Integer. Now, if you apply the numeric function to map, you are first matching a = b = Integer, and then removing the first parameter in the type, as you already have provided a value for it. The result is that:

map (\x -> x * 2) :: [Integer] -> [Integer]

That is, if given a list of integers, it will return a new list of integers.

Following this path of partial application, you can apply it also for the \x -> x * 2 anonymous function. There is just one syntactic remark to be made: when the function has an operator name (only with symbols, like *), we cannot just use its name and arguments, but we need to use a section. A section is just a specification of the operation to be done, enclosed in parenthesis, and where the parameters for the anonymous function are completely wiped out. In this case, the new definition for double is:

double      = map (*2)

The usual warnings about commutatively of operations apply here. You must be careful about where you are omitting the parameter, because it may make a huge difference in the result. Look carefully, for example, at the difference in result from the following two examples:

*Chapter3.FnsParams> map (/2) [1,2,3]
[0.5,1.0,1.5]
*Chapter3.FnsParams> map (2/) [1,2,3]
[2.0,1.0,0.6666666666666666]

It should be noted that type constructors also behave as functions in any possible sense, but for the distinction in capitalization (remember that function names must start with a lowercase letter and type constructor with an uppercase one). You can ask the type of a constructor or partially apply it as usual:

*Chapter3.FnsParams> :t Just
Just :: a -> Maybe a
*Chapter3.FnsParams> :t ('a' :)
('a' :) :: [Char] -> [Char]

Once you know about the possibility of partially applying functions, it’s time to look more deeply into the meaning of the function types as they are written. First of all, the -> symbol binds to the right. That is, the type a -> b -> c -> d is a prettier, but equivalent, version of a -> (b -> (c -> d)). So, at its core, every function with more than one parameter is just a function that takes one parameter and returns a closure with one parameter less, which may indeed consume another parameter and so on, until we reach a non-function type. At that moment, all the information to apply the function is there and its body can we evaluated. So now you have at least four interchangeable ways to declare the same two-argument function:

f x y = ...
f x   = \y -> ...
f     = \x y -> ...
f     = \x -> \y -> ...

Let’s look at map with these new glasses. Previously, I spoke about map as “taking a function and a list and applying the function to the list.” But, if now the type is written as (a -> b) -> ([a] -> [b]), there’s a new view: map takes a function and returns a version of that function that works over a list!

Partial application encourages a programming style where functions are combined without ever mentioning their parameters. This is called point-free style (because in mathematics, parameters to functions are called points). Without any doubt, the most important of these combinators is the period2(.), which composes two functions. By composes, I mean that the period applies one function after the other. For example, following is how to write function f applied to the output from g:

f . g = \x -> f (g x)

A reminder: the composition of functions is written backward in comparison to other notations: you write first the outermost function that will be applied to the result of the innermost. This comes again from the roots of the language in lambda calculus and mathematics, where composition is denoted exactly this way.

For example, say you want to write a function that duplicates all the odd numbers in a list. The most natural way seems to be:

duplicateOdds list = map (*2) $ filter odd list

But actually what you want to do is to first apply filter odd, which takes out the even numbers, and then double each of the elements of the resulting list using map (*2). This is exactly the composition of the two functions, so you can write the following in point-free style:

duplicateOdds = map (*2) . filter odd

In many cases an expression can be written in point-free style as a sequence of transformations over some data, rendering the code very clear once you become accustomed to the notation.

In the rest of the section I’ll introduce additional functions that create a point-free style. Since these functions have the task of combining other functions, they are sometimes called combinators. Our two next combinators are used to convert back and forth representations of functions as multi-argument and as single-argument whose argument is a tuple:

uncurry :: (a -> b -> c) -> (a,b) -> c
uncurry f = \(x,y) -> f x y
 
curry :: ((a,b) -> c) -> a -> b -> c
curry f = \x y -> f (x,y)

Functions that take a sequence of arguments are called the curried versions of those that take a tuple. I’ll stress the subtle difference: the not curried version of a function only takes one argument, but it is a tuple, so in one value it holds more than one piece of information. For example, the max function, returning the maximum of two numbers, takes two arguments:

*Chapter3.FnsParams> max 3 2
3

But it you curry it, you must call it only with one argument, which is a tuple:

*Chapter3.FnsParams> (uncurry max) (3,2)
3

Usually we prefer these curried versions, because we can partially applicate them. But sometimes an uncurried version is also interesting to consider. For example, say you are given a list of pairs of numbers, and you want to get the list of the maximums of pairs. You cannot directly use map max, because max requires two arguments. The solution then is to curry the function before application:

*Chapter3.FnsParams> map (uncurry max) [(1,2),(2,1),(3,4)]
[2,2,4]


[image: image] Historical note  Both the language Haskell and the term curried function take their name from the American logician Haskell Brooks Curry (1900-1982), who studied a field called combinatory logic that gave the ground for later developments in functional programming.


Let us introduce some more combinators: (***) performs the parallel composition of two functions (that is, each of them is applied to a component of a tuple).

(***) :: (a -> b) -> (c -> d) -> ((a,c) -> (b,d))
f *** g = \(x,y) -> (f x, g y)

For example, you can compute the square root of 4 and the arctangent of 3 using this combinator:

*Chapter3.FnsParams> (sqrt *** atan) (4, 3)
(2.0,1.2490457723982544)

duplicate, on its hand, spawns two values from one. The usefulness of this function may not be completely obvious, but it will be an important ingredient in the following examples.

duplicate :: a -> (a,a)
duplicate x = (x,x)

For example, you can use it to compute several functions over the same value using (***) and duplicate:

*Chapter3.FnsParams> (sqrt *** atan) (duplicate 4)
(2.0,1.3258176636680326)

Let’s have some fun by rewriting a mathematical formula in point-free style using these combinators. The first goal will be to rewrite the formula 3x + 7(x + 2). Disregarding simplifications, you can see the formula graphically as shown in Figure 3-2.


[image: 9781430262503_Fig03-02.jpg]

Figure 3-2. Graphical notation for 3x + 7(x + 2)



Working from the diagram in Figure 3-2, you can rewrite the formula in point-free style. The parallel paths in the figure are composed using (***). Each of the paths is obtained by composing several functions with (.). The result is as follows:

formula1 :: Integer -> Integer
formula1 = uncurry (+) . ( ((*7) . (+2)) *** (*3) ) . duplicate

You can try to convert other small (or big!) arithmetical expressions into diagrams, and ultimately into point-free notation. You may need to define an extra combinator to reverse the order of parameters in a function. The most usual name for this combinatory is flip, with the following type:

flip :: (a -> b -> c) -> (b -> a -> c)

As a final remark, all the combinators described so far are closely related to the concept of a Haskell arrow, a pattern that has been used to model a wide range of concepts, including automata. The main reference for the arrow pattern is the 1998 paper “Generalising Monads to Arrows” by John Hughes. However, I suggest you to wait until the end of the book before diving into that article.


[image: image] Note  You can find the John Hughes paper at http://www.cse.chalmers.se/∼rjmh/Papers/arrows.pdf.




More on Modules

In the previous chapter you learned how to create modules to organize our functions and data types. The next logical step is being able to get the definitions in one module to be used in another. This is called importing a module, and it’s very similar to importing packages in Java or namespaces in C#.


Module Imports

Module imports are listed after the module declaration, but before any other definition. There are different ways to import a module. The most basic approach brings into scope all the functions from the module, and makes them available for use as if they were defined in the importing module. In this chapter we are very interested in learning about list functions, so we can import Data.List and use the permutations function. For example, a function permutationsStartingWith, which returns all the permutations of a string that start with a specific letter.

module Chapter3.MoreModules
 
import Data.List
 
permutationsStartingWith :: Char -> String -> [String]
permutationsStartingWith letter = filter (\l -> head l == letter) . permutations


[image: image] Note  Even though Haskell modules have a hierarchical structure, importing a module does not bring into scope any child modules. For example, importing Data won’t provide any access to Data.List.permutations, because permutations lives in module Data.List, and Data.List was not imported.


In some cases, names found in different modules clash. That is, you import definitions from two modules, and both include the same function or type, so the compiler doesn’t know which one to use. The better solution is to control exactly which definitions you to import. To do so, you must include a list of desired elements in a list surrounded by parentheses. For example, you can specify that you wish to import only the permutations and subsequence functions:

import Data.List ( permutations, subsequence )

Sometimes the case is just the opposite: you want to import an entire module, but some specific elements (usually, those that clash). This usually happens when some names conflict between the imported module and the one being developed. For those cases, Haskell provides hiding imports. The declarations you don’t want to bring into scope are written again as a list, but preceded by the keyword hiding. For example, to import all but the head and tail functions:

import Data.List hiding ( head, tail )

Data types need some extra syntax for being selected for import or hiding. This need comes from the fact that an ADT really encompasses two pieces of information: the type itself, and its constructors. The Haskell Committee decided to use Type(List of Constructors) for this matter. Here are several ways in which we can import the Client data type from the first section:

import Chapter3.ParamPoly ( Client() )                    -- only type, no constructors
import Chapter3.ParamPoly ( Client(GovOrg,Individual) )     -- a subset of constructors
import Chapter3.ParamPoly ( Client(..) )   -- .. is used for importing all constructors

Until now we have spoken about how to import modules without qualification. Once declarations are imported, you don’t need any further syntax to use them. Qualified importsare the other side of the coin. A qualified import requires you to prefix a function with the name of the module it came from. In that way, you can use functions or types with the same name but from different modules without any problem. For example, you can import filter and reverse as qualified imports:

import qualified Data.List (permutations, subsequence)
 
permutationsStartingWith :: Char -> String -> [String]
permutationsStartingWith letter = Data.List.filter (\l -> head l == letter) .
                                  Data.List.permutations

As you can see, you can combine the selection of a subset of functions with the qualification of the module. Indeed, those concepts are orthogonal, and you can combine them freely.

In some cases, the name of a module is too long to be used as a prefix. To save endless typing, you can rename the module using as. Afterward you prefix the declarations with the new name:

import qualified Data.List as L
 
permutationsStartingWith :: Char -> String -> [String]
permutationsStartingWith letter = L.filter (\l -> head l == letter) . L.permutations

As in the previous case, you can mix qualified imports with renaming and explicit import lists. The module import which just includes permutations and subsequence is as follows:

import qualified Data.List (permutations, subsequences) as L


THE PRELUDE

By default, any Haskell module always imports without qualification the module named Prelude. This module contains the most basic and used functions in the Platform, such as (+) or head. This automatic import is essential to your being able to write Haskell code without worrying about importing every single function that you invoke. You have actually been benefiting from Prelude throughout all the examples so far in this book.

In very rare cases you may need to disable this automatic import. You can do so in GHC by enabling the language extension NoImplicitPrelude. Remember that in this case, if you need to use any function in the Prelude, you need to import it explicitly.






Smart Constructors and Views

You not only can control imported declaration from a module but also you can control which of the declarations in your own modules you want to make public for consumption elsewhere. That is, you can control which declarations you want to export. By default, every single declaration in a module is exported. To restrict the availability of your functions and data types, you need to build an explicit export list in which all the public declarations are written, and write that list just after the module name. For example, the following module exports only the function f:

module M (f) where
 
f = ...
g = ...

Of course, you can also control which data types and type constructors will be exported. As with import lists, you have several options for exporting a data type: merely exporting the type but no constructor (thus disallowing the creation of values by directly calling the constructors), exporting just some subset of constructors, or all of them.

Remember that in the last chapter I started speaking about the “default values” design pattern, also stated that it was not completely finished, because there was no way to restrict the creation of ConnOptions values. Now you have what is needed to finish the pattern. You can export only the ConnOptions data type, without any of its constructors, and also the connDefault constant that is refined by changes to the default values. For example:

module Chapter2.DataTypes (ConnOptions(), connDefault) where

This idea of hiding the constructors of a given data type opens the door to a new design pattern, usually called smart constructors. The use case is the following: sometimes not all the values that can be obtained using a constructor are correct values for the concept we are modeling. In those cases, you want to make sure that the developer is only able to construct values in the correct space.

For example, you may need to represent a closed integer range, that is, the set of values between some integers a (the lower bound) and b (the upper bound). A sensible invariant is that a ≤ b in all cases. But the definition of the Range ADT looks like:

data Range = Range Integer Integer deriving Show

This definition does not prevent incorrect values. Instead, the idea is to provide a function range that performs the check. If everything is OK and the check is passed, the function range proceeds with the construction. Otherwise, the function throws an error.

range :: Integer -> Integer -> Range
range a b = if a <= b then Range a b else error "a must be <= b"


[image: image] Note  error is a built-in function that can be used anywhere to signal a point at which the program cannot continue and should be halted, showing the specified error message. This is one of several possibilities for dealing with errors in Haskell. You will explore other ways to signal errors throughout the book.


This range function is called a smart constructor. It works basically as a regular constructor but performs some extra checking on its parameters. You can enforce the use of this constructor in all cases by not exporting the Range constructor, but only the type. For example:

module Chapter3.Ranges (Range(), range) where

But there is a problem! Since you have hidden the constructor, any pattern match of the following form outside the private code of the module won’t even compile:

case ... of Range x y -> ...

Code in this form won’t compile, because the constructor is not available. The solution is to create a new data type that encodes the observed values of that type and then use views when pattern matching. Of course, this doesn’t stop users from creating wrong RangeObs values, but in case all functions work with Range and not RangeObs, there will be no choice but to use it correctly. In this case, the observation data type and the conversion function can be:

data RangeObs = R Integer Integer deriving Show
 
r :: Range -> RangeObs
r (Range a b) = R a b

If you export the RangeObs constructor, you can now pattern match using a view. Remember to include the ViewPatterns extension in your source file:

prettyRange :: Range -> String
prettyRange rng = case rng of
                    ( r -> R a b ) -> "[" ++ show a ++ "," ++ show b ++ "]"

Finally a solution was found to the problem of not exposing constructors for creating values, but at the same time not harming the ability to use pattern matching for working on it.



Diving into Lists

You have already learned about two of the most common list functions, namely map and filter. In this section you will see more examples of higher-order functions on lists, and discover some patterns like folds that are very useful in Haskell code. Most of these functions live in the Prelude module, so you don’t need to explicitly import them. The rest of them live in the Data.List module.


DIVING INTO LISTS CODE

While reading this section, try to write the definition of each list function once its description has been introduced. Doing so is a very good exercise to fix the concepts of parametric polymorphism and higher-order functions in your mind. You may start by writing the filter function.



Folds

The first function we will look at is foldr, which introduces us to the world of folds. A fold over a data structure such as a list is a function that aggregates or combines all the values contained in that structure to produce a single result. Folds are a very expressive and powerful tool, often underestimated. Examples of folds are summing all integers in a list, and finding the maximum of the values in the nodes of a tree (I will speak more about trees later on).

The definition of foldr includes three arguments: a binary function f that is used to combine elements step by step, the initial value for starting aggregation, and finally the list itself:

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f initial []     = initial
foldr f initial (x:xs) = f x (foldr f initial xs)

This initial value plus binary operation is a very common pattern in Haskell code. Usually, the initial value is chosen in such a way that using it as an argument in the binary operation doesn’t change the result. Take, for example, the task of summing all the elements in a list. The chosen operation should intuitively be addition (+). Then, the initial value should be chosen so as not to affect that operation, and you should now hopefully be thinking in terms of the value 0. Let’s follow the evaluation of a call to foldr that exactly performs that task of summing all the elements in a list:

foldr (+) 0 [1,2,3] => 1 + foldr (+) 0 [2,3]
                    => 1 + ( 2 + foldr (+) [3] )
                    => 1 + (2 + ( 3 + foldr (+) 0 [] ))
                    => 1 + (2 + (3 + 0 ))
                    => 1 + (2 + 3 ) => 1 + 5 => 6

As you can see, foldr traverses the list element by element until it reaches the end. At that moment, foldr uses the initial value to start evaluation of the whole call stack that has been created, from the end up to the first application of the corresponding combining function, in this case (+). If you look at a list as a combination of (:) and [] constructors, we can rephrase the algorithm as follows: foldr replaces all instances of (:) by f and all occurrences of [] by the initial value. This thinking is illustrated in Figure 3-3.


[image: 9781430262503_Fig03-03.jpg]

Figure 3-3. Visual description of foldr



Another example of fold is maximum, which finds the largest value from a list. In this case the initial value is a bit more elusive, because one must consider what the maximum of an empty list is. To help in answering that question, you need to recall the other property that it’s wanted for the initial value: it should not change the outcome of the binary operation, which in this case is max. This means that we have to find a value z such that max (z,x) = max (x,z) = x for any value x. You can check that the value that satisfies that property is negative infinity (− ∞).

By default, Haskell integers don’t allow representing infinite values, so you need to define a custom data type for this matter. After some thought, we find that the concept of adding infinity values is not unique to integers. The concept also applies to ratios, floating-point values, and so forth. To make the new type more useful, you may define the InfNumber data type as being polymorphic:

data InfNumber a = MinusInfinity
                 | Number a
                 | PlusInfinity
                 deriving Show

By making the type polymorphic, you allow for the possibility of using the type for more than just integers. Our immediate problem requires just infinite integer values, but future problems might require, say, infinite floating-point values. Polymorphism here is an investment in the future.

The next step is defining a new binary operation infMax to combine two of these numbers:

infMax MinusInfinity x       = x
infMax x MinusInfinity       = x
infMax PlusInfinity  _       = PlusInfinity
infMax _  PlusInfinity       = PlusInfinity
infMax (Number a) (Number b) = Number (max a b)

Let’s try to write our fold:

*Chapter3.Lists> foldr infMax MinusInfinity [1,2,3]
    No instance for (Ord t0) arising from a use of `infMax'

Clearly, it’s not done yet. You are getting an error, because the expression that has been written doesn’t pass the type checking. The operation infMax combines elements of type InfNumber, but [1,2,3] is a list of integers. A first solution is to convert the list to InfNumbers by mapping the Number constructor over the list:

*Chapter3.Lists> foldr infMax MinusInfinity $ map Number [1,2,3]
Number 3

However, if you look carefully at the type of foldr, you will see that there’s no need for the combining function (the f argument in foldr) to take values of the same type, because it’s not of type a -> a -> a. Rather, the type is a -> b -> b, which means that f should take as first parameter a value of the type contained in the list, and the second should be the one of the type we are accumulating, which coincides with the type of the initial value (called initial in the definition of foldr shown here). In our case, this means that the aggregation function should have type Integer -> InfNumber Integer -> InfNumber Integer, since the initial value is MinusInfinity :: InfNumber Integer. You already know how to convert existing numbers into InfNumbers, which is the only special thing we need in the fold:

*Chapter3.Lists> foldr (\x y -> infMax (Number x) y) MinusInfinity [1,2,3]
Number 3

The name foldr is a reminder of the algorithm the function implements. It is a fold which associates to the right. That is, the innermost parenthesis will be found in the right side of the expression. Similarly you can build a fold that associates to the left, which is included in the Haskell Platform as foldl.

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl _ initial [] = initial
foldl f initial (x:xs) = foldl f (f initial x) xs

The innermost parentheses are now at the left, as this evaluation trace shows:

foldl (+) 0 [1,2,3] => foldl (+) (0 + 1) [2,3]
                    => foldl (+) ((0 + 1) + 2) [3]
                    => foldl (+) (((0 + 1) + 2) + 3) []
                    => ((0 + 1) + 2) + 3 => ( 1 + 2) + 3 => 3 + 3 => 6

The result value of the fold in the examples so far does not depend on whether it is performed to the right or to the left. But for this to hold, the aggregation operator that is choosen must be commutative. In other words, the following must hold true: f (x, y) = f (y, x). So long as the order in which parameters are input does not matter, you can make it so that folding left or right also does not matter.

Some operations cannot be made commutative. Subtraction, for example, is not commutative, so the result changes between folds:

*Chapter3.Lists> foldr (-) 0 [1,2,3]
2
*Chapter3.Lists> foldl (-) 0 [1,2,3]
-6

One last version of folds is the one composed of those that do not take an initial value, namely foldr1 and foldl1. In those, the starting value is the last element (in foldr1) or the first element (in foldl1) of the list. If you know any language derived from Lisp, such as Common Lisp, Racket, or Clojure, you will know this folding operation as reduce. It is not used much in Haskell, but it may come in handy in cases where handling the empty list case is guaranteed not to happen, and where handling it tangles the code. As an example, the previously defined maximum function is much easier using foldr1:

maximum' :: [Integer] -> Integer
maximum' = foldr1 max


EXERCISE 3-3. YOUR FIRST FOLDS

Consider the functions product, minimumClient, and all. The product function computes the product of a list of integers. The minimumClient function computes the cClient with the shortest name. Finally, the all function computes the conjunction (&&) of a list of Boolean values. Given these functions, do the following:


	Write the functions using pattern matching, without resorting to any higher-order function.

	Write the functions as folds. In each case, first try to find the aggregation operation, and from that derive a sensible initial value.



Can you find the structure that all these functions share when written in the first style? In which cases is it true that using foldr and foldl give the same results?

Extra: Try to write a minimumBy function such that the order is taken by first applying a function g on the result. For example, minimumBy (\x -> -x) [1,2,3] should return 3.






Lists and Predicates

Another big family of list functions comprises those that take Boolean predicates, that is, functions with the type a -> Bool. The filter function I’ve already talked about is a representative of this family. I have already asked you to write the dual version of filter, which only takes elements from a list that doesn’t fulfill a condition. Many times you need to group the members of a list depending on whether they satisfy a condition or not. A naïve way to do it would be:

bothFilters :: (a -> Bool) -> [a] -> ([a],[a])
bothFilters p list = (filter p list, filter (not . p) list)

This definition is correct but has a problem: it will traverse the whole list twice. Intuitively, just one pass should suffice. Haskell defines a function partition inside the Data.List module just for that matter: splitting a list in just one go:

*Chapter3.Lists> import Data.List
*Chapter3.Lists Data.List> partition (> 0) [1,2,-3,4,-5,-6]
([1,2,4],[-3,-5,-6])

If you only want to get the first element in the list that satisfies the condition, you should use find instead of filter. There’s the chance that the list contains no such an element. For that reason find returns a Maybe value:

*Chapter3.Lists Data.List> find (> 0) [1,2,-3,4,-5,-6]
Just 1
*Chapter3.Lists Data.List> find (> 7) [1,2,-3,4,-5,-6]
Nothing

Let’s now move to the following use case: you have a processing system for the shop, with a queue for the clients, which is itself represented as a list where the head is the next client to be served. At high load times you want to impose the following policy: skip all the clients not government organizations. The Data.List module provides a dropWhile function that returns some list from the point in which some predicate becomes false:

skipUntilGov :: [Client a] -> [Client a]
skipUntilGov = dropWhile (\case { GovOrg {} -> False ; _ -> True })


[image: image] Note  Remember you need to enable the LambdaCase extension for the previous code to be accepted by GHC.


Its counterpart is takeWhile, which takes the initial elements until the predicate becomes false. You can use takeWhile to get a list of all the commands in a list until one equals "stop", at which point we quit processing. Here’s the code to do that:

*Chapter3.Lists Data.List> takeWhile (/= "stop") ["hello", "send", "stop", "receive"]
["hello","send"]

The takeWhile and dropWhile functions are the two components of the function span, which returns both the taken and the dropped list:

*Chapter3.Lists Data.List> span (/= "stop") ["hello", "send", "stop", "receive"]
(["hello","send"],["stop","receive"])

A related function is break, which does the same work as span, but negating the predicate before. Actually, break could be defined as span (not . p).

The last couple of functions that take unary predicates are any and all. As their names suggest, they check whether at least one or all the elements of the list, respectively, fulfill some condition. They are similar to the logical quantifiers “exists” [image: pg65.jpg] and “for all” [image: pg65a.jpg]. For example, in the monthly analytics you may want to be sure that you have an individual registered in the web shop, and also that you have at least a company or government organization in the system, that is, some Client that is not an Individual. You may define an isIndividual function to start:

isIndividual :: Client a -> Bool
isIndividual (Individual {}) = True
isIndividual _               = False
 
checkIndividualAnalytics :: [Client a] -> (Bool, Bool)
checkIndividualAnalytics cs = ( any isIndividual cs, not $ all isIndividual cs)

Now let’s move to another kind of predicate: binary ones. That is, those functions that take two arguments and return some Boolean value by comparing them somehow. The first kind of comparison you can do is whether two elements are equivalent (or not): (==) and (/=) belong to that family. And those are the kind of predicates that the function nubBy expects: it takes out elements such that no two elements in the returned list are equivalent. In this example you get only one representative of each parity:

*Chapter3.Lists Data.List> nubBy (\x y -> (even x &&even y) || (odd x &&odd y)) [1,2,3,4,5]
[1,2]

If you use (==) in nubBy, we are essentially removing duplicates in the list:

*Chapter3.Lists Data.List> nubBy (==) [1,2,1,1,3,2,4,1]
[1,2,3,4]

In many cases, types come equipped with a default comparison. You will see how to add that default comparison to our own types in the next chapter, when we talk about type classes. If the values support it, like those of the Integer type, you can just use nub and drop the equivalence function:

*Chapter3.Lists Data.List> nub [1,2,1,1,3,2,4,1]
[1,2,3,4]


[image: image] Note  nub and nubBy are not very performant functions, as they must check for equality between all possible pair of elements. This means that the order of the function is quadratic. In the next chapter, you will learn a faster way to remove duplicates from a list.


Equality checks, or more broadly equivalence checks, can be used to maintain lists as sets: holding only a copy of each value. The main functions are union(By), which returns a new set with all the elements from the initial ones; intersect(By), which returns a set holding only the elements in both sets; insert(By), which adds only one element to a set; and \\, which performs the difference between sets: x1 \\ x2 contains all elements in x1 which are not in x2. In each case, the version ending in By takes a parameter telling how to check elements for equivalence, whereas the other versions use the default comparison:

*Chapter3.Lists Data.List> :{
*Chapter3.Lists Data.List | let x1 = [1,2,3,4]
*Chapter3.Lists Data.List |     x2 = [2,3,5]
*Chapter3.Lists Data.List | in (x1 `union` x2, x1 `intersect` x2, x1 \\ x2)
*Chapter3.Lists Data.List | :}
([1,2,3,4,5],[2,3],[1,4])

This example also shows an interesting feature of Haskell syntax: infix notation. Each time you have a two-argument function which doesn’t have a name made only of symbols (like union or intersect), you can write the name between the arguments surrounding it by back quotes ``.

Finally, elem just points out whether an element is a member of a list:

*Chapter3.Lists Data.List> 2 `elem` [1,2,3]
True
*Chapter3.Lists Data.List> 4 `elem` [1,2,3]
False


[image: image] Mini-exercise  Write elem using find and pattern matching.


The other usual meaning for binary predicates is ordering: p x y means that in some way x precedes y. However, for both clarity and performance reasons, ordering in Haskell is not defined by returning a Bool, but by returning an Ordering value, which can be LT (less than), EQ (equal), or GT (greater than). For example, yoi can define a function representing that companies and government organizations go first in an ordering of clients, and then individuals. In each level, draws are decided by the names of the clients. Following is the code to implement that function, and it is written knowing that the built-in compare function defines an Ordering for strings:

compareClient :: Client a -> Client a -> Ordering
compareClient (Individual{person = p1}) (Individual{person = p2})
                                = compare (firstName p1) (firstName p2)
compareClient (Individual {}) _ = GT
compareClient _ (Individual {}) = LT
compareClient c1 c2             = compare (clientName c1) (clientName c2)

In the following examples, the code will use part of my list of clients. As you may suspect, many of the popular scientientists, writers and adventurers of time buy or read books in the store.

listOfClients = [ Individual 2 (Person "H. G." "Wells")
                , GovOrg 3 "NTTF"  -- National Time Travel Foundation
                , Company 4 "Wormhole Inc." (Person "Karl" "Schwarzschild") "Physicist"
                , Individual 5 (Person "Doctor" "")
                , Individual 6 (Person "Sarah" "Jane")
                ]

Using the auxiliary function named compareClient, you can sort a whole list of Clients using sortBy:

*Chapter3.Lists Data.List> sortBy compareClient listOfClients
[ GovOrg { clientId = 3, clientName = "NTTF" }
, Company { clientId = 4, clientName = "Wormhole Inc."
          , person = Person { firstName = "Karl", lastName = "Schwarzschild" }
          , duty = "Physicist"}
, Individual { clientId = 5, person = Person { firstName = "Doctor", lastName = "" }}
, Individual { clientId = 2, person = Person { firstName = "H. G.", lastName = "Wells" }}
, Individual { clientId = 6, person = Person { firstName = "Sarah", lastName = "Jane" }} ]

Some types already come defined with a default way in which to order values. Numbers and characters are examples of such types, which are readily compared. In those cases, you can invoke the function sort, which doesn’t need a comparison function. For example:

*Chapter3.Lists Data.List> sort [1,4,2,-3]
[-3,1,2,4]

It’s very interesting to see that orders are also defined for tuples and lists if their contained elements have a default comparison. In both cases this order is lexicographic: values are compared element by element. Lexicographic comparison means that if the first component of the tuples are different, then the ordering of those two values decides the ordering of the tuple. In case the leading values match, the second elements are compared, and so on. The same approach is taken for lists as with tuples. Also for lists, a smaller list is considered previous in order to a longer list which contains the shorter list as a prefix. Let’s look at same examples of comparison that clearly show this lexicographic comparison: in the first and third case tuples or lists are equal up to some point, whereas in the second case the first list is shorter than the second one.

*Chapter3.Lists> (compare (1,2) (1,1), compare "Hello" "Hello world", compare "This" "That")
(GT,LT,GT)

When a compare function is defined, Haskell also provides implementations of the (>), (<), (>=), and (<=) operators. These operators usually help in clarifying code that you write, because you don’t need to call compare and then match on the output. Furthermore, these operators are more familiar. The previous example could have been expressed also using (<=) as follows. Notice that this operator returns a simple Boolean instead of a value of the Ordering type.

*Chapter3.Lists> ( (1,2) <= (1,1), "Hello" <= "Hello world", "This" <= "That" )
(False,True,False)

It may become handy when performing analytics to group clients depending on some characteristic. The function groupBy, with type (a -> a -> Bool) -> [a] -> [[a]], puts in a single list all those elements for which the equivalence predicate returns True, that is, that they must be in the same group.

For example, you would like to find which company duties are the most common in the database (which right now is just a list). To find it out, you can first filter out those elements that are not companies, using filter. Then, you can group the clients depending on their duty (the comparison function to groupBy). A third step would be sorting the lists depending on their length. While sorting, keep in mind that if you want to have the most common duty first, we need to sort the list lengths in reverse order; you need the longest list first. Finally, you retrieve the duty from each list by accessing the head element. You can do so safely, because all lists will be non-empty. You also know that all elements in a given list will share the same duty, so any element that we access is as good as any other. The resulting function to do all this would be:

companyDutiesAnalytics :: [Client a] -> [String]
companyDutiesAnalytics = map (duty . head) .
                           sortBy (\x y -> compare (length y) (length x)) .
                           groupBy (\x y -> duty x == duty y) .
                           filter isCompany
                         where isCompany (Company {}) = True
                               isCompany _            = False

There’s a more elegant way to write this function. As you can see, there’s a pattern in which two elements are compared, but only after applying some operation to the values. The higher-order function on, in the module Data.Function, allows composing the comparison and the value-extracting functions as we want, as the following code illustrates. In order to reverse the ordering for list lengths, a useful trick is calling the comparison function with the arguments in the reverse order. There’s a combinator specifically designed for calling a two-parameter function with arguments reverse, which is called flip :: (a -> b -> c) -> (b -> a -> c). The following code is a point-free version of the previous one.

companyDutiesAnalytics :: [Client a] -> [String]
companyDutiesAnalytics = map (duty . head) .
                           sortBy ( flip  (compare `on` length)) .
                           groupBy ((==) `on` duty) .
                           filter isCompany
                         where isCompany (Company {}) = True
                               isCompany _            = False


HASKELL IS DECLARATIVE

You may wonder why Haskell provides so many different functions on lists, whereas other programming languages just do fine with constructs such as iterators or for loops. The idea is that instead of explicitly transforming a list element by element, you declare transformations at a higher level of abstraction. Languages supporting this idea, such as Haskell, are called declarative. 

A classical fear when programming in Haskell is that this higher level of abstraction hurts performance. However, compilers of declarative languages are able to apply a wider range of optimizations, because they can change the code in many more ways while retaining the same behavior. A typical example code in the form map f . map g. This code performs multiple passes over the data, but can safely be converted by the compiler to map (f . g), which performs the same duty in just one pass over the data.






Lists Containing Tuples

Another family of list functions is the one that considers lists that have tuples inside. These list types will all ultimately be founded on some instance of the type [(a,b)]. I’ve already mentioned that default comparisons work on tuples lexicographically. Set functions such as nub, and sorting functions such as sort work in that same way.

Previously in the book you wrote a function converting two lists into a list of tuples. This function is known as zip, because it interleaves elements as a zipper does. One use of zip is to include the position of each element next to the element itself. For example, applying zip to ['a', 'b', 'c'] would give you [(1,'a'),(2,'b'),(3,'c')]. This actually involves zipping the original list with a list from the number 1 to the length of the list itself. Picture two sides of a zipper, one corresponding to the list of numbers, and the second to the list of characters. As you pull the fastener up, each number is associated to a character, one by one.

As an example, let’s define a function enum that generates a list of numbers:

enum :: Int -> Int -> [Int]
enum a b | a > b = []
enum a b         = a : enum (a+1) b

The length function in Prelude returns the number of elements contained in a list. With these two ingredients you can build the function you were looking for:

withPositions :: [a] -> [(Int,a)]
withPositions list = zip (enum 1 $ length list) list

There is a special way to construct lists for types that have a default ordering, such as integers or characters. This is called a range, and has the syntax [ a .. b ] , to get a list with all elements in between a and b, including those. For example we can substitute our function enum:

withPositions list = zip [1 .. length list] list

There is an unzip function that does the reverse of zip, and gets two lists back from a list of tuples. For example, let’s split countries and their capitals from a list of pairs:

*Chapter3.Lists> unzip [("France","Paris"),("Spain","Madrid"),("Portugal","Lisbon")]
(["France","Spain","Portugal"],["Paris","Madrid","Lisbon"])

This last example shows one possible use of a list of tuples: to implement a mapping between keys and values. A list of such characteristics is called an association list, and is a well-known structure in functional programming. The function named lookup enables searching out the value associated with a particular key. Once again, the possibility of not finding the key implies that the returned value is wrapped on a Maybe:3

*Chapter3.Lists> lookup "Spain" [("France","Paris"),("Spain","Madrid"),("Portugal","Lisbon")]
Just "Madrid"
*Chapter3.Lists> lookup "UK" [("France","Paris"),("Spain","Madrid"),("Portugal","Lisbon")]
Nothing


[image: image] Warning  You have seen how a list can be used to represent sets and maps. However, those implementations are very inefficient, as they require traversing a list for most operations. In the next chapter you will look at other containers such as those found in modules Data.Set and Data.Map. These other containers are especially suited for their particular uses, and have highly performant implementations.




List Comprehensions

The fact that so many list functions are included in the standard library, and most of them even in the Prelude (hence available by default in any Haskell source) acknowledges the importance of lists in functional programming. You have seen how function composition allows for a very declarative programming style, where transformations are defined by steps. For example, a function doubleOdds for computing the double of all odd numbers in list is written as 

doubleOdds :: [Integer] -> [Integer]
doubleOdds list = map (*2) $ filter odd list

However, if you remember your algebra classes, mathematicians have a very terse but intuitive language for manipulating sets. The previous example can be written in set notation as [image: pg70.jpg]. Haskell designers also like this syntax, so they included list comprehensions to mimic it. The example becomes:

doubleOdds list = [ 2 * x | x <- list, odd x ]

List comprehensions have two parts, separated by | and wrapped by square brackets. The first part is the expression, which defines a transformation to apply to all the elements that will be returned. The second part is made of a list of qualifiers, and specifies from whence the elements will come, and the constraints upon them.

The first kind of qualifiers are generators, which take the form e <- list. Generators indicate that elements from list will be acted upon, and each of the elements will be referred as e in the rest of the comprehension. Optionally, the e part can be a pattern, stating that only values matching it will be included. For example, you can get the client names of all government organizations using:

*Chapter3.Comprehensions> [ clientName x | x@(GovOrg _ _) <- listOfClients ]
["NTTF"]

A list comprehension may have multiple generators. The simplest way to implement multiple generators is to iterate in two different lists without any relationship between them, and getting all possible combinations of elements coming from each list. This result of all possible combinations is called the product of those lists. As an example, the following code applies the product of two lists to the problem of generating the multiplication tables from 1 to 4:

*Chapter3.Comprehensions> [(x,y,x*y) | x <- [1 .. 4], y <- [1 .. 10]]
[(1,1,1),(1,2,2),(1,3,3),(1,4,4),(1,5,5),(1,6,6),(1,7,7),(1,8,8),(1,9,9),(1,10,10)
,(2,1,2),(2,2,4),(2,3,6),(2,4,8),(2,5,10),(2,6,12),(2,7,14),(2,8,16),(2,9,18),(2,10,20)
,(3,1,3),(3,2,6),(3,3,9),(3,4,12),(3,5,15),(3,6,18),(3,7,21),(3,8,24),(3,9,27),(3,10,30)
,(4,1,4),(4,2,8),(4,3,12),(4,4,16),(4,5,20),(4,6,24),(4,7,28),(4,8,32),(4,9,36),(4,10,40)]

But a generator may also depend on other values in the comprehension, in particular an element from another generator. For example, we may want to enumerate all possible dominoes. But you know that once we have (1,6), the piece (6,1) is exactly the same, so you shouldn’t show that one. A way to get the correct result is, for each first component in the list of dominoes, get only values equal or greater than it in the second component. Thus a result of (6,1) is excluded, because 1 is less than 6. Here’s some code to implement that approach:

*Chapter3.Comprehensions> [(x,y) | x <- [0 .. 6], y <- [x .. 6]] [(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(0,6), (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,2),(2,3),(2,4),(2,5),(2,6), (3,3),(3,4),(3,5),(3,6), (4,4),(4,5),(4,6), (5,5),(5,6), (6,6)]

Finally, an element in a list may itself be a list, which allows it to appear in the right-hand side of the generator. Given a list of words (remember that a string is itself a list of characters) you can concatenate all of them and show them in uppercase form by iterating twice:

*Chapter3.Comprehensions> import Data.Char
*Chapter3.Comprehensions Data.Char> [ toUpper c | s <- ["This","is","a","list"], c <- ' ':s ]
" THIS IS A LIST"

Sometimes you want to introduce local bindings inside a comprehension, usually to enhance readability of the code. This second form of qualifiers has a syntax that is similar to that in expressions, and the form is let b = expression. For example, you may be interested in computing the norms of a list of vectors represented as tuples:4

*Chapter3.Comprehensions> [ sqrt v | (x,y) <- [(1,2),(3,8)], let v = x*x+y*y ]
[2.23606797749979,8.54400374531753]

Finally, list comprehensions allow filtering out some elements using a guard. Guards are the third form of qualifier and are syntactically just a call to a predicate. Only those elements satisfying the guard will go in the returned list. Guards allow expressing the invariant for dominoes in a different way:

*Chapter3.Comprehensions> [(x,y) | x <- [1 .. 6], y <- [1 .. 6], x <= y]
[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,3),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,5),(5,6),(6,6)]


[image: image] Note  If you know Scala, list comprehensions in Haskell will be very familiar to you. The changes are just syntax: [ e | q ] becomes for (q) yield e; the generators are written exactly the same. Local bindings are introduced without any keyword, whereas guards must be preceded by if.


You have looked at comprehensions as coming from mathematical notation for sets. But if you look closer, they also look a bit like SQL. The notation[ x | x <- list, b x ] can be seen in SQL as select x from list where b x. However, if we want to have a full-fledged query language, we need also grouping and sorting. The great news is that GHC already provides those operations; you need only to enable the TransformListComp extension.

The first qualifier that is provided by the TransformListComp extension is then. A qualifier then f transforms the input list by applying the function f to the result of the comprehension up to that point. The constraint is that f should have type [a] -> [a], so its applicability is a bit limited. Nevertheless, we can use it to reverse a list at the end:

*Chapter3.Comprehensions> :set -XTransformListComp
*Chapter3.Comprehensions> [x*y | x <- [-1,1,-2], y <- [1,2,3], then reverse]
[-6,-4,-2,3,2,1,-3,-2,-1]

A more powerful enhancement is then f by e, which must transform the list depending on some expression. The most common use is to sort a list. To do so, you first need to import the module GHC.Exts, which contains the function sortWith. Now, include the qualifier then sortWith by v to sort depending on the values in v. You may decide to return the previous list, but now ordered by the values of x:

*Chapter3.Comprehensions> import GHC.Exts
*Chapter3.Comprehensions GHC.Exts> [x*y | x <- [-1,1,-2], y <- [1,2,3], then sortWith by x]
[-2,-4,-6,-1,-2,-3,1,2,3]

The final extension concerns grouping. The syntax is then group by e using f, where f is a function of the type (a -> b) -> [a] -> [[a]]. In the most common case, we use as groupWith, also in GHC.Exts, which computes e for each element in the list and groups together those values for which e returns the same result. After a grouping qualifier, all the previous bindings are considered to be lists made up of the previous elements. This is important because all the transformations to the grouped elements should be done prior to that point. In many cases, all grouped elements will be equal, so GHC provides a the function that just takes one element from the list.

For example, you can group the numbers from the previous example according to whether they are positive or not:

*Chapter3.Comprehensions GHC.Exts> :{
*Chapter3.Comprehensions GHC.Exts| [ (the p, m) | x <- [-1,1,-2]
*Chapter3.Comprehensions GHC.Exts|              , y <- [1,2,3]
*Chapter3.Comprehensions GHC.Exts|              , let m = x*y
*Chapter3.Comprehensions GHC.Exts|              , let p = m > 0
*Chapter3.Comprehensions GHC.Exts|              , then group by p using groupWith ]
*Chapter3.Comprehensions GHC.Exts| :}
 [(False,[-1,-2,-3,-2,-4,-6]),(True,[1,2,3])]

Notice how this code computes the product of the items before the grouping using let m = x*y. Then you group according to the value m > 0, and at this point you have the list [([False,False,False,False,False,False],[-1,-2,-3,-2,-4,-6]),([True,True,True],[1,2,3])]. Finally, you apply the to conflate the first components to a single element.

In order to fix the ideas about list comprehensions, let’s try to build a comprehension to analyze your enterprise clients. As you may remember, you can have more than one person from each company in the database. The idea is to group all the records belonging to the same company sorted by duty, and then sort the companies by the number of records. The following code accomplishes those goals:

companyAnalytics :: [Client a] -> [(String, [(Person, String)])]
companyAnalytics clients = [ (the clientName, zip person duty)
                           | client@(Company { .. }) <- clients
                           , then sortWith by duty
                           , then group by clientName using groupWith
                           , then sortWith by length client
                           ]


[image: image] Note  If you follow the development of the C# language, you may have noticed that these comprehensions resemble the query expressions introduced in C# 3.0.


GHC supports another extension, parallel comprehension, which performs a duty that is not found in SQL queries: traversing several lists at the same time. The extension is enabled via the ParallelListComp pragma. Using this functionality, more than one branch of qualifiers can be stated in the comprehension, each of them separated by |. Instead of performing nested iterations, the result of all the branches will be zipped and available for the expression. Here’s an example where you perform the multiplication of pairs of number, each component being given in a different list. Compare the result when using traditional nesting and when zipping:

*Chapter3.Comprehensions> :set -XParallelListComp
*Chapter3.Comprehensions> [ x*y | x <- [1,2,3], y <- [1,2,3] ]   -- traditional nesting
[1,2,3,2,4,6,3,6,9]
*Chapter3.Comprehensions> [ x*y | x <- [1,2,3] | y <- [1,2,3] ]  -- zipping
[1,4,9]


Haskell Origami

Origami is the Japanese art of folding and unfolding paper in order to create beautiful pieces of art. You have already looked at list folds. In this section you will look at them and meet their colleages the unfolds. The goal is gaining some deeper understanding of the structure of list functions, and how this huge set of functions we have described can be fit in small family of schemas. Since these schemas are based on fold and unfold functions, there are known as “Haskell Origami.” This section contains some optional and more advanced material. Don’t worry if you don’t understand this upon first read, just come try again after some time.

Let’s start with an observation: folds are much more powerful than you imagine. You can write almost all list functions using foldr. For example, you can write filter as a fold by accumulating values on a list:

filterAsFold :: (a -> Bool) -> [a] -> [a]
filterAsFold p = foldr (\x l -> if p x then x : l else l) []

But, how to ensure that the definition of filter using regular pattern matching and recursion on lists and this definition using a fold are equivalent? The answer lies in equational reasoning, a technique for formal verification of code that manipulates equations between functions. In this particular case you will make use of the universal property of foldr, which states that proving that g = foldr f v is equivalent to proving the following set of equations:5

g []     = v
g (x:xs) = f x (g xs)

Let’s use this property in our example. filterAsFold p is equivalent by the universal property to:

filterAsFold p []     = []
filterAsFold p (x:xs) = (\x l -> if p x then x : l else l) x (filterAsFold p xs)

In the second equation we can apply the abstraction to its arguments:

filterAsFold p (x:xs) = if p x
                        then x : (filterAsFold p xs)
                        else (filterAsFold p xs)

Et voila! We get back the code used to define filter using pattern matching and recursion. Each of the steps is just an application of the universal property or replacing the arguments inside the body of a function, so we can be sure that both definitions are equivalent.

You can also define map in terms of foldr:

mapAsFold :: (a -> b) -> [a] -> [b]
mapAsFold f = foldr (\x l -> f x : l) []

There’s another universal property relating map and foldr that states that foldr f v . map g = foldr (\x xs -> f (g x) xs) v (that is, you can introduce the mapping operation directly inside the fold). To prove it, let’s start expanding the definition of map using the universal property. Call h = foldr f v . map g for clarity:

h []     = foldr f v (map g [])     = foldr f v []
h (x:xs) = foldr f v (map g (x:xs)) = foldr f v ( (\x l -> g x : l) x (map g xs) )

In the second equation, you can introduce the arguments inside the body of the function. Then, apply the universal property of foldr to each of the arguments:

h []     = v
h (x:xs) = foldr f v ( g x : map g xs) )
         = f (g x) ( foldr f v (map g xs) )
         = f (g x) (h xs) = (\y ys -> f (g y) ys) x xs

In the last step I have specified that h l = foldr f v (map g l). You can see again the pattern in the universal property of fold, which allows us to say that:

foldr f v . map g = h = foldr (\y ys -> f (g y) ys) v

This result was exactly the goal. If you don’t feel completely confident about how we reasoned, try to go step by step with pencil and paper. Pay close attention in each step to how we apply the rules of the game. Once you are sure about the details, try to prove the fusion law for maps: map f . map g = map (f . g).


[image: image] Note  Knowing these laws may seem just a theoretical game. However, they have important applications for Haskell programs, as the compiler uses them to transform the code into a more efficient one, but ensuring the same behavior. For example, map (f . g) traverses a list only once, whereas map f . map g does it twice and needs an intermediate data structure in memory. So the compiler aims to replace each instance of the latter with the former.


Up to now we have talked about folds, which consume lists to provide a single value. However, there’s a corresponding concept, unfolds, which create lists out of some seed. As with folds, there exist both right and left unfolds. Here, the focus will be on the right unfold function unfoldr, which is available in Data.List. Let’s begin looking at its type:

*Chapter3.Origami Data.List> :t unfoldr
unfoldr :: (b -> Maybe (a, b)) -> b -> [a]

The algorithm for unfolding is the following: start with a seed of type b. Apply the function given as first argument. You can get two kinds of output: Nothing signals that unfoldr should stop producing elements, whereas Just (x, s) attaches x to the new list and continues the process with a new seed s. For example, let’s create a list from n to m: the function should produce a number in each step and increase it for the next iteration, and should stop when the seed is larger than m. Here’s the code to do this:

enumUnfold :: Int -> Int -> [Int]
enumUnfold n m = unfoldr (\x -> if x > m then Nothing else Just (x, x+1)) n

And Figure 3-4 illustrates the step-by-step execution of this code.


[image: 9781430262503_Fig03-04.jpg]

Figure 3-4. Evaluation steps for enumUnfold 1 3



Another algorithm that can be expressed as an unfold is minimum sort for list. In minimum sort, you make a series of steps, in each one you find the minimum element in the input list, take it out of this input list, and add it to the output list, that will end sorted. To implement it as an unfold, you will use a list as seed, containing the elements that are yet to be ordered. In each step, take the minimum element from the list, making the new seed the previous list without that element. When you have an empty list as seed, you should stop generating new elements. In Haskell code:

minSort :: [Integer] -> [Integer]
minSort = unfoldr (\case [] -> Nothing
                         xs -> Just (m, delete m xs) where m = minimum xs)


WHY ARE FOLDS AND UNFOLDS DUALS?

The two concepts of folding and unfolding are dual, but how do I back up that claim? The key point is that unfoldr eithers returns Nothing for stopping or Just for continuing, whereas foldr takes different arguments for the empty and general cases. You can group together the initial value and combination function into a single function of type Maybe (a,b) -> b, which shall return the initial value if given nothing or apply the combination for Just.

foldr2 :: (Maybe (a,b) -> b) -> [a] -> b
foldr2 f []     = f Nothing
foldr2 f (x:xs) = f $ Just (x, foldr2 f xs)

mapAsFold2 :: (a -> b) -> [a] -> [b]
mapAsFold2 f = foldr2 (\case Nothing     -> []
                                                                         Just (x,xs) -> f x : xs)

Now you can see how the two functions have reflected types:

foldr2  :: (Maybe (a,b) -> b) -> [a] -> b
unfoldr :: (b -> (Maybe (a,b)) -> b -> [a]

Personally, I find this duality beautiful and elegant, and an example of how higher-order functions allow to find relations between different abstractions.



Summary

The chapter has finished with a look at list origami. But prior to that you have looked at many other concepts related to re-usability and lists:


	You got in touch with the idea of parametric polymorphism, which allows defining functions operating on several types, and also writing data types that may contain values of different type.

	You have learned how to use functions as parameters or return value, giving raise to higher-order functions, which greatly enhance the re-usability of your code.

	Anonymous functions have been introduced as a way to write some code directly in place instead of having to define a new function each time we want to pass it as argument.

	You have seen how the idea of functions returning functions impregnates the Haskell language, and the syntax for partial application of them.

	You have looked at the point-free programming style, which encourages the use of combinators between functions to write more concise code. In particular, the focus has been on the (.) composition operator.

	The import and export of definitions in other modules in a project has been considered. In particular, you have seen how hiding definitions allow for the “smart constructors” pattern.

	You had a walk through the most important functions in the Data.List module, introducing the important concept of a fold.

	In many cases, list comprehensions provide an intuitive syntax for list transformations. You have delved into its basic characteristics, and the particular GHC extensions providing sorting and grouping a la SQL.

	Finally, you have seen how fold and unfolds are at the core of most list functions, and you learned how to use them and reason with them.



1The easiest way is to point your browser to http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html#v:not.

2Since (.) could also be called a point, there’s some risk of confusion about the name “point-free.” But actually, the point-free style encourages the use of (.), and discourages explicit parameters.

3The expression “wrapped on Maybe” means that rather than of a value of type τ, we use Maybe τ. In addition, it also implies that in the regular case, the function will return a value constructed with Just.

4The norm of a vector (x,y) is the quantity [image: pg71.jpg].

5Most of these ideas are taken from the papers “A tutorial on the universality and expressiveness of fold” by Graham Hutton and “Origami programming” by Jeremy Gibbons.




CHAPTER 4

[image: image]

Using Containers and Type Classes


You have seen how parametric polymorphism and higher-order functions help in the process of abstraction. In this chapter a new kind of polymorphism that sits in between parametric and the absence of polymorphism is going to be introduced: the ad-hoc one. Using this feature you will be able to express that certain types exhibit a common behavior. And incidentally, you will learn how Haskell makes it possible to use addition (+) on different numeric types while maintaining a strong type system.

Containers will make the running examples through this chapter. A container is the name given to any data structure whose purpose is to hold elements of other types inside it, such as lists or trees. Apart from writing your own implementation of binary trees with a caching mechanism, you will look at implementations that are available in the Haskell community-owned package repository, Hackage. This will lead you deeper into the features of Cabal, and how it can be used to manage not only projects but also their dependencies. Apart from Hackage, the Haskell community provides lots of different ways to search for code and documentation: tools such as Hoogle will be introduced in this chapter.

While using and implementing these containers a lot of patterns will emerge. This will be the dominant situation from now on: after looking at some useful types, you will look at their commonalities. In particular, in this chapter the ideas of functors, foldables, and monoids will be introduced.

Using Packages

Until this point you have been using functions and data types from the base package. However, lots of functionality is available in other packages. In this section you will first learn how to manage packages. Then, the focus will move to sandboxed environments, which provide a way of developing a project without interfering with other projects or the system-wide package database.


Managing Packages with Cabal and EclipseFP

A package is the unit of distribution of code understood by the Cabal tool, which we have already introduced for building projects. Each package is identified by a name and a version number, and includes a set of modules. Optionally the package may include some metadata such as a description or how to contact the maintainer. Indeed, the projects you have created previously using Cabal are all packages.


[image: image] Note  In EclipseFP, Eclipse terminology rather than Cabal terminology is followed. For that reason, EclipseFP refers to Haskell projects, rather than packages.


You can manipulate packages by hand, but there’s a more comfortable way to obtain and install them in your system to make them available to your own projects. If Cabal finds out that a package is not available in your system, it contacts the Hackage package database which lives at http://hackage.haskell.org, downloads, compiles, and installs the corresponding package. Hackage started as a mere a repository for hosting packages, but now it provides some extra services such as generation of documentation. Anyone with an account is allowed to upload new packages to Hackage. Putting together this with the fact that Haskell community is a very active one, this implies that a wide range of libraries are available.


[image: image] Explore  Go to the Hackage webpage, and click the Packages link. Take some time to browse the different categories and the packages available in each of them. Then, try to find the containers package in the Data Structures category, and click on it. You will find the list of modules that is exported, alongside with its documentation. It’s very important that you become comfortable with this site, because it's the main entrance to the Haskell libraries world.


Your local Cabal installation maintains a list of all the available packages in the remote Hackage repository. But this mirror of the package list is not updated automatically: you must explicitly ask Cabal to download the new version, something you should do from time to time. When using the command line, it’s done by easily executing the cabal update command:

$ cabal update
Downloading the latest package list from hackage.haskell.org

As in the previous chapters, you will also see how to manage packages inside the EclipseFP development environment. If you are in the Haskell perspective, you will notice a tab called Cabal Packages, which by default the right-most one (see Figure 4-1). In the top right corner of the tab there are two buttons: the first one, titled Update package list, and shown in the Figure inside a red circle, is equivalent to the previous command.


[image: 9781430262503_Fig04-01.jpg]

Figure 4-1. Cabal Packages tab in EclipseFP



This tab gives some of the information from the Hackage website, like the available versions of each package, and the metadata associated with each. Furthermore, you can click the More information . . . link to open a window with the documentation (although for this you need an Internet connection).

Now, you’ll learn how to install a package from Hackage. Once you have found the one you want, just run cabal install package-name in the command line; or click on it in the Cabal Packages tab and then press the second button in it, called Install selected package if you prefer using EclipseFP. In the latter case, you will also be asked whether you want to install the package only for your user or system-wide, as shown in Figure 4-2. Installing for the current user is a sane default and doesn’t need any extra permission on the system to proceed. Try to install the persistent package, which provides a layer for database access, and which we will use in subsequent chapters.


[image: 9781430262503_Fig04-02.jpg]

Figure 4-2. Installing a package in EclipseFP



This is part of the output that will be generated by Cabal while downloading, compiling, and installing persistent. The compilation of files 2 to 21 has been omitted for clarity reasons.

Resolving dependencies...
... # Output from dependencies has been omitted
Downloading persistent-1.2.1...
Configuring persistent-1.2.1...
Building persistent-1.2.1...
Preprocessing library persistent-1.2.1...
[ 1 of 22] Compiling Database.Persist.Class.PersistConfig ( Database/Persist/Class/PersistConfig.hs, dist/build/Database/Persist/Class/PersistConfig.o )
... # Compilation of files 2 to 21 omitted
[22 of 22] Compiling Database.Persist.Sql ( Database/Persist/Sql.hs, dist/build/Database/Persist/Sql.o )
In-place registering persistent-1.2.1...
Installing library in /home/serras/.cabal/lib/persistent-1.2.1/ghc-7.6.3
Registering persistent-1.2.1...
Installed persistent-1.2.1

You will notice that not only the package gets installed but also any dependency that is needed by it and that is not yet available in the system. The distribution is by source, which means that the package you get from the repository has to be compiled. Thus, you should expect a large compilation time. Be aware that this behavior is slightly different when you specify dependencies: in the case when package A requires B, if you want to use modules from B you need to include it explicitly even if A is already listed as a dependency.


[image: image] Note  In case you need a specific version of a package, you shall run cabal install package-version (with a slash between package name and version), or in case of EclipseFP, select the desired version from the list in the Cabal Packages tab. If now version is specified, both Cabal and EclipseFP will install the latest one.


However, the most common way of getting a package is not by manually downloading it, but rather adding it as a dependency of another package. This is achieved by adding it at the property build-depends of the corresponding stanza in your .cabal file. You can add a package dependency both in library or executable stanzas. For example, let’s create a new project for Chapter 4 (if using EclipseFP, choose Library as the kind of project) and add the containers package as a dependency, because you will use it all through the chapter. The relevant parts of the package description file will look like:

name:           chapter4
version:        0.1
 
library
  hs-source-dirs:  src
  build-depends:   base >= 4, containers

When you run cabal build in this package after adding the dependency to the library stanza, you will receive a warning message:

./chapter4.cabal has been changed. Re-configuring with most recently used
options. If this fails, please run configure manually.

Once again, EclipseFP provides graphical tools for this matter. Open the .cabal file inside Eclipse, and go to the Library tab, which shall be similar to the one in Figure 4-3. The first column in that editor reads Dependencies, and has buttons for both adding and deleting package names from the list. If you click the plus-shaped button, you will be confronted with the list of all the possible dependencies (taken from the Hackage database), which includes a small description of each of them. Just select the desired one and click OK.


[image: 9781430262503_Fig04-03.jpg]

Figure 4-3. The Cabal file editor in EclipseFP



As you can see in the graphical editor, dependencies can reference a package and also specify constraints over the versions that are required. Versions are of the form a.b.c.d, each of them being a number. The order is lexicographical: to compare to versions the first component, a, is checked and only if they are equal, the second is checked. If that also coincides, further components are checked in the same way. You can use any different comparison operators: ==, >=, >, <= and <, and also combine them using && for conjunction and || for alternative constraints. Even though the constraint system is very powerful, usually the following rule of thumb is used: add a constraint requiring the minimum version where you know that your package compiles and runs (usually the version installed in your system) and a constraint that you shouldn't go over the next major version, that is, the next a.b in the lexicographical order. For example, at the moment of writing the current containers version is 0.5.2.1, so the next major version would be 0.6. The suggested dependency declaration is thus:

containers >= 0.5.2.1 && < 0.6


PACKAGE VERSIONING POLICY

The meaning of the version numbers for Haskell packages has been in flux for a long time. That made it difficult to decide the range to express for a particular dependency. However, in the recent past a Versioning Policy1has been agreed:


	If any function, data type, type class or instance has been changed it type or behavior or removed, the major version, that is, the first two components, must be increased;

	Otherwise if only additions have been done, you may just increase the remaining components. This also holds for new modules, except in the case of a very likely conflict with a module in other package.



Apart from these recommendations for package writers, the previously explained rule for specifying dependencies was also introduced.



As you can see, the package name and version is a very important part of the project Cabal file. Furthermore, if your package is intended to be published in Hackage or publicly available in any other way, it's also important to include precise metadata. The metadata is specified by top-level properties in the package description file. The only required ones are name and version, but it's also common to include the license, the author, the current maintainer, a small synopsis and a larger description, the project homepage and a list of categories in which Hackage will include the package. For chapter4 package, it may look like:

name:           chapter4
version:        0.1
cabal-version:  >=1.2
build-type:     Simple
author:         Alejandro Serrano
synopsis:       Package for Chapter 4
maintainer:     Alejandro Serrano <my@email.com>
homepage:       http://haskell.great.is


[image: image] Note  You may see some extra properties, such as cabal-version and build-type. Those are meant to be used when the developer needs to tweak the building system or maintain compatibility with older versions of Cabal. Our suggestion is to leave those properties as they are initially created.


The graphical Cabal editor in EclipseFP can also be used to change the most important of these package properties. They are found in the first tab in the editor, named Package. You can check it in Figure 4-4.


[image: 9781430262503_Fig04-04.jpg]

Figure 4-4. Changing package properties in EclipseFP



With all this information, you are ready to create the package for the store. Follow the steps in EXERCISE 4-1, and try looking carefully at all the steps needed to bring a new package into life.


EXERCISE 4-1: TIME MACHINE STORE PACKAGE

Create a new package that will be the germ of our Time Machine Store, using either Cabal or EclipseFP. Since it will become a web application, make it an executable. Add containers and persistent as dependencies (remember to use the version rule), and then configure and build the project. Experiment with the different metadata fields.






Sandboxed Environments

By default Cabal installs packages on a current user basis. That means that when you are developing, all the packages that you are creating or that are installed as a dependency are stored in the same location and shared between all other projects. This poses two problems:


	Different packages being developed may have conflicting sets of dependencies. For example, you may be maintaining an application that uses the last stable versions of the dependencies, and at the same time improving it in a different branch targeting a new version, which depends on less stable libraries;

	Within large projects, it’s very usual to develop multiple packages. If you install all of them user-wide, you may run into problems about conflicting versions, and in general you will be polluting the database.



In both cases, the solution involves using sandboxed environments. That is, you can have different locations, called sandboxes, each of them isolated and having a different set of packages stored.

The ability of working on sandboxes environments is available in Cabal since version 1.18 (you can check yours by issuing cabal --version in the command line). This version is quite recent, but there is good news for everyone: before Cabal included this functionality, it was available through the cabal-dev tool.


[image: image] Note  If cabal-dev is not available in your machine, install it by issuing cabal install cabal-dev in the command line.


If you are using cabal, you first need to create the sandbox structures for your project. This is done by running cabal sandbox init at the root of the project. From then on, every cabal command you execute inside that project will take effect only inside the sandbox. In particular, if you run cabal install, the dependencies of the project will be downloaded and built there.

There’s also the possibility of using as sandbox a folder different from the project one. This is useful for testing a set of packages together. This is the kind of situation I talked about when describing the importance of sandboxed environments. The only difference for using a shared sandbox folder is that you must initialize each project sandbox referencing the shared folder. This is done using:

cabal sandbox init --sandbox=/path/to/sandbox

The usage of cabal-dev is very similar to plain cabal. To use it, you only need to run your commands through cabal-dev instead of cabal executable. For example, to download and install dependencies and compile the program, just run cabal-dev install.

One important difference is that you don’t need any special command to initialize the sandbox: the first time you run any cabal-dev command, it will create a sandbox specific for that project. As with cabal, you can also use a shared sandbox for several projects. However, the sandbox path must be indicated in every call to cabal-dev. For example, the compilation and installation to a shared sandbox is done using:

cabal-dev install --sandbox=/path/to/sandbox

There’s one extra feature in Cabal that allows you maintaining a local Hackage database, from which you get dependencies used in other projects. This is very useful for keeping patched or unreleased versions of a library that has not yet arrived to main Hackage. To use it, you must add a source folderto your sandbox: a place where Cabal will look for dependencies for your project. In the root of the project where you need this source folder, write in the command line:

cabal add-source /path/to/package/folder

From now on, Cabal will use that folder when looking for packages. Furthermore, it will notice when files in that folder change, recompiling them if necessary. The source folder functionality is also available in cabal-dev.

Up to this point, it seems that there are two ways to manage sets of packages that belong to the same project. One way is to use a shared sandbox, and another one is having a main project that depends on the other ones, which are added as source folders. Usually, when those packages are tightly integrated and you are testing and making changes to all of them at the same time, it’s preferable to use the first option (shared sandbox). But when plainly using a library that is not in Hackage, but that you are not expecting to modify too much, it better to use a source folder.

EclipseFP also includes support for cabal-dev.2 In this case a private sandbox is used for each Haskell Project (each of which is a package). Furthermore, EclipseFP notices when a project in your workspace reference one of the other ones, executing the proper commands to make everything work. However, this option is not enabled by default. To do so, go to the Window menu, and then click Preferences. In the new window, you must browse to Haskell, then Helper executablesand then cabal-dev. If you click the second button next to the text field, the correct path will be detected if cabal-dev was correctly installed. Once you click OK, all the projects will be sandboxed.

In some cases, you may need to delete all the files in a sandbox. For example, if you want to build your package from a clean state. To do so, you must execute cabal sandbox delete. If instead of Cabal you are sandboxing via cabal-dev, you only need to delete the entire .cabal-dev folder which is found in the sandbox folder (which is the root of your project by default, if you didn’t specify any other via the --sandbox option).

Sandboxing is really useful and prevents most of the problems in Haskell development due to incompatible library versions. Instead of using a global set of dependencies, each package can use its very own versions. To have an idea of the importance of these kinds of environments, it must be said that Cabal developers are thinking about making them the default choice (that is, all runs of cabal will be sandboxed unless otherwise told).



Containers: Maps, Sets, Trees, Graphs

In this section we are going to look at some container types that are quite common in programming. As was introduced before, a container is a data type whose main purpose is to hold any number of elements of homogeneous type. In particular, you are going to look at maps, trees, graphs, and sets. All these structures could be implemented by using lists and tuples (for example, we have already seen how association lists can be used to represent maps). But using specialized data types has two advantages:


	They are much faster, because they are specially developed for a particular pattern. For example, looking for the value associated to a key in a list involves searching the entire list, whereas in a map the time is almost constant.

	Libraries implementing these structures provide functions that are originated for the specific use cases of each of them. For example, you have functions for visiting nodes or getting the strongly connected components of a graph. These functions could be implemented if using lists but are not already available in the Haskell Platform.



All the containers I will talk about are provided by the containers package, so in order to try the examples you need to include that package as a dependency, as we have seen in the previous section.


Maps

Let’s start with maps, which allow you to associate values with keys in an efficient manner. No duplicate keys are allowed, so if you want to alter the value for a specific key, the new one will override the previous one. In contrast, with association lists, implementing mappings as a list of tuples you were responsible of maintaining such an invariant.

The implementation of maps is found in the Data.Map module. However, many functions in that module collide with names from the built-in Prelude module. For that reason, you will surely import the module qualifying it. We will choose to qualify it by the name M so we’ll prefix any declaration from the module with its name. It’s a common practice to abbreviate the qualification to a small one-letter name, in order to write less. In the following examples I’ll assume that the module has been imported with the line:

import qualified Data.Map as M

The type itself is Map k a. It takes as parameters the type k of the keys that will index values of type a. For example, a mapping between clients and the list of products that each client has bought will have type Map Client [Product]. In the examples you will work with simpler maps from strings to integers, which are much more concise.

In the previous chapters special syntax for creating lists was introduced: either using the constructor [] for an empty list or listing the elements between square brackets. Haskell has no special syntax for maps or export any of its data constructors. Rather, you must create new maps by either using empty, to create a map with no pairs, or by using singleton, which takes a key and a value and generates a map with that single element.

*Chapter4.Containers M> M.empty
fromList []
*Chapter4.Containers M> M.singleton "hello" 3
fromList [("hello",3)]

Maps are by default shown as a list of pairs. You can convert between that style of lists and real maps, by using the fromList function. If two pairs have the same key, only the last value is retained:

*Chapter4.Containers M> M.fromList [("hello",1),("bye",2),("hello",3)]
fromList [("bye",2),("hello",3)]

When inserting new values, you must remember that only one value can be associated with a specific key. This leads to two different ways in which you can proceed if a value is already associated to a key:


	You can completely ignore that old value and just replace it with the new one. This is achieved via the insert function, which takes just the new key and value, and the map where the association must be changed, in that order.

	You can combine the old value with the new one. To do so, use the insertWith, of type
(a -> a -> a) -> k -> a -> Map k a -> Map k a

The first parameter is the combining function that will be called with the old and new values whenever the corresponding key is already present. In some cases, you would like also to have the key as a parameter of the combining function: in that case you should use insertWithKey, whose first parameter is of type k -> a -> a -> a. This is an instance of a common pattern in the Data.Map module: each time that a function will be called with a value of the map, there's an alternative function ending in WithKey that also gives the key to the function.




Let’s see an example of several chained insertions:

*Chapter4.Containers M> :{
*Chapter4.Containers M| let m1 = M.singleton "hello" 3
*Chapter4.Containers M|     m2 = M.insert "bye" 2 m1
*Chapter4.Containers M|     m3 = M.insert "hello" 5 m2
*Chapter4.Containers M|     m4 = M.insertWith (+) "hello" 7 m3
*Chapter4.Containers M|  in (m1,m2,m3,m4)
*Chapter4.Containers M| :}
( fromList [("hello",3)]
, fromList [("bye",2),("hello",3)]
, fromList [("bye",2),("hello",5)]
, fromList [("bye",2),("hello",12)] )

Notice how in the last step the pair ("hello",5) lived in the map, and ("hello",7) was going to be inserted. We specified addition as the combinator, so we get ("hello",12) in the final map.


[image: image] Note  If you come from an imperative language like C or Java, you will be used to functions directly changing the contents of a container. On the other hand, Haskell is pure, so all these functions return a new map with the corresponding change applied. In practice, this is not an issue, because with maps and folds and such, you usually deal with maps as “a whole” not so often “element by element.”


Apart from holding elements, maps are used to query by key. The null function allows checking whether the map is empty or not, whereas member tells whether a specific key is available in the map. To get the associated value of a key, you can either use lookup, which returns Just value if available, or Nothing if the key is not present. Alternatively, findWithDefault takes a value to return if the key that you query is not present. In the following interpreter session you can see examples of what these functions do in a range of cases:

*Chapter4.Containers M> M.null M.empty
True
*Chapter4.Containers M> M.null $ M.fromList [("hello",3),("bye",4)]
False
*Chapter4.Containers M> M.member "hello" $ M.fromList [("hello",3),("bye",4)]
True
*Chapter4.Containers M> M.lookup "hello" $ M.fromList [("hello",3),("bye",4)]
Just 3
*Chapter4.Containers M> M.lookup "welcome" $ M.fromList [("hello",3),("bye",4)]
Nothing
*Chapter4.Containers M> M.findWithDefault 0 "welcome" $ M.fromList [("hello",3),("bye",4)]
0

You can also delete pairs from the map, using the delete function, as shown here:

*Chapter4.Containers M> M.delete "hello" $ M.fromList [("hello", 3), ("bye", 4)]
fromList [("bye",4)]

Apart from inserting or deleting, you may also change the value of a specific key via adjust: it takes the function that will be applied to the old value to get the new value. If the key is not present, the map is not modified:

*Chapter4.Containers M> M.adjust (+7) "hello" $ M.fromList [("hello", 3), ("bye", 4)]
fromList [("bye",4),("hello",10)]

insert, delete and adjust are all instances of a general function alter that subsumes all of them. The first argument is a function of type Maybe a -> Maybe a: the input will be Nothing if the key is not already present, or the previous value wrapped in a Just. What to do with that key is specified by the return value of that function: if it is Nothing, the key will be dropped, and if it is Just v, that would be the new value for the key. The following code does the same work of the previous example:

*Chapter4.Containers M> :{
*Chapter4.Containers M> M.alter (\(Just v) -> Just (v+7)) "hello"
*Chapter4.Containers M>       $ M.fromList [("hello", 3), ("bye", 4)]
*Chapter4.Containers M> :}
fromList [("bye",4),("hello",10)]

EXERCISE 4-2 asks you to check the statement that alter is a general form of the functions over that have been introduced before it.


EXERCISE 4-2: ALTERING YOUR MAPS

It’s very common for Haskell libraries to contain a fully general function such as alter, which is later made more concrete in other functions, usually providing an easier way to work and remember API. Put yourself for a moment in the place of a library designer and write the functions insert, delete, and adjust using alter.



You can also combine entire maps using union, intersection, and difference, which will produce a new map key from both maps (even if they only appear in one of them), only appearing in both maps or in the first map but not the second, respectively. In case of a key with different associated values in each map, the first map will take precedence and its value will be used. You can have finer control by using unionWith, intersectionWith, and differenceWith, which take an extra argument being the function that combines the elements with the same key.

*Chapter4.Containers M> :{
*Chapter4.Containers M| let m1 = M.fromList [("hello",3),("bye",4)]
*Chapter4.Containers M|     m2 = M.fromList [("hello",5),("welcome",6)]
*Chapter4.Containers M|  in (m1 `M.union` m2, M.intersectionWith (-) m1 m2)
*Chapter4.Containers M| :}
( fromList [("bye",4),("hello",3),("welcome",6)]
, fromList [("hello",-2)] )

Once you know the basic functions operating on lists, you can usually transpose that knowledge to other data structures. In the case of maps, there are functions map, foldr, foldl, filter and partition, among others, that have the same behavior as they had for lists but now returning a map. Again, for each function there’s a corresponding one suffixed by WithKey whose parameter functions also take the key that you are modifying, folding upon, or filtering. Let's duplicate all the values in a map and then return its sum:

*Chapter4.Containers M> let m = M.fromList [("hi",3),("bye",4)] in (M.map (*2) m, M.foldr (+) 0 m)
( fromList [("bye",8),("hi",6)], 7 )

I have already talked about converting from a list of tuples into a map using fromList. You can do the inverse transformation using assocs. You may have noticed that maps are always shown with its keys ordered. The map itself maintains that invariant, so it can easily access the maximal and minimal elements in the map. Indeed, functions such as findMin/findMax, deleteMin/deleteMax, and updateMin/updateMax take advantage of this fact, and allows fast retrieving, deletion, or updating of the values associated to those keys.




Sets

Sets are found in the Data.Set module. They behave essentially like lists but do not allow duplicates. The set of functions for this data type is virtually identical to that of maps, but only taking the value as a parameter (elements in a set don't have a key). In the following examples the module Data.Set will be imported qualified as S:

Prelude> import qualified Data.Set as S

Creation of sets is done through empty and singleton, with similar tasks to their map counterparts: the first one creates a set with no elements, and the second one creates a set with a single element. Later, you can add new elements via the insert function. The following example showcases a way to create a set with the elements "welcome" and "hello":

Prelude S> S.insert "welcome" $ S.singleton "hello"
fromList ["hello","welcome"]

Alternatively, you can create a set directly from a list of their elements using the fromList function. Duplicate elements in the list will be taken to just one, since sets can contain a sole appearance of each element.

Prelude S> S.fromList ["hello","bye","hello"]
fromList ["bye","hello"]

Similarly, there’s a toList function to convert a set to a list of its elements. The behavior of these two functions provides a way to implement the functionality of removing duplicates from a list (and also sort it in ascendant order), which is actually much more performant than the nub function.

Prelude S> S.toList $ S.fromList ["duplicate","boom","duplicate"]
["boom","duplicate"]

As mentioned above, the interface for Data.Set is very similar to that of Data.Map. The following code shows an example of use of set operations (in this case, intersection, but also union and difference are available). You can see how to check for membership with the member function. Finally, as with lists and maps, you can apply a function to each element in the set using map (but be careful, because duplicates results will be compressed into just one element, and order may not be respected).

Prelude S> :{
Prelude S| let set1 = S.insert "welcome" $ S.singleton "hello"
Prelude S|     set2 = S.fromList ["hello","bye"]
Prelude S|  in ( set1 `S.intersection` set2
Prelude S|     , "welcome" `S.member` set1
Prelude S|     , S.map length set2 )
Prelude S| :}
(fromList ["hello"], True, fromList [3,5])


INTMAP, INTSET, HASHMAP, AND HASHSET

Maps can be made much more efficient if you use only integers as keys. The same happens for sets holding only integer values. For that reason, the containers library provides specific data types for that purpose, namely IntMap and IntSet.

Alternatively, the keys on a map or values on a set may not be integers but could be mapped almost uniquely to one. This mapping is called a hashof the original value. The types HashMap and HashSetin the unordered-containers package provides implementations of maps and sets whose keys and elements, respectively, can be hashed, and which is much more efficient than its regular counterparts, if the type admits to be hashed.



As with any other value, these containers can be nested one inside another: lists of sets, map with string keys and values that are lists of numbers, and so on. In particular, in EXERCISE 4-3 you will be using a map with sets as values to classify a list of clients in the store.


EXERCISE 4-3: CLASSIFYING CLIENTS

For analysis purposes, it interesting to classify clients according to the kind it belongs to: government organization, company, or individual. First of all, create a new data type to represent these different kinds:

data ClientKind = GovOrgKind | CompanyKind | IndividualKind

Now, create a function classifyClients which traverses a list of clients (with type [Client Integer], with Client defined as in the previous chapter) and generates a value of type Map ClientKind (Set (Client Integer)). You should create two different implementations:


	The first should traverse the list element by element, and perform on each element the classification, decide which of the map items to modify, and then add itself to the set;

	The second should first create lists corresponding to the three different kinds, and at the end convert those lists to sets and generate the mentioned map from them.



It’s interesting that you create a very large client list and run the two implementations to compare which one behaves better in speed.






Trees

Trees are composed of nodes, which hold a value and may have other trees as children. In the Data.Tree module, those children are represented as a bare list of trees, sometimes called a forest. Be aware of the fact that this representation is not specialized for any particular purpose: for some algorithms you may want to use another kind of tree, such as AVL or black-red trees. For those cases, Hackage provides specialized packages supporting these data types, such as TreeStructures, AvlTree or RBTree. Let's look at the code defining Data.Tree.Tree:

data Tree   a = Node { rootLabel :: a, subForest :: Forest a }
type Forest a = [Tree a]

The type keyword, which we haven’t yet introduced, is used to create type synonyms, that is, giving an alternative name to a type. Usually, it’s used to call a large type by a smaller or more expressive name. For example, you may introduce the following synonym for those functions returning a Boolean value:

type Predicate a = a -> Bool

The type synonym and its expansion are interchangeable in all circumstances. That is, you can also write the type of filter as Predicate a -> [a] -> [a], and the compiler would be fine with it. In contrast, the other way to define alternative names, using newtype, doesn’t make the types equivalent. When should you use this second option will be covered later in the chapter while discussing type classes.

As you may already know, there are several ways to visit a tree (that is, traversing all of their elements), which are broadly divided in two families: depth-first traversal and bread-first traversal. In the former case, each node of the tree recursively visits its subtrees. There’s still a choice of when to visit the value in the node itself: before any subtree (pre-order) or after all subtrees are visited (post-order). Figure 4-5 illustrates each of the ways of traversing a tree’s elements.


[image: 9781430262503_Fig04-05.jpg]

Figure 4-5. Traversing a tree in pre-order, post-order and breadth-first fashions



Let’s try to implement a function that traverses the tree in pre-order, applying a function to each value and returning the result in a list:

import Data.Tree
 
preOrder :: (a -> b) -> Tree a -> [b]
preOrder f (Node v subtrees) = let subtreesTraversed = concat $ map (preOrder f) subtrees
                                in f v : subtreesTraversed

Notice how the code uses the map function to run the partially evaluated preOrder f on each of the subtrees. Thus, you will obtain a list of elements for each xsubtree, hence map will return a list of lists. So you need to flatten it to get just a single list: this is achieved using concat. Indeed, this pattern of mapping against a list and then flattening the resulting list is so common that the Prelude includes a function concatMap f, which is exactly defined as concat . map f. We can check that the function works on the tree shown in Figure 4-5:

pictureTree :: Tree Int
pictureTree = Node 1 [ Node 2 [ Node 3 []
                              , Node 4 []
                              , Node 5 [] ]
                     , Node 6 [] ]
-- In GHCi
*Chapter4.Containers> preOrder show pictureTree
["1","2","3","4","5","6"]

This pre-order traversal can be achieved using the flatten function defined in the Data.Tree module. However, it does not apply any operation of the nodes values, but just returns them as they are. The breadth-first traversal is available via the levels function, where also each level is returned as a list:

*Chapter4.Containers> flatten pictureTree
[1,2,3,4,5,6]
*Chapter4.Containers> levels pictureTree
[[1],[2,6],[3,4,5]]

As any other container, trees in Haskell support mapping and folding over them. However, instead of functions in the same module, these operations are available through the functions fmap in the Prelude and foldr in Data.Foldable. In the rest of the chapter we will discuss why this is the case.

*Chapter4.Containers> fmap (*2) pictureTree
Node { rootLabel = 2
     , subForest = [ Node { rootLabel = 4
                          , subForest = [ Node { rootLabel = 6,  subForest = [] }
                                        , Node { rootLabel = 8,  subForest = [] }
                                        , Node { rootLabel = 10, subForest = [] } ] }
                   , Node { rootLabel = 12, subForest = [] } ] }
*Chapter4.Containers> Data.Foldable.foldr (+) 0 pictureTree
21




Graphs

Trees are just an instance of a more general data structure called a graph. A graph is composed by a set of vertices, joined via a set of edges. In the implementation in Data.Graph, nodes are always identified by an integer, edges are directed (an edge from a to b does not imply an edge from b to a) and without weights.

There are two ways to create a graph:


	You use graphFromEdges when you have a list of nodes, for which each of them is identified by a key and holds a value, and for each node you also have its list of neighbors—that is, the list of any other nodes that receive an edge from the former. In such a case, you call graphFromEdges, which takes a list of triples (value, key, [key]), the latest component being the aforementioned list of neighbors. In return you get a graph, but also two functions: the first one of type Vertex -> (node, key, [key]) maps a vertex identifier from the graph to the corresponding information of the node, whereas the second one, with type key -> Maybe Vertex, implements the inverse mapping: from keys to vertex identifiers.

	If you already have your graph in a form where you have integer identifiers, you can use buildG instead. This function takes as parameters a tuple with the minimal and maximum identifier (its bounds) and a list of tuples that correspond to each directed edge in the graph.



There is a large set of functions for inspecting the graph itself, like vertices and edges, returning the sets corresponding to their names. However, the great power of this module is the complete set of functions for walking through the elements in graphs and working with them, which are usually quite tricky to implement by hand. For example, let's say you have a list of things to do for building a time machine. However, these tasks have some relative order: to create the door of the time machine, you first need to buy the aluminum from which it is made. This ordering can be represented using a graph, where there's an edge from a to b if a must precede b. The following code generates the first graph in Figure 4-6:


[image: 9781430262503_Fig04-06.jpg]

Figure 4-6. Graphs about time machines



import Data.Graph
 
timeMachineGraph :: [(String, String, [String])]
timeMachineGraph =
  [("wood","wood",["walls"]), ("plastic","plastic",["walls","wheels"])
  ,("aluminum","aluminum",["wheels","door"]),("walls","walls",["done"])
  ,("wheels","wheels",["done"]),("door","door",["done"]),("done","done",[])]
                      
timeMachinePrecedence :: (Graph, Vertex -> (String,String,[String]), String -> Maybe Vertex)
timeMachinePrecedence = graphFromEdges timeMachineGraph

You can build a plan for the construction of the time machine by asking for a topological sortof the elements. In this sort scheme, each node n is always before any other node that receives an edge from n. Notice how in the example the mapping between vertices and keys has been used to write the results using the string representations, not the internal integer identifiers:

*Chapter4.Containers> :{
*Chapter4.Containers> let (g,v,_) = timeMachinePrecedence
*Chapter4.Containers>  in map (\x -> let (k,_,_) = v x in k) $ topSort g
*Chapter4.Containers> :}
["wood","plastic","walls","aluminum","door","wheels","done"]

One detail that most of the people don't know about time machines is that you cannot travel to any point in time with a machine. Instead, each machine has some points where you can travel, and it may be the case that you can travel to one point in only one direction. So, when performing time travel, you should be sure that you are able get to the time where you want to go, or that you can go back to the initial point. You can model these constraints as a graph: from each year you will have edges to each year to which you can arrive. The following code translates this idea applied to the second graph in Figure 4-6 to code:

timeMachineTravel :: Graph
timeMachineTravel = buildG (103,2013)
                      [(1302,1614),(1614,1302),(1302,2013),(2013,1302),(1614,2013)
                      ,(2013,1408),(1408,1993),(1408,917),(1993,917),(907,103),(103,917)]


You may ask whether we can travel from 1302 to 917: path function will give the answer. Indeed, if you want to know every vertex that can be reached from that year, you can use reachable to find them. Let’s look at some examples starting from year 1302:

*Chapter4.Containers> path timeMachineTravel 1302 917
True
*Chapter4.Containers> reachable timeMachineTravel 1302
[1302,2013,1408,917,1993,1614]

An interesting fact is how you can partition the vertices such that you can always travel between all years in each set: each component of this partition is called a strongly connected component. You can get it using scc, which will return a set of trees, each of them specifying one of those components. But if you run this function directly, you will get an enormous output. This is due to the fact that when creating a graph using buildG, the library creates vertices for all identifiers in between. For that reason, we are going to filter the trees with only one node. This filtering will eliminate those vertices that were not in the initial list but also the connected components with only one element. Here’s our filtering code:

*Chapter4.Containers> filter (\(Node { subForest = s }) -> s /= []) $ scc timeMachineTravel
[ Node { rootLabel = 2013
       , subForest = [ Node { rootLabel = 1302
                            , subForest = [ Node { rootLabel = 1614
                                                 , subForest = [] } ] } ] } ]

The previous output is definitely not very manageable. If instead of using buildG your graph is represented as with graphFromEdges, the output can much better. You only need to use stronglyConnComp. A special type SCC is used for representing each component: you need to run flattenSCC to obtain a printable version, as shown in the following example:

*Chapter4.Containers> map flattenSCC $ stronglyConnComp timeMachineGraph
[["done"],["door"],["walls"],["wood"],["wheels"],["plastic"],["aluminum"]]




Obtaining Help

We have already mentioned that the Hackage website contains documentation about all the packages available in its database, including module, function, type, and class description. It's a great source of information both for those cases where you want to find information about some specific function, or when you want to get a broad overview of a module. Furthermore, all the packages in the Haskell Platform have high-quality explanations and examples in this website.

If you are using EclipseFP, you have another option for navigating through the packages contents: the Haskell Browser. It's available as an additional perspective (you can switch to it via the buttons in the top right corner, by selecting the Haskell Browser one). When you change to it, the layout changes and four different tabs are shown in the top of the window, named Packages, Modules, Types and Functions (see Figure 4-7). When you click an item in them, the documentation for the corresponding element displays in the bottom part of the tab, and the rest of the tabs are updated to include the declarations contained in that item. So if you click a package, the list of module changes; and if you select a module, the types and functions are updated. Finally, if you double click an element, a window with the Hackage documentation is shown in the screen.


[image: 9781430262503_Fig04-07.jpg]

Figure 4-7. Haskell Browser in EclipseFP



One really cool tool, which helps in daily Haskell programming, is Hoogle, available at www.haskell.org/hoogle/. The powerful Hoogle search engine allows searching by name, but also by type. Furthermore, it understands Haskell idioms: for example, if you look for a function with a specific type, it may find a more general function using a type class that the types in the signature implement, or the order of the arguments may be swapped in the found version. This tool is available also as a command line program hoogle, which you can obtain by running cabal install hoogle, and via the Hoogle tab in EclipseFP. Before being able to issue any query, you must run hoogle data on the console, or click the corresponding Update button in EclipseFP, to download the latest database from Hackage.

This is an example of the outcome of Hoogle for a maplike function:

$ hoogle '(a -> b) -> ([a] -> [b])'
Prelude map :: (a -> b) -> [a] -> [b]
Data.List map :: (a -> b) -> [a] -> [b]
Control.Parallel.Strategies parMap :: Strategy b -> (a -> b) -> [a] -> [b]
Control.Applicative liftA :: Applicative f => (a -> b) -> f a -> f b
Data.Traversable fmapDefault :: Traversable t => (a -> b) -> t a -> t b
Prelude fmap :: Functor f => (a -> b) -> f a -> f b
Data.Functor fmap :: Functor f => (a -> b) -> f a -> f b
# and it continues to 80 results


HOOGLE ON WINDOWS

Getting Hoogle to work on Microsoft’s operating system requires a bit more work than in Linux or Mac OS X. Before being able to run hoogle data, you need to download a set of programs and make them available in your PATH:


	wget: http://gnuwin32.sourceforge.net/packages/wget.htm

	gzip:http://gnuwin32.sourceforge.net/packages/gzip.htm

	tar: http://gnuwin32.sourceforge.net/packages/gtar.htm



Also, be aware that in Windows the query to look for should not be given using single quotes, but rather enclosed in double quotes.





Ad-hoc Polymorphism: Type Classes

Up to this point in the book we have looked at the type of several functions in the Platform. However, if you look at some functions in the Data.Map or Data.Set modules, you will find something that hasn’t yet been explained:

*Chapter4.Containers> :t M.insert
M.insert :: Ord k => k -> a -> M.Map k a -> M.Map k a

Notice how Ord k is separated from the rest of the type by => (not to be confused by the arrow -> used in the type of functions). The purpose of Ord k is to constrain the set of possible types that the k type variable can take. This is different from the parametric polymorphism of the list functions in the previous chapters: here you ask the type to be accompanied by some functions. This kind of polymorphism is known as ad-hoc polymorphism. In this case, the Ord type class is telling that the type must provide implementations of comparison operators such as < or ==. Thus, it formalizes the notion of “default order” that we talked about previously.


Declaring Classes and Instances

A type class (usually abbreviated as simply class) is a declaration of a set of functions along with their types, which receives a name (in the previous case, Ord). The declaration of a type class has this syntax:

class ClassName variable where
  oneFunction   :: oneType
  ...
  otherFunction :: otherType

The variable introduced in the declaration can be used in the functions to refer to a type that supports the type class. For example, both clients and time machines have a name, so you can introduce a type class for expressing the concept “values of this type have a name” that we will call Nameable. Check how the type variable n is used in the type of the function name:

class Nameable n where
  name :: n -> String

Now if you look at the type of name, it declares the constraint of being a Nameable:

*Chapter4.TypeClasses> :t name
name :: Nameable n => n -> String

From now on, using the name function also comes with the associated restriction, which must be specified in the corresponding type declaration. An example using Nameablecould involve a function, declared outside the type class, which returns the initial of the name:

initial :: Nameable n => n -> Char
initial n = head (name n)

Of course, the main purpose of having a type class is to declare that some specific type supports the operations introduced by the class. Such a type is called an instanceof a type class. The declaration of such fact must include the implementation of the functions declared in the class:

instance ClassName Type where
  oneFunction   = ... -- implementation
  ...
  otherFunction = ... -- implementation

Following the example, this is the instantiation of the Nameable type class by Client. Here’s a reminder of how this type looked like at the end of Chapter 2:

data Client i = GovOrg  { clientId :: i, clientName :: String }
              | Company { clientId :: i, clientName :: String
                         , person :: Person, duty :: String }
              | Individual { clientId :: i, person :: Person }
              deriving Show

In the instance declaration, you need to include the whole type. This means that you must also write the type parameters that should be applied in the declaration (in this case, the i parameter).

instance Nameable (Client i) where
  name Individual { person = Person { firstName = f, lastName = n } } = f ++ " " ++ n
  name c = clientName c


[image: image] Note  Type classes in Haskell should not be confused with classes in object-oriented (OO) programming. Actually, if we had to make a connection, type classes are better thought as interfaces in those languages, but has many more applications, such as linking together several types in a contract (for example, specifying that an IntSet holds elements of type Int). The word “instance” is also used in both worlds with very different meanings: in OO languages it refers to a concrete value of a class, whereas in Haskell it refers to the implementation of a class by a type. This points to a third difference: in OO the declaration of a class includes a list of all the interfaces it implements, whereas in Haskell the declaration of a type and its implementation of a type class are separated. Indeed, in some cases they are even in different modules (these instances are referred to as “orphan” ones).


When you use a type that implements a class, the Haskell compiler must look for the corresponding instance declaration. It does so by looking inside all the modules that are imported, independently of the way of importing them. Currently, it’s not possible to prevent an instance declaration being imported. This means that if you find in some source code

import Module ()

it may not be an error (what's the point of having such a declaration if nothing is imported?), but rather an import of the instance declarations found in Module.

EXERCISE 4-4 provides a first task using type classes and instances. It does so in the direction of fulfilling our main target: creating a powerful time machine store.


EXERCISE 4-4: PRICES FOR THE STORE

In the web store not only time machines will be sold, but also travel guides and tools for maintaining the machines. All of them have something in common: they have a price. Create a type class Priceable of types supporting a price, and make those data types implement it.

The next step would be creating a totalPrice function which, given a list of things with price, computes the total amount of money to pay. The type of this function will be:

totalPrice :: Priceable p => [p] -> Double

Be aware that the meaning of this signature may not match your intuition, especially if you are coming from an object-oriented programming background. When the compiler processes this code, it will look for a concrete type for the type variable p. This means that it can only work with homogeneous lists: you can compute the price of a list of time machines, [TimeMachine], or a list of books, [Book]. But there’s no way to type or create a heterogeneous list containing both values of type TimeMachine and Book.



Nameable is very similar to the Show type class, which provides a function show to convert a value into a string. You have already met this type class in the definition of previous data types, but you haven’t written any instance for those data types. The reason is that Haskell can write automatically instances of a set of type classes, deriving them from the shape of the data type. This is called the deriving mechanism, because the instances to generate are specified after the deriving keyword at the end of the data type definition.


[image: image] Note  Currently Haskell is only able to derive instances for some type classes, and those are hard-coded in the compiler. However, there's a field of functional programming research, called generic programming, which provides ways to write functions that depend on the structure of data types. Thus, they would allow extending the deriving mechanism. For more information, you can check the following page: http://www.haskell.org/haskellwiki/Generics, which shows several ways in which generic programming can be used in Haskell.


There’s a dual class to Show, called Read, which performs the inverse function: converting a string representation into an actual value of a type, via the read function. The implementation of a Read instance is usually tricky, since you must take care of spacing, proper handling of parenthesis, different formats for numbers and so forth. The good news is that Haskell also allows deriving Read instances automatically, which are guaranteed to read back any value produced by the show function. If deriving both, you can be sure that read . show is the identity on the values of the data type, that is, the final value will be the same of the initial one.

Let's derive Read also for our Person data type:

data Person = Person { firstName :: String, lastName  :: String }
              deriving (Show, Read )

And now let's try to parse a string representing a person:

*Chapter4.TypeClasses> read "Person { firstName = \"A\", lastName = \"S\" }"
<interactive>:
    No instance for (Read a0) arising from a use of `read'
    The type variable `a0' is ambiguous
    Possible fix: add a type signature that fixes these type variable(s)

The error message about the ambiguity of type variable a0, which the compiler produces, is pointing out that it has no clue about which instance of Read should be used: you haven’t specified any further operation on the result that Haskell could use to infer the final type. The solution is to explicitly tell what the type to be returned is. This is achieved by annotating the expression with :: followed by the type:

*Chapter4.TypeClasses> read "Person { firstName = \"A\", lastName = \"B\" }" :: Person
Person {firstName = "A", lastName = "B"}

Once again, you can check that Haskell infers always the most general type based on the functions used in the expressions. For example, the function read . show would work on any data type supporting both Show and Read. But in general it also works if some data type supports show and another one supports read, which is more general than a single type supporting both.

*Chapter4.TypeClasses> :t read . show
read . show :: (Read c, Show a) => a -> c




Built-in Type Classes

I have spoken in the previous chapters about some list functions involving types having “default comparisons” and “default equivalences.” Now that we know about type classes, it is time to introduce the specific classes that encode those concepts, namely Ord and Eq.

Eq is the type class declaring that a type supports checking equality (and inequality) between their values. Let’s look at its definition from the GHC source code (you can access it looking at the base package in Hackage, surfing inside the Prelude module and then clicking the Source link next to the class information).

class Eq a where
    (==), (/=) :: a -> a -> Bool
    x /= y = not (x == y)
    x == y = not (x /= y)

At the beginning of the section it was stated that type classes only include the declaration of functions to be implemented, but here you find some code implementation. The reason is that those are default definitions: code for a function that works whenever some of the rest are implemented. For example, if we implement (==), there’s a straightforward way to implement (/=), as shown above. When instantiating a type class, you are allowed to leave out those functions with a default implementation.

This means that when implementing Eq, you may do it without any actual implementation, because all functions have default implementations. In that case any comparison will loop forever, as (/=) calls (==), which then calls (/=), and so on indefinitely. This may lead to the program crashing out of memory, or just staying unresponsive until you force its exit. For preventing such cases, type classes in Haskell usually specify a minimal complete definition: which set of functions should be implemented for the rest to work without problems. For Eq, the minimal complete definition is either (==) or (/=), so you need to implement at least one.


[image: image] Warning  Knowing the minimal complete definitions for a type class is very important, since it’s the only way to enforce that programs behave correctly. The GHC compiler is able to check that you have defined all necessary functions from version 7.8 on. However, as this feature was not present since the beginning in the compiler, some libraries do not explicitly mention the minimal complete definition in code. Thus, you should double check by looking at the documentation of the type class.


You may ask at this point: given (==), you can always write (/=) as not . (==) so why include both in the type class and then have to introduce the concept of minimal complete definition? Shouldn’t (/=) be defined outside the type class? The reason for having everything in the same type class is two-fold:


	Ease of instantiation: for some types it may be more natural to write the Eq instance by defining (==), whereas in others the code for (/=) will be easier to write. Being able to do it in both ways makes it easy for consumers to instantiate the type class. This may not be so apparent for Eq, but for more complex type classes it is very important.

	Performance: having both functions in the type classes allows implementing the two of them if desired. This is usually done because of performance reasons: maybe your type has a faster way of checking for non-equality that trying to check equality and failing.



The case of equality leads to other interesting features of Haskell’s type class system: instantiation for a type with variables and restrictions for instantiating a type class. For example, you can implement an instance of Eq for any possible list type in a generic way: you only have to check the equality element by element. However, in order to be correct, you must require the inner elements to also implement the Eq class. Let’s look at the code:

instance Eq a => Eq [a] where
  []     == []     = True
  (x:xs) == (y:ys) = x == y && xs == ys
  _      == _      = False

Let’s focus on the highlighted parts: first of all we the restriction on the elements has been introduced using the very same syntax as in functions. Then, the declaration uses a parametric [a] in the type name, with a type variable. In sum, this instance is applicable to lists of any type a that also is an Eq. The Haskell Platform already includes these declarations for many common containers, not only lists. Instances of Eq are specified for tuples, maps, sets, trees, Maybe and so on.

As usual, the power of instantiating type classes by parametric types is not exclusive of a special set of built-in types, but it’s available for use in your own data types, as EXERCISE 4-5 shows.


EXERCISE 4-5: THE SAME CLIENT

Implement Eq for the Person and Client i types introduced in the previous chapters, so that it checks the equality of all the fields. Notice that for Client you may need to add some restrictions over the type of the identifiers.

The good news is that in daily work you don’t need to write those instances, because Haskell can also derive Eq as it does with Show and Read.



Apart from equality, in some cases you need the notion of ordering: this is the duty of the Ord type class:

class Eq a => Ord a where
    compare              :: a -> a -> Ordering
    (<), (<=), (>), (>=) :: a -> a -> Bool
    max, min             :: a -> a -> a
 
    compare x y = if x == y then EQ
                  else if x <= y then LT
                  else GT
 
    x <  y = case compare x y of { LT -> True;  _ -> False }
    x <= y = case compare x y of { GT -> False; _ -> True }
    x >  y = case compare x y of { GT -> True;  _ -> False }
    x >= y = case compare x y of { LT -> False; _ -> True }
 
    max x y = if x <= y then y else x
    min x y = if x <= y then x else y

Once again, it has a lot of members, but thanks to default definitions, the minimal complete one is either implementing compare or implementing <=. However, if you look at the code in compare, you may notice that it’s using (==), which is a member of Eq. Indeed, at the very beginning of the definition of Ord there’s a prerequisite for its implementation: every type belonging to the class Ord must also belong to the class Eq. The syntax is similar again to including restrictions in functions or in instance implementations: Eq a =>.

In this case, we say that Eq is a superclass of Ord. Once again, I must warn you against any possible confusion when comparing the concept with the one found in object-oriented languages. A type class does not inherit anything from its superclass but the promise that some functions will be implemented in their instances. For all the rest, they are completely different type classes. In particular, type implementations will go in separate instance declarations.

As it’s the case with Eq, Haskell also provides automatic derivation of Ord instances. When doing so, it will consider that different alternatives follow the same order that in the data declaration. For example, in the declaration of clients at the beginning of the section, government organizations will always precede companies, which will always precede individuals. Then, if two values have the same constructor it will continue looking along each field in declaration order. In this case, it means that after the kind of client, the next thing to compare is its identifier. However, this may not be the best behavior, as EXERCISE 4-6 points out.


EXERCISE 4-6: ORDERING CLIENTS

The automatically derived Ord instance for Clients doesn't make much sense: as discussed above, it checks the kind of client and then its identifier. Instead of that, write a new instance with the following properties: first it should compare the name of the client. Then, if they coincide, it should put individuals first, then companies and government organizations at the end. You may need to add further comparisons in the rest of the fields to make the order correct (for example, two companies whose responsibles are different are not equal, so you must decide which one to put first).

Think beforehand whether you need to include some restriction in the instance.



Other type classes we have been using without noticing are Num and its subclasses. As you may guess, Num is the class for all those types representing numbers, whether integers, rationals, or floating-point. Each subclass adds some refinement: for example, Num only includes addition, subtraction and multiplication, but Integral adds to the mix integer division and remainder. The operations belonging to each class are summarized in Table 4-1, along with the superclass relations.


Table 4-1. Number-related type classes




	Type class

	Parent class

	Description






	Num

	n/a

	Basic number type. Supports addition (+), subtraction (-), multiplication (*), unary negation (negate), absolute value (abs), sign (signum), and conversion from an Integer value (fromInteger).




	Real

	Num

	Subclass supporting conversion to Rational values (using toRational). Integer is an instance of this class, as integral values can be embedded as fractions with denominator 1.




	Integral

	Real

	Subclass for integer values which support integer division and integer modulus. Related functions come in triples: quot, rem, and quotRem compute the division, modulus, or both, truncating towards 0, whereas div, mod, and divMod do so truncating toward negative infinity (-∞).




	Fractional

	Num

	Subclass for fractional values. Supports division (/) taking the reciprocal (recip) and conversion from a Rational value (fromRational).




	Floating

	Fractional

	Subclass for floating-point values. Supports common values such as pi and e. Allows for square roots (sqrt), natural logarithms (log), exponentiation (exp for ex, (**) for general ab,), and circular and hyperbolic trigonometric functions.








One of the most interesting parts in Haskell's treatment of numbers is how it treats constants. For example, if you try to get the type of 1 in the interpreter, the result may be puzzling at first:

*Chapter4.TypeClasses> :t 1
1 :: Num a => a

As you can see, the constant itself is polymorphic: it may represent 1 in any type that instantiates Num. The reason for that is the fromInteger function, which allows extracting a value from an integer constant.

As an example, you are going to create a data type for complex numbers and implement its Num instance.3 You may remember from your algebra class that a complex number has the form a+ib, where a is the real part and b is the imaginary part. The laws that govern their operations can be derived from the fact that i2 = -1. Finally, each complex number has the concept of absolute value ||x||and argument qx, which satisfy the condition ||x|| qx = x: exactly the one we need for abs and signum in a Num instance.

data Complex = C Double Double deriving (Show, Eq)
 
instance Num Complex where
  (C a1 b1) + (C a2 b2) = C (a1 + a2) (b1 + b2)
  (C a1 b1) - (C a2 b2) = C (a1 - a2) (b1 - b2)
  (C a1 b1) * (C a2 b2) = C (a1*a2-b1*b2) (a1*b2+b1*a2)
  negate (C a b)        = C (negate a) (negate b)
  fromInteger n         = C (fromInteger n) 0
  abs (C a b)           = C (sqrt $ a*a+b*b) 0
  signum c@(C a b)      = let C n _ = abs c in C (a / n) (b / n)

You have seen that type classes are a powerful tool for abstracting over concepts and patterns. In the previous chapters you looked at the “default values” idiom, so you may ask whether there’s a type class for this matter. The answer is found in the Data.Default module, in the data-default package, which provides a Default class with just one member, def, which will return the default value. If you recall the discussion in Chapter 2 about connection options, a solution using a type class would use, instead of connDefault:

instance Default ConnOptions where
  def = ConnOptions TCP 0 NoProxy False False NoTimeOut



Binary Tress for the Minimum Price

Until this chapter we have been saving all information about clients in lists. Even though you now know about where to look for already implemented types, this section is going to step back and look at the design of a custom container type that completely suits the particular needs of the application. In particular the aim is providing support for the discount module, which needs access to the cheapest elements in the container. In the process, you will see how type classes allow for a greater degree of generalization, and thus increasing reusability.

In this section the container will be holding travel guides. A travel guide consists of a title, a list of authors and a price. You can model it using a record. As you shall see later, you will need some notion of less and greater, so you need an Ord instance, and with it an Eq instance:

data TravelGuide = TravelGuide { title :: String, authors :: [String], price :: Double }
                 deriving (Show, Eq, Ord)


Step 1: Simple Binary Trees

A first solution is using bare lists. The greatest problem with them is that querying for elements inside it is costly, because the only option you have is to traverse the list element by element. In the worst case, you may need to traverse the entire list until you find an answer. A solution for it is using binary trees, which have a better complexity in this task (in particular, logarithmic versus linear).

A binary tree is a data structure made up of nodes. Each node holds a value, and two references to subtrees. To indicate that a node doesn't have some of the subtrees, you use a special leaf marker. The special property of our binary trees is that any node in the left subtree will only hold values smaller than the one in the node, whereas in the right subtree you will find values which are greater than the node itself. This is the reason why we needed to derive Ord for the TravelGuide type. Figure 4-8 shows an example of a binary tree, with the constraints over the nodes specified in the edges.


[image: 9781430262503_Fig04-08.jpg]

Figure 4-8. Graphical example of binary tree



Now you can create the data structure of travel guide binary trees:

data BinaryTree = Node TravelGuide BinaryTree BinaryTree
                | Leaf
                deriving Show

As explained above, searching in a binary tree is much faster because comparing the element to look for with the node you are currently exploring you can decide in which subtree to dive, while being sure that it will never be in the other subtree:

treeFind :: TravelGuide -> BinaryTree -> Maybe TravelGuide
treeFind t (Node v l r) = case compare t v of
                            EQ -> Just v
                            LT -> treeFind t l
                            GT -> treeFind t r
treeFind _ Leaf         = Nothing

You also need a way to initially create empty trees, and to insert values in a tree while keeping the invariant. In the latter case, the algorithm is simple: traverse the tree as if you were looking for the value to insert. If you reach a Leaf, it means that the value is not there and that the position for it is the place of the leaf itself.

treeInsert :: TravelGuide -> BinaryTree -> BinaryTree
treeInsert t n@(Node v l r) = case compare t v of
                                EQ -> n
                                LT -> Node v (treeInsert t l) r
                                GT -> Node v l (treeInsert t r)
treeInsert t Leaf           = Node t Leaf Leaf




Step 2: Polymorphic Binary Trees

The basic data structure for binary trees cries for generalization. You are not using any information inside TravelGuide for anything apart from its order. This leads us to the insight that we should work with Ord instances. The parametric version of the binary tree and its associated treeFind function now looks like:

data BinaryTree2 a = Node2 a ( BinaryTree2 a ) ( BinaryTree2 a )
                   | Leaf2
                   deriving Show
 
treeFind2 :: Ord a => a -> BinaryTree2 a -> Maybe a
treeFind2 t (Node2 v l r) = case compare t v of
                              EQ -> Just v
                              LT -> treeFind2 t l
                              GT -> treeFind2 t r
treeFind2 _ Leaf2         = Nothing


[image: image] Note  One possible question is whether we can encode the restriction on the class of elements that the binary tree may hold directly in the declaration of BinaryTree2. It’s indeed possible, but it’s not recommended: the best way is to encode the restriction in each of the operations that work on that structure, as has been done in this example. Be aware that in order to impose this restriction you must hide the Node2 and Leaf2 constructors from public consumption.


The treeFind function has been generalized, but you still need to make some changes to the treeInsert function to make it fully general. EXERCISE 4-7 dives into this problem.


EXERCISE 4-7: MORE OPERATIONS ON GENERIC TREES

Make the changes needed in treeInsert to work with the new BinaryTree2.

Also, try to implement concatenation of binary trees by repeated insertion of all the elements in one of the binary trees.



In this point, notice that the automatically derived Ord instance for TravelGuides compares first the title, then the list of authors and finally the price. But this is not what you need: the application needs to order the travel guides by price. A first attempt would be to write a new Ord instance:

instance Ord TravelGuide where
  (TravelGuide t1 a1 p1) <= (TravelGuide t2 a2 p2) =
    p1 < p2 || (p1 == p2 && (t1 < t2 || (t1 == t2 && a1 <= a2)))

Of course, you get an error about duplicate instances:

Duplicate instance declarations:
      instance Ord TravelGuide
        -- Defined at MinimumPrice.hs:4:38
      instance Ord TravelGuide
        -- Defined at MinimumPrice.hs:6:10

A first solution is to create a one-field data type to hold travel guides by price, and then create the instance for it:

data TravelGuidePrice = TravelGuidePrice TravelGuide
instance Ord TravelGuideByPrice where ...

The problem is that you are creating a new constructor, which at execution time must be pattern matched and unwrapped, thus taking time and hurting performance. What you need is just a way to tag values with a new type, so that the compiler is able to distinguish which instance must be applied. But we want to do it without having to rewrite the initial type or having performance problems. Haskell includes a solution for this exact problem: a newtype declaration declares another name for an already existent type. But, in contrast to type declarations, the new name is not a synonym, but it's viewed as a completely unrelated type. The good news is that newtype has no performance overhead, because at compile time the compiler knows that values of that type will always be equal to a value of the original type, and it can delete all of the constructor wrapping and pattern matching. The following code declares a newtype for TravelGuide, and associates to it a new instance of the Ord type class, but now comparing by price first:

newtype TravelGuidePrice = TravelGuidePrice TravelGuide deriving Eq
 
instance Ord TravelGuidePrice where
  (TravelGuidePrice (TravelGuide t1 a1 p1)) <= (TravelGuidePrice (TravelGuide t2 a2 p2)) =
     p1 < p2 || (p1 == p2 && (t1 < t2 || (t1 == t2 && a1 <= a2)))

Let’s assume now that ordering by price is used for the rest of the examples.




Step 3: Binary Trees with Monoidal Cache

Still, finding the smallest price in the tree takes some time, because you have to go into the left subtree until you reach a leaf. However, in the webpage you need to show that element very often. A solution is to include a cache in every node, which stores the price of the smallest element in the tree. Let’s create a new version of binary trees, where the cache type has also been made parametric for greater generality:

data BinaryTree3 v c = Node3 v c (BinaryTree3 v c) (BinaryTree3 v c)
                     | Leaf3
                     deriving (Show, Eq, Ord)

And the corresponding implementation of treeInsert, where the is updated cache at every step:

treeInsert3 :: (Ord v, Ord c) => v -> c -> BinaryTree3 v c -> BinaryTree3 v c
treeInsert3 v c (Node3 v2 c2 l r) = case compare v v2 of
                                      EQ -> Node3 v2 c2 l r
                                      LT -> Node3 v2 (min c c2) (treeInsert3 v c l) r
                                      GT -> Node3 v2 (min c c2) l (treeInsert3 v c r)
treeInsert3 v c Leaf3             = Node3 v c Leaf3 Leaf3

At some point you may be told that apart from minimum prices, the marketing team also wants to have information about the average price of travel guides, to analyze which is the percentage of people buying books under and over the average. In order to do so you need to create a new insertion function, which instead of the minimum computes the sum of all the prices, so you can later divide by the total number of guides. But altogether, the structure of the function remains the same.

Let’s try to untangle the structure in both cases: what you are doing is caching some information that comes from the cached values in the subtrees and the value in the node itself. In the case of the minimal price the operation that creates the new cached value is min, and in the case of sum, it is +. Can the exact requirements for such a function be made more precise?


	For any two elements you need to find another one of the same type. That is, you need a function f of type c -> c -> c.

	Also, depending on the way you have inserted elements in the tree, the structure may not be the same. But this should not matter for the final cached value. So you need to be sure that the parenthesis structure does not matter. In order words, the operation must be associative.

	One last thing comes from the observation that when you concatenate two binary trees, you should be able to recover the new cached value for the root from the cached values from the initial roots. That means that an empty tree, which contains no elements, should be assigned a value e such that f e x = f x e = x.



This structure, an associative binary operation with an element which does not affect the outcome (called a neutral element), is called a monoid, and has its corresponding class in the module Data.Monoid:

class Monoid a where
  mempty  :: a            -- neutral element
  mappend :: a -> a -> a  -- associative binary operation
  mconcat :: [a] -> a

Usually one doesn't write mappend, because it's very long, but rather uses its synonym (<>).

Now you can write the most general treeInsert version. Notice how in this general version you need to apply the (<>) operator to both subtrees and to the information in each node. In the version computing the minimal elements, you could take advantage from the fact that values are ordered in the tree, but in general this cannot be used.

treeInsert4 :: (Ord v, Monoid c) => v -> c -> BinaryTree3 v c -> BinaryTree3 v c
treeInsert4 v c (Node3 v2 c2 l r) = case compare v v2 of
                                      EQ -> Node3 v2 c2 l r
                                      LT -> let newLeft = treeInsert4 v c l
                                                newCache = c2 <> cached newLeft <> cached r
                                             in Node3 v2 newCache newLeft r
                                      GT -> let newRight = treeInsert4 v c r
                                                newCache = c2 <> cached l <> cached newRight
                                             in Node3 v2 newCache l newRight
treeInsert4 v c Leaf3             = Node3 v c Leaf3 Leaf3
 
cached :: Monoid c => BinaryTree3 v c -> c
cached (Node3 _ c _ _) = c
cached Leaf3           = mempty

Monoid is one of the type classes that may have multiple implementations for just one type, which was led to the creation of newtypes for some common types. Some of the most important ones are All, which implements the monoid structure of Bool under the operation (&&) with neutral element True; and All, which does the same with (||) and neutral element False. Numbers also admit two monoidal structures: Sum uses addition as operation and 0 as neutral element, whereas Product uses multiplication and 1.

In fact, another monoidal structure for numbers should be provided if you want to use this general cache insertion algorithm. The code needed to declare the newtype along with the new instance follows. Notice how the code uses the infinity element for floating-point, which can be obtained through 1/0:

newtype Min = Min Double deriving Show
 
instance Monoid Min where
  mempty = Min infinity where infinity = 1/0
  mappend (Min x) (Min y) = Min $ min x y



Container-related Type Classes

In many cases while developing an application you need to change the container you are using to handle the values. So it seems an interesting idea to step back and think about commonalities between them, because it may be possible to abstract from them and discover some useful type class.


Functors

Let's try to write a function applying a discount to each travel guide in a list:

modifyTravelGuidePrice :: Double -> [TravelGuide] -> [TravelGuide]
modifyTravelGuidePrice m  = map (\tg -> tg { price = m * price tg })

And if you want to do it in a map or a tree:

modifyTravelGuidePriceMap :: Double -> M.Map a TravelGuide -> M.Map a TravelGuide
modifyTravelGuidePriceMap m = M.map (\tg -> tg { price = m * price tg })
 
modifyTravelGuidePriceTree :: Double -> T.Tree TravelGuide -> T.Tree TravelGuide
modifyTravelGuidePriceTree m = fmap (\tg -> tg { price = m * price tg })


You should start seeing a pattern here: all these containers allow applying a function inside the data structure:

map   :: (a -> b) -> ([a]       -> [b])
M.map :: (a -> b) -> (M.Map k a -> M.Map k b)
fmap  :: (a -> b) -> (T.Tree a  -> T.Tree b)  -- version for trees

A data type supporting a function like map is called a functor. The corresponding class is defined as:

class Functor f where
  fmap :: (a -> b) -> f a -> f b

So now you can write the most general function to modify travel guides price:

modifyTravelGuidePrice' :: Functor f => Double -> f TravelGuide -> f TravelGuide
modifyTravelGuidePrice' m  = fmap (\tg -> tg { price = m * price tg })

You may notice a strange fact about the Functor class: in the definition of fmap the type variable corresponding to the instance is applied to another type variable, instead of being used raw. This means that those types that are to be functors should take one type parameter. For example, IntSet, which takes none, cannot have such an instance (even though conceptually it is a functor).

The way in which the Haskell compiler checks for the correct application of type parameters is by the kind system. Knowing it may help you making sense of some error messages. Until now we know that values, functions and constructors have an associated type; but types themselves are also categorized based on the level of application. To start with, all basic types such as Char or Integer have kind *. Types which need one parameter to be fully applied, such as Maybe, have kind * -> *. This syntax resembles the one used for functions on purpose: if we now have Maybe Integer, we have a type of kind * -> *, which is applied a type of kind *. So the final kind for Maybe Integer is indeed *.


EXERCISE 4-8: FUNCTOR FUN!

Functor is one of the most ubiquitous type classes in Haskell. For example, both Maybe and the binary trees from last section are part of the family. The functor instance of Maybe is quite interesting, because it allows to shorten code that just applies a function when the value is a Just (a pattern matching plus a creation of the new value is just replace by a call to map).

Write the corresponding instances for both of them. You will need to create a newtype for Maybe values in order to make the compiler happy. From all the binary tree types seen so far, choose BinaryTree2 as the type for instantiating Functor. In this last case, remember that you must respect the order invariant of the tree, so the best way to write the map function may involve repeatedly calling treeInsert2 on an empty tree.



Although the concept of functor came via containers, the concept is much broader. One instance of functor that doesn’t fit that box is that of (->) r: the elements of this type are those functions of the form r -> a, function that take as input a value of a specific type r (Haskell syntax doesn’t help too much in this case, just remember that a f b can also we written (f) a b if f is completely made of symbols, which is the case for ->). To begin with, let’s try to write the type for the corresponding version of fmap, to fix ideas:

fmap :: (a -> b) -> (r -> a) -> (r -> b)

The easiest solution in this case is to apply the first function after the second to get a result of the desired type:

instance Functor ((->) r) where
  fmap f g = f . g

In this case the concept behind the type class implementation is that of computational context: adds to any expression an extra value of type r that can be used to control the behavior of such expression. We will see in Chapter 6 how this mimics the existence of a constant of type r in your code.


[image: image] Note  We should remark that Set cannot be made an instance of Functor. The reason is that the mapping function for sets has the type Ord b => (a -> b) -> Set a -> Set b, which is not compatible with that of Functor, which doesn't have any restriction. The Haskell language provides enough tools nowadays for creating another type class for functors that would allow Set inside it. However, this will make usage of the Functor type class much more complicated, and would break a lot of already existing code. For that reason, the simpler version of Functor is the one included in the libraries.





Foldables

The other basic operation that you can make with containers is computing some aggregate information from all the held elements, that is, a fold. This concept has its corresponding type class, which is called Foldable and can be found in module Data.Foldable. A difference between folds and functors is that you can think of folds in two different ways, now that we have introduced monoids:


	Like the list foldr, a fold takes an initial value and a combining function and applies it for each two elements, starting with the initial value;

	You can see that a type with a binary function and some special value matches exactly the definition of a monoid. Furthermore, you have seen how combining functions in foldr should be associative, just like (<>) from Monoid is.



These two definitions allow for two different ways to instantiate the Foldable class: you need to either give a definition of foldr (the version with combining function) or foldMap (the version with monoids):

class Foldable t where
  foldMap :: Monoid m => (a -> m) -> t a -> m
  foldr   :: (a -> b -> b) -> b -> t a -> b
 
  fold    :: Monoid m => t m -> m
  foldr'  :: (a -> b -> b) -> b -> t a -> b
  foldl   :: (a -> b -> a) -> a -> t b -> a
  foldl'  :: (a -> b -> a) -> a -> t b -> a
  foldr1  :: (a -> a -> a) -> t a -> a
  foldl1  :: (a -> a -> a) -> t a -> a

The rest of the operations correspond to default definitions that could be overridden for performance reasons: fold is a version of foldMap that just combines a container full of monoid values without previously applying any function. foldl corresponds to folding over the elements starting from the “other side” of the structure: you’ve already seen how the result of foldr and foldl are different if the combining function is not commutative. The versions ending with prime (') are strict versions of the functions: they will play a central role in next chapter.

Foldables are also ubiquitous in Haskell code, as functors. EXERCISE 4-8 asks you to provide instances of this class for the same types you did so in EXERCISE 4-9.


EXERCISE 4-9: FOLDABLE FUN!

Maybe and binary trees can also be folded over. Write their corresponding Foldable instances. The warnings and hints from EXERCISE 4-7 also apply here.



As you saw in the previous chapter, lots of different algorithms can be expressed using folds. The module Data.Foldable includes most of them, like maximum or elem. One easy way to make your functions more general is hiding the functions with those names from the Prelude and importing the ones using Foldable.


[image: image] Note  You may wonder why the Prelude includes specialized definitions for lists instead of the most general versions using Functor and Foldable. The reason is that for a beginner, having the functions working only on [a] helps understanding the first error messages that it may encounter, because they don't involve type classes. But now that you know about them, you should aim for the largest degree of abstraction that you can achieve.


In this section you have written instances of Functor and Foldable for various data types. Being so heavily used, the GHC developers decided to include also automatic derivation of these type classes. However, since this is not indicated in the Haskell Report, you need to enable some extensions, namely DeriveFunctor and DeriveFoldable, for them to work. It should be noted that in case of a type with several parameters, the chosen for mapping or folding over is always the last one in the declaration.


TYPECLASSOPEDIA

Several of the type classes discussed here, Monoid, Functor and Foldable, are deeply documented in the Typeclassopedia, the encyclopedia of Haskell type classes. You can find it on-line in http://www.haskell.org/haskellwiki/Typeclassopedia and it's an important source of information and examples.





Summary

In this chapter you have looked at several features of the Haskell ecosystem:


	You have learned about how packages are managed through the Cabal tool and specified as dependencies, allowing the reusing of a lot of libraries already available in Hackage.

	Several new containers have been introduced, including maps, sets, trees, and graphs. The quest for understanding its commonalities has led to the discovery of the concepts of functor and foldable.

	The reason why (+) could work on several numeric types has been revealed. The answer was ad-hoc polymorphism and type classes. You have learned both how to declare a new type class describing a shared concept between types, and how to instantiate that class for a specific type. Furthermore, you have seen how both classes and instances can depend on class constraints on other types or parameters.

	You’ve been in touch with the built-in classes Eq, describing equivalence, Ord, describing ordering, Num and its derivatives, describing numbers, and Default, describing default values for a data type.

	The design of a special binary tree with cache has shown several refinement steps in the creation of a new data type. In particular, we have seen how type classes allow generalizing the values it can take, looking specifically at the monoidal structure that is very common in Haskell data types.



1You can check the full Package Versioning Policy, and look for updates, in the following URL: http://www.haskell.org/haskellwiki/Package_versioning_policy

2At the moment of writing, support for sandboxed through plain Cabal is being implemented.

3The Haskell Platform is quite complete, so it also includes a type for complex numbers, which you can find inside the Data.Complex module. Our definition will be merely illustrative.




CHAPTER 5

[image: image]

Laziness and Infinite Structures


In the previous chapters I have introduced several of the pillars of Haskell programming: the pure functional paradigm, and the strongly typed nature of the language, which nevertheless allows powerful type constructs such as parametric polymorphism and type classes. This chapter will be devoted to understand the unique evaluation model of Haskell, based on laziness, and the consequences derived from that choice.

In short, lazy evaluation means that only the necessary parts of an expression are computed, and this is done at the very last possible moment. For example, if you have an expression such as head [2+3, 5*7], the multiplication is never performed at run-time, because that value is irrelevant for the result of the expression: head only uses the first element in the list. As you may intuitively see, this way of performing evaluation is quite different from other programming languages. That opens the door to some interesting new idioms, such as working with infinite and cycling structures without caring about their special nature.

However, as a developer you also need to be conscious of the trade-offs this model has, especially in the area of memory usage and performance. You will see the most typical problems that arise due to laziness in Haskell code and introduce the idea of strictnessto overcome them. Strictness annotations are available in pattern matching and in data declarations. The time and memory profiler that comes bundled with GHC will be an incredible tool to spot these problems: in this chapter you will look at its basic usage.

An Infinite Number of Time Machines

First of all, we are going to see how Haskell is able to cope with infinite and cyclic structures without imposing any burden on the developer. In this section, you will look at the declaration and usage of these kinds of values in an intuitive way. The next section will discuss how Haskell is able to represent this information so that the code works.

As I have mentioned before, some kinds of time machines only allow travel to certain years in history. But the store is known for always having the time machine you need to travel to any particular point in time. The problem here is that the world may never end, so the set of all time machines is infinite! First of all, let’s declare a small data type for holding our time machines, with the manufacturer and the year to which travel is permitted:

data TimeMachine = TM { manufacturer :: String, year :: Integer } deriving (Eq, Show)

You can write a function to return all the time machines from a year n on. Check that there’s no guard or base case that stops the production of more time machines:

timeMachinesFrom :: String -> Integer -> [TimeMachine]
timeMachinesFrom mf y = TM mf y : timeMachinesFrom mf (y+1)

And from there, all the time machines made by Timely Inc. from year 100 on:

timelyIncMachines :: [TimeMachine]
timelyIncMachines = timeMachinesFrom "Timely Inc." 100

If you now load the file in the GHC interpreter, you can get the first elements of the list, using the built-in take function. The system doesn’t enter in any kind of infinite loop while evaluating the Timely Inc. machines:

*Chapter5.Infinite> take 3 timelyIncMachines
[TM {manufacturer = "Timely Inc.", year = 100}
,TM {manufacturer = "Timely Inc.", year = 101}
,TM {manufacturer = "Timely Inc.", year = 102}]

You can also try to find the first of those machines that travels after year 2018:

*Chapter5.Infinite> import Data.List
*Chapter5.Infinite Data.List> find (\(TM { year = y }) -> y > 2018) timelyIncMachines
Just (TM {manufacturer = "Timely Inc.", year = 2019})

But if you try to compute the length of the list or to find an element that does not exist (in this case, a time machine that travels to year 10), the interpreter will enter into an infinite computation and will never return. To halt the execution in the console, you should press Ctrl+C in your keyboard. In EclipseFP, the way you close it is by pressing the button with the red square.

*Chapter5.Infinite> length timelyIncMachines
-- Never stops
*Chapter5.Infinite> find (\(TM { year = y }) -> y == 10) timelyIncMachines
-- Never stops

Somehow, Haskell knows how to treat infinite lists, given that you only observe a finite part of it during run-time. On the other hand, the evaluation of an expression such as lengthtimelyIncMachines involves traversing the entire list, so it doesn’t end.

Infinite lists are useful in some other situations. For example, in a previous chapter you wrote a function that, given an input list, returns a new list of tuples where each element is decorated by its position in the list. For that matter, you used the zip function:

*Chapter5.Infinite> (\list -> zip [1 .. length list] list) "abcd"
[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

But to do so, you had to traverse the list twice: once to get its length, and once again to zip both. One better way to do it is remembering that zip stops when one of the lists ends. Then, you can use an infinite list of numbers as the first argument to zip. First of all, let’s write a function that holds the list of all numbers from 1 on:

allNumbers :: [Integer]
allNumbers = allNumbersFrom 1
 
allNumbersFrom :: Integer -> [Integer]
allNumbersFrom n = n : allNumbersFrom (n+1)

Now you can write the same function easily:

*Chapter5.Infinite> zip allNumbers "abcd"
[(1,'a'),(2,'b'),(3,'c'),(4,'d')]

Or even better, you can use Haskell infinite list ranges: the notation [1 .. ] describes a list starting from 1 until the end of the integer elements (which in this case does not exist, because integer numbers are infinite):

*Chapter5.Infinite> zip [1 .. ] "abcd"
[(1,'a'),(2,'b'),(3,'c'),(4,'d')]


[image: image] Note  The notation [e ..] does not necessarily imply that an infinite list is created, but rather that the list will hold all the elements which are larger than e. For example, [False  ..] is equivalent to writing [False, True], because the ordering in Bool is False < True, and there are no more elements in that type.


There are even more tricks with infinite lists. Let’s look now at an interesting way to define Fibonacci numbers. If you remember from previous chapters, the nth Fibonacci number is defined as the sum of the Fibonacci numbers of steps n-1 and n-2. Let’s look it from a different perspective: say you already have the list of all the Fibonacci numbers. The position n in this list holds that Fibonacci number. If you take the tail of that list, the list is moved one step forward: position n holds the Fibonacci number n+1. And finally, the magic touch: if you sum the elements one by one, you get the Fibonacci numbers, but moved 2 positions. This is depicted in Figure 5-1.


[image: 9781430262503_Fig05-01.jpg]

Figure 5-1. Properties of the list of Fibonacci numbers, graphically



You can use this remark to define the list of all Fibonacci numbers: the first two elements will be 0 and 1 (this is fixed by the definition). Then, the rest of the list is obtained by adding element-by-element with the list moved one element forward. This addition element-by-element is exactly what you get using zipWith (+).

fibonacci :: [Integer]
fibonacci = 0 : 1 : zipWith (+) fibonacci (tail fibonacci)

Obtaining the nth Fibonacci number is now equivalent to obtaining the element in position n-1 (as in C or Java, lists are indexed starting with 0). The (!!) function in Data.List is exactly the function you need:

*Chapter5.Infinite> import Data.List
*Chapter5.Infinite Data.List> fibonacci !! 20
6765

Apart from using list ranges and constructing functions by hand, which returns infinite lists, the Prelude includes some built-in functions to generate them. As a special offer, Timely Inc. supplies us with an infinite number of time machines to travel to the year 2021. One way to define it could be:

infinite2020Machines :: [TimeMachine]
infinite2020Machines = TM "Timely Inc." 2020 : infinite2020Machines

But another way to do so would be using the repeat combinator, which just creates infinite copies of the same value in a list:

*Chapter5.Infinite> take 3 $ repeat $ TM "Timely Inc." 2020
[TM {manufacturer = "Timely Inc.", year = 2020}
,TM {manufacturer = "Timely Inc.", year = 2020}
,TM {manufacturer = "Timely Inc.", year = 2020}]

Apart from one value, we can also repeat a set of values in order. In a special offer, we may have a set of time machines with a 20 percent discount, but with the particular property that we have to sell one for 2005, then one for 1994, then one for 908, and then start again from 2005. This infinite list is declared with cycle:

specialOffer :: [TimeMachine]
specialOffer = cycle [TM m 2005, TM m 1994, TM m 908]
               where m = "Timely Inc."

You can see how values are repeated by looking at the first four values:

*Chapter5.Infinite> take 4 specialOffer
[TM {manufacturer = "Timely Inc.", year = 2005}
,TM {manufacturer = "Timely Inc.", year = 1994}
,TM {manufacturer = "Timely Inc.", year = 908}
,TM {manufacturer = "Timely Inc.", year = 2005}]

Values don’t need to be always equal. The iterate function generates values by applying a function to a value to get a second, then applying the same function to this second value to get the third, and so on. You can see the infinite list that will be generated as:

iterate f x = [ x, f x, f (f x), f (f (f x)), ... ]

This gives you another way to implement Fibonacci. In particular, the fibonacci2 list will hold pairs of values such at in position n you can find (n Fibonacci number, n+1 Fibonacci number). From one of these tuples, you can build the next element by shifting one position to the left, and adding the two numbers to get the n+2 Fibonacci number. In code this translates to:

fibonacci2 :: [Integer]
fibonacci2 = map fst $ iterate (\(n,n1) -> (n1,n+n1)) (0,1)

You can use this new function as you used the previous one:

*Chapter5.Infinite> fibonacci2 !! 20
6765

In EXERCISE 5-1 you are going to see how infinite lists can even give us a glimpse into history.


EXERCISE 5-1: THE SIEVE OF ERATOSTHENES

Eratosthenes was a Greek mathematician from the 3rd century bc One of his most known inventions is the prime sieve. This sieve gives an algorithm for getting the list of all the primes. It works in the following way:


	Start with a list of all the numbers from 2 on.

	Take the first number, in this case 2, and drop from the list of numbers all its multiples, that is, all numbers n such that the remainder of n and 2 is 0.

	Now take the next number (in this case it will be 3) in the filtered list and repeat the operation: filter out all the multiples of that number.

	Repeat the last step with the first number left in the previous one.



Implement the sieve of Eratosthenes using the techniques outlined in this section. In particular, the solution should take the form of a declaration primes :: [Integer], which contains all the prime numbers.



Lazy Evaluation Model

At this point, you should be convinced that Haskell can indeed work with infinite values (or at least, with infinite lists). However, it may seem a bit like black magic. Of course, this is not the case: the ability to work in this way is the result of the strategy that Haskell follows for evaluating expressions, which departs greatly from other programming languages. In this section this lazy strategy will be introduced, and some of the most common problems with it will be pointed out.


Understanding Evaluation in Haskell

Most of the programming languages follow a strict evaluation model: at the very moment a compound expression is found, it’s immediately transformed into a simpler version (maybe including calls to functions of methods), before the larger expression is evaluated. In particular, arguments to a function are evaluated before the control flow enters the body of the function itself. Let’s see with an example the steps that would be followed in this model to evaluate a simple expression:

head [3+2, 7*5] => head [5, 35]  -- we evaluate the arguments to the function
                => 5             -- and then we execute the function itself

Under this kind of evaluation, an expression like head timelyIncMachineswould cause an infinite loop, because there’s no point at which to stop going further and further in the list. Below I reproduce the first steps of this infinite loop, which will continue as shown with three dots. Take time to understand this example until you are completely sure about why this example loops.

head timelyIncMachines => head (timeMachinesFrom "Timely Inc." 100)
     => head (TM "Timely Inc." 100 : timeMachinesFrom "Timely Inc." 101)
     => head (TM "Timely Inc." 100 : TM "Timely Inc." 101 : timeMachinesFrom "Timely Inc." 102)
     => head (TM "Timely Inc." 100 : TM "Timely Inc." 101 : TM "Timely Inc." 102 : ...)

In contrast, Haskell tries to evaluate expressions as late as possible. In this example, it won’t initially evaluate the expressions that make the elements in the list. When it finds a call to head, it obtains the first element, which will still be an unevaluated expression 3+2. Since you want to print the result of this expression in the screen, it will only continue by computing the addition, until it arrives at the same final value, that is, 5. This kind of evaluation is known as non-strict or lazy.

I have been intuitively using the idea of “evaluating as late as possible.” But that approach is not directly applicable to the example of the infinite list, because for getting the head you have to enter the body of timeMachinesFrom, which would then give rise to a loop. The extra bit of information you need to know is that, by default, Haskell only evaluates an expression until a constructor is found. The rest of the value will be left unevaluated: its place will be occupied by a placeholder indicating how that specific field can be computed. This placeholder is called a thunk.

Applying what I’ve just described to the evaluation of the head of the infinite list, timeMachinesFrom will just produce a (:) constructor with a thunk for the element and another thunk for the rest of the list. When you apply head to it, you get back the first of the thunks. If you want to show the value on the screen, the thunk has to be unwrapped and the recipe to create the value followed to create it. Figure 5-2 shows these steps graphically. The first three transitions are actual evaluation of thunks. In the fourth state, you arrive at a point where you can evaluate the case expression, because you can choose a pattern based on the already evaluated value. The final steps are already plain evaluation of thunks. The next thunk to be evaluated in each step is shown with a bolder frame.


[image: 9781430262503_Fig05-02.jpg]

Figure 5-2. Evaluation of head timelyIncMachines



One important feature of lazy evaluation is that once a thunk has been evaluated, the result is saved and the thunk is not evaluated again if the result of that expression is needed elsewhere. This is a great feature, because it means that you only pay once for the cost of evaluating each expression in your application. Furthermore, the pure nature of Haskell also helps in sharing thunks that refer to the same expressions, which means that it can re-use the evaluation in some part of the program in other places. For example, Figure 5-3 shows how the memory layout changes when executing (head allNumbers, head (tail allNumbers), tail allNumbers). Since allNumbers is a list, the Haskell run-time environment keeps a reference to the same expression from all the appearances of that value. This is shown in Figure 5-3 as different arrows pointing to the same expression. EXERCISE 5-2 provides a task to check the understanding of this sharing.


[image: 9781430262503_Fig05-03.jpg]

Figure 5-3. Evaluation of (head allNumbers, head (tail allNumbers), tail allNumbers)




EXERCISE 5-2: EVALUATING FIBONACCI

Write down the evaluation steps of the expression fibonacci !! 3, where fibonacci is the infinite list of Fibonacci numbers as defined previously in this chapter.



This would be impossible in a language that allows printing while computing a value. Let’s assume than during its evaluation, allNumbers outputs "Natural numbers rule!". If you share the same value for allNumbers, the string would only be printed once. But in many languages, including C and Java, what you would expect is to show it three times, one per reference to allNumbers. You have seen that side effects make it impossible to apply these sharing optimizations, which are key to a good performance in Haskell programs.

It should be noted that only expressions will be shared. This should not be confused with memorizing a function: that is, caching the results for arguments that have already been provided. For example, if you call:

(allNumbersFrom 1, allNumbersFrom 2)

Even though allNumbersFrom 1 will call allNumbersFrom 2, the evaluation of allNumbersFrom 2 in allNumbersFrom 1 and in the previous expression will not be shared.

One final issue that remains to be explained is how cyclic structures are represented. The answer is that Haskell maintains itself a cycle in memory when declarations are the same. For example, for the case of repeat e, the evaluation is as shown in Figure 5-4.


[image: 9781430262503_Fig05-04.jpg]

Figure 5-4. Evaluation of repeat e




EVALUATION STRATEGIES

In this section you have seen two examples of evaluation strategies: ways in which the computation proceeds and the order in which parts of the expressions are evaluated. Apart from those two, more strategies have been developed.

What I have called strict evaluation is also known as call by value. Sometimes, especially in object-oriented languages, this is changed to call by reference, where you don’t receive values as arguments, but boxes holding those values.

Lazy evaluation is sometimes referred to as call by need, which is a special case of the more general strategy of call by name, in which function arguments are not evaluated before the body of the function but are substituted directly. The difference is that in general, call by name may evaluate the same expression more than once, whereas call by need uses thunks to do it only once.






Problems with Laziness

Laziness is often a blessing, but sometimes it can also be a curse. As usual in computer science, there’s a trade-off in lazy evaluation: in this case, delaying the evaluation until needed may result in less computation and also allow some programming idioms unavailable in other languages. On the other hand, it may create many thunks, causing the memory to become quite full so that the operating system has to paginate, which makes the program slower. Let’s look at this problem with the help of our old friends the folds.

First, let’s build a picture showing how foldr (+) 0 [1,2,3] is evaluated, showing explicitly the thunks: each thunk will hold the recipe to convert it into a proper value inside it. This is depicted in Figure 5-5.


[image: 9781430262503_Fig05-05.jpg]

Figure 5-5. Evaluation of foldr (+) 0 [1,2,3]



Until the interpreter reaches the final step of foldr it cannot proceed with the additions. This means that for each element in the list a new thunk is created. Now you understand why, when requested to interpret the following line of code, the computer starts to sweat and later halts with an error:

*Chapter5.Problems> foldr (+) 0 [1 .. 1000000000]
<interactive>: out of memory (requested 1048576 bytes)


[image: image] Note  At first sight, the culprit could also be the big length of the list. However, if you perform some other computation over it that doesn’t create thunks in between, such as length [1 .. 1000000000], you can see that the system responds correctly (the actual speed will depend on the capacity of your computer to hold big integers).


The shape of the evaluation using foldr is something like (1 + (2 + (3 + (... + <thunk>)))), so it cannot continue because at each point during evaluation it only knows about one argument to (+). So, if we use parentheses in another way, making the evaluation to look like ((((1 + 2) + 3) + ...) + <thunk>), the problem may be gone. You already know how to do it: using foldl.

*Chapter5.Problems> foldl (+) 0 [1 .. 1000000000]
<interactive>: out of memory (requested 1048576 bytes)

But here you face here a similar situation: (+) has at each step all of its arguments, but since you do not request the result until the end of the list, a large amount of thunks have to be created.

The solution is to force evaluation: you need to tell Haskell to evaluate the (n+m) thunks before proceeding with the rest of the computation, overriding the default lazy behavior. The function seq in the Prelude allows you to do so. In the most general form, a force expression is written as a `seq` b.  Haskell ensures that the expression a is evaluated before b. Usually, a is part of the expression b. Let’s write an addition operation using the force operator that doesn’t suffer from memory problems:

sumForce :: [Integer] -> Integer
sumForce xs = sumForce' xs 0
              where sumForce' []    z = z
                    sumForce' (y:ys) z = let s = z + y in s `seq` sumForce' ys s

When executing sumForce [1 .. 1000000000] the interpreter may take a lot of time, but no memory problem will arise, and eventually an answer will be given. The idiom x `seq` f x is so common that there is a special operator $! (strict application) performing this task. So you can rewrite the bold expression in the previous piece of code as sumForce' ys $! (z+y).


[image: image] Note  Once again, we see a familiar foldlike pattern in the previous code. The Prelude includes a foldl' function that forces the accumulated value before passing it into the next step. So you could have written the previous example as foldl' (+) 0 [1 .. 1000000000].


Once again, I stress that Haskell only evaluates something until a constructor is found: the fields are left as thunks until some further computation needs the information enclosed by them. This is true also for seq: if you want to be sure that some part of a larger value is evaluated before continuing, you should explicitly get that value and force it (you will see by the end of the chapter that if you don’t want any thunk inside a value you can use deep strict evaluation with deepseq). This is enough for this case, because the first constructor that will be encountered will be the integer value coming from the addition.

Now that you know about forcing evaluation, you should resist the temptation to use it everywhere you think a memory problem could be found. Forcing expressions destroys the lazy nature of the language and may also lead to cases where a previously terminating expression no longer is. Think of the case of taking the head of an infinite list: if you make Haskell force the entire list, it will never reach the end, thus entering in an infinite computation chain. If you suspect a memory leak, you should first use profiling to find the correct spot and then think carefully whether using seq will not hurt the applicability of your functions to the kind of arguments that are expected.




Pattern Matching and Laziness

As you can see, this interplay of delays using thunks and forcing their evaluation is very important. For that reason, you should have a clear idea of when it takes place. Apart from explicit seq or ($!), another place where the compiler or interpreter needs to evaluate thunks is on pattern matching: it needs to evaluate up to the point that it knows which of the corresponding branches has to be taken.

There’s a GHC extension to patterns, called BangPatterns, which allows forcing the evaluation of some parts of the pattern. Concretely, you can write ! before any part of the pattern, and then when matching is tried against that pattern, the expression in that point will be evaluated up to a constructor and then the match will be tried. For example, you can write a function that adds all the years from a list of time machines, using this syntax both to force the addition of each step and to ensure that the year in each time machine is also evaluated (so the addition does not have a thunk as second argument):

{-# LANGUAGE BangPatterns #-}
 
sumYears :: [TimeMachine] -> Integer
sumYears xs = sumYears' xs 0
              where sumYears' []            z = z
                    sumYears' (TM _ !y :ys) z = let !s = z + y in sumYears' ys s

Interesting enough, and because of this evaluation forcing in pattern matching, Haskell also includes a way to delay evaluation in matching phases. The way to do it is to use an irrefutable pattern: matching upon it never fails, but it’s only destructured when some of its constituent parts are needed. One use case for irrefutable patterns involves a function that always returns a value given the same input. For example, you are finding an element in a list, and you have made sure that the element you are searching for already exists, so find will always return the same result. In that case, you can delay the computation of find a bit, and just evaluate it when you need the constituent value.

For a more explicit example, suppose that you have some function:

lengthyOperation = if lengthyPredicate then Just something else Nothing

and that you know that the lengthyPredicate will be true in some situation. If you write a regular matching:

case lengthyOperation of
  Just something -> ...
  Nothing        ->

then you will force the lengthyOperation to be evaluated just to choose the branch. But since you know that the first one will be the selected one, you can delay the computation a bit more using an irrefutable pattern:

case lengthyOperation of
  ∼(Just something) -> ...

Remember that a pattern such as that never fails. So if you come to a situation where lengthyOperation returns Nothing, and you use something inside the body of the match, you will get an error:

Prelude> case Nothing of ∼(Just e) -> "hello, " ++ e ++ "!"
"hello, *** Exception: Irrefutable pattern failed for pattern (Data.Maybe.Just e)


[image: image] Note  Irrefutable patterns are rarely used, much less than forcing, but in some cases they are key to a good performance of the code. You shouldn’t worry too much about understanding all the cases where they may be applicable, but knowledge about their existence may become handy, especially if reading the inner of some built-in function.



STRICT FUNCTIONS

It won’t be long until you read in the documentation of some package that a function is strict on one or several of its arguments. At a high level, it means that the argument will have to be evaluated if it was still in thunk form, so you should take care of providing in that place an expression that wouldn’t lead to non-termination.

Formally, in Haskell we have a canonical value called undefined that represents all those computations that don’t end. Because it never returns, it may be typed as you want, so we have that undefined :: a. By the way, this typing makes undefined a perfect placeholder in the place of code you haven’t yet written, when you want to check that your current code passes type checking.

A function f is then called strict on its argument if f undefined = undefined, that is, if given a non-terminating argument, the function itself does not terminate. One example of strict function is head. But a function defined as g x = 1 isn’t, because, given any argument, it returns 1.

Intuitively, the notion of being strict on something means that it doesn’t inspect that something. The way a function is strict may be subtler than in the previous examples. For example, head undefined is undefined, but head (1 : undefined) isn’t.





Profiling with GHC

The GHC compiler can be used to generate statistics about runs of your program, to get more insight on where computation effort is spent. In this section you will focus on two kinds of profiling: time profiling, which gets information about the amount of time spent in each of the functions in the system, and memory profiling, which allows looking at the values holding the larger amount of memory. The profiling output in GHC assigns time or memory to the so-called cost centers, and the information and summaries are always related to those. By default, cost centers are assigned to functions, but more can be added using annotations.

To use profiling, you can no longer build the code as a library: you need to build a full executable that could be run from the command line. So let’s first look very briefly at the modifications you need to do in the Cabal file to include an executable.

Each Haskell project may include several executables, identified by a name, and with a reference to the file that includes the entry point of the application as a function main of type IO (). For now, it’s only important to know that IO allows performing side effects like printing into the screen; you will take a closer look at this type in Chapter 9. Each of these executables is defined as a new block in the Cabal file: the name is specified after the executable keyword that heads the block, and the file containing the entry function inside a main-is property. It’s important to remark that the main-is property needs a reference to the file itself (including the extension), not a module name like other properties. The auxiliary modules are defined inside the other-modules property, and dependencies are specified in the build-depends property, as in library blocks.

For example, the following declaration includes an executable profiling-example whose main function is defined in the Main.hs file and that uses the Chapter5.Annotations module. The only dependency is the base package:

executable profiling-example
  build-depends:   base >= 4
  hs-source-dirs:  src
  main-is:         Main.hs
  other-modules:   Chapter5.Annotations

To check that it works, create the Main.hs file. It’s mandatory for the module name which defines an entry point to be called Main, and to contain the main :: IO () function, so the file should be named accordingly. In this example the executable that just prints "Hello!" using the putStrLn function.

module Main where
 
main :: IO ()
main = putStrLn "Hello!"

Then, call cabal configure and cabal build in the project folder. One of the lines in the building phase should look like Linking dist/build/profiling-example/profiling-example: this is telling where the executable will live when compiled. Now you can run it in the console:

$ ./dist/build/profiling-example/profiling-example
Hello!

To enable profiling, you must indicate so to the compiler. In particular you need to add three options: -prof to enable profiling, -fprof-auto to choose automatically all the bindings as cost centers, and -rtsopts to enable passing run-time options to the executable. These are specified in a ghc-options property inside the executable block:

executable profiling-example
  -- other properties
  ghc-options: -prof -fprof-auto -rtsopts


[image: image] Note  Many other compiler options are available in GHC. You can get a list of all of them at http://www.haskell.org/ghc/docs/latest/html/users_guide/flag-reference.html. A very useful one is -Wall, which tells GHC to signal all possible warnings in your code. Warnings are not compilation errors, but are very informative to diagnose code that may not behave as expected.


As usual for Cabal files, EclipseFP includes a graphical editor for specifying executables and modifying the most common properties in those blocks. In particular, the Executables tab shows all of the applications in the project file. You can see how it looks in Figure 5-6. To add a new one, just click the plus-shaped button, and specify its name. The role of each module is changed in the Modules column, and the compiler options also have its own place to be changed.



[image: 9781430262503_Fig05-06.jpg]

Figure 5-6. Executables tab in the EclipseFP Cabal editor



Once your executable is compiled with run-time options support, you can specify them in the command line between +RTS and -RTS. Time and allocation profiling is specified with -p, thus for calling our previous executable while gathering time information we need to run.

$ ./dist/build/profiling-example/profiling-example +RTS -p -RTS
Hello!


RUNNING EXECUTABLES IN ECLIPSEFP

If you are working in EclipseFP, there’s an easier way to run your application than using the command line. Just right-click on the root of your project in the Projects tab, then go to Run As, and finally Run Haskell Application.

Often you need to specify arguments for the executable. One example of those cases is profiling. To do so, right-click on the root of your project, then Run As as before, but finally click Run Configurations . . . There you will see a list with run configurations: just select the one for your project under the Haskell application heading, and you will be able to adjust all of its properties.



At first sight, nothing has changed in the execution. But if you look carefully at the project folder, a new file called profiling-example.prof has been created. Since the running time of the program is very near to zero, no interesting profiling output will be generated. Thus, let’s better profile a program that computes the factorial of 100000 and outputs it into the screen. You should change Main.hs to read:

module Main where
 
main :: IO ()
main = putStrLn $ show result
 
result :: Integer
result = foldr (*) 1 [1 .. 100000]

Now run abal build and the executable in profiling mode. The contents of profiling-example.prof should be similar to the following:

        total time  =        5.68 secs   (5680 ticks @ 1000 us, 1 processor)
        total alloc = 9,981,322,816 bytes  (excludes profiling overheads)
 
COST CENTRE MODULE  %time %alloc
 
result      Main     94.1   99.7
main        Main      5.9    0.3
 
                                                      individual     inherited
COST CENTRE MODULE                  no.     entries  %time %alloc   %time %alloc
 
MAIN        MAIN                     42           0    0.0    0.0   100.0  100.0
 main       Main                     85           0    1.2    0.0     1.2    0.0
 CAF        Main                     83           0    0.0    0.0    98.8  100.0
  result    Main                     86           1   94.1   99.7    94.1   99.7
  main      Main                     84           1    4.7    0.3     4.7    0.3
 CAF        GHC.IO.Encoding          79           0    0.0    0.0     0.0    0.0
 CAF        GHC.Conc.Signal          77           0    0.0    0.0     0.0    0.0
 CAF        GHC.IO.Handle.FD         71           0    0.0    0.0     0.0    0.0
 CAF        GHC.IO.Encoding.Iconv    66           0    0.0    0.0     0.0    0.0
 CAF        GHC.Show                 63           0    0.0    0.0     0.0    0.0

The information is divided into three parts. The first part is a summary of the total time and memory used by the program. The second part shows the cost centers (in this case, functions) that contribute the most to that cost. In this case, it’s obvious that result takes most of the time and memory, and main uses a smaller part of it. The last part is a more detailed view that shows the information about time and allocation in a tree. In this case, a lot of internal functions dealing with file handles and encoding are shown, but in a larger application less of these will be shown because they will be buried in a larger call stack.

However, the most interesting part is heap profiling, which allows for the production of a graph stating the consumption of memory throughout the program. The most important modes to run heap profiling are breaking it down by cost centres, which is specified using the -h run-time option, and breaking it down by type, whose option is -hy. Other ways to group consumption, such as by module, by closure, etc., are available but not used often. If you run the previous program with any of those options, a new file is produced, called profiling-example.hp. This file is raw information: to convert it to a graph you have two options.


	Use the hp2ps tool that comes bundled with the Haskell Platform. Running hp2ps profiling-example.hp will produce a PostScript file that can then be viewed.

	Inside EclipseFP you can open an hp file directly, and it will be shown as a graph. In addition, you can control how many of the tail elements are grouped.



Figure 5-7 shows the output of running ./dist/build/profiling-example/profiling-example +RTS -h -RTS in the command line, and then processing it inside EclipseFP.


[image: 9781430262503_Fig05-07.jpg]

Figure 5-7. Graphical output of heap profiling by cost centers (run with -h)



You can see here that there is a big increase in memory usage in the first tenths of a second, shown in orange: this reflects the large creation of thunks we spoke about in the “Problems with Laziness” section. Then, the memory decreases as the thunks are evaluated. A second spike, shown in blue in the figure, and at the extreme right-end edge of the graph, highlights the increase in memory when the resulting number has to be converted into a string.

The breakdown by types can illustrate the way memory is used in the system. Now run the application with the -hy run-time option, and produce the graph. The result looks like Figure 5-8.


[image: 9781430262503_Fig05-08.jpg]

Figure 5-8. Graphical output of heap profiling by types (run with -hy)



As you can see, at the beginning most of the memory belongs to elements of type Integer, which corresponds to those thunks I’ve talked about. As you go further in the execution, the ARR_WORDS type uses more memory. This encompasses the memory used by basic types such as evaluated integers (you see that it grows as the number gets larger) and strings.

Let’s profile the other versions to see how the profiling output confirms our initial thoughts on the problem of memory exhaustion. Replace the code using foldl' instead of foldr:

result :: Integer
result = foldl' (*) 1 [1 .. 100000]

The graph in Figure 5-9, obtained by running this new version through heap profiling by types, shows that now intermediate thunks are not created because evaluation is forced at each step, so we don’t see the initial spike of Integer values, memory is only used in ARR_WORDS.


[image: 9781430262503_Fig05-09.jpg]

Figure 5-9. Graphical output of heap profiling by types (run with -hy), foldl'version



As you have seen, profiling is a great tool for spotting problems both in time and memory, because it allows focusing in those points that are really wasting those resources, instead of having to guess where the leak does come from. I suggest profiling some larger programs to get confident with the profiler and its output in order to be productive with the tool in the near future.

Strictness Annotations

This section gives more insight into GHC internals. You may safely skip this section in a first reading, but you should come back to it later, because you will greatly benefit from this information. In particular, this section will help your reasoning on the memory and time used by your problem, and it gives you tools to enhance your application in those aspects.

In general, you can think of a value in Haskell being represented in memory as some header stating its type and the constructor used to build it, followed by references to each of the fields composing that value. Basic types, such as integers or characters, deviate from this layout and are represented just by the header and the value itself. One Individual client, as defined in the previous chapters, would then conform to the representation shown in Figure 5-10.


[image: 9781430262503_Fig05-10.jpg]

Figure 5-10. Memory representation of Individual 1 (Person "Andrea" "Blacksmith")



Remember that before being completely evaluated, expressions in Haskell are represented by thunks. Figure 5-10 shows the memory representation when an expression is completely evaluated. If some parts of it were still to be computed, the references will point to thunks containing the code to be executed.

This representation is very flexible but suffers from some performance penalties. First of all, you may be creating thunks for values that you know will be used in the future or that may be needed to ensure good performance for that data type. For example, if you implement a new kind of list that stores its length, it doesn’t make much sense to not store the length directly and instead evaluate it lazily, because at the moment you need to query it, a long chain of computations will happen and performance will suffer.

In that case you want the length to be a strict field. Following the same syntax of bang patterns in matching, strict fields are declared by writing ! before the type of the field itself. As a result, every time a new value of that type is created, the expressions in the strict positions will be forced to evaluate in the same fashion as if you had included an explicit seq. A possible implementation of our lists with length could be:

data ListL a = ListL !Integer [a]

The memory representation of values also makes generous use of references to associate values to field positions. This means that every time you want to access a field in a value, we need to traverse one reference. Once again, this is very flexible and allows to have potentially very extensive structures in memory but can be overkill for accessing small fields, such as integer ones, whose value could be directly encoded in the space that is taken by the reference (the size of a pointer in the target architecture). A field in that situation is said to be unpacked.

Unpacking fields is a special feature of the GHC compiler and it’s declared via an {-# UNPACK #-} annotation right before the field declaration. For example, you could decide to unpack the identifiers of all the constructors of the Client data type to make it more efficient:

data Client = GovOrg     {-# UNPACK #-} !Int String
            | Company    {-# UNPACK #-} !Int String Person String
            | Individual {-# UNPACK #-} !Int Person
            deriving Show

It should be noted that not all fields can be unpacked: it depends on the type of field. Basic types, such as integers or characters, are eligible. Other data types can only be used if they consist of just one constructor and all their fields are also unpacked: this makes it possible to unpack a tuple of types that are unpackable themselves but forbids unpacking a list. Trying to unpack a String field will also produce a warning, since it’s really just a list of Char.

In many cases, you should consider if for your particular application you prefer a lazier or a stricter implementation of our data structures. Laziness delays the moment of evaluation and allows computing only what is strictly needed for the program, but has the trade-offs of larger memory consumption and more uncertainty over when the evaluation will take place.

Some packages, such as containers, provide both lazy and strict implementations of the data structures. For example, you have both implementations of maps living in different modules: Data.Map.Lazy and Data.Map.Strict. By default, the module Data.Map uses the lazy versions. The difference in this case, stated in the documentation, is that in the strict version both keys and values are forced before being saved in the map, whereas in the lazy version this is done only for keys.


EVEN DEEPER

In some cases you need to evaluate an expression until no thunks are left. For that matter, the Haskell Platform provides the deepseq package, which in its module Control.DeepSeq provides the deepseq and ($!!) functions, similar to seq and ($!) respectively, but which also takes care of forcing the subexpressions, not stopping at the layer of constructors.

If you want your data types to support deep evaluation with deepseq, you have to make them instances of the NFData type class. Implementing them is quite easy; you just need to force all the fields and then return (). For example, in Client:

import Control.DeepSeq

instance NFData Client where
  rnf (GovOrg i n)                 = i `deepseq` n `deepseq` ()
  rnf (Company i n (Person f l) r) = i `deepseq` n `deepseq` f `deepseq` l
                                                                                               `deepseq` r `deepseq` ()
  rnf (Individual i (Person f l))  = i `deepseq` f `deepseq` l `deepseq` ()

The same warnings for forcing with seq apply to deepseq, but they are even stronger, due to the fact that the latter forces even more evaluation to take place.



Summary

In this chapter you have looked in several ways to the evaluation model of Haskell, based on laziness:


	You have seen how lazy evaluation allows you to work with seemingly infinite or cyclic structures, making for elegant patterns in the code.

	A long explanation has been given about the lazy evaluation model, explaining the special role of thunks for delaying evaluation until a value is needed, and at the same time increasing sharing of evaluated computations.

	At the same time, you have looked at the shortcomings of lazy evaluation, the most important being increased memory consumption and uncertainty about the moment in which a thunk will become evaluated.

	You have learned how to annotate the code using seq, or strictness annotations in both pattern matching and data types to work around these problems,

	The GHC profiler is a powerful tool for detecting time and space leaks: its basic usage and interpretation of its results have been shown in this chapter.







PART 2
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Data Mining




CHAPTER 6

[image: image]

Knowing Your Clients Using Monads


Remember that you have been commissioned to build a Time Machine Store. Apart from a beautiful design and an intuitive user experience, a good web store should adapt itself to the customer’s likes and needs: it should keep track of clients and analyze their behavior. With that information, better campaigns, such as discounts or targeted ads, can be developed and sales ultimately would increase. For these tasks, many data mining algorithms have been developed. In particular, in this chapter you will focus on clustering algorithms, which try to find groups of related clients. A specific implementation of clustering, called K-means, will be implemented using Haskell.

The K-means algorithm is better understood in terms of a set of vectors, each vector being an aggregation of numeric variables that describe a client, product, or purchase, which change in every iteration. In an imperative language, these vectors would be modeled as a set of variables that are updated inside a loop. The solution presented in this chapter will start from a basic implementation in which you will keep track of all the information. Introduced in this chapter will be lenses, an idiom used to manipulate and query data structures in a concise way. Then, you will see how to refine the code and split it into a set of basic combinators that glue together the different parts.

Looking at those combinators and their relation with other data types will lead to the notion of monad, one of the central idioms (and type classes) in Haskell code. You will explore its definition, its laws, and compare it to the other pervasive type class: the functor. Many instances of the Monad class are available in the Haskell Platform: in this chapter I will focus on those related in some way to keeping track of a state.

The idea of monad is not very complex, but it has enormous ramifications in Haskell. For that reason, both this chapter and the next one are devoted to understanding monads in depth.

Data Mining

Data mining is a wide field and comprises many kinds of algorithms making use of statistics, machine learning, or artificial intelligence, and targeted to discover different patterns in the data. The two concrete tasks that will be interesting to consider in current and next chapters are:


	First of all, discovering the different types of clients that use our store, based on their user information and their purchase history.Clustering is the term applied to algorithms that try to discern groups (or clusters in data-mining jargon) of elements in a set that share common properties. The hope is that, using this information, the marketing team can better target their campaigns.

	Then, you would want to detect the purchase habits of each type of client. This will allow us to tailor the discounts (there will be more discussions about discounts in the last part of the book). For that matter, the idea is to learn association rules, and later use them to derive conclusions.




[image: image] Note  Since the store is selling time machines, you could use them to travel in time and look at trends in the future. However, this is sort of dishonest, so you should try to use present data and present technology to perform better in the market.



Implementing K-means

K-means is one of the simplest algorithms for performing clustering on a set of data. The information in this case is represented as a set of points in n-dimensional space, each of them representing a different observed fact. The similarity between two facts corresponds to the proximity of the points. The concrete task of the algorithm will be dividing the whole set of points into k partitions, such that the aggregated distance of the points in each partition is minimized.


[image: image] Note  The number of partitions to create is usually represented as k, and must be explicitly given as input to the algorithm. This need to specify the number of partitions up front is one of the shortcomings of K-means. Different methods are proposed in the literature to determine the best value to provide. The Wikipedia article http://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set provides a good summary of the different approaches.


For example, Figure 6-1 shows a set of 2D points. The K-means algorithm has been executed over that set of points with k=3. The output of the algorithm (that is, the three clusters of points) is distinguished in the figure by a common shape used to draw them. Cluster 1 is drawn with circles, Cluster 2 uses triangles, and Cluster number 3 uses crosses.


[image: 9781430262503_Fig06-01.jpg]

Figure 6-1. Clusters obtained for an example data set



This example shows a main characteristic of K-means: it works only on vectors, for which you can define a notion of distance and proximity. A first approach would be using a tuple for representing that information, but using a tuple poses the problem that the number of components of the vectors should be constant among all the uses of the algorithm. This is not a very reasonable assumption, because just taking into account some new information (for example, deciding to cluster also depending on the age) would require changing all the type definitions. Another possibility would be to use lists, but in that case you lose the safety enforced by tuples 1 (because lists can have different numbers of elements). The best option then is defining a new type class, Vector, which will have as instances all data types supporting the distance operation you need:

class Vector v where
  distance :: v -> v -> Double

Then you must create an implementation for numeric pairs (a,b) and (c,d), using the Euclidean distance measure given by the expression:

[image: pg135.jpg]

One possible implementation for numeric pairs using this distance measure would be:

{-# LANGUAGE FlexibleInstances #-}
 
instance Vector (Double, Double) where
  distance (a,b) (c,d) = sqrt $ (c-a)*(c-a) + (d-b)*(d-b)


[image: image] Note  The Haskell Report only allows instance declarations for types whose shape is a name followed by a list of distinct type variables. The above definition doesn’t follow that lead, so the compiler complains. However, GHC supports those declarations if you enable the FlexibleInstances extension.


Furthermore, you also need to specify how to translate one item in our data into its corresponding vector. Again, doing so using a type class is the best way to go. But this time you need to specify two types taking part in the type class: the type of the items to convert, and the type of the vectors in which they are translated. You can do so using multi-parameter type classes, which follow the same syntax as one-parameter ones and enabling the MultiParamTypeClasses extension. However, the concept of type classes with two or more parameters departs from being just like an interface in an object-oriented language and looks more like a contract between two different types. Working with these type classes can be tricky: you will explore the implications of them through the book. The name given to elements translatable to vectors will be, no surprise here, Vectorizables. Here’s the definition and a simple instance for performing the identity conversion between Double pairs:

{-# LANGUAGE MultiParamTypeClasses #-}
 
class Vector v => Vectorizable e v where
  toVector :: e -> v
 
instance Vectorizable (Double,Double) (Double,Double) where
  toVector = id

The way in which the K-means algorithm describes a cluster is via one vector for each, called the centroid of the cluster. Each element in the data set is assigned to the cluster whose centroid is nearer to the data point. After knowing this fact, we already have an initial idea of how the type of K-means should look like:

kMeans :: (Vector v, Vectorizable e v) => Int  -- number of centroids
                                       -> [e]  -- the information
                                       -> [v]  -- centroids after convergence

The K-means algorithm is very simple: in a first phase it generates k vectors, which will be used as the initial centroids. Then, each point is assigned to the cluster of the nearest centroid. In that way, a first partition of the data points is created. After all points have been assigned, the algorithm computes new centroids: the updated centroid of each cluster will be the average of all the points in that cluster. These new centroids will make the input of a new cluster-point assignment and centroid updating phases, and so on. At some point, the clusters will be stable: the partition and the clusters won’t change anymore. Thus, the procedure stops and returns the centroids as the final ones.

Let’s work on each of the steps, and finally join everything together into a big algorithm. There are several options for generating the initial vectors. One possibility is generating random vectors; another one is choosing k of the vectors in the data set (this is called the Forgy method). The best option is to abstract this choice and include an extra argument to the kMeans function for the function generating the initial values. The type of the function in this case would turn into:

kMeans :: Vector v, Vectorizable e v => (Int -> [e] -> [v]) -> [e] -> [v]

The cluster assignment phase should receive the current centroids and the elements of the set and decide which centroid each element corresponds with. This is done based on the proximity. Since you have a key (cluster) to values (points) mapping, it makes sense to use a Map to hold the assignments. This implies that you need to include an extra Ord v constraint in the Vector type class, because Map keys must fulfill that requirement.

This cluster assignment phase can be divided in two different tasks. The first one is creating the Map with all the keys assigned to empty lists. At this point there’s an implicit assumption that no two keys will be the same at any point of the algorithm, but in a more complete implementation this should be taken care of. The second task should go element by element and find the centroid closer to it and then add the element to the list of the chosen centroid. Remember that you must first translate the element to a vector using the toVector function. The following code makes use of folds both for the creation of the initial maps and the update for each element in the data set.

import Data.List
import qualified Data.Map as M
 
clusterAssignmentPhase :: (Vector v, Vectorizable e v) => [v] -> [e] -> M.Map v [e]
clusterAssignmentPhase centroids points =
  let initialMap = M.fromList $ zip centroids (repeat [])
   in foldr (\p m -> let chosenCentroid = minimumBy (\x y -> compare (distance x $ toVector p)
                                                                     (distance y $ toVector p))
                                                    centroids
                      in M.adjust (p:) chosenCentroid m)
            initialMap points

Finally you have to compute the new centroid of each cluster. To do so you need to map from the elements in a cluster into a vector. You can see now that an extra function was left out in the type class for Vectors: computing the centroid of a set of them. Thus, let’s augment that type class and implement it for Double pairs:

class (Default v, Ord v) => Vector v where
  distance :: v -> v -> Double
  centroid :: [v] -> v
 
instance Vector (Double, Double) where
  distance (a,b) (c,d) = sqrt $ (c-a)*(c-a) + (d-b)*(d-b)
  centroid lst = let (u,v) = foldr (\(a,b) (c,d) -> (a+c,b+d)) (0.0,0.0) lst
                     n = fromIntegral $ length lst
                  in (u / n, v / n)

With this new function, it’s straightforward to implement the computation of new centroids. The idea of the code is the following: for each cluster (so you need to use fmap), convert the list of associated elements to vectors (so inside the function to apply to each element you need to have a map toVector), and then get the centroid of this set. Finally, we convert the map into a list of (old,new) elements.

newCentroidPhase :: (Vector v, Vectorizable e v) => M.Map v [e] -> [(v,v)]
newCentroidPhase = M.toList . fmap (centroid . map toVector)

Even though the algorithm is known to converge, you may want to stop iterating when the amount of change between successive centroids is less than a threshold. For that reason, the code includes a function that computes the total amount of change and compares it with a predefined value:

shouldStop :: (Vector v) => [(v,v)] -> Double -> Bool
shouldStop centroids threshold = foldr (\(x,y) s -> s + distance x y) 0.0 centroids < threshold

With all this parts, you can finally wrap up the initial code for K-means:

kMeans :: (Vector v, Vectorizable e v) => (Int -> [e] -> [v])  -- initialization function
                                       -> Int                  -- number of centroids
                                       -> [e]                  -- the information
                                       -> Double               -- threshold
                                       -> [v]                  -- final centroids
kMeans i k points = kMeans' (i k points) points
 
kMeans' :: (Vector v, Vectorizable e v) => [v] -> [e] -> Double -> [v]
kMeans' centroids points threshold =
  let assignments     = clusterAssignmentPhase centroids points
      oldNewCentroids = newCentroidPhase assignments
      newCentroids    = map snd oldNewCentroids
   in if shouldStop oldNewCentroids threshold
      then newCentroids
      else kMeans' newCentroids points threshold

In order to test kMeans, here’s a small function which generates k vectors (i, i), where i goes from 1 to k:

initializeSimple :: Int -> [e] -> [(Double,Double)]
initializeSimple 0 _ = []
initializeSimple n v = (fromIntegral n, fromIntegral n) : initializeSimple (n-1) v

With that piece of code, you can run a first example of K-means in the interpreter:

*Chapter6.KMeans> kMeans initializeSimple 2 ([(1,1),(1,2),(4,4),(4,5)]::[(Double,Double)]) 0.001
[(1.0,1.5),(4.0,4.5)]

To check whether you’ve understand how all the pieces of this initial implementation of K-means fit together, I propose you the EXERCISE 6-1 where the code is instrumented to produce some statistics of a run of the algorithm.


EXERCISE 6-1. COUNTING THE NUMBER OF STEPS

While profiling the performance of iterative algorithms, it’s very common to look at the number of recursive steps that have been done until reaching the threshold. Enhance the previous implementation of K-means to provide this value as an extra output of the kMeans function.






Lenses

The K-means algorithm is usually expressed in a more imperative way, in which the centroids and the error are variables that are updated in each iteration until the threshold is greater than the error. One of the places where the difference between more usual languages and Haskell is wide is the query and access to data structures, which should be made using either pattern matching or records, either with the record update syntax or via the helper functions that are created automatically by the compiler.

Lenses allow you to query and update data structures using syntax much closer to the typical dot notation found in other languages. However, that notation is defined completely in a library, not as part of the language. This should give you a taste of the great power of the Haskell language, which allows for expression of the scaffolding of data access and updating inside the language itself.

The concept of a lens wraps together a getter and a setter for a specific field in a data structure. In that way, it’s similar to a Java bean or a C# property. Apart from that, a particular lens library includes a number of combinators to mix together several lenses (for example, for chaining accesses to deeper parts of a structure) and to provide more recognizable syntax (for example, using += to update a numeric field by adding some amount).

You may have noticed that in the previous paragraph I used the phrasing “a lens library” instead of “the lens library”. This shows the fact that, in contrast to other parts of the Haskell Platform, the Haskell community doesn’t have a preferred or definite library for this task. Some of the lens packages are fclabels, data-accessor, or data-lens. In the book the focus will be on the lens library by Edward A. Kmett. In any case, the main ideas remain the same among all the packages: they differ in the theoretical basis (how lenses are represented internally and composed) and in the implementation itself, but not much on the external interface.

After this introduction, let’s focus on the use of lenses in your own code. Let’s remember the definition of Client and Person from Chapter 3, as you will be working with them:

data Client i = GovOrg     i String
              | Company    i String Person String
              | Individual i Person
 
data Person = Person String String

Previously, the definitions were using record syntax, but I have included here the raw ones, because once you create lenses for them, the usefulness of using record assessors is dismissed.

When using the lens library there are two approaches at generating the lenses for each field. In both cases, apart from adding lens as dependence to your project, you have to import theControl.Lens module. The first approach involves writing the lenses by hand. Even though it sounds difficult, it’s really simple: you just need to write the getter and the setter, which you can define via pattern matching. Let’s do it for thePerson data type:

firstName :: Simple Lens Person String
firstName = lens (\(Person f _) -> f)
                 (\(Person _ l) newF -> Person newF l)
 
lastName :: Simple Lens Person String
lastName = lens (\(Person _ l) -> l)
                (\(Person f _) newL -> Person f newL)

These are examples of simple lenses, in which the type of the structure does not change when the value is changed. However, there are cases when you want the type to change. For example, say you have aClient Int, and you want to update the identifier to a Double value. Now the client would have aClient Double type. So you need full lenses, which take as extra type variables the different types of the inner values. For example:

{-# LANGUAGE LambdaCase #-}
 
identifier :: Lens (Client i) (Client j) i j
identifier = lens (\case (GovOrg i _)      -> i
                         (Company i _ _ _) -> i
                         (Individual i _)  -> i)
                  (\client newId -> case client of
                      GovOrg _ n      -> GovOrg newId n
                      Company _ n p r -> Company newId n p r
                      Individual _ p  -> Individual newId p)

The lenses don’t need to reflect only fields in the data definition. Every time you have a well-defined way to get and return values, you can generate a lens. For example, assume that names for a Person don’t contain spaces. Then, you can create a lens for the full name: getting it will concatenate the first and the last name with a space in between, and setting a value would split the name in two parts and assign a part to each field.

fullName :: Simple Lens Person String
fullName = lens (\(Person f l) -> f ++ " " ++ l)
                (\_ newFullName -> case words newFullName of
                                     f:l:_ -> Person f l
                                     _     -> error "Incorrect name")

But most of the time you want to generate the basic lenses that just get and set a field in a structure, and this is a task that involves a lot of boilerplate code. Haskell philosophy wouldn’t allow writing so much repetitive code, so the writer of the library has included a facility for automatic creation of lenses. To use it, you need to write our data declarations using the record syntax, but the field with an underscore:

data Client i = GovOrg     { _ identifier :: i, _ name :: String }
              | Company    { _ identifier :: i, _ name :: String
                           , _ person :: Person, _ duty :: String }
              | Individual { _ identifier :: i, _ person :: Person }
              deriving Show
               
data Person = Person { _ firstName :: String, _ lastName :: String }
              deriving Show

Now you need to ask the library to create the lenses for you. First of all, we need to enable theTemplateHaskell extension, which allows automatic generation of code. Then, you need to call makeLenses over each data type. Notice the use of two single quotes before the type name.

{-# LANGUAGE TemplateHaskell #-}
               
makeLenses ''Client
makeLenses ''Person

Et voilà! The code we wanted has been written for you in the background.


TEMPLATE HASKELL

Template Haskell is the name of a metaprogramming facility included in GHC. Metaprogramming is the name given to those techniques that allow modifying the code that will be generated by a compiler, usually generating new code automatically. In the language Lisp, metaprogramming is a form of compile-time macros.

You’ve already seen an example of metaprogramming: the deriving mechanism for built-in type classes. Template Haskell provides an extensible interface to the GHC compiler and allows library authors to provide their own code modification facilities, as the lens library does. There are many other libraries in Hackage making use of Template Haskell: for example, derive includes automatic derivation of many other type classes, such as NFData.

Template Haskell is not part of the Haskell 2010 Report so, as usual, your code won’t be easily portable to other Haskell compilers as is stands. However, GHC provides a command-line argument, -ddump-splices, which outputs the code that Template Haskell generated, and you can copy it back if you need full compatibility.



Now that you know how to create lenses, it’s time to use them. One of the basic operations you can do with a lens is querying a value. For that, you can use either the view function, or the (^.) operator:

*Chapter6.Lenses> let p = Person "John" "Smith" in (view firstName p, p^.lastName)
("John","Smith")

The best thing about lenses is that they can be composed with the (.) operator (the very same used for function composition) to create new lenses. This in particular gives a very C-like feeling to field access:

*Chapter6.Lenses> let client = Individual 3 (Person "John" "Smith")
*Chapter6.Lenses> view (person . lastName) client
"Smith"
*Chapter6.Lenses> client^.person.fullName
"John Smith"

Updating is done using the set function or the (.∼) operator. As you will notice, the semantics here are compatible with a pure language like Haskell: a new copy of the data structure with the field updated is returned, the element is not updated in-place.

*Chapter6.Lenses> set identifier 4 client
Individual {_identifier = 4, _person = Person {_firstName = "John", _lastName = "Smith"}}
*Chapter6.Lenses> person.lastName .∼ "Kox" $ client
Individual {_identifier = 3, _person = Person {_firstName = "John",_lastName = "Kox"}}

While it’s very useful in terms of composing lens operations, having the structure that will be updated being the last argument of the function may be a bit difficult to read sometimes. For that reason, lens includes the (&) operator, which flips the order of the parameters and allows you to use the value at the beginning:

*Chapter6.Lenses> client & person.fullName .∼ "Marianne Kox"
Individual {_identifier = 3, _person = Person {_firstName = "Marianne", _lastName = "Kox"}}

The good thing about the lens is the inclusion of a lot of combinators that resemble the typical combined update operators in C or Java (that is, += or *=). The always follow the same name schema: the name of the operator that will combine the current value and the new one, followed by a tilde:

*Chapter6.Lenses> client & identifier +∼ 2
Individual {_identifier = 5, _person = Person {_firstName = "John", _lastName = "Smith"}}

All of these operators are specific instances of the more general function over, or its infix form (%∼), which takes a function to apply to the field pointed by the lens:

*Chapter6.Lenses> client & over identifier (+2)
Individual {_identifier = 5, _person = Person {_firstName = "John", _lastName = "Smith"}}
*Chapter6.Lenses> import Data.Char  -- for bringing toUpper into scope
*Chapter6.Lenses> client & person.fullName %∼ (map toUpper)
Individual {_identifier = 3, _person = Person {_firstName = "JOHN", _lastName = "SMITH"}}

Lenses for many different types are included in the library. For example, there’s a family of lenses _1 to _9 that go inside each component of a tuple, provided that it is long enough:

*Chapter6.Lenses> ("a","b") & set _1 "c"
("c","b")
*Chapter6.Lenses> ("a","b") & set _3 "c"
<interactive>:
    No instance for (Field3 ([Char], [Char]) b0 a0 [Char])
      arising from a use of `_3'
    Possible fix:
      add an instance declaration for
      (Field3 ([Char], [Char]) b0 a0 [Char])
    In the first argument of `set', namely `_3'
    In the second argument of `(&)', namely `set _3 "c"'
    In the expression: ("a", "b") & set _3 "c"

Sometimes the value in the mentioned field may not be available. This happens, for example, in the lenses1 for obtaining the head and tail of a list. In this case, you have two options: either use the (^?) operator, which returns its value wrapped on Maybe, or use (^?!) which doesn’t wrap the value, but signals an error if the element is not available. The update is performed using the same operators that before:

*Chapter6.Lenses> "abc"^?_head
Just 'a'
*Chapter6.Lenses> "abc"^?!_tail
"bc"
*Chapter6.Lenses> "abc" & (_head .∼ 'd')
"dbc"
*Chapter6.Lenses> "abc" & (_tail %∼ map toUpper)
"aBC"

In Haskell the most usual way to split a list is between its head and the rest of the list (the tail); but you can also split from the end. The lens library provides lenses for accessing the last element in the list and the list without that last element, namely _last and _init:

*Chapter6.Lenses> "abc"^?_init
Just "ab"
*Chapter6.Lenses> "abc" & (_last %∼ toUpper)
"abC"

As mentioned before, many other lenses are included in the library distribution: for lists, maps, sets. If you decide to use lens, don’t forget to check these instances.

As a final touch to our overview of lenses, I am going to discuss the traversed lens. This lens allows you to go inside a list (or in general any instance of theTraversable type class, which also includes trees and maps) and update each of the elements using a further lens. For example, if you have an array of people, you can change all the first names to uppercase by using that lens:

*Chapter6.Lenses> let people = [Person "Jack" "Smith", Person "Marianne" "Branson"]
*Chapter6.Lenses> people & traversed.firstName %∼ map toUpper
[ Person {_firstName = "JACK", _lastName = "Smith"}
, Person {_firstName = "MARIANNE", _lastName = "Branson"} ]

EXERCISE 6-2 applies the information about the lens library to time machines. I encourage you to go through that exercise to get a good idea of lenses.


EXERCISE 6-2. TIME MACHINE LENSES

Generate lenses for the TimeMachine data type you created in previous chapters, including all the information mentioned before and also a price. Using the operators introduced here, create a function that, given a list of time machines, increases the price by a given percentage.



Let’s use lenses to rewrite the implementation of K-means. Instead of having different arguments for each piece of information that it needs to hold, let’s create a data type holding all of them. The lenses will be derived automatically using Template Haskell:

data KMeansState e v = KMeansState { _centroids :: [v], _points :: [e]
                                   , _err :: Double, _threshold :: Double
                                   , _steps :: Int }
 
makeLenses ''KMeansState


[image: image] Note  The derivation of lenses via Template Haskell must appear before any use of them in other code. Thus, you must be careful about writing the code above before the definition of the new kMeans code.


As you can see, the error will be saved in a field, and also you are saving the number of steps, something that you were asked to include in a previous exercise. The new algorithm kMeans' will be seen as a series of changes in that state: it first creates the assignments and then updates the centroids, the error, and the number of steps. These three last steps are implemented using lenses. Finally, the algorithm must check the stopping condition by comparing the error to the threshold, which is also a field in the state data type. The kMeans function also has to be changed to return only the centroids from the full state.

initializeState :: (Int -> [e] -> [v]) -> Int -> [e] -> Double -> KMeansState e v
initializeState i n pts t = KMeansState (i n pts) pts (1.0/0.0) t 0
 
kMeans :: (Vector v, Vectorizable e v) => (Int -> [e] -> [v]) -> Int -> [e] -> Double -> [v]
kMeans i n pts t = view centroids $ kMeans' (initializeState i n pts t)
 
kMeans' :: (Vector v, Vectorizable e v) => KMeansState e v -> KMeansState e v
kMeans' state =
  let assignments = clusterAssignments state
      state1 = state  & centroids.traversed
                      %∼ (\c -> centroid $ fmap toVector $ M.findWithDefault [] c assignments)
      state2 = state1 & err .∼ sum (zipWith distance (state^.centroids) (state1^.centroids))
      state3 = state2 & steps            +∼ 1
   in if state3^.err < state3^.threshold then state3 else kMeans' state3

Notice that the way in which we compute the error has also been changed: instead of return pairs of (old centroid, new centroid) when updating the centroids, it takes the centroids in the current and previous state, and perform the aggregation of their distance using sum and zipWith. EXERCISE 6-3 asks you to finish this implementation with lenses by writing the code of the cluster assignment phase.


EXERCISE 6-3. K-MEANS LENSES

The implementation of the algorithm using lenses is not yet complete: the function clusterAssignments are missing. Starting from the version showed in the previous section, write these functions (which now operate on full states) using lenses all the way long.





Discovering Monads

One of the pillars of Haskell philosophy is reusability. For that reason, while learning the language and its libraries, it’s useful from time to time to step back and look at the code you’ve already written, looking for common patterns that could be abstracted. In this section you will think about abstractions related to Maybe values and to state handling. The same kind of structure will appear in both cases, leading us to the notion of a monad that will be the core of this section.


Watching out for Incomplete Data

In the previous section there’s an explicit assumption that you already have all the information that will be input to the K-means algorithm in a nice way, so that the only transformation you need to do is convert that information to vectors. However, this is rarely the case with a data set from the real world. Usually you need an initial preprocessing stage to gather all the information, do some aggregation, and maybe fix some inconsistences.

Usually, the raw information will come from some sort of database system. You will see later how to communicate with these systems using the Persistent library, here only some aspects of its use will be needed. In particular, in a table you can have NULL as value for a column, meaning that there’s no information (or it hasn’t been recorded). The way that the Persistent library represents a nullable column of type τ is via a value of type Maybe τ. For example, say that you want to compute the average value of all the items purchased by a particular client. A possible way to code that could be:

meanPurchase :: Integer -- the client identifier
             -> Double  -- the mean purchase
meanPurchase clientId = let p = purchasesByClientId clientId
                         in foldr (+) 0.0 $ catMaybes $ map purchaseValue p
 
purchaseValue :: Integer -> Maybe Double
purchaseValue purchaseId =
  case numberItemsByPurchaseId purchaseId of
    Nothing -> Nothing
    Just n  -> case productIdByPurchaseId purchaseId of
                 Nothing        -> Nothing
                 Just productId -> case priceByProductId productId of
                                     Nothing    -> Nothing
                                     Just price -> Just $ (fromInteger n) * price

In the previous example, catMaybes, from theData.Maybe module, is used. That function filters out every Nothing element in the list, and it’s very convenient when working with list of Maybe values.


[image: image] Note  In the previous example, and in the next examples in this section, I’ve factored out the code for accessing the database, which is not relevant to the current discussion. If you want to try the code, just include a simple return value. For example, purchasesByClientId could return [1,2,3] and numberItemsByPurchaseId, productIdByPurchaseId and priceByProductId could return just a constant value.


Clearly, this code is neither elegant nor maintainable. You have to write explicitly a waterfall of checks for Nothing or Just. Furthermore, in the event you want to add some new query in between the other ones, you would need to re-indent all the code that you have already written. What you are going to do is to develop a combinator that will allow you to write better, more maintainable code.

The main idea is the following: the combinator should take a value wrapped by Maybe. This value would only be taken into consideration if it’s constructed using Just, in other case you just return Nothing. If you decide to continue, you should apply a function to the element enclosed in the Just, which itself returns another Maybe value. At the end, you should end in any case with a Maybe value resulting from the application. Once you know what is wanted, the combinator is straightforward to write:

thenDo :: Maybe a -> (a -> Maybe b) -> Maybe b
thenDo Nothing  _ = Nothing
thenDo (Just x) f = f x

Now let’s rewrite the initial purchaseValue using that combinator, which has been applied infix to increase clarity. Here’s the new solution:

purchaseValue :: Integer -> Maybe Double
purchaseValue purchaseId =
  numberItemsByPurchaseId purchaseId `thenDo` (\n ->
  productIdByPurchaseId purchaseId   `thenDo` (\productId ->
  priceByProductId productId         `thenDo` (\price ->
  Just $ fromInteger n * price       )))

The new code is definitely cleaner and much more maintainable. Furthermore, you have hidden the low-level operation of unwrapping Maybes into a combinator, leading to more re-usability.


[image: image] Note  Take some time to parse the previous function. The style of writing the argument to a function in a different line from the body is called “hanging lambdas.” It’s very common when using function combinators such as our thenDo.


One fair question is why you need to write a new combinator thenDo. At first, it seems that the task of that function is very similar to fmap in a functor. Let’s write its type, specialized for Maybe:

fmap :: (a -> b) -> Maybe a -> Maybe b

The problem here is that the result being Nothing or Just cannot depend on the function to be applied, it’s completely determined by the input value. If you tried to use a function with an output type of Maybe b, you would have as specialized type:

fmap :: (a -> Maybe b) -> Maybe a -> Maybe (Maybe b)

And a value wrapped twice in Maybe is not what we want. The opposite case is possible, though: we can express fmap in terms of our thenDo combinator.

fmap f x = x `thenDo` (\y-> Just $ f y)

Thus, the newly defined combinator is strictly more powerful than fmap: it can be used to write a version of fmap for Maybe values, for fmap cannot express the behavior of thenDo. The optional EXERCISE 6-4 asks you to verify that our new definition of fmap is indeed correct.


EXERCISE 6-4. PROVING THAT OUR FMAP IS CORRECT

Using the equational reasoning introduced in Chapter 3, prove that this implementation of fmap is correct. In order to do so, you should check that fmap as defined in this section works exactly the same as the instance of Functor for Maybe values, which maps Just x to Just (f x) and Nothing to Nothing. Hint: split in cases, depending on the constructor for the Maybe value.






Combinators for State

Based on our success building a combinator for chaining functions that may fail returning Nothing, you can think of doing the same to refactor a bit of our code for the K-means algorithm. The particular refinement that would be interesting to do is hiding the management of the states found in the last version of the code.

First of all, let’s think about how to represent a function that manipulates a state. Each of these functions would be the real building block that will later be chained using the combinator that will be developed. The state prior to the execution of the function could be seen as an extra argument to the function. So if in general we have a function of type a -> b, a function that also consumes a state of type s should be typed as a -> s -> b. This function must also be decorated with the state at the end of the execution, which could be later passed to the next function expecting a state. Given that the function returns a value of type b, we can pair it up with a value of type s. In conclusion, functions that manipulate a state have type a -> s -> (b,s). Using the previous knowledge from working with Maybe values, one would expect our combinator to have a type similar to:

thenDo :: (s -> (a,s)) -> (a -> s -> (b,s)) -> (s -> (b,s))

This seems a bit awkward at first, because it seems more natural to choose (a,s) -> (a -> s -> (b,s)) -> (b,s), that is, to thread the state directly from the initial computation through the second function. However, the version that generates a function that still needs an initial state is more useful, because it allows combining stateful computation for which the initial state is not yet present, and it will also make more clear the pattern that will emerge from these examples. Since the code will be using s -> (a,s) a lot, it makes sense to introduce a type synonym for it:

type State s a = s -> (a, s)

Now the parallelism with the Maybe case is more obvious in the type of the combinator:

thenDo :: State s a -> (a -> State s b) -> State s b

The implementation of the combinator is very simple: you just need to apply the state to the first function, to get a result and a new state, which is passed to the second function. In the Haskell code I have included also the type signature without synonyms for an easier understanding:

thenDo :: State s a -> (a -> State s b) -> State s b
-- thenDo :: (s -> (a,s)) -> (a -> s -> (b,s)) -> s -> (b,s)
thenDo f g s = let (resultOfF, stateAfterF) = f s
                in g resultOfF stateAfterF

Interestingly, thenDo can be described very concisely using composition and uncurrying:

thenDo f g = uncurry g . f

In the version that will be developed from now on, only the information about the centroids, the error threshold, and the number of steps will be recorded. In that way, there will be two separate sets of information: the state itself and the vectors you run the algorithm over. Thus, you can spot the differences between information that is threaded and state and others that are not. Furthermore, I would like to present the code here without lenses combinators, to focus the discussion only on the combinators related to state. The new KMeansState definition is:

data KMeansState v = KMeansState { centroids :: [v]
                                 , threshold :: Double
                                 , steps :: Int }

As for Maybe values, let’s rewrite the code using the thenDo combinator. The main kMeans function will just call kMeans', which is the one using the combinator with an initial state. The result of the computation is a pair of the final centroids and the last state:  you need to return only the first one using fst.

newCentroids :: (Vector v, Vectorizable e v) => M.Map v [e] -> [v]
newCentroids = M.elems . fmap (centroid . map toVector)
 
clusterAssignments :: (Vector v, Vectorizable e v) => [v] -> [e] -> M.Map v [e]
clusterAssignments centrs points =
  let initialMap = M.fromList $ zip centrs (repeat [])
   in foldr (\p m -> let chosenCentroid = minimumBy (\x y -> compare (distance x $ toVector p)
                                                                     (distance y $ toVector p))
                                                    centrs
                      in M.adjust (p:) chosenCentroid m)
            initialMap points
 
kMeans' :: (Vector v, Vectorizable e v) => [e] -> State (KMeansState v) [v]
kMeans' points =
  (\s -> (centroids s,s))                                  `thenDo` (\prevCentrs  ->
  (\s -> (clusterAssignments prevCentrs points, s))        `thenDo` (\assignments ->
  (\s -> (newCentroids assignments, s))                    `thenDo` (\newCentrs   ->
  (\s -> ((), s { centroids = newCentrs }))                `thenDo` (\_           ->
  (\s -> ((), s { steps = steps s + 1 }))                  `thenDo` (\_           ->
  (\s -> (threshold s, s))                                 `thenDo` (\t           ->
  (\s -> (sum $ zipWith distance prevCentrs newCentrs, s)) `thenDo` (\err  ->
  if err < t then (\s -> (newCentrs, s)) else (kMeans' points) )))))))
 
initialState :: (Vector v, Vectorizable e v)
             => (Int -> [e] -> [v]) -> Int -> [e] -> Double -> KMeansState v
initialState i k pts t = KMeansState (i k pts) t 0
 
kMeans :: (Vector v, Vectorizable e v) => (Int -> [e] -> [v]) -> Int -> [e] -> Double -> [v]
kMeans i k pts t = fst $ kMeans' pts (initialState i k pts t)

Fair enough, it seems that making this change for handling states didn’t give as much clarity as before: you need to write explicitly the s argument all the time. Let’s try then to refine our combinators to be more specific to this situation. In particular, notice that you have three kinds of functions working on the state: those in which the state remains the same, those that access a particular member of the state and return the result, and those that update the state. Let’s write a definition for each of them:

remain :: a -> (s -> (a,s))
remain x = \s -> (x,s)
 
access :: (s -> a) -> (s -> (a,s))
access f = \s -> (f s, s)
 
modify :: (s -> s) -> (s -> ((), s))
modify f = \s -> ((), f s)


[image: image] Note  In the previous pieces of code I have used the unit type, (). It’s a type that only has one element, the empty tuple (). It’s customarily used when you need to return something in a function but don’t really have a good value for it.


The rewritten version of kMeans' is as follows:

kMeans' :: (Vector v, Vectorizable e v) => [e] -> State (KMeansState v) [v]
kMeans' points =
  access centroids                                     `thenDo` (\prevCentrs  ->
  remain (clusterAssignments prevCentrs points)        `thenDo` (\assignments ->
  remain (newCentroids assignments)                    `thenDo` (\newCentrs   ->
  modify (\s -> s { centroids = newCentrs })           `thenDo` (\_           ->
  modify (\s -> s { steps = steps s + 1 })             `thenDo` (\_           ->
  access threshold                                     `thenDo` (\t           ->
  remain (sum $ zipWith distance prevCentrs newCentrs) `thenDo` (\err         ->
  if err < t then remain newCentrs else kMeans' points )))))))





Dissecting the Combinators

At the beginning of the section the way to deal with function chains involving Maybe values was scrutinized and led to the realization that one could benefit from a combinator that was called thenDo. Afterward, the same idea has been successfully applied to State values. Following the same approach used with functors, the question whether this pattern can be abstracted into a type class should be posed.

The answer is affirmative: thethenDo combinator is exactly the (>>=) (pronounced “bind”) function of the Monad type class. This type class encompasses all those types that allow combining computations of a certain kind between them. You have already seen two examples:


	TheMaybe monad combines functions that may fail;

	The State s monad combines functions which keep track of an internal state of type s.



However, the Monad type class includes more functionality that just binding:

class Monad m where
  return :: a -> m a
  (>>=)  :: m a -> (a -> m b) -> m b
   
  (>>)   :: m a -> m b -> m b
  f >> g = f >>= (\_ -> g)
   
  fail   :: String -> m a
  fail s = error s


[image: image] Warning  The return function in Monad has nothing to do with the return keyword in C or Java. However, it was an unfortunate choice from the designers of this type class, because it brings to memory ideas about imperative programming. Before going on, try to free your mind from this idea. Monads have essentially no relation to imperative programming, state, or mutability (although specific Monad instances cover these use cases).


The role of (>>=) has already been explained, so let’s move to return. This function describes how to wrap a pure value using a monad. Usually, it also describes the simpler element you can get (just returning a value) for each kind of computation. At first, it seems extremely vague, so let’s look at the implementation for our Maybe and State monads:


	The specific type for the return implementation of State s is a -> State s a, or equivalently, a -> s -> (a,s). The only implementation you can think of is returning the value that was passed, with the internal state unchanged. This is exactly the purpose of the remain combinator in the previous section. It also complies with the idea of being the “simplest” computation with state: one that does not change the state at all;

	For Maybe, the type of return looks like a -> Maybe a. So you have two alternatives: either return the value wrapped in Just, or Nothing. In the definition of return you already have a value to wrap, so it makes more sense to have return = Just. Furthermore, if you look at the final example in the section where incomplete data was discussed, you can see that in the last step we used Just: and now we could change it into a return.



The next function in the type class is (>>). As you can see from its definition, it combines two computations such that the second one doesn’t use the return value of the first one. This may sound strange, but you have already encountered such a situation: when in our State s monad we modify the state, you don’t use the return value of this operation (which is always the empty tuple ()). As in many other default implementations, this function is defined here because it’s expected that some instances could give a much faster definition for (>>) than the default one.

Finally, you find the fail function. As its name suggests, it allows defining special behavior of the monad when some part of its computation fails. For example, failing into the Maybe monad should intuitively return Nothing. Apart from its direct use, its purpose in the definition of Monad  will be explained in this section.

Right now you have enough information for using a monad instead of a custom combinator in the previous examples. EXERCISE 6-5 shows you how to do so.


EXERCISE 6-5. USING MONADS FOR INCOMPLETE DATA AND K-MEANS

All the parts that make up the Monad instance for Maybe have already been discussed. Write the instance declaration for it. Then, rewrite the purchaseValue function using (>>=) and return.



Another interesting fact that we discovered in our combinator for Maybe is that using it you can write a correct implementation of fmap. Let’s think first how the type of fmap specialized for State s looks like:

fmap :: (a -> b) -> State s a -> State s b        -- with type synonyms
fmap :: (a -> b) -> (s -> (a,s)) -> (s -> (b,s))  -- without type synonyms

The implementation should be clear: just apply the function to the returned value, and leave the state as is:

instance Functor (State s) where
  fmap f gWithState = \s -> let (gResult, gState) in g s in (f gResult, gState)

In a previous section you saw that one could also define it for Maybe using the combinators in that section, which you have seen now that are functions of the Monad type class.

fmap f g = g >>= (\x -> return $ f x)

Indeed, this definition is equivalent to the handwritten definition above. The good news is that this implementation works for any monad, that is, every Monad instance gives rise to a Functor instance by defining fmap as above. It’s included in the Control.Monad module of the base package, under the name liftM.


[image: image] Note  If any Monad instance is also an instance of Functor, why is this relation not shown  in the declaration of those classes? This is a historical accident, and you should expect Functor to soon become a superclass of Monad. In the meantime, you should ensure that you have an instance of Functor for each of your Monad instances: you can build one easily using the aforementioned liftM function.





do Notation

The monad concept, brought from a branch of mathematics called category theory into Haskell by Phil Wadler (among others), is ubiquitous in Hackage libraries. Many computational structures have been found to be instances of Monad. Given its success, the Haskell designers decided to include special syntax for monads in the language: the so-called do notation.2

A do block starts with the do keyword and then followed by a series of expressions. At compile time, those expressions are translated into regular code using (>>=), (>>) and fail. So the best way to understand what this notation means is by looking at the possible ways you could use monadic functions and see how do notation approaches it.

The first case is having two computations f and g such that the second doesn’t consume any input from the first. You have already seen that this corresponds to the expression sequencing those computations f >> g. In do notation this is written:

do f
   g

However, there’s also the possibility that the second function uses the result value of the first one. For that matter you have the bind function: f >>= g. Usually, the way one uses bind is not like that, but rather using an anonymous function, and giving a name to the result of f: f >>= (\x -> g x). do notation also introduces a name for the resulting value, but using <-. In particular, the expression f >>= (\x -> g x) is written:

do x <- f
   g x

There’s also support for introducing computations that are not done inside a monadic context. For example, you may need to call (+) over a number that has been obtained before. But if you do the following:

do number1 <- obtainNumber1  -- you can specify any Maybe value, such as Just 3
   number2 <- obtainNumber2  -- you can specify any Maybe value, such as Just 5
   sum     <- number1 + number2
   return $ sqrt sum

The compiler will complain because the addition doesn’t have the required return type, which should be m a, where m is a monad. One solution is changing the previous-to-last line to sum <- return $ number1 + number2, but this introduced an unnecessary burden. The best thing is to use a let expression:

do number1 <- obtainNumber1  -- you can specify any Maybe value, such as Just 3
   number2 <- obtainNumber2  -- you can specify any Maybe value, such as Just 5
   let sum = number1 + number2
   return $ sqrt sum

Notice that you don’t have to write in after this kind of let expression.

Previously I explained that you could use pattern matching directly on let and where blocks and function declarations. This possibility is also available when using <- or let in a do block. If you remember, this had the risk of the returning value not matching the pattern. In those cases, the compiler added automatically a call to error with the appropriate message. When using do notation, the behavior deviates a bit from this: instead of calling error, the compiler will call the fail function of the monad. For example, the code:

do True <- willThatHold  -- placeholder for a function returning a Maybe Bool value
   f 5

Would be desugared to a version with a explicit branch for those values that are not True, even if that part didn’t appear in the code:

willThatHold >>= \x ->
  case x of
    True -> f 5
    _ -> fail "error"

The great power of do blocks comes from the fact that they are not limited to just two expressions: the syntax is desugared also for more expressions. For example, if you have:

do x <- f
   g
   y <- h x
   return y

This is more readable than its corresponding translation:

f >>= (\x -> g >> (h x -> (\y -> return y)))

The example of Maybe looks much nicer when using do notation:

purchaseValueWithDo :: Integer -> Maybe Double
purchaseValueWithDo purchaseId = do n         <- numberItemsByPurchaseId purchaseId
                                    productId <- productIdByPurchaseId purchaseId
                                    price     <- priceByProductId productId
                                    return $ fromInteger n * price

For the K-means implementation, you can stop using our home-baked data type and start using the State implementation that can be found in the Control.Monad.State module of the mtl package. mtl (from Monad Transformers Library) is one of the basic libraries, alongside base or container, which make up the Haskell Platform. It contains instances of many different monads and utility functions for all of them.

In particular, it includes equivalents to the access and modify combinators that were written. Instead of using a function for getting part of the state, this implementation gives access to the full state via the get function. Using the fact that State is also a functor, you can write access by lifting the accessor function to the result of get:

access :: (s -> a) -> State s a
access f = fmap f get

Since obtaining only part of the state in that way is used very often, mtl includes a gets function for that task.

This particular implementation also allows changing completely the internal state via the put function. There’s also the possibility of using a function to update it via a function that it’s also named modify. With all this information, the implementation of kMeans' reads:

kMeans' :: (Vector v, Vectorizable e v) => [e] -> State (KMeansState v) [v]
kMeans' points = do prevCentrs   <- fmap centroids get
                    let assignments = clusterAssignments prevCentrs points
                        newCentrs   = newCentroids assignments
 
                    modify (\s -> s { centroids = newCentrs })
                    modify (\s -> s { steps = steps s + 1 })
                    t <- fmap threshold get
                    let err = sum $ zipWith distance prevCentrs newCentrs
                    if err < t then return newCentrs else kMeans' points

A final remark is that, when using the State data type from mtl, you have several options for giving an initial state and thus performing the full computation. These can be summarized via their types: each of them returns a different set of information.

runState :: State s a -> s -> (a,s)  -- return value and final state
evalState :: State s a -> s -> a     -- return only value
execState :: State s a -> s -> s     -- return only final state

For K-means, the interest lies only in the return value, so you need to use the second alternative:

kMeans :: (Vector v, Vectorizable e v) => Int -> [e] -> Double -> [v]
kMeans n pts t = evalState (kMeans' pts) (initializeState n t)





Monad Laws

Beware that not all definitions of (>>=) and return will make a true monad. As with functors, the Monad type class imposes some laws over the behavior of their instances. These laws are not checked by the compiler but must be satisfied if you don’t want the user or the compiler to introduce subtle errors in the code. Don’t worry if in a first read you don’t understand all the details: this information is useful only if designing new monads, but it’s not needed at all for their usage.

The first two laws relate the bind operation with return:


	return a >>= f must be equivalent to f a, or in do notation, do { x <- return a; f x} must be equivalent to bare do { f a }. That is, nothing changes if you apply a computation to a value wrapped into the monad via return, or without it;

	x >>= return must be equivalent to x, or in do notation, do { y <- m; return y } must be equivalent to do { m }.  This means that return just unwraps and wraps again a value when bound from other computation.




[image: image] Note  The second law is very important for a good Haskell coding style. Remember that computing a value inside a monad and just next return it is not needed, just include the value computation as an expression.


The next law tells us about the associativity of the (>>=) operation, although it’s better stated using the do notation. In particular, it tells that the following code, where one do block is sequenced after another one:

do x <- m
   do y <- f x
      g y

is equivalent to performing some computation first, nesting the do block, and then doing the second part:

do y <- do x <- m
           f x
   g y

This means that you can nest do blocks any way you like, and the result should be the same. This is similar to the fact that (1 + 2) + 3 is equal to 1 + (2 + 3). This fact allows writing that code simply as:

do x <- m
   y <- f x
   g y

The final law makes explicit that the definition of fmap that was given based on a monad must indeed be the fmap of its Functor instance. That is, fmap f g must be equivalent to g >>= (\x -> return $ f x).


MONADS EVERYWHERE

If you look at the available information about Haskell in the Internet, you will notice that there are an enormous amount of tutorials devoted to monads. This seems to imply that monads are difficult to grasp, but they shouldn’t be.

Using monads is much more common than designing monads. You have already looked at the Maybe and State monads, and you will continue looking at more instances of this type class throughout the book. If you understand how to use each of them, you’ll be ready for real Haskell programming and on the path to fully understanding the concept of a monad.





Different Sorts of State

I’ve just remarked the importance of knowing the most common instances of monads. In this section you will look at those monads that have some relation to keeping or using an internal state. Two of them, Reader and Writer, could be seen as restricted versions of State. However, they have their own particular uses, and it’s interesting to know in which scenario we should apply each of them. Then the discussion will move to the ST monad, which is a very special one that allows using mutable references (as variables in a impure language) but in a controlled way, so you don’t surpass the purity of the language.


State and Lenses

Before going in depth into the other monads, I would like to highlight a special feature of the lens library: its special combinators for using lenses inside the State monad. Using these combinators, code resembles a more sequential style of programming, but still keeping all the purity.

Instead of using get and then applying a lens with view, you can directly access part of a data structure with the function use. This function already gives the result in the State monad, so you don’t need to call any extra fmap or return to get the value.

Remember that when you used the update functions for lenses, you always had to write the structure to be applied by explicitly using either $ or &. But inside a State monad there’s always a special value to count on: the internal state. For each update function ending in tilde (such as .∼, %∼ or +∼), the lens library has a corresponding function ending in an equals sign (.=, %= or += in the previous cases), which changes the internal state.

If you use a data type with several fields as your state, and have lenses for it, you can use syntax very close to the C one to change the state. For example, in K-means you need the following state to keep track of the centroids, the threshold, and the number of steps:

data KMeansState v = KMeansState { _centroids :: [v]
                                 , _threshold :: Double
                                 , _steps :: Int }

The following code shows how to rewrite the implementation of kMeans' via the use function to get information or temporarily save it, and the (.=) and (+=) functions to update centroids and steps in each iteration.

kMeans' :: (Vector v, Vectorizable e v) => [e] -> State (KMeansState v) [v]
kMeans' points = do prevCentrs  <- use centroids
                    let assignments = clusterAssignments prevCentrs points
                        newCentrs = newCentroids assignments
                    centroids .= newCentrs
                    steps     += 1
                    let err = sum $ zipWith distance prevCentrs newCentrs
                    t <- use threshold
                    if err < t then return newCentrs else kMeans' points

Now that we know about State we can also stop a bit on the zooming functionality of lens. Zooming takes a lens as an input, and a computation which now uses as internal state the information contained in that lens. In some sense it’s like focusing our attention on a small part of the structure for some time. Suppose that you have a very simple function which will increment all the identifiers of a list of Clients by some number, and also updates its names to uppercase. Given the following state declaration:

data ExampleState = ExampleState { _increment :: Int, _clients :: [Client Int] }
                  deriving Show
makeLenses ''ExampleState

This function implements the mentioned functionality zooming in each of the clients:

zoomExample :: State ExampleState ()
zoomExample = do n <- use increment
                 zoom (clients.traversed) $ do
                   identifier      += n
                   person.fullName %= map toUpper

Here’s an example of using the function over a list of clients in the interpreter:

*Chapter6.StateLenses> :{
*Chapter6.StateLenses| let client1 = Individual 4 (Person "John" "Smith")
*Chapter6.StateLenses|     client2 = Individual 3 (Person "Albert" "Einstein")
*Chapter6.StateLenses|  in execState zoomExample (ExampleState 2 [client1, client2])
*Chapter6.StateLenses| :}
ExampleState { _increment = 2, _clients = [
  Individual { _identifier = 6
             , _person = Person {_firstName = "JOHN", _lastName = "SMITH"}}
, Individual { _identifier = 5
             , _person = Person {_firstName = "ALBERT", _lastName = "EINSTEIN"}}]}





Reader, Writer, and RWS

In many cases the global state is not changing through the execution of the code but contains a bunch of values that are taken as constants. For example, in the K-means algorithm the number of clusters to make, the information in which the algorithm is executed or the error threshold can be seen as constant for a concrete run. Thus, it makes sense to treat them differently than the rest of the state: you aren’t going to change it, so let’s ask the Haskell compiler to ensure that absence of modification for us.

If you recall, in Chapter 4 we introduced (->) r as a functor. If you look at context as an extra, hidden, argument to functions, you can also see it as a monad, representing exactly those computations that take an extra context that cannot change. Let’s try to write its Monad instance to get some practice and concentrate on ideas about the monadic structure. The simplest function is return, which should have type a -> (r -> a). Thus, you only have one option for it:

return x = \r -> x

The types can also help us writing the implementation of (>>=) for this monad:

(>>=) :: (r -> a) -> (a -> r -> b) -> (r -> b)

You know that the result of (>>=) is a function which takes the context. Using this context, you can use the first function to retrieve a value of type a. Then, you can just pass it to the second function, along with the context, to get the final result of type b.

f >>= g = \r -> g (f r) r

Now you have all the code needed to get the Monad instance that you were looking for, and you can put it together in an instance declaration:

instance Monad ((->) r) where
  f >>= g = \r -> g (f r) r
  return x = \r -> x

As in the case of State, this monad is already packaged in the mtl library. It’s known under the name Reader, because the context can only be read, not written. But apart from the monad structure, you also need a way to retrieve the context. The library provides two different functions:


	ask retrieves the complete context, similarly to the get function for mtl’s State;

	asks applies a function to the context and returns the result. This function is very similar to the access function we developed for our handwritten State monad and to the gets function in mtl, and it’s very useful to query a specific field in a structure.



A typical example of Reader usage is handling the settings of an application. Usually these settings are read at the beginning of the application from some configuration file, but through the lifetime of the application it doesn’t change. It would be really annoying to include an explicit Settings parameter in every single function of the application, so wrapping it on the Reader monad is a very elegant solution.

data Settings e v = Settings { i :: Int -> [e] -> [v], k :: Int, th :: Double, user :: Person }
 
kMeansMain :: (Vector v, Vectorizable e v) => [e] -> Reader (Settings e v) [v]
kMeansMain points = do i' <- asks i
                       k' <- asks k
                       t' <- asks th
                       return $ kMeans i' k' points t'

As happened with State, you also need a function to execute the monad, to which we give the context. In this case it is called runReader, as just takes as argument the initial unchangeable state.

Even though the main idea of Reader is describing some immutable context, the mtl implementation also provides the option of executing a piece of code with a context only for that subcomputation. To do so, use the local function, providing it the function to modify the current state and the computation to perform. Inside the inner block, calls to ask or asks refer to the modified context, which will return to the original once the call to local has ended. For example, you may want to compare the run of K-means when you increase the number of clusters by 1. If you want to use the previous Settings context, you need change it for the enlarged cluster set:

compareClusters :: (Vector v, Vectorizable e v) => [e] -> Reader (Settings e v) ([v], [v])
compareClusters points = do c1 <- kMeansMain points
                            c2 <- local (\s -> s { k = k s + 1 })
                                        (kMeansMain points)
                            return (c1, c2)

You have just seen functions which consume a state but don’t modify it. The other side of the coin comprises those functions that generate some state, but never look back at it. This is the case of a logging library: you are always adding messages to the log, but you never look at the previous messages; you are only interested in increasing the log. For that you should use the Writer monad, as usually available in mtl.

The key design decision that was made for this particular implementation of the Writer monad is that every time you want to add some new value to the output state, the way it is combined with the previous state is specified by an instance of Monoid. Here are two examples that can help you understand better this fact:


	In the case you are building a log composed of strings, the monoid structure is that of the list type: the neutral element is the empty list, and the operation to combine two strings is their concatenation. So, if you want to build a log, we should use String as type parameter to Writer.

	Another place where some information can be seen as an output parameter is in the case of counting the number of iterations for the K-means algorithm. In that case, every time you perform some number of iterations, you want it to be added to the current value. So the monoid structure is that of the integer with sum. Remember that, since numbers have usually two monoidal structures (one for addition and another one for product); you need to wrap the values inside the Sum newtype to use addition as operation.



The way in which you modify the output state with a new value (which will get combined with the previous value) is by using the tell function with that new value as argument.

accessDatabase :: Writer String ()
accessDatabase = do tell "Start database access"
                    info <- readInformation
                    computeValue info
                    tell "Finish database access"

Since the initial value for the output information must be taken as the neutral element of the corresponding monoid, you don’t need any extra argument to run a Writer monad value using runWriter, which returns a tuple with both the return value of the computation and the output information.

Writer is an example of a monad whose instance declaration is still accessible while learning. EXERCISE 6-6 asks you to do so, taking care of some tricks needed to write the correct types.


EXERCISE 6-6. INTERNALS OF THE WRITER MONAD

The Writer monad is simply the one corresponding to the type (a,m) for any Monoid instance m. However, you cannot write directly instance Monoid m => Monad (a,m), because the type parameter a must not be written in the declaration, or the kind won’t fit. Thus, you need to use a newtype for the declaration:

newtype MyWriter m a = MyWriter (a,m)

Now you can write the declaration starting with instance Monoid m => MyWriter m. Also provide a definition for the tell function. Remember to first write down the specific types of the return and (>>=) functions: it will make things a lot easier.



Haskell tries to carefully delimit how much power should be given to each function, making the compiler able to detect more kinds of errors than in other languages. This philosophy can be transported to the context or state of a particular function: you should give only read access to the information that should be seen as constant, write-only for output that won’t be queried and read and write to the internal state that will be manipulated. It seems that in many cases what you need is a combination of the Reader, Writer and State monads.

How monads can be combined is a topic for the next chapter, but for this specific case the mtl developers have designed the RWS monad (acronym taken from the initial letter of each functionality to include), which you can find in the Control.Monad.RWS module. A specific value of this monad takes three type parameters: one for the read-only context, one for the write-only output, and one for the mutable state. The operators needed to access each component remain the same: ask and asks gets the Reader value, tell includes a new value in the Writer monad, and get, put and modify are used to query and update the State value.

Using RWS you can create our final version of K-means, which keeps the threshold as the context, retains the number of iterations using the Writer monad, and uses the centroids as the internal state to update. Notice how you need to wrap the integer values into the Sum newtype to tell the compiler which of the monoid structures for integers we want to use.

kMeans' :: (Vector v, Vectorizable e v) => [e] -> RWS Double (Sum Int) [v] ()
kMeans' points = do prevCentrs  <- get
                    let assignments = clusterAssignments prevCentrs points
                        newCentrs = newCentroids assignments
                    put newCentrs
                    tell (Sum 1)
                    t <- ask
                    let err = sum $ zipWith distance prevCentrs newCentrs
                    unless (err < t) $ kMeans' points
 
 
kMeans :: (Vector v, Vectorizable e v)
       => (Int -> [e] -> [v]) -> Int -> [e] -> Double -> ([v], Sum Int)
kMeans i n pts t = execRWS (kMeans' pts) t (i n pts)

As you can see, RWS provides an elegant way to design your functions, separating explicitly the purpose of each piece of information. This monad is especially useful when porting algorithms that have been developed before in an imperative language without losing any purity in the process.




Mutable References with ST

You have seen how a clever combination of extra arguments to functions and combinators allows for easier descriptions of computations with state. Furthermore, these abstractions can be turned into monads, which enable using the do notation, making the code more amenable to reading. But apart from this, Haskell also provides true mutable variables, in the same sense of C or Java, using the ST monad.


[image: image] Warning  There’s a chance that after reading this section you will start using the ST monad everywhere in your code. It’s interesting to know how this monad works, because it can lead to more efficient implementations of some algorithms, and because it gives a glimpse of the full range of possibilities of the Haskell Platform. However, using it is not considered a very good practice, and you should use other solutions to organize your code before trying ST.


One question that may come to mind is: does the use of ST destroy the purity of the language? The answer is that it does not. The reason is that the way ST is implemented restricts the mutable variables from escaping to the outside world. That is, when you use ST at a particular point, you can create new mutable variables and change them as much as you want. But at the end of that computation, all the mutable variables are destroyed, and the only thing that matters is the return value. Thus, for the outside world there’s no mutability involved. Furthermore, the Haskell run-time separates the mutable variables from different ST instances, so there’s a guarantee that mutable variables from different realms won’t influence each other.

Let’s present the actors in the ST play. The first one is, of course, the ST monad from the Control.Monad.ST module, which takes two type parameters, but only the second is important for practical use: it’s the type of the return value of the computation (following the same pattern as other state monads). The first argument is used internally by the compiler to assign unique identifier which will prevent different ST computations to interfere. This first argument is specified in a special way, using a so called quantifier over the type. I won’t delve into quantifiers right now, it’s enough to know that, for example, a ST computation returning an integer is declared as:

{-# LANGUAGE RankNTypes #-}
import Control.Monad.ST
 
intExample :: forall s. ST s Integer

Once the computation is declared, it’s run simply using it as argument to the runST function.

Inside ST computations, you can create mutable variables, which have the type STRef a, from the Data.STRef module, where a is the type of the values that will be held in the cell. All the definitions and functions related to STRefs live in theData.STRef module of the base package. Each new variable must be created with a call to newSTRef, which consumes the initial value for the variable (uninitialized variables are not supported). The result value is the identifier for that specific mutable variable, which will be used later to access and modify its contents.

The value of a variable can be queried using readSTRef, which just needs the variable identifier to perform its task. For updating a variable, as in the case of State, you have two different means:


	You can directly specify the new value using the writeSTRef function.

	Or instead you can specify a function that will mutate the current value of the STRef cell into a new value. For that matter, you may use modifySTRef. However, since modifySTRef is lazy on its application, there’s a strong recommendation against its use, because it may lead to memory leaks similar to the ones seen in the previous chapter. Use instead modifySTRef', which is strict.



For example, the following code computes the length of a list using ST. It starts by creating a new mutable variable initialized to the value 0. Then, it traverses the list, updating the value by one in each iteration. Notice that the code passes the specific identifier for the mutable variable to be accessible in the traverseList function that we defined.

listLength :: [a] -> Integer
listLength list = runST $ do l <- newSTRef 0
                             traverseList list l
                             readSTRef l
                  where traverseList []     _ = return ()
                        traverseList (_:xs) l = do modifySTRef' l (+1)
                                                   traverseList xs l


[image: image] Note  You cannot use map of fold directly on the list because you are in a monadic context, and the types of those functions do not allow this. In the next chapter we will see how monadic counterparts to these exist, such as mapM, foldM, or forM.



EXERCISE 6-7. K-MEANS USING ST

Implement the K-means algorithm using the ST monad. In particular, you must create one STRef for holding the centroids that will be updated and another one for the number of iterations.





Summary

In this chapter you finally got in touch with the notion of monad:


	Several implementations of the K-means clustering algorithm have been presented, starting with a handwritten one, then refining it using our own combinators, and finally creating versions using the State and RWS monads,

	Gathering information from incomplete data lead to define combinators for working with Maybe values in an easier way,

	From the similarities in the code using Maybe and using State the notion of monad was devised: a way to combine computations with some special characteristic, such as being able to fail or having an internal state,

	Monads are one of the most important constructions in Haskell and come with a custom syntax, called do notation, which you have studied in depth. This is the most used style of writing monadic code,

	You have seen several other monads: Reader, which holds a read-only context; Writer, which outputs a write-only value that is combined using a monoid structure; RWS, which combines the three Reader, Writer, and State monads; and ST, which implements controlled mutable variables,

	Apart from monads, in this chapter lenses have also been introduced as a way to query and update data structures in a common and powerful way.



1Technically they are not a Lens, but a Traversal.

2And now the inclusion of this special notation is a great incentive for library authors to discover whether their types form a monad, so their users approach their library with an already-known syntax.




CHAPTER 7
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More Monads: Now for Recommendations


The previous chapter served as an introduction to the concept of a monad. In particular, the tasks of handling errors using Maybe, constants using Reader, logging using Writer, and state were presented through the same point of view, making clear how monad functions form the scaffolding that combines code for all of them.

The list monad can also represent multiple outcomes of a function. This is useful for modeling paths between years in time machines. However, extra care must be taken to ensure that the code does not enter in infinite loops. You can avoid that problem by careful thinking and the use of the Logic monad. As you can see, lists are very important in Haskell programming: many ideas and algorithms depend on their very special structure. This chapter will also clarify the interactions between lists and other monads.

Data mining is going to be an integral part of this chapter too. You will implement the Apriori algorithm, which learns association rules from a data set. In short, association rules express relations between variables, such as “most of the people who buy a time machine also buy a travel guide.” Expressing the Apriori algorithm using the list monad will unveil a new type class: MonadPlus, which introduces choice to the mix.

You have so far been looking at examples that are using one monad at a time. And that is generally what you’ll encounter as you program in Haskell. However, more complex applications sometimes require the power of several monads, like Maybe for handling errors and Writer for logging information about the process. The most common way to combine multiple monads is by usingmonad transformers, and that will be one of our topics in this chapter.

Returning More Than One Value

In the previous chapter you saw how the Maybe monad models functions that may fail. Their monad functions allow threading successful values and stopping as soon as the first failure has been detected. If you look at lists with the same ideas, it can be said that a function returning a list is really returning several possible values for the same input arguments: an empty list will model failure, a singleton list a deterministic computation that returns just a value, and a longer list will model many possible outputs or paths of execution, usually expressed by saying that it models nondeterministic behavior.


[image: image] Warning  The term “nondeterministic” is used in a different way when speaking about lists in Haskell than when speaking about other kind of systems in computer science. The term was chosen because when simulating a nondeterministic computation, several outputs are possible, and this can be represented using a list. However, the computation inside a list monad is completely deterministic and pure, it doesn’t add any uncertainty in the way results are computed or ordered.



The List Monad

Maybe forms a monad, so a fair question is whether lists also form one. One way to check is by opening GHCi and calling return, a function that you know must be implemented by any monadic type, and ask it to return a list. If the expression runs successfully, it means that the type [] (remember this is the name of the type of lists) is a monad. Let’s do it with an easy example:

Prelude> return 1 :: [Integer]
[1]

You can see from the output not only that lists form a monad, but also that the Monad instance for lists is compatible with the previous discussion: a deterministic computation with just one value is modeled as a singleton list. The second function found in all monad instances is (>>=), the bind operator. Let’s first look at the bind operator’s type when instantiated for this particular case:

(>>=) :: [a] -> (a -> [b]) -> [b]

To check the bind operator’s behavior, let’s apply to a simple number list a function that, given a number, will produce the double and the triple of that number in a list:

Prelude> [1,2,3] >>= \x -> [2*x,3*x]
[2,3,4,6,6,9]

As you can see, the function is applied to each element of the list, and all the results are gathered again into a new list. Actually, you have already seen a function with this “application plus gathering” behavior before: it is the composition of mapping over a list, which would return a list of lists, then flattening the result using concat:

Prelude> map (\x -> [2*x,3*x]) [1,2,3]
[[2,3],[4,6],[6,9]]
Prelude> concat $ map (\x -> [2*x,3*x]) [1,2,3]
[2,3,4,6,6,9]

However, the best way to understand why it’s said that the list monad models nondeterminism is using some code with do notation. For example, the following piece of code takes values from two lists and then computes the product of each pair. Check the result carefully:

Prelude> :{
Prelude| do x <- [1,2,3]
Prelude|    y <- [7,8,9]
Prelude|    return $ x * y
Prelude| :}
[7,8,9,14,16,18,21,24,27]

The code has taken all possible values from the first list and all possible values from the second list, and has returned the application of the product function to each pair. This example shows how the monadic notation may hide some surprises: you may not expect from the <- syntax to take each of the values in the list in order. EXERCISE 7-1 will help you to fully grasp the behiavior by telling you about broken time machines.


EXERCISE 7-1. BROKEN TIME MACHINES

More often than should happen, time machines get broken. Imagine, for example, that you have a time machine that jumps randomly between the previous year, three years into the future, and five years into the future. Consider that to move four years into the future, you would need to make a five-year leap followed by a one-year jump into the past.

Imagine that you have such a machine as has just been described. Write a function named brokenThreeJumps that, starting for a year, returns all possible years in which you can arrive after three jumps in time with your broken time machine. Use the list monad and do notation.

Afterward, design a function brokenJumps that generalizes the former, and returns the possible years after a specified number of jumps.






A New View Over Monads

From the previous discussion, you can easily get the declaration of the monad instance for lists. If you remember, a monad is composed by a return function, which wraps a single value, and a bind function (>>=), which threads several computations in the monad. The corresponding instance for list reads as follows:

instance Monad [] where
  return a = [a]
  x >>= f  = concat $ map f x

However, there’s another possible way to define a monad, and lists are the perfect example of this different view. Instead of (>>=), you define fmap and additionally a join function, which should have the type m (m a) -> m a for each monad m. In the case of lists, join boils down to have the type [[a]] -> [a]. And there you can find again our old friend concat, which flattens lists.

Defining a monad in terms of these functions is equivalent to declaring it using return and bind. In particular, every monad has a sensible definition for fmap and join. You already know the definition of fmap for Maybe. Here’s the corresponding code implementing join:

join :: Maybe (Maybe a) -> Maybe a
join Nothing         = Nothing
join (Just Nothing)  = Nothing
join (Just (Just x)) = Just x

Since I’m talking about equivalence of definitions, I should tell you how to define (>>=) in terms of fmap and join and vice versa. Let’s start with the bind operator. This is the definition that I’m giving:

x >>= f = join $ fmap f x

As an exercise to build confidence in the validity of this rule, you can apply the left-hand side to the list monad and check whether the result is the same as our definition of (>>=). The equational reasoning looks like the example below for the list case:

join $ fmap f x = concat $ map f x = x >>= f

So, at least for the list case, the equivalence holds. Now, let’s go for the converse equivalences:

fmap f x = x >>= (\y -> return $ f y)
join x   = x >>= id  -- id is the identity function, id x = x

A good exercise to refresh your knowledge about equational reasoning is checking that the converse definitions hold for the list monad, as I have just done in the preceding code.


[image: image] Note  You have just seen another way in which you can get a definition of fmap using the monad functions, apart from using liftM as explained in the previous chapter. Every type that belongs to the Monad type class can also be made an inhabitant of the Functor type class in a uniform way. As I have already explained, this is not reflected in the definition of the Monad type class by historical accident, but the situation will be corrected soon.




Failures and Alternatives

Monads implement a concept of failure, which is supported by the fail function in the type class. But in some cases, apart from failure, you have the concept of multiple successes, as happens with []. For them, the standard library includes the MonadPlus type class, which extends Monad with two operations. This type class is found in the Control.Monad module, which also includes a lot of utility functions that will be discussed later. The full declaration of the type class is written below for reference:

class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a

The mzero function is the one supporting failure. One important remark about this function is that it returns a value that is parametric on every possible element wrapped by the monad, without any input from outside. In the case of lists, this means that only one kind of value can be returned, the empty list, as it is the one that you can build in such a way. You can check it by asking the value to the interpreter:

*Chapter7.MonadPlus> import Control.Monad
*Chapter7.MonadPlus Control.Monad> mzero :: [Integer]
[]

Successes from multiple branches of execution can be joined together using the other operation, mplus. Since lists model the multiple success values as their elements, joining several paths should be similar to concatenating both lists. For example, let’s define two different ways in which a time machine could be broken: one traveling randomly between the previous and the next year; and another traveling randomly between the year 1024 and two years into the future:

broken1 :: Integer -> [Integer]
broken1 n = [n-1, n+1]
 
broken2 :: Integer -> [Integer]
broken2 n = [1024, n+2]

You might have a time machine and not know how it is broken. Thus, it makes sense to put together all possible years to which such a machine may travel, either as broken1or as broken2. This disjunctive behavior is exactly what is captured by the mplus function in MonadPlus:

*Chapter7.MonadPlus Control.Monad> broken1 73 `mplus` broken2 73
[72,74,1024,75]

The most important function making use of the failure behavior of a monad is guard. You will see examples of its use in the implementation of the Apriori algorithm. But first, let’s introduce its type and definition, which is quite small but has quite big implications on the way you use it:

guard :: MonadPlus m => Bool -> m ()  -- for list, Bool -> [()]
guard True  = return ()  -- for list, [()]
guard False = mzero      -- for list, []

Notice that the function actually returns some value, but there’s no interest on it, so guard is never used in conjunction with <- to get its value.

To understand the function’s behavior, let’s focus on the following piece of code:

do guard condition
   return 1

This code will be translated by the compiler into a form without do notation, as seen in the previous chapter:

guard condition >>= (\_ -> return 1)

Going a step further, and replacing the monad functions by the specific definitions for lists, the code reads:

concat $ map (\_ -> [1]) (guard condition)

The first possible case is that the condition is satisfied. Then, guard condition is equivalent to [()]. The evaluation steps in that case are:

concat $ map (\_ -> [1]) [()] = concat [[1]] = [1]

However, when the condition is False, then the guard condition is equivalent to an empty list. This means that, when performing the map operation, the resulting list will be also empty. In this way, guard ensures that when the condition is not fulfilled, no values are returned.

Creating a new type class, MonadPlus, and including it in the basic distribution wouldn’t make sense if lists are the only type for which an instance exists. But this is not the case, because an instance for Maybe is also included, and it’s very convenient to use. Until now, you learned how a do block with a bunch of Maybes only returns a Just if all of its intermediate computations have also returned a Just value. This was useful for writing code that accesses a database and tries to get a final result by joining different pieces of information: if any of it fails, the whole process should be considered as failed. In the previous chapter you saw the code:

do n         <- numberItemsByPurchaseId purchaseId
   productId <- productIdByPurchaseId purchaseId
   price     <- priceByProductId productId
   return $ fromInteger n * price

Sometimes, the behavior that you want to obtain is not a series of accesses all of which should be done correctly. Instead, you might want one main way to get the information along with a fall-back case. Only if both fail would the entire process fail. Once again, this possibility of falling back when one Maybe operation fails is an example of a disjunctive behavior captured by the MonadPlus type class. For example, let’s see what the interpreter gives back when you model the first computation being failed using Nothing:

*Chapter7.MonadPlus Control.Monad> Nothing `mplus` Just 5
Just 5

The code falls back to the second option, which is the one returned. If the case that both computations are correct, the Monad instance for Maybe gives priority to the leftmost one, as shown in this example:

*Chapter7.MonadPlus Control.Monad> Just "first" `mplus` Just "second"
Just "first"

While reading the above presentation of MonadPlus, .another type class may come to your mind: Monoid. In some sense, mzero is a bit like mempty on monoids, and mplus is a bit like mappend. However, these two type classes should not be confused. The latter one works over a specific data type, whereas the former one is to be applied over data types that admit a type variable. That means that [Integer], a specific data type with no type variables, can be made a Monoid, but not a MonadPlus. On the other hand, a polymorphic type such as [a] can be made a MonadPlus, but never a Monoid. In the language of kinds, you would say that the Monoid type class applies of types of kind *, whereas MonadPlus applies to types of kind * -> *.

However, due to this relation, .Control.Monad features a couple of functions similar to the monoidal ones. msum is one of those, transposing the mconcat, which folds over a list of monoid values using the monoid intrinsic operation, to the level of MonadPlus. Once again, the difference in kinds can be observed in the types of these functions: mconcat has type Monoid m => [m] -> m, and msum is typed as MonadPlus m => [m a] -> m a. You can find two examples of its use below. Think carefully about the results:

*Chapter7.MonadPlus Control.Monad> msum [[1],[2,3],[],[1,2]]
[1,2,3,1,2]
*Chapter7.MonadPlus Control.Monad> msum [Nothing, Just 1, Just 2, Nothing]
Just 1

The other specific function for MonadPlus is .mfilter. In this case, the function being generalized is filter. In particular, mfilter returns all the values satisfying a condition, but joined using the mplus operation of MonadPlus. EXERCISE 7-2 shows how you can use the msum function to implement a related functionality: searching for an element in a list.


EXERCISE 7-2. SEARCHING WITH MONADPLUS

Write a find_ function with type (a -> Bool) -> [a] -> Maybe a that returns the first element in the list that fulfills the given condition. Do so using the function msum introduced in this section and the behavior of the MonadPlus instance of Maybe.



Association Rules Learning.

In the previous chapter, the focus was on discovering similar kinds of clients in order to create better advertising campaigns targeting one or more of these groups. Now, the aim is to perform data mining over the data set in order to be able to suggest new products to buyers while they are surfing the web store. To do so, one simple option is using association rules.

In association rule learning, you assume that your data is composed by a series of transactions, each of them being a set of items. You can think of each transaction coming from a row or set of associated rows in a regular database. For example, you can begin from the following piece of information:


“the company Wormhole Inc. bought the travel guide with identifier 3”



From this bit of information, you can derive the following transaction:

 { company, name "Wormhole Inc.", purchased travel guide, purchased product 3 }

These items are generated from a set of possible ones. Since information is usually represented in Haskell as a tree of values, you will first need to implement a way to translate those values into a flat representation made of transactions.

From those transactions, your aim is to create association rules. These rules are formed by two sets of items, the antecedent A and the consequent C, and are represented by A => C. The meaning of such a rule is that often, when a transaction contains the items in A, it also contains the items in C. An example may be { individual, purchased time machine } => { purchased travel guide }, telling that usually when an individual has bought a time machine, it will also buy a travel guide, so you can do well suggesting the available guides.

To finish this introduction, I need to introduce two measures associated with sets of items and rules. The support of a set of items is defined as the ratio of transactions that contain the mentioned set of items. For example, if your transactions are [{a, b}, {a, c}, {b, c}], the support of {b} is computed by dividing the amount of transactions which contain b (in this case 2) by the total amount of transactions (here, 3). So, support({b}) = 2/3 = 0.66.

The confidence of a rule A => C is defined as support(A and C) / support(A). This measure quantifies how many transactions support the rule by looking at the ratio of those transactions that fulfill the entire rule and those transactions that fulfill the antecedent.


Flattening Values into Transactions

As explained above, the association rules learning works over flat sets of items instead of composite values. In this section I will introduce those functions that will turn the latter into the former. First of all, let’s remember the description of clients and introduce the data types for products:

-- Clients
data Client = GovOrg     { clientName :: String }
            | Company    { clientName :: String, person :: Person, duty :: String }
            | Individual { person :: Person }
            deriving (Show, Eq, Ord)
data ClientKind = KindGovOrg | KindCompany | KindIndividual deriving (Show, Eq, Ord)
data Person = Person { firstName :: String, lastName :: String, gender :: Gender }
            deriving (Show, Eq, Ord)
data Gender = Male | Female | UnknownGender deriving (Show, Eq, Ord)
               
-- Products
data Product = Product { productId :: Integer, productType :: ProductType }
             deriving (Show, Eq, Ord)
data ProductType = TimeMachine | TravelGuide | Tool | Trip deriving (Show, Eq, Ord)

A purchase in the database is then just the aggregation of a client and a set of products:

data Purchase = Purchase { client :: Client, products :: [Product] } deriving (Show, Eq, Ord)

The items in a transaction will reflect useful information about a purchase. In particular, the kind and identifier of purchased product, the kind of client (government organization, company, or individual). In the case of companies, there’s also interest in knowing the duty of the person responsible for the purchase, and in the case of individuals, of knowing the gender if that information is available.

data PurchaseInfo = InfoClientKind           ClientKind
                  | InfoClientDuty           String
                  | InfoClientGender         Gender
                  | InfoPurchasedProduct     Integer
                  | InfoPurchasedProductType ProductType
                  deriving (Show, Eq, Ord)

To make the code clearer and type safer, let’s create a newtype to tag those sets used as transactions:

import Data.Set (Set)
import qualified Data.Set as S
 
newtype Transaction = Transaction (Set PurchaseInfo) deriving (Eq, Ord)

As an example, here is the code converting the information in a product and a purchase into a real transaction. Check that most of the work is just transposing some fields into values of thePurchaseInfo type. In EXERCISE 7-3, you will be asked to write the clientToPurchaseInfo function that is missing in the declaration of purchaseToTransaction.

productsToPurchaseInfo :: [Product] -> Set PurchaseInfo
productsToPurchaseInfo = foldr
  (\(Product i t) pinfos -> S.insert (InfoPurchasedProduct i) $
                            S.insert (InfoPurchasedProductType t) pinfos)
  S.empty
   
purchaseToTransaction :: Purchase -> Transaction
purchaseToTransaction (Purchase c p) =
  Transaction $ clientToPurchaseInfo c `S.union` productsToPurchaseInfo p


EXERCISE 7-3. CLIENTS INTO ITEMS

Write the missing clientToPurchaseInfo function. It should have type Client -> Set PurchaseInfo, and should satisfy the requirements for obtaining items from clients that I explained while defining the PurchaseInfo data type. Here’s an example showing the return value for a test:

*> clientToPurchaseInfo (Company "1984 Inc." (Person "George" "Orwell" Male) "Director")
fromList [InfoClientKind KindCompany,InfoClientDuty "Director"]

As you can see, from a simple Client you get a whole set of items.






The Apriori Algorithm

One of the simplest algorithms for mining association rules is Apriori, introduced in 1994 by Agrawal and Srikant. The Apriori algorithm works in two phases:


	First it generates sets of items that fulfill the condition of a minimum support, called frequent sets;

	Then, from those sets it derives association rules with a minimum confidence.



The result is a set of association rules that is known to satisfy some minimum value from each of both measures. By changing those values, you can experiment by creating more or fewer rules. Creating many rules has the problem of overfitting: the rules are true in the specific data set you are using, but they cannot be generalized and applicable to new scenarios. Thus, creating fewer rules increases the confidence in further applicability of them.

The way in which the first phase works is derived from an observation: if you have a set of items I with a support s, any subset of I will have a support equal or greater than s (because all the transactions that made I have such support will also be counted for any of its subsets). This means you can re-use the sets with n items to create larger sets of n+1 items by taking those that have an intersection of n-1 items, joining them, and then looking to see if they fulfill the required support. From what I have just explained, it does not make sense to join sets of items that have a support below the minimum, because the join will never satisfy the condition.


[image: image] Note  The actual algorithm performs some nice tricks at this point in order to generate a smaller amount of item sets from the previous ones, and thus has to do fewer checks.


Let’s introduce the data type for association rules and sets of items in this phase. Remember, they are called “frequent sets.” Here is the code to review:

newtype FrequentSet = FrequentSet (Set PurchaseInfo) deriving (Eq, Ord)
 
data AssocRule = AssocRule (Set PurchaseInfo) (Set PurchaseInfo) deriving (Eq, Ord)
instance Show AssocRule where
  show (AssocRule a b) = show a ++ " => " ++ show b

Along with the data type definitions, you will need helper functions for computing the confidence and support measures for frequent sets and association rules, respectively. As you can see, this code is not tuned for performance, as it calls length repeatedly on lists. Thinking about how to increase the speed of the following code is a good exercise.

setSupport :: [Transaction] -> FrequentSet -> Double
setSupport trans (FrequentSet sElts) =
  let total = length trans
      supp  = length (filter (\(Transaction tElts) -> sElts `S.isSubsetOf` tElts) trans)
   in fromIntegral supp / fromIntegral total
    
ruleConfidence :: [Transaction] -> AssocRule -> Double
ruleConfidence trans (AssocRule a b) =
  setSupport trans (FrequentSet $ a `S.union` b) / setSupport trans (FrequentSet a)

The first thing to do is to generate the initial sets of one element which are frequent. In the following code, instead of using list functions or comprehensions, I’m using list as a monad. Don’t get confused by the conversions from set to list via S.toList. Also do not be confused by the wrapping of the singleton set into a FrequentSet. That is just boilerplate and not the real point of this code:

import Control.Monad
 
generateL1 :: Double -> [Transaction] -> [FrequentSet]
generateL1 minSupport transactions =
  noDups $ do Transaction t <- transactions
              e <- S.toList t
              let fs = FrequentSet $ S.singleton e
              guard $ setSupport transactions fs > minSupport
              return fs
 
-- noDups removes duplicates in a list
noDups :: Ord a => [a] -> [a]
noDups = S.toList . S.fromList

The relevant part is how the code uses <- from to do notation to resemble the list comprehension syntax (as you will see later, this is not by chance), and also the guard function that was introduced in the previous section.

The code above also uses a special definition of a function that removes duplicates, namely noDups. In Chapter 4 I discussed how the basic function in the Prelude for this task, named nub, is quite slow; and also that converting to a set and from it back to a list is a more performant way to accomplish the task.

The next step in the algorithm is how to generate the frequent sets of level k+1 from the frequent sets of level k. As I discussed before, these can be done in two steps: first check whether each pair of sets of level k share k-1 elements, and then check whether the combined set fulfills the minimum support condition. Before looking at the code, let’s see briefly what it’s going to be doing with this function: you need to create more and more levels from the previous ones until you find an empty frequent set. We already know this pattern of generating elements until some condition is reached: it’s an “unfold.”

Since you already know that you want to use the unfoldr function to generate the list, it’s time to plug in the information specific to this case. As you know, unfoldr uses a seed value that is changed and threaded while creating new elements. Which pieces of information will be held in this value? You need at least the frequent sets of the previous level. But, to be able to know whether two frequent sets share k-1 elements, it’s also useful to thread the level you are working with at that moment (in other case you would have to recompute it from the number of elements in the sets). So, the seed value will have type (Int, [FrequentSet]).

In each level, the algorithm will produce a list of frequent sets, so the element type in unfoldr needs to be [FrequentSet]. This poses a problem: the result of unfolding will have type [[FrequenSet]] instead of a plain list [FrequentSet]. The easiest way to solve this problem is including a call to concat, which flattens the list. In conclusion, a new function generateNextLk is defined below. Check how guard is used to cut from the list of frequent sets all those that don’t fulfill the conditions.

generateNextLk :: Double -> [Transaction] -> (Int, [FrequentSet])
                         -> Maybe ([FrequentSet], (Int, [FrequentSet]))
generateNextLk _ _ (_, []) = Nothing
generateNextLk minSupport transactions (k, lk) =
  let lk1 = noDups $ do FrequentSet a <- lk
                        FrequentSet b <- lk
                        guard $ S.size (a `S.intersection` b) == k - 1
                        let fs = FrequentSet $ a `S.union` b
                        guard $ setSupport transactions fs > minSupport
                        return fs
   in Just (lk1, (k+1, lk1))

At this point you have all the ingredients for generating the frequent sets of all levels. You only need to have repeated calls to generateNextLk threading the previous frequent sets and the level number. This is a perfect job for unfoldr. Thus, a possible way to generate the frequent sets, assuming that l1 is the initial frequent set returned by generateL1 is the expression show below. This expression will be part of the whole implementation of the Apriori algorithm:

concat $ unfoldr (generateNextLk minSupport transactions) (1, l1)

The final step is the generation of association rules with a minimum confidence. The way in which the Apriori algorithm works at this point is as follows: take a frequent set I from the previous steps. Then, partition the set into two disjointed sets A and B such that A is not empty. Each partition will give rise to a rule A => B, which should be checked for minimum confidence. This should be done for each possible partition of each frequent set, which would be obtained by the powerset function: a perfect job for the list monad. The Haskell code is a straightforward translation of this description:

generateAssocRules :: Double -> [Transaction] -> [FrequentSet] -> [AssocRule]
generateAssocRules minConfidence transactions sets =
  do FrequentSet fs <- sets
     subset@(_:_) <- powerset $ S.toList fs
     let ssubset = S.fromList subset
         rule = AssocRule ssubset (fs `S.difference` ssubset)
     guard $ ruleConfidence transactions rule > minConfidence
     return rule
 
powerset :: [a] -> [[a]]
powerset [] = [[]]
powerset (x:xs) = powerset xs ++ map (x:) (powerset xs)

The only thing left is gluing all these functions into an actual apriori function, which should take the data set along with minimum support and confidence values, and return the association rules that fulfill those requirements. I have chosen to use a direct style passing the result of each function to the next one, but it could also be written using lets for each step, or in a point-free form.

apriori :: Double -> Double -> [Transaction] -> [AssocRule]
apriori minSupport minConfidence transactions =
  generateAssocRules minConfidence transactions
    $ concat $ unfoldr (generateNextLk minSupport transactions)
                       (1, generateL1 minSupport transactions)




Search Problems

Many problems in computer science can be better solved when looking at them as search problems. In a search problem you don’t know how to come to an answer directly, but you have a way to explore the space of possible solutions, and you can do so until you find the correct answer. Usually, the way to explore the space resembled the shape of a tree: from a possible solution you are able to create a set of other possible solutions to check. In this way, looking for the wanted value is similar to traversing the tree.


Paths in a Graph

Graphs are a good source of problems that can be solved using this approach: in this section you will look at one particular instance. In previous chapters, the idea of time machines that can only travel to specific points in time was introduced. The problem you need to solve now is finding all possible journeys between two years. As in the previous examples, the model will be a graph given by a list of edges (start, end). Assume also that there are no self-loops in it (that is, there are no edges (y,y) with the same year y in both components). First, let’s think about the function signature. You are looking for a list of paths, each of them represented as a list of years, between the node start and the node end. Thus, you need the graph, the two nodes and the result will be a list of lists of nodes:

paths :: [(Int,Int)] -> Int -> Int -> [[Int]]
paths edges start end = undefined -- code here

Remember that in real life, you would actually use the much more performantData.Graph module that was introduced in Chapter 4. However, for ease of exposition, in this section I’m using a bare list of pairs to model the graph.


[image: image] Note  The Prelude function undefined is customarily used as a placeholder for code that hasn’t been yet written. Trying to execute this function will result in an error, but it’s very handy for designing the overall structure of the code, marking with undefined those holes that will be filled later.


As in any search algorithm, there are several cases to tackle. In the general case, you must take all the nodes (o,t) whose origin is start (that is, o coincides with the parameter start) and find those paths between the target of that edge and the year you want to end in. This logic can be coded easily with a combination of the list monad and the guard function. As you can see, the following code is almost a transliteration of the logic that has just been described:

import Control.Monad
 
paths :: [(Int,Int)] -> Int -> Int -> [[Int]]
paths edges start end =
  do (e_start, e_end) <- edges
     guard $ e_start == start
     subpath <- paths edges e_end end
     return $ start:subpath

However, this code is not yet right, because you need to manage the case in which we have reached the target year of our journey. In that case, you need to add to those paths an extra one consisting just of one year: the one that is at the same time start and end. To do so, you can use the (:) constructor to append the element at the beginning of e_paths. However, in the following code I’ve rather chosen return and mplus in order to see how MonadPlus functions can be used in this scenario.

paths :: [(Int,Int)] -> Int -> Int -> [[Int]]
paths edges start end =
  let e_paths = do (e_start, e_end) <- edges
                   guard $ e_start == start
                   subpath <- paths edges e_end end
                   return $ start:subpath
   in if start == end
         then return [end] `mplus` e_paths
         else e_paths

If you take a graph like the following:

graph1 :: [(Int, Int)]
graph1 = [(2013,501),(2013,1004),(501,2558),(1004,2558)]

You can easily get all paths from year 2013 to 2558 in GHCi:

*Chapter7.Graph> paths graph1 2013 2558
[[2013,501,2558],[2013,1004,2558]]





The Logic Monad

However, loops can create problems when the search space is explored in a naïve way. For example, take this other graph, where there’s a cycle between years 501 and 1004:

graph2 :: [(Int, Int)]
graph2 = [(2013,501),(501,2558),(501,1004),(1004,501),(2013,2558)]

The list of paths between year 2013 and 2558 is infinite (you can always loop once more between years 501 and 1004). But you can still get a finite set of those paths, as this example shows:

*Chapter7.Graph> take 3 $ paths graph2 2013 2558
[[2013,501,2558],[2013,501,1004,501,2558],[2013,501,1004,501,1004,501,2558]]

The problem you have here is that the path [2013,2558] will never be found, because the search strategy embodied in the list monad will first need to find all subpaths with go through year 501 (because it’s found before in the list of edges). However, the list of those subpaths is infinite, so the computation never reaches the point at which the (2013,2558) edges are considered.

To get much better control over how the search proceeds, I will introduce the Logic monad, which can be found in the Control.Monad.Logic module of the logict package from Hackage. By default, this monad behaves as the list one, so almost all the code from previous example is valid now, just by changing the type signature of the function:

import Control.Monad.Logic
 
pathsL :: [(Int,Int)] -> Int -> Int -> Logic [Int]
pathsL edges start end =
  let e_paths = do (e_start, e_end) <- choices edges
                   guard $ e_start == start
                   subpath <- pathsL edges e_end end
                   return $ start:subpath
   in if start == end then return [end] `mplus` e_paths else e_paths
 
choices :: [a] -> Logic a
choices = msum . map return

The only important addition is the call to a newly defined choices1 function. This function allows turning a list into a set of successes in your Logic computation. This is done by returning each of the elements in the list (via map return) and then joining these successes together with msum.

At this stage, the definition using the Logic monad suffers from the same problem of the one implemented using lists. If you take the first three solutions, using the observeMany function from the Control.Monad.List module, you can observe the same behavior of traversing first all paths that go through year 501.

*Chapter7.Graph> import Control.Monad.Logic
*Chapter7.Graph Control.Monad.Logic> observeMany 3 $ pathsL graph2 2013 2558
[[2013,501,2558],[2013,501,1004,501,2558],[2013,501,1004,501,1004,501,2558]]

To solve this problem, Logic introduces a set of operators that are fair: that is, a set of operators that do not give priority to any of the possible branches in the computation. You can see the difference between mplus, the usual function for joining results, which first takes all those from the first argument and then those of the second; and interleave, which takes one from each every time it needs a further element:

*Chapter7.Graph Control.Monad.Logic> [1,2] `mplus` [3,4]
[1,2,3,4]
*Chapter7.Graph Control.Monad.Logic> [1,2] `interleave` [3,4]
[1,3,2,4]

There’s also a fair replacement of (>>=), called (>>-). However, since the bind operator is different, you can no longer use do notation. Thus, you need to desugar the pathsL function, and write it using the monad primitives, as EXERCISE 7-4 asks.


EXERCISE 7-4. DESUGARING MONAD NOTATION

Using the rules explained in Chapter 6, rewrite the pathsL function using (>>=) and return instead of do notation. Remember that guard is a normal function, not special syntax, so you don’t need to do anything about it different to any other function.



The replacement of (>>=) by (>>-) gives the next iteration of the paths algorithm:

pathsLFair :: [(Int,Int)] -> Int -> Int -> Logic [Int]
pathsLFair edges start end =
  let e_paths = choices edges >>- \(e_start, e_end) ->
                guard (e_start == start) >>
                pathsLFair edges e_end end >>- \subpath ->
                return $ start:subpath
   in if start == end then return [end] `interleave` e_paths else e_paths

And now the problem is gone: edges are visited in a fair order, and you get the [2013,2558] path:

*Chapter7.Graph Control.Monad.Logic> observeMany 3 $ pathsLFair graph2 2013 2558
[[2013,501,2558],[2013,2558],[2013,501,1004,501,2558]]

This example has given just a shallow exposition of the features in logict. This package provides many more combinators that allow the programmer to program in a logic programming style, with backtracking, cuts, conditionals and so on, so I encourage you to look at its documentation if you need to implement solutions to other search problems. Logic is also a sample of how monads can be used to embed other paradigms of computation inside Haskell, without losing the native taste.



Monads and Lists Redux

Up to this point, you have seen examples of lists considered as monads being used in a model returning multiple values. In this section you will learn about two other ways in which monads can relate to lists: first, functions similar to the usual list ones (for example, maps and folds), but which work in a monadic environment; then, how the list comprehension syntax can be extended to work under any monad.


Combining Values Under a Monad

In some cases you want to execute a computation over all elements of a list, but this computation happens inside a monad, instead of being a pure function. For those cases, the Control.Monad module contains a bunch of functions ending in M, which provide similar functionality to usual list functions. In this section you will get a high-level view of them and examples of where to apply them.

The first of these functions is mapM, and the type is Monad m => (a -> m b) -> [a] -> m [b]. The mapM function applies a monadic function to each element of the list, chaining the execution of each element inside the monad you are working on. For example, say you have a very simple function that prepends one string to another. But instead of using an extra parameter, you want to use some global context modeled with the Reader monad:

addPrefix :: String -> Reader String String
addPrefix s = ask >>= \p -> return $  p ++ s

If you now have a list of strings to which you want to prefix with that first string, your intuition may be to use map. However, map wouldn’t be a solution. Let’s try to spot the reason by looking at the type of the expression that you want to execute:

*Chapter7.UnderAMonad> :t map addPrefix
map addPrefix :: [String] -> [Reader String String]

What you get using map is not a function that prefixes all the strings in the list. Rather, the return value is a list of computations, each of them needing a context in which to perform its actions. If you use mapM, all those computations would go under the same Reader monad and thus share a context. That, it turns out, is exactly what you need:

addPrefixL :: [String] -> Reader String [String]
addPrefixL = mapM addPrefix

You can check that the function works as expected testing it in the interpreter:

*Chapter7.UnderAMonad> runReader (addPrefixL ["one","two"]) "**-"
["**-one","**-two"]

In some cases, you are not interested in the results of the computations, but just in the other effects the functions have on the elements of a list. For example, say you want to log a series of data using the Writer monad. You don’t really care in this case about what to return, just about the fact that the strings are appended in the log of the computation. For these cases, there is a version of mapM called mapM_ which doesn’t return such values. Here’s how the log function would look using it:

logInformation :: [String] -> Writer String ()
logInformation = mapM_ (\s -> tell (s ++ "\n"))

And again you can use the interpreter to check that thw function is working as expected:

*Chapter7.UnderAMonad> runWriter $ logInformation ["one","two"]
((),"one\ntwo\n")

The Control.Monad module also provides functions forM and forM_ which, in essence, are just mapM and mapM_ with their arguments reversed. That is, the list goes first and then the function. Using forM you can write code that looks a lot like a for-each loop in Java or C#. The previous function can be rewritten as:

logInformation infos = forM_ infos $ \s ->
                         tell (s ++ "\n")

mapM and forM are really specializations of the more general sequence function, which executes all actions of a set of monad values under the same monad context. The type of sequence is Monad m => [m a] -> m [a]. EXERCISE 7-5 provides hints for you to write a definition of sequence and mapM.


EXERCISE 7-5. A DEFINITION FOR SEQUENCE AND MAPM

Try to write the definition of sequence. Do it using do notation and pattern matching. As with any other list function, you should consider the cases of the empty list and the list with some head and tail. Remember that x <- v “extracts” the value wrapped in a monad from v :: m a into a binding x :: a.

For the mapM function, the hint is to write it as a composition of two other functions. The ones you should use have already been showcased in the example of prefixing a list of string with a common prefix from a shared context.



Be aware that the behavior of sequence (and hence mapM and forM) is determined mostly by the monad in which computation will happen. For example, if what you are sequencing a list of Maybe values, the behavior is to return Just only if all the elements in the list are Just values, and Nothing if any of the elements in the list is a Nothing. This is derived from the way (>>=) works for Maybe.

The same way the module provides “upgraded” maps, it also provides folds that work under a monad umbrella. The function that performs the task is foldM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a. Notice that there are no right and left fold versions: foldM always performs a left fold (if you need to perform it rightward, just reverse the list before applying the function). Once again, a logging facility provides us an example in which you would use this function. In this case, I’m going to present you a version of factorial that apart from calculating the result, also takes care of the number of folding steps needed for evaluation. The code uses (>>) instead of do notation because in this case it leads to much more concise code.

factorialSteps :: Integer -> Writer (Sum Integer) Integer
factorialSteps n = foldM (\f x -> tell (Sum 1) >> return (f*x)) 1 [1 .. n]

The last function in our walk-through is filterM, which filters some values on the list based on a monadic predicate. It’s folklore in Haskell community to use filterM and the list monad to provide a very concise definition of a function returning the powerset of a list:

powerset :: [a] -> [[a]]
powerset = filterM (\_ -> [False,True])

This function works by using at its very core the nondeterministic nature of computations under the list monad. Instead of returning merely True or False as whether to include or not an element in the filtered list, the powerset function uses an expression that returns both choices (these can be seen more clearly if you rewrite [False,True] to return False `mplus ` return True). All the possible choices for each of the elements will create a set of possible states: one per each subset of the original list.

Apart from mapM, forM, sequence, foldM and filterM, there are other functions such as zipWithM and replicateM that behave also as counterparts of list functions and that can be useful in a wide variety of situations. I encourage you to read their documentation in Hackage.


LIFTM AND AP

In the previous chapter you saw how every Monad admits a function called liftM of type Monad m => (a -> b) -> m a -> m b. This function allows converting any pure function into a function working on a monad (usually called lifting). As you already saw, this makes every Monad a Functor. This goes on very well, until you find a function with more than one parameter that you want to be lifted. For that case, the Control.Monad module provides functions liftM2, liftM3 and so on, which convert into monadic form functions with 2, 3 or more arguments.

However, it seems that the need of a family of functions, one per each number of arguments, is not very coherent with the elegance that Haskell code usually has. One would expect a solution that works for every number of arguments.

This solution exists, and it’s called ap. This function has type Monad m => m (a -> b) -> m a -> m b. This small change in signature allows chaining several of this together. For example, say you want to lift the compare function. The first thing is wrapping the entire function into a monad to satisfy the type of the first argument. You do so via:

Prelude> :t return compare
return compare :: (Monad m, Ord a) => m (a -> a -> Ordering)

Now you use ap to feed the first argument. Then, you get back another function with expects one parameter less. You can think of ap as a replacement of ($) when using monads. So, assuming x has type m a, then:

return compare `ap` x :: (Monad m, Ord a) => m (a -> Ordering)

Finally, you can use ap again to feed the last argument and get the final result.

As a rule of thumb, you can replace any call of the form liftMn f x1 x2 ... xn by return f `ap` x1 `ap` x2 `ap` ... `ap` xn. The ability to do so will play an important role in other important Haskell type class, Applicative, which will be introduced in Chapter 10.






Monad Comprehensions

The similarity between list comprehension syntax and do notation is not a coincidence. Indeed, in the olden days of Haskell, back in 1992, Philip Wadler proposed a general syntax that worked for any monad. However, it was decided to keep separate do notation for arbitrary monads and to use comprehension syntax only for lists. In 2011, redesigned monad comprehensions were introduced in the GHC compiler, and can be enabled using the MonadComprehensions extension.

The best way to understand the monad comprehension syntax is by comparing it to the do notation, which should be already familiar to you at this point. The first translation rule says that generators in a syntax comprehension correspond to bindings in do notation. Or more easily, that e <- m is kept as is between both syntaxes. The expression at the beginning of the comprehension is translated into a call to return in do notation. With these two rules you can translate the example with Maybe in the previous chapter, which read:

purchaseValueWithDo :: Integer -> Maybe Double
purchaseValueWithDo purchaseId = do n         <- numberItemsByPurchaseId purchaseId
                                    productId <- productIdByPurchaseId purchaseId
                                    price     <- priceByProductId productId
                                    return $ fromInteger n * price

Into comprehension syntax as:

{-# LANGUAGE MonadComprehensions #-}
 
purchaseValueWithDo :: Integer -> Maybe Double
purchaseValueWithDo purchaseId =
  [ fromInteger n * price | n         <- numberItemsByPurchaseId purchaseId
                          , productId <- productIdByPurchaseId purchaseId
                          , price     <- priceByProductId productId ]

On the other hand, you have seen that comprehensions allow a much richer syntax than merely generators. Monad comprehensions can also be used with that other syntax, but in many cases doing so requires the monad to implement a type class stronger that mere Monad. One example is guards: these are translated into calls to the guard function, so the expression must be wrapped into a MonadPlus instance. For example:

[ price | price <- priceByProductId productId, price > 5.0 ]

Would be translated into:

do price <- priceByProductId productId
   guard price > 5.0
   return price

Grouping and parallel comprehensions also require a monad which instantiates the MonadGroup (providing mgroupWith) and MonadZip (providing mzip) type classes, respectively. However, these instances are provided in the Haskell Platform only for the list monad, and third-party packages only implement those type classes for data types that resemble that structure (such as database tables), so I won’t delve into more detail in this point.

One aspect that is a bit tricky to understand with list comprehensions is transformations. In general, an expression such as [ g x1 ... xn | x1 <- m1, ..., xn <- mn, then f by e ] is translated into:

do (x1, ..., xn) <- g (\(x1, ..., xn) -> e)
                      (do x1 <- m1
                          ...
                          xn <- mn
                          return (x1, ..., xn))
   return g x1 ... xn

This code is quite complex, but it can help you in understanding why a complex expression works. For example, in Chapter 3 you can find the following expression: [x*y | x <- [-1,1,-2], y <- [1,2,3], then sortWith by x]. Using the translation rules, this expression is equivalent to:

do (x, y) <- sortWith (\(x, y) -> x)
                      (do x <- [-1,1,2], y <- [1,2,3], return (x,y))
   return $ x*y

These translations, even when in appearance they are just different ways to tell the same thing, and thus repetitive, can help by shedding light on what monads really are, and on their relation to other computational structures. For example, if you know Scala, you may be aware that an expression such as:

for (x <- List(-1,1,2) ; y <- List(1,2,3)  if x < y) yield x*y

is translated by the compiler as follows. Take into consideration that Scala uses object-oriented notation, so map and flatMap are written as methods of the lists, and anonymous functions are introduced with => instead of ->.

List(-1,1,2).flatMap(x => List(1,2,3).withFilter(y => x < y).map(y => x*y))

What you can see here is that the idea is the same as monad comprehensions in Haskell. The main difference between both languages is that Scala decided to model monad-like structures using flatMap, which is equivalent to the join combinator introduced at the beginning of the chapter. But, as you saw earlier, both definitions are equivalent.

Monad ideas can be found in other unexpected places. For example, recent versions of C# introduce a SQL-like syntax. In the language reference, a translation to this syntax to standard function calls is introduced. One of the important methods involved in such translation is SelectMany, whose signature is:

public static IEnumerable<TResult> SelectMany <TSource, TResult>
  (this IEnumerable<TSource> source , Func<TSource, IEnumerable<TResult>> selector )

The syntax is a bit verbose, but it can be easily understood. The type parameters to parametric types are given between < and >. Furthermore, all type parameters in a method signature must be given explicitly (that’s why we have <TSource, TResult> after the method name). There’s no special syntax for the function type, it’s just called Func. So, if I had to translate this signature into Haskell, it would read:

selectMany :: IEnumerable TSource -> (TSource -> IEnumerable TResult) -> IEnumerable TResult

But this is just the type signature of the (>>=) monad function! This shows that you can also come to monads starting with basic SQL syntax. Indeed, this SQL-like syntax is now used in ways that were not expected at the beginning, like managing tasks, but that make sense when you consider their relation to monads.

My hope with these last examples in other languages is that you relate one of the core concepts in Haskell, the monad, to what you may already know from your programming experience in other languages.



Combining Monads

In this chapter and the previous one I’ve been very careful about selecting examples that use only one monad (even RWS, which can be seen as a union of Reader, Writer, and State, is just one single monad). It’s clear though that in some cases you would need the combination of several monads to architect your code. There are many algorithms that are better explained as a combination of State for keeping some internal data and the possibility of failure that Maybe gives you. In this section you will see how monads can be combined, with a special focus on monad transformers.

In some cases, you could roll your own monad combination. Let’s take as an example a function that will get all possible paths between two points in a graph (as the paths function introduced above) but will manage the path as the output of a Writer monad

import Control.Monad
import Control.Monad.Writer
 
pathsWriter :: [(Int,Int)] -> Int -> Int -> [[Int]]
pathsWriter edges start end = map execWriter (pathsWriter' edges start end)
 
pathsWriter' :: [(Int,Int)] -> Int -> Int -> [Writer [Int] ()]
pathsWriter' edges start end =
  let e_paths = do (e_start, e_end) <- edges
                   guard $ e_start == start
                   subpath <- pathsWriter' edges e_end end
                   return $ do tell [start]
                               subpath
   in if start == end then tell [start] : e_paths else e_paths

Notice two things in this code. First, it uses the Monoid instance of lists to use it in the Writer. Second, you have to explicitly manage the change in monad: this can be seen clearly in this code because there is a nested do block. In this case this block is just creating a new Writer computation by telling the start year before executing the Writer computation for a subpath. Finally, you also need to manually consider how to execute the computations that were created: in this case the solution has been to map execWriter over every element returned by pathsWriter'.

In this case the code was still quite readable, and the places where you use each monad were clearly delimited (the first part of the do block uses the list monad to span several possible paths, and the Writer part is confined to the nested block). However, if the code turns more complex, you may need to manually call execWriter in the middle of the code and feed the resulting state from that computation into the next Writer block. Clearly, a better solution is needed for monad composition.


Monad Transformers

Monad transformers are the preferred way in Haskell to combine the effect of several monads into a new one. Other approaches to combining computational effects (failure, state, etc.) have been (and continue to be) proposed, but transformers continue to be the most used option. The transformers and mtl packages (short for Monad Transformer Library) have hundreds of packages depending on them. In short, a monad transformer takes some base monad and transforms it into a new monad with some extra computational effects. For example, in the previous code I used the type [Writer [Int] ()], which can be seen as the list monad [()] (which adds nondeterminism) being transformed to add extra output (in the form of the Writer [Int] monad). Formally, a monad transformer is a data type with the following structure:

MonadT e1 ... en m a

Let’s go element by element through the general transformer type to understand the common structure:


	MonadT is the name of the monad transformer. It usually coincides with the name of the monad whose effects the transformer adds. For example, StateT adds state functionality to other monad, ListT adds nondeterminism, ReaderT a read-only context, and so on.

	e1... en represent any extra type variable that the monad transformer may need. In most of the cases it is none, like MaybeT or ListT, or just one, like the transformers for state which need the type of the internal state; but in some cases, like the RWST transformer, it needs more (RWST needs one for read-only context, one for write-only output and one for state).

	Then the monad to be transformed or wrapped (both terms are used interchangeably) comes in the position of the m type variable.

	The result of MonadT e1... enm must be a monad itself, so it takes an extra parameter a to make it of kind * -> *, as expected.



As a result of this structure, a monad obtained by transformation looks a lot like an onion, with an inner monad in its heart and several layers adding extra functionality to this base monad. The downside of this is that computations in an inner layer must be “brought up” until you reach the outermost layer. This functionality is provided by the only function of the MonadTrans type class, the class of all monad transformers, named lift:

class MonadTrans t where
  lift :: Monad m => m a -> t m a

For example, if you want to translate the previous code into using monad transformers, you must include a lift in the access to the edges argument in order to use do notation. With that extra call, the type changes into the monad actually used in the example:

lift edges :: WriterT [Int] [] ()

And thus you can rewrite the example using monad transformers. Check how the nested do block has disappeared. As explained earlier, a lift on edges was needed; but notice how it is not needed when using tell, as this is functionality in the outermost layer of the monad. Also, the code was changed to use the MonadPlus function mplus instead the more concrete (:) list constructor.

import Control.Monad.Writer
 
pathsWriterT' :: [(Int,Int)] -> Int -> Int -> WriterT [Int] [] ()
pathsWriterT' edges start end =
  let e_paths = do (e_start, e_end) <- lift edges
                   guard $ e_start == start
                   tell [start]
                   pathsWriterT' edges e_end end
   in if start == end then tell [start] `mplus` e_paths else e_paths

As with other monads, each monad transformer has a corresponding function for running the computation given the extra information that such monad would need. In this example, instead of execWriter, the code uses execWriterT, which returns the write-only output wrapped in the inner monad, in this case, a list.

pathsWriterT :: [(Int,Int)] -> Int -> Int -> [[Int]]
pathsWriterT edges start end = execWriterT (pathsWriterT' edges start end)

One very important thing to remember is that monad transformers are not conmutative. That is, the computational effect of the resulting monad depends on the other of the transformations. For example, the monad StateT s [] can represent those nondeterministic computations where each of the paths has a different result and a different internal state. But ListT (State s) represents those computations where several results can be returned, but the state is shared among all the branches.

One rule of thumb is that effects are stacked intuitively in reverse order in which they appear in the transformer onion. This coincides to our previous description: StateT s [] first adds state to the mix, and then results with state are wrapped into nondeterminism; whereas ListT (State s) first adds nondeterminism to the result and then a state to the whole.

Consider the following example which combines Reader and Writer, the former being the outer layer (and thus requiring a lift for using tell, which works on the Writer layer):

readerWriterExample :: ReaderT Int (Writer String) Int
readerWriterExample = do x <- ask
                         lift . tell $ show x
                         return $ x + 1

The aforementioned fact that effects are stacked in reverse order can be seen when you execute the function: the outer call corresponds to runWriter (which is the inner monad) and the inner call is for runReaderT (which “peels” one layer):

*Chapter7.CombiningMonads> runWriter (runReaderT readerWriterExample 3)
(4,"3")

The following EXERCISE 7-6 helps you understanding how lifting works in an example case which uses a complex monad stack, and grasp more intuition about the order in which effects are stacked.


EXERCISE 7-6. TWO STATES AT A TIME

Write a function that computes the factorial of a number. But instead of the usual implementation, use one based on two states: one for keeping a decreasing counter and another one for keeping the factorial. One approach is to keep the state as a tuple, but for this exercise I want you to implement the state using a StateT Integer (State Integer) monad. Thus means that you must use lift to access one of the internal states. The final code to run the monad computation should be similar to execState (execStateT factorial x) 1.



To be completely formal, I will introduce Table 7-1. This table shows the way each of the most common monads is represented internally, and how the monad transformer changes a base monad m. This information will be the key to understanding the previous example with list and state.


Table 7-1. Commonly Used Monads and their Associated Transformers

[image: Table07-1.jpg]



To use this table, take the monad onion you want to describe. Apply the rules recursively, replacing the type variable m in each case with the inner monad. For example, let’s do it to describe the differences between StateT s Maybe and MaybeT (State s):


	StateT s Maybe a = s -> Maybe (a, s), so the failure affects both to the result and the state: the entire computation fails or not;

	MaybeT (State s) a = (State s) (Maybe a) = s -> (Maybe a, s), where the failure affects only the result, not the internal state being kept.



You have surely noticed the inclusion of a monad called Identity (which is available in module Control.Monad.Identity) that I hadn’t introduced previously. This monad adds no effect to the computation: return is the identity, and binding is mere function application. The purpose of this monad is to serve as innermost monad of the onion, which allows building the entire stack of monads using only monad transformers. For example, in the mtl package Reader r is actually defined as ReaderT r Identity.




Monad Classes

Up to this point, the transformers functionality is available in both the transformers and mtl package. But the mtl package is built in a very clever way and includes a type class hierarchy to eliminate the need of most calls to lift. In that way, working with transformers is no more difficult than using monads built from scratch.

As an example, take the Reader monad. The basic operations with this monad are ask, local, and reader, which are the functions to be generalized (others, such as asks can be written using those). In the Control.Monad.Reader, you can find the MonadReader type class, which consists of those functions:

class Monad m => MonadReader r m | m -> r where
  ask    :: m r
  local  :: (r -> r) -> m a -> m a
  reader :: (r -> a) -> m a


[image: image] Note  In the type class declaration, you can see an extra bit of information m -> r. This is called a functional dependency and will be treated in detail in Chapter 13.


Then, mtl defines instances of MonadReader for every combination of monad transformers, which include ReaderT as a layer. Using those, you don’t need to write explicit lift for using ask, local, and the rest of context- handling functions. The same combination of a type class and several instances is defined for the rest of monad transformers: MonadWriter, MonadState, MonadLogic (this last one in the logict package). The type class corresponding to the functionality in lists and Maybe is obtained through MonadPlus.

For example, if you work with transformers using the mtl package, you can rewrite the last example without the explicit call to lift for accessing the Writer layer, that is:

readerWriterExample :: ReaderT Int (Writer String) Int
readerWriterExample = do x <- ask
                         tell $ show x
                         return $ x + 1

But those type classes do not only help by lowering the need of calls to lift, it also enables giving type signatures that cover not only a certain structure of monad laters but any of them that supports some amount of functionality. Here’s an example. Say that you want to include the previous readerWriterExample function in your utilities library, and you do so using the type signature given above. What you would get is a function with an over-concrete example: you will only be able to run the function using the exact combination of monads stated in the signature. But the code that you’ve written supports being run in any “onion” given that it includes functionality of ReaderT and WriterT. Thus, you should strive for generality, something you can gain by using monad classes instead of an explicit stack:

readerWriterExample :: (MonadReader Int m, MonadWriter String m) => m Int
readerWriterExample = do x <- ask
                         tell $ show x
                         return $ x + 1

The important part is the one shown in bold: the information about monadic functionality used inside the function is encoded in the type class constraints. In the example, m represents a monad, which supports both Reader and Writer functionality.

To show that this code is indeed general, the interpreter session below runs the same monadic function using both the ReaderT Int (Writer String), and the RWS Int String Int monad (here the state part is not used, but it’s still a monad that supports the operations from MonadReader and MonadWriter):

*Chapter7.CombiningMonads> runWriter (runReaderT readerWriterExample 3)
(4,"3")
*Chapter7.CombiningMonads> runRWS readerWriterExample 3 0
(4,0,"3")

Thus, if you need to expose a function that produces a monadic value, instead of using an explicit monad (such as Reader, Writer, and so on), it is better to program against the corresponding type class. In that way, you get much better reusability, because the users of your library can use any transformed monad they want whenever it has the corresponding functionality embedded.


TRANSFORMERS VERSUS MTL

As stated in the beginning of the section, there are two different packages in the Haskell Platform providing support for monad transformers. The transformers package is the core one: it provides all the monad transformers and the MonadTrans type class. The mtl package includes that functionality, plus the monad classes. If you are exporting functions whose type includes monads, you should try using the monad classes and thus mtl.

The examples in this section are to be used with mtl. If you want to use transformers instead, you need to change the imports from Control.Monad.Something to Control.Monad.Trans.Something.



EXERCISE 7-7 guides you in creating a function paths that uses several monad transformers. Remember to program it using the corresponding type classes as I have just explained.


EXERCISE 7-7. PATHS ON MONAD TRANSFORMERS

Write a new version of pathsWriter that holds the graph as a read-only context. This means that you need to use functionality from both MonadReader (for handling the graph) and MonadWriter (for handling the paths) wrapping the base list monad. To check that the function is general, use two different monads to provided the requested functionality: ReaderT r (WriterT w []) a and RWST r w s a.



I would like to stress the importance of monad transformers for the Haskell programmer. It’s very common to design a monad stack for your application and add or remove layers during the development process. However, this doesn’t mean that your code becomes tangled spaghetti where every function calls any monad functionality. The mtl solution for abstraction using type classes allows you explicitly tell which monad layers are used in each function, leading to better composability and higher reusability.



Summary

This chapter has gone deeper into the notion of monad, which was introduced in the previous chapter:


	The list monad, which models nondeterministic computations that may return more than one value, has been explained. You have seen how this monad can be used to implement search problems.

	In cases where the list monad doesn’t give enough control over the search, the Logic monad can implement fair conjunction and disjunction.

	You have learned about an important extension of Monad, MonadPlus, which allows modeling failure and choice. Using its functions mzero and mplus, you now know how to implement the Apriori rule-learning algorithm.

	A high-level view of monad utility functions, such as sequence, mapM…, has been done.

	You have learned how the comprehension syntax can be generalized to work on any monad with the MonadComprehensions GHC extension. This has enabled you to relate Haskell monads with other notions in Scala and C#,

	Finally, you have learned how to combine monads using monad transformers.



1The definition of choices is taken from the article “Adventures in Three Monads” by Edward Z. Yang.




CHAPTER 8

[image: image]

Working in Several Cores


One of the main advantages of the purity that Haskell embodies is the ability to run code in parallel easily. Absence of side effects means that all data dependencies are explicit in the code. Thus, the compiler (and you) can schedule different tasks with no dependencies between them to be performed in parallel.

The Par monad enables you to make explicit which parts of your code would benefit from being run in parallel. The model supported by Par allows you to write code using both the futures model and the dataflow parallelism approach. Then, a scheduler takes care of running your code using parallel threads. Par is a very powerful abstraction, because you don’t need to take care of managing creation and destruction of threads: just let the library do what it does.

In some cases, though, several parallel tasks need to share resources in a way not expressible using Par. In the Time Machine Store, for example, several clients may be buying some items, which implies that several database updates will be happening at the same time. In those scenarios, ensuring that the resources are accessed concurrently in the right way is essential. Haskell features Software Transactional Memory as the way to control this behavior, using the idea of transactions brought from database systems.

Finally, you may want to split the computation between several nodes that are distributed across a network. Cloud Haskell is appropriate in that situation. The Cloud Haskell package uses the Actor model for communication between nodes and enables sending and receiving both data and code.

Parallelism, Concurrency, Distribution

There’s always some confusion between the terms “parallel programming,” “concurrent programming” and “distributed programming.” So, first of all, this terminology should be made clear.

Concurrency is a programming model where the computation is designed as several, mostly independent, threads of control. The system may either interweave the computations or run them in parallel, but in any case the illusion is that all of them work asynchronously. One archetypal example of a concurrent application is a web server: many clients request services at the same time, and from the programmers’ point of view, each of these requests is independent and happens asynchronously.

In most cases, those threads need access to some shared resource. At this point, one has to ensure that concurrent access does not leave the system in an inconsistent way. For that purpose, many programming techniques have been developed, including locks, semaphores, or channels. In the case of Haskell, a model called Software Transactional Memory (STM) brings the concept of atomic transactions from databases into your code to enable optimistic concurrency with rollback.

Parallelism, on the other hand, refers to a way of executing code in more than one computer core at once. Concurrent tasks are often run in parallel to achieve much better performance. This increment in speed can also be applied to tasks that were not thought as concurrent, but whose data dependencies enable running parts of the algorithm independently of each other. Think of the QuickSort algorithm for sorting: at each step the list is divided in two parts, and each of them is sorted separately. In this case, the subsequent sorting of the two lists can be made in parallel.

For this second case, Haskell is the perfect field: pure computations can’t interfere with each other, and their data dependencies are completely explicit. The Par monad, which shall be introduced later, follows this line of thought and enables parallelism for tasks.

In many cases, the confusion between parallelism and concurrency comes from languages with side effects. In languages such as Java or C, any piece of code may access and change global state. For that reason, any amount of parallelism must also take care of the access to those shared resources and thus is required of the techniques of concurrent programming. You cannot really separate both of them in that context.

Parallel programming is usually associated with running tasks in different cores (microprocessors or GPUs) in the same computer system. But the work can also be split between different computers that communicate across a network. In that case one speaks about distributed programming. Since each of the actors in the system is independent from any other, coordination of tasks must happen in a different way to one-system parallel programming. Furthermore, communication through a network imposes constraints in case of failure or big latency. For all these reasons, distributed programming needs other techniques.

In Haskell the distributed-process package provides a distributed programming environment. This package is part of the Cloud Haskell project, and it’s heavily influenced by the Erlang programming language. In particular, it uses Erlang’s actor model to orchestrate the interactions between different systems in the network.


[image: image] Summary  “Concurrency is about dealing with lots of things at once. Parallelism is about doing a lot of things at once.” —Rob Pike


The field of parallel, concurrent, and distributed programming in Haskell is much wider than what will be shown in this chapter. The libraries explained here can be used in many other ways, and many other packages are available in Hackage. For parallel programming you have the parallel package, which features the strategies approach. Parallelism is not only available for processors: Accelerate builds code to be run in a GPU. Haskell’s base package features low-level functionality for concurrency in the Control.Concurrent module, including mutable memory locations (MVars) and semaphores.

The Par Monad

The first focus on this chapter will be the parallel programming package called monad-par. The functions in that library revolve around the Par monad and the use of IVars for communication results. As you shall see, computation can be modeled in two ways with this package: as futures, or as dataflow programs.


Futures

Let’s start with a very simple task that aims to produce the factorization into primes of several numbers. The algorithm for factorizing one number is very simple: you try to divide by increasing natural numbers. If at some point the division has zero remainder, that number is a prime factor. Thus, the original number can be divided by that prime factor and the process can start over again. If at some point you reach the same number you started with, that means that you’ve reached the last prime factor. In Haskell the code for that approach reads as follows:

findFactors :: Integer -> [Integer]
findFactors 1 = [1]
findFactors n = let oneFactor = findFactor n 2
                 in oneFactor : (findFactors $ n `div` oneFactor)
 
findFactor :: Integer -> Integer -> Integer
findFactor n m | n == m         = n
               | n `mod` m == 0 = m
               | otherwise      = findFactor n (m + 1)

At some point in the program, you’ll be asked to factorize two different numbers. The code for such a function is straightforward to write:

findTwoFactors :: Integer -> Integer -> ([Integer],[Integer])
findTwoFactors x y = (findFactors x, findFactors y)

However, the efficiency of this function won’t be very high. Even in the case where more than one processor is available, the computation of the prime factors of x and of y will be done sequentially (assuming that they will be fully evaluated at the same time). One would aim for computing findFactors x at the same time that findFactors y, as Figure 8-1 shows.


[image: 9781430262503_Fig08-01.jpg]

Figure 8-1. Parallel computation of two prime factorizations



You can easily tell the system to run both findFactors calls in parallel by using the monad-par package. In the Control.Monad.Par there’s a function called spawnP. Let’s look closely at its type:

spawnP :: NFData a => a -> Par (IVar a)

The purpose of spawnP is just running a computation in parallel with the rest of the program. However, there are three things to notice from that signature. First of all, it requires the computation to be run to have a type supporting the NFData type class. If you remember, this is a type found in the deepseq package, which ensures that the computation is fully evaluated. spawnP imposes this constraint, because it’s the only way to ensure that the code will be actually run in parallel. If that constraint wasn’t there, the lazy evaluation model may make it run at any other time, losing the benefit of parallelism. Since the use of spawnP fully determines when some computation will be executed, the parallel model of monad-par is called deterministic.

The second thing you may notice is that the result is wrapped inside Par. This type is the monad in which parallelism is run. Finally, instead of just a value, the result of spawnP is an IVar. An IVar is a future, a promise that the result of the computation will be available when requested. In order to get the result of the computation inside an IVar, you must call the get function. This function returns immediately if the computation has finished, or blocks execution until the result is available. This is the same model used in Scala or in the Parallel Task Library in C#.

You can call spawnP and get only inside the Par monad. In order to run all the tasks, you have to call runPar with the whole trace of parallelism. A version of findTwoFactors that spawns a parallel task for computing the factors of x while keeping the factorization of y in the current thread would read as such:

import Control.DeepSeq
import Control.Monad.Par
 
findTwoFactors :: Integer -> Integer -> ([Integer],[Integer])
findTwoFactors x y = runPar $ do
  factorsXVar <- spawnP $ findFactors x
  let factorsY = findFactors y
      _        = rnf factorsY
  factorsX <- get factorsXVar
  return (factorsX, factorsY)

Notice the call to rnf from the deepseq library to fully evaluate the factorization of y.

Following these steps does not immediately result in parallel tasks being created: you need to follow two extra steps. First of all, you must compile your program with the threaded run-time, which enabled GHC to create code with uses several threads. To do so, add the –threaded options in the Cabal file:

executable chapter8
  hs-source-dirs:  src
  main-is:         Main.hs
  build-depends:   base >= 4, monad-par, deepseq
  ghc-options:     -Wall -threaded

In addition, you have to pass options to your program for using several cores:

$ ./dist/build/chapter8/chapter8 +RTS -N2

The +RTS option indicates the start of the options given to the Haskell run-time. In particular, -N2 indicates that two processors should be used. You can indicate at most the number of processors in your system. If you like, you can specify –N by itself, without a number, and allow the Haskell run-time to make the decision on the number of processors to use.




Dataflow Parallelism with IVars

The monad-par package not only provides futures but also a wider model of declaring parallel computations. Instead of just spawning parallel computations, you specify several steps of computation, which share intermediate results via IVars. These variables are created via new. Tasks can write to an IVar via the put function and obtain a result via get. Notice that an IVar is a write-once variable.

Let’s consider the example of building a letter for a client with their bill of a product. There will be four different tasks: one will search the client information in the database, another one will do the same for a product. Each of these tasks will communicate with the other tasks using corresponding IVars. Other two tasks will take that information and generate the text of the letter and the text of the envelope. Figure 8-2 shows the graph.


[image: 9781430262503_Fig08-02.jpg]

Figure 8-2. Dataflow graph of letter building



Computations built in this way always follow the shape of a graph of tasks joined by IVars to communicate. For that reason the model is called dataflow programming. The main benefit of this approach is that all data dependencies are explicit: they are exactly those specified by the IVars. The monad-par library takes advantage of that information for scheduling the tasks in a parallel way.

The following code implements the dataflow graph of Figure 8-2. Notice that, when using this model and IVars, instead of spawnP one uses fork, which expects a computation of type Par ():

printTicket :: Int -> Int -> [(Int,String)] -> [(Int,String)] -> String
printTicket idC idP clients products = runPar $ do
  clientV  <- new
  productV <- new
  fork $ lookupPar clientV  idC clients
  fork $ lookupPar productV idP products
  envV    <- new
  letterV <- new
  fork $ printEnvelope clientV envV
  fork $ printLetter   clientV productV letterV
  envS    <- get envV
  letterS <- get letterV
  return $ envS ++ "\n\n" ++ letterS
   
lookupPar :: (Eq a, NFData b) => IVar (Maybe b) -> a -> [(a,b)] -> Par ()
lookupPar i _ []                    = put i Nothing
lookupPar i x ((k,v):r) | x == k    = put i $ Just v
                        | otherwise = lookupPar i x r
 
printEnvelope :: IVar (Maybe String) -> IVar String -> Par ()
printEnvelope clientV envV = do
  clientName <- get clientV
  case clientName of
    Nothing -> put envV "Unknown"
    Just n  -> put envV $ "To: " ++ n
 
printLetter :: IVar (Maybe String) -> IVar (Maybe String) -> IVar String -> Par ()
printLetter clientV productV letterV = do
  clientName  <- get clientV
  productName <- get productV
  case (clientName, productName) of
    (Nothing, Nothing) -> put letterV "Unknown"
    (Just n,  Nothing) -> put letterV $ n ++ " bought something"
    (Nothing, Just p)  -> put letterV $ "Someone bought " ++ p
    (Just n,  Just p)  -> put letterV $ n ++ " bought " ++ p

One interesting benefit of the separation of the dataflow dependencies from the actual parallel execution is that several strategies for scheduling the tasks can be used. By default, monad-par uses the so-called Direct scheduler. There are two others available: just import Control.Monad.Par.Scheds.Spark or Control.Monad.Par.Scheds.Trace instead of Control.Monad.Par and the corresponding scheduler will be used.




Parallelizing the Apriori Algorithm

Let’s finish this section by looking at how the Apriori algorithm could be enhanced to perform in parallel. The code will be based on the implementation in Chapter 7.

If you’re working with lists, the monad-par package includes a parMap function. The purpose of this function is executing a function over each element of the list, parallelizing each of the applications. Spawning a task for each element may seem overkill, but the scheduler will take into account the number of cores available in the system. In order to apply this parMap function, let’s first rewrite the generateL1 from monadic style to explicit calls to map and concatMap. The following code is completely equivalent to that in Chapter 7:

generateL1 minSupport transactions =
  let c1 = noDups $ concatMap (\(Transaction t) -> map (FrequentSet . S.singleton) $ S.toList t)
                              transactions
      l1NotFiltered = map (\fs -> (fs, setSupport transactions fs > minSupport)) c1
   in concatMap (\(fs,b) -> if b then [fs] else []) l1NotFiltered

Since most of the time in the algorithm is spent in calculating supports, this is the part that has been chosen for parallel execution. Beforehand, calculating supports was done inside the filter, which both computed the support and decided whether to keep a transaction in the list. Now those two tasks are split: set supports are computed at l1NotFiltered, and then deciding whether to include an element or not is done in the final concatMap. Afterward, you only need to change map to parMap, and wrap the entire computation with runPar to take advantage of dataflow parallelism in the Apriori algorithm. The result in this case is:

generateL1 minSupport transactions = runPar $ do
  let c1 = noDups $ concatMap (\(Transaction t) -> map (FrequentSet . S.singleton) $ S.toList t)
                              transactions
  l1NotFiltered <- parMap (\fs -> (fs, setSupport transactions fs > minSupport)) c1
  return $ concatMap (\(fs,b) -> if b then [fs] else []) l1NotFiltered


[image: image] Note  Remember that to use monad-par, your data types must instantiate NFData.


In some cases this may not be the best strategy for creating parallel tasks. Instead of parMap, you can divide the list in halves until you reach some minimal length. Once the list is small enough, it’s better to execute the mapping in a sequential way, because creating parallel tasks has some overhead. This is done in a new version of the generateNextLk function:

generateNextLk :: Double -> [Transaction] -> (Int, [FrequentSet])
               -> Maybe ([FrequentSet], (Int, [FrequentSet]))
generateNextLk _ _ (_, []) = Nothing
generateNextLk minSupport transactions (k, lk) =
  let ck1 = noDups $ [ FrequentSet $ a `S.union` b | FrequentSet a <- lk, FrequentSet b <- lk
                                                   , S.size (a `S.intersection` b) == k - 1 ]
      lk1 = runPar $ filterLk minSupport transactions ck1
   in Just (lk1, (k+1, lk1))
 
filterLk :: Double -> [Transaction] -> [FrequentSet] -> Par [FrequentSet]
filterLk minSupport transactions ck =
  let lengthCk = length ck
   in if lengthCk <= 5
      then return $ filter (\fs -> setSupport transactions fs > minSupport) ck
      else let (l,r) = splitAt (lengthCk `div` 2) ck
            in do lVar <- spawn $ filterLk minSupport transactions l
                  lFiltered <- get lVar
                  rVar <- spawn $ filterLk minSupport transactions r
                  rFiltered <- get rVar
                  return $ lFiltered ++ rFiltered

As you can see, the monad-par library makes it easy to add parallelism to your current code. The focus of this library is futures and dataflow programming. There are other approaches, though. The parallel library, for example, uses another monad called Eval that helps to define how a specific data structure can be traversed in parallel. More information about this and other packages can be found in the Haskell wiki.1


PARALLELIZING TASKS WITH SIDE EFFECTS

Computation with arbitrary side effects hasn’t been introduced yet. However, as a future reference, it’s interesting to know that the monad-par package provides another monad for parallelism, called ParIO and available in the Control.Monad.Par.IO module, in which side effects are allowed. The interface is exactly the same as pure Par, except for running the computation, which is achieved via the runParIO function.

Note that the implementation does not guarantee any ordering on the execution of the tasks, and thus the outcome will show non-deterministic ordering of the side effects.



Many algorithms that work on lists or have a divide-and-conquer skeleton can be easily turned into parallel algorithms via the monad-par library. In EXERCISE 8-1 you’re asked to do so with the other data mining algorithm introduced in this book: K-means.


EXERCISE 8-1. PARALLEL K-MEANS

Write a parallel version of the K-means algorithm developed in Chapter 6. To make the task a bit easier, you may look at the first implementation, which didn’t use monads. Remember, when using functions such as parMap think about when the overhead of creating parallel tasks will exceed the benefits.





Software Transactional Memory

In this section you will look at problems where several threads of execution interact between them and share resources. That is, concurrency comes into play. Haskell allows designing concurrent tools in the classical way, using locks, semaphores and so on, but in this section you will see how the functional style of programming enables using a much more powerful abstraction called Software Transactional Memory.

Before starting, you should be aware of the fact that code using concurrency is considered side-effect code. When several threads are executing asynchronously and sharing resources, the order in which they do this affects the observable outcome. In contrast, in pure code the order in which functions are evaluated is irrelevant, because the result will be the same.

You will learn more about how to deal with arbitrary side effects in the next chapter. For the time being, you just need to know that Haskell uses a special monad called IO, in which you can use side effects. In the code, the only difference you will see between programming with and without side effects is that do notation is used.


Concurrent Use of Resources

Let’s begin the journey through concurrent programming in Haskell with a simple example: a simulation of several clients buying products from the store. In the first approximation, only the change in the money that the Time Machine Store has earned will be considered. The code creating these three threads is as follows:

import Control.Concurrent
main :: IO ()
main = do v <- newMVar 10000
          forkIO $ updateMoney v
          forkIO $ updateMoney v
          forkIO $ updateMoney v
          _ <- getLine
          return ()
 
updateMoney :: MVar Integer -> IO ()
updateMoney v = do m <- takeMVar v
                   putStrLn $ "Updating value, which is " ++ show m
                   putMVar v (m + 500)  -- suppose a constant price

The first thing one needs to know is how to create a new thread of execution. This is achieved via the forkIOfunction in the Control.Concurrent module. This function takes as argument an action of type IO ()and starts executing that code in parallel.


[image: image] Note  forkIO returns a thread identifier that allows pausing and stopping the thread that was just created. However, the functionality of the Control.Concurrent module won’t be covered in this book.


As you can see, the main function creates three threads running the same code. The next question is how to make those threads cooperate and share resources, because by default they cannot communicate between them. The answer is via an MVar, a box that can hold a mutable variable, which can be read or updated. One of those boxes is created before forking the threads using the newMVar function, and given as argument to each of them. Thus, the threads have access to a shared resource in the form of a mutable variable.

Each thread is able to read the value of the MVar using takeMVar, and writing a new one using putMVar. What makes this type useful for concurrency is the special behavior that it shows in presence of multiple threads. You should think of an MVar as a box that is either holding some element or is empty. When you use takeMVar, you either read the value being held and make the box empty, or block until some element is put in there. Conversely, putMVareither writes a new value if the box is empty, or it waits. Furthermore, those functions guarantee that only one thread will be woken up if it were blocked and that threads will be served in a first-in first-out order, which means that no thread can swallow the events of all the rest.

Notice that the code includes a call to getLine at the end. The purpose of this function is to wait for some user input. The reason you need it is because when the main thread ends its computation, any other thread created by forkIO dies with it. Thus, if you want to see the effect of the other threads, you need to add a way to make the main thread continue execution. Waiting for user input is one way to do this.

To add some different action, let’s add a new kind of thread that will just read the current money value and print it in the screen. Since you don’t need to perform any computation, you may use the readMVar function, which is equivalent to readMVar followed by putMVar with that same value. Then, it would read:

readMoney :: MVar Integer -> IO ()
readMoney v = do m <- readMVar v
                 putStrLn $ "The current value is " ++ show m

To make things even more interesting, let’s add some random delay between three and 15 seconds. The following function just computes that random number (more on random numbers will be presented the in next chapter) using randomRIOand then calls threadDelay, which pauses a thread for a number of microseconds. Be aware that when using the randomRIO function, that you need to add a dependency on the random package:

import System.Random
 
randomDelay :: IO ()
randomDelay = do r <- randomRIO (3, 15)
                 threadDelay (r * 1000000)

Finally, you can write a forkDelay function that spawns n threads with a random waiting time before:

import Control.Monad
 
forkDelay :: Int -> IO () -> IO ()
forkDelay n f = replicateM_ n $ forkIO (randomDelay >> f)

Creating five new updaters and five readers will then be implemented in the following way:

main :: IO ()
main = do v <- newMVar 10000
          forkDelay 5 $ updateMoney v
          forkDelay 5 $ readMoney v
          _ <- getLine
          return ()


[image: image] Note  None of the MVar-related functions force evaluation of the data inserted in them. This may cause problems, because the price of executing some code may be paid much later, in the context of another computation. You may want to look at the strict-concurrency package to obtain a strict version of MVar.





Atomic Transactions

Let’s move on to a more complex example. The main idea continues to be a client who is buying a particular product, but in this case more than one resource will be involved. The first one will be the money the Store has earned, as before, and the second one will be current stock of the Store, which should be updated to reflect that one item has been sold. As in the previous case, some extra threads reading the money and the stock will be added:

main :: IO ()
main = do v <- newMVar 10000
          s <- newMVar [("a",7)]
          forkDelay 5 $ updateMoneyAndStock "a" 1000 v s
          forkDelay 5 $ printMoneyAndStock v s
          _ <- getLine  -- to wait for completion
          return ()
 
updateMoneyAndStock :: Eq a => a -> Integer -> MVar Integer -> MVar [(a,Integer)] -> IO ()
updateMoneyAndStock product price money stock =
  do s <- takeMVar stock
     let Just productNo = lookup product s
     if productNo > 0
       then do m <- takeMVar money
               let newS = map (\(k,v) -> if k == product then (k,v-1) else (k,v)) s
               putMVar money (m + price) >> putMVar stock newS
       else putMVar stock s
 
printMoneyAndStock :: Show a => MVar Integer -> MVar [(a,Integer)] -> IO ()
printMoneyAndStock money stock = do m <- readMVar money
                                    s <- readMVar stock
                                    putStrLn $ show m ++ "\n" ++ show s

Your first impression may be that the code is quite complex. However, you want to update the stock and the price only when there are enough items to sell. And if you cannot perform the purchase, you wouldn’t want to block the access to the money shared variable. Thus, you need to plan for both possibilities and restore the initial stock if the transaction is not successful.

Apart from its apparent complexity, there are other problems in the code related to several concurrent scenarios. It may be the case that one of the updateMoneyAndStock threads takes the stock variable and then printMoneyAndStock threads get access to the money variable. At this point the whole execution is blocked: the updater thread must be blocked because it cannot get the ownership of the money variable, and the printer thread cannot continue because of denial of access to stock. This is an archetypical instance of deadlocking.

Another problem may occur in the following case of two updater threads U1 and U2 and one reader thread that I’ll call R. It is possible that U1 updates the money variable and immediately afterward R reads that variable, obtaining the money after selling the item in U1. But afterward U1 is allowed to proceed, and the whole U2 is executed as well. By that time, the stock variable will contain the changes of both U1 and U2, and R will get stock information that is not consistent with the value it got from money. In this case the problem is that a thread is allowed to get an inconsistent view of the world.

Both of these problems are common in systems where many agents update and query some data in a concurrent way. The best example of this pertains to database systems. The solution comes in the form of transactions: a transaction is a computation guaranteed to be run reliably independent from other transactions, and that has a coherent view of the data. Transactions provide the illusion that a whole computation runs as an atomic block inside the database and ensure that data maintains its integrity.

The stm package brings this idea into the realm of Haskell programming. Using this library you can define blocks of code that will be run as an atomic unit by the system. In the code, each transaction is translated into a computation inside the STM monad. This name is an acronym for Software Transactional Memory, which is the implementation of transactions that the library uses. As an example, here’s a version of the updater thread but using STM instead of MVars:

import Control.Concurrent.STM
 
updateMoneyAndStockStm :: Eq a => a -> Integer -> TVar Integer -> TVar [(a,Integer)] -> STM ()
updateMoneyAndStockStm product price money stock =
  do s <- readTVar stock
     let Just productNo = lookup product s
     if productNo > 0
       then do m <- readTVar money
               let newS = map (\(k,v) -> if k == product then (k,v-1) else (k,v)) s
               writeTVar money (m + price) >> writeTVar stock newS
       else return ()

When using stm, instead of MVars you should use TVars. In contrast to the former, TVars can be read and written as many times as you want. Thus, you don’t need to write back the stock if the purchase could not be done.

Computations in the STM monad are not directly executable. Instead, you must call the atomically function, which moves the transaction to the IO monad instead. For example, to execute the updater transaction five times, with delay, you would change the main function to read:

main :: IO ()
main = do v <- newTVarIO 10000
          s <- newTVarIO [("a",7)]
          forkDelay 5 $ atomically $ updateMoneyAndStockStm "a" 1000 v s
          _ <- getLine  -- to wait for completion
          return ()

The great advantage of having a function such as atomically is that you can delimit which parts of your code need to be run as a transaction and which doesn’t. This is important for performance: keeping the guarantees of transactionality is expensive, and you should make minimal use of it.




Rolling Back Transactions

When working with databases, you often find scenarios in which your current transaction cannot be performed. Usually, this comes into play when considering the constraints that your data should maintain. For example, selling an item from the Store stock can only be done when the corresponding number of items of that product is larger than zero. When you abort a transaction, you want the state of the world to return to the previous moment in time, as if no computation has happened at all. This operation is called a rollback.

The stm package not only brings the atomicity guarantees of transactions to the Haskell world but also the ability of rolling back some piece of code. To signal that a transaction cannot continue, you need to use the retry function. For example, let’s consider the scenario where a client wants to pay by card: first of all you need to check that the card system is working. In the negative case, you cannot continue:

payByCard :: Eq a => a -> Integer -> TVar Integer -> TVar [(a,Integer)] -> STM ()
payByCard product price money stock =
  do working <- isCardSystemWorking
     if not working
     then retry
     else updateMoneyAndStockStm product price money stock
 
isCardSystemWorking :: STM Bool
isCardSystemWorking = ...  -- code to check card system status omitted

Code using retry has special behavior. As a first description, the transaction is executed over and over again until it finally finds a scenario in which it succeeds. Of course, such an approach would be overkill. Internally, stm keeps track of which TVars influence the transaction and only executes the code again if any of them change. Not having to implement that functionality by hand makes your code much more modular and maintainable.

Another feature that the previous example points out is the compositionality of transactions. Since a transaction is just a value of the STM monad, you can put several of them together to create a larger transaction. In the example the check for the card system and the money and stock update are defined separately and then joined to make the larger payByCard transaction.

While retry is a powerful tool, in some cases you may want to follow a path different than waiting until the variables change and the invariants are satisfied. For those occasions, stm provides the orElse combinatory. In general, t1 `orElse` t2 behaves as t1. However, in the case in which t1 calls retry, the effects of t1 are rolled back and t2 is run. If t2 ends successfully, no more work is done. If t2 also calls retry, the wholet1 `orElse` t2 transaction is restarted.

The following example uses orElse to implement the behavior of trying first to pay by card, and when that doesn’t work, starting a cash-based transaction:

pay :: Eq a => a -> Integer -> TVar Integer -> TVar [(a,Integer)] -> STM ()
pay product price money stock = payByCard product price money stock `orElse`
                                payByCash product price money stock
 
payByCash :: Eq a => a -> Integer -> TVar Integer -> TVar [(a,Integer)] -> STM ()
payByCash = ...  -- code that asks for cash omitted

In EXERCISE 8-2 you can use your knowledge of transactions to build a Time Machine system.


EXERCISE 8-2. TRAVELING THROUGH TIME

The Time Machine Store also provides the service of time traveling. However, there are some restrictions that customers must abide by: at most n people can be traveling at the same moment (because the company only owns n time machines) and by no means should two people be on the same year at the same time.

Develop a small application where customers are simulated by different threads, and the restrictions are always satisfied via a careful use of the stm library. Hint: use a shared TVar for saving the years that people are traveling to, and retry to block customers for traveling without satisfying the rules.






Producer-Consumer Queues

Up to this point, the focus has been on threads that communicate using shared variables. But in the world of concurrency, there are many other ways in which two threads can share some data. In this section you’ll see how to use a queue to implement a producer-consumer model.

One way to architect the Store, for example, is having multiple frontend threads and just one backend. The frontends are responsible for asking all the information that may be needed to perform a transaction. However, they are not responsible for processing the orders. That responsibility belongs to the backend.

If you could only use TVarsto implement this solution, you would have a tough time. You would need a concrete amount of possible frontends that may communicate, and the backend should be on the lookout at all times to see if some of those variables have new information. The better solution is to stop using a TVar and use a queue.

Several kinds of queues are provided by the stm package. The easiest one is called TQueue. You can put a new element on the queue using writeTQueue. This queue does not impose any limit on the number of elements that may be waiting in the queue (apart from the obvious constraints on memory available in the system), so the writeTQueue function will never block a thread. The converse operation, getting the first element from the queue, is done via readTQueue. If the queue is empty, the thread will be blocked.

In this model, the frontend behaves as a producer: it creates new elements for the queue; whereas the backend is the consumer that takes information from the queue. The implementation of the full orchestration using queues can be done as follows:

import Control.Monad
 
main = do q <- newTQueueIO
          forkIO $ backend q                     -- create one backend
          replicateM_ 10 $ forkIO (frontend q)   -- create 10 frontends
          _ <- getLine
          return ()
 
backend :: TQueue (String,Integer) -> IO ()
backend q = do
  m <- newTVarIO 10000
  s <- newTVarIO [("a",7)]
  forever $ atomically $ do (product,price) <- readTQueue q
                            pay product price m s
 
frontend :: TQueue (String,Integer) -> IO ()
frontend q = do (product,price) <- ...  -- get purchase information from client
                atomically $ writeTQueue q (product,price)

Other kinds of queues can be classified into two axes. Table 8-1 shows the name of each of the four possibilities. The table also gives the package where each queue can be found. The two dimensions are:


	Whether a queue has a bounded size or is unbounded. In the case of bounded queues, the creation of such a queue needs the maximum number of elements as parameter. When calling the corresponding write function, if the queue is full, the thread is blocked until more space becomes available;

	Whether a queue is closable. A queue that is closed cannot receive any more items: when this happens, every call to the write function is effectively discarded; and every read returns Nothing. Note that the behavior when the queue is closed and when it’s empty is completely different.




Table 8-1. Types of STM Queues




	
	Unbounded

	Bounded






	Not closable

	TQueue (package stm)

	TBQueue (package stm)




	Closable

	TMQueue (package stm-chans)

	TBMQueue (package stm-chans)








These two dimensions can be combined in the four different ways that are shown in Table 8-1.

The use of queues can help in the design of the system from EXERCISE 8-2. Indeed, EXERCISE 8-3 asks you to use queues to get a more fair management of clients in the Store.


EXERCISE 8-3. QUEUING TRAVELERS

In the previous exercise, all customers were trying to access the finite number of time machines at the same time. This may pose a problem of fairness, because stm does not guarantee which thread will be woken up from retry if several were waiting.

An alternative solution involves using a queue where customers put their requests and where a master thread assigns time machines when they are free. Implement this solution using TBQueue.





Cloud Haskell

In this last section you’ll be introduced to the world of Cloud Haskell. Cloud Haskell is a set of packages that aims to solve the problem of concurrent and distributed programming using the actor model. In that respect, Cloud Haskell is heavily influenced by the Erlang programming language. In addition, it tries to provide a consistent view no matter what transport layer you may use.

When using the actor model, you design your program around actors (which in Cloud Haskell are represented by the type Process). Each actor is completely independent of the others: actors do not share any state whatsoever, in contrast to other approaches for concurrency. Still, actors can communicate by sending and receiving messages. Thus, two operations become very important: sending a message to another actor, and waiting for reception of a message. In the second case, several options are available: you can wait only for a specific time; you can wait only for messages with a specific shape; and so on.

Communication via messages is asynchronous, and no guarantee is made about the ordering in which messages are received. However, if a message is received when you were not actively waiting for one, it’s put on a message queue, and made available for your next request. This makes possible to develop an actor that iteratively responds to messages, ensuring that none of them will be lost.

The use of this model enables the distribution of actors between different computers in a network instead of executing all of them in the same process. If actors could share state, it wouldn’t be possible to split the work between different computers without great effort or consistency between actors. Since no message ordering is guaranteed, this model helps create software resistant to network latencies.


Looking for Galaxies

In this first section a simulation of time-space exploration will be developed. The system will consist of several actors: most of them will be travelers, which look for new galaxies. Apart from travelers, there’s a master that tells travelers when to start exploring and receives back the results of such exploration. This is a typical example of a master-slave system.

When developing the actor model, it’s very useful to define upfront the kind of messages that the actors will be exchanging. In this case, two of them will be defined: one in which the master asks travelers to explore, and another one for travelers announcing the discovery of a new galaxy. In Cloud Haskell, messages are represented by plain Haskell values, so let’s define a data type:

data GalaxyMessage = LookForGalaxy | GalaxyFound String

The packages you’ll be using are also required, for every data type being used as a message, to be of both the Typeable and the Binary classes, which allow for querying the type of a value at run-time and serializing a value into binary form, respectively. Gratefully, the compiler is able to generate all the necessary code for you using several extensions and the deriving mechanism. To make Cloud Haskell happy you need to write:

{-# LANGUAGE DeriveDataTypeable, DeriveGeneric #-}
import Data.Binary   (Binary)
import Data.Typeable (Typeable)
import GHC.Generics  (Generic)
 
data GalaxyMessage = LookForGalaxy | GalaxyFound String
                   deriving ( Typeable , Generic )
instance Binary GalaxyMessage


[image: image] Warning  There’s a known bug that prevents this code from working when using any version of the binary package prior to 0.6.3.0. If you run into weird behavior, try adding the binary >= 0.6.3.0 constraint to your Cabal file.


Basic functionality in Cloud Haskell is packaged into distributed-process. You should add it as a dependency in every project where you want to use this model of communication. As you will see later, you usually add a transport layer as another dependency, which defines how communication is done.

The easiest actor will be the traveler one. A traveler will wait for a LookForGalaxy message, perform its work, and send back the results. Waiting for a message is achieved via the expect function, which blocks the actor if no message is found in the queue. The following code does so:

import Control.Distributed.Process
 
traveller :: Process ()
traveller = do LookForGalaxy <- expect
               -- Look for galaxies in space-time
               send ?? (GalaxyFound "Andromeda")

But you run into a problem: when you need to send the result back, you don’t know which actor to contact. This has been shown in the code by two question marks in the place where that actor identifier would go. The usual solution is changing the message data type to include such as identifier. Then, you can write the good code:

data GalaxyMessage = LookForGalaxy ProcessId | GalaxyFound String
 
traveller :: Process ()
traveller = do LookForGalaxy master <- expect
               -- Look for galaxies in space-time
               send master (GalaxyFound "Andromeda")

The other actor is the master, which is responsible for pushing the job into travelers. At this point, Cloud Haskell offers a surprise: you can send not only messages but also functions to execute. In order to do so, you have to follow three steps:


	You need to know the system the new actor will be created in. Each of the computer systems involved in a network with actors is called a node in Cloud Haskell. In some sense, nodes provide the material ground for creating and managing actors,

	You have to tell the compiler that you may send a certain function, because some special code has to be generated. This is done including a call to remotablewith the list of functions that may be sent. In this case, the call would read remotable ['traveller]. Be aware that this call has to appear after the definition of the functions in the list, but before the code of any actor trying to send the function.

	Finally, you create a new actor in a node via the spawn function, which returns its identifier. However, you cannot directly give it the name of the actor; you have to wrap it to create a closure. There are two ways to do so: if the actor f takes no parameters, you call $(mkStaticClosure f); in the other case you call $(mkClosure f).



All of remotable, mkStaticClosure, and mkClosure use Template Haskell to perform their task. For that reason, when using them you need to include a line {-# LANGUAGE TemplateHaskell #-} at the beginning of the file.

The master code presented below takes some nodes and creates a new traveler actor in each of them, which is sent an initial LookForGalaxy message. Notice that the identifier of the master actor is obtained via getSelfPid. Then, it starts an infinite loop waiting for messages from travelers, and for each galaxy that was found it shows a log message via the say function:

import Control.Distributed.Process.Closure
 
master :: [NodeId] -> Process ()
master nodes =
  do myPid <- getSelfPid
     mapM_ (\node -> do pid <- spawn node $(mkStaticClosure 'traveller)
                        send pid (LookForGalaxy myPid))
           nodes
     forever $ do GalaxyFound g <- expect
                  say $ "Found galaxy: " ++ g

The last step is to create the main function that will create a node. At this point you need to decide how communication will be performed: that is, choose a transport layerfor your messages. If you don’t have a complicated network graph or you just want to have all the nodes in one computer, the best choice is the distributed-process-simplelocalnet package. This layer uses TCP for messages and provides automatic discovery of other nodes in the network via UDP multicast.

The simplelocalnet layer is very simple to configure. You just need to initialize it via initializeBackend, and then call startMaster or startSlave depending on the role you want to have. If you decide to be a master, the transport layer will discover all slave nodes available in the network, and will pass them as parameters to the actor. In this case, the code will use the command-line arguments (which can be obtained via the getArgs function in the System.Environment module) to decide which behavior to have.

import Control.Distributed.Process.Node (initRemoteTable)
import Control.Distributed.Process.Backend.SimpleLocalnet
import System.Environment
 
main :: IO ()
main = do args <- getArgs
          case args of
            ["master", host, port] -> do
              backend <- initializeBackend host port (Main.__remoteTable initRemoteTable)
              startMaster backend master
            ["traveller", host, port] -> do
              backend <- initializeBackend host port (Main.__remoteTable initRemoteTable)
              startSlave backend
            _ -> do putStrLn "Unknown parameters"

You can see from the code that this transport layer needs the specification of the host and port it will use for communicating. Once everything is compiled, you can test the actor network via:

$ ./dist/build/chapter8-actors/chapter8-actors traveller localhost 8086
$ ./dist/build/chapter8-actors/chapter8-actors master localhost 8087
Sat Dec  7 08:23:18 UTC 2013 pid://localhost:8086:0:3: Found galaxy: Andromeda


[image: image] Warning  The simplelocalnet backend only tries to find nodes when you call startMaster. Thus, you have to start all the slave nodes before you start the master one.


Sometimes, more than one kind of message is needed in an application. If you were able to define all of them in one single data type, you could call expect and then pattern match on the received message. But in other cases, different messages are represented with different data types. Cloud Haskell also supports this scenario.

For example, let’s add a new message that the traveler may send: the traveler went too close to a wormhole and was absorbed by it. The definition is as follows:

data WormHoleMessage = LostInWormHole
                     deriving (Typeable, Generic)
instance Binary WormHoleMessage

Now, instead of always finding a galaxy, the traveler will randomly exhibit that behavior or will get lost. A different kind of message will be sent in each scenario:

import System.Random
 
traveller :: Process ()
traveller = do LookForGalaxy m <- expect
               b <- liftIO $ randomIO  -- generate random Boolean
               if b
               then send m (GalaxyFound "Andromeda")
               else send m LostInWormHole

The master actor will execute the same code as above but has to change its call to work with a more refined version: receiveWait. This function receives a list of possible patterns for messages, each of them introduced by match. The first option whose type coincides with the parameter to match will be chosen.

     forever $ do receiveWait
                    [ match $ \(GalaxyFound g) -> say $ "Found galaxy: " ++ g
                    , match $ \LostInWormHole  -> say "Lost in wormhole"
                    ]

The distributed-process package defines two other functions that can refine the reception of messages even more. Instead of receiveWait, you can call receiveTimeoutto indicate the maximum amount of time the actor should be waiting.

A second way you can be more explicit about the messages to capture is changing match by matchIf or matchUnknown. As stated before, match decides which branch to go with based only on the type of the message that has arrived. This approach may cause some problems: in the example above, if the master receives a LookForGalaxy message, the first branch will be chosen (LookForGalaxy and GalaxyFound are constructors of the same type), but the function will fail because the pattern does not match. Using matchIf, you can include those extra properties that the message should satisfy to be captured by a specific branch. The converse scenario is matching on every possible message, whatever its type: this is achieved via matchUnknown.

Many concurrent systems can be expressed using the actor model. This is the case of the traveling system developed in EXERCISE 8-2. You’re asked in EXERCISE 8-4 to use distributed-process to manage that system.


EXERCISE 8-4. DISTRIBUTING TRAVELERS

Using Cloud Haskell, develop the system in EXERCISE 8-2 as a series of travelers that exchange messages with a central master actor. Note that you can use the implicit queuing facilities of messages to have an easier and cleaner implementation.






Looking for Typed Galaxies

Communication via messages is very flexible but has two drawbacks. First of all, the type of the messages that may arrive is not specified in advance, so you need to perform dynamic checks in expect or match. This has an impact in performance and also deviates for the strong typing philosophy in Haskell. The second problem is that handling a conversation, that is, a flow of messages between two specific actors requires a lot of boilerplate code: passing actor identifiers around at all times, identifying each conversation if more than one is possible with the same actor, and so on.

Typed channelsare the solution provided by Cloud Haskell to both problems. A channel in this package is unidirectional, and it’s represented by its two endpoints. SendPort t identifies the place where an actor can send messages, only of type t, and ReceivePort t will be the place where they will be read from.

In addition, Cloud Haskell allows sending a SendPort t as part of a message. Thus, actors A and B can start a bidirectional conversation using the following sequence of steps:


	Actor A creates a new channel ChA and sends the SendPort via a regular message;

	Actor B receives the information about this channel, creates a new channel ChB and sends the SendPort of ChB via ChA;

	Actor A receives that message, and has now a way to send and a way to receive the flow of messages in its conversation with B.



Of course, if only unidirectional conversation is needed, only the message from A with the SendPort information is needed to establish the communication.

Let’s change the galaxy exploration example to use channels. First of all, in the preliminary LookForGalaxy message, no longer an actor identifier will be sent, but rather a SendPort. Notice that this port defines the type of messages that will be received through it:

data GalaxyMessage = LookForGalaxy ( SendPort GalaxyMessage ) | GalaxyFound String

The traveler actor only needs to change its implementation from using send to using sendChan:

traveller :: Process ()
traveller = do LookForGalaxy sendPort <- expect
               sendChan sendPort (GalaxyFound "Andromeda")

Finally, the master actor needs to create the channel and send it after spawning. The expect function is replaced by receiveChan, which gets messages from the ReceivePort:

master :: [NodeId] -> Process ()
master =
  mapM_ $ \node -> do pid <- spawn node $(mkStaticClosure 'traveller)
                      (sendPort, rcvPort) <- newChan
                      send pid (LookForGalaxy sendPort)
                      GalaxyFound g <- receiveChan rcvPort
                      say $ "Found galaxy: " ++ g





Extra Features

This galaxy-exploring example merely scratches the surface of what Cloud Haskell can do. Building on the ideas found in Erlang, fault-tolerance is built-in in distributed-process. When some actor has a critical error, it’s terminated. But an actor can establish a monitor, and be notified when this happens. For example, a master could restart a new slave actor in those conditions. You can find more documentation about this feature on the Cloud Haskell webpage, http://haskell-distributed.github.io.

The only transport layer that was used in this section was simplelocalnet. At the moment of writing there’s also support for Azure networks, and more layers are in the works. All those transports build upon the network-transport package, which abstract the concept of connection from the protocol being used. This package can be a good choice if you need connection capabilities like the one shown here, but without the extra message passing, fault-tolerance, and closure sending features.

While a master-slave configuration like the one shown here is quite common, there are other communication patterns that can be used with Cloud Haskell. The series of blog posts found in http://www.well-typed.com/blog/71 includes a lot of information about those other patterns.



Summary

In this chapter you’ve learned about some parallelism, concurrency, and distribution packages from the Haskell ecosystem. In particular:


	The Par monad provides simple parallelism via futures, which are computations started in parallel that you can ask for the result of at some later point.

	You’ve seen how that monad allows spawning parallel computations around the concept of a dataflow graph, where dependencies are defined via IVars.

	Basic concurrency can be achieved in GHC via forkIO for creating new threads and MVars for sharing information.

	In some cases you need to perform longer access to shared resources as an atomic operation. In that case you can use transactions via the stm library

	Apart from simple TVar variables, the stm library provides abstractions over several types of queues. The examples have focused on TQueue, the non-bounded non-closable one,

	Finally, you’ve learned the basics of distributed programming using Cloud Haskell.



1See http://www.haskell.org/haskellwiki/Applications_and_libraries/Concurrency_and_parallelism.





PART 3
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Resource Handling




CHAPTER 9
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Dealing with Files: IO and Conduit


In Parts 1 and 2 you learned the basics of pure evaluation and how it helps in parallelizing and distributing code. However, sometimes you need to step out to the wild world of side-effects. You’ll start by looking at simple input and output in Haskell. At the beginning, the information will be input in the console, and the output will be printed on screen. Afterward, you’ll learn how to use a permanent mean on storing data, reading, and writing from files in disk.

Computations with side effects may turn out wrong in many ways: maybe the data is corrupted, or perhaps the network connection goes down. Haskell includes an exception mechanism that signals these conditions and allows you to react. In pure computations you’ve been handling erroneous scenarios using Maybe and MonadPlus: the relation between the different ways of handling errors in Haskell will be clear by the end of this chapter.

One problem with Haskell’s lazy evaluation model is that it brings some unpredictability to input and output. The community has come with several streaming data libraries to solve this problem. In particular, this chapter discusses conduit, and some applications of this library to file handling and networking. After learning all this information, you’ll be ready to save the clients and products data on disk, using a binary serialization format. For that matter, the cereal library will also be presented.

Basic Input and Output

To begin the journey through side effects in Haskell programs, let’s create some simple interactions with the console. These small examples will help you to discover the concepts that are involved. The first bit of code to look at is an executable program that just prints “Hello Beginning Haskell!” in the console:

module Main where
 
main :: IO()
main = putStrLn "Hello Beginning Haskell!"

A second example is a bit more involved. In this case the program asks for a place and decides which point in time you should travel to, based on the given name. In this case the algorithm is fairly easy, the important part of this code is how the information is taken from the user and threaded through the program:

main = do putStrLn "Where do you want to travel?"
          place <- getLine
          let year = (length place) * 10
          putStrLn $ "You should travel to year" ++ show year

If you run the program, the output will be similar to the following. As usual, boldface denotes those parts that are to be input, while regular face is used for output from the program.

Where do you want to travel?
India
You should travel to year 50



BUFFERING

In some systems, especially in Windows, you may find that there’s no output at all upon executing a program. This issue is related to buffering. In order to gain efficiency, the information you send to a file (or to the console) is not directly written (or shown), but buffered until a certain amount of data is gathered. You can change the way in which each handle uses buffering via hSetBuffering. The most common use of this function, making the system flush the contents after each newline character, is coded as:

import System.IO

main = do hSetBuffering stdout LineBuffering  -- enable line buffering
                         -- continue with the rest

There’s another possible value for hSetBuffering, namely NoBuffering, that makes the system use no buffering at all. However, you should be wary. Problems can result from using NoBuffering in combination with console functions in Windows.



It’s interesting to look at the signature of the functions that have been used in the examples. The easiest way to get it is asking the interpreter with its :t command:

*Chapter9.BasicInputOutput> :t putStrLn
putStrLn :: String -> IO ()
*Chapter9.BasicInputOutput> :t getLine
getLine :: IO String

The do notation that has been used and the data types wrapped inside another type (in this case, IO) should give you the clue that you’re indeed working inside a monad. In the previous chapters you’ve seen that State represents computations that carry a state, Maybe computations that may fail, and so on. The ability that IO brings to a certain bit of code is performing side effects. In the examples above, it has been used to print to and get information from the console.

There’s one important difference between IO and the rest of the monads that have been considered up to this point. For each other monad, there was some way to inspect the resulting value (for example, using pattern matching with Maybe) or run the monad (with functions similar to runState). In that way, you could get back to a context without the corresponding monad.

On the other hand, IO has no escape hatch. There’s no operation that converts an IO t value into a plain t value.1  This is how Haskell imposes a barrier between the computations that involve side effects and thus must work inside the IO monad, as well as the rest. You want to be sure that a function without IO in its signature is pure, free of side effects, and referentially transparent. Furthermore, every call to IO in a certain application must span from the initial main function, which has IO () type.


[image: image] Note  For the Haskell compiler, an expression that is pure must be treated differently than an expression involving side effects and lives in IO. However, from a programmer’s point of view, IO is not different from any another monad. It just happens to introduce side effects in their computations.


Haskell’s Prelude module offers several functions for interaction with the console. Apart from the aforementioned putStrLn, which prints a line of text and then starts a new line; you have at your disposal putStr, a variant of printing a string but without any final new line character, and putChar, which prints just one character in the screen. For the quite common case where the data to print is not yet a string, but can be converted into one by the show function, you can use print. Here’s a brief example where the user is requested to input a first and last name and the system shows a value of the type Client (the same that was declared in Chapter 4):

main = do putStrLn "First name?"
          fName <- getLine
          putStrLn "Last name?"
          lName <- getLine
          putChar '>' >> putChar ' '
          print $ Person fName lName

All these output functions have IO () as return type. Remember that () is the “unit type” and there’s only one value of that type, which is confusingly also named (). It’s customarily used in Haskell programming to identify those monadic computations that don’t have a value to return, but one in which you’re interested by the effects that it has on the context. Apart from putStr and friends, other functions that use () in its return type are tell (from the Writer monad) or put (from the State monad).

The counterparts to the previous functions are the ones that receive information from the user. The most common one is getLine, its task is to gather all the input up to the moment in which the user presses Enter. You may be interested, however, in getting the input character by character, which you can do using getChar. Finally, in some cases you want to get all input up to an “end of file” marker. This is very common when piping data between processes in a Unix-like shell. The function that provides that functionality is getContents.


HASKELINE

If you’re planning to create a command line application, the simple functions that Prelude includes won’t offer the best experience to the end user. In particular, you may want to provide command history or autocompletion.

The haskeline library is specifically designed for this task. The core of the library is the InputT monad transformer, which provides those features. The previous example asking for a person could be rewritten as:

import System.Console.Haskeline

main = runInputT defaultSettings $ do
     fName <- getInputLine "First name? "
     lName <- getInputLine "Last name? "
     case (fName, lName) of
         (Just f, Just l) -> outputStrLn $ show (Person f l)
         (_     , _     ) -> outputStrLn "I cannot identify you"

One difference with standard Prelude is that input functions return their value wrapped on a Maybe, anticipating the case in which the input may stop earlier than expected.



Since IO is a monad, you can use the enormous set of functions that were presented in Chapters 6 and 7. As you may remember, any monad is a functor, so you can use fmap directly on IO. For example, you may refactor the following use of variable s, since it’s only used to thread the information to upperS:

import Data.Char
 
main = do s <- getLine
          let upperS = map toUpper s
          putStrLn upperS >> putStrLn upperS

Into a more concise form which directly generates upperS:

main = do upperS <- fmap (map toUpper) getLine
          putStrLn upperS >> putStrLn upperS

Another possibility is accumulating some information using foldM. The following code goes through a whole list of clients, and for each of them it asks the user whether they should be included in a special VIP list:

import Control.Monad (foldM)
 
createVIPList :: Show a => [Client a] -> IO [Client a]
createVIPList = foldM (\lst c -> do
                         putStrLn $ "\nShould " ++ show c ++ "be included in the VIP list? "
                         answer <- getLine
                         case answer of
                           'Y':_ -> return $ c:lst
                           _     -> return lst) []

It’s interesting to consider what happens when IO values are inside a certain container. For example, you may want to create a list of actions and, based on some user input, execute one of them. This is exactly what it’s done in the following piece of code:

main = do actionName <- getLine
          case lookup actionName listOfActions of
            Just action -> action  -- execute action
            Nothing     -> putStrLn "Unknown action"
 
listOfActions :: [(String, IO ())]
listOfActions = [
  ("greet", do name <- getLine
               putStrLn $ "Hello " ++ name),
  ("sum"  , do putStrLn "First number:"
               n1 <- fmap read getLine
               putStrLn "Second number:"
               n2 <- fmap read getLine
               putStrLn $ show n1 ++ "+" ++ show n2 ++ "=" ++ show (n1+n2))]

It’s important to think for a moment how the execution of such a code differs from what you may expect. In most programming languages, the call to lookup would have triggered the evaluation of listOfActions. Then, all the calls to getLine or putStrLn would have been executed, since they appear in the body of listOfActions. However, in the Haskell code the side effects aren’t executed until you’ve unwrapped the action to be of type IO t for some t, and asked for its execution, which happens in the line marked in bold face with the “execute action” comment. One important implication is that IO values are first-class citizens of Haskell, as functions are, and can be combined, passed as arguments and returned as any other value.

Randomness

Let’s take a break from input and output and consider the issue of randomness in Haskell. For that purpose, a simulation of a time machine breaking in the middle of a journey will be introduced. When this breakage happens, the time traveller is involved in one of the most disturbing experiences of his or her life: ending in a random place, at a random point in time, with no clue of what he or she will find after going outside the machine.

The following code uses the randomRIO function from the System.Random module in the random package to simulate a random walk from an initial point: that is, a series of random jumps in time made by a broken time machine. The randomRIO function needs upper and lower bounds for the value to obtain, which in this case have been set to 0 and 3000. Since the walk may be infinite, the code just prints the 10 initial hops.

{-# LANGUAGE ScopedTypeVariables #-}
import Control.Monad.Loops
import System.Random
 
main = do (initial :: Int) <- fmap read getLine
          jumps <- unfoldrM (\_ -> do next <- randomRIO (0, 3000)
                                      if next == initial
                                        then return Nothing
                                        else return $ Just (next, next))
                            initial
          print $ take 10 jumps


[image: image] Note  In the preceding code I’m using the monadic counterpart of unfolding, namely unfoldrM. However, you won’t find it in the usual Control.Monad module. Instead, you need to import Control.Monad.Loop from the monad-loops package. This is a very interesting module, which you should add to your list of tools for monadic programming.


Since you know how to read and write from the console and how to generate random values, you can now develop small console games. EXERCISE 9-1 asks you to do so.


EXERCISE 9-1. WIN A TIME TRAVEL TRIP

Develop a small game in which you can win a time travel trip in one of the machines in the store. The game should generate a random number between three and 17. Then, the user has five possibilities of guessing the number. If he or she guesses correctly, the program will show a message congratulating him or her. In case of failure, the program will show a message encouraging the user to try again.

While developing the game, try to think about how to modularize and abstract the code: the range of numbers or the number of guesses can be made into parameters.



The previous code did its job in the main function, which has the IO () type. The call to randomRIO is not made on a let block, which points out that this function works also in IO contexts. You can see that this is the case by asking the interpreter its type:

*Chapter9.Randomness> import System.Random
*Chapter9.Randomness System.Random> :t randomRIO
randomRIO :: Random a => (a, a) -> IO a

Let’s think for a moment why randomness needs an IO context to work. The main reason is that randomRIO  breaks the referential transparency property found in pure Haskell code: not every call to randomRIO will return the same result. That fact implies that the compiler may not be able to perform certain optimizations. For example, in pure code if you have a piece of code like g (f x) (f x), it may be rewritten to let h = f x in g h h, which involves one call less to f and thus less work to be done. But if instead you write:

do x <- randomRIO (0, 10)
   y <- randomRIO (0, 10)
   return g x y

This cannot be rewritten to:

do z <- randomRIO (0, 10)
   return g z z

The code cannot be rewritten because the two calls to randomRIO may return a value different random value. Many other good properties of Haskell code break in the presence of side effects, and thus you cannot use tools such as equational reasoning. This is another reason, apart from maintainability, for keeping pure and IO code apart.

There’s another reason for randomRIO returning its result in IO. Any call to that function must update the global random generator, which is kept in memory by the system. Actually, you can create pure functions which involve random values given that you provide the initial random generator, which is a value of type StdGen. The corresponding pure functions return both a random value and the generator for the next value. For example, the previous code can be “purified” to work on StdGen values as follows:

import Data.List
 
getJumps :: StdGen -> Int -> [Int]
getJumps gen initial = unfoldr (\g -> let (next, nextG ) = randomR (0, 3000) g
                                      in if next == initial
                                         then Nothing
                                         else Just (next, nextG))
                               gen

You can create a StdGen value either with a fixed seed via mkStdGen or obtain the global one via getStdGen. Thus, the initial random code, which also outputs the result, can be written as:

main = do (initial :: Int) <- fmap read getLine
          gen <- getStdGen
          print $ take 10 $ getJumps gen initial

This example holds a very valuable lesson: in many cases you can split your functions with side effects in several pure functions. There is also a driver function that operates in IO and takes care of threading the information between the others. In that way your code will be easier to maintain.

Working with Files

The next step to make after knowing how to deal with side effects and how to communicate with the console is reading and writing on a durable location. In other words, you are leaning how to read and write files on the system. At some point, files themselves turn into objects that can perform certain operations, such as moving files from one location to another, or deleting one file from disk. This section will delve into the functions that provide this functionality in the Haskell Platform.


Reading and Writing

Prelude provides functions for bulk operations on files: either writing from or reading an entire string into a file. The involved functions are writeFile or appendFile for output, and readFile for input. One possibility is reading a list of clients and, for each of them, deciding whether they’ve won a time travel to a point in time (for this second part the code uses randomRIO). The main assumption is that each line of the file will contain a client, so one can use the lines function in Data.String, which separates a string between newline boundaries.

import Data.String
 
main = do clients <- fmap lines $ readFile "clients.db"
          clientsAndWinners <- mapM (\c -> do (winner :: Bool) <- randomIO
                                              (year   :: Int ) <- randomRIO (0, 3000)
                                              return (c, winner, year))
                                    clients
          writeFile "clientsWinners.db" $ concatMap show clientsAndWinners

However, working only with these operations have a severe performance impact: the information read from the file is kept entirely in memory, and the data to write to the file must be assembled into a string before writing it. In many cases, you will want further control: for example, you will want to read just a line or a file, or write information to the disk as you go, instead of waiting for the entire process to finish. The module you should look at is System.IO.

As in most programming languages, the flow of work with a file involves first opening a handle to it, then performing any operation that you need on the file, and finally closing the access to the file. The handle keeps track of all internal information that the system may need to work on the file.

The first step is handled by the openFile operation. The arguments for this function are the path to the file (the documentation shows that the type of this argument is FilePath, but it’s just a synonym for String) and the opening mode, which can be for reading, writing (or both), or for appending. The result will be a file handle. Apart from opening your own files, you can use any of the predefined handles: stdin, stdout or stderr, which map to standard input, output, and error, usually from the console.

The inverse operation, closing a file, is done via the hClose functions. As in any other programming language, it’s very important that you close the file after you’ve finished working with it, because an open handle consumes resources from the machine.

To read or write, you can use the generalizations of the previous console functions, which work on any file handle. These are all prefixed by h, and thus you get hGetChar, hGetLine, hGetContents, hPutChar, hPutStr, and hPutStrLn. Additionally, you can query the system as to whether you’ve finished reading the file with hIsEOF. Armed with these weapons, you can write a more efficient version of the previous example, which reads one line from the file at a time:

import System.Environment
import System.IO
 
main = do (inFile:outFile:_) <- getArgs
          inHandle  <- openFile inFile  ReadMode
          outHandle <- openFile outFile WriteMode
          loop inHandle outHandle
          hClose inHandle
          hClose outHandle
       where loop inHandle outHandle = do
               isEof <- hIsEOF inHandle
               if not isEof
                  then do client <- hGetLine inHandle
                          (winner :: Bool) <- randomIO
                          (year   :: Int ) <- randomRIO (0, 3000)
                          hPutStrLn outHandle $ show (client, winner, year)
                          loop inHandle outHandle
                  else return ()

You may have noticed that instead of hardcoding the input and output file names, the code obtains them via the getArgs function. This function, found in System.Environment, returns a list of all the command line parameters that have been given to the executable command.

Since opening a file, working with it, and closing the handle afterward is a very common task, the Platform includes a special withFile function that takes care of the file, and expects only the action to perform. For example, the previous code could have been written as:

main = do (inFile:outFile:_) <- getArgs
          withFile inFile  ReadMode  $ \inHandle ->
            withFile outFile WriteMode $ \outHandle ->
              loop inHandle outHandle
       where loop inHandle outHandle = do ...

Additionally, withFile will protect against possible errors while processing the file, ensuring that the file handle is always closed. In the next section you will learn how to treat possible errors that may occur while working with files (e.g., data corruption, files that do not comply a certain schema, and so on).

Knowing how to read and write information from files, in addition to marshaling to and from string with show and read, provides a way to save information about clients and products on disk. In EXERCISE 9-2 you are asked to classify clients in several files based on its category.


EXERCISE 9-2. CLIENT CLASSIFICATION

Remember that clients in our store can be individuals, companies, or government organizations. Right now, the store keeps the records for all clients in a single file. Each line contains a client, and it’s encoded by using the show function on them.

In this exercise, write a small executable that reads the information of those clients, and generates another three files. Each of these files should contain all the clients of one of the three possible categories.



Up to this point, the code has just read the data in every file as a string. But in reality, two different scenarios may occur. The first one is that the file contains text. But in that case different encodings may have been used to translate from text data into a sequence of bytes. The hSetEncoding function is used to change the current encoding of a handle. The System.IO module includes may encoders, including latin1, utf8, utf16 or utf32, and its big-endian and little-endian versions. If you like to be sure that the contents of the output file for winners are written in UTF-8, you ought to change the code before going into the loop:

withFile outFile WriteMode $ \outHandle -> do
  hSetEncoding outHandle utf8
  loop inHandle outHandle

Anyway, in the next chapter you’ll see that using Strings is rarely the best option when dealing with files. Instead, you should use ByteString and Text values. In that case, the encoding problem comes up front, and you always need to specify how to convert from sequences of bytes to text values.




Handling Files

Let’s move now to another range of operations you can do with files. Moving, copying, or deleting doesn’t involve the data stored in files, but rather the files themselves. For those operations, the Haskell Platform includes the directory package, which is quite straightforward to use.

The functions renameFile, copyFile and removeFile, from the System.Directory module, take care of moving, copying, and deleting files from the system. It’s important to note here that none of these operations support working on directories, only on files.

Due to the impossibility of the previous functions to work on folders, directory provides a different set of functions for them. The following list enumerates the most important ones:



	getDirectoryContents returns a list of all the elements inside the folder;

	createDirectory makes a new folder in the system. However, it may fail if the directory already exists or if some of the parent directories are not present. The createDirectoryIfMissing takes care of those two conditions;

	renameDirectory allows moving a folder in the system. Notice that errors may happen if the path where you want to move already exists;

	removeDirectory deleted a folder from the system. Usually, the directory cannot be removed if it’s not empty. removeDirectoryRecursive, on the other hand, deletes every element inside the folder and then the folder itself.



Apart from encoding, the other big issue when handling files is the format of the file paths, which changes depending on the underlying operating system. For example, Windows uses drive letters prefixing the paths and allows both \ and / to separate parts; whereas Unix and Mac OS X systems allow only / as separators. Since the Haskell community considers interoperability between systems an important issue, a library has been included in the Platform that abstracts from these issues: its name is filepath.

The most important function in this library is (</>), which combines two path segments into a larger one. For example, if you want to read some database configuration found in the database.settings file inside the config folder, the most correct way to do so is:

withFile ( "config" </> "database.settings" ) ReadMode $ \handle -> ...

Conversely, you may want to split a certain file path in the directory between where the file resides and the file name itself. This can be done with splitFileName. As an example, here’s some code that gets an input file name from command line arguments and writes into a file named example within the same folder:

import System.FilePath
 
main = do (file:_) <- getArgs
          let (folder, _) = splitFileName file
          withFile (folder </> "example") WriteMode $ \handle -> ...

In some cases it may be interesting not to split only between the folder and the file name but rather get a list of all the path segments. In that case you may use splitDirectories instead.

Finally, filepath includes functions for dealing with extensions. You can use (<.>) to add an extension to an existing file path. The other way around, you can use splitExtensionsto generate a tuple of the file name and all the extensions attached to it. The package includes many other little utilities, like replacing an extension, dropping just the last extension, and so on. It’s very useful to look at the filepath documentation when you need to handle file paths in your application.


[image: image] Note  Let me stress this once more: never roll your own ways to combine, add extensions, or any other task involving file paths. Instead, use the filepath package to ensure that your code is correct and interoperable.




Error Handling

When dealing with input and output, or many other kinds of side effects such as printing or communicating through a network, many kinds of errors may occur. In all the previous examples, the program would just crash when trying to open a file that doesn’t exist on the system. It’s important to know how to detect and recover from those error conditions.

But before proceeding with handling errors in IO contexts, I’m going to discuss how errors are handled in pure code, a topic you’ve already heard about previously in this book. In that way, you’ll notice the differences between pure errors and exceptions. The latter is the mechanism for signaling anomalous conditions in IO.


Pure Errors

Until now, when an operation could not be performed, the most common way with cope with it was to return a Maybe value. This happened, for example, when a function was not applicable to some of the constructors of the value, such as head to empty lists [], or getting the company name of an Individual client. In that way the calling function would get Nothing as result if any problem happened.

Unfortunately, Maybe is not a very precise way to specify the error that has occurred. You can declare that the operation was not successful, but not the reason. And in many cases that information is very relevant: it’s not the same failing on a database transaction because the connection is not available than failing because some constraint has been violated. A useful type for these scenarios is Either, which is declared simply as:

data Either a b = Left a | Right b

For example, if x :: Either Int String, x can contain either an integer value, in which case the Left constructor would have been used, or a string value, wrapped on the Right constructor.

Conventionally, the usage of Either for errors uses Right when the computation is successful, and Left for failing scenarios. Thus, if r is the type of correct results and e the type you would use for specifying the possible errors, Either e r is the customary type to use in functions. As an example, let’s define a version of companyName that tells us the specific error why it couldn’t retrieve the name of a company client:

data CompanyNameError = GovOrgArgument | IndividualArgument
 
companyName :: Client i -> Either CompanyNameError String
companyName Company { clientName = n } = Right n
companyName GovOrg     { }             = Left GovOrgArgument
companyName Individual { }             = Left IndividualArgument

A user of this function may now pattern match on the result and find the type of error in case it’s needed:

printCompanyName :: Client i-> IO ()
printCompanyName c = case companyName c of
                       Right n -> putStrLn n
                       Left GovOrgArgument     -> putStrLn "A government organization was given"
                       Left IndividualArgument -> putStrLn "An individual was given"

The dichotomy between using Maybe or Eitherfor specifying when an operation was not successful is usually a source of headaches. This turns especially painful when you’re using a library that uses a different style of error specification than the one you’ve decided to use in your application. Thankfully, the errors package, in its Control.Error.Util module, contains very helpful functions to convert between styles. The signatures of those functions involved in the conversion are:

hush :: Either a b -> Maybe b
note :: a -> Maybe b -> Either a b

Essentially, you use hush to forget about any concrete error in an Either value and just return Nothing if the computation fails. In the other direction, you need to tell which error value to return in case the Maybe value turns out to be Nothing. The name of the function is a reminder of its usage: you need to “add a note” to the possible error value.

Since deciding whether to use Maybe or Either is difficult, but also may have ramifications throughout your application; so you may think about abstracting over the way errors are handled. And Haskell type classes are the tool that you need here.

In Chapter 7 you learned how to use MonadPlusto return values that declared an erroneous condition and its mplus operation to combine several of those values and returned the ones that were not errors. If you use MonadPlus, you can use Maybe or lists, signaling errors with Nothing and empty lists, respectively. Unfortunately, Either cannot be made an instance of MonadPlus. The problem is that the mempty operation in that type class must not have any parameter. Thus, you cannot specify which value to wrap in the Left constructor in the case an error should be returned.

The mtl package includes a generalization of MonadPlus to which both Maybe and Either can be given instances: its name is MonadError. Any type that supports this type class must provide two different operations, as its declaration needs:

class Monad m => MonadError e m | m -> e where
  throwError :: e -> m a
  catchError :: m a -> (e -> m a) -> m a

The first operation is the one responsible for signaling failure. As you can see, it satisfies the requirement that mempty didn’t: it takes an extra parameter that is the error value to return. For example, the companyName function could be generalized to work on both Maybe and Either as follows:

{-# LANGUAGE FlexibleContexts #-}
import Control.Monad.Error
 
companyName :: MonadError CompanyNameError m => Client i -> m String
companyName Company { clientName = n } = return n
companyName GovOrg     { }             = throwError GovOrgArgument
companyName Individual { }             = throwError IndividualArgument

In the case of MonadPlus, the mplus function served as for recovering from an error. Essentially, x `mplus` y was described in this context as returning the value of x if it represents success, or otherwise return y if x represents failure.2 This operation has also been generalized: catchError has the same task, but has access to the error value of the corresponding throwError if the operation fails. For example, let’s create a function that calls companyName, and in case of failure returns a predefined empty value using MonadError:

companyNameDef :: MonadError CompanyNameError m => Client i -> m String
companyNameDef c = companyName c `catchError` (\_ -> return "")

Along with the MonadError type class, mtl, and transformers include an ErrorT monad transformer you can add to your stack. The best way to understand its task is by thinking of the MaybeT transformer, i.e., of computations that may fail, with the addition of a tag specifying the error in the appropriate case. However, there’s a reason why the transformer is called ErrorT and not EitherT: it asks the error type to be an instance of the Error type class. That type class enforces the type to provide a way to create errors from strings, as you can see from its declaration:

class Error a where
  noMsg  :: a
  strMsg :: String -> a

There’s a reason why this extra restriction is needed. If you want full interoperability with the fail function inside the Monad class, you need to be able to convert from a string to the error type. This is because fail takes as argument a string.

In many cases you don’t need that functionality, and thus the Error restriction can be dropped. The corresponding monad transformer has been packaged in the either package. In that case, the type bears the name of EitherT, because it works exactly as you would expect Either to work, with no further restriction. And even better, a monad stack containing EitherT is also an instance of MonadError, so you can still use the same interface. The errors package also encourages the use of EitherT instead of ErrorT, and provides conversion functions between stacks using MaybeT and EitherT:

hushT :: Monad m => EitherT a m b -> MaybeT m b
noteT :: Monad m => a -> MaybeT m b -> EitherT a m b


[image: image] Note  The distinction between using ErrorT and EitherT is subtle and boils down to whether you need interoperability with Monad’s fail. That is, if you decide when you call fail inside the monad that you want to recover the string that was given back then or not. Anyway, you can use the MonadError type class to defer the decision.



SAFE FUNCTIONS

Due to the historical development of the Haskell libraries, some of the functions in the Prelude don’t have a pure-friendly way to cope with errors. An archetypical example is head. In the case of application to [], this function raises an exception (which can only be caught inside the IO monad as you will see in the next section) instead of returning some representation of the error.

To alleviate this problem, the safe package provides a lot of versions of common functions that fail in a more pleasant way. For example, head has a version headMay, which returns the value wrapped in a Maybe, and thus allows returning Nothing for empty lists; and headDef, which takes an extra argument with a default value to return in the case of an empty list.






Catching Exceptions

I’ve already discussed how dealing with the outer world opens the door to a whole new category of errors, such as non-existing files or connections that go down. For that kind of events, Haskell provides an exception mechanism. There are two main differences between exceptions and the pure errors discussed:



	Pure errors can be thrown and caught in any place, usually by simply pattern matching on the final value of the computation. In contrast, exceptions can only be handled inside an IO context (but still be thrown from any place);

	When using Either, you need to specify in advance every possible error that may happen in the execution of some code. On the other hand, Haskell’s exception mechanism is extensible. This decision allows new side effects to fail in new ways but hurts the analysis of the code, because you cannot tell in advance which exception may be thrown.



The entry point of any work with exceptions is the Control.Exception module. The code examples in the rest of the section will assume that this module is included in the imports list. In many cases you need to specify exception types inside function bodies and let declarations: the ScopedTypeVariables GHC extension will be assumed to be enabled in all the samples.

Let’s start with an example that adds exception handling to the initial function that wrote a list of winners from the database of clients by using readFile and writeFile:

import Control.Exception
import System.IO.Error
import System.Random
 
main = do clients <- fmap lines $ readFile "clients.db"
          clientsAndWinners <- mapM (\c -> do (winner :: Bool) <- randomIO
                                              (year   :: Int ) <- randomRIO (0, 3000)
                                              return (c, winner, year))
                                    clients
          writeFile "clientsWinners.db" $ concatMap show clientsAndWinners
       `catch` (\( e :: IOException ) -> if isDoesNotExistError e
                                       then putStrLn "File does not exist"
                                       else putStrLn $ "Other error: " ++ show e)

The first thing to notice is the use of the catch function. The idea is simple: you declare the main code to run, and then a handler for a specific class of exceptions. The second thing to notice is that the code explicitly mentions the type of exceptions to be handled using that code.

In this particular case, the type you’re interested in is IOException, which describes those exceptions that have something to do with input and output. A value of type IOException encodes extra information about the kind of problem that occurred: you can query it via a set of functions in the System.IO.Error module. In the example, the interest lies on non-existent files, and checks via the isDoesNotExistError function.

The fact that the Haskell exception mechanism is dynamic and extensible makes the type specification a very important point in handling erroneous scenarios. The predefined set of exceptions that is raised by functions in the Platform, is also included in the Control.Exception module. This set includes, among others, ArithException, which signals that a numerical error such as underflow or division by zero has occurred; ErrorCall, which allows handling calls to error; or PatternMatchFail, which is thrown when no pattern matches a specific value.

The following code asks the user for two integer numbers and shows the quotient of the two. Two kinds of exceptions may be raised: first of all, the user may input something that is not a number, which will turn out to a call in error inside read.  The other possible problem is division by zero. As you can see, each exception has its own handler:

main = do (n1 :: Int) <- fmap read getLine
          (n2 :: Int) <- fmap read getLine
          putStrLn $ show n1 ++ " / " ++ show n2 ++ " = " ++ show (n1 `div` n2)
       `catch` (\(_ :: ErrorCall) -> putStrLn "Error reading number")
       `catch` (\(e :: ArithException) -> case e of
                  DivideByZero -> putStrLn "Division by zero"
                  _            -> putStrLn $ "Other arithmetic error: " ++ show e)

These exception types are different to IOException in one sense: whereas an IOException value needs to be queried through special-purpose functions about the kind of problem that happened, these types are defined as simple ADTs, and thus you can use pattern matching to discover the source of problems.

The Control.Exception module includes many other variations of catch for handling exceptions. One of them is catches, which receives a list of handlers for different exceptions. For example, the code above could have been written without several calls to catch using that function:

main = do . . .
       `catches` [ Handler (\(_ :: ErrorCall) -> putStrLn "Error reading number")
                 , Handler (\(e :: ArithException) -> case e of ...)]

Another possibility is using handle, which is just catch with reversed arguments. It’s very common to use it when the code to execute is long but the code to handle the errors is short, because it makes the exception handling apparent upfront. A third way to write the same quotient code is:

main = handle (\(_ :: ErrorCall)      -> ...) $
       handle (\(e :: ArithException) -> ...) $
       do (n1 :: Int) <- fmap read getLine
          . . .

In some cases, you want to treat an exception in a similar way to an error in a pure computation. This may lead to code that is easier to read if other sources of errors are pure. Think of a scenario when you’re validating some values from a database. In that case, exceptions can be raised in the database connection code, but validation will use Maybe or Either. The way to bridge both worlds is via the try function, which returns an Either value that may contain a final result in its Right or a thrown exception in its Left.

For every exception handling function there’s a corresponding one ending in Just: catchJust, handleJust, and tryJust. Those functions take as extra parameter an exception filter, which decides whether a particular exception should be caught by that handler or rethrown. These filters take the exception value as parameter and must return a Maybe value: if it’s Nothing the exception should be rethrown, if the result is Just e, the exception is handled by the code corresponding to that catch. You’ve already found a case where this is interesting to do: from all the possible ArithException values, the real interest lies only in DivisionByZero. Thus, you can use catchJust to ensure that any other exception is correctly rethrown:

main = catchJust (\e -> if e == DivideByZero then Just e else Nothing )
          (do (n1 :: Int) <- fmap read getLine
              (n2 :: Int) <- fmap read getLine
              putStrLn $ show n1 ++ " / " ++ show n2 ++ " = " ++ show (n1 `div` n2)
           `catch` (\(_ :: ErrorCall) -> putStrLn "Error reading number") )
          (\_ -> putStrLn "Division by zero")


[image: image] Note  As you can see, the exception mechanism in Haskell is much more powerful than those in other languages. Apart from defining handlers by type, functions such as catchJust allow you to perform a dynamic check on whether to catch a particular exception. Using catchJust and similar functions ensures that you only handle the exceptions you know how to deal with, and the rest are properly rethrown to subsequent handlers.


Combinators such as catchJust enable you to be very specific about which exception each handler should catch. In some cases, a handler has the opposite intention, though: catching every exception that might have been thrown in the code. The solution comes after looking closely at how different types of exceptions related to each other. In particular, Haskell exceptions form a hierarchy: each exception type E has a parent exception type P, describing the fact that E exceptions are a subset of P exceptions. At the root of this hierarchy you find the SomeException type. In conclusion, if you want to add a handler that catches all possible exceptions that may arise in your application, your code should look like:

main = do ...
       `catch` (\(e :: SomeException ) -> ...) -- handler for uncaught exceptions

Most programming languages that use exceptions as their error mechanism include, apart from ways of throwing and catching them, a way to ensure that a certain piece of code runs even in the case of an exception. The usual purpose is to include some clean-up code or releasing some resource. For example, if you open a file handle, you want to ensure that it’s closed even if some exception arose in its processing. In Haskell this functionality is provided via the finally function. It can be used to create a more resilient version of the code that writes the winner clients in a file:

main = do (inFile:outFile:_) <- getArgs
          inHandle  <- openFile inFile  ReadMode
          outHandle <- openFile outFile WriteMode
          ( loop inHandle outHandle
            `finally` (do hClose inHandle
                          hClose outHandle) )
       where loop inHandle outHandle = ...

However, this code is not completely correct. In particular, it may be the case that an exception is thrown while opening any of the files. In that case you cannot use finally, because the call to hClose without opening the handle is incorrect. A three-stage flow is very usual when dealing with resources: you acquire the resource, you perform some operation, and you release it. Even in the case of an exception during processing, you want to release the resource; but you don’t want to run that code if the acquisition failed. This pattern is made explicit in Haskell by the bracket function. The most correct way to write the previous code is:

main = do (inFile:outFile:_) <- getArgs
          bracket (openFile inFile  ReadMode)  -- acquisition of inHandle
                  hClose                       -- release of inHandle
                  (\inHandle -> bracket (openFile outFile WriteMode)
                                hClose
                                (\outHandle -> loop inHandle outHandle))
       where loop inHandle outHandle = ...

In EXERCISE 9-3 you can apply your new knowledge about exceptions by taking EXERCISE 9-2 and improving on it.


EXERCISE 9-3. BETTER CLIENT CLASSIFICATION

Add exception handling to the code you wrote for EXERCISE 9-2.




Throwing Exceptions

Now that you’ve seen how to catch exceptions, it’s time to learn how to throw them. If you want to re-use any of the pre-defined exception types in Control.Exception, you just need to call throwIO, if you are within the IO monad; or throw, if you want to throw an exception from pure code (but remember that the handler still needs to be inside the IO monad). This simple example does so re-using the NoMethodError exception type:

main = do throw $ NoMethodError "I don't know what to do"
          `catch` (\(e :: SomeException) -> do putStr "An exception was thrown: "
                                               putStrLn $ show e)

Usually you would like to raise an exception of a new custom type, which describes those exceptions that may happen in your code. In order to use a type as exception, you need to create instances for it of the Show, Typeable, and Exception type classes. Thankfully, Haskell’s deriving mechanism saves you from writing all the boilerplate code. The following code declares a type of exceptions in an authentication system:

{-# LANGUAGE ScopedTypeVariables, DeriveDataTypeable #-}
import Data.Typeable
 
data AuthenticationException = UnknownUserName  String
                             | PasswordMismatch String
                             | NotEnoughRights  String
                             deriving ( Show , Typeable )
 
instance Exception AuthenticationException

Now you can use your new exception type as any built-in one:

main = do throw $ UnknownUserName "Alejandro"
          `catch` (\(e :: AuthenticationException ) -> ...)



THE TYPEABLE TYPE CLASS

Haskell’s exception mechanism makes heavy use of the Typeable type class. The purpose of this class is being able to know information about the type of a value at run-time (because usually Haskell erases all type information after compiling in order to increase performance). Typeable has also been used, in the Data.Dynamic module, to create an interface for dynamic values, which you can cast at run-time to other types.



As on other occasions, having the exception functionality wrapped in a type class makes it easier to write code so that it’s re-usable among several monad stacks and users of your library. In most cases, the MonadError type class introduced before should be enough to cover stacks with exceptions. In case you want a real generalization of the Control.Exception functions and interface, I would recommend the MonadCatch type class from the exceptions package.


[image: image] Warning  Throwing exceptions in pure code is not recommended at all. Instead, you should strive to use other kinds of error propagation mechanisms, like Maybe or Either. On IO code exceptions can be code that is more concise and clear (like having a last-chance exception handler that logs all critical errors) but still shouldn’t be overused.






Streaming Data with Conduit

The input/output framework that has been shown in the previous sections is usually known as “classic I/O” or “lazy I/O”. It’s been included in Haskell since the first versions. However, the way it works does not interact well with the laziness inherent to the Haskell language, giving rise to the so-called streaming data problem. For that reason, several stream libraries have been developed, which solve the problems related to this interaction in an elegant and efficient way.


Problems with Lazy Input/Output

Let’s consider the following simple piece of code: you open a file, get it contents, close the file and then work with the information you’ve just obtained. At first sight, this should be OK: hGetContentsreads all the information and you ensure that the handle is closed with hClose.

main = do h <- openFile "/some/text/file" ReadMode
          s <- hGetContents h
          hClose h
          print s

However, if you run this code, you’ll get an empty string in the screen:

$ ./dist/build/chapter9-stream/chapter9-stream
""

Then if you exchange the order of the printing and closing operations, everything works fine.

That a simple change in order makes the difference pinpoints a problem in the interaction between input/output operations and the time each element in the program is evaluated. Due to the lazy nature of Haskell, the s value won’t be evaluated until it’s needed, something that happens in the call to print. But at that point, the handle has already been closed, so hGetContents is not able to bring any kind of information from the file. In this case, the behavior of your program doesn’t match your expectations.

One possible solution is forcing the evaluation of s using seq or deepseq. While this is a working solution, it has two problems. The first one is efficiency: forcing the entire string brings it into memory, consuming scarce system resources. If you want to be a bit cleverer and force only the string that you need, you run into problems of maintenance and composability: which function should be the responsible for bringing into memory a determinate value? How can you know upfront which of the values will be needed in the entire application?

An even worse solution is keeping the file handle open through all the life of the application. But his would have the obvious problem of acquiring resources without releasing them. Files may be cheap resources, but when speaking about network or database connections, this becomes definitely an impossible way to go.

Laziness and IO may bring even more surprises. Suppose that during the execution of hGetContents in the previous code, an exception is thrown. This exception won’t be seen by the block of code that generated the string, but rather where the value is being used. That means that in the middle of some pure computation that uses s, an exception may come in the way, and there’s no way to handle it without resorting to IO. Furthermore, your code loses its predictability, as you can’t always be sure whether using some value would entail running some IO computation.

As you can see, using the simple model of handles which System.IO exposes brings unpredictability on when resources may be released and when exceptions could be thrown. The possible solutions like forcing evaluation or keeping handles open are definitely inefficient. This is called the “streaming data problem”.

The Haskell community has come with solutions to this problem in the form of stream libraries. These libraries usually provide an abstraction of data that comes from a resource in the form of a stream. Furthermore, the way in which the resource that generates the data is acquired and released is made much more predictable. In many cases, stream libraries also introduce a boost in performance, because they can ensure that only the necessary data for performing an operation is brought into memory.

There are several libraries in Hackage built around this idea. An initial approach, developed by Oleg Kiselyov, is shown in the iteratee and enumerator packages. Afterward, other libraries provided a more convenient and easy-to-use interface, including pipes, io-streams, and conduit. All of those three libraries are used in the wild.

I shall now focus on the conduit library because it’s been used in other libraries that will be presented later, like Persistent for database connections. Apart from the core library, there are many other libraries connecting conduit to different sources of data. In any case, the notions that appear in the conduit library are very similar to those in any other libraries.




Introducing Conduits

conduit is based on streams of data that are produced, modified, and consumed by different actors. For example, if the “winner clients” example was modeled using conduit, there would be an actor providing a stream of strings from a file, another actor modified that stream to add the information about whether each client has won or not, and finally another actor converting that stream into a new file in the system.

In particular, there are three kinds of actors that take part in processing data. They are defined in the Data.Conduit module of the conduit package:



	A Source provides a stream of values to be consumed. Examples of Sources are obtaining text data from a file in disk, reading from a network connection, of obtaining each of the elements in a list;

	A Sink has the opposite behavior of a Source: consumes a stream of values and doesn’t produce any further stream. Optionally, it may produce a final result. Sinks that don’t produce any result are those writing data into disk or sending it via a network connection. A list fold can be seen as a Sink too: it consumes a stream of data and returns a single value that is the fold with some function;

	A Conduit both consumes and produces stream values. The intermediate step in “winners client” is an example of Conduit, as it is a map on a stream.



Sometimes you speak also of Producer, which is any actor which may create a stream of values, either a Source or a Conduit; and Consumer, which is any actor that takes a stream as input, and thus consisting of Sinks and Conduits.

A complete flow of data from a Source to a Sink is established via the ($$)connect operator. To end up with a Source at the front of your chain and a Sink at the end, you should use the fusion operators: ($=), which connect a Source to a Conduit and produce a Source; (=$=), which connects two Conduits; and (=$), which connects a Conduit to a Sink, producing a Sink. As a reminder, you can think of the equals sign as describing where the stream flows. Figure 9-1 shows two possibilities for connecting an entire flow. There’s no specific guidelines on which way of connecting is preferred, even though the upper one, with ($$) at the beginning, is the most used combination in the wild.


[image: 9781430262503_Fig09-01.jpg]

Figure 9-1. Conduit actors connected to process a stream



One important feature is that each actor can take care of acquiring and releasing its resources in a safe and predictable way. For example, a “write to file” Sink may open a handle when the stream of data starts and can safely close the handle when the input stream is finished. Furthermore, the data can be requested from Sources and Conduits as it is consumed by other Conduits or Sinks, which enables better performance.

Let’s look at some examples involving the simplest kind of stream: a list. All the functions related to using lists in this way are found in the Data.Conduit.List module. The sourceList function produces a stream that gives each of the elements in the list in order. The fold function consumes the list and produces the result of folding a specific function over all the elements. Let’s look at an example in the interpreter:

*Chapter9.Stream> import Data.Conduit
*Chapter9.Stream Data.Conduit> import qualified Data.Conduit.List as L
*Chapter9.Stream Data.Conduit L> L.sourceList [1,2,3,4,5] $$ L.fold (+) 0
15

The Data.Conduit.List includes many other actors over streams that have a similar interface to list functions. A very useful one is the map Conduit, which applies a function to each element in the stream, producing a new stream with the result of such application. You also can use filter on a stream to eliminate those values that are not interesting. As an example, let’s compute the sum of the squares of all numbers from one to 20 that are odd:

> L.sourceList [1 .. 20] $$ L.filter odd =$= L.map (\x -> x*x) =$ L.fold (+) 0
1330

As in the case of lists, unfolding is another way to generate streams, provided in this case by the unfold function. In the next example you’ll see how it is used to generate an infinite stream of natural numbers, from which it only takes the first 10 via isolate:

> L.unfold (\x -> Just (x,x+1)) 1 $= L.isolate 10 $$ L.consume
[1,2,3,4,5,6,7,8,9,10]

The example also showcases the use of consume, which converts a stream into a simple list.

The operations that are similar to lists give you lots of possibilities, but it’s interesting to know how to create your own Conduits. The first observation is that you don’t need to learn different techniques for Sources, Conduits, and Sinks, because the three of them are incarnations of the more general type ConduitM i o m r: i is the type of the elements of the input stream; o is the type of elements produced by the actor; r is the type of the result of running the actor. With that information you can see that, for example, a Source m o, which takes no input and produces no result, is actually a type synonym for ConduitM () o m ().

ConduitM is indeed a monad transformer. The m parameter, which must a type instantiating the Monad type class, enables conduit actors to execute actions inside a monad, instead of only pure computations. For example, a Source that reads data from a file would have the m parameter equal to IO. You’ll see shortly how to take advantage of this parameter.

Inside a ConduitM context, you gain access to four functionalities that are used to build streams:


	await tries to take the next element in the input stream. If it is successful, it’s returned wrapped in Just. If the stream doesn’t have any more elements, it returns Nothing;

	Input streams can be manipulated also inside a ConduitM: leftover allows you to put back some value on the input stream. At this point the documentation discourages to put back elements that hadn’t been obtained from a call to await;

	yield is the function used to send values to the output stream;

	Finally, the return value of the ConduitM you’re coding is stated simply using the return method of monads.



As an example, let’s create a simple Conduit which takes a stream of Clients and returns every person, being it individual or part of a company, which appears in that stream:

people :: Monad m => Conduit (Client i) m Person
people = do client <- await
            case client of
              Nothing -> return ()
              Just c -> do case c of
                             Company { person = p }    -> yield p
                             Individual { person = p } -> yield p
                             _                         -> return ()
                           people

Notice that the code doesn’t have to return one element in the output stream per element in the input stream: government organizations are not yielded. In that way you can implement filters. You can check that this can be used as a normal Conduit in the interpreter:

> L.sourceList [ GovOrg 1 "NASA", Individual 2 (Person "A" "S")] $$ people =$ L.consume
[Person {firstName = "A", lastName = "S"}]

It’s important to notice that if you wrap some monad m in ConduitM, the result of streaming data from a Source to a Sink will live inside such monad m. Say that you want to count the number of government organizations that are clients. You can build it with a simple counter, but for illustration purposes let’s do so using State. Since ConduitM is a monad transformer, you need to insert calls to lift before the State actions.

import Control.Monad.State
 
countGovOrgs :: MonadState Int m => Sink (Client i) m Int
countGovOrgs = do client <- await
                  case client of
                    Nothing -> do n <- lift $ get
                                  return n
                    Just c  -> do case c of
                                    GovOrg { } -> lift $ modify (+1)
                                    _          -> return ()
                                  countGovOrgs

Once you apply this Sink to a Source, what you get still needs to be executed on a monad supporting MonadState. In this case, the interest lies only in the state, so execState is the function you need to get the result:

main = let clients = [ GovOrg 1 "Zas", Individual 2 (Person "Alejandro" "Serrano")]
           conduitGovOrgs = L.sourceList clients $$ countGovOrgs  -- :: State Int ()
        in print $ execState conduitGovOrgs 0

As an extra example of Conduit in which you take advantage of the possibility of using other monads underneath, let’s implement the “winner clients” intermediate step in this framework. In the same way the code uses randomRIO, you can think of using print or any other IO action.

import Control.Monad.Trans
 
winners :: Conduit (Client i) IO (Client i, Bool, Int)
winners = do client <- await
             case client of
               Nothing -> return ()
               Just c  -> do (w :: Bool) <- lift $ randomIO
                             (y :: Int)  <- lift $ randomRIO (0, 3000)
                             yield (c, w, y)
                             winners

EXERCISE 9-4 should help you get fluent with conduit idioms.


EXERCISE 9-4. CONDUIT UTILITIES

Port the list functions that were presented in Chapter 3 to work with streams. In particular, write the definitions of a Source unfold, which should generate a stream of values based on a generator; the Conduits map that applies a function to all elements of a stream, and filter for dropping some of them; and the Sink fold which computes a fold of a binary operation over a whole stream.






Accessing Files via Conduit

The problem that pushed us to consider conduit was not about lists, but to get a better way to access files, getting improved performance, and much more predictability. It’s time to consider the functions that conduit provides for these tasks, which are available in the Data.Conduit.Binary module.

The interface is quite simple: functions sourceFile and sourceHandle generate a stream from a file, whereas sinkFile and sinkHandle consume a stream, writing it into a file. The difference between the two kinds of functions is that those ending in File take care of opening and closing the handle to the corresponding file, whereas the ones ending in Handle must be provided with an already open handle, and do not close the file at the end. The first ones provide all the features of conduit, whereas the second set enables easy interoperation.

One small tidbit is that those streams do not provide String values, but rather ByteString values. This latter type is a more efficient way to treat bytes of data. The next chapter includes a complete treatment of ByteString, which is defined in the bytestring package, along with ways to convert it from and to String. But for the simple example of “winner clients” where each line must be added some extra information, the only thing you need to know is that pack converts a String into a ByteString. Here’s the corresponding code:

import qualified Data.ByteString.Char8 as BS
import qualified Data.Conduit.Binary as B
import Data.Monoid
 
winnersFile :: (Monad m, MonadIO m) => Conduit BS.ByteString m BS.ByteString
winnersFile = do client <- await
                 case client of
                   Nothing -> return ()
                   Just c  -> do (w :: Bool) <- liftIO $ randomIO
                                 (y :: Int ) <- liftIO $ randomRIO (0, 3000)
                                 yield $ c <> BS.pack (" " ++ show w ++ " " ++ show y)
                                 winnersFile

As you may notice, the winnersFile code does not refer directly to the IO monad, but rather to a type class called MonadIO. This is the class of all monad stacks that support calling IO actions inside its body. The particular feature that the MonadIO type class adds is lifting computations via liftIO.

With the information you have, putting all the actors into work for reading and writing the file should be as simple as the following code. Notice the lines function, which separates a file into parts delimited by newlines:

main = B. sourceFile "clients.db" $$ B.lines =$= winnersFile =$ B. sinkFile "clientsWinners.db"

But the compiler will refuse such code. At this point you need the extra generality introduced before via the MonadIO constraint: the operations that create Sources or Sinks in the Data.Conduit.Binary module use an extra monad transformer, namely ResourceT. To perform the operation, you must include an extra call to runResourceT, which will execute the actions in the monad, as follows:

main = runResourceT $
  B.sourceFile "clients.db" $$ B.lines =$= winnersFile =$ B.sinkFile "clientsWinners.db"

With this code you can be sure that your files will be opened and closed when required.


THE RESOURCET PACKAGE

In the previous example, you’ve seen how conduit uses ResourceT to manage allocation and release of resources. This monad transformer, which lives in the resourcet package, can be seen as a generalization of the bracket function in Control.Exception. In particular, you can use its allocate function to acquire a resource along with a release action that it’s ensured to be called when the control exists from ResourceT.

If only that functionality was provided, you would have gained nothing from using ResourceT instead of bracket. But the former also allows releasing resources explicitly: by calling the release function along with an identifier that allocate returns.

This package is very useful for implementing managers of scarce resources. If your intention is to use a pool of resources for sharing them, you should also look at the pool-conduit package, which builds upon resourcet.





Looking Further than Text Files

At the beginning of the chapter it was mentioned that IO allowed accessing a large variety of resources and performing many different kinds of side effects. However, the only focus until now has been interacting with the console and accessing text files in the disk. This section presents two examples of work inside conduit, but that relate to networking and binary serialization of Haskell data.


Basic Networking

The network-conduit package builds upon conduit to provide a small and easy-to-use interface to networking. The main simplification that this package considers is that an actor in the network will be either a server, which listens for incoming connections, or a client (which connects to a server) and that the connection will always run through TCP. The network interface provided by lower-level packages allows a much wider range of behavior, but in practice these two modes are enough for most applications.

In both server and client, network-conduit expects a value of type Application apart from the connection parameters. The type Application mis just a synonym for AppData m -> m (). The purpose of that value should be taking the Source and Sink provided by AppData and connecting them to provide the flow of information between server and client. Notice also the parameterization of an inner monad m in which Application will be run.

The network application to develop will be yet another way to look at the “winner clients.” In this case, the client will send its name, obtained from the console, and the server will give back information about whether it has won or not. The main Conduit in the server is very similar to previous exercises: the only addition is a call to putStrLn to print the name of user in the screen:

{-# LANGUAGE ScopedTypeVariables #-}
import Control.Monad.Trans
import qualified Data.ByteString.Char8 as BS
import Data.Conduit
import Data.Monoid
import System.Random
 
isWinner :: Conduit BS.ByteString IO BS.ByteString
isWinner = do client <- await
              case client of
                Nothing -> return ()
                Just c  -> do lift $ BS.putStrLn c
                              (w :: Bool) <- liftIO $ randomIO
                              (y :: Int ) <- liftIO $ randomRIO (0, 3000)
                              yield $ c <> BS.pack (" " ++ show w ++ " " ++ show y)
                              isWinner

The next step is creating the Application value, which will put in contact the input flow of data to the server and the output to each client. For that matter you can access the appSource and appSink values:

import Data.Conduit.Network
 
serverApp :: Application IO
serverApp d = do appSource d $$ isWinner =$ appSink d

The last step is starting the server in the entry point. The runTCPServeris the one with that task, and needs as parameter both the port in which it will keep listening and the kind of connections to accept. You can restrict connections through IPv4, IPv6 or from a specific address. In this case any client is welcome:

import Network
 
main :: IO ()
main = withSocketsDo $ runTCPServer (serverSettings 8900 HostAny) serverApp


[image: image] Note  In Windows systems, you need to initialize the networking subsystem before doing any communication over that channel. This is achieved by wrapping your main code with a call to withSocketsDo from the Network module in the network package, as done above. The function itself has no effect on other operating systems, so you should always include it to retain maximum compatibility between platforms.


The other side of the coin, the client, is much simpler. After the connection is created by the runTCPClient function, it must write the name given by command line to the appSink, which will send that information to the server. Once some information is returned, it just prints it into the screen. In total, the code looks like this:

main :: IO ()
main = withSocketsDo $ do
         (name:_) <- getArgs
         runTCPClient (clientSettings 8900 (BS.pack "127.0.0.1")) (clientApp name)
 
clientApp :: String -> Application IO
clientApp name d = do (yield $ BS.pack name) $$ appSink d
                      appSource d $$ (do Just w <- await
                                         lift $ BS.putStrLn w)

As you can see, conduit allows us to treat both files in disk and network connections using the same abstractions. This makes it very easy to re-use data transformation functions between different resources, as this example has done with isWinner.


[image: image] Note  The network package provides an interface to networking using the more conventional approach of sockets. You can create the sockets using that package and still access the data using network-conduit via the sourceSocket and sinkSocket functions.





Binary Serialization

Hackage has two libraries that are able to automatically serialize Haskell values into binary data. That is, it converts some value to a stream of bytes that can later be read to reconstruct such value. This data can be sent through a  network, written to disk, or in general used as any other byte-encoded information.

These aforementioned libraries are binary and cereal. Both provide almost the same interface: the only difference is that when using binary you reference the Binary type class from the Data.Binary module; and when using cereal you should use the Serialize type class in the Data.Serialize module. There are also corresponding packages to perform the serialization via streams: binary-conduit and cereal-conduit. The difference, very important in terms of laziness and performance, is that cereal is strict whereas binary is lazy. This implies, for example, that binary can cope with infinite streams of data (for example, provided through a network connection) but cereal cannot.

Since both are so similar, in this section the focus will be just on binary and binary-conduit. This serialization package was already used in the previous chapter during the discussion of Cloud Haskell. The first thing you must do to be able to serialize your own data types is instantiating the Binary type class. Prior to GHC 7.2.1, you had to write the code for the instance by hand, but since that version, the compiler is able to write the instance for you. Thus, I won’t delve into the details of Binary instances.

Let’s say you want to serialize values of the Person data type introduced in Chapters 2 and 3 using the automatic derivation of Binary. First of all, you need to enable the DeriveGeneric extension to GHC. Then, you can include Generic in the deriving clause of the data type. An instance of Generic contains information about the constructors and arguments that a specific data type declares. Using that information, binary is able to build a whole Binary instance, so you only need to declare it, but you need to do this without providing any implementation of the functions. For Person the whole code reads:

{-# LANGUAGE DeriveGeneric#-}
import Data.Binary
import GHC.Generics
 
data Person = Person { firstName :: String, lastName  :: String }
              deriving (Show, Read, Generic )
 
instance Binary Person

Once you have a Binary instance, you get access to functions decode and encode, which convert from and to ByteStrings to the corresponding values, respectively. The binary-conduit package wraps those functions, allowing you to create either a Source or Conduit from encode, or a Sink or Conduit from decode. The following example serializes a list of people to disk. The specific code that brings binary into the game is shown in bold face.

import Data.Conduit
import qualified Data.Conduit.List as L
import qualified Data.Conduit.Binary as B
import qualified Data.Conduit.Serialization.Binary as S
 
main = runResourceT $ L.sourceList clients $$ S.conduitEncode =$ B.sinkFile "people.db"
       where clients = [ Person "Alejandro" "Serrano", Person "The Doctor" "Who?" ]

Doing the converse is also very simple. The only difference is using conduitDecode instead of conduitEncode. The example below gets a stream of Person elements and outputs them into the screen:

import Control.Monad.Trans
 
main = runResourceT $
  B.sourceFile "people.db" $$ S.conduitDecode
                           =$ L.mapM_ (\(p :: Person) -> lift $ putStrLn $ Show p)

It’s very important that binary knows which kind of value it’s deserializing, either from using other functions on them or by explicitly writing a signature (like in the example). In the version of binary used when writing this book, if you change Person to String, the code still works OK, but generates a stream of four strings instead of two Persons.

Of course, this serialization mechanism is not very efficient when you need to query and transform a lot of data, because the full set of data must be brought into memory and decoded. A better solution is using a database management system for storing the information. Chapter 12 is devoted to connecting to databases in Haskell and storing and querying the data saved in them.



Summary

This chapter has been devoted to interfacing with the “outer world” and learning how to deal with side effects:


	The IO monad has been presented as the one giving context for side effects in computations. Furthermore, the way in which Haskell separates pure computations from those with side effects has been unveiled.

	You’ve learned how to read and write from the console and from files in the disk, using the “classic IO” approach.

	Another source of side effects is randomness, which is provided by the random package.

	The way in which errors are handled in pure code has been reviewed and extended. In particular, the Either type has been introduced.

	Side effects computations also open the door to exceptions, an extensible but impure way to treat erroneous scenarios inside IO.

	The “classic IO” exhibit has several deficiencies in its interaction with laziness. The conduit library is a solution to those problems based on the stream abstraction.

	Finally, you’ve learned how to use conduit in several scenarios, such as reading and writing to files, communicating through the network and serializing Haskell values.



1That assertion is not completely true: there are ways you can perform such a conversion. However, it’s considered extremely unsafe, as it may break several of the invariants that Haskell code counts on. The main use of this unsafe conversion is interoperation with languages that don’t make a distinction between pure and side-effectful functions.

2Although this analogy doesn’t apply as much in the case of lists, where a `mplus` b is the concatenation of both lists, and thus returns all the successful values from both branches.




CHAPTER 10

[image: image]

Building and Parsing Text


The previous chapter has opened the door to side effects and in particular to saving data from your Haskell application on disk or sending it through the network. However, the only true serialization mechanism that was introduced was the binary one, through the binary package.

In many cases a textual representation of data is preferable to a binary one. Even though usually it’s much larger, data encoded in text is more readable for a human consumer, making your programs much easier to inspect and debug. Furthermore, many interchange formats such as XML or JSON encode the data in text, adding to the plain information tags to structure it.

Haskell has great features for working with text, and these features are the focus of this chapter. As you will see, the built-in String data type is not the best option in many cases and should be replaced by much more efficient alternatives such as ByteString and Text. You shouldn’t use plain concatenation to build output text either: your programs should use builders.

The converse operation: decoding some information from a textual representation is called parsing. Haskell is the home of an approach to parsing using combinators, which is exemplified by the attoparsec library. Interestingly, parsing introduces new type classes, the most important one being Applicative.

The Five Textual Data Types

Treating text correctly is a difficult task in almost any programming language. Behind the simple concept of textual data there are always subtle issues related to encoding and representation in memory. This section discusses how to deal with text in the most correct and efficient way in your Haskell code.

Until now, you’ve worked with text values represented within the Stringdata type, which is just a synonym for [Char], a list of characters. The main benefit of String is the simple model that allows any function working on lists to work also in texts. Since lists are an integral part of Haskell, this is a very important feature. Another good quality of String is its support for Unicode. You may not have tried, but any of the code you’ve written with String would work perfectly with Chinese, Greek, or Cyrillic characters.

The downside is that this ease-of-use comes at the expense of performance. Even though GHC performs extensive optimizations over Strings, there’s some overhead both in time and in memory compared to a raw representation as used in other languages. When you are dealing with large quantities of text (for example, generating output for a web application), you need the best performance possible.

At this point there are two functionalities that collide and that you need to balance:


	On the one hand, you would like to see the string as a bare stream of bytes. If you don’t confer any extra meaning to the raw bytes, you can substantially increase the performance, because operating systems usually provide specialized operations for moving bulk blocks of bytes very fast both on memory and to disk.

	On the other hand, those bytes have an intended meaning. To recover the meaning, you need to take into account the encoding the data uses: the same bytes may mean different things when interpreted as a set of Latin-only characters or when using UTF-8 to decode it. Thus, if you care about the actual characters encoded in the string, you have to be very careful when performing operations on them. The aim should be to have a data type that is as performant as possible while still maintaining correctness.



In the case of Haskell, the Platform splits the String data type in two other different types. When you need a very fast implementation but only look at the text as raw bytes, you should choose the ByteStringtype from the bytestring package. The Text type, bundled in the text package, focuses on describing Unicode strings while keeping up good performance.


[image: image] Note  String is very good for experimentation, and for the prototyping phases of development, because Haskell makes the String very easy to use. However, when writing actual code, you should use ByteString or Text. Furthermore, making this choice will help you take into account issues such as encoding.


Apart from this distinction in focus, there’s another dimension to be made. The two libraries provide both strict and lazy versions of their corresponding data types. Remember the subtle balance that strictness and laziness expose: using a strict ByteString or Text means that you might end up evaluating chunks of text that are larger than expected. On the other hand, laziness may bring back some of the problems that were discussed in the previous chapter.

Table 10-1 shows the two dimensions and the module which you should import to get each different set of features. Notice that for lazy Unicode data you may use both lazy Text and built-in [Char].


Table 10-1. Haskell Platform modules for textual data




	
	Strict

	Lazy






	Raw stream of bytes

	Data.ByteString

	Data.ByteString.Lazy




	Unicode data

	Data.Text

	Data.Text.Lazy or [Char]








As important as deciding which type to use is knowing how to convert between those different representations. For example, you may need to insert some String obtained by calling getLine inside a Text value. Another common scenario is getting some input from a file or from a network as a stream of bytes, which is described as a ByteString value, and decoding it to a Text value. Figure 10-1 summarizes all possible paths between the types.


[image: 9781430262503_Fig10-01.jpg]

Figure 10-1. Conversions between textual data types



There are two points to be made about Figure 10-1. The first one is that conversion between strict and lazy types can be done via toStrict and fromStrict, and also via toChunks and fromChunks. All these functions are available in the modules corresponding to lazy versions, that is, Data.Text.Lazy or Data.ByteString.Lazy. The difference is that the functions ending in Strict consume or produce strict versions, whereas the Chunks functions consume or produce lists of strict values. Here are two of these signatures:

toStrict :: Data.ByteString.Lazy.ByteString -> Data.ByteString.ByteString
toChunks :: Data.ByteString.Lazy.ByteString -> [ Data.ByteString.ByteString ]

This small distinction allows retaining some degree of laziness even with strict versions, because the elements in the list will only be evaluated when needed.

There’s no single conversion between Text and ByteString, but rather a family of them, found in the Data.Text.Encoding and Data.Text.Lazy.Encoding modules. Each of the functions includes in their name the encoding that should be used to give meaning to the raw stream of bytes. For example, encodeUtf8 converts some text to the byte representation using UTF-8; decodeLatin1 does the converse operation but with Latin-1 encoded text.


[image: image] Note  There are direct conversions from String to ByteString defined in modules Data.ByteString.Char8 and Data.ByteString.Lazy.Char8. However, they treat each character as an 8-bit value, dropping any extra information (most characters need more than one byte to be encoded). Thus, using the functions in those modules may result in a loss of information, so they should be used with care.


Apart from conversions between them, the external interface to ByteString and Text is almost the same. For that reason, it’s very common to import the corresponding modules in qualified form. Functions are also rather similar to the list-based functions that you would use for String. The main difference with them is that Text and ByteString values do not define constructors, so you need to swap the use of (:) to add one character with cons, and the use of pattern matching with head and tail. On the other hand, usual functions such as map, reverse, foldr, or foldl maintain their names, as this example shows:

*Chapter10.Text> import qualified Data.Text as T
*Chapter10.Text T> :t T.pack "Hello Text type"
T.pack "Hello Text type" :: T.Text
*Chapter10.Text T> import Data.Char
*Chapter10.Text T Data.Char> T.map toUpper (T.pack "Hello Text type")
"HELLO TEXT TYPE"
*Chapter10.Text T Data.Char> T.intercalate (T.pack ",") (map T.pack ["apples","oranges"])
"apples,oranges"
*Chapter10.Text T Data.Char> T.length (T.pack "A Text example")
14

Both Text and ByteString are instances of the Monoid type class. This is quite useful, because the (<>) operator is equivalent to concatenation, a quite common operation to do on these types:

*Chapter10.Text T Data.Char Data.Monoid> (T.pack "Hello ") <> (T.pack "Beginning Haskell")
"Hello Beginning Haskell"

There’s still one drawback for using Text or ByteString instead of String: the code becomes full of calls to T.pack to convert from literals. Due to the popularity of these packages, the GHC developers have introduced an extension that allows writing constant values directly as string literals, making the compiler responsible for inserting the corresponding calls to pack (which in many cases are further optimized and the literal is compiled directly to its Text or ByteString representation). This extension is called OverloadedStrings. The following example enabled such extension in GHCi and uses it to construct directly a Text value:

*Chapter10.Text T Data.Char Data.Monoid> :set -XOverloadedStrings
*Chapter10.Text T Data.Char Data.Monoid> T.map toUpper "Hello Text type"
"HELLO TEXT TYPE"

Be aware that in some cases you may need to introduce an explicit type signature in order to fix the type of text value you’re creating. But in most cases, Haskell type inference will be able to take the decision.

In the previous chapter, I introduced the functions in Data.Conduit.Binary that create Sources and Sinks out of files in the disk, and Data.Conduit.Network that does so with network connections. In that case, the type of the input and output streams was ByteString, which is compatible with the treatment as raw bytes, which has been discussed here. If you want to treat Text data, you need to convert it via an encoding, using the Conduits in Data.Conduit.Text. The functions in that module take a codec, like utf8, as parameter. This is the final and completely correct version of the “winner clients” application using conduit:

{-# LANGUAGE OverloadedStrings #-}
 
import Data.Conduit
import qualified Data.Conduit.Binary as B
import qualified Data.Conduit.List as L
import qualified Data.Conduit.Text as T
import Data.Text
 
main :: IO()
main = runResourceT $
  B.sourceFile "clients.db" $$ T.decode T.utf8 =$=
  T.lines =$= winnersFile =$= L.concatMap (\x -> [x, "\n"]) =$=
  T.encode T.utf8 =$ B.sinkFile "clientsWinners.db"
 
winnersFile :: (Monad m, MonadIO m) => Conduit Text m Text
winnersFile = ...  -- same as previous chapter, but using Text


[image: image] Note  Apart from conduit, you can also access files directly as Text or ByteString using the “classical IO” approach. Those functions live in the Data.Text.IO and Data.ByteString.IO packages and have the same name as their String counterparts.


Building as Fast as the Wind

Until now, the examples have shown how to deal with chunks of text data in several ways, but no complete example has been shown that stores the list of the clients on disk. Anyway, this shouldn’t be complicated: one way to do it is just to generate a big Text value and then save it using conduit.

Since the purpose of the data is to be read back by other applications, you should impose some structure to the representation. In particular, the encoding that I’ve chosen for Client is the following:



	Each client is written as its own line. So the file has a list of clients delimited by newline characters. This allows faster reading via lines afterwards.

	Each client’s data start with client, and the fields composing the information will be written between parentheses and as a list separated by commas.

	The first field in each line specifies the kind of client: gov, com, or ind will be used in each case.

	Since newline, comma and parenthesis characters are used for special purposes, these will be replaced by \n, \,, \( and \) inside each representation.

	The rules for the embedded Person data type are the same, but with the information prepended by person instead of client.



The implementation using Text is straightforward:

{-# LANGUAGE OverloadedStrings #-}
 
import Data.Conduit
import qualified Data.Conduit.Binary as B
import qualified Data.Conduit.List as L
import qualified Data.Conduit.Text as T
import Data.Monoid
import Data.Text
 
saveClients :: FilePath -> [Client Int] -> IO ()
saveClients fpath clients = runResourceT $
  L.sourceList clients $$ L.map clientToText
    =$= L.concatMap (\x -> [x, "\n"])  -- write '\n' between clients
    =$= T.encode T.utf8 =$ B.sinkFile fpath
 
clientToText :: Client Int -> Text
clientToText (GovOrg  i n)     =
  "client(gov," <> escapeString (show i) <> "," <> escapeString n <> ")"
clientToText (Company i n p d) =
  "client(com," <> escapeString (show i) <> "," <> escapeString n <> ","
    <> personToText p <> "," <> escapeString d <> ")"
clientToText (Individual i p)  =
  "client(ind," <> escapeString (show i) <> "," <> personToText p <> ")"
 
personToText :: Person -> Text
personToText (Person f l) = "person(" <> escapeString f <> "," <> escapeString l <> ")"
 
escapeString :: String -> Text
escapeString = replace "\n" "\\n" . replace ","  "\\," .
               replace "("  "\\(" . replace ")"  "\\(" . pack

However, while its simplicity cannot be denied, this code is highly inefficient. Every time two elements are concatenated, a new Text value has to be created, and this comes with an overhead to allocate memory, to copy data, and also to keep track of the value and release it when it’s no longer needed. Furthermore, the conversion of integer values to Text entails an intermediate conversion to String via the show function.

Both text and bytestring packages provide a Builder data type that can be used to efficiently generate large text values. The trick is that a Builder is not itself a value but instead encodes how to build the large text value from its constituent parts. Then, you execute the Builder, which finally generates the string you were looking for. In this last step of executions, many optimizations can be done. For example, the Builder knows how long the final result will be, so it can allocate the whole memory it needs just once.

Builders are built from three basic blocks. You can build one out of a single character using the singleton function, or build it from a larger string value using one of fromString, fromText, or fromLazyText. The code below, however, is taking advantage of the OverloadedStrings extension, which allows you to create a Builder from a literal string. Finally, Builders are concatenated via the Monoid (<>), as Text values are. The following code is a complete replacement of the previous one, where Builders are used instead of Text:

import Data.Text.Lazy
import qualified Data.Text.Lazy.Builder as B
import qualified Data.Text.Lazy.Builder.Int as B
 
clientToText :: Client Int -> B.Builder
clientToText (GovOrg i n) =
  "client(gov," <> B.decimal i <> B.singleton ','
                <> B.fromText (escapeString n) <> B.singleton ')'
clientToText (Company i n p d) =
  "client(com," <> B.decimal i <> B.singleton ','
                <> B.fromText (escapeString n) <> B.singleton ','
                <> personToText p <> B.singleton ','
                <> B.fromText (escapeString d) <> B.singleton ')'
clientToText (Individual i p) =
  "client(ind," <> B.decimal i <> B.singleton ','
                <> personToText p <> B.singleton ')'
 
personToText :: Person -> B.Builder
personToText (Person f l) =
  "person(" <> B.fromText (escapeString f) <> B.singleton ','
            <> B.fromText (escapeString l) <> B.singleton ')'
 
escapeString :: String -> Text
escapeString = replace "\n" "\\n" . replace ","  "\\," .
               replace "("  "\\(" . replace ")"  "\\(" . pack

You may have noticed that the Data.Text.Lazy.Builder.Int has also been imported into the code. This module gives you access to the decimal combinator, which is a very fast Builder for converting integer values into text. If you prefer to use base 16, you may use hexadecimal instead.

To get the final Text value you just need to call toLazyText over the Builder. As the name suggests, you won’t get a strict Text value but rather a lazy one. Remember that in any case you have the toStrict function to convert that value to a strict one when needed. Let’s see an example of building a client description in GHCi:

> B.toLazyText $ clientToText (Company 1 "Black Hole Inc." (Person "John" "Smith") "Traveller")
"client(com,1,Black Hole Inc.,person(John,Smith),Traveller)"

Since conduit uses strict ByteStrings instead of lazy ones, the new version of saveClients using Builders must call toStrict at some point. The implementation shows that fact:

saveClients fpath clients = runResourceT $
  L.sourceList clients $$ L.map clientToText =$= L.map (toStrict . B.toLazyText)
    =$= L.concatMap (\x -> [x, "\n"])  -- write '\n' between clients
    =$= T.encode T.utf8 =$ B.sinkFile fpath

The bytestring library provides Builders for both strict and lazy ByteStrings in the Data.ByteString.Builder and Data.ByteString.Lazy.Builder modules, respectively. Note that the purpose of ByteString Builder is not to produce some text content, but rather a stream of raw bytes. Thus, you can use it to create your own binary format via new combinators. For example, the library provides functions such as in16LE or word64BE, which directly include some value of a specific number of bits (8, 16, 32, or 64) with big-endian or little-endian formats directly as raw data.


[image: image] Note  Remember, use Builders when you want to generate a large Text value or a big stream of bytes. They provide much more efficiency than bare concatenation of strings, without any loss in expressiveness.


You may use the same techniques shown here for clients to write in disk information about products and purchases. EXERCISE 10-1 guides you in the process of doing so.


EXERCISE 10-1. BUILDING PRODUCTS AND PURCHASES

Write Builders for the following data types that encode products and purchases that are done in the Time Machine Store:

data Product = Product { id :: Int, name :: String, price :: Double, descr :: String }
data Purchase = Purchase { client :: Client Int, products :: [Product] }

You may use any representation you may like. However, be aware of escaping characters correctly so that later other applications are able to read the file.



Parsing with attoparsec

While generating output efficiently is useful, it’s often necessary to read back those values in your application. Following the Store example, you may use the text format to interchange information between different applications: the web front-end, the accounting program, the inventory one, and so on.

The most efficient way to deal with the problem of recognizing patterns is using a parser. Often, you create a description of the grammar (i.e., of the structure that strings will follow) in a file separate from your source code. Then, a parser generator converts such description into executable code written in a specific programming language. The best-known examples of these parser generators are bison or yacc for C, JavaCC for Java, or Happy for Haskell.

The focus in this section won’t be in these parser generators, but rather in the attoparsec package that you can find in Hackage. When using attoparsec, you describe your grammar using a set of combinators, within your Haskell code. The benefit of this approach is that you can take advantage of the modularization and re-use features of the Haskell programming language when writing your parser. For example, you may declare a function that takes as parameter a parser and generates another one that is the same one given as argument, but run twice.


[image: image] Note  In the following examples the code will use the Data.Attoparsec.Text module, which creates parsers that work on Text values. If you’re interesting in parsing ByteStrings instead, you should use the Data.Attoparsec module.


The simplest example of a parser is that which needs to match an exact string to succeed. The corresponding combinator is called, quite naturally, stringand takes as parameter the string to match. Let’s try to run a parser that only succeeds with hello over some different strings, in the interpreter:

*Chapter10.Parsing> :set -XOverloadedStrings
*Chapter10.Parsing> import Data.Attoparsec.Text
*Chapter10.Parsing Data.Attoparsec.Text> parse (string "hello") "hello"
Done "" "hello"
*Chapter10.Parsing Data.Attoparsec.Text> parse (string "hello") "hello world"
Done " world" "hello"
*Chapter10.Parsing Data.Attoparsec.Text> parse (string "hello") "bye bye"
Fail "bye bye" [] "Failed reading: takeWith"
*Chapter10.Parsing Data.Attoparsec.Text> parse (string "hello") "bye"
Partial _
*Chapter10.Parsing Data.Attoparsec.Text> parse (string "hello") "he"
Partial _
*Chapter10.Parsing Data.Attoparsec.Text> feed (parse (string "hello") "he") "llo"
Done "" "hello"

As you can see, the function that ultimately executes a parser is called parse. It takes as first argument the description of the format to decode, and as second argument the string that should be matched. However, the results from parsing may be a bit surprising:


	Execution of the parser only consumes partof the string; the remaining is left for further work. The Done constructor for results wraps both that part that hasn’t been used in the parsing process, along with the string that successfully matched. In the example, parsing "hello" returns no leftover strings, whereas doing so over "hello world" makes " world" still available.

	In some cases, the execution of the parser just fails: this is described by the Fail constructor of the result.

	A third possibility to be returned is Partial. This moves us to consider one important feature of attoparsec: it parses strings incrementally. In this example, when you provide "he", attoparsec does not enough data to finish running the parser, so it gives you a callback you can use to provide more input. This is done via feed: in this example, if you provide "llo", you get a successful parse.



attoparsec includes some built-in parsers for different kinds of numbers, like decimal, hexadecimal, or signed for integer values, rational for exact fractions, and double for floating-point values. Let’s try to use it:

*Chapter10.Parsing Data.Attoparsec.Text> parse decimal "78 cents"
Done " cents" 78

As you can see, the returned value is not a string, but rather the actual integer value that could be parsed from the start of the string. This is another important characteristic of attoparsec: the parsers you create build Haskell values as they go. The type of the result is encoded in the type variable of the Parser type, which represents the basic attoparsec blocks. For example, the type of decimal is Integral a => Parser a.

The string and numeric parsers are basic blocks you can use to build larger ones. For that, you need combinators that combine parsers in certain ways. The first one is (<|>), which represents the disjunctionof two parsers: if the first one doesn’t succeed on some input, the second one is tried. Let’s say that you want to match either hello or bye: the following GHCi output shows how to do that. Notice that the (<|>) combinator lives in the Control.Applicative module (you’ll soon learn why) and that the code is using a variant of parse, named parseOnly, which returns the success or failure of the parser using Either.

*> import Control.Applicative
*> parseOnly (string "hello" <|> string "bye") "hello"
Right "hello"
*> parseOnly (string "hello" <|> string "bye") "bye!"
Right "bye"
*> parseOnly (string "hello" <|> string "bye") "aloha"  -- should fail
Left "Failed reading: takeWith"


[image: image] Note  The result types of the parsers being conjoined must coincide.


The next step is combining several parsers in sequence. There’s one small tidbit: since each parser returns a result, you need to tell attoparsec how to combine those results. This is done via the (<$>) and (<*>) combinators. The first one is used just after the function, which should combine the results and the second one is used to thread each of the arguments, in case the function has more than one. To make things clear, let’s define a parser that accepts hello or bye followed by a number and builds a value of type GreetingYear:

{-# LANGUAGE OverloadedStrings #-}
import Control.Applicative
import Data.Text
import Data.Attoparsec.Text
 
data GreetingYear = GreetingYear Text Int
 
greetingYearParser :: Parser GreetingYear
greetingYearParser = GreetingYear <$> (string "hello" <|> string "bye") <*> decimal

The code without any parsing involved could be written using the ($) application function instead of (<$>) and simply a space instead of (<*>). As you can see, the interface of parser combinators resembles regular Haskell code, which makes it easy to use. With (<$>) and (<*>) you lift your normal functions to work on values wrapped in Parser. Let’s look at the types of those two operations:

(<$>) :: (a -> b)        -> Parser a -> Parser b
(<*>) :: Parser (a -> b) -> Parser a -> Parser b

The first one is essentially your old friend fmap, which makes a pure function work over elements of a functor. Parser is an instance of Functor, indeed. In the previous example you have:

GreetingYear                                       :: Text -> (Int -> GreetingYear)
(string "hello" <|> string "bye")                  :: Parser Text
GreetingYear <$> (string "hello" <|> string "bye") :: Parser (Int -> GreetingYear)

The (<*>) function is the one helping you supply more arguments to the function. Or, from another point of view, (<*>) unwraps the function inside a Parser and applies one argument.

GreetingYear <$> (string "hello" <|> string "bye")             :: Parser (Int -> GreetingYear)
decimal                                                        :: Parser Int
GreetingYear <$> (string "hello" <|> string "bye") <*> decimal :: Parser GreetingYear

Thanks to curried functions, you can iterate (<*>) to apply each of the arguments of a multi-parameter function.

Sometimes working with (<$>) and (<*>) alone is not enough for creating a maintainable Parser. For example, say that you want to recognize the same pattern as above, but with a space between the greeting and the number. You have almost all the building blocks to do so, but how do you recognize a single character? This is achieved via the char function. Now, you could write code similar to:

greetingYearParserS :: Parser GreetingYear
greetingYearParserS = ( \g _ y -> GreetingYear g y ) <$>
                        (string "hello" <|> string "bye") <*> char ' ' <*> decimal

Notice how the better-looking application of GreetingYear has been replaced with an abstraction whose only matter is dropping some of its arguments. If you were to change this parser (for example, requiring an extra ! character after the greeting), you would need to assemble a new abstraction and take care that you drop the new unnecessary data. Clearly, this is not very maintainable. The Control.Applicative module offers a version or (<*>), namely (<*), which describes the case where some input should be parsed but won’t be used to build any larger structure. Using it, the code above becomes:

greetingYearParserS :: Parser GreetingYear
greetingYearParserS = GreetingYear <$> (string "hello" <|> string "bye") <* char ' ' <*> decimal

It’s time to start building the parser for the Clients output generated in the last section. The first thing you need is some way to parse names, taking into account the rules of escaping that were outlined (remember, the characters, \n ( ) were replaced by a backslash and the character itself). Let’s create a parser that returns one single character: the satisfy combinator, which matches any character that satisfies a particular predicate, and the notInClass function, which returns True only when an element is not in some set, will become very handy. Also, when \, and similar combinations are found, one would like to return the corresponding single character, for which the const function is used:

aChar :: Parser Char
aChar =     (const ',')  <$> (string "\\,") <|> (const '\n') <$> (string "\\n")
        <|> (const '(')  <$> (string "\\(") <|> (const ')')  <$> (string "\\)")
        <|> satisfy (notInClass ",\n()")

The idea is to call this parser repeatedly until some non-matching input is found. One way to do it would be to create a new Parser which calls itself recursively. In each step it prepends a character to the String value to be returned later. But you also need a base case, which will be applied when a not matching character is found. The way to create a Parser which returns some value, without consuming any input, is via pure :: a -> Parser a. With all these ingredients, the code reads:

aString :: Parser String
aString = ((:) <$> aChar <*> aString) <|> (pure "")

This pattern is very common in parsers (if you know some grammar theory, the operation is called “Kleene star” and it’s one of the basics in that theory), so Control.Applicative offers a many function that just iterates a parser until no matching input is found. The result is a list of the type of the inner parsers, in this case [Char].

aString = many aChar

Once you know how to parse the escaped strings and integer numbers, you can create a parser for Person and Client. The code below is straightforward: the only new function introduced is (<$), the application function that drops its first argument. The purpose is similar to (<*).

aPerson :: Parser Person
aPerson = Person <$ string "person(" <*> aString <* char ',' <*> aString <* char ')'
 
aClient :: Parser (Client Int)
aClient =     GovOrg     <$ string "client(gov," <*> decimal <* char ',' <*> aString <* char ')'
          <|> Company    <$ string "client(com," <*> decimal <* char ',' <*> aString <* char ','
                         <*> aPerson <* char ',' <*> aString <* char ')'
          <|> Individual <$ string "client(ind," <*> decimal <* char ',' <*> aPerson <* char ')'

You can check that the parser works on the builder output using the interpreter:

*> let b = clientToText $ Company 1 "Black Hole Inc." (Person "John" "Smith") "Traveller"
*> let c = Data.Text.Lazy.toStrict $ Data.Text.Lazy.Builder.toLazyText b
*> parseOnly aClient c
Right (Company {clientId = 1, clientName = "Black Hole Inc.",
                person = Person {firstName = "John", lastName = "Smith"}, duty = "Traveller"})

To finish this brief introduction to attoparsec, I’ll introduce the Data.Attoparsec.Combinator module. In that module you can find parser combinators that match many other typical patterns. For example, you have option, which helps you building parsers which optional input. A call to option has two parameters: the second one is the parser which is tried for matching on the input; if the matching is unsuccessful, the call to option returns the value given as first parameter.

Many other combinators help in matching lists of elements in many different ways. For example, sepBy parses a list with some separator between them. This can be the case of the list of clients: a Parser for it would call aClient repeatedly, but expecting newline characters between them:

parseClients :: Parser [Client Int]
parseClients = sepBy aClient (char '\n')

That module also features functions for parsing lists, but that end in 1, like many1, sepBy1 and so on. In that case, the lists must contain at least one element to be successful.

EXERCISE 10-2 asks you to parse the products and purchases in EXERCISE 10-1. You can use this task to master the attoparsec interface and the many combinators that it provides.


EXERCISE 10-2. PARSING PRODUCTS AND PURCHASES

Create parsers for the output that could be generated by the functions you wrote for EXERCISE 10-1. Hint: read the attoparsec documentation in Hackage beforehand to have a better idea of the built-in parsers that it provides.



In the same way that a Builder could work with conduit, a Parser can be used to produce a stream of values from the textual input. In this case it may become either a Sink, returning the values themselves, or a Conduit that provides the information for further processing. This functionality is provided in the Data.Conduit.Attoparsec module of the attoparsec-conduit package.

Using this package, building a function that loads all the clients in a file generated by the Builder in the last section becomes just a simple concatenation of three actors: a Source reading a file as a ByteString, a Conduit decoding it into Text values, and finally a Sink parsing that information.

loadClients :: FilePath -> IO [Client Int]
loadClients fPath = runResourceT $
  B.sourceFile fPath $$ T.decode T.utf8 =$ sinkParser parseClients


Introducing New Type Classes

The fact that (<$>) and (<*>) do not live in some attoparsec specific module, but rather in their own Control.Applicative, offers a hint about those combinators being useful in other scenarios. It would be interesting to study how the lifting works with other types. For example, suppose that they would also work on Maybe values. Then the types would be:

(<$>) :: (a -> b)       -> Maybe a -> Maybe b
(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b

In combination, these functions provide a way to lift a function on possibly-empty values, returning Nothing when some of the arguments are left, and Just if every argument is available. Let’s confirm our intuition by running some examples in the interpreter:

*Chapter10.TypeClasses> import Control.Applicative
*Chapter10.TypeClasses Control.Applicative> (+) <$> Just 2 <*> Just 3
Just 5
*Chapter10.TypeClasses Control.Applicative> (+) <$> Just 2 <*> Nothing
Nothing

If both Parser and Maybe could be used with the same functions, it indicates that you’re in presence of a new type class, namely Applicative. In this section you’ll get a look at Applicative, and several other related type classes. I already spoke about how (<$>) is quite like fmap, which opens the door to discussing the relation to the Functor type class, and you’ve seen how Maybe is an instance of Applicative too, so maybe there’s also some relation with Monad.


Applicative

Let me introduce the basic Applicative type class. The (<*) and (*>) functions are also part of the type class, but they have default definitions and will be treated later. The basic functions in the type class are defined as follows:

class Functor f => Applicative f where
  pure  :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

You already have some intuition about (<*>): it allows extracting some function which is inside a context of type f, and applying one argument to it. This is the main strength of the Applicative type class: being able to compute when everything you have is inside the same context. In the following examples, both functions and arguments are wrapped inside Maybe, and (<*>) allows performing the application:

*Chapter10.TypeClasses Control.Applicative> Just (+) <*> Just 2 <*> Just 3
Just 5
*Chapter10.TypeClasses Control.Applicative> Just (+) <*> Just 2 <*> Nothing
Nothing
*Chapter10.TypeClasses Control.Applicative> Nothing <*> Just 2 <*> Just 3
Nothing

As you can see in the third example, both the function to be applied and the arguments can be Just or Nothing. Intuitively, when you have no function to apply, you cannot return any result, as seen above.

The second function in the type class is pure. Looking at its type, a -> f a, you can guess what the function does: it’s wrapping some pure value inside the context f. For example, when using Maybe pure is equivalent to Just. Thus, you may write the first two examples in the previous code as:

*Chapter10.TypeClasses Control.Applicative> (pure (+) <*> pure 2 <*> pure 3) :: Maybe Int
Just 5
*Chapter10.TypeClasses Control.Applicative> pure (+) <*> Just 2 <*> Nothing
Nothing

The combination of wrapping some pure function and then applying it to several arguments is very common when using Applicative. For that reason, the (<$>) was created with that simple definition

(<$>) :: (a -> b) -> f a -> f b
f <$> x = pure f <*> x



APPLICATIVE LAWS

As is the case with Monoid, Functor, Monad, and many other type classes, Applicative not only mandates some functions but also some laws that must be fulfilled. In this case the laws are:


	pure id <*> x = x, or id <$> x = x

	(.) <$> x <*> y <*> z = x <*> (y <*> z)

	f <*> pure x = pure ($ x) <*> f

	f <$> pure x = pure f <*> pure x = pure (f x)



The first three rules make Applicatives work nicely with regular functions: the identity function is still identity inside f, and function composition and application are also reflected inside such Applicative. The last law is telling that pure computations do not change whether performed outside and then lifted, or lifted in parts.



Up to now, you’ve seen that Parser and Maybe are instances of Applicative. Your old friend [] is also part of that group. As in Chapter 7, lists can be used to model non-determinism, and this is exactly what its Applicative instance does. For example, if you have a set of functions that may be applied, and a set of data that could be used as arguments, (<*>) returns a list with all pairwise applications:

*> import Data.Char
*> [("Hello, " ++), \x -> "HEY, " ++ map toUpper x] <*> ["Alex", "John", "Paul"]
["Hello, Alex","Hello, John","Hello, Paul","HEY, ALEX","HEY, JOHN","HEY, PAUL"]

The (<$>) function is very useful to describe computations where a fixed function may be given several different arguments. For example, let’s create several greetings for several people:

*> (++) <$> ["Hello, ", "Good bye, "] <*> ["Alex", "John", "Paul"]
["Hello, Alex","Hello, John","Hello, Paul","Good bye, Alex","Good bye, John","Good bye, Paul"]




Functors, Applicatives, and Monads

There are some interesting things going on with the use of (<$>) in the preceding section. The signature of (<$>) is equal to that of fmap of a Functor:

(<$>) :: Applicative f => (a -> b) -> f a -> f b
fmap  :: Functor     f => (a -> b) -> f a -> f b

Also, (<*>) looks close to the (=<<) function (which is just (>>=) but with arguments reversed) in a Monad:

(<*>) :: Applicative f => f (a -> b) -> f a -> f b
(=<<) :: Monad       f => (a -> f b) -> f a -> f b

And indeed, you’ve seen that Maybe and [], which are both monads, are instances of Applicative. In this section I’m going to shed some light on the relation of these important type classes.

First of all, the Applicative type class mandates every Applicative to be also a Functor. Furthermore, the laws of the first type class imply that the definition of fmap must be exactly equal to (<$>). However, as discussed in the context of parsers, Applicative is stronger than Functor. This is because with Functor you can only move functions with one parameter inside the appropriate context. If you want to apply a function f with two parameters instead, applying fmap once to get rid of one parameter gives you the following type:

fmap     :: (a -> b -> c) -> f a -> f (b -> c)
fmap f   :: f a -> f (b –> c)
fmap f x :: f (b -> c)

You cannot do anything more with only Functor, because it’s not able to get the function within the f context. But if f were Applicative, you could use (<*>) to continue supplying parameters. The extension from Functor to Applicative gives you the power of using functions with any number of arguments.

The Monad and Applicative type classes are also related in a very direct way. In short, every Monad is also an Applicative, which means that every monad that has been presented until now can be used also with the Applicative interface. You can verify this by remembering the function ap that was introduced in Chapter 7 as a way to generalize liftM to any number of parameters:

ap :: Monad m => m (a -> b) -> m a -> m b

This is exactly the signature of (<*>) in Applicative, and it works exactly the same. In Chapter 7 I also discussed how liftMn f x1 ... xn could be changed into the more extensible:

return f `ap` x1 `ap` ... `ap` xn

This follows the same pattern that you use in the definition of (<$>) in terms of pure and (<*>). In particular, it shows that if a type is an instance of Monad, you can define the pure function in its Applicative instance by making it equal to return.


[image: image] Note  The fact that Applicative does not appear as a superclass of Monad is again a historical accident: the Monad concept was used widely much earlier than the concept of Applicative. For compatibility reasons, Monad hasn’t changed its definition to include any of Functor or Applicative as superclasses. This will change soon, though, and the full hierarchy Functor, then Applicative, then Monad will be apparent in the type classes.


Of course, since Applicative and Monad are not equal, and Applicative is higher in the hierarchy of classes, there must be something you can do with Monads that cannot be done using only Applicatives. The answer to that question comes by looking at the different signatures of (<*>) and (=<<) that were recalled at the beginning of the section. There you can spot the difference: the function provided as first argument to (<*>) must be of type f (a -> b), whereas in (=<<) this type is a -> f b.

The implication here is that using monads as an argument to a function can change the function to be executed in the next step (because you return f b), whereas in Applicatives an argument to a function may affect the current step to be executed, but not the remaining ones. To make it clear, consider the following case: you want to use the following function that, depending on whether the first parameter is 1 or not, would result in adding one or doubling one number:

\x -> if x == 1 then Just (+ 1) else Just (* 2)

If you apply one parameter using (<*>), you get the following type:

(\x -> if x == 1 then pure (+ 1) else  pure (* 2)) <$> Just 1
  :: (Num a) => Maybe (Maybe (a -> a))

And at this point the Applicative type class is of no help: there’s no way you can unwrap those two layers of Maybe using either (<$>) or (<*>). However, in Chapter 7 a join function on monads was introduced, with exactly the signature that you need Monad m => m (m a) -> m a. So, if you’re using a monad, you can “fuse” the two layers into one and continue execution.

This doesn’t necessarily mean that a monadic interface is always better than an Applicative one. The fact that when using monads you can influence the flow of execution via the values that are computed at run-time makes it much harder to analyze what’s going on inside. But in a parsing library you are willing to inspect the structure of the computation, and in doing so you may apply many optimizations that make the parsing process much more efficient. For that reason, the Applicative interface was chosen for attoparsec.


WRITING MORE READABLE MONADIC CODE

In this chapter and Chapter 7 you’ve seen many different ways to express the same concepts in Functor, Applicative, and Monad:

fmap f x = f <$> x = do y <- x; return (f x) = liftM f x
f <$> x <*> y = return f `ap` x `ap` y
pure x = return x

These equalities can help you to write more readable code, especially when using monads. For example, consider the following code:

do name <- getLine
       let upperName = map toUpper name
       putStrLn upperName

In previous chapters I advocated for removing the intermediate let step with fmap, but it can be written even more closely to a regular function application with (<$>):

do upperName <- map toUpper <$> getLine
       putStrLn upperName

Or it can even be much shorter using the Monad functions:

putStrLn =<< (map toUpper <$> getLine)

Finding the best way to write the code, balancing both readability and conciseness, is always important.






Alternative

The (<$>) and (<*>) functions have already been discussed, but while using Parsers another important function was used. That function was (<|>). It is part of the Alternative type class, which is reproduced here:

class Applicative f => Alternative f where
  empty :: f a
  (<|>) :: f a -> f a -> f a
 
  some  :: f a -> f [a]
  some v = (:) <$> v <*> many v
  many  :: f a -> f [a]
  many v = some v <|> pure []

As you can see, the Alternative type class resembles MonadPlus quite a lot. It gives you the possibility of failure via empty and of choice via (<|>), much as mempty and mplus worked. For example, you can use it to return one of several Maybe possibilities, namely the first, which is Just:

*Chapter10.TypeClasses> import Control.Applicative
*Chapter10.TypeClasses Control.Applicative> Nothing <|> Just 2 <|> Just 3
Just 2


[image: image] Note  Indeed, anything that is MonadPlus is both Monad and Alternative.


The some and many functions are intended to be used in parser-like environments. If you have a computation v that holds or returns elements of type t, you can use many and some to run it repeatedly and get a list of elements of type t instead. The difference is that with many you may get an empty list, whereas some enforces that at least one element is returned. These functions are not used outside of parsers, because in many cases the recursive definition does not allow them to terminate.




Traversable

Now that many new type classes have been introduced, it is a good time to look at the last of the “structural” type classes of which containers and context are examples. The name is Traversable, and here’s the definition:

class (Functor t, Foldable t) => Traversable t where
    traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
    traverse f = sequenceA . fmap f
    sequenceA :: Applicative f => t (f a) -> f (t a)
    sequenceA = traverse id
 
    mapM :: Monad m => (a -> m b) -> t a -> m (t b)
    mapM f = unwrapMonad . traverse (WrapMonad . f)
    sequence :: Monad m => t (m a) -> m (t a)
    sequence = mapM id

It looks scary, so let’s first make some simplifications. If you look closely, the Traversable type class defines two sets of functions, one for Applicative (containing traverse and sequenceA) and another one for Monad (with mapM and sequence), with the same signature apart from the type class constraints. Thus, you only need to build intuition over one of the two sets.

One example of Traversable is []. The types of sequence and sequenceA for that case would be:

sequenceA :: Applicative f => [f a] -> f [a]
sequence  :: Monad       m => [m a] -> m [a]

The functions are telling you how to go from a list of computations of type f a to a single computation with a list in its core. Say you want to make f or m equal to Maybe, which is both Applicative and Monad. Then the specific type in that case is:

sequenceA, sequence :: [Maybe a] -> Maybe [a]

If you look at Maybe as having some effect, what both sequence and sequenceA are doing is bringing all those effects “out of the list”. Since the effect Maybe entails is the possibility of failure, you would expect that running any of those functions will succeed only when every element in the list is a Just, otherwise it needs to bring the failure “out of the list” and this can only be done by returning Nothing altogether. You can check that this is indeed the case in the interpreter:

*Chapter10.TypeClasses> import Data.Traversable
*Chapter10.TypeClasses Data.Traversable> sequenceA [Just 2, Just 3, Just 4]
Just [2,3,4]
*Chapter10.TypeClasses Data.Traversable> sequenceA [Just 2, Nothing, Just 4]
Nothing

A more specific version of sequence in Control.Monad (only for lists) was already used in Chapter 7 for this same purpose: executing all the actions in a list of monadic values, and return the results of those actions.

The sequence and sequenceA functions are often described also as “commuting two functors.” If you look at their type, you can see that you start with t (f a) and end up with f (t a). The order of t and f has been reversed; this is what “commuting” means. Furthermore, since t is Traversable it ought to be a Functor, and since f is Applicative, it needs to be a Functor as well. This means that there are some kinds of structures (like lists and Maybes) that are able to go “inside” every possible effect in a normal way.

Let’s look at the other set of functions: traverse and mapM. In this case it might be important for you to recall the usage of the mapM function in Control.Monad. Usually the way to look at these functions is thinking of “fmap with extra effects”. The first argument is a function that returns some value and along the way has some extra computational effects. This function is applied in every element contained in the Traversable value, and the effects are all joined and taken outside the returned structure.

Once again, let’s look at the special case of the Traversable t being [] and the Applicative f being Maybe. The specific signature for traverse and mapM becomes:

traverse, mapM :: (a -> Maybe b) -> [a] -> Maybe [b]

In this case the first argument is applied to every element of the list. Alas, since you need to return a Maybe value at the end, the only thing you can do is return Just only if every application of that first argument returned Just.

One important characteristic of all these functions is that they respect the structure of the Traversable being worked on. For example, if traverse is applied to a list with five elements, the resulting list will also have five elements, plus any extra effect. This is important, because it means that the functions may only change the values contained, but not the pattern that they follow. This brings it closer to fmap, and spans a variety of applications. For example, in Chapter 6 I spoke about the traversed lens that allowed you to go inside a container and retrieve or update the value of each of its elements. Now you can see the reason behind the name and why Traversable is exactly the type class you need.

The Hackage documentation of Traversable also specifies that the structures are traversed from left to right. This small detail was not important for Functor (because no extra effect was produced) nor for Foldable (because the monoid you use underneath is associative). But in the case of Traversable, it may not be the same to execute the actions in one or another order. Think of the case of the Applicative f or Monad m being the IO monad or the Writer monad.

Implementing Traversable for a specific container seems like a complex task, but it’s very easy in practice. Take as an example the BinaryTree2 type, which was introduced in Chapter 4:

data BinaryTree2 a = Node2 a (BinaryTree2 a) (BinaryTree2 a)
                   | Leaf2
                   deriving Show

In Exercises 4-8 and 4-9 you were asked to implement its Functor and Foldable instances. Functor instances usually follow the pattern of applying the corresponding function to each value in the structure, and then calling fmap recursively over each substructure. Foldable instances do a very similar job, but applying the monoid operations in between. Thus, the instances looked very similar to this:

instance Functor BinaryTree2 where
  fmap f (Node2 x l r) = Node2 (f x) (fmap f l) (fmap f r)
  fmap _ Leaf2         = Leaf2
 
instance Foldable BinaryTree2 where
  foldMap f (Node2 x l r) = (f x) <> (foldMap f l) <> (foldMap f r)
  foldMap _ Leaf2         = mempty

The best way to write the Traversable instance is via traverse, which makes itself a minimal complete definition. The function traverse was introduced before as “fmap with effects”. The only thing you need to do is follow the same structure as fmap but ensure the Applicative is used along the way.

instance Traversable BinaryTree2 where
  traverse f (Node2 x l r) = Node2 <$> f x <*> traverse f l <*> traverse f r
  traverse _ Leaf2         = pure Leaf2

Since these instances always follow the same structure, GHC is able to automatically derive it. This is done by enabling a bunch of extensions in your source file:

{-# LANGUAGE DeriveFunctor, DeriveFoldable, DeriveTraversable #-}

And then changing the deriving part of the BinaryTree2 definition:

deriving (Show, Functor, Foldable, Traversable)




Don’t Overengineer: Just Use JSON

The main focus of this chapter has been building and parsing text. These are usually tedious and error-prone activities. Every time you want to add some new data, you have to change both parts, and keep them synced so that every output generated by the Builder can be consumed by the Parser.

Instead, one would like to use a library that helps to interchange information in a textual way. If possible, one would also aim to use a format that is common to many languages and platforms, because future interoperation between tools may be a requirement. The JSON format provides all those features: it has almost universal support between languages and platforms; it uses a simple textual representation that makes it easy for both humans and computers to process it. Furthermore, JSON is the de facto standard for data interchange in the Web, so using it opens the door to creating a web application in Haskell.

A Client may be represented in JSON in the following way:

{ "type": "company", "id": 1, "name": "Black Hole Inc."
, "person": { "first": "John", "last": "Smith" }, "duty": "Traveller" }

In this brief example you see almost every possible way to build a JSON value. First of all, you have basic types, such as numbers, Booleans, and strings, which are represented by their literals. From these basic values you can build either arrays (not shown here, but written using the same syntax as Haskell lists), or objects, which are key-value maps. In addition, you also have the null special value. In this case, the full value is an object with four keys and values, of which the person key contains a nested object.

The good news is that the Haskell community has come with a simple yet efficient library for reading and writing JSON values. Its name is aeson, and its use revolves around a small data type:

data Value = Object Object
           | Array  Array
           | String Text
           | Number Number
           | Bool   Bool
           | Null

Each of the constructors corresponds to a type of value you can find in JSON, as explained above.

Let’s start by writing functions for converting JSON representations and Client values. Most of the conversion to JSON value just entails wrapping data in the corresponding constructor. In the case of creating Objects, the easiest way to do so is via the object function, which takes a list of pairs as argument. Each of these pairs are defined as key .= value. The conversion to JSON then reads:

{-# LANGUAGE OverloadedStrings #-}
import Data.Aeson
import Data.Text
 
clientToJSON :: Client Integer -> Value
clientToJSON (GovOrg i n) =
  object [ "type"   .= String "govorg"
         , "id"     .= Number (fromInteger i)
         , "name"   .= String (pack n) ]
clientToJSON (Company i n p d) =
  object [ "type"   .= String "company"
         , "id"     .= Number (fromInteger i)
         , "name"   .= String (pack n)
         , "person" .= personToJSON p
         , "duty"   .= String (pack d) ]
clientToJSON (Individual i p) =
  object [ "type"   .= String "individual"
         , "id"     .= Number (fromInteger i)
         , "person" .= personToJSON p ]
 
personToJSON :: Person -> Value
personToJSON (Person f l) = object [ "first" .= String (pack f)
                                   , "last"  .= String (pack l) ]

If you now want to re-create a Person from a JSON value, you need to check that every key is present. You can do this via the HashMap functions (similar to those in Map) that aeson Value uses. Since HashMap is defined in the unordered-containers package, you need to include it in your project for this example to work.

import qualified Data.HashMap.Strict as M
 
jsonToPerson :: Value -> Maybe Person
jsonToPerson (Object o) = do String f <- M.lookup "first" o
                             String l <- M.lookup "last"  o
                             return $ Person (unpack f) (unpack l)
jsonToPerson _          = Nothing

There’s more than one approach to accessing the fields in the JSON value. As you saw in Chapter 6, lenses are very useful for this kind of navigation inside an object. The lens-aeson package provides a set of functions that aim to make the work with aeson Values easier. In this particular case, you can use key, which provides access to a named field in the object. Since the key may be unavailable, you do not use (^.), but its counterpart (^?) which may return Nothing. The previous code can be rewritten as:

import Control.Lens ((^?))
import Control.Lens.Aeson
 
jsonToPerson :: Value -> Maybe Person
jsonToPerson j = do String f <- j ^? key "first"
                    String l <- j ^? key "last"
                    return $ Person (unpack f) (unpack l)

Another very interesting member of the Control.Lens.Aeson module is nth, which given an index obtains the element in that position if the JSON value being considered is an array. For the rest of primitive JSON types, lens-aeson provides combinators _Number (with its two variants _Double and _Integer for automatically converting into one specific numeric type), _String and _Bool.

Anyway, directly matching on a Value is not the suggested way to decode information from JSON in aeson. Instead, you should use a JSON parser. The interface to that Parser is similar to the one in attoparsec, in particular it also uses the Applicative functions. The main difference is the set of basic blocks for parsers: in aeson you use (.:), which extracts a value with a given key. The most common way to convert from JSON to Person would be:

import Data.Aeson.Types
import Control.Applicative
 
jsonToPerson :: Value -> Parser Person
jsonToPerson (Object o) = Person <$> o .: "first" <*> o .: "last"
jsonToPerson _          = Control.Applicative.empty

The functions for converting JSON back and forth are not usually defined alone, but rather as part of the ToJSON and FromJSON type classes that aeson provides. Let’s add them to the code for the Person type:

instance ToJSON Person where
  toJSON = personToJSON
 
instance FromJSON Person where
  parseJSON = jsonToPerson

The great benefit of using ToJSON and FromJSON is that aeson includes a bunch of predefined instances for many types. For example, once you write it for Person, you can also serialize into JSON lists of people, objects containing Persons, and so on. In particular, let’s use the just defined instance for defining the parser for Client and the corresponding instances of ToJSON and FromJSON. Notice that FromJSON allows you to be more general in the types you accept as identifiers:

{-# LANGUAGE FlexibleInstances #-}
jsonToClient :: FromJSON i => Value -> Parser (Client i)
jsonToClient (Object o) =
  case M.lookup "type" o of
    Just (String "govorg")     -> GovOrg  <$> o .: "id" <*> o .: "name"
    Just (String "company")    -> Company <$> o .: "id" <*> o .: "name"
                                          <*> o .: "person" <*> o .: "duty"
    Just (String "individual") -> Individual <$> o .: "id" <*> o .: "person"
    _                          -> Control.Applicative.empty
jsonToClient _ = Control.Applicative.empty
 
 
instance ToJSON (Client Integer) where
  toJSON = clientToJSON
 
instance FromJSON i => FromJSON (Client i) where
  parseJSON = jsonToClient

Using the interpreter, you can see how the conversion to JSON works correctly:

*> toJSON $ Company (1 :: Integer) "Black Hole Inc." (Person "John" "Smith") "Traveller"
Object fromList [("name",String "Black Hole Inc."),("duty",String "Traveller")
                ,("person",Object fromList [("last",String "Smith")
                                           ,("first",String "John")])
                ,("id",Number 1),("type",String "company")]

To make the converse operation, you need to call fromJSON, which runs the Parser with a given Value and produces a Result that may be either Success or Error. Notice that the code uses an explicit signature to tell the interpreter which FromJSON instance it needs to use.

*> :{
*| fromJSON $ toJSON $
*|   Company (1 :: Integer) "Black Hole Inc." (Person "John" "Smith") "Traveller"
*|   :: Result (Client Integer)
*| :}
Success (Company { clientId = 1, clientName = "Black Hole Inc."
                 , person = Person {firstName = "John", lastName = "Smith"}
                 , duty = "Traveller" })

Once you know how to convert from and to aeson Value, the next step is converting those Values into actual textual representations. For generating the text, you just need to use encode, which returns a ByteString. In the case of moving from text to JSON, you have several possibilities:


	decode takes a ByteString, parses the text to produce an aeson Value and then converts that Value into some other type using FromJSON. The result is wrapped on a Maybe to signal failure.

	eitherDecode performs the same task, but in case of failure the error message is returned in the Left constructor of an Either.

	You can perform the two steps separately: aeson provides json, an attoparsec Parser from ByteString into Value. You can call fromJSON then to generate the final value.



One small tidbit is that encoding and decoding in aeson work on lazy ByteStrings, so you may need to convert to strict ones. For example, this is how you may use it with conduit:

import Data.Conduit
import qualified Data.Conduit.Binary as B
import qualified Data.Conduit.List as L
import qualified Data.ByteString.Lazy as LB
 
saveClients :: FilePath -> [Client Integer] -> IO ()
saveClients fPath clients = runResourceT $
  yield (toJSON clients) $$ L.map (LB.toStrict . encode) =$ B.sinkFile fPath

EXERCISE 10-3 asks you to use JSON to save and load products and purchases in a file:


EXERCISE 10-3. JSON FOR PRODUCTS AND PURCHASES

Write ToJSON and FromJSON instances of the Product and Purchase data types that were introduced in EXERCISE 10-1. Then, using aeson and conduit, create an application that reads a list of Products represented in JSON and shows the average price.



ToJSON and FromJSON instances always follow the same pattern: ToJSON writes each of the fields of a constructor in key-value pairs in JSON, with an additional field for knowing the constructor if the data type has more than one (like “type” in the Client example). FromJSON just tries to read each of these keys. Haskell tries to avoid boilerplate code as much as possible, and this is a clear case of it. In case you don’t need any special behavior, aeson can write the instances for you.

To do so, you need to enable the DeriveGeneric extension in GHC, and add Generic to the list of instances in the deriving clause. A Generic instance contains information about the constructors and fields in a data type. Then, you just need to write empty instances of ToJSON and FromJSON, and using that Generic information, aeson will do the rest. In the case of Client:

{-# LANGUAGE DeriveGeneric #-}
import GHC.Generics
 
data Client i = ... deriving (Show, Generic )
data Person = ... deriving (Show, Read, Generic )
 
instance ToJSON i   => ToJSON   (Client i)
instance FromJSON i => FromJSON (Client i)
instance ToJSON   Person
instance FromJSON Person

These automatically derived instances will use as keys the name of the fields declared in the constructors. For that reason, it only works on data declarations using record syntax. In case you type has more than one constructor, the key that will be used to distinguish them is called tag.


PARSING COMMAND-LINE ARGUMENTS

Every time you find some operation that involves parsing in some way or another, it’s almost sure that you will find an Applicative interface to it. Apart from JSON decoding via aeson, one other useful package is optparse-applicative, which helps describe and organize the set of command-line arguments to an application.

For example, this is how one would define the arguments to an application that expects one file name containing a list of clients and whether the information is kept in JSON format or not:

import Options.Applicative

data Args = Args String Bool  -- data type holding the arguments

args :: Parser Args           -- read the arguments
args = Args <$> strOption (long "file" <> help "Database of clients to load")
                               <*> switch    (long "json" <> help "Whether the database uses JSON")

argsInfo :: ParserInfo Args   -- define arguments + help text
argsInfo = info args fullDesc

main :: IO ()
main = do Args fPath json <- execParser argsInfo
                         ...

The great benefit of Applicative is that it provides a common interface to tasks that are not necessarily related at first sight. It’s becoming widely used, and nowadays Applicative is seen as a fundamental type class in Haskell, as Functor and Monad.



Summary

In this chapter you’ve learned how to deal with text in a variety of situations in Haskell:


	First, you’ve seen the differences between the String, ByteString, and Text types, and the purpose of each of them.

	Both text and bytestring provide Builder types that allow you to efficiently generate textual data.

	You’ve been introduced to the converse operation, parsing, via the attoparsec package. That library uses the combinators approach to generate modular and easy-to-read parsers.

	You’ve also been introduced to the Applicative type class, which lies between Functor and Monad in strength. You’ve also learned about the Alternative and Traversable type classes.

	Finally, we’ve discussed the conversion of JSON back and forth using the aeson library.






CHAPTER 11

[image: image]

Safe Database Access


In the previous two chapters you have seen how to access the file system to read and save information in a durable way. You’ve been given all the tools for dealing either with a custom file format or a treelike information representation such as JSON.

However, in most production systems applications you aren’t working with files. Instead, a database management system (or DBMS for short) is used to store the application’s information and keep it safe. Furthermore, most DBMSs provide functionalities such as transactions, logging, and recovery and replication, which are quite useful for maintenance, protection against errors, and scalability. This chapter will provide you a bird’s-eye view of the many possibilities of database access in the Haskell ecosystem, in particular those that enable accessing relational DBMSs based on SQL.

Also in this chapter I cover two specific libraries: Persistent and Esqueleto. These libraries are not tied to any specific DBMS but provide an abstraction layer over whatever DBMS you might choose to use. The main advantage of using Persistent is that it allows interaction with the database using user-defined Haskell abstract data types, which are converted from and to database format without further intervention (similar to Object-Relational Mappers in the object-oriented world). This ensures a high degree of type safety when working with database code. Esqueleto is the companion library to Persistent, which focuses on specifics for SQL-based DBMSs.

Database Access Landscape

Acknowledging that Haskell has a strong ecosystem of database access libraries is just a matter of surfing to Hackage and see the big number of those listed under the heading “Database” (more than 150 at the moment of writing). Broadly speaking, those libraries can be categorized in three groups:


	Native implementations of a database in Haskell. The main example of this group is acid-state, which allows saving Haskell data types directly on disk. The main downside of this approach is that interoperability with other systems and languages is harmed.

	Libraries for accessing a particular DBMS, such as sqlite-simple, mysql-simple, pgsql-simple (for some of the best-known relational ones), or MongoDB. These libraries are very easy to understand for users of the corresponding DBMS but are also tied to a specific choice of system, making it difficult to migrate.

	Abstraction layers over several DBMSs, which provide a common interface for several systems (usually along with specific connectors for each of them). The range of DBMSs covered by each library is different: some focus only on the relational, SQL-based one, while others try to include non-relational ones. The main advantage of these libraries is that the choice of DBMS can be reviewed while keeping intact almost all of the database access code in the application. This goes very well with Haskell’s philosophy of re-usability.




Abstracting over Several DBMSs

In Hackage you can find a first group of packages that focus on the SQL world, which is the biggest one among database users. From these, HDBC (from Haskell Database Connectivity) and hsql just hide the specific details of each DBMS but otherwise expose the SQL model (tables, rows, columns) as is, without any further abstraction. You just need to plug in the package corresponding to the specific DBMS you want to use (like hsql-mysql or HDBC-postgresql). This gives you as developer the full power of those systems, allowing the use of prepared statements or controlling the transaction boundaries. However, when using any of those libraries you need to write the SQL statements by hand, which is usually a source of errors, and also you need to marshal the results (which are given using a specific data type for SQL values) into your own data type. Due to these problems, these packages are not often used directly but rather as a dependent of a higher-level one.


[image: image] Tip  Those libraries that provide a common layer over different database systems are the most interesting to study. By learning just one you get access to a big range of databases.


On that higher level you can find HaskellDB. The idea from its developers was to expose the abstraction the SQL databases are built upon: the relational algebra. Thus, you work with basic operations such as projection or restriction that are able to describe all the queries you can pose to the database. Furthermore, the schema for the tables is also embedded in the Haskell code, so you can guarantee the safety of all your queries (you won’t be accessing a non-existing column, and you won’t be comparing columns of different types). The main drawback of HaskellDB is that it exposes an abstraction that is not as well known as SQL queries, so to use it you have to relearn how to express some concepts.




Introducing Persistent and Esqueleto

Our choice for this chapter is Persistent, available in Hackage under the package name persistent. This package supports both relational and non-relational DBMS, which eases the transition between those two worlds in case it’s needed for enhancing scalability of the application. When using Persistent, you still use your Haskell data types (that is, you don’t need to marshal from and to your Client type), and the library generates all the glue code automatically (by using a Template Haskell). This gives you real type checking of your database statements, preventing a great range of application errors coming from this fact.

Those readers coming from an object-oriented programming background may recognize in this description the concept of an Object-Relational Mapper (or ORM, for short), which also takes care of gluing a class with a specific table in a database. However, being implemented in a functional language that embodies purity, Persistent doesn’t save automatically any change you do to the value holding the information about one of your rows. Rather, you need to explicitly ask for insertions, updates, and deletions.

One disadvantage of Persistent is that it only supports those operations common to every database it allows you to connect to. Since this includes both relational and non-relational DBMS, the common ground is sometimes limited. For example, you cannot easily express a join of two tables (in the SQL sense), since DBMS such as MongoDB don’t have this concept. For that matter, some libraries have been developed that extend Persistent in one direction, while restricting the applicable databases. This is the case of Esqueleto, a domain-specific language for expressing SQL queries inside Haskell using Persistent models.

Persistent itself encompasses a lot of related functionality in three areas: describing the schema of a database in such a way that can be used to work with usual Haskell data types; creating and adapting the schema of an existing database into a new one, adding or deleting columns (this is called the migration functionality); and performing actual work with the information in the database (insertions, updates, deletions, and queries).



Connection

The DBMS is the software performing the actual work of storing and retrieving information from a database. The flow of work is quite simple: you send a statement to the DBMS and it does some work, returning some values or information about the success of the operation. But before sending statements, you need to know how to establish the initial connection to the DBMS.

If you look at the “Database” section in Hackage, you will see that along with the basic persistent package, there are many others with a name resulting of joining persistent- with the name of a DBMS (for example, persistent-sqlite). Each of those packages provides a backend for a specific system: that is, the code that is needed to communicate with it and make sense of the results it returns.


[image: image] Warning  In the Hackage there are other packages starting with persistent- (like persistent-map). Only those in the “Database” section are related to Persistent.


Each backend provides two ways to communicate with the corresponding system: via a single connection or by creating a pool of connections (a set of open connections that are reused by different operations to increase sharing of resources and thus enhancing performance). For the first case, each backend has a withDBMSConn function that generates a connection given the parameters needed for each specific system. This connection can be used then as a parameter to the runSqlPersistM function, which executes a set of database actions. For example, here’s the code needed to insert a Client (which holds a first name, a last name, an address, a country, and an age) inside an SQLite database saved in the example.db file. Notice that at this point the code won’t compile, because you haven’t provided the definitions for the entities in the database yet. You’ll learn how to do so in the next pages.

{-# LANGUAGE OverloadedStrings #-}
import Database.Persist.Sqlite
 
exampleConn = withSqliteConn "example.db" $ \conn ->
  flip runSqlPersistM conn $ do
    spain     <- insert $ Country "Spain"
    _client1  <- insert $ Client "Alejandro" "Serrano" "Home Town, 1" spain 25
    return ()


[image: image] Note  The withSqliteConn function expects a Text value with the path to the database. In the example above I’ve used the OverloadedStrings GHC extension in order to write that value in the code using string literal syntax.


Since opening a connection and running some action in the database is so common, many of the backends provide a special runDBMS convenience function for those simple cases. For example, the code above can be written more concisely using runSqlite. Doing so frees you from passing the conn value yourself through several functions, as you can see from the following example. In every other aspect the two pieces of code are interchangeable.

exampleConn = runSqlite "example.db" $ do
  spain     <- insert $ Country "Spain"
  _client1  <- insert $ Client "Alejandro" "Serrano" "Home Town, 1" spain 25
  return ()

Creating a pool is usually as easy as creating a single connection: instead of withDBMSConn you use the corresponding withDBMSPool function, which takes as input the information to contact the database and the maximum number of connections to keep open. Then, you use the runSqlPersistMPool function with the actions to execute. Here’s the same example for SQLite but using a pool of 10 connections (it doesn’t make much sense to use a pool in this little example; rather you would share the pool between different actions). Notice how similar the code is to the example with a single connection:

examplePool = withSqlitePool "example.db" 10 $ \pool ->
  flip runSqlPersistMPool pool $ do
    spain     <- insert $ Country "Spain"
    _client1  <- insert $ Client "Alejandro" "Serrano" "Home Town, 1" spain 25
    return ()

There is a large disparity of connection methods between DBMSs. Table 11-1 includes a brief explanation of the parameters for each of the more commonly encountered systems.


Table 11-1. Connection Parameters for Persistent Backends

[image: Table11-1.jpg]



Schemas and Migrations

As mentioned in the introduction, Persistent needs a description of the database schema you will be working with to ensure type safety. In addition, it also needs information about the mapping between this schema and the actual Haskell data types you will use to represent the data. In order to bring all of this together, Persistent uses quite complex types to encode all the invariants and relations. Right now in the book, many of the techniques used in those types haven’t been introduced yet. Chapter 13 will be providing all that information.

The good news is that you don’t have to care about all of this, because Persistent comes with a package, persistent-template, which is able to generate all the necessary code (Haskell data types, instances for some type classes, glue code for the marshaling) from a single description of the database schema. For the rest of the chapter I assume that your project has both persistent and persistent-template listed as dependencies, apart from the SQLite backend.


[image: image] Note  persistent-template uses Template Haskell to generate all its code. You’ve already been introduced to Template Haskell in Chapter 6. As a small reminder, Template Haskell is the metaprogramming facility of GHC, which means that at compile time, a function can generate new code or manipulate the existing one.



Describing the Entities

Let’s start with a very simple example for our time machine store: describing a database for holding the information of our clients. To make things easier, let’s assume that our clients are always individuals, whose information is composed by first and last name, an address, and age. The following code defines a database entity for holding this information. This definition will be used later on to communicate with the correct tables or documents in the database.

{-# LANGUAGE TemplateHaskell, QuasiQuotes, TypeFamilies, EmptyDataDecls,
             FlexibleContexts, GADTs, OverloadedStrings #-}
 
import Database.Persist.TH
 
mkPersist sqlSettings [persistLowerCase|
Client
  firstName String
  lastName  String
  address   String
  age       Int
  deriving Show
|]

After several language extensions that you need to enable, which are listed inside the {-# LANGUAGE #-} pragma, there’s a call to mkPersist. This function needs settings for generating the code and the description of the database. In this case, the code is telling the code generation to follow SQL standard conventions by giving sqlSettings as first parameter.1 The latter parameter is not given using usual Haskell syntax but rather using quasiquotation: the code between [, | and |] won’t be parsed by the Haskell compiler but rather by a custom reader (in this case, persistLowerCase). Thus, the important thing to know is how to express the database schema for this quasiquoter.


[image: image] Warning  Be aware that inside a quasiquoter you’re no longer writing Haskell code but some custom Persistent syntax. The need of learning an additional (albeit small) language is seen by some people as a drawback of the persistent-template library.


As you can see, there’s a block per each kind of entity you want to store. In this case, you have only one, namely Client. Then, you can find all the fields that make that entity: first the name and then the type. Finally, you can include a deriving clause as you would do with the definition of any other Haskell data type. These are the most basic constructs, you will see more as the chapter progresses.


[image: image] Tip  If you write json next to the entity name in the quasiquotation (for example, Client json), Persistent will derive instances of aeson’s ToJSON and FromJSON automatically. This will be very handy in next chapter, where you’ll learn how to create a web application using Haskell.


Since the code uses persistLowerCase as quasiquoter, each entity will be mapped to a table and each field to a column, whose name will consist of converting from Camel Case (each word in an identifier starts with capital letter) to Underscore Case (different words in an identifier are separated by underscores). In this example, the data will be saved in a client table with columns first_name, last_name, address and age. If you want to retain the names using Camel Case, you need to use persistUpperCase instead of persistLowerCase.

Apart from the glue code for contacting the database, mkPersist will also generate data type constructors representing each of the fields in the entity. These constructors’ names are created by juxtaposing the name of the entity with the name of each of the fields, in Camel Case. In this case, you would obtain ClientFirstName, ClientLastName and so on. In particular, this means that you can use the same field name in different entities (for example, using a field name both for individual and company entities), since the prefix will take them apart. This is a difference with Haskell records, which cannot share field names.

You may have noticed that so far there’s not been given any description of an identifier, that is, no indication of what the table’s primary key might be. The primary key is a piece of information that uniquely determines a row in a table, and it’s commonly used in SQL environments. Persistent developers found this idea of an identifier interesting too, and that’s why a schema always defines an implicit id field for each entity. In conclusion, apart from all the explicitly declared fields, you also have a ClientId field representing the unique identifier of each row.

This identifier field is used, apart from performance considerations, to refer to an entity from another, or to embed an entity inside another. For example, let’s add information about the country of residence of each client. A simple solution would be to add another String field for the country name. However, as database theory shows us, this is not a good idea: you waste a lot of space with repeated information, and even worse, you may have problems when the same country is not written the same everywhere (for example, "United States" versus "US" versus "USA"). The correct solution is to create a new entity that will hold information about countries and refer to it in Client (this is called “normalization” in database jargon). This is perfect work for an identifier field. The new schema declaration looks like this:

mkPersist sqlSettings [persistLowerCase|
Country
  name String
  deriving Show
Client
  firstName String
  lastName  String
  address   String
  country   CountryId
  age       Int
  deriving Show
|]

With this schema definition, the insertions shown in the previous section are correct Haskell code. Notice that Persistent has created a data type for each entity. This data type can be thought of being defined as a record whose only constructor shares its name with the entity being defined. Thus, in the example constructors Country and Client have been generated. Another remark is that insert returns the identifier of the new entity in the database, and the code uses that for referring to country "Spain" in the client.


IDENTIFIERS ARE SPECIAL

In most databases, the identifier column is just another column, with the special qualities of being unique among the rows and usually being autoincremental. However, you have seen that Persistent treats those fields in a special way. Why is that the case?

The main reason is that, by having special data types for each identifier of each entity, it’s not possible to mix identifiers of different entities. In our example, ClientId will be a different type from CountryId, so you cannot pass a value of the latter when an element of the former is requested.

A second reason is that by hiding the details of how the identifier is represented, Persistent goes further into supporting different databases: it can choose the representation depending on the final DBMS. For example, MongoDB has a special type called ObjectId that is developed specifically for identifying an object. This is different from the path taken by SQL databases.



I have discussed how Persistent always generates a special identifier field per entity. However, in other cases there are other uniqueness constraints: a set of fields that uniquely identifies a value in the database. Since the combined value of those fields must appear only once in the database, it must be protected by the DBMS for duplicates. In that way, the database can protect data for a whole class of incorrect values. Furthermore, the extra work in inserting and updating is often surpassed by the increase in performance that can be achieved when the uniqueness is guaranteed.

A uniqueness constraint is declared inside the entity it refers to by giving it a name, which must start with a capital letter (in the examples below all the constraints are prefixed with Unique, but this is not a requirement), and then listing the fields that are included in the constraint. For example, you can consider that the combination of a first and last name, address, and country uniquely identifies a client in a database, so it makes sense to add a uniqueness constraint to it. Furthermore, countries are also uniquely identified by its name (no two countries share its name). Following is the code for doing this, where some other entities and fields have been omitted:

mkPersist sqlSettings [persistLowerCase|
Country
  ...
  UniqueCountryName name
  deriving Show
Client
  ...
  UniqueClient firstName lastName address country
  deriving Show
|]

For data mining purposes, it’s very helpful to save the age of each client. However, not all clients would be happy giving that piece of information, so it’s better to make it optional. This corresponds to the notion of a nullable column in SQL, and of a value wrapped on Maybe in Haskell. Indeed, that last word is the one chosen by Persistent to indicate that a field is optional for a value: if you want to make age optional, change its declaration from age Int into age Int Maybe.

Apart from the age, it’s also useful to save information about the gender of the clients. Near the beginning of the book, I discussed how using a Boolean value is not the right choice for representing the gender in Haskell: rather, you should use a data type specific to that task. This increases type safety and removes the errors due to inconsistent mappings (is True equal to male or female?).

The same arguments are relevant to Persistent: when you want to save a value in a field from a set of them, don’t use a Boolean or an integer. You have already seen how to overcome this problem when the set of values is big and can change with time (as countries do). For a small fixed list of values, the best option is to use an enumeration written in Haskell and use its type inside the declaration of the entity (in our example, creating a Gender data type and including a gender Gender field declaration in the Client entity). The only stone in the path is that you need to include some extra code to make a new data type available to Persistent, and because of limitations in Template Haskell, you must do so in a separate file. In this case, start by writing this code in a new Chapter11.Gender module:

{-# LANGUAGE TemplateHaskell #-}
module Chapter11.Gender where
 
import Database.Persist.TH
 
data Gender = Male | Female
    deriving (Show, Read, Eq)
derivePersistField "Gender"

The important part is the call to derivePersistField. Now, in the file with the schema declaration, import this new module and add a gender Gender Maybe line to it (making the gender information optional is also a good choice). Right now a Client value looks like:

Client "Alejandro" "Serrano" "Home Town, 1" spain (Just 25) (Just Male)

The information above is the basics of the schema language, but many more features are available. For that reason, I strongly recommend you to survey the Persistent documentation2 or the Book of Yesod3 before declaring your entities.




Creating the Database

Let’s now look at the converse scenario: say that you try to run some code similar to the one in the introduction for adding a country and a client to a completely empty database. For example:

runSqlite "example.db" $ do
  spain     <- insert $ Country "Spain"
  _client1  <- insert $ Client "Alejandro" "Serrano" "Home Town, 1" spain (Just 25) (Just Male)
  return ()

When you execute this, either via an executable or via GHCi, you will receive an error message like this:

chapter11: user error (SQLite3 returned ErrorError while attempting to perform prepare "INSERT INTO \"country\"(\"name\") VALUES(?)": no such table: country)

The source of this error is simple: you have declared how to map entities to a database, but none of the tables that are referenced in that code exist yet. The good news is that, as I mentioned in the introduction, Persistent includes functionality to automatically create or adapt a database to the format expected by a schema. This adaptation process is called migration of the database.

Performing a migration in Persistent consists of two steps. First of all, you need to tell Persistent to generate the code that will migrate the database. For that task the library uses Template Haskell once again, and you would need to add the schema declaration all over again. Since using the same schema for creating the mappings and the migration is very common, you can use the convenience function share to pass the quasiquoted code to both functions. In concrete words, this means that you only need to change the call to mkPersist to read instead:

share [mkPersist sqlSettings, mkMigrate "migrateAll" ] [persistLowerCase|

The second step is executing the migration by calling runMigration with a single argument that is the name given to mkMigrate. For example, you can generate the tables in a Sqlite database using:

runSqlite "example.db" $ runMigration migrateAll

If you include that line of code before the two insertions in the database, you will see a log of the migration being output to your screen. That log should be similar to the following. You can see in the output how all the fields and constraints in the entities are translated quite naturally in tables in the SQL world.

Migrating: CREATE TABLE "country"("id" INTEGER PRIMARY KEY,"name" VARCHAR NOT NULL,CONSTRAINT "unique_country_name" UNIQUE ("name"))
Migrating: CREATE TABLE "client"("id" INTEGER PRIMARY KEY,"first_name" VARCHAR NOT NULL,"last_name" VARCHAR NOT NULL,"address" VARCHAR NOT NULL,"country" INTEGER NOT NULL REFERENCES "country","age" INTEGER NULL,"gender" VARCHAR NULL,CONSTRAINT "unique_client" UNIQUE ("first_name","last_name","address","country"))

It’s important to notice that migrations can only add and delete columns: there’s no way for the code to know when a field name has been changed into another one. However, the simple case of adding a new field poses a question: which value should be written for those rows that were already there? The solution comes in the form of a new attribute that can be added to a field, namely default, which defines this value to write in the case of a migration.


[image: image] Warning  The default attribute only applies to migrations. It doesn’t have any effect on your actual Haskell code, nor does it allow you to leave the value of that field undefined.


As an example, let’s add a canWeSend field to the Country entity expressing whether our Time Machines and accessories can be shipped to that specific country. Since you have already created the tables and added some values, the migration procedure needs information of the values to write in that field. If you consider that the best choice is True (shipments can be made to all countries already in the database), the schema definition must be changed to read:

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Country
  name      String
  canWeSend Bool default=True
  UniqueCountryName name
  deriving Show
Client
  ...
|]

The upcoming sidebar “Using An Existing Database” shows how to deal with legacy databases having table names and column names not matching our entities and fields. Then, EXERCISE 11-1 guides you in defining the entity that will be used throughout this chapter for products.


USING AN EXISTING DATABASE

You’ve seen how to use migration to create or adapt an existing database to the table schema that Persistent expects. However, a quite common scenario involves an already existing database that you want to access.

In those cases, you can specify sql attributes to change the names of the tables that entities and fields are mapped to. Furthermore, you can specify the id attribute on an entity to declare the column in the table containing the identifier. Following is an example for Country:

Country sql= my_country_table id= the_country_identifier
     name      String
     canWeSend Bool default=True sql= send_there_is_possible
     UniqueCountryName name
     deriving Show

The table name will be my_country_table. The column named the_country_identifier will be treated as the ID column.




EXERCISE 11-1. DEFINING PRODUCTS

Add the definition of a Product entity to the database. That entity must include the name and description of each product, its price as a Double value, and the number of elements in stock.

Be aware that Persistent does not allow using Integer values in fields: rather you should use Int64, which represents those integer values which fit in 64 bits.



Finally, let’s add a simple definition for purchases in the store: a purchase will be a collection of a client, a single product for which the client may have ordered more than one unit, and the total amount that was paid (there’s an implicit assumption that each purchase contains only one type of product). The entity Purchase in this case will relate a Client and a Product, so you need to use their identifiers, as the code below shows:

share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
...
Client
  ...
Product
  ...
Purchase
  client  ClientId
  product ProductId
  number  Int
  amount  Double
  deriving Show
|]



Queries

Querying is one of the most basic operations you can perform with a database. A good knowledge of the different options for selecting data from your sources is instrumental for obtaining the performance that applications require. As you will see in this section, Persistent provides several ways to query for data, and Esqueleto extends that feature even more with SQL-only operators such as joins.


[image: image] Note  In the rest of examples in the chapter, I will only show the statements. If you want to execute any of those statements, wrap it inside a runSqlite call (or the corresponding version for other database), as done in the migration examples. The code won’t show signatures either, because they contain type system features that will be introduced later (in Chapter 13). GHC correctly infers the signatures, so you can still copy and paste the examples as they appear in the book.



Queries by Identifier or Uniqueness

Since every entity in the database is embellished by Persistent with a unique identifier, the simplest way to query a database is indeed to ask for a value with a given identifier. This is done using the function get, which returns its value wrapped on a Maybe: it may be the case that for a given identifier there’s no associated value. For example, you have defined the client field in the Purchase entity to hold a ClientId; that identifier can be used afterward to retrieve all the information about a client. The following code performs that task:

getPurchaseClient p = get (purchaseClient p)  -- returns Maybe Client

In case you have the identifier, but have not obtained it from a previous query and thus being wrapped in the appropriate constructor for identifier, you can still look for the object using the Key constructor. Although better to be avoided, this option may be needed, for example, if you are obtaining the identifier from the route in a web application (the URL looks like /clients/5, where 5 is the client identifier). Since the way identifiers are treated changes depending on the actual DBMS, this way of working is not database-independent: you must create the identifier value with the type for your specific database. For example, SQLite uses integers, so the code for asking for a Client by identifier is:

getClientById n = get $ Key (PersistInt64 $ fromIntegral n)  -- returns Maybe Client

Another way of identifying a value was discussed before: uniqueness constraints. For each of these constraints, Persistent generates a constructor that takes as parameters a value for all the fields in its definition. Then, you can use the getBy function to query the database using that combination of data. For example, you defined previously a UniqueClient constraint on the entity Client, so you can query with one of them as follows:

getClientByInfo fName lName addr cnName = do
    cn <- getBy $ UniqueCountryName cnName
    case cn of
      Just ( Entity cId _) ->
        do cl <- getBy $ UniqueClient fName lName addr cId
           case cl of
             Just ( Entity _ client) -> return $ Just client
             Nothing                -> return Nothing
      Nothing -> return Nothing

It’s important to notice that the result of getBy is not just the value you asked for, but rather a combination of the identifier associated with the value and the value itself, provided inside the Entity data type. In the example above you can find two different usages of getBy: one for finding the identifier of the country given its name (check how in the Entity pattern matching only the identifier is actually bound to a variable) and then another one for finding a client with given personal attributes and belonging to that country.




Selecting Several Entities

The full power of a database is unleashed when you perform queries not only via identifiers, but also based on other fields within entities. Furthermore, the languages in which queries are posed are usually quite expressive. For example, you could be asking for all those clients coming from United States who have bought at least two products in the last few years to create a better campaign for clients in that part of the world.

Those queries are usually not guaranteed to return only one or no results, but can produce a set of values that fulfill the requirements of the query. You can ask Persistent to represent that set using two different approaches: either as a Source from the conduit library, or as a plain list. You can also choose to just return the first value of the set wrapped on a Maybe. You may then get Nothing back if the query selects an empty set.

On an orthogonal axis, you can ask Persistent to show the entire set of fields of each value matched by the query (that is, all the fields belonging to the entities), or just return their identifiers. In the first case the information from the fields is wrapped inside an Entity constructor (as done with getBy), which contains both the entity and its identifier. Five out of the six possible combinations have a corresponding function in Persistent, as Table 11-2 shows.


Table 11-2. Query Functions in Persistent

[image: Table11-2.jpg]



All the functions listed in Table 11-2 have the same parameters and are used in the same way, so in the examples I’ll use selectList because it’s the one which shows output simply while still letting you form an idea about what’s going on in the database.

The first of the two parameters is a list of filters. Each filter constraints the value of one or more fields to satisfy a specified condition. For example, you might require the age of a Client to be above 18. The way in which you write those filters is by using one of the constructors that Persistent has created for each of the fields in an entity, and a set of built-in operators. The age filter, for example, is represented as ClientAge >=. Just 18 (you need to include Just because age was an optional field, so its values are wrapped in Maybe).

Apart from the simple equality and ordering operators (==.), (!=.) – notice that “not equals” is written using C-like syntax, not as (/=.)4 – (>.), (>=.), (<.) and (<=.), Persistent supports an operator for a field having a value from a set of wanted ones, namely (<-.) and read as “in”, and its negation (/<-.) “not in”. In the following example I ask for all those Clients coming from Spain or Germany older than 18, using that operator. Notice how I need to get the identifiers of those countries prior to creating the actual query:

getAdultsOfSpainAndGermany = do  -- returns [Entity Client]
  es <- getBy $ UniqueCountryName "Spain"
  de <- getBy $ UniqueCountryName "Germany"
  let countries = map entityKey (catMaybes [es, de])
  selectList [ ClientCountry <-. countries, ClientAge >=. Just 18 ] []

In case you only want to know the number of clients that fulfill those conditions, you may be tempted to just apply length to the resulting list. However, this is not very efficient, since you’ll be bringing a lot of data from the database to discard it afterward. Instead, you should use the count function, which just returns the numbers of values that satisfy the query. For example:

countAdultsOfSpainAndGermany = do
  sp <- getBy $ UniqueCountryName "Spain"
  de <- getBy $ UniqueCountryName "Germany"
  let countries = map entityKey (catMaybes [es, de])
  count [ ClientCountry <-. countries, ClientAge >=. Just 18 ]

Sometimes the operators introduced up to this point are not enough or are not convenient for expressing disjunctive queries. In those cases, you can use the “or” operator (||.) for merging two lists of filters into a single query. For example, say you want to obtain the clients from Spain and the United States that are at or above the legal age at which alcohol may be purchased. However, that age is not the same in both countries: in Spain it’s 18, whereas in the United States it is 21. Thus, the query must reflect that fact: get clients from Spain above 18 or from the United States above 21, as the code shows:

getAdultsOfSpainAndUS = do  -- returns [Entity Client]
  Just (Entity spId _) <- getBy $ UniqueCountryName "Spain"
  Just (Entity usId _) <- getBy $ UniqueCountryName "United States of America"
  selectList (   [ ClientCountry ==. spId, ClientAge >=. Just 18 ]
             ||. [ ClientCountry ==. usId, ClientAge >=. Just 21 ] )
             []

I’ve been silently adding an empty list as second parameter to selectList. That list represents the options to the query, which do not affect the results themselves but rather the way the results are presented. One typical option involves sorting by one or more fields. In the example above, if you want to return the clients from the oldest to the youngest one, you must change the list of options to [ Desc ClientAge ]. As you can see, the way to indicate the ordering is by using one of the constructors Asc or Desc and the constructor corresponding to the field.

Other options are used to extract just one subset of the results. If you think of the entire set of results as an ordered list, OffsetBy allows you to discard some elements at the beginning and return only those from one point to the end; and LimitTo limits the number of returned values to those smaller than a certain amount, ignoring the elements past that amount. Those options are very useful to paginate information in a web application: for example, in the store you may decide to show the products in pages of 10. Therefore, page n (starting at 1) would show ten products starting from the element (n-1)*10 (the results from Persistent are zero-indexed). The corresponding query to obtain those products follows:

getProductsPage n = selectList [ ] [ Asc ProductPrice, LimitTo 10, OffsetBy ((n-1)*10) ]
                      -- returns [Entity Product]





SQL Queries with Esqueleto

Using only get, getBy, selectList and count (a version not previously introduced that only returns the number of results), let’s try and obtain the countries of all those clients that bought more than three products. The implementation below does it in several steps: it first gets all the possible buyers, then counts the number of purchases of each of them, filters those with more than three, and finally gets the countries all those that are left. Notice how the code is quite intricate and performs several round-trips to the database:

getCountriesWithBigBuyers = do  -- returns [Country]
  buyers <- selectKeysList [ ] [ ]
  buyersPurchases <- mapM (\b -> count [ PurchaseClient ==. b ] >>= \c -> return (b,c)) buyers
  let buyersPurchases' = filter (\(_,c) -> c > 3) buyersPurchases
  mapM (\(b,_) -> do Just cl <- get b
                     Just cn <- get $ clientCountry cl
                     return cn)
       buyersPurchases'

If you are used to relational databases, there’s a feature from its queries that would come to your mind to solve this problem: joins. However, Persistent aims to support also non-relational databases, making the ability to join unavailable to us.


[image: image] Note  To be completely honest, there’s support in Persistent for sending a raw query to the database. But that means that there’s no type checking and automatic marshaling, so you’ve lost all the benefits of using the library.


As I have already introduced, the solution to this problem is using another library, namely Esqueleto. The esqueleto package provides support for writing SQL queries that are type checked. Furthermore, it re-uses the schema definitions from Persistent, making the former a great companion to the latter. So, let’s start using it: the first thing you need to do is to change the imports of Database.Persist to Database.Esqueleto, because the second one subsumes the first one. But note that you will still need the import of a specific backend such as the Database.Persist.Sqlite module.

As in the previous case, you can return the results in two different data structures. The select function shows the queried values as a list, whereas selectSource wraps them into a Source from conduit. Both of them take as argument a SqlQuery, so you need to focus in how to construct values of that type. Furthermore, there are variants selectDistinct and selectDistinctSource that also get rid of duplicate values.

The first thing to do is to select which entities you’ll query. To do that, you use from. This is quite an interesting piece of the library, because it takes a function as argument, and depending on the type of the function, a certain subset of entities are queried. For example, if you want to query for clients, you must pass a function whose unique argument is of type Client. In most of the cases, that type is inferred by the compiler because of further filters (for example, if you filter ClientAge, the compiler would infer that you’re querying Client), but in some cases you may need extra annotations. If you want to perform a query that involves more than one entity, you must pass them on a tuple.

The body of the function passed to from must be of a certain monadic type, so it’s fairly common to use a do block at that point. Inside that monad, several special functions can be called to specify a query. The simplest one is where_ (notice the final _ which prevents colliding with the where keyword), which includes a set of restrictions over the fields of the entities, inside an expression that may contain:


	Access to a field of an entity using (^.),

	Constant values wrapped using val, or lists of them wrapped using valList,

	Comparisons with (==.), (!=.). . . and the rest of operators used in Persistent, remarking that (<-.) takes the name in_ and (/<-.) is called notIn,

	Grouping of several constraints with (&&.) (for “and”) and (||.) (for “or”). Notice that this is different to plain Persistent, because in that case there was no conjunctive operator: the set of filters in the list were implicitly conjoined.



Another possible function is orderBy, which takes a list of expressions of the form asc (entity ^. field) or desc (entity ^. field) representing ascending and descending order over that fields. As a simple example, let’s just return all the clients over 25 years old, ordered by last and first name:

getPeopleOver25 =  -- returns [Entity Client]
  select $
  from $ \client -> do
  where_ (client ^. ClientAge >. just ( val 25))
  orderBy [ asc (client ^. ClientLastName), asc (client ^. ClientFirstName) ]
  return client

The code makes explicit that ClientAge has a Maybe value. The constant value the field is compared to must be wrapped first with val, and then with just.

The return value of the monad may not be all the entities that are queried: only a subset of the information may be relevant to the next steps and the rest could be discarded. For example, let’s try to get the information about all the clients from Spain or Germany over 25. As you can see in the code below, I select both Client and Country as entities to query, make sure that both entities are linked correctly (the Country in Client is the same as the Country identifier), and perform restrictions over the country name and the client age. Finally, I just return the client information, not the country name:

getPeopleOver25FromSpainOrGermany =  -- returns [Entity Client]
  select $
  from $ \(client, country) -> do
  where_ (   client ^. ClientAge >. just (val 25)
         &&. country ^. CountryName `in_` valList [ "Spain", "Germany" ]
         &&. client ^. ClientCountry ==. country ^. CountryId )
  orderBy [ asc (client ^. ClientLastName), asc (client ^. ClientFirstName) ]
  return client

Here you’ve actually seen an example of a join that was implicit in the link between the country from a client and the entity representing the country itself. Esqueleto allows you to be a bit more explicit, using the InnerJoin constructor in the argument instead of a bare tuple. Then, with the “on” function in the monad you specify the conditions for the join of the entities. The previous example could be rephrased as:

getPeopleOver25FromSpainOrGermanyJoin =  -- returns [Entity Client]
  select $
  from $ \(client `InnerJoin` country) -> do
  on (client ^. ClientCountry ==. country ^. CountryId)
  where_ (   client ^. ClientAge >. just (val 25)
         &&. country ^. CountryName `in_` valList [ "Spain", "Germany" ])
  orderBy [ asc (client ^. ClientLastName), asc (client ^. ClientFirstName) ]
  return client

Apart from inner joins, Esqueleto supports speaking about outer joins, which are useful in many situations.

To wrap up this fast introduction to Esqueleto, now you need to learn a bit about expressing grouping as you do in SQL. The grouping itself is done via the groupBy function, which takes as argument a field to make the grouping. Then, you can use aggregation operators such as sum_, min_, max_, avg_ or countRows over other fields to perform that operation over all values of each group. Explaining in detail how these operations work would take a long time, and that is a task better suited to a book on SQL, from which Esqueleto takes its concepts.

As an example of grouping, let’s try to compute the amount of money spent by each client along all its purchases. To do so, the idea is to group the information of all Purchase entities by the Client identifier and then use the sum_ aggregator. Notice how a left outer join is needed to aggregate also over those clients that haven’t yet purchased any product.

getMoneyByClient =  -- returns [(Entity Client, Value (Maybe Double))]
  select $
  from $ \(client `LeftOuterJoin` purchase) -> do
  on (client ^. ClientId ==. purchase ^. PurchaseClient)
  groupBy (client ^. ClientId)
  let s = sum_ (purchase ^. PurchaseAmount)
  return (client, s)

The language supported by Esqueleto is indeed very expressive, and allows you to express queries far beyond what has been explained here. My recommendation for those moments when you need to perform powerful queries against a relational database is to read its documentation in more detail to discover the full generality of its constructions.



Insertions, Updates, and Deletions

At the beginning of the chapter you were introduced to the way of inserting new values in the database, via insert. That function returns the identifier that was assigned to the new value that was saved on the database, which comes in very handy when referring to it on other database values. However, in some cases the value won’t be inserted due to collisions on the uniqueness constraints. If this happens, it’s recommended to use instead insertUnique, which returns a Maybe value, which will be Nothing if the value could not be inserted.

It was mentioned that Persistent embraces the pure functional paradigm, so all changes made to a database value must be explicit. The easiest way to modify a value is by using replace: that function takes an identifier and a value of one of your entities and replaces whatever value was saved before in the database with the mentioned identifier with the new value. For example, a quite slow but simple way to make sure that all the names in the database start with a capital letter would be:

import Data.Char
 
capitalizeNamesSlow = do
  clients <- selectList [] []
  mapM_ (\(Entity ident client) ->
             let c:rest  = clientFirstName client
              in replace ident $ client { clientFirstName = (toUpper c):rest })
        clients

This solution is slow because it needs to bring all the data from the database to the program and then send back all the information for each client. In simple cases the same task can be performed right on the database side, without any information being sent back and forth. Persistent includes support for doing such an in-place update when the operation is either assignment to a constant or involves only numerical data present in the value. The function that performs such an operation is updateWhere: it takes as parameter a list of filters to specify which elements in the database will be affected by the changes and a list of in-place updates. Each update is represented using a field name, one of the operators (=.) – for assignment -, (+=.), (-=.), (*=.) or (/=.) – for numerical operators -, and a constant value that is the argument in the update.

For example, let’s decide to provide a 10 percent discount. However, we don’t want to provide such a big discount to all the products, because in the case of very expensive ones, that discount is too high. The solution is to provide only a 3 percent discount on all products whose price is higher than 10000. The following code uses 10000 as the dividing line, and applies either a 3 percent or a 10 percent discount as appropriate:

discount = do
  updateWhere [ ProductPrice <=. 10000 ] [ ProductPrice *=. 0.9 ]
  updateWhere [ ProductPrice >. 10000 ] [ ProductPrice *=. 0.97 ]

As with the queries, Persistent is not powerful enough to represent some of the conditions for update in just one expression. Thus, you have to resort either to multiple queries and updates, or to using a more powerful language like Esqueleto. In the second instance, you need to change the call to select and from into a call to update. Once again, that function takes as parameter another function, whose type will inform Esqueleto about which entities are affected by the change. However, that update does not allow tuples or joins, because the changes must affect only one kind of entity. To perform queries inside an update block, you can use sub_select, which works in a similar way to select but it’s only allowed to return one result.

When using update instead of select, you are allowed to use one extra function inside the monad: set. This function is the one describing the changes to perform in the database. It takes as first argument the value to modify and then a list of in-place updates as in Persistent. As an example, let’s say that you decide to use a better policy for discounts: you only apply them to those products that are low selling. The way you define a low amount of sales is via the total amount of purchases being less than 10. You can perform the query and the update at once with the following code:

betterDiscount = update $ \product -> do
  let totalAmount = sub_select $
                    from $ \purchase -> do
                    where_ $ product ^. ProductId ==. purchase ^. PurchaseProduct
                    groupBy (purchase ^. PurchaseProduct)
                    return $ sum_ (purchase ^. PurchaseAmount)
  where_ $ isNothing totalAmount ||. totalAmount <. just (val 10)
  set product [ ProductPrice *=. val 0.9 ]

And now we come to the most difficult point for any database. After some time, it may be necessary to delete some of the information that you stored either for space or efficiency reasons. Doing so is very easy if you know a way to uniquely identify the value to delete in the database, either via its identifier or via a set of fields with a uniqueness constraint. In the first case, you can use the delete function, and for the second case the deleteBy function is provided.

However, there are cases where you want to delete a set of values that satisfy certain conditions. Using the functions you already know, that would mean obtaining the value identifiers, maybe via selectKeysList, and then mapping over all of them with delete. But considering everything you’ve learned in this chapter, you may be expecting a function that performs this task without any round-trip of data between the database and your application. And it exists: it’s called deleteWhere (similarly to updateWhere).

For example, as a way to clean the database, you may want to delete all the products in the database that are no longer in stock. The corresponding Persistent call is:

cleanProductStock = deleteWhere [ ProductInStock ==. 0 ]

However, after careful thought, you can find that this code, even completely correct, would be very dangerous to your database. If a client purchased one of the products that was no longer in stock, that line would make the reference to the product identifier incorrect, because the product would no longer be in the database. A possible way to correct this problem is by creating a better query that checks that there’s no Purchase entity with that product. Once again, Persistent itself doesn’t allow expressing that code, you need to use Esqueleto and its delete function, which works as select and update, but deleting the resulting values. Notice in the following code how the notExists function performs the check for a corresponding purchase:

cleanProductStock' = delete $
  from $ \product -> do
    where_ $ product ^. ProductInStock ==. val 0
           &&. ( notExists $ from $ \purchase ->
                            where_ (purchase ^. PurchaseProduct ==. product ^. ProductId))

As you can see, performing updates and deletions in database values is very easy using both Persistent and Esqueleto. The bulk of the learning process is to understand how to create good constraints for the values that will be affected by those operations. This shows one advantage of using high-level programming languages such as Haskell: you can express the concepts of your domain in a simple way and concentrate on the rules of your application.

Summary

In this chapter you’ve learned how Haskell allows interfacing a DBMS in a type-safe manner:


	You’ve been shown the landscape of database access libraries in Hackage, and the focus has moved to those that provide abstractions over several databases.

	In particular, the choice of libraries was Persistent and Esqueleto, which allow you to access both relational and non-relational databases and to work with them in a type-safe way, making it harder to write illegal queries, something that is very easy when working with raw database statements.

	You’ve learned how to connect to databases both with and without a pool of connections.

	You’ve been exposed to the language for specifying the database schema, with the idea that using that information combined with Template Haskell will create a bunch of data types and glue code for talking with the DBMS and will migrate the database.

	Much of the chapter has been devoted to queries, either via identifiers, a set of fields uniquely constrained, or in general by any field. For those cases where Persistent was not enough (like joins), Esqueleto has been introduced.

	Finally, you have read about performing insertions, updates, and deletions with those libraries.



1This does not imply that you cannot use this definition in non-relational DBMS. It’s just that the choices that will be made for representing the information (such as using integers for holding primary keys) are more suited to a SQL database than others.

2Available at https://github.com/yesodweb/yesod/wiki/Persistent-entity-syntax.

3Available at http://www.yesodweb.com/book/persistent

4(/=.) is used on update queries, as shown in the next section.




CHAPTER 12
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Web Application


All throughout the book you’ve been preparing for this moment: you know how to save information about clients and products, and you know a couple of algorithms to mine that data for interesting patterns. Now it’s time to create an interface for clients to perform their purchases: this data will be the input to K-means and Apriori.

The most interoperable and also the most widely used way to create an interface for such an application is writing it on the grounds of the Web. Your clients will be expecting to just enter a web address in the browser and get the list of products, put them in a virtual cart, and pay at the end. For that reason, this chapter will focus on building web applications using Haskell.

The development of such an application is divided into two parts. In the first part is the backend: a server that will listen for HTTP requests and return and update information about clients, products, and purchases. For this task you will re-use much of the knowledge from previous chapters and also learn about Scotty, a minimalistic web framework for Haskell and digestive-functors, a library for handling forms using applicative style.

Then, the focus will turn into the frontend, that is, the code that ultimately runs in the browsers of your clients, making the correct requests to the backend. Usually this part would be written in JavaScript; but, as you will see, it’s possible to code it in Haskell. This will lead to consider how to interoperate with other languages and how to manage a graphical stateful application.

Haskell Web Ecosystem

Web applications are becoming the standard way to interact with users nowadays. The benefits of this approach are many: you don’t have to create a different executable for each system from which your client may access your application (although you need to consider interoperability issues between browsers), and you don’t need users to download or execute any binary code: everything runs smoothly inside the browser.

If you look at Hackage you can see an increasing number of packages to deal with web applications. These packages range from being very traditional, using patterns similar to frameworks in other languages, to experimental ways of composing an application (in this last group, Functional Reactive Programming [FRP for short] libraries are becoming very popular).

Given the great number of possibilities, I would like to give an overview of the most important libraries you can use for developing a web application, as I did for accessing a database management system. Of course, this chapter cannot possibly cover everything related to web applications in Haskell. It will focus on a handful of libraries: Scotty, blaze-html, Hamlet, digestive-functors, and Fay. A few others will be mentioned in passing.


Web Frameworks

A web framework is a library or set of libraries that intended to be used when developing a web application, covering all possible technological requirements. These requirements usually include a routing system (for linking a URL to a specific piece of code to be executed when this URL is to be served), a templating system (for generating the final HTML output), several kinds of caches, database access, and authentication through different protocols.

In other languages, a web framework is usually a monolithic library that provides everything in one place. However, Haskell developers usually strive for more modularity, and the most common pattern in Hackage is a set of packages that are developed together and share part of their name (for example, all the packages starting with yesod), but do not require each other in order to be fully functional. This means that you can build your web application by pulling different pieces from different projects. Even though using a single framework gives you the most comfortable experience, using several of them does not imply that the resulting code would be messy at all. Indeed, the Time Machine Store presented in this chapter will use routing, templating, and form-handling libraries from different projects all at once.

Happstack is one of the most veteran frameworks in the wild. One of the most prominent uses of Happstack is clckwrks, a content management system. The main package, happstack-server, provides access to almost all the information about HTTP requests and responses, including compression, cookies, or authentication. On top of that, a Happstack user would usually add happstack-foundation as a dependency, which adds a lot of packages that work together well in a Happstack environment. In particular, data is handling via the acid-state package, routing uses the web-routes package and form handling is done via reform. There’s no preferred templating engine although HSP, Heist, and Hamlet are listed in the documentation. web-routes and reform are based on the same principles that will be discussed in relation to Scotty. The ideas behind HSP are very similar to other templating languages such as Java Server Pages (JSP): you write the HTML you want to be generated, decorated with small chunks of code written in Haskell.

Most of the other frameworks do not include their own server: they are built upon a generic interface called WAI (Web Application Interface). In principle, you could use any server that understands this interface to run your code (as you can use many servlet engines to run Java web applications). But in practice only the Warp server is used in production. For that reason, most of the other frameworks provide direct access to running a web application using Warp.

Snap is the name of one of those libraries built upon WAI. There are two main features in the design of Snap. The first one is the focus on giving the developers tools for writing modular components that are later composed (called “snaplets”), instead of aiming for monolithic applications. The second one is the use of the Heist as their choice of templating library, which uses plain HTML in combination with special tags to request information to other layers of the application.

A third choice is Yesod. The main goal of Yesod developers is to make everything as type-safe as possible: the Persistent library that has already been discussed is developed as part of this framework. If you remember, Persisent schemas were described using a small language that was parsed using quasiquotation and Template Haskell. Yesod brings the same ideas to other parts of the web application: routing and templating are specified using those blocks. For templating, different sub-libraries for handling each common output language in the web have been developed: Hamlet for HTML documents (which will be discussed in this chapter), Cassius and Lucius for style sheets, and Julius for JavaScript code.

The main focus in this chapter for routing and general application scaffolding will be Scotty, a minimalistic web framework. The main feature it provides is easy description of routes, and a very easy way to plug templating libraries (you will see how to use both blaze-html and Hamlet with it). Being so minimalistic, it doesn’t require many different concepts to be understood in order to start using it: this makes it a perfect point to start looking at Haskell web libraries and later move into more complete ones when you require their extra functionality.

In particular, one of the points where Scotty is weaker is handling the information that clients give through forms. The library digestive-functors is one of the most popular libraries to bridge this gap (it’s even the preferred way to do so in Snap), and the choice for this chapter. Remember about the aeson library for handling JSON that was introduced in Chapter 10. digestive-functors also builds upon the applicative style to define forms and validation.

For the previously mentioned packages, there are lots of documentation, even in form of tutorials and books, so I suggest you look at them and see the differences for yourself. For an updated list of Haskell web frameworks (including the aforementioned ones and many others), and pointers to their websites, you can check http://www.haskell.org/haskellwiki/Web/Frameworks.




Compilation to Javascript

Up to now, the frameworks we have discussed deal with the backend (also known as the “server side”) of the application. They allow you to generate HTML pages that will be the part that the user will ultimately see. Unfortunately, HTML itself is not able to describe all kinds of behaviors that are expected in a dynamic web page, and developers need to resort to JavaScript. Every modern browser includes a JavaScript interpreter that exposes an enormous amount of functionality to the user and allows for creating very sophisticated applications (think of the various web pages that show interactive maps).

The problem is that you may not want to code your entire frontend (or client side) in JavaScript. JavaScript is a mixed imperative and prototype-oriented language: even though it integrates some features from the functional paradigm, its syntax, and more importantly, its concepts are very different than Haskell’s. Using the same language for both backend and frontend reduces the mental effort you need to make when working on both parts at the same time, and it increases the possibilities of sharing code between the parts.

However, making the browsers support a new language is just an illusion: JavaScript is the language where all the efforts are focused. For that reason, many compilers have included the option to generate JavaScript as output apart from binary code. Then, you can use your preferred programming language to write dynamic web pages and still retain the ubiquity of support that JavaScript has on browsers. Furthermore, in these days the speed and quality of JavaScript implementations is quite impressive.

The Haskell community has worked in that direction and there are several packages in Hackage that allow you compiling Haskell code into JavaScript. Both GHCJS and Haste modify the GHC compiler itself to output this alternative representation. The difference is that the former wants to allow seamless execution of any application that can be compiled by GHC into a web environment, replicating the entire runtime, whereas the latter tries to make a balance between full compatibility with GHC and better interoperability with other JavaScript code.

A third package is Fay, which doesn’t (yet) include support for the whole Haskell language (the main feature lacking is type classes). However, it’s very simple to use and has very good support for interoperability with other JavaScript code and for communicating with web servers. It will be the main target of the explanation of the design of the frontend of the web application.

As in the case of web frameworks, the landscape of compilation into JavaScript is evolving rapidly, and many other packages provide support for these methods. You can get an up-to-date list with pointers on documentation at http://www.haskell.org/haskellwiki/The_JavaScript_Problem.



RESTful Structure

Before starting with the coding, I will introduce some of the general patterns in the design of the application, which are based on the Representational State Transfer (REST) principles. Many of these concepts are directly encoded by the combinators that the Scotty library provides and are visible in many other web frameworks, both inside and outside the Haskell world.

The core idea is that the web application provides access to a set of resources, which can be queried or modified. The information of a client or a product is an example of resources in the Time Machine Store. Each of these resources is accessed through a unique identifier, which in a web application is a URL. For example, /clients could be the identifier of the list of all clients, and /product/3 may identify the information of the product whose identifier in the database is the number 3.

Given that URLs are central to know which data must be queried or affected by a request, the web framework of choice should include good support for specifying URL patterns and point to the right code to execute. Each of these patterns is called a route. For example, in Scotty you can describe the route for products as /product/:id, meaning that when any URL starting with /product/ is found, some code is executed with the id parameter bound to the rest of the URL.

For each resource, an application can have several request methods, each of them being a particular action over the resource. For web applications, which are the focus of this chapter, the most used request methods are GET, which retrieves a particular object or lists the elements in a collection; POST, which is used to create a new element inside a specific resource; PUT, which replaces the information of an entire resource with new information coming with the request; and DELETE, which erases the resource from the system. The REST architecture style imposes several constraints on how each method should behave (for example, GET should not modify the resource at all): you can read about it in many books about this topic, so I won’t delve into details here.

Finally, for each supported combination of resource identifier and request method, the application should give a response using standard formats. When using REST over HTTP, this means using HTTP status codes (for example, returning a 404 error when some resource is not found) and encoding the queried information using HTML, XML, or JSON. Furthermore, the consumer can specify a list of supported response types and the server should try to satisfy that requirement.

Backend with Scotty

In this section you will develop the backend of the Time Machine Store. Due to space constraints, I shall focus primarily on querying and updating information about products. Support for clients and purchases is left as a good exercise to put together much of the knowledge you’ve acquired up to this point.


Simple Skeleton

The first thing to do is to setup a project with an executable stanza that will start the server, adding scotty as a dependency. You’ve already gone through these steps in the first four chapters. Now repeat them in EXERCISE 12-1 to create the basis for our store. Remember that exercise solutions are included with this book’s example download from the Apress.com catalog page.


EXERCISE 12-1. SETTING UP THE PROJECT

Create a new Cabal package, either using the cabal command line tool or EclipseFP, named chapter12. This package should contain a stanza that will generate the time-machine-store executable. Add scotty and text as dependencies of the executable.



Now you’re ready to start building your web application. The following shows a very simple application that just responds to the URL /about:

{-# LANGUAGE OverloadedStrings #-}
 
import Data.Monoid (mconcat)
import Web.Scotty
 
main :: IO ()
main = scotty 3000 $
  get "/about" $
    html $ mconcat [ "<html><body>"
                   , "  <h1>Hello Beginning Haskell!</h1>"
                   , "</body></html>" ]

The entry point of the application, the main function, starts your Scotty application at port 3000. Apart from the port number, the scotty function needs a description of your routes, which are given in a do block. Right now there’s only a route, /about, which can be accessed through the GET request method. This route is defined using the name of the method in lowercase letters (get), the URL pattern, and finally the handler: the code to be executed, which may include IO actions.


[image: image] Note  Routes are defined via a value of type Text. The code above uses the OverloadedStrings extension to write them as string literals.


The result of a request in Scotty can be defined simply as a Text value, which is the data that will be sent over the wire. However, if the data you are returning must be processed as HTML, it’s customary to define the value of some of the response headers. But instead of defining it by hand, Scotty provides the html helper function, which sets those headers to the appropriate values and then returns the content.

You can check that your web application works by building the package in the command line and calling ./dist/build/time-machine-store/time-machine-store. Alternatively, if you are using EclipseFP, you can run the executable directly from the IDE. In any of both cases, then point your browser to http://localhost:3000/about to run the corresponding handler and show the result in your screen.

However, if you surf to another URL in this same server, you will find a prototypical error page. As a small improvement for this simple application, let’s include a custom “not found” page by adding a new route to the do block:

import Network.HTTP.Types
 
main = scotty 3000 $ do
  get "/about" $ ...
 
  notFound $ do
    status notFound404
    html "<h1>Not found :(</h1>"

One of the most important things to notice is that, when the URL is not found, you should set the response status to the corresponding number (in this case, the well-known 404). This is done by calling status, which takes as parameter one of the codes defined in the Network.HTTP.Types module (this module is not defined inside the package scotty, but on http-types, which you should include as extra dependency).


[image: image] Warning  Scotty checks which route to apply in the same order they appear in the code. A notFound route handles every possible URL: any route after that one will never be executed. For that reason, you must always write the notFound route the last one in the description of your application.





Showing Products from the Database

Now let’s move on to the main task in this section: showing information of products. The access to that data will be via the Persistent library (thus, you should include persistent, persistent-template, and persistent-sqlite as dependencies) using the same schema from Chapter 11. In the examples, I will assume that the database schema is described in the module Chapter12.Database.

There are two changes to be done to the main function to make the database available to the handlers. First of all, you should make sure that the schema described via Persistent coincides with the actual database schema. As you know, this is achieved via a migration, which should be the first thing to appear in main.

Each handler wanting to access the database could, in principle, start a new connection using runSqlite and execute the actions there: you are allowed to run any IO action. However, it’s more performant to create a pool of connections managed by Persistent to be shared between all possible requests. To get this behavior, you should wrap the call to scotty with withSqlitePool. The final structure of main is now:

import Data.Monoid (mconcat)
import qualified Database.Persist.Sqlite as Db
import Network.HTTP.Types
import Web.Scotty
 
import Chapter12.Database
 
main :: IO ()
main = do
  Db.runSqlite "example.db" $ Db.runMigration migrateAll
  Db.withSqlitePool "example.db" 10 $ \pool ->
    scotty 3000 $ do
      get "/about" $ ...
      notFound $ ...

Each product will be available through a URL such as /product/n, where n is the unique identifier given by the DBMS to that product. The route covering this case is not a constant, like /about, but rather has a parameter, with a corresponding name. The way to encode it in the route pattern is using a colon followed by the parameter name. In this case, the parameter should be called productId, making the route /product/:productId. Then, the value of each parameter can be obtained via the function param. This function should be told which type of the parameter to be accessed: the code below does so by using a local type signature, so you need to add the ScopedTypeVariables extension to the source file.

{-# LANGUAGE OverloadedStrings, ScopedTypeVariables, RecordWildCards #-}
 
import Control.Monad.IO.Class (liftIO)
import Data.Text.Lazy (pack)
 
main = do
  ...
  Db.withSqlitePool "example.db" 10 $ \pool ->  scotty 3000 $ do
      ...
      get "/product/:productId" $ do
        (productId :: Integer) <- param "productId"
        product <- liftIO $ flip Db.runSqlPersistMPool pool $
                     Db.get $ Db.Key (Db.PersistInt64 $ fromIntegral productId)
        case product of
          Just (Product { .. } ) -> html $ mconcat [ "<html><body>"
                                                  , "  <h1>"
                                                  , pack productName
                                                  , "  </h1>"
                                                  , "  <p>"
                                                  , pack productDescription
                                                  , "  </p>"
                                                  , "</html></body>" ]
          Nothing               -> status notFound404
                                   html "<h1>Not found :(</h1>"

The rest of the code is a straightforward access to the database in the way explained in Chapter 11 for accessing a value via its identifier, and composition of the returned HTML value. There are only three small tidbits to notice in the previous code block:


	The most important one is that you need to add a call to liftIO to execute an IO action inside the Scotty monad. liftIO role is similar to lift in monad transformer stacks but restricted to those specific actions. As a result of using liftIO, you need to add the transformers package as a dependency;

	The code uses record wildcards to bind variables from the Product record easily;

	In param, the code specifies both the name of the parameter to obtain and the expected type of the result. It’s interesting to know that Scotty won’t crash if the value is not sanitized and doesn’t conform to a number, it will just continue in the next rule of your web application;

	When a product identifier is not found, the status code of the response is set to 404 using the same approach as for “not found” routes in the previous section.



The code shown above is quite short and simple, except for one part: the construction of the resulting HTML page, which is done via simple string concatenation. After seeing how many checks a Haskell compiler can do for us in so many realms, you should ask whether there’s some tool for helping writing HTML code, making sure that you close all tags, using indentation to discern the document structure and so on. The answer is positive: I’m going to show you two different libraries that take different paths for this task.

The first option is the blaze-html package. The idea is that each HTML element is represented by a function whose final parameter is a monadic value representing all those tags nested inside. This way, you can write nested do blocks to simulate the document structure in your Haskell code. The other main combinator is (!), which allows you to include HTML attributes for each element.

Since there are several versions of the (X)HTML standard, blaze-html provides different packages defining the accepted tags and attributes for each. In the code below, I’ve rewritten the handler for products to use blaze-html instead of string concatenation. Notice how you need to call toHtml to convert a string into a value that can be consumed by blaze-html; and the conversion from a blaze-html value into a Text that can be returned by Scotty via renderHtml:

import qualified Text.Blaze.Html5 as H
import qualified Text.Blaze.Html5.Attributes as A
import Text.Blaze.Html.Renderer.Text (renderHtml)
 
main :: IO ()
... -- previous code omitted
      get "/product/:productId" $ do
        ...
        case product of
          Just (Product { .. }) -> html $ renderHtml $
            H.html $ do
              H.head $
                H.title "Time Machine Store"
              H.body $ do
                H.h1 $ H.toHtml productName
                H.p  H.! A.id "descr" $ H.toHtml productDescription
          Nothing               -> status notFound404

A second choice for embedding HTML values in a type-safe way is using the templating system called Hamlet. The distinctive characteristic of the hamlet package is its use of Template Haskell to provide a syntax that is closer to HTML than using Haskell functions. Let’s rewrite the product information using it:

{-# LANGUAGE QuasiQuotes, TemplateHaskell #-}
 
import Text.Hamlet
 
main :: IO ()
... -- previous code omitted
      get "/product/:productId" $ do
        ...
        case product of
          Just p -> html $ renderHtml [ shamlet |
            <html>
              <head>
                <title>Time Machine Store
              <body>
                <h1> #{productName p}
                <p id=descr> #{productDescription p}
            |]
          Nothing               -> status notFound404

Hamlet templates use opening tags in the same way as HTML. However, indentation is the syntactic element marking the nesting structure, so closing tags are not needed as you can see in the example above. At any moment you can “escape” to the Haskell world via #{ }: the result of the expression inside the brackets will be printed safely at that point.

In this simple web application, the shamlet function is used for parsing the HTML block. This is a simple function that just returns an Html value, which can be rendered using renderHtml (the same as was presented for blaze-html). But Hamlet provides other quasiquoters that are much more powerful than this:


	The hamlet function allows you to use type-safe URLs. The idea is to define all possible routes in your web application using an ADT. Each of the constructors will describe a URL pattern along with the set of parameters. Then, instead of building your HTML links by hand, you specify one of these constructors every time you need a link. The yesod-routes package provide Template Haskell functions that generate all the boilerplate code needed to use this feature;

	The ihamlet function adds internationalization support to the mix: you can create a general document structure for your templates and then include different messages for each language that your web application supports.



Finally, for each of these functions Hamlet provides a corresponding function ending in File (shamletFile, hamletFile, ihamletFile) that read the template for an external file. In that way, you can separate the view of your data from the logic in the server.

Hamlet does not include only tags and brackets for variables but also control structures for simple cases that are very common when building an HTML page. For example, the code below uses $forall to iterate through all the products in the database, writing a row in a table for each of them:

main :: IO ()
... -- previous code omitted
      get "/products" $ do
        (products :: [Db.Entity Product]) <-
          liftIO $ flip Db.runSqlPersistMPool pool $ Db.selectList [] []
        html $ renderHtml [shamlet|
          <html>
            <body>
            <h1>Products
            <table>
              <tr>
                <th>Name
                <th>Description
              $forall Db.Entity _ p <- products
                <tr>
                  <td>#{productName p}
                  <td>#{productDescription p}
        |]

More information about the entire Hamlet syntax can be obtained in the package documentation.

As a final touch, you may want to provide not only HTML output but also JSON output for those consumers of your web application that are not end-users but rather other developers interacting with your store. The good news if you are using the aeson library is that Scotty provides a very helpful json function that takes care of converting a value into the corresponding text format and sets the correct headers. For example, a new route for getting back information about a product in JSON format is very simple to add:

main :: IO ()
... -- previous code omitted
      get "/json/product/:productId" $ do
        (productId :: Integer) <- param "productId"
        (product :: Maybe Product) <-
          liftIO $ flip Db.runSqlPersistMPool pool $
            Db.get $ Db.Key (Db.PersistInt64 $ fromIntegral productId)
        case product of
          Just p  -> json p
          Nothing -> status notFound404

EXERCISE 12-2 asks you to implement the same functionality as you’ve done for products, but now you can do this for clients of the Time Machine Store.


EXERCISE 12-2. QUERYING ABOUT CLIENTS

Include new routes /clients, /client/:clientId and /json/client/:clientId which return information about all clients, and a particular client in HTML and JSON formats. Use any of the presented templating systems for generating the HTML output.






Inserting New Products Using Forms

Right now you only have tools for writing routes that use information from the URL to respond. But when a user is expected to give some data interactively, the interface should present a form, and the web application should take as input the information from that form. How to do this in an elegant and composable way will be the main topic of this section.

Before continuing, it should be noted that the param function you used previously for obtaining the value of pieces in a URL is also used for getting the value of fields in a form. Instead of using just the parameter name as argument to param, you need to use the form identifier and the field identifier separated by a dot. The problem with using param the entire time is that the parsing and visualization of forms becomes stripped between different handlers: you should aim instead to have a centralized description of each form in your web application, which may be re-used between different handlers (for example, your product form may be used both for creating a new one or for updating the information of an existing one).

The package we will use in our web application for form handling is called digestive-functors, by Jasper Van der Jeugt. One interesting feature of this library is its use of the applicative style, which gives forms the same flavor as JSON handling with aeson, which has been already discussed in this book. The digestive-functors package also separates the description of the data and validation for building a value from the way in which that form should be visualized, giving a very modular approach to form handling.

Each form you build with this library must build a value of a specific type, which would usually be one of the types you use in your database schema. In addition, the Form type (the one describing each form in the page), needs a type variable describing the format in which errors will be presented. For each argument in the constructor of that type, you must specify which field in your form will handle its value, one of the basic kinds of fields you can have in a HTML form, the initial value for an empty form, and any extra validation required. For example, this is a form for our Country type, which needs a string and a Boolean value and shows the errors as strings. Notice how the field is specified using the string or bool functions, and the initial value is specified wrapped in Maybe:

import Control.Applicative ((<$>), (<*>))
import Text.Digestive
 
countryForm :: Monad m => Form String m Country
countryForm = Country <$> "name" .: string Nothing
                      <*> "send" .: bool (Just True)


[image: image] Warning  Both aeson and digestive-functors contain a function called (.:). Be aware of this fact: you will need to qualify at least one of them if you’re using the two modules in the same source file.


For further validation you must wrap one of those simple specifications inside validate or check. The difference between them is that validate may also parse the value into a new one (maybe of another type), whereas check is only a Boolean predicate that leaves the value as is. Both functions need as extra input the error message that should be provided to the user when the value does not fulfill the requirements. The following code implements a form for Product values: it uses validate to convert from string to numbers and check to constraint the possible items in stock to be larger or equal to zero:

import Text.Digestive.Util
 
productForm :: Monad m => Form String m Product
productForm = Product <$> "name"        .: string Nothing
                      <*> "description" .: string Nothing
                      <*> "price"       .: validate isANumber (string Nothing)
                      <*> "inStock"     .: check "Must be >= 0" (>= 0)
                                            (validate isANumber (string Nothing))
 
isANumber :: (Num a, Read a) => String -> Result String a
isANumber = maybe (Error "Not a number") Success . readMaybe

Once you have the description of your form, it’s time to define how it will be seen by the user. The code you need to create should take a view of the form (i.e.,, a definition of the form plus values for each of the fields) and return the HTML output. There are packages in Hackage for integrating forms with almost any of the templating systems I’ve introduced at the beginning of the chapter. In this section I will use blaze-html as example, so you need to add digestive-functors-blaze as dependency.

The module Text.Digestive.Blaze.Html5 includes functions for all the types of inputs that the HTML standard supports. Each of the functions takes as parameters at least the name of the field it refers to and the view it handles. Apart from input controls, this package can also generate code for input labels and for the errors that concern a particular field. As an example, here’s a possible way to show the information of a form for a product. Notice the inclusion of inputSubmit for creating a “Submit” button.

import qualified Text.Blaze.Html5 as H  -- from previous examples
import Text.Digestive.Blaze.Html5
 
productView :: View H.Html -> H.Html
productView view = do
  form view "/new-product" $ do
    label     "name"    view "Name:"
    inputText "name"    view
    H.br
    inputTextArea Nothing Nothing "description" view
    H.br
    label     "price"   view "Price:"
    inputText "price"   view
    errorList "price"   view
    label     "inStock" view "# in Stock:"
    inputText "inStock" view
    errorList "inStock" view
    H.br
    inputSubmit "Submit"

Now let’s create the form that will be shown when the user of the web application wants to add a new product. Since there’s no information about that new product, you should show the form with the initial data defined in productForm. This is done by creating an empty view calling getForm. You can integrate that view’s form in a larger web page by invoking productView, as the code below shows:

main :: IO ()
... -- previous code omitted
      get "/new-product" $ do
        view <- getForm "product" productForm
        let view' = fmap H.toHtml view
        html $ renderHtml $
          H.html $ do
            H.head $ H.title "Time Machine Store"
            H.body $ productView view'


[image: image] Note  getForm returns a View String value (since the definition of productForm had type Form String m Product), whereas productView needs a View H.Html value. You can move from the former to the latter by mapping H.toHtml on every field, as the code above does. The idea behind this conversion is that you should map the errors in the form from the String type to an HTML representation.


When the form is sent by the browser back to the web application, the POST request method is used instead of GET. Thus, in that case you have to read the values sent by the user, and then either write the new product on the database if the values are correct, or return the same form with error messages. The key point is the change from getForm to postForm, which doesn’t use the initial data but rather a dictionary of fields and values from the request. Except for this change, the code for this request is straightforward: if the input data is valid (postForm returns a Just value) contact the database and redirect to the page for the product; on the other case or return the same form (the productView function will take care of showing the errors).

main :: IO ()
... -- previous code omitted
      post "/new-product" $ do
        params' <- params
        (view,product) <- postForm "product" productForm (paramsToEnv params')
        case product of
          Just p -> do
            Db.Key (Db.PersistInt64 newId) <- liftIO $ Db.runSqlPersistMPool (Db.insert p) pool
            redirect $ mconcat ["/product/", pack $ show newId]
          Nothing -> do
            let view' = fmap H.toHtml view
            html $ renderHtml $
              H.html $ do
                H.head $ H.title "Time Machine Store"
                H.body $ productView view'


PARAMS TO ENV

In the previous code you may have noticed a call to a function called paramsToEnv. This function takes care of the translation between the way Scotty encodes the parameters of the request and the way in which digestive-functors consume it. Here’s its definition:

import Data.Text.Lazy (toStrict)

paramsToEnv :: Monad m => [Param] -> Text.Digestive.Env m
paramsToEnv []           _ = fail "Parameter not found"
paramsToEnv ((k,v):rest) t = if toStrict k == fromPath t
                                                                              then return [TextInput $ toStrict v]
                                                                              else paramsToEnv rest t

The type Text.Digestive.Env m is a synonym for Path -> m [FormInput], which gives the reason for the function to take two parameters instead of just one. The way the function works is very simple: given a Path (an identifier of the form and field), it constructs the name of the parameter in the params map by calling fromPath. Then, the map is traversed until the key is found. Apart from that, the code needs to take care of converting between lazy and strict Text values, because the two libraries (Scotty and digestive-functors) use different versions of them.



This section serves as a good introduction to building REST web applications in Haskell, in particular using Scotty. To fix the concepts in your mind, you should try to complete the backend of the application as EXERCISE 12-3 suggests. Afterward, if you are interested in web applications in Haskell, you can dive more deeply into Scotty or learn about any of the other frameworks that were mentioned earlier in the section “Web Frameworks”.


EXERCISE 12-3. REGISTERING CLIENTS

Create a new handler for registering clients at route /register. As in the case of products, you need to add handlers for both the GET and the POST request methods.

Hint: you may want to read the documentation of the choice combinator in digestive-functors for building a drop-down list with possible countries in your HTML form.





Frontend with Fay

This section is devoted to creating a rich frontend for our Time Machine Store web application using the technique of compilation from Haskell to JavaScript. As in the previous section, space constraints limit the discussion to a shallow introduction to the Fay compiler and its use for showing the list of products.

As I mentioned in the introductory section, Fay is a different compiler than GHC. Thus, you need to install it separately and compile your Haskell files using it instead of Cabal or GHC itself. The first step is very easy to do, since the Fay compiler is packaged into Hackage, so you only need to enter in the following command line to install it:

$ cabal install fay fay-base

The fay package is the actual compiler, whereas fay-base contains the implementation of the Prelude and the Foreign Function Interface for the language. You need both for working through this chapter’s example.

Let’s try to compile a very simple application, which just prints something to the browser console. The following code will be assumed to live in a Simple.hs file anywhere in your system.

module Simple where
 
import Prelude
 
main :: Fay ()
main = print "Hello from Fay!"

As you can see, the Prelude module is not imported implicitly in Fay code, so you always need to add it. Also, the monad that identifies actions to the environment is called Fay instead of IO.

In order to compile the code, open a command line and execute:

$ fay Simple.hs

This will create a Simple.js file containing the translation of this Haskell code into JavaScript. Since you have included a main function, you can directly include the JavaScript file on any HTML page, and it will be executed. For example, create a file Simple.html containing:

<html>
  <head>
    <title></title>
    <script src="Simple.js"></script>
  </head>
  <body>
  </body>
</html>

If you open that HTML file with your browser and go to the JavaScript Console (which is usually available in the browser menu inside the “Tools” section), you will see a line containing an array of characters that make up the string "Hello from Fay!".


Foreign Function Interface

Clearly, if you only use pure functions and the ones available in the Fay Prelude, it’s very complex to operate in the web page in which your code is executed. The great news is that calling JavaScript code from Fay is very simple, and opens the door to using any JavaScript library inside your Fay code. The way in which this interoperation works is called the Foreign Function Interface (FFI).

Before being able to call a JavaScript function, you need to create a wrapper for it. This wrapper is needed for the compiler to generate the code that will ultimately call the JavaScript code. In Fay, a wrapper consists of two parts:


	Due to the untyped nature of JavaScript, you need to provide a type signature for each FFI wrapper. You can use usual Haskell data types, and Fay will serialize them to the appropriate JavaScript objects. The most important thing you need to remember is that if the function will perform some side effect, it should return its value inside the Fay monad; if the function is pure, you’re free to return a pure type;

	The body of the function should just be a call to the ffi function in the FFI module, which takes as its only parameter a string. This string will be the actual JavaScript code that will be called, where you can use identifiers of the form %n to refer to the nth parameter in the Haskell signature.



The archetypical example of FFI is performing a call to the alert JavaScript function, which shows a popup window with a custom message given as a string. It doesn’t return any value, so you should define its return type as simply unit (), decorated with Fay since there will be a side effect. Putting everything together, you can create a new version of Simple using alert instead of print:

module Simple where
 
import Prelude
import FFI
 
main :: Fay ()
main = alert "Hello from Fay!"
 
alert :: String -> Fay ()
alert = ffi "alert(%1)"

When you run this code as explained before, a popup with the message will appear.


INTERFACING OTHER LANGUAGES

Fay includes a very simple FFI to JavaScript. However, interfacing other programming languages, especially C, from the GHC compiler is equally simple. For example, the Haskell 2010 Report shows the necessary declaration for calling the sin function from the math.h standard C library as:

import Foreign.C

foreign import ccall "math.h sin" sin :: CDouble -> CDouble

As you can see, it includes the same basic elements as JavaScript wrappers: the function to call (for C also the name of the header file) and the signature expressed in Haskell terms. In this code, CDouble is a specific type defined in the module Foreign.C to interface with double values in C code.

In case you’re planning to interface with native code, it’s worth looking in Hackage for some package that already provides the bridges you need. If you’re not lucky, you can also look at the hsc2hs and c2hs programs, which ease the creation of interface files with C by analyzing the header files.

The Haskell Report also defines interfaces for C++, Java, and .NET, although support for that environment is far from complete.






Fay and jQuery

As a final example of the power of Fay, you will see in this section how to make calls to the server developed in the previous section, using jQuery as supporting library. jQuery is a cross-browser JavaScript library that aims to simplify the development of rich web pages by giving high-level wrappers above the features provided by the browsers: manipulation of the elements of the page, calls to remote servers, animations, and much more. Thus, it’s a very good target to interface from Fay. And this is what the fay-jquery library provides.

In order to use libraries inside Fay, you first need to install them as any other Haskell library, using Cabal. This is the command line that you will need to install the jQuery library along with the fay-text library, which is a prerequisite of the former:

$ cabal install fay-text fay-jquery

Now, when building your code, you need to tell the Fay compiler to use those new packages using the --package switch. Assuming that the code that will be developed in this section is in a file called CommWithServer.hs, the full command line would be:

$ fay --package fay-text,fay-jquery CommWithServer.hs

The web page to develop will be very simple: just a text field to input a product identifier and a button. When the button is clicked, the page should contact the Scotty web application, bring the information of the product with the identifier the user has input and show it to the user. The HTML that corresponds to this description follows:

<html>
  <head>
    <title></title>
    <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jquery.min.js"></script>
    <script src="CommWithServer.js"></script>
  </head>
  <body>
    <label for="productId">Product #:</label>
    <input type="text" id="productId" />
    <input type="submit" id="productButton" value="Get this product!" />
  </body>
</html>

Notice the line that will load the main jQuery libraries (the ones written in JavaScript) from a public Google server, and the identifiers that are assigned to the text field and the button that will allow you to refer to them later in the Fay code.

The first thing to do is to add the definition of the Product type that will be used to deserialize the information sent by the server. The flow is the Haskell server making the conversion from and to Haskell values and JSON, and Fay being able to read that JSON values, because it uses JavaScript objects under the hood. The ToJson instance that Persistent generates for us includes the same names as the fields in the entity, so you need to respect them. The definition then reads:

data Product = Product { name :: Text
                       , description :: Text
                       , price :: Double
                       , inStock :: Int
                       }

The next thing you should do is define the function that will be called after the button is clicked. In this simple example, it will get a reference to the text input via jQuery select function, and then read the text input by the user via getVal. The most important thing comes next: the URL for asking the server is built and a request is sent using the ajax function. This function takes two extra parameters: what to do when the request is successful and what to do when an error occurs (in both cases the code shows a popup window):

{-# LANGUAGE OverloadedStrings, RebindableSyntax #-}
 
import Fay.Text
import FFI
import JQuery
import Prelude hiding (concat)
 
onProductButtonClick :: Event -> Fay Bool
onProductButtonClick _ = do
  productField <- select "#productId"
  productId <- getVal productField
  let url = concat ["http://localhost:3000/json/product/", productId]
  ajax url
       (\p -> alert $ name p)
       (\_ _ _ -> alert "Error in AJAX request")
  return True
  
alert :: Text -> Fay ()
alert = ffi "alert(%1)"


[image: image] Note  jQuery library for Fay uses the fay-text package for native communication using JavaScript strings. To make the code above more concise, I’ve enabled the extensions for overloadable strings.


The only thing left is linking the previous function to the button click. This is done via the onClick function. However, you cannot include that code directly in main, because there’s no guarantee that the HTML page is loaded when the code is executed. The solution is to wrap the function into ready, which makes it wait until the page is fully loaded to start executing:

main :: Fay ()
main = ready $ do
  productButton <- select "#productButton"
  onClick onProductButtonClick productButton
  return ()

If now you open the HTML page in a browser, enter the identifier of an existing product in the database, and click the button, you should get back the information about the name of the product. Great!


SAME ORIGIN POLICY

If you’re executing all these examples in a local environment, your web page may not work at all. In that case, you’ll have been surely bitten by the Same Origin Policy. This policy, implemented in every browser in the wild, forbids a page in a domain to obtain information from other domains. In this case, a local page may not send information to a web application in localhost:3000, where Scotty executed.

The easiest solution is to add a header to allow communication from any domain in the Scotty code. This is done by calling setHeader "Access-Control-Allow-Origin" "*" in the handler of the JSON route. In this way, you notify your browser that the server admits calls from everywhere.

Having said that, it’s obvious that you shouldn’t add that header in every web application you create, because you may be exposing information to other domains. The best solution is to sever both the backend and frontend from the same domain. Alternatively, you can include a restrictive list of allowed clients in the Access-Control-Allow-Origin header.



This concludes our simple introduction to Fay. You’ve seen how to compile code into JavaScript and how to interoperate with libraries in that language. As an example I’ve used jQuery, but the Fay community is very active, and packages for many other libraries are starting to spring up.



Summary

This chapter has served as an introduction to web application building in Haskell.


	You’ve learned about the many libraries that Hackage provides for each feature required in a web application: routing, templating, form handling, and so on.

	The focus in the chapter has been the development of the Time Machine Store following the principles of the REST architectural style.

	Scotty has been introduced as a minimalistic web framework, and you have seen how to create handlers for different routes and request methods.

	Two templating systems have been discussed during the chapter: blaze-html, which provide a set of combinators for composing HTML documents, and Hamlet, which uses Template Haskell to embed a markup language inside Haskell code.

	For handling input from the user, you’ve learned about the digestive-functors library.

	Finally, the Fay compiler has been introduced as a way to program rich frontend web pages using Haskell, and you’ve been shown a small demo for making remote calls.







PART 4
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Domain Specific Languages




CHAPTER 13
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Strong Types for Describing Offers


You’ve already finished two of the main tasks in this book: implementing some data-mining algorithms for analyzing clients and their purchases and looking at several ways to save the information about purchases in a durable container. This chapter is the starting point of the last task: creating a domain specific language (DSL) for expressing offers to be applied in the Time Machine Store. This brief language will provide a set of combinators to create the offers, which are initially very basic offers.

Not all offers expressible in this first language will be valid. The interesting part is that you can use the type system to help in avoiding many of the wrong offers, and this chapter will teach you the features needed in order to do that.

I will introduce you first to generalized algebraic data types (GADTs), which is a way to create more concrete constructors for your data types. Then, you will see how to encode other invariants in the presence of dependent typing, which allows using regular values inside types, and you will do it using Idris, a language similar to Haskell but with a more powerful, dependent, type system. Haskell doesn’t use complete dependent types, though. Thus, you need to encode the invariants using other techniques. In particular, this chapter discusses both functional dependencies (FDs) and type families (TFs), along with the singletons library.

Once you’ve read this chapter, you’ll have a thorough grasp of the complete Haskell type system. You should be able to understand code that uses the advanced features described here, and you also should be able to use them in your own code.

Domain Specific Languages

A domain specific language (DSL from now on) refers usually to a language not intended for expressing any computer program, but rather data or computations about a specific problem space. For example, SQL can be seen as a DSL for expressing database queries. On the other hand, Haskell is not a DSL, but rather a general-purpose language, because it’s not tied to any particular application domain.

The existence of DSLs is not new in computer science. Many of the programs that you use contain one or several DSLs in its core. For example, CSS is a DSL for expressing presentation attributes of markup elements; regular expressions are a DSL for expressing patterns over a string; hardware designers use specific languages for designing circuits; and so on.

I would like to stress again that a DSL is not intended to express just any domain, but rather a specific one. That means that a DSL would be very tightly linked to the things you intend to express, allowing you to communicate those concepts using exactly the abstractions you need for that domain. This gives us advantages on two fronts:


	You no longer need developers to write the business rules in your program. If your DSL really expresses the rules using the usual abstractions for the intended domain, the experts on that specific domain can be the ones writing the rules. This decreases the mismatch between domain experts and programmers.

	You only need to implement a core DSL, which is usually quite small, and then use the new abstractions to build the rest of the system. This makes the programs easier to write, easier to understand, and easier to maintain, because the abstraction of the domain is not scattered between different moving parts.



These advantages are very important in the software engineering process. Given so, the concept of DSL itself has risen in importance and many problems are now tackled by means of a custom language for its domain. Many tools are geared toward the design of DSLs: this chapter will convince you that Haskell is one of best in this field.


Embedding Your Language in Haskell

Any DSL you design will ultimately be integrated inside a larger application. That larger application will be written in a general-purpose language, like Haskell. Thus, it’s very important to consider the ways in which the DSL can hook in to that other language, usually called the host.

One possibility is to make the DSL completely independent of the host language. In that case you need to develop a full set of tools for this language. In particular you need most parts of a compiler; or at least you need to write a parser for the language. Thus, you get a lot of freedom in the design, but you need to put a lot of effort into its implementation. This way of integrating your language, called external or standalone, is useful when the DSL really forms the core of your application and you want to provide extra tools (debuggers, IDE integration): think of HTML as a perfect example of this kind of DSL.

In contrast, you can also develop an embedded or internal DSL: where your language is expressed using some of the constructs of the host language. The main advantage of this approach is that you don’t need to write many of the tools, and the host language can help you in designing the DSL in such a way that you don’t need extra passes to detect those values of your DSL that are illegal. Furthermore, you are not tied to using only one DSL at once; you can embed several of them in your application. The main disadvantage is that you’re limited by the host language; in particular the internals of your DSL may be exposed in case of error.

There are several features of Haskell that make it a good host language for embedded DSLs:


	Its powerful type system allows expressing invariants that valid values in your DSL must satisfy. This means that the extra safety Haskell provides is also in your language.

	Haskell syntax is very terse, so it doesn’t introduce many strange symbols in your DSL. Using operators and the mixfix application, you can make the values in your new language resemble a natural language description.

	Type classes, especially applicatives, monads, and its do notation provide a convenient framework for expressing the abstractions that are part of a DSL. This means that Haskell developers can use a well-known notation for many concepts.



Many of the libraries I’ve talked about in this book are actually embedded DSLs: parser combinators like attoparsec for describing grammars only need to use special functions, a query language such as Esqueleto uses a combination of type classes and custom data types, digestive-functors expresses forms using applicative style and a set of basic ways to treat a form value. As you can see, the features of Haskell are used differently by each DSL, depending on how convenient they are.

There are two main trends in how embedded DSLs express their behavior inside Haskell. A shallow embedding encodes the values in your language directly by its meaning inside Haskell (this meaning is called its interpretation). For example, say that you create a DSL for stack operations; its shallow embedding would just represent each operation by a Haskell function, as this code shows:

pop :: [a] -> [a]
pop (x:xs) = xs
pop _      = error "empty stack"
 
push :: a -> [a] -> [a]
push x xs = x:xs
 
-- A value in our language: its interpretation directly works on a stack
v :: [Int] -> [Int]
v = push 1 . pop . pop . push 2

On the other hand, a deep embedding separates the use of the language into two parts. First, you create a representation of the value in your language as a syntax tree, using Haskell data types. The previous example would be deeply embedded as:

data StackOps a = Pop (StackOps a) | Push a (StackOps a) | End
 
-- The same value represented as a syntax tree
v :: StackOps Int
v = Push 1 $ Pop $ Pop $ Push 2 $ End

Now you give an interpretation of the syntax tree that converts it to its meaning inside Haskell. The advantage is that now you can add some extra optimizations as you go, like Pop after Push is similar to no operation:

interpret :: StackOps a -> [a] -> [a]
interpret (Pop (Push _ ops)) stack = interpret ops stack
interpret (Pop ops)          stack = tail $ interpret ops stack
interpret (Push e ops)       stack = e : interpret ops stack
interpret End                stack = stack

You’ve seen the two advantages of using deep instead of shallow embedding. First of all, you can give more than one interpretation, that is, treat the values of your embedded DSL in different ways depending on the situation. Additionally, you can inspect the syntax tree before creating the meaning, implementing optimizations or statistics about your value.

In this chapter I will strive for designing a deep embedding of the offers language inside Haskell. The next chapter will explain a conceptual tool, attribute grammars, and a concrete implementation of those ideas, UUAGC, which help into expressing the behavior of one of the offers applied to a basket of products.




The Offers Language

Let’s create a DSL for expressing the offers in the Time Machine Store. Apart from empowering managers to directly encode the offers for your application (so you don’t need to manually implement them each time), implementing the language will be a good way to learn more Haskell. You don’t need a very big language for the second objective, so I will keep the core DSL small. Actually, you should always try to make your DSL as small as possible, because it is easier working with a small core. For complex needs you can write functions that generate compound expressions out of the simple language you have created.

The first things the Offers language needs to provide are the basic offers that the Store may use. In this case you have three of them: giving something as a present, discounting some percentage of the price and discounting some absolute value from the price. From these basic offers you will be able to generate values in the DSL by combining offers and extra pieces of data. In our case the combinations can be split in three groups:


	Restricting the offer to be valid only on a set of products;

	By default all the offers are valid for an indefinite period of time. The language will provide ways to constraint the starting date of the offer and the end date, and to extend the offer for a longer time;

	Making an offer being the union of two of them (for example, give a free ballon and 10% discount), just the best out of two (for example, either give a 10% or a 5$ discount) or having an offer being conditional upon satisfying some property in the purchase (like applying an offer only when the client purchased more than 100$ worth of products).



From this description the data declaration for the syntax tree is straightforward to obtain:

data Offer a = Present a | PercentDiscount Float | AbsoluteDiscount Float  -- basic
  | Restrict [a] (Offer a)
  | From Integer (Offer a) | Until Integer (Offer a) | Extend Integer (Offer a)
  | Both (Offer a) (Offer a) | BetterOf (Offer a) (Offer a) | If (Expr a) (Offer a) (Offer a)
  deriving Show

In some cases when using conditional expressions you may need to express that no offer is given if some condition is not satisfied. For those cases you would need a “no offer” value. One approach would be to include an extra constructor in the data type. However, you can see that an absolute discount of 0$ is equivalent to no offer. Thus, you can keep the core as is, and define this offer in terms of the others:

noOffer :: Offer a
noOffer = AbsoluteDiscount 0

The missing part from the code of the Offer type is the declaration of the Expr data type that will encode those expressions that may appear as conditions over the purchase. That should include amount and prices of several of all the items in the shopping basket, comparisons between those quantities and Boolean combinations of conditions (and, or and not). Notice in the code below how you need to lift basic integer and floating-point values into the language via the IVal and FVal constructors:

data Expr a = AmountOf a | PriceOf a               -- information about the cart
  | TotalNumberProducts | TotalPrice
  | IVal Integer | FVal Float                      -- lifting numerical values to our DSL
  | (Expr a) :+: (Expr a) | (Expr a) :*: (Expr a)  -- arithmetic operations
  | (Expr a) :<: (Expr a) | (Expr a) :<=: (Expr a) -- comparisons
  | (Expr a) :>: (Expr a) | (Expr a) :>=: (Expr a)
  | (Expr a) :&&: (Expr a) | (Expr a) :||: (Expr a) | Not (Expr a)  -- Boolean operations
  deriving Show

For example, let’s express the offer “for the next 30 days, you will get the best of these two details: either a discount of 10$ in your final bill or having a balloon as a present and, if you buy more than 100$ of products, a 5% discount.” The value for this offer is as follows:

v :: Offer String
v = Until 30 $ BetterOf (AbsoluteDiscount 10.0)
                        (Both (Present "ballon")
                              (If (TotalPrice :>: IVal 100) (PercentDiscount 5.0)
                                                            noOffer))

These data types are the core of our DSL. But as EXERCISE 13-1 shows, you can add some helper functions to ease the description of offers that follow the same pattern very often.


EXERCISE 13-1. OFFER PATTERNS

You’ve seen how noOffer could be defined in terms of more basic constructors, keeping the core language simple. Following the same idea, write definitions for the following patterns of offers:


	period f d o will constraint the offer o for the following d days starting from day f. Remember that From and Until have as arguments specific points in time, not lengths;

	allOf os should be the conjunction of all the offers in the list os.



Then, express the following offer: “From day 3 and for 5 days hence, you will get a free ballon, a free chocolate muffin, and a 10% discount in the Time Machine Store.” Check whether your expression corresponds to the correct offer expressed using the core DSL.



Apart from constraining the kind of basic offers that you can express, there are two further requirements that all values in our DSL must satisfy. The first one is the Presents Rule: at some months during the year, the amount of presents that will be given for free with a purchase is limited. Thus, the system should check that constraint. The second one is the Duration Rule: you don’t want to allow offers whose time restrictions make them inapplicable at any point in time. Enforcing those two rules in the language will be a task for later sections.



Adding Safety to the Expression Language

I emphasized in the introduction that Haskell’s strong type system helps us in forbidding incorrect values in our DSL. But in the first implementation I showed above, you can create such incorrect values without much problem. Take the following example, which creates an Expr value by taking the disjunction of the price and some other expression. But a price alone is not a Boolean value, so you wouldn’t be able to give any meaning to it.

incorrectExpression :: Expr Char
incorrectExpression = TotalPrice :||: (TotalNumberProducts :<: PriceOf 'a')

The remedy, which will be common to all examples, is to add a tag to the types involved in the DSL and constrain the ways in which the values of different types can be combined between them. In our case:


	Amounts, prices of items and constant values (those created through the FVal or IVal constructors) should be tagged as numbers,

	Comparisons will only take as arguments values tagged as numbers and will produce a value tagged as Boolean,

	Boolean operators will only combine expressions tagged as Booleans,

	The final expression inside an offer must be tagged as Boolean.



The perfect way to add this tag to our expressions is by adding a new type parameter to the Expr data type. In that case, Expr a t will be an expression over products of type a tagged with type t. Now, if each of the combinators that make up expressions would be a regular function instead of a constructor, you could enforce those constraints by restricting the signature of the function. For example:

(:||:) :: Expr a Bool -> Expr a Bool -> Expr a Bool

And you would have a similar function for each combinator.

The actual problem is that plain data declarations do not allow returning different types depending on the constructor of a value. All constructors uniformly construct values of the type expressed after the data keyword. Generalised algebraic data types (GADTs) is a GHC extension that lifts that restriction: now each of the constructors of the data type can return a different set of type parameters to the type being defined(that is, in the definition of Expr a t you can return Expr a Bool, Expr Int Int and so on, but not Offer Char).

The syntax starts with the same keyword, data, followed by the name and type variables of the type to define. But instead of equal signs, you need to write where and list the constructors via its signatures. Your expression data type written as a GADT becomes:

{-# LANGUAGE GADTs #-}
 
data Expr a r where
  AmountOf            :: a -> Expr a Integer
  PriceOf             :: a -> Expr a Float
  TotalNumberProducts :: Expr a Integer
  TotalPrice          :: Expr a Float
  IVal                :: Integer -> Expr a Integer
  FVal                :: Float -> Expr a Float
  (:+:)               :: Expr a Integer -> Expr a Integer -> Expr a Integer
  (:+.:)              :: Expr a Float -> Expr a Float -> Expr a Float
  (:*:)               :: Expr a Integer -> Expr a Integer -> Expr a Integer
  (:*.:)              :: Expr a Float -> Expr a Float -> Expr a Float
  (:<:)               :: Expr a Integer -> Expr a Integer -> Expr a Bool
  (:<.:)              :: Expr a Float -> Expr a Float -> Expr a Bool
  (:<=:)              :: Expr a Integer -> Expr a Integer -> Expr a Bool
  (:<=.:)             :: Expr a Float -> Expr a Float -> Expr a Bool
  (:>:)               :: Expr a Integer -> Expr a Integer -> Expr a Bool
  (:>.:)              :: Expr a Float -> Expr a Float -> Expr a Bool
  (:>=:)              :: Expr a Integer -> Expr a Integer -> Expr a Bool
  (:>=.:)             :: Expr a Float -> Expr a Float -> Expr a Bool
  (:&&:)              :: Expr a Bool -> Expr a Bool -> Expr a Bool
  (:||:)              :: Expr a Bool -> Expr a Bool -> Expr a Bool
  Not                 :: Expr a Bool -> Expr a Bool

Notice that to be completely type-safe, the code needs to versions of each comparison operator, one for integer and one for floats. There exists the possibility of combining both by using a class context, because both types instantiate the Num type class. If that case the values and comparisons would read:

data Expr a r where
  ...
  Val                 :: Num n => n -> Expr a n
  (:+:)               :: Num n => Expr a n -> Expr a n -> Expr a n
  (:*:)               :: Num n => Expr a n -> Expr a n -> Expr a n
  (:<:)               :: Num n => Expr a n -> Expr a n -> Expr a Bool
  (:<=:)              :: Num n => Expr a n -> Expr a n -> Expr a Bool
  (:>:)               :: Num n => Expr a n -> Expr a n -> Expr a Bool
  (:>=:)              :: Num n => Expr a n -> Expr a n -> Expr a Bool

In the next examples I’ll assume that the constructors with a Num n context are those in the Expr data type.

Now, if you try to build some code with the incorrect expression which started this section, you will get a compile error: the expression will not type check. This is our first example of using the strong type system to constraint the kind of values that the DSL can express.

Furthermore, GADTs are solving another problem that will appear in one way or another later on. Suppose you want to interpret one expression using the original Expr data type: this interpretation will be a function that, given a list of products as (name, price) pairs, returns the result of applying the expression to it. Since the result of the expression can either be an Integer, a Float or a Bool, you need a sum type as return value. Here’s a small excerpt of the interpretation for the (:||:) case, notice how you need to take care of type mismatches explicitly on the code:

data ExprR = EInt Integer | EFloat Float | EBool Bool
 
interpretExpr :: Expr a -> [(a,Float)] -> ExprR
interpretExpr (e1 :||: e2) list =
  case (interpretExpr e1 list, interpretExpr e2 list) of
    ( EBool b1, EBool b2) -> EBool (b1 || b2)
    _                    -> error "type error"
interpretExpr ...               = ...

But if you use your GADT, you no longer need to create a special data type for the return value of the expression, because the resulting value can depend on the tag in the Expr type. This gives us a new way of polymorphism: before you could return a value of a subpart of your input type, for now thanks to GADTs that type doesn’t have to be uniform over all constructors, thus making the function return values from different types. Check how this is the case in the interpretation function for the (:||:) and (:+:) cases:

interpretExpr :: Eq a => Expr a t -> [(a,Float)] -> t
interpretExpr (e1 :+: e2)  list = interpretExpr e1 list + interpretExpr e2 list
interpretExpr (e1 :||: e2) list = interpretExpr e1 list || interpretExpr e2 list
interpretExpr ...               = ...

This interpretation function still needs some love. EXERCISE 13-2 asks you to complete the work.


EXERCISE 13-2. COMPLETE INTERPRETATION FOR EXPRESSIONS

Write the missing code of the interpretExpr function for both the case of Expr being defined by a regular ADT and by a GADT. In the case of PriceOf, you should take into account that the same product may appear more than once in the purchase list.



Even though here you’re tagging types using built-in types from the Prelude, nothing stops you from using any other type here. Actually, it may be the case that you create new data types only whose only purpose is tagging other types. In that case you don’t even need any constructors in the declaration, since you will never use them. You can create empty data declarations if you enable the EmptyDataDecls extension.

Let’s see an example over how this could be useful. In the Time Machine Store there will be many users. But not all of them will have the same role in the store: some will be administrators or store managers (which are able to change everything), some will be store people (which are only allowed to update products in the database) and then you have regular users (which are the ones making the purchases). You can tag which is the level access to the store using a set of empty data types:

{-# LANGUAGE EmptyDataDecls, GADTs #-}
 
data AllowEverything
data AllowProducts
data AllowPurchases
 
data Person = Person :: { firstName :: String, lastName :: String }
 
data User r where
  Admin        :: Person -> User AllowEverything
  StoreManager :: Person -> User AllowEverything
  StorePerson  :: Person -> User AllowProducts
  Client       :: Person -> User AllowPurchases

Now a function that should only be called by people with access to everything can be defined to require the value tagged with the correct type:

changePurchaseFinalPrice :: User AllowEverything -> Purchase -> Float -> Purchase
changePurchaseFinalPrice = ...

Time travelling is a tiresome task, so users of your time machines need to take stacks from time to time. However, people have constraints over the food they can take: vegetarian, no pork, low salt and so on. EXERCISE 13-3 asks you to build a GADT that represents those snacks tagged with constraints.


EXERCISE 13-3. SNACKS FOR TIME TRAVELLERS

Create a GADT representing a set of possible snacks for the Time Machine Store. The snacks must be tagged with a type defining whether it’s OK for vegetarians and whether it contains pork or not. Use empty data types as shown in this section.



Dependent Typing

It seems that this idea of tagging types with extra information is quite successful, at least for expressions. However, the way in which you can do it is quite limited, because you can only use other types, and only as constants or variables that you don’t inspect.

One way to have a more powerful type system is by allowing values, apart from types, to take part in other types. For example, you could be interested in tagging lists with their length and expressing things like “the length of append l1 l2 is the sum of the lengths of l1 and l2.” As you can see, in this case the tag is not another type, but rather a number, a value in the world of Haskell terms.

In Haskell, values are allowed to depend on other values (via regular function parameters) or on types (via parametric or ad-hoc polymorphism), where types are allowed only to depend on other types (via type variables). Dependent type systems open the last barrier that Haskell imposes between values and types, and allow creating types depending on values, as the list tagged with its length that was being discussed.

There are several languages which feature dependent types, like Coq, Twelf, Agda or Idris. From those, Agda and Idris share most of the concepts and syntax with Haskell, and both serve as good places to start looking at these powerful type systems. In particular, this section will use Idris as teaching tool.


[image: image] Note  Dependent typing covers a much wider range of functionality than is explained in this section. Here I shall focus only on the parts that can be expressed in some way in Haskell. For a deeper view, you can read “Programming in Idris: a tutorial” by Edwin Brady,1  “Dependently Typed Programming in Agda” by Ulf Norell and James Chapman,2  “Certified Programming with Dependent Types” by Adam Chlipala3 or “Software Foundations” by Benjamin C. Pierce and others4 (the latter two using Coq).



Introducing Idris

As stated in the introduction to this section, Idris is a functional language whose type system includes dependent types. It was initially developed at University of St Andrews, but now it’s maintained by an active community. From all the dependently typed languages, it’s the most close to Haskell: the syntax is almost the same, ad-hoc polymorphism is done via type classes, do notation is included, and so on. Apart from dependent types, the other distinguishing feature of Idris is its support for DSLs via syntax overloading, something which may be interesting to check after reading this chapter. The main difference between Haskell and Idris is that the latter uses eager evaluation instead of a lazy evaluation model, although laziness is available through annotations.


[image: image] Note  You don’t need to understand Idris completely to use type-level programming techniques in Haskell. The technical parts of the following sections are optional. Focus on understanding the concepts involved in the examples, but don’t worry if you don’t get all the exercises working at first. You can always revisit this part of the book after you’ve gained more experience on functional programming.


Idris is implemented in Haskell, and it’s available as another package in Hackage. The easiest way to get it on your system is to run the following command from the command-line:

$ cabal install idris


[image: image] Warning  By default, you need a bunch of libraries to be present in your system to compile Idris. However, getting all of them installed can be quite difficult in Windows and Mac OS X. For the latter system, the easiest solution is to compile Idris without the LLVM backend, something you can do by running cabal install -f -LLVM idris instead of the previously shown command. On Windows, the web page https://github.com/idris-lang/Idris-dev/wiki/Idris-on-Windows shows the steps to follow.


There are two small syntactic differences between Haskell and Idris you should be aware of:


	The symbols (::) and (:) have reversed meaning. In Idris, for expressing “x has type Int” you write x : Int, and for the list composed of 3 consed with l you write 3 :: l;

	The type for lists of type a is not [a] but rather List a.



Let’s look now at how you would declare lists tagged with their length. We’ll create a type for that purpose, and we’ll call that new type ListL.

The first thing you should be aware of is that Idris needs an explicit declaration of the type of parameters of ListL. You didn’t have to provide that in Haskell because only types can appear in as parameters to other types. In this case you have two parameters: a natural number expressing the length, and the type of the elements contained inside the list, and you’ll be returning a new type. For the second part you need to express that “this parameter is a type” for which you use the keyword Type. The result of a data declaration is another type, something you have to explicitly include. Thus, the signature for ListL is Nat -> Type -> Type. Afterward, the declaration of the constructors is done via GADT-style constructors, as the following code shows:

data ListL : Nat -> Type -> Type where
  EmptyL : ListL 0 a
  ConsL  : a -> ListL n a -> ListL (S n) a

Notice how the code defines how the tag changes when applying the different constructors. In this case an empty list should be tagged with 0, and the addition of one element to a list should increase its tag by one (which is expressed by using the successor function on natural numbers, S, which equivalent to adding one).

You can compile and load the code in the Idris interpreter as you would do in GHCi. For example:

$ idris ListL.idr
     ____    __     _ 
    /  _/___/ /____(_)____
    / // __  / ___/ / ___/     Version 0.9.9.3
  _/ // /_/ / /  / (__  )      http://www.idris-lang.org/
 /___/\__,_/_/  /_/____/       Type :? for help
 
Type checking ./ListL.idr

To check that our lists record their length correctly, let’s ask the interpreter for the type of a list having three elements:

*ListL> :t ConsL 'a' (ConsL 'b' (ConsL 'c' EmptyL))
ConsL 'a' (ConsL 'b' (ConsL 'c' (EmptyL))) : ListL 3 Char

As you can see, you get a 3 back, which is compatible with the definition of ListL you’ve just made.

The type system used by Idris is so strong that type inference cannot longer obtain the type of every expression. For that reason, the compiler needs to be given the signature of all top-level functions. Of course, this signature must be compatible with the function being defined. For example, you might write a function that duplicates each element in a list, but give a wrong type signature. In the following example of such a case, the code says that the number of items will be twice the length of the initial list plus one, which is incorrect:

duplicateEachElem : ListL n a -> ListL (n * 2 + 1) a
duplicateEachElem EmptyL      = EmptyL
duplicateEachElem (ConsL x r) = ConsL x (ConsL x (duplicateEachElem r))

The compiler will complain, and the error will be similar to be following:

$ idris ListL.idr
Type checking ./ListL.idr
./ListL.idr:When elaborating right hand side of duplicateEachElem:
Can't unify
        ListL 0 a
with
        ListL 1 a
 
Specifically:
        Can't unify
               0
        with
               1

The solution boils down to writing the correct signature:

duplicateEachElem : ListL n a -> ListL (n * 2) a

Many other data structures can benefit from this tagging with natural numbers. EXERCISE 13-4 asks you to create a GADT for binary trees which keeps track of the height of each given tree.


EXERCISE 13-4. BINARY TREES TAGGED WITH HEIGHT

Create a BinaryTree data type with two types of constructors: Leafs, which contain only one element, and Nodes, which contain an element and two subtrees. The type must be tagged with the height of the tree. Use Idris and the techniques explained above.

Hint: the maximum function returns the bigger of two natural numbers.

Warning: if you try to get the type of a BinaryTree value in the Idris interpreter, you will almost sure come to something similar to the following:

*BinaryTree> :t Node 'a' (Leaf 'b') (Node 'c' (Leaf 'd') (Leaf 'e'))
Node 'a' (Leaf 'b') (Node 'c' (Leaf 'd') (Leaf 'e'))
     : Tree (S (boolElim (lte 1 (S (boolElim (lte 1 1) 1 1)))
                                                                                (S (boolElim (lte 1 1) 1 1)) 1)
                       Char

The solution is asking Idris to evaluate the expression, which will also evaluate the values inside the type. So, do not include :t in the command line:

*BinaryTree> Node 'a' (Leaf 'b') (Node 'c' (Leaf 'd') (Leaf 'e'))
Node 'a' (Leaf 'b') (Node 'c' (Leaf 'd') (Leaf 'e')) : Tree 3 Char

The line between types and values is blurry in dependently typed languages, so there are some places where you need to evaluate an expression to get its reduced type.




[image: image] Warning  Programming with full dependent types can be tricky, especially when dealing with numbers as tags. In some cases the compiler cannot check whether an expression is equal to another, and you need to provide hints to help it. How to do so is, however, out of the scope of this chapter.





Enforcing the Presents Rule in Idris

Enforcing the Presents Rule via Idris type system is a simple refinement of the idea of keeping track of the number of items in a list or the height of a tree. Instead of a full piece of code, in this section I’ll show each piece of the declaration of the new data type along with comments.

The first thing to do in translating the code from Haskell is adding a signature to the data type. As before, an Offer should have a type variable for the kind of products in which the offers will be applied. Then, you need to add a natural number to tag the offer with the maximum number of presents inside it:

data Offer : Type -> Nat -> Type where

The basic constructor Present should reflect that one present is given with it. On the other hand, neither a percentage discount nor an absolute discount adds any present to the offer, so their tags should be zero:

Present          : a -> Offer a 1
PercentDiscount  : Float -> Offer a 0
AbsoluteDiscount : Float -> Offer a 0

None of the time-related combinators for Offer changes the number of presents to be given:

From             : Nat -> Offer a p -> Offer a p
Until            : Nat -> Offer a p -> Offer a p
Extend           : Nat -> Offer a p -> Offer a p

However, when you restrict an offer to just some products, the presents are also restricted (you can only give presents from those in the restriction). Thus, you need to make a minimum from the number of products you restrict and the maximum amount of presents you could already have. At this point you lose the ability to know the exact number of presents; you can only get an estimation of the maximum number of them. Check how the rough list of products was also changed to Vect (the built-in type that corresponds to the previously defined ListL) to make sure that only lists with at list one product are given:

Restrict         : Vect (S n) a -> Offer a p -> Offer a (minimum (S n) p)

The combination of several offers is straightforward: when two offers are applied at the same time, you get the presents of both, thus the tag changes with addition. The BetterOf constructor, however, it’s not as straightforward. Since you don’t know in advance which of the branches will be taken, you cannot compute the exact amounts of presents for that other. But you can still get some bounds: when the better of the two offers is applied, you get at most the larger amount of presents you could from any of the two sub-offers (this means that a maximum should be used). Thus, the focus will change from getting the exact amount of presents to obtaining a good upper bound of its number.

Both             : Offer a p -> Offer a q -> Offer a (p + q)
BetterOf         : Offer a p -> Offer a q -> Offer a (maximum p q)

In terms of number of presents, a conditional offer works as a disjunctive one, because at most you can get the maximum number of presents from any of the branches. Once again, the focus shifts from having an exact value to getting a good upper bound. This is due to the uncertainty on the result of the conditional expression. Thus, the last constructor in our data type reads:

If               : Expr a Bool -> Offer a p -> Offer a q -> Offer a (maximum p q)

In this case, the Expr type used inside conditionals remains as it was in Haskell (except for the change from :: to : to specify the signature of the constructors), because expressions do not affect the number of presents.

You can check that this data type works correctly by creating an offer and checking that the maximum amount of presents is computed correctly by the type system. For example:

*CheckPresents> let p = Present 'a' in Both p (BetterOf p (Both p p))
Both (Present 'a') (BetterOf (Present 'a') (Both (Present 'a') (Present 'a'))) : Offer Char 3




Type-level Programming in Haskell

Haskell is not a dependently typed language. It imposes a clear separation between the world of terms or expressions and the world of types. In particular, it’s forbidden to use terms as parameters to types. However, the previous section shows how interesting tagging with values becomes.

In the section for GADTS, you’ve used some empty data types as tags. This approach mimics partly dependent typing but only allows tagging with constant values, not performing any operation on the types. That is, you could express that the Present constructor includes just one present (because it’s a constant) but not that the BetterOf constructor should take the maximum of both tags. The rest of the chapter is devoted to showing different ways in which you could describe operations that work on types. All these methods are known collectively as type-level programming techniques.


USING TYPE-LEVEL TECHNIQUES IN YOUR CODE

The programming techniques that will be presented in the rest of the chapter are usually categorized as advanced Haskell features. You don’t need to understand every detail of functional dependencies and type families to be a good and proficient Haskell programmer. Indeed, those features are recent additions to the Haskell language, so its use is not very widespread yet.

However, type-level programming is becoming an increasingly important technique. More recent libraries, such as Persistent or Yesod, make heavy use of them. Even though you may skip some of this material in a first reading, you should come back to it in the future: it will help you understand many of the error messages and design decisions of those libraries, and it will also help you to build better applications.




Two Styles of Programming

Type-level programming in Haskell generates many of its ideas from enhancements in ad-hoc polymorphism. There are two different ways you can simulate parts of dependent typing in Haskell:


	Functional dependencies (FDs) allow constraining the parameters of type classes. Given the correct constraints, the Haskell compiler can infer a unique type, which can be seen as the result of a type level function.

	Type families (TFs) let you create functions that assign a type given a set of other types. Recent versions of GHC include two kinds of type families: closed type families are the closest to the intuitive notion of type function. On the other hand, open type families are similar to type classes in the sense that you may add a new rule to an open type family at any point, as you may add an instance to a type class.



Both ways are equally powerful, so in principle it doesn’t matter which one you choose to encode your invariants. However, in some cases it’s easier to use FDs and in some cases other TFs, because of the different syntax and stress in some concepts. As a rule of thumb, start using TFs (because the type-level concepts it exposes are closer to simple Haskell level) and FDs if you need more expressiveness in the relations between types.


[image: image] Warning  Although they have the same power, mixing FDs and TFs in the same code can become very challenging. Thus, if you depend on a library that exposes FDs or TFs, you should use the same technique to avoid further problems. The situation, however, may improve in newer versions of the GHC compiler.





Representing Natural Numbers

Since the tags that will be used to check the Presents Rule are natural numbers, you must know how they are encoded as values previous to using FDs or TFs to represent them at the type level. This section tries to give a fast-paced introduction to natural numbers: feel free to skip it if you already know the standard data type for natural numbers and how addition, maximum, and minimum are coded using them.

The most common way to represent natural numbers as a data type is based on the axioms stated by the nineteenth-century mathematician Giuseppe Peano. In particular, he gave two rules for constructing numbers:


	Zero is a natural number.

	For every natural number n there exists a successor of n, which is also a natural number.



You can encode those axioms in a Haskell data declaration:

data Number = Zero | Succ Number deriving Show

The number one, for example, is the successor of zero; the number two is the successor of one and so on.

one :: Number
one = Succ Zero
two :: Number
two = Succ one  -- Succ (Succ Zero)


[image: image] Note  You can think of this encoding of natural numbers as lists in which you don’t care about elements. Then, addition would be concatenation of lists, taking the minimum would be returning the list with the smallest number of elements, and so on.


Now let’s move to the operations. The first one you will need to use is addition. As with most Haskell data types, the best way to design a function over Number is handling each constructor and using recursion for nested values. In this case you have two different constructors:



	If you add zero to any natural number y, the result is y.

	If you add the successor of x to y, this is equal to the successor of the addition of x and y. Since the successor is equivalent to (+1), you can see this as encoding the algebraic law that reads (x + 1) + y = (x + y) + 1.



In Haskell syntax, the branches of the plus' function are written as:

plus' :: Number -> Number -> Number
plus' Zero     y = y
plus' (Succ x) y = Succ (plus' x y)

You can test whether the function works correctly by summing up 1 and 2, for example:

*Chapter13.Numbers> plus' one two
Succ (Succ (Succ Zero))

The result is the number 3 represented in this way, as you can see in the output.

For the maximum, there are also two cases to consider. First of all, any of the numbers can be zero, in which case you know for sure that the other number is greater or equal than zero. The other case is when both numbers are successors, for example, x + 1 and y + 1. In this case, the maximum can be computed by recurring the function over x and y, and then adding one.

max' :: Number -> Number -> Number
max' Zero y = y
max' x Zero = x
max' (Succ x) (Succ y) = Succ (max' x y)

The minimum function has a very similar skeleton: EXERCISE 13-5 asks you to write the full code.


EXERCISE 13-5. MINIMUM OF NATURAL NUMBERS

Write a function min' of type Number -> Number -> Number that computes the minimum value of the two natural numbers given as arguments.





Functional Dependencies

As stated in the previous section, functional dependencies (FDs) represent one of the ways in which you can encode type-level operations in Haskell. However, the original intention of FDs was to enhance the type class mechanism by constraining the set of types which can be related via a multi-parameter type class. In this section I’ll start looking at this original aim and then move to encoding the Presents Rule via FDs.


Categories of Products with FDs

Let’s diverge for a moment from the offers language, and focus on a completely different problem. Until now, all the products in the Time Machine Store were represented using the same data type, Product. However, the information for describing a time machine is not the same as that needed to describe a book, or a costume. Thus, it may be interesting to make Product a type class, and make data types represent different categories of products.

Apart from different fields to describe them, you use different products in different ways. For example, you travel with a time machine, but you read a book. It would be interesting to specify, for each category of products, which operations are available to perform upon them. Then, you could include specific instruction on how to perform each operation and a specification of which operation should be used to test the product.

From this discussion, the action point is to create a Product type class with two parameters: one defining the category of products and the other one the operations that the category supports. The following code includes as operations the price of a product and the operation functions discussed above:

class Product p op where
  price :: p -> Float
  perform :: p -> op -> String
  testOperation :: p -> op


[image: image] Note  Remember that you need to enable the MultiParamTypeClasses extension for GHC to accept this code.


Given a simple data type for representing time machines and their operations, writing its instance declaration is straightforward. The code below shows a possible way in which you could do so:

data TimeMachine = TimeMachine { model :: String } deriving Show
 
data TimeMachineOps = Travel Integer | Park deriving Show
 
instance Product TimeMachine TimeMachineOps where
  price _ = 1000.0
  perform (TimeMachine m) (Travel y) = "Travelling to " ++ show y ++ " with " ++ m
  perform (TimeMachine m) Park       = "Parking time machine " ++ m
  testOperation _ = Travel 0

Of course, the main aim for creating a type class is writing a function that works on any kind of Product. For example, a function could get the total price of a list of products of the same category, and another one performs the test operation on a concrete product. The definitions are:

totalAmount :: Product p op => [p] -> Float
totalAmount = foldr (+) 0.0 . map price
 
performTest :: Product p op => p -> String
performTest p = perform p $ testOperation p

The problem is that this code will not compile. Instead, you will get several errors similar to the following:

src/Chapter13/CategoriesFnDeps.hs:
    Could not deduce (Product p op0) arising from a use of `price'
    from the context (Product p op)
      bound by the type signature for
                 totalAmount :: Product p op => [p] -> Float
      at src/Chapter13/CategoriesFnDeps.hs:
    The type variable `op0' is ambiguous
    Possible fix: add a type signature that fixes these type variable(s)
    Note: there is a potential instance available:
      instance Product TimeMachine TimeMachineOps
        -- Defined at src/Chapter13/CategoriesFnDeps.hs:18:10

The error message is telling you that there’s not enough information to infer which operation type corresponds to each product category. But the intent of the code is clear: for TimeMachine the corresponding operation type is TimeMachineOps, and only that one. Somehow, the compiler should infer that, when you’re using a TimeMachine, the operations will always belong to TimeMachineOps.

The problem is that the type class declaration, as it stands, does not declare this intention in any way. Any two types p and op could be related via Product. For example, you can add an instance that uses TimeMachine as the category but book operations are:

data Book = Book { title :: String, author :: String, rating :: Integer } deriving Show
 
data BookOps = Read | Highlight | WriteCritique deriving Show
 
instance Product TimeMachine BookOps where
  price _         = 500.0
  perform _ _     = "What?!"
  testOperation _ = Read  -- ??

The compiler won’t complain, because the code is perfectly fine. But now you can see why the definitions of totalAmount or testOperation were ambiguous: potentially another instance where a declaration different from Product TimeMachine TimeMachineOps may be applicable.

The solution is to add a constraint to the type class declaration that exactly expresses that, given a specific category of products, only one possibility is available for the set of operations. This is done via a functional dependency, a concept from database theory that describes exactly these scenarios. Functional dependencies are written in the head of the class declaration, separated from the name and type variables by the | sign, and with commas between each of them. Each functional dependency, in turn, follows the same schema: x1... xn-> y1... ym, expressing that for each unique substitution of the types x1 to xn, there’s only one possible compound value of y1 to ym. Note that you need to enable the FunctionalDependencies extension to use this syntax in your own type classes.

In this case, categories constraint the operations, so the functional dependency to add is p -> op. The refined head of the definition of the type class should be changed to:

class Product p op | p -> op where

Once you do this, the compiler will complain about two different Product instances given for a TimeMachine:

src/Chapter13/CategoriesFnDeps.hs:
    Functional dependencies conflict between instance declarations:
      instance Product TimeMachine TimeMachineOps
        -- Defined at src/Chapter13/CategoriesFnDeps.hs
      instance Product TimeMachine BookOps
        -- Defined at src/Chapter13/CategoriesFnDeps.hs

Now the compiler admits the definition of totalPrice and performTest, as it knows that given a category for products, only one possible set of operations will be available, so it can select them.

Functional dependencies are very helpful once you understand when they are needed in a type class declaration. The following sidebar describes their use in monad classes. Then EXERCISE 13-6 proposes a task for aiding into understanding these ideas.


FUNCTIONAL DEPENDENCIES IN MONAD CLASSES

When the type classes supporting the lifting of the basic operation in each monad transformers (MonadState, MonadReader, MonadWriter and so on) were discussed back in Chapter 7, functional dependencies appeared in the class declarations, but at that point you didn’t have the knowledge to understand why.

The crux of a type class such as MonadState is that it declares both the monad that performs the operations and then type of elements saved in the state, as they are both needed in the signatures of some operations. The functional dependency states that given a specific monad, the type of the state values is automatically known. Think of the State Int monad, for example: from its signature you already know that only Int can be the type of elements saved in the state.




EXERCISE 13-6. PRODUCTS AND BAGS

In the Store there are two kinds of bags available: big and small ones. Create new data types BigBag and SmallBag for representing each kind of bag. Then, add a new parameter to the Product type class for stating which bag you should use for each category of products. In principle, time machines should go on big bags, whereas books only need small ones. Think carefully about extra-functional dependencies.






Enforcing the Presents Rule with FDs

At first sight, it seems that functional dependencies have nothing to do with type-level operations in Haskell. However, a second look will show how you can encode type-level functions in this way.

To begin with, let’s create the representation of natural numbers at type level. Once again, the best way is to use empty data types. For each constructor in the original declaration, an empty data type is needed. In the case of numbers, two of them will be used: one for representing the zero tag and one for successors.

{-# LANGUAGE EmptyDataDecls #-}
 
data Zero
data Succ n


[image: image] Warning  Notice that in almost every example in this section the code will use more and more GHC extensions. These will be shown using the LANGUAGE pragma. Most of the extensions are only needed for enabling certain syntactic constructs, and the compiler will tell you to enable them if you forget, so you don’t need to worry too much about them.


With only these data types just given, you can represent lists tagged with their length in a manner similar to what has been done in Idris, except you’re using these new natural numbers instead of built-in numbers.  Zero and Succ may already be used to check that any call to head is done with a list of at least one element, adding safety to the language. Following the conventions in Idris, these lists tagged with numbers will be called Vects:

{-# LANGUAGE GADTs #-}
 
data Vect n a where
  VNil  :: Vect Zero a
  VCons :: a -> Vect n a -> Vect (Succ n) a

Now it’s time to use the type class system in your favor. Each type-level operation will be encoded as a type class that will have as variables the input arguments to the type-level operation and an extra one that represents the result of the operation. For example, class Plus x y z represents “the result of the addition of x and y is z”, or in other terms x + y = z. But in order to be a function, you must explicitly say that for any pair of values x and y there’s only one possible result z. Specifying that is a perfect job for a functional dependency. Thus, the entire type class declaration representing type-level addition is:

{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-}
 
class Plus x y z | x y -> z


[image: image] Note  Since the Plus type class is used only for its results at type level, it’s not necessary to include any function in its body. In that case, Haskell allows omitting the where keyword from the declaration.


The type class declaration is just describing the number of arguments to the type-level function. For expressing the rules that make the operation, you need to write different instances. Usually these instances correspond to each of the cases in a function definition. Let’s see how they look for addition:

{-# LANGUAGE FlexibleInstances, UndecidableInstances #-}
 
instance Plus Zero x x
instance Plus x y z => Plus (Succ x) y (Succ z)

This is expressing the same logic for Peano addition, but in a backward style of reasoning. The first instance encodes the rule of addition of zero to a number, whose result is exactly the same as the second argument. The second rule is a bit more subtle: it’s expressing that if you know that x + y = z, you can infer the addition (x + 1) + y, which will be exactly z + 1. In some sense, the declaration is reversing the way in which you write the pattern matching on the arguments and handling the recursion via a call to a smaller instance.

The next step is using these new data types and type class inside the declaration of Offer. The basic combinators for presents and discounts are straightforward to port from its Idris declaration to Haskell: the only difference is that instead of plain numbers you need to write them using their Peano representation.

data Offer a p where
  Present          :: a -> Offer a (Succ Zero)
  PercentDiscount  :: Float -> Offer a Zero
  AbsoluteDiscount :: Float -> Offer a Zero

The constructor that was using addition in Idris was Both. The corresponding code in Haskell follows:

Both             :: Plus p q r => Offer a p -> Offer a q -> Offer a r

As you can see, the code includes a context with the Plus type class. This is expressing that if p + q = r, then the union of an offer with p presents and another one with q presents is an offer with r presents. If you check in the interpreter for the type of a test present, the compiler will follow the rules for the Plus type class to get a final type. Here’s one example of its output, corresponding to the same offer that was tested in Idris.

*Chapter13.CheckPresentsFnDeps> :t let p = Present 'a' in Both p (Both p (Both p p))
let p = Present 'a' in Both p (BetterOf p (Both p p))
  :: Offer Char (Succ (Succ (Succ (Succ Zero))))

Another interesting constructor is the restriction one, which should take the minimum between the number of elements in a list and the number of presents. Let’s again follow the same steps to use functional dependencies for encoding this type-level operation. First, declare the type class with an extra argument for the result and specify that the last argument functionally depends on all the rest.

class Min x y z | x y -> z

For each rule in the function definition, you must include an instance declaration. Remember that the style of programming must be backward: you must specify the recurring conditions before the full result.

instance Min Zero     y    Zero
instance Min (Succ x) Zero Zero
instance Min x y z => Min (Succ x) (Succ y) (Succ z)

The final part is using the type class in the declaration of the constructor. As was the case in Idris, the code asks for a number with at least one successor to limit the lists to at least one element.

{-# LANGUAGE FlexibleContexts #-}
 
  Restrict         :: Min (Succ n) p r => Vect (Succ n) a -> Offer a p -> Offer a r

There are still some constructors left for the full offers language. EXERCISE 13-7 asks you to write the rest of them, encoding the type-level functions needed as functional dependencies. Offers and lists are not the only data types that benefit from tagging with natural numbers. I’ve already explained how trees can encode their height in Idris. EXERCISE 13-8 asks you to build them in Haskell.


EXERCISE 13-7. OFFERS WITH FUNCTIONAL DEPENDENCIES

Include the constructors for the remaining offers language: From, Until, Extend, BetterOf and If. In the last two you’ll need a type class encoding the maximum of two natural numbers: write it following the same technique from this section.




A LOGIC TYPE LEVEL LANGUAGE

If you’ve ever used a logic programming language, such as Prolog or Datalog, you may find some resemblance between the way you encode type-level functions using instance declarations and how you write predicates on these languages. This relation is indeed true: programming with functional dependencies exposes a logic programming style in a Haskell type system.

This extra paradigm brought into Haskell is the main criticism with functional dependencies: the programmer should not change programming styles when moving from term-level to type-level coding. Type families, as you will see later, have a more functional style in their declaration.




EXERCISE 13-8. TREES WITH FUNCTIONAL DEPENDENCIES

Create a BinaryTree type with the same constructors as in EXERCISE 13-4. In this case, use a combination of GADTs and type-level operations with functional dependencies to tag the trees with its height. Hint: re-use the natural numbers from this section and the maximum function from EXERCISE 13-7.





Type Families

You’ve already seen how functional dependencies can empower you into constructing a stronger type system. This section will show you how to express the same kind of invariants but using the language of type families (TFs). In short, a type family is a function in the type level: it gives you a type given some other types as parameters, but in an ad-hoc way, and in contrast to parametric polymorphism. It may appear in the top-level of your module, or inside a type class: you will see the purpose of each of them in this section.


Enforcing the Presents Rule with TFs

The definition of a type family (TF) is usually quite simple given a corresponding definition in the term level. In the example you’ve been dealing with, the first type-level function that you need is addition, and I will now proceed with that one. The same data types that were used for encoding natural numbers in the FDs section will be used with type families:

{-# LANGUAGE EmptyDataDecls #-}
 
data Zero
data Succ n

The Vect data type will also be re-used:

{-# LANGUAGE GADTs #-}
 
data Vect n a where
  VNil  :: Vect Zero a
  VCons :: a -> Vect n a -> Vect (Succ n) a

A TF starts with the type family keywords, followed by the declaration of its name and arguments and the where keyword. This first line defines the signature of the type-level function. After the signature, the type family is defined using pattern matching on its arguments. There are two small syntactic differences between TFs and regular functions: whereas term-level functions must start with a lowercase letter, type family names must start with an uppercase one. In this case, the code will refer to addition at type-level with the name Plus. The other difference is that all the rules for a TF must be indented, in contrast to regular functions where rules appeared at the same indentation level of signatures. This is the definition of addition using TFs:

{-# LANGUAGE TypeFamilies #-}
 
type family Plus x y where
  Plus Zero     x = x
  Plus (Succ x) y = Succ (Plus x y)

As you can see, the type instances completely mimic the definition of the (+) function on regular, term-level, natural numbers. This similarity makes it easier to port code from term-level to type-level if you use type families.


[image: image] Warning  The previous code uses closed TFs, an extension only available from version 7.8.1 of the GHC compiler. If you’re using a previous version, you should use open TFs, which are described in the next section.


The next step is using the TF you just declared inside the definition of the Offer data type. As in the case of FDs, the only change to be done in the basic constructors from the Idris code is the representation of numbers zero and one using our Peano data type:

data Offer a p where
  Present          :: a -> Offer a (Succ Zero)
  PercentDiscount  :: Float -> Offer a Zero
  AbsoluteDiscount :: Float -> Offer a Zero

The place where the Plus TF is expected to be used is in the Both constructor. When using TFs, you don’t need to use the type context part of the signature; you can just use an applied TF in the place where a type is expected. For example, in this constructor Plus p q is used in lieu of a type:

Both             :: Offer a p -> Offer a q -> Offer a ( Plus p q )

In order to reinforce the steps you need to follow to use a TF for encoding a type-level function, let’s use the same process for restriction. Looking at the previous sections, you can see that in that case you need to define a type-level minimum function. The following code does so with a TF Min:

type family Min x y where
  Min Zero     y        = Zero
  Min x        Zero     = Zero
  Min (Succ x) (Succ y) = Succ (Min x y)

The corresponding Restrict constructor is very easily updated from Idris to Haskell with TFs:

  Restrict         :: Vect (Succ n) a -> Offer a p -> Offer a ( Min (Succ n) p )

As in the previous case, it’s your task (in EXERCISE 13-9) to write the rest of the cases of the data type.


EXERCISE 13-9. OFFERS WITH TYPE FAMILIES

Include the constructors for the rest of the offers language: From, Until, Extend, BetterOf and If. At this point you’ll know that you’ll need a type-level function encoding maximum of two natural numbers in the last two cases: define it using type families.






Categories of Products with TFs

The introduction to type-level programming in Haskell stated that functional dependencies and type families had the same power of expressiveness. You’ve already seen how both can encode type-level functions, but there’s still the question of how to use type families to solve the problem with categories of products.

One possibility is to define a TF that assigns the type of operations to each type of product. Following the instructions from the previous section, such an Operation function would resemble the following:

type family Operation x where
  Operation TimeMachine = TimeMachineOps
  Operation Book        = BookOps

This is not a very satisfactory solution, though. When you used a type class along with an FD, you had the option to add a new product along with its sets of operations at any moment, via a new instance declaration. However, if you follow the approach I’ve just shown, with the previous definition of a TF, you need both to add an instance to the Product type class and a new equation to the Operation type family. This makes the type class and the type family tightly coupled and thus less maintainable.

The problem in this case does not lie in the use of type families, but rather in the fact that the type family is defined as a closed one. GHC, from version 7.8 on, supports two kinds of type families: the closed ones, which I’ve already introduced, cannot be enlarged with more rules after its definition. In contrast, open type families define a partial function which can be refined or enlarged in other parts of the code.

In order to define a type family as open, drop the final where keyword from its declaration:

type family Operation x

Each time you want to add a new rule to the type family, you have to include it after the type instance keywords. For example, the previous two relations between products and operations would read:

type instance Operation TimeMachine = TimeMachineOps
type instance Operation Book        = BookOps

Notice that in this case the instance declarations appear at the same level of the signature, since they may be defined in completely different modules.


TYPE INSTANCES MUST NOT OVERLAP

There’s an important difference between closed and open type families. Closed type families follow the usual evaluation model: the first rule is tried; if it doesn’t match, the second rule is tried and so on, until a match is ultimately found. This can be done because rules from a closed type family have a defined order. However, rules from an open type family come from different, unrelated, places and have no order. If the compiler found that two patterns match, it wouldn’t be able to know which choice to take. Thus, GHC forces type instance declarations to not overlap.

Take as an example the definition of the Min TF shown before. If the compiler had to compute the result of Min Zero Zero, both the first and the second rules would match. It knows that it should use the first one, because the TF is closed. But if you were to define Min as an open TF (for example, because your version of GHC is earlier than 7.8.1), you would need to refine the declaration to make type instances not overlap. You could achieve it by making the second rule fire only when the first argument is larger than zero:

type instance Min Zero     y        = Zero
type instance Min (Succ x) Zero     = Zero
type instance Min (Succ x) (Succ y) = Succ (Min x y)

Now each application of the open TF Min has one and only one rule to apply.



In many of the cases where functional dependencies are used, you would like to create a type level function but also to enforce each implementer of the type class to add a new rule to that type-level function. Or from another point of view, you want to add a type-level function inside the type class. When you enable the TypeFamilies extension, type class declarations are allowed to contain both term-level and type-level function signatures, as desired. The type-level signatures inside a type class are known as associated types.


[image: image] Note  Remember that types have a simple kind system (the only possible kinds are * and function-like kinds such as * -> *) that checks whether the application of type constructors is correct. In case you don’t remember all the details, you can check Part I of the book, where the kind system is introduced.


Let’s see how one would rework5 the Product type class to use associated types instead of functional dependencies. If you remember the original definition, there was a p variable representing the category of products, and an op variable for the operations for that category. The later was functionally dependent on the former, so it’s a perfect candidate for being changed into an associated type. Thus, the new code drops the op parameter and adds a type-level function called Operation, as follows:

class Product p where
  type Operation p :: *
  price :: p -> Float
  perform :: p -> Operation p -> String
  testOperation :: p -> Operation p

As you can see, any appearance of op in the old declaration is now replaced with Operation p, which gives back the type corresponding to the operations. An implementation of Operation must also appear in every instantiation of the Product type class, as the following one for TimeMachine:

instance Product TimeMachine where
  type Operation TimeMachine = TimeMachineOps
  price _ = 1000.0
  perform (TimeMachine m) (Travel y) = "Travelling to " ++ show y ++ " with " ++ m
  perform (TimeMachine m) Park       = "Parking time machine " ++ m
  testOperation _ = Travel 0

As in the previous section, the type of bag that each category of products need should be encoded in the type level. EXERCISE 13-10 asks you to do so, now using associated types.


EXERCISE 13-10. PRODUCTS AND BAGS, REDUX

Using the previously defined data types BigBag and SmallBag, represent the kind of bag each category of product needs. In order to do so, add a new associated type to  Product type class. Finally, include the instances that express that time machines should go on big bags, whereas books only need small ones.



For the simple scenario of one of the types being completely dependent on the rest of the variables in the type class (like operations and bags in this section), associated types usually make more explicit that only one possibility can be chosen in each instance. However, functional dependencies shouldn’t be overlooked, because they allow richer expression of dependence.

There’s one last addition to the type system brought by type families. Consider the following function, performTestFromOther, which executes the test operation of a product on a completely different product:

performTestFromOther p q = perform p $ testOperation q

The task now is to give a type signature that is as abstract as possible, to allow the function to be used in the largest variety of situations. A first approximation is to require p and q to be of the same type, which should implement the Product type class. Indeed, if you try to add the following type signature to the function:

performTestFromOther :: Product p => p -> p -> String

The compiler will accept the definition. But this signature is overly restrictive: you don’t need both arguments to have the exact same type. The only thing you need is for them to support the same operations, that is, for their Operation associated type to coincide. This kind of requisite can be expressed in Haskell using an equality constraintx ∼ y, which states that x and y must be syntactically equal after all type families have been resolved. The most general constraint for this case is then:

performTestFromOther :: (Product p, Product q, Operation p ∼ Operation q) => p -> q -> String

Actually, if you try to compile the code without giving an explicit type signature, GHC will give you this more general type as a hint. You could directly copy that signature in your code, removing the initial forall part that is implicit for every free variable in the signature. For example:

Warning: Top-level bindingwith no type signature:
      performTestFromOther :: forall p p1.
                              ( Product p, Product p1, Operation p ∼ Operation p1 ) =>
                              p -> p1 -> String

Equality constraints are not very often seen in handwritten code, but they are essential to understanding GHC error messages. In most of the instances where the type families do not coincide, the compiler will warn you about an equality constraint (one with ∼) not being respected.


DATA FAMILIES

Being completely correct, the previous sections didn’t introduce type families but a subclass of them called type synonym families. When using this subclass, you need to use it in both parameters and return expressions types that were already defined elsewhere.

There is another kind of TF, called a data family, where you directly list the constructors for each instance of the family instead of using another type. For example, the Product type class and its TimeMachine instance could also be defined as:

class Product p where
     data Operation2 p
     price :: p -> Float
     perform :: p -> Operation2 p -> String
     testOperation :: p -> Operation2 p

instance Product TimeMachine where
     data Operation2 TimeMachine = Travel Integer | Park
     price _ = 1000.0
     perform (TimeMachine m) (Travel y) = "Travelling to " ++ show y ++ " with " ++ m
     perform (TimeMachine m) Park       = "Parking time machine " ++ m
     testOperation _ = Travel 0

Type synonym and data families are not interchangeable though, because they have different properties (for example, data families can be partially applied while type synonym families can’t).



Many of the techniques in this chapter are applied in libraries in Hackage to make stronger guarantees about the code that is executed. You’ve already used associated types, although you didn’t know back then, when writing the schema description in Persistent.6 Another interesting package that uses type-level programming is HList, which allows for creating lists whose elements have different types.



Data Type Promotion and Singletons

From version 7.4.1 on, GHC includes a new extension called data type promotion. When enabled, for each data type in the term level a new set of types is created at the type level (the type is promoted). Furthermore a new kind is associated to each of these promoted data types, leading to safer type-level programming. In this section you’ll see how to take advantage of this feature and how to promote functions in addition to data types using the singletons package.


A Further Refinement to the Presents Rule

Let’s start from scratch with the implementation of the Presents Rule (if you’re writing the code as you read, start a new empty module). But now instead of creating empty data types for representing zero and successors, the code will use a regular data declaration and enable the DataKinds extension in the compiler. The code is similar to the following one:

{-# LANGUAGE DataKinds #-}
 
data Nat = Zero | Succ Nat

If on the same file you include the declaration of lists tagged with their length from the section on functional dependencies, the code will compile just fine. As a reminder, here’s the definition of the Vect data type:

{-# LANGUAGE GADTs #-}
 
data Vect n a where
  VNil  :: Vect Zero a
  VCons :: a -> Vect n a -> Vect (Succ n) a

It seems that you’ve used the data type from the term level inside a type, as you would do in a dependently typed language! However, this would defy the strict separation between types and terms in the Haskell language. The truth is that, when the DataKinds extension is enabled, the compiler creates a copy of the data type in the type level. Conceptually and for now, you can think of the source file with DataKinds as being equivalent to:

data Nat = Zero | Succ Nat
 
data Zero
data Succ nat

The compiler can distinguish between constructors and type names because they live in separate worlds. In the rare event in which the compiler could not make that distinction, you can use the syntax 'Identifier to refer explicitly to the Identifier in the type-level. For example, you may write the definition of Vect as more explicit about Zero and Succ being promoted types:

data Vect n a where
  VNil  :: Vect 'Zero a
  VCons :: a -> Vect n a -> Vect ('Succ n) a

The next step for porting the code to this new file is declaring a type family Plus, which would encode addition. However, if you copy the code as it was in the previous section (including the TypeFamilies pragma), the compiler will spill out an error:

src/Chapter13/CheckPresentsPromotion.hs::
    Kind mis-match
    The first argument of `Plus' should have kind `*',
    but `Zero' has kind `Nat'
    In the type `Zero'
    In the type instance declaration for `Plus'

It looks similar to a type error, but refers to kinds. Furthermore, it’s referring to a kind called Nat, which wasn’t declared at all in the source code. The culprit is again the DataKinds extension, which apart from creating types Zero and Succ for representing natural numbers in the world of types has promoted the Nat type to a kind and has made Zero and Succ members of the Nat kind instead of the * kind (which is the default one).


[image: image] Note  Remember that kinds are used to categorize types, as types do for values. In Haskell, without data type promotion, all the fully applied data types have kind *. However, this extension opens the door to user-defined kinds, as the example shows.


By default, in any type family declaration, the kind of argument is defaulted to *. This makes the syntax much easier when you’re not using any of the type-level extensions, but in this case it’s taking the wrong choice for us. The declaration of Plus is thus equivalent to the following one, where :: is used to indicate the kind of type variable.

type family Plus (x :: *) (y :: *) :: * where
  Plus Zero     x = x
  Plus (Succ x) y = Succ (Plus x y)

And you can see why the compiler shows an error: Zero and Succ x are not members of *, but of Nat. You can make the compiler happy by explicitly indicating that your type family will require types of that kind, changing the declaration to read:

type family Plus (x :: Nat) (y :: Nat) :: Nat where

The next step is using this new approach to your advantage. For example, right now I haven’t explicitly forbidden writing a type such as Vect Int Char. But this makes no sense: the only possible values for the first variable in Vect should be those from the kind Nat (which are the one representing numbers). You can write it explicitly in the type declaration:

data Vect ( n :: Nat ) a where


[image: image] Note  In this case the annotation wouldn’t be needed either, because the compiler is able to infer that the kind of n must be Nat. But it’s still interesting to make it explicit, at least for documentation purposes and to ensure that a change in your code doesn’t make the compiler infer a different type.


This same idea should be applied to Offer, which has a type parameter that should take values only from type-level natural numbers. The corresponding refinement of this data type should be declared as:

data Offer a ( p :: Nat ) where

As you can see, the DataKinds extension brings to type-level programming most of the safety that types give to the Haskell programs at term level. Furthermore, the automatic promotion makes it easier to declare the types that will be used for programming at type level. However, it should be remarked that the kind system is not as powerful as the type system (for example, you don’t have anything like kind classes). But for most of the type-level programming this extension should be more than enough.

The DataKinds extension is really useful, but it doesn’t give you the full package. Your data types can be promoted to the type level seamlessly, but you still need to define your type-level functions using either FDs or TFs. If you are using some functionality that was already available at term level this means that you need to duplicate code, and do so in different styles of programming, hurting the readability and maintainability of the code.

The singletons variable provides a pragmatic solution to this problem. Using the metaprogramming facilities of Template Haskell, it creates type-level versions of the term-level functions you ask for. Although the two worlds are still separated, this library creates the illusion that the same constructors and functions are used in both levels seamlessly.

To start using the package, you must add it as a dependency of your project and import the Data.Singletons.TH7 module in your source file. The expansion of Template Haskell blocks user type families and data type promotion, so apart from the metaprogramming extensions you need to enable those in your source file, or the code will refuse to compile.

The module provides a lot of functionality, but the most interesting one for our needs is promote. Using it, you can create type-level versions of both data types and functions. The functions will be encoded at the type level using TFs, with a name resulting of changing the first letter of the function name into uppercase. For example, here’s how one could promote natural number operations that have been guiding us in the chapter:

{-# LANGUAGE DataKinds, TypeFamilies, TemplateHaskell, QuasiQuotes #-}
import Data.Singletons.TH
 
$( promote [d|
  data Nat = Zero | Succ Nat
           deriving (Show, Eq)
 
  plus :: Nat -> Nat -> Nat
  plus Zero     y = y
  plus (Succ x) y = Succ (plus x y)
   
  min :: Nat -> Nat -> Nat
  min Zero     _        = Zero
  min _        Zero     = Zero
  min (Succ x) (Succ y) = Succ (min x y)
  |])


[image: image] Warning  The code inside the quasiquotation block (the one from [d| to |]) must be indented to work correctly. Double check this fact when working with singletons.





Enforcing the Duration Rule

Since now you’re able to re-use most of your regular Haskell knowledge in the type level via promotion, you may think of encoding a more complicated invariant: the Duration Rule. In order to do so, let’s create a data type for ranges of time. Three cases must be handled: a range that is open only at the end, which means that the offer is applicable from a specific point in time (for example, an infinite range would be an open range starting at 0); a closed range with start and end point; and an empty range, which is the one to be forbidden. As a further example, let’s define a type-level Infinite range using promotion. This code uses the promoted Nat functionality from the previous section:

$(promote [d|
  data Range = Empty | Open Nat | Closed Nat Nat
   
  infinite :: Range
  infinite = Open Zero
  |])

Now let’s create the TFs that will be ultimately called when applying the From and Until constructors of the Offer data type. For the first case, the function will be restrictFrom, and should take as arguments the range of days that the offer is available before the restriction and the new point in time for the initial day of the offer. The code is a bit long but should be straightforward to understand:

{-# LANGUAGE UndecidableInstances #-}
 
data Comparison = Less | Equal | Greater
 
$(promote [d|
  compare :: Nat -> Nat -> Comparison
  compare Zero     Zero     = Equal
  compare Zero     (Succ _) = Less
  compare (Succ _) Zero     = Greater
  compare (Succ x) (Succ y) = compare x y
  
  restrictFrom :: Nat -> Range -> Range
  restrictFrom _ Empty    = Empty
  restrictFrom n (Open f) = restrictFrom1 n f (compare n f)
  restrictFrom n (Closed f t) = restrictFrom2 n f t (compare n f) (compare n t)
   
  restrictFrom1 :: Nat -> Nat -> Comparison -> Range
  restrictFrom1 n _ Greater = Open n
  restrictFrom1 _ f Equal   = Open f
  restrictFrom1 _ f Less    = Open f
   
  restrictFrom2 :: Nat -> Nat -> Nat -> Comparison -> Comparison -> Range
  restrictFrom2 _ _ _ Greater Greater = Empty
  restrictFrom2 _ _ _ Greater Equal   = Empty
  restrictFrom2 n _ t Greater Less    = Closed n t
  restrictFrom2 _ f t Equal   _       = Closed f t
  restrictFrom2 _ f t Less    _       = Closed f t
  |])

Usually, when writing this code, you would make the work of restrictFrom1 and restrictFrom2 appear in let or where clauses. However, the singletons package doesn’t yet support these constructs for promotion, so you need to create different functions. The UndecidableInstances extension is due to the fact that the compiler cannot prove that the TFs you’ve created will always terminate its execution when you have nesting of TFs. This nesting appears in the promoted TFs because of the call to compare inside restrictFrom. However, if you know that the function you wrote will terminate, it’s safe to unveil that restriction and tell the compiler to accept that function without further termination checks.

The first step for tagging our offers with duration information is to enlarge the initial type with a new type variable of kind Range, which was promoted previously. To keep the examples concise, I shall use the original Offer data type, instead of the one tagged with number of presents. The declaration of the GADT reads:

data Offer a ( r :: Range ) where

The basic combinators for offers (presents and discounts) have an infinite duration by default. To write them down, you can use the Infinite TF that was created in the previous promotion:

  Present          :: a -> Offer a Infinite
  PercentDiscount  :: Float -> Offer a Infinite
  AbsoluteDiscount :: Float -> Offer a Infinite

As a first approximation, you could write the time restriction From as follows:

From             :: (n :: Nat) -> Offer a d -> Offer a (RestrictFrom n d)

However, this will make the compiler quite unhappy, and will make it show the following type error:

src/Chapter13/CheckDurationPromotion.hs:
    Kind mis-match
    Expected kind `OpenKind', but `n' has kind `Nat'
    In the type `(n :: Nat)'
    In the definition of data constructor `From'
    In the data declaration for `Offer'

The problem is that you cannot use promoted kinds in a constructor, only types of kind * are allowed. In particular, using Nat is forbidden.

Fortunately, there’s a construction that helps us overcoming this difficulty. The idea is to create a regular data type that carries as tag the type-level number you need. In that way, you have a value that you can use at run-time and the tag gives the type-level information. This data type will have only one possible value for each possible tag: for that reason they are called singleton data types. For example, a singleton type SNat corresponding to the Nat promoted kind would read:

data SNat (n :: Nat) where
  SZero :: SNat Zero
  SSucc :: SNat n -> SNat (Succ n)

By the way in which this type is constructed, given a type of kind Nat, only one value of SNat is possible. For example, the only inhabitant of SNat (Succ (Succ Zero)) is SSucc (SSucc SZero). So, you’ve reflected the type corresponding to two as a run-time value, as desired. If you look at the output from GHCi, you can spot the explicit reference to promoted constructors, which are shown with the ' sign on from of them

*Chapter13.CheckDurationPromotion> :t SSucc (SSucc SZero)
SSucc (SSucc SZero)
  :: SNat ('Succ ('Succ 'Zero))

The next step is using this singleton type in the constructor From which uses as run-time arguments only values of kind *. Notice how you have access to the type-level number n from the argument to SNat.

  From             :: SNat n -> Offer a d -> Offer a (RestrictFrom n d)

Another easy construction involves moving from the SNat singleton data type back to the initial Nat data type before its promotion. Once the conversion is done, you have a run-time value that you may use in regular functions. The following piece of code defines that conversion and uses it to print an offer restriction.

toNat :: SNat n -> Nat
toNat SZero = Zero
toNat (SSucc n) = Succ (toNat n)
 
printDateRestriction :: Offer a r -> String
printDateRestriction (From n _)  = "From " ++ show (toNat n)
printDateRestriction (Until n _) = "Until" ++ show (toNat n)
printDateRestriction _           = "No date restriction"

Once again, the creation of a singleton type given a data type that is promoted is just boilerplate. The singletons library includes another function of singletons that supersedes promote and that generates singleton types along with promoting data types and functions. For example, if you want to generate SNat automatically, you can include in your source file:

$( singletons [d|
  data Nat = Zero | Succ Nat
           deriving (Show, Eq)
  |])

In addition, the singletons library includes a SingI type class with only one function, sing. The purpose of this function is to create the unique value of a singleton type given its corresponding promoted data type. In this way, you don’t have to write the constructors as you did before with SNat. For example, the inhabitants corresponding to the first four natural numbers at type level can be written:

zero :: SNat Zero
zero = sing   -- results in SZero
one :: SNat (Succ Zero)
one = sing    -- results in SSucc SZero
two :: SNat (Succ (Succ Zero))
two = sing    -- results in SSucc (SSucc SZero)
three :: SNat (Succ (Succ (Succ Zero)))
three = sing  -- results in SSucc (SSucc (SSucc SZero))

The singletons package also provides a type class for the conversion from a singleton type back to the regular data type. It’s called SingE, and has a single function fromSing. Instead of the homemade toNat function, you could use that function to turn the singleton three into a term-level Nat:

*Chapter13.CheckDurationPromotion> fromSing three
Succ (Succ (Succ Zero))

There are some constructors left for the full Offer data type. EXERCISE 13-11 asks you to finish the job.


EXERCISE 13-11. OFFERS WITH SINGLETONS

Add the rest of constructors to the Offer GADT: Restrict should keep the duration as it was; Until should change the duration in a similar way to From; Both, BetterOf, and If must compute the smallest duration range that includes those of both arguments (that is, the intersection). At this point, you can use Offer to build a complete offer and compute its range:

*> let one = SSucc SZero                    -- build the singleton 1
*> let three = SSucc (SSucc (SSucc SZero))  -- build the singleton 3
*> :t let p = Present 'a' in Both (From one p) (BetterOf p (Until three p))
let p = Present 'a' in Both (From one p) (BetterOf p (Until three p))
  :: Offer Char ('Closed ('Succ 'Zero) ('Succ ('Succ ('Succ 'Zero))))




TYPE-LEVEL LITERALS

GHC provides extra features for tagging types with either natural numbers or strings. If you enable the TypeOperators extension and import the GHC.TypeLits module, you can use numbers and string literals at those places where you need a type of kind Nat (for natural numbers) or Symbol (for strings).

Using these literals, the Vect data type could have been declared as:

data Vect n a where
     VNil  :: Vect 0 a
     VCons :: a -> Vect n a -> Vect (n + 1) a

It should be noted that this module only provides a small set of operations on natural numbers, namely addition, product, and exponentiation, and a type class that encodes whether two type-level numbers are related as being less or equal.



Singleton types put an end to the bird’s-eye view on type-level programming in Haskell. The relation between term-level data types and functions, their corresponding promoted types and kinds, and the singleton types is subtle, but each one serves a purpose:


	Data and function declarations express how to create values that Haskell can use to compute at run-time.

	Promoted data types and kinds and type-level functions expressed as either FDs or TFs are evaluated at compile time and allow tagging values with stronger types that introduce extra invariants.

	Singleton types are the bridge between the worlds: when you need a type-level value that should also be reflected at run-time, you should use them.



EXERCISE 13-12 provides an exercise on a different domain to help you better understand these relations.


EXERCISE 13-12. RECTANGLES AND BOUNDING BOXES

For this exercise you will use the following data type, which represents images built from rectangles. The Rect constructor represents a single rectangle, and then you can combine images (with Union), take just the common part (with Intersection) or put together several copies in a row (using Replicate):

data Rectangle = R { topLeft :: (Nat, Nat), bottomRight :: (Nat, Nat) }

data Image = Rect Rectangle
                            | Union Image Image
                            | Intersection Image Image
                            | Replicate Nat Image

You must tag images with their bounding box, that is, the smallest rectangle that contains the whole of the image. For example, if you have the union of the rectangles from (1,0) to (5,4) and from (0,1) to (3, 2), the bounding box is (0,0) to (5,4): you can draw them on paper to convince yourself about that.

The type-level calculations should be developed using the techniques from the singletons package. Think carefully about which places need singleton types.





Summary

In this chapter you’ve explored many of the advanced features of the Haskell type system while designing a domain- specific language for expressing offers for the Time Machine Store:


	This chapter introduced the concepts of external/standalone and internal/embedded domain specific language, and the difference between a deep and a shallow embedding.

	Generalized algebraic data types (GADTs) allow constructors of a data type to build values with different types; and you used that extra functionality to create type-safe expressions.

	You’ve been introduced to the idea of tagging a type with some extra information, which allows checking stronger invariants at compile time.

	Dependent types, and in particular the Idris programming language, were the first methods we studied in this chapter for creating these tags. The main feature of dependent typing is the ability to use values as parameters to types.

	You explored several possibilities for doing type-level programming in Haskell, including functional dependencies, type families, and data type promotion. The main characteristic of Haskell in this aspect is the separation between the term and type worlds.

	Functional dependencies and associated types refine the type class mechanism in Haskell and have been treated in this chapter.

	Data type promotion and the singletons library make it possible for you to move declarations from the term level to the type level. Furthermore, it extends the kind system to provide safer type-level programming in Haskell.



1Available at Idris website, http://www.idris-lang.org/documentation/

2Available at Agda website, http://wiki.portal.chalmers.se/agda/

3Available at http://adam.chlipala.net/cpdt/

4Available at http://www.cis.upenn.edu/∼bcpierce/sf/

5The code below should be understood as a working on a different module from the Operation type family introduced above. If you try to define Operation inside a type class at the same time of the Operation type family, there will be a name collision, and the compiler won’t be able to continue.

6You can check the definitions that are created by running GHC with the -ddump-splices option.

7In versions of singletons prior to 0.9, you should import Data.Singletons instead.




CHAPTER 14

[image: image]

Interpreting Offers with Attributes


This chapter continues the work of the previous one in creating a DSL for expressing offers for the Time Machine Store. As you may remember, deep embedding was chosen as the way to model the offers language in Haskell. A deeply embedded language is partitioned in its syntax, expressed as a set of Haskell data types, and also is partitioned on its interpretation, which is responsible for assigning a meaning to each value in the language. In this example, the interpretation of an offer could be a function that, given a list of products and its price, applies the offers and discounts and returns the new price.

In principle, the interpretations could be defined as plain Haskell functions over the DSL values. However, almost every interpretation you can give follows a set of patterns. Thus, it’s interesting to consider those patterns and build a conceptual model that better defines the interpretations: this is what attribute grammars do for us. Then, a tool can be used to generate the Haskell code that corresponds to a particular attribute grammar, saving us from writing a lot of boilerplate code. In particular, this chapter will devote most of its time to the topic of programming with the Utrecht University Attribute Grammar Compiler (UUAGC).

Apart from plain programming, in this chapter you will also consider the relations between attribute grammars and other Haskell concepts, such as monads. By the end of the chapter, we will have revisited the ideas of origami programming from Chapter 3 and will have applied them to general data types (not only lists).

Interpretations and Attribute Grammars

In this section you’ll learn the general idea of an attribute grammar. To help, a very simple language is given an interpretation in Haskell. That language is then re-worked using attributes.


A Simple Interpretation

Let’s consider a very simple language that contains only three combinators for building its expressions. You have a basic AmountOf with a character as parameter, and then the addition and product of two expressions. Let’s express our language in a simple Haskell data type:

data Expr = Plus  Expr Expr
          | Times Expr Expr
          | AmountOf Char

The desired interpretation of this data type is parametrized by a string and gives a number as a result. When AmountOf is found the number of characters of a given type is counted. The other two combinators just perform the sum or multiplication of the numbers in their subexpressions. The corresponding Haskell code for this interpretation is straightforward to write:

meaning :: Expr -> [Char] -> Int
meaning (Plus  l r)  p = meaning l p + meaning r p
meaning (Times l r)  p = meaning l p * meaning r p
meaning (AmountOf c) p = length $ filter (== c) p





Introducing Attribute Grammars

The previous section’s interpretation is quite simple. Still, it contains a lot of boilerplate code: the recursive definition has to be made explicit by calling meaning on the subexpressions, and the p list has to be explicitly threaded throughout the entire function. Attribute grammars provide a higher-level model for writing interpretations (and, as you shall see later, many other kinds of functions), focusing on the data being used and produced, saving you from thinking about all the small details related to information flow. As a result, your code becomes much more maintainable.

In addition, attribute grammars contribute to the modularity of the code. You can separate your interpretation into several parts (and even in several files) and then ask the attribute grammar system to join them together to compute all the information you need from your data type in the smallest number of passes.

The main disadvantage of attribute grammars is that they have a different computational model than plain Haskell, even though the integration is very tight. As you shall see in this chapter, it’s fairly easy to understand attribute grammars in Haskell terms, so this disadvantage shouldn’t block you from using them.

Let’s go back to the expression example. If instead of plain Haskell you were using attribute grammars, you would be thinking about this interpretation in different terms. From the attribute grammar point of view, your data type is a tree whose nodes keep some attributes within them. In this example, the attributes would be the string that you’re exploring and the result of the interpretation.

When looking closer, you can see that those pieces of information are very different. On one hand, the string to explore is passed from each expression to its subexpressions as a parameter. We say that this attribute is flowing top-down from the expression. On the other hand, the numeric results at each point in the expression are built taking into account the results of its subexpressions and combining them in some way. Thus, the flow is bottom-up in this case. Figure 14-1 shows the flow of information.


[image: 9781430262503_Fig14-01.jpg]

Figure 14-1. Tree and attributes for AmountOf 'a' `Plus` (AmountOf 'b' `Times` AmountOf 'c')



In the attribute grammar jargon, the numeric result is a synthesizedattribute, whereas the string to explore is an inherited attribute. The names roughly reflect the different flow direction, which is the important difference between both of them. In order to define this interpretation as an attribute grammar you would need three pieces of information, as the example shows:


	Which are the possible nodes in your tree: this is done via the definition of a set data types in which every constructor represents a kind of node.

	The attributes to be computed, and whether they are inherited or synthesized.

	How to pass the information from parent to children nodes in the case of the inherited attributes, and how to compute the value of a synthesized attributes from their children.



The purpose of an attribute grammar system is to take all that information and generate the necessary code for computing the final value of the att ributes at each node. Here you can see the main advantage of using an attribute grammar versus writing the interpretation directly in Haskell, as the attribute grammar system would take care of the following automatically:


	When an attribute needs to be transported in a more complex fashion than just top-down or bottom-up (for example, between sibling nodes) the Haskell code can become quite complex. But with an attribute grammar this behavior is expressed declaratively, and the system takes care of keeping track of it.

	Sometimes the value of an attribute depends on another one. This means that attributes must be ordered in some way for the whole computation to proceed, maybe doing more than one traversal of the same tree. Attribute grammar systems perform this ordering automatically (and in many cases, in an optimal way), so you don’t need to think about it.



Similarly to many other ideas, Hackage includes several implementations of attribute grammars in its package repository. One option is to use Happy, the parser generator included in the Haskell Platform and that has support for attributes in its grammars. Happy is an external tool that preprocesses a grammar description and generates the Haskell code needed for parsing it.

AspectAG is a library for embedding attribute grammars inside Haskell. So you don’t need an extra step of building prior to compilation. It’s an interesting option for working with attribute grammars inside Haskell but has the downside of needing a lot of type-level programming to make it work.

The tool that will be presented in this chapter is the Utrecht University Attribute Grammar Compiler (UUAGC from now one). As with Happy, it’s a preprocessor that generates Haskell code from the description of the grammar. In contrast to Happy, UUAGC is focused specifically on defining attribute grammars. Thus, the connection between the attribute grammar formalism and UUAGC code is much more explicit in this case, making it a better choice for learning about these grammars.



Your First Attribute Grammar

Now let’s create the attribute grammar corresponding to the simple numeric expressions introduced in the previous section. For the source file you have two conventions to follow: UUAGC source files end with .ag, and files must be found inside a folder structure that follows the module name. This is similar to the conventions followed for Haskell source files. In this case, the module will be Chapter14.Simple, so the file should be found in src/Chapter14/Simple.ag.


Synthesizing the Result

In the previous section, the three pieces of information required to define an attribute grammar were presented. When programming with UUAGC, each of these pieces is declared separately. The first one is the declaration of the data type  attributes will refer to. The syntax is quite similar to Haskell’s data, but with two differences:


	After the name of the data type, no equals sign must be placed. Instead, each constructor declaration must begin with a vertical bar |.

	All the arguments to a constructor must be named, similar to what happens with records in Haskell. However, no brackets should be used around the fields.



Furthermore, when using type variables or compound types, these must be places inside { and }. This tells UUAGC to parse the content of the brackets as regular Haskell code instead of as attribute grammar. Taking into account all these differences, the data type for expressions looks like the following:

data Expr
  | Plus  left :: Expr right :: Expr
  | Times left :: Expr right :: Expr
  | AmountOf c :: Char


[image: image] Note  UUAGC supports two kinds of syntax. The one used in the examples of this chapter is dubbed “Haskell syntax” because of its resemblance to that language.


The following step is to declare the attributes that each node will have. In UUAGC all nodes representing constructors of the same data type contain the same attributes. The syntax for specifying such is the attr keyword, followed by the names of the data types you want to add the attributes to. Then, you must include a line per attribute, which starts with inh or syn, depending on whether you want to create an inherited or synthesized attribute respectively, the name of the attribute and its type. The attributes in our example have a String flowing top-down, and a numeric result being synthesized:

attr Expr
  inh string :: String
  syn result :: Int

Finally, you need to specify the way attributes are computed based on other attributes and on the parameters inside the constructors. This is done via a sem block in the UUAGC source file. This block starts with the name of the data type, and then a block per constructor to be described. Each of those blocks contains the code related to define each of the attributes of that node. The right-hand side for each constructor follows plain Haskell syntax, with three syntactical modifications:


	The value of an attribute at a child node is accessed via the syntax node.attribute. The special name lhs is reserved for referring to the parent of the current node. The idea of a parent is not found in Haskell code, so let’s clarify it using an example. Say you have a node Plus (AmountOf 'a') (AmountOf 'b'). At each node (the Plus one and the two AmountOfs) both a string and a result attribute will be handled. From the point of view of AmountOf 'a', lhs.string refers to the attribute in the parent node, that is, the value of the string attribute in the Plus node.

	At the right-hand side of the declaration of each attribute, the references to other attributes or parameters of the constructor must be preceded by the @ sign.

	UUAGC uses indentation to delimit blocks. However, you can ask the preprocessor to keep a piece of code exactly as it appears in the source file wrapping it between { and }.



In particular, this convention implies that the declaration of a synthesized attribute must be similar to lhs.attribute = ..., because you’re defining the value of such an attribute in the parent node. In this case, the meaning function can be translated into the following sem block:

sem Expr
  | Plus     lhs.result = @left.result + @right.result
  | Times    lhs.result = @left.result * @right.result
  | AmountOf lhs.result = { length $ filter (== @c ) @lhs.string }





Executing the Attribute Grammar

Of course, writing and compiling the attribute grammar isn’t useful at all if you cannot call it in your own Haskell code. Depending on the options given to UUAGC,1 the preprocessor generates several functions and data types that you should use when taking advantage of attribute grammars:


	The data declaration in a grammar is transformed to a data declaration in Haskell, but with the constructors prefixed with the name of the data type, in this case Expr. If you would like constructors to appear as written in the grammar, don’t use the rename option in UUAGC. However, in that case you have to take care that constructor names do not collide.

	Data types Inh_Expr and Syn_Expr represent the inherited and synthesized attributes at each node of the Expr data type. Both are declared as records, with the field names including also the names of the attributes and the type of record they are in. In this example, the names boil down to string_Inh_Expr and result_Syn_Expr.

	A function sem_Expr converts a value of the data type into a function that takes as parameters the initial inherited attributes and returns a tuple of synthesized attributes. However, the function that you get may have the attributes in any order, so it’s customary to use the wrap_Expr function, which takes as parameters attribute records.



For example, a function that would execute the computational actions of the attribute grammar to get the synthesized values in the root of the tree for the Expr data type would read as below. Note that this function is to be found in a different file from the attribute grammar definition itself, so you need to import the module generated by UUAGC.

import Chapter14.First
 
executeExpr :: Expr -> String -> Int
executeExpr e s =
  let syn = wrap_Expr (sem_Expr e) (Inh_Expr s)  -- returns a Syn_Expr record
   in result_Syn_Expr syn

And now you can use that function to test your attribute grammar:

*Chapter14.Simple> :{
*Chapter14.Simple| let e = Expr_Times (Expr_AmountOf 'e')
*Chapter14.Simple|                    (Expr_Plus (Expr_AmountOf 'a') (Expr_AmountOf 'o'))
*Chapter14.Simple| in executeExpr e "hello"
*Chapter14.Simple| :}
1

In the next section you’ll see how to bring all this code together in your Cabal package.



Integrating UUAGC in Your Package

The first thing that you must do in order to use UUAGC is install it in your system. Since the tool is a preprocessor, it’s not enough to include it as a dependency in your package. Rather, you need to add it as part of your Cabal Setup.hs file. You will see how in this section.


Installing UUAGC

UUAGC is available in Hackage, so you just need to execute the usual command to get it on your system:

$ cabal install uuagc

This command will install both the UUAGC system and the integration with Cabal, which is found in the uuagc-cabal package. You’ll be using this latter package to build the attribute grammars in the upcoming sections.




UUAGC and Cabal

As stated in the introduction, UUAGC is not a library but a preprocessor for Haskell code. This means that the attribute grammars you write cannot be directly compiled by GHC or any other Haskell compiler, but rather need to be converted into Haskell source by UUAGC. You can do the translation yourself each time your attribute grammar changes, but it’s better to tell Cabal that you’re using UUAGC and let the tool take care of preprocessing files that have changes as it takes care of which files need to be recompiled.

To start, create a new package with an executable stanza, either using the cabal command line tool or inside Eclipse. Following the convention in previous chapters, I’ll call the package chapter14 and the executable will be named uuagc-examples. The Cabal stanza corresponding to that executable reads:

executable uuagc-examples
  hs-source-dirs:  src
  build-depends:   base >= 4
  ghc-options:     -Wall
  other-modules:   Chapter14.Simple
  main-is:         Main.hs

The next step is telling Cabal to call the preprocessor before compilation. This is done by customizing the build script that Cabal follows to get the files compiled. This script is found in the Setup.hs file, and should be change to read as follows:

import Distribution.Simple
import Distribution.Simple.UUAGC (uuagcLibUserHook)
import UU.UUAGC (uuagc)
 
main = defaultMainWithHooks (uuagcLibUserHook uuagc)

But this is not enough: you also have to change the field build-type in the Cabal file to instruct the build process to use your new Setup.hs instead of the common one. Open the chapter14.cabal file and change the line to:

build-type: Custom

The final step is telling UUAGC which files must be handled by it and the compilation options that it should apply. To do so, create a uuagc_options file in the root of your project (next to the .cabal and Setup.hs files) with the following contents:

file : "src/Chapter14/Simple.ag"
options : data, semfuns, catas, pretty, wrappers, rename,
          module "Chapter14.Simple", haskellsyntax, signatures

Notice that you need to include both the path to the attribute grammar (in the file field) and the name of the module that will be created (in this case Chapter14.Simple). Furthermore, if you want to use “Haskell syntax” as presented in the examples of this chapter, you should remember to always have the haskellsyntax option included.

After all this preparation, you can run Cabal to build your project. The output will be a bit different than usual, because you’re using a custom setup script and UUAGC is preprocessing your files. Below you can find a sample of the output, but it may be a bit different in your system depending on the versions installed:

$ cabal configure
Resolving dependencies...
[1 of 1] Compiling Main             ( Setup.hs, dist/setup/Main.o )
Linking ./dist/setup/setup ...
Configuring chapter14-0.1...
$ cabal build
Building chapter14-0.1…
Preprocessing executable 'uuagc-examples' for chapter14-0.1...
 [UUAGC] processing: src/Chapter14/Simple.ag generating:
dist/build/uuagc-examples/uuagc-examples-tmp/Chapter14/Simple.hs
[1 of 2] Compiling Chapter14.Simple ( dist/build/uuagc-examples/uuagc-examples-tmp/Chapter14/Simple.hs, dist/build/uuagc-examples/uuagc-examples-tmp/Chapter14/Simple.o )
[2 of 2] Compiling Main ( src/Main.hs, dist/build/uuagc-examples/uuagc-examples-tmp/Main.o )
Linking dist/build/uuagc-examples/uuagc-examples ...

For each new attribute grammar that you need to compile, you must include a new pair of lines defining it in the uuagc_options file. The advantage of this methodology is that Cabal takes care of rebuilding only the parts that have changed, and doesn’t call the preprocessor if it’s not strictly needed.

In the case you’re using EclipseFP, the development environment will take care of building the attribute grammars, so you don’t need to modify your Cabal project at all.  Just remember to create the source file via choosing UU Attribute Grammar in the new file wizard. The IDE will even use the options from the corresponding uuagc_options file, and create it in case it doesn’t exist. Furthermore, a special editor is provided just for that file, as Figure 14-2 shows.
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Figure 14-2. The uuagc_options file editor




UUAGC CODE GENERATION

By default, UUAGC takes advantage of lazy evaluation for executing attribute grammars. But you can also instruct it to optimize the code. In that case a specific sequence of visits through the tree will be scheduled, resulting in stricter code.

This chapter focuses on the use of UUAGC with Haskell. But the preprocessor is able to generate code for other functional languages, including OCaml and Clean. In those cases, the right-hand sides should be written in the corresponding backend language, instead of in Haskell.





Expressions Interpretation

Let’s move now to a larger attribute grammar. In this case, the focus would be the one corresponding to conditional expressions inside an offer. The aim is to obtain a function that, given an expression and a list of products, returns the result of the application of the expression to that list.


Using an Attribute Grammar

You’ve seen in the example for simple numeric expressions how UUAGC separates the three pieces of information needed to define a whole attribute grammar. The first block defines the base data type into which attributes will be computed. The following code is a straightforward translation of the Expr data type found in the previous chapter. Notice that in order to keep the code a bit shorter, only one kind of Boolean comparison between numbers is included.

data Expr a
  | AmountOf product :: {a}
  | PriceOf  product :: {a}
  | TotalNumberOfProducts
  | TotalPrice
  | IVal val :: Int
  | FVal val :: Float
  | Plus  right :: (Expr {a})  left :: (Expr {a})
  | Times right :: (Expr {a})  left :: (Expr {a})
  | LessThan right :: (Expr {a})  left :: (Expr {a})
  | Or  right :: (Expr {a})  left :: (Expr {a})
  | And right :: (Expr {a})  left :: (Expr {a})
  | Not inner :: (Expr {a})


[image: image] Note  In order to compile this attribute grammar, you need to enable the ScopedTypeVariables extension for GHC. The easiest way to do so is adding a line similar to extensions: ScopedTypeVariables to the Cabal stanza.


In this case I’ll return back to the simple modeling of expressions results: three different attributes will hold the result of the expression as integer, float, or Boolean. At any point, only one of the components will hold a Just value, whereas the others will be Nothing. As you know from the previous chapter, you could refine the definition of Expr using GADTs to make this tupling unnecessary. However, the focus in this chapter is on attribute grammars, so let’s try to keep the types as simple as possible. The result of an expression depends on the subexpressions, so this attribute should be a synthesized one.

Apart from the result, you need to thread the list of products among subexpressions, because the constructors AmountOf, PriceOf, TotalAmountOfProduct, and TotalPrice need that information. In an attribute grammar setting, that information would be represented via an inherited attribute. The declaration of the set of attributes for Expr is below:

attr Expr
  inh products  :: {[(a, Float)]}
  syn intValue  :: {Maybe Int}
  syn fltValue  :: {Maybe Float}
  syn boolValue :: {Maybe Bool}


[image: image] Note  Remember that compound types such as [(a, Float)] or Maybe Bool must be written inside brackets to stop UUAGC parsing them as special attribute grammar syntax.


Following the example in this section, let’s write the sem block for Expr. The initial declaration is a bit more complex in this case, because you need to declare that the elements in the expression are instances of the Eq type class to be able to define the operations. Thus, the declaration reads:

sem Eq {a} => Expr

One simple constructor is the TotalNumberOfProducts. In this case the only attribute with a concrete value should be the integer one, the rest should be given a Nothing value. Since nodes of that kind don’t have any children, you don’t need to include any code for the inherited products attribute. The full code in this case is:

| TotalNumberOfProducts lhs.intValue  = Just $ length @lhs.products
                          lhs.fltValue  = Nothing
                          lhs.boolValue = Nothing

A more complex example is the Plus one. In this case, the integer and floating values should be updated, but each of them should only take a Just value if both subexpressions also take this value. You can achieve this concisely using the Applicative instance of Maybe. However, to bring it into scope you have to import the Control.Applicative module. Remember that any code written inside brackets will be copied unchanged into the generated Haskell code: this is how the imports should be handled. The case of imports is treated specially by UUAGC, you should write imports before the block to ensure that the imports are treated accordingly to Haskell rules. For example, to bring the module into scope, you should include at the beginning of the file:

imports
{
import Control.Applicative
}

Now the <$> and <*> operators are available for using them in your attribute grammar code, and the following code does so to define the synthesized attributes of the Plus constructor. The code for inherited ones is also straightforward, as it only copies the value of products from the node to their children.

| Plu  s  lhs.intValue   = {(+) <$> @right.intValue <*> @left.intValue }
        lhs.fltValue   = {(+) <$> @right.fltValue <*> @left.fltValue }
        lhs.boolValue  = Nothing
        right.products = @lhs.products
        left.products  = @lhs.products

Given these examples, the rest of the cases should be easy to write. EXERCISE 14-1 asks you to do so.


EXERCISE 14-1. FULL EXPRESSION ATTRIBUTE GRAMMAR

Complete the remaining cases of the sem block of Expr. Hint: use the previous examples as templates, either performing some computation over the products list or combining the value of subexpressions using Applicative syntax.



For example, a function that would execute the computational actions of the attribute grammar to get the synthesized values in the root of the tree for the Expr data type would read:

executeExpr :: Ord a => Expr a -> [(a,Float)] -> (Maybe Int, Maybe Float, Maybe Bool)
executeExpr e products =
  let syn = wrap_Expr (sem_Expr e) (Inh_Expr products)  -- returns a Syn_Expr record
   in (intValue_Syn_Expr syn, fltValue_Syn_Expr syn, boolValue_Syn_Expr syn)

And you can use that function to test your attribute grammar:

*Chapter14.Expr> :{
*Chapter14.Expr| let e = Expr_And (Expr_AmountOf 'a' `Expr_LessThan` Expr_IVal 2)
*Chapter14.Expr|                  (Expr_FVal 300.0 `Expr_LessThan` Expr_TotalPrice)
*Chapter14.Expr|     p = [('a',15.0), ('b',400.0)]
*Chapter14.Expr| in executeExpr e p
*Chapter14.Expr| :}
(Nothing,Nothing,Just True)





Precomputing Some Values

The attribute grammar for Expr works fine but could be enhanced in terms of performance. In particular, each time a TotalNumberOfProducts or TotalPrice constructor is found, the full product list has to be traversed. Since it’s quite common to find those basic combinators in the expressions, it’s useful to cache the results to be re-used each time they are needed. Let’s see how to implement that caching in the attribute grammar.

The most common way to cope with this situation is by adding a new data type with only one constructor that wraps the entire expression tree. This data type is usually called Root. Below is its definition plus an indication to derive a Show type class instance, since it will be interesting to inspect those trees:

data Root a
  | Root expr :: (Expr {a})
 
deriving Root Expr : Show


[image: image] Note  Adding an extra Root data type is merely a convention used for initializing inherited attributes. In many cases, it’s not needed, and of course, a name different from Root may be used.


The precomputed values will be stored in numberOfProducts and totalPrice attributes. Those attributes must be passed top-down from the root of the tree. Thus, they must be inherited attributes of the Expr data type. Furthermore, if you want to get back the result of the computation from a Root, you have to include the same synthesized attributes that Expr had. The attr part of the grammar should be changed to:

attr Root Expr
  inh products  :: {[(a, Float)]}
  syn intValue  :: {Maybe Int}
  syn fltValue  :: {Maybe Float}
  syn boolValue :: {Maybe Bool}
 
attr Expr
  inh numberOfProducts :: Int
  inh totalPrice       :: Float

Notice how UUAGC allows including in the same declaration several data types that share attributes. To use that functionality, just include all the data types after the attr keyword. In this example, the products, intValue, fltValue, and boolValue attributes are declared for both the Root and Expr data types.

Finally, you need to add the computation rules. The ones for computing the new inherited attributes of an Expr from a Root are straightforward given the grammar of the previous section:

sem Eq {a} => Root
  | Root expr.numberOfProducts = length @lhs.products
         expr.totalPrice       = foldr (\(_,p) x -> p + x) 0.0 @lhs.products

Now you might expect extra declarations for threading the new inherited attributes inside Expr and taking the synthesized attributes from Expr to save it into Root. The good news is that they are not needed at all. UUAGC has some built-in rules that fire in case that you haven’t specified how to compute some attribute. For inherited attributes, the computation proceeds by copying the value from the parent to their children. For synthesized attributes, the result is taken from a child (if you need to combine information from several children, there are other kinds of rules: you’ll get in touch with them in the next section). These rules are collectively known as copy rules, because they take care of the simple case of attributes being just copied. Actually, the flow of the inherited products attribute in the previous grammar didn’t have to be specified: this rule would take care of it.

One thing that should be changed is the computation of the synthesized attributes in those constructors that were to be enhanced. Instead of computing the result each time, they should use the precomputed values from the Root. For example, TotalNumberOfProducts should be changed to:

| TotalNumberOfProducts lhs.intValue  = Just @lhs.numberOfProducts
                        lhs.fltValue  = Nothing
                        lhs.boolValue = Nothing

The core of the idea is that each time you need to initialize some values for the rest of the computation of the attributes; it’s useful to wrap the entire tree inside a data type with only one constructor, and which includes that initialization in its sem block.

Obviously, now the attribute grammar should be executed starting on an HtmlRoot value. The corresponding describeOffer function reads:

describeOffer :: (Eq a, Show a) => Offer a -> H.Html
describeOffer o = html_Syn_HtmlRoot $ wrap_HtmlRoot (sem_HtmlRoot $ HtmlRoot_HtmlRoot o)
                                                    Inh_HtmlRoot





A Different (Monadic) View

When learning about a new concept, it’s very useful to relate it to concepts you’re already familiar with. You’ve already seen how attribute grammars come into existence when trying to factor out the flow of information. In the first simple interpretation, the parameters to functions became inherited attributes and the tuple of results corresponded to the synthesized attributes. In Chapters 6 and 7, another different concept was used to thread information in that way: the Reader and Writer monads. Indeed, you can express the attribute grammar developed in this section using the monadic setting. Let’s see how one would do that. Note that the code from this section is independent of the attribute grammar and should be written in a different file, which should contain the definition of the Expr data type from previous chapter.

First of all, you need to overcome a little technicality: the type used in the Writer must be a monoid. However, the interest here lies only in the last value output by the function, so you can “fake” this behavior by providing a Monoid instance which does exactly so:

import Data.Monoid
 
newtype Result = Result (Maybe Int, Maybe Float, Maybe Bool) deriving Show
instance Monoid Result where
  _ `mappend` r2 = r2
  mempty         = Result (Nothing, Nothing, Nothing)


[image: image] Warning  Although type correct, this instance doesn’t express a true monoid. The problem is that x `mappend` mempty = mempty, which is not what is necessary. A correct solution for this problem would be to save a list of output results and get the last one at the end of the attribute computation.


As mentioned before, the behavior of inherited attributes can be seen as wrapped in a Reader monad, and the synthesized attributes in a Writer one. Thus, the type signature of the function to write is:

sem :: Eq a => Expr a -> ReaderT [(a,Float)] (Writer Result) ()

And the corresponding code that calls the function passing the initial values would be:

import Control.Monad.Reader
import Control.Monad.Writer
 
executeExpr :: Eq a => Expr a -> [(a, Float)] -> Result
executeExpr e p = execWriter (runReaderT (sem e) p)

Let’s see how the computation of two of the constructors is expressed in this setting. First, you have TotalNumberProducts, which takes the inherited attribute (which is now the information in the Reader monad) and produces a new synthesized attribute with the length of the list:

sem TotalNumberProducts = do products <- ask
                             tell $ Result (Just (length products), Nothing, Nothing)

A second combinator to look at is the addition of two numbers. In this case, you need to compute the synthesized attributes locally and get those results to create the new synthesized attributes. The first part can be achieved using listen, the counterpart of Reader’s local for the Writer monad:

sem (e1 :+: e2) = do (_, Result (i1, f1, _)) <- listen (sem e1)
                     (_, Result (i2, f2, _)) <- listen (sem e2)
                     tell $ Result ((+) <$> i1 <*> i2, (+) <$> f1 <*> f2, Nothing)

As you can see, attribute grammars express the concepts behind the Reader and Writer monads in a new setting. The main advantage is that you can refer to attributes by name, instead of stacking several monad transformers and having to access each of them by a different amount of lift. A further insight that attribute grammars give us is that the intuitive idea that Reader and Writer monads can be combined easily and in any order to yield a new monad is made explicit by the fact that you can combine attribute grammars just by merging their attributes.



Offer Interpretations

It’s time to move forward from conditional expressions to full values of type Offer, which represent the possible discounts in the Time Machine Store. As in the previous section, the examples will revolve around the initial definition of this data type, prior to adding extra type safety, in order to keep the code clean and concise.


Checking the Presents Rule

You’ve already seen several ways in which the Presents Rule of the offers (remember: the number of free presents in an offer may be limited depending on the season) can be checked. Using strong typing, you looked at a way to count the maximum number of presents, but the implementation gives no clue about what presents are inside. The task in this section is to create a small attribute grammar that computes the largest possible set of presents that a single customer can get for free.

As in the previous section, the main data type is a straightforward translation from Haskell into the UUAGC syntax. The data declaration that will be used, and that contains the names given to the fields of each constructor, reads:

data Offer a
  | Present  present :: {a}
  | PercentDiscount  discount :: Float
  | AbsoluteDiscount discount :: Float
  | Restrict products :: {[a]} inner :: (Offer {a})
  | From   from  :: Int inner :: (Offer {a})
  | Until  until :: Int inner :: (Offer {a})
  | Extend times :: Int inner :: (Offer {a})
  | Both     left :: (Offer {a}) right :: (Offer {a})
  | BetterOf left :: (Offer {a}) right :: (Offer {a})
  | If cond :: (Root {a}) then :: (Offer {a}) else :: (Offer {a})
 
deriving Offer : Show

The list of presents is something that is computed bottom-up, so it should be a synthesized attribute. In the code example, the attribute will be called presents. Here’s the attr part of the grammar:

attr Offer
  syn presents :: {[a]}

The next step is to write the sem block that tells the preprocessor how to compute the value of that attribute. In most of the cases of the data type, presents are just accumulated from all the suboffers. However, there are two special cases to consider:


	When you find a Present constructor, you know that the presents returned by that offer is a singleton list including the value in its parameter.

	When a Restrict constructor is found, you must delete from the present list all those products that are not inside the restriction list.



In terms of code, this corresponds to the following sem block:

imports
{
import Data.List
}
 
sem Eq {a} => Offer
  | Present  lhs.presents = [@present]
  | Restrict lhs.presents = { @products `intersect` @inner.presents }

Now it would be the time to write the computation for the rest of the cases, which is the concatenation of the lists for those constructors with suboffers and the empty list for other basic combinators such as discounts. Luckily, UUAGC acknowledges that this is a common pattern and provides special syntax for that case extending the built-in mentioned copy rule mechanism for synthesized attributes. With this syntax, you need to provide a function that merges the attribute from the children and a base case for those nodes with no children at all. In this case, the attr part of the grammar can be decorated with (++) as the function to merge and [] as the initial value, so it reads:

attr Offer
  syn presents use {++} {[]} :: {[a]}

In the case where you don’t specify how to compute the value of the presents attribute, the rule that just copies it will no longer be applied. Instead, the preprocessor will use the operations in the use declaration.

If you look a bit closer at the operations specified, you’ll notice that they are indeed the Monoid instance for lists. This takes us to the previous discussion about the relation between attribute grammars and monad. When using a synthesized attribute with use, you can see it being a Writer where the Monoid instance of the attribute type is exactly defined by the operations in use (instead of the operation which just forgets about the first argument of mappend).

The Duration Rule could also be checked using an attribute grammar. EXERCISE 14-2 asks you to do so.


EXERCISE 14-2. THE DURATION RULE

Compute the maximum duration of an offer using an attribute grammar. The rules for doing so should be the same as in Chapter 13. Decorate your attributes with use, as shown in this section, to specify the common behavior of joining offers.






Showing a HTML Description

The last example for attribute grammars will show a description of an offer as HTML. This is an interesting example of how a grammar can be used not only to consume information but only to show that information in a new way. Furthermore, this grammar will show some subtleties related to attribute handling.

The HTML that should be generated should have three different parts:


	A list of all the presents that you may get via the offer: this is done by re-using the presents attribute from the previous section.

	A small table of contents that should show a small description of the first and second levels of the offer tree, in which is item is a link to the full description below.

	Finally, the full description of the offer as a series of nested lists.



The markup for the full description will be stored in an html attribute, and will be encoded using the blaze-html library that was presented in Chapter 12. Thus, in order to follow this section, you need to add blaze-html as a dependency. To obtain the final markup that comprises the three parts, the code will use the trick of adding an extra root data type, which will be called HtmlRoot. In the following code block, the imports related to blaze-html are gathered here:

imports
{
import Data.List
import Data.String
import qualified Text.Blaze.Html5 as H
import qualified Text.Blaze.Html5.Attributes as A
}
 
data HtmlRoot a
  | HtmlRoot root :: (Offer {a})

In addition, each node will keep its title and the list of titles of the children immediately below. In that way, the uppermost node will have the information needed for the table of contents. The main issue with building the table is generating links to the full description. For that, you need to assign a unique identifier to each node. However, this identifier behaves both as inherited and synthesized attribute: this has the effect of threading the attribute among siblings of the same node apart from going up and down. Figure 14-3 shows the flow of information of such an identifier through a basic offer.


[image: 9781430262503_Fig14-03.jpg]

Figure 14-3. Attribute c threaded through siblings of an And node



These kinds of attributes that are both inherited and synthesized are known in the field of attribute grammars as chained. If you want to relate the behavior of chained attributes to a monad, it would be the State one in this case. The attribute can be seen as a value that changes throughout the exploration of the whole tree.

The declaration of such an attribute inside an UUAGC source file can be done by writing the same attribute named both as inh and syn. But in order to stress that an attribute is chained, UUAGC uses chn as its identifier. Following the general pattern in computer science for naming a source of unique numbers, this attribute will be called counter. The definition of all these attributes reads:

attr Offer
  chn counter   :: Int
  syn title     :: String
  syn subtitles :: {[(String,Int)]}
  syn presents use {++} {[]} :: {[a]}  -- from previous section
 
attr HtmlRoot Offer
  syn html        :: {H.Html}

Let’s first consider the computation of the counter attribute. At each node the final value should be different from all their children and the value from its parent. You can achieve this by adding 1 to the value of the last child. For example, the value for basic combinators is just the one from the parent plus 1 is expressed as:

sem Eq {a}, Show {a} => Offer
  | Present PercentDiscount AbsoluteDiscount  -- this applies to all these constructors
      lhs.counter = @lhs.counter + 1

Since counter is both an inherited and a synthesized attribute, lhs.counter is referring to different attributes in each side. In the right-hand side, @lhs.counter is the value that comes from the parent. In the left-hand side, lhs.counter is the value that will be given back as identifier for this node.

This code is not completely correct though. If inside another attribute (for example, when creating the HTML markup for that node) you refer to lhs.counter, you’ll be referring to the value from the parent. But this is not what you need: two children of the same parent would get the same counter value, since they share the same parent. The solution is to save the new value in a local attribute, which works as a local variable inside a node. In that way, each node would retain its ident value, notwithstanding any change in its parent. You don’t need to declare local attributes, only use them in a node prefixing them by the loc keyword. In the example, I’m using a local attribute ident to make the value of the counter available for other attributes should change to:

| Present PercentDiscount AbsoluteDiscount
    loc.ident   = @lhs.counter + 1
    lhs.counter = @loc.ident

For a constructor with more than one child, you should thread the attribute from one to the other. In this example, the Both and BetterOf constructors do so along their left and right children:

| Both BetterOf
    left.counter  = @lhs.counter
    right.counter = @left.counter
    loc.ident     = @right.counter + 1
    lhs.counter   = @loc.ident

Think care fully about the rest of the threading for EXERCISE 14-3.


EXERCISE 14-3. THREADING THE COUNTER

Complete the computation of the counter and ident attributes for the Restrict, From, Until, Extend, and If constructors.



The idea of using local attributes can help you write more concise code for computing the HTML markup. For example, you can divide the markup of each node into two parts: the HTML corresponding to the description of the constructor itself (htmlText), and the HTML corresponding to their children (htmlChild). Then, both attributes are joined in a single Html value, as shown below:

| Present PercentDiscount AbsoluteDiscount Restrict From Until Extend Both BetterOf If
    lhs.html    = { do H.a H.! A.name (fromString ("elt" ++ show @loc.ident ))
                             $ H.toHtml @loc.htmlText
                       @loc.htmlChild }


[image: image] Note  You can actually write all the rules as they are shown, one below the other. UUAGC will take care of merging all the attribute computations for each constructor.


Now each of the constructors must give the value of those local attributes to build their HTML markup. This code is quite straightforward: as an example, the code that does so for the PercentDiscount and BetterOf constructors follows:

| PercentDiscount
    loc.htmlText  = show @discount ++ "% discount"
    loc.htmlChild = H.toHtml ""
| BetterOf
    loc.htmlText  = "Better of"
    loc.htmlChild = { H.ul $ do H.li @left.html
                                H.li @right.html }

Apart from the markup, I mentioned that each of the nodes should save title and subtitle attributes for the final table of contents. The first one will be a simple String value, whereas the other should collect the titles and identifiers of each of the immediate children. For the constructors that are being tackled it reads:

| PercentDiscount
    lhs.title     = { "DISCOUNT: " ++ show @discount ++ "%" }
      lhs.subtitles = []
| BetterOf
    lhs.title     = { "BETTER OF" }
    lhs.subtitles = [(@left.title, @left.counter), (@right.title, @right.counter)]

The rest of constructors are left as an exercise to the reader, specifically as EXERCISE 14-4.


EXERCISE 14-4. BUILDING DESCRIPTIONS

Complete the computation of the htmlText, htmlChild, title, and subtitle attributes for the Present, AbsoluteDiscount, Restrict, From, Until, Extend, Both, and If constructors.



The final touch is to take all that information and build the whole Html value representing the description. The code below takes advantage of the encoding as a monad of blaze-html, using mapM_ to generate lists of elements. For the rest, the code is just generating the markup from the inner elements:

sem Eq {a}, Show {a} => HtmlRoot
  | HtmlRoot root.counter = 1
             lhs.html = {
               do H.h1 $ H.toHtml "Description of an offer"
                  H.h2 $ H.toHtml "Possible presents:"
                  H.ul $ mapM_ (\e -> H.li $ H.toHtml (show e)) @root.presents
                  H.h2 $ H.toHtml "Main offer"
                  H.a H.! A.href (fromString ("#elt" ++ show @root.counter))
                        $ H.toHtml @root.title
                  H.ul $ mapM_ (\(s, e) -> H.li $ H.a H.! A.href (fromString ("#elt" ++ show e))
                                                        $ H.toHtml st)
                               @root.subtitles
                  H.h2 $ H.toHtml "Complete offer"
                  @root.html }

One important advantage of describing the generation of the markup as an attribute grammar is that you didn’t have to take care of ordering the computation. UUAGC is able to find a sorting of the attributes, in the way that each of them only need the previous ones to be computed. If this cannot be done, the preprocessor will emit a warning telling that your attribute grammar is circular.



Origami Programming Over Any Data Type

In Chapter 3 you saw how folds can be a powerful tool for understanding code on lists. The basic idea of a fold was to replace the (:) constructor by some function f and [] by some initial value i, as Figure 14-4 shows.


[image: 9781430262503_Fig14-04.jpg]

Figure 14-4. Reminder of the behavior of foldr



Interestingly, the notion of a fold can be defined for every Haskell data type: for each constructor you supply a function that will “replace” it and then evaluate the resulting tree. In addition, the fold should call itself recursively in those places where the definition of the data type is also recursive. These generalized folds are also called catamorphisms.

For example, consider the simple language in the first section of this chapter, where the hardcoded Char parameter to AmountOf has been generalized to a type variable in the Expr type:

data Expr a = Plus  (Expr a) (Expr a)
            | Times (Expr a) (Expr a)
            | AmountOf a

In this case a fold would have as parameters a function for Plus, other for Times and finally another for AmountOf. As I stated before, the implementation should call each of those functions depending on the constructor of the value and have recursive calls in the places where the definition of Expr has Expr again as argument. With those ideas the full code reads:

foldExpr plusFn timesFn amountFn e =
  let f = foldExpr plusFn timesFn amountFn
  in case e of
       Plus  e1 e2 -> plusFn  (f e1) (f e2)
       Times e1 e2 -> timesFn (f e1) (f e2)
       AmountOf x  -> amountFn x

The interpretation shown in the first section can now be reworked as a fold like the code below shows:

meaning :: Eq a => [a] -> Expr a -> Int
meaning s = foldExpr (+) (*) (\x -> length $ filter (==x) s)

The types of the parameters can be recovered from the data type definition. A specific fold will produce an element of some type b for each value. Thus, for each place where you may get a value from a recursive place, b must appear in its type. You have also additional parameters for the information encoded in each constructor. With these guidelines, these types read:

plusFn   :: b -> b -> b
timesFn  :: b -> b -> b
amountFn :: a -> b

When reading about folds or catamorphisms, you’ll sometimes find the term algebra. A D-algebra for a data type D is just a tuple that contains all the functions required to perform a fold over that data structure. You can create a newtype for an algebra for Expr:

newtype ExprAlgebra a b = ExprAlgebra (b -> b -> b, b -> b -> b, a -> b)

Thus, a fold over a data type D can be seen as a function taking a D-algebra and a value of D and returning the appropriate value. Let’s express the fold over Expr using algebra terms:

foldExpr' :: ExprAlgebra a b -> Expr a -> b
foldExpr' a@(ExprAlgebra (plusFn,timesFn,amountFn)) e =
  case e of
    Plus  e1 e2 -> plusFn  (foldExpr' a e1) (foldExpr' a e2)
    Times e1 e2 -> timesFn (foldExpr' a e1) (foldExpr' a e2)
    AmountOf x  -> amountFn x

You can practice those ideas adding new constructors in EXERCISE 14-5.


EXERCISE 14-5. LARGER EXPRESSIONS

Extend the Expr data type with constructors Minus and DividedBy, and complete the corresponding fold functions for those new constructors.



Folds are closely related to attribute grammars. What you’re doing with an attribute grammar is defining a specific algebra for your data type, an algebra that computes the value of the attributes. Actually, if you look at the generated Haskell code by UUAGC, you’ll notice that there are some parts labeled as cata: these are the functions starting with sem_ that you used previously. What this function does is fold over the structure while expecting the initial inherited values you give with the function starting with wrap_.

Once you feel comfortable with these ideas, you can dive into other ways data types can be constructed and consumed in a generic fashion. For example, the notion of unfold (also called anamorphism) can also be generalized; and combinations of folds and unfold give rise to other interesting functions. A good library to look at is recursion-schemes by Edward A. Kmett. Knowing these patterns will help you when re-using a lot of code that it’s already written and follows the same structure on different data types.

Apart from libraries, there’s also a lot of information about how you can use this idea of folding over any data type to create more elegant code. “Origami programming” by Jeremy Gibbons was already mentioned in Chapter 3, “Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire” by Erik Meijer, Maarten Fokkinga, and Ross Paterson discusses all these generalizations of folds and unfolds and shows how to use equational reasoning as you saw in Chapter 3 for lists, but over any data type.


DATA TYPE GENERIC PROGRAMMING

You’ve already seen two kinds of polymorphism in Haskell. Parametric polymorphism treats values as black boxes, with no inspection of the content. Ad-hoc polymorphism on the other hand allows treating each case separately.

But there’s a third kind of polymorphism available in GHC, namely data type generic programming (or simply generics). In this setting, your functions must work for any data type, but you are allowed to depend on the structure of your data declaration. This can be done in part because regular Haskell data types are specified through a small series of combinators: choice of constructors, tupling of parameters and so on.

There are several libraries of doing this kind of programming available in Hackage, although GHC integrates its own in the compiler. If you’re interested to know more, a good place to start is the GHC.Generics module.



Summary

This chapter has introduced attribute grammars as a way to give interpretations to a DSL encoded as a Haskell data type:


	You’ve delved into the general idea of attributing a tree whose nodes are the constructors of a specific Haskell data type.

	Three kinds of attributes have been distinguished: synthesized (bottom-up), inherited (top-down), and chained (threaded among siblings).

	Monads have been related to attribute grammars. In particular, Reader corresponds to inherited attributes, Writer to synthesized attributes, and State to chained attributes.

	You’ve learned how to configure and use the Utrecht University Attribute Grammar Compiler to preprocess your attribute grammars into Haskell code.

	UUAGC provides many facilities for writing concise attribute grammars: in this chapter you’ve become familiar with usedeclarations and local attributes.

	Finally, the idea of fold (or catamorphism) has been generalized from lists to any possible Haskell data type.



1You will learn how to specify those options in the next section.





PART 5
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Engineering the Store




CHAPTER 15
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Documenting, Testing, and Verifying


At this point you know many of the features and intricacies of the Haskell language and many of its libraries. This chapter won’t teach you any more of these, but rather will focus on tools that help you in the process of coding libraries and applications. These tools support good engineering practices within Haskell.

An important and often overlooked task to do as long as you program is writing good documentation for the source. Even though Haskell is a very high-level language, there’s always room for documenting the purpose of each data type and function in your modules. Haddock is a tool bundled with the Haskell Platform, which creates beautiful documentation pages from special comments in your code.

The main set of tools to present is related to testing. Automatically testing your code ensures that any change in the code does not affect the behavior that it should have. Programmers today see unit testing as an essential activity, you shall see how to create unit tests in Haskell with HUnit.

Haskell was the first language to support randomized testing apart from unit testing, with its QuickCheck library. This form of testing generates random calls to your functions and ensures that certain properties of the output are satisfied, freeing the tester of the task of writing hundreds of test cases. Another tool called SmallCheck builds on this idea, but performs exhaustive testing. This means that a certain piece of code is called, not with random inputs, but with all possible inputs up to a size limit.

Idris will return in the last section. You’ve already seen how extra information or invariants can be expressed using dependent types. The next step is using that extra power to formally verify that the some implementation satisfies the properties that are requested. You’ll get a glimpse of how this can be done.

Documenting Binary Trees with Haddock

Binary trees, similar to those in Chapter 4, are going to be the working example throughout this chapter. As a reminder, here’s the definition of the BinaryTree data type: the constructors refer either to a leaf, or to a node that handles some inner information on it. In addition, there are a couple of tree functions.

data BinaryTree a = Node a (BinaryTree a) (BinaryTree a)
                  | Leaf
                  deriving Show
 
treeInsert :: Ord a => a -> BinaryTree a -> BinaryTree a
treeInsert x Leaf = Node x Leaf Leaf
treeInsert x (Node y l r) | x <= y    = Node y (treeInsert x l) r
                          | otherwise = Node y l (treeInsert x r)
 
treeMerge :: Ord a => BinaryTree a -> BinaryTree a -> BinaryTree a
treeMerge t Leaf         = t
treeMerge t (Node x l r) = treeInsert x $ treeMerge (treeMerge t l) r

Even without any extra comments, you can generate a summary of the modules in the package by running cabal haddock in the root of your project, or going to Export and then Cabal documentation in EclipseFP. A set of HTML pages will be created inside the dist/doc/html folder in your package. If you go inside them, you’ll see the documentation in the same format in which documentation from Hackage is presented. However, the information there is very rough: there is just the list of modules, and inside each module, a list of all the definitions. It would be very nice to incorporate comments and examples into each of the functions, data types, and type classes.

The way you can convey extra information to be included in those HTML pages is via documentation comments. Documentation comments are written in the same file where the code is written, which helps keeping both code and documentation in sync. They follow the same syntax as regular comments, but they start with a special marker. This idea is found in other documentation systems such as Javadoc and Doxygen.

The marker in the comment changes depending on whether you want to include the documentation of an element before or after the declaration itself. If you want to write the documentation and then the element, you will mark that documentation with |; if instead you want to include the documentation after the element, start your comment with ^. Comments beginning with | are used normally for documenting data types, functions, and type classes; whereas ^ is more often found while discussing constructors and function arguments. As an example, you may document the BinaryTree type as follows:

-- | A typical binary tree
data BinaryTree a = Node a (BinaryTree a) (BinaryTree a) -- ^Inner nodes
                  | Leaf                                 -- ^Leaves
                  deriving (Eq, Show)

The upcoming Figure 15-1 shows how the comments shown here manifest themselves in the HTML page created by the Haddock tool.


[image: 9781430262503_Fig15-01.jpg]

Figure 15-1. BinaryTree documentation generated by Haddock




[image: image] Warning  Haskell single-line comments start with -- followed by a space. This syntax should be respected also in documentation comments, and a space should be written between -- and either | or ^, as the example shows.


Haddock has a rich syntax for writing the documentation:



	If you refer to other declarations by writing it in single quotes, Haddock will generate a link to that place. This functionality is also available for linking to modules: in that case you need to write its name in double quotes.

	Unnumbered lists are declared by prefixing each of the items by *. In the case of numbered lists, you can choose between writing n. or (n) for the nth element. Be aware that each item should be surrounded by blank lines.

	You can introduce pieces of code by prefixing each line with >. Additionally, Haddock supports the declaration of properties, which are prefixed by prop> and of interpreter examples, in which the input is written after >>> and the output immediately below.



Below you can see an example of documentation for the treeInsert function. Notice that the comments are written in multiple-line style. Again, you can see the effect of these comments in the upcoming Figure 15-1.

{-|
Inserts an element into a 'BinaryTree'
 
 * If it finds a leaf, insert there
  
 * If smaller than the item in the node, insert in the left
  
 * If larger than the item in the node, insert in the right
 
>>> treeInsert 1 Leaf
Node 1 Leaf Leaf
-}
treeInsert :: Ord a => a -> BinaryTree a -> BinaryTree a
treeInsert x Leaf = Node x Leaf Leaf
treeInsert x (Node y l r) | x <= y    = Node y (treeInsert x l) r
                          | otherwise = Node y l (treeInsert x r)

Another interesting feature of Haddock is the ability to organize the declarations in your code, and to show its documentation divided in sections. The only requirement is that you must use an explicit export list: this is a good programming practice anyway, so it shouldn’t put any extra burden on you. In the list of exports, you can include a documentation comment starting with * to indicate that a new section starts at that point, or ** for a subsection. Here’s a possible declaration list for a full-blown binary trees implementation:

-- | Simple implementation of binary trees
module Chapter15.BinaryTree (
  -- * The main data type
  BinaryTree(..),
  -- * Operations
  -- ** Insertion
  treeInsert, treeMerge,
  -- ** Lookup
  treeFind, treeFindMin,
  -- ** Removal
  treeDelete
) where

Running Haddock over this module results in documentation similar to Figure 15-1.

If you look carefully at Figure 15-1, you will notice some hyperlinks labeled as Source. The target of each of those links is the definition of that element in a colored version of your source. You can get them in your own documentation by running cabal haddock --hyperlink-source instead of plain cabal haddock. Notice that you need to have the package hscolour in your system for this feature to work.


HLINT

A Haskell compiler checks whether your source code complies with the syntax and semantics of the language. However, there are cases where your code is correct, but it’s not easy to read or contains some fragment that is usually seen as confusing and may lead to errors in the future. HLintis a tool that suggests changes to Haskell source in order to make the code much clearer.

You can get HLint in your system by the usual procedure of running cabal install hlint in the command line. Then you can run hlint <source file> and get a list of suggestions. For example, say you change the third line of treeInsert to read:

treeInsert x (Node y l r) | (x <= y) = Node y (treeInsert x l) r

If you run HLint, the following change will be suggested:

src/Chapter15/BinaryTree.hs:39:29: Warning: Redundant bracket
Found:
    (x <= y)
Why not:
    x <= y

If you’re using EclipseFP as your development environment, HLint suggestions are automatically shown in the editor window, as Figure 15-2 shows. Furthermore, you can directly apply the suggestion to your code.




[image: 9781430262503_Fig15-02.jpg]

Figure 15-2. EclipseFP editor showing an HLint suggestion



Unit Testing with HUnit

Unit testingis a methodology for checking that your functions perform their work as intended. Following these methods, the programmer writes a set of test cases: each of them executing a piece of code and describing the expected result. These tests can be run at the developer’s discretion, or can be used to check automatically that code that was working fine doesn’t break after changes (this is called regression testing).

In order to provide a unified interface to the various testing methods available, the Haskell community has created several test frameworks. In this section I’ll introduce the Tasty library, but there are many others available: HTF, test-framework, or Hspec are other interesting options. The good news is that any of these test frameworks can be integrated in your Cabal project and run through the same command line option.


Declaring Tests in Cabal

In principle, you could create the application that runs your tests as a mere executable in your package. However, Cabal embodies the idea of tests in its core and has special support for them. In this section you’ll learn how to add a test executable to your Cabal project,

Inside a Cabal file, a test is defined in its own stanza, as library and executable parts were. Thus, the declaration of a test inside the project file is headed by test-suite followed by the name of the test suite. The key field to include in that stanza is the type one: Cabal has extensible support for different kinds of “test providers”, that may run the tests in the project in different ways.

The focus in this section will be type being equal to exitcode-stdio-1.0, which is the best-supported option at the moment of writing. By specifying that test provider, you declare to Cabal that your tests should be compiled as an executable, which will be run to execute the tests, and that will tell Cabal whether the tests were successful via its exit code. The good news is that all the test frameworks in Hackage are knowledgeable about this way of running them, and make it very easy to integrate as Cabal test.

The rest of the test-suite stanza, when type is exitcode-stdio-1.0, is equal to the definition of a regular executable. As an example, here’s the stanza corresponding to the tests of the current chapter, which has the Tasty framework as a dependency, along with the packages needed to run tests from HUnit, QuickCheck, and SmallCheck within Tasty:

test-suite Tasty
  type:            exitcode-stdio-1.0
  build-depends:   base >= 4, tasty, tasty-hunit, tasty-quickcheck, tasty-smallcheck
  hs-source-dirs:  test
  main-is:         Tasty.hs

Notice that I’ve declared that the source files for my tests will reside in the test directory. It’s a good practice to keep source code and tests in different folders to make it easier to find the place where to include new functionality or new checks of behavior.

As usual, you can add the test suite to your project in a graphical way using EclipseFP. Just point to the Test Suites tab in the Cabal editor, and click the arrow next to the plus sign. You’ll get a list of all test suite templates that EclipseFP features, allowing you to select the preferred one. Figure 15-3 shows how the editor looks when adding a new exitcode-stdio test suite. For many popular test frameworks, EclipseFP allows running the tests directly from the user interface and get the results in a special Test Results view.


[image: 9781430262503_Fig15-03.jpg]

Figure 15-3. Adding a new test suite in EclipseFP



There’s one final quirk to consider. Very often you’ll need to access the functions declared in your library stanza inside a test-suite one. One possibility is referencing the source folder also in your test-suite stanza. However, this causes double compiles (the same file has to be compiled in both the library and the test-suite stanzas) and doesn’t delimit the responsibility of this stanza. Instead, Cabal supports having a test suite or executable in a Cabal project depend on its library part. To declare this dependency, just add the name of the package in the corresponding build-depends list. For example, in the previous case you’ll get:

build-depends:   base >= 4, tasty, tasty-hunit, tasty-quickcheck, tasty-smallcheck , chapter15

However, this is not enough for a Cabal file created by either cabal init or the EclipseFP wizard. This kind of dependency is only available on recent Cabal versions, and the executable forces you to declare your need for that version in order to give you that feature. In the very beginning of your Cabal file you will find a cabal-version field; it must be changed to read:

cabal-version:  >=1.8

Now you’re ready to run the tests that you’ll declare in the next section through the cabal command line tool. This functionality is quite useful, because it centralizes all the project information in a single place.




Writing Unit Tests

First of all, you need to create the test/Tasty.hs file that the stanza specifies as main file. This file should contain a module named Main. The main executable file of a stanza is the only exception to the rule of naming both file and module with the same identifier, making it easier to create projects with more than one executable or test. The examples will use the Tasty test framework and the HUnit tool, so you should import the corresponding modules. The following skeleton will be the base for the rest of the section:

module Main where
 
import Test.Tasty
import Test.Tasty.HUnit as HU

A test suite in Tasty is composed of basic test cases that you can later group to get a hierarchical organization. Test cases are different depending on the testing tool you would like to use (HUnit, QuickCheck, or SmallCheck). In the case of HUnit, a test case is defined by the testCase function, which takes as arguments a name and an assertion, which encodes the specific functionality to be checked. For example, the following test case checks that the result equality of inserting 1 into an empty tree is the expected one using the HUnit combinatory assertEqual.

import Chapter15.BinaryTree
 
hunitTestInsertOnLeaf :: TestTree
hunitTestInsertOnLeaf = HU.testCase "Insert 'a' on empty tree" $
  assertEqual "Insertion is wrong" (treeInsert 'a' Leaf) (Node 'a' Leaf Leaf)


[image: image] Note  TestTree is one of the types used in the Tasty framework. It’s not related to the binary trees you’ve been using as examples throughout the chapter.


As discussed above, Tasty allows a hierarchical organization of the test cases into test groups. A test group is defined via the testGroup function, which needs to be given a name for the group and a list of elements. Those elements can be nested groups or basic test cases. Here’s an example of organization of tests:

allTests :: TestTree
allTests = testGroup "Tasty Tests" [
    testGroup "HUnit Tests" [ hunitTestInsertOnLeaf ]
  ]

In this case there’s a top-level group “Tasty Tests” that has another group “HUnit Tests” inside. In this nested group is where the code puts the test case defined previously.

There’s one last step before being able to run the tests. Since you declared that an executable will be responsible for automatically executing them, you need to provide a main entry point. The good news is that Tasty includes a very simple function for this task, which you can include in all your tests. You just need to specify the test case or test group that will be run to defaultMain, as follows:

main :: IO ()
main = defaultMain allTests

It’s time to execute this first test. First of all, you need to tell Cabal that you want to build the tests along with the library and executable in your project. You do so by running the configuration step again, with an extra argument to the command line tool. Note that this step is not needed if you’re using EclipseFP, because it enables tests automatically.

$ cabal configure --enable-tests

Then run cabal build to compile the test suite you’ve just defined:

$ cabal build
Preprocessing test suite 'Tasty' for chapter15-0.1...
[1 of 1] Compiling Main             ( test/Tasty.hs, dist/build/Tasty/Tasty-tmp/Main.o )
...
Linking dist/build/Tasty/Tasty ...

The final step is just calling cabal test. The test suite will be executed and the main results shown on the screen:

$ cabal test
Running 1 test suites...
Test suite Tasty: RUNNING...
Test suite Tasty: PASS
Test suite logged to: dist/test/chapter15-0.1-Tasty.log
1 of 1 test suites (1 of 1 test cases) passed.

If you now go to the log file shown in the message, you can see a more detailed explanation of the test suite run:

Tasty Tests
  HUnit Tests
    Insert 1 on empty tree: OK

As you can see, the file shows the hierarchical structure declared in the source file.

Apart from “long” combinators such as assertEqual, HUnit includes infix combinators that allow a more concise expression of expected equality. These are (@?=) and (@=?). Both operators check whether the elements at each side are equal. The difference is in where one writes the value to check and where the value is known to be correct. The rule of thumb is that the former should be written next to the ? sign, and the latter (the expected value) next to the = sign. Thus, the previous example could have also been written in the following two forms. Remember that the expression with treeInsert is the one to check, so it should be near the ? sign.

hunitTestInsertOnLeaf' = HU.testCase "Insert 'a' on empty tree" $
  treeInsert 'a' Leaf HU.@?= Node 'a' Leaf Leaf
hunitTestInsertOnLeaf'' = HU.testCase "Insert 'a' on empty tree" $
  Node 'a' Leaf Leaf HU.@=? treeInsert 'a' Leaf

Equality is the most common check in unit tests, but HUnit also allows you to check a Boolean property on the result. For example, you could check that the after inserting an item in the tree, that item can be found. In this case, let’s create a template for several unit tests by creating a function that returns a test case given an original tree and the item to insert:

import Data.Maybe
 
hunitTestInsertFind :: Ord a => a -> BinaryTree a -> TestTree
hunitTestInsertFind e t = HU.testCase "Insert can be found" $
  assertBool "Cannot find element" (isJust $ treeFind e $ treeInsert e t)

As in the previous case, HUnit has a more concise version of the assertBoolcombinator, namely (@?):

hunitTestInsertFind' e t = HU.testCase "Insert can be found" $
  (isJust $ treeFind e $ treeInsert e t) HU.@? "Cannot find element"

Now you can add several unit tests to your list by providing this template different parameters:

allTests = testGroup "Tasty Tests" [
    testGroup "HUnit Tests" [
      hunitTestInsertOnLeaf
    , hunitTestInsertFind 'b' Leaf
    , hunitTestInsertFind 'c' (Node 'd' Leaf Leaf)
    ]
  ]

As you can see, HUnit is a small library, but that embodies the most common uses of unit testing. In EXERCISE 15-1, I ask you to write some extra tests to check the implementation of binary trees. Following the exercise, you can learn a little about a framework named HSpec.


EXERCISE 15-1. UNIT TESTING BINARY TREES

Write test cases that check that, once you add an element to a binary tree, the size (the number of internal nodes) is increased by 1. Additionally, write test cases to check that deleting an element indeed removes it from the binary tree.




HSPEC

In this chapter the test framework used to integrate all the tests is Tasty. However, as mentioned in the introduction, there are several other test frameworks available in Hackage. Hspec is one of them, targeted specially at teams that use the Behavior-driven Development (BDD) methodology. Here’s an example of the usage:

import Data.Maybe
import Test.Hspec
import Test.HUnit

main = hspec $ do
     describe "Insertion in binary tree" $ do
          it "Inserts correctly 1 in empty tree" $
               treeInsert 1 Leaf @?= Node 1 Leaf Leaf
          it "Finds 1 after inserting it on a tree" $
               isJust $ treeFind 1 $ treeInsert 1 (Node 2 Leaf Leaf)
          it "Gets the minimum correctly" $
               pendingWith "Needs to be implemented"

As you can see, Hspec embodies a more textual style for describing tests. The aim is to be closer to the language used in the specification phase, making it easier to write the tests that check that a further implementation is correct.





Randomized Testing with QuickCheck

Unit testing is the most common approach to checking that your implementation satisfies the requirements. However, unit testing imposes quite a big load of work: for each requirement you need to create several test cases, which you must ensure that cover a big enough number of possible scenarios. Typically, you include test cases for extreme values, empty collections, invalid data, and so on.

Instead of having to think about all this by yourself, it would be great if you could express your specifications at a higher level and then test whether those properties hold for your program. Haskell’s usage of higher order function makes it easy to express those properties. For example, the property “reversing a list twice is the same as leaving it as is” can be written as reverse . reverse = id. The bad news is that doing so automatically is a task impossible to achieve for every single property in the wild (but you’ll see in the next section how formal verification can help you in those cases where an entire proof of correctness is possible).

QuickChecktries to bring these two worlds together. Using this library, you express how your program should behave in the form of high-level properties. Then, the tool creates a lot of random values you’re program is tested against. If you use a sufficiently large set of tests (hundreds or thousands) your confidence in that property holding is increased. Furthermore, QuickCheck includes a shrinking component that is used when a value that doesn’t satisfy your specification is found. Its task is trying to make that value as small as possible, helping you in reproducing and tracking the source of the bug.


Testing List Properties

Let’s start by testing some simple properties of list functions. In particular, let’s focus on the reverse function, which builds a list in the opposite order. The initial implementation will include a small error, so you can see how Tasty shows the problems of a failing QuickCheck test.

reverse' :: [a] -> [a]
reverse' []     = []
reverse' [x]    = [x, x]
reverse' (x:xs) = reverse' xs ++ [x]

The first property you may want to check that the length of a list is respected by reversing it (of course, this is false in this example). Here’s the corresponding definition for that QuickCheck property:

{-# LANGUAGE ScopedTypeVariables #-}
 
import Test.Tasty.QuickCheck as QC
 
reverseTests :: TestTree
reverseTests = testGroup "Tests over reverse"
  [ QC.testProperty "reverse respects length" $
      \(lst :: [Integer]) -> length (reverse' lst) == length lst ]

As you can see, the definition starts similarly to a HUnit test: you call the testProperty function and give a name to the property. Then, you define the body of the property as a function, which should hold for every possible value of the arguments of that function. In other words, you can think of the property as having “for all” before each of the arguments to the body function.


[image: image] Note  In some cases you will need to restrict the types of the arguments to QuickCheck properties. The reason is that it’s not possible to create random values for every possible type in Haskell. In the case of lists, for example, you cannot generate a list of functions easily. Thus, in the example the code only works for lists of integers, even though the reverse' function is applicable to any kind of list.


If you add reverseTest to the list of Tasty tests that was called allTests, build and run the new set of tests, you should get an error message:

Test suite Tasty: RUNNING...
Tasty Tests
  Tests over reverse
    reverse respects length: FAIL
      *** Failed! Falsifiable (after 3 tests and 3 shrinks):
      [0]

The message is telling you that after trying three times,1 it was able to find an example where the property does not hold. Then, it shrank the list until it made the example very small. Indeed, a singleton list is the smallest example where the reverse' function fails.

Test your understanding on QuickCheck by doing EXERCISE 15-2.


EXERCISE 15-2. QUICKCHECKING REVERSE

Add more QuickCheck properties over the reverse' function that was defined at the beginning of the section. For example, applying it twice gives back the original result (reverse' . reverse' == id) or the head of the list is the last element of the reversed list.

After checking that the properties do not hold for the initial implementation, change the code to be correct. Does the new version pass all the tests?






Testing Binary Tree Properties

Testing lists is interesting, but in most of the cases you are going to be creating tests of your own data types. In order to create such tests on a given type, you must provide QuickCheck with a generator of random values of that type. You do so by creating an instance of the Gen type class, in particular by implementing the arbitrary function.

There are several tools you can use to generate random values of binary trees:


	You can generate values of other data types by calling their corresponding Gen instance. In the case of binary trees, this should be done for the elements in the nodes.

	You can make a random choice between several generators via the oneof function, which takes a list of them and at run-time gives back one of the specified generators. A more refined version of oneof is frequency, which apart from the possible outcomes includes a relative frequency in which each generator should appear. You’ll see how to use this latter function to decide at each point whether to generate a node or a leaf of the tree.

	If you need your values to satisfy a certain condition, you can add a call to suchThat. This function will make sure that the given predicate holds for the random values.



One of the most important properties of a random generator is that it should stop and produce a value at some point. QuickCheck refines that idea and asks the generators to give back values of a certain maximum size. Think of the size as some intrinsic measure of “how big” a value is. The length of a list, the number of leaves in a tree, and the absolute value of an integer are some examples of these sizes. If your data type admits this idea, you can get the information of the wanted size via the sized QuickCheck function.

For the working example, the idea of size makes sense: it’s the maximum number of levels that the tree may have. The strategy for generating random trees satisfying this property is choosing between creating a leaf or a node with a decreasing probability for the second of those choices. If the generation reaches the point in which the size of the tree must be 0, it just returns a Leaf. Here’s the translation of this idea into code:

instance Arbitrary a => Arbitrary (BinaryTree a) where
  arbitrary = sized $ \n ->
    if (n == 0)
       then return Leaf
       else frequency [(1, return Leaf),
                       (n, resize (n-1) arbitrary)]

If you look at the Gen type class, you’ll notice another function, which is the responsibility of shrinking a value into smaller parts. For a given value, shrink should return the list of those smaller pieces that should be checked. In the case of binary trees, the natural choices are the subtrees of a given tree, as this code shows:

shrink Leaf         = []
shrink (Node _ l r) = [l, r]

Armed with this instance, you can test properties of binary trees. After inserting an item, let’s check that it can be found in the tree. The declaration of that test is the following:

qcTestInsert :: TestTree
qcTestInsert = QC.testProperty "insert => you will find it" $
  \(n :: Int) t -> treeFind n (treeInsert n t) == Just n

Another possible test is checking that if you insert and delete an element from a tree, you can no longer find that element. Or in QuickCheck terms:

qcTestDelete = QC.testProperty "delete => not find it" $
  \(n :: Int) t -> (treeFind n $ treeDelete n $ treeInsert n t) == Nothing

However, if you think about it, this is not a correct property to check. It may be the case that the tree t did have a copy of the element n, so inserting and deleting the item will leave that initial copy. Thus, the result of treeFind will not be Nothing, but Just n.

The solution is telling QuickCheck that the random items to test need to fulfill some precondition (in this case, that it doesn’t contain the number n initially). This is done via the (==>) combinator, which takes as arguments the Boolean condition to satisfy and the actual property body. For example:

qcTestDelete = QC.testProperty "delete => not find it" $
  \(n :: Int) t -> (treeFind n t == Nothing) QC.==>
                     (treeFind n $ treeDelete n $ treeInsert n t) == Nothing

These examples show how QuickCheck allows getting a higher-level view on the tests: instead of focusing on single test cases, you speak about properties, which are closer to the original specification.


SMALLCHECK

QuickCheck uses random data to test properties of your code. SmallCheck follows a similar spirit, but instead of creating random values, it tests properties with every possible value from a set. For example, you could check the reverse . reverse == id property on every list up to a certain length.

The public interface of SmallCheck is very similar to that of QuickCheck. It’s also integrated in almost every Haskell test framework, including Tasty and Hspec.





Formal Verification with Idris

In Chapter 13 you’ve learned how to encode interesting information about your data in the type system. The focus was on ensuring that only correct offers could be written in the corresponding DSL. But the applicability of strong type systems does not stop there: you can also use strong typing to verify properties of your code.


[image: image] Note  This section is a small bit of “candy” to reward you for getting this far into the book. My intention is not to give a comprehensive treatment of formal verification in dependently typed languages, but rather to showcase the possibilities of strong type systems in the software engineering process. If you’re curious and would like to dive deeper into these waters, just check the references to further reading that I gave back in Chapter 13.


The main reason for using dependent types to verify a property is to encode the property you want to check inside the type system. In this way, if the compiler accepts the definition with the corresponding type, it means that the property is satisfied. The great advantage of this approach is that formally verifying your code ensures that it works as intended for every possible input. In contrast, testing checks only a finite number of values, and only proves the absence of bugs on that set of inputs. The main drawback of formal verification techniques is that it’s much harder to fully verify a piece of code than to create a good test suite for it.

Following the same working example, let’s declare a binary tree data type inside Idris, tagged with the number of internal nodes that it possesses. As a reminder, Idris data declarations always follow the GADT syntax, and you’re free to use terms as parameters to the type. In this case the code uses a natural number, which has type Nat.

data BinaryTree : Type -> Nat -> Type where
  Leaf : BinaryTree a 0
  Node : a -> BinaryTree a l -> BinaryTree a r -> BinaryTree a (S (l + r))

The aim is to prove that the following property of insertion in trees holds: “given a tree with n internal nodes, after inserting an element it has n+1 internal nodes”. Since the number of internal nodes is already encoded in the BinaryTree type, the idea is to create an insertion function with the following signature:

treeInsert : Ord a => a -> BinaryTree a n -> BinaryTree a (S n)

If you’re able to write such a function, the property you look for will be verified. Let’s start by writing the same code that you would write for insertion in a binary tree, without worrying about the tags:

treeInsert x Leaf = Node x Leaf Leaf
treeInsert x (Node y l r) with (x <= y)
  | True  = let l' = treeInsert x l in Node y l' r
  | False = let r' = treeInsert x r in Node y l r'

If you load it into Idris, the compiler won’t be happy:

$ idris src/Chapter15/BinaryTreeFV.idr
Type checking ./src/Chapter15/BinaryTreeFV.idr
./src/Chapter15/BinaryTreeFV.idr:11:When elaborating right hand side of Chapter15.BinaryTreeFV.treeInsert:
Can't unify
        BinaryTree a (S (plus l (S r)))
with
        BinaryTree a (S (S (plus l r)))
 
Specifically:
        Can't unify
               plus l (S r)
        with
               S (plus l r)

The problem is in the highlighted section: the compiler is not able to see that l + S r is equal to S (l + r). Of course, you know that both are equivalent from your knowledge of basic algebra, but the Idris compiler doesn’t know that in advance. Thus, you need to give advice on how to reconcile those elements.

The way in which you add this extra advice is by using ?= to introduce a definition. This tells the compile that you’ll provide a separate piece of code telling how to prove the fact that Idris needs. In this case the last line is the one with errors, so you should change it to read:

| False ?= let r' = treeInsert x r in Node y l r'

If you load the file in Idris again, it won’t show any error message. However, it remembers that you owe it one proof of the equality of l + S r = S (l + r). You can show all the things that you still need to give to Idris by executing the :m command in the interpreter:

*src/Chapter15/BinaryTreeFV> :m
Global metavariables:
        [Chapter15.BinaryTreeFV.treeInsert_lemma_1]

This shows that the name you should give to the remaining proof should be exactly Chapter15.BinaryTreeFV.treeInsert_lemma_1. In this case, I’ll jump directly to the conclusion, and tell you which code you need to write in the source file to make the compiler happy. Notice that the name of the proof is exactly the same one that Idris gave us via the :m command:

Chapter15.BinaryTreeFV.treeInsert_lemma_1 = proof
  intros
  rewrite sym (plusSuccRightSucc l r)
  trivial

Basically the code tells the compiler a sequence of rewriting steps to apply to the left-hand side to come into the right-hand side. In particular, it uses plusSuccRightSucc, which is a function defined in Idris Prelude:

plusSuccRightSucc : (left : Nat) -> (right : Nat) -> S (left + right) = left + (S right)

As you can see, that is almost the equality you need. The only difference is that the conclusion is mirrored from what you want. For that cases, you need to invoke the symmetry of equality (that is, a = b is equivalent to b = a) via the sym combinator.

At this point, you may think that you need to be a super-programmer to come with the exact piece of code that will convince Idris of a certain fact that it cannot prove upfront. This is far from reality: the Idris interpreter also includes an interactive mode that helps you come up with those proofs.

As a second example, let’s try to verify that merging two trees results in a new tree with an amount of internal nodes equal to the sum of the original two. As in the previous case, let’s start by writing the type you want to check and an initial piece of code:

treeMerge : Ord a => BinaryTree a n -> BinaryTree a m -> BinaryTree a (n + m)
treeMerge t1 Leaf = t1
treeMerge t1 (Node x2 l2 r2) = treeInsert x2 (treeMerge (treeMerge t1 l2) r2)

If you load the file into Idris, it tells you that it cannot unify n with plus n 0 and points to the first clause. So, let’s change = for ?= and load the file. Another error comes into existence, now on the second clause. If you change that = to ?= too, Idris loads the file. But you owe him two proofs, you can see them issuing the :m command at the Idris interpreter prompt.

*src/Chapter15/BinaryTreeFV> :m
Global metavariables:
        [Chapter15.BinaryTreeFV.treeMerge_lemma_2,Chapter15.BinaryTreeFV.treeMerge_lemma_1]

To start proving a fact, write :p followed by the name of the lemma to prove. Let’s start by lemma 1:

*src/Chapter15/BinaryTreeFV> :p Chapter15.BinaryTreeFV.treeMerge_lemma_1
----------                 Goal:                  ----------
{ hole 0 }:
 (a : Type) ->
 (n : Nat) ->
 (Ord a) ->
 (BinaryTree a n) -> (BinaryTree a n) -> BinaryTree a (plus n Z)

It tells you that you need to provide a value of that long type. However, this value is a function, so it’s equivalent to providing a value of type BinaryTree a (plus n Z) given a set of values of the types in front of them. You can tell Idris to make that step and assume that you have all those values with the intros command:

-Chapter15.BinaryTreeFV.treeMerge_lemma_1> intros
----------              Other goals:              ----------
{ .. ommited .. }
----------              Assumptions:              ----------
 a : Type
 n : Nat
 c : Ord a
 t1 : BinaryTree a n
 value : BinaryTree a n
----------                 Goal:                  ----------
{ hole 5 }:
 BinaryTree a (plus n Z)

Now you’re left with proving that you can reach the goal taking into account all those assumptions. Intuitively, what is happening is that Idris doesn’t know that n= n + 0. If the compiler were able to prove that, it could change the goal into BinaryTree a n, and then value would be exactly the same form as the goal.

A great repository of the many equalities that natural numbers satisfy is the Prelude.Nat module. In this module you can find a rewrite rule similar to what you need, namely plusZeroRightNeutral, which has type (left : Nat) -> left + 0 = left. Notice, however, that you need the symmetric equality, left = left + 0. You can tell Idris to apply a rule via the rewrite command, or use the symmetric version via rewrite sym. Let’s use this last option:

-Chapter15.BinaryTreeFV.treeMerge_lemma_1> rewrite sym (plusZeroRightNeutral n)
----------              Other goals:              ----------
{ .. ommited .. }
----------              Assumptions:              ----------
 a : Type
 n : Nat
 c : Ord a
 t1 : BinaryTree a n
 value : BinaryTree a n
----------                 Goal:                  ----------
{ hole 6 }:
 BinaryTree a n

This rule application shows that you also need to provide the parameters the rule will be applied to. In this case, this parameter was just n, the variable appearing in the goal you want to prove. In many other cases this parameter will be a larger expression, like plus n m.

You’re almost there. Now you just need to tell Idris that the value it’s looking at is equal to the goal, so the rest of the proof is trivial: you’re just looking at the subterms and checking they are the same.

-Chapter15.BinaryTreeFV.treeMerge_lemma_1> trivial
treeMerge_lemma_1: No more goals.

This last message is telling you that the proof is finished. If you introduce qed (from Latin meaning “which was to be proved”), Idris will give you back the code you need to insert in your source file:

-Chapter15.BinaryTreeFV.treeMerge_lemma_1> qed
Proof completed!
Chapter15.BinaryTreeFV.treeMerge_lemma_1 = proof
  intros
  rewrite sym (plusZeroRightNeutral n)
  trivial

There’s another branch to tackle. EXERCISE 15-4 guides you in that task.


EXERCISE 15-4. PROOF FOR TREE MERGING

Complete the code for treeMerge. Use Idris interactive mode to come up with the proof that’s needed for the second clause. Relevant rules you can apply are below. More than one proof is possible, so you may need to use just a subset of the rules.


	plusSuccRightSucc : (left : Nat) -> (right : Nat)                 -> S (left + right) = left + (S right)

	plusAssociative : (left : Nat) -> (centre : Nat) -> (right : Nat) -> left + (centre + right) = (left + centre) + right

	plusCommutative : (left : Nat) -> (right : Nat) -> left + right = right + left



Remember that you can use the rules with expressions larger than mere variables. For example, plusCommutative (l + r) n will prove that (l + r) + n = n + (l + r).

After finishing the proof, get the code back via qed and include it in the source file. Idris should be able to load the entire file without warnings, and issuing :m should tell you that there are no metavariables left.



As you can see, an interpreter for a dependently typed language is also a proof assistant. These kinds of assistants help you to come up with the entire set of rules that must be applied to check that a property holds. Proof assistants can be even more powerful: in this case I showed you how to enter everything by hand, but assistants also feature tactics that automatically prove many properties. This is a field where people are working hard, making formal verification of larger pieces of code easier. Stronger type systems, including dependently typed ones, help ensure that code satisfies the wanted properties, helping in the safety and maintainability of software.

Summary

The focus of this chapter has been on tools that help with the testing and maintainability of Haskell code bases:


	Haddock is the preferred tool for associating pieces of documentation to Haskell declarations and creating beautiful visualizations for it.

	Cabal has support for including tests in packages: you’ve learned how to declare a test-suitestanza and have gotten familiar with several Haskell test frameworks: Tasty and Hspec.

	The HUnit library for unit testing has been introduced.

	You’ve read about the benefits of randomized testing and learned how to create these kinds of tests using the QuickCheck library.

	As a final touch, you’ve seen examples of how dependent types can aid in formal verification of your source code.



1Since QuickCheck tests in a random fashion, the number in the results may be different in your case.




CHAPTER 16
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Architecting Your Application


In a programming book you usually learn a new language via brief examples. Alas, real applications are usually much bigger than ten or twenty lines, and need further work in designing, maintaining, and refactoring their code. This chapter tries to bridge the gap between those two worlds by offering a set of guidelines. Of course, this advice is not carved in stone, but it can give you a good idea of how to use functional programming.

First I’ll compare how design patterns are applied in object-oriented programming and how you may use them in the functional realm. As you’ll see, the gap is not so wide, and many of the concepts translate into functional equivalents but with a different implementation.

I’ve introduced many different tools for Haskell programming throughout the book: test frameworks, profiling tools, and so on. You’ll see a summary of all of them and get some suggestions concerning other good programs that that couldn’t be covered in depth here.

Finally, I’ll suggest some programming projects so you can practice your Haskell skills. In each project, a specific pattern of design will be apparent. In the future, you may base your Haskell applications on those grounds. The idea here will be to expand your ability to apply techniques you already know, though some new techniques will be introduced as well.

Design Patterns and Functional Programming

You may have heard that functional programming makes design patterns completely irrelevant. This is quite a strong statement. Of course, many of the object-oriented design patterns won’t be directly applicable, because you’re working in a different programming paradigm. But this doesn’t mean that a software project developed using Haskell wouldn’t need a careful analysis and design prior to the start of coding. Furthermore, common and re-usable ways of solving problems (called “patterns”) also appear in functional code.

In many cases, the statement about design patterns being irrelevant refers to those design patterns I call “code templates.” Think of the Singleton1 design pattern for keeping just one instance of a specific class in memory. When you need to apply it, you know exactly what to write and it always looks the same. The code is just boilerplate: that’s the reason why languages like Scala offer specific syntax just for this case. In those scenarios, a Haskell solution would usually abstract the pattern at a high level, usually in a type class or in a higher-order function.

In some other cases, the language features allow a specific pattern to integrate seamlessly into the language. One example is the Strategy design pattern: it’s used to define a computation with some moving parts that depend on later considerations: for example, changing the code that shows the total amount, depending on the currency you’re using. In an object-oriented setting, you would define an abstract class or interface, and derived classes would have the code for each currency. Within Haskell, you would instead use a higher-order function, which takes as parameters all those parts of the computation that may change.

From a conceptual point of view, some patterns are still there. In any software system, whether it’s developed in procedural, object-oriented, or functional style, you have the problem of incompatible interfaces between components. In the object-oriented world, you would define a common interface and create wrapper classes to access the functionality of each component (this is known as the Adapter pattern). In Haskell, you would use type classes instead and make each component an instance of that class. In that way, you have a common method to communicate with all of them. In this case, the problem (communicating with incompatible systems) and the idea of the solution (defining a common protocol and making the systems adapt to it) remain, the change is just in the implementation.

Inside the base libraries you can find functors, foldables, applicatives, monads, and many other type classes, which are at a high level of abstraction. In those cases, applying a design pattern is equivalent to instantiating a type class. Some of these type classes actually make the pattern more general: an Iterator in object-oriented languages only allows operating on values from beginning to the start of a collection. But in Haskell you have a whole range of operations of collections: applying a function inside a container via Functor, applying a function repeatedly to obtain a final result via Foldable or iterate maintaining the structure via Traversable.

You’ve seen that some patterns are subsumed by language features or higher-level abstraction. Of course, many others remain in their original incarnation. One example is the Pool design pattern, which provides a way to efficiently manage a set of resources. You can find many packages that use this pattern: one example is how the Persistent database access layer uses a pool to manage database connections.

Of course, some Haskell features, such as immutability of values, higher-order functions, or laziness affect the way in which you design your application. Think of concurrency: in an imperative setting, you have to use locks, semaphores, or rendezvous mechanisms to control access to shared resources. In many cases the reason why you need those low-level operations is the possibility of side effects in any part of the code. Haskell, on the other hand, provides clear separation between pure code and the possible side effects. Thus, you can use a more elegant solution to that problem: when dealing with concurrency in Haskell you use Software Transactional Memory, which embodies the concept of transaction.

Finally, I would like to point out that Haskell philosophy and features get on very well with iterative and agile development methodologies. Being able to test functions directly in the interpreter helps you to test your code as you write it. And with QuickCheck, you can generate many more tests than you would if you had to write all of them by hand. Apart from that, Haskell is very amenable to refactoring: higher-order functions allow getting the skeleton of an algorithm and then obtaining variants by function application, and strong types guarantee that your code doesn’t change in unexpected ways.

Many other benefits of a language like Haskell, such as strong typing or strict separation between pure code and code with side effects, have already been discussed in Chapter 1. In general, Haskell gives you another perspective on your software design, which will greatly benefit your daily programming.

Medium-Level Guidelines

In this section I’m not going to mention micro-optimizations or code templates for Haskell code. Instead, I would like to introduce some general guidelines that will make your code much more readable and maintainable. 


Use Higher-Order Combinators

Using functions such as map, filter, or fold will make the purpose of your code more apparent to a future reader. You’ve seen in Chapters 3 and 14 how recursion over a data type can usually be turned into a series of calls to these functions, so you should keep its use to a minimum.




Refactor

In the previous section you’ve seen how Haskell goes quite well with agile programming methodologies. The ability to pass functions as parameters can help you in building functions that encapsulate the common parts of many algorithms. Many classes of problems can be divided in a general skeleton and then instantiated to each case by introducing the small parts that are missing.

The benefits of higher-order refactoring are twofold. First of all, you reduce the amount of code you have to maintain, and thus you have fewer possibilities of introducing new bugs, because your code will have been much better tested. Furthermore, when you abstract a common pattern in your code, the correctness or the corner cases of your approach becomes more obvious.




Use Type Classes Wisely

Type classes are a powerful tool for abstracting the common idioms of several data types. The Haskell libraries are full of type classes, and almost all important programming concepts are implemented as a type class. Try to follow the steps of those libraries and implement your concepts as type classes.

At this point, one word of warning should be given. Sometimes, type classes are overused, and the code becomes much more difficult to read. The resolution mechanism of type class instances happens in the compiler, and the specific instance being chosen may not be directly apparent. Thus, a more direct approach like Abstract Data Types or higher-order function may be desirable. In particular, be aware of these two scenarios:

If all your type classes have only one instance, it may be the case that you don’t really need to abstract those specific concepts.

Don’t directly map object-oriented classes or interfaces to type classes.




Enforce Invariants via the Type System

Chapter 13 discussed many ways in which you can enforce invariants in your values via strong types. Using those techniques in your code will benefit you in the short term, because more errors will be caught by the compiler; you will also benefit in the long term, because modifications that would break your invariants will be denied.

The type system can help you catch many errors even if you don’t follow all these techniques. One good is example is newtype: you can separate different concepts (like money, a record identifier, or distance) even if they have the same computer representation (which in that case would be an integer). A place where you can find newtype being used is the Persistent library, to separate the type of identifiers of each entity.




Stay (as) Pure and Polymorphic (as Possible)

If you write your functions by separating side effects from the rest of your computation, you’ll have a much easier time testing your code. One useful pattern is creating a core of pure functions that work on your core data types, applying a lot of QuickCheck tests, and even formal verification, and build from there.

In case you need to work with monadic contexts, try to use monad classes (such as MonadState, MonadError, and so on) to specify exactly what functionality you need from a monad stack. The solution of specifying the complete monad stack you’re using from the very beginning is not maintainable, because usually you need to add extra layers for extra functionality. Furthermore, keeping your code polymorphic will enable you to use it in different ways: for example, you may be interested in testing your Persistent code against a list instead of a database, something that would be possible if instead of SqlPersistT (the actual transformer) your specify PersistQuery (the monad class) in your signature.

The essence of this advice is that polymorphism opens the door to re-usability. If instead of a function using a list of integers you write a function that works on any Traversable whose elements are Nums, you will be able to change both the representation of the container (tree instead of lists) and the type of number (Integers instead of Ints) without any further change.


[image: image] Tip  You can find many more guidelines in the “Hoogle Overview” article by Neil Mitchell in issue 12 of The Monad.Reader (the community-managed Haskell magazine) and several talks and StackOverflow answers by Don Stewart.




Tools

During the course of this book many tools have been presented. In this section all of them are recapped and some other tools are introduced. Due to lack of space, we have not been able to cover every possible tool, but all of them have good and complete documentation on the Web.


Project and Dependency Management

Cabal is the tool of choice for managing projects in the Haskell world. As you have seen throughout the book, it offers a declarative way to specify which kind of software artifacts should be built, the dependencies you need, and options for compilation. Each artifact is defined in a so-called stanza.

Most of the power of Cabal comes from the great repository of libraries called Hackage. This repository is managed by the Haskell community, which uploads its latest work to make it available to the outer world. Using the cabal install command, you can automatically get a copy of a package and compile it.


[image: image] Note  Pay attention to licensing when using code from repositories such as Hackage. Each Cabal file should list the license, so it’s easy to check that a specific package license is suitable for your particular usage.





Code Style

One needs to write code that satisfies the constraints of the compiler to produce some library or executable. However, code that is accepted may not necessarily be easily maintainable, or it may follow a pattern whose behavior is usually confusing for later readers. 

One piece of advice I strongly suggest you follow is to enable the –Wall flag of the compiler at all times. Setting this flag causes the compiler to not only look for errors but also to issue warnings for your code. The HLint tool is also useful in generating warnings, helping you find poorly written sections of code that may prove troublesome later. There is also the EclipseFP plugin for Eclipse that can make suggestions and apply fixes on the fly, helping you to learn good coding practice.

In many cases, you also want your code to follow some style guidelines: that is, a set of recommendations on indentation, newlines, whether to use anonymous functions or define them in let blocks, and so on. Stylish Haskell is a tool that can help you with guidelines: it reads your code and produces a new version following some configurable options. Furthermore, it’s possible to integrate it into EclipseFP, Emacs and vi, so you can make it part of your daily development experience.




Documentation

In the last chapter we discussed the importance of good and up-to-date documentation. As you now know, Haddock is the recommended tool for maintaining that documentation. The main benefit of using Haddock is that the information about an element appears very near the element itself. Haddock is also the tool used to produce the massive amount of help documents in the Hackage website. Finally, Haddock’s output shows the documentation coverage, so you can quickly see if you’ve forgotten to document any of the functions within your code.

Searching a large number of packages for functions and data types can be a time-consuming task. Hoogle was introduced earlier in the book as a way to search Haskell declarations not only by name or description but also by taking into account the types that are involved in a function’s signature.




Test and Verification

One big part of Chapter 15 has been devoted to testing using HUnit, QuickCheck, and Smallcheck. I can’t stress enough how important testing is for a successful development project. The great benefit of property-based testing tools, such as QuickCheck or SmallCheck, is that you indicate how your program should behave at a higher level. Then, it generates small unit tests for a variety of scenarios. In that way, the coverage is much higher than using traditional tools.

Type-level programming in Haskell and dependent types open the door to formally verifying some properties of your data types and algorithms directly inside the language. While this consumes more time than basic testing, it’s the only technique that can guarantee a complete absence of bugs.




Benchmarking

Functional correctness is an important consideration for a piece of code. In many cases, though, an application should run with a certain performance. The Criterion tool helps you define test cases and get statistics on the time of execution. The tool runs the test enough times to make the computed time statistically significant and also evaluates the result completely (in other cases, some part of the computation wouldn’t be measured because of laziness).




Profiling

Chapter 15 introduced the GHC profiler, which allows you to gather information about the time and memory consumption of your applications. Due to the lazy nature of Haskell, memory profiling becomes much more important than in other languages. Used wisely, it can shorten the investigation process for performance problems, and guide you toward those places you should spend more time optimizing.

The main disadvantage of the profiler is that it’s not designed for applications with several threads, such as those you can write with the libraries presented in Chapter 8. For those cases it’s interesting to consider ThreadScope, a graphic tool for reading GHC eventlogs. These eventlogs include information about when different threads are created and terminated, along with the activity of each of them.




Coverage

When you design tests, it’s important to ensure that every possible path of execution is covered. That is, make sure that you’ve covered all possible branches of conditionals, all possible patterns for a data type and match, and so on. The hpc tool, included with GHC, gathers important statistics about the code used in a certain execution. This information can be used to produce a report with the different kinds of coverage and the achieved percentage.




Remote Monitoring

In many cases, applications are not processes with a limited life, but are server-like in nature. One example of this kind is web applications. The ekg package enables you to get statistics of the performance and behavior of an application while executing. In addition, it does so via a web interface, so its management is quite simple. When using ekg you’re not restricted to the information it gives by default: you can include your own counters. For example, for a web application you might be interested in knowing how many pages are served by the minute, or how many database connections are kept open through time.



Projects

In-depth explanations about application and library design in Haskell, and looking at those recurrent patterns in functional code, could definitely fill another book. Instead, in this section I’ll describe a software system and the design considerations you might look at if you were developing that system in Haskell. From those considerations, you can infer patterns to apply in your own designs.

In addition, you can see these projects as extra, more comprehensive, exercises for practicing your Haskell skills. In each of these cases, the solution is more open-ended than for the tasks suggested in the rest of the book. One hint for all of the cases is to search libraries such as the Hackage repository to see whether there is predefined functionality that helps solve the problem at hand.


Data Mining Library

Part 2 has been devoted to developing two data mining algorithms: K-means for clustering, and Apriori for association rules learning. This first project entails turning the code you already have into a full-fledged data mining library, with support for different algorithms for each problem.

Even if you only consider one problem, such as clustering, it’s interesting to look at the commonalities of each algorithm solving that task. For example, data can come from different sources (a list, a conduit Source, a database query), but you should provide a common interface to all of them to make the algorithms independent of that choice. In Haskell, this level of abstraction is obtained via type classes. Here, you may create a ClusteringDataSource one.

A good library includes not only data types, functions, and type classes but also an exploration of the laws and properties that the user should count on. For data types, it’s very useful to consider whether a given type is an instance of one of the common abstractions in the Platform. For example:


	Many data types are composed in a way that allows you to generate a new value from the other two. The Monoid type class handles this case. Making your type a monoid can guide you into thinking whether a neutral element would be useful in your case.

	Other types fit more into the container-like intuition. In those cases, try to instantiate the Functor, Foldable, and Traversable type classes.

	Those data types that entail some kind of computational context, or in some way a description of a set of actions to take, fit well into the Applicative and Monad abstractions. Additionally, if your type allows choice, Alternative and MonadPlus may help.



Figure 16-1 shows most of these type classes, along with their parent-child relation. Keep in mind that Applicative is not nominally a superclass of Monad, nor an Alternative of MonadPlus.
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Figure 16-1. Important type classes in the Haskell Platform



When writing instances of these well-known abstractions, you should abide by the rules they come with, even though those rules are not checked by the compiler. Users of your library should be very surprised to find an instance of Functor that doesn’t satisfy that fmap id = id, for example. The general guideline is the no-surprises rule, sometimes referred to as the Principle of Least Astonishment: make your library do what users expect from it, or otherwise document the behavior prominently. For help in ensuring that rules are always kept correct, you may use formal verification or QuickCheck.

One extra consideration you should make is for performance. Be aware that your previous ideas about code optimization may not be useful in Haskell, where code is evaluated lazily. I’ve already discussed in the Tools section the GHC profiler and the Criterion package, which are very valuable in spotting performance deficiencies and finding the cause. If you’re interested in complexity analysis of Haskell code, you should definitely read the book Purely Functional Data Structures by Chris Okasaki (Cambridge University Press, June 1999).

One perfect example of the use of common abstractions in a specific setting is the HLearn library. This package focuses on machine learning and offers many algorithms for several different tasks and distributions. For example, Monoid is used to represent sets of data.


WRITE APPLICATIONS AS LIBRARIES

Your software design can greatly benefit from thinking of your application as a core library that is later consumed by a front-end application. Cabal embodies this strategy by allowing a stanza for the library part and referring to it in an executable.

The reason for this advice is this: knowing that another developer may consume your code, one is usually more careful when refining the abstractions that will be exposed. Also, it makes it easier to re-factor and re-use the core parts of your project, instead of entangling them with the interaction-specific code.






Store Network Client

In the Store internal network, you need to create a server and clients that can be used by workers. This kind of application uses a variety of functionality: keeping an internal consistent state, communicating through a network, logging problematic scenarios, and so on. As you’ve seen in Chapter 7, such functionality is a perfect task for a monad stack, which brings together the features you need from different pieces. In this case, a possible choice of monad transformers may be:


	IO and ConduitM for managing the network connections, or Process if you prefer to use the actor model;

	SqlPersistT for database access, via the Persistent network;

	STM can be used to keep the internal state consistent against concurrent modifications. If you follow the actor model, a more simple StateT transformer can keep the state;

	ReaderT could keep track of different configuration options, like the port you’re using for communication, or the database connection options;

	The logging functionality can be implemented via WriterT.



However, you shouldn’t just create a big monad stack and pass it everywhere. As discussed above, you should try to keep your code as polymorphic as possible. If instead of ReaderT r (SqlPersistT IO) you program against MonadReader, you can grow or shrink your monad stack at will during the development of your application. In particular, it would not be uncommon for you decide to add a new layer. One function that queries the database and logs some information should have a signature like this:

getClientInformation :: ( PersistQuery m, MonadWriter String m ) => ClientId -> m [Client]

Instead of the more specific:

getClientInformation :: ClientId -> WriterT String ( SqlPersistM [Client])

Developing against monad classes also helps in separating the different concerns of your application. In this sense, monad classes resemble aspect oriented programming, where you define each part of your application dealing with some different feature separately, and then mix them together. The signature, via the list of monad classes needed to implement some function, define exactly which functionality is needed from the context. Giving a specific incarnation via a monad stack is the equivalent of choosing the implementation.

Table 16-1 shows the most important monad classes and which monads (shown in italics) or monad transformers (shown in regular face) are instances of each class, along with the most important operations that each class embodies. There are more monads explained in this table than there are throughout the entire book. In particular, two kinds of additions are found:


	In some cases, the specific monad has been introduced, but not the monad class that abstracts the pattern. This is the case of the Par monad, which implements the ParFuture and ParIVar type classes, or the MonadRandom class.

	Other monads are completely new, but I think they deserve being listed. MonadSupply, which is used to having a source of new values (which you can use as unique identifiers, for example), fits in this case.




Table 16-1. Common and Useful Monad Classes
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Most Haskell web frameworks follow the approach of developing against monad classes, encouraging you to create your application by superposition of monad layers. Persistent is one example. Its main SqlPersistM type for database access is defined as a monad stack:

type SqlPersistM = SqlPersistT (NoLoggingT (ResourceT IO))


All of Yesod, Snap and Scotty define their own monad transformers, which you can mix with any database, logging or configuration layer you may desire.




Administration Interface and Tetris

An administration interface for the Store is a way to manage products and stock in the system and to modify and decline purchases from clients. Tetris, on the other hand, is the perfect game for entertaining time travelers while the time machines operate their magic. What those two applications have in common is that the set of actions you can perform on them are limited. In the administration interface you can only access some functionality depending on your security level, in the tetris game you can only move the current piece on three directions or rotate them.

You’ve seen in Chapter 14 how a domain specific language (DSL) can help you constrain the value that can be represented by a data type. In that case, the aim was to restrict the data that can be expressed and processed by the application. But you can follow the same idea, and create a domain specific language for the actions that your application is able to take. There are several examples of this pattern: Esqueleto embodies an SQL-like language for expressing database queries, attoparsec has a language based on the Applicative interface for describing parsers, Scotty uses its own DSL to specify routes in your web application.

The DSL approach has two main advantages:


	First of all, it restricts what you can do in a certain context. It’s not the same to have a signature using the IO type, which may use unrestricted side effects, as it is to have a specific monad for your application that only allows network and database connections. The type system can be used to ensure many more invariants.

	If you use a deep embedding for your actions, you can provide several interpretations for the same DSL. This can be very useful in testing: for example, if your DSL is used for network communication, you can provide an interpretation that fakes a network conversation between two peers.



Within Haskell libraries and applications, you can find two different ways in which domain specific languages for actions are implemented. You have seen examples of both throughout the book:


	One possibility is developing a combinator library. In this case, you specify a set of basic constructs, and a series of functions that combines those basic blocks. This is the approach taken by the attoparsec library for building parsers. One advantage of this approach is that you may inspect the structure of your computation before actually executing it, adding new features or performing optimizations.

	Another popular option is rolling your own monad, which is to say providing a monadic interface to the set of operations that you support. You can see many monads from that point of view: State, for example, is a limited language for expressing values that can be read and updated from the context. A very successful example of building an application around a monad is XMonad, a window manager written in Haskell; but you can also find this pattern in Scotty, which defines the ScottyT monad transformer, and Esqueleto, where queries are expressed as values of the SqlQuery monad.






Roll Your Own Monad

Monads appear everywhere in Haskell code. The special do notation provides a convenient syntax for sequencing and composing actions, and there are many libraries and functions operating on monadic code. Thus, writing a monad appears as an obvious choice for developing a domain-specific language for your actions.

In Hackage there are several packages that ease the creation of those monads, like operational or free. The latter will be focused on in this section. In any case, all of these packages encompass a similar abstraction, which is the “sequence of actions”: each monadic value is a list of primitive operations. To create the full monad you need to provide two sets of data:


	the primitive operations that you may take, and the building blocks of your monad.

	how each operation affects the related context, and which value provides to the next computation in the list.



As a running example, let’s consider a small DSL that allows managing a database of clients. The basic operations will be adding a new client, querying the client by its identifier, and replacing the information about a client. So, in some sense it’s a restricted version of Persistent. The data types used to define Clients are:

newtype ClientId = ClientId Integer           deriving Show
data Client = Client { clientName :: String } deriving Show

When using the free package, each operation is encoded as a constructor in a common data type. For each operation you need to first write the parameters to the operation in question. For example, writing a new client in the database takes that client as the parameter. Then, you need to define how the result of the operation gets threaded to the next step in the computation. This is done by requiring a function from the result type to a yet-unknown data type that will refer to a list of computations. In the example of new clients, the result is a ClientId, which must be threaded to the next computation r. The code for all operations read:

data AdminOp r = GetClient  ClientId        ( Client   -> r )
               | SaveClient ClientId Client r
               | NewClient  Client          ( ClientId -> r )

Notice that the SaveClient operation doesn’t return any value, so the next operation doesn’t take any parameter. Thus, you only need to specify r in the data constructor.

The free package mandates that every operation data type follows this schema, and also that the type is an instance of Functor. The good news is that once again you can use the deriving functionality in GHC and automatically generate such an instance. It now reads:

{-# LANGUAGE DeriveFunctor #-}
 
data AdminOp r = ...
               deriving Functor

Your monad will now be the free monad over that Functor in question. You could refer each time to the Free type parametrized by your operations, but usually you define a type synonym, as follows:

import Control.Monad.Free
 
type Admin = Free AdminOp

Still, you cannot use your data type directly inside a do block. You first need to lift your operations to the free monad. For this matter, you should use the liftF function from Control.Monad.Free. The only item left is what to provide as the last parameter in each operation. As rule of thumb, you should provide id if the next list of operation must be given a parameter, and () elsewhere. In this case it means:

getClient :: ClientId -> Admin Client
getClient i = liftF $ GetClient i id
 
saveClient :: ClientId -> Client -> Admin ()
saveClient i c = liftF $ SaveClient i c ()
 
newClient :: Client -> Admin ClientId
newClient c = liftF $ NewClient c id

Finally, you have a monad! It can even be used within do notation:

import Data.Char
 
exampleAdmin :: String -> Admin String
exampleAdmin s = do i <- newClient $ Client s
                    n <- fmap clientName $ getClient i
                    return $ map toUpper n

However, exampleAdmin won’t have any effect by itself. At this point, this is only a description of the computation that should happen. The free package represents the list of operations using two constructors: one operation followed by a list of other operations uses Free, whereas the end of a computation is marked using Pure. This means that the previous example is equivalent to writing:

Free (NewClient (Client s) (\i ->
  Free (fmap clientName (GetClient i (\n ->
    Pure $ map toUpper n)))))

The final step is giving an interpretation of each operation. The example below interprets the operations as working on an association list of identifiers and clients. As you can see, the interface is very similar to other run functions on other monads.

import Data.List
 
runAdmin :: Admin a -> ([(Integer,Client)],a)
runAdmin m = runAdmin' m []
  where runAdmin' (Free (GetClient  (ClientId i) n))   l =
          let Just c = lookup i l in runAdmin' (n c) l
        runAdmin' (Free (SaveClient (ClientId i) c n)) l =
          let l' = deleteBy (\(j,_) (k,_) -> j == k) (i, c) l
           in runAdmin' n $ (i,c):l'
        runAdmin' (Free (NewClient c n)) [] =
          runAdmin' (n $ ClientId 1) [(1,c)]
        runAdmin' (Free (NewClient c n)) l =
          let (i',_) = maximumBy (\(j,_) (k,_) -> compare j k) l
           in runAdmin' (n $ ClientId (i' + 1)) $ (i' + 1,c):l
        runAdmin' (Pure c)                  l = (l, c)

In this case, this interpretation could be used for testing purposes, and another interpretation would provide real access to a database. You may check that your monad indeed works on the interpreter:

*Chapter16.FreeMonads> runAdmin $ exampleAdmin "Alejandro"
([(1,Client {clientName = "Alejandro"})], "ALEJANDRO")

The free package provides many more features for rolling your own monads. For example, you may decide to create a monad transformer instead of a plain monad, just by using FreeT instead of Free. If your application will revolve around a custom monad, it’s useful to read the documentation of the Control.Monad.Free.Church module, which can enhance the performance in the long term. Finally, free does not only provide free monads, but also free Applicatives, Alternatives and MonadPlus.



Summary

In this chapter you’ve had a bird’s-eye view of design using Haskell and functional patterns:


	We’ve discussed the relation between functional design and more traditional object-oriented patterns: some patterns are kept, others change the way in which they are implemented, and still others are not needed anymore.

	You’ve had a walk through many of the tools that the Haskell Platform and Hackage provide for documentation, testing, profiling, and project management.

	I’ve presented a recap of the most important type classes and their relation.

	I’ve explained Monad transformer-based design. A summary of useful monad classes can be found at the end of this chapter.

	Finally, you’ve learned how to use domain specific languages for encoding the actions in your application. That language can be implemented as combinator library or by rolling your own monad (for example, with the Free type).



1In the following pages I’ll refer to several object-oriented design patterns following the title of the book Design Patterns: Elements of Reusable Object-Oriented Software.

2distr-process refers to the distributed-process set of packages.
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Looking Further


Congratulations for arriving at this point. Thus far in the book you’ve learned many of the features that Haskell provides in terms of language and libraries. The notions of functor, monad, or GADT should not be alien to you anymore. You’ve also seen how to design large applications in Haskell, and how to manage databases and web applications. And above all, you’ve seen how a strong type system encourages a more systematic way of writing software, and helps in reducing time spent in coding and maintenance.

As happens with any other language, a book cannot contain every single use of Haskell. Hackage provides an enormous amount of functionality already packaged and should be your entry point for discovering the vast field of Haskell libraries. The book has just skimmed the surface of parallel and concurrent code libraries or web frameworks, to mention two examples of places where you may deepen your knowledge. Many new abstractions continue to appear: nowadays Functional Reactive Programming is becoming an interesting approach for building time-changing applications such as user interfaces.

The Haskell language also has more surprises built on its compiler. In the last chapter I’ve mentioned data type generic programming, and along with type-level programming it can reduce even more boilerplate code for validation, while increasing safety. The metaprogramming facility Template Haskell has been used extensively in the book, but how to create your own quasiquoters has fallen outside the contents. Another place where you may expect new techniques to appear is in kind-level programming.

In conclusion, I hope this book doesn’t put an end to your journey in Haskell and functional programming, but encourages you into using this language in your daily or hobby projects and into looking at many of the available resources that are online. Thanks for reading!

Haskell Resources

Haskell has a very active community on Internet, as the enormous database of packages and the boiling activity in forums and mailing lists acknowledges. The set of places where you can look for more information include:


	Haskell’s main page, at http://www.haskell.org, contains pointers to many tutorials and resources. It’s built as a wiki, and its users are always adding new information that may be interesting for Haskell developers.

	The Monad Reader is a regular magazine about Haskell, which has an an emphasis on articles that are practical or enlightening to developers. You can check all the published issues at http://themonadreader.wordpress.com.

	If you want to look at examples of elegant and instructive functional code, you should look at the Functional Pearls section in Haskell’s wiki, at http://www.haskell.org/haskellwiki/Research_papers/Functional_pearls.

	To stay tuned with the latest news of Haskell and Hackage, you can subscribe to the Planet Haskell feed aggregator at http://planet.haskell.org. You’ll see that there are quite a number of bloggers trying and speaking about Haskell.

	Another great way to keep yourself updated is the Haskell subreddit at http://www.reddit.com/r/haskell/. Reddit allows commenting about articles: many interesting discussions span in this way.

	Haskell community maintains a mailing list called Café, at http://www.haskell.org/mailman/listinfo/haskell-cafe, which is a space where many discussions about the language and libraries take place. If you look at the archives, you’ll notice that the list welcomes both newcomers and experienced developers. If you have a question, just ask and you’ll get a gently response.

	If you prefer more direct communication, you can use IRC. The #haskell channel at irc.freenode.net is usually filled with people talking about the language.

	Or surf to Haskell community at Google+ and share your questions and experiences.




Other Functional Languages

Most of the concepts and ideas in this book are applicable to many other programming languages. One of the closest set of languages is the ML family, which includes OCaml and F# (this language integrates into Microsoft’s .NET Framework, allowing easy interoperability with software written in C#). The main difference with Haskell is the use of strictness instead of laziness. Languages from the Lisp family, like Racket or Clojure, also embody functional concepts. Some languages mix functional concepts with other paradigms: one interesting example is Scala, which puts under the same umbrella functional and object-oriented programming inside the Java platform.

In this book I’ve mentioned several places where Haskell abstractions are directly applicable in other languages. The monad concept lies behind the LINQ libraries in C#, the for expressions in Scala and the computation expressions in F#. Libraries for Software Transactional Memory have been put into many other languages. And parser combinators are becoming increasingly used for treating text data. Thus, you can use the intuition gained from working on Haskell in many other scenarios.


HASKELL AND SCALA

My experience with Scala was greatly enhanced after diving into Haskell. The Scala community shares many of the abstractions that were presented in this book. Here’s a small list of Scala libraries for which you can benefit from Haskell knowledge:


	typelevel.scala is a project that brings many type-level features to Scala. In particular, the scalaz library includes monoids, functors, monads, and many other type classes to the Scala world, and shapeless features data type generic programming.

	ScalaCheck brings the power of random testing to Scala. Tools like ScalaTest and specs2 provide a common interface to many kinds of testing, as Tasty and HSpec do for Haskell.

	Squeryl is an Object-Relational Mapper very similar in spirit to Persistent and Esqueleto. You also define your schemas in the language, and it has a DSL for writing queries.

	The Scala library features parser combinators like attoparsec does. If you’re interested in attribute grammars, the Kiama library provides that functionality.



This (incomplete) list shows that functional concepts are not only useful in Haskell but can also open the door to other languages and environments.
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Time Traveling with Haskell


Now that you’ve come to this point, it’s time to tell you one secret that only Haskellers are allowed to know: our code can travel in time! In order to do so, you need to kindly ask The Doctor1 for his TARDIS Time Machine. Gratefully, the machine has a Haskell form: it can be converted into a monad.

The Tardis monad is provided by the tardis package in Hackage. The interface is similar to a State monad, but you can work both with state, which travels in the normal way, from the current step of execution forward in time; but you also have the possibility of updating a state backward in time. For each of those states you have a pair of functions in the monad:


	You move the state forward in time by updating it using sendFuture, and are able to get it at other point in the execution via getPast;

	The state that travels backward is updated via sendPast and obtained via getFuture.



In both cases, it’s important to understand that you can only obtain the last version of each state. For example, if you call sendFuture twice, any call to getPast will retrieve the second version of sendFuture.

It’s time to play the trick. Let’s code a function that, given a list of numbers, builds a new list of tuples with each tuple showing the current sum up to that point from the beginning of the list, and the same but from the end of the list. You can see the result as two states traveling in opposite directions in time: the sum from the beginning goes forward, and the sum from the end travels backward. Figure 18-1 shows this graphically.



[image: 9781430262503_Fig18-01.jpg]

Figure B-1. Forward and backward state in Tardis



The corresponding Haskell code follows:

{-# LANGUAGE RecursiveDo #-}
 
import Control.Monad.Tardis
 
sumListTardis :: [Int] -> [(Int,Int)]
sumListTardis lst = evalTardis (sumListTardis' lst) (0, 0)
 
sumListTardis' :: [Int] -> Tardis Int Int [(Int,Int)]
sumListTardis' (x:xs) = do
  sumFw <- getPast
  let newFw = sumFw + x
  sendFuture $ newFw
  rec let newBw = sumBw + x
      sendPast $ newBw
      sumBw <- getFuture
  rest <- sumListTardis' xs
  return $ (newFw, newBw):rest
sumListTardis' [] = return []

The forward state handling is straightforward: at each step you just take the previous state from the past and send to the future a new value that sums the current number to the forward state.

The backward state is much more mysterious: as you can see, the information is sent to the past and then brought from the future. This way of working is needed because if you first send to the past, and then try to bring from the future, you would try to get the value of the last call to getPast, which is the present moment. This is impossible, because the state would depend on itself in a direct way. Instead, the code asks to create a recursivedo block, which starts with the rec keyword, and allows referring to a later value.


[image: image] Note  Not all monads support the rec keyword. To use it, the monad you’re working on must be an instance of the MonadFix type class.


You can run the Tardis over some list and check that everything works as expected:

*> sumListTardis [1,2,3,4]
[(1,10),(3,9),(6,7),(10,4)]

While Tardis seems like very weird stuff, with no real applications, there are cases in real life where a computation receives feedback from itself. The archetypical example is in circuits, where an output cable may be connected to an input port again. As in the previous case, in circuits you need to be careful not to create a dependence of a value on itself: you usually add some delay to make the input depend on the output in some previous moment. Another example is bowling, where the points scored after a strike or spare depends on the score in later rounds.2

If only you had known that you could travel into the future! Instead of moving step by step through examples and exercises, you could have traveled and asked your future self to give you all your Haskell knowledge. But such is the mystery of laziness, of type classes, and of higher-order functions. It’s now time to have fun and explore the rest of the Haskell universe!

1“The Doctor” is the name of the main character of the BBC series Doctor Who, a Time Lord who travels space and time in his Time And Relative Dimension In Space (TARDIS) machine.

2You can read more about bowling and Tardis in an article by Dan Burton, available at http://unknownparallel.wordpress.com/2012/11/05/bowling-on-a-tardis/.
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data BinaryTree a
Atypical binary tree

Constructors.

Node a (BinaryTree a) (BinaryTree a) lnner nodes
Leaf Leaves.

& Instances

Show a => Show (BinaryTree a)

Operations
Insertion

treeInsert :: Ord a = a -> BinaryTree a -> BinaryTree a

Inserts an slement into a BinaryTree

« it finds aleaf, insert there
« If smaller than the item in the node, insert in the lsf
« Iffarger than the item in the node, inset in the right

>>> treelnsert 1 Leaf
Node 1 Leaf Leaf
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