

Getting Started with
Memcached

Speed up and scale out your web applications
with Memcached

Ahmed Soliman

 BIRMINGHAM - MUMBAI

Getting Started with Memcached

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1181113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-322-0

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Ahmed Soliman

Reviewers
Jorge Arévalo

Nazimuddin Basha

David Hogue

Acquisition Editors
Vinay Argekar

Mary Jasmine Nadar

Commissioning Editor
Priyanka Shah

Technical Editor
Monica John

Project Coordinator
Sageer Parkar

Proofreader
Linda Morris

Indexer
Priya Subramani

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Ahmed Soliman is an entrepreneur and software and systems engineer coming from
a diverse background of highly scalable applications design, mission-critical systems,
asynchronous data analytics, social networks design, reactive distributed systems, and
systems administration and engineering. He has also published a technology patent
in distributed computer-based virtual laboratories and designed numerous large-scale
distributed systems for massive-scale enterprise customers.

A software engineer at heart, he is experienced in over 10 programming languages but most
recently he was busy designing and writing applications in Python, Ruby, and Scala for several
customers. He is also an opensource evangelist and activist. He contributed and maintained
several open source projects on the Web.

Ahmed is a co-founder in Cloud Niners Ltd., a software and services company focusing on
highly scalable cloud-based applications that have been delivering private and public cloud
computing services to customers in the MEA region on different platforms and technologies.

Acknowledgments

I would like to thank some of the folks who changed my entire life for the better, upon
meeting or working with them; those thanks do not come in a specific order but resembles
a great appreciation for their support, help, and influence through my personal life and
professional career:

ff Al Sayed Al-Ghadban, for helping me switch to Linux back in late nineties

ff Romain Slootmaekers, for his priceless technical advice and continuous support

ff Khaled El-Sersy, for helping me when I was a little kid to learn programming

ff Ahmed Kamal, a great colleague and partner, who was always a believer
and supporter

ff Tarek El-Esseily, a great entrepreneur with endless energy

ff Dr. Aser Farghal, for his endless care and support

ff Dr. Kamal Shebl, who is like a father to me

ff My Family, for everything!

A great thanks goes to my wife Sinar for her continuous support and help. She has been a
great help and a deep source of inspiration. I have learned a lot from her patience and her
support was the reason behind many of my/our successes together.

About the Reviewers

Jorge Arévalo is a computer engineer from the Universidad Autónoma de Madrid, UAM.
He started developing Web applications with JS, PHP, and Python. In 2010, he began
collaborating with PostGIS and GDAL projects, after participating in GSoC 2009, creating the
PostGIS Raster GDAL driver. He currently works as a freelance Web/GIS developer and he
collaborates with geomati.co group in projects such as gvSIG CE or QGIS. He also writes
a blog about GIS: http://www.libregis.org.

"I worked with Jorge for a while. He acted as Scrum Master of our development team, where
I was working as designer. He is a great professional, with proven ability as a developer and
team manager. A good person and excellent colleague" (Carlos Azaustre, web developer).

"Jorge is a great project engineer, an excellent workmate. His commitment and devotion makes
him a very valuable person." (Victor Serrano, GMS System Integration Engineer).

"Very organized, responsible and hard working colleague. Jorge is very autonomous and has a
strong technical background. He is the kind of person you can trust in." (Diego Abia, Payload
Data Ground Segment AIV Engineer).

Jorge Arévalo has co-written the book Zurb Foundation 4 Starter, for PacktPub Ltd. He has
also worked as a reviewer for the books PostGIS 2.0 Cookbook and OpenLayers beginner's
guide (2nd edition), also for PacktPub Ltd.

I would like to thank my girlfriend, Elena Cedillo, for her continuous support
and love.

Nazimuddin Basha has more than 15 years of experience in the information technology
field in various positions. He started his career with Visual Basic and moved on to work in
Java, later to .NET Framework. He is currently working as a .NET architect with a healthcare
client providing services to the major insurance companies.

In his leisure time, he likes to watch movies and cricket, listen to music, and spend time with
his kids (Aafreen and Asima).

His linkedin profile is http://www.linkedin.com/in/nbasha/.

David Hogue is a software developer currently working remotely out of the Portland,
Oregon area. He's worked on a CMS called Pixelsilk that makes substantial use of Memcached
for improving performance between clusters of Web servers. He has been programming in one
language or another for over 15 years and is constantly looking out for new and useful tools
or techniques.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Getting Started with Memcached	 7

Basic installation of memcached on Ubuntu (Simple)	 7
Basic installation of memcached on Mac (Simple)	 9
Compiling memcached from a source on Ubuntu (Simple)	 12
Talking with memcached (Advanced)	 12
Setting up memcached to start on boot in Ubuntu (Simple)	 16
Setting up distributed memcached (Intermediate)	 18
Using memcached with PHP (Intermediate)	 19
Using memcached with Python (Intermediate)	 22
Using memcached with Ruby (Intermediate)	 25
Using memcached with Java (Intermediate)	 28
Setting up memcached support in Rails (Simple)	 31
Setting up memcached support in Django (Intermediate)	 34
Setting up memcached to support in Play (Intermediate)	 37

Index	 41

Preface
The Internet used to be a relatively smaller place compared to today's Internet. Applications
were simpler, and most applications were getting a few hundred to thousands of requests
per day. But that didn't last for long, the internet growth exceeded all expectations and with
the boom of smart phones sales, servers started to choke, bottlenecks were congested
and application scalability was inevitable. Memcached was written to reduce the number of
database queries for the popular LiveJournal website, it was built as a general-purpose ultra-
fast memory-based caching service. Today, memcached is used by many other sites, including
Facebook, Youtube, Twitter, WordPress.com, Wikipedia, Digg, and the list keeps going. Many
others use memcached to speed up their applications at very large scale infrastructures.

Caching is not only for big websites. In today's world the load characteristics changed
dramatically, especially after the increasing number of mobile and tablet users accessing
native and web applications, the average load on a medium-sized website in today's world is
hundreds of thousands of requests per day. Serving pages as fast as possible is part of the
user experience you are delivering to your users, you need to put in a lot of effort, because
performance really matters!

Memcached is designed as a server-client service, this means that you connect to your
memcached server, using a client written in your programming language of choice, or you
will have to write a client yourself that speaks memcached protocol. Luckily, many clients
are already robust and stable and waiting for your next big thing to be a part of.

Memcached is open source and publicly available under the New BSD License, a modern
permissive license that allows you to do any kind of hacking and modifications if you want
to. You can find many forks of memcached available with many interesting ideas already
implemented in them, but even though, the original memcached code is still the most
popular and you can grab it from memcached.org official website.

One of the interesting features of memcached is its ability to work in a highly scalable
manner; you can run memcached in a consistent-hashing-based cluster and your cache
will be partitioned across as many machines as you like, utilizing as much memory you
already have available on your servers, to speed up the page loads.

Preface

2

This book is a hands-on guide on integrating memcached into your application in different
programming languages, and if you are into web development, we have paid special attention
to some of the most popular web development frameworks as well.

What this book covers
Basic installation of memcached on Ubuntu (Simple), provides easy installation steps
for setting up memcached daemon on your Ubuntu machine.

Basic installation of memcached on Mac (Simple), provides easy installation steps for
setting up memcached on MAC OS X.

Compiling memcached from a source on Ubuntu (Simple), will teach you how to build
memcached from a source code on Ubuntu.

Talking with memcached (Advanced), will introduce you to the memcached ASCII protocol
and help you to get acquainted with the different request types of memcached.

Setting up memcached to start on boot in Ubuntu (Simple), will guide you to set up
memcached to start automatically after server reboots.

Setting up distributed memcached (Intermediate), how to scale up your memcached
installation into a cluster and create a virtual shared caching memory pool on top of
your memcached cluster.

Using memcached with PHP (Intermediate), will teach you to use memcached from your
PHP program.

Using memcached with Python (Intermediate), will teach you to use memcached from
your Python program.

Using memcached with Ruby (Intermediate), will teach you to use memcached from your
Ruby program.

Using memcached with Java (Intermediate), will teach you to use memcached from your
Java program.

Setting up memcached support in Rails (Simple), will teach you to integrate memcached
into your Ruby On Rails setup to speed up your application.

Setting up memcached support in Django (Intermediate), will teach you to integrate
memcached with your Django application.

Setting up memcached support in Play (Intermediate), will teach you to use memcached
with the Play Framework, instead of the embedded Ehcache.

Preface

3

What you need for this book
You will need a computer with Ubuntu Linux (other distributions also work), but examples are
explained based on Ubuntu. You can also use Mac OS X 10.7 or newer.

Who this book is for
This book targets software engineers and system administrators willing to configure and use
memcached clusters in their future or current applications.

In this book, we are mainly using Ubuntu Linux 12.04LTS and Mac OS X 10.8 for our recipes,
but you still can use any other operating system (Windows) if you like, however, you might
find it harder to get memcached properly installed on Windows; you have been warned!

If you are a seasoned developer in any of the following frameworks such as Ruby on Rails,
Django, and Play Framework 2.2.X, this book is definitely for you. You will learn how to
configure those frameworks to rely on memcached for all of the caching tasks.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "We can include other
contexts through the use of the include directive."

A block of code is set as follows:

<?php
 $memcache = new Memcache;
 $memcache->connect('localhost', 11211) or die ("Could not connect");

 $version = $memcache->getVersion();
 echo "Server's version: ".$version."
\n";
?>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<?php
 $memcache = new Memcache;
 $memcache->connect('localhost', 11211) or die ("Could not connect");

 $version = $memcache->getVersion();
 echo "Server's version: ".$version."
\n";
?>

Preface

4

Any command-line input or output is written as follows:

memcached -v

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata
can be viewed by selecting your title from http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any aspect
of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started
with Memcached

Welcome to Getting Started with Memcached (A handy guide for memcached that helps you
boost your application performance easily).

In this section, we will be covering the basic steps to get your memcached server up and
running, either for testing or for a real production environment.

Basic installation of memcached on Ubuntu
(Simple)

Let's get started with the basic installation of memcached on Ubuntu Linux 12.04LTS (long-
time support) using apt-get. We have picked this particular version of Ubuntu because it's the
latest LTS version that came out while writing this book, however, the steps of installation are
the same for any other Ubuntu version. LTS is generally recommended for production servers
because it gets a long period of maintenance and support from the folks at canonical.

Getting ready
You will need to have an administrator account on the Ubuntu box you are setting up. If you are
performing some tests then most likely any machine would do the job but if you are setting this
up as a production environment, you will need a machine with a decent amount of free memory
for the caching job.

Update your apt local repository by using:

sudo apt-get update

Getting Started with Memcached

8

When asked for the password, just enter your account password to give permission to the
application to run as root.

How to do it...
1.	 Use apt-get to install the memcached service:

sudo apt-get install memcached

2.	 Now, let's verify that memcached service has been started.
ps aux | grep memcached

3.	 You are supposed to see something similar to the following:
memcache 830 0.0 0.1 323220 1188 ? Sl 17:33 0:00 /
usr/bin/memcached -m 64 -p 11211 -u memcache -l 127.0.0.1

How it works...
First, we pulled the latest packages information from the apt repository online to make sure
we are downloading the latest version of memcached to our local server. Then we simply used
the apt-get command to download and auto-install the memcached package.

The installation script also starts the memcached daemon and marks this service to be
auto-started on every boot of our Ubuntu box.

We validated that memcached was properly started by checking the running processes with
the ps command and grep-ing to see only processes with the word memcached in them.

It's also important to note here that the default configuration of memcached limits the
memcached daemon to listen only on the loopback device (localhost). This means that
you can connect to your memcached daemons only from local processes running on the
same computer.

There's more...
Let's take a look at the configuration of the memcached daemon installed on our Ubuntu server.

Open the configuration file located at /etc/memcached.conf and locate the line where you
see something like the following:

-l 127.0.0.1

This tells the memcached daemon to listen only on the localhost, note that this is the only
security measure that memcached can offer, so make sure it's listening on a firewalled interface.

Getting Started with Memcached

9

Change it to the following if you want the daemon to listen on all interfaces.

-l 0.0.0.0

Also locate the following line:

-m 64

This configuration parameter configures the upper cap of how large the in-memory storage
can grow to. The default here is 64 megabytes. This means that you can store up to 64 MB
worth data on your memcached daemon, but this doesn't mean that the daemon will allocate
this memory on its boot.

Installation on Windows
In most cases you will only need memcached on windows for development or testing, it's quite
unlikely to see memcached installed on a production server.

Memcached is written in C so it's portable, but it is not officially supported or recommended
to run on Windows. However, there have been a few ports to Windows, a popular one can
be found at http://code.jellycan.com/memcached/, see memcached for win32.
As advertised, it comes with no promises or support.

Basic installation of memcached on Mac
(Simple)

Installation on Mac OS X is quite a straightforward process if you have the right tools installed.

Getting ready
We will be using a package manager for Mac OS X that is really a must-have tool for any Mac
user and even more important if you are a developer or a system engineer.

The package manager we will be using is Homebrew, the missing package manager for OS X

You will need to install Homebrew first if you don't have it, installation is straightforward and
all instructions are explained in different languages for your comfort at http://brew.sh/.

Or you can simply use this one liner to install Homebrew on your Mac:

ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

http://code.jellycan.com/memcached/,
http://brew.sh/

Getting Started with Memcached

10

How to do it...
1.	 Update the Homebrew local repository:

brew update

2.	 Use Homebrew to install the memcached package:
brew install memcached

Memcached is not started by default after installation, if you manually want to start
memcached use, /usr/local/opt/memcached/bin/memcached

3.	 If you are planning to start memcached on boot every time, you will need to create
a link:
ln -sfv /usr/local/opt/memcached/*.plist ~/Library/LaunchAgents

Then, you may want to start memcached immediately using launchctl:
launchctl load ~/Library/LaunchAgents/homebrew.mxcl.memcached.plist

How it works...
We started by updating the local copy of the Homebrew repository from the Internet using
the brew update, this ensures we are installing the latest version of any package we want to.
Then we installed the latest version of memcached.

Homebrew does not start memcached automatically after installation nor during boot time,
so we had to do this ourselves.

You can always start memcached manually in the foreground by using the memcached
daemon executable. But if you want memcached to start on boot we created a symlink
so that launchctl picks it up on boot.

There's more...
If you have configured your memcached daemon to start on boot as previously described, you
might be wondering, where is the default configuration? Is it in the same place as Ubuntu?
The answer is No!

Because the memcached service will be started by launchctl, the configuration is
controlled by it. You will find the configuration file at /usr/local/opt/memcached/
homebrew.mxcl.memcached.plist and it's basically an XML file.

Getting Started with Memcached

11

See the following section in the file:

 <array>
 <string>/usr/local/opt/memcached/bin/memcached</string>
 <string>-l</string>
 <string>localhost</string>
 </array>

As you may have discovered yourself, this represents a list of parameters passed to the
memcached executable at runtime.

You can edit the localhost field, as previously described in the Ubuntu configuration
section, but if you want to configure the amount of memory that memcached can use,
you will need to insert a couple of directives for that directly after the localhost directive:

<string>-m</string>
<string>256</string>

This configures memcached to use up to 256 MB of memory for its on-memory storage.

Another option if you are not a Homebrew user, is to use MacPorts (http://www.macports.
org/), it works almost the same way and you can use the command port instead of brew.

Another interesting feature of brew, is that you can specify options to control the way
memcached is built (compiled), so most of the time you don't really need to compile
memcached from source on Mac OS X, instead, you use brew options for that. An example,
is to enable SASL support to disable the plain ASCII protocol or to add SASL with password
option, as stated in the brew info memcached.

--enable-sasl
 Enable SASL support -- disables ASCII protocol!
--enable-sasl-pwdb
 Enable SASL with memcached's own plain text password db support
-- disables ASCII protocol!

So, for example, if you want to enable SASL support during installation, use the following:

brew install memcached --enable-sasl

Getting Started with Memcached

12

Compiling memcached from a source on
Ubuntu (Simple)

In some cases, you might want to enable some of the memcached features that have to be
baked-in during the compile time of the program. In this recipe, we will learn how to compile
memcached from a source on Ubuntu

Getting ready
We will install the requirements of the package by using apt-get:

sudo apt-get install g++ make libevent-dev

This installed the C++ compiler , make, and the libevent library headers needed to
compile memcached.

How to do it...
1.	 Let's download the latest version of memcached in your home directory:

curl -O --location http://memcached.org/latest
mv latest memcached-latest.tar.gz
tar vxzf memcached-latest.tar.gz

2.	 Next, let's configure and compile
cd memcached-*
./configure && make

3.	 If the compilation process went well, we install the binaries:
sudo make install

Talking with memcached (Advanced)
Now, since we have memcached installed, let's see what kind of commands memcached
daemon supports and how simple the memcached protocol is.

We will be using a plain simple TELNET tool to connect to the memcached daemon.

Remember that memcached has no persistent storage whatsoever, so it's totally memory-
based and once we terminate the daemon everything we have stored is simply gone!

http://memcached.org/latest
http://memcached.org/latest

Getting Started with Memcached

13

Getting ready
You will need to have telnet client installed on your machine, in most cases you will find it
already installed but in case you didn't find it you can install it on your Ubuntu box using

sudo apt-get install telnet

You also must make sure that the memcached daemon is actually running.

Connect to the running memcached daemon with telnet on port 11211.

telnet localhost 11211

You should see something like the following:

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

How to do it...
So, let's play with some basic storage commands to understand the main concepts behind
memcached. We believe that this way is the best way to understand the features of the
service and to truly realize its design simplicity and power.

Memcached supports a plain ASCII (text) protocol, you can find the protocol definition
and specifications in the document in this link https://github.com/memcached/
memcached/blob/master/doc/protocol.txt

1.	 The first command is stats where you request some basic information about the
running service:
stats

STAT pid 8141

STAT uptime 1926

STAT time 1380294691

STAT version 1.4.13

STAT libevent 2.0.16-stable

STAT pointer_size 64

STAT rusage_user 0.108006

–

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://github.com/memcached/memcached/blob/master/doc/protocol.txt

Getting Started with Memcached

14

2.	 So, let's now use it for settings:
stats settings

STAT maxbytes 67108864

STAT maxconns 1024

STAT tcpport 11211

STAT udpport 11211

STAT inter 127.0.0.1

STAT verbosity 0

STAT oldest 849

STAT evictions on

STAT domain_socket NULL

STAT umask 700

STAT growth_factor 1.25

STAT chunk_size 48

STAT num_threads 4

STAT num_threads_per_udp 4

STAT stat_key_prefix :

STAT detail_enabled no

STAT reqs_per_event 20

STAT cas_enabled yes

STAT tcp_backlog 1024

STAT binding_protocol auto-negotiate

STAT auth_enabled_sasl no

STAT item_size_max 1048576

STAT maxconns_fast no

STAT hashpower_init 0

STAT slab_reassign no

STAT slab_automove no

END

3.	 Now, let's store some value for a given key:
set mykey 0 300 5 16
I Love Memcached

4.	 After you hit the return key, you will see the STORED message. So the whole listing
is as follows:
set mykey 0 300 16
I Love Memcached
STORED

Getting Started with Memcached

15

5.	 Now, let's read this key by using the get command:
get mykey
VALUE mykey 0 16
I Love Memcached
END

How it works...
This recipe gives you a glimpse of the kind of commands you can send to your memcached
daemon using a simple tool like telnet.

We started by connecting to the memcached daemon on the default port 11211 using
telenet. Then we used the stats command which asks the daemon to send us some useful
statistics from the service such as the uptime, how many get requests actually returned data
get_hits, and how many get requests resulted in a miss hit get_misses.

Then, we used stats settings which prints out the settings and configuration of the
current running daemon, you will be able to see things such as tcpport which points to
the port it is listening to and something such as maxbytes which is the maximum number
of bytes allowed in this cache server.

Then, we moved to the storage commands set and get. Storage commands have the
following format:

<command name> <key> <flags> <exptime> <bytes>

The <command name> field can be set, add, replace, append, or prepend.

The <key> field is the name of the key you are storing, in our case that was mykey.

The <flags> field is an arbitrary 16-bit unsigned number that the server stores along with
the key and is returned when the client requests to get the value. It's opaque to the server, so
it doesn't give any special meaning to the server itself but the client can use this number to
add some special meaning to this key if needed. In our case, we just passed 0 for this field.

The <exptime> field indicates the expiration time, if it's 0, the item never expires (although
it might get deleted when the server needs to free up place for another key to be stored).
If it's non-zero (either Unix time or offset in seconds from the current time), it is guaranteed
that clients will not be able to retrieve this item after the expiration time arrives (measured
by the server time).

The <bytes> field indicates the length of the value to be stored, in our case that was 16,
which is the length of the words I Love Memcached.

Getting Started with Memcached

16

After hitting your return (Enter) key, you are supposed to feed the server with the value to be
stored along with the key. Then, after hitting another return, you receive a STORED message
indicating that the key-value pair has been stored.

Then, we moved to get, it's very simple, you get a <key> field and the value returns along
with the <flags> field and the length of the value, then the value is printed before the
END sentinel.

VALUE mykey 0 16

I Love Memcached

END

Setting up memcached to start on boot in
Ubuntu (Simple)

How to make sure that memcached daemon is started by default on boot?

Getting ready
On server installations, we need to ensure that memcached is automatically started on boot
if it's not already.

How to do it...
1.	 Check if memcached is already running or not:

/etc/init.d/memcached status
 * memcached is running

2.	 If you want to disable starting memcached on boot:
sudo update-rc.d memcached disable

3.	 If you want to re-enable memcached to start on boot:
sudo update-rc.d memcached enable

4.	 To ensure it's running in the default run levels:
sudo update-rc.d memcached defaults

Getting Started with Memcached

17

How it works...
We are using update-rc.d script to create and delete symbolic links at /etc/rcX.d/
where X is the runlevel number.

Those symlinks are scanned on boot and they control whether the service is going to be
started or not, based on the initial letter.

If you have seen the output of update-rc.d memcached enable

 Enabling system startup links for /etc/init.d/memcached.

 Removing any system startup links for /etc/init.d/memcached:

 /etc/rc0.d/K20memcached

 /etc/rc1.d/K20memcached

 /etc/rc2.d/K80memcached

 /etc/rc3.d/K80memcached

 /etc/rc4.d/K80memcached

 /etc/rc5.d/K80memcached

 /etc/rc6.d/K20memcached

 Adding system startup for /etc/init.d/memcached:

 /etc/rc0.d/K20memcached -> ../init.d/memcached

 /etc/rc1.d/K20memcached -> ../init.d/memcached

 /etc/rc6.d/K20memcached -> ../init.d/memcached

 /etc/rc2.d/S20memcached -> ../init.d/memcached

 /etc/rc3.d/S20memcached -> ../init.d/memcached

 /etc/rc4.d/S20memcached -> ../init.d/memcached

 /etc/rc5.d/S20memcached -> ../init.d/memcached

You will see that the symlinks may start with K or S. which indicates that in a certain runlevel,
the system should Kill or Start the service, respectively.

Getting Started with Memcached

18

Setting up distributed memcached
(Intermediate)

One of the most common use cases of using memcached is to build a distributed cache
environment over multiple machines in a cluster. The setup allows you to scale up memcached
horizontally by adding more machines to a cluster, you expand the total memory available for
your application as a cache. The benefit of having a horizontally scalable caching, is that you are
not limited by the amount of RAM you can install in a single server any more. It also means that
you can utilize some of the free memory you have in your web server or so, and collectively you
will have a distributed memcached environment with a large single virtual memory pool for your
caching needs.

Building a distributed memcached environment is far simpler than you might have thought. The
memcached daemon is blind about the cluster setup and has no special configuration on the
server side to run the cluster, the client is actually doing the data distribution not the server.

Getting ready
So, it all starts when a single server cannot hold your entire cache and you need to split the
cache pool across several servers.

If you are running multiple instances of the memcached daemon on the same server, make
sure you are running them on different ports.

memcached -p 3030

memcached -p 3031

How to do it...
The server installation goes as previously described and the cluster configuration goes to your
client by adding the list of servers to all your clients.

It's important to note that in order to ensure that the cluster is sane, is to have the same order
of servers in all of your clients.

As an example, I'll be using python's pylibmc library to communicate with the memcached
cluster:

import pylibmc
mc = pylibmc.Client(["127.0.0.1:3030", "127.0.0.1:3031"], binary=True,
behaviors={"tcp_nodelay": True, "ketama": True})
mc["ahmed"] = "Hello World"
mc["tek"] = "Hello World"

Getting Started with Memcached

19

How it works...
What happens is that you specify a list of your servers to your client configuration and the client
library uses consistent hashing to decide which server a certain key-value should go to.

The constructor of the client object here was fed with a couple of interesting parameters:

ff binary = True: This is to configure pylibmc to use the memcached binary
protocol not the ASCII protocol.

ff behaviors={"tcp_nodelay": True, "ketama": True}: This configures
the memcached connection socket to use the tcp_nodelay socket option which
disables Nagle's algorithm (http://en.wikipedia.org/wiki/Nagle%27s_
algorithm) on the socket level. Setting "ketama" = True means that pylibmc
is using md5 hashing and that it's using consistent hashing for key distribution.

The consistent hashing algorithm relies on the order of the list
of the servers, so you need to have all your clients in-sync with
the same configuration list in exact order.

After we have created the client object, we have set two keys ahmed and tek with the value
Hello World and what actually happens behind the scenes is that each key-value pair is
actually stored on a different daemon, according to the consistent hashing of the key.

Caching with persistence
Sometimes you want your caching server to be persistent; there are several very good
alternatives to memcached that can help you achieve that.

You can checkout Redis at
http://redis.io and Kyoto Tycoon at http://fallabs.com/kyototycoon/.

Using memcached with PHP (Intermediate)
There are basically two memcached clients for PHP right now (memcache, and memcached),
note the d at the latter. The memcache extension is older, lightweight, and most commonly
used, and easier to install. The memcached module is feature-rich but still not widely adopted.

For the sake of simplicity, we will be using the memcache PHP extension in this recipe.

PHP is one of the most popular languages used for Web development today, it's very likely that
you are actually using many pieces of software written in PHP on a daily basis without knowing.

http://en.wikipedia.org/wiki/Nagle's_algorithm
http://en.wikipedia.org/wiki/Nagle's_algorithm
http://redis.io/
http://redis.io/
http://fallabs.com/kyototycoon/

Getting Started with Memcached

20

Getting ready
I'm assuming you are using Ubuntu; you will need to have the simple setup of apache2 and
php5. It's simple to get this stack working using this command:

sudo apt-get install apache2 php5

First, we need to install the PHP memcache extension using apt-get:

sudo apt-get install php5-memcache

This automatically installs the extension and gets everything wired and configured for you,
if you want to use the memcached extension instead, all you need to do is to replace
php5-memcache with php5-memcached and voila, everything just works!

If you are using Mac OS X, it's a slightly different story, and you will need to install apache2
and php5.

One of the quickest ways to do so is to install a nice package called MAMP (http://www.
mamp.info/en/index.html); it will make life a lot easier for you. But, if you are an advanced
user and want to go with the more manual route, you get really detailed instructions to get your
OS X setup ready with Apache, MySQL, and PHP ready at (http://jason.pureconcepts.
net/2012/10/install-apache-php-mysql-mac-os-x/).

How to do it...
1.	 First, we are going to start with a connection test to the memcached daemon:

<?php
 $memcache = new Memcache;
 $memcache->connect('localhost', 11211) or die ("Could not
connect");

 $version = $memcache->getVersion();
 echo "Server's version: ".$version."
\n";
?>

2.	 The output of this script actually depends on the current version of the memcached
server running, in my case the output is:
Server's version: 1.4.13

3.	 Next, let's set and get some keys from the connected memcached server:
<?php
 $memcache = new Memcache;

http://www.mamp.info/en/index.html
http://www.mamp.info/en/index.html

Getting Started with Memcached

21

 $memcache->connect('localhost', 11211) or die ("Could not
connect");

 $sample_obj = new stdClass;
 $sample_obj->str_attr = 'Memcache in PHP is cool';
 $sample_obj->int_attr = 2468;

 $memcache->set('sample_user', $sample_obj, false, 15) or die
("Failed to store data in memcached");
 echo "Data stored in Memcached (will expire in 15
seconds)
\n";

 $get_result = $memcache->get('sample_user');
 echo "Object from the cache:
\n";

 var_dump($get_result);

?>

How it works...
First, we are creating the Memcache object, that's the object we will be using to communicate
with our memcached server in an object-oriented manner.

Then, we initialize the connection to the memcached server using the connect method that
has the following signature which takes the host, port, and connection timeout:

bool Memcache::connect (string $host [, int $port [, int $timeout]]
)

The connect method closes the connection to the memcached server automatically at the
end of the execution of the script.

Then, we used the getVersion method to retrieve the version of the memcached server we are
connected to. We are using this method only to test our connection to the memcached server.

We then moved to the real work, we created an instance of the stdClass of PHP and added
two attributes to the object to serialize and store in memcached under the key "sample_
user"; We set the timeout to 15 seconds, this means that the memcached server will delete
the key after 15 seconds. We also used false for flags, since we don't need compression or
any other setting at the moment.

Getting Started with Memcached

22

Then, we retrieved the value back from memcached using the get method of the Memcache
object, and then we printed it on the screen. The output of the script would be as follows:

Data stored in cached (will expire in 15 seconds)
Object from the cache:
object(stdClass)#3 (2) { ["str_attr"]=> string(23) "Memcache in PHP is
cool" ["int_attr"]=> int(2468) }

There's more...
If you are planning to connect to a cluster of memcached servers you will need to add all the
servers using the addServer method:

<?php

/* OO API */
$memcache = new Memcache;
$memcache->addServer('memcached_host1', 11211);
$memcache->addServer('memcached_host2', 11211);
?>

Then, start using your memcache instance as usual and the magic will happen.

Using memcached with Python
(Intermediate)

If you are planning to connect to memcached server(s) from your Python application, there are
several clients available for you. The most popular ones are:

ff python-memcached: This is a pure-python implementation of the memcached client
(implemented 100 percent in Python). It offers good performance and is extremely
simple to install and use.

ff pylibmc: This is a Python wrapper on the libmemcached C/C++ library, it offers
excellent performance, thread safety, and light memory usage, yet it's not as simple
as python-memcached to install, since you will need to have the libmemcached
library compiled and installed on your system.

ff Twisted memcache: This client is part of the Python twisted event-driven networking
engine for Python. It offers a reactive code structure and excellent performance
as well, but it is not as simple to use as pylibmc or python-memcached but it fits
perfectly if your entire application is built on twisted.

In this recipe, we will be using python-memcached for the sake of simplicity and since
other clients have almost the same API, it does not make much difference from a
developer's perspective.

Getting Started with Memcached

23

Getting ready
It's always a good idea to create virtualenv for your experiments to keep your experiments
contained and not to pollute the global system with the packages you install.

You can create virtualenv easily:

virtualenv memcache_experiments
source memcache_experiments/bin/activate

We will need to install python-memcached first, using the pip package manager on
our system:

sudo pip install python-memcached

How to do it...
1.	 Let's start with a simple set and get script:

import memcache
client = memcache.Client([('127.0.0.1', 11211)])
sample_obj = {"name": "Soliman",
 "lang": "Python"}
client.set("sample_user", sample_obj, time=15)
print "Stored to memcached, will auto-expire after 15 seconds"

print client.get("sample_user")

2.	 Save the script into a file called memcache_test1.py and run it using
python memcache_test1.py.

3.	 On running the script you should see something like the following:
Stored to memcached, will auto-expire after 15 seconds
{'lang': 'Python', 'name': 'Soliman'}

4.	 Let's now try other memcached features:
import memcache

client = memcache.Client([('127.0.0.1', 11211)])
client.set("counter", "10")

client.incr("counter")
print "Counter was incremented on the server by 1, now it's %s" %
client.get("counter")

Getting Started with Memcached

24

client.incr("counter", 9)
print "Counter was incremented on the server by 9, now it's %s" %
client.get("counter")

client.decr("counter")
print "Counter was decremented on the server by 1, now it's %s" %
client.get("counter")

The output of the script looks like the following:

Counter was incremented on the server by 1, now it's 11
Counter was incremented on the server by 9, now it's 20
Counter was decremented on the server by 1, now it's 19

The incr and decr methods allow you to specify a delta value or to by default increment/
decrement by 1.

Alright, now let's sync a Python dict to memcached with a certain prefix:

import memcache

client = memcache.Client([('127.0.0.1', 11211)])

data = {"some_key1": "value1",
 "some_key2": "value2"}

client.set_multi(data, time=15, key_prefix="pfx_")

print "saved the dict with prefix pfx_"

print "getting one key: %s" % client.get("pfx_some_key1")

print "Getting all values: %s" % client.get_multi(["some_key1", "some_
key2"], key_prefix="pfx_")

How it works...
In this script, we are connecting to the memcached server(s) using the Client constructor,
and then we are using the set method to store a standard Python dict as the value of the
"sample_user" key. After that we use the get method to retrieve the value.

The client automatically serialized the python dict to memcached
and deserialized the object after getting it from memcached server.

In the second script, we are playing with some of the features we never tried in the memcached
server. The incr and decr are methods that allow you to increment and decrement integer
values directly on the server automatically.

Getting Started with Memcached

25

Then, we are using an awesome feature that we also didn't play with before, that is get/set_
multi that allows us to set or get multiple key/values at a single request. Also it allows us to
add a certain prefix to all the keys during the set or get operations.

The output of the last script should look like the following:

saved the dict with prefix pfx_
getting one key: value1
Getting all values: {'some_key1': 'value1', 'some_key2': 'value2'}

There's more...
In the Client constructor, we specified the server hostname and port in a tuple (host, port)
and passed that in a list of servers. This allows you to connect to a cluster of memcached
servers by adding more servers to this list. For example:

client = memcache.Client([('host1', 1121), ('host2', 1121), ('host3',
1122)])

Also, you can also specify custom picklers/unpicklers to tell the memcached client how to
serialize or de-serialize the Python types using your custom algorithm.

Using memcached with Ruby (Intermediate)
Ruby is also one of the most popular language used today by Web developers to build brilliant
applications. The rise of the Rails framework was actually one of the main reasons this language
received such popularity, however, Ruby is also a Swiss Army Knife language that is often used
by system administrators for orchestration and automation.

There are of course, several clients to be memcached in Ruby but here we will be focusing
on one of the most recent and stable clients that delivers high performance pure Ruby
implementation of the memcached protocol, Dalli!

Dalli was written by the maintainer of memcache-client and is currently stable and being
actively maintained.

The good thing about Dalli is that it can be integrated with Rails 3.x but, unfortunately,
it does not integrate with the more popular Rails 2.x.

Getting ready
We need to install the Dalli gem using the following command:

gem install dalli

Getting Started with Memcached

26

If you don't have the gem tool, then most likely you don't have Ruby properly installed. In
Ubuntu you can always use the following to get Ruby installed:

sudo apt-get install ruby

How to do it...
1.	 Let's start by doing a very basic set/get operation on the memcached server

from Ruby:
require 'dalli'
dc = Dalli::Client.new('localhost:11211', :threadsafe => true,
:compress => true)
dc.set('somekey', 123)
puts("the value from cache is: #{dc.get('somekey')}")

2.	 This looks great; now let's store more complex structures in the memcached server:
require 'dalli'
dc = Dalli::Client.new('localhost:11211', :threadsafe => true,
:compress => true)
user = {:name => "Ahmed",
 :job => "Engineer"}
dc.set('user1', user, ttl=20)
puts("user from cache: #{dc.get('user1')}")

3.	 Now, let's use a new feature which we did not use before (replace)
require 'dalli'
dc = Dalli::Client.new('localhost:11211', :threadsafe => true,
:compress => true)
user = {:name => "Ahmed",
		 :job => "Engineer"}
dc.set('user1', user, ttl=20)
puts("user from cache: #{dc.get('user1')}")

user[:age] = 31
dc.replace("user1", user, ttl=5)
puts("user from cache: #{dc.get('user1')}")

How it works...
First, we are importing Dalli into our namespace by using the require statement. Then, we
are creating a client that connects to the memcached server and we are also setting some
options. The following are some of the interesting options:

ff :compress => true: This will ask Dalli to compress values larger than 1024 bytes.

Getting Started with Memcached

27

ff :threadsafe => true: This ensures that only a single thread is actively using the
connection socket at a time; this is actually enabled by default, we added this to the
snippet for clarity only.

ff :namespace => "app": This adds a prefix to all keys set in this connection.

ff :expires_in => 100: This sets the default TTL(timeout) for all the keys where
you are not specifying a TTL.

Then, we used the simple set method to set a basic integer value, after we retrieved that value
and printed to the console using puts.

In the second snippet, we created a standard Ruby Hash and we used the built-in serializer to
store this hash as a value for the "user1" key.

This time we added a TTL parameter to specify that this
key will expire after 20 seconds.

In the third snippet, we introduced a new feature of memcached, that is replace. This was
used to replace the entire hash stored for the "user1" key with a modified version (we added
age to it).

While we were replacing the value we also respecified the TTL value and changed the TTL of
the value to be 5 seconds only. The replace feature fails if the key is not already stored in
the memcached server and that's the main difference between it and the method that you
are already familiar with set.

There's more...
The constructor of the Client class can also accept a list of servers to specify, in case you
have a memcached cluster as you can see, it's a list of servers.

Dalli::Client.new(['localhost:11211:10', 'cache-2.example.
com:11211:5', '192.168.0.1:22122:5'], :threadsafe => true, :failover
=> true, :expires_in => 300)

For every server, the format is server:port:weight, where weight allows you to
distribute cache unevenly. Both weight and port are optional. If you pass in nil, Dalli will
use the MEMCACHE_SERVERS environment variable or default to localhost:11211 if
it is not present.

Getting Started with Memcached

28

Using memcached with Java (Intermediate)
In this recipe, we will be using Java to talk to our memcached server. Java is a very powerful
programming language and is famous for enterprise-class applications.

There are, of course, a variety of memcached clients written for Java. We have chosen the
most powerful client that is not hard to use, that is spymemcached.

Getting ready
The spymemcached java library has artifacts published on the maven central repository.
If you are using maven you will need to add this to your pom.xml file (highlighted):

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.sample</groupId>
 <artifactId>spycache</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>spycache</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>net.spy</groupId>
 <artifactId>spymemcached</artifactId>
 <version>2.10.1</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

In my project here (named spycache), we will be showing snippets written inside the src/
main/java/com/sample/ directory and to run the application you will need to run the
mvn package.

Then after seeing BUILD SUCCESS you will need to run the application by using the following:

java -cp target/spycache-1.0-SNAPSHOT.jar com.sample.App

Getting Started with Memcached

29

How to do it...
1.	 Let's start by adding the following snippet into our main function:

 try {
 MemcachedClient client = new MemcachedClient(new
InetSocketAddress("127.0.0.1", 11211));
 client.set("city", 20, "Istanbul");

 System.out.println((String)client.get("city"));

 client.shutdown();
 } catch (IOException e) {
 e.printStackTrace();
 }

2.	 We have just created a connection and did a simple set/get operation. Let's now
store a more complex object:
class Employee implements Serializable{
 private static final long serialVersionUID =
2620538145665245947L;
 private String name;
 private int age;

 public Employee(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

Getting Started with Memcached

30

 @Override
 public String toString() {
 return "Employee(\"" + name + "\", " + age + ")";
 }
}

3.	 Then, let's store and retrieve an instance of this class:
Employee sample = new Employee("Ihab", 26);
client.set("engineer", 20, sample);

System.out.println((Employee)client.get("engineer"));

The output will be like the following:

2013-10-29 19:22:26.928 INFO net.spy.memcached.MemcachedConnection:
Added {QA sa=/127.0.0.1:11211, #Rops=0, #Wops=0, #iq=0, topRop=null,
topWop=null, toWrite=0, interested=0} to connect queue
2013-10-29 19:22:26.935 INFO net.spy.memcached.MemcachedConnection:
Connection state changed for sun.nio.ch.SelectionKeyImpl@680e62df
Employee("Ihab", 26)
2013-10-29 19:22:26.964 INFO net.spy.memcached.MemcachedConnection:
Shut down memcached client

How it works...
Basically, we are creating a MemcachedClient object that creates our memcached
connection, note that this object is quite smart and does automatic reconnect on connection
failure. By default, we are using the plain-text protocol but in the second example we are using
the new binary protocol which is far more efficient.

The second snippet also shows how to configure MemcachedClient to connect to multiple
memcached servers (cluster), automatic data distribution will be done for you.

The first method we used on the client object is set which is actually asynchronous, this
means that it works like fire and forget, it does not block the current thread until the actual
set operation happens. Then, we used get which is synchronous (the opposite), it blocks
until data is retrieved and returns that data as Object, that's why we need casting to get
a reference of the correct object type.

Java has an already very stable data serialization mechanism, and that's exactly what we have
used. Standard types are serializable by default but what happens if you are trying to serialize
your custom Employee object to memcached? You need to implement the serializable
interface for that, then magically everything works as presented in the last recipe.

Getting Started with Memcached

31

There's more...
Spymemcached offers an asynchronous API for get as well, it's quite interesting actually and
if you are familiar with java.util.concurrent.Future you will find it very easy to follow
and understand.

The idea is that client.asyncGet returns a Future<Object> which you can use to retrieve
the value asynchronously. You can use this future object to get the actual value later and set a
timeout on your get request, as follows:

Future<Object> fobject = client.asyncGet("engineer");
try {
 fobject.get(10, TimeUnit.SECONDS);
} catch (InterruptedException e) {
 e.printStackTrace();
} catch (ExecutionException e) {
 e.printStackTrace();
} catch (TimeoutException e) {
 fobject.cancel(false);
}

What you can see here, is that we tried to get the future and we set 10 seconds for our
trial, if the timeout expired, we get a TimeoutException, and then we can safely cancel
the operation (by calling cancel() on the future). This means that we are not interested
in the operation anymore.

You can also catch multiple exceptions to handle different types of potential failures, such
as InterruptedException, which means that something interrupted the background
thread, or ExecutionException, which means that an exception was thrown while
trying to execute the background job.

Setting up memcached support in Rails
(Simple)

Ruby on Rails Web development framework is extremely popular for rapid development
of Web applications and, at some point in time it started an actual movement for a set
of convention-over-configuration frameworks and most likely you have used one of them
recently if you are a seasoned web developer.

We are assuming that you are familiar with Rails and you already have some experience
using rails caching API, but even if you are not, that's a good introduction about caching
in Rails anyway.

Getting Started with Memcached

32

We will be using Dalli as the memcached client and we will be configuring a simple Rails
application to use it as a backend for Rails Caching. If you want more information about
Rails caching in general, you are advised to visit http://guides.rubyonrails.org/
caching_with_rails.html.

Getting ready
You will need to have a working Rails installation on your system for that, you can find
great tutorials on the Web for that, such as this one https://www.digitalocean.com/
community/articles/how-to-install-ruby-on-rails-on-ubuntu-12-04-lts-
precise-pangolin-with-rvm.

How to do it...
1.	 Let's now start by creating a really simple Rails application as a mock, to be the test

base for our caching experiments: rails new cachesample.

2.	 In a few minutes, you will have your empty Rails application ready, you can run it using:
cd cachesample/
rails server

3.	 You should see something like the following:
=> Booting WEBrick
=> Rails 4.0.0 application starting in development on
http://0.0.0.0:3000
=> Run `rails server -h` for more startup options
=> Ctrl-C to shutdown server
[2013-10-29 16:40:56] INFO WEBrick 1.3.1
[2013-10-29 16:40:56] INFO ruby 2.0.0 (2013-06-27) [x86_64-linux]
[2013-10-29 16:40:56] INFO WEBrick::HTTPServer#start: pid=18450
port=3000

4.	 Now, we need to configure our Rails application to use Dalli gem as a dependency.

5.	 Edit your Gemfile and add this line at the end of the file:
gem 'dalli'

6.	 Then, you will need to run:
bundle install

Now, we need to edit the application configuration to actually use memcached as the caching
backend for the rails caching API.

http://guides.rubyonrails.org/caching_with_rails.html
http://guides.rubyonrails.org/caching_with_rails.html

Getting Started with Memcached

33

Normally, you don't enable caching while development and you only turn it on in production,
so we will be editing the config/environments/production.rb file (you may also want
to add this to config/environments/development.rb if you want to see caching in
development mode). Let's add:

 config.cache_store = :dalli_store

How it works...
You will be able to use all of Rails automatic and manual caching features of Rails and the
default cache store will be now Dalli (memcached client).

Rails has different features for caching, such as the following:

ff Action caching: It caches an action response based on the input parameters and
every request will go to all the before filters, this means that authentication is verified
for example.

ff Fragment caching: This means that specific pieces of template code can be cached,
this is very useful, specially if you are building a huge page that contains pieces that
are constantly changing and dynamic, you still can modularize parts of the page and
cache those parts as fragments. For example, you want to cache a fragment that
generates a list of products:
<% Order.find_recent.each do |o| %>
 <%= o.buyer.name %> bought <%= o.product.name %>
<% end %>

<% cache do %>
 All available products:
 <% Product.all.each do |p| %> <%= link_to p.name, product_
url(p) %>
 <% end %>
<% end %>

ff SQL caching: This is a feature that allows Rails to cache results of a SQL query so
that if it encountered the same query again for that request, it will use the cached
result set and will not be running the same query again on the database server.

There's more...
To use Dalli for Rails session storage that times out after 20 minutes, in config/
initializers/session_store.rb:

config.cache_store = :dalli_store, 'cache-1.example.com', 'cache-2.
example.com',
 { :namespace => NAME_OF_RAILS_APP, :expires_in => 1.day, :compress
=> true }

Getting Started with Memcached

34

Of course, you will need to write the correct names of the memcached hosts and ports for
your caching cluster, instead of cache-1.example.com and cache-2.example.com.

Setting up memcached support in Django
(Intermediate)

In the Python world, Django is the de facto standard choice as the most popular rich MVC/
MVP framework around. It has a fantastic caching framework as well.

Django comes with a robust caching framework that lets you save dynamic pages so they
don't have to be calculated for each request. Not only that, but also Django offers an abstract
caching API that hides the specific implementation of the caching backend and offers a clean
API to cache whatever you feel right, whenever you want to.

We are assuming you are a seasoned Django developer with some experience building
Django applications in this recipe. Our goal here is to configure Django to use memcached
as a caching backend and to introduce you to some of the features of Django's caching
framework.

Getting ready
You will need to have a simple Django application to play with, if you don't have one you can
create an empty project with an empty application by using the following:

django-admin.py startproject djangocache
cd djangocache/
python manage.py startapp cachista
python manage.py runserver

This will create a project called djangocache and a simple app (module) inside your project
that we called cachista.

If you don't have python-memcached installed already, you can simply use pip for that:

pip install python-memcached

How to do it...
1.	 Let's start by editing the settings.py file in your Django project (djangocache/

settings.py, in our case), we will be using python-memcached for this recipe
(you can use pylibmc too if you like).

Getting Started with Memcached

35

2.	 The caching configuration parameter is controlled by the CACHES variable in the
settings file. By default, you will not find this variable in your settings.py file, so
we will need to add to it the BACKEND key in the 'default' dict which indicates
the memcached client that you are planning to use.
CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memcached.
MemcachedCache',
 'LOCATION': '127.0.0.1:11211',
 }
}

3.	 In this example, we used MemcachedCache which uses the python-memcached library.

4.	 If you are planning to use the faster pylibmc, you will need to replace this with
django.core.cache.backends.memcached.PyLibMCCache.

5.	 The LOCATION key in the 'default' dict is where your memcached server is
located, if you have a memcached cluster, you can change the value to be a list
as follows:
CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memcached.
MemcachedCache',
 'LOCATION': [
 'cache-1.example.com:11211',
 'cache-2.example.com:11211',
]
 }
}

It's very important to understand that if you are planning to use multiple Django
servers as a cluster, all the configurations of those servers need to have the same
order as this caching list.

Now, let's tell Django to cache one of our views, it will automatically cache the view response
for us. You will need to import that cache_page decorator first from django.views.
decorators.cache import cache_page.

@cache_page(60 * 15, key_prefix="site1")
def my_view(request):
 """ my view code goes here """

Piece of cake! We told Django to cache this view for 15 minutes and the key prefix in the cache
store will be "site1".

Getting Started with Memcached

36

Now, do you remember the "default" we wrote in our CACHES setting? That was to setup
multiple caching backends for Django! Yes, you can cache certain pages on certain caching
backends. You can specify the caching backend in your cache_page view.

@cache_page(60 * 15, cache="memory_cache")

The "memory_cache" value must correspond to a key in your CACHES setting where you
specify the caching backend settings. Fantastic!

As in Rails, you can specify fragments of your template to be cached.

{% load cache %}
{% cache 500 sidebar %}
 .. sidebar ..
{% endcache %}

Now, let's use the caching API to do manual caching of a value in our action/controller code
from the following:

django.core.cache import get_cache
cache = get_cache('default')
cache.set('key', 'Hello Memcached!', 15)
print cache.get('key')

This looks very similar to the direct memcached API but it's not! It's an abstract API that can
actually use multiple backends for you; memcached is one of them as configured in the
CACHES setting.

How it works...
We started by defining the CACHES variable in the settings.py file and there we can define
multiple cache regions with different backends. Django supports multiple cache backends,
file-based, memory-based, and database-based. In our case, we used python-memcached
backend and we specified that for the 'default' cache region.

Of course, it's very popular to use memcached as a cluster and to specify the list of servers to
your configuration.

You can also specify some interesting options along with the LOCATION and BACKEND keys,
some examples of the same are as follows:

ff TIMEOUT: The default timeout, in seconds, to use for the cache. The default value is
300 seconds (5 minutes)

ff KEY_PREFIX: A string that automatically will be prefixed to all cache keys.

Then we played with cache_page decorator which automatically caches a view for us, you
can specify the prefix or the cache region you are planning to use for this particular page.

Getting Started with Memcached

37

Then we have seen the template caching, you can cache pieces/fragments of your
template code with the "cache" tag, you can specify in the identifier for this cached
fragment and expiration.

In our case we used the sidebar identifier as stated in the following line:

{% cache 500 sidebar %}

The expiration is set to 500 seconds, but interestingly you can specify more keywords for your
identifier for the same fragment.

{% cache 500 sidebar welcome %}

Also, you can use the low-level caching API if you want more granular control over your caching
and that was described in the last code snippet.

Setting up memcached to support in Play
(Intermediate)

Play Framework is a modern Java/Scala framework that promises a lightweight, stateless,
Web-friendly architecture.

It's built on Akka and it's very reliable for building highly-scalable applications with predictable
resource consumption.

Play 2 is the next generation of the framework; it has gone through almost a complete rewrite,
and it's now fully written in Scala but offers a good Java API. We will be focusing on Scala
examples right here.

Play 2 uses Ehcache by default as a backend, you can always replace the backend by writing
plugins for Play 2, fortunately, someone already did that and it's using the spymemcached
java client for memcached.

We are using Play 2.2.X for this recipe which uses sbt 0.13.X.

Getting ready
1.	 Let's start by creating a simple play project.

play new playcache

2.	 Select create a simple Scala application.

Getting Started with Memcached

38

3.	 Then we need to configure our project's build.sbt to use play2-memcached as a
dependency. Edit your build.sbt to look like the following:
name := "playcache"

version := "1.0-SNAPSHOT"
libraryDependencies ++= Seq(
 jdbc,
 anorm,
 cache,
 "com.github.mumoshu" %% "play2-memcached" % "0.3.0.2"
)

resolvers += "Spy Repository" at "http://files.couchbase.com/
maven2"

play.Project.playScalaSettings

How to do it...
1.	 We need to configure our play application to use memcached instead of the default

Ehcache backend for the Caching API of Play Start by adding the play2-memcached
plugin to conf/play.plugins (create the file if not created already)
5000:com.github.mumoshu.play2.memcached.MemcachedPlugin

2.	 Then, let's edit the configuration conf/application.conf file and add near the
end of the file, the following line to disable the ehcache plugin:
ehcacheplugin=disabled

3.	 Now, let's configure the memcached plugin to the memcached server:
memcached.host="127.0.0.1:11211"

4.	 After that, you are ready to use memcached, start the application server by running:
play run

5.	 Then, let's edit the controller at app/controllers/Application.scala to look
like the following snippet:
package controllers

import play.api._
import play.api.mvc._
import play.api.cache.Cache
import play.api.Play.current

object Application extends Controller {

Getting Started with Memcached

39

 def index = Action {
 Cache.getAs[String]("key") match {
 case Some(v) =>
 Ok(s"Got the value from cache: $v")
 case None =>
 Cache.set("key", "Fantastic Value", 50)
 Ok("Setting value in Cache")
 }
 }

}

6.	 From your browser, visit http://localhost:9000/ and see what happens.
On your first request you should see something like the following:
Setting value in Cache

7.	 Then if you refreshed the page, you will see the following line:
Got the value from cache: Fantastic Value

8.	 One more thing you can do is to cache the entire action response by using the
Cached object for that.
def index = Cached("homePage") {
 Action {
 Ok("Hello world")
 }
}

Congratulations, Play 2 is now connected and uses memcached as the caching backend.

How it works...
First, we needed to edit the build script (build.sbt) to add the play2-memcached as
a dependency, we did that by appending in the libraryDependencies setting key the
value to "com.github.mumoshu" %% "play2-memcached" % "0.3.0.2".

Then, we added a resolver to tell sbt where to get this plugin from. Next, we created/
edited the conf/play.plugins file to add the plugin to play and we configured conf/
application.conf to point to our memcached server.

In the controller code, we used the play.api.cache.Cache object to get and set values
from the cache.

The last thing is that you can use the Cached object to cache the entire action response
in a named cache key "homePage".

http://localhost:9000/
http://localhost:9000/

Getting Started with Memcached

40

There's more...
If you are planning to use Play2 with a memcached cluster, you will need to configure the list of
your servers in conf/application.conf.

The configuration is really straightforward. Just replace memcached.
host="127.0.0.1:11211"with the list of the servers as follows:

memcached.1.host="cache-1.example.com:11211"
memcached.2.host="cache-1.example.com:11211"

As mentioned several times before, it's important to keep this list in-sync for all your Play servers.

Index
Symbols
<bytes> field 15
<command name> field 15
<exptime> field 15
<flags> field 15
<key> field 15

A
Action caching 33
addServer method 22
apt-get command 8

C
Cached object 39
caching server

with persistence 19
connect method 21

D
distributed memcached

setting up 18, 19
Django

memcached Support, setting up 34-37

F
Fragment caching 33

G
get method 24
getVersion method 21

J
Java

memcached, using with 28-31

K
Kyoto Tycoon

URL 19

M
Mac

memcached, installing on 9-11
MacPorts

URL 11
MAMP

URL 20
memcached

compiling, from source on Ubuntu 12
installing, on Mac 9-11
installing, on Ubuntu 7-9
installing, on Windows 9
setting up, to start on boot in Ubuntu 16, 17
talking with 12-15
used, with Java 28-31
used, with PHP 19-22
used, with Python 22-25
used, with Ruby 25-27

memcached Support
setting up, in Django 34-37
setting up, in Play Framework 37-40
setting up, in Rails 31-34

Memcache object 21

42

T
Twisted memcache 22

U
Ubuntu

memcached, compiling from source 12
memcached, installing on 7-9
memcached, setting up to start

on boot 16, 17

W
Windows

memcached, installing on 9

P
PHP

memcached, using with 19-22
Play Framework

memcached Support, setting up 37-40
ps command 8
pylibmc 22
Python

memcached, using with 22-25
python-memcached 22

R
Rails

features, for caching 33
memcached Support, setting up 31-34

Redis
URL 19

Ruby
memcached, using with 25-27

S
SQL caching 33
stats command 15

Thank you for buying
Getting Started with Memcached

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one
of our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but
no writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

Lift Application Development
Cookbook
ISBN: 978-1-84951-588-7 Paperback: 254 pages

Over 50 practical recipes to build web applications
using Lift, the most secure web framework avaliable

1.	 Lift made easy with step-by-steps recipes
written by a developer for developers

2.	 Practical examples covering topics from basic
to advanced levels

3.	 Learn to use Schemifier to automatically create
tables and columns

Instant Effective Caching with
Ehcache
ISBN: 978-1-78216-038-0 Paperback: 86 pages

Extended the capabilities of your caching layer by
intergrating Ehcache into your Java Enterprise projects

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate results

2.	 Setup Ehcache and understand its configuration

3.	 Use Ehcache with popular Java frameworks

4.	 Monitor an Ehcache-based application using
open source software

Please check www.PacktPub.com for information on our titles

Instant Redis Optimization How-to
ISBN: 978-1-78216-480-7 Paperback: 56 pages

Learn how to tune and optimize redis for
high performance

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2.	 Install, fine-tune, and add Redis to your
application stack

3.	 Perform bulk writes into Redis efficiently

4.	 Debug and troubleshoot Redis

Firebug 1.5: Editing, Debugging,
and Monitoring Web Pages
ISBN: 978-1-84719-496-1 Paperback: 436 pages

Arm yourself to destroy UI and JavaScript bugs

1.	 Expand your toolkit by learning to use Firebug
to help you monitor, debug, develop and edit
web pages on the fly

2.	 Create your own Firebug extensions and learn
about popular third-party extensions

3.	 Covers JavaScript, AJAX, and CSS development

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Getting Started
with Memcached
	Basic installation of memcached on Ubuntu (Simple)
	Basic Installation of memcached on Mac (Simple)
	Compiling memcached from a source on Ubuntu (Simple)
	Talking with memcached (Advanced)
	Setting up memcached to start on boot in Ubuntu (Simple)
	Setting up distributed memcached (Intermediate)
	Using memcached with PHP (Intermediate)
	Using memcached with Python (Intermediate)
	Using memcached with Ruby (Intermediate)
	Using memcached with Java (Intermediate)
	Setting up memcached support in Rails (Simple)
	Setting up memcached support in Django (Intermediate)
	Setting up memcached to support in Play! (Intermediate)

	Index

