
    
      [image: (missing alt)]

  
    
      Table of Contents

      
        Developing RESTful Web Services with Jersey 2.0
      

      
        Credits
      

      
        About the Author
      

      
        About the Reviewers
      

      
        www.PacktPub.com
      

      
        Support files, eBooks, discount offers, and more
      

      
        Why Subscribe?
      

      
        Free Access for Packt account holders
      

      
        Preface
      

      
        What this book covers
      

      
        What you need for this book
      

      
        Who this book is for
      

      
        Conventions
      

      
        Reader feedback
      

      
        Customer support
      

      
        Downloading the example code
      

      
        Errata
      

      
        Piracy
      

      
        Questions
      

      
        1. Getting Started
      

      
        What is JAX-RS 2.0?
      

      
        Features of JAX-RS 2.0
      

      
        Ease of using and reusing JAX-RS artifacts
      

      
        Modules and dependencies
      

      
        Creating a new project
      

      
        Summary
      

      
        2. Server API
      

      
        Root-resource classes
      

      
        @Path
      

      
        @Path with a regular expression
      

      
        HTTP methods
      

      
        @GET
      

      
        @PUT
      

      
        @POST
      

      
        @DELETE
      

      
        @Produces
      

      
        @Consumes
      

      
        Parameter annotations
      

      
        @PathParam
      

      
        @QueryParam
      

      
        @DefaultValue
      

      
        @MatrixParam
      

      
        @HeaderParam
      

      
        @CookieParam
      

      
        @FormParam
      

      
        @BeanParam
      

      
        Subresources
      

      
        Scope of the root-resource classes
      

      
        Rules of injection
      

      
        Deploying a RESTful web service
      

      
        Summary
      

      
        3. Client API
      

      
        Consuming web services using a client
      

      
        The get method
      

      
        The post method
      

      
        The put method
      

      
        The delete method
      

      
        The path parameter
      

      
        The query parameter
      

      
        The cookie parameter
      

      
        The matrix parameter
      

      
        The bean parameter
      

      
        The @Produces annotation
      

      
        The @Consumes annotation
      

      
        Use of Invocation.Builder
      

      
        Adding support for new representations
      

      
        Client transport connectors
      

      
        Securing a client
      

      
        Summary
      

      
        4. Common Media-Type Representations
      

      
        JSON
      

      
        MOXy
      

      
        Using ResourceConfig class
      

      
        Java API for JSON Processing (JSON-P)
      

      
        Jackson
      

      
        Jettison
      

      
        XML
      

      
        Low-level XML support
      

      
        JAXB support
      

      
        POJOs
      

      
        Multipart
      

      
        Summary
      

      
        5. Server-Sent Events (SSE)
      

      
        Getting started
      

      
        Implementing Server-Sent Events (SSE)
      

      
        Consuming the SSE events
      

      
        The pull model (Using EventInput)
      

      
        The push model (using EventSource)
      

      
        Summary
      

      
        6. WADL
      

      
        Getting started
      

      
        Configuration
      

      
        Summary
      

      
        Index
      

    

  
Developing RESTful Web Services with Jersey 2.0






Developing RESTful Web Services with Jersey 2.0



Copyright © 2014 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: November 2013
Production Reference: 2070214
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK
ISBN 978-1-78328-829-8

www.packtpub.com

Cover Image by Aniket Sawant (<aniket_sawant_photography@hotmail.com>)

Credits




Author

Sunil Gulabani

Reviewers

Ketan Parmar 
Daniel Rodríguez Millán 

Acquisition Editor

Rubal Kaur

Commissioning Editor

Shaon Basu

Technical Editor

Mrunmayee Patil

Copy Editors

Mradula Hegde
Dipti Kapadia
Alfida Paiva

Project Coordinator

Akash Poojary

Proofreader

Clyde Jenkins

Indexer

Monica Mehta

Graphics

Abhinash Sahu

Production Coordinator

Nilesh R. Mohite

Cover Work

Nilesh R. Mohite

About the Author




Sunil Gulabani is a software engineer based in Ahmedabad, Gujarat (India). He completed his graduation in Commerce from S M Patel Institute of Commerce (SMPIC) and Masters in Computer Applications from Ahmedabad Education Society Institute of Computer Studies (AESICS). He has been a top ranker while pursuing his master's degree. He has also presented a paper "Effective Label Matching For Automated Evaluation of Use Case Diagrams" on Technology For Education (T4E)—IIIT. Hyderabad, an IEEE Conference, along with senior lecturers, Vinay Vachharajani and Dr. Jyoti Pareek.
He has been working since 2011 as a software engineer, and is Cloud technology savvy. He has experience in developing enterprise solutions using Java (EE), Apache SOLR, RESTful web services, GWT, SmartGWT, Amazon web services (AWS), Redis, Memcache, MongoDB, and so on. He has a keen interest in system architecture and integration, data modeling, relational databases, and mapping with NoSQL for high throughput.
Apart from that, he takes interest in writing tech blogs and is actively involved in a knowledge-sharing community named Java User Group Ahmedabad (JUG-Ahmedabad).
You can visit him online at http://www.sunilgulabani.com and follow him on Twitter at twitter.com/sunil_gulabani, or reach him directly at <sunil_gulabani@yahoo.com>.

I would like to express my heartiest thanks to my parents and family members who supported me at each and every level of my career. I would also like to convey thanks to my friends and colleagues without whom jumping to the next step of my career would not be possible. And thanks to the Packt Publishing team, who gave me an opportunity to author this book.



About the Reviewers




Ketan Parmar (aka KPBird) has been a Java enthusiast since the last seven years. He started working in various technologies in Java, and explored all three areas (SE, ME, and EE). He is currently working as a Technical Lead.
His constant urge for finding best solutions using emerging technology made him pursue Ph.D. (Mobile Grid Computing). He has provided lots of solutions on Stack Overflow, and has contributed on various blogs and sites.
He is passionate about Java, Android, grid computing, user interface, and open source software (OSS). He is currently exploring big data. He has been an eminent speaker on Java Enterprise and Android Mobile related tools and technologies. He is the leader and founder of JUGAhmedabad (Java User Group Ahmedabad).

Daniel Rodriguez is a software architect for Java server-side development. He has background experience on high demand servers in the Electric Power Industry. He is also a software hobbyist who likes to study all frameworks available, searching for the perfect tool for the perfect job.
He has worked for 10 years on banking, public administration, and electric power industry, from logistics field work devices to mainframe servers. He is currently working as a senior software developer at Mobivery, a startup focused on client and server development for mobile projects.
He is the author of the book Java Game Programming (Programación de videojuegos en Java) focused on game architecture for mobile phones.

I would like to thank my baby girl Miriam for sleeping enough time for me to review this book.



www.PacktPub.com



Support files, eBooks, discount offers, and more



You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers, and more]

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?



	Fully searchable across every book published by Packt
	Copy and paste, print and bookmark content
	On demand and accessible via web browser



Free Access for Packt account holders



If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.



Preface



This book is for developing the JAX-RS 2.0 RESTful web services using Java. It provides an understanding of new features of JAX-RS 2.0, along with practical examples for the server and client side. It also covers implementation of different media representations, such as JSON, XML, and multipart. Apart from this, we have also included the modern HTML5-feature of Server-Sent Events (SSE). SSE is basically used for real-time applications, where a server pushes events to the client. Lastly, we described how to generate an XML specification named Web Application Description Language (WADL) of the web services.
What this book covers




Chapter 1, Getting Started, gives a brief note regarding the new features that have been introduced in JAX-RS 2.0, such as client API, filters and interceptors, and client-side and server-side asynchronous. It also contains some other prominent features, such as listing of modules and dependencies that are used for implementing JAX-RS 2.0.

    Chapter 2, Server API, covers how to create resource classes and methods, usage of parameter annotations to access user-defined values, and subresources to consume specific resource methods. We will see when the root-resource classes are accessible, and the rules for injecting the path annotations to access values. Lastly, we will learn how to load the resource classes using different methods of the Application model, ResourceConfig, and Without Application Model.

    Chapter3, Client API, shows how to consume the RESTful web services that are using the JAX-RS client API. We will cover how to call web services for different HTTP headers and *Param annotations, so that we can then perform all the CRUD operations using this client API. JAX-RS is a wrapper class of the HTTP, so we can use any web services that are based on the HTTP protocol. JAX-RS client API follows the uniformity that implements the REST architecture.

    Chapter 4, Common Media-Type Representations, covers different representations of the data. Data representation is the primary decision for any application. We need to decide an appropriate representation on the basis of the client that will consume the web services. We will also go through the implementation of different representations on the server side as well as the client side.

    Chapter 5, Server-Sent Events (SSE), covers how to create a connection between the client/server and maintain the connection at the server's end. This is needed to push the data from the server to the client without any new request initiated by the client. This type of mechanism is basically used for applications such as chatting, stock market, or any real-time data-providing applications.

    Chapter 6, WADL, describes Web Application Description Language (WADL), which is a skeleton of the deployed RESTful web service.


What you need for this book



	Understanding of RESTful web services
	Java EE
	Eclipse IDE
	JAX-RS 1.0 knowledge (optional)



Who this book is for



This book is intended for the Java EE developers who are building the application on the REST architecture. This is a quick handbook for learning JAX-RS 2.0. Developers should be having knowledge about the RESTful web services and not mandated to JAX-RS 1.0.

Conventions



In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code and the output being generated by the code are added to the book as screenshots.
A block of code is set as follows:
@Path("/getResource")
public class GetResource {
    @GET
    public String get() {
        return "Hello World!!!";
    }

    @GET
    @Path("{name}")
    public Response greetUser(@PathParam("name") String name){
        returnResponse.status(200).entity("Hello, " + name).build();
    }
}


New terms and important words are shown in bold. Words that you see on the screen, in menus, or dialog boxes for example, appear in the text like this: "clicking the Next button moves you to the next screen".
Note
Warnings or important notes appear in a box like this.


Tip
Tips and tricks appear like this.



Reader feedback



Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com> or <sunil_gulabani@yahoo.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support



Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code



You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata



Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy



Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions



You can contact us at <questions@packtpub.com> or <sunil_gulabani@yahoo.com> if you are having a problem with any aspect of the book, and we will do our best to address it.


Chapter 1. Getting Started



This chapter provides readers with a brief introduction on JAX-RS 2.0. It also includes the principles required to be followed in RESTful web services and the new features that have been introduced in JAX-RS 2.0, such as client API, filters and interceptors, client-side and server-side asynchronous. It also contains some other prominent features, such as listing of modules and dependencies that are used for implementing JAX-RS 2.0. Besides the previously mentioned features, it also provides a demonstration of JAX-RS 2.0 with examples.
What is JAX-RS 2.0?




JAX-RS 2.0 is a framework that helps you in writing the RESTful web services on the client side as well as on the server side. 
Jersey 2.0 is the reference implementation of the JAX-RS 2.0 (JSR 339 specification). Along with the enhancements in Java EE 7, JAX-RS 2.0 has also been revised dramatically.
The following is a list of the RESTful principles that must be followed:
	An ID should be assigned to everything
	Things should be linked together
	A common set of methods must be used
	Multiple representations should be allowed
	Stateless communication must be kept


Before moving ahead, let's look at the existing features of JAX-RS 1.0:
	POJO-based Resource API
	Provides access to the resource classes using HTTP
	Format (content types) independence
	Container (web server) independence
	Inclusion in Java EE


Features of JAX-RS 2.0



JAX-RS 2.0 remains consistent with the central theme of Java EE 7, but it contains other long-awaited APIs too. These APIs are mostly focused around what is referred to as 
Simplified API. They can be categorized as follows:
	
Client API

	
The specifications in the earlier versions of JAX-RS were only accountable for a server-side API for the RESTful calls. However, the same resulted into the development of different implementers of the server API, that is, 
Jersey and RESTEasy. This led to the independent development of a client-side API. Now, JAX-RS 2.0 has a Client API that provides support to the server-side specification. This feature is a major incorporation of the previous version of the Jersey Client API. This can be summarized as:

	Low-level HTTP Client APIs
	Shared APIs with Server APIs
	Compatible with some JAX-RS 1.0 implementations




	
Filters and interceptors

	
This JAX-RS 2.0 specification is accountable for the client and server filters. In the case of the Client API, implementers provided their own versions of these filters for the client and server. This JAX-RS 2.0 specification, however, absorbs the same into its API. Things that can be done through this specification are:

	Customization of JAX-RS implementations through well-defined extension points
	Logging, Compression, Security, and so on can be achieved
	Shared APIs with Server APIs
	Compatibility with some JAX-RS 1.0 implementations using some different semantics can be achieved




	
Client-side and Server-side Asynchronous

	
This feature allows a request to be dispatched in a nonblocking manner, while the results are made available asynchronously. Also, long-running requests on the server side that are I/O bound can be dispatched. This releases the application server thread and enables it to service other requests. It helps in accomplishing the following tasks:

	Allows free running of different threads at the server side
	Request threads can be suspended and resumed as per the need
	Servlet 3 async support
	Provides Client API support




	
Improved Connection Negotiation

	
This feature helps in automatically determining the response type even if client specification is already present.


	
Validation

	
This feature consists of:

	Services-enabled data validation
	Bean Validation
	Inline-constraint annotations on:	Fields and properties
	Request parameters
	Methods based on response entity
	Resource classes, that is, path validation using regular expressions







	
HyperMedia as the Engine of Application State (HATEOAS)

	
This feature is an important aspect of the RESTful architecture. HATEOAS allows us to provide hyperlinks/URIs in the request/response of the web services. This can be compared with the hyperlinks in an HTML form.




However, Jersey 2.0 can be deployed on several web containers that support Servlet 2.5 or higher, Grizzly 2 HTTP server (which is also the default server for testing), and OSGi containers. For the new async feature of JAX-RS 2.0, Server-Side Events (SSE), we need containers supporting Servlet 3.0.



Ease of using and reusing JAX-RS artifacts



As a part of Java EE 7, it is easy to create RESTful web services using JAX-RS 2.0. Using JAX-RS annotations, we can map the POJO resource class to the URIs and the URI templates. Using annotations, it becomes easier to develop web services. Different 
@*Param annotations are available to access the values of the user request:
	@PathParam
	@QueryParam
	@MatrixParam
	@HeaderParam
	@CookieParam
	@FormParam
	@DefaultValue
	@Context


JAX-RS also supports all the Java data types to be supplied in the @*Param annotations. There are other APIs available to create the RESTful web services, but mostly they require more coding. However, in the Jersey implementation of JAX-RS, it is simpler and easier to create the RESTful web services. JAX-RS manages to encode and decode the request/response content according to the media type it mentioned.

Modules and dependencies



To provide backward compatibility, all Jersey applications are compiled with Java SE 6. Thus, we can run our Jersey application on Java SE 6 easily though JAX-RS 2.0 is part of Java EE 7.
To create Jersey-based applications, we require several dependencies and for other modules, we require third-party dependencies. Jersey dependencies are loosely-coupled and separated according to the module dependencies. Jersey dependencies are lightweight, so our application has much complexity for dependencies and creation of the RESTful web services.
The following are the core Jersey modules:
	Jersey Core
	jersey-client
	jersey-common
	jersey-server


Note
You can download the Jersey Core JAX-RS 2.0 Bundle from:

http://repo1.maven.org/maven2/org/glassfish/jersey/bundles/jaxrs-ri/2.0/jaxrs-ri-2.0.zip



Apart from these dependencies, there are Jersey Containers, Connectors, Media, Extensions, Test Framework, and Glassfish Bundles. These dependencies can be easily plugged. You can find Jersey 2.0 binaries on the Jersey 2.0 Maven repository,

http://repo1.maven.org/maven2/org/glassfish/jersey/,
and on

https://maven.java.net/content/repositories/releases/org/glassfish/jersey/.

Creating a new project



The first step for creating a new project is to accumulate the required tools:
	Java JDK (Version 6 or higher)
	Eclipse IDE (Juno)
	Apache Tomcat Server (Version 7) or Glassfish Server (Version 4.0)
	Jersey Framework


Firstly, we will create a web project using Eclipse IDE. Go to File | New | Others | Dynamic Web Project. Follow the steps, and after the project is created, add the following libraries into the classpath:
	asm-all-repackaged-2.2.0-b14.jar
	cglib-2.2.0-b14.jar
	guava-14.0.1.jar
	hk2-api-2.2.0-b14.jar
	hk2-locator-2.2.0-b14.jar
	hk2-utils-2.2.0-b14.jar
	javax.annotation-api-1.2.jar
	javax.inject-2.2.0-b14.jar
	javax.ws.rs-api-2.0.jar
	jersey-client-2.2.jar
	jersey-common-2.2.jar
	jersey-container-servlet-core-2.2.jar
	jersey-server-2.2.jar
	osgi-resource-locator-1.0.1.jar
	validation-api-1.1.0.Final.jar


Now, we need to configure web.xml to the bound Jersey Container with the resources packages:
...........
<servlet>
  <servlet-name>simpleJerseyExample</servlet-name>
  <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>
  <init-param>
    <param-name>jersey.config.server.provider.packages</param-name>
    <param-value>com.demo</param-value>
  </init-param>
  <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
  <servlet-name>simpleJerseyExample</servlet-name>
  <url-pattern>/services/*</url-pattern>
</servlet-mapping>
...........

A servlet container is treated as a controller to redirect the specified resource that is being called. jersey.config.server.provider.packages maps the resources that are available in the com.demo package. So, whenever any resource is being requested, ServletContainer checks into the com.demo package for the resource URI and serves the request accordingly.
The next step is to create the 
Resource class that contains the business logic:
package com.demo;

import javax.ws.rs.Path;
import javax.ws.rs.Get;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.Produces;

/**
*    helloWorld Root Resource
*/
@Path("helloWorld")
public class HelloWorldResource{

  @GET
  @PRODUCES(MediaType.TEXT_PLAIN)
  public String greet(){
    return "Hello World!!!";
  }
}

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.


A JAX-RS resource is an annotated POJO, which provides the so-called resource methods that are able to handle the HTTP requests for the URI paths bound to the resource. In the previous code, "helloWorld" is the resource URI:
@Path("helloWorld")

To run the application, create a WAR file and deploy it on the Apache Tomcat Server. Once the project is deployed on the Tomcat server, we are ready to consume the "helloWorld" web service. We can type the resource URL in the browser or we can use curl:
$curl http://localhost:8080/projectName/services/helloWorld
Hello World!!!


Summary



We have covered a brief introduction about the JAX-RS 2.0 and Jersey 2.0 features that have enriched the JAX-RS web services. We've analyzed a simple RESTful web service example that shows the basic implementation of the JAX-RS 2.0. In the next chapter, we will see how to use the Server API with different examples of complete sets of code to implement the Server-side web services.

Chapter 2. Server API



In this chapter, we will look at the creation of the RESTful web service using JAX-RS 2.0. We will see how to create resource classes and methods, usage of parameter annotations to access user-defined values, and subresources to consume specific resource methods. We will also see when the root-resource classes are accessible, and the rules for injecting the path annotations to access values. Lastly, we will learn how to load the resource classes using different methods of the Application model, ResourceConfig, and Without Application Model.
Root-resource classes



The root-resource classes are Plain Old Java Objects (POJO), which are either annotated with @Path or have at least one method annotated with @Path or a request method designator, such as @GET, @PUT, @POST, or @DELETE. Resource methods are methods of a resource class that are annotated with a request-method designator.
Let's look at the JAX-RS annotations:
	@Path("resource_path"):The @Path annotation defines the path to the base URL or resource_path. The base URL is based on the application's name, the servlet, and the URL pattern from the web.xml configuration file.

	@PathParam:The 
@PathParam annotation is used to inject values from the URL into a method parameter. In this way, one can inject, say, the ID of a resource into the method for getting the correct object.

	@GET:The 
@GET
 annotation indicates that the method will answer to an HTTP GET request.

	@PUT:The @PUT annotation indicates that the method will answer to an HTTP PUT request.

	@POST:The 
@POST annotation indicates that the method will answer to an HTTP POST request.

	@DELETE:The 
@DELETE
 annotation indicates that the method will answer to an HTTP DELETE request.

	@Produces(MediaType.TEXT_PLAIN):The @Produces annotation defines which MIME type is delivered by a method annotated with any HTTP annotated methods. In the given example, a text (text/plain) is produced. Other examples would be application/xml or application/json.

	@Consumes(type):The 
@Consumes
 annotation defines which MIME type is consumed by this method.





@Path



The 
@Path annotation's value is a relative URI path. This is a very simple use of the @Path annotation. The following code example provides a simple example of a root-resource class using the JAX-RS annotations:
@Path("helloWorld")
public class HelloWorldResource {

    @GET
    @Produces("text/plain")
    public String sayHello() {
        return "Hello World!";
    }
}

In the preceding example, the Java class will be hosted at the URI path /helloworld. What makes JAX-RS so useful is that one can embed variables in the URIs.
URI path templates are URIs with variables that are embedded within the URI syntax. These variables are substituted during runtime so that a resource can respond to a request, based on the substituted URI. The variables are denoted by curly braces shown as follows:
	Class-level:@Path("/helloWorld/{name}")
public class HelloWorldResource {
 
    @GET
    @Produces("text/plain")
    public String sayHello(@PathParam("name") String name) {
        return "Hello, " + name;
    }
}


	Method-level:@Path("/helloWorld")
public class HelloWorldResource {
 
    @GET
    @Produces("text/plain")
    @Path("{name}")
    public String sayHello(@PathParam("name") String name) {
        return "Hello, " + name;
    }
}




We can also use the following code:

@PathParam(value = "name") instead of @PathParam("name")

In the previously mentioned example, a user is prompted to enter his/her name. After that, a Jersey web service, which has been configured to respond to requests to this URI path template, will respond.
For example, if the user has entered his name as "John", the web service will respond to the following URL:
http://localhost:8080/JAXRSDemo/services/helloWorld/John

Output:
Hello, John


@PathParam may be used on the method parameter of a request method to get the value of the name variable.
@Path with a regular expression




@Path also supports a complex URI matched with a regular expression via the following expression:
  {"variable-name":"[regular-expression]"}

@Path("/helloWorld")
public class HelloWorldResource {
 
    @GET
    @Produces("text/plain")
    @Path("{name: ([a-zA-Z])*}")
    public String sayHello(@PathParam("name") String name) {
        return "Hello, " + name;
    }
}

In this given example, a user will be prompted for only a string literal. For example, if the user has entered his name as "John", the web service will respond to the following URL considering the following two cases, correct or wrong:
	Correct:http://localhost:8080/JAXRSDemo/services/helloWorld/John

Output:
Hello, John


	Wrong:http://localhost:8080/JAXRSDemo/services/helloWorld/John1987

Output:
HTTP Status 404, Not Found






HTTP methods




@GET, @PUT, @POST, and @DELETE are the resource method designator annotations that are defined by JAX-RS and correspond to the similarly named HTTP methods. The behavior of a resource is determined by the type of HTTP methods to which the resource is responding.
@GET



This method is used to retrieve (or read) a representation of a resource. According to the design of the HTTP specification, GET (along with HEAD) requests are used only to read data, and not to change it. They are considered to be safe when they are used in this manner. This means that they can be called without the risk of data modification or corruption. The following example shows the use of the GET method:
...
@GET
public String getUser() {
  System.out.println("GET");
  return "Hello User";
}
...

Here, we have used a simple method, getUser()
. The @GET annotation is a request method designator defined by JAX-RS. In this example, the annotated Java method will process the HTTP GET requests. The behavior of a resource is determined by the HTTP method to which the resource would respond.

@PUT



This one is mostly used for update capabilities. We can use @PUT in a known resource URI with the request body containing the newly-updated representation of the original resource.
However, it can also be used to create a resource in the case where the resource ID is chosen by the client instead of the server. The following example shows the use of this method:
@PUT
public void updateUser(String userData) {
    System.out.println("PUT");
    System.out.println("User Data: " + userData);
}

In the previous example, the PUT request has a payload associated with it that is stored in the userData variable.

@POST




POST
 is usually used for creation of new resources. The following example shows the use of the POST method, where the person can access the values using the FormParam annotation:
@POST
public void addUser(@FormParam("id") String id,@FormParam("name") String name){
   	 System.out.println("POST");
    System.out.println("Id: " + id);
    System.out.println("Name: " + name);
}

Or we can also use the POST method to access the values using the MultivaluedMap annotation:
@POST
public String addUser(MultivaluedMap<String, String> formData) {
    System.out.println("Form Data: " + formData);
    return "User added successfully.";
}

In the previous example, one can access the ID and name parameters that are embedded in a form.

@DELETE



The use of DELETE
 is easy to understand. It is used to delete a resource identified by a URI:
@DELETE
@Path("{name}")
public void delete(@PathParam("name")String name) {
  System.out.println("DELETE: " + name);
}


@Produces



This annotation specifies the type of output a method (or web service) will produce. @Produces are defined at the following two levels:
	Class-level:In this level, all the methods in a resource can produce the specified MIME types by default.

	Method-level:This level overrides the specified MIME types at the class level.



If none of the methods in a resource are able to produce the MIME type in a client request, the JAX-RS runtime sends back an HTTP 406 Not Acceptable error. If the annotation is not present at any level, by default the "text/html" media type is returned.

@Produces can accept multiple MIME types also:
@Path("/helloWorld")
@Produces("text/plain")
public class HelloWorldResource {
    @GET
    public String greet() {
        ...
    }

    @GET
    @Produces("text/html")
    public String greetUser() {
        ...
    }
}

In the previous example, the greet() method will produce the "text/plain" MIME type, which is of a class-level MIME type, whereas the greetUser() method will override the class-level MIME type, "text/plain", to specify the MIME type as "text/html".
It is also possible to provide multiple MIME types, as shown in the following example:
@GET
@Produces({"application/xml", "application/json"})
public String greet() {
    ...
}

In the previous example, this method will be served for any specified MIME type. Thus, it becomes easier to invoke where multiple client requests with different MIME types.

@Consumes



The 
@Consumes annotation is used to specify the MIME types that a method (or web service) can consume. @Consumes is defined at the following two levels:
	Class-level:All the methods in a resource can produce the specified MIME types by default.

	Method-level:It overrides the specified MIME types at the class level.



If a resource is unable to consume the MIME type of a client request, the JAX-RS runtime sends back an HTTP 415 (Unsupported Media Type) error. If the annotation is not present at any level, then by default, the "text/html" media type is returned.

@Consumes can also accept multiple MIME types, for example:
@Consumes can also accept multiple MIME types, for example:
@Path("/helloWorld")
@Consumes("multipart/related")
public class HelloWorldResource {
    @POST
    public String processMultipart(MimeMultipart multipartData) {
        ...
    }

    @POST
    @Consumes("application/x-www-form-urlencoded")
    public String processForm(FormURLEncodedProperties formData) {
        ...
    }
}


In this example, the processMultipart() method will accept a class-level MIME type, "multipart/related", whereas processForm will override the class-level MIME type, and it will serve as a specified MIME type, application/x-www-form-urlencoded.


Parameter annotations



Parameter's annotations are used to retrieve values from the request. The different types of parameter annotations are listed as follows:
	@PathParam
	@QueryParam
	@MatrixParam
	@HeaderParam
	@CookieParam
	@FormParam
	@BeanParam


@PathParam




@PathParam
 is a parameter annotation that enables you to map a variable URI path's fragments into your method call. The following example shows the use of the @PathParam method:
@Path("/userService")
public class UserResource {
    ...
    @GET
    @Path("{name}")
    public String getUserByName(@PathParam("name")String name) {
        return name;
    }
    ...
}

In the example, the getUserByName() method takes a parameter as a name. We can access the URI parameter using PathParam. It binds the URI template's parameter to the parameter that is defined in the getUserByName() method.

@QueryParam



This annotation allows you to map a URI query string parameter or a URL form encoded parameter to your method invocation. The following example shows the use of the @QueryParam method:
@Path("/userService")
public class UserResource {
    ...
    @GET
    @Path("/queryParam")
    public String getUser(@QueryParam("name")String name) {
        System.out.println("Name: " + name);
        return name;
    }
    ...
}

In the previous example, the getUser() method and the QueryParam annotation take care of mapping a query parameter (name) in a request to a method parameter respectively.
URI Pattern: /services/userService/queryParam?name=John

In URI Pattern, /userService is the root-resource path and /queryParam is the resource method path, using which getUser(String) will be invoked. We embedded the name parameter in URI as query string and John as value.

@DefaultValue



At times, we have to keep optional parameters in request, so that we can assign a default value using @DefaultValue. The DefaultValue annotation can be used with the following annotations:
	@PathParam
	@QueryParam
	@MatrixParam
	@FormParam
	@HeaderParam
	@CookieParam


Let's look at the example of @DefaultValue:
@GET
@Path("/queryParam")
public String getUser(
    @QueryParam("name")String name, 
    @DefaultValue("15") @QueryParam("age") String age) {
    System.out.println("Name: " + name);
    System.out.println("Age: " + age);
    return name;
}

Here, you can see that the age parameter has been assigned DefaultValue:
URI Pattern: /services/userService/queryParam?name=John
URI Pattern: /services/userService/queryParam?name=John&age=20

Both the URI patterns are correct. In the first URI, we haven't mentioned "age" parameter as query string, so application detects automatically and invoke matching resource method. And application appends the missing "age" parameter with the default value as "15". In the first URI, the response will be:
Name: John
Age: 15

For the second URI, the response will be:
Name: John
Age: 20

So, whenever there is any optional parameter for caution of error prone, you can set the default value.

@MatrixParam



Matrix parameters are a set of name=value pairs embedded in the URI path, for example:
URI Pattern: /service/getUserById/1;name=John;age=10

In the preceding URI, the matrix parameters are name=John and age=10, separated by a semi colon (;). It represents resources that are noted by their attributes as well as their IDs.
@GET
@Path("/getUserById/{userId}")
public Response getUserById(
    @PathParam("userId") String userId,
    @MatrixParam("name") String name,
    @DefaultValue("15") @MatrixParam("age") String age) {

        return Response
        .status(200)
        .entity("Id: " + userId + ", Name: " + name + ", Age: " + age)
        .build();
    }

In the example, the getUserById() method takes three parameters, userId as the path parameter, which is mandatory, and name and age as the matrix parameters. If you don't provide values in the URL path, then the value set by default is null.

@HeaderParam



The @HeaderParam annotation maps a request HTTP header to your method parameters, for example:
@GET
@Path("/getUserAgent")
public String getUserDevice(@HeaderParam("user-agent") String userAgent,
@HeaderParam("Content-Type") MediaType contentType) {

    return "User Agent: " + userAgent + ", Content-Type: " + contentType ;
}

In the previous example, the getUserDevice() method provides us with the header information of the request. At times, we need to provide a response on the basis of the request header that might be browser-specific, mobile-specific, or content type-specific.
URI Pattern: /services/userService/getUserAgent
$ curl -X GET -H "Content-Type:application/json" http://localhost:8080/Chapter2/services/userService/getUserAgent

In the URI, "/userService" is the root-resource path and "/getUserAgent" is the resource method that will invoke the getUserDevice() method. We embedded the header value for Content-Type so that appropriate resource method to be invoked. getUserDevice(userAgent, contentType) will be invoked and application dynamically embeds the header values for userAgent and contentType from the incoming request.

@CookieParam



Cookies are special types of HTTP headers. They are made up of name or value pairs that are passed to the resource implementation. The cookie is passed to-and-fro between the provider and the consumer with each request/response. Only consumers can modify the cookies. They are used to maintain sessions and store settings and other data.
The @CookieParam annotation allows you to inject the value of a cookie or an object representation of an HTTP request cookie into your method invocation:
@GET
@Path("/getCookies")
public String getCookies(@CookieParam("sessionid") int sessionId) {
  return "Session Id: " + sessionId;
}

In the example, the getCookies() method provides the value of the sessionId stored in the cookie. We can retrieve any value stored in the cookie using the CookieParam annotation. A default value can also be specified using the @DefaultValue annotation as shown:
@GET
@Path("/getCookies")
public String getCookies(
    @DefaultValue("10") @CookieParam("sessionid") int sessionId) {
      return "Session Id: " + sessionId;
}

Sometimes, we need more information than the value itself. For that, we can use the Cookie class instead of the primitive datatype, for example:
@GET
@Path("/getCookies")
public String getCookies(@CookieParam("user-agent") Cookie userAgentCookie) {
    return 
    "Name: " + userAgentCookie.getName() +
    "Value: " + userAgentCookie.getValue() +
    "Domain: " + userAgentCookie.getDomain() +
    "Path: " + userAgentCookie.getPath() +
    "Version: " + userAgentCookie.getVersion();
}

The table describing the methods of the Cookie object is as follows:
	
Method

	
Description


	

getName()


	
Corresponds to the string name of the cookie


	

getValue()


	
Corresponds to the string value of the cookie


	

getDomain()


	
Specifies the DNS name


	

getPath()


	
Corresponds to the URI path from where the request is being called


	

getVersion()


	
Defines the format of the cookie header





@FormParam



The 
@FormParam annotation can be used when a request body is of the media type, application/x-www-form-urlencoded. We can inject single parameters into the resource method invocation. Let's look at the following example:
@POST
@Path("/addUser")
public void addUser(
    @FormParam("name") String name,
    @FormParam("id") String id){
        System.out.println("Add User:");
        System.out.println("Id: " + id);
        System.out.println("Name: " + name);
    }

In the preceding example, name and id are form parameters that are being injected into the addUser() resource method:
$ curl -X POST -d "name=John&id=100" http://localhost:8080/Chapter2/services/userService/addUser

Here /userService is the root-resource path and /addUser is the resource method. In the curl request we embedded the form data for name and id as John and 100 respectively. We can also use MultivaluedMap<String,String> to get all values of the HTML form, shown as follows:
@POST
@Path("/addUser")
public String addUser(MultivaluedMap<String, String> formData) {
    return "Form Data: " + formData;
}

It is not mandatory for the form's data to be encoded. Mostly, MultivaluesMap's data are automatically decoded by the JAX-RS implementations.

@BeanParam



This annotation allows injection of the parameters into a single bean. A bean annotated with @BeanParam containing any properties and other parameter annotations (such as @PathParam, @QueryParam, @MatrixParam, @HeaderParam, @CookieParam, @FormParam) will be mapped with request values.
Therefore, instead of providing request values, such as parameter annotations (for example, @PathParam, @QueryParam, @MatrixParam, @HeaderParam, @CookieParam, and @FormParam) into a method parameter, the @BeanParam annotation can be used. The @BeanParam annotation is used for aggregation of more request parameters into a single bean. Let's take a look at the following example:
public class UserBean {

    @PathParam("id")
    private String id;

    @MatrixParam("name")
    private String name;

    @MatrixParam("age")
    private String age;

    @DefaultValue("No address provided")
    @QueryParam("address")
    private String address;

    @HeaderParam("user-agent")
    private String userAgent;

    public String toString(){
        return
        "Id: " + id +
        "\nName: " + name +
        "\nAge: " + age +
        "\nAddress: " + address +
        "\nUser Agent: " + userAgent + "\n" ;
    }
}

This is the UserBean that we will inject into the resource method:
@Path("/beanResource")
public class BeanResource {

    @GET
    @Path("/getUserDetails/{id}")
    public String getUser(@BeanParam UserBean userBean) {
        return "User Bean: " + userBean.toString();
    }
}

In this example, the UserBean fields are being mapped with their respective parameter annotations. You can run the example from a browser using the following URI:
URI Pattern: 

$ curl -X GET http://exampe.com/services/beanResource/getUserDetails/1;name=John;age=25?address=USA



Subresources



The @Path annotation is used for the identification of the resource that is to be called for the specific request. It can be defined at the following two levels:
	Class-level
	API-level


Class-level @Path annotations are termed as the root-resource classes, and the methods are defined as resource methods, whereas API-level @Path annotations point directly to specific methods under the root-resource classes, which are defined as subresource methods. The following example shows the use of the subresources:
@Path("/userService")
public class UserResource {

    @GET
    public String getUser() {
        return "John";
    }

    @GET
    @Path("/getUserName")
    public String getUserName() {
        return "John";
    }
}

In this example, getUserName() is the subresource method, as we have explicitly defined the path of the method. We can also assign regular expressions in the URI template for the root-resource class and the subresource methods. When the request URI is userService, the first resource method, getUser(), will be invoked, and when the request URI is "userService/getUserName", the second method, getUserName(), will be invoked:
URI Pattern: http://localhost:8080/Chapter2/services/userService/getUserName

In the URI, /userService is the root-resource path and /getUserName is the resource method that will invoke the getUserName() method in which we explicitly defined the path /getUserName.
We can also create subresource locators where methods under the root-resource classes are not annotated by any HTTP headers. In fact, these HTTP header resource methods will be created in different resource classes where we redirect the request from the root-resource method class. This helps in easier management of the code, and each subresource will be loosely coupled. Let's look at the example:
@Path("/userService")
public class UserResource {
                ………..
    @Path("/getAddress")
    public AddressResource getAddress() {
        return new AddressResource();
    }
}

public class AddressResource {
    @GET
    public Response getUserName() {
        return Response
              .status(200)
              .entity("Address")
              .build();
    }
}
URI Pattern: http://localhost:8080/Chapter2/services/userService/getAddress

In the UserResource class, we have a subresource method, getAddress(), which redirects the request to the AddressResource. This is termed as a subresource locator. Now, AddressResource is responsible for delivering the response to the request. It locates the appropriate subresource method and the method that is being invoked to serve the request.

Scope of the root-resource classes



By default, every time a new request is made, a new instance of the root-resource class is being created. The scope of the root-resource class, which is created at the time of request, is limited to that request only. This makes it easier to manage and work in isolation. It helps us in handling multiple concurrent requests to the root-resource class. We don't need to manage anything to handle multiple concurrent requests.
If we manage a single root-resource class instance to process multiple concurrent requests, we will face performance issues for the same. A new instance for every request makes it easier for JVM to go for garbage collection of the created and destroyed instance that served the request. We can also define a root-resource class as Singleton for a single instance of multiple requests.
Let's now look at the resource scopes:
	Request scope:By using the @RequestScope annotation or none, we can have a life-cycle till the request lasts. This is the default scope of the root-resource classes. For each new request, a new root-resource instance is being created and served accordingly for the first time. However, when the same root-resource method is being called, then the old instance will be used to serve the request.

	Per-lookup scope:The @PerLookup annotation creates root-resource instances for every request.

	Singleton:The 
@Singleton annotation allows us to create only a single instance throughout the application.




Rules of injection



Injection can be applied on fields, constructor parameters, resources, subresources, subresource locators, method parameters, and setter methods. It helps to identify which path or parameter of the request needs to be handled. Let's look at the following examples:
	Root-resource:@Path("/userService")
public class UserResource {
    ...
}


	Fields:@Path("/userService")
public class UserResource {
    ...
    @QueryParam("name")
    private String name;
    ...
}


	Constructor parameter:@Path("/userService")
public class UserResource {

    public UserResource(@PathParam("id") int id){
        ...
    }

    @GET
    @Path("{id}")
    public String getUser() {
        ...
    }
}


	Resource method:@Path("/userService")
public class UserResource {
    @GET
    public String getUser(@QueryParam("name")String name) {
        ...
    }
}


	Subresource method:@Path("/userService")
public class UserResource {
    @GET
    @Path("/getUser/{name}")
    public String getUser(@PathParam("name")String name) {
        ...
    }
}


	Subresource locator method:@Path("/userService")
public class UserResource {
    @Path("/getAddress")
    public AddressResource getAddress(@QueryParam("id") int id) {
        ...
    }
}


	Bean setter method:@Path("/userService")
public class UserResource {
    @GET
    @Path("{id}")
    public String getUser() {
         ...
    }

    @PathParam("id")
    public void setId( int id){
        ...
    }
}





Deploying a RESTful web service



There are several ways to deploy the JAX-RS applications. Some of them are illustrated as follows:
	Using the abstract Application class:In this type, we provide all the root-resource classes to the Application class. So, when the server is started, we need to load the Application subclass that has injected the root-resource class. Basically, when we need to set some configuration before loading the root-resource class, we can use the Application Model. Let's look at the following example:
public class MainApplication extends Application {
    @Override
    public Set<Class<?>> getClasses() {
        Set<Class<?>> s = new HashSet<Class<?>>();
        s.add(HelloWorld.class);
        …..
        return s;
    }
}

In web.xml, the path of the Application subclass needs to be defined, as shown in the following code:
    ….
    <servlet>
        <servlet-name>Jersey Web Application</servlet-name>
        <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>
        <init-param>
<param-name>javax.ws.rs.Application</param-name>
            <param-value>com.example.MainApplication</param-value>
        </init-param>
        <load-on-startup>1</load-on-startup>
    </servlet>
 
    <servlet-mapping>
        <servlet-name>Jersey Web Application</servlet-name>
        <url-pattern>/services/*</url-pattern>
    </servlet-mapping>
    …….


	Using the ResourceConfig class:The 
ResourceConfig class is used to configure a web application. Let's look at the following example:
public class MainApplication extends ResourceConfig{
    public MainApplication() {
        packages("com.example");
    }
}

In web.xml, we need to define the path of the Application subclass:
    
    ….
    <servlet>
        <servlet-name>Jersey Web Application</servlet-name>
        <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>
        <init-param>
<param-name>javax.ws.rs.Application</param-name>
            <param-value>com.example.MainApplication</param-value>
        </init-param>
        <load-on-startup>1</load-on-startup>
    </servlet>

    <servlet-mapping>
        <servlet-name>Jersey Web Application</servlet-name>
        <url-pattern>/services/*</url-pattern>
    </servlet-mapping>
    …….

In the MainApplication class, we have defined the package name where all the root-resource classes exist. Now, the ResourceConfig class manages to load the root-resource class from a package when the server starts. We can also define multiple packages in which the root-resources classes exist, for example:
packages("com.example;com.example2;com.example3");


	Without Application class:This type of deployment process is used when we don't need to set any pre-configuration for our web application before loading the root-resource classes.
    …….
    <servlet>
        <servlet-name>Jersey Web Application</servlet-name>
        <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>
        <init-param>
            <param-name>jersey.config.server.provider.packages</param-name>
                <param-value>com.example</param-value>
        </init-param>
        <load-on-startup>1</load-on-startup>
    </servlet>
    
    <servlet-mapping>
    <servlet-name>Jersey Web Application</servlet-name>
        <url-pattern>/services/*</url-pattern>
    </servlet-mapping>




Here, we have defined the package path where the root-resource class exists. We can also supply multiple packages for different root-resources classes, such as:
<param-value>com.example;com.example2;com.example3</param-value>


Summary



In this chapter, we covered how to create the JAX-RS web service using Jersey implementation. We also saw different aspects of the defining resource classes and their methods, how HTTP headers will be defined, and what will be the scope of the path parameter annotations. We also discussed the rules to inject path parameters into resource methods. Finally, we saw various methods to deploy our resource classes. In the next chapter, we will see how to consume these server-side web services with different HTTP annotated methods and *Param annotations.

Chapter 3. Client API



In the previous chapter, we have seen how to create RESTful web services using the Jersey implementation of JAX-RS 2.0. In this chapter, we will see how to consume the RESTful web services that are using the JAX-RS client API. We will also cover how to call web services for different HTTP headers and *Param annotations, so that we can then perform all the CRUD operations using this client API. JAX-RS is a wrapper class over the HTTP, so we can use any web services that are based on the HTTP protocol. JAX-RS client API follows the uniformity that implements the REST architecture.
Consuming web services using a client



The JAX-RS client API is built on top of the HTTP protocol. It consumes all web services that are built on the HTTP protocol. Apart from this client API, there are other APIs, such as HTTPURLConnection and Apache HTTP Library, to consume web services. However, this API is harder to code and time-consuming for complex web services. So, the JAX-RS client API is wrapped in such a way that developers can find it easy to code and reuse wrapper classes as much as they can.
In the Web Service Flow figure, 
Client is the base to initiate the connection. We can get the client instance using the entry point, that is, the ClientBuider method. ClientBuilder provides a new instance every time. So, if necessary, we can create different instances for different URIs.
Note
Note that creating multiple client instances can be expensive.


Once we obtain the client instance, optionally, we can set properties or register filters. Filters can help in manipulating custom objects over the client and server side. Now, we create an instance of WebTarget using the 
client.target() method. We can provide either the context URI or a root-resource URI. Setting target to the context URI will allow the same target instance to call multiple individual resource URIs, and in case of setting a target to individual URIs, we can use the same target instance URI or its subresources. Setting the target to context URIs is preferable, because we need to call the same resources of single context URI. Under the WebTarget instance, we have a 
path() method that allows us to provide the resource URI or subresource URI.
[image: Consuming web services using a client]Web Service Flow


Let's look at the following example:
Client client = ClientBuilder.newClient();

WebTarget target = client.target("http://localhost:8080/Chapter2/services");

target = target.path("getResource");
        

Here, we first created an instance of client using the static method of ClientBuilder. Then, from the client instance, we mapped the context root URI. For consuming specific getResource web service, we set the target using the path() method. So now, our web target points to the following location:

http://localhost:8080/Chapter2/services/getResource

We are simply calling a getResource method. In either way, we can receive the response from web service in "Response" or "String":
Response response = target.request().get();

String responseData = response.readEntity(String.class);

Or
String responseData = target.request().get(String.class);

By using "Response", we can know the status or access the header properties, metadata, media type, cookies, and so on, of the response received. Let's see how to consume the RESTful web service using different representation types and resource methods.
The get method



The HTTP get method invokes the request. This method is by default requested synchronously:
WebTarget target = client.target("http://localhost:8080/Chapter2/services/getResource");

String responseData = target.request().get(String.class);

Here, we specified that the accept type will be a Java primitive type string. For consuming the get method, we have the get(...) method of the Builder class.
On the server side, it will first identify the root-resource getResource and then check for the matching resource method to process the request. The resource method is mapped according to the matching URI template, that is, either a subresource or the validator, or the @Produces media type or 
@Consumes media type is applied on the resource method.
@GET
public String get() {
    return "Hello World!!!";
}


The post method



The HTTP post method invokes the request. This method is by default requested synchronously as follows:
WebTarget target = client.target("http://localhost:8080/Chapter2/services/postResource");

MultivaluedMap<String, String> postForm = new MultivaluedHashMap<String, String>();

postForm.add("name", "John");

String responseData = target
                     .request()
                     .post(Entity.form(postForm),String.class);

Here, we provided MultivaluedMap<String,String> to pass the form parameters. It is the same as passing input types in an HTML form. Entity.form(postForm) creates the application/x-www-form-urlencoded form entity. So, we don't need to define the content type explicitly. This makes it easier for a developer to code and manage the API. For consuming the post method, we have the post(...) method of the Builder class.
On the server side, it will first identify the root-resource getResource and then check for the matching resource method post(...) to process the request. The resource method is mapped according to the matching URI template, that is, either a subresource or the validators, or the 
@Produces media type or the @Consumes media type is applied on the resource method:
@POST
public Response postForm(@FormParam("name") String name){
    return Response
          .status(200)
          .entity("Hello, "+ name)
          .build();
}


The put method



The HTTP put method invokes the request. This method is requested synchronously by default:
WebTarget target = client.target("http://localhost:8080/Chapter2/services/putResource");

MultivaluedMap<String, String> putForm = new MultivaluedHashMap<String, String>();

putForm.add("name", "John");

String responseData = target.request().put(Entity.form(putForm),String.class);

It is the same as the post method. In order to consume the put method, we have the put(...) method of the Builder class.
On the server side, it will first identify the root-resource getResource and then check for the matching resource method put() to process the request. The resource method is mapped according to the matching URI template, that is, either a subresource or the validator, or the @Produces media type or the @Consumes media type is applied on resource method:
@PUT
public String put(@FormParam("name") String name){
    return "Hello, " + name;
}


The delete method



The HTTP delete method invokes the request. This method is requested synchronously by default as follows:
WebTarget target = 
    client
    .target("http://localhost:8080/Chapter2/services/deleteResource?name=John%20Doe");

String responseData = target.request().delete(String.class);

Here, the values are passed using the Query parameter. We can also use the path parameter to pass values to the server. For consuming the delete method, we have the delete(...) method of the 
Builder class.
On the server side, it will first identify the root-resource getResource and then check for the matching resource method delete() to process the request. The resource method is mapped according to the matching URI template, that is, either a subresource or the validator, or the @Produces media type or the @Consumes media type that are applied on the resource method.
@DELETE
public String delete( @QueryParam("name") String name){
    return "Delete " + name;
}


The path parameter



To set the path parameters, we have a path(String) and resolveTemplate(String,Object) method to add multiple path parameters as the key/value pair. This eliminates the necessity to specify path parameters into URI. It is easier for developers to read the code and assign multiple path parameters:
WebTarget target = client.target("http://localhost:8080/Chapter2/services/getResource");

String responseData =
                      target
                             .path("{id}")
                             .resolveTemplate("id", "100")
                             .request()
                             .get(String.class);

Here, we consumed the get method by using the path parameter. At the time of request invocation, the builder forms the URI as follows:

http://localhost:8080/Chapter2/services/getResource/100

On the server side, using the @Path and 
@PathParam annotations provided by the JAX-RS API, path parameters are mapped to the method parameter:
@GET
@Path("{id}")
public Response get(@PathParam("id") int id) {
    return Response.status(200).entity("Id: " + id).build();
}

In this example, we have used the @PathParameter annotation to map the id parameter with the request path parameter.

The query parameter



To set the query parameters, we have a queryParam(String,Object) method to add multiple query parameters as the key/value pair. This eliminates the need to specify query parameters into URI as follows:
WebTarget target = client.target( "http://localhost:8080/Chapter2/services/getResource");

String responseData =
                      target
                             .path("subResource")
                             .queryParam("id", 1)
                             .queryParam("name", "John")
                             .request().get(String.class);

At the time of request invocation, the builder forms the URI as:

http://localhost:8080/Chapter2/services/getResource/subResource?id=1&name=John

On the server side, using an 
@QueryParam annotation provided by the JAX-RS API, query parameters are mapped to the method parameter as follows:
@GET
@Path("/subResource")
public Response usingQueryParam(
         @DefaultValue("0") @QueryParam("id") String id,
         @DefaultValue("No Name") @QueryParam("name") String name) {
    return Response
             .status(200)
             .entity("Id: " + id + ", Name: " + name).build();
}

In this example, we have used the @QueryParameter annotation to map the id and name parameters with the request id and 
name parameters respectively.

The cookie parameter



To set the cookie parameters, we have a cookie(Cookie) method to add multiple cookies. Cookies are reliable mechanisms to remember information or maintain users' activities.
WebTarget target = client.target("http://localhost:8080/Chapter2/services/getResource/getSessionId");

Cookie cookie = new Cookie("sessionid", "100");

String responseData = target.request().cookie(cookie).get(String.class);

On the server side, using an 
@CookieParam annotation provided by the JAX-RS API, cookie parameters are been mapped to the method parameters.
@GET
@Path("/getSessionId")
public String getSessionId(@CookieParam("sessionid") int sessionId) {
    return "Session Id: " + sessionId ;
}

In this example, we have used the @CookieParameter annotation to map the sessionid parameter with the request sessionId parameter.

The matrix parameter



To set the matrix parameters, we have the matrixParam(String,Object) method to add multiple matrix parameters. Matrix parameter values are converted into string objects using the 
toString() method. They are appended at the end of the URI path segments as follows:
WebTarget target = client.target("http://localhost:8080/Chapter2/services/getResource");

String responseData =
                 target
                      .path("usingMatrixParam")
                      .matrixParam("id", 1)
                      .matrixParam("name", "John")
                       .request().get(String.class);

At the time of request invocation, the builder forms the URI as follows:

http://localhost:8080/Chapter2/services/getResource/usingMatrixParam;id=1;name=John

On the server side, using an 
@MatrixParam annotation provided by the JAX-RS API, matrix parameters are mapped to the method parameters:
@GET
@Path("usingMatrixParam")
public Response usingMatrixParam(
                @DefaultValue("0") @MatrixParam("id") String id,
                @DefaultValue("No Name") @MatrixParam("name") String name) {

     return Response
                .status(200)
                .entity("Id: " + id + ", Name: " + name)
                .build();
}

In this example, we have used the @MatrixParameter annotation to map the id and name parameters with the request id and name parameters respectively.

The bean parameter



To set the bean parameters, we can use any of the *Param methods as follows:
WebTarget target = client.target("http://localhost:8080/Chapter2/services/beanResource/get/101;name=John;age=25?address=USA");

String responseData = target.request().get(String.class);

Or
WebTarget target = client.target("http://localhost:8080/Chapter2 services/beanResource/get");

String responseData =target
            .path("{id}")
            .resolveTemplate("id", "1001")
            .matrixParam("name", "John")
            .matrixParam("age", 25)
            .queryParam("address", "USA")
            .request()
            .get(String.class);

At the time of request invocation, the builder forms the URI as follows:

http://localhost:8080/Chapter2/services/beanResource/get/101;name=John;age=25?address=USA

On the server side, using an 
@BeanParam annotation provided by the JAX-RS API, different *Parameters are mapped to the *Parameters method respectively as follows:
@GET
@Path("/get/{id}")
public String get(@BeanParam UserBean user) {
    return "User Bean: " + user.toString();
}

The UserBean class can be used as follows:
public class UserBean {
    @PathParam("id")
    private String id;

    @MatrixParam("name")
    private String name;

    @MatrixParam("age")
    private String age;
 
    @DefaultValue("No address provided")
    @QueryParam("address")
    private String address;

    @HeaderParam("user-agent")
    private String userAgent;

    public String toString(){
       return
              "Id: " + id +
              ", Name: " + name +
              ", Age: " + age +
              ", Address: " + address +
              ", User Agent: " + userAgent + "\n" ;
    }
}

In this example, we have used the @BeanParameter annotation to map the id, name, age, address (optional), and user Agent parameters with request id, name, age, address, and user Agent parameters respectively.

The @Produces annotation



At times, we have multiple response MIME types implemented in resource classes. If we need a specific response MIME type, we need to provide the MIME type in the request(MediaType) method explicitly:
WebTarget target = client.target("http://localhost:8080/Chapter2/services/getResource/getUserList");
String responseData = target.request(MediaType.APPLICATION_XML).get(String.class);

In this example, we have explicitly mentioned that the response MIME type should be APPLICATION_XML.
On the server side, using the @Produces annotation provided by the JAX-RS API, maps the request MIME type:
@GET
@Path("/getUserList")
@Produces({ "application/xml" })
public User[] getList() {
    User[] list = new User[3];
    list[0] = new User("John");
    list[1] = new User("William);
    list[2] = new User("Suzzane");

    return list;
}

The User class can be used as follows:
@XmlRootElement
public class User {
    private String name;

    public User() {
    }

    public User(String name) {
        this.name = name;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    @Override
    public String toString() {
        return name;
    }
}

We don't need to convert the List<User> instance to an XML format. JAX-RS does this on its own.

The @Consumes annotation



At times, we have multiple accept MIME types that are implemented in resource classes. If we need a specific accept MIME type to process the request, we need to provide the MIME type in the accept(MediaType) object explicitly.
WebTarget target = client.target("http://localhost:8080/Chapter2/services/postResource/usingFormParamWithConsume");

MultivaluedMap<String, String> postForm = new MultivaluedHashMap<String, String>();

postForm.add("name", "John");

String responseData = target
                 .request()
                 .accept(MediaType.APPLICATION_FORM_URLENCODED_TYPE)
                 .post(Entity.form(postForm),String.class) ;

In this example, we have explicitly mentioned that the accept MIME type should be APPLICATION_FORM_URLENCODED_TYPE.
On the server side, use the @Consumes annotation provided by the JAX-RS API to map the accept MIME type.
@POST
@Path("/usingFormParamWithConsume")
@Consumes(MediaType.APPLICATION_FORM_URLENCODED)
public String greet(@FormParam("name") String name) {
    return "Hello, " + name;
}




Use of Invocation.Builder



For invoking an HTTP request, we require an instance of Invocation Builder. An Invocation Builder instance is created using the web target's request method. Invocation Builder is basically used for wrapping up response media type, headers, properties, authentication token, cookies, and so on. These can be used for data manipulation or authentication at the server side. Let's look at the following example:
WebTarget target = client.target("http://localhost:8080/Chapter2/services/getResource");

Invocation.Builder builder = target.request("text/plain");

Invocation invocation = builder.buildGet();

String responseData = invocation.invoke(String.class);

Here, we first created an instance of WebTarget for the URI from the client instance. We set the accept type in the request and set the instance to Invocation.Builder. We then wrapped the Builder instance to Invocation; that is, our request is ready with the headers/properties, data, and so on, and ready to call the web service. Using the invoke(T) object, we call the web service. In this, we are expecting String.class to be the response. Else, we can also have a response instance from the web service using invoke() as shown in the following example:
Response response = invocation.invoke();

String responseData = response.readEntity(String.class);

Adding support for new representations



JAX-RS provides us the facility to add our custom entity provider for request/response message bodies. By using the custom entity provider, we can serialize or deserialize any message bodies with any media type. Using MessageBodyReader<T> for request and MessageBodyWriter<T> for response, we can implement these representations.
Before consuming a web service, we need to register the entity providers with any of the following methods: ClientBuilder or Client or WebTarget or ClientConfig.

Client transport connectors



Transport connectors are basically used to traverse the data to and from over the network. By default, HTTPURLConnection is used at the transport layer. On the base of Jersey-specific connector Service Provider 

Interface (SPI), the HttpUrlConnector is wrapped to support the Jersey transport layer. We can create our own connector for transport layers. Alternatively, we can use ApacheConnector or GrizzlyConnector that are available in the market.

Securing a client



To secure communication between request-response instances in our application, we can implement Secure 

Sockets Layer (SSL). Jersey client provides us a way to use SSL by using SSLContext. This will be used during communication to the server endpoint from the Jersey client instance. Here's an example that shows how to implement SSL:
SSLContext sslContext = SSLContext.getInstance("SSL");

Client client = ClientBuilder.newBuilder().sslContext(sslContext).build();

Response response = client.target("https://localhost:8080/Chapter2/services/getResource").request().get();

In this example, we created an instance of SSLContext that is passed as a constructor argument in the ClientBuilder instance. The SSLContext.getInstance(String) provides us the specified secure socket protocol.


Summary



JAX-RS 2.0 Client API provides us a simple API for consuming web services. In this chapter, we covered Client API and how to use different HTTP methods and *Param annotations for consuming web services. We also covered the web service flow from the client request to server response. This API provides an easier way for a developer to utilize its simplified API. We can also create our own custom MIME type and its implementation using MessageBodyReader<T> for request and MessageBodyWriter<T>. Lastly, we checked how we can secure our application by implementing SSL. In the next chapter, we will see how we can use different media representations (JSON, XML, and Multipart) for data interchange between the client and server. These media representations are important, because they define how the web services data will look.

Chapter 4. Common Media-Type Representations



In this chapter, we will learn how to use different representations of data. Data representation
 is the primary decision for any application. We need to decide appropriate representation on the basis of the client that will consume the web services. We will also go through the implementation of different representations on the server side, as well as on the client side.
JSON




JSON is a lightweight format used to traverse the network. It is easy to parse and generate a JSON format from POJOs and Java types. The following modules are supported by Jersey JSON:
	MOXy
	Java API for JSON Processing (JSON-P)
	Jackson
	Jettison


Let's look at each in turns.
MOXy



The 
MOXy component allows developers to bind POJOs to XML or JSON formats. It automatically formats data without any explicit configuration. This MOXy feature is automatically discovered when you add the jersey-media module in an application. MOXy combines with JAXB and manages to convert data to and fro. Let's check how we can use MOXy in our application:
public class App extends ResourceConfig {
    public App() {
        packages("com.chapter4").register
        (new JsonMoxyConfigurationContextResolver());
    }

    @Provider
    final static class JsonMoxyConfigurationContextResolver 
    implements ContextResolver<MoxyJsonConfig> {

        @Override
        public MoxyJsonConfig getContext(Class<?> objectType) {
            final MoxyJsonConfig configuration = new MoxyJsonConfig();

            Map<String, String> namespacePrefixMapper = new HashMap<String, String>(1);
            namespacePrefixMapper.put("http://www.w3.org/2001/XMLSchema-instance", "xsi");

            configuration.setNamespacePrefixMapper(namespacePrefixMapper);
            configuration.setNamespaceSeparator(':');

            return configuration;
        }
    }
}

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.
In this example, we registered JsonMoxyConfigurationContextResolver that implements MoxyJsonConfig. In JsonMoxyConfigurationContextResolver, we set the property of MoxyJsonConfig. This enables us to use the MOXy feature. When MOXy is explicitly disabled, it is necessary to register MOXyJsonProvider. Let's look at how to register MOXyJsonProvider using the abstract Application class.
We can override the getSingletons() method of the Application class to register MOXyJsonProvider:
public class UsingApplication extends Application {
    @Override
    public Set<Class<?>> getClasses() {
        Set<Class<?>> s = new HashSet<Class<?>>();
        s.add(UserResource.class);
        return s;
    }

    @Override
    public Set<Object> getSingletons() {
        MOXyJsonProvider moxyJsonProvider = new MOXyJsonProvider();
        moxyJsonProvider.setWrapperAsArrayName(true);
        HashSet<Object> set = new HashSet<Object>(1);
        set.add(moxyJsonProvider);
        return set;
    }
}

In the getSingletons() method, we enabled the grouping of the element that should be used as the JSON array name using the wrapperAsArrayName property on MOXyJsonProvider.
Using ResourceConfig class



We registered JsonMoxyConfigurationContextResolver that implements MoxyJsonConfig:
public class UsingResourceConfig extends ResourceConfig {

    public UsingResourceConfig() {
        packages("com.chapter4").register(new JsonMoxyConfigurationContextResolver());
    }

    @Provider
    final static class JsonMoxyConfigurationContextResolver 
    implements ContextResolver<MoxyJsonConfig> {

        @Override
        public MoxyJsonConfig getContext(Class<?> objectType) {
            final MoxyJsonConfig configuration = new MoxyJsonConfig();

            Map<String, String> namespacePrefixMapper = new HashMap<String, String>(1);
            namespacePrefixMapper.put("http://www.w3.org/2001/XMLSchema-instance", "xsi");

            configuration.setNamespacePrefixMapper(namespacePrefixMapper);
            configuration.setNamespaceSeparator(':');

            return configuration;
        }
    }
}

In JsonMoxyConfigurationContextResolver, we set the property of MoxyJsonConfig. This enables us to use the MOXy feature. When MOXy is explicitly disabled, it is necessary to register MOXyJsonProvider.
Note
Note: To use MOXy as your JSON provider, you need to add the jersey-media-moxy module.




Java API for JSON Processing (JSON-P)



In JAX-RS 2.0, this feature can be automatically discovered. We don't need to explicitly register the JSON-P feature. It just needs to be added into our application. Let's see how to use JSON-P:
	On the server side:We will register JsonProcessingFeature into the server application and JsonGenerator.PRETTY_PRINTING property. This needs to be done when the application is loaded, so the application can make use of JsonProcessingFeature for marshaling and unmarshaling the data interchange on the server side:
public class UsingResourceConfig extends ResourceConfig {
    public UsingResourceConfig() {
        packages("com.chapter4.jsonp").register(JsonProcessingFeature.class).property(JsonGenerator.PRETTY_PRINTING, true);
    }
}


	On the client side:Here also, we need to register JsonProcessingFeature to enable the marshaling and unmarshaling of data interchange on the client side:
Client client = ClientBuilder.newBuilder().register(JsonProcessingFeature.class).property(JsonGenerator.PRETTY_PRINTING, true).build();

Here, JsonProcessingFeature is registered and the JsonGenerator.PRETTY_PRINTING property is set to true. This should be registered when JsonProcessingFeature is explicitly disabled.
Note
Note that in order to use JSON-P as your JSON provider, you need to add the jersey-media-json-processing module.






Jackson




Jackson JSON processor is a powerful API that serves the function of binding data between POJO and JSON. For creating a custom implementation of serialization/deserialization, we need to create our own custom ObjectMapper instance, and this instance needs to be registered at the client and server sides. Also, we need to register JacksonFeature on both sides. Let's see how we can implement it:
	On the server side:public class UsingResourceConfig extends ResourceConfig {
    public UsingResourceConfig() {
        packages("com.chapter4.jackson").register(MyObjectMapperProvider.class) // if needed
          .register(JacksonFeature.class);
    }
}

We can see that JacksonFeature and MyObjectMapperProvider are registered at the initial application loading, so as to use JacksonFeature.

	On the client side:Client client = ClientBuilder.newBuilder().register(MyObjectMapperProvider.class) // if needed.register(JacksonFeature.class).build();

Here also, we need to register JacksonFeature and MyObjectMapperProvider to provide support for the marshaling and unmarshaling of data interchange on the client side.

	On both the sides:@Provider
public class MyObjectMapperProvider implements ContextResolver<ObjectMapper> {

    /**
    Default Object Mapper will be used for other POJOs
    */
    final ObjectMapper defaultObjectMapper;

    /**
    user Object Mapper will be used for User POJO ONLY.
    */
    final ObjectMapper userObjectMapper;

    /**
    MyObjectMapperProvider() constructor initializes the
    defaultObjectMapper and userObjectMapper.
    */
    public MyObjectMapperProvider() {
        defaultObjectMapper = createDefaultMapper();
        userObjectMapper = createUserObjectMapper();
    }

/**

This method provides the specific ObjectMapper instance. Either it can be UserObjectMapper for the user POJO or DefaultObjectMapper for the other POJOs.
*/
    @Override
    public ObjectMapper getContext(Class<?> type) {
        if (type == User.class) {
        return userObjectMapper;
        } else {
        return defaultObjectMapper;
        }
    }

/**

This method returns the UserObjectMapper instance by configuring the properties to use specific serialization and deserialization mechanism. This helps to wrap the data in request/response.
*/
    private static ObjectMapper createUserObjectMapper() {
        Pair combinedIntrospector =createJaxbJacksonAnnotationIntrospector();
        ObjectMapper result = new ObjectMapper();
        result.configure(SerializationConfig.Feature.      WRAP_ROOT_VALUE, true);
        result.configure(DeserializationConfig.Feature.UNWRAP_ROOT_VALUE, true);
        result.setDeserializationConfig(
            result.getDeserializationConfig().withAnnotationIntrospector(combinedIntrospector));
            result.setSerializationConfig(
            result.getSerializationConfig()
            .withAnnotationIntrospector(combinedIntrospector));

        return result;
    }

/**

This method provides the DefaultObjectMapper instance that can be used for any POJO other than a specific defined ObjectMapper POJO:
*/
    private static ObjectMapper createDefaultMapper() {
        ObjectMapper result = new ObjectMapper();
        result.configure(Feature.INDENT_OUTPUT, true);

        return result;
    }

/**

This method provides the pair of the annotation introspectors that transforms JAXB annotation to a JSON mapping:
*/
    private static Pair createJaxbJacksonAnnotationIntrospector() {

        AnnotationIntrospector jaxbIntrospector = new JaxbAnnotationIntrospector();
        AnnotationIntrospector jacksonIntrospector = new JacksonAnnotationIntrospector();
        return new AnnotationIntrospector.Pair(
        jacksonIntrospector, jaxbIntrospector);
    }
}




Here, we have created our own custom ObjectMapper implementation that handles the user POJO, as well as the other POJOs. You can find the difference in implementation in the createDefaultMapper()
 and 
createUserObjectMapper() methods.
Note
Note that in order to use Jackson as your JSON provider, you need to add the jersey-media-json-jackson module.



Jettison



Jettison is a JSON API that is used to parse and generate JSON formats. We need to register JettisonFeature and ContextResolver<T> for JAXB POJO at both ends. Let's look at how we can implement it:
	On the server side:public class UsingResourceConfig extends ResourceConfig {
    public UsingResourceConfig() {
        packages("com.chapter4.jettison").register(CustomContextResolver.class)  // if needed.register(JettisonFeature.class);
    }
}

We can see that JettisonFeature and CustomContextResolver are registered at the initial application loading to enable the use of JettisonFeature.

	On the client side:Client client = ClientBuilder.newBuilder().register(CustomContextResolver.class)  // if needed.register(JettisonFeature.class).build();

As on the server side, we need to register JettisonFeature and CustomContextResolver when the client instance is being created.

	On both the sides:@Provider
public class CustomContextResolver implements ContextResolver<JAXBContext> {

    private final JAXBContext context;
    private final Set<Class<?>> types;
    private final Class<?>[] cTypes = {User.class};

    public CustomContextResolver() throws Exception {
        this.types = new HashSet<Class<?>>(Arrays.asList(cTypes));
        this.context = new JettisonJaxbContext(
        JettisonConfig.DEFAULT, cTypes);
    }

    @Override
    public JAXBContext getContext(Class<?> objectType) {
        return (types.contains(objectType)) ? context : null;
    }
}




Note
In the preceding example, ContextResolver<T> is optional. If any special processing has to be done, we can use ContextResolver<T>. We defined user POJO to be marshaled and unmarshaled using the Jettison feature. To use Jettison as your JSON provider, you need to add the jersey-media-json-jettison module.





XML



XML is a standard way to process data in the client/server architecture. Jersey provides different ways to use XML for data traversing over the client/server.
Low-level XML support



Low-level XML support consists of:
	StreamSource
	SAXSource
	DOMSource
	Document


Let's look at the following example:
	Server side:@Path("/userResource")
public class UserResource {

    @POST
    @Path("usingStreamSource")
    public StreamSource getStreamSource(StreamSource streamSource) {
        return streamSource;
    }

    @POST
    @Path("usingSAXSource")
    public SAXSource getSAXSource(SAXSource saxSource) {
        return saxSource;
    }

    @POST
    @Path("usingDOMSource")
    public DOMSource getDOMSource(DOMSource domSource) {
        return domSource;
    }

    @POST
    @Path("usingDocument")
    public Document getDocument(Document document) {
        return document;
    }
}

StreamSource, SAXSource, DOMSource, and Document are different types of XML formats. These low-level formats are used to read, parse, or generate XMLs using their simplified APIs.

	Client side:WebTarget target = client.target("http://localhost:8080/Chapter4_XML/services/userResource/usingStreamSource");

User bean = target.request(MediaType.APPLICATION_XML).post(
Entity.entity(new User(1,"John"), 
    MediaType.APPLICATION_XML),User.class) ;




This is the format used to read, parse, or generate XMLs using their simplified APIs on the client side. It follows the same way for SAXSource, DOMSource, and Document URI.

JAXB support



The JAXB annotation is simple to map POJO with the XML elements. We just have to assign @XmlRootElement to our POJO, and then JAXB handles the data by itself. Let's look at the following example:
	Server side:@Path("jaxbResource")
@Produces("application/xml")
@Consumes("application/xml")
public class UserResource {

    @GET
    public User[] getUserArray() {
        List<User> userList = new ArrayList<User>();
        userList.add(new User(1, "John"));
        ………
        return userList.toArray(new User[userList.size()]);
    }
}

This root-resource class produces and consumes XML MIME types only. The MIME type is defined at the class level, so by default all the resource methods and subresource methods will have the same MIME type.

	Client side:………
WebTarget target =
client.target("http://localhost:8080/Chapter4_XML/services/jaxbResource");

GenericType<User[]> userListGenericType = new GenericType<User[]>() {};
User[] responseData =
target.request
(MediaType.APPLICATION_XML).get(userListGenericType);

for(User  user : responseData)
{
    System.out.println("Response Data: " + user);
}

Here, because we are getting User[] in response, we use GenericType<T> to obtain the response entity along with the XML media type. We can also create custom GenericType<T> by subclassing it in order to use it as an entity in request and response. GenericType<T> is basically used for objects that have parameterized type.

	Both sides:@XmlRootElement
public class User {
    private int id;
    private String name;

    public User() {}

    public User(int id,String name) {
        this.id = id;
        this.name = name;
    }
    ………
}

Here, the @XmlRootElement JAXB annotation maps the user object to the XML elements. The name of the root XML element will be the class name.




POJOs



In this media type representation, beans are not assigned any annotations. We programmatically map the POJOs to the XML elements. This is shown in the following example:
	Server side:@GET
@Path("withoutAnnotation")
public JAXBElement<UserWithoutAnnotation> getuser() {

    UserWithoutAnnotation user = new UserWithoutAnnotation(1,"John");

    return new JAXBElement<UserWithoutAnnotation>
    (new QName("user"), UserWithoutAnnotation.class, user);
}

Here, we responded to the JAXBElement instance that contains the UserWithoutAnnotation POJO. QName is the qualified name, which is used for assigning the root element name.

	Client side:………
WebTarget target = client.target("http://localhost:8080/Chapter4_XML/services/jaxbResource/withoutAnnotation");

GenericType<JAXBElement<UserWithoutAnnotation>> userType = 
new GenericType<JAXBElement<UserWithoutAnnotation>>() {};


UserWithoutAnnotation user = (UserWithoutAnnotation) target
.request(MediaType.APPLICATION_XML_TYPE)
.get(userType)
.getValue();
………

Here, we obtain the UserWithoutAnnotation response POJO using the getValue() method. The getValue() method automatically maps the XML to the UserWithoutAnnotation POJO. Else, we can also obtain the XML format in response using:
target.request(MediaType.APPLICATION_XML_TYPE).get(String.class);

And then, we can access it using any XML parser.





Multipart



At times, we require multipart representation in request/response web services. We need to create custom MessageBodyReader<T> and MessageBodyWriter<T> implementation to support the multipart feature in our application. For this, we need to register MultiPartFeature on the client and server sides. Look at the following example:
	Server side:public class UsingResourceConfig extends ResourceConfig {
    
    public UsingResourceConfig() {
        packages("com.chapter4.multipart")
        .register(MultiPartFeature.class);
    }
}

Here, we registered MultiPartFeature at the time of application loading. This feature needs to be registered to provide the marshalling and unmarshalling of data on the server side.
@POST
@Consumes(MediaType.MULTIPART_FORM_DATA)
public String post(
    @FormDataParam("part") String part,
    @FormDataParam("part") FormDataContentDisposition d) 
    {
        return part + ":" + d.getFileName();
    }

Copyright © 2014 Oracle and/or its affiliates. All rights reserved.
In this post() method, it accepts FormDataParam, which contains the form value, and FormDataContentDisposition, which contains the metadata or header of the file.

	Client side:Client client = ClientBuilder
.newBuilder()
.register(MultiPartFeature.class)
.build();

Here, we registered MultiPartFeature on the client side. This enables us to use multipart representation between the client/server data interchange.
    …..
WebTarget target = client.target("http://localhost:8080/Chapter4_Multipart/services/
 multipartResource");

final FormDataMultiPart multipart = new FormDataMultiPart();

final FormDataBodyPart bodyPart = new  FormDataBodyPart (FormDataContentDisposition.name("part").fileName("file").build(),"CONTENT");

multipart.bodyPart(bodyPart);

String response = target.request().post(Entity.entity(multipart, MediaType.MULTIPART_FORM_DATA_TYPE), String.class);
    …..

Here, we created the instance of FormDataMultipart that will contain the multipart request to be sent to the server. FormDataBodyPart will have the form data and files to be attached.



Note
Note that in order to use multipart features, you need to add the jersey-media-multipart module.



Summary



We've analyzed different media type representations that are useful for data interchange between the client and server sides. These media type representations should be chosen on the basis of requirement, which best fit the situation. We also need to keep in mind that the same web services can be accessed with different representations, that is, JSON and XML both can be consumed. Then, it becomes easier for us to create and manage the web service, because most media type representations are managed by Jersey itself. In the next chapter, we will see how to create and consume the Server-Sent Events (SSE). SSE is a nice feature that has support from the client and server APIs.

Chapter 5. Server-Sent Events (SSE)



In the previous chapters, we covered how to create and consume the RESTful web services using JAX-RS 2.0 and Jersey 2.0. In this chapter, we will learn how to create a connection between the client/server and maintain the connection at the server end. This is required to push data from the server to the client without any new request being initiated by the client. Basically, this type of mechanism is used for applications, such as chatting, stock market, or any real-time data-providing applications.
Getting started



Generally, the flow of web services is initiated by the client by sending a request for the resource to the server. This is the traditional way of consuming web services.
[image: Getting started]Traditional Flow


Here, the browser or Jersey client initiates the request for data from the server, and the server provides a response along with the data. Every time a client needs to initiate a request for the resource, the server may not have the capability to generate the data. This becomes difficult in an application where real-time data needs to be shown. Even though there is no new data over the server, the client needs to check for it every time.
Nowadays, there is a requirement that the server needs to send some data without the client's request. For this to happen the client and server need to be connected, and the server can push the data to the client. This is why it is termed as Server-Sent Events. In these events, the connections created initially between the client and server are not released after the request. The server maintains the connection and pushes the data to the respective client when required.
[image: Getting started]Server-Sent Event Flow


In the Server-Sent Event Flow diagram initially, when a browser or a Jersey client initiates a request to establish a connection with the server using EventSource, the server is always in a listening mode for the new connection to be established. When a new connection from any EventSource is received, the server opens a new connection and maintains it in a queue. Maintaining a connection depends upon the implementation of business logic. SSE create a single unidirectional connection. So, only a single connection is established between the client and server.
After the connection is successfully established, the client is in the listening mode for new events from the server. Whenever any new event occurs on the server side, it will broadcast the event, along with the data to a specific open HTTP connection. In modern browsers that support HTML5, the onmessage method of EventSource is responsible for handling new events received from the server; whereas, in the case of Jersey clients, we have the onEvent method of EventSource, which handles new events from the server.
Note
Note: Server-Sent Event creates a single unidirectional connection.




Implementing Server-Sent Events (SSE)



To use SSE, we need to register SseFeature on both the client and server sides. By doing so, the client/server gets connected to SseFeature to be used while traversing data over the network.
[image: Implementing Server-Sent Events (SSE)]SSE: Internal Working


In the SSE: Internal Working diagram, we assume that the client/server is connected. When any new event is generated, the server initiates an OutboundEvent instance that will be responsible to have chunked output, which in turn will have a serialized data format. OutboundEventWriter is responsible to serialize the data on the server side. We need to specify the media type of the data in OutboundEvent. There are no restrictions of providing specific media types only.
However, on the client side, InboundEvent is responsible for handling the incoming data from the server. Here, InboundEvent receives the chunked input that contains serialized data format. Using InbounEventReader, data is deserialized.
Using SSEBroadCaster, we are able to broadcast events to multiple clients that are connected to the server. Let's look at the example, which shows how to create SSE web services and broadcast the events:
@ApplicationPath("services")
public class SSEApplication extends ResourceConfig {
    publicSSEApplication() {
        super(SSEResource.class, SseFeature.class);
    }
}

Here, we registered the SseFeature module and the SSEResource root-resource class to the server.
private static final SseBroadcaster BROADCASTER = new SseBroadcaster();
……
@GET
@Path("sseEvents")
@Produces(SseFeature.SERVER_SENT_EVENTS)
public EventOutput getConnection() {

    final EventOutput eventOutput = new EventOutput();
    
    BROADCASTER.add(eventOutput);

    return eventOutput;
}
……

In the SSEResource root class, we need to create a resource method that will allow clients to establish the connection and persist accordingly. Here, we are maintaining the connection into the BROADCASTER instance in the SseBroadcaster class. EventOutput manages specific client connections. SseBroadcaster is simply responsible for accommodating a group of EventOutput; that is, the client's connection.
……
@POST
@Consumes(MediaType.APPLICATION_FORM_URLENCODED)
public void post(@FormParam("name") String name) {
    BROADCASTER
        .broadcast(new OutboundEvent.Builder()
        .data(String.class, name)
        .build());
}
……

When any post method is consumed, we create a new event and broadcast it to the client available in the BROADCASTER instance. The OutboundEvent instance will contain the data (MediaType, Object) method that is initialized with a specific media type and actual data. We can provide any media type to send data. By using the build() method, data is being serialized with the OutBoundEventWriter class internally. When the broadcast (OutboundEvent) is called, internally SseBroadcaster pushes data on all registered EventOutputs; that is, on clients connected to SseBroadcaster.
At times, there's a scenario where the client/server has been connected and after sometime, the client gets disconnected. So, in this case, SseBroadcaster automatically handles the client connection; that is, it determines whether the connection needs to be maintained. When any client connection is closed, the broadcaster detects EventOutput and frees the connection and resources obtained by that EventOutput connection.
Note
Note: To use SSE we need to include the jersey-media-sse module.


Consuming the SSE events



Jersey client has two models that can consume SSE:
	The pull model (Using EventInput)
	The push model (Using EventSource)



The pull model (Using EventInput)



The pull model allows us to read and consume events when they arrive. By using EventInput, we can access the data. Let's look at the example:
……
Client client = ClientBuilder
                      .newBuilder()
                      .register(SseFeature.class)
                      .build();

WebTarget target = client
                      .target("http://localhost:8080/Chapter5_Server_Sent_Event/services/sseResource/sseEvents");

EventInputeventInput = target.request().get(EventInput.class);

while (!eventInput.isClosed()) {
    final InboundEvent inboundEvent = eventInput.read();
    if (inboundEvent == null) {
        break; // connection has been closed
    }
    try {
        System.out.println(inboundEvent.getData(String.class));
    } catch (IOException exception) {
        exception.printStackTrace();
    }
}
……

First, we created an instance of a client that has registered SseFeature. We then mapped WebTarget to the SSE resource method, which can provide a connection between the client and server. Next, we invoked the gethttp method, requesting the media type to respond as EventInput. Here, the server returns the EventInput type, which means connection is being established between the client and server. Once the connection stream is closed from the server end, the EventInput type will also release the connection from the client end. EventInput is an extension of ChunkedInput<InboundEvent> that allows us to read the event data using the inbound event's getData(MediaType) method.

The push model (using EventSource)



The push model is basically used for reading and processing asynchronous events using EventSource. Let's look at the following example:
……
Client client = ClientBuilder
                      .newBuilder()
                      .register(SseFeature.class)
                      .build();

WebTarget target = client
                      .target("http://localhost:8080/Chapter5_Server_Sent_Event/services/sseResource/sseEvents");

final EventSource eventSource = new EventSource(target) {

    @Override
    public void onEvent(InboundEvent inboundEvent) {
        try {
            System.out.println("Data Received: " + inboundEvent.getData(String.class));
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
};
……

In this example, we first created instance of client that have registered SseFeature. Then, we pointed our SSE resource URI to WebTarget. Using the EventSource constructor, we created the instance of EventSource that has an established connection with the server. So, we can process the SSE using the onEvent(InboundEvent) method and consume it using the getData(MediaT
ype) method.


Summary



In this chapter, we learned the difference between the traditional web service flow and SSE web service flow. We also covered how to create the SSE web services and implement the Jersey client in order to consume the SSE using different programmatic models; that is, using EventInput and EventSource. In the next chapter, we will generate the Web Application Description Language (WADL) that defines the RESTful web application using XML.

Chapter 6. WADL



In the previous chapters, we described and analyzed the implementation of the server and the client. In this chapter, we will describe the Web Application Description Language (WADL), which is a skeleton of the deployed RESTful web service.
Getting started



WADL is an XML description for the deployed RESTful web service. It is supported using the Jersey implementation, and is similar to SOAP's Web Services Description Language (WSDL).
Like WSDL that shows the structure, functionality, and parameters, and accepts different HTTP methods of the SOAP web services, WADL also provides the same features. The difference between the two is that WADL is used for RESTful-based web services, and WSDL is used for SOAP-based web services.
Let's see how WADL looks for our resource class:
@Path("/getResource")
public class GetResource {
    @GET
    public String get() {
        return "Hello World!!!";
    }

    @GET
    @Path("{name}")
    public Response greetUser(@PathParam("name") String name){
        returnResponse.status(200).entity("Hello, " + name).build();
    }
}

Here, we have two @GET resource methods under the getResource path. Once the application is deployed on the server, open the URI in a browser:

http://localhost:8080/Chapter6/services/application.wadl

Jersey automatically generates WADL from the resource classes. It will have a get method with the /application.wadl resource. This will give the following result:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://wadl.dev.java.net/2009/02">
    <doc xmlns:jersey="http://jersey.java.net/" jersey:generatedBy="Jersey: 2.0 2013-05-03 14:50:15" />
    <grammars />
    <resources base="http://localhost:8080/Chapter6/services/">
        <resource path="/getResource">
            <method id="get" name="GET">
                <response />
            </method>
            <method id="apply" name="OPTIONS">
                <request>
                    <representation mediaType="*/*" />
                </request>
                <response>
                    <representation mediaType="application/vnd.sun.wadl+xml" />
                </response>
            </method>
            <method id="apply" name="OPTIONS">
                <request>
                    <representation mediaType="*/*" />
                </request>
                <response>
                    <representation mediaType="text/plain" />
                </response>
            </method>
            <method id="apply" name="OPTIONS">
                <request>
                    <representation mediaType="*/*" />
                </request>
                <response>
                    <representation mediaType="*/*" />
                </response>
            </method>
            <resource path="{name}">
            <paramxmlns:xs="http://www.w3.org/2001/XMLSchema" name="name" 
                  style="template" type="xs:string"/>
                <method id="greetUser" name="GET">
                    <response />
                </method>
                <method id="apply" name="OPTIONS">
                    <request>
                        <representation mediaType="*/*" />
                    </request>
                    <response>
                        <representation mediaType="application/vnd.sun.wadl+xml" />
                    </response>
                </method>
                <method id="apply" name="OPTIONS">
                    <request>
                        <representation mediaType="*/*" />
                    </request>
                    <response>
                        <representation mediaType="text/plain" />
                    </response>
                </method>
                <method id="apply" name="OPTIONS">
                    <request>
                        <representation mediaType="*/*" />
                    </request>
                    <response>
                        <representation mediaType="*/*" />
                    </response>
                </method>
            </resource>
        </resource>
        <resource path="application.wadl">
            <method id="getWadl" name="GET">
                <response>
                    <representation mediaType="application/vnd.sun.wadl+xml" />
                    <representation mediaType="application/xml" />
                </response>
            </method>
            <method id="apply" name="OPTIONS">
                <request>
                    <representation mediaType="*/*" />
                </request>
                <response>
                    <representation mediaType="text/plain" />
                </response>
            </method>
            <method id="apply" name="OPTIONS">
                <request>
                    <representation mediaType="*/*" />
                </request>
                <response>
                    <representation mediaType="*/*" />
                </response>
            </method>
            <resource path="{path}">
            <paramxmlns:xs="http://www.w3.org/2001/XMLSchema" name="path"
                  style="template" type="xs:string"/>
                <method id="geExternalGrammar" name="GET">
                    <response>
                        <representation mediaType="application/xml" />
                    </response>
                </method>
                <method id="apply" name="OPTIONS">
                    <request>
                        <representation mediaType="*/*" />
                    </request>
                    <response>
                        <representation mediaType="text/plain" />
                    </response>
                </method>
                <method id="apply" name="OPTIONS">
                    <request>
                        <representation mediaType="*/*" />
                    </request>
                    <response>
                        <representation mediaType="*/*" />
                    </response>
                </method>
            </resource>
        </resource>
    </resources>
</application>
    


This is the WADL specification for the web service. In this WADL specification, we can see the first resource node as:
        

<resources bas
e="http://localhost:8080/Chapter6/servic
es/">


Here, base defines the prefix URI of the application through which web services are accessible. Under this resource node, there is another resource node, which is:

<resource path="/getResource">


This one defines the root class path. Using the /getResource path, we can access the resource method and subresource methods, such as get() and greet(). For each resource path, methods or subresource paths will be defined. Along with these methods or subresource paths, Jersey will create the OPTIONS method automatically. The method or subresource path will have the request and response parameter that defines the input parameters the web service takes, and the output parameter or entity or representation the web service returns back. These parameters are useful for the developers who are going to consume the web services during the implementation of the client side. As for the PathParam annotation, input parameters are defined under the resource path node as:
<resource path="{name}">
    <param name="name" style="template" type="xs:string"/>
………
</resource>

To view WADL specifications for a specific root-resource class, we can use:
	Method: OPTIONS
	Accept type: application/vnd.sun.wadl+xml
	URI: http://localhost:8080/Chapter6/services/getResource/John


This will return a WADL specification as follows:
[image: Getting started]
This WADL specification only defines the XML description of the greet() method as we defined in the URI, to get only a specific path of WADL using the OPTIONS method.


Configuration



Jersey provides us with the facility to enable/disable the WADL creation. By default, WADL will be generated by Jersey. We explicitly have to define or disable the WADL creation. We can set the property in web.xml once the parameters are initialized, as follows:
<param-name>jersey.config.server.wadl.disableWadl</param-name>
<param-value>true</param-value>

If we use the deployment process using an application, then we need to use:
property(ServerProperties.WADL_FEATURE_DISABLE, true);

This will disable the WADL feature.

Summary



In this chapter, we documented how to generate the WADL specification of the web service. We also covered how the developer can find this WADL specification to consume or implement the web service for his/her reference. This WADL specification inform the developer about the input and output parameters that the web service takes in and out.
So far, we have covered all the major aspects of the JAX-RS 2.0 and Jersey 2.0, along with the theory and necessary coding part. Now, we are ready to tweak the API and create some complex applications.


    
      Index

      A

      
        	accept(MediaType) object / The @Consumes annotation

        	AJAX-RS resource / Creating a new project

      

      B

      
        	@BeanParam annotation / The bean parameter

        	@BeanParamannotation	about / @BeanParam



        	bean parameter	about / The bean parameter
	setting / The bean parameter
	@BeanParam annotation / The bean parameter
	UserBean class / The bean parameter



        	Builder class / The put method

      

      C

      
        	@Consumes annotation	about / Root-resource classes, @Consumes, The @Consumes annotation
	accept(MediaType) object / The @Consumes annotation



        	@Consumes media type / The get method

        	@CookieParam annotation	about / @CookieParam

 / The cookie parameter

        	client	about / Consuming web services using a client



        	Client-side and Server-side Asynchronous / Features of JAX-RS 2.0

        	client.target() method / Consuming web services using a client

        	Client API / Features of JAX-RS 2.0

        	ClientBuilder method / Consuming web services using a client

        	Connection Negotiation / Features of JAX-RS 2.0

        	cookie(Cookie) method / The cookie parameter

        	cookie parameter	about / The cookie parameter
	cookie(Cookie) method / The cookie parameter
	@CookieParam annotation / The cookie parameter



        	core Jersey modules	about / Modules and dependencies



        	createDefaultMapper() method / Jackson

        	createUserObjectMapper() method / Jackson

      

      D

      
        	@DefaultValue annotation	about / @DefaultValue



        	@DELETE annotation	about / Root-resource classes, @DELETE



        	data representation	JSON / JSON
	XML / XML
	multipart representation / Multipart



        	delete(...) method / The delete method

        	dependencies / Modules and dependencies

      

      F

      
        	@FormParam annotation	about / @FormParam



      

      G

      
        	@GET annotation	about / Root-resource classes, @GET



        	get(...) method / The get method

        	getCookies() method	about / @CookieParam



        	getResource method / Consuming web services using a client

        	getResource web service / Consuming web services using a client

        	getSingletons() method / MOXy

        	getUser() method	about / @GET



        	getUserById() method	about / @MatrixParam



        	getUserByName() method	about / @PathParam



        	greet() method	about / @Produces



        	greetUser() method	about / @Produces



      

      H

      
        	@HeaderParam annotation	about / @HeaderParam



        	HTTP delete method	about / The delete method
	delete(...) method / The delete method
	@Produces media type / The delete method



        	HTTP get method	about / The get method
	get(...) method / The get method
	@Consumes media type / The get method



        	HTTP methods	GET / @GET
	PUT / @PUT
	POST / @POST
	DELETE / @DELETE
	Produces / @Produces
	Consumes / @Consumes



        	HTTP post method	about / The post method
	@Produces media type / The post method



        	HTTP put method	about / The put method
	Builder class / The put method
	put(...) method / The put method



        	HyperMedia as the Engine of Application State (HATEOAS) / Features of JAX-RS 2.0

      

      I

      
        	injection	about / Rules of injection
	rules / Rules of injection
	examples / Rules of injection



        	Invocation.Builder	using / Use of Invocation.Builder
	invoke(T) object / Use of Invocation.Builder
	support, adding for new representations / Adding support for new representations
	Client transport connectors / Client transport connectors



        	invoke(T) object / Use of Invocation.Builder

      

      J

      
        	Jackson	about / Jackson
	using, on server side / Jackson
	using, on client side / Jackson
	using, on server and client side / Jackson



        	JAX-RS	about / Ease of using and reusing JAX-RS artifacts



        	JAX-RS 1.0	features / What is JAX-RS 2.0?



        	JAX-RS 2.0	about / What is JAX-RS 2.0?
	features / Features of JAX-RS 2.0
	specification / Features of JAX-RS 2.0



        	JAX-RS annotations	@Path / Root-resource classes
	@PathParam / Root-resource classes
	@GET / Root-resource classes
	@PUT / Root-resource classes
	@POST / Root-resource classes
	@DELETE / Root-resource classes
	@Produces / Root-resource classes
	@Consumes / Root-resource classes



        	JAX-RS client API	about / Consuming web services using a client



        	JAXB support, XML	implementing, on server side / JAXB support
	implementing, on client side / JAXB support
	implementing, on server and client side / JAXB support



        	Jersey / Features of JAX-RS 2.0

        	Jersey-based applications	creating / Modules and dependencies



        	jersey.config.server.provider.packages / Creating a new project

        	Jersey 2.0 / What is JAX-RS 2.0?

        	Jersey 2.0 binaries / Modules and dependencies

        	Jersey 2.0 Maven repository / Modules and dependencies

        	Jersey Core JAX-RS 2.0 Bundle	URL, for downloading / Modules and dependencies



        	Jettison	about / Jettison
	implementing, on server side / Jettison
	implementing, on client side / Jettison
	implementing, on server and client side / Jettison



        	JSON	about / JSON
	MOXy component / MOXy
	-P / Java API for JSON Processing (JSON-P)
	Jackson / Jackson
	Jettison / Jettison



        	JSON-P	about / Java API for JSON Processing (JSON-P)
	using / Java API for JSON Processing (JSON-P)
	using, on server side / Java API for JSON Processing (JSON-P)
	using, on client side / Java API for JSON Processing (JSON-P)



      

      L

      
        	low-level XML support, XML	about / Low-level XML support
	example / Low-level XML support
	implementing, on server side / Low-level XML support
	implementing, on client side / Low-level XML support



      

      M

      
        	@MatrixParam annotation	about / @MatrixParam

 / The matrix parameter

        	matrix parameter	setting / The matrix parameter
	matrixParam(String,Object) method / The matrix parameter
	toString() method / The matrix parameter
	@MatrixParam annotation / The matrix parameter



        	modules / Modules and dependencies

        	MOXy component	about / MOXy
	using / MOXy
	ResourceConfig class, using / Using ResourceConfig class



        	multipart representation	about / Multipart
	implementing, on server side / Multipart
	implementing, on clietn side / Multipart



      

      P

      
        	@*Param annotation / Ease of using and reusing JAX-RS artifacts

        	@Path annotation	about / Root-resource classes, @Path
	URI path / @Path
	with, regular expression / @Path with a regular expression

 / The path parameter

        	@PathParam annotation	about / Root-resource classes, @PathParam

 / The path parameter

        	@POST annotation	about / Root-resource classes, @POST



        	@Produces annotation	about / Root-resource classes, @Produces, The @Produces annotation
	request(MediaType) method / The @Produces annotation



        	@Produces media type / The post method, The delete method

        	@PUT annotation	about / Root-resource classes, @PUT



        	parameter annotations	@PathParam / @PathParam
	@QueryParam / @QueryParam
	@DefaultValue / @DefaultValue
	@MatrixParam / @MatrixParam
	@HeaderParam / @HeaderParam
	@CookieParam / @CookieParam
	@FormParam / @FormParam
	@BeanParam / @BeanParam



        	path() method / Consuming web services using a client

        	path parameter	about / The path parameter
	resolveTemplate(String,Object) method / The path parameter
	@Path annotation / The path parameter
	@PathParam annotation / The path parameter



        	Per-lookup scope	about / Scope of the root-resource classes



        	POJOs	about / POJOs
	implementing, on server side / POJOs
	implementing, on client side / POJOs



        	post() method / Multipart

        	post(...) method / The post method

        	project	creating / Creating a new project



        	pull model, SSE	about / The pull model (Using EventInput)
	example / The pull model (Using EventInput)



        	push model, SSE	example / The push model (using EventSource)



        	put(...) method / The put method

      

      Q

      
        	@QueryParam annotation	about / @QueryParam

 / The query parameter

        	@QueryParameter annotation / The query parameter

        	queryParam(String,Object) method / The query parameter

        	query parameter	about / The query parameter
	queryParam(String,Object) method / The query parameter
	@QueryParam annotation / The query parameter



      

      R

      
        	request(MediaType) method / The @Produces annotation

        	Request scope	about / Scope of the root-resource classes



        	resolveTemplate(String,Object) method / The path parameter

        	Resource class	creating / Creating a new project



        	ResourceConfig class, MOXy component	using / Using ResourceConfig class



        	resource scopes	request scope / Scope of the root-resource classes
	per-lookup scope / Scope of the root-resource classes
	singleton scope / Scope of the root-resource classes



        	RESTEasy / Features of JAX-RS 2.0

        	RESTful principles / What is JAX-RS 2.0?

        	RESTful web service	deploying / Deploying a RESTful web service
	deploying, abstract Application class used / Deploying a RESTful web service
	deploying, ResourceConfig class used / Deploying a RESTful web service
	deploying, without Application class / Deploying a RESTful web service



        	root resource classes	about / Root-resource classes
	scope / Scope of the root-resource classes



      

      S

      
        	Secure Sockets Layer (SSL) / Securing a client

        	Server-Side Events (SSE) / Features of JAX-RS 2.0

        	Service Provider Interface (SPI) / Client transport connectors

        	Simplified API / Features of JAX-RS 2.0

        	singleton scope	about / Scope of the root-resource classes



        	SSE	about / Getting started
	flow diagram / Getting started
	implementing / Implementing Server-Sent Events (SSE)
	events, consuming / Consuming the SSE events
	pull model / The pull model (Using EventInput)
	push model / The push model (using EventSource)



        	SseBroadcaster class / Implementing Server-Sent Events (SSE)

        	SSEResource root class / Implementing Server-Sent Events (SSE)

        	SSLContent.getInstance(String) / Securing a client

        	sub resources	using / Subresources
	examples / Subresources



      

      T

      
        	toString() method / The matrix parameter

      

      U

      
        	UserBean class / The bean parameter

      

      V

      
        	validation / Features of JAX-RS 2.0

      

      W

      
        	WADL	about / Getting started
	structure / Getting started
	specification, for web service / Getting started
	specification, viewing / Getting started
	configuring / Configuration



        	WebTarget instance / Consuming web services using a client

      

      X

      
        	XML	about / XML
	low-level XML support / Low-level XML support
	JAXB support / JAXB support
	POJOs / POJOs



      

    

  OEBPS/graphics/8298_05_01.jpg
Browser

or
Jersey Client

Request: Data

Response: Data

Request: Data

Response: Data

Request: Data

Response: Data

Server






OEBPS/graphics/8298_05_02.jpg
Browser
or
Jersey Client

Request: Establishing Connection

Response: Connection Opened

Broadcast: Data

Broadcast: Data

Broadcast: Data

Broadcast: Data

Server

Event

le

Event

le

Event

le

Event

l






OEBPS/graphics/action.jpg





OEBPS/graphics/note.jpg





OEBPS/graphics/list.jpg





OEBPS/cover/cover.jpg
vy P
e, 7,
e & v e o
: P :
Vv.‘: *api W5
I L L
e .
s

Developing RESTful Web
Services with Jersey 2.0

Create RESTful web services smaothly using the robust
Jersey 2.0 and JAX-RS APIs

PACKT i





OEBPS/graphics/8298OS_06_2.jpg
- <application>
<doc jersey:generatedBy="Tersey: 2.0 2013-05-03 14:50:15"
<grammars’>

— <resources base=""http:/locathost:5080/Chapter§/services/">
— <resource path="getResource John">
— <method id="greetUser’ name="GET">
<response’>
</method>
~ <method id="apply" name="OPTIONS">
— <request>
<representation mediaType="*/*"/>
request>
~ <response>
<representation mediaType="application vnd.sun wadtsm!
<response>
</method>
~ <method id="apply" name="OPTIONS">
— <request>
<representation mediaType="*/*"/>
request>
~ <response>
<representation mediaType="text plain">
<response>
</method>
~ <method id="apply" name="OPTIONS">
— <request>
<representation mediaType="*/*"/>
request>
~ <response>
<representation mediaType="*/*"/>
<response>
<method>
resource>
resources>
</application>






OEBPS/graphics/PacktLibLogo.jpg





OEBPS/graphics/activity.jpg





OEBPS/graphics/8298_05_03.jpg
Server

Deserializing
Data

textiovent-stream






OEBPS/graphics/reference.jpg





OEBPS/graphics/8298_03_01.jpg
Configuration

WebTarget

Request Resource UR!

Request Indwidual Resource URI

Request Indwvidual Resource URI

Request Indvidual Resource URI

Request Indwidual Resource URI

Response

Java Types: String, Number, Boolean,

Custom Objects

RESTful
Web Services






