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Preface

Augmented Reality offers the magic effect of blending the physical world with the
virtual world and brings applications from your screen into your hands. Augmented
Reality redefines advertising and gaming as well as education in an utterly new
way; it will become a technology that needs to be mastered by mobile application
developers. This book enables you to practically implement sensor-based and
computer vision-based Augmented Reality applications on Android. Learn about
the theoretical foundations and practical details of implemented Augmented Reality
applications. Hands-on examples will enable you to quickly develop and deploy
novel Augmented Reality applications on your own.

What this book covers

Chapter 1, Augmented Reality Concepts and Tools, introduces the two major Augmented
Reality approaches: sensor-based and computer vision-based Augmented Reality.

Chapter 2, Viewing the World, introduces you to the first basic step in building
Augmented Reality applications: capturing and displaying the real world on
your device.

Chapter 3, Superimposing the World, helps you use JMonkeyEngine to overlay high-
fidelity 3D models over the physical world.

Chapter 4, Locating in the World, provides the basic building blocks to implement your
own Augmented Reality browser using sensors and GPS.

Chapter 5, Same as Hollywood - Virtual on Physical Objects, explains you the power of
the Vuforia™ SDK for computer vision-based AR.
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Chapter 6, Make It Interactive — Create the User Experience, explains how to make
Augmented Reality applications interactive. Specifically, you will learn how to
develop ray picking, proximity-based interaction, and 3D motion gesture-based
interaction.

Chapter 7, Further Reading and Tips, introduces more advanced techniques to
improve any AR application's development.

What you need for this book

If you want to develop Augmented Reality applications for Android, you can share a
majority of tools with regular Android developers. Specifically, you can leverage the
power of the widely supported Android Developer Tools Bundle (ADT Bundle).
This includes:

* The Eclipse Integrated Development Environment (IDE)
* The Android Developer Tools (ADT) plugin for Eclipse

* The Android platform for your targeted devices (further platforms can
be downloaded)

* The Android emulator with the latest system image

Besides this standard package common to many Android development
environments, you will need:

* A snapshot of JMonkeyEngine (JME), Version 3 or higher
*  Qualcomm® Vuforia™ SDK (Vuforia™), version 2.6 or higher

* Android Native Development Kit (Android NDK), version 19 or higher

Who this book is for

If you are a mobile application developer for Android and want to get to the next
level of mobile app development using Augmented Reality, then this book is for you.
It is assumed that you are familiar with Android development tools and deployment.
It is beneficial if you have experience on working with external libraries for Android,
as we make use of JMonkeyEngine and the Vuforia™ SDK. If you have already used
the Android NDK, then this is great but not mandatory.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

[2]
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Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Finally, you register your implementation of the Camera.PreviewCallback
interface in the onSurfaceChanged () method of the cameraPreview class."

A block of code is set as follows:

public static Camera getCameralnstance () {
Camera ¢ = null;
try {
c = Camera.open(0) ;
} catch (Exception e) { ... }
return c;

}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: " in the
pop-up menu, go to Run As | 1 Android Application."

% Warnings or important notes appear in a box like this.

!

(:;l Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[31]
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Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you. You can also find the code files at
https://github.com/arandroidbook/ar4android.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]


http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
mailto:copyright@packtpub.com

Augmented Reality Concepts
and Tools

Augmented Reality (AR) offers us a new way to interact with the physical (or real)
world. It creates a modified version of our reality, enriched with digital (or virtual)
information, on the screen of your desktop computer or mobile device. Merging and
combining the virtual and the real can leverage a totally new range of user experience,
going beyond what common apps are capable of. Can you imagine playing a first-
person shooter in your own neighborhood, with monsters popping up at the corner of
your street (as it is possible with ARQuake by Bruce Thomas at the University of South
Australia, see left-hand side of the following screenshot)? Will it not be a thrilling
moment to go to a natural history museum and see a dusty dinosaur skeleton coming
virtually alive —flesh and bone —in front of your eyes? Or can you imagine reading

a story to your kid and seeing some proud rooster appear and walk over the pages

of a book (as it is possible with the AR version of the "House that Jack Built" written
by Gavin Bishop, see the right-hand side of the following screenshot). In this book, we
show you how to practically implement such experiences on the Android platform.
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A decade ago, experienced researchers would have been among the few who

were able to create these types of applications. They were generally limited to
demonstration prototypes or in the production of an ad hoc project running for

a limited period of time. Now, developing AR experiences has become a reality

for a wide range of mobile software developers. Over the last few years, we have
been spectators to great progresses in computational power, the miniaturization of
sensors, as well as increasingly accessible and featured multimedia libraries. These
advances allow developers to produce AR applications more easily than ever before.
This already leads to an increasing number of AR applications flourishing on mobile
app stores such as Google Play. While an enthusiastic programmer can easily stitch
together some basic code snippets to create a facsimile of a basic AR application,
they are generally poorly designed, with limited functionalities, and hardly reusable.
To be able to create sophisticated AR applications, one has to understand what
Augmented Reality truly is.

In this chapter, we will guide you toward a better understanding of AR. We will
describe some of the major concepts of AR. We will then move on from these
examples to the foundational software components for AR. Finally, we will introduce
the development tools that we will use throughout this book, which will support our
journey into creating productive and modular AR software architecture.

Ready to change your reality for Augmented Reality? Let's start.

A quick overview of AR concepts

As AR has become increasingly popular in the media over the last few years,
unfortunately, several distorted notions of Augmented Reality have evolved.
Anything that is somehow related to the real world and involves some computing,
such as standing in front of a shop and watching 3D models wear the latest fashions,
has become AR. Augmented Reality emerged from research labs a few decades

ago and different definitions of AR have been produced. As more and more
research fields (for example, computer vision, computer graphics, human-computer
interaction, medicine, humanities, and art) have investigated AR as a technology,
application, or concept, multiple overlapping definitions now exist for AR. Rather
than providing you with an exhaustive list of definitions, we will present some major
concepts present in any AR application.

[6]
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Sensory augmentation

The term Augmented Reality itself contains the notion of reality. Augmenting
generally refers to the aspect of influencing one of your human sensory systems,
such as vision or hearing, with additional information. This information is generally
defined as digital or virtual and will be produced by a computer. The technology
currently uses displays to overlay and merge the physical information with the
digital information. To augment your hearing, modified headphones or earphones
equipped with microphones are able to mix sound from your surroundings in real-
time with sound generated by your computer. In this book, we will mainly look at
visual augmentation.

Displays

The TV screen at home is the ideal device to perceive virtual content, streamed from
broadcasts or played from your DVD. Unfortunately, most common TV screens are
not able to capture the real world and augment it. An Augmented Reality display
needs to simultaneously show the real and virtual worlds.

One of the first display technologies for AR was produced by Ivan Sutherland in
1964 (named "The Sword of Damocles"). The system was rigidly mounted on the
ceiling and used some CRT screens and a transparent display to be able to create the
sensation of visually merging the real and virtual.

Since then, we have seen different trends in AR display, going from static to
wearable and handheld displays. One of the major trends is the usage of optical
see-through (OST) technology. The idea is to still see the real world through a semi-
transparent screen and project some virtual content on the screen. The merging of the
real and virtual worlds does not happen on the computer screen, but directly on the
retina of your eye, as depicted in the following figure:

/C‘} ¢ ~
I,-’; | \"-.ﬁ ~< s v |
1) (& .
\\\M-_J!/ /" .- \x‘

Human Eye OST-Display Physical World

[71
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The other major trend in AR display is what we call video see-through (VST)
technology. You can imagine perceiving the world not directly, but through a video
on a monitor. The video image is mixed with some virtual content (as you will see in
a movie) and sent back to some standard display, such as your desktop screen, your
mobile phone, or the upcoming generation of head-mounted displays as shown in
the following figure:

Camera
(.

~

Human Eye VST-Display Physical World

In this book, we will work on Android-driven mobile phones and, therefore, discuss
only VST systems; the video camera used will be the one on the back of your phone.

Registration in 3D

With a display (OST or VST) in your hands, you are already able to superimpose
things from your real world, as you will see in TV advertisements with text banners
at the bottom of the screen. However, any virtual content (such as text or images)
will remain fixed in its position on the screen. The superposition being really static,
your AR display will act as a head-up display (HUD), but won't really be an AR as
shown in the following figure:

Human Eye HU-Display Physical World

[8]
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Google Glass is an example of an HUD. While it uses a semitransparent screen like
an OST, the digital content remains in a static position.

AR needs to know more about real and virtual content. It needs to know where
things are in space (registration) and follow where they are moving (tracking).

Registration is basically the idea of aligning virtual and real content in the same
space. If you are into movies or sports, you will notice that 2D or 3D graphics are
superimposed onto scenes of the physical world quite often. In ice hockey, the puck
is often highlighted with a colored trail. In movies such as Walt Disney's TRON
(1982 version), the real and virtual elements are seamlessly blended. However, AR
differs from those effects as it is based on all of the following aspects (proposed by
Ronald T. Azuma in 1997):

e It'sin 3D: In the olden days, some of the movies were edited manually to
merge virtual visual effects with real content. A well-known example is
Star Wars, where all the lightsaber effects have been painted by hand by
hundreds of artists and, thus, frame by frame. Nowadays, more complex
techniques support merging digital 3D content (such as characters or cars)
with the video image (and is called match moving). AR is inherently always
doing that in a 3D space.

* The registration happens in real time: In a movie, everything is pre-
recorded and generated in a studio; you just play the media. In AR,
everything is in real time, so your application needs to merge, at each
instance, reality and virtuality.

* It's interactive: In a movie, you only look passively at the scene from
where it has been shot. In AR, you can actively move around, forward,
and backward and turn your AR display — you will still see an alignment
between both worlds.

Interaction with the environment

Building a rich AR application needs interaction between environments; otherwise
you end up with pretty, 3D graphics that can turn boring quite fast. AR interaction
refers to selecting and manipulating digital and physical objects and navigating in
the augmented scene. Rich AR applications allow you to use objects which can be on
your table, to move some virtual characters, use your hands to select some floating
virtual objects while walking on the street, or speak to a virtual agent appearing on
your watch to arrange a meeting later in the day. In Chapter 6, Make It Interactive -
Create the User Experience, we will discuss mobile-AR interaction. We will look at how
some of the standard mobile interaction techniques can also be applied to AR. We
will also dig into specific techniques involving the manipulation of the real world.

[o]
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Choose your style — sensor-based and
computer vision-based AR

Previously in this chapter, we discussed what AR is and elaborated on display,
registration, and interaction. As some of the notions in this book can also be applied
to any AR development, we will specifically look at mobile AR.

Mobile AR sometimes refers to any transportable, wearable AR system that can

be used indoors and outdoors. In this book, we will look at mobile AR with the

most popular connotation used today — using handheld mobile devices, such as
smartphones or tablets. With the current generation of smartphones, two major
approaches to the AR system can be realized. These systems are characterized by
their specific registration techniques and, also, their interaction range. They both
enable a different range of applications. The systems, sensor-based AR and computer
vision-based AR, are using the video see-through display, relying on the camera and
screen of the mobile phone.

Sensor-based AR

The first type of system is called sensor-based AR and generally referred to as a
GPS plus inertial AR (or, sometimes, outdoor AR system). Sensor-based AR uses
the location sensor from a mobile as well as the orientation sensor. Combining both
the location and orientation sensors delivers the global position of the user in the
physical world.

The location sensor is mainly supported with a GNSS (Global Navigation Satellite
System) receiver. One of the most popular GNSS receivers is the GPS (maintained by
the USA), which is present on most smartphones.

Other systems are currently (or will soon be) deployed, such as
e—"GLONASS (Russia), Galileo (Europe, 2020), or Compass (China, 2020).

There are several possible orientation sensors available on handheld devices, such

as accelerometers, magnetometers, and gyroscopes. The measured position and
orientation of your handheld device provides tracking information, which is used for
registering virtual objects on the physical scene. The position reported by the GPS
module can be both inaccurate and updated slower than you move around. This can
result in a lag, that is, when you do a fast movement, virtual elements seem to float
behind. One of the most popular types of AR applications with sensor-based systems
are AR browsers, which visualize Points of Interests (POls), that is, simple graphical
information about things around you. If you try some of the most popular products
such as Junaio, Layar, or Wikitude, you will probably observe this effect of lag.

[10]
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The advantage of this technique is that the sensor-based ARs are working on a general
scale around the world, in practically any physical outdoor position (such as if you are
in the middle of the desert or in a city). One of the limitations of such systems is their
inability to work inside (or work poorly) or in any occluded area (no line-of-sight with
the sky, such as in forests or on streets with high buildings all around). We will discuss
more about this type of mobile AR system in Chapter 4, Locating in the World.

Computer vision-based AR

The other popular type of AR system is computer vision-based AR. The idea here is
to leverage the power of the inbuilt camera for more than capturing and displaying
the physical world (as done in sensor-based AR). This technology generally operates
with image processing and computer vision algorithms that analyze the image to
detect any object visible from the camera. This analysis can provide information
about the position of different objects and, therefore, the user (more about that in
Chapter 5, Same as Hollywood - Virtual on Physical Objects).

The advantage is that things seem to be perfectly aligned. The current technology
allows you to recognize different types of planar pictorial content, such as a
specifically designed marker (marker-based tracking) or more natural content
(markerless tracking). One of the disadvantages is that vision-based AR is heavy
in processing and can drain the battery really rapidly. Recent generations of
smartphones are more adapted to handle this type of problem, being that they are
optimized for energy consumption.

AR architecture concepts

So let's explore how we can support the development of the previously described
concepts and the two general AR systems. As in the development of any other
application, some well-known concepts of software engineering can be applied

in developing an AR application. We will look at the structural aspect of an AR
application (software components) followed by the behavioral aspect (control flow).

AR software components

An AR application can be structured in three layers: the application layer, the AR
layer, and the OS/Third Party layer.

The application layer corresponds to the domain logic of your application. If

you want to develop an AR game, anything related to managing the game assets
(characters, scenes, objects) or the game logic will be implemented in this specific
layer. The AR layer corresponds to the instantiation of the concepts we've previously
described. Each of the AR notions and concepts that we've presented (display,
registration, and interaction) can be seen, in terms of software, as a modular element,
a component, or a service of the AR layer.

[11]
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You can note that we have separated tracking from registration in the figure,

making tracking one major software component for an AR application. Tracking,
which provides spatial information to the registration service, is a complex and
computationally intensive process in any AR application. The OS/Third Party

layer corresponds to existing tools and libraries which don't provide any AR
functionalities, but will enable the AR layer. For example, the Display module for a
mobile application will communicate with the OS layer to access the camera to create
a view of the physical world. On Android, the Google Android APl is part of this
layer. Some additional libraries, such as JMonkeyEngine, which handle the graphics,
are also part of this layer.

In the rest of the book, we will show you how to implement the different modules
of the AR layer, which also involves communication with the OS/Third Party layer.
The major layers of an AR application (see the right-hand side of the following
figure), with their application modules (the left-hand side of the following figure),
are depicted in the following figure:

Application Logic Application Layer
Interaction

Registration

AR Layer
Display Tracking
Graphics Sensors OS/Third Party Layer
Screen Camera

AR control flow

With the concept of software layers and components in mind, we can now look

at how information will flow in a typical AR application. We will focus here on
describing how each of the components of the AR layer relate to each other over time
and what their connections with the OS/Third Party layer are.

[12]
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Over the last decade, AR researchers and developers have converged toward a well-
used method of combining these components using a similar order of execution—
the AR control flow. We present here the general AR control flow used by the
community and summarized in the following figure:

time

Interaction (Chapter 6)
Ray Picking )
Gestures Graphics

Registration & Tracking (Chapter 4&5)
Transform Virtual/Real Objects Sensors
Access Sensors OR Image Analysis

Camera

Display (Chapter 2&3)
Show the Camera Screen
Access the Camera

AR Layer OS/Third Party Layer

The preceding figure, read from the bottom up, shows the main activities of an AR
application. This sequence is repeated indefinitely in an AR application; it can be
seen as the typical AR main loop (please note that we've excluded the domain logic
here as well as the OS activities). Each activity corresponds to the same module
we've presented before. The structure of the AR layer and AR control flow is,
therefore, quite symmetric.

Understand that this control flow is the key to developing an AR application, so we
will come back to it and use it in the rest of the book. We will get into more details of
each of the components and steps in the next chapter.

So, looking at the preceding figure, the main activities and steps in your application
are as follows:

* Manage the display first: For mobile AR, this means accessing the video
camera and showing a captured image on the screen (a view of your physical
world). We will discuss that in Chapter 2, Viewing the World. This also involves
matching camera parameters between the physical camera and the virtual one
that renders your digital objects (Chapter 3, Superimposing the World).

[13]
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* Register and track your objects: Analyze the sensors on your mobile
(approach 1) or analyze the video image (approach 2) and detect the
position of each element of your world (such as camera or objects). We will
discuss this aspect in Chapter 4, Locating in the World and Chapter 5, Same as
Hollywood - Virtual on Physical Objects.

* Interact: Once your content is correctly registered, you can start to interact

with it, as we will discuss in Chapter 6, Make It Interactive — Create the
User Experience.

System requirements for development and
deployment

If you want to develop Augmented Reality applications for Android, you can share
the majority of tools with regular Android developers. Specifically, you can leverage
the power of the widely supported Google Android Developer Tools Bundle (ADT
Bundle). This includes the following:

* The Eclipse Integrated Development Environment (IDE)
* The Google Android Developer Tools (ADT) plugin for Eclipse

* The Android platform for your targeted devices (further platforms can
be downloaded)

* The Android Emulator with the latest system image

Besides this standard package common to many Android development
environments, you will need the following:

* A snapshot of JMonkeyEngine (JME), version 3 or higher
*  Qualcomm® Vuforia™ SDK (Vuforia™), version 2.6 or higher

* Android Native Development Kit (Android NDK), version 19 or higher

The JME Java OpenGL® game engine is a free toolkit that brings the 3D graphics in
your programs to life. It provides 3D graphics and gaming middleware that frees
you from exclusively coding in low-level OpenGL® ES (OpenGL® for Embedded
Systems), for example, by providing an asset system for importing models,
predefined lighting, and physics and special effects components.

The Qualcomm® Vuforia™ SDK brings state-of-the art computer vision algorithms
targeted at recognizing and tracking a wide variety of objects, including fiducials
(frame markers), image targets, and even 3D objects. While it is not needed for
sensor-based AR, it allows you to conveniently implement computer vision-based
AR applications.
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The Google Android NDK is a toolset for performance-critical applications. It allows
parts of the application to be written in native-code languages (C/C++). While you
don't need to code in C or C++, this toolset is required by Vuforia™ SDK.

Of course, you are not bound to a specific IDE and can work with command-line
tools as well. The code snippets themselves, which we present in this book, do not
rely on the use of a specific IDE. However, within this book, we will give you setup
instructions specifically for the popular Eclipse IDE. Furthermore, all development
tools can be used on Windows (XP or later), Linux, and Mac OS X (10.7 or later).

On the next pages, we will guide you through the installation processes of the
Android Developer Tools Bundle, NDK, JME, and Vuforia™ SDK. While the
development tools can be spread throughout the system, we recommend that you
use a common base directory for both the development tools and the sample code;
let's call it AR4Android (for example, C: /AR4Android under Windows or /opt/
AR4Android under Linux or Mac OS X).

Installing the Android Developer Tools Bundle and
the Android NDK

You can install the ADT Bundle in two easy steps as follows:

1. Download the ADT Bundle from http://developer.android.com/sdk/
index.html.

2. After downloading, unzip adt-bundle-<os_platforms.zip into the
AR4Android base directory.

You can then start the Eclipse IDE by launching AR4Android/adt -bundle-<os_
platforms>/eclipse/eclipse (.exe).

Please note that you might need to install additional system images,
M depending on the devices you use (for example, version 2.3.5,
Q or 4.0.1). You can follow the instructions given at the following
website: http://developer.android.com/tools/help/
sdk-manager.html.

For the Android NDK (version r9 or higher), you follow a similar procedure
as follows:

1. Download it from http://developer.android.com/tools/sdk/ndk/
index.html.

2. After downloading, unzip android-ndk-r<version>Y-<os_platforms.
(zip|bz2) into the AR4Android base directory.
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Installing JMonkeyEngine

JME is a powerful Java-based 3D game engine. It comes with its own development
environment (JME IDE based on NetBeans) which is targeted towards the
development of desktop games. While the JME IDE also supports the deployment

of Android devices, it (at the time this book is being written) lacks the integration of
convenient Android SDK tools like the Android Debug Bridge (adb), Dalvik Debug
Monitor Server view (DDMS) or integration of the Android Emulator found in the
ADT Bundle. So, instead of using the JME IDE, we will integrate the base libraries into
our AR projects in Eclipse. The easiest way to obtain the JME libraries is to download
the SDK for your operating system from http: //jmonkeyengine.org/downloads
and install it into the AR4Android base directory (or your own developer directory; just
make sure you can easily access it later in your projects). At the time this book is being
published, there are three packages: Windows, GNU/Linux, and Mac OS X.

sl . .
‘Q You can also obtain most recent versions from

http://updates.jmonkeyengine.org/nightly/3.0/engine/

You need only the Java libraries of JME (. jar) for the AR development, using
the ADT Bundle. If you work on Windows or Linux, you can include them in any
existing Eclipse project by performing the following steps:

1. Right-click on your AR project (which we will create in the next chapter) or
any other project in the Eclipse explorer and go to Build Path | Add External
Archives.

2. Inthe JAR selection dialog, browse to AR4Android/jmonkeyplatform/
jmonkeyplatform/libs.

3. You can select all JARs in the lib directory and click on Open.

If you work on Mac OS X, you should extract the libraries from jmonkeyplatform.
app before applying the same procedure as for Windows or Linux described in

the preceding section. To extract the libraries, you need to right-click on your
jmonkeyplatform.app app and select Show Package contents and you will find the
libraries in /Applications/jmonkeyplatform.app/Contents/Resources/.

Please note that, in the context of this book, we only use a few of them. In the Eclipse
projects accompanying the source code of the book, you will find the necessary JARs
already in the local lib directories containing the subset of Java libraries necessary for
running the examples. You can also reference them in your build path.
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The reference documentation for using JME with Android

can be found at http://hub. jmonkeyengine.org/

wiki/doku.php/jme3:android.

Installing Vuforia™

Vuforia™ is a state-of-the-art library for computer vision recognition and natural
feature tracking.

In order to download and install Vuforia™, you have to initially register at
https://developer.vuforia.com/user/register. Afterwards, you can
download the SDK (for Windows, Linux, or Mac OS X) from https://developer.
vuforia.com/resources/sdk/android. Create a folder named AR4Android/
Thirdparty. Now create an Eclipse project by going to File | New | Project ...
named ThirdParty and choose as location the folder AR4Android/ThirdParty (see
also the section Creating an Eclipse project in Chapter 2, Viewing the World). Then install
the Vuforia™ SDK in AR4Android/ThirdParty/vuforia-sdk-android-<VERSION>.
For the examples in Chapter 5, Same as Hollywood - Virtual on Physical Objects and
Chapter 6, Make It Interactive — Create the User Experience, you will need to reference
this ThirdParty Eclipse project.

Which Android devices should you use?

The Augmented Reality applications which you will learn to build will run on a wide
variety of Android-powered smartphone and tablet devices. However, depending on
the specific algorithms, we will introduce certain hardware requirements that should
be met. Specifically, the Android device needs to have the following features:

* A back-facing camera for all examples in this book
* A GPS module for the sensor-based AR examples

* A gyroscope or linear accelerometers for the sensor-based AR examples

Augmented Reality on mobile phones can be challenging as many integrated sensors
have to be active during the running of applications and computationally demanding
algorithms are executed. Therefore, we recommend deploying them on a dual-core
processor (or more cores) for the best AR experience. The earliest Android version to
deploy should be 2.3.3 (API 10, Gingerbread). This gives potential outreach to your
AR app across approximately 95 percent of all Android devices.

Visit http://developer.android.com/about/dashboards/
=" 1index.html for up-to-date numbers.
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Please make sure to set up your device for development as described at http://
developer.android.com/tools/device.html.

In addition, most AR applications, specifically the computer-vision based
applications (using Vuforia™), require enough processing power.

Summary

In this chapter, we introduced the foundational background of AR. We've presented
some of the main concepts of AR, such as sensory augmentation, dedicated display
technology, real-time spatial registration of physical and digital information, and
interaction with the content.

We've also presented computer vision-based and sensor-based AR systems, the

two major trends of architecture on mobile devices. The basic software architecture
blocks of an AR application have also been described and will be used as a guide for
the remaining presentation of this book. By now, you should have installed the third-
party tools used in the coming chapters. In the next chapter, you will get started with
viewing the virtual world and implementing camera access with JME.
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In this chapter, we will learn how to develop the first element of any mobile AR
application: the view of the real world. To understand the concept of the view of the
real world, we will take a look at the camera application you have installed on your
mobile. Open any photo capture application (camera app) you have preinstalled on
your android device, or you may have downloaded from the Google Play store (such
as Camera Zoom FX, Vignette, and so on). What you can see on the viewfinder of
the application is a real-time video stream captured by the camera and displayed on
your screen.

If you move the device around while running the application, it seems like you were
seeing the real world "through" the device. Actually, the camera seems to act like the
eye of the device, perceiving the environment around you. This process is also used
for mobile AR development to create a view of the real world. It's the concept of see-
through video that we introduced in the previous chapter.

The display of the real world requires two main steps:

* Capturing an image from the camera (camera access)

* Displaying this image on the screen using a graphics library (camera display
in JME)

This process is generally repeated in an infinite loop, creating the real-time aspect of
the view of the physical world. In this chapter, we will discuss how to implement
both of these techniques using two different graphics libraries: a low-level one
(Android library) and a high-end one (JME 3D scene graph library). While the
Android library allows you to quickly display the camera image, it is not designed
to be combined with 3D graphics, which you want to augment on the video stream.
Therefore, you will implement the camera display also using the JME library.

We will also introduce challenges and hints for handling a variety of Android
smartphones and their inbuilt cameras.



Viewing the World

Understanding the camera

Phone manufacturers are always competing to equip your smartphone with the
most advanced camera sensor, packing it with more features, such as higher
resolution, better contrast, faster video capture, new autofocus mode, and so on. The
consequence is that the capabilities (features) of the mobile phone cameras can differ
significantly between smartphone models or brands. Thankfully, the Google Android
API provides a generic wrapper for the underlying camera hardware unifying

the access for the developer: the Android camera API. For your development, an
efficient access to the camera needs a clear understanding of the camera capabilities
(parameters and functions) available through the API. Underestimating this aspect
will result in slow-running applications or pixelated images, affecting the user
experience of your application.

Camera characteristics

Cameras on smartphones nowadays share many characteristics with digital point-
and-shoot cameras. They generally support two operative modes: the still image
mode (which is an instantaneous, singular capture of an image), or the video mode
(which is a continuous, real-time capture of images).

Video and image modes differ in terms of capabilities: an image capture always

has, for example, a higher resolution (more pixels) than video. While modern
smartphones can easily achieve 8 megapixel in the still image mode, the video mode
is restricted to 1080p (about 2 megapixels). In AR, we use the video mode in typically
lower resolutions such as VGA (640 x 480) for efficiency reasons. Unlike a standard
digital camera, we don't store any content on an external memory card; we just
display the image on the screen. This mode has a special name in the Android API:
the preview mode.

Some of the common settings (parameters) of the preview mode are:

* Resolution: It is the size of the captured image, which can be displayed
on your screen. This is also called the size in the Android camera APIL.
Resolution is defined in pixels in terms of width (x) and height (y) of the
image. The ratio between them is called the aspect ratio, which gives a sense
of how square an image is similar to TV resolution (such as 1:1, 4:3, or 16:9).

* Frame rate: It defines how fast an image can be captured. This is also called
Frames Per Second (FPS).

* White balance: It determines what will be the white color on your image,
mainly dependent on your environment light (for example, daylight for
outdoor situation, incandescent at your home, fluorescent at your work, and
SO on).
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* Focus: It defines which part of the image will appear sharp and which
part will not be easily discernible (out of focus). Like any other camera,
smartphone cameras also support autofocus mode.

* Pixel format: The captured image is converted to a specific image format,
where the color (and luminance) of each pixel is stored under a specific format.
The pixel format not only defines the type of color channels (such as RGB
versus YCbCr), but also the storage size of each component (for example, 5, 8,
or 16 bits). Some popular pixel formats are RGB888, RGB565, or YCbCr422. In
the following figure, you can see common camera parameters, moving from
the left to right: image resolution, frame rate for capturing image streams, focus
of the camera, the pixel format for storing the images and the white balance:

Y (pixels)

Inage X (pixels)
Origin

Resolution Frame Rate (fps) Focus Pixel Format White Balance

Other important settings related to the camera workflow are:

* Playback control: Defines when you can start, pause, stop, or get the image
content of your camera.

* Buffer control: A captured image is copied into the memory to be accessible
to your application. There are different ways to store this image, for example,
using a buffering system.

Configuring these settings correctly is the basic requirement for an AR application.
While popular camera apps use only the preview mode for capturing a video or an
image, the preview mode is the basis for the view of the real world in AR. Some of
the things you need to remember for configuring these camera parameters are:

* The higher the resolution, the lower will be your frame rate, which means
your application might look prettier if things do not move fast in the image,
but will run more slowly. In contrast, you can have an application running
fast but your image will look "blocky" (pixelated effect).

* If the white balance is not set properly, the appearance of digital models
overlaid on the video image will not match and the AR experience will
be diminished.
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If the focus changes all the time (autofocus), you may not be able to analyze
the content of the image and the other components of your application (such
as tracking) may not work correctly.

Cameras on mobile devices use compressed image formats and typically do
not offer the same performance as high-end desktop webcams. When you
combine your video image (often in RGB565 with 3D rendered content using
RGB8888), you might notice the color differences between them.

If you are doing heavy processing on your image, that can create a delay in
your application. Additionally, if your application runs multiple processes
concurrently, synchronizing your image capture process with the other
processes is rather important.

We advise you to:

Acquire and test a variety of Android devices and their cameras to get a
sense of the camera capabilities and performances.

Find a compromise between the resolution and frame rate. Standard
resolution/frame rate combination used on desktop AR is 640 x 480 at 30 fps.
Use it as a baseline for your mobile AR application and optimize from there
to get a higher quality AR application for newer devices.

Optimize the white balance if your AR application is only supposed to be run
in a specific environment such as in daylight for an outdoor application.

Controlling the focus has been one of the limiting aspects of Android
smartphones (always on autofocus or configuration not available). Privilege
a fixed focus over an autofocus, and optimize the focus range if you are
developing a tabletop or room AR application (near focus) versus an outdoor
AR application (far focus).

Experiment with pixel formats, to get the best match with your
rendered content.

Try to use an advanced buffering system, if available, on your target device.

There are other major characteristics of the camera that are not available through the
API (or only on some handheld devices), but are important to be considered during
the development of your AR application. They are field of view, exposure time,

and aperture.

We will only discuss one of them here: the field of view. The field of view
corresponds to how much the camera sees from the real world, such as how much
your eyes can see from left to right and top to bottom (human vision is around 120
degrees with a binocular vision). The field of view is measured in degrees, and varies
largely between cameras (15 degrees to 60 degrees without distortion).
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The larger your field of view is, the more you will capture the view of the real world
and the better will be the experience. The field of view is dependent on the hardware
characteristics of your camera (the sensor size and the focal length of the length).
Estimating this field of view can be done with additional tools; we will explore this
later on.

Camera versus screen characteristics

The camera and screen characteristics are generally not exactly the same on your
mobile platform. The camera image can be, for example, larger than the screen
resolution. The aspect ratio of the screen can also differ for one of the cameras. This
is a technical challenge in AR as you want to find the best method to fit your camera
image on the screen, to create a sense of AR display. You want to maximize the
amount of information by putting as much of the camera image on your screen as
possible. In the movie industry, they have a similar problem as the recorded format
may differ from the playing media (for example, the cinemascope film on your 4:3
mobile device, the 4K movie resolution on your 1080p TV screen, and so on). To
address this problem, you can use two fullscreen methods known as stretching and
cropping, as shown in the following figure:

stretching cropping

Stretching will adapt the camera image to the screen characteristics, at the risk

of deforming the original format of the image (mainly its aspect ratio). Cropping
will select a subarea of the image to be displayed and you will lose information (it
basically zooms into the image until the whole screen is filled). Another approach
will be to change the scale of your image, so that one dimension (width or height) of
the screen and the image are the same. Here, the disadvantage is that you will lose
the fullscreen display of your camera image (a black border will appear on the side
of your image). None of the techniques are optimal, so you need to experiment what
is more convenient for your application and your target devices.

Accessing the camera in Android

To start with, we will create a simple camera activity to get to know the principles
of camera access in Android. While there are convenient Android applications that
provide quick means for snapping a picture or recording a video through Android
intents, we will get our hands dirty and use the Android camera API to get a
customized camera access for our first application.
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We will guide you, step-by-step, in creating your first app showing a live camera
preview. This will include:

Creating an Eclipse project
Requesting relevant permissions in the Android Manifest file
Creating SurfaceView to be able to capture the preview frames of the camera

Creating an activity that displays the camera preview frames

Setting camera parameters

Downloading the example code

You can download the example code files for all Packt books you
M have purchased from your account at http: //www.packtpub. com.
Q If you purchased this book elsewhere, you can visit http: //www.
packtpub.com/support and register to have the files e-mailed
directly to you. You can also find the code files at ht tps://github.

com/arandroidbo

ok/ar4android.

Creating an Eclipse project
Our first step is the setup process for creating an Android project in Eclipse. We will

call our first project CameraAccessAndroid. Please note that the description of this
subsection will be similar for all other examples that we will present in this book.

Start your Eclipse project and go to File | New | Android Application Project. In
the following configuration dialog box, please fill in the appropriate fields as shown
in the following screenshot:

W

Application Name-
Project Name:o

Package Name0

Minimum Required SDK
Target SDK-0
Compile Witho

Theme:n

« Choose the base them:

New Android Application

New Android Application

Creates a new Android Application

CameraAccessAndroid
CameraAccassAndroid

comardandroid

AP 10 Android 2.3.3 (Gingerbread)

AP 15 Android 4.0.3 (IceCreamSandwich)
AP 15: Android 4.0.3 (leeCreamSandwich)

None

€ Lo use for the application

c ES

Cancel
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Then, click on two more dialog boxes (Configure Project for selecting the file path

to your project, Launcher Icon) by accepting the default values. Then, in the Create
Activity dialog box, select the Create Activity checkbox and the BlankActivity
option. In the following New Blank Activity dialog, fill into the Activity Name
textbox, for example, with CameraAccessAndroidActivity and leave the Layout
Name textbox to its default value. Finally, click on the Finish button and your project
should be created and be visible in the project explorer.

Permissions in the Android manifest

For every AR application we will create, we will use the camera. With the Android
API, you explicitly need to allow camera access in the Android manifest declaration
of your application. In the top-level folder of your CameraAccessAndroid project,
open the AndroidManifest .xml file in the text view. Then add the following
permission:

<uses-permission android:name="android.permission.CAMERA" />

Besides this permission, the application also needs to at least declare the use of
camera features:

<uses-feature android:name="android.hardware.camera" />

Since we want to run the AR application in fullscreen mode (for better immersion),
add the following option into the activity tag:

android:theme="@android:style/Theme.NoTitleBar.Fullscreen"

Creating an activity that displays the camera

In its most basic form, our Activity class takes care of setting up the camera
instance. As a class member, you need to declare an instance of a Camera class:

public class CameraAccessAndroidActivity extends Activity

private Camera mCamera;

}
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The next step is to open the camera. To do that, we define a getCameraInstance ()
method:

public static Camera getCameralnstance() {
Camera ¢ = null;
try {
c = Camera.open(0) ;
} catch (Exception e) { ... }

return c;

}

It is important that the open () call is surrounded by try{}catch{} blocks as the
camera might currently be used by other processes and be unavailable. This method
is called in the onResume () method of your Activity class:

public void onResume () {
super.onResume () ;
stopPreview = false;
mCamera = getCameralnstance() ;

}

It is also crucial to properly release the camera when you pause or exit your
program. Otherwise it will be blocked if you open another (or the same) program.
We define a releaseCamera () method for this:

private void releaseCamera()
if (mCamera != null) {

mCamera.release () ;
mCamera = null;

}
}

You then call this method in the onpPause () method of your Activity class.

1 . . .
< On some devices, it can be slow to open the camera. In this case, you
can use an AsyncTask class to mitigate the problem.

Setting camera parameters

You now have a basic workflow to start and stop your camera. The Android camera
API also allows you to query and set various camera parameters that were discussed
at the beginning of this chapter. Specifically, you should be careful not to use very
high resolution images as they take a lot of processing power. For a typical mobile AR
application, you do not want to have a higher video resolution of 640 x 480 (VGA).
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As camera modules can be quite different, it is not advisable to hardcode the video
resolution. Instead, it is a good practice to query the available resolutions of your
camera sensor and only use the most optimal resolution for your application, if it
is supported.

Let's say, you have predefined the video width you want in the
mDesiredCameraPreviewWidth variable. You can then check if the value of the
width resolution (and an associated video height) is supported by the camera using
the following method:

private void initializeCameraParameters()
Camera.Parameters parameters = mCamera.getParameters() ;
List<Camera.Size> sizes = parameters.getSupportedPreviewSizes() ;
int currentWidth = 0;
int currentHeight = 0;
boolean foundDesiredWidth = false;
for (Camera.Size s: sizes)
if (s.width == mDesiredCameraPreviewWidth) {

currentWidth = s.width;

currentHeight = s.height;

foundDesiredWidth = true;

break;

}
}

if (foundDesiredWidth)
parameters.setPreviewSize ( currentWidth, currentHeight ) ;

mCamera.setParameters (parameters) ;

}

The mCamera.getParameters () method is used to query the current camera
paranne&ﬂs.TheInCamera.getParameters() and getSupportedPreviewSizes ()
methods return the subset of available preview sizes and the parameters.
setPreviewSize method is setting the new preview size. Finally, you have to call
the mCamera.setParameters (parameters) method so that the requested changes
are implemented. This initializeCameraParameters () method can then also be
called in the onrResume () method of your Activity class.

Creating SurfaceView

For your Augmented Reality application, you want to display a stream of live images
from your back-facing camera on the screen. In a standard application, acquiring the
video and displaying the video are two independent procedures. With the Android
API, you explicitly need to have a separate SurfaceView to display the camera stream
as well. The surfaceview class is a dedicated drawing area that you can embed into
your application.
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So for our example, we need to derive a new class from the Android Surfaceview
class (lets call it CameraPreview) and implement a SurfaceHolder.Callback
interface. This interface is used to react to any events related to the surface, such as
the creation, change, and destruction of the surface. Accessing the mobile camera
is done through the camera class. In the constructor, the Android camera instance
(defined previously) is passed:

public class CameraPreview extends SurfaceView implements
SurfaceHolder.Callback ({
private static final String TAG = "CameraPreview";
private SurfaceHolder mHolder;
private Camera mCamera;
public CameraPreview (Context context, Camera camera) {
super (context) ;
mCamera = camera;
mHolder = getHolder () ;
mHolder.addCallback (this) ;
mHolder.setType (SurfaceHolder.SURFACE_TYPE_ PUSH_BUFFERS) ;

}

In the surfaceChanged method, you take care of passing an initialized
SurfaceHolder instance (that is the instance that holds the display surface) and
starting the preview stream of the camera, which you later want to display (and
process) in your own application. The stopping of the camera preview stream is
important as well:

public void surfaceChanged (SurfaceHolder holder, int format,
int w, int h) {

if (mHolder.getSurface() == null){
return;

}

try {
mCamera.stopPreview() ;

} catch (Exception e){ ...}

try {

mCamera.setPreviewDisplay (mHolder) ;
mCamera.startPreview() ;
} catch (Exception e){ ... }

}

The inherited methods, surfaceCreated () and surfaceDestroyed (),
remain empty.
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Having our CameraPreview class defined, we can declare it in the Activity class:

private CameraPreview mPreview;

Then, instantiate it in the onResume () method:

mPreview = new CameraPreview(this, mCamera) ;

setContentView (mPreview) ;

To test your application, you can do the same with your other project: please connect
your testing device to your computer via a USB cable. In Eclipse, right-click on your
project folder, CameraAccessAndroid, and in the pop-up menu go to Run As | 1
Android Application. You should now be able to see the live camera view on your
mobile screen as soon as the application is uploaded and started.

Live camera view in JME

In the preceding example, you got a glimpse of how you can access the Android
camera with a low-level graphics library (standard Android library). Since we want
to perform Augmented Reality, we will need to have another technique to overlay
the virtual content over the video view. There are different ways to do that, and the
best method is certainly to use a common view, which will integrate the virtual and
video content nicely. A powerful technique is to use a managed 3D graphics library
based on a scenegraph model. A scenegraph is basically a data structure that helps
you to build elaborate 3D scenes more easily than in plain OpenGL® by logically
organizing basic building blocks, such as geometry or spatial transformations. As
you installed JME in the first chapter, we will use this specific library offering all the
characteristics we need for our AR development. In this subsection, we will explore
how you can use JME to display the video. Different to our preceding example, the
camera view will be integrated to the 3D scenegraph. In order to achieve this, you
use the following steps:

1. Create a project with JME support.

2. Create the activity which sets up JME.

3. Create the JME application, which does the actual rendering of our 3D scene.
For creating the project with JME, you can follow the instructions in the Installing

JMonkeyEngine section of Chapter 1, Augmented Reality Concepts and Tools. We will
make a new project called CameraAccessJME.

[29]




Viewing the World

Creating the JME activity

As an Android developer, you know that an Android activity is the main entry
point to create your applications. However, JME is a platform-independent game
engine that runs on many platforms with Java support. The creators of JME wanted
to ease the process of integrating existing (and new) JME applications into Android
as easily as possible. Therefore, they explicitly differentiated between the JME
applications, which do the actual rendering of the scene (and could be used on other
platforms as well), and the Android specific parts in the JME activity for setting up
the environment to allow the JME application to run. The way they achieved this

is to have a specific class called AndroidHarness, which takes the burden off the
developer to configure the Android activity properly. For example, it maps touch
events on your screen to mouse events in the JME application. One challenge in this
approach is to forward Android-specific events, which are not common to other
platforms in the JME application. Don't worry, we will show you how to do this for
the camera images.

The first thing you want to do is create an Android activity derived from the
AndroidHarness class, which we will call the CameraAccessIMEAct ivity method.
Just like the CameraAccessAndroidactivity class, it holds instances of the Camera
and cameraPreview classes. In contrast, it will also hold an instance of your actual
JME application (discussed in the next section of this chapter) responsible for
rendering your scene. You did not yet provide an actual instance of the class but only
the fully qualified path name. The instance of your class is constructed at runtime
through a reflection technique in the AndroidHarness super class:

public CameraAccessJMEActivity() {
appClass = "com.ar4android.CameraAccessJIME";

}

During runtime, you can then access the actual instance by casting a general JME
application class, which AndroidHarness stores in its app variable to your specific
class, for example, through the (com.ar4android.CameraAccessdIME) app.

As discussed at the beginning of this chapter, the camera can deliver the images

in various pixel formats. Most rendering engines (and JME is no exception) cannot
handle the wide variety of pixel formats but expect certain formats such as RGB565.
The RGB565 format stores the red and blue components in 5 bits and the green
component in 6 bits, thereby displaying 65536 colors in 16 bits per pixel. You can
check if your camera supports this format in the initializeCameraParameters

method by adding the following code:

List<Integer> pixelFormats =
parameters.getSupportedPreviewFormats () ;

for (Integer format : pixelFormats) {
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if (format == ImageFormat.RGB 565) {
pixelFormatConversionNeeded = false;
parameters.setPreviewFormat (format) ;
break;

}

In this code snippet, we query all available pixel formats (iterating over
parameters. getSupportedPreviewFormats ())and set the pixel format of the
RGB565 model if supported (and remember that we did this by setting the flag

pixelFormatConversionNeeded)

As mentioned before, in contrast to the previous example, we will not directly render
the Ssurfaceview class. Instead, we will copy the preview images from the camera in
each frame. To prepare for this, we define the preparepreviewCallbackBuffer ()
method, which you will call in the onResume () method after creating your camera
and setting its parameters. It allocates buffers to copy the camera images and
forwarding it to JME:

public void preparePreviewCallbackBuffer () {

mPreviewWidth = mCamera.getParameters () .getPreviewSize () .width;
mPreviewHeight = mCamera.getParameters() .
getPreviewSize () .height;

int bufferSizeRGB565 = mPreviewWidth * mPreviewHeight * 2 +
4096 ;

mPreviewBuf ferRGB565 null;
mPreviewBufferRGB565 = new byte [bufferSizeRGB565] ;
mPreviewByteBufferRGB565 =

ByteBuffer.allocateDirect (mPreviewBufferRGB565.1length) ;

cameradJMEImageRGB565 = new Image (Image.Format.RGB565,
mPreviewWidth, mPreviewHeight, mPreviewByteBufferRGB565) ;

}

If your camera does not support RGB565, it may deliver the frame in the YCbCr
format (Luminance, blue difference, red difference), which you have to convert to
the RGB565 format. To do that, we will use a color space conversion method, which
is really common in AR and for image processing. We provide an implementation of
this method (yCbCrToRGB565 (...) ) available in the sample project. A basic approach
to use this method is to create different image buffers, where you will copy the
source, intermediate, and final transformed image.
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So for the conversion, the mPreviewWidth, mPreviewHeight, and bitsPerPixel
variables are queried by calling the getParameters () method of your camera
instance in the preparePreviewCallbackBuffer () method and determine

the size of your byte arrays holding the image data. You will pass a JME image
(cameradMEImageRGB565) to the JME application, which is constructed from a Java
ByteBuf fer class, which itself just wraps the RGB565 byte array.

Having prepared the image buffers, we now need to access the content of the
actual image. In Android, you do this by an implementation of the camera.
PreviewCallback interface. In the onPreviewFrame (byte[] data, Camera c)
method of this object, you can get access to the actual camera image stored as a
byte array:

private final Camera.PreviewCallback mCameraCallback = new
Camera.PreviewCallback () {
public void onPreviewFrame (byte[] data, Camera c) {

mPreviewByteBufferRGB565.clear () ;
if (pixelFormatConversionNeeded) {

yCbCrToRGB565 (data, mPreviewWidth, mPreviewHeight,
mPreviewBuf ferRGB565) ;
mPreviewByteBufferRGB565.put (mPreviewBufferRGB565) ;

}

cameradJMEImageRGB565 . setData (mPreviewByteBuf ferRGB565) ;
if ((com.ar4android.CameraAccessJIME) app != null) {

((com.ar4android.CameralAccessIME)
app) .setTexture (cameradJMEImageRGB565) ;

}

The setTexture method of the CameraAccessdME class simply copies the incoming
data into a local image object.

Finally, you register your implementation of the Camera.PreviewCallback interface
in the onsurfaceChanged () method of the CameraPreview class

mCamera.setPreviewCallback (mCameraPreviewCallback) ;
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A faster method to retrieve the camera images, which avoids
M creating a new buffer in each frame, is to allocate a buffer before
Q and use it with the methods, mCamera.addCallbackBuffer ()
and mCamera.setPreviewCallbackWithBuffer (). Please
note that this approach might be incompatible with some devices.

Creating the JME application

As mentioned in the preceding section, the JME application is the place where the
actual rendering of the scene takes place. It should not concern itself with the nitty-
gritty details of the Android system, which were described earlier. JME provides
you with a convenient way to initialize your application with many default settings.
All you have to do is inherit from the SimpleApplication class, initialize your
custom variables in simpleInitApp (), and eventually update them before a new
frame is rendered in the simpleUpdate () method. For our purpose of rendering
the camera background, we will create a custom vViewport (a view inside the
display window), and a virtual camera (for rendering the observed scene), in the
initvideoBackground method. The common method to display the video in a
scene graph such as JME is to use the video image as a texture, which is placed on a
quadrilateral mesh:

public void initVideoBackground (int screenWidth, int screenHeight)

{

Quad videoBGQuad = new Quad(l, 1, true);

mVideoBGGeom = new Geometry ("quad", videoBGQuad) ;

float newWidth = 1.f * screenWidth / screenHeight;
mVideoBGGeom.setLocalTranslation(-0.5f * newWidth, -0.5f, 0.f);
mVideoBGGeom. setLocalScale(1.f * newWidth, 1.f, 1);

mvideoBGMat = new Material (assetManager,
"Common/MatDefs/Misc/Unshaded.j3md") ;
mVideoBGGeom. setMaterial (mvideoBGMat) ;

mCameraTexture = new Texture2D() ;

Camera videoBGCam = cam.clone() ;
videoBGCam.setParallelProjection (true) ;
ViewPort videoBGVP = renderManager.createMainView ("VideoBGView",

videoBGCam) ;
videoBGVP.attachScene (mVideoBGGeom) ;
mScenelInitialized = true;
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Let's have a more detailed look at this essential method for setting up our
scenegraph for the rendering of the video background. You first create a quad

shape and assign it to a JME Geometry object. To assure correct mapping between
the screen and the camera, you scale and reposition the geometry according to the
dimensions of the device's screen. You assign a material to the quad and also create a
texture for it. Since we are doing 3D rendering, we need to define the camera looking
at this quad. As we want the camera to only see the quad nicely placed in front of the
camera without distortion, we create a custom viewport and an orthographic camera
(this orthographic camera has no perspective foreshortening). Finally, we add the
quad geometry to this viewport.

Now, we have our camera looking at the textured quad rendered fullscreen. All that
is left to do is update the texture of the quad each time a new video frame is available
from the camera. We will do this in the simpleUpdate () method, which is called
regularly by the JME rendering engine:

public void simpleUpdate (float tpf)
if (mNewCameraFrameAvailable) {
mCameraTexture. setImage (mCameralmage) ;
mvideoBGMat .setTexture ("ColorMap", mCameraTexture)

}
}

You may have noted the usage of the conditional test on the
mNewCameraFrameAvailable variable. As the scenegraph renders its content
with a different refresh rate (up to 60 fps, on a modern smartphone) than
what a mobile camera can normally deliver (typically 20-30 fps), we use the
mNewCameraFrameAvailable flag to only update the texture if a new image
becomes available.

So this is it. With these steps implemented, you can compile and upload your
application and should get a similar result as shown in the following figure:
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Summary

In this chapter you got an introduction to the world of Android camera access and
how to display camera images in the JME 3D rendering engine. You learned about
various camera parameters and the compromises you have made (for example,
between image size and frames per second) to get an efficient camera access. We also
introduced the simplest way of displaying a camera view in an Android activity,

but also explained why you need to go beyond this simple example to integrate the
camera view and 3D graphics in a single application. Finally, we helped you through
the implementation of a JME application, which renders the camera background. The
knowledge you gained in this chapter is the beneficial basis to overlay the first 3D
objects on the camera view —a topic we will discuss in the next chapter.

[35]







Superimposing the World

Now that you have a view of the physical world on your screen, our next goal is

to overlay digital 3D models on top of it. Overlay in 3D as used in Augmented
Reality, is different from basic 2D overlays possible with Adobe Photoshop or similar
drawing applications (in which we only adjust the position of two 2D layers). The
notion of 3D overlay involves the management and rendering of content with six
degrees of freedom (translation and rotation in three dimensions) as shown in the
following figure:

g g

3D Virtual Content
(3D rendering)

View of the Real World AR Overlay

In this chapter, we will guide you through the different concepts and present you
with the best way to superimpose real and virtual content. We will successively
describe the concept of real and virtual cameras, how to perform superimposition
with our scene graph engine, and create high quality superimposition. First, let's
discuss the 3D world and the virtual camera.
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The building blocks of 3D rendering

Representing and rendering virtual 3D content operates in the same way as when
you click a picture with a digital camera in the physical world. If you take a picture
of your friend or a landscape, you will first check your subject with the naked eye
and after that will look at it through the viewfinder of the camera; only then will you
take the picture. These three different steps are the same with virtual 3D content.
You do not have a physical camera taking pictures, but you will use a virtual camera
to render your scene. Your virtual camera can be seen as a digital representation of

a real camera and can be configured in a similar way; you can position your camera,
change its field of view, and so on. With virtual 3D content, you manipulate a digital
representation of a geometrical 3D scene, which we simply call your virtual 3D scene
or virtual world.

The three basic steps for rendering a scene using 3D computer graphics are shown in
the following figure and consist of:

* Configuring your virtual 3D scene (objects position and appearance)
* Configuring your virtual camera
* Rendering the 3D scene with the virtual camera

> Y -

1. Configuration of 2. Configuration of

the Virtual 3D Scene the Virtual Camera 3. 30 Rendering

As we do real-time rendering for AR, you will repeat these steps in a loop; objects or
cameras can be moved at each time frame (typically at 20-30 FPS).

While positioning objects in a scene, or the camera in a scene, we need a way of
representing the location (and also the orientation) of objects as functions of each
other. To do so, we generally use some spatial representation of the scene based on
geometric mathematical models. The most common approach is to use Euclidian
geometry and coordinate systems. A coordinate system defines a method of
referencing an object (or point) in a space using a numerical representation to define
this position (coordinates). Everything in your scene can be defined in a coordinate
system, and coordinate systems can be related to each other using transformations.
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The most common coordinate systems are shown in the following figure and are:

*  World Coordinate System: It is the ground where you reference everything.

* Camera Coordinate System: It is placed in the world coordinate system and
used to render your scene seen from this specific viewpoint. It is sometimes
also referenced as the Eye Coordinate System.

* Local Coordinate System(s): It is, for example, an object coordinate system,
used to represent the 3D points of an object. Traditionally, you use the
(geometric) center of your object to define your local coordinate system.

Local Coordinate

Camera Coordinate
System

System

¢ "\

World Coordinate
System

\ There are two conventions for the orientation of the coordinate systems:
N left-handed and right-handed. In both the conventions, X goes on the
Q right-hand side and Y goes upwards. Z goes towards you in the right-
handed convention and away from you in the left-handed convention.

Another common coordinate system, not illustrated here, is the image

coordinate system. You are probably familiar with this one if you edit your
pictures. It defines the position of each pixel of your image from a referenced origin
(commonly the top-left corner or the bottom-left corner of an image). When you
perform 3D graphics rendering, it's the same concept. Now we will focus on the
virtual camera characteristics.
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Real camera and virtual camera

A virtual camera for 3D graphics rendering is generally represented by two main
sets of parameters: the extrinsic and intrinsic parameters. The extrinsic parameters
define the location of the camera in the virtual world (the transformation from the
world coordinate system to the camera coordinate system and vice versa). The
intrinsic parameters define the projective properties of the camera, including its
field of view (focal length), image center, and skew. Both the parameters can be
represented with different data structures, with the most common being a matrix.

If you develop a 3D mobile game, you are generally free to configure the cameras
the way you want; you can put the camera above a 3D character running on a terrain
(extrinsic) or set up a large field of view to have a large view of the character and

the terrain (intrinsic). However, when you do Augmented Reality, the choice is
constrained by the properties of the real camera in your mobile phone. In AR, we
want properties of the virtual camera to match those of the real camera: the field

of view and the camera position. This is an important element of AR, and we will
explain how to realize it further in this chapter.

Camera parameters (intrinsic orientation)

The extrinsic parameters of the virtual camera will be explored in subsequent
chapters; they are used for 3D registration in Augmented Reality. For our 3D
overlay, we will now explore the intrinsic camera parameters.

There are different computational models for representing a virtual camera (and

its parameters) and we will use the most popular one: the pinhole camera model.
The pinhole camera model is a simplified model of a physical camera, where you
consider that there is only a single point (pinhole) where light enters your camera
image. With this assumption, computer vision researchers simplify the description of
the intrinsic parameters as:

* Focal length of your (physical or virtual) lens: This together with the size
of the camera center determines the field of view (FOV)—also called the
angle of view — of your camera. The FOV is the extent of the object space
your camera can see and is represented in radians (or degrees). It can be
determined for the horizontal, vertical, and diagonal direction of your
camera Sensor.

* Image center (principal point): This accommodates any displacement of the
sensor from the center position.

* Skew factor: This is used for non-square pixels.
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. Onnon-mobile cameras you should also consider the lens distortion, such
as the radial and the tangential distortions. They can be modeled and
s corrected with advanced software algorithms. Lens distortions on mobile
phone cameras are usually corrected in hardware.

With all these concepts in mind, let's do a bit of practice now.

Using the scenegraph to overlay a 3D
model onto the camera view

In the previous chapter you learned how to set up a single viewport and camera to
render the video background. While the virtual camera determines how your 3D
graphics are projected on a 2D image plane, the viewport defines the mapping of this
image plane to a part of the actual window in which your application runs (or the
whole screen of the smartphone if the app runs in fullscreen mode). It determines
the portion of the application window in which graphics are rendered. Multiple
viewports can be stacked and can cover the same or different screen areas as shown
in the following figure. For a basic AR application, you typically have two viewports.
One is associated with the camera rendering the background video and one is used
with a camera rendering the 3D objects. Typically, these viewports cover the

whole screen.

The viewport size is not defined in pixels but is unitless and is defined from 0 to 1
for the width and height to be able to easily adapt to changing window sizes. One
camera is associated with one viewport at a time.
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Remember that for the video background we used an orthographic camera to avoid
perspective foreshortening of the video image. However, this perspective is crucial
for getting a proper visual impression of your 3D objects. Orthographic (parallel)
projection (on the left-hand side of the following figure) and perspective projection
(on the right-hand side of the following figure) determine how the 3D volume is
projected on a 2D image plane as shown in the following figure:

y 4 y4
X X
Orthographic Projection Perspective Projection

JME uses a right-handed coordinate system (OpenGL® convention, x on the right-
hand side, y upwards, and z towards you). You certainly want 3D objects to appear
bigger as the camera moves closer to them and smaller as it moves away. So how do
we go along? Right, you just add a second camera — this time a perspective one —and
an associated viewport that also covers the whole application window.

In the SuperimposeJdME project associated with this chapter, we again have
Android activity (SuperimposedMEActivity.java)and a JME application

class (SuperimposedME. java). The application needs no major change from our
previous project; you only have to extend the JME SimpleApplication class. In
its simpleInitApp () startup method, we now explicitly differentiate between the
initialization of the scene geometry (video background: initvideoBackground();
3D foreground scene: initForegroundScene ()) and the associated cameras

and viewports:

private float mForegroundCamFOVY = 30;
public void simpleInitApp() {

initVideoBackground (settings.getWidth (), settings.getHeight()) ;
initForegroundScene () ;

initBackgroundCamera () ;

initForegroundCamera (mForegroundCamFOVY) ;
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Note that the order in which the camera and viewports are initialized is important.
Only when we first add the camera and viewport for the video background
(initBackgroundCamera ()) and later add the foreground camera and viewport
(initForegroundCamera () ), can we ensure that our 3D objects are rendered on top
of the video background; otherwise, you would only see the video background.

We will now add your first 3D model into the scene using initForegroundScene ().

A convenient feature of JME is that it supports the loading of external assets —for
example, Wavefront files (. obj) or Ogre3D files (mesh.xml/ . scene) —including
animations. We will load and animate a green ninja, a default asset that ships with JME.

private AnimControl mAniControl;
private AnimChannel mAnicChannel;

public void initForegroundScene () {

Spatial ninja = assetManager.loadModel ("Models/Ninja/Ninja.mesh.xml") ;
ninja.scale(0.025f, 0.025f, 0.025f);

ninja.rotate(0.0f, -3.0f, 0.0f);

ninja.setLocalTranslation(0.0f, -2.5f, 0.0f);
rootNode.attachChild (ninja) ;

DirectionallLight sun = new DirectionalLight () ;
sun.setDirection (new Vector3f(-0.1f, -0.7f, -1.0f));
rootNode.addLight (sun) ;

mAniControl = ninja.getControl (AnimControl.class);
mAniControl.addListener (this) ;

mAniChannel = mAniControl.createChannel () ;
mAniChannel.setAnim("Walk") ;
mAnicChannel . setLoopMode (LoopMode . Loop) ;
mAnicChannel .setSpeed (1f) ;

}

So in this method you load a model relative to your project's root /asset folder.

If you want to load other models, you also place them in this asset folder. You
scale, translate, and orient it and then add it to the root scenegraph node. To make
the model visible, you also add a directional light shining from the top front onto
the model (you can try not adding the light and see the result). For the animation,
access the "Walk" animation sequence stored in the model. In order to do this, your
class needs to implement the AnimEventListener interface and you need to use
an AnimControl instance to access that animation sequence in the model. Finally,
you will assign the "Walk" sequence to an AnimChannel instance, tell it to loop the
animation, and set the animation speed.

Great, you have now loaded your first 3D model, but you still need to display it on
the screen.
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This is what you do next in initForegroundCamera (fovY). It takes care of setting
up the perspective camera and the associated viewport for your 3D model. As the
perspective camera is characterized by the spatial extent of the object space it can see
(the FOV), we pass the vertical angle of view stored in mForegroundcamrovy to the
method. It then attaches the root node of our scene containing the 3D model to the
foreground viewport.

public void initForegroundCamera (float fovY)
Camera fgCam = new Camera (settings.getWidth(),
settings.getHeight () ) ;
fgCam.setLocation (new Vector3f (0f, 0f, 10f));
fgCam.setAxes (new Vector3f (-1f,0£f,0f),
new Vector3f (0f,1f,0f), new Vector3f (0f,0f,-1f));
fgCam.setFrustumPerspective (fovy,
settings.getWidth() /settings.getHeight (), 1, 1000);
ViewPort fgVP = renderManager.createMainView ("ForegroundView",
fgCam) ;
fgVP.attachScene (rootNode) ;
fgVP.setBackgroundColor (ColorRGBA.Blue) ;
fgvP.setClearFlags (false, true, false);

}

While you could just copy some standard parameters from the default camera
(similar to what we did with the video background camera), it is good to know
which steps you actually have to do to initialize a new camera. After creating a
perspective camera initialized with the window width and height, you set both the
location (setLocation ()) and the rotation (setaxes () ) of the camera. JME uses

a right-handed coordinate system, and our camera is configured to look along the
negative z axis into the origin just as depicted in the previous figure. In addition, we
set the vertical angle of the view passed to setFrustumPerspective () to 30 degrees,
which corresponds approximately with a field of view that appears natural to a
human (as opposed to a very wide or very narrow field of view).

Afterwards, we set up the viewport as we did for the video background camera.

In addition, we tell the viewport to delete its depth buffer but retain the color and
stencil buffers with setClearFlags (false, true, false).We do this to ensure
that our 3D models are always rendered in front of the quadrilateral holding the
video texture, no matter if they are actually before or behind that quad in object
space (beware that all our graphical objects are referenced in the same world
coordinate system). We do not clear the color buffer as, otherwise, the color values
of the video background, which are previously rendered into the color buffer will
be deleted and we will only see the background color of this viewport (blue). If you
run your application now, you should be able to see a walking ninja in front of your
video background, as shown in the following pretty cool screenshot:
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Improving the overlay

In the previous section you created a perspective camera, which renders your model
with a vertical field of view of 30 degrees. However, to increase the realism of your
scene, you actually want to match the field of view of your virtual and physical
cameras as well as possible. This field of view in a general imaging system such as
your phone's camera is dependent both on the size of the camera sensor and the focal
length of the optics used. The focal length is a measure of how strongly the camera
lens bends incoming parallel light rays until they come into focus (on the sensor
plane), it is basically the distance between the sensor plane and the optical elements
of your lens.

The FOV can be computed from the formula a = 2 arctan d/2f, where d is the (vertical,
horizontal, or diagonal) extent of the camera sensor and 2 is the focal length.

Sounds easy, right? There is only a small challenge. You most often do not know the
(physical) sensor size or the focal length of the phone camera. The good thing about
the preceding formula is that you do not need to know the physical extent of your
sensor or its focal length but can calculate it in arbitrary coordinates such as pixels.
And for the sensor size, we can easily use the resolution of the camera image, which
you already learned to query in Chapter 2, Viewing the World.
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The trickiest part is to estimate the focal length of your camera. There are some tools
that help you to do just this using a set of pictures taken from a known object; they
are called camera resectioning tools (or geometric camera calibration tools). We

will show you how to achieve this with a tool called GML C++ Camera Calibration
Toolbox, which you can download from http://graphics.cs.msu.ru/en/
node/9009.

After installing the tool, open the standard camera app on your Android phone.
Under the still image settings select the camera resolution that you also use in your
JME application, for example, 640 x 480, as shown in the following screenshot:
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Take an A4 size printout of the checkerboard_8x5_A4.pdf file in the GML
Calibration pattern subdirectory. Take at least four pictures with your camera app
from different viewpoints (6 to 8 pictures will be better). Try to avoid very acute
angles and try to maximize the checkerboards in the image. Example images are
depicted in the following figure:
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When you are done, transfer the images to a folder on your computer (for example,
AR4Android\calibration-images). Afterwards, start the GML Camera Calibration
app on your computer and create a new project. Type into the New project dialog
box the correct number of black and white squares (for example, 5 and 8), as shown
in the following screenshot:
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It is also crucial to actually measure the square size as your printer might scale the
PDF to its paper size. Then, click on OK and start adding the pictures you have just
taken (navigate to Object detection | Add image). When you have added all the
images, navigate to Object detection | Detect All and then Calibration | Calibrate.
If the calibration was successful, you should see camera parameters in the result tab.
We are mostly interested in the Focal length section. While there are two different
focal lengths for the x and y axes, it is fine to just use the first one. In the sample
case of the images, which were taken with a Samsung Galaxy SII, the resulting focal
length is 522 pixels.

You can then plug this number together with your vertical image resolution into

the preceding formula and retrieve the vertical angle of the view in radians. As JME
needs the angle in degrees, you simply convert it by applying this factor: 180/PI. If
you are also using a Samsung Galaxy SII, a vertical angle of view of approximately
50 degrees should result, which equals a focal length of approximately 28 mm in 35
mm film format (wide angle lens). If you plug this into the mForegroundcamrovy
variable and upload the application, the walking ninja should appear smaller as
shown in the following figure. Of course, you can increase its size again by adjusting
the camera position.

Note that you cannot model all parameters of the physical camera in JME. For
example, you cannot easily set the principal point of your physical camera with
your JME camera.

~ JME also doesn't support direct lens distortion correction. You
% can account for these artifacts via advanced lens correction
&— techniques covered, for example, here: http://paulbourke.net/
miscellaneous/lenscorrection/.
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Summary

In this chapter, we introduced you to the concept of 3D rendering, the 3D virtual
camera, and the notion of 3D overlay for Augmented Reality. We presented what
a virtual camera is and its characteristics and described the importance of intrinsic
camera parameters for accurate Augmented Reality. You also got a chance to
develop your first 3D overlay and calibrate your mobile camera for improved
realism. However, as you move your phone along, the video background changes,
while the 3D models stay in place. In the next chapter, we will tackle one of the
fundamental bricks of an Augmented Reality application: the registration.
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Locating in the World

In the last chapter you learned how to overlay digital content on the view of the
physical world. However, if you move around with your device, point it somewhere
else, the virtual content will always stay at the same place on your screen. This is
not exactly what happens in AR. The virtual content should stay at the same place
relative to the physical world (and you can move around it), not remaining fixed on
your screen.

In this chapter we will look at how to achieve dynamic registration between digital
content and the physical space. If at every time step, we update the position of
moving objects in our application, we will create the feeling that digital content sticks
to the physical world. Following the position of moving elements in our scene can

be defined as tracking, and this is what we will use and implement in this chapter.
We will use sensor-based AR to update the registration between digital content and
physical space. As some of these sensors are commonly of poor quality, we will show
you how to improve the measurement you get from them using a technique named
sensor fusion. To make it more practical, we will show you how to develop the basic
building blocks for a simple prototype of one of the most common AR applications
using global tracking: an AR Browser (such as Junaio, Layar, or Wikitude).

Knowing where you are — handling GPS

In this section, we will look at one of the major approaches for mobile AR and
sensor-based AR (see Chapter 1, Augmented Reality Concepts and Tools), which uses
global tracking. Global tracking refers to tracking in a global reference frame (world
coordinate system), which can encompass the whole earth. We will first look at the
position aspect, and then the location sensor built on your phone that will be used
for AR. We will learn how to retrieve information from it using the Android API and
will integrate its position information into JME.
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GPS and GNSS

So we need to track the position of the user to know where he/she is located in the
real world. While we say we track the user, handheld AR applications actually track
the position of the device.

User tracking versus device tracking

To create a fully-immersive AR application, you ideally need to know
where the device is, where the body of the user in reference to the device
is, and where the eyes of the user in reference of the body are. This
approach has been explored in the past, especially with Head Mounted
Displays. For that, you need to track the head of the user, the body of the
user, and have all the static transformations between them (calibration).
With mobile AR, we are still far from that; maybe in the future, users will
wear glasses or clothes equipped with sensors which will allow creating

more precise registration and tracking.

So how do we track the position of the device in a global coordinate system?
Certainly you, or maybe some of your friends, have used a GPS for car navigation or
for going running or hiking. GPS is one example of a common technology used for
global tracking, in reference to an earth coordinate system, as shown in the following

figure:

World
Coordinate
System

User/Device
Coordinate
System
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Most mobile phones are now equipped with GPS, so it seems an ideal technology for
global tracking in AR. A GPS is the American version of a global navigation satellite
system (GNSS). The technology relies on a constellation of geo-referenced satellites,
which can give your position anywhere around the planet using geographic
coordinates. GPS is not the only GNSS out there; a Russian version (GLONASS) is
currently also operational, and a European version (Galileo) will be effective around
2020. However, GPS is currently the most supported GNSS on mobile devices, so we
will use this term for the rest of the book when we talk about tracking with GNSS.

For common AR applications relying on GPS, you have two things to consider: the
digital content location and the device location. If both of them are defined in the
same coordinate system, in reference to earth, you will be able to know how they

are in reference to each other (see the elliptical pattern in the following figure). With
that knowledge, you can model the position of the 3D content in the user coordinate
system and update it with each location update from your GPS sensor. As a result, if
you move closer to an object (bottom to top), the object will appear closer (and bigger
in the image), reproducing the behavior you have in the normal world.

World Coordinate Digital Content User Coordinate
System Coordinate System

LA [k
"
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A small issue we have with this technology is related to the coordinate system used
in GPS. Using latitude and longitude coordinates (what a basic GPS delivers) is not
the most adapted representation for using AR. When we do 3D graphics, we are
used to a Euclidian coordinate system to position digital content; position using the
Cartesian coordinate system, defined in terms of X, Y, and Z coordinates. So we
need to address this problem by transforming these GPS coordinates to something
more adapted.

JME and GPS - tracking the location of

your device

The Google Android API offers access to GPS through the Location Manager service.
The Location Manager can provide you GPS data, but it can also use the network
(for example, Wi-Fi and cellphone network) to pinpoint your location and give you a
rough estimation of it. In Android terminology, this is named Location Provider. To
use the Location Manager, you need to apply the standard Android mechanism for
notifications in Android based on a listener class; LocationListener in this case.

So open the LocationAccessJIME project associated with this chapter, which is a
modified version of the SuperimposedME project (Chapter 3, Superimposing the World).

First, we need to modify our Android manifest to allow access to the GPS sensor.
They are different quality modes regarding GPS (quality of estimated location), we
will authorize all of them. So add these two permissions to your AndroidManifest.
xm1 file:

<uses-permission android:name="android.permission.ACCESS_ COARSE
LOCATION"/>

<uses-permission android:name="android.permission.ACCESS FINE
LOCATION"/>

The project has, same as before, a JME class (LocationAccessJME), an activity class
(LocationAccessJMEActivity), as well as CameraPreview. What we need to do is
create a LocationListener class and a LocationManager class that we add to our
LocationAccessJMEActivity class:

private LocationManager locationManager;

Inside the LocationListener class, we need to override different callback functions:

private LocationListener locListener= new LocationListener () {

@Override
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public void onLocationChanged (Location location) {
Log.d(TAG, "onLocation: " + location.toString());
if ((com.ar4android.LocationAccessJME) app != null)
((com.ar4android.LocationAccessJdME) app)
.setUserLocation (xyzposition) ;

}

The onLocationChanged callback is the one which is the call for any changes in

a user's location; the location parameter contains both the measured latitude and
longitude (in degrees). To pass the converted data to our JME, we will use the same
principle as before: call a method in our JME class using the location as argument.
So setUserLocation will be called each time there is an update of the location of
the user, and the new value will be available to the JME class.

Next, we need to access the location manager service and register our location
listener to it, using the requestLocationUpdates function:

public void onResume () {
super.onResume () ;

locationManager =
(LocationManager)getSystemService (LOCATION SERVICE) ;

locationManager.requestLocationUpdates
(LocationManager.GPS_PROVIDER, 500, 0, locListener);

}

The parameters of requestLocationUpdates are the types of provider we want
to use (GPS versus network), update frequency (in milliseconds), and change of
position threshold (in meters) as our listener.

On the JME side, we need to define two new variables to our LocationAccessIME
class:

//the User position which serves as intermediate storage place
for the Android

//Location listener position update

private Vector3f mUserPosition;

//A flag indicating if a new Location is available
private boolean mNewUserPositionAvailable =false;
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We also need to define our setUserLocation function, which is called from the
callback in LocationListener:

public void setUserLocation (Vector3f location) {
if (!mScenelnitialized) ({
return;
WSG84toECEF (location, mUserPosition) ;
//update your POI location in reference to the user position

mNewUserPositionAvailable =true;

}

Inside this function we need to transform the position of the camera from latitude/
longitude format to a Cartesian coordinate system. There are different techniques

to do so; we will use the conversion algorithm from the SatSleuth website (http://
www.satsleuth.com/GPS_ECEF_Datum_transformation.htm), converting our data
to an ECEF (Earth-Centered, Earth-Fixed) format. Now we have mUserPosition
available in ECEF format in our JME class. Each time a user's location will change,
the onLocationChange method and setUserLocation will be called and we will get
an updated value of mUserPosition. The question now is how we use this variable
in our scenegraph and in relation with geo-referenced digital content (for example,
POI)?

The method to use is to reference your content locally from your current position.
For doing that, we need to use an additional coordinate system: the ENU (East-
North-Up) coordinate system. For each data you have (for example, a certain number
of POIs at 5 km radius from your position), you compute the location from your
current position. Let's have a look at how we can do that on our ninja model, as
shown in the following code:

Vector3f ECEFNinja=new Vector3f () ;

Vector3f ENUNinja=new Vector3f () ;

WSG84toECEF (locationNinja, ECEFNinja) ;

ECEFtoENU (location, mUserPosition, ECEFNinja, ENUNinja) ;
mNinjaPosition.set (ENUNinja.x, 0, ENUNinja.y) ;
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The position of the ninja in latitude-longitude format (LocationNinja) is also
converted to the ECEF format (ECEFNinja). From there, using the current GPS
location (in latitude-longitude format and ECEF format, location, mUserPosition),
we compute the position of the ninja in a local coordinate system (ENUNinja). Each
time the user moves, his or her GPS position will be updated, transformed to ECEF
format, and the local position of the content will be updated, which will trigger

a different rendering. That's it! We have implemented GPS-based tracking. An
illustration of the relation of the different coordinate systems is represented in the
following figure:
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The only remaining part is to update the position of the model using the new local
position. We can implement that from the simpleUpdate function by adding the
following code:

if (mNewUserPositionAvailable) {
Log.d (TAG, "update user location");
ninja.setLocalTranslation
(mNinjaPosition.x+0.0f, mNinjaPosition.
y-2.5f, mNinjaPosition.z+0.0f) ;
mNewUserPositionAvailable=false;

}
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In a real AR application, you may have some 3D content positioned around
your current position in a GPS coordinate system, such as having a virtual ninja
positioned in Fifth street in New York, or in front of the Eiffel Tower in Paris.

Since we want to be sure, you can run this sample independently of where you
are currently testing and reading the book (from New York to Timbuktu). We will
modify this demo slightly for educational purposes. What we will do is add the
ninja model at 10 meters from your initial GPS location (that is, first time the GPS
updates), by adding the following call in setUserLocation:

if (firstTimeLocation) ({
//put it at 10 meters
locationNinja.setLatitude (location.getLatitude()+0.0001) ;
locationNinja.setLongitude (location.getLongitude()) ;
firstTimeLocation=false;

}

Time for testing: deploy the application on your mobile and go outside to a location
where you should get a nice GPS reception (you should be able to see the sky and
avoid a really cloudy day). Don't forget to activate the GPS on your device. Start

the application, move around and you should see the ninja shifting positions.
Congratulations, you developed your first instance of tracking for an AR application!

Knowing where you look — handling
inertial sensors

With the previous example and access to GPS location, we can now update a user's
location and be able to do a basic tracking in Augmented Reality. However, this
tracking is only considering position of the user and not his or her orientation. If,
for example, the user rotates the phone, nothing will happen, with changes being
effective only if he is moving. For that we need to be able to detect changes in
rotation for the user; this is where inertial sensors come in. The inertial sensors can
be used to detect changes in orientation.
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Understanding sensors

In the current generation of mobile phones, three types of sensors are available and
useful for orientation:

* Accelerometers: These sensors detect the proper acceleration of your phone,
also called g-force acceleration. Your phone is generally equipped with
multi-axis model to deliver you acceleration in the 3 axes: pitch, roll, and
tilt of your phone. They were the first sensors made available on mobile
phones and are used for sensor-based games, being cheap to produce. With
accelerometers, and a bit of elementary physics, you are able to compute
the orientation of the phone. They are, however, rather inaccurate and the
measured data is really noisy (which can result in getting jitters in your AR
application).

* Magnetometers: They can detect the earth's magnetic field and act like a
compass. Ideally, you can get the north direction with them by measuring
the magnetic field in three dimensions and know where your phone points.
The challenge with magnetometers is that they can easily be distracted by
metallic objects around them, such as a watch on the user's wrist, and then
indicate a wrong north direction.

* Gyroscopes: They measure angular velocity using the Coriolis Effect.
The ones used in your phone are multi-axis miniature mechanical
system (MEMS) using a vibrating mechanism. They are more accurate
than the previous sensors, but their main issue is the drift: the accuracy of
measurement decreases over time; after a short period your measure starts
getting really inaccurate.

You can combine measurements of each of them to address their limitations, as

we will see later in this chapter. Inertial sensors have been used intensively before
coming to mobile phones, the most famous usage being in planes for measuring
their orientation or velocity, used as an inertial measurement unit (IMU).

As manufacturers always try to cut down costs, quality of the sensors varies
considerably between mobile devices. The effect of noise, drift, and inaccuracy will
induce your AR content to jump or move without you displacing the phone or it may
lead to positioning the content in the wrong orientation. Be sure you test a range of
them if you want to deploy your application commercially.
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Sensors in JME

Sensor access on Google Android API is made through sensorManager, and uses
SensorListener to retrieve measurements. SensorManager doesn't give you access
only to the inertial sensors, but to all the sensors present on your phone. Sensors

are divided in three categories in the Android API: motion sensors, environmental
sensors, and position sensors. The accelerometers and the gyroscope are defined as
motion sensors; the magnetometer is defined as a position sensor. The Android API
also implements some software sensors, which combine the values of these different
sensors (which may include position sensor too) to provide you with motion and
orientation information. The five motion sensors available are:

¢ TYPE ACCELEROMETER

¢ TYPE GRAVITY

¢ TYPE GYROSCOPE

¢ TYPE LINEAR ACCELERATION
¢ TYPE ROTATION_ VECTOR

Please refer to the Google Developer Android website http://developer.android.
com/guide/topics/sensors/sensors_overview.html, for more information about
the characteristics of each of them. So let's open the SensorAccessJIME project. As we
did before, we define a SensorManager class and we will add a Sensor class for each
of these motion sensors:

private SensorManager sensorManager;
Sensor rotationVectorSensor;

Sensor gyroscopeSensor;

Sensor magneticFieldSensor;

Sensor accelSensor;

Sensor linearAccelSensor;

We also need to define SensorListener, which will handle any sensor changes from
the motion sensors:

private SensorEventListener sensorListener = new SensorEventListener ()

{

@Override
public void onSensorChanged (SensorEvent event) {
switch (event.sensor.getType()) ({

case Sensor.TYPE ROTATION_VECTOR:
float [] rotationVector =
{event.values[0],event.values[l], event.values[2]};
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float[] gquaternion = {0.£,0.£,0.£,0.£f};

sensorManager .getQuaternionFromVector
(quaternion, rotationVector) ;
float gw = quaternion[0]; float gx = quaternion[1];
float gy = quaternion[2];float gz = quaternion[3];
double headingQ = Math.atan2 (2*gy*qw-2*gx*qgz ,
1 - 2*gy*qy - 2*gz*gz);
double pitchQ = Math.asin(2*gx*qy + 2*qgz*qgw) ;
double rollQ = Math.atan2 (2*gx*gw-2*gy*qz ,
1 - 2*gx*gx - 2*gz*gz) ;
if ((com.ar4android.SensorAccessJME) app != null) {

((com.ar4android.SensorAccessJME) app) .
setRotation((float)pitchQ, (float)rollQ, (float)headingQ) ;

. Therotation changes could also solely be handled with Quaternions,
% but we explicitly used Euler angles for a more intuitive understanding.
s Privilege quaternions as composing rotations is easier and they don't

suffer from "gimbal lock".

Our listener overrides two callbacks: the onAccuracyChanged and onSensorChanged
callbacks. The onsensorchanged channel will be called for any changes in the
sensors we registered to SensorManager. Here we identify which type of sensor
changed by querying the type of event with event . sensor.getType (). For each
type of sensor, you can use the generated measurement to compute the new
orientation of the device. In this example we will only show you how to use the
value of the TYPE ROTATION_ VECTOR sensor (software sensor). The orientation
delivered by this sensor needs to be mapped to match the coordinate frame of the
virtual camera. We pass Euler angles (heading, pitch, and roll) to the JME application
to achieve this in the JME application's setRotation function (the Euler angle is just
another representation of orientation and can be calculated from Quaternions and
axis-angle representations delivered in the sensor event).

Now, having our sensorListener, we need to query SensorManager to get the
sensor service and initialize our sensors. In your onCreate method add:

// sensor setup
sensorManager = (SensorManager)getSystemService (SENSOR SERVICE) ;

List<Sensor> deviceSensors = sensorManager.getSensorList
(Sensor.TYPE ALL) ;

Log.d(TAG, "Integrated sensors:");
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for(int i = 0; i < deviceSensors.size(); ++i ) {
Sensor curSensor = deviceSensors.get (i) ;

Log.d (TAG, curSensor.getName () + "\t" + curSensor.getType ()
+ "\t" + curSensor.getMinDelay () / 1000.0f) ;

}

initSensors() ;

After getting access to the sensor service, we query the list of all available sensors

and display the results on our logcat. For initializing the sensors, we call our
initSensors method, and define it as:

protected void initSensors () {

//look specifically for the gyroscope first and then for the

rotation vector sensor (underlying sensors vary from platform
to platform)

gyroscopeSensor = initSingleSensor (Sensor.TYPE GYROSCOPE,
"TYPE GYROSCOPE") ;

rotationVectorSensor =
initSingleSensor (Sensor.TYPE ROTATION VECTOR,
"TYPE ROTATION VECTOR") ;

accelSensor = initSingleSensor (Sensor.TYPE ACCELEROMETER,
"TYPE ACCELEROMETER") ;

linearAccelSensor =

initSingleSensor (Sensor.TYPE LINEAR ACCELERATION,
"TYPE LINEAR ACCELERATION") ;

magneticFieldSensor =

initSingleSensor (Sensor.TYPE MAGNETIC FIELD,
"TYPE MAGNETIC FIELD") ;

}

The function initSingleSensor will create an instance of Sensor and register our
previously created listener with a specific type of sensor passed in argument:

protected Sensor initSingleSensor( int type, String name ) {

Sensor newSensor = sensorManager.getDefaultSensor (type) ;
if (newSensor != null) {

if (sensorManager.registerListener (sensorListener, newSensor,
SensorManager .SENSOR_DELAY GAME)) {

Log.i (TAG, name + " successfully registered default");
} else {

Log.e (TAG, name + " not registered default");

}

return newSensor;

}
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We shouldn't forget to unregister the listener when we quit the application, so

modify your onstop method as follows:

public void onStop()
super.onStop () ;
sensorManager .unregisterListener (sensorListener) ;

}

So, we are now set in our Activity. In our SensorAccessJIME class we add
following variables:

private Quaternion mRotXYZQ;
private Quaternion mInitialCamRotation;
private Quaternion mCurrentCamRotation;

The variable mInitialCamRotation holds the initial camera orientation,

mRotXYZQ holds the sensor orientation mapped to the camera coordinate system,
and mCurrentCamRotation stores the final camera rotation which is composed

from multiplying mInitialCamRotation with mRotX¥ZQ. The setRotation function
takes the sensor values from the Android activity and maps them to the camera
coordinate system. Finally, it multiplies the current rotation values with the initial

camera orientation:

public void setRotation(float pitch, float roll, float heading)

{

if (!mSceneInitialized)

return;
mRotXYZQ. fromAngles (pitch , roll - FastMath.HALF PI, 0);
mCurrentCamRotation = mInitialCamRotation.mult (mRotXYZQ) ;
mNewCamRotationAvailable = true;

As a last step, we need to use this rotation value for our virtual camera, the same as

we did for our GPS example. In simpleUpdate you now add:

if (mNewCamRotationAvailable) {
fgCam. setAxes (mCurrentCamRotation) ;
mNewCamRotationAvailable = false;
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So, we are now ready to run the application. It's important to consider that the
natural orientation of the device, which defines the coordinate system for motion
sensors, is not the same for all devices. If your device is, by default, in the portrait
mode and you change it to landscape mode, the coordinate system will be rotated.
In our examples we explicitly set the device orientation to landscape. Deploy your
application on your device using this default orientation mode. You may need to
rotate your device around to see the ninja moving on your screen, as shown in the
following screenshots:
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Improving orientation tracking — handling
sensor fusion

One of the limitations with sensor-based tracking is the sensors. As we introduced
before, some of the sensors are inaccurate, noisy, or have drift. A technique to
compensate their individual issue is to combine their values to improve the overall
rotation you can get with them. This technique is called sensor fusion. There are
different methods for fusing the sensors, we will use the method presented by Paul
Lawitzki with a source code under MIT License available at http://www. thousand-
thoughts.com/2012/03/android-sensor-fusion-tutorial/. In this section, we
will briefly explain how the technique works and how to integrate sensor fusion to
our JME AR application.

Sensor fusion in a nutshell

The fusion algorithm proposed by Paul Lawitzki merges accelerometers,
magnetometers, and gyroscope sensor data. Similar to what is done with software
sensor of an Android API, accelerometers and magnetometers are first merged to
get an absolute orientation (magnetometer, acting as a compass, gives you the true
north). To compensate for the noise and inaccuracy of both of them, the gyroscope is
used. The gyroscope, being precise but drifting over time, is used at high frequency
in the system; the accelerometers and magnetometers are considered over longer
periods. Here is an overview of the algorithm:

Basic Fused
Orientation

Accelerometers

Magnetometer

Global Fused
Orientation

Gyroscope

Gyro Orientation

You can find more information about the details of the algorithm (complimentary
filter) on Paul Lawitzki's webpage.
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Sensor fusion in JME

Open the sensorFusiondME project. The sensor fusion uses a certain number of
internal variables that you declare at the beginning of SensorFusiondMEActivity:

// angular speeds from gyro
private float[] gyro = new float[3];

Also add the code of different subroutines used by the algorithm:

* calculateAccMagOrientation: Calculates the orientation angles from
the accelerometer and magnetometer measurement

* getRotationVectorFromGyro: Calculates a rotation vector from the
gyroscope angular speed measurement

* gyroFunction: Writes the gyroscope-based orientation into
gyroOrientation

e Two matrix transformation functions:
getRotationMatrixFromOrientation and matrixMultiplication

The main part of the processing is done in the calculatedFusedorientationTask

function. This function generates new fused orientation as part of TimerTask, a task
that can be scheduled at a specific time. At the end of this function, we will pass the
generated data to our JME class:

if ((com.ar4android.SensorFusiondME) app != null) {
((com.ar4android.SensorFusionJME)
app) .setRotationFused( (float) (fusedOrientation[2]),
(float) (-fusedOrientation[0]),
(float) (fusedOrientation[1])) ;

}

The argument passed to our JME activity bridge function (setRotationFused) is the
fused orientation defined in the Euler angles format.

We also need to modify our onSensorChanged callback to call the subroutines used
by calculatedFusedOrientationTask:

public void onSensorChanged (SensorEvent event) {
switch (event.sensor.getType()) ({
case Sensor.TYPE ACCELEROMETER:
System.arraycopy (event .values, 0, accel, 0, 3);
calculateAccMagOrientation() ;
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break;
case Sensor.TYPE MAGNETIC FIELD:
System.arraycopy (event.values, 0, magnet, 0, 3);
break;
case Sensor.TYPE GYROSCOPE:
gyroFunction (event)
break;

}

For our activity class, the last change is to specify a task for our timer, specify the
schedule rate, and the delay before the first execution. We add that to our oncreate
method after the call to initSensors:

fuseTimer.scheduleAtFixedRate (new calculateFusedOrientationTask (),
1000, TIME CONSTANT) ;

On the JME side, we define a new bridge function for updating the rotation (and
again converting the sensor orientation into an appropriate orientation of the
virtual camera):

public void setRotationFused(float pitch, float roll, float heading) {

if (!mSceneInitialized) (
return;

} // pitch: cams x axis roll: cams y axisheading: cams z axis
mRotXYZQ.fromAngles (pitch + FastMath.HALF PI , roll -
FastMath.HALF PI, 0);
mCurrentCamRotationFused = mInitialCamRotation.mult (mRotXYZQ) ;
mNewUserRotationFusedAvailable = true;

}

We finally use this function in the same way as for setRotation in simpleUpdate,
updating camera orientation with fgCam. setAxes (mCurrentCamRotationFused).
You can now deploy the application and see the results on your device.

If you combine the LocationAccessIME and SensorAccessIME examples, you will
now get full 6 degrees of freedom (6DOF) tracking, which is the foundation for a
classical sensor-based AR application.
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Getting content for your AR browser —
the Google Places API

After knowing how to obtain your GPS position and the orientation of the phone,
you are now ready to integrate great content into the live view of the camera.
Would it not be cool to physically explore points of interests, such as landmarks
and shops around you? We will now show you how to integrate popular location-
based services such as the Google Places API to achieve exactly this. For a successful
integration into your application, you will need to perform the following steps:

*  Query for point of interests (POIs) around your current location
* Parse the results and extract information belonging to the POlIs
* Visualize the information in your AR view

Before we start, you have to make sure that you have a valid API key for your
application. For that you also need a Google account. You can obtain it by logging in
with your Google account under https://code.google.com/apis/console.

For testing your application you can either use the default project API Project or
create a new one. To create a new API key you need to:

1. Click on the link Services in the menu on the left-hand side.
2. Activate the Places API status switch.

3. Access your key by clicking on the API access menu entry on the left-hand
side menu and looking at the Simple API Access area.

You can store the key in the String mPlacesKey = "<YOUR API KEY HERE>"
variable in the LocationAccessdME project.

Next, we will show you how to query for POIs around the devices location, and
getting some basic information such as their name and position. The integration of
this information into the AR view follows the same principles as described in the
JME and GPS - tracking the location of your device section.

Querying for POIls around your current
location

Previously in this chapter, you learned how to obtain your current location in

the world (latitude and longitude). You can now use this information to obtain

the location of POIs around you. The Google Places API allows you to query for
landmarks and businesses in the vicinity of the user via HTTP requests and returns
the results as JSON or XML strings. All queries will be addressed towards URLs
starting with https://maps.googleapis.com/maps/api/place/.
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While you could easily make the queries in your web browser, you would want

to have both the request sent and the response processed inside your Android
application. As calling a URL and waiting for the response can take up several
seconds, you would want to implement this request-response processing in a way
that does not block the execution of your main program. Here we show you how to
do that with threads.

In your LocationAccessdIME project, you define some new member variables, which
take care of the interaction with the Google Places API. Specifically, you create a
HttpClient for sending your request and a list List<POI> mPOIs, for storing the
most important information about POIs. The poOI class is a simple helper class to
store the Google Places reference string (a unique identifier in the Google Places
database, the POI name, its latitude, and longitude):

private class POI {
public String placesReference;
public String name;
public Location location;

}
Of course, you can easily extend this class to hold additional information such
as street address or image URLs. To query for POIs you make a call to the
sendPlacesQuery function. We do the call at program startup, but you can easily

do it in regular intervals (for example, when the user moves a certain distance) or
explicitly on a button click.

public void sendPlacesQuery(final Location location, final Handler
guiHandler) throws Exception
Thread t = new Thread() {
public void run() {
Looper.prepare () ;
BufferedReader in = null;
try {
String url =
"https://maps.googleapis.com/maps/api/place/nearbysearch/json?
location=" + location.getLatitude() + "," +
location.getLongitude () + "&radius=" + mPlacesRadius +
"gsensor=true&key=" + mPlacesKey;

HttpConnectionParams.setConnectionTimeout
(mHttpClient.getParams (), 10000) ;

HttpResponse response;
HttpGet get = new HttpGet (url) ;
response = mHttpClient.execute (get) ;
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Message toGUI = guiHandler.obtainMessage() ;

guiHandler.sendMessage (toGUI) ;

In this method, we create a new thread for each query to the Google Places service.
This is very important for not blocking the execution of the main program. The
response of the Places API should be a JSON string, which we pass to a Handler
instance in the main thread to parse the JSON results, which we will discuss next.

Parsing the Google Places APIs results

Google Places returns its result in the lightweight JSON format (with XML being
another option). You can use the org. json library delivered as a standard Android
package to conveniently parse those results.

A typical JSON result for your query will look like:
{

"results" : [

{
"geometry" : {
"location" : {
"lat" : 47.07010720,
"lng" : 15.45455070

b
b

"name" : "Sankt Leonhard",

"reference"

"CpQBiQAAADXt6JM47sunYZ8vZvt 0GViZDLICZi2JLRAfhHGbtK-
ekFMjkaceN6GmECaynOnR69buuDZ6t -PKow-
J9812tFyg3T50P0Fr39DRV3IYQOMpgW6eYGhu5sAzArNzipS2
tUY0ocoMNHONSGPbuuYIDX5QURVgncFQ5K8eQL80OKPST78

A 1KTN7icaKQV7HvVHKEQJIBIQrx2r8IxIYuaVhL1mOZOsK
BoUQjlsuuhgalk70CtxThYgqVgfGUGwW",
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In handleMessage of our handler placesPOIQueryHandler, we will parse this JSON
string into a list of POIs, which then can be visualized in your AR view:

public void handleMessage (Message msg)
try {
JSONObject response = new JSONObject (msg.obj.toString()) ;
JSONArray results = response.getJSONArray ("results");

for(int i = 0; i < results.length(); ++i) {

}

JSONObject curResult = results.getJSONObject (1) ;

String poiName = curResult.getString("name") ;

String poiReference = curResult.getString("reference");
double lat =

curResult.getJSONObject ("geometry") .

getJSONObject ("location") .getDouble ("lat") ;

double 1ng =

curResult.getJSONObject ("geometry") .

getJSONObject ("location") .getDouble ("1lng") ;

Location refLoc = new
Location (LocationManager.GPS_ PROVIDER) ;

reflLoc.setLatitude (lat) ;
refloc.setLongitude (1ng) ;
mPOIs.add (new POI (poiReference, poiName, refloc)) ;

So that is it. You now have your basic POI information and with the latitude,
longitude information you can easily instantiate new 3D objects in JME and position
them correctly relative to your camera position, just as you did with the ninja. You
can also query for more details about the POIs or filter them by various criteria.

For more information on the Google Places API please visit https://developers.
google.com/places/documentation/.

a1

If you want to include text in the 3D scene, we recommend avoiding

polygons to render. Use bitmap text instead, which you render as a

‘Q the use of 3D text objects as they result in a high number of additional

texture on a mesh that can be generated.
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Summary

In this chapter we introduced you to the first popular methods of mobile AR: GPS
and sensor-based Augmented Reality. We introduced the basic building blocks of
tracking the device location in a global reference frame, dynamically determining
the device orientation, improving the robustness of orientation tracking, and finally
using the popular Google Places API to retrieve information about POIs around the
user which can then be integrated into the AR view.

In the next chapter we will introduce you to the second popular way of realizing
mobile AR: computer vision-based Augmented Reality.
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on Physical Objects

In the previous chapter you learned about the basic building blocks for
implementing GPS and sensor-based AR applications. If you tried the different
examples we presented, you might have noticed that the feeling of getting digital
objects in real space (registration) works but can become coarse and unstable. This

is mainly due to the accuracy problems of the used sensors (GPS, accelerometer,
and so on) found in smartphones or tablet devices, and the characteristics of these
technologies (for example, gyroscope drifting, GPS reliance on satellite visibility,
and other such technologies). In this chapter, we will introduce you to a more
robust solution, with it being the second major approach for supporting mobile AR:
Computer vision-based AR.

Computer vision-based AR doesn't rely on any external sensors but uses the content
of the camera image to support tracking, which is analysis through a flow of different
algorithms. With computer vision-based AR, you get a better registration between
the digital and physical worlds albeit at a little higher cost in terms of processing.

Probably, without even knowing it, you have already seen computer vision-based
registration. If you go to see a blockbuster action movie with lots of cinematic
effects, you will sometimes notice that some digital content has been overlaid over
the physical recording set (for example, fake explosions, fake background, and fake
characters running). In the same way as AR, the movie industry has to deal with the
registration between digital and physical content, relying on analyzing the recorded
image to recover tracking and camera information (using, for example, the match
matchmoving technique). However, compared to Augmented Reality, it's done
offline, and not in real time, generally relying on heavy workstations for registration
and visual integration.
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In this chapter, we will introduce you to the different types of computer vision-based
tracking for AR. We will also describe to you the integration of a well-used and high-
quality tracking library for mobile AR, Vuforia™ by Qualcomm® Inc. With this

library, we will be able to implement our first computer vision-based AR application.

Introduction to computer vision-based
tracking and Vuforia™

So far, you have used the camera of the mobile phone exclusively for rendering the
view of the real world as the background for your models. Computer vision-based
AR goes a step further and processes each image frame to look for familiar patterns
(or image features) in the camera image.

In a typical computer vision-based AR application, planar objects such as frame
markers or natural feature tracking targets are used to position the camera in a local
coordinate system (see Chapter 3, Superimposing the World, Figure showing the three most
common coordinate systems). This is in contrast to the global coordinate system (the
earth) used in sensor-based AR but allows for more precise and stable overlay of
virtual content in this local coordinate frame. Similar to before, obtaining the tracking
information allows the updating of information about the virtual camera in our 3D
graphics rendering engine and automatically provides us with registration.

Choosing physical objects

In order to successfully implement computer vision-based AR, you need to
understand which physical objects you can use to track the camera. Currently there
are two major approaches to do this: Frame markers (Fiducials) and natural
feature tracking targets (planar textured objects), as shown in the following figure.
We will discuss both of them in the following section.

Y 4

Frame Marker  Natural Feature Tracking Target
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Understanding frame markers

In the early days of mobile Augmented Reality, it was of paramount importance

to use computationally efficient algorithms. Computer vision algorithms are
traditionally demanding as they generally rely on image analysis, complex geometric
algorithms, and mathematical transformation, summing to a large number of
operations that should take place at every time frame (to keep a constant frame rate
at 30 Hz, you only have 33 ms for all that). Therefore, one of the first approaches

to computer vision-based AR was to use relatively simple types of objects, which
could be detected with computationally low-demanding algorithms, such as Fiducial
markers. These markers are generally only defined at a grayscale level, simplifying
their analysis and recognition in a traditional physical world (think about QR code
but in 3D).

A typical algorithmic workflow for detecting these kinds of markers is depicted in
the following figure and will be briefly explained next:

Camera

4 Thresholding
Image

Rectangle Pattern
Fitting Checking

Pose
Estimation
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After an acquired camera image being converted to a grayscale image, the threshold
is applied, that is, the grayscale level gets converted to a purely black and white
image. The next step, rectangle detection, searches for edges in this simplified image,
which is then followed by a process of detecting closed-contour, and potentially
parallelogram shapes. Further steps are taken to ensure that the detected contour

is really a parallelogram (that is, it has exactly four points and a couple of parallel
lines). Once the shape is confirmed, the content of the marker is analyzed. A (binary)
pattern within the border of the marker is extracted in the pattern checking step to
identify the marker. This is important to be able to overlay different virtual content
on different markers. For frame markers a simple bit code is used that supports 512
different combinations (and hence markers).

In the last step, the pose (that is the translation and rotation of the camera in the
local coordinate system of the marker or reversely) is computed in the pose
estimation step.

_ Pose computation, in its simplest form a homography (a
% mapping between points on two planes), can be used together
=" with the intrinsic parameters to recover the translation and
rotation of the camera.

In practice, this is not a one-time computation, but rather, an iterative process in
which the initial pose gets refined several times to obtain more accurate results. In
order to reliably estimate the camera pose, the length of at least one side (the width
or height) of the marker has to be known to the system; this is typically done through
a configuration step when a marker description is loaded. Otherwise, the system
could not tell reliably whether a small marker is near or a large marker is far away
(due to the effects of perspective projection).

Understanding natural feature tracking targets

While the frame markers can be used to efficiently track the camera pose for many
applications, you will want less obtrusive objects to track. You can achieve this by
employing more advanced, but also computationally expensive, algorithms. The
general idea of natural feature tracking is to use a number (in theory only three,
and in practice several dozens or hundreds) of local points on a target to compute
the camera pose. The challenge is that these points have to be reliable, robustly
detected, and tracked. This is achieved with advanced computer vision algorithms
to detect and describe the local neighborhood of an interest point (or feature point).
Interest points have sharp, crisp details (such as corners), for example, using gradient
orientations, which are suitable for feature points indicated by yellow crosses in the
following figure. A circle or a straight line does not have sharp features and is not
suitable for interest points:
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Many feature points can be found on well-textured images (such as the image of the
street used throughout this chapter):

Beware that feature points cannot be well identified on images with homogenous
color regions or soft edges (such as a blue sky or some computer graphics-rendered
pictures).
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Vuforia™ architecture

Vuforia™ is an Augmented Reality library distributed by Qualcomm® Inc. The
library is free for use in non-commercial or commercial projects. The library supports
frame marker and natural feature target tracking as well as multi-target, which are
combinations of multiple targets. The library also features basic rendering functions
(video background and OpenGL® 3D rendering), linear algebra (matrix/vector
transformation), and interaction capabilities (virtual buttons). The library is actually
available on both iOS and Android platforms, and the performance is improved on
mobile devices equipped with Qualcomm® chipsets. An overview of the library

architecture is presented in the following figure:
Cloud 'Target- |

Vuforia AR SDK

bevioe Target-

Camera Pixel Format
Frame Conversion

Camera

Application

Converted
Frame

State Object

Tracker

Image Frame Multi Image Virtual
Target Marker Target Buttons

Render Converted

Camera Frame
Preview

Detect New Objects

Render
Graphics

Target
Snapshot

Track Detected Objects

State
Pose
Buttons

Evaluate Virtual Buttons

The architecture, from a client viewpoint (application box on the left of the preceding
figure), offers a state object to the developer, which contains information about
recognized targets as well as the camera content. We won't get into too much

of details here as a list of samples is available on their website, along with full
documentation and an active forum, at http://developer.vuforia.com/. What
you need to know is that the library uses the Android NDK for its integration as it's
being developed in C++.
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This is mainly due to the gains of high-performance computation for image analysis
or computer vision with C++ rather than doing it in Java (concurrent technologies
also use the same approach). It's a drawback for us (as we are using JME and Java
only) but a gain for you in terms of getting performances in your application.

To use the library, you generally need to follow these three steps:

* Train and create your target or markers
* Integrate the library in your application

* Deploy your application

In the next section, we will introduce you to creating and training your targets.

Configuring Vuforia™ to recognize
objects

To use the Vuforia™ toolkit with natural feature tracking targets, first you need to
create them. In the recent version of the library (2.0), you can automatically create your
target when the application is running (online) or predefine them before deploying
your application (offline). We will show you how to proceed for offline creation. First
go to the Vuforia™ developer website https://developer.vuforia.com.

The first thing you need to do is to log in to the website to access the tool for

creating your target. Click on the upper-right corner and register if you have not
done it before. After login, you can click on Target Manager, the training program to
create targets. The target manager is organized in a database (which can correspond
to your project), and for database, you can create a list of targets, as shown in the
following screenshot:

Vuforia deVelOper Search Resources TargetManager Support

Target Manager / Device Databases

Target Manager

Device Databases (5) Cloud Databases
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So let's create our first database. Click on Create Database, and enter vuforiaJME.
Your database should appear in your Device Databases list. Select it to get onto the
following page:

Target Manager / Device Databases / VuforiaJME

VuforiaJME =

0 Targets

Click on Add New Target to create the first target. A dialog box will appear with
different text fields to complete, as shown in the following screenshot:

Add New Target

Target Name ©
VuforiaJMETarget

Target Type

Single Image Cube Cuboid Cylinder

Target Dimension @

Width:

Target Image File ©
Choose File |No file chosen

Cancel
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First you need to pick up a name for your target; in our case, we will call it
VuforiadMETarget. Vuforia™ allows you to create different types of targets
as follows:

* Single Image: You create only one planar surface and use only one image.
The target is generally used for printing on a page, part of a magazine,
and so on.

* Cube: You define multiple surfaces (with multiple pictures), which will be
used to track a 3D cube. This can be used for games, packaging, and so on.

* Cuboid: It's a variation of the cube type, as a parallelepiped with
non-square faces.

Select Single Image target type. The target dimension defines a relative scale for
your marker. The unit is not defined as it corresponds to the size of your virtual
object. A good tip is to consider that everything is in centimeters or millimeters,
which is generally the size of your physical marker (for example, print on an A4 or
letter page). In our case, we enter the dimension in centimeters. Finally, you need to
select an image which will be used for the target. As an example, you can select the
stones. jpg image, which is available with the Vuforia™ sample distribution (Media
directory in the ImageTargets example on the Vuforia™ website). To validate your
configuration, click on Add, and wait as the image is being processed. When the
processing is over, you should get a screen like the following:

VuforiadME -

1 Target Select All

VuforiaJMETarget
e & 6 & ¢
Modified Today
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The stars notify you of the quality of the target for tracking. This example has five
stars, which means it will work really well. You can get more information on the
Vuforia™ website on how to create a good image for a target: https://developer.
vuforia.com/resources/dev-guide/natural-features-and-rating.

Our last step is now to export the created target. So select the target (tick the box next
to Vuforia] METarget), and click on Download Selected Targets. On the dialog box
that appears, choose SDK for export and VuforiaJME for our database name,

and save.

Download Selected Targets

Select a format to match your development option
(=) SDK (Eclipse, Ant, Xcode, etc.)
() Unity Editor

Database Name

Vuforia ME| zip

O Allows you to specify the file name for the .xml and .dat files. You may use this feature for any
app that will switch the database at runtime.

Cancel Create

Unzip your compressed file. You will see two files: a .dat file and a . xm1 file.

Both files are used for operating the Vuforia™ tracking at runtime. The .dat file
specifies the feature points from your image and the .xm1 file is a configuration file.
Sometimes you may want to change the size of your marker or do some basic editing
without having to restart or do the training; you can modify it directly on your

XML file. So now we are ready with our target for implementing our first

Vuforia™ project!
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Putting it together — Vuforia™ with JME

In this section we will show you how to integrate Vuforia™ with JME. We will use
a natural feature-tracking target for this purpose. So open the Vuforia]ME project
in your Eclipse to start. As you can already observe, there are two main changes
compared to our previous projects:

* The camera preview class is gone

* There is a new directory in the project root named jni

The first change is due to the way Vuforia™ manages the camera. Vuforia™ uses its
own camera handle and camera preview integrated in the library. Therefore, we'll
need to query the video image through the Vuforia™ library to display it on our
scene graph (using the same principle as seen in Chapter 2, Viewing the World).

The jni folder contains C++ source code, which is required for Vuforia™. To
integrate Vuforia™ with JME, we need to interoperate Vuforia's low-level part (C++)
with the high-level part (Java). It means we will need to compile C++ and Java code
and transfer data between them. If you have done it, you'll need to download and
install the Android NDK before going further (as explained in Chapter 1, Augmented
Reality Concepts and Tools).

The C++ integration

The C++ layer is based on a modified version of the ImageTargets example available
on the Vuforia™ website. The jni folder contains the following files:

* MathUtils.cpp and MathuUtils.h: Utilities functions for mathematical
computation

* VvuforiaNative.cpp: This is the main C++ class that interacts with our
Java layer

* Android.mk and Application.mk: These contains configuration files
for compilation

Open the Android.mk file, and check if the path to your Vuforia™ installation is
correct in the QCAR_DIR directory. Use only a relative path to make it cross-platform
(on MacOS with the android ndk 19 or higher, an absolute path will be concatenated
with the current directory and result in an incorrect directory path).
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Now open the vuforiNative.cpp file. A lot of functions are defined in the files but
only three are relevant to us:

Java_com_ar4android VuforiaJMEActivity loadTrackerData (JNIEnv
*, jobject): This is the function for loading our specific target (created in
the previous section)

virtual void QCAR onUpdate (QCAR::State& state): This is the function
to query the camera image and transfer it to the Java layer

Java_com_ar4android VuforiaJME updateTracking (IJNIEnv *env,

jobject obj): This function is used to query the position of the targets and
transfer it to the Java layer

The first step will be to use our specific target in our application and the first
function. So copy and paste the vuforiadME.dat and VuforiadME.xml files to

your assets directory (there should already be two target configurations). Vuforia™
configures the target that will be used based on the XMLconfiguration file.
loadTrackerData gets first access to TrackerManager and imageTracker (which is
a tracker for non-natural features):

JNIEXPORT int JNICALL
Java_com_ar4android VuforiadMEActivity loadTrackerData (JNIEnv *,
jobject)

{

LOG ("Java_com_ar4android_VuforiaJMEActivity ImageTargets_
loadTrackerData") ;

// Get the image tracker:
QCAR: : TrackerManager& trackerManager = QCAR::TrackerManager::
getInstance () ;
QCAR: :ImageTracker* imageTracker = static_
cast<QCAR: : ImageTracker*> (trackerManager.
getTracker (QCAR: : Tracker: : IMAGE TRACKER) ) ;
if (imageTracker == NULL)
{
LOG("Failed to load tracking data set because the
ImageTracker has not been initialized.");
return 0;

}

The next step is to create a specific target, such as instancing a dataset. In this
example, one dataset is created, named dataSetStonesAndChips:

// Create the data sets:
dataSetStonesAndChips = imageTracker->createDataSet () ;
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if (dataSetStonesAndChips == 0)

{
LOG("Failed to create a new tracking data.");
return O0;

}

After we load the configuration of the targets in the created instance, this is where
we set up our Vuforia]ME target:

// Load the data sets:

if (!dataSetStonesAndChips->load ("VuforiadME.xml",
QCAR::DataSet::STORAGE_APPRESOURCE))

{

LOG("Failed to load data set.");
return O0;

}

Finally we can activate the dataset by calling the activateDatasSet function. If you
don't activate the dataset, the target will be loaded and initialized in the tracker but
won't be tracked until activation:

// Activate the data set:
if (!imageTracker->activateDataSet (dataSetStonesAndChips))

{

LOG("Failed to activate data set.");
return O;

}

LOG ("Successfully loaded and activated data set.");
return 1;

}

Once we have our target initialized, we need to get the real view of the world with
Vuforia™. The concept is the same as we have seen before: using a video background
camera in the JME class and updating it with an image. However, here, the image is
not coming from a Java Camera.PreviewCallback but from Vuforia™. In Vuforia™
the best place to get the video image is in the QCAR_onUpdate function. This function
is called just after the tracker gets updated. An image can be retrieved by querying

a frame on the State object of Vuforia™ with getFrame (). A frame can contain
multiple images, as the camera image is in different formats (for example, YUV,
RGB888, GREYSCALE, RGB565, and so on). In the previous example, we used the
RGB565 format in our JME class. We will do the same here. So our class will start as:

class ImageTargets UpdateCallback : public QCAR::UpdateCallback

{

virtual void QCAR onUpdate (QCAR::State& state)

{
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//inspired from:

//https://developer.vuforia.com/forum/faq/android-how-can-i-
access-camera-image

QCAR: : Image *imageRGB565 = NULL;
QCAR: :Frame frame = state.getFrame() ;
for (int i = 0; i < frame.getNumImages(); ++i) ({
const QCAR::Image *image = frame.getImage (i) ;
if (image->getFormat () == QCAR::RGB565) {
imageRGB565 = (QCAR::Image*)image;

break;

}

The function parses a list of images in the frame and retrieves the RGB565 image.
Once we get this image, we need to transfer it to the Java Layer. For doing that you
can use a JNI function:

if (imageRGB565) {
JNIEnv* env = 0;

if ((javavM != 0) && (activityObj != 0) && (javavM-
>GetEnv ( (void**) genv, JNI_VERSION 1 4) == JNI OK)) {
const short* pixels = (const short*) imageRGB565-
>getPixels () ;

int width = imageRGB565->getWidth() ;
int height = imageRGB565->getHeight () ;
int numPixels = width * height;

jbyteArray pixelArray = env->NewByteArray
(numPixels * 2);

env->SetByteArrayRegion (pixelArray, 0, numPixels * 2,
(const jbyte*) pixels) ;

jclass javaClass = env->GetObjectClass(activityObj) ;

jmethodID method = env-> GetMethodID(javaClass,
"setRGB565Cameralmage", " ([BII)V");

env->CallVoidMethod (activityObj, method, pixelArray,
width, height) ;

env->DeletelLocalRef (pixelArray) ;
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In this example, we get information about the size of the image and a pointer on the
raw data of the image. We use a JNI function named setRGB565CameraImage, which
is defined in our Java Activity class. We call this function from C++ and pass in
argument the content of the image (pixelArray) as width and height of the image.
So each time the tracker updates, we retrieve a new camera image and send it to

the Java layer by calling the setRGB565CameraImage function. The JNI mechanism
is really useful and you can use it for passing any data, from a sophisticated
computation process back to your Java class (for example, physics, numerical
simulation, and so on).

The next step is to retrieve the location of the targets from the tracking. We will do
that from the updateTracking function. As before, we get an instance of the State
object from Vuforia™. The State object contains TrackableResults, which is a list
of the identified targets in the video image (identified here as being recognized as a
target and their position identified):

JNIEXPORT void JNICALL
Java_com_ar4android VuforiaJME updateTracking (JNIEnv *env,
jobject obj)
//LOG ("Java_com_ar4android VuforiadMEActivity GLRenderer
renderFrame") ;

//Get the state from QCAR and mark the beginning of a rendering
section

QCAR: :State state = QCAR::Renderer::getInstance () .begin() ;

// Did we find any trackables this frame?
for(int tIdx = 0; tIdx < state.getNumTrackableResults(); tIdx++)
{

// Get the trackable:

const QCAR: :TrackableResult* result = state.
getTrackableResult (tIdx) ;

In our example, we have only one target activated, so if we get a result, it will
obviously be our marker. We can then directly query the position information from
it. If you had multiple activated markers, you will need to identify which one is
which, by getting information from the result by calling result->getTrackable ().
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The position of trackable is queried by calling result->getPose (), which returns
a matrix defining a linear transformation. This transformation gives you the position
of the marker relative to the camera position. Vuforia™ uses a computer-vision
coordinate system (x on the left, y down, and z away from you), which is different
from JME, so we will have to do some conversion later on. For now, what we will
do first is inverse the transformation, to get the position of the camera relative to the
marker; this will make the marker the reference coordinate system for our virtual
content. So you will do some basic mathematical operations as follows:

QCAR: :Matrix44F modelViewMatrix = QCAR::Tool::
convertPose2GLMatrix (result->getPose()) ;

QCAR: :Matrix44F inverseMV = MathUtil::
Matrix44FInverse (modelViewMatrix) ;

QCAR: :Matrix44F invTranspMV = MathUtil::
Matrix44FTranspose (inverseMV) ;

float cam x = invTranspMV.data([1l2];
float cam y = invTranspMV.data[13];
float cam z = invTranspMV.data([14];

float cam right x = invTranspMV.data[O0];
float cam right y = invTranspMV.datal[1l];
float cam right z = invTranspMV.data[2];
float cam up x = invTranspMV.datal[4];
float cam up y = invTranspMV.datal[5];
float cam up z = invTranspMV.datal[6];
float cam dir x = invTranspMV.data[8];
float cam dir y = invTranspMV.data[9];
float cam dir z = invTranspMV.data[10];

Now we have the location (cam_x, v, z) as well as the orientation of our camera
(cam_right /cam up_/cam dir x,y,z).

The last step is to transfer this information to the Java layer. We will use JNI again
for this operation. What we also need is information about the internal parameters
of our camera. This is similar to what was discussed in Chapter 3, Superimposing the
World, but now it has been done here with Vuforia™. For that, you can access the
CameraCalibration object from CameraDevice

float nearPlane = 1.0f;
float farPlane = 1000.0f;

const QCAR: :CameraCalibration& cameraCalibration = QCAR::
CameraDevice: :getInstance () .getCameraCalibration() ;
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QCAR: :Matrix44F projectionMatrix = QCAR::Tool::
getProjectionGL (cameraCalibration, nearPlane, farPlane);

We can easily transform the projection transformation to a more readable format
for the camera configuration, such as its field of view (fovDegrees), which we also

have to adapt to allow for differences in the aspect ratios of the camera sensor and
the screen:

QCAR: :Vec2F size = cameraCalibration.getSize() ;
QCAR: :Vec2F focalLength = cameraCalibration.getFocallLength() ;

float fovRadians = 2 * atan(0.5f * size.datal[l] /
focallLength.datal[1l]) ;

float fovDegrees = fovRadians * 180.0f / M PI;
float aspectRatio=(size.datal[0]/size.datalll);

float viewportDistort=1.0;
if (viewportWidth != screenwWidth) {
viewportDistort = viewportWidth / (float) screenWidth;
fovDegrees=fovDegrees*viewportDistort;
aspectRatio=aspectRatio/viewportDistort;
}
if (viewportHeight != screenHeight) ({
viewportDistort = viewportHeight / (float) screenHeight;
fovDegrees=fovDegrees/viewportDistort;
aspectRatio=aspectRatio*viewportDistort;

}

We then call three JNI functions to transfer the field of view
(setCameraPerspectiveNative), camera position (setCameraPoseNative) and
camera orientation (setCameraOrientationNative) to our Java layer. These three
functions are time defined in the vuforiaJME class, which allows us to quickly
modify our virtual camera:

jclass activityClass = env->GetObjectClass (obj) ;

jmethodID setCameraPerspectiveMethod = env->GetMethodID
(activityClass, "setCameraPerspectiveNative", " (FF)V");

env->CallVoidMethod (obj, setCameraPerspectiveMethod,
fovDegrees, aspectRatio) ;

jmethodID setCameraViewportMethod = env->GetMethodID
(activityClass, "setCameraViewportNative", " (FFFF)V");

env->CallVoidMethod (obj, setCameraViewportMethod, viewportWidth,
viewportHeight, cameraCalibration.getSize () .
data[0] ,cameraCalibration.getSize () .datal([l]) ;
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// jclass activityClass = env->GetObjectClass (obj) ;

jmethodID setCameraPoseMethod = env->GetMethodID
(activityClass, "setCameraPoseNative", " (FFF)V");

env->CallVoidMethod (obj, setCameraPoseMethod, cam x,cam y,
cam_z) ;
//jclass activityClass = env->GetObjectClass (obj) ;

jmethodID setCameraOrientationMethod = env->GetMethodID
(activityClass, "setCameraOrientationNative", " (FFFFFFFFF)V") ;

env->CallVoidMethod (obj, setCameraOrientationMethod,
cam_right x,cam right y,cam right z,
cam_up_ X,cam up_y,cam up z,cam dir x,cam dir y,cam dir z);

1
QCAR: :Renderer: :getInstance () .end() ;

}

The last step will be to compile the program. So run a command shell, and go the jni
directory containing the files. From there you need to call the ndk-build function.
The function is defined in your android-ndk-r9d directory, so be sure it's accessible
from your path. If everything goes well, you should see the following:

Install : 1ibQCAR.so => libs/armeabi-v7a/l1ibQCAR.so
Compile++ arm : VuforiaNative <= VuforiaNative.cpp
SharedLibrary : libVuforiaNative.so

Install : libVuforiaNative.so => libs/armeabi-v7a/

libVuforiaNative.so

Time to go back to Java!

The Java integration

The Java layer defines the function previously called using similar classes from our
Superimpose example. The first function is the setRGB565CameraImage function
which handles the video image as in the previous examples.

The other JNI functions will modify the characteristics of our foreground camera.
Specifically, we modify the left axis of the JME camera to match the coordinate system
used by Vuforia™ (as depicted in the figure in the Choosing physical objects section).

public void setCameraPerspectiveNative (float fovY,float aspectRatio)

{

fgCam.setFrustumPerspective (fovY, aspectRatio, 1, 1000);
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public void setCameraPoseNative (float cam x,float cam y,float cam z)

{

fgCam.setLocation (new Vector3f (cam x,cam y,cam z));

public void setCameraOrientationNative (float cam right x, float
cam_right y,float cam right z,
float cam up x,float cam up y,float cam up z,float cam dir x,
float cam dir y,float cam dir_ z) {
//left,up,direction
fgCam.setAxes (new Vector3f (-cam right x,-cam right vy,
-cam_right z),
new Vector3f(-cam up x,-cam up y,-cam up_z),
new Vector3f (cam dir x,cam dir y,cam dir z));

}

Finally, we have to adjust the viewport of the background camera, which shows the
camera image, to prevent 3D objects from floating above the physical target:

public void setCameraViewportNative (float viewport w,float
viewport h,float size x,float size y) ({

float newWidth = 1.f;

float newHeight = 1.f;

if (viewport h != settings.getHeight())

{
newWidth=viewport w/viewport h;
newHeight=1.0f;
videoBGCam.resize ( (int)viewport w, (int)viewport h,true);
videoBGCam.setParallelProjection (true) ;

}

float viewportPosition x = (((int) (settings.getWidth() -
viewport_w)) / (int) 2);//+0
float viewportPosition y = (((int) (settings.getHeight () -

viewport_h)) / (int) 2);//+0
float viewportSize x = viewport w;//2560
float viewportSize y = viewport h;//1920

//transform in normalized coordinate

viewportPosition x = (float)viewportPosition x/(float)
viewport w;
viewportPosition y = (float)viewportPosition y/(float)

viewport h;
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viewportSize x = viewportSize x/viewport w;
viewportSize y = viewportSize y/viewport h;

//adjust for viewport start (modify video gquad)
mVideoBGGeom. setLocalTranslation (-0.5f*newWidth+
viewportPosition x,-0.5f*newHeight+viewportPosition y,0.f);
//adust for viewport size (modify video gquad)
mVideoBGGeom. setLocalScale (newWidth, newHeight, 1.f);

}

And that's it. What we want to outline again here is the concept behind it:

* The camera model used in your tracker is matched with your virtual camera
(in this example CameraCalibration from Vuforia™ to our JME Virtual
Camera). This will guarantee us a correct registration.

*  You track a target in your camera coordinate system (in this example, a
natural feature target from Vuforia™). This tracking replaces our GPS as seen
previously, and uses a local coordinate system.

* The position of this target is used to modify the pose of your virtual camera
(in this example, transferring the detected position from C++ to Java with
JNI, and updating our JME Virtual Camera). As we repeat the process for
each frame, we have a full 6DOF registration between physical (the target)
and virtual (our JME scene).

Your results should look similar to the one in the following figure:
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Summary

In this chapter, we introduced you to computer vision-based AR. We developed an
application with the Vuforia™ library and showed you how to integrate it with JME.
You are now ready to create natural feature tracking-based AR applications. In this
demo, you can move your device around the marker and see the virtual content from
every direction. In the next chapter, we will learn how we can do more in terms of
interaction. How about being able to select the model and play with it?
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the User Experience

Over the course of the previous chapters, we've learned the essentials of creating
augmentations using the two most common AR approaches: sensor-based and
computer vision-based AR. We are now able to overlay digital content over a
view of the physical world, support AR tracking, and handle account registration
(on a target or outdoors).

However, we can merely navigate the augmented world around them. Wouldn't it be
cool to allow the users to also interact with the virtual content in an intuitive way? User
interaction is a major component in the development of any application. As we are
focusing here on the user interaction with 3D content (3D interaction), the following
are three main categories of interaction techniques that can be developed:

* Navigation: Moving around a scene and selecting a specific viewpoint. In
AR, this navigation is done by physical motion (such as, walking on the
street or turning a table) and can be complemented with additional virtual
functions (for example, map view, navigation path, freeze mode, and so on).

* Manipulation: Selecting, moving, and modifying objects. In AR, this can
be done on physical and virtual elements, through a range of traditional
methods (for example, ray picking), and novel interaction paradigms (for
example, tangible user interfaces).

* System control: Adapting the parameters of your application, including
rendering, polling processes, and application dependent content. In AR, it
can correspond to adjusting tracking parameters or visualization techniques
(for example, presenting the distance to your POI in an AR Browser).
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In this chapter we will show you a subset of some of the commonly used AR
interaction techniques. We will show you how to develop three interaction techniques,
including ray picking, proximity-based interaction, and 3D motion gesture-based
interaction. This is the next step in designing an AR Application and a fundamental
brick in our AR layer (See Chapter 1, Augmented Reality Concepts and Tools).

Pick the stick — 3D selection using ray
picking

3D interaction on desktop computers made use of a limited set of devices, including
the keyboard, mouse, or joystick (for games). On a smartphone (or tablet), interaction
is mainly driven by touch or sensor input. From an interaction input (the sensor data,
such as x and y coordinates on the screen, or the event type, such as click or dwell),
you can develop different interaction techniques, such as ray picking, steering
navigation, and so on. For mobile AR, a large set of interaction techniques can be

used for 2D or 3D interactions. In this section, we will look at using touch input
combined with a technique named ray picking.

The concept of ray picking is to use a virtual ray going from your device to your
environment (which is the target) and detect what it hits along the way. When you
get a hit on some object (for example, the ray intersects with one of your virtual
characters), you can consider this object picked (selected) and start to manipulate

it. Here, we will only look at how we can pick an object in JME. In the sample code,
you can extend the object to support further manipulation, for example, when an
object is hit and picked, you can detect sliding touch motion and translate the object,
make it explode, or use the hit as a shooting ray for some game, and so on.

So let's start. In JME, you can use either an Android-specific function for the input
(via AndroidInput) or the same one you would use in a desktop application
(MouseInput). JME on Android, by default, maps any touch event as a mouse
event that allows us to have (almost) the same code working on Android and your
desktop. We will choose the following solution for this project; as an exercise,

you can try to use AndroidInput (look into AndroidTouchInputListener to use
AndroidInput).

Open the RayPickingdME example. It's using the same base code as VuforiadME
and our picking method is based on a JME example, for this picking method
please visit the following link: http://jmonkeyengine.org/wiki/doku.php/
jme3:beginner:hello picking.
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The first thing to do is add the different packages necessary for ray picking in
our RayPickingJME class:

import com.jme3.math.Ray;

import com.jme3.collision.CollisionResult;

import com.jme3.collision.CollisionResults;

import com.jme3.input.Mouselnput;

import com.jme3.input.controls.ActionListener;
import com.jme3.input.controls.KeyTrigger;

import com.jme3.input.controls.MouseButtonTrigger;

To be able to pick an object, we need to declare some global variables in the scope
of our RayPicking class:

® Node shootables

® Geometry geom

The next step is to add a listener to our class. If you've never done Android or JME
programming, you may not know what a listener is. A listener is an event handler
technique that can listen to any of the activities happening in a class and provide
specific methods to handle any event. For example, if you have a mouse button click
event, you can create a listener for it that has an onPushEvent () method where you
can install your own code. In JME, event management and listeners are organized
into two components, controlled by using the InputManager class:

* Trigger mapping: Using this you can associate the device input can with
a trigger name, for example, clicking on the mouse can be associated with
Press Or Shoot or MoveEntity, and so on.

* Listener: Using this you can associate the trigger name with a specific
listener; either ActionListener (used for discrete events, such as "button
pressed") or AnalogListener (used for continuous events, such as the
amplitude of a joystick movement).

So, in your simpleInitApp procedure, add the following code:

inputManager.addMapping ("Shoot", // Declare...
newKeyTrigger (KeyInput.KEY SPACE), // trigger 1: spacebar, or
newMouseButtonTrigger (0)) ; // trigger 2: left-button
click

inputManager.addListener (actionListener, "Shoot") ;

[97]




Make It Interactive — Create the User Experience

So, here, we map the occasions when the spacebar is pressed (even when using

a virtual keyboard) and mouse click (which is a touch action on our mobile) to the
trigger name Shoot. This trigger name is associated with the ActionListener event
listener that we've named actionListener. The action listener will be where we do
the ray picking; so, on a touchscreen device, by touching the screen, you can activate
actionListener (using the trigger shoot).

Our next step is to define the list of objects that can potentially be hit by our ray
picking. A good technique for that is to regroup them under a specific group node.
In the following code, we will create a box object and place it under a group node
named shootables

Box b = new Box (7, 4, 6); // create cube shape at the origin

geom = new Geometry("Box", b); // create cube geometry from the shape
Material mat = new Material (assetManager,
"Common/MatDefs/Misc/Unshaded.j3md"); // create a simple material

mat .setColor ("Color", ColorRGBA.Red); // set color of material to
blue

geom.setMaterial (mat) ; // set the cube's material

geom.setLocalTranslation (new Vector3f(0.0£,0.0f£,6.0£f));

shootables = new Node ("Shootables") ;
shootables.attachChild (geom) ;
rootNode.attachChild (shootables) ;

Now we have our touch mapping and our objects that can be hit. We only need to
implement our listener. The way to ray cast in JME is similar to that in many other
libraries; we use the hit coordinates (defined in the screen coordinates), transform
them using our camera, create a ray, and run a hit. In our AR example, we will use
the AR camera, which is updated by our computer vision-based tracker fgcam. So,
the code is the same in AR as for another virtual game, except that here, our camera
position is updated by the tracker.

We create a Ray object and run a picking test (hitting test) by calling collidewith for
our list object that can be hit (shootables). Results of the collision will be stored in a
CollisionResults object. So, our listener's code looks like the following code:

privateActionListeneractionListener = new ActionListener () {

public void onAction(String name, booleankeyPressed, float tpf)

{

Log.d (TAG, "Shooting.") ;
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if (name.equals("Shoot") && !keyPressed) ({

// 1. Reset results list.
CollisionResults results = new CollisionResults() ;

// 2. Mode 1: user touch location.

Vector2f click2d = inputManager.getCursorPosition() ;
Vector3f click3d = fgCam.getWorldCoordinates (

new Vector2f (click2d.x, click2d.y), 0f).clone();
Vector3f dir = fgCam.getWorldCoordinates (

new Vector2f (click2d.x, click2d.y),
1f) .subtractLocal (click3d) .normalizelLocal () ;

Ray ray = new Ray(click3d, dir);

// 2. Mode 2: using screen center
//Aim the ray from fgcamloc to fgcam direction.

//Ray ray = new Ray(fgCam.getLocation(),
fgCam.getDirection()) ;

// 3. Collect intersections between Ray and Shootables in
results list.
shootables.collideWith(ray, results);

So, what do we do with the result? As explained earlier in the book, you can
manipulate it in a different way. We will do something simple here; we will

detect whether or not our box is selected, and if it is, change its color to red for

no intersection and green if there is an intersection. We first print the results for
debugging, where you can use the getCollision () function to detect which object
has been hit (getGeometry ()), at what distance (getDistance () ), and the point of
contact (getContactPoint ()):

for (int i = 0; i<results.size(); i++) {
// For each hit, we know distance, impact point, name of
geometry.

floatdist = results.getCollision (i) .getDistance() ;
Vector3f pt = results.getCollision(i).getContactPoint () ;
String hit = results.getCollisgion (i) .getGeometry () .getName () ;

Log.d(TAG,"* Collision #" + i + hit);
// Log.d(TAG," You shot " + hit + " at " + pt + ", "
+ dist + "wu away.");
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So, by using the preceding code we can detect whether or not we have any result,
and since we only have one object in our scene, we consider that if we got a hit, it's
our object, so we change the color of the object to green. If we don't get any hit, since
there is only our object, we turn it red:

if (results.size() > 0) {

// The closest collision point is what was truly hit:
CollisionResult closest = results.getClosestCollision() ;
closest.getGeometry () .getMaterial () .setColor ("Coloxr",

ColorRGBA.Green) ;

} else {
geom.getMaterial () .setColor ("Color", ColorRGBA.Red) ;

}

You should get a result similar to that shown in the following screenshot
(hit: left, miss: right):

You can now deploy and run the example; touch the object on the screen and see our
box changing color!

Proximity-based interaction

Another type of interaction in AR is using the relation between the camera and

a physical object. If you have a target placed on a table and you move around
with your device to look at a virtual object from different angles, you can also use
that to create interaction. The idea is simple: you can detect any change in spatial
transformation between your camera (on your moving device) and your target
(placed on a table), and trigger some events. For example, you can detect if the
camera is under a specific angle, if it's looking at the target from above, and so on.

In this example, we will implement a proximity technique that can be used to create
creating some cool animation and effects. The proximity technique uses the distance
between the AR camera and a computer vision-based target.

So, open the ProximityBasedJME project in your Eclipse. Again, this project is also
based on the VuforiaJME example.
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First, we create three objects —a box, a sphere, and a torus — using three different
colors—red, green and blue —as follows:

Box b = new Box (7, 4, 6); // create cube shape at the origin

geoml = new Geometry ("Box", b); // create cube geometry from
the shape

Material mat = new Material (assetManager,
"Common/MatDefs/Misc/Unshaded.j3md"); // create a simple
material

mat .setColor ("Color", ColorRGBA.Red) ; // set color of
material to red

geoml.setMaterial (mat) ; // set the cube's
material

geoml.setLocalTranslation (new Vector3f (0.0f£,0.0£f£,6.0f));

rootNode.attachChild (geoml) ; // make the cube
appear in the scene

Sphere s = new Sphere(12,12,6) ;

geom2 = new Geometry ("Sphere", s); // create sphere geometry
from the shape

Material mat2 = new Material (assetManager,
"Common/MatDefs/Misc/Unshaded.j3md"); // create a simple
material

mat2.setColor ("Color", ColorRGBA.Green) ; // set color of
material to green

geom2.setMaterial (mat2) ; // set the sphere's
material

geom2.setLocalTranslation (new Vector3f (0.0f,0.0£f,6.0f));

rootNode.attachChild (geom2) ; // make the sphere
appear in the scene

Torus= new Torus (12, 12, 2, 6); // create torus shape at
the origin

geom3 = new Geometry ("Torus", t); // create torus geometry
from the shape

Material mat3 = new Material (assetManager,
"Common/MatDefs/Misc/Unshaded.j3md"); // create a simple
material

mat3.setColor ("Color", ColorRGBA.Blue) ; // set color of

material to blue

geom3.setMaterial (mat3) ; // set the
torus material
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geom3.setLocalTranslation (new Vector3f(0.0f£,0.0£f£,6.0f));

rootNode.attachChild (geom3) ; // make the torus
appear in the scene

In a large number of scene graph libraries, you will often find a switch node that
allows the representation of an object based on some parameters to be switched, such
as the distance from the object to the camera. JME doesn't have a switch node, so we
will simulate its behavior. We will change which object is displayed (box, sphere, or
torus) as a function of its distance from the camera. The simple way to do that is to
add or remove objects that shouldn't be displayed at a certain distance.

To implement the proximity technique, we query the location of our AR camera
(fgCam.getLocation () ). From that location, you can compute the distance to some
objects or just the target. The distance to the target is, by definition, similar to the
distance of the location (expressed as a vector with three dimensions) of the camera.
So, what we do is define three ranges for our object as follows:

e Camera distance 50 and more: Shows the cube
* Camera distance 40-50: Shows the sphere
e Camera distance under 40: Shows the torus

The resulting code in the simpleUpdate method is rather simple:

Vector3f pos=new Vector3f();
pos=fgCam.getLocation () ;

if (pos.length()>50.)

{
rootNode.attachChild (geoml) ;
rootNode.detachChild (geom2) ;
rootNode.detachChild (geom3) ;

}

else
if (pos.length()>40.)

{

rootNode.detachChild (geoml) ;

[102]




Chapter 6

rootNode.attachChild (geom2) ;
rootNode.detachChild (geom3) ;

b

else

{
rootNode.detachChild (geoml) ;
rootNode.detachChild (geom2) ;
rootNode.attachChild (geom3) ;

}

Run your example and change the distance of the device to that of the tracking target.
This will affect the object which is presented. A cube will appear when you are far
away (as shown on the left-hand side of the following figure), torus when you are close
(as shown on the right-hand side of the following figure), and a sphere in between (as
shown in the center of the following figure):

Simple gesture recognition using
accelerometers

In Chapter 4, Locating in the World, you were introduced to the various sensors that

are built into the typical Android device. You learned how to use them to derive

the orientation of your device. However, there is much more you can do with those
sensors, specifically accelerometers. If you have ever played Wii games, you were
surely fascinated by the natural interaction you could achieve by waving the Wiimote
around (for example, when playing a tennis or golf Wii game). Interestingly, the
Wiimote uses similar accelerometers to many Android smartphones, so you can
actually implement similar interaction methods as with the Wiimote. For complex
3D-motion gestures (such as drawing a figure eight in the air), you will need either
some machine learning background or access to use libraries such as the one at the
following link: http: //www.dfki.de/~rnessel/tools/gesture_recognition/
gesture _recognition.html. However, if you only want to recognize simple
gestures, you can do that easily in a few lines of code. Next, we will show you how to
recognize simple gestures such as a shake gesture, that is, quickly waving your phone
back and forth several times.
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If you have a look at the sample project ShakeItJME, you will notice that it is, to a
large degree, identical to the SensorFusiondME project from Chapter 4, Locating in the
World. Indeed, we only need to perform a few simple steps to extend any application
that already uses accelerometers. In ShakeItJMEActivity, you first

add some variables that are relevant for the shake detection, including mainly
variables for storing timestamps of accelerometer events (mTimeOfLastShake,
mTimeOfLastForce, and mLastTime), ones for storing past accelerometer forces
(mLastAccelValX, mLastAccelValy, and mLastAccelValz), and a number of
thresholds for shake durations, timeouts (SHAKE DURATION THRESHOLD,
TIME_BETWEEN ACCEL_EVENTS_THRESHOLD, and SHAKE TIMEOUT), and a

minimum number of accelerometer forces and sensor samples (ACCEL_FORCE_
THRESHOLD and ACCEL_EVENT COUNT THRESHOLD).

Next, you simply add a call to the detectShake () method in your SensorEventLis
tener: :onSensorChanged method in the Sensor. TYPE ACCELEROMETER section
of code.

The detectshake () method is at the core of your shake detection:

public void detectShake (SensorEvent event)

floatcurAccForce = Math.abs (event.values[2] - mLastAccelvValZzZ) /
timeDiff;

if (curAccForce> ACCEL FORCE THRESHOLD) {
mShakeCount++;

if ((mShakeCount>= ACCEL_EVENT COUNT THRESHOLD) && (now -
mTimeOfLastShake> SHAKE_DURATION_THRESHOLD)) {
mTimeOfLastShake = now;mShakeCount = 0;
if ((com.ar4android.ShakeItJME) app != null) {
((com.ar4android.ShakeItJME) app) .onShake () ;

}

In this method, you basically check whether or not accelerometer values in a certain
time frame are greater than the threshold value. If they are, you call the onshake ()
method of your JME app and integrate the event into your application logic.Note
that, in this example, we only use the accelerometer values in the z direction, that is,
parallel to the direction in which the camera is pointing. You can easily extend this
to also include sideways shake movements by incorporating the x and y values of
the accelerometer in the computation of curAccForce. As an example of how

to trigger events using shake detection, in the onshake () method of your JME
application, we trigger a new animation of our walking ninja:
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public void onShake () {
mAniChannel.setAnim("Spin") ;

}

To avoid that the ninja now spins all the time; we will switch to the walking
animation after the spin animation has ended:

public void onAnimCycleDone (AnimControl control, AnimChannel
channel, String animName) {

if (animName.contains ("Spin"))
mAniChannel.setAnim("Walk") ;
}
}

If you start your app now and shake the device along the viewing direction, you
should see how the ninja stops walking and makes a gentle spin, just as shown in the
following figure:

Summary

In this chapter, we've introduced you to three interaction techniques, suitable

for a wide variety of AR applications. Picking allows you to select 3D objects by
touching the screen, just like you would in 2D selection. Proximity-based camera
techniques allow you to experiment with the distance and orientation of your device
to trigger application events. Finally, we've showed you a simple example of a

3D gesture detection method to add even more interaction possibilities into your
application. These techniques should serve as building blocks for you to create your
own interaction methods, targeted to your specific application scenario. In the final
chapter, we will introduce some advanced techniques and further reading to help
you get the best out of your Augmented Reality applications.
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In this final chapter, we will present you with tips and links to more advanced
techniques to improve any AR application's development. We will introduce content
management techniques such as multi-targets and cloud recognition, as well as
advanced interaction techniques.

Managing your content

For computer-vision-based AR, we showed you how to build applications using

a single target. However, there might be scenarios in which you need to use several
markers at once. Just think of augmenting a room for which you would need at least
one target on each wall, or you may want your application to be able to recognize
and augment hundreds of different product packages. The former case can be
achieved by tracking multiple targets that have a common coordinate frame, and
the latter use case can be achieved by using the power of cloud recognition. We will
briefly discuss both of them in the following sections.

Multi-targets

Multi-targets are more than a collection of several individual images. They realize
a single and consistent coordinate system where a handheld device can be tracked.
This allows for continuous augmentation of the scene as long as even a single target
is visible. The main challenges of creating multi-targets lie in defining the common
coordinate system (which you will do only once) and maintaining the relative poses
of those targets during the operation of the device.
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To create a common coordinate system, you have to specify the translation and
orientation of all image targets with respect to a common origin. Vuforia™ gives
you an option to even build commonly used multi-targets such as cubes or cuboids
without getting into the details of specifying the entire target transforms. In the
Vuforia™ Target Manager, you can simply add a cube (equal length, height,

and width) or cuboids (different length, height, and width) to a target that has its
coordinate origin at the (invisible) center of the cuboids. All you have to do is to
specify one extend to three extends of the cuboids and add individual images for
all the sides of your targets, as shown in the following figure:

*To preview click and drag the cube

Upload
Back

Upload
Top

LEFT FRoNT Upload| Upload [Upload

Left Front Right

Upload
Bottom

FRONT

Width: 100.0 Height: 100.0 Length: 100.0

If you want to create more complex multi-targets, for example, for tracking an
entire room, you have to take a slightly different approach. You first upload all the
images you want to use for the multi-target into a single device database inside the
Vuforia™ Target Manager. After, you have downloaded the device database to your
development machine, you can then modify the downloaded <database >.xml

file to add the names of the individual image targets and their translations and
orientations relative to the coordinate origin. A sample XML file can be found in

the Vuforia™ knowledge base under https://developer.vuforia.com/
resources/dev-guide/creating-multi-target-xml-file.

Note that you can only have a maximum of 100 targets in your device database,
and hence your multi-target can maximally consist of only that number of image
targets. Also note that changing the position of image targets during the runtime
(for example, opening a product packaging) will inhibit consistent tracking of your
coordinate system, that is, the defined spatial relationships between the individual
target elements would not be valid anymore. This can even lead to complete
failure of tracking. If you want to use individual moving elements as part of your
application, you have to define them in addition to the multi-target as separate
image targets.
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Cloud recognition

As mentioned in the preceding section, you can only use up to 100 images
simultaneously in your Vuforia™ application. This limitation can be overcome by
using cloud databases. The basic idea here is that you query a cloud service with

a camera image, and (if the target is recognized in the cloud), handle the tracking

of the recognized target locally on your device. The major benefit of this approach

is that you can recognize up to one million images that should be sufficient for most
application scenarios. However, this benefit does not come for free. As the recognition
happens in the cloud, your client has to be connected to the Internet, and the response
time can take up to several seconds (typically around two to three seconds).

Unlike, in the case of recognition, image databases stored on the device typically
only take about 60 to 100 milliseconds. To make it easier to upload many images

for the cloud recognition, you do not even have to use the Vuforia™ online target
manager website but can use a specific web API—the Vuforia™ Web Services APl —
that can be found under the following URL: https://developer.vuforia.com/
resources/dev-guide/managing-targets-cloud-database-using-developer-
api. You can find further information about using cloud recognition in the Vuforia™
knowledge base by visiting https://developer.vuforia.com/resources/dev-
guide/cloud-targets.

Improving recognition and tracking

If you want to create your own natural feature-tracking targets, it is important

to design them in a way that they can be well recognized and tracked by the AR
system. The basics of natural feature targets were explained in the Understanding
natural feature tracking targets section of Chapter 5, Same as Hollywood - Virtual on
Physical Objects. The basic requirement for well-traceable targets is that they possess
a high number of local features. But how do you go along if your target is not

well recognized? To a certain extent, you can improve the tracking by using the
forthcoming tips.
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Further Readings and Tips

First, you want to make sure that your images have enough local contrast. A good
indicator for the overall contrast in your target is to have a look at the histogram

of its greyscale representation in any photo editing software such as GIMP or
Photoshop. You generally want a widely distributed histogram instead of one with
few spikes, as shown in the following figure:

HISTOGRAM | B HISTOGRAM

To increase the local contrast in your images, you can use the photo editor
of your choice and apply unsharpening mask filters or clarity filters, such as in
Adobe Lightroom.

In addition, to avoid resampling artifacts in the Vuforia™ target creation
process, make sure to upload your individual images with an exact
~ image width of 320 px. This will avoid aliasing effects and lowering the
Q local feature count due to automatic server-side resizing of your images.
By improving the rendering, Vuforia™ will rescale your images to have
a maximum extend of 320 px for the longest image side.

During the course of this book, we used different types of 3D models in our sample
applications, including basic primitives (such as our colored cube or sphere) or
more advanced 3D models (such as the ninja model). For all of them, we didn't
really consider the realistic aspect, including the light condition. Any desktop or
mobile 3D application will always consider how the rendering looks realistic. This
photorealistic quest always passes through the quality of the geometry of the model,
the definition of their appearance (material reflectance properties), and how they
interact with light (shading and illumination).
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Photorealistic rendering will expose properties such as occlusion (what is in front of,
behind something), shadows (from the illumination), support for a range of realistic
material (developed with shader technology), or more advanced properties such as
supporting global illumination.

When you develop your AR applications, you should also consider photorealistic
rendering. However, things are a bit more complicated because in AR, you not
only consider the virtual aspect (for example, a desktop 3D game) but also the real
aspect. Supporting photorealism in AR will imply that you consider how real (R)
environments and virtual (V) environments also interact during the rendering that
can be simplified as follows through four different cases:

1. V>V
2. V2R
3. R>V
4. R->R

The easiest thing you can do is support V->V, which means that you enable any

of the advanced rendering techniques in your 3D rendering engine. For computer-
vision-based applications, it will mean that everything looks realistic on your target.
For sensor-based applications, it will mean that your virtual object seems realistic
between each other.

A second easy step, especially for computer-vision-based applications, is to support
V=R using a plane technique. If you have a target, you can create a semi-transparent
version of it and add it to your virtual scene. If you have shadows enabled, it will
seem that the shadow is projecting on to your target, creating a simple illusion

of V->R. You can refer to the following paper which will provide you with some
technical solutions to this problem:

* Refer to A real-time shadow approach for an augmented reality application using
shadow volumes. VRST 2003: 56-65 by Michael Haller, Stephan Drab, and Werner
Hartmann.

Handling R->V is a bit more complicated and still a difficult research topic. For
example, support illumination of virtual objects by physical light sources requires a
lot of effort.

Instead, occlusion is easy to implement for R>V. Occlusion in the case of R>V can
happen if, for example, a physical object (such as a can) is placed in front of your
virtual object. In standard AR, you always render the virtual content in front

of the video, so your can will appear to be behind even though it can be in front of
your target.
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A simple technique to reproduce this effect is sometimes referred to as phantom
object. You need to create a virtual counterpart of your physical object, such as a
cylinder, to represent your can. Place this virtual counterpart at the same position as
the physical one and do a depth-only rendering. Depth-only rendering is available
in a large range of libraries, and it's related to the color mask where, when you
render anything, you can decide which channel to render. Commonly, you have
the combination of red, green, blue, and depth. So, you need to deactivate the first
three channels and only activate depth. It will render some sort of phantom object
(no color but only depth), and via the standard rendering pipeline, the video will
not be occluded anymore where you have your real object, and occlusion will

look realistic; see, for example, http://hal.inria.fr/docs/00/53/75/15/PDF/
occlusionCollaborative.pdf.

This is the simple case; when you have a dynamic object, things are way more
complicated, and you need to be able to track your objects, to update their phantom
models, and to be able to get a photorealistic rendering.

Advanced interaction techniques

In the preceding chapter, we looked at some simple interaction techniques, that
included ray picking (via touch interaction), sensor interaction, or camera to target
proximity. There are a large number of other interaction techniques that can be used
in Augmented Reality.

One standard technique that we will also find on other mobile user interfaces,

is a virtual control pad. As a mobile phone limits access to additional control
devices, such as a joypad or joystick, you can emulate their behavior via a touch
interface. With this technique, you can display a virtual controller on your screen
and analyze the touch in this area as being equivalent to controlling a control pad.
It's easy to implement and enhance the basic ray-casting technique. Control pads are
generally displayed near the border of the screen, adapting to the form factor and
grasping the gesture you make when you hold the device, so you can hold the device
with your hand and naturally move your finger on the screen.

Another technique that is really popular in Augmented Reality is Tangible User
Interface (TUI). When we created the sample using the concept of a camera to target
proximity, we practically implemented a Tangible User Interface. The idea of a

TUl is to use a physical object for supporting interaction. The concept was largely
developed and enriched by Iroshi Ishii from the Tangible Media Group at

MIT —the website to refer to is http://tangible.media.mit .edu/. Mark
Billinghurst during his Ph.D. applied this concept to Augmented Reality and
demonstrated a range of dedicated interaction techniques with it.
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The first type of TUI AR is local interaction, where you can, for example, use two
targets for interaction. Similar to the way we detected the distance between the
camera and target in our ProximityBaseddME project, you can replicate the same
idea with two targets. You can detect whether two targets are close to each other,
aligned in the same direction, and trigger some actions with it. You can use this type
of interaction for card-based games when you want cards to interact with each other,
or games that include puzzles where users need to combine different cards together,
and so on.

A second type of TUI AR is global interaction where you will also use two or more
targets, but one of the targets will become special. What you do in this case is define
a target as being a base target, and all the other targets refer to it. To implement it,
you just compute the local transformation of the other targets to the base target,
with the base target behind and defined as your origin. With this, it's really easy

to place targets on the main target, somehow defining some kind of ground plane
and performing a range of different types of interaction with it. Mark Billinghurst
introduced a famous derivate version of it, for performing paddle-based interaction.
In this case, one of the targets is used as a paddle and can be used to interact on

the ground plane —you can touch the ground plane, have the paddle at a specific
position on the ground plane, or even detect a simple gesture with it (shake the
paddle, tilt the paddle, and so on). To set up mobile AR, you need to consider the
fact that end users hold a device and can't perform complex gestures, but with a
mobile phone, interaction with one hand is still possible. Refer to the following
technical papers:

*  Tangible augmented reality. ACM SIGGRAPH ASIA (2008): 1-10 by Mark
Billinghurst, Hirokazu Kato, and Ivan Poupyrev.

* Designing augmented reality interfaces. ACM Siggraph Computer Graphics 39.1
(2005): 17-22 by Mark Billinghurst, Raphael Grasset, and Julian Looser.

Global interaction with a TUI, in a sense, can be defined as interaction behind the
screen, while virtual control pad can be seen as interaction in front of the screen.
This is another way to classify interaction with a mobile, which brings us to the third
category of interaction techniques: touch interaction on the target. The Vuforia™
library implements, for example, the concept of virtual buttons. A specific area on
your target can be used to place the controller (for example, buttons, sliders, and
dial), and users can place their finger on this area and control these elements. The
concept behind this uses a time-based approach; if you keep your finger placed on
this area for a long time, it simulates a click that you can have on a computer, or

a tap you can do on a touch screen. Refer to https://developer.vuforia.com/
resources/sample-apps/virtual-button-sample-app, for example.
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There are other techniques that are investigated in research laboratories, and they
will soon become available to the future generation of mobile AR, so you should
already think about them also when will be available. One trend is towards 3D
gesture interaction or also called mid-air interaction. Rather than touching your
screen or touching your target, you can imagine making gestures between the device
and the target. Having a mobile AR for 3D modeling would be an appropriate
technique. 3D gestures have a lot of challenges such as recognizing the hand, the
fingers, the gesture, physical engagement that can result in fatigue, and so on. In the
near future, this type of interaction, which is already popular on smart home devices
(such as Microsoft Kinect), will be available on devices (equipped with 3D sensors).

Summary

In this chapter, we showed you how to go beyond the standard AR applications by
using multi-targets or cloud recognition for computer-vision-based AR. We also
showed you how you can improve the tracking performance for your image targets.
In addition, we introduced you to some advanced rendering techniques for your AR
applications. Finally, we also showed you some novel interaction techniques that you
can use to create great AR experiences. This chapter concludes your introduction to
the world of Augmented Reality development for Android. We hope you are ready
to progress onto new levels of AR application development.
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