
    
      [image: (missing alt)]

  
    
      Table of Contents

      
        Application Development with Qt Creator
      

      
        Credits
      

      
        About the Author
      

      
        Acknowledgments
      

      
        About the Reviewers
      

      
        www.PacktPub.com
      

      
        Support files, eBooks, discount offers and more
      

      
        Why Subscribe?
      

      
        Free Access for Packt account holders
      

      
        Preface
      

      
        What this book covers
      

      
        What you need for this book
      

      
        Who this book is for
      

      
        Conventions
      

      
        Reader feedback
      

      
        Customer support
      

      
        Downloading the example code
      

      
        Errata
      

      
        Piracy
      

      
        Questions
      

      
        1. Getting Started with Qt Creator
      

      
        Downloading Qt Creator
      

      
        Finding your way around Qt Creator
      

      
        Your first application – Hello World
      

      
        Hello World using the Qt GUI library
      

      
        Hello World using Qt Quick
      

      
        Summary
      

      
        2. Building Applications with Qt Creator
      

      
        Getting started – our sample library
      

      
        Learning the landscape – the Build menu and .pro files
      

      
        Linking against our sample library
      

      
        Getting lost and found again – debugging
      

      
        Setting breakpoints and stepping through your program
      

      
        Fine-grained control of breakpoints
      

      
        Examining variables and memory
      

      
        Examining the call stack
      

      
        The Projects pane and building your project
      

      
        A review – running and debugging your application
      

      
        Summary
      

      
        3. Designing Your Application with Qt Designer
      

      
        Code interlude – signals and slots
      

      
        Creating forms in Qt Designer
      

      
        Creating the main form
      

      
        Using application resources
      

      
        Instantiating forms, message boxes, and dialogs in your application
      

      
        Wiring the Qt GUI application logic
      

      
        Learning more about Qt GUI widgets
      

      
        Code interlude – Qt Quick and QML syntax
      

      
        Creating Qt Quick applications in Qt Designer
      

      
        Creating a reusable button
      

      
        The calculator's main view
      

      
        Learning more about Qt Quick and QML
      

      
        Summary
      

      
        4. Localizing Your Application with Qt Linguist
      

      
        Understanding the task of localization
      

      
        Marking strings for localization
      

      
        Localizing your application with Qt Linguist
      

      
        Including localized strings in your application
      

      
        Localizing special things – currencies and dates with QLocale
      

      
        Summary
      

      
        5. Performance Optimization with Qt Creator
      

      
        The QML performance analyzer
      

      
        QtSlowButton – a Qt Quick application in need of performance tuning
      

      
        Finding memory leaks with Valgrind
      

      
        QtLeakyButton – a Qt C++ application in need of memory help
      

      
        Summary
      

      
        6. Developing Mobile Applications with Qt Creator
      

      
        A mobile software development primer
      

      
        User attention is at a premium
      

      
        Computational resources are at a premium
      

      
        Network resources are at a premium
      

      
        Storage resources are at a premium
      

      
        To port or not to port?
      

      
        A word on testing
      

      
        Setting up Qt Creator for Android
      

      
        Downloading all the pieces
      

      
        Setting up the environment variables
      

      
        Finishing the Android SDK installation
      

      
        Configuring Qt Creator
      

      
        Building and running your application
      

      
        Summary
      

      
        7. Qt Tips and Tricks
      

      
        Writing console applications with Qt Creator
      

      
        Integration with version control systems
      

      
        Configuring coding style and coding format options
      

      
        Building from the command line
      

      
        Setting Qt Quick window display options
      

      
        Learning more about Qt
      

      
        Summary
      

      
        Index
      

    

  Application Development with Qt Creator





Application Development with Qt Creator



Copyright © 2013 Packt Publishing
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.
Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.
First published: November 2013
Production Reference: 1131113
Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78328-231-9
www.packtpub.com
Cover Image by Siddhart Ravishankar (<sidd.ravishankar@gmail.com>)

Credits



Author
Ray Rischpater
Reviewers
Lee Zhi Eng
Niels Holst
Kamakshi Subramaniam
Acquisition Editors
Vinay Argekar
Aarti Kumaraswamy
Commissioning Editor
Sruthi Kutty
Technical Editors
Hardik B. Soni
Krutika Parab
Manan Badani
Pankaj Kadam
Copy Editors
Sayanee Mukherjee
Laxmi Subramanian
Project Coordinator
Sageer Parkar
Proofreader
Linda Morris
Indexers
Mehreen Deshmukh
Tejal R. Soni
Graphics
Ronak Dhruv
Production Coordinator
Conidon Miranda
Cover Work
Conidon Miranda

About the Author



Ray Rischpater is an engineer and author with over 20 years' experience writing about and developing for computing platforms.
During this time, he has participated in the development of Internet technologies and custom applications for Java ME, Qualcomm BREW, Apple iPhone, Google Android, Palm OS, Newton, and Magic Cap, as well as several proprietary platforms. Presently, he's employed as a senior engineer at Microsoft in Mountain View, working on mapping and data visualization.
When not writing for or about mobile platforms, he enjoys hiking and photography with his family and friends in and around the San Lorenzo Valley in central California. When he's able, he also provides a public service through amateur radio as the licensed Amateur Extra station KF6GPE.
The books he's written so far include:
	Microsoft Mapping: Geospatial Development with Bing Maps and C# (with Carmen Au, Apress, 2013)
	Beginning Nokia Apps Development (with Daniel Zucker, Apress, 2010)
	Beginning Java ME Platform (Apress, 2008)
	Wireless Web Development, Second Edition (Apress, 2004)
	eBay Application Development (Apress, 2004)
	Software Development for the QUALCOMM BREW Platform (Apress, 2003)
	Wireless Web Development, First Edition (Apress, 2002)
	Internet Appliances: A Wiley Tech Brief (John Wiley & Sons, 2001)
	Advanced Palm Programming (with Steve Mann, John Wiley & Sons, 2000)
	Palm Enterprise Applications: A Wiley Tech Brief (John Wiley & Sons, 2000)


He holds a bachelor's degree in pure mathematics from the University of California, Santa Cruz and is a member of the IEEE, ACM, and ARRL.

Acknowledgments



First, I'd like to thank Sruthi Kutty for approaching me about the idea of writing an introductory book about Qt Creator. Second, I'd like to thank Sageer Parkar for shepherding the project throughout the process at Packt, making my first experience with Packt Publishing a painless one. I was fortunate to have several technical reviewers and editors on the project who gave their time graciously to improve the book. Finally, I'd like to thank my wife and son for their patience with me as I undertook yet another book.

About the Reviewers



Lee Zhi Eng is a 3D artist-turned-programmer who worked as a game artist and game programmer in several local game studios in his country, before becoming a contractor and a part time lecturer at a local university, teaching game development subjects, particularly related to Unity Engine and Unreal Development Kit. You can find more information about him at http://www.zhieng.com.
Niels Holst graduated from the University of Copenhagen, Denmark with a PhD in Biology. He currently works at Aarhus University, Denmark where he applies Computer Science to solve problems in Applied Ecology. He is a leader of the Universal Simulator open source project.

www.PacktPub.com



Support files, eBooks, discount offers and more



You might want to visit www.PacktPub.com for support files and downloads related to your book.
Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for more details.
At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.
[image: Support files, eBooks, discount offers and more]
http://PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can access, read and search across Packt's entire library of books.
Why Subscribe?



	Fully searchable across every book published by Packt
	Copy and paste, print and bookmark content
	On demand and accessible via web browser



Free Access for Packt account holders



If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view nine entirely free books. Simply use your login credentials for immediate access.



Preface



Whether you're just getting started with programming, or you've settled on Qt as the GUI toolkit for your project, Qt Creator is a great choice for an Integrated Development Environment (IDE)! In this book, we work to help you make the most of Qt Creator, showing you almost every facet of using Qt Creator, from its configuration through compiling and debugging applications, along with numerous tips and tricks. Along the way, you gain valuable experience not just with Qt Creator as an IDE, but with Qt and Qt Quick as well. After reading this book, you'll be able to:
	Edit, compile, debug, and run C++ applications using Qt Creator, opening a path to build state-of-the-art console and GUI applications with Qt and the Standard Template Library (STL)
	Edit, compile, debug, and run Qt Quick applications using Qt Creator, giving you access to one of the most advanced declarative GUI authoring environments anywhere
	Design GUI applications using Qt Designer to build either traditional widget-based or Qt Quick applications
	Analyze the memory and runtime performance of your Qt applications, and make improvements, and fix defects
	Provide localized versions of your application, so that you can deploy it all over the world in different languages
	Use Qt Quick and Qt Widgets to write mobile applications for platforms such as Google Android


What this book covers



This book is divided into seven chapters, which you should plan on reading in order, especially if you're new to Qt Creator and Qt programming in general. These chapters are:
Chapter 1, Getting Started with Qt Creator, explains how to download and install Qt Creator, as well as edit simple applications to test your installation.
Chapter 2, Building Applications with Qt Creator, explains how to compile, run, and debug your application using Qt Creator. You will learn how Qt Creator integrates with both the GNU debugger and the Microsoft console debugger to provide breakpoints, memory inspection, and other debugging help.
Chapter 3, Designing Your Application with Qt Designer, explains how to use the drag-and-drop GUI designer that is part of Qt Creator, to build both Qt widget-based and Qt Quick applications.
Chapter 4, Localizing Your Application with Qt Linguist, explains how to manage resource strings for different locales, letting you build your application with different languages in different locales.
Chapter 5, Performance Optimization with Qt Creator, explains how to use Qt Creator to examine your Qt Quick application's runtime performance, as well as how to perform memory profiling of your application with Valgrind, an open source diagnostic tool.
Chapter 6, Developing Mobile Applications with Qt Creator, gives a look at the exciting arena of mobile software development, and shows how you can use what you've learned in this book about Qt and Qt Creator to write applications for platforms such as Google Android.
Chapter 7, Qt Tips and Tricks, covers tricks for using Qt and Qt Creator that will help you use the Qt framework and the Qt Creator IDE efficiently.


What you need for this book



Qt and Qt Creator are cross-platform tools. Whether you're using a Windows machine, a Macintosh using Mac OS X, or a workstation running Linux, you probably have what you need. You should have a reasonable amount of disk space (around 10 gigabytes is plenty) to install the whole Qt Creator IDE and Qt libraries, and as with any software development environment, the more RAM you have, the better (although I've run Qt Creator on netbooks running Ubuntu with a gigabyte of RAM and survived!).
You should have a basic understanding of computer programming, and should be prepared to write code in C++. Basic knowledge of JavaScript is helpful if you're interested in programming with Qt Quick, but you can pick that up along the way with little difficulty.

Who this book is for



I wrote this book for those who have little or no experience with Qt and Qt Creator, who may be using it for the first time as part of a college class, an open source project, or who just want to experiment with the platform and IDE.
I especially want to encourage you to read this book if you're a student using Qt Creator in your university class on C++ programming! You should focus on the first two chapters, and as much of the rest as you need for your course.

Conventions



In this book, you will find a number of styles of text that distinguish between different kinds of information. Here are some examples of these styles, and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "For the name, enter HelloWorldConsole, and choose a path that makes sense for you (or accept the default)."
A block of code is set as follows:
#include <QCoreApplication>
#include <iostream>
using namespace std;
int main(int argc, char *argv[])
{
  QCoreApplication a(argc, argv);
  cout << "Hello world!";
  return a.exec();
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:
import QtQuick 2.0
Rectangle {
  width: 360
  height: 360
  Text {
    text: qsTr("Hello World")
    anchors.centerIn: parent
  }
  MouseArea {
    anchors.fill: parent
    onClicked: {
      Qt.quit();
    }
  }
}

New terms and important words are shown in bold. Words that you see on the screen, in menus or dialog boxes for example, appear in the text like this: "Where it says Type Here, right-click and choose Remove menu bar."
Note
Warnings or important notes appear in a box like this.


Tip
Tips and tricks appear like this.



Reader feedback



Feedback from our readers is always welcome. Let us know what you think about this book—what you liked or may have disliked. Reader feedback is important for us to develop titles that you really get the most out of.
To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book title via the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide on <www.packtpub.com/authors>.

Customer support



Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.
Downloading the example code



You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata



Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if you would report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the Errata section of that title. Any existing errata can be viewed by selecting your title from http://www.packtpub.com/support.

Piracy



Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works, in any form, on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.
Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.
We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions



You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the book, and we will do our best to address it.


Chapter 1. Getting Started with Qt Creator



Qt Creator is the integrated software development environment that supports both traditional C++ application development, as well as development using the Qt project's libraries (collectively called "Qt", pronounced "cute"). In this chapter, we will see everything we need to get started with Qt Creator:
	Where to download Qt Creator for Linux, Mac OS X, or Windows
	How to ensure that your basic configuration is running
	A quick look at a simple Qt GUI application, as well as a Qt Quick application


Downloading Qt Creator



Qt, the cross-platform toolkit behind Qt Creator, has had a long and illustrious history. Presently, a project of Digia, it has its own URL at qt-project.org and has both commercial and noncommercial licenses available.
To get started with the noncommercial version for free, head over to http://bit.ly/13G4Jfr to see something similar to the following screenshot:
[image: Downloading Qt Creator]Downloading Qt Creator


Tip
One of the most popular platforms for application development with Qt is Linux. On many Linux variants—notably Ubuntu, my personal favorite—you can get Qt Creator using the package manager. On my Ubuntu box, Qt Creator is just a sudo apt-get install qtcreator command away. You'll get a version of Qt matched with your flavor of Linux, although it might not be the latest and greatest build from Digia.


We can also download bits and pieces of Qt, such as just the runtime libraries, or build Qt Creator from source. This typically requires that you already have a compiler and basic development tools installed, and a basic understanding of qmake and Qt's build configuration management system.
Some downloads include the C++ compiler and linker you need for your development; others don't. For example, on Windows there's a variant that includes the MinGW tool chain, so you have everything you need to build applications. However, you can also download Qt Creator for Windows that uses the Microsoft Visual Studio compilers, so, if you prefer using Visual Studio for your compilation and Qt Creator as your IDE, that's also an option. On Mac OS X, you'll need to have Xcode and the command-line development tools installed first; you can download Xcode from the Mac OS X App Store, and then use Xcode to download the command-line development tools.
Once the installer is downloaded, run it in the usual way. It'll launch an installation wizard for your platform, and typically the installation takes about three or four minutes. You'll want to have plenty of disk space. Qt Creator doesn't consume that much disk space, but software development typically does; figure at least 500 megabytes for the tools and libraries, and budget a few gigabytes free on your main drive for your source code, intermediate object files, debug symbols, and of course, your compiled application. (This is especially important to plan for if you're running Qt Creator on a virtual machine; make sure that the virtual hard drive for your virtual machine image has plenty of disk space.) You should also ensure that your development box has plenty of RAM; the more, the better. Qt Creator runs happily in 2 GB of RAM, but the compiler and linker used by Qt Creator can run a lot faster if it has more RAM available.


Finding your way around Qt Creator



The following screenshot shows what you see the first time you launch Qt Creator. Let's take a closer look at each portion of the screen:
[image: Finding your way around Qt Creator]The landing page of Qt Creator


The main window, which currently shows the icons for IDE Overview, User Interface, Building and Running an Example Application, and Start Developing, is your workspace. Under normal conditions, this will be where you'll see the source code for your application. Along the left-hand side are a series of icons that let you select various views into your application. They are:
	The Welcome view shows basic information about Qt Creator
	The Edit view lets you edit the files that make up your application
	The Design view lets you use the Qt Designer to design the user interface for your application
	The Debug view lets you debug your application while it's running, including doing things like viewing memory and variables, setting breakpoints, and stepping through your application
	The Projects view lets you adjust the build and link settings for your project
	The Analyze view lets you profile your application's runtime performance
	The Help view provides documentation about Qt Creator and the Qt Framework


Below the Help view button in the previous screenshot you can see the active project; when I took this screenshot, I had already created our first application. Let's do that now.

Your first application – Hello World



In Qt Creator, choose New File or Project… from the 
File menu. Qt Creator will present you with the New project wizard, which lets you choose the kind of project you want to create, give it a name and so forth. To create our first application:
	Choose New File or Project… if you haven't already.
	Qt Creator presents you with a dialog that has a dizzying array of project choices. Choose Application, then Qt Console Application, and click on Choose….
	Qt Creator asks you for a name and a path to the directory where you want to store the files for the project. For the name, enter HelloWorldConsole, and choose a path that makes sense for you (or accept the default). Then, click on Next.
	Qt Creator can support various kits and libraries against which to build an application. Select the desktop Qt kit that should have been installed by default, leaving both the Release and Debug choices checked. Then, click on Next.
	In the next step, Qt Creator prompts you about version control for your project. Qt Creator can use your installed version control clients to perform change tracking for your project. For now, skip this and leave Add to version control set to None and click on Finish.


Qt Creator creates your project and switches to the Edit view. In the source code editor for the file main.cpp, enter the following code:
#include <QCoreApplication>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);
    
    cout << "Hello world!";

    return a.exec();
}

The QCoreApplication task handles the system startup for an application, and every Qt Console app needs to create one and call its exec method, as part of the main method. It sets up Qt's event handler and provides a bunch of porting helpers to determine things such as your application directory, library paths, and other details.
For a console application, that's all you need: you can freely mix and match Qt classes with the C++ standard library and 
Standard Template Library (although once you master Qt's foundation classes, many STL constructs feel somewhat limiting).
Next, let's compile and run the application. There are several ways you can do this. You can use any one of the following options:
	Hit F5 to build and run your application in the debugger
	Choose Start Debugging… from the Debug menu
	Click on the green Run arrow below the Help view button on the left to run the application
	Click on the green Run arrow with the bug over the arrow to debug the applicationTip
If all you want to do is build the application, you can click on the hammer icon below the Run and Debug icons.





When you choose one of these options, Qt Creator invokes the compiler and linker to build your application. If you chose a debug option, Qt Creator switches to the Debug view (which I will discuss in detail in the next chapter) as it starts your application.
Once the application starts, you'll see the Hello world! message in the console view.
Tip
Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.


Hello World using the Qt GUI library



One of Qt's strengths is its rich collection of GUI elements you can use to create windowed applications. Making a GUI application is similar, in principle, to making a console application; instead of choosing Qt Console Application, choose Qt Gui Application from the New dialog presented when you choose New File or Project…. Try that now:
	First, close the current file and project by choosing Close All Projects and Editors from the File menu.
	Next, choose New File or Project… again, and choose Qt Gui Application from the first step of the wizard.
	Walk through the wizard again, naming your project HelloWorldGui.
	The New project wizard will prompt you for the name of the class implementing your main window. Stick with the defaults given to you: leave the subclass as QMainWindow, and the name as MainWindow.


Qt Creator creates a default subclass of the class providing the platform's basic window handling in the mainform.h and mainform.cpp files, and creates a form that will contain the widgets for your application's window. If you run the application at this point, you'll see an empty window. Instead, double-click on the Forms folder in the second pane of Qt Creator, and then double-click on the file mainwindow.ui. Qt Creator switches to the Design view, and you'll see something similar to the following screenshot:
[image: Hello World using the Qt GUI library]Qt Creator's Design view


To the left, is a list of layouts you can choose to organize widgets such as spacers, views, containers, buttons, and other widgets. In the middle, is a view of the layout of your application's main window, and to the right are panes with a hierarchy of the objects in your main window and the properties of any item you click in the main window.
While I explore Qt Designer more in Chapter 3, Designing Your Application with Qt Designer, you can get a feel for using it to build a simple UI:
	Where it says Type Here, right-click and choose Remove menu bar.
	Drag a label (under Display Widgets in the left-hand pane) and drop it on the window preview in the center pane.
	Double-click on the label that appears and type, Hello world!.
	Grab a corner of the label and resize it, so the entire text is shown. You can also move it around in the window.
	Note that when you click on the label, the properties field in the lower right corner updates to show the properties of your new label.
	Drag a button (under Buttons in the left-hand pane) and drop it on the window preview in the center pane.
	Double-click on the button and change its text to Exit.
	With the new button selected, change the objectName field in the property browser to exitButton.
	Right-click on the button and choose Go to slot…. A window appears with a list of slots (for now, you can think of a slot as something that is triggered on an action).
	Choose clicked() from the list that appears.
	Qt Creator returns to the Edit view for your mainindow.cpp file. Change it to read:#include "mainwindow.h"
#include "ui_mainwindow.h"
#include <QApplication>
MainWindow::MainWindow(QWidget *parent) :
    QMainWindow(parent),
    ui(new Ui::MainWindow)
{
    ui->setupUi(this);
}

MainWindow::~MainWindow()
{
    delete ui;
}

void MainWindow::on_pushButton_clicked()
{
    QApplication::exit();
}




Before running your application, let's be sure we understand the implementation of the MainWindow class. The MainWindow class's constructor loads the description of the user interface for the main window and sets it up using the Qt Creator-generated class Ui::MainWindow. The destructor deletes the implementation of the code layout, and the on_pushButton_clicked method simply terminates the application by calling the static method exit implemented by the QApplication class.
Finally, we have to add the on_pushButton_clicked method declaration to MainWindow.h. Double-click on that file in the browser on the left and make sure it reads:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
class MainWindow;
}

class MainWindow : public QMainWindow
{
    Q_OBJECT
    
public:
    explicit MainWindow(QWidget *parent = 0);
    ~MainWindow();
    
private slots:
    void on_pushButton_clicked();

private:
    Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

The key lines you need to add are:
private slots:
    void on_pushButton_clicked();

We'll learn more about signals and slots in the next chapter; for now, it's enough to know that you're declaring a private function to be triggered when you click on the button.
Run the application. It should open a single window with the text Hello World; clicking on the Exit button in the window (or the close box on the upper-right corner) should close the application. At this point, if you think you want to learn more about Qt GUI widget applications, go ahead and try dragging other GUI items to the window, or explore the help for Qt GUI applications by switching to the Help view and choosing Qt Gui from the list of help items.


Hello World using Qt Quick



Qt Quick is Qt's newer declarative framework for the user interface, and with it it's incredibly easy to create fluid applications with animated transitions and flowing user interfaces. Using Qt Quick, you describe your user interface using QML, a JavaScript-like language that lets you declare the user interface elements and how they relate; the Qt Quick runtime does most of the heavy lifting in the implementation of your application.
By now, you can guess how to create a Qt Quick project: choose New File or Project… from the File menu, and then click on Qt Quick 2 Application (Built-in Types) and follow the wizard.
The wizard will ask no additional questions, and if you just walk through the wizard, you end up with a simple application that actually displays Hello World in its own window. Here's the code it supplies:
import QtQuick 2.0

Rectangle {
    width: 360
    height: 360
    Text {
        text: qsTr("Hello World")
        anchors.centerIn: parent
    }
    MouseArea {
        anchors.fill: parent
        onClicked: {
            Qt.quit();
        }
    }
}

If you know JavaScript, the syntax of this may look a little familiar, but it's still different. The first line is an import statement; it indicates to the QML runtime what classes should be available. At a minimum, all of your Qt Quick applications must import QtQuick Version 2.0, as this one does.
The QML itself follows. It declares a parent rectangle of 360 × 360 pixels—that determines the size of the application window. Inside the rectangle are two objects: Text and MouseArea. The Text object is just a label with the text Hello World, placed in the center of the rectangle. Note that the value of the text property is actually the result of a function call, a call to the function qsTr, Qt's built-in localization function, which looks at application resources to return the localized version of Hello World if it's been provided.
The MouseArea object takes user input and can execute functions based on that input; it's sized to fit the parent (anchors.fill is set to parent) and responds when clicked by executing the function assigned to the onClicked property. This onClicked function just exits the application by calling the Qt class's quit function.
At this point, you can run the application in the usual way, and you'll see a window with the text Hello World centered in it.
While the principles are similar, the Qt Quick Designer is very different from the Qt GUI Designer; have a look at the following screenshot:
[image: Hello World using Qt Quick]The Qt Quick Designer


There are some obvious similarities. Both designers show a list of things you can add to a view, along with a hierarchy of objects in the view and the properties of individual objects. However, there are far fewer Qt Quick widgets than Qt GUI widgets, and the widgets in Qt Quick don't match the look and feel of the native platform to nearly the same extent. By design, Qt GUI is meant for building conventional applications that match the native platform, while Qt Quick is used for creating device-independent applications with their own look and feel. For example, you'd probably write an enterprise data collection application using Qt GUI, while you'd create a media center application using Qt Quick.
Using the designer is the same in both cases, however. Let's add another 
MouseArea to the main view, and give it something to do:
	Select main.qml in the list of files in Qt Creator and click on Design to see the Design view.
	On the Library pane, select items and scroll down until you see Rectangle. Drag the rectangle to the center pane and drop it somewhere above the Hello World label. You may need to resize the rectangle so that the label is still visible.
	With the rectangle selected in the window pane, under Colors, enter a color for your rectangle.
	Now drag a MouseArea object out of the Library pane, and drop it on your new rectangle.
	With the MouseArea selected, choose Layout and mouse over the layouts until you see Fill to Parent. Click on it.
	Go back to the Edit view and modify main.qml to look like the following:import QtQuick 2.0

Rectangle {
    width: 360
    height: 360
    Text {
        id: text
        text: qsTr("Hello World")
        anchors.centerIn: parent
    }
    MouseArea {
        anchors.fill: parent
        onClicked: {
            Qt.quit();
        }

        Rectangle {
            id: rectangle1
            x: 80
            y: 7
            width: 200
            height: 124
            color: "#777777"

            MouseArea {
                id: mousearea1
                anchors.fill: parent
                onClicked: text.text = qsTr("Hi there!")
            }
        }
    }
}




You should see that most of the changes were made by the Design view; it added a rectangle inside the original MouseArea object, and another MouseArea inside that. You should need to add the line giving the text element an ID of text, and the onClicked handler to the new MouseArea object that you dragged out in the Design view. The id property lets other QML access the text field by name (in this case, its name is simply text), and the onClicked handler changes the contents of the text item's text property to the text Hi there!.
It's worth making an observation about qsTr here: you don't have to add any text to the application resources to get basic localization working. This is unlike most other platforms, where localization occurs by providing keys to values in local files for strings with a default value for the unlocalized strings.
Run the application. You'll see your rectangle above the text Hello World, and clicking on the rectangle changes the text to read Hi there!.

Summary



Getting Qt Creator is easy; it's just a web download away, or on most Linux platforms, it's an optional installation through the native package manager (although the versions delivered by a package manager may be slightly older than what you get from the Qt Project's website).
Qt Creator organizes its source code for you in projects; when you first launch it you can either create a default project, or create a new project to contain the source code and resources for your application. Inside Qt Creator are all the options you need to compile and debug your application. In addition, it supports designer tools for developing both Qt GUI and Qt Quick applications.
In the next, chapter we'll dig into the details of how to configure Qt Creator for compiling and editing your code, including how to add source files to your project, configure compiler and linker options, add dependencies to third-party libraries, and so on.

Chapter 2. Building Applications with Qt Creator



The first thing you're going to want to do with Qt Creator is figure out how to add source files and build (or debug) your project. This chapter is all about that—we'll go over how to add files to your project, how to create libraries to your project, and use the debugger and console logger. At the end of this chapter, you'll be driving Qt Creator to develop your console applications like a pro.
Getting started – our sample library



This chapter's example code has two pieces: a library that defines a public function and a console application that calls that function. Libraries are a great way to break up your applications, and while this example is trivial, it also lets me show you how to create a library and include it in your application.
I'm going to stretch your imagination a bit: let's pretend that you're responsible for setting up a library of math functions. In this example, we'll only write one function, factorial. You should remember the factorial function from introductory programming; it's represented by a!, and is defined as:
	0! is 0
	1! is 1
	n! is n × (n-1)!


This is a recursive definition, and we can code it this way:
unsigned long factorial(unsigned int n)
{
    switch(n) 
    {
        case 0: return 0;
        case 1: return 1;
        default: return n * factorial(n-1);
    }
}

Tip
An alternate definition that avoids the cost of function calls is:
unsigned long factorial(unsigned int n)
{
    unsigned long result = 1;
    for(unsigned int i = n; i > 1; i--)
    {
        result *= i;
    }
}



Why did I pick the recursive definition? Three reasons: I think that it's clearer, function-call performance overhead isn't a big deal in this example, and many readers of this book may be using this book as part of introductory computer science courses where recursion is taught and should be reinforced.
Let's begin by creating the library that implements our factorial function. To do this:
	In Qt Creator, from the File menu, choose New File or Project….
	Choose Libraries in the left-hand pane of the dialog and C++ Library from the center pane.
	Qt Creator can create dynamic libraries (DLLs, in Windows parlance), static libraries, or plugins that can be shared between applications. We're going to create a static library, so in the next screen choose Statically Linked Library, and name it MathFunctions. Choose a reasonable path for the project.
	In the next step of the wizard, leave the Qt version, Debug, and Release items checked.
	Libraries built by Qt Creator can rely on the Qt libraries themselves. Let's allow this library to rely on QtCore, the core data structures for Qt; in the Select Required Modules window, leave QtCore checked and click on Next.
	In the next window, you'll name the skeleton files that Qt Creator will add to your project. Click on Next.
	In the Project Management window, choose <None> for the version control choice (we won't use version control for this project) and click on Finish.
	Edit mathfunctions.h to include a static method declaration for our factorial function:#ifndef MATHFUNCTIONS_H
#define MATHFUNCTIONS_H

class MathFunctions
{
public:
    MathFunctions();
    
    static unsigned long int factorial(unsigned int n);
};

#endif // MATHFUNCTIONS_H 


	Open mathfunctions.cpp. You can do this one of two ways, by either double-clicking on it in the Projects pane, or by right-clicking on the factorial function and choosing Switch Header/Source. Write your factorial function; mathfunctions.cpp should read:#include "mathfunctions.h"

MathFunctions::MathFunctions()
{
}

unsigned long
MathFunctions::factorial(unsigned int n)
{
    switch(n)
    {
        case 0: return 0;
        case 1: return 1;
        default: return n * factorial(n-1);
    }
}


	Click on the Projects button on the left, and change the output path for the Release and Debug builds to point to the same directory, by editing the Build directory line under General, first for the Release and then for Debug build configurations. To do this, remove the release and debug portions of the directory path from the Build directory path. This way, when you build your library, Qt Creator will place release and debug builds of your library in a single folder instead of folders named release and debug, respectively.


As you write the code, note that Qt Creator prompts you at various stages about things it can deduce from your header with automatic suggestions (called autosuggest). For example, once you type MathFunc, it offers to autocomplete the class name or the C pre-processor guard; you can select either using the mouse, or just hit Enter to get the class name. Similarly, typing the double colons tells Qt Creator you're trying to enter something in the MathFunctions class, and prompts you with the MathFunctions class members; you can use the arrows to select factorial and hit Enter, and it types that. Finally, typing an opening parenthesis cues Qt Creator that you're defining a function, and prompts you with the arguments to that function you defined in the header file. You'll see this autocompletion a lot when you type code; it's a great way to learn Qt, too, because you can type a class name or part of a function name and Qt Creator prompts you with helpful hints along the way.
Before you continue, be sure you've built your library in both the release and debug configurations. The easiest way to do this is to click on the build selector on the bottom left and choose either Release or Debug, and then click on the hammer icon to perform a build.


Learning the landscape – the Build menu and .pro files



In the previous chapter, you learned how to build applications by hitting the hammer button in the corner of Qt Creator's main window, or by starting the debugger. To just build your library—or any application—you can either use the hammer icon or various choices in the Build menu. The obvious choice is either Build All or Rebuild All; choosing Build All recompiles only those files that Qt Creator recognizes as those that need to be rebuilt; Rebuild All cleans the project of all object files and rebuilds the entire project from scratch. In most cases, it's sufficient to choose Build All, and that's what you want to do, because it's faster. Sometimes you really do want to rebuild the whole project, when Qt's make system can't reconcile all the dependencies (or, you've made changes to the dependencies). Choose Build All now, and wait for it to build while we discuss the other options.
The Build menu lets you build a single file—handy, if all you want to do is check the syntax of the code you're writing and make sure you're free of errors—or the entire project. It also lets you run the project outside of the debugger, which you might want to do in some circumstances, like giving a demonstration. You can also clean your project (remove all object files and other autogenerated products) by choosing Clean All. The Publish option is available for some add-on kits that let you publish compiled applications and libraries to application stores and repositories; you can find more details about that in the documentation of any Qt Creator add-in, such as the SDKs for Maemo development (an older Linux variant from Nokia for handheld devices).
Behind every Qt Creator project is a .pro file; this serves the same function as a make file, and, in fact, is processed by a Qt toolkit command called qmake. (Make files are files processed by the make command, which indicate what files should be compiled in what order to generate an executable.) These files are declarative, in that you declare the relationship between the files that make up your application, and qmake figures out how to build your application from there. In most cases you'll need to make few or no changes to a .pro file, but it doesn't hurt to understand how they work. Double-click on MathFunctions.pro, and you'll find:
#-------------------------------------------------
#
# Project created by QtCreator 2013-07-23T19:50:46
#
#-------------------------------------------------

QT       -= gui

TARGET = MathFunctions
TEMPLATE = lib
CONFIG += staticlib

SOURCES += mathfunctions.cpp

HEADERS += mathfunctions.h
unix:!symbian {
    maemo5 {
        target.path = /opt/usr/lib
    } else {
        target.path = /usr/lib
    }
    INSTALLS += target
}

The basic syntax of a .pro file is variable assignments; this file, generated by Qt Creator for us, assigns the following variables:
	The QT variable indicates the Qt modules your project will link against. By default, all projects include QtCore and QtGui; there's a plethora of other modules available, which include key features such as the WebKit web browsing engine (QtWebkit) and multimedia libraries (Phonon). Our assignment here, indicates that we use the default Qt modules, but don't link against QtGui.
	The TARGET variable is the name of the compiled library or executable.
	The TEMPLATE variable indicates the kind of qmake template qmake should use to generate the binary; in our case, we're saying it should use the template to create a lib file—a library.
	The CONFIG variable passes an additional configuration to the template of qmake; here, we say that we want a statically linked library.
	The SOURCES and HEADERS variables contain lists of the source and header files that make up your project.
	The INSTALLS variable indicates where the resulting build product should be installed. Here, it's set in a scope. Scopes let you specify conditional options in qmake; the condition for the scope is a variable or expression, which may be true or false, and the code that follows is executed if the variable is true. The scope at the end of this file says, "If we're building for a unix variant and the variant isn't symbian, set the target.path variable to /opt/usr/lib if the unix variant is maemo, otherwise set it to /usr/lib for other unix variants, and in either case, set the INSTALLS variable to target".


These are the basic variables you'll find in almost any .pro file; for a good discussion of qmake scopes you can use to control conditional compilation, see http://bit.ly/163tAIh. Two additional variables you're likely to want to know about are DEFINES and LIBS; DEFINES lets you specify preprocessor defines that should be set throughout the build process, and LIBS indicates additional libraries against which Qt Creator should link your project.
Note how variables are managed: you use = for assignment, += to add an item to a list, and -= to remove an item from a list.

Linking against our sample library



Now, let's make an application that depends on our library. Our application will call the factorial function in the library, statically linking to the library to access the factorial function. To accomplish this, you need to:
	Choose Close All Projects and Editors from the File menu.
	Choose New File or Project… from the File menu, and create a new Qt console application called MathFunctionsTest using the wizard.
	Right-click on MathFunctionsTest, and choose Add Library. You can then choose a library in your build tree, one outside your build tree, or an external library on your system like the Unix math library, ffmpeg, or another library you've created. Choose External Library and click on Next.
	Browse to the library file that was built in the previous section by clicking on Browse next to the line labeled Library file. It'll be in a folder named something like build-MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit in your project's folder. Choose the MathFunctions library in either the release or debug folders—it doesn't matter which.
	Browse to include files for your library by clicking on Browse next to Include path; this is the directory where you put the headers for your library.
	Choose static linking; if you were linking a dynamically linked library, of course you'd choose Dynamic.
	Leave the other values set to their defaults, click on Next and then on Finish.


Qt Creator will work its magic with your .pro file, adding a LIBS variable that includes the output of your library build and an include path to your library's header files.
We can now call our factorial function. Edit main.cpp to read:
#include <QCoreApplication>
#include "MathFunctions.h"

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);
    
    qDebug("6! is %d", MathFunctions::factorial(6));

    return a.exec();
}

This code first includes our library header file. Note that if you compile the application after adding just the #include declaration, you'll get autosuggest help for every element of the MathFunctions library. This code uses qDebug instead of the C standard library to perform its console output.
Tip
The qDebug() function actually has a stream-savvy implementation too. I could have written the qDebug line as
qDebug() << "6! is" << MathFunctions::factorial(6);

and the code would have generated the same output.


Now, build and run the application in debug mode; you should see a console window with the text 6! is 720. Try building and running the library in release mode; wait, why is the debugging output from qDebug still there?
qDebug isn't really a debugging log, it's an output stream for debugging information regardless of build levels. If you want to turn off its output in release builds, you'll need to edit the .pro file. Double-click on your .pro file, and add the line:
CONFIG(release, debug|release): DEFINES += QT_NO_DEBUG_OUTPUT

This is another scope: it says that if your build configuration is release, add the preprocessor definition QT_NO_DEBUG_OUTPUT to the list of preprocessor definitions for the project.
Now, if you rebuild (don't just choose build, but actually choose rebuild, because you want a clean build through the entire system) and run in release mode, you won't see any output.
Tip
Qt actually defines four output streams, one for debugging messages and one for bona fide warnings. Use qDebug for regular logging and qWarning to output messages of a higher priority. There's also qCritical and qFatal for higher-priority log messages that should indicate critical failures, or failures that cause the application to terminate. You can also turn off warnings in release builds the same way; simply add the following to your .pro file:
CONFIG(release, debug|release): DEFINES += QT_NO_WARNING_OUTPUT



What if you want to add files to your project? You can either do it by manually editing the .pro file, which can be faster if you're a good typist, but also error prone and result in weird build problems if you mess up, or right-click on your project and choose either Add New… or Add Existing Files…. The Add New… option opens up a short wizard with choices like these:
	C++ header and source files
	Qt Designer forms that we'll talk about in the next chapter
	Qt Resource files that we'll talk about in the next chapter
	Qt Quick Markup (QML) files
	JavaScript files (which can contain the code implementing the logic of a Qt Quick application)
	OpenGL shaders for fragments or vertices in either full OpenGL or OpenGL/ES
	Text files (like a Readme file for your project) or a scratch file to use as a place to stash temporary clipboard items until you're done with an editing session


Before we move on to the important topic of debugging, let's look at one more .pro file, the .pro file for our application:
#-------------------------------------------------
#
# Project created by QtCreator 2013-07-23T20:43:19
#
#-------------------------------------------------

QT       += core

QT       -= gui


CONFIG(release, debug|release): DEFINES += QT_NO_DEBUG_OUTPUT

TARGET = MathFunctionsTest
CONFIG   += console
CONFIG   -= app_bundle

TEMPLATE = app

SOURCES += main.cpp

win32:CONFIG(release, debug|release): LIBS += -L$$PWD/../build-MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit/release/ -lMathFunctions
else:win32:CONFIG(debug, debug|release): LIBS += -L$$PWD/../build-MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit/debug/ -lMathFunctions
else:unix: LIBS += -L$$PWD/../build-MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit/ -lMathFunctions

INCLUDEPATH += $$PWD/../MathFunctions
DEPENDPATH += $$PWD/../MathFunctions

win32:CONFIG(release, debug|release): PRE_TARGETDEPS += $$PWD/../build-MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit/release/MathFunctions.lib
else:win32:CONFIG(debug, debug|release): PRE_TARGETDEPS += $$PWD/../build-MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit/debug/MathFunctions.lib
else:unix: PRE_TARGETDEPS += $$PWD/../build-MathFunctions-Desktop_Qt_5_0_2_MSVC2012_64bit-Debug/libMathFunctions.a

Phew! That's pretty dense. Let's see if we can unravel it. It begins by telling the build system that we use QtCore, but not QtGui. Next up, is the instruction to disable the qDebug messages in release builds, which won't happen by default. The TARGET, CONFIG, and TEMPLATE options together say that we're building a console application with the name MathFunctionsTest. The next line indicates that we have one source file, main.cpp.
The next set of scopes indicates the path to our library, and handles the fact that our libraries are in different directories on Windows for release and debug—this is different from on Unix systems, where there is only one build variant of the library. After that, comes the INCLUDEPATH and DEPENDPATH variables, which indicate that there are library headers in the MathFunctions directory, and that the application depends on those headers. So, if the timestamps on the headers change, the binary should rebuild. The final scope specifies the same dependency on the output library itself; if the library changes, the application executable has to be rebuilt. This is especially important, because that way we can run multiple copies of Qt Creator, edit our library and application files separately, building the bits we need of either after they change. When we do so that way, all the dependencies get figured out and the right bits of the library and application get built automatically.

Getting lost and found again – debugging



Qt Creator has a state-of-the-art GUI that hooks into either the GNU debugger GDB, or Microsoft's command-line debugger CDB, if you use Microsoft tools.
If you've installed Qt Creator on Mac OS or Linux, or the MinGW version of Qt Creator for Windows, you have everything you need to begin debugging your application. If you already had Microsoft Visual Studio installed and installed a version of Qt Creator that uses Microsoft's compiler, you need to also install the Microsoft command-line debugger to use Qt Creator's debugging features. Here's how to install the command-line debugger:
	Download the debugging tools for Windows, at either http://bit.ly/1dWoqi0 if you are using the 32-bit version of the compiler and Qt Creator, or http://bit.ly/12kEtGt for the 64-bit version of the compiler and Qt Creator.
	Configure the debugging symbol server by going to Options under the Tools menu, choosing the Debugger item on the left, choosing the CDB pane, and clicking on Edit next to the Symbol Paths line.Tip
Usually, the debugger works out of the box with Qt Creator, unless you're using the Microsoft toolchain. However, if you encounter problems, consult the Qt documentation on setting up the debugger at http://bit.ly/19jgycQ.





The following screenshot shows the debugger in action with our test project, stopped at a breakpoint:
[image: Getting lost and found again – debugging]Qt Creator's Debug view in action


Let's look at the screenshot in detail to get oriented:
	On the left is the usual row of buttons to pick a view in Qt Creator
	Next to the buttons is the view of the project files and the list of open documents
	In the main editor pane, every source line has a clickable indicator to let you set and clear breakpoints
	The call stack, indicating how the program got to the line execution is stopped at, is shown in the pane below the editor pane
	On the upper right is the variable inspector, where you can see the values of the variables in the current stack frame, along with any global variables
	Below the variable inspector is a list of pending breakpoints, so you can turn on and off breakpoints without needing to hunt through the code


To generate the previous screenshot, I clicked on the left of line 7, placing a breakpoint, and then clicked on the Debug button on the left after ensuring I'd specified a debug build in the build selector. Qt Creator built the application in debug mode, started the application, and let it run to the breakpoint on line 7.
Setting breakpoints and stepping through your program



A breakpoint, if you haven't encountered the idea before, is just that—a point at which execution breaks and you can examine the program's state. Once stopped at a breakpoint, you can step into a function, or step over a line, executing your program one line at a time to see how it's behaving. In the Debug view, clicking on the left of the number line lets you set or clear breakpoints. While stopped at a breakpoint, a yellow arrow in the margin of the editor pane indicates the line of code that the processor is about to execute.
While at a breakpoint, several buttons appear above the call stack pane that let you control program flow. They are:
	The green continue button, which continues execution at the line indicated by the arrow. You can also continue by pressing the F5 function key.
	The red stop button, which stops debugging altogether.
	The step over button, which executes the current line and advances to the next line before stopping again. You can step over one line by pressing F10.
	The step into button, which enters the next function to be called and stops again. You can step into a function by pressing F11.
	The step out button, which runs the remainder of the function in the current calling context before stopping again. You can step out of the current function by pressing F11.
	The instruction-wise button (which looks like a little screen), which toggles the debugger between working a source line at a time and an assembly line at a time.
	There's also a menu of threads, so you can see which thread is running or stopped.


If (in the previous screenshot) from line 7 we step over line 8 (pressing F10) and then press F11, we'll end up inside our factorial function, as you see in the next screenshot. I've clipped the screenshot so you only see the relevant panes of the debugger that have changed, and resized the window a bit, so you can see the whole call stack.
[image: Setting breakpoints and stepping through your program]The debugger about to enter a function


At this point, if we step one more line (F10) again, we'll see the value for n change in the right-hand column, and the arrow advance to point at line 9 (again, as numbered in the screenshot). From here, we can debug my function in several ways:
	We can examine the contents of a variable by looking at it in the right-hand pane. If it's in a stack frame above the current calling frame, we can change call frames and see variables in a different call frame too.
	We can modify a variable by clicking on its value and entering a new value.
	With some debuggers, we can move the arrow to different lines in the calling function to skip one or more lines of code, or rewind the execution to re-run a segment of code over again.


This last feature—which unfortunately doesn't work with CDB—is especially powerful, because we can step through a program, observe an error, modify variables to work around the course of the error, and continue testing our code without needing to recompile our code and re-run our executable. Or, we can skip a bit of code that we know takes a while to run by substituting the new state in the variables in question and continuing from a new location in the current call frame.
There are also a number of other things we can do, from how we debug the application to various ways we can view the state of our application when it's running. On the main Debug menu, we can:
	Detach the debugger from a running process by choosing Detach from the Debug menu (handy if the debugger is slowing things down and we know that part of our code doesn't need to be debugged).
	Interrupt program execution, stop execution, and examine the current state by choosing Interrupt from the Debug menu (useful if our application seems caught in a long loop we weren't expecting and appears hung).
	While stopped, we can run to the line the cursor is on by choosing Run to Line or press Ctrl + F10.
	While stopped, we can skip to the line the cursor is on by choosing Jump to Line.



Fine-grained control of breakpoints



If you right-click in the breakpoint pane, you can add, edit, or delete breakpoints. Hitting Add Breakpoint… or Edit Breakpoint… brings up the Breakpoint Editor, a daunting dialog given the humble breakpoint itself. The following screenshot shows the Breakpoint Editor:
[image: Fine-grained control of breakpoints]The Breakpoint Editor window


From the editor, you can fine-tune a breakpoint, setting:
	The kind of breakpoint. Most breakpoints are by filename and line number—a specific line of the code—but you have several other choices, including:	The entry point of a function by name
	When a memory address is reached for execution
	When a C++ exception is thrown or caught
	When a JavaScript exception occurs
	When your main function starts
	When a new process is forked
	When a system call occurs
	When data is accessed at a fixed location, or an address indicated by an expression involving a pointer variable at runtime



	The location of the breakpoint (such as the source line number and filename, or the function), depending on your choice from the previous list.
	Whether the breakpoint is enabled or not.
	Whether the breakpoint is one-shot, that is, will be disabled after it fires once.
	Conditions for the breakpoint, such as an expression in involving program variable values, how many times to ignore the breakpoint, and which threads the breakpoint applies to.



Examining variables and memory



The variables pane shows you the values of all the variables in the current stack frame. Structures show the values of their members, so you can walk through complex data structures as well. From the variables pane, you can also copy a variable name and value to the clipboard, or just a variable value.
From the variables pane, there's a really useful feature called the Expression Evaluator, which lets you construct algebraic expressions about variables in your code and see the results. For example, if I'm stopped at the beginning of the factorial function, as you see in the The debugger about to enter a function screenshot, with n set to 6, I can right-click on the variables pane, choose Insert New Expression Evaluator, and type in a formula n*(n-1) in the dialog that appears, and a new line appears in the pane showing the expression and the value 30. While this is a pretty contrived example, I can view pointer values and pointer dereferences as well.
I can also conditionally break execution when a variable changes; this is called a conditional breakpoint or a data breakpoint. For example, let's put a loop in our main function, and break as we execute the loop. To do this, first change main to read:
#include <QCoreApplication>
#include <QDebug>
#include "MathFunctions.h"

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);
    
    int values[] = { 6, 7, 8 };

    for(int i = 0; i < sizeof(values)/sizeof(int); i++)
    {
        qDebug() << values[i]
                 << "! = "
                 << MathFunctions::factorial(values[i]);
    }

    return a.exec();
}

This will walk the values stored in the integer array values, and print the computed factorial of each value. Start debugging again, and let's add a data breakpoint on i. To do this:
	Put a breakpoint on the first line of main, the line initializing QCoreApplication.
	Right-click on i in the left pane and choose Add Data Breakpoint at Object's Address from the Add Data Breakpoint submenu.
	Continue by pressing F5 or the Continue button.


Execution will stop at line 11, the beginning of the for loop, when i is set to 0. Each time I hit F5 to continue, the application runs until the value of i changes as a result of the i++ statement at the end of the for loop.
You can also inspect and change individual values of arrays in the variable inspector, by clicking on the expansion arrow next to the array name in the variable inspector pane.
In addition to viewing and changing variable values, you can also view and change individual memory locations. You might want to do that if you're debugging a decoder or encoder for a binary format, for example, where you need to see a specific location in memory. From the variables pane, you have several choices:
	You can right-click on a given variable and open a memory window at that variable's address
	You can right-click on a given variable and open a memory window at the value that the variable points to (in other words, dereference a pointer to a memory location)
	You can right-click on the variable pane and open up a memory browser at the beginning of the current stack frame
	You can right-click on the variable pane and open up a memory browser at an arbitrary location in memory


The following screenshot shows the memory viewer showing the memory that contains the values of the array values:
[image: Examining variables and memory]The Memory Viewer window


The window shows the memory addresses down the left, the values of memory at sixteen bytes to a line (first in hexadecimal and then in ASCII), and colors the actual variable you've selected to open the window. You can select a range of values and then right-click to perform the following:
	Copy the values in ASCII or hexadecimal
	Set a data breakpoint on the memory location you've selected
	Transfer execution to the address you've clicked (probably not what you want to do if you're viewing the data)



Examining the call stack



The call stack is the hierarchy of function calls in your application execution at a point in time. Although the actual flow varies, typically in your code it begins in main, although what calls main differs from platform to platform. An obvious use for the call stack is to provide context when you press the Interrupt button; if your program is just off contemplating its navel in a loop somewhere, clicking on Interrupt and looking at the call stack can give you a clue as to what's going on.
Remember how I defined the factorial function in terms of itself? You can see this very clearly if you put a breakpoint in factorial, call it, and continue through the breakpoint a few times before looking at the call stack; you'll see something akin to the following screenshot:
[image: Examining the call stack]The call stack of a recursive function in mid-computation


Working from left to right, the fields of the call stack window are the stack level (numbering from the top of the stack down), the function being invoked, the file the function is defined in, and the line number of the function currently being executed. So, this stack frame says that we're on line 9 of MathFunctions::factorial in mathfunctions.cpp, called by line 13 of MathFunctions::factorial, which is called by line 13 of MathFunctions::factorial and so on, until it bottoms out in our main function, and the system startup code that the operating system uses to set up the application process before that.
If you right-click on a line of the call stack pane, you can:
	Reload the stack, in case the display appears corrupted.
	Copy the contents of the call stack to the clipboard; it is great for bug reports. If your application throws an exception or crashes in the debugger, you can copy the call stack and send it off to the developer responsible for that part of the code (or keep it for yourself as a souvenir).
	Open the memory editor at the address of the instruction at the line of code indicated by the function call in the call stack.
	Open the disassembler at the address of the instruction at the line of code indicated by the function call in the call stack.
	Disassemble a region of memory or the current function.
	Show the program counter address in the call stack window while debugging.




The Projects pane and building your project



You've seen how the .pro file affects your project's compilation, but there's even more to it than that. If you click the Projects button on the left of Qt Creator, you'll see the project's options, which consist of the Build & Run options, the Editor options, the Code Style options, and Dependencies, each in their own panel.
In most cases, you won't need to monkey around with any of these settings. But you may need to tinker with the Build & Run settings, especially if you're targeting multiple platforms, such as Windows and Linux with cross-compilers, or Android and iOS once Digia finishes support for those platforms. (I write more about this exciting development in Qt later in this book.)
The final thing you should know about is the build and run kit selector. Qt is one of the best cross-platform toolkits available today, and you can easily find yourself working on a system supporting multiple platforms, such as Linux and Android, or multiple versions of Qt. To support this, Qt has the notion of a build kit, which is just the headers, libraries, and associated stuff to support a specific platform. You can install multiple build kits, and choose which build kit you're compiling against by choosing Open Build and Run Kit Selector….. By default, if you followed the steps in the previous chapter to install Qt Creator, you'll have one build kit installed; from the Digia site, you can choose others. In a later chapter, we'll build a sample application for Qt on Android. To do this, you'd need to download and install the Qt on Android build kit, and then tell Qt Creator about the new kit. Adding kits is easy, you just need to install the kit using your operating system, and then do the following in Qt Creator:
	Click on Projects on the left.
	Click on Manage Kits… on the upper left-hand side of the pane that appears. The Build & Run options window appears.
	Qt may autodetect your new kit, or you may need to add it by clicking on Add. Once you click on Add, you'll need to specify the target platform (such as an Android device), the compiler to use, and so forth.


For the build settings, there are configuration options for your release and debug builds. In the Build Settings editor, you can control whether the build products are placed in their own directory (the default, a so-called shadow build where your build outputs are mixed with the source code), the qmake configuration for the build (and actually see how Qt Creator will invoke qmake), how Qt Creator cleans your project, and any environment variables you need to set for the build.
The run settings let you control whether your application runs locally or is deployed on a remote host (not always supported, but usually the case for platforms such as Android), any command-line arguments you want to pass to your applications, and the settings for the performance analyzer tool, which I will talk more about in Chapter 4, Localizing Your Application with Qt Linguist.
In the Editor panel, you can set specific editor options for this project. These override the global Qt Creator defaults, which you can set by choosing Options from the Tools menu and selecting the Text Editor option. These options include details like whether to use tabs or spaces when formatting your code (I strongly suggest you use spaces; it's compatible with editors everywhere), the number of spaces per tab stop, whether or not automatic indentation occurs, how source files should be encoded, and so forth.
The Code Style panel is another override to the global settings for Qt Creator (this time, it's the C++ and Qt Quick panels of the Options dialog available from the Options menu). Here, you can pick default styles, or edit the styles.
Tip
I'd strongly recommend that you pick a style that matches the existing source code you're editing; if you're starting from a blank page, the Qt default style is quite readable, and is my favorite.


The Dependencies panel lets you set the build order if your project file contains multiple subprojects, so that things build in the right order. For example, we could choose to open both our library project and our test project; if we do, we'll see the MathFunctions library listed in the dependencies, and we can select that project to build before the test application is built.

A review – running and debugging your application



You'll spend a lot of time editing, compiling, and debugging your code in Qt Creator, so, it's wise to remember the following basics:
	The arrow key runs your application without the debugger; to debug your application, choose the arrow key with the bug icon on it.
	You can switch between the editor view and the debug view of your application by clicking on the Edit or Debug view choice on the left; if you debug your application, Qt Creator will enter the debug view automatically.
	There's more to breakpoints than just stopping at a line of code! Use data breakpoints to help pin down weird bugs that happen only sometimes, or to quickly skip over the first bazillion items of a large loop.
	The variable pane lets you see more than just the contents of variables; you can also add expressions composed of several variables and arithmetic, or view arbitrary memory locations.
	Want to hack around a bug during a debugging session? You can change the values of variables in the variable pane and continue running, changing the program state as you go.



Summary



Qt Creator's integrated development environment contains an editor and tools to start the compiler, linker, and debugger to build and debug your applications. Using it, you can start and stop your application, place breakpoints while your application is stopped, or examine variables or the logical flow of your application.
While Qt Creator manages most of a project for you, sometimes you just have to get down and dirty with a .pro file. You can use scopes to handle conditional compilation (things like when building for a specific platform, or whether a file should be included in release or debug mode). The .pro file consists of scopes, variables, and their values; by setting the variables that the .pro file feeds qmake, qmake understands the dependencies in your project and magically creates a Make file to build your application.
In the next chapter, we'll turn from the mechanics of making a project build and look at Qt Creator's UI designer, and give you a brief introduction into the worlds of both Qt Widgets and Qt Quick.

Chapter 3. Designing Your Application with Qt Designer



Qt is perhaps best known as a cross-platform user interface toolkit, and only in the last few years has Qt Creator really evolved to be a full software development environment. Even in its early releases, however, Qt had an excellent facility for building user interfaces with Qt Designer, now part of Qt Creator. More recently, the developers building Qt have added Qt Quick as a second option for user interface development. Qt Quick extends the Qt libraries and the Qt Designer capabilities of Qt Creator to build fluid interfaces for touchscreens and set-top boxes and to facilitate the declarative nature of Qt Quick and Qt Meta-object Language (QML).
In this chapter, we will learn how to create user interfaces using Qt Designer, the user interface builder in Qt Creator. We begin by introducing key concepts to understanding the Qt framework: signals and slots. Next, we revisit using Qt Designer to create application forms, the basis of your user interface when using Qt Widgets. We touch on how to add resources and access them in your application, an important facet of user interface design. Then, we return to the code for a bit and build on the fundamentals of QML you learned in Chapter 1, Getting Started with Qt Creator. At the end of this chapter, you'll be well equipped to decide whether your application should be written using Qt GUI or Qt Quick, and to build your application with the help of the documentation that accompanies Qt Creator.
Code interlude – signals and slots



In software systems, there is often the need to couple different objects. Ideally, this coupling should be loose, that is, not dependent on the system's compile-time configuration. This is especially obvious when you consider user interfaces; for example, a button press may adjust the contents of a text widget or cause something to appear or disappear. Many systems use events for this purpose; components offering data encapsulate that data in an event, and an event loop (or, more recently, an event listener) catches the event and performs some action.
Qt offers a better way: signals and slots. Like an event, the sending component generates a signal—in Qt parlance, the object emits a signal—which recipient objects may receive in a slot for the purpose. Qt objects may emit more than one signal, and signals may carry arguments; in addition, multiple Qt objects can have slots connected to the same signal, making it easy to arrange one-to-many notifications. Equally important, if no object is interested in a signal, it can be safely ignored, and no slots connected to the signal. Any object that inherits from QObject, Qt's base class for objects, can emit signals or provide slots for connection to signals. Under the hood, Qt provides extensions to C++ syntax for declaring signals and slots.
A simple example will help make this clear. The classic example you find in the Qt documentation is an excellent one, and we'll use it again it here, with some extension's. Imagine you have the need for a counter, that is, a container that holds an integer. In C++, you might write:
class Counter
{
public:
  Counter() { m_value = 0; }
  int value() const { return m_value; }
  void setValue(int value);

private:
  int m_value;
 };

The Counter class has a single private member, m_value, bearing its value. Clients can invoke the value to obtain the counter's value, or set its value by invoking setValue with a new value.
In Qt, using signals and slots, we write the class this way:
#include <QObject>

class Counter : public QObject
{
  Q_OBJECT

public:
  Counter() { m_value = 0; }

  int value() const { return m_value; }

   public slots:
  void setValue(int value);
  void increment();
  void decrement();

signals:
  void valueChanged(int newValue);

private:
  int m_value;
};

This Counter class inherits from QObject, the base class for all Qt objects. All QObject subclasses must include the declaration Q_OBJECT as the first element of their definition; this macro expands to Qt code implementing the subclass-specific glue necessary for the Qt object and signal-slot mechanism. The constructor remains the same, initializing our private member to zero. Similarly, the accessor method value remains the same, returning the current value for the counter.
An object's slots must be public, and are declared using the Qt extension to C++ public slots. This code defines three slots: a setValue slot, which accepts a new value for the counter, and the increment and decrement slots, which increment and decrement the value of the counter. Slots may take arguments, but do not return them; the communication between a signal and its slots is one way, initiating with the signal and terminating with the slot(s) connected to the signal.
The counter offers a single signal. Like slots, signals are also declared using a Qt extension to C++, signals. In the example above, a Counter object emits the signal valueChanged with a single argument, which is the new value of the counter. A signal is a function signature, not a method; Qt's extensions to C++ use the type signature of signals and slots to ensure type safety between signal-slot connections, a key advantage signals and slots have over other decoupled messaging schemes.
As the developers, it's our responsibility to implement each slot in our class with whatever application logic makes sense. The Counter class's slots look like this:
void Counter::setValue(int newValue)
{
  if (newValue != m_value) {
      m_value = newValue;
      emit valueChanged(newValue);
  }
}

void Counter::increment()
{
  setValue(value() + 1);
}

void Counter::decrement()
{
  setValue(value() – 1);
}

We use the implementation of the setValue slot as a method, which is what all slots are at their heart. The setValue slot takes a new value and assigns the new value to the Counter class's private member variable if they aren't the same. Then, the signal emits the valueChanged signal, using the Qt extension emit, which triggers an invocation to the slots connected to the signal.
Tip
This is a common pattern for signals that handle object properties: testing the property to be set for equality with the new value, and only assigning and emitting a signal if the values are unequal.


If we had a button, say QPushButton, we could connect its clicked signal to the increment or decrement slot, so that a click on the button incremented or decremented the counter. I'd do that using the QObject::connect method, like this:
QPushButton* button = new QPushButton(tr("Increment"), this);
Counter* counter = new Counter(this);
QObject::connect(button, SIGNAL(clicked(void)),
                 Counter, SLOT(increment(void));

We first create the QPushButton and Counter objects. The QPushButton constructor takes a string, the label for the button, which we denote to be the string Increment or its localized counterpart.
Why do we pass this to each constructor? Qt provides a parent-child memory management between QObjects and their descendants, easing clean-up when you're done using an object. When you free an object, Qt also frees any children of the parent object, so you don't have to. The parent-child relationship is set at construction time; I'm signaling to the constructors that when the object invoking |this code is freed, the push button and counter may be freed as well. (Of course, the invoking method must also be a subclass of QObject for this to work.)
Next, I call QObject::connect, passing first the source object and the signal to be connected, and then the receiver object and the slot to which the signal should be sent. The types of the signal and the slot must match, and the signals and slots must be wrapped in the SIGNAL and SLOT macros, respectively.
Signals can also be connected to signals, and when that happens, the signals are chained and trigger any slots connected to the downstream signals. For example, I could write:
Counter a, b;
QObject::connect(&a, SIGNAL(valueChanged(int)),
                 &b, SLOT(setValue(int)));

This connects the counter b with the counter a, so that any change in value to the counter a also changes the value of the counter b.
Signals and slots are used throughout Qt, both for user interface elements and to handle asynchronous operations, such as the presence of data on network sockets and HTTP transaction results. Under the hood, signals and slots are very efficient, boiling down to function dispatch operations, so you shouldn't hesitate to use the abstraction in your own designs. Qt provides a special build tool, the meta-object compiler, which compiles the extensions to C++ that signals and slots require and generates the additional code necessary to implement the mechanism.


Creating forms in Qt Designer



Let's create a simple calculator application using Qt Designer and two forms: one form taking the arguments for an arithmetic operation, and a second dialog form for presenting the results. I'll do this twice in this chapter, first showing you how to do this using Qt GUI, and again using Qt Quick. The example is contrived, but will show you how to create multiple user interface forms in both environments, and give you practice in working with signals and slots.
Creating the main form



In Chapter 1, Getting Started with Qt Creator, you learned the basic elements of the Qt GUI Designer, including the palette of widgets you can use, the central edit pane, the tree of objects, and the property view. The following screenshot shows the Qt Designer again:
[image: Creating the main form]Qt Creator's Designer for Qt GUI applications


Working from left to right, the parts of the screen you see are:
	The views selector, presently indicating that the Qt Designer view is active
	The palette of possible widgets you can lay out on your form
	The form editor, above the connection editor, which lets you wire signals and slots between widgets
	The object tree, indicating all of the objects that have been laid out on the form and showing their parent-child relationships through the use of nested lists
	Below the object tree is the property editor, where you can edit the compile-time properties of any item you select on the form editor


Let's begin by creating a new Qt GUI project (select Qt Gui Application from the New File or Projects… dialog) naming the project QtGuiCalculator, and then follow these steps:
	In the Forms folder of the project, double-click on the mainwindow.ui file. The designer will open.
	Drag out Vertical Layout from the palette.
	Right-click on the layout and choose Lay out, then choose Adjust Size. The layout will shrink to a point.
	Drag two Line Edit widgets and drop them on the vertical layout in the object viewer (the far-right pane). You'll see the vertical layout grow to accept each of the line editors. You should now have something that looks like the following screenshot:[image: Creating the main form]Your layout after the first two text fields



	Drag the Horizontal Layout and drop it on the vertical layout in the object viewer.
	Drag-and-drop four Push Button widgets on the horizontal layout you just added.
	Resize the containing window so that the entire layout is shown in the window.
	Rename the buttons plusButton, minusButton, timesButton, and divideButton using the property browser in the lower-right corner. As you do so, scroll down to the text property (under QAbstractButton) and give each button a logical label like +, -, *, and /.
	Select the top input line and name it argument1Input.
	Select the bottom input line and name it argument2Input.


The next screenshot shows what you should see in the Qt Designer form editor pane so far. You can also manually arrange the buttons by breaking the layout and positioning them using the mouse, but that typically makes your layout less robust to window resizing, and is generally not a good idea:
[image: Creating the main form]Our calculator user interface


So far, this is pretty straightforward. We used a vertical layout and a horizontal layout to lay out the various controls; this takes advantage of Qt's dynamic constraints on widget layout and sizing. All widgets have a minimum and a maximum size, which are used by layouts to determine the actual size a widget consumes. Some widgets are elastic; that is, they stretch to fill their contents. When specifying the actual size of a widget, you can specify that it takes one of the following values in each of the x and y axes:
	The minimum size of the widget
	The maximum size of the widget
	A fixed size between its minimum and maximum
	An expanding size, expanding to fit the contents of the widget


Qt provides four kinds of layouts, which you can mix and match as we just did. You've encountered the vertical and horizontal layouts; there's also a grid layout, which lets you organize things in an m × n grid, and a form layout, which organizes widgets in a manner similar to how the native platform enumerates fields on a form.
Right now, our layout's a little bunched up. Let's add some spacers to better fill the space in the window, and also add a button for an about box:
	Drag Vertical Spacer and drop it between the input lines, and a second vertical spacer between the horizontal layout containing the row of buttons and the input line.
	Drag a Tool Button widget to the vertical layout, and add a spacer between the bottom line and the push button.
	Name the last push button aboutButton and give it the text About. We'll add an icon later.


The following screenshot shows the application as we've constructed it in the designer if you press the 
Run button:
[image: Creating the main form]Our application's main window


Now, let's make our result dialog. Right-click on the project and choose Add New…, then:
	In the dialog that appears, choose Qt on the left, and then Qt Designer Form in the middle. Click on Choose.
	Choose a dialog style for your dialog; choose Dialog with Buttons Bottom and click on Next.
	Name the file resultdialog.ui and click on Next.
	Click on Finish.
	In the dialog that appears, drag out Form Layout. Right-click on it and choose Lay out and Adjust size.
	Add a Label widget to the form layout. Change its text to read Result.
	Drag out another label, and name it result.


Now may be a good time for you to experiment with layouts and spacers, and style the dialog any way you wish.

Using application resources



Now, let's add an icon to the application for the About button. You can draw one, or go to a website such as The Noun Project (http://bit.ly/16n9bOk) for a suitable icon. Icons can be PNG, JPEG, or other formats; a good choice is SVG, because SVG images are vector based and scale correctly to different sizes. Put the resource file in your project directory, and then:
	Choose the Edit view in Qt Creator.
	Right-click on the solution and click on Add New…; then, choose Qt and Qt Resource File.
	Name the file resources.
	Add it to the current project.
	If resources.qrc isn't already open in the editor, double-click on it in the solution pane. The resource file editor will appear.
	Click on Add, choose Add prefix, and prefix /.
	Click on Add again, select Add Files, and choose your icon.


Icons are loaded in the read-only segment of your application through the Qt resource compiler. You can access them anywhere you'd access a file by prefixing the path and name of the resource with a colon. For example, we might place a text file in our application resources and then open the file for reading, like this:
QFile file(":/data/myfile.txt");
file.open(QIODevice::ReadOnly | QIODevice::Text);

while (!file.atEnd()) {
  QByteArray line = file.readLine();
  process_line(line);
}

Application resources are suitable for text and small media files such as icons or images. You should avoid using them for larger items like movies and large sounds, however, because they'll needlessly bloat the size of your application binary. For those purposes, it's better to package media files with your application and load them directly from the disk.
In the next section, we'll use the resource you added, when we add our about box to the application.


Instantiating forms, message boxes, and dialogs in your application



The Qt Designer generates an XML-based layout file (which ends in .ui) for each form you create in the designer. At compile time, Qt Creator compiles the layout into a header file that constructs the components for your user interface layout. The pattern typically used by Qt applications is to construct a private layout class that is instantiated by a main window or dialog's constructor, and then the user interface is instantiated. Here's how it works for the main window:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
  class MainWindow;
}

class ResultDialog;

class MainWindow : public QMainWindow
{
    Q_OBJECT
    
public:
    explicit MainWindow(QWidget *parent = 0);
    ~MainWindow();
    
private:
    Ui::MainWindow *ui;
};

#endif // MAINWINDOW_H

// In mainwindow.cpp:
#include "mainwindow.h"

// mainwindow.cpp
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
    QMainWindow(parent),
    ui(new Ui::MainWindow),
{
    ui->setupUi(this);
}

The Ui::MainWindow class is automatically constructed by the Qt Designer; by including its declaration in mainwindow.cpp, we create an instance of it and assign that instance to the ui field. Once initialized, we call its setupUi function, which creates the entire user interface you sketched out in Qt Designer.
The controls we laid out in Qt Designer are accessible as field names. For example, we can modify mainwindow.cpp to invoke an about box by adding a slot to mainwindow.h to handle the case when you click on the About button, and then add the code to invoke an about box in the implementation of the slot. To do that, follow these steps:
	Add a public slots declaration to mainwindow.h, along with a slot named aboutClicked. It should now read:class MainWindow : public QMainWindow
{
    Q_OBJECT
    
public:
    explicit MainWindow(QWidget *parent = 0);
    ~MainWindow();
    
public slots:
    void aboutClicked();

private:
    Ui::MainWindow *ui;
};


	Add the implementation of the aboutClicked slot to mainwindow.cpp. This code constructs a QMessageBox object on the stack, and sets its icon to the icon you added in your resources earlier, the text of the dialog to "Lorem ipsum", and the title of the message box to "About". The exec method of the QMessageBox invocation opens the message box and blocks the application flow until you dismiss the message box. It should read:void MainWindow::aboutClicked()
{
    QMessageBox messageBox;
    messageBox.setIconPixmap(QPixmap(":/icon.png"));
    messageBox.setText("Lorem ipsum.");
    messageBox.setWindowTitle("About");
    messageBox.exec();
}


	At the top of mainwindow.cpp, add an include statement for the QMessageBox class:#include <QMessageBox>


	In the MainWindow constructor, connect the signal from the about button to the slot you just created. Your constructor should now read:MainWindow::MainWindow(QWidget *parent) :
    QMainWindow(parent),
    ui(new Ui::MainWindow),
    results(0)
{
    ui->setupUi(this);
    QObject::connect(ui->aboutButton, SIGNAL(clicked()),
                     this, SLOT(aboutClicked()));
}




If we build the application, we now have a fully functioning about box, including the application icon you chose. The connect call is just like the previous signal-slot connections we've seen; it connects the clicked signal of aboutButton to your aboutClicked slot in the main window UI.
A word on naming signals and slots before we continue: a signal is typically named a verb in its past tense, denoting the semantics of the event that just occurred that it's trying to signal. A slot should somehow match those semantics, preferably including more detail as to how the signal is being handled. So Qt names the button's clicked signal logically, and I expand on this by giving a slot named aboutClicked. Of course, you can name your signals and slots whatever you like, but this is a good practice to follow.
Before we wire up the other buttons and implement our calculator logic, we need to set up the class for our results dialog. We'll follow the pattern of the MainWindow class, creating a private ui member that contains an instance of the compile-time generated object that constructs the UI for the results dialog. You can create the ResultDialog class using the New File wizard available by right-clicking on the project; choose Qt Designer Form Class and name it ResultDialog. The class itself should inherit from QDialog. The header file should look like this:
#ifndef RESULTDIALOG_H
#define RESULTDIALOG_H

#include <QDialog>

namespace Ui {
    class Dialog;
}

class ResultDialog : public QDialog
{
    Q_OBJECT
public:
    explicit ResultDialog(QWidget *parent = 0);
    ~ResultDialog();
private:
    Ui::Dialog *ui;
    
};

#endif // RESULTDIALOG_H

The first thing we need to do is forward-declare the Dialog class created by the Qt Designer; we do this in the namespace Ui, so it doesn't conflict with any other code in my application. Then, we need to declare a pointer to an instance of that class as a private member variable; we name this pointer ui, as was done for the MainWindow class.
You can guess what our ResultDialog implementation looks like:
#include "resultdialog.h"
#include "ui_resultdialog.h"

ResultDialog::ResultDialog(QWidget *parent) :
    QDialog(parent),
    ui(new Ui::Dialog)
{
    ui->setupUi(this);

}

ResultDialog::~ResultDialog()
{
    delete ui;
}

At construction time, it makes an instance of our Ui:Dialog class, and then invokes its setupUi method to create an instance of the user interface at runtime.

Wiring the Qt GUI application logic



The application logic for the calculator is simple: we add a property setter to the ResultDialog implementation that lets us set the result field of the dialog, and then wire up some arithmetic, signals, and slots in MainWindow to do the actual computation and show the dialog.
First, the change to ResultDialog:
void ResultDialog::setResult(float r)
{
    ui->result->setText(QString::number(r));
}

This method takes a float, the value to show in the dialog, and formats the result as a string using Qt's default formatting. Qt is fully internationalized; if you do this in English-speaking locales, it will use a decimal point, while if you do it with a locale set to a region where a comma is used as the decimal separator, it will use a comma instead. The number method is a handy one, with overloads taking doubles and floats, as well as integers, and arguments to indicate the precision and exponentiation of the returned string.
Now, the modified MainWindow class. First, the revised class declaration:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>
#include <QPair>

namespace Ui {
    class MainWindow;
}

class ResultDialog;

class MainWindow : public QMainWindow
{
    Q_OBJECT
    
    typedef QPair<float, float> Arguments;

public:
    explicit MainWindow(QWidget *parent = 0);
    ~MainWindow();
    
    Arguments arguments();

signals:
    void computed(float f);

public slots:
    void aboutClicked();
    void plusClicked();
    void minusClicked();
    void timesClicked();
    void divideClicked();

    void showResult(float r);
private:
    Ui::MainWindow *ui;
    ResultDialog* results;
};

#endif // MAINWINDOW_H

In addition to the base class QMainWindow, I now include QPair, a simple Qt template that lets us pass pairs of values. We'll use the QPair template, type-defined as Arguments, to pass around the pair of arguments for an arithmetic operation.
I add a signal, computed, which the class triggers any time it performs an arithmetic operation. I also add slots for each of the arithmetic button clicks: plusClicked, minusClicked, timesClicked, and dividedClicked. Finally, I add a signal showResult, which shows the result when a computation occurs.
The constructor of MainWindow now needs to do a bunch of signal-slot wiring for all of our buttons, signals, and slots:
MainWindow::MainWindow(QWidget *parent) :
    QMainWindow(parent),
    ui(new Ui::MainWindow),
    results(0)
{
    ui->setupUi(this);
    QObject::connect(ui->aboutButton, SIGNAL(clicked()),
                     this, SLOT(aboutClicked()));
    QObject::connect(this, SIGNAL(computed(float)),
                     this, SLOT(showResult(float)));
    QObject::connect(ui->plusButton, SIGNAL(clicked()),
                     this, SLOT(plusClicked()));
    QObject::connect(ui->minusButton, SIGNAL(clicked()),
                     this, SLOT(minusClicked()));
    QObject::connect(ui->timesButton, SIGNAL(clicked()),
                     this, SLOT(timesClicked()));
    QObject::connect(ui->divdeButton, SIGNAL(clicked()),
                     this, SLOT(divideClicked()));
}

After connecting the about button to the slot that shows the about dialog, I next connect the computed signal from MainWindow to its showResult slot. Note that this signal/slot carries an argument, the value to show. The remaining four connections connect each of the operation buttons with the code to perform a specific arithmetic operation.
The showResult slot creates a new ResultDialog object if we don't already have one, sets its result to the incoming value, and invokes the dialog:
void MainWindow::showResult(float r)
{
    if (!results)
    {
        results = new ResultDialog();
    }
    results->setResult(r);
    results->exec();
}

The arguments method is a helper method used by each of the arithmetic functions, it fetches the values from each of the input lines, converts them from strings to floating-point numbers, and does a little bit of error checking to ensure that the entries are valid floating-point numbers:
MainWindow::Arguments MainWindow::arguments()
{
    bool ok1, ok2;
    float a1 = ui->argument1Input->text().toFloat(&ok1);
    float a2 = ui->argument2Input->text().toFloat(&ok2);
    if (!ok1 || !ok2)
    {
        QMessageBox messageBox;
        messageBox.setIconPixmap(QPixmap(":/icon.png"));
        messageBox.setText("One of your entries is not a validnumber.");
        messageBox.setWindowTitle("Error");
        messageBox.exec();
    }
    return Arguments(a1, a2);
}

The QString method toFloat does just that: it converts a string to a floating-point number, returns the number, and sets the Boolean passed in to true if the conversion was successful, and false otherwise. The code does this for both argument input lines, then checks the resulting Boolean values, and reports an error if either argument is malformed, before returning a QPair of the arguments to the caller.
The remaining code actually performs the arithmetic, signaling that a computation has occurred when the operation is complete. For example, take the plusClicked slot:
void MainWindow::plusClicked()
{
    Arguments a = arguments();
    emit computed(a.first + a.second);
}

This obtains the arguments from the input lines using the arguments function, computes the sum, and then emits the computed signal with the summed value. Because we connected the computed signal to the showResults slot, this triggers a call to showResults, which creates the ResultDialog object if necessary, and shows the dialog with the computed result. The minusClicked, 
timesClicked, and divideClicked methods are all similar.
Learning more about Qt GUI widgets



There are whole books written about programming with the Qt GUI widget set: it's a very rich widget set that includes just about everything you'd need to build the average Macintosh, Windows, or Linux application, and has the advantage that the UI controls are familiar to most computer users. To explore further, see the Qt documentation at http://bit.ly/17stfw3.


Code interlude – Qt Quick and QML syntax



Most of the programming you do at the lowest level is imperative: you describe how an algorithm should work ("take this value and square it", "search for the first occurrence of this string and replace it", "format this data this way", and so forth). With Qt Quick, your programming is largely declarative: instead of saying how, you say what. For example, in C++ with Qt, we might write code like this to draw a rectangle:
QRect r(0, 0, 16, 16);
QPainter p;
p.setBrush(QBrush(Qt::blue));
p.drawRect(r);

This code creates a 16 x 16 pixel rectangle, allocates a QPainter object that does the drawing, tells the painter that its brush should be colored blue, and then tells the painter to draw the rectangle. In QML, I'd simply write the rectangle:
import QtQuick 2.0
Rectangle {
    width: 16
    height: 16
    color: "blue"
}

The difference is obvious: I am just saying that there is a blue rectangle that's 16 x 16 pixels. It's up to the Qt Quick runtime to determine how to draw the rectangle.
Qt Quick's underlying language is QML. It is based heavily on JavaScript, and in fact, most things that you can write in JavaScript you can also express in QML. Expression syntax is essentially unchanged: assignments, arithmetic, and so forth are all the same, and the name-value system is functionally the same, although object frames may be preceded by a type declaration (as you see with the Rectangle example that I just showed you).
Note
A key exception to the "what works in JavaScript works in QML" rule is the lack of a document object model (DOM) and things like the document root for global variables because there's no root context or DOM on which other things hang. If you're porting a web application to QML, be prepared to refactor those parts of your application's architecture.


Objects in QML must be parented in the fashion of a tree; each QML file must contain an encapsulating object, and then can have child objects that have child objects. However, there must be a single root for the hierarchy at the top of the file. Often, this root is a rectangle, which draws a base rectangle on which its children are presented, or an item, which is a container for a more complex user interface element that doesn't actually draw anything. Each item may have a name, which is stored in its id property.
Most visible QML items can have states; that is, a collection of properties that apply when a particular state is active. This lets you do things such as declare the difference between a button's dormant and pressed state; pressing the button just toggles between the states, and the button's color, shadow, and so on can all change with you, and there is no need to change each individual property.
A key concept in QML that's not present in JavaScript is that of binding: if two QML object properties share the same value, changing one changes the other. Binding couples values with notifications about values is similar to how references work in C++, or how pass-by reference works in other languages, but this happens in QML at the level of the variable name being referenced. This is very handy in coding things such as animations, because you can use the value of one object as the value for another object, and when the underlying value changes in one place, both objects are updated.
QML files can depend on each other, or include files of JavaScript for business logic. You've already seen one example of this at the top of every QML file: the import directive instructs the runtime to include the indicated file and version, so when I write import QtQuick 2.0, the runtime finds the declaration of the QtQuick module Version 2.0 and includes its symbols when parsing the file. This is how you can encapsulate functionality. QML files in your project are included by default, while you can also include JavaScript files and assign them to a specific JavaScript variable. For example, we could have a JavaScript file calculatorLogic.js that implements all of the functionality of my calculator, and in the QML, write:
import QtQuick 2.0
import "calculatorLogic.js" as CalculatorLogic
Item {
  // someplace in code
  CalculatorLogic.add(argument1, argument2);
}

The initial import loads JavaScript and assigns its value to the QML object CalculatorLogic; I can then dispatch methods and access properties of that object as if it were any other QML object.
Qt Quick declares a number of basic datatypes; these match closely with the datatypes you find in Qt when writing C++ code, although the syntax can differ. Some of the most important types you'll encounter are:
	A point with the x and y properties
	A rectangle with the x, y, width, and height properties
	A size with the width and height properties
	A color, which is a quoted string in HTML RGB notation or a named color from Qt's lexicon of colors (most colors you can think of have names in QML)
	A 2D, 3D, or 4D vector
	Basic types including Boolean values, strings, integers, and floating-point numbers


There are also a lot of visible types for user interface construction; in this chapter, there's only room to touch on a few. For a detailed list of all QML types and the documentation about those types, see http://bit.ly/17stfw3.

Creating Qt Quick applications in Qt Designer



In Chapter 1, Getting Started with Qt Creator, you gained basic familiarity with the Qt Designer for Qt Quick applications. Let's take another look before we recreate our calculator app in QML. The next screenshot shows the Qt Designer for the Qt Quick window:
[image: Creating Qt Quick applications in Qt Designer]The Qt Designer for Qt Quick


Working from the left again, we have the following components:
	The view selector, showing that the Qt Designer view is active
	The object hierarchy for the file being edited, showing the parent-child relationship between visible items in that file
	Below the object hierarchy is a palette of the items you can drag out onto the QML editor pane
	Next to the object hierarchy is a summary of the states for the object
	Below the summary of states is the object editor for the QML file
	Finally, there's a property editor that lets you adjust the properties of the currently selected QML itemTip
Frankly, I find it easier to just write QML than to use the designer. The syntax takes a little getting used to, but what the designer is good for is previewing the QML you've written by hand and making minor adjustments to its layout.





Speaking of layout, before we see our sample code in detail, it's worth noting that QML has a rich dynamic layout system. Visible items have an anchor property, and you can anchor an item's sides against that of its neighbors or the parent view. You saw this briefly in Chapter 1, Getting Started with Qt Creator, where we made MouseArea as big as its parent. We'll also use that to control the layout of the calculator argument input lines and operator buttons.
Start making our sample code now by choosing New File or Project… from the File menu, and walk through the wizard to create a Qt Quick 2.0 application. Name your application QtQuickCalculator.
Creating a reusable button



Our calculator has a button for each operation. While we could make each button a separate rectangle and MouseArea, it's far easier to make a single QML button that encapsulates the behavior of a button, including the change in appearance when you press on it, the placement of the button label, and so forth.
Create a new QML file by right-clicking on the project and choosing Add New…, then from the Qt items, choose QML File (Qt Quick 2). The button is a rectangle that contains a second rectangle, a Text label for the button, and a MouseArea region that handles button clicks. Name the file Button.qml, and edit it so that it reads as follows:
import QtQuick 2.0

Rectangle {
    id: button
    width: 64
    height: 64

    property alias operation: buttonText.text
    signal clicked

    color: "green"

    Rectangle {
        id: shade
        anchors.fill: button;
        color: "black"; opacity: 0
    }

    Text {
        id: buttonText
        anchors.centerIn: parent;
        color: "white"
        font.pointSize: 16
    }

    MouseArea {
        id: mouseArea
        anchors.fill: parent
        onClicked: {
            button.clicked();
        }
    }

    states: State {
        name: "pressed"; when: mouseArea.pressed == true
        PropertyChanges { target: shade; opacity: .4 }
    }
}

Working from the top of the file code:
	Within the scope of this file, the button's ID is simply button.
	It's 64 pixels in both width and height.
	The button has a single property configurable by its clients, the operation property. That property is actually an alias, meaning it's automatically setting the value of the buttonText.text property instead of being a separate field.
	The button emits a single signal, the clicked signal.
	The button's color is green.
	There's a rectangle that fills the button that is colored black, but has opacity of zero, meaning in normal use it's not visible, it's transparent. As the button is pressed, I adjust the opacity of this rectangle, to shade the button darker when it's being pressed.
	The text label of the button is 16 points in size, colored white, and centered in the button itself.
	The MouseArea region that accepts clicks for the button is the same size as the button and emits the clicked signal.
	The button has two states: the default state, and a second state pressed that occurs when the mouseArea.pressed property is true (because you are pressing the mouse button in the mouse area). When the state is pressed, I request a single PropertyChange event, changing the rectangle's opacity a bit to give a shadow over the button, darkening it.


You can actually see the two states of the button if you enter the Qt Designer (see the following screenshot). A state is just a name, a when clause indicating when the state is active, and a collection of PropertyChanges indicating what properties should change when the state is active. All visible QML items have a state property, which is just the name of the currently active state.
[image: Creating a reusable button]The states of the button


Note that QML uses signals and slots similar to Qt in C++, but there's no emit keyword. Instead, you declare the signal directly using the signal keyword and the name of the signal, and then you invoke the signal as if it were a function call. For each QML item's signal, the slot is named on followed by the signal name; for example, onClicked, onPressed, and so on. Thus, when we use the button, we write an onClicked handler for the clicked signal.

The calculator's main view



Go back to the editor and edit main.qml directly. We're going to declare our input lines, result line, and four operation buttons directly in code; you can do much of the same with the designer if you'd prefer, and then edit the code to match the following:
import QtQuick 2.0

Rectangle {
    width: 360
    height: 200
    color: "grey"

    TextInput {
        id: argument1
        anchors.left: parent.left
        width: 160
        anchors.top: parent.top
        anchors.topMargin: 10
        anchors.leftMargin: 10
        anchors.rightMargin: 10
        text: "2"
        font.pointSize: 18
    }

    TextInput {
        id: argument2
        anchors.right: parent.right
        width: 160
        anchors.top: parent.top
        anchors.topMargin: 10
        anchors.leftMargin: 10
        anchors.rightMargin: 10
        text: "2"
        font.pointSize: 18
    }

    Text {
        id: result
        anchors.left: parent.left
        anchors.right: parent.right
        anchors.top: argument2.bottom
        anchors.topMargin: 10
        anchors.leftMargin: 10
        anchors.rightMargin: 10
        text: "4"
        font.pointSize: 24
    }

    Row {
        id: buttonRow
        anchors.bottom: parent.bottom
        anchors.horizontalCenter: parent
        anchors.bottomMargin: 20
        spacing: 20
        Button {
            id: plusButton
            operation: "+"
            onClicked: result.text =
              parseFloat(argument1.text) + parseFloat(argument2.text)
        }

        Button {
            id: minusButton
            operation: "-"
            onClicked: result.text =
              parseFloat(argument1.text) - parseFloat(argument2.text)
        }

        Button {
            id: timesButton
            operation: "*"
            onClicked: result.text =
              parseFloat(argument1.text) * parseFloat(argument2.text)
        }

        Button {
            id: divideButton
            operation: "/"
            onClicked: result.text =
              parseFloat(argument1.text) / parseFloat(argument2.text)
        }
    }
}

The view has two TextInput lines, a read-only text result line, and then the operation buttons, wrapped in a Row item to give them a horizontal layout. The base view for the calculator is grey, and is in a window 360 × 200 pixels. The controls are positioned as follows:
	The first input line is anchored to the top left of the parent window, with margins of 10 pixels. It's 160 pixels long and the default height for an 18-point TextInput field.
	The second input line is anchored to the right side of the parent, with a margin of 10 pixels at the top and right. It's also 160 pixels long, and the default height of an 18-point TextInput field.
	The result input line's top is anchored to the bottom of the input line, and to the left of the parent rectangle. It also has 10 pixels of margins on each side.
	The buttons are spaced 20 pixels apart in a Row item that's anchored to the bottom of the parent.


These anchors let the view reflow nicely if you resize the application window; the input lines spread across the width of the window, and the button bar on the bottom moves down as the window enlarges.
Each of the buttons has a click slot that obtains the floating-point interpretation of each of the input lines and performs the appropriate arithmetic operation. They're each instances of Button, the QML class I showed you in the previous section. Note the use of the JavaScript function parseFloat in the onClicked handlers: as you'd expect from what I mentioned before, there's support for the functions in the JavaScript runtime in QML, so we can just invoke JavaScript functions directly.
The following screenshot shows the completed calculator application. Note, when running the app, if you mouse over a button and press down, you'll see the shading darken (this isn't shown in the screenshot). This reflects the two states in the button that I showed you in the previous section:
[image: The calculator's main view]The completed Qt Quick calculator application



Learning more about Qt Quick and QML



Qt Quick was designed to create fluid applications that don't have a lot of deep widget complexity. Media hubs, photo viewers, phone dialers, web browsers, and other sorts of applications that don't need to match the look and feel of the host platform (or are on embedded systems where the host platform is all written in Qt Quick) are good examples of applications suiting the Qt Quick paradigm. For more information about Qt Quick with a plethora of examples that show you the breadth and power of the platform, see http://bit.ly/16ULQ4V.


Summary



Qt comes with not one, but two complementary GUI toolkits: Qt GUI, which takes a traditional widget-based approach to GUI development, and Qt Quick, which provides a declarative approach better-suited for platform-agnostic user interfaces for media boxes, some cell phone applications, automobile dashboards, and other embedded environments. For both, Qt offers Qt Designer, a drag-and-drop environment that lets you construct, configure, and preview your user interface as you build your application.
Core to Qt is the notion of signals and slots, Qt's answer to callbacks and events for handling the late-binding required of today's GUI applications. Qt objects can emit signals, which are type-safe function declarations, and other objects can connect to those signals, triggering method calls when the signals are emitted.
In the next chapter, you'll take a break from learning about Qt Creator and graphical user interface development to focus on one key aspect of application development: localization. I'll show you how to use Qt Linguist and Qt's localization functions to localize your application.

Chapter 4. Localizing Your Application with Qt Linguist



Localization is an important, yet commonly neglected part of software development today. Most authors of applications, whether those applications are commercial or open source, have hopes to capture a large number of users for their application. Increasingly, this means supporting multiple languages in multiple locales; often needing support for multiple languages in one locale (think of French and English co-existing in Canada).
Qt has long had a framework for making applications easy to localize. With tools that help you avoid hardcoding strings in your application and a GUI named Qt Linguist to help manage translation, Qt eases the burden of localization throughout your application development cycle. In this chapter, we will look at Qt's strategy for localization, discussing the three tools (lupdate, lrelease, and Qt Linguist) Qt provides and how to use them, along with what you need to do as you write your application to take advantage of Qt's localization framework.
Understanding the task of localization



Localizing your application has several phases, which typically overlap throughout a project. These phases are:
	As you write your application, you place strings to localize your application in a specific way so that Qt can identify the strings as needing localization.
	Periodically, you extract all the strings in your application and give them to translators to translate.
	Translators provide translations for the strings in your application.
	You compile translation files with the translated strings for each language you want to support.


Qt provides four tools to facilitate these phases:
	The tr and qsTr functions for C++ and QML let you identify the strings in your application that require localization
	The lupdate command generates a list of the strings that need localization in your application
	Translators use Qt Linguist to provide translations of the strings in your application
	The lrelease command takes the translated strings from Qt Creator and packages them in a format for your application to consume


The following figure shows how these phases interact:
[image: Understanding the task of localization]The lupdate/Linguist/lrelease cycle


Software development is iterative, and localization is no exception. Small projects may prefer to do the localization just once, or perhaps twice, waiting until the application is nearly done before submitting the application strings for localization. Larger applications, or larger companies with a dedicated staff of translators, may prefer a more iterative approach, going through the localization cycle several times throughout application development. Qt supports both the models.


Marking strings for localization



All the way back in Chapter 1, Getting Started with Qt Creator, I told you to always mark your strings for localization using the tr and qsTr functions: tr for C++ and qsTr for QML strings. Doing so has two key advantages for you. First, it enables Qt to find every string that needs localization. Second, if you install a Qt translator object in your application and provide a translation file, the strings you wrap with these functions are automatically replaced by their localized equivalent.
Let's examine the use of tr in more detail. All Qt objects that include the Q_OBJECT macro in their declaration include the tr function. You've seen it with one argument, as shown in the following line of code:
button = new QPushButton(tr("&Quit"), this);

The leading & in the string isn't for the tr function, but for the keyboard accelerators; you can prefix a letter with & and it gets the default system (Alt for Windows, command for Apple, and Control for Linux). The tr function uses the string you pass as the string in the user interface if no translated version of the string appears in the application's current translation table, or uses the string in the current translation table if one exists.
The tr function can take a second argument, a disambiguation context that tr uses for the same string that may require different translations. It can also handle strings with plurals, as shown in the following line of code:
tr("%n item(s) replaced", "", count);

Depending on the value of count and the locale, a different string is returned. So, a native English translation might return "0 items replaced", "1 item replaced", "2 items replaced", and so on, while a French translation could return "0 item remplacé", "1 item remplacé", "2 items remplacés", and so on.
The qsTr function in QML works similarly, but it does not have the flexibility that the tr method has for disambiguation or handling plurals.

Localizing your application with Qt Linguist



Once you've marked your strings using tr or qsTr, you need to generate a table of those strings for Qt Linguist to localize. You can do this using the lupdate command, which takes your .pro file and walks your sources looking for strings to localize, and creates an XML file for Qt Linguist of the strings you need to translate. You'll do this once for each language you want to support. When doing this, it's best to name the resulting files systematically; one way to do that is to use the name of the project file, followed by a dash, followed by the ISO-639-2 language code for the language.
A concrete example is in order. This chapter has QtLinguistExample; I can run lupdate using a command like this to create a list of strings that I'll translate to Esperanto (ISO-639-2 language code EPO):
% lupdate -pro .\QtLinguistExample.pro –ts .\QtLinguistExample-epo.ts

Where the –pro file indicates the .pro file that contains the list of sources to scan for strings to translate, and the –ts argument indicates the name of the translation files to be written.
Tip
You'll need lupdate in your path, of course. How you set your path will depend on whether you're working on Windows, Mac OS X, or Linux, and where you've installed Qt. Some installations of Qt may update your path automatically, while others may not. On my Windows machine, for example, I find lupdate at C:\qt\5.1.0\msvc2012_64\bin\lupdate.exe.


The .ts file is an XML file with tags to indicate the strings to translate their context in your application's source code, and so forth. Qt Linguist will save the translations to the QM file as well, but don't worry, lupdate is smart enough not to overwrite existing translations if you run it again after providing some translations.
Qt Linguist is a GUI application; when you start it you'll see a screen very similar to the next screenshot:
[image: Localizing your application with Qt Linguist]The Qt Linguist application editing a QM file


To begin, you need to open a .ts file you generated by navigating to File | Open, and choosing a translation file. You'll be prompted for the destination language, and then you're given a list of the strings it found. You—or your translators—need only to walk through each string and enter the corresponding string in the translated language. As you do so, you can see the context of the string in the source code in the right-most pane; the line of source from which the string was captured is highlighted.
Qt Linguist lets you track which strings you've translated and which still need translation. The icon to the left of each of the strings can be:
	A black question mark indicating that a string has yet to be translated
	A yellow question mark indicating that the string doesn't pass all of Qt Linguist's validation tests, but you're ignoring the failures
	An exclamation point indicating that the string you've provided doesn't pass Qt Linguist's validation tests
	A yellow checkbox indicating that you've provided a translation, but Qt Creator may have found a problem with it
	A green checkbox indicating that the string has been translated and is ready to go


Qt Linguist provides some simple validation tests, such as ensuring that strings with arguments such as printf have the same number of arguments in each translation.
Qt Linguist also supports phrase books; you may be able to download a phrase book with common strings already localized to the language you're targeting.
At any point, you can generate a translation file for inclusion in your application by running lrelease. For example, to create one for my Esperanto strings, I'd use lrelease as follows:
% lrelease .\QtLinguistExample-epo.ts .\QtLinguistExample-epo.qm

This takes the incoming .ts file, and generates a .qm file with the strings. The .qm files are highly compressed binary files used by Qt directly in the process of rendering your application.

Including localized strings in your application



In order to supply translated strings to the tr and qsTr functions in your application, your application needs to include a QTranslator object to read the .ts files and replace the strings provided to tr and qsTr with their translated counterparts. We do this in your main entry point function, as shown in the following block of code:
QApplication a(argc, argv);
QTranslator translator;
bool result = translator.load("QtLinguistExample-epo.qm");
a.installTranslator(&translator);

    // Other window setup stuff goes here
    
return a.exec();

This code allocates a QTranslator object, and loads the indicated translation file into the translator before installing it into QApplication. In this example, we're hardcoding the language to localize to Esperanto.
Note that if you want to support the locale as picked by the system, we might choose to do it this way:
QString locale = QLocale::system().name();
QTranslator translator;
translator.load(QString("QtLinguistExample-") + locale);

This determines the system locale, and attempts to load the localized string file for the system's current locale.
For this to work, the .qm files for the application need to be locatable by the application. They should be in the output directory; one way to do this during development is to turn off shadow builds in Qt Creator, under Build Settings in the Projects pane. As you build your application's installer—a platform-specific task outside the scope of this book—you need to include your .qm files with the application binary.

Localizing special things – currencies and dates with QLocale



A common thing you may need to do is localize currencies and dates. Qt makes this easy, although the solution isn't obvious until you've thought about it a bit.
First, you should know about the arg method of QString. It replaces an escaped number with the formatted version of its argument; if we write:
QString s = new QString("%1 %2").arg("a").arg("b");

Then s contains the string a b. Second, you should know about the toString method of QLocale, which formats its argument in a locale-specific way.
So, we could write:
QString currencyValue = QString("%1 %2")
    .arg(tr("$")).arg(QLocale::toString(value, 'g', 2)

This uses tr to localize the currency symbol, and the QLocale class's static method toString to convert the value to a string with the locale-specific decimal separator (period in the U.S. and Canada, comma in Europe).
Date formatting is similar: the toString method of QLocale has overloads for the QDateTime, QDate, and QTime arguments, so you can simply write:
QDateTime whenDateTime = QDateTime::currentDateTime();
QString when = QLocale::toString(whenDate);

This gets the current date and time and stores it in whenDateTime, and then makes a string out of it using the locale's default formatting. The toString method can take a second argument that determines the output format. It can be one of the following:
	QLocale::LongFormat, which uses the long version of month and day names
	QLocale::ShortFormat, which uses the short version of day and month names
	QLocale::NarrowFormat, which provides the narrowest form of formatting for the date and time



Summary



Localizing applications with Qt is easy using Qt Linguist and the localization framework in Qt. To use the framework, though, you must mark your strings to localize with tr or qsTr in your source code wherever they appear. Once you do so, you can create a source file of strings to translate with Qt Linguist using Qt's lupdate command, and then provide translations for each string. Once you've provided the translations, you compile them using lrelease, and then include them in your application by installing a QTranslator object in your application's main function and loading the translation table generated by lrelease.
In the next chapter, we will look at another important aspect of software development Qt Creator supports, which is performance analysis with the QML Profiler and Valgrind.

Chapter 5. Performance Optimization with Qt Creator



We don't use performance analysis tools every day, but we're glad they're there when we need them. Commercial tools like the ones that come with Microsoft Visual Studio or standalone tools such as IBM's Rational Rose Purify can set you back a pretty pile of change—fortunately, Qt Creator has most of what you need built-in, or has support for working with open source tools to help you profile the runtime and memory performance of your application.
In this chapter, we will see how we can perform runtime profiling of QML applications using the QML performance analyzer, and learn how to read the report it generates. We then turn our attention to memory performance analysis with Valgrind using Qt Creator, which is a free option to look for memory leaks and heap corruption on the Linux platform.
The QML performance analyzer



Qt Quick applications are supposed to be fast, with smooth, fluid user interfaces. In many cases, that's easy to accomplish with QML; the contributors to QML and the Qt Quick runtime have put a great deal of effort into creating an environment that performs well under a wide variety of circumstances. Sometimes, however, try as you might, you may find that you just can't squeeze the performance that you'd like out of your application. Some mistakes are obvious, such as:
	Doing a lot of compute-intensive tasks between state changes or actions that trigger drawing operations
	Excessively complex view hierarchies with thousands of elements on the display at once
	Running on very limited hardware (often in combination with the first two problems)


Knuth famously said that "Premature optimization is the root of all evil", and he's definitely right. However, there might come a time when you need to measure the performance of your application, and Qt Creator includes a special performance analyzer for just this purpose. With it, you can see how much time your application spends in each QML method, as well as measure critical aspects of your application that are at the edge of your control, like how long it takes to create your application's view hierarchy.
Let's take a closer look.
QtSlowButton – a Qt Quick application in need of performance tuning



Let's analyze the performance of QtSlowButton, a poorly-performing example program I put together for you in this chapter. QtSlowButton has two QML components: a button based on the calculator button from Chapter 3, Designing Your Application with Qt Designer, and a view with buttons you can press. Here's the implementation of the button:
import QtQuick 2.0

Rectangle {
    id: button

    width: 128
    height: 64

    property alias label: buttonText.text
    property int delay: 0

    color: "green"

    Rectangle {
        id: shade
        anchors.fill: button;
        color: "black"; opacity: 0
    }

    Text {
        id: buttonText
        anchors.centerIn: parent;
        color: "white"
        font.pointSize: 16
    }

    MouseArea {
        id: mouseArea
        anchors.fill: parent
        onClicked: {
            for(var i = 0; i < button.delay; i++);
        }
    }

    states: [
        State {
            name: "pressed"; when: mouseArea.pressed == true
            PropertyChanges { target: shade; opacity: .4 }
        }
    ]
}

Each button simply runs a for loop when you push it; its delay property controls how many times it cycles through the loop. In addition, each button has a label, which the button draws in the center of the clickable area.
The main user interface consists of three buttons in a Column region, labeled fast, medium, and slow, with progressively longer delays:
import QtQuick 2.0

Rectangle {
    width: 180
    height: 360

    Column
    {
        spacing: 20
        Button
        {
            delay: 10000;
            label: "fast";
        }
        Button
        {
            delay: 100000;
            label: "medium";
        }
        Button
        {
            delay: 300000;
            label: "slow";
        }
    }
}

You can either load the source project that comes with this book for this example, or you can create a new Qt Quick project and make a button and main view with this code.
To analyze the application's performance:
	Build the application.
	Choose QML Profiler from the Analyze menu. The application will start, and Qt Creator will switch to the Analyze view.
	In the application itself, click on each application button a few times. You will be expected to wait after you click on each button.
	Quit the application.Tip
The QML Profiler uses TCP/IP to make a connection between the running application and the profiler, by default on port 3768. You may need to tinker with your host's firewall settings to get things to work correctly. On Windows, be sure to permit the connection in the Windows Firewall dialog that appears.





The following screenshot shows the Analyze view after running your application. The QML Profiler has three tabs, and shows the first by default:
	The first tab is the timeline, indicating what things happened at what point through the application, and how long they took
	The second tab lists the events the QML application processed, and how much time was spent in each event
	The third tab lists the JavaScript functions the program encountered while running, and how long the application spent in total to run each function


In the following screenshot, I've clicked on the Handling Signal row to expand the signals the application handled. You can see it handled one signal, onClicked, a total of three times, and the amount of time spent in each is shown as varying bars on the graph. Clearly, if the application were doing something that could be optimized, there'd be an opportunity for performance improvement here:
[image: QtSlowButton – a Qt Quick application in need of performance tuning]The Timeline view, showing how much time was spent in my onClicked method


The next screenshot shows a different view of this information, indicating that up to the limit of numerical accuracy, the application spent all of its measured time in the onClicked handler for the button: clearly a performance "hot spot" in this case. Interestingly, every incident of my JavaScript is measured here, including the $when clause that puts the opaque filter in front of the button when it's pressed. Looking at the JavaScript view can be very helpful if you need to look at where things are happening in your application in a broad sense:
[image: QtSlowButton – a Qt Quick application in need of performance tuning]The total time spent running different bits of JavaScript in QtSlowButton


The next screenshot is likely the most interesting for performance geeks, because it shows the amount of time QML spent for each and every event it handled running the application. Again, we see the onClicked handler consuming the lion's share of the processor resources, but other things like the creation of the rectangles for the view and the variable binding for the state of a push button are shown as well. Typically, we'll use the JavaScript view to get the broad picture of where the problems in your application are, while you'll use the Events view to zero in on specific problems:
[image: QtSlowButton – a Qt Quick application in need of performance tuning]The Events view of the QML Profiler, showing each and every event in QtSlowButton





Finding memory leaks with Valgrind



As we discussed in Chapter 3, Designing Your Application with Qt Designer, you should really get in the habit of using Qt's parent-child relationship when managing memory for classes of QObject in your application to avoid memory leaks. In my time writing Qt applications, the only time I've had to deal with memory leaks was when I didn't do that. In addition, using classes such as QSharedPointer for pointers that aren't based on QObject is a good idea too.
Sometimes, though, you may introduce a memory leak you can't find on your own. In that case, a tool such as Valgrind can be a lifesaver; it tracks every memory allocation and free operation in your application, alerting you when your program terminates if it hasn't freed all the memory it allocates.
Unfortunately, Valgrind is a Linux-only tool. If you're writing pure Qt code, this shouldn't be a serious issue for you even if you're developing on Windows or Mac OS X, because you can port your application to Linux and run it in Valgrind there. To do that, you'll want to use an application such as VMware Fusion, VMware Player, Microsoft HyperV, or Parallels to set up a virtual machine running Linux (I like to use Ubuntu), install Qt Creator, and get your code running there. (Unfortunately, if you have Windows-specific code or libraries in your application, this isn't an option.)
Tip
If you build your application for Windows, a commercial leak detector such as Rational Purify may be an option.


Before continuing, you should make sure you have Qt Creator running under a Linux distribution, and install Valgrind from http://bit.ly/14QwiQZ or use your package manager. For example, on Ubuntu, I can install Valgrind with the following command:

sudo apt-get install valgrind


When you use Valgrind, you actually run your application inside of Valgrind; instead of starting your application, you start Valgrind, which starts your application.
QtLeakyButton – a Qt C++ application in need of memory help



The QtLeakyButton application does one thing: it presents a button that when clicked, allocates 512 KB of RAM. The following is the code (you can either run the sample that accompanies this book, or create a Qt GUI application with a single button and a label and use this code for your MainWindow class):
// mainwindow.h
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

#include <QMainWindow>

namespace Ui {
    class MainWindow;
}

class MainWindow : public QMainWindow
{
    Q_OBJECT
    
public:
    explicit MainWindow(QWidget *parent = 0);
    ~MainWindow();

public slots:
    void leakPressed();

private:
    Ui::MainWindow *ui;
    int m_count;
};

#endif // MAINWINDOW_H

// mainwindow.cpp

#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent) :
    QMainWindow(parent),
    ui(new Ui::MainWindow),
    m_count(0)
{
    ui->setupUi(this);
    connect(ui->leakButton, SIGNAL(clicked()),
            this, SLOT(leakPressed()));
}

MainWindow::~MainWindow()
{
    delete ui;
}

void MainWindow::leakPressed()
{
    void *p = new char[512 * 1024];
    m_count++;
    ui->leakCount->setText(QString::number(m_count));
}

The MainWindow class has an integer counter and a ui slot for the instantiated form. The MainWindow constructor instantiates this form, and then connects the clicked signal of leakButton to MainWnidow::leakPressed. The leakPressed method just allocates memory and bumps the counter, updating the counter with the number of times you've pressed the button.
To use Valgrind, we need to add a new run target to your application. To accomplish this, do the following:
	Click on Projects on the left, and then on Run.
	Click on Add.
	For Name, enter valgrind.
	For Executable, add the path to Valgrind (usually /usr/bin/valgrind).
	For arguments, enter the following:
-q --tool=memcheck --leak-check=full --leak-resolution=low ./<your-app-target-name>



	For Working Directory, enter $BUILDDIR.


Now we can select the Valgrind run target for your application. We need to do this with the debug build because Valgrind needs the debug symbols in our application to produce a meaningful report. To use Valgrind, start the application and click on the button a few times. The Valgrind process outputs information continually, but most of the output comes after we quit the application.
Valgrind produces a lot of output, which can take some time to sort through. We're looking for the leak summary, which indicates the number of bytes definitely lost and indirectly lost. The blocks that are definitely lost are memory you've allocated and not freed; indirectly lost memory is memory leaked because it's referred to by another pointer, and the referring pointer wasn't freed. The output will look something like:

X bytes in 1 blocks are definitely lost in loss record n of m
   at 0x........: function_name (filename:line number)


Here, X indicates the number of bytes that were leaked, and the address of the leaked block is shown on the second line. The record numbers indicate internal record numbers used by the application's memory allocator, and probably won't help you very much.
We should really focus on leaks in our application, because it's possible that Qt may have leaks of its own. Valgrind supports suppression files, which indicate what leaks should be ignored; if you can find and download one for the versions of Qt you're building against, you can include a reference to the suppression file by modifying the argument line to read:

-q --tool=memcheck --leak-check=full --leak-resolution=low --suppressions=suppresion.txt ./[your-app-target-name]


Finding memory leaks in your application is part art and part science. It's a good exercise to go through periodically during application development, to ensure that leaks you may introduce are quickly found while you're most familiar with the new code you're running.


Summary



Qt Creator provides the QML analyzer, which lets you perform runtime analysis of your Qt applications. You can see a graph in time of how your application is running, as well as dive into detail about how your application spends its time drawing, binding to variables, and executing JavaScript.
Qt Creator also integrates well with Valgrind on Linux, letting you look for memory leaks in your application. Using Valgrind on Linux, you can see blocks that were allocated but not freed, and more importantly, how big they are and where in the code they were allocated, giving you a head start in determining why they were not freed.
In the next chapter, we turn from specific parts of Qt Creator to one of its most exciting aspects in general: the ability to use Qt Creator to compile and test applications for mobile platforms such as Google Android.

Chapter 6. Developing Mobile Applications with Qt Creator



Qt and mobile development have a long history. Qt's beginnings included early releases on Linux Personal Digital Assistants in the late nineties and at the turn of this century. Since then, it's been ported to a number of mobile environments, including the mobile variants of Linux that Nokia shipped such as MeeGo, as well as Symbian. While Symbian and MeeGo have come and gone, Qt's acceptance of mobile platforms lives on, most recently with support for Android.
In this chapter, we talk a little about writing mobile applications, and then learn how to set up Qt Creator to write applications for Android. It's worth noting right at the outset that while we will leverage everything you have learned about Qt development developing a mobile application, we also need to understand how the environments that mobile software runs in are different from traditional desktop and laptop environments, and how to design for those constraints. Once we understand those differences, writing software for Android with Qt is a snap!
A mobile software development primer



The key difference to remember when developing software for any mobile platform—such as a cell phone or tablet—is that every resource is at a premium. The device is smaller, meaning that:
	Your user will pay less attention to your application, and use it for shorter periods of time
	The screen is smaller, so you can display less information on the display (don't be fooled by the high-dot pitch of today's displays: reading 6-point font on a 4-inch display is no fun, high pixel densities or not)
	The processor and graphics processing unit are slower
	There's less RAM and less graphics memory
	There's less persistent storage for your application's data
	The network is slower, by as much as three orders of magnitude


Let's look at each of these in more detail.
User attention is at a premium



Can you walk and chew gum at the same time? I can't—but many people walk, chew gum, and use their mobile device all at the same time. (Worse, some even drive while using their devices!) It's very rare for an application on a cell phone or tablet to have 100 percent of the user's attention for more than a few minutes at a time. A good rule of thumb is that the smaller the device, the more likely the user is to treat it as something to pick up and glance at, or use it while they're doing something else.
The limited attention your user pays to your application has three key consequences:
	Your application must be fast. Mobile devices are no place for extra progress bars, spinning cursors, or lengthy splash screens.
	Your application must be succinct. The best mobile applications show data on only a page or two, having very flat navigation hierarchies. A common structure is to have a single screen of information, and a single screen with preferences that lets you configure what information should be shown (such as what location for which you're getting the information). Favor clear iconography over verbose text—if you can't draw, find someone who can, or buy icons from a site such as The Noun Project (http://bit.ly/1fvBsnu).
	Your application must be accessible. Buttons should be big (a good guideline is that no hit target in your application should be smaller than the pad of your finger, about a square centimeter), and the text should be bigger, if possible.


For these reasons, Qt Quick is the better choice for most mobile applications you'll write. You can create smooth and responsive applications that are visually pleasing and don't overwhelm your users.

Computational resources are at a premium



Mobile devices must carry their power source with them: that means batteries. While batteries have improved over the last twenty years, they haven't kept up with Moore's Law; most of the improvements have been on the processor side, as processors have become smaller and dissipate less heat in the course of a normal operation.
Nonetheless, mobile devices aren't as fast as desktops or laptops—a good way to think about it is that the last generation's processor design probably scales well for mobile devices today. That's not to say that mobile devices are slow, just that they're slower. Equally important, you can't run the processor or graphics processor at full tilt without seriously affecting battery life.
Qt—especially Qt Quick—is optimized for low power consumption, but there are still things you can do to help squeeze the best performance out of your mobile application:
	Don't poll: This is probably the single most important point. Use Qt's asynchronous signal-slot mechanism wherever possible, and consider multithreading using QThread, Qt's multithreading environment, if you need to do something in the background. The more your application sleeps, the further it prolongs the battery life.
	Avoid gratuitous animations: Some animation is both customary and important in today's applications; well-thought-out animations can help to orient the user as to where they've come from in an application's user interface and where they're going. But don't flash, blink, or otherwise animate just to see pixels move; under the hood a lot has to happen to move those pixels, and that can eat battery life.
	Use the network judiciously: Most mobile devices have at least two radios (cellular and Wi-Fi); some have more. Accessing the network should be seen as a necessary evil, because the radios consume power when transmitting and receiving data. And don't forget data parsing, either: if you're parsing a lot of data, you're likely running the CPU at full tilt to do the heavy lifting, and that means lower battery life.



Network resources are at a premium



I've already warned you about the high cost to the battery for using the network. To add insult to injury, most mobile devices run on networks that can be up to three orders of magnitude slower than a desktop: your office desktop may have gigabit Ethernet, but in many parts of the world, a megabit per second is considered fast. This situation is rapidly improving, as network operators deploy cellular wireless networks such as Long Term Evolution (LTE) and Wi-Fi hotspots everywhere, but it's by no means uniformly available. On a recent trip in California, in the course of eight hours, my cellular network connectivity throughput ran the gamut from faster than my cable modem (running at 25 megabits per second) down to the dreaded megabit-a-second that can make a large web page crawl.
For most applications, you should be fine using the Hypertext Transfer Protocol (HTTP); Qt's QNetworkAccessManager class implements HTTP and HTTPS, and using HTTP means that you can build web services to support your backend in a standard way.
If you're developing a game or a very custom kind of application, you may need to build a custom protocol. Consider using QTcpSocket or QUdpSocket for your network protocol, remembering of course that TCP is a reliable protocol, while with UDP there's no guarantee of your data reaching its destination; reliability is up to you.

Storage resources are at a premium



Mobile devices typically use all solid-state memory. Although solid-state memory has come down in price significantly in the last several years, it's still not as cheap as the rotating magnetic memory that makes up the disk drives in most desktops and many laptops. As a result, mobile devices may have as little as 8 GB of flash memory for persistent storage, or if you're lucky, 16 or 32 GB. That's shared across the system and all applications; your application shouldn't use more than a few gigabytes at most, and that's only if your user is expecting it—say, for a podcast application. That should be the sum total of the size of your application, its static resources such as audio and video, and anything it might download and cache from the network.
Equally important, the runtime size of your application needs to be smaller. Most mobile devices have between a half GB and 2 GB of dynamic RAM available; the system shares this across all running applications, so it's important to allocate what you need and free it when you're done. Qt's memory management system, which I explained in Chapter 3, Designing Your Application with Qt Designer, and Chapter 5, Performance Optimization with Qt Creator, comes in handy here.
Finally, don't forget that your graphics textures can eat valuable GPU memory as well. While Qt manages the GPU for you, whether you're using Qt or Qt Quick, you can write an application that consumes all of a device's texture memory, making it difficult, or impossible, for the native OS to render what it needs if it needs to interrupt your application.

To port or not to port?



To paraphrase the immortal bard, that's the question. With Qt's incredible flexibility across numerous platforms, the temptation to grab an existing application and port it can be overwhelming; especially in the vertical markets where you have a piece of custom software written in Qt for the desktop and a customer who wants "the same thing" for the latest mobile device for their mobile workers. In general, the best advice I can offer is to avoid porting UI, and only port the business logic in an application if it seems well-behaved for mobile devices.
UI ported from the desktop or a laptop environment seldom works well on mobile devices. The user's operating patterns are just too different: what a person wants to do while seated at a desktop or laptop is just not the same as what they want or can do standing up, walking around, or in brief spurts in a conference room, cafeteria, or café. If you're porting from one mobile device to another, it may not be so bad; for example, a developer with a Qt application for MeeGo, Nokia's Linux-based platform, shouldn't have too much of a problem bringing their application to Qt on Android.
Porting business logic may be a safer bet, assuming it doesn't make heavy use of the CPU, network, or dynamic or static storage. Qt offers a wrapper for SQLite through QtSQL, and many enterprise applications use that for local storage. That's a reasonable alternative for data storage, and most HTTP-based networking applications shouldn't be too hard on the network layer, as long as they have reasonable caching policies and don't make too many requests for data too often. But if the application uses a lot of storage or has a persistent network connection, it's time to rearchitect and rewrite.

A word on testing



Testing any application is important, but mobile applications require additional effort in testing, especially Android applications. There's a wide variety of devices on the market, and users expect your application to perform well on any device they may have.
The most important thing you can do is test your application on real devices, as many of them as you can get your hands on, if you're interested in releasing your application commercially. While as you will see, the Android SDK used by Qt Creator comes with an emulator that can run your Android application on your desktop or laptop, running in an emulator is no substitute for running on the device. A lot of things are different, from the size of the hardware itself to having a touch screen, and of course the network connection and raw processing power.
Fortunately, Android devices aren't terribly expensive, and there are an awful lot of them around. If you're just starting out, eBay or the Google Play Store can be a good place to shop for an inexpensive used or new device. If you're a student or budding entrepreneur, don't forget that many family members may have an Android device you can borrow, or you can use the Android cell phone that you already have.
What and when should you test? Everything and often! On a multiweek project, you should never be more than a few days away from a build running on a device. The longer you spend writing code that you haven't tested on a device, the more assumptions you may be making about how the device will perform.
Be sure not to just test your application in good circumstances, but in bad ones as well. Network connectivity is a prime example; you should test your error handling in cases with no network coverage. If you have good network coverage where you're working, one trick you can use is to put the device in a metal cookie tin or paint can; the metal attenuates the signal and has the same effect as the signal being lost in the real world (say, in a tunnel or on the subway).



Setting up Qt Creator for Android



Android's functionality is delimited in API levels; Qt for Android supports Android level 10 and above: that's Android 2.3.3, a variant of Gingerbread. Fortunately, most devices in the field today are at least Gingerbread, making Qt for Android a viable development platform for millions of devices.
Downloading all the pieces



To get started with Qt Creator for Android, you're going to need to download a lot of stuff. Let's get started:
	Begin with a release of Qt for Android, which was either part of the Qt installation you downloaded in Chapter 1, Getting Started with Qt Creator, or you need to go back and download it from http://bit.ly/13G4Jfr
	The Android developer tools require a current version of the Java Development Kit (JDK) (not just the runtime, the Java Runtime Environment, but the whole kit and caboodle); download it from http://bit.ly/14HAaj4, or you may be able to get things to work with Linux using OpenJDK at http://bit.ly/1deNuTX
	You need the latest Android Software Development Kit (SDK), which you can download for Mac OS X, Linux, or Windows from http://bit.ly/146nsPl
	You need the latest Android Native Development Kit (NDK), which you can download from http://bit.ly/16UYK50
	You need the current version of Ant, the Java build tool, which you can download from http://bit.ly/18AVIlF


Download, unzip, and install each of these, in this order. On Windows, I installed the Android SDK and NDK by unzipping them to the root of my hard drive, and installed the JDK in the default location I was offered.

Setting up the environment variables



Once you install the JDK, you need to be sure that you've set your JAVA_HOME environment variable to point to the directory where it was installed. How you do this differs from platform to platform; on a Mac OS X or Linux box, you'd edit your .bashrc, .tcshrc, or the others; on Windows you'll go into system properties, click on Environment Variables..., and add the JAVA_HOME variable. The path should be to the base of the JDK directory: for me, it was C:\Program Files\Java\jdk1.7.0_25\, although the path for you will depend on where you installed the JDK and what version you installed. (Make sure you set the path with the trailing directory separator; the Android SDK is pretty fussy about that sort of thing.)
Next up, you need to update your PATH variable to point to all the stuff you just installed. Again, it's an environment variable, and you'll need to add the following:
	The bin directory of your JDK
	The android\sdk\tools directory
	The android\sdk\platform-tools directory


For me, on my Windows 8 computer, my PATH variable includes the following now:

...C:\Program Files\Java\jdk1.7.0_25\bin;C:\adt-bundle-windows-x86_64-20130729\sdk\tools;;C:\adt-bundle-windows-x86_64-20130729\sdk\platform-tools;...


Don't forget the separators: on Windows, it's a semicolon (;) on Mac OS X and Linux it's a colon (:).
At this point, it's a good idea to restart your computer (if you're running Windows) or log out and log back in to make sure all these settings take effect. If you're on a Mac OS X or Linux box, you may be able to start a new terminal and have the same effect (or reload your shell configuration file) instead, but I like the idea of restarting at this point to ensure that the next time I start everything up, it'll work correctly.

Finishing the Android SDK installation



Now we need to use the Android SDK tools to ensure you have a full version of the SDK for at least one Android API level installed. We'll need to start Eclipse, the Android SDK's development environment, and run the Android SDK manager. To do this, follow the ensuing steps:
	Find Eclipse. It's probably in the Eclipse directory of the directory you installed the Android SDK in. If Eclipse doesn't start, check your JAVA_HOME and PATH variables; odds are Eclipse can't find the Java environment it needs to run.
	Click on OK when Eclipse prompts you for a workspace. This doesn't matter; you won't use Eclipse except to download Android SDK components.
	Click on the Android SDK Manager button in the Eclipse toolbar (circled in the next screenshot):[image: Finishing the Android SDK installation]The Eclipse SDK, with the Android SDK Manager button circled



	Make sure you have at least one Android API level above API Level 10 installed, along with the Google USB Driver (you'll need that to debug on hardware).
	Quit Eclipse.


Next, let's see if the Android Debug Bridge—the software component that transfers your executables to your Android device and supports on-device debugging—is working as it should. Fire up a shell prompt and type adb. If you see a lot of output and no error, the bridge is correctly installed. If not, go back and check your PATH variable to be sure it's correct.
While you're at it, you should developer-enable your Android device, too, so it'll work with ADB. Follow the steps given at http://bit.ly/1a29sal.

Configuring Qt Creator



Now, it's time to tell Qt Creator about all the stuff you just installed:
	Start Qt Creator, but don't create a new project.
	Under the Tools menu, choose Options... and then Android.
	Fill in the blanks, as the next screenshot shows. They should be:	The path to the SDK directory in the directory where you installed the Android SDK.
	The path to where you installed the Android NDK.
	Check Automatically create kits for Android tool chains.
	The path to Ant; either the Ant executable itself on Mac OS X and Linux platforms, or ant.bat in the bin directory of the directory where you unpacked Ant.
	The directory where you installed the JDK (this may be automatically picked up from your JAVA_HOME directory).[image: Configuring Qt Creator]The Qt Creator Android configuration, set with the paths where I installed the various Android components



	Click on OK to close the Options window.





You should now be able to create a new Qt GUI or Qt Quick application for Android! Do so, and ensure that Android is a target option in the wizard as the next screenshot shows; be sure to choose at least one ARM target, one x86 target, and one target for your desktop environment:
[image: Configuring Qt Creator]Android targets in the New Qt Quick Application wizard



Building and running your application



Write and build your application normally. A good idea is to first build the Qt Quick "Hello World" application for Android, before you go to town and make a lot of changes, and test the environment by compiling for the device. When you're ready to run on the device:
	Navigate to Projects (on the left) and then choose the Android for arm kit's Run Settings.
	Under Package Configurations, ensure that the Android SDK level is set to the SDK level of the SDK you installed.
	Ensure that Package name reads something like org.qtproject.example, followed by your project name.
	Connect your Android device to your computer using the USB cable.
	Choose the Android for arm run target, and then click on either Debug or Run to debug or run your application on the device.




Summary



Qt for Android gives you an excellent leg up on mobile development, but it's not a panacea. If you're planning on targeting mobile devices, you should be sure to have a good understanding of the usage patterns for your application's users, as well as the constraints in CPU, GPU, memory, and network that a mobile application must run under.
Once we understand these, all of our skills with Qt Creator and Qt carry over to the mobile arena. Begin by installing the JDK, Android SDK, Android NDK, and Ant, and then develop applications as usual, compiling for the device and running on the device frequently to iron out any unexpected problems along the way.
In our final chapter, we learn a bunch of odds and ends about Qt Creator and Qt in general that will make software development much easier. Stay tuned!

Chapter 7. Qt Tips and Tricks



In the previous chapters, we've discussed what makes Qt Creator a great toolkit for your software development: how to edit, compile, and debug applications; how to profile their execution and memory performance; how to localize them for different regions of the world; and even how to make mobile applications that run on Android phones and tablets. In this chapter, we will discuss a collection of tips and tricks you should know about when using Qt Creator and Qt that will have you writing software like a pro.
Writing console applications with Qt Creator



Remember the "Hello World" application in Chapter 1, Getting Started with Qt Creator? That was a console application, about as simple a one as you can write. Recapping the code, we created a new Qt console application, and in main.cpp we wrote:
#include <QCoreApplication>
#include <iostream>

using namespace std;

int main(int argc, char *argv[])
{
    QCoreApplication a(argc, argv);
    
    cout << "Hello world!";

    return a.exec();
}

Any valid C++ is valid in a Qt application, including Standard Template Library (STL) code. This is especially handy if you need to write a small tool in C++, and haven't learned a lot about Qt yet: everything you know about C++ (and even C, if you prefer) is accessible to you in Qt Creator.
Although Qt is most widely known as a GUI toolkit, it's worth mentioning that the QtCore library, part of every Qt application including Qt console applications, includes a bevy of utility and template classes, such as:
	Collection classes, including QList, QVector, QStack, and QQueue for keeping lists and vectors, and for last-in-first-out and first-in-first-out data storage
	Dictionary classes (otherwise known as hash tables), including QMap and QDict
	Cross-platform file I/O with QFile and QDirectory
	Unicode string support with QString


Why will you choose Qt's classes over what straight C++ provides you? There are a few reasons:
	Memory performance: Unlike STL collections, Qt collections are reference based, and use copy-on-write to save memory. Qt collections typically take less memory than their STL counterparts.
	Iteration: Iterating over Qt collections is safe, with guarded access to prevent walking off the end of a collection.
	Readability: Using Qt code and libraries throughout an application provides a uniform look and feel that can make the code easier to maintain.
	Portability: On some embedded platforms where Qt is available, the STL may not be. (This isn't nearly the problem it was when Qt was first being written, however.)


It's worth noting that Qt's collections are often slightly slower than their STL counterparts: when using a Qt class for data, you're often trading memory performance for speed. In practice, however, this is rarely a problem.
The QFile and QDirectory classes are worth a special mention, because of one thing: portability. Even directory separators are handled in a portable way; directories are always demarcated by a single /, regardless of whether you're running on Mac OS X, Linux, or Windows, making it easy to write your code in a platform-agnostic way and ensure that it runs on all platforms. Under the hood, Qt translates directory strings to use the platform-specific directory separator when accessing files.


Integration with version control systems



Nearly all large projects require some sort of version control to coordinate changes made to the same files by different users, and ensure that changes to a source base occur harmoniously. Even a single developer can benefit by using version control, because version control provides a record of what changed in each file the developer has changed, and provides a valuable history of the project over time. Qt Creator supports the following version control systems:
	Bazaar (supported in Qt Creator in Version 2.2 and beyond)
	CVS
	Git
	Mercurial (supported in Qt Creator in Version 2.0 and beyond)
	Perforce (supporting Perforce Server Version 2006.1 and later)
	Subversion


The first thing you need to do is set up version control software for your project. How to do this depends on the version control system you choose (it may be dictated by your organization, for example, or you may have a personal preference from working on past projects), and how you do this differs from system to system, so we won't go into it here. But, you need to have a repository to store the versions of your source code, and have the appropriate version control software installed on your workstation with the appropriate directories containing the version control binaries in your system's PATH environment variable, so that Qt Creator can find them. It's important that you access the version control commands from your system's shell (such as PowerShell or your local terminal prompt), because Qt Creator accesses them in the same ways.
Once we've done this, we can configure how Qt Creator interacts with version control by selecting Tools | Options… | Version Control. There are general configuration options, which apply to whatever version control system you're using, and then specific options for each flavor of version control that Qt supports. The general options are:
	A script that can be run on any submission message to ensure that your message is formatted correctly or contains the right information
	A list of names and aliases for your source code control system
	A list of fields to include in each submission message
	The SSH prompt command used to prompt you for your SSH password when using SSH to access your version control system


Some version control systems, such as Git and Mercurial, support local version control repositories. This is handy if you're flying solo on a development project and just need a place to back up your changes (of course, remember to back up the source code repository directory as well!). If you're using one of these systems, you can use Qt to create the local repository directory directly by navigating to Tools | Create Repository, or by navigating to File | New File or Project wizard on its last page.
If you install and configure a version control system, the various commands available from that system are added in a submenu to the Tools menu of Qt Creator. From there, you can:
	View version control command output by navigating to Window | Output Panes | Version Control
	View different output from your version control system, letting you see what's changed in a file you are editing from what's in the repository
	View the change log for a file under version control by choosing Log or Filelog
	Commit a file's changes to the system by choosing Commit or Submit
	Revert changes to a file by choosing Revert
	Update your working directory with the current contents of the version control system by choosing Update
	Access additional per-version-control commands for supporting branches, stashes, and remote repositories that may also be available


If you're just starting out and need to choose a version control system, perhaps the best thing to do is to look at the comparison of various systems on Wikipedia at http://bit.ly/1aVGEUa and get familiar with one.
Tip
Personally, I prefer Git for my work, both using local repositories and in-hosted repositories such as GitHub. It's free, fast, has good support for branching, and is well-supported by Qt Creator.



Configuring coding style and coding format options



Readable code is crucial, and Qt Creator's default coding style is one that most people find very readable. However, you may be on a project with different coding guidelines, or you may just find you can't bear a particular facet of how the Qt Creator editor deals with code formatting: maybe it's the positioning of the brackets, or how a switch statement gets formatted. Fortunately, Qt Creator is extremely configurable. By navigating to Tools | Options… | C++, you can configure how Qt Creator formats your code, as shown in the following screenshot:
[image: Configuring coding style and coding format options]Adjusting code formatting in Qt Creator


The basic dialog lets you pick popular formatting styles, such as Qt's default format, or the format used by most GNU code. You can also click on Edit…, which brings up the Edit Code Style window, as shown in the next screenshot:
[image: Configuring coding style and coding format options]Fine-tuning code formatting in Qt Creator


You'll want to begin by copying a built-in style and editing it to suit your tastes; from the Edit Code Style dialog you can select whether tabs are represented as tab characters or spaces or tabs and the number of spaces per tab stop, as well as how line continuations are handled. Each pane lets you adjust specific aspects of code formatting:
	The Content pane lets you adjust how class bodies are formatted, including spacing for public, protected, and private declarations
	The Braces pane lets you control formatting as it pertains to braces
	The "switch" pane lets you control switch and case statement formatting
	The Alignment pane lets you control how code is aligned between consecutive lines
	The Pointer and References pane lets you control spacing around pointer declarations


It's easy to go crazy with all these options, but I urge you not to: what looks good at first glance is often an unreadable mess when you see it day after day. If you're just getting started with Qt, stick with the default formatting, and remember the old adage To do no harm. When it comes to editing existing code—match the formatting that's already there.

Building from the command line



Sometimes, you need to build a project from the command line. Maybe you're working on Linux, and you're just more comfortable there, or you've got a remote session running to your desktop while you're in a meeting. Or maybe, you want to automate builds on a build server, and need to know how Qt does its compilation magic for your builds.
The trick is qmake: Qt's meta-make system that manages generating Make files for the compiler toolchain you already have installed. The qmake command takes .pro files, which you first saw in Chapter 2, Building Applications with Qt Creator, and generates the Make or Nmake file necessary for your toolchain to build your application.
First, be sure that you have your compiler and make utility in your system path: how you do this varies from development environment to development environment. Next, be sure that you have commands for Qt's build system in your path—a default if you've installed Qt on Linux using the package manager, and easily done by editing your path to include the appropriate bin directory from the Qt tools you installed on Mac OS X or Windows.
Next, open up a command window and change to the directory containing your project: your .pro file should be at the root of that directory. Type qmake, and then either make (if your build system uses make), or nmake (if you're using a Microsoft Windows toolchain). That's all there is to it!

Setting Qt Quick window display options



Qt Quick is great for building applications for nontraditional computing environments, such as set-top boxes or automotive computers. Often, when working with Qt Quick you'll want an application that doesn't have all the usual windows chrome (such as the close box) around the contents of the window in these settings, because you're trying to present a unified user interface based on your Qt Quick application, rather than the windowing toolkit on the host platform.
You can easily set opacity and windows options (such as whether or not to show a close box) by editing the main.cpp file in your Qt Quick project. By default, it looks like this:
#include <QtGui/QGuiApplication>
#include "qtquick2applicationviewer.h"

int main(int argc, char *argv[])
{
    QGuiApplication app(argc, argv);

    QtQuick2ApplicationViewer viewer;
    viewer.setMainQmlFile(QStringLiteral("qml/QtTranslucent/main.qml"));
    viewer.showExpanded();

    return app.exec();
}

This code creates a Qt Quick application viewer, sets its main QML file (the first one to be loaded) to the indicated file, and then shows it before starting the application's event loop. Fortunately, the QtQuick2ApplicationViewer object has a setFlags method that lets you pass Qt::Window flags to the window it initializes to display your Qt Quick application. These flags include:
	Qt::FramelessWindowHint: This indicates that the window should be borderless (works on Linux systems, but not on Windows)
	Qt::Popup: This indicates a pop-up window (you can use this on Windows to get a nearly borderless window with a slight drop shadow)
	Qt::WindowStaysOnTopHint: This indicates that the window should stay on top of all other windows
	Qt::WindowStaysOnBottomHint: This indicates that the window should stay below all other windows
	Qt::Desktop: This indicates that the window should run on the desktop


A full list of the flags can be found in the Qt documentation at http://bit.ly/17NT0sm.
You can also adjust a window's opacity, by using the setOpacity method of QtQuick2ApplicationViewer.
Say, for example, we want a blue window with no border but a slight drop shadow at 75 percent opacity to hover over all other windows for my Qt Quick application. We'd change the QML to read:
import QtQuick 2.0

Rectangle {
    width: 360
    height: 360
    color: "blue"
    Text {
        text: qsTr("Hello World")
        anchors.centerIn: parent
        font.pointSize: 18
    }
    MouseArea {
        anchors.fill: parent
        onClicked: {
            Qt.quit();
        }
    }
}

Note the color: blue declaration for our top-level rectangle. Next, we'd modify main.cpp to read:
#include <QtGui/QGuiApplication>
#include "qtquick2applicationviewer.h"

int main(int argc, char *argv[])
{
    QGuiApplication app(argc, argv);

    QtQuick2ApplicationViewer viewer;
    viewer.setOpacity(0.75);
    viewer.setFlags(Qt::Popup | Qt::WindowStaysOnTopHint);
    viewer.setMainQmlFile(QStringLiteral("qml/QtTranslucent/main.qml"));
    viewer.showExpanded();

    return app.exec();
}

The key lines here come just before viewer.setMainQmlFile: the setOpacity method sets the main window's opacity, and the setFlags method sets the flags for the main window to be a pop up that will be on top of all other windows. By running the application, we can see something like the following screenshot:
[image: Setting Qt Quick window display options]A translucent Qt Quick window atop other windows


You can use this trick to come up with a variety of effects for how your Qt Quick application is displayed.

Learning more about Qt



In the earlier chapters, I pointed you to the Help panel of Qt Creator, as well as the editor's facility for autocompletion of class members when editing code. The Qt Creator's Help view is really a subview into Qt Assistant, the full documentation for all of Qt. Much of this documentation is also on the Web, but it's much faster to access locally. We start Qt Assistant from the Qt SDK (either from the command line with qtassistant or by finding it in the installed list of applications), and we can see something like the following screenshot:
[image: Learning more about Qt]Qt Assistant


Qt Assistant is the definitive place to learn about Qt. In the left column you see a table of contents; the best place to start is with Qt Core, and then either Qt GUI or Qt Quick depending on whether you want to write GUI or Qt Quick applications. The main view on the right is just like a browser window, complete with hyperlinks to related sections.
Also inside Qt Assistant, you can add bookmarks to frequently accessed pages, see an index of all terms in the documentation, and quickly search for terms using the search tab in the left-hand column. It's an invaluable resource, and as easy to use as an e-book.
Finally, if you prefer the Web for learning about things, don't forget Qt's extensive online documentation, available at http://bit.ly/15F11Ok.

Summary



Qt and Qt Creator provide a great environment for your application development, whether you're writing console, GUI, or Qt Quick applications. You can mix and match standard C++ code with Qt, letting you make the most of your existing skills. When doing so, you can add in things such as version control and command-line builds to your tools, giving you the ability to work in large teams and perform unattended builds of large projects using Qt. Qt also has a great documentation both bundled with Qt Creator and on the Web. With what you've learned in this book and what's available, the sky's the limit for your application development goals!


    
      Index

      A

      
        	About button / Using application resources, Instantiating forms, message boxes, and dialogs in your application

        	aboutButton button / Creating the main form

        	Add New� option / Linking against our sample library

        	Alignment pane / Configuring coding style and coding format options

        	Analyze menu / QtSlowButton – a Qt Quick application in need of performance tuning

        	Android	Qt Creator, setting up for / Setting up Qt Creator for Android, Setting up the environment variables, Finishing the Android SDK installation, Configuring Qt Creator, Building and running your application



        	Android for arm run target / Building and running your application

        	Android SDK installation	finishing / Finishing the Android SDK installation



        	Ant	downloading / Downloading all the pieces



        	application	running / A review – running and debugging your application, Building and running your application
	debugging / A review – running and debugging your application
	creating, Qt Designer used / Creating forms in Qt Designer, Creating the main form, Using application resources
	forms, initiating in / Instantiating forms, message boxes, and dialogs in your application
	message boxes, initiating in / Instantiating forms, message boxes, and dialogs in your application
	dialogs, initiating in / Instantiating forms, message boxes, and dialogs in your application
	localizing / Understanding the task of localization
	localizing, with Qt Linguist / Localizing your application with Qt Linguist
	building / Building and running your application



        	arguments function / Wiring the Qt GUI application logic

        	arguments method / Wiring the Qt GUI application logic

        	auto-suggest / Getting started – our sample library

      

      B

      
        	binding / Code interlude – Qt Quick and QML syntax

        	Braces pane / Configuring coding style and coding format options

        	breakpoint	about / Setting breakpoints and stepping through your program
	setting / Setting breakpoints and stepping through your program
	controlling / Fine-grained control of breakpoints



        	Build & Run options / The Projects pane and building your project

        	Build & Run settings / The Projects pane and building your project

        	Build directory path / Getting started – our sample library

        	Build menu / Learning the landscape – the Build menu and .pro files

        	Build Settings editor / The Projects pane and building your project

        	buttonText.text property / Creating a reusable button

      

      C

      
        	CalculatorLogic object / Code interlude – Qt Quick and QML syntax

        	calculator main view	about / The calculator's main view



        	call stack	examining / Examining the call stack



        	CDB pane / Getting lost and found again – debugging

        	Code Style options / The Projects pane and building your project

        	Code Style panel / The Projects pane and building your project

        	coding format options	configuring / Configuring coding style and coding format options



        	coding style	configuring / Configuring coding style and coding format options



        	command-line debugger	installing / Getting lost and found again – debugging



        	command line	building from / Building from the command line



        	CONFIG variable / Learning the landscape – the Build menu and .pro files

        	console applications	writing, Qt creator used / Writing console applications with Qt Creator



        	Content pane / Configuring coding style and coding format options

        	Continue button / Examining variables and memory

        	Counter class / Code interlude – signals and slots

        	Counter object / Code interlude – signals and slots

        	currencies	localizing / Localizing special things – currencies and dates with QLocale



      

      D

      
        	date formatting	about / Localizing special things – currencies and dates with QLocale



        	dates	localizing / Localizing special things – currencies and dates with QLocale



        	Debug button / Getting lost and found again – debugging

        	Debug menu / Setting breakpoints and stepping through your program

        	Debug view / Setting breakpoints and stepping through your program

        	delay property / QtSlowButton – a Qt Quick application in need of performance tuning

        	Dependencies panel / The Projects pane and building your project

        	DEPENDPATH variable / Linking against our sample library

        	Dialog class / Instantiating forms, message boxes, and dialogs in your application

        	dialogs	initiating, in application / Instantiating forms, message boxes, and dialogs in your application



        	divideButton button / Creating the main form

        	divideClicked method / Wiring the Qt GUI application logic

      

      E

      
        	Edit Code Style dialog / Configuring coding style and coding format options

        	Edit Code Style window / Configuring coding style and coding format options

        	Editor options / The Projects pane and building your project

        	Editor panel / The Projects pane and building your project

        	emit keyword / Creating a reusable button

        	environment variables	setting up / Setting up the environment variables



        	Events view / QtSlowButton – a Qt Quick application in need of performance tuning

        	exec method / Instantiating forms, message boxes, and dialogs in your application

        	Expression Evaluator / Examining variables and memory

      

      F

      
        	factorial function / Getting started – our sample library, Linking against our sample library, Setting breakpoints and stepping through your program, Examining variables and memory, Examining the call stack

        	File menu / Linking against our sample library, Creating Qt Quick applications in Qt Designer

        	File | New File or Project wizard / Integration with version control systems

        	forms	initiating, in application / Instantiating forms, message boxes, and dialogs in your application



        	Forms folder / Creating the main form

      

      H

      
        	Handling Signal row / QtSlowButton – a Qt Quick application in need of performance tuning

        	HEADERS variable / Learning the landscape – the Build menu and .pro files

        	height property / Code interlude – Qt Quick and QML syntax

        	Hello World application	about / Your first application – Hello World
	compiling / Your first application – Hello World
	running / Your first application – Hello World
	with Qt GUI library / Hello World using the Qt GUI library
	with Qt Quick / Hello World using Qt Quick



        	Help panel / Learning more about Qt

        	HTTP	about / Network resources are at a premium



      

      I

      
        	INCLUDEPATH variable / Linking against our sample library

        	INSTALLS variable / Learning the landscape – the Build menu and .pro files

        	Interrupt button / Examining the call stack

      

      J

      
        	JavaScript view / QtSlowButton – a Qt Quick application in need of performance tuning

        	JAVA_HOME variable / Setting up the environment variables, Finishing the Android SDK installation

        	JDK	about / Downloading all the pieces
	downloading / Downloading all the pieces



      

      L

      
        	Label widget / Creating the main form

        	leakPressed method / QtLeakyButton – a Qt C++ application in need of memory help

        	LIBS variable / Linking against our sample library

        	Line Edit widgets / Creating the main form

        	localization	strings, marking for / Marking strings for localization



        	localized strings	including, in application / Including localized strings in your application



        	Long Term Evolution (LTE) / Network resources are at a premium

        	lrelease command	about / Understanding the task of localization



        	lupdate command	about / Understanding the task of localization



      

      M

      
        	main function / Examining the call stack

        	MainWindow class / Instantiating forms, message boxes, and dialogs in your application, Wiring the Qt GUI application logic, QtLeakyButton – a Qt C++ application in need of memory help

        	MainWindow constructor / Instantiating forms, message boxes, and dialogs in your application, QtLeakyButton – a Qt C++ application in need of memory help

        	MathFunctions class / Getting started – our sample library

        	MathFunctions directory / Linking against our sample library

        	MathFunctions library / Linking against our sample library, The Projects pane and building your project

        	MathFunctionsTest console application / Linking against our sample library

        	memory	examining / Examining variables and memory



        	memory leaks	finding, Valgrind used / Finding memory leaks with Valgrind



        	message boxes	initiating, in application / Instantiating forms, message boxes, and dialogs in your application



        	minusButton button / Creating the main form

        	minusClicked method / Wiring the Qt GUI application logic

        	mobile application	performance enhancing, steps / Computational resources are at a premium



        	mobile application development	about / A mobile software development primer
	user attention / User attention is at a premium
	limited attention, consequences / User attention is at a premium
	computational resources / Computational resources are at a premium
	network resources / Network resources are at a premium
	storage resources / Storage resources are at a premium
	UI, porting / To port or not to port?
	testing / A word on testing



        	mouseArea.pressed property / Creating a reusable button

      

      N

      
        	NDK	about / Downloading all the pieces
	downloading / Downloading all the pieces



        	New File wizard / Instantiating forms, message boxes, and dialogs in your application

        	Noun Project	URL / Using application resources



        	number method / Wiring the Qt GUI application logic

      

      O

      
        	onClicked handler / QtSlowButton – a Qt Quick application in need of performance tuning

        	on_pushButton_clicked method / Hello World using the Qt GUI library

        	operation buttons / The calculator's main view

        	operation property / Creating a reusable button

        	Options dialog / The Projects pane and building your project

        	Options window / Configuring Qt Creator

      

      P

      
        	Package Configurations / Building and running your application

        	parseFloat function / The calculator's main view

        	PATH variable / Setting up the environment variables, Finishing the Android SDK installation

        	plusButton button / Creating the main form

        	Pointer and References pane / Configuring coding style and coding format options

        	portability	about / Writing console applications with Qt Creator



        	project	building / The Projects pane and building your project



        	Project Management window / Getting started – our sample library

        	Projects button / Getting started – our sample library, The Projects pane and building your project

        	Projects pane / Getting started – our sample library

        	PropertyChange event / Creating a reusable button

        	Publish option / Learning the landscape – the Build menu and .pro files

        	Push Button widgets / Creating the main form

      

      Q

      
        	QCoreApplication task / Your first application – Hello World

        	qDebug() function / Linking against our sample library

        	QDict class / Writing console applications with Qt Creator

        	QDirectory class / Writing console applications with Qt Creator

        	QFile class / Writing console applications with Qt Creator

        	QList class / Writing console applications with Qt Creator

        	QLocale**LongFormat / Localizing special things – currencies and dates with QLocale

        	QLocale**NarrowFormat / Localizing special things – currencies and dates with QLocale

        	QLocale**ShortFormat / Localizing special things – currencies and dates with QLocale

        	QMainWindow class / Wiring the Qt GUI application logic

        	QMap class / Writing console applications with Qt Creator

        	QMessageBox class / Instantiating forms, message boxes, and dialogs in your application

        	QMessageBox object / Instantiating forms, message boxes, and dialogs in your application

        	QML	about / Learning more about Qt Quick and QML



        	QML performance analyzer	about / The QML performance analyzer
	QtSlowButton performance, analyzing / QtSlowButton – a Qt Quick application in need of performance tuning



        	QML Profiler / QtSlowButton – a Qt Quick application in need of performance tuning	tabs / QtSlowButton – a Qt Quick application in need of performance tuning



        	QML Profiler tabs	timeline / QtSlowButton – a Qt Quick application in need of performance tuning
	events / QtSlowButton – a Qt Quick application in need of performance tuning
	JavaScript / QtSlowButton – a Qt Quick application in need of performance tuning



        	QML syntax	code interlude / Code interlude – Qt Quick and QML syntax



        	QNetworkAccessManager class / Network resources are at a premium

        	QObject**connect method / Code interlude – signals and slots

        	QPainter object / Code interlude – Qt Quick and QML syntax

        	QPair template / Wiring the Qt GUI application logic

        	QPushButton button / Code interlude – signals and slots

        	QPushButton constructor / Code interlude – signals and slots

        	QPushButton object / Code interlude – signals and slots

        	QQueue class / Writing console applications with Qt Creator

        	QSharedPointer class / Finding memory leaks with Valgrind

        	QStack class / Writing console applications with Qt Creator

        	qsTr function / Understanding the task of localization	about / Marking strings for localization



        	Qt	about / Downloading Qt Creator, Learning more about Qt



        	Qt**Window flags	Qt**FramelessWindowHint / Setting Qt Quick window display options
	Qt**Popup / Setting Qt Quick window display options
	Qt**WindowStaysOnTopHint / Setting Qt Quick window display options
	Qt**WindowStaysOnBottomHint / Setting Qt Quick window display options
	Qt**Desktop / Setting Qt Quick window display options



        	Qt classes features	memory performance / Writing console applications with Qt Creator
	iteration / Writing console applications with Qt Creator
	readability / Writing console applications with Qt Creator
	portability / Writing console applications with Qt Creator



        	QtCore library / Writing console applications with Qt Creator

        	Qt Creator	downloading / Downloading Qt Creator
	URL, for free noncommercial version / Downloading Qt Creator
	screen / Finding your way around Qt Creator
	Hello World application / Your first application – Hello World
	sample library, creating / Getting started – our sample library
	debugging / Getting lost and found again – debugging
	setting up, for Android / Setting up Qt Creator for Android, Setting up the environment variables, Finishing the Android SDK installation, Configuring Qt Creator, Building and running your application
	configuring / Configuring Qt Creator
	used, for console applications writing / Writing console applications with Qt Creator



        	Qt Creator debugging	breakpoints, setting / Setting breakpoints and stepping through your program
	breakpoints, controlling / Fine-grained control of breakpoints
	variables, examining / Examining variables and memory
	memory, examining / Examining variables and memory
	call stack, examining / Examining the call stack



        	Qt Creator for Android	all pieces, downloading / Downloading all the pieces
	environment variables, setting up / Setting up the environment variables
	SDK installation, finishing / Finishing the Android SDK installation
	Qt Creator, configuring / Configuring Qt Creator
	application, building / Building and running your application
	application, running / Building and running your application



        	Qt Creator sample library	about / Getting started – our sample library
	creating / Getting started – our sample library
	linking against / Linking against our sample library



        	Qt Designer	forms, creating in / Creating forms in Qt Designer, Creating the main form, Using application resources
	used, for creating application / Creating forms in Qt Designer, Creating the main form, Using application resources
	main form, creating in / Creating the main form
	application resources, using / Using application resources
	Qt Quick applications, creating in / Creating Qt Quick applications in Qt Designer, Creating a reusable button, The calculator's main view, Learning more about Qt Quick and QML



        	Qt Designer Form Class / Instantiating forms, message boxes, and dialogs in your application

        	Qt framework, key concepts	signals / Code interlude – signals and slots
	slots / Code interlude – signals and slots



        	Qt framework key concepts	signals / Code interlude – signals and slots



        	Qt GUI application logic	wiring / Wiring the Qt GUI application logic, Learning more about Qt GUI widgets



        	Qt GUI library	Hello World application / Hello World using the Qt GUI library



        	Qt GUI widgets	about / Learning more about Qt GUI widgets



        	QtLeakyButton	memory leaks, finding with Valgrind / QtLeakyButton – a Qt C++ application in need of memory help



        	Qt Linguist	used, for localizing application / Localizing your application with Qt Linguist



        	Qt project pane	about / The Projects pane and building your project



        	Qt Quick	about / Hello World using Qt Quick, Learning more about Qt Quick and QML
	Hello World application / Hello World using Qt Quick
	code interlude / Code interlude – Qt Quick and QML syntax
	applications, creating in Qt Designer / Creating Qt Quick applications in Qt Designer, Creating a reusable button, The calculator's main view, Learning more about Qt Quick and QML
	window display options, setting / Setting Qt Quick window display options
	Qt**Window flags / Setting Qt Quick window display options



        	QtQuick2ApplicationViewer object / Setting Qt Quick window display options

        	Qt Quick applications	creating in Qt Designer / Creating Qt Quick applications in Qt Designer
	reusable button, creating / Creating a reusable button
	calculator main view / The calculator's main view



        	QtSlowButton	performance, analyzing / QtSlowButton – a Qt Quick application in need of performance tuning



        	QT variable / Learning the landscape – the Build menu and .pro files

        	QVector class / Writing console applications with Qt Creator

      

      R

      
        	ResultDialog class / Instantiating forms, message boxes, and dialogs in your application

        	ResultDialog implementation / Instantiating forms, message boxes, and dialogs in your application, Wiring the Qt GUI application logic

        	ResultDialog object / Wiring the Qt GUI application logic

        	result field / Wiring the Qt GUI application logic

        	results dialog / Instantiating forms, message boxes, and dialogs in your application

        	reusable button	creating / Creating a reusable button



        	Row item / The calculator's main view

        	Run button / Creating the main form

      

      S

      
        	SDK	about / Downloading all the pieces
	downloading / Downloading all the pieces



        	Select Required Modules window / Getting started – our sample library

        	setFlags method / Setting Qt Quick window display options

        	setOpacity method / Setting Qt Quick window display options

        	setupUi function / Instantiating forms, message boxes, and dialogs in your application

        	setupUi method / Instantiating forms, message boxes, and dialogs in your application

        	signal keyword / Creating a reusable button

        	SIGNAL macro / Code interlude – signals and slots

        	signals	about / Code interlude – signals and slots



        	SLOT macro / Code interlude – signals and slots

        	software development	about / Understanding the task of localization



        	SOURCES variable / Learning the landscape – the Build menu and .pro files

        	Standard Template Library / Your first application – Hello World

        	state property / Creating a reusable button

        	strings	marking, for localization / Marking strings for localization



        	sudo apt-get install qtcreator command	about / Downloading Qt Creator



      

      T

      
        	TARGET variable / Learning the landscape – the Build menu and .pro files

        	TEMPLATE variable / Learning the landscape – the Build menu and .pro files

        	testing	about / A word on testing



        	Text Editor option / The Projects pane and building your project

        	TextInput field / The calculator's main view

        	text property / Creating the main form

        	timesButton button / Creating the main form

        	timesClicked method / Wiring the Qt GUI application logic

        	toFloat method / Wiring the Qt GUI application logic

        	Tool Button widget / Creating the main form

        	Tools menu / Getting lost and found again – debugging, The Projects pane and building your project, Configuring Qt Creator

        	toString method / Localizing special things – currencies and dates with QLocale

        	tr function / Understanding the task of localization

      

      U

      
        	Ui**MainWindow class / Instantiating forms, message boxes, and dialogs in your application

        	Ui*Dialog class / Instantiating forms, message boxes, and dialogs in your application

        	ui field / Instantiating forms, message boxes, and dialogs in your application

      

      V

      
        	Valgrind	used, for memory leaks finding / Finding memory leaks with Valgrind
	used, for QtLeakyButton memory leaks finding / QtLeakyButton – a Qt C++ application in need of memory help



        	variables	examining / Examining variables and memory



        	version control systems	integrating with / Integration with version control systems
	general configuration options / Integration with version control systems



        	Vertical Spacer / Creating the main form

      

      W

      
        	when clause / Creating a reusable button

        	width property / Code interlude – Qt Quick and QML syntax

        	Windows Firewall dialog / QtSlowButton – a Qt Quick application in need of performance tuning

      

      X

      
        	x property / Code interlude – Qt Quick and QML syntax

      

      Y

      
        	y property / Code interlude – Qt Quick and QML syntax

      

    

  OEBPS/graphics/2319OS_03_03.jpg





OEBPS/graphics/2319OS_05_03.jpg
Location Type Time in Percent Total Time ~ Calls MeanTime  Details
<program> __ Binding 100.00 % 10070 1 10070 Main Program

Buttongmi30_Signal 9930% 10000 1 2500 onClicked: { forlvar i = 0; < buttondelay; i++);}

maingml3  Create 058% 58054ms 1 58054ms _ QtQuick/Rectangle

Buttongmi1 Compile  0.08% 8034ms 1 8034ms  Buttongm!

Buttongmi:37 Binding 004% 3546ms 11 322333ps  when: mouseArea pressed == true "
Caller  Type Total Time ~ Calls Caller Description Callee Type Total Time ~ Calls Callee Description
<program> Binding 10,000 4 Main Program

Timeline | Events | JavaScript






OEBPS/graphics/action.jpg





OEBPS/graphics/2319OS_03_04.jpg
File

Edit_Build_Debug
Novgator g
Rectangle
= argumentt
= argument2
T result
~ buttonRow.
plusBution
minusButton <

divideButton <

R ——

Buton
- ot Quick - Basic
Border mage
Ficable

Fipatle

BlL>- oc o ocate il

main.gmi - QtQuickCalculator - Qt Creator

Help
% o mangn

o 0 T T

ol

g issves el search Resuts

) 5opcation Output 3 compe 0w JE3 @13 consoe g





OEBPS/graphics/2319OS_03_06.jpg





OEBPS/graphics/2319OS_06_03.jpg
Kit Selection

Qt Creator can use the following kits for project AndroidTest2:

%) Android for arm (6CC 4.6, Qt 5.1.0)

[] % Android for arm (GCC 4.8, Qt 5.1.0)

%) Android for x86 (6CC 4.6, Qt 5.1.0)

[] % Android for x86 (GCC 4.8, Qt 5.1.0)






OEBPS/graphics/2319OS_02_05.jpg
pped.

Level Function File Line

[0 MathFunctions:factorial mathfunctions.cop 9
1 MathFunctions:factorial mathfunctionscpp 13

2 MathFunctions:factorial mathfunctions.cop 13
3 main maincpp 13
4 _tmainCRTStartup  crtexec 536
5 mainCRTStartup crtexec 377
6 BaseThreadinitThunk  KERNEL32

7 RtlUserThreadStart  ntdll






OEBPS/graphics/2319OS_01_03.jpg
Filter

4 Layouts
= Vertical Layout
[I] Horizontal Layout
83 Grid Layout

# Form Layout

4 Spacers
B Horizontal Spacer
E Vertical Spacer

4 Buttons
9 push Button

(& Tool Button

@ Radio Button

[ Check Box

@ Command Link Button
Button Box

4 Item Views (Model-Based)
[H vist view

%8 Tree View

Table View

Column View

4 Item Widgets (Item-Based)
[H vist widget

*:8 Tree Widget

Table Widget

4 Containers

1l £~ Type to locate (Ctrl.

[]

~

File Edit Build Debug Analyze Tools Window Help

Type Here

Object Class
4 MainWindow QMai..nv
B9 centralWidget [Z] Qwil
menuBar QMenuB
mainToolBar QToolBa
statusBar QStatusB
< >
Filter []

<

Action Editor

Signals & lots Editor

MainWindow : QMainWindow

Property Value

MainWindoy

QWidget
windowModality NonModal
enabled

» geometry 100, 0), 400 x.
v sizePolicy [Preferred, ..
b minimumSize  0x0

b maximumSize  16777215x.
b sizelncrement 0% 0

< >

1ssues JEd] search Resuits JJEY Application output JIEY] compile output ] amL/1s console

v





OEBPS/graphics/2319OS_02_02.jpg
#include "mathfunctions.h"

4 MathFunctions::MathFunctions ()

{
}
unsigned long

4 lMathFunctions::factcrial (unsigned int n)
I

4 switch(n)

{

@Uome WL R

case 0: return 0;
case 1: return 1;
default: return n * factorial(n-1);

~ [Stopped
Level Function  File
~ 0 MathFuncti.. mathfunctio... 8

1 main maincpp 9

2 _tmainCRT.. crtexec 536
3 mainCRTSta... crtexec 3717
4 BaseThread.. KERNEL32

5 RtlUserThre... ntdil

Value

Number
o4

Type
unsigne

Function






OEBPS/graphics/2319OS_03_07.jpg
Type Here






OEBPS/graphics/2319OS_02_03.jpg
Basic

Breakpoint type: |File name and line number

File name: C:\Users\Ray\Documents\Qt\ MathFunctionsTest\main.cpp

Line number: |11
Enabled:

Address:

Expression:

Function:

One shotonly: [ ]

o

(al)
Use Engine Default ~

Tracepoint only:






OEBPS/graphics/2319OS_03_05.jpg





OEBPS/graphics/note.jpg





OEBPS/graphics/2319OS_06_01.jpg
File Edit Refactor Source Navigate Search Project Run Window Help
a2

e
% Package Explorer 22 ﬁ £2 Outline 22

5 - An outline is not
available.

=
[£ Problems @ Javadoc [ Declaration ' Console &2 BBt Evsv=1

Android

6IMbf13sM [





OEBPS/graphics/list.jpg





OEBPS/cover/cover.jpg
Application Development
with Qt Creator

d guide for building cross-platform applications using
Qt Quick

Ray Rischpater PA '.-v]aaeﬂsoumﬂ






OEBPS/graphics/2319OS_01_01.jpg
[ Download Qt, the cross-pla.. %

If you need a standalone installer, please select the file according to your operating system from the
Qt list below to get the latest Qt Creator for your computer
Creator

() Qt Creator 2.8.0 for Windows (52 MB) (infc)
() Qt Creator 2.8.0 for Linux/X11 32-bit (61 MB) ynfo)
() QtCreator 2.8.0 for Linux/X11 64-bit (61 MB) nfo)

() QtCreator 2.8.0 for Mac (53 MB) nfo)

The source code is available as a zip (29 MB) (Info) or a tar.gz (23 MB) (Info). Or visit the repository
at qt.gitorious.org/qt-creator.

Qt Creator is available under GPL v3, LGPL v2 and a commercial license. Learn more
about licenses here.






OEBPS/graphics/2319OS_03_01.jpg
Debug Analyze Tools Window Help
ST

IO i o Lavout
- Spacers
I Horizoma Spacer
E Vertca Spacer
Buttons
29 pusn Button
D Tool Button
@ Radio Button.
o Crecksox
© Command Linkéuton
Rt suron sox
2 e Views (Model Based)
Listview
%8 Tree View
) Table view
0 Column View
2 liem Widgets Otem:Sased)
List Widget
%8 Tree Widget
T Table Widget
> Continers
It Widgets
Combo Box
Font Combo 8ox
= Line it
& Texait
AT Pain Text Eqit
(53 spinBox
53 Double Spin Box

@ Time kit
== Dol

Delbug

Sender

xcion Edtor

Signal Receiver

Signae & Siots

Slot

Object
4 MainWindow

Class
QMainWindow

4 5 centralWidget [ZZ Qwidget
4 verticalLayout = QvBodayout
4 horizontalLayout ] QHBoxLayout
divdeBution ) QPushiution
horizontalSpacer  Jd Spacer
horizontalSpacer 2 W Spacer
horizontalSpacer3 W Spacer
minusButton QPushBution
plusButton 2] QpushButton
timesBution 2J QPushButton
aboutButton 2] QpushButton
argumentlinput & QineEdit
argumentZinput @ QineEdit
verticalSpacer 4 Spacer
verticalSpacer.2 B Spacer

Marwindow - QHamwndow

Property
objectName

windowModaity
enabled
geometry
sizePolicy
‘minimumSize
maximumSize
sizelncrement
baseSize.

Value
MainWindow

NonModal

10,0),498x371)
[Preferred, Preferred, 0,01
oxo0

16777215 x 16777215
ox0

oxo0

Innerited

A (M ShellDig 2.8

b Arow






OEBPS/graphics/2319OS_04_01.jpg
Qt Linguist
L Irelease
tr(“hello world"); v

tr(“this is a test”);
asTr(“here’s a string in Jupdate

L");






OEBPS/graphics/2319OS_05_01.jpg
fie £ uis Deow araiae_Ioos aoow tiop
“% asiowsuron
 atlowtunonse
[ a—

& souces Cnoea-£1131 parent
daw 5. Prcticasa (0
Pl R < buccon.detays i
Pl b S
= manam !

4 e o

S =y

et [} | I

O o .-.n.n......-T—-—.Tu..n
[

Pl

T 2 T o o 4





OEBPS/graphics/2319_07_01.jpg
~

Environment

Text Editor

L FakeVim
@ Heip #include <math.h>

{3} c++

class Complex

4] atQuick {
[03 Build & Run

public:
Complex (double ‘re, -double -im)

@ Debugger 1 _re(re), _im(im)

8 I8

A Designer double modulus () ‘const

(B8 Analyzer t
[ version Control }

g private:
@ Android double _re;
o BlackBerry donble - _im:
Edlt preview contents to see how the current settings are applied to custom code snippets. Changes in the preview do not affect the
B e ettty
<

return-sqrt(_re *_re -+ _im-*_im);

Apply






OEBPS/graphics/2319OS_04_02.jpg
File Edit Tranlation Validation Phrases View Help

maé PIRER XX I 2

8% stngs 8 X Sources and Forms

& Context tems || Source text ‘#incude ‘maimvndovch”
#include "u_mamundonch

7 MainWindow 14/15 « MainWindow
& Hello world MainWindow: :MainWindow(QWidget *parent) :
4 e E= )
& Edit <
& Load uk>setupUi(this);
& Ctis0 ’
& Close
v cuiew
& Cut
e ‘MainWindow:: ~MainWindow()
v Copy h
& Ctri+C delete ui;
& Paste i
v culev

Phases and guesses % warnngs
Source phrase Translation Definition
\What is you... Kio estas via nomo? Guess (Ctri+1)

14/15 MOD





OEBPS/graphics/activity.jpg





OEBPS/graphics/2319_07_02..jpg
Code style name: |Qff

You cannot save changes to a builtin code style. Copy it irst to create

your own version.

‘Copy Bilt-in Code Style

General | Content | Braces

Alignment | _Pointers and References

Tabs And Indentation-

Tab policy:

Spaces only

Tabsize: [4 3] Indent size:

Align continuation lines:

With Regular Indent.

#include <math.h>

class Complex
{
public:
Complex (double ‘re, ‘do
:_re(re), _im(im

{1
double modulus () cons
{
return sqrt(_re *
i
private:
double -_r

double _im;

void -bar(int -i)

4
static-int counter =
counter ‘+=1i;

namespace ‘Foo
]
<






OEBPS/graphics/2319OS_01_02.jpg
Getting Started Develop  Examples  Tutorials

Debug

N

Projects

User Interface Building and Running an Start Developing
Example Application

Tofind outwhat kind of integrated  To become familiarwith the pars  To check that the Ot SDK  Toselectatutorial and leam how
environment (IDE) Gt Creator is. of the Ot Creator user inferface  installation was successful, open 1o develop applications.
andtoleam how to use them. an example application and run it

-
userGuide 111 oniine Community A Blogs

{8l ©- Type to locate (Ctrl. b4 issues|






OEBPS/graphics/2319OS_02_04.jpg
Memory at Variable "values” (0><8c3819fa08) n
0000:008C:3819:f920 |01 00 00 00 b0 13 00 00 00 00 00 00 00 00 00 00 .

~
8 fo 19 38 8c 00 00 00 c8 f9 19 38 8c 00 00 00
01 00 00 00 00 00 00 00 20 bd 25 38 8c 00 00 00
fe ff ff ff ff ff ff ff 88 8d 22 63 00 00 00 00
10 b3 25 38 8c 00 00 00 01 00 00 00 Od 00 00 00
78 9a c4 80 f6 7f 00 00 f6 7f 00 00
50 3¢ 0d 63 00 00 00 00 07 00 00 00
DENGON0aNG0M00 00 0o 00 3c dd 00 00
00 00 00 00 00 00 00 00 f6 7f 00 00
01 00 00 00 f6 7f 00 00 8c 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 bl






OEBPS/graphics/2319_07_03.jpg
File Edit Build Debug Analyze Tools

4" Qtfranslucent
 Qtiransiucentpro
s atquickzapplicationviewer
4 & Sources
maincpp
“mam
4 ). gmi/Qtiransiucent
2 maingml

Window _Help

main.cop - <Select Symbol - Line: 1, Col: 1

Hello World

fon Output
QtTransiucent

starting c:\Usdl M. -0c sk top_Ot_5_1_0_MSVC2012_64bit-
ngJg\debug\QtTranslucant exe
C:\Users\Ray\Docunents\Q¢\bui1d-gtTranslucent-Desktop_Qt_5_L_0_MSVC2012_64bit-Debug
\debug\QtTranslucent.exe exited with code 0

Starting C:\Users\Ray\Docunents\Qt\build-gtTranslucent-Desktop_Qt_5_1_0_MSVC2012_64bit-
Debug\debug\QtTranslucent . exe
QML debugging is enabled. Only use this in a safe enviromnment.

Applicaton Outpu 4 [ZXTYENT] [5 B






OEBPS/graphics/PacktLibLogo.jpg





OEBPS/graphics/2319OS_05_02.jpg
Location  Timein Perce Total Time  SelfTimeinF SelfTime  Details

Buttongmi30 10056% 9830 9984% 07605 onClicked

<program>  10000% 9775 000% 0000ps  Main Program

Buttongmi37 0.14% B727ms 014% 13727ms  Swhen

Buttongmi37 0.02% 1961ms  002% 1961ms  (anonymous function)

Caller Total Time  Caller Description Callee Total Time  Callee Description

<program> 9770 Main Program Button.qml30 60790 ms  onClicked
Buttongml37 7844ms  Swhen

Button.qml:30 60790 ms  onClicked

Timeline | Events | Javascript






OEBPS/graphics/reference.jpg





OEBPS/graphics/2319OS_01_04.jpg
dit Build Debug Analyze Tools Window
Navigator <159 & maingml - X "Properties - B x
q, 1|_Rectanaie base state ~ Tve
L TR U
w
i MouseArea  © u
<] ~ Geometry
Edit Position X 00 Ty 0o T
Sy sze w 00 T M 000 T
<
Design v Visibility
3 dth eight > >
P Gl 0 o vty V- Vble ¥ Smooth
main.qml o
Debug. =
Eﬂ Opacity  © 1.00 3 -
3 Layout  Advanced
e S o DEEETEEE
> Color
Text 200000
Analyze
style 00000 [
® | v otouick- Basic =
Help X Teat.
Text o
Border Image
Wrapmode  © Nolrap v
Hell..uick
i 24 Alignment
e Flickable —
Debug e
3 ~ Font
Flipable Font © MSShelDig2 v
Sze 0 T pons v
>
~ e rntsve BT U S

¢y P search Results JJEl] Application output 3] compile output lIE QM35 console JIES





OEBPS/graphics/2319OS_02_01.jpg
Debug

4 fn MathFunctionsTest
MathFunctionsTest.pro
4 L. Sources
 maincpp

L2l ©- Type to locate (Ctrl

main(in,
#include <QCoreApplication>

#include <QDebug>
#include "MathFunctions.h"

4 int main(int argc, char *argv[])

{

[

[pCoreapplication a(arge, argv):

qDebug() << "6! is" << MathFunc

e
=

return a.exec();

e
Iy

Level Function File

<0 main main.cpp
1 _tmainCRT... crtexe.c

(lissues|

Value

class QCore...

1
@0x32720e...

Type
QCoreA
int
char *






OEBPS/graphics/2319OS_03_02.jpg
Type Here






OEBPS/graphics/2319_07_04.jpg
Eile Edit View Go Bookmarks Help

¢-o-GB Do aaa

Contents | index | sookmarks | Search ~
Contents. Qt Assistant Quick Guide Using . I

» Active Qt

> QeAssistant Manual Once you have installed Qt, you can start Qt Assistant in the same way as any other
» Qt Concurrent applcation on the development host

> Qrcore The Qt Assstant main window contais a sebar (1) wih navigation windows or.

> Qt Designer Manual + Managng Bookmarks
50y 540 Rl Do Ao * Viewng a st of documerts in G he fomat nat are nsaeon the « Searching for Keywords
> Qt Graphical Effects PR * UsngFroa Tt Search
> Queul

» QtHelp Searching for keywords in the index.

Contents

Qtimage Formats Searching for information using a free text search function

» Qt Linguist Manual Swiching between open topics.
» Qt Multimedia

» QtNetwork The selected topic in the selected document s dispiayed in the Documentation window (2).

Open Pages.
qtassistant : Qt Assistant Quick Guide

g
r—






OEBPS/graphics/2319OS_06_02.jpg
Filter

Android

(W) Environment

Text Editor
7 FakeVim

@ Help

e

4] atQuick

[03 Build & Run
@ Debugger

A Designer

8 Analyzer

[ version Control

%) Android

@ slackserry
@ oevices

S Code Pasting

Android Configurations
‘Android SDK location:

‘Android NDK location:

Ant location:

‘OpenIbK location:

AVD Manager

Co\adt-bundle-windows-x86_64-20130729\sdk

Ci\android-ndkr9.

Found 6 toolchains for this NDK.
Automatically create kits for Android tool chains
Qb version for architecture mips s missing.

To add the Qt version, select Options > Build & Run > Qt Versions.

C:\apache-ant-1.9.2\bin\ant.bat

C:\Program Files\Java\jdk1.7.0_25

‘System/data partition size: 1024 Mb.

AndroidTest

AVD Target
API18 armeabi-v7a

CPU/ABI






