Java EE 7 First Look

Discover the new features of Java EE 7 and learn to put them
together to build a large-scale application

Java EE 7 First Look

Discover the new features of Java EE 7 and learn to put
them together to build a large-scale application

NDJOBO Armel Fabrice

PUBLISHING
BIRMINGHAM - MUMBAI

Java EE 7 First Look

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1121113

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84969-923-5
www . packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandeyl210@gmail . com)

Credits

Author Project Coordinator
NDJOBO Armel Fabrice Ankita Goenka
Reviewers Proofreader
Markus Eisele Christopher Smith
E.P. Rama krishnan
Indexer
Acquisition Editors Monica Ajmera Mehta
Sam Birch
Joanne Fitzpatrick Graphics

Yuvraj Mannari

Commissioning Editor
Mohammed Fahad Production Coordinator

Shantanu Zagade

Technical Editors
Ritika Singh Cover Work

Nikhita K. Gaikwad Shantanu Zagade

About the Author

NDJOBO Armel Fabrice is a Design Computer Engineer and graduate from the
National Advanced school of Engineering Cameroon, and Oracle Certified Expert,
Java EE 6 Java Persistence API Developer. In the past, he has worked with Java EE
to develop several systems among which are a helpline system and a commercial
management application. He currently works on several systems based on EJB,
Spring and ICEFaces solutions. In addition, he has made a technical review

of the books Pro Spring Integration published by Apress and Beginning EJB 3,

Java EE published by Apress. He is also a copywriter in developpez.com

(his home page is: http://armel-ndjobo.developpez.com/).

First of all, I want to thank the Lord Jesus who makes everything
possible for me. I would like to thank Dr. Georges Edouard
Kouamou for making me love Software Engineering. I would like
to thank Fomba Ken Collins for his critiques that have helped me
improve the quality of the book. I would also like to thank Serge
Tsala, Armel Mvogo, and my fiancée Ines Tossam who encouraged
me during the writing of this book. And finally, I would like to
express my gratitude to Licel Kenmue Youbi for all his efforts.

About the Reviewers

Markus Eisele is a Principal Technology Consultant working for msg systems

AG in Germany. He is a Software Architect, a Developer, and a Consultant. He

also writes for IT magazines. He joined msg in 2002 and has been a member of

the Center of Competence IT-Architecture for nine years. After that he moved on

to the IT-Strategy and Architecture group. He works daily with customers and
projects dealing with Enterprise-level Java and infrastructures. This includes the

Java platform and several Web-related technologies on a variety of platforms using
products from different vendors. His main areas of expertise are Java EE Servers. He
speaks at different conferences about his favorite topics. He is also part of the Java EE
7 expert group.

Follow him on twitter.com/myfear or read his ramblings with Enterprise level
software development at http://blog.eisele.net.

E.P. Rama krishnan is an enthusiastic freelance developer and a technical writer.
He has steady industry exposure of 5 years. His areas of expertise include JSF
(JavaServer Faces), Java Persistence API, CDI, RESTful Services, Swings, Tomcat
Clustering, and Load-balancing. His other areas of interest are Linux, Android, and
Systems security. Besides development his major interest lies in writing technical
blogs which simplify the latest technologies for early adopters. You are welcome to
visit his blog at http://www.ramkitech.comand feel free to give your feedback.
He can be reached at ramkicseegmail . com.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www. PacktPub. com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at serviceepacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[ﬂ]PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library
of books.

Why Subscribe?
* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

* On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www. PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents

Preface 1
Chapter 1: What's New in Java EE 7 5
A brief history of Java EE 5
The main goals of Java EE 7 6
Productivity 7
HTML5 support 7
Novelties of Java EE 7 8
Summary 10
Chapter 2: New Specifications 11
Concurrency Utilities for Java EE 1.0 1"
Why concurrency? 11
Benefits of concurrency 12

Risks of concurrency 12
Concurrency and Java EE 12
Java EE Concurrency API 12
Batch Applications for Java Platform 1.0 17
What is batch processing? 17
Why a dedicated API for batch processing? 18
Understanding the Batch API 18
JobRepository 19

Job 19

Step 19
Chunk 20
Batchlet 21

The batch.xml configuration file 22

JobOperator 22

Table of Contents

Java API for JSON Processing 1.0 23
What is JSON? 23
Object 23
Array 23
Why JSON? 24
Java API for JSON processing 25
Java API for WebSocket 1.0 27
What is WebSocket? 28
Why WebSocket? 28
The WebSocket API 28
Server endpoint 29
Client endpoint 31
Summary 32
Chapter 3: The Presentation Layer 33
Servlet 3.1 33
What is a Servlet? 33
Alogin page with a Servlet 34
Latest improvements of Servlet 3.1 in action 36

Non blocking 1/0 API 36
Protocol upgrade processing 39
Expression Language 3.0 41
What is Expression Language? 42
The latest improvements of EL 3.0 in action 42
API for standalone environments 43
Lambda expressions 43
Collection object support 44
JavaServer Faces 2.2 47
What is JavaServer Faces? 47
An identification page with JSF 48
The latest improvements of JSF 2.2 in action 50
HTML5-friendly markup 50
Resource Library Contracts 52
Faces Flow 54
Stateless views 57
Summary 57
Chapter 4: The Java Persistence API 59
Java Persistence API 2.1 59
JPA (Java Persistence API) 59
JPA in action 60
The latest improvements of JPA 2.1 in action 62
Persistence context synchronization 62
Entity 63
New annotations 64
Entity graphs 65

Lii]

Table of Contents

JPQL 67
The Criteria API 69
DDL generation 70
Java Transaction API 1.2 72
The Java Transaction API 72
JTAin action 73
Innovations introduced by JTA 1.2 74
Summary 75
Chapter 5: The Business Layer 77
Enterprise JavaBeans 3.2 77
Pruning some features 78
The latest improvements in EJB 3.2 78
Session bean enhancement 79
EJB Lite improvements 81
Changes made to the TimerService API 82
Harmonizing with JMS's novelties 84
Other improvements 85
Putting it all together 87
Presenting the project 87
Use Case Diagram (UCD) 88
Class diagram 89
Component diagram 91
Summary 92
Chapter 6: Communicating with External Systems 93
JavaMail 93
Sending e-mails in Java 94
Sending an e-mail via the SMTP protocol 94
The latest improvements in action 96
The added annotations 96
The added methods 98
The changing of some access modifiers 98
Java EE Connector Architecture (JCA) 99
What is JCA? 99
JCAin action 100
Latest improvements 101
Java Message Service (JMS) 101
When to use JMS 101
The latest improvements in action 102
New features 102
Java API for RESTful Web Services 105
When to use Web Services 106
JAX-RS in action 106

[iii]

Table of Contents

The latest improvements in action 107
The Client API 107
Asynchronous processing 107
Filters and entity interceptors 110

Summary 114
Chapter 7: Annotations and CDI 115
Common annotations for the Java platform 115

The goal of this specification 115

Building your own annotation 116

Latest improvements in action 120

The new annotation 120

Contexts and Dependency Injection 120

What is CDI ? 121
Example 1 — instantiation of a POJO 121
Example 2 — accessing an EJB from a JSF page 122
Example 3 — setting a bean with a specific scope for simple operations 124
Example 4 — use of objects usually created by a factory 124

Latest improvements in action 125
Avoiding CDI processing on a bean 126
Accessing the non contexual instance of a bean 126
Accessing the current CDI container 127
Destroying CDI bean instances explicitly 127

Summary 127
Chapter 8: Validators and Interceptors 129
Bean Validation 129

Validating your data 129

Building a custom constraint 135

Creating a constraint annotation 135

Implementing a validator 136

Latest improvements in action 138
Openness 138
Support for dependency injection and CDI integration 138
Support for method and constructor validation 139
Support for group conversion 140
Support message interpolation using expression language 142

Interceptors 143

Intercepting some processes 143
Defining interceptors in the target class 143
Defining interceptors in an interceptor class 145

Latest improvements in action 146
Intercept constructor invocation 146
Associating an interceptor with a class using interceptor binding 147
Defining the execution order of interceptors 148

Summary 149

[iv]

Table of Contents

Chapter 9: Security 151
JASPIC 1.1 151
Secure access to forms 151
Implementing an authentication module 152

The latest improvements in action 161
Integrating the authenticate, login, and logout methods called 162
Standardizing access to the application context identifier 162
Support for forward and include mechanisms 163
Summary 163

Index 165

[v]

Preface

When we considered writing this book, the main objective was to present the new
features of Java EE 7 platform. But while writing, we came to realize that it would
be interesting to make a clear and concise presentation of the relevant specifications
and how to implement them. This led us to imagine a project that will help present
almost all the specifications affected by Java EE 7 and how to put them together in
order to build a large-scale application.

In short, this book does not aim to show how to implement the different aspects of
each Java EE 7 specification or list the best practices. Rather, it positions itself similar
to the yellow pages for a city that has been built recently. In other words, this book
will help you discover the innovations introduced by Java EE 7 and give you ideas
to build solid applications.

What this book covers

Chapter 1, What's New in Java EE 7, gives an overview of the improvements made in
the Java EE 7 platform.

Chapter 2, New Specifications, explains concepts concerning the new specifications that
have been added in Java EE 7 and shows how they can be used.

Chapter 3, The Presentation Layer, demonstrates the implementation of the
improvements brought by the Java EE 7 platform for the presentation
layer specifications.

Chapter 4, The Java Persistence API, shows how your Java application can store and
retrieve data from the database in a safe way and explains the innovations that
have been made in the relevant specifications.

Chapter 5, The Business Layer, begins by giving a presentation of the improvement in
the business layer and then demonstrates how various Java EE 7 specifications can be
put together for the realization of an application.

Preface

Chapter 6, Communicating with External Systems, demonstrates how a Java EE 7
application can interact with heterogeneous systems.

Chapter 7, Annotations and CDI, explains how annotations and CDI can be used to
improve the quality of applications.

Chapter 8, Validators and Interceptors, shows how the validation and interception of
data can be implemented in a Java EE environment to ensure the quality of the data
handled by an application.

Chapter 9, Security, demonstrates the implementation of security and setting up a
personal module for security in Servlet and EJB containers.

What you need for this book

To implement the various examples present in this book, you will need the
following software:

* NetBeans IDE 7.3.1 or higher

» JDK7

* GlassFish Application Server 4, at least b89

* MySQL 5.5 or higher DBMS

Who this book is for

Given the main objectives, this book targets three groups of people who possess
knowledge about Java. They are:

* Beginners in using the Java EE platform who would like to have an idea
about the main specifications of Java EE 7

* Developers who have experimented with previous versions of Java EE and
want to know what Java EE 7 has brought as novelties

* Budding architects who want to learn how to put together various Java EE 7
specifications for building robust and secure enterprise applications

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

[2]

Preface

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

@NameBinding

@Target ({ ElementType.TYPE, ElementType.METHOD })
@Retention(value = RetentionPolicy.RUNTIME)
public @interface ZipResult {})

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Expand the server-config menu."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[31]

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit -errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we

can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[4]

What's New in Java EE 7

Because of their use, distributed applications require some non functional
services such as remote access, security, transaction management, concurrency,
and robustness, among others. Unless you have APIs that offer these types of
services, you need to implement them all from scratch and therefore, increase
the number of bugs, reduce software quality, and increase production costs and
time. The Java EE platform was set up to save the developer from these concerns.
It is made up of a set of APIs that facilitate the development and deployment of
distributed, robust, scalable, and interoperable applications.

Since its first release in 1999, the Java EE platform has evolved over time by offering
a newer, richer, and simpler version than the previous one. In order for you to

have an overview of the improvements in Java EE 7, this chapter addresses the
following topics:

* A brief history of Java EE
* The main goals of Java EE 7
* Novelties of Java EE 7

A brief history of Java EE

Formerly called J2EE, the first version of Java EE platform was officially released

in December 1999 with 10 specifications. Among these specifications, there were
Servlets and JavaServer Pages (JSP) for data presentation, Enterprise JavaBeans
(EJB) for the management of persistent data, remote access to business services
through RMI-IIOP (Remote Method Invocation over Internet Inter-ORB Protocol),
and the JMS (Java Message Service) specification, which was used to send messages.

Despite efforts and many contributions, early versions of Java EE were too complex
and difficult to implement. This led to much criticism and caused the rise of
competing frameworks such as Spring Framework.

What's New in Java EE 7

Having drawn lessons from its previous failures, the platform has considerably
evolved over time until the production of Java EE 5, which permitted the platform to
regain its lost esteem. From this version, Java EE continues to provide easier, richer,
and more powerful versions of the platform.

Productivity
and HTML5
Lightweight
Ease of Java EE 6
Development Java EE 6 JMS 2.0, Batch,
Web Services . A WebSocket,
S Java EE 5 i
Robustness Erltmmhfl'. JSON
Enterprise J2EE 1.4 Ease of xtensibility, JAXRPE,
Java Platform Ease of Dev, EMP/BMP
ava J2EE 1.3 Seni Development CD1, JAX-RS ’
X/IVZEnt ervices, Annotations, #5R-88
J2EE 1.2 y
CMR Deployment, ESJB 3.0, JPA, Web Profile Web Profile
Servlet, JSP Connector Asyne JSF, JAXB,
EJB. JMS , Y JAX-WS, Stax, Servlet 3.0, EJB
' ' Architecture Connector SAAJ 31Li JAX-RS 2.0
RMI/IIOP JlLite
N U\ DN J
Dec 1999 Sep 2001 Nov 2003 May 2006 Dec 2009 May 2013
10 specs 13 specs 20 specs 23 specs 28 specs 31 specs

The preceding diagram gives an overview of the important changes made to Java
EE platform since the release of the first version in December 1999. This diagram
highlights the release dates, updates, and major improvements in each version. It
also allows us to have an idea about the central theme behind each version.

The main goals of Java EE 7

Since May 2006, the Java EE platform has known remarkable evolution in terms

of implementation. First, with Java EE 5, it greatly simplified the development of
applications by allowing the transformation of a simple Java class (POJO class)

into a business object through annotations or XML descriptions. Still in the line of
simplification, Java EE 6 helps enrich annotations and introduces new concepts such
as pruning, RESTful Web Services, CDI, E]JB Lite, and configuration by exception and
web profiles. This allows the platform to provide many easy-to-deploy and consume
services. After the success of Java EE 6, the JCP (Java Community Process) envisaged
turning the platform into a service by providing an infrastructure for cloud support.
But, due to lack of significant progress in the concerned specifications, it revised its
objectives. It is from the perspective of preparing the migration of the Java EE platform
to the cloud that Java EE 7 focuses on productivity and HTML5 support. Having
missed the big goal (that is, the migration to the cloud), it will reach its new goals
through completion of Java EE 6 features and addition of some new specifications.

[6]

Chapter 1

Productivity

Productivity in Java EE 7 has been improved upon in many ways. By simplifying
some APIs such as JMS and JAX-RS, Java EE 7 platform significantly reduces
boilerplate code. As you will notice in the chapters that follow, sending a JMS
message can fit on one line and no longer requires the creation of several objects
as was the case with JMS 1.1, where it was first necessary to create a Connection,
Session, MessageProducer, and TextMessage.

Java EE 7 has integrated new APISs to better address the needs of enterprise
applications relative to the processing of large amounts of data. We have, for
example, the concurrency utilities, which allow the creation of managed threads
within a container and give developers the ability to break down large processes
into smaller units that can be computed concurrently. Similarly, there is a Java
API for batch processing to manage bulk and long-running jobs.

Finally, Java EE 7 is enriched in annotations and has set a focus on configuration
by exception. Whether it is for data source or batch processing, compatible Java
EE 7 containers provide a number of default objects. It is even possible to produce
complex applications with minor configuration.

In short, the new platform frees the developer from performing a number of
tasks and the creation of several types of objects that are required for setting
up an application.

HTMLS support

Some people might wonder why the support of HTML5 is so important. The answer
is simple: HTMLS5 is the latest release of the HTML standard. More so, it offers new
features that ease the building of more powerful and suitable web applications. For
example, via the <audio> and <video> elements of HTMLS5, you can play, pause,
and resume audio and video media content without the use of a third-party plugin
such as Flash. Through the canvas element and WebGL library (a subset of OpenGL),
you can easily integrate 2D and 3D graphics in your website. With regards to
communication between the client and server, the perfect integration of WebSocket
protocol in HTMLS allows us to build a web application with full-duplex P2P
communication and get over some limitations of HTTP for real-time communication.
Using this protocol, you will have no difficulty in realizing chat applications or

other web applications that require real-time communication between the client and
server, such as trading and e-commerce platforms. In terms of data exchange, the
native support of JSON format in HTMLS5 simplifies processing of information and
reduces the size of documents. Many other areas have been improved, but for now
we will only mention these ones.

[71

What's New in Java EE 7

Given all these innovations, the support for HTMLD5 features was added in
JSF (JavaServer Faces), a new API was added to Java EE 7 platform to build
WebSocket-driven applications and another API to process JSON data format.

Novelties of Java EE 7

The Java EE 7 was developed as a Java Specification Request (JSR 342). It has a
total of 31 specifications including 4 new specifications, 10 major releases, and 9
MRs (Maintenance Releases). All these specifications are taken into account by the
GlassFish Server 4.0 (accessible via the address https://glassfish.java.net/
download.html), which is the reference implementation of Java EE 7.

The new specifications introduced in Java EE are as follows:

Concurrency Utilities for Java EE 1.0 (http://jcp.org/en/jsr/
detail?id=236), for asynchronous processing and multi-threaded
tasks in Java EE application components.

Batch Applications for the Java Platform 1.0 (http://jcp.org/en/jsr/
detail?id=352), to perform long-running tasks and bulk operations.

Java API for JSON Processing 1.0 (http://jcp.org/en/jsr/
detail?id=353), which provides support for JSON processing. It offers
Java EE components the ability to parse, generate, transform, and query
JSON format.

Java API for WebSocket 1.0 (http://jcp.org/en/jsr/detail?id=356),
to build WebSocket applications.

APIs inherited from the Java EE 6 platform that have undergone major changes are
the following;:

Java Platform, Enterprise Edition 7 (Java EE 7) Specification
(http://jcp.org/en/jsr/detail?id=342), when compared to
Java EE 6, further simplifies development, adds support for HTMLS5,
and prepares the platform to migrate to the cloud

Java Servlet 3.1 Specification (http://jcp.org/en/jsr/detail?id=340)
introduces some features such as non blocking I/O API and protocol
upgrade processing

Expression Language 3.0 (http://jcp.org/en/jsr/detail?id=341) was
separated from JSP specification request, and it came with many changes
including an API for standalone environments, lambda expressions,

and collections objects support

[8]

Chapter 1

JavaServer Faces 2.2 (http://jcp.org/en/jsr/detail?id=344) integrates
the support for the HTML5 standard and brings features such as resource
library contracts, Faces Flow, and stateless views

Java Persistence 2.1 (http://jcp.org/en/jsr/detail?id=338) brings
us the opportunity to execute Stored Procedures, create named queries at
runtime, construct bulk update/delete via the Criteria API, override or
change the fetch setting at runtime, and make explicit joins as in SQL

Enterprise JavaBeans 3.2 (http://jcp.org/en/jsr/detail?id=345)
introduces the ability to manually disable the passivation of stateful
session beans and has also relaxed rules to define the default local

or remote business interface

Java Message Service 2.0 (http://jcp.org/en/jsr/detail?id=343)
simplifies the API

JAX-RS 2.0: The Java API for RESTful Web Services (http://jcp.org/en/
jsr/detail?id=339) simplifies the implementation of RESTful Web Services
and introduces new features including Client API, asynchronous processing,
filters, and interceptors

Contexts and Dependency Injection for Java EE 1.1 (http://jcp.org/en/
jsr/detail?id=346) introduces many changes, some of which are access
to the current CDI container, access to the non contexual instances of a bean,
and the ability to explicitly destroy bean instances

Bean Validation 1.1 (http://jcp.org/en/jsr/detail?id=349) introduces
support for method and constructor validation, group conversion, and
message interpolation using expression language

Only the following APIs are affected by maintenance releases:

Web Services for Java EE 1.4 (http://jcp.org/en/jsr/detail?id=109)

Java Authorization Service Provider Contract for Containers 1.5 (JACC 1.5)
(http://jep.org/en/jsr/detail?id=115)

Java Authentication Service Provider Interface for Containers 1.1 (JASPIC 1.1)
(http://jcp.org/en/jsr/detail?id=196) standardizes the use of some
aspects of the specification

JavaServer Pages 2.3 (http://jcp.org/en/jsr/detail?id=245)

Common Annotations for the Java Platform 1.2 (http://jcp.org/en/jsr/
detail?id=250) adds a new annotation for managing priorities

Interceptors 1.2 (http://jcp.org/en/jsr/detail?id=318) adds standard
annotation for managing the execution order of interceptors

[o]

What's New in Java EE 7

* Java EE Connector Architecture 1.7 (http://jcp.org/en/jsr/
detail?id=322) adds two annotations for defining and configuring
the resource adapter's resources

* Java Transaction API1.2 (http://jcp.org/en/jsr/detail?id=907)
provides the possibility to demarcate transactions declaratively and
define beans whose lifecycle is identical to the current transaction

* JavaMail 1.5 (http://jcp.org/en/jsr/detail?id=919) slightly simplifies
the development of sending an e-mail by adding annotations and methods

Summary

After briefly introducing the evolution of Java EE and analyzing the objectives of the
latest platform, we listed all the specifications that were improved upon or added in
Java EE 7. In the next chapter, we will focus on new specifications to highlight their
usefulness and show how they can be implemented.

[10]

New Specifications

This chapter will only talk about new specifications that have been added in Java EE
7. In concrete terms, we will present and show how to use the following APIs:

* Concurrency Utilities for Java EE 1.0

* Batch Applications for Java Platform 1.0
* Java API for JSON Processing 1.0

* Java API for WebSocket 1.0

Concurrency Utilities for Java EE 1.0

Concurrency Utilities for Java EE 1.0 was developed under JSR 236. This section
gives you only an overview of the API. The complete document specification
(for more information) can be downloaded from http://jcp.org/aboutJava/
communityprocess/final/jsr236/index.html.

Why concurrency?

In computer science, concurrency is the ability of an application or a system

to execute many tasks in parallel. Before the advent of multitasking system,
computers could only run one process at a time. At that time, the programs
were not only difficult to design, but they were also executed sequentially from
beginning to end and when the machine was running a program that had access
to a peripheral device, the running program was first interrupted to allow the
reading of the peripheral.

New Specifications

Benefits of concurrency

The development of multitasking operating systems enabled the simultaneous
execution of many processes (instances of running programs) within a machine

and many threads (also called lightweight processes; they are subsets of a process
that can be run concurrently with each other) within a process. Due to this progress,
it has become possible to run multiple applications at the same time, for example,
listening to music and downloading a document while writing a text document.

In enterprise applications, concurrency can increase the interactivity of your
program by running heavy processing asynchronously in a thread. It can also be
used to improve the response time of an application by dividing a big task into
smaller units that will be executed simultaneously by many threads.

Risks of concurrency

Although each thread has its proper stack of execution, it is very common to have
multiple threads that share the same resources or depend on each other. In such
cases, the absence of good synchronization makes threading behavior unpredictable
and can degrade system performance. For example, the lack of coordination of
interrelated threads can result in deadlocks and indefinitely interrupt processing.

Concurrency and Java EE

As we have seen previously, the misuse of threads can have catastrophic
consequences on an application. In the case of a container, it could not only
compromise its integrity, but also poorly exploit the resources provided to other
components. This is one of the reasons why developers were not allowed to create
threads in a container.

To enable implementation of concurrency within Java EE components, the Java EE 7
platform has integrated Concurrency Utilities. Using this API, a Java EE server can
become aware of the resources that are used by threads and provide them with good
execution context. Furthermore, it allows the server to manage the pool and lifecycle
of threads.

Java EE Concurrency API

Concurrency Utilities for Java EE 1.0 was developed with the followings goals
in mind:

* To provide a simple and flexible concurrency API to the Java EE platform
without compromising the container

[12]

Chapter 2

To facilitate migration from Java SE to Java EE by providing consistency
between the concurrency programming models

To allow the implementation of common and advanced concurrency patterns

Concurrency Utilities was built over the Concurrency Utilities API developed under
JSR-166 for Java SE (which facilitates the migration from Java SE to Java EE). It

offers four main programming interfaces whose instances must be made available

to application components as container-managed objects. The offered interfaces are:
ContextService, ManagedExecutorService, ManagedScheduledExecutorService,
and ManagedThreadFactory. All these interfaces are contained in the javax.
enterprise.concurrent package.

These four interfaces can be explained as follows:

Managed executor service: The ManagedExecutorService interface
extends the java.util.concurrent .ExecutorService interface. It allows
us to submit an asynchronous task that will be run on a separate thread
created and managed by the container. By default, any Java EE 7-compliant
server must provide a ManagedScheduledExecutorService that can be
accessed by application components under the JNDI name java : comp/
DefaultManagedScheduledExecutorService. But, if you want to create
your own, you must first declare the ManagedExecutorService resource
environment reference in the web.xm1 file for a web application or
ejb-jar.xml for an EJB module. The specification recommends that all
ManagedExecutorService resource environment references be organized
in the java:comp/env/concurrent subcontext.

o

The following configuration is an example declaration of a
ManagedExecutorService resource environment reference:

<resource-env-ref>
<resource-env-ref-name>
concurrent /ReportGenerator
</resource-env-ref-name>
<resource-env-ref-type>
javax.enterprise.concurrent .ManagedExecutorService
</resource-env-ref-types>
</resource-env-ref>

[13]

New Specifications

Downloading the example code

Al You can download the example code files for all
-~
Packt books you have purchased from your account at
http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www. packtpub.com/
support and register to have the files e-mailed directly to you.

° After declaring the JNDI reference, you can then inject it by using
the @Resource annotation as shown in the following code:

@Resource(name:"concurrent/ReportGenerator")
ManagedExecutorService reportGenerator;

° The task to submit to the container must either implement the java.
lang.Runnable Or java.util.concurrent.Callable interface.
The differences between these interfaces are presented in the

following table:

Runnable Callable

Since JDK 1.0. Since JDK 5.0.

It has run () method to define task. It has the call () method to
define task.

It is not generic and the run () method does not It is generic and the call () method

return any value. of a Callable<V> instance returns
a value of type V.

The run () method cannot throw checked The call () method can throw

exception. checked exception.

° The following code demonstrates how to define a task that will run
reports asynchronously:

public class ReportGeneratorTask implements Callable<Strings{

@Override

public String call() throws Exception
//generate report
return "The report was generated successfully";

}

[14]

Chapter 2

The following code shows us how to submit a task. We can see that
the submit () method of the ManagedExecutorService instance
returns an object of type Future that will get back the result of the
running task when it becomes available:

Future<String> monitor = reportGenerator
.submit (new ReportGeneratorTask()) ;
String result = monitor.get () ;

Managed scheduled executor service: The
ManagedScheduledExecutorService interface extends the
ManagedExecutorService and java.util.concurrent.
ScheduledExecutorService interfaces in order to execute
a task at a specific time.

o

Instances of this interface are defined in the same way as that
of the ManagedExecutorservice interface. The following code
demonstrates how to execute a task ten seconds after its submission:

Future<String> monitor = reportGenerator

.schedule (new ReportGeneratorTask(), 10,
TimeUnit .SECONDS) ;

Managed thread factory: The ManagedThreadFactory interface provides
method to create managed thread instances in a container. The task

must implement the java.lang.Runnable interface. The following code
demonstrates how to create and run a container-managed thread.

Thread myThread = threadFactory.newThread

(new ReportManagedThread()) ;
myThread.start () ;

Context service: This interface allows the creation of

contextual objects without using ManagedExecutorService or
ManagedScheduledExecutorService interfaces, as we did in the previous
cases, with the aim of allowing the extension of the capabilities of a Java EE
platform for concurrency. Concretely, with this interface, you can create a
workflow system or use customized Java SE platform ExecutorService
implementations within a container. For example, if you desire to use

the pool management mechanism provided by the class java.util.
concurrent . ThreadPoolExecutor of Java SE to manage your threads

in the context of a Java EE component, you will just need to combine
ManagedThreadFactory, ExecutorService, and ContextService Objects.
The result is as shown in the following code:

public class ReportCustomizedThread implements Runnable {

public void run()

[15]

New Specifications

//Report processing

@Resource (name=»concurrent /ReportManagedThreadGenerator»)
ManagedThreadFactory threadFactory;

@Resource (name=>>concurrent/ReportContextServiceGenerator»)
ContextService contextService;

ReportCustomizedThread reportThread = new

ReportCustomizedThread () ;

Runnable proxy =
contextService.createContextualProxy (reportThread,
Runnable.class) ;

ExecutorService executorService =
Executors.newFixedThreadPool (20, threadFactory) ;

Future result = executorService.submit (proxy) ;

/...

This is probably a simple example of the use you can make of this feature.
For more advanced examples, please consult the specification document in
the Context service section.

The following diagram provides an overview of relationships between Concurrency
Utilities and other Java EE platform elements:

Application Server

HTTP/SSL/IIOP — EJB/Web Containers

Clients g (JSP)_i_,LRunnabIe !:

A

Callbacks | :,cnbl
aacs: : allable

[Concurrency Services

[16]

Chapter 2

Besides, it is possible to refine the configurations of different resources for better
performance (for details, see the specification document), and the Concurrency
Utilities for Java EE 1.0 provide many other interfaces like ManagedTaskListener
that can be used to monitor the state of a task's Future object.

Batch Applications for Java Platform 1.0

The Batch Applications API for the Java Platform 1.0 was developed under JSR
352. This section just gives you an overview of the API. The complete document
specification (for more information) can be downloaded from http://jcp.org/
aboutJava/communityprocess/final/jsr352/index.html.

What is batch processing?

According to the Cambridge Advanced Learner's Dictionary, a batch is a group of
things or people dealt with at the same time or considered similar in type. And a
process is a series of actions that you take in order to achieve a result. Based on these
two definitions, we can say that batch processing is a series of repetitive actions on
a large amount of data in order to achieve a result. Given the large amounts of data
that it has to deal with, batch processing is often used for end of day, month, period,
and year processing.

The following is a short list of domains where you can use batch processing:

* Data import/export from/to XML or CSV files

* Accounting processing such as consolidations

* ETL (extract-transform-load) in a data warehouse

* Digital files processing (downloading, processing, or saving)

* Notification of a service's subscribers (such as forum, group, and so on)

[17]

New Specifications

Why a dedicated API for batch processing?

After having an idea about batch processing, some people might ask themselves:

Why not just set a foreach loop that launches many threads? First of all, you have to
know that batch processing is not only concerned with the execution speed. Indeed,
the processing of large amounts of data is often affected by many exceptions, which
could generate a number of preoccupations: What action should be taken in case

of exceptions? Should we cancel the whole process for any exception? If not, what
action should be canceled? For which type of exception? If you only need to cancel a
certain number of transactions, how do you recognize them? And at the end of a batch
processing, it is always important to know how many treatments have been canceled.
How many have been registered successfully? How many have been ignored?

As you can see, we have not finished identifying questions that batch processing can
raise, but we discover that this is already a great deal. Trying to build such a tool on
your own may not only complicate your application but also introduce new bugs.

Understanding the Batch API

The Batch Applications API for the Java Platform 1.0 was developed to provide
a solution to the different needs listed in the earlier bullet items. It targets both
Java SE and Java EE applications and requires at least the 6th Version of JVM.

The features offered by this API can be summarized as follows:

* It offers the Reader-Processor-Writer pattern natively and gives you the
ability to implement your own batch pattern. This allows you to choose
the best pattern depending on the case.

* It gives the possibility of defining the behavior (skip, retry, rollback,
and so on) of the batch processing for each type of error.

* It supports many step-level metrics such as: rollbackCount,
readSkipCount, writeSkipCount, and so on for monitoring.

* It can be configured to run some processes in parallel and offer the possibility
to use JTA or RESOURCE LOCAL transaction mode.

To do this, the Batch Applications API for the Java Platform 1.0 is based on a solid
architecture that can be outlined by the following diagram. A Job is managed by a
JobOperator and has one or many steps, which can be either chunk or batchlet.
During its lifecycle, information (metadata) about a job is stored in JobrRepository,
as shown in the following diagram:

[18]

Chapter 2

JobOperator Job Step
| — |

I 1 1

JobRepository

1

JobRepository

As we said earlier, JobRepository stores metadata about current and past running
jobs. It can be accessed through Joboperator.

Job

A Job can be seen as an entity to encapsulate a unit of batch processing. It is made
up of one or many steps, which must be configured within an XML file called a Job
configuration file or Job XML. This file will contain job identification information
and different steps that compose the job. The code that follows shows the skeleton
of a Job XML file.

<job id="inscription-validator-Job" version="1.0"
xmlns="http://xmlns.jcp.org/xml/ns/javaece" >

<step id="stepl" >
</step>
<step id="step2" >
</step>

</job>

The Job XML file is named with the convention <name>.xml (for example,
inscriptiondob.xml) and should be stored under the META- INF/batch-jobs
directory for portable application.

Step

A Step is an autonomous phase of a batch. It contains all the necessary information
to define and control a piece of batch processing. A batch step is either a chunk or
a batchlet (the two are mutually exclusive). The step of the following code is a chunk

type step:
<job id="inscription-validator-Job" version="1.0"

xmlns="http://xmlns.jcp.org/xml/ns/javaee">
<step id="validate-notify" >

[19]

New Specifications

<chunk>
<reader ref="InscriptionReader" />
<processor ref="InscriptionProcessor" />
<writer ref="StudentNotifier" />
</chunk>
</step>
</job>

Chunk

A chunk is a type of step that implements the Reader-Processor-Writer pattern. It
runs in the scope of a configurable transaction and can receive many configuration
values. The following code is a more enhanced version of the inscription-validator-
Job shown in the preceding code. In this listing, we have added a configuration to
define the unit element that will be used in order to manage the commit behavior of
the chunk (checkpoint-policy="item"), and a configuration to define the number
of items (unit elements) to process before commit (item-count="15"). We have also
specified the number of exceptions a step will skip if any configured exceptions that
can be skipped are thrown by the chunk (skip-1limit="30").

The following code is an example of a chunk type step with some configuration:

<job id="inscription-validator-Job" version="1.0"
xmlns="http://xmlns.jcp.org/xml/ns/javaece" >
<step id="validate-notify" >
<chunk item-count="15" checkpoint-policy="item"
skip-limit="30">
<reader ref="InscriptionReader" />
<processor ref="InscriptionProcessor" />
<writer ref="StudentNotifier" />
</chunk>
</step>
</job>

The following code shows us what chunk batch artifact implementation looks like.
The InscriptionCheckpoint allows you to know the line that is being processed.
The source code of this section is a validation program that sends a message to

the candidates to let them know if they have been accepted or not. At the end, it
displays monitoring information in a web page. The processing is launched by the
ChunkStepBatchProcessing.java Servlet.

[20]

Chapter 2

The following code is a skeleton of chunk batch artifact implementations:

public class InscriptionReader extends AbstractItemReader
@Override
public Object readItem() throws Exception {
//Read data and return the item

public class InscriptionProcessor implements ItemProcessor({
@Override
public Object processItem(Object o) throws Exception {
//Receive item from the reader, process and return the result

public class StudentNotifier extends AbstractItemWriter
@Override
public void writeItems (List<Object> items) throws Exception
//Receive items from the processor then write it out

}

public class InscriptionCheckpoint implements Serializable {
private int lineNumber;

public void incrementLineNumber(){
lineNumber++;

public int getLineNumber ()
return lineNumber;

Batchlet

A batchlet is a type of step to implement your own batch pattern. Unlike a chunk
that performs tasks in three phases (reading, processing, and writing), a batchlet step
is invoked once and returns an exit status at the end of processing. The following
code shows us what a batchlet batch artifact implementation looks like. The source
code of this section sends an information message to all students and displays

some important information about the batch. The processing is launched by the
BatchletStepBatchProcessing.java Servlet.

[21]

New Specifications

The following code is a skeleton of batchlet batch artifact implementation:

public class StudentInformation extends AbstractBatchlet(

@Override

public String process() throws Exception {
// process
return "COMPLETED";

The batch.xml configuration file

The batch. xml file is an XML file that contains the batch artifacts of the

batch application. It establishes a correspondence between the batch artifact
implementation and the reference name that is used in the Job XML file. The
batch.xml file must be stored in the META- INF directory for a portable application.
The following code gives us the contents of the batch.xml file for the inscription-
validator-Job Job shown in the preceding code.

The following code is an example of batch.xml:

<batch-artifacts xmlns="http://xmlns.jcp.org/xml/ns/javaece">
<ref id="InscriptionReader"
class="com.packt.ch02.batchprocessing.chunk.
InscriptionReader" />
<ref id="StudentNotifier"
class="com.packt.ch02.batchprocessing.chunk.StudentNotifier" />
<ref id="InscriptionProcessor"

class="com.packt.ch02.batchprocessing.chunk.
InscriptionProcessor" />

</batch-artifacts>

JobOperator

The JobOperator instance is accessible through the getJoboperator () method of the
BatchRuntime class. It provides a set of operations to manage (start, stop, restart
and so on) a job and access JobRepository (getJobNames, getJobInstances,
getStepExecutions, and so on). The following code shows how to start the
inscription-validator-Job Job shown earlier without any specific property.

It is important to note that the inscriptionJdob value that is specified in the
JobOperator.start command is the name of the Job XML file (not the ID of the job).
In the Servlet ChunkStepBatchProcessing, you will see how to retrieve the status and
how to monitor information about batch processing from the JoboOperator instance.

[22]

Chapter 2

The following code is an example of code to start a Job:

JobOperator jobOperator = BatchRuntime.getdJobOperator () ;
if (jobOperator != null)
jobOperator.start ("inscriptiondob", null) ;

Java API for JSON Processing 1.0

The Java API for JSON Processing 1.0 was developed under JSR 353. This section
gives you only an overview of the API. The complete document specification
(for more information) can be downloaded from http://jcp.org/aboutJava/
communityprocess/final/jsr353/index.html.

What is JSON?

JavaScript Object Notation (JSON) is a lightweight data-interchange text format. It
is based on a subset of JavaScript, but it is completely language independent. JSON
format is often used for data exchanges between web client and web server or web
service. But, it can be used whenever you need to store or transmit relatively small
amounts of data that can easily be represented as a combination of name-value pairs.

JSON is built on two structures, which are: a collection of name-value pairs and
an ordered list of values. These structures are made from three data types:
object, array, and value.

Object

An object is an unordered set of name : value pairs within braces ({ }). After each
name, there is a colon (:) and the name-value pairs are separated by a comma (,).
The name is string type while the type of the value can be string, object and
so on The following text gives an example of a JSON object, which contains some
information about a student:

{ "name":"Malinda", "gender":"F", "birthday":"14/03/1976",
"weight":78.5}

Array

An array is an ordered collection of values separated by a comma (,) within brackets
(I1). The following text gives an example of a JSON array, which contains a list of
students with their score in alphabetical order.

[{"name":"Amanda", "score"=12.9}, {"name": "Paolo", "score"=14},
{"name":"Zambo", "score"=12.3}]

[23]

New Specifications

Value

A JSON value can be a string in double quotes, a boolean true or false, an object,
an array Oor null.

Why JSON?

The XML (Extensible Markup Language) was released after the SGML
(Standardised Generalised Markup Language, which was powerful and extensible
but complex) and the HTML (HyperText Markup Language, a simple version

of SGML focused on data presentation) to overcome the shortcomings of both
languages. Its power, flexibility, and simplicity have favored its use in many
applications for configuration management, storage, data transfer, and so on. With
the advent of AJAX technologies, the use of XML was widespread in exchanges
between browsers and web servers. But, it presented some limitations: XML
documents are heavy in nature because of the duplication of information, loading,
and handling of data can be complex and processing XML documents sometimes is
browser dependent.

To provide a solution to these problems, the JSON format was developed as an
alternative to XML. In fact, despite its portability and flexibility, JSON does not
support namespaces, data access requires a knowledge of the document and until
now, there is no XSD or DTD to validate the document's structure.

A simple comparison between XML and JSON data presentation is shown in the
following table:

XML data presentation JSON data presentation
<student> {"student": {
<id>854963</1id> "id":"854963",
<name>Louis "name" :"Louis
Poyer</name> Poyer",
<weight>78.6</weight> "weight":78.6,
<gender>M</gender> "gender":"M",
<contact> "contact": [
<address>Rue {"address": "Rue
9632</address> 632"},
<phone>985-761-0 {"phone":
</phone> "985-761-0"}]
</contact> }
</student> }

[24]

Chapter 2

Java API for JSON processing

The Java API for JSON processing defines an API to process (parse, generate,
transform, and query) JSON documents by using either the streaming API or
the object model API.

The streaming API

The streaming API is for JSON as StAX API is for XML. In other words, the
streaming API is an event-based JSON parsing. It parses a JSON file sequentially
and fires an event whenever a it encounters a new tag in the stream (new value
String, new start of objet, end of objet, new start of an array ...). The example that
follows shows us how to get contact information within the JSON data presented
on the previous page.

Example of JSON processing using the streaming API:

public String getStudentContact (String jsonData)
JsonParser parser = Json.createParser
(new StringReader (jsonData)) ;
Event event = null;
boolean found = false;
String information = "";

//Advance to the contact key

while (parser.hasNext()) {
event = parser.next () ;
if ((event == Event.KEY NAME) &&
"contact".equals (parser.getString())) {

found = true;
event = parser.next () ;
break;
}
}

if (!found) {
return "contact information does not exist";

}

//get contact information
while (event != Event.END ARRAY) {
switch (event) ({
case KEY NAME:
information += parser.getString() + " = ";
break;
case START ARRAY: break;

[25]

New Specifications

case END ARRAY: break;
case VALUE FALSE: break;
case VALUE NULL: break;
case VALUE NUMBER:
if (parser.isIntegralNumber ()) {
information += parser.getLong()+", ";
} else {
information += parser.getBigDecimal ()+", ";
}
break;
case VALUE STRING:
information += parser.getString()+", ";
break;
case VALUE TRUE:
information += " TRUE, ";
break;

}

event = parser.next () ;

}

return information;

}

The streaming API consists of five interfaces, one enum class, and two exceptions.
All of them are contained in the javax.json. stream package. Among these
interfaces, we have the Jsonparser interface, which contains methods for
step-by-step read-only access to JSON data, and the JsonGenerator interface,
which provides methods to generate (write out) JSON step-by-step. Instances

of these interfaces can be created respectively with JsonParserFactory and
JsonGeneratorFactory factories. All events triggered by the streaming API

are contained in the JsonParser.Event enum class.

It's recommended to use the streaming API to parse large JSON files because, unlike
the object model AP, it does not require loading the whole file before processing.
This ensures good memory management.

The object model API

The object model API is for JSON as DOM API is for XML. This means that it
represents a JSON document as a tree structure in memory before giving the possibility
to navigate in or query the document. This API provides the most flexible way to parse
a JSON document by giving a random access to any data it contains. But in return, it
requires more memory. That is why it is not suitable for large documents.

[26]

Chapter 2

The object model API consists of thirteen interfaces, one class, one enum class

and one exception. All of them are packages in javax.json. Among interfaces,

we have: JsonArrayBuilder and JsonObjectBuilder to build JSON arrays and
JSON objects respectively from scratch; JsonArray to access the ordered values of a
JSON array as a list and dsonObject to access the values of a JSON object as a Map
and JsonBuilderFactory to create JsonObjectBuilder or JsonArrayBuilder
instances; JsonReader to read JSON from an input source and JsonReaderFactory
to create JsonReader instances; JsonWriter to write JSON to an output source,
and JsonWriterFactory to create Jsonwriter instances. The following code
demonstrates how to create an object model from scratch and access data within it.

The following code is an example of JSON processing using the object model API:

JsonObject objModel = Json.createObjectBuilder ()
.add ("student",Json.createObjectBuilder ()
.add("id", "854963")
.add ("name", "Louils Poyer")
.add ("weight", 78.6)
.add ("gender", "M")
.add ("contact",Json.createArrayBuilder ()
.add (Json.createObjectBuilder ()
.add ("address", "Rue 632"))
.add (Json.createObjectBuilder ()
.add ("phone", "985-761-0")))
) .build() ;

JsonObject student = objModel.getdsonObject ("student") ;

String name = student.getString("name") ;

JsonArray contact = student.getJsonArray ("contact");

String address = contact.getdsonObject (0) .getString("address") ;
String phone = contact.getJdsonObject (1) .getString("phone")) ;

Java API for WebSocket 1.0

The Java API for WebSocket 1.0 was developed under JSR 356. This section just
gives you an overview of the API. The complete document specification (for
more information) can be downloaded from http://jcp.org/aboutJava/
communityprocess/final/jsr356/index.html.

[27]

New Specifications

What is WebSocket?

Originally called TCPConnection in previous versions of the HTML5 specification,
WebSocket is an independent protocol built over the TCP (Transmission Control
Protocol), which enables bidirectional and full-duplex communication between a
client and a server.

To open a WebSocket connection in web application , the web client uses an HTTP
request to ask the server to upgrade the connection to a WebSocket connection. If the
server supports and accepts the WebSocket protocol connection request, it will still
return a response through HTTP. From that moment, the communication is established
and both parties can send and receive data by using only the WebSocket protocol.

Why WebSocket?

Today, many web applications (instant messaging, trading platforms, some
e-commerce platforms, online gaming, and so on) require a real-time communication
between a client (browser) and a server. If you do not know, the HTTP protocol is

a stateless half-duplex protocol. This means that, to access new information and
update a web page, the client must always open a connection to the server, send a
request, wait for the server response, and then close the connection. Thus, in a real-
time context, the client will frequently send requests to the server in order to detect
the presence of new data and many request-responses will be made even when there
is no new information.

To get around this problem, many solutions have been proposed. The most efficient
was certainly long polling, which can be described like this: the client makes a
request to the server; if there is data available, the server responds. Otherwise, it
waits until there is new information before responding. After receiving the response,
the client sends another request and so on. Although it seems good, this technique
requires proprietary solutions (comet) and when data are frequently updated, the
loop connection-request-response-disconnection may negatively impact the network.

WebSocket is not an HTTP-based technique, it is a protocol that provides a new
and better way to overcome the shortcomings of the HTTP protocol in real-time
communication between web client and web server/service.

The WebSocket API

The Java API for WebSocket 1.0 defines a standard API to build WebSocket-driven
applications in the Java EE platform.

[28]

Chapter 2

A WebSocket application consists of two types of components called endpoints:

a client endpoint and a server endpoint. A client endpoint is the component that
initiates a WebSocket connection, while a server endpoint is waiting for connections.
With the Java API for WebSocket 1.0, both component types can be created either
programmatically or declaratively by using annotations. In this chapter we will

only see annotated endpoints in a small student chat room application.

Server endpoint

The following code demonstrates how to create a WebSocket endpoint that is able to
accept client connections and send messages:

@ServerEndpoint ("/chatserver")
public class ChatServerEndPoint
@OnOpen
public void openConnection(Session session) throws Exception {
YV
}

@OnMessage

public void onMessage (Session session, String msg)
throws Exception {

/...
}

@OnClose
public void closeConnection(Session session) throws Exception {
/...
}
}

The @serverEndpoint annotation defines a server type endpoint and the path where
it will be deployed. You will also notice that the API offers annotations to describe the
method to be executed in each step of the endpoint lifecycle. The following table gives
the list and the role of WebSocket endpoint lifecycle annotations.

The following table lists the WebSocket endpoint lifecycle annotations:

Annotation Role

@OnOpen Designates the method to be executed at the opening of a connection
@OnMessage Designates the method to be executed when a message is received
@OnError Designates the method to be executed in case of a connection error
@OnClose Designates the method to be executed when the connection is closed

[29]

New Specifications

Any message sent by a WebSocket client is intercepted by the onMessage () method,
which takes the client session and the message as parameters (for other parameters
that can be taken, please see the specification). Messages can be sent synchronously
with the method session.getBasicRemote () or asynchronously with the method
Session.getAsyncRemote (). Each of these methods is used to send messages

of type: text, binary, object, ping, and pong frames. The following code
demonstrates how to send a text message to all connected clients:

static Set<Session> users = Collections.synchronizedSet (new
HashSet ()) ;

@OnOpen
public void openConnection(Session session) throws Exception

users.add (session) ;

@OnMessage
public void onMessage (Session session, String msg)
throws Exception {
for (Session s : users) {
s.getBasicRemote () . sendText (msg) ;

}

The session object contains a variable to store some user-specific information.
The code that follows demonstrates how to communicate with many customers
by giving the name of the person who sent the message each time:

/...
static Set<String> usersId = Collections.synchronizedSet (new
HashSet ()) ;

/...

@OnMessage
public void onMessage (Session session, String msg)
throws Exception {

if (msg.startsWith("iD")) {//if it is a connection message
String id = msg.split("-") [1];
session.getUserProperties () .put ("id", id);

//save the ID of the user
usersId.add (id) ;
//add the ID in the list of connected users
Object [] objl = new Object/[]
{"wel","Welcome to the chat room "+id +"!"};

[30]

Chapter 2

String jsonString = getJsonObject (objl) ;

//json message transformation

//send a welcome message to the new user

session.getBasicRemote () .sendText (jsonString) ;

//send the list of connected users to all users

Object[] obj2 = new Object[]{"users",usersId};

jsonString = getJdsonObject (obj2) ;

for (Session s : users) {
s.getBasicRemote () .sendText (jsonString) ;

}

} else { //if it is a message to the chat room

//get ID of the user who sends message

String id = (String) session.getUserProperties() .get ("id") ;

Object[] obj = new Object][]

{"msg",id + ">>" + msg.split("-") [1]};

String jsonString = getJsonObject (obj);//json transformation

//sends the message to all connected users

for (Session s : users) {
s.getBasicRemote () .sendText (jsonString) ;

Client endpoint

Our client WebSocket endpoint is a . jsp web page (websocketChatClient.jsp)
which is based on JavaScript code. As you can see, the client side has the same
lifecycle methods and through the power of JSON, we can easily access and
display messages sent by the server.

The following code is an example of a web client WebSocket endpoint:

//complete URI of the chat server endpoint

var clientUri = "ws://"+document.location.host
+"/chapter02NewSpecifications/chatserver";

var wsocket;

//connection request when loading the web page
window.addEventListener ("load", connect, false);

//Connection method

function connect () {
wsocket = new WebSocket (clientUri) ;
//binding of the websocket lifecycle methods
wsocket .onmessage = onMessage;

[31]

New Specifications

wsocket .onerror = onError;

function joinChatRoom() {//method to join the chat room
wsocket.send ("ID-" + txtMessage.value) ;

}

function sendMessage() {//method to send a message to the chat room

wsocket.send ("M-" + txtMessage.value) ;

function onMessage (event) {//method to perform incoming messages

var parsedJSON = eval('(' + event.data + ')');

if (parsedJSON.wel != null) {//if welcome message
userState.innerHTML = parsedJSON.wel;

}

if (parsedJSON.msg != null) {//if chat room message
userMessage.innerHTML += "\n"+parsedJSON.msg;

}

if (parsedJSON.users.length > 0) {//if new new connection user
userId.innerHTML = "";
for (i = 0; i < parsedJSON.users.length; i++) {

userId.innerHTML += i1 + "-" + parsedJSON.users[i] + "\n";

}

Summary

In this chapter we have tried to present the usefulness and implementation of the new
specifications of Java EE 7. In the coming chapters, we will analyze the improvements
that have been made to the specifications inherited from Java EE 6 and use the
opportunity to show how to integrate new specifications with existing ones.

[32]

The Presentation Layer

In this chapter, we will review the improvements in the Java EE platform
for the presentation layer. In concrete terms, we are going to talk about the
following specifications:

* Servlet3.1
* Expression Language 3.0

¢ JavaServer Faces 2.2

Serviet 3.1

The Servlet 3.1 Specification was developed under JSR 340. This section gives you
only an overview of improvements in the API. The complete document specification
(for more information) can be downloaded from http://jcp.org/aboutJava/
communityprocess/final/jsr340/index.html.

What is a Servlet?

There was a time in computer science when we could not create dynamic web pages.
At that time, users had access only to static web pages, such as in a newspaper.
Among the many proposed solutions, the first Java solution was the Servlet, a
revolutionary technology used to extend the capabilities of servers based on the
request-response programming model. It enabled web servers to handle HTTP
requests and dynamically generate web pages according to user parameters. Since
then, technologies have advanced a lot in order to facilitate the development of web
applications. However, the Servlet technology remains the most widely used Java
solution for processing of HTTP requests/responses in the background.

The Presentation Layer

That said, at the base of almost all Java frameworks dedicated to the HTTP
protocol (JSF, Struts, Spring MVC, BIRT, web services solutions), you will find at
least one Servlet (that is, you have FacesServlet in JSF, viewerServlet, and the
BirtEngineServlet for BIRT). You understand why this technology should attract
our attention, because a change in the Servlet specification will have repercussions
on a multitude of tools.

A login page with a Servlet

Concretely, a Servlet is a Java class that implements the Servlet interface directly
or indirectly. The following code represents an example of a Servlet that returns a
connection interface to the user and redirects it to another interface after validating
its input:

@WebServlet (name = "connexionServlet", urlPatterns = {"/
connexionServlet"})

public class ConnexionServlet extends HttpServlet

Logger logger = Logger.getLogger (ConnexionServlet.class.
getName ()) ;

protected void processRequest (HttpServletRequest request,
HttpServletResponse response)
response.setContentType ("text/html;charset=UTF-8") ;
try (PrintWriter out = response.getWriter () ;) {
out.println("<!DOCTYPE html>") ;
out.println("<html>") ;
out.println("<head>") ;
out.println("<title>Online pre-registration site</
title>");
out.println("</head>") ;
out.println ("<body>") ;

out.write (" <form method=\"post\">") ;

out.write (" <h4>Your name</h4>") ;

out.write (" <input type=\"text\"
name=\"paraml\" />");

out.write (" <h4>Your password</h4>");

out.write (" <input type=\"password\"
name=\"param2\" />");

out.write ("

");

out.write (" <input type=\"submit\"
value=\"Sign it\"/>");

out.write (" <input type=\"reset\"
value=\"Reset\" />");

out.write (" </form>") ;

[34]

Chapter 3

out.println("</body>") ;
out.println("</html>") ;

String name = request.getParameter ("paraml") ;
String password = request.getParameter ("param2") ;

String location = request.getContextPath() ;

if ("arnoldp".equals (name) && "123456".equals (password)) {
response.sendRedirect (location+"/
WelcomeServlet?name="+name) ;

}else if((name != null) && (password != null))

response.sendRedirect (location+"/
ConnexionFailureServlet") ;

} catch(IOException ex) {
logger.log(Level.SEVERE, null, ex);

@Override

protected void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
processRequest (request, response) ;

@Override

protected void doPost (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
processRequest (request, response) ;

}

As you can see, our ConnexionServlet class extends javax.servlet.http.
HttpServlet; this is an abstract class that implements the Servlet interface.

It defines the lifecycle methods (doGet and doPost) of the Servlet object that

allows us to handle HTTP service requests and send back a response. To access

the page generated by this Servlet, you must enter an URL similar to this one:
http://localhost:8080/chapter03PresentationlLayer/connexionServlet. Here,
connexionServlet is the name given in the @eWebservlet annotation. On this page,
you will have the Sign it button displayed by using the following instruction :

out.write (" <input type=\"submit\" wvalue=\"Sign it\"/>");

[35]

The Presentation Layer

A click on this button generates an HTTP request that will cause execution of the pro
cessRequest (HttpServletRequest request, HttpServletResponse response)
method. Based on the results of the connexion parameters validation, you will be
redirected to the error page or home page. In the case of a redirect to the home page,
we will add to the URL a parameter containing the name of the user in order to
adapt the greeting. The URL of the homepage is the following;:

http://localhost:8080/chapter03PresentationLayer/
WelcomeServlet?name=arnoldp

To access the name parameter, we execute the instruction: out.
println("<hl>Welcome Mr " + request.getParameter ("name")+ "</hls"); In
the WwelcomeServlet Servlet.

Latest improvements of Servlet 3.1 in action

Following Servlet 3.0, which was focused on ease of development, pluggability,
asynchronous processing, and security enhancements, Servlet 3.1 has brought a
number of clarifications to features of the previous version and some changes; the
main ones are: non blocking I/O API and protocol upgrade processing.

Non blocking 1/0 API

The non blocking I/O API piggybacks on the asynchronous request processing and
the upgrade processing to improve the scalability of the Web Container. Indeed, the
introduction of asynchronous processing in Servlet 3.0 has made it possible to reduce
waiting time between requests by enabling the thread responsible for processing the
client's requests and delegating to other threads the execution of heavy processes

in order to be ready to accept a new request. But, because of the traditional way

to collect data input/output with a while loop (see the following code), the main
thread responsible for request processing can be blocked due to pending data. For
example, when you send a large amount of data to a very powerful server across

a network, the time taken for data collection will be inversely proportional to the
bandwidth of the network. The smaller the bandwidth, the more time the server
will take to do the job.

public class TraditionnalIOProcessing extends HttpServlet

Logger logger = Logger.getLogger (TraditionnalIOProcessing.class.
getName ()) ;

protected void doGet (HttpServletRequest request,
HttpServletResponse response) {

try (ServletInputStream input = request.getInputStream() ;

[36]

Chapter 3

FileOutputStream outputStream = new

FileOutputStream("MyFile") ;) {

byte b[]

while (data != -1) {

new byte[3072];
int data = input.read(b) ;

outputStream.write (b) ;

data = input.read(b);

}

} catch (IOException ex) ({

logger.log(Level.SEVERE,

}

null,

ex) ;

To solve this problem, two listeners (ReadListener and WriteListener) have
been added to the Java EE platform and new APIs were also introduced into
ServletInputStream and ServletOutputStream.

The following table describes the new listeners for the non blocking I/O API:

Listener Callbacks Description
ReadListener void This method is called whenever data is
onDataAvailable () available to read without blocking
void onAllDataRead() This method is called when all the data
of ServletRequest has been read
void This method is called when an error
onError (Throwable t) or exception occurs during request
processing
WriteListener void This method is called whenever it is
onWritePossible () possible to write data without blocking
void This method is called when an error

onError (Throwable t)

or exception occurs during response
processing

[37]

The Presentation Layer

The table that follows describes the new APIs for the non blocking I/O API:

Class Method Description
ServletInputStream void This associates
setReadListener (Readlistener Readlistener
1n) with the current
ServletInputStream
boolean isFinished() This returns true
when all the data of

ServletInputStream
has been read

boolean isReady () This returns true if
data can be read without
blocking
ServletOutputStream boolean isReady () This returns true if

data can be written
successfully to
ServletOutputStream

void This associates

setWritelListener (WriteListener WriteListener

1n) with the current
ServletOutputStream

By using the non blocking I/O AP, the doGet (HttpServletRequest request,
HttpServletResponse response) method of the TraditionnalIOProcessing
class shown earlier may be transformed to the doGet (HttpServletRequest
request, HttpServletResponse response) method represented in the
following code. As you can see, the data reception has been delegated to a listener
(ReadListenerImpl), which will be notified whenever a new package is available.
This prevents the server from being blocked while waiting for new packages.

protected void doGet (HttpServletRequest request, HttpServletResponse
response) {
try (ServletInputStream input = request.getInputStream() ;
FileOutputStream outputStream = new
FileOutputStream("MyFile") ;) {
AsyncContext context = request.startAsync();
input.setReadListener (new ReadListenerImpl (context,
input,outputStream)) ;
}Jcatch (IOException ex) {
logger.log(Level .SEVERE, null, ex);

[38]

Chapter 3

The implementation of ReadListenerImpl used in the preceding code snippet is
as follows:

public class ReadListenerImpl implements ReadListener

AsyncContext context;
ServletInputStream input;
FileOutputStream outputStream;

public ReadListenerImpl (AsyncContext ¢, ServletInputStream i,
FileOutputStream £) {
this.context
this.input =
outputStream

ci

-

1

£;

}

@Override
public void onDataAvailable() throws IOException {
byte b[] = new byte[3072];
int data = input.read(b) ;
while (input.isReady() && data != -1) {
outputStream.write (b) ;
data = input.read(b);

}

@Override

public void onAllDataRead() throws IOException {
System.out.println("onAllDataRead") ;

}

@Override
public void onError (Throwable t) {
System.out.println("onError : " + t.getMessage()) ;

}

Protocol upgrade processing

Protocol upgrade processing is a mechanism that was introduced in HTTP 1.1 to
provide the possibility of switching from HTTP protocol to another (one that is
completely different). A concrete example of protocol upgrade processing usage is
the migration from HTTP protocol to the WebSocket protocol where the client begins
by sending a request for WebSocket to the server. The client request is sent via HTTP
and if the server accepts the connection request, it will still respond through HTTP.
From this moment, every other communication will be through the established
WebSocket channel. Support for this mechanism in the Servlet 3.1 Specification

was done by adding the upgrade method to HttpServletRequest and two new
interfaces: javax.servlet .http.HttpUpgradeHandler and javax.servlet.http.
WebConnection.

[39]

The Presentation Layer

The following table shows a description of protocol upgrade methods, interfaces,

and classes:

Class/Interface

Method

Description

HttpServletRequest

HttpUpgradeHandler
upgrade (Class handler)

This method starts the
upgrade processing,
instantiates, and returns
the handler class

that implements the
HttpUpgradeHandler
interface.

HttpUpgradeHandler

void init (WebConnection
we)

This method is called when
the upgrade operation is
accepted by the Servlet. It
takes a WebConnection
object to allow the protocol
handler have access to the
input/output streams.

void destroy ()

This method is called when
the client disconnects.

WebConnection

ServletInputStream

This method gives access

getInputStream() to the input stream of the
connection.

ServletOutputStream This method gives access

getOutputStream() to the output stream of the

connection.

The two blocks of code that follow show us how the new method and new interfaces
can be used in order to accept a given client protocol upgrade request.

The following is an example of an upgrading request:

protected void processRequest (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException ({

response.setContentType ("text/html;charset=UTF-8") ;

try

(PrintWriter out =

System.out.println ("protocol
getHeader ("Upgrade")) ;

if ("CYPHER".

response.setStatus (101) ;

response.setHeader ("Upgrade",
response.setHeader ("Connection",

response.getWriter () ;) {
"+request.

equals (request.getHeader ("Upgrade"))) {

"CYPHER") ;
"Upgrade") ;

[40]

Chapter 3

CypherUpgradeHandler cHandler = request.
upgrade (CypherUpgradeHandler.class) ;
} else {
out.println ("The "+request.getHeader ("Upgrade")+" protocol
is not supported");

}
}

The following is an example of upgrade handler class implementation:

public class CypherUpgradeHandler implements HttpUpgradeHandler(

Logger logger = Logger.getLogger (CypherUpgradeHandler.class.
getName ()) ;
public void init (WebConnection wc) {
ServletInputStream input = null;
ServletOutputStream output = null;
try {
System.out.println("A client just logged in");
input = wc.getInputStream() ;
// use input stream
output = wc.getOutputStream() ;
//use output stream
} catch (IOException ex) {
logger.log(Level .SEVERE, null, ex);

public void destroy ()
System.out.println("A client just logged out");

Expression Language 3.0

The Expression Language 3.0 Specification was developed under JSR 341. This
section gives you only an overview of improvement in the API. The complete
document specification (for more information) can be downloaded from
http://jcp.org/aboutJava/communityprocess/final/jsr341/index.html.

[41]

The Presentation Layer

What is Expression Language?

Expression Language (EL) is a language used to access and manipulate data in your
JSP or JSF web pages. It provides a simple way to:

* Read/write data from/to JavaBean component properties
* Invoke static and public methods

* Perform arithmetic, relational, logical, and conditional operations

An EL expression looks like $ {expr} or #{expr}. The former syntax is often used for
immediate evaluation while the latter is used for deferred evaluation. The following
code demonstrates how to access a JSF bean property from a JSF page and how to
perform an operation between two integers using EL expressions:

<h:form>
<h:outputText
id="beanProperty"
value="Bean property value : #{studentBean.identity}" />

<h:outputText
id="operator"
value="operator : 3 + 12 = #{3 + 12}" />
</h:form>

The latest improvements of EL 3.0 in action

EL was first designed for JSP Standard Tag Library (JSTL), before being associated
with the JSP Specification and then to the JSF Specification. Since both specifications
had different needs at the onset, each specification used a variant of the EL. The
advent of JSP 2.1 EL led to unification of the EL used in JSP and JSF pages; this

gave birth to a dedicated specification document for EL, although EL was always
dependent on the same JSR as JSP. Version 3.0 is the first to be developed in a
separate JSR: JSR 341. This new specification comes with many changes; the most
important are: an API for standalone environments, lambda expressions, collection
object support, string concatenation operator, assignment operator, semi-colon
operator, and static fields and methods.

[42]

Chapter 3

API for standalone environments

Since EL 3.0, it is now possible to handle EL in a standalone environment. For this
purpose, it provides the ELProcessor class, which allows direct evaluation of

EL expressions and makes easier the definition of functions, variables, and local
repository beans. The following code demonstrates how the ELProcessor class can
be used in standalone environment. The present case is the content of a Servlet, but
you can do the same in a Java SE application.

ELProcessor el = new ELProcessor() ;

//Simple EL evaluation
out.println("<hl>'Welcome to the site!' : "
+ "t 4+ el.eval("'Welcome to the site!'") + "</hil>");
//Definition of local repository bean
el.defineBean ("student", new StudentBean()) ;
//Direct evaluation of EL expression
out.println("<hl>" + el.eval("'The id of : '+=student.lastName+=' "
+ "isg : '+=student.identity") + "</hl>");
//Function definition
el.defineFunction ("doub", "hex", "java.lang.Double", "toHexString") ;
//Access to a function defined
out.println("<hl> The hexadecimal of 29 is : "
+ el.eval ("doub:hex (29)") + "</hl>");

Always in the context of the API for standalone environments, EL 3.0 has added the
ELManager class to provide lower-level APIs that enable the management of the EL

parsing and evaluation environment. With this class, you can import classes or add

your own resolver to ELProcessor.

Lambda expressions

A lambda expression is an anonymous function that consists of one or more
parameters in brackets (if there are several), the lambda operator (->), and the body
of the lambda expression. The expression: x-> x * x,is a lambda expression used
to determine the square of a number. Basically, lambda expressions save you from
having to create a whole class for a single method or to declare a method for a very
simple operation that will be used once. So, they can help to write more readable and
maintainable code.

[43]

The Presentation Layer

A lambda expression can take many forms, as follows:
* It may involve a number of parameters and can be invoked immediately.
The expression: ((x,y,z)->x+y*z) (3,2,4), returns 11.

* It can be associated with an identifier and invoked later. The expression:
diff = (x,y)-> x-y; diff(10,3), returns?.

* It can be passed as an argument to a method or nested within another
lambda expression. The expression: diff=(x,y) ->(x-y) ;diff (10, [
2,6,4,5] .stream() .filter(s->s < 4) .max() .get()), returns 8.

Collection object support

The support of collection objects in the EL 3.0 Specification is done in two ways: the
construction of collection objects and implementation of operations that will be used
to manipulate them.

Collection object construction

Concerning the creation of a collection, EL allow us to create objects of type
java.lang.util.Set, java.lang.util.List, and java.lang.util.Map
dynamically by using an expression or literals.

The different types of object construction are as follows:

* Set object construction:

The construction of set collection type results in an instance of set
<Object> and it is done according to the following syntax:

SetCollectionObject = '{'elements '}

Here, elements has the form (expression (',' expression)*)?
For example: {1, 2, 3, 4, 5}, {'one', 'two', 'three', 'four'}, {1.3,
2, 3,{4.9, 5.1}}

* List object construction:

The construction of List collection type results in an instance of
List<Object> and it is done according to the following syntax:

ListCollectionObject = '['elements']'

Here, elements has the form (expression (',' expression)*)?
For example: [one, 'two', ['three', 'four'l,fivel, [1, 2, 3,
[4,5]]

[44]

Chapter 3

* Map object construction:

The construction of Map object type results in an instance of Map<Object >
and it is done according to the following syntax:

MapCollectionObject = '{' MapElements '}'

Here, MapElements has the form (MapElement (',' MapElement)*)2 and
MapElement the form expression ':' expression

For example: {1:'one', 2:'two', 3:'three', 4:'four'}

Collection operations

The second aspect of the collection support in EL 3.0 concerns collection operations.
For this aspect, the specification only defines the syntax and behavior of a standard
set of collection operations to be implemented with ELResolvers. It has the
advantage of allowing developers to modify the default behavior by providing
their own ELResolvers.

Execution of a collection operation is done through a stream pipeline which is made
up of:

* A stream object that represents the source of a pipeline; it is obtained from
the stream () method of the collection or array. In the case of a map, the
collection view of the map can be use as the source.

* Zero or more intermediate st ream methods that return a stream object.

* A terminal operation, which is a stream method that returns nothing.

The following code demonstrates the construction of a pipeline by giving an example
of collection operations:

public class ELTestMain {
static ELProcessor el = new ELProcessor();

public static void main(String[] args) {
List 1 = new ArrayList();
l.add(1); 1.add(8); 1l.add(7); 1l.add(14); l.add(2);
el.defineBean("1list", 1);

out.println("Evaluation of " + 1 + " is : " +
el.eval("list"));
out.println("The ordering of: " + 1 + " is : "
+ el.eval("list.stream() .sorted () .toList () ")) ;

[45]

The Presentation Layer

out.println("List of number < 7 : "
+ el.eval ("list.stream() .filter(s->s <
7) .toList () ")) ;
out.println("The sum of : " + 1 + " is : "
+ el.eval("list.stream() .sum() ")) ;

}

String concatenation operator (--)

The += operator returns the concatenation of operands located on either side of the
operator. For example, 1 += 2 returns 12 while 1 + 2 returns 3. To welcome a new
connected student to our website we only need to locate the following expression
somewhere in a web page:

#{'Welcome' += studentBean.lastName}.

Assignment operator (-)

The A = B expression assigns the value of B to A. To make this possible, 2 must be a
writable property. The assignment operator (=) can be used to change the value of a
property. For example, the #{studentBean.identity = '96312547'} expression
assigns the value 96312547 to property studentBean.identity.

The assignment operator returns a value and it is right-associative.
s The expressiona = b = 8 * 3isthesameasa = (b = 8 * 3).

Semi-colon operator (;)

The semi-colon operator can be used like the comma operator in C or C++.

When two expressions expl and exp2 are separated by a semi-colon operator,

the first expression is evaluated before the second, and it is the result of the
second expression that is returned. The first expression may be an intermediate
operation, such as incrementation, whose result will be used in the last expression.

The expression: a = 6+1; a*2 returns 14.

[46]

Chapter 3

Static fields and methods

With EL 3.0, it is now possible to directly access static fields and methods of a Java
class by using the syntax MyClass.field or MyClass.method, where MyClass is the
name of the class that contains the static variable or method. The code that follows
demonstrates how to access the MIN VALUE field of the Integer class and how to
parse the String '2' to int by using the static parseInt method of the Integer class:

ELProcessor el = new ELProcessor() ;
//static variable access
out.println("<hl> The value of Integer.MIN VALUE : "
+ el.eval ("Integer.MIN VALUE") + "</hl>");
//static method access
out.println("<hl> The value of Integer.parseInt('2') : "
+ el.eval ("Integer.parseInt ('2')") + "</hl>");

JavaServer Faces 2.2

The JavaServer Faces 2.2 Specification was developed under JSR 344. This section
gives you only an overview of improvements in the API. The complete document
specification (for more information) can be downloaded from http://jcp.org/
aboutJava/communityprocess/final/jsr344/index.html.

What is JavaServer Faces?

JavaServer Faces (JSF) is a component-based architecture with a set of standard Ul
widgets and helper tags (convertDateTime, inputText, buttons, table, converter,
inputFile, inputSecret, selectOneRadio). It was released after the Servlet and
JSP Specification in order to facilitate the development and maintenance of
component-oriented web applications. In this light, it offers developers the

ability to:

* Create web applications that meet the design pattern of MVC
(Model-View-Controller). This design pattern allows a clear separation
of the presentation layer from the other layers and facilitates the
maintenance of the whole application.

* Create different types of components (widgets, validators, and so on).

[47]

The Presentation Layer

* Reuse and customize multiple components provided by the specification
according to need.

* Bind Java components to different views and manipulate them easily by
using Expression Language (EL).

* Generate web pages in different formats (HTML, WML, and so on) through
render Kkits.

* Intercept the various events that occur on a form and manage the lifecycle of
Java components according to the request scope.

To make this possible, the lifecycle of JSF applications includes six phases (restore
view phase, apply request values, process validations, update model values, invoke
application, and render response), each of which manages a specific aspect while
processing the form instead of just managing requests/responses, as is the case
with Servlets.

An identification page with JSF

The following code shows an example of a JSF page to enter personal information,
such as first name and nationality. It also contains components for selection lists and
checkboxes. As you can see, it is not necessary to be a geek to make a good job. To
manage the navigation after validation of parameters, we use the action attribute
of the commandButton component that expects a return value from the method
onclickvValidateListener. The web page that follows displays relative to the
value returned and is defined in the faces-config.xml file of the web application.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.o0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<html xmlns="http://www.w3.0org/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:f="http://xmlns.jcp.org/jst/core" >
<h:head>
<title>Online pre-registration site</title>
</h:head>
<h:body>
<f:views
<h:form >
<dir align="center" >

<h:panelGrid columns="2" style="border: solid
blue">

<h:outputText value="First name : " />
<h:inputText value="#{studentBean.firstName}"

/>

[48]

Chapter 3

<h:outputText value="Last name : " />

<h:inputSecret value="#{studentBean.lastName}"
/>

<h:outputText value="Birth date: " />

<h:inputSecret value="#{studentBean.
birthDate}" />

<h:outputText value="Birth place : " />

<h:inputSecret value="#{studentBean.
birthpPlace}" />

<h:outputText value="Nationality : " />

<h:selectOneMenu value="#{studentBean.
nationality}">
<f:selectItems value="#{studentBean.
nationalities}" />
</h:selectOneMenu>
<h:outputText value="Gender : " />
<h:selectOneRadio value="#{studentBean.
gender}"s>
<f:selectItem itemValue="M"
itemLabel="Male" />
<f:selectItem itemValue="F"
itemLabel="Female" />
</h:selectOneRadio>
<h:outputText value="Language : " />
<h:selectOneMenu value="#{studentBean.
language}">
<f:selectItems value="#{studentBean.
languages}" />
</h:selectOneMenu>
<dir align="right">
<h:panelGroup>
<h:commandButton value="Validate"

action="#{studentBean.onclickValidateListener}" />
<h:commandButton value="Cancel"

actionListener="#{studentBean.onclickCancellListener}" />
</h:panelGroup>
</dir>
</h:panelGrid>
</dir>
</h:form>
</f:view>
</h:body>
</html>

[49]

The Presentation Layer

The latest improvements of JSF 2.2 in action

Because of the great improvements provided in HTMLS5, a priority of JSF 2.2 was to
incorporate new features of the language; but this is not the only big change. Besides
the integration of HTMLS5, the JSF 2.2 Specification comes with Resource Library
Contracts, which announce multitemplate features, Faces Flow, and Stateless Views.

HTMLS5-friendly markup

As we saw earlier, JSF is a component-based architecture. This justifies the fact that
the creation of relatively complex user interface features is done by the development
of JavaServer Faces components. These components are processed on the server side
before delivering the right content to the browser. Although this approach saves the
developer from the complexity of HTML, scripts, and other resources involved in
each component, you have to know that the creation of a component is not always
easy and the generated code is not always the lightest or most optimal.

The advent of HTMLS5 has greatly simplified the development of web applications
with the introduction of new features, new elements, and new attributes. To avoid
JSF component developers from reinventing the wheel, JSF 2.2 has integrated
support of markup through two major concepts: pass-through attributes and
pass-through elements.

Pass-through attributes

During the generation of web pages that will be sent to the browser, the attributes
for each JSF component are interpreted and validated by the UIComponent or
Renderer. Unlike adding HTMLS5 attributes into all JSF components so that they

can be validated by the UIComponent or Renderer, pass-through attributes give
developers the ability to list a set of attributes that will be passed straight through to
the browser without being interpreted by the UzComponent or Renderer. This can be
done with three different approaches:

* By introducing the namespace xmlns:pta="http://xmlns.jcp.org/jsf/
passthrough"; this will be used to prefix all of the component attributes that
must be copied without interpretation into the web page intended for the
browser (see Pass through attributes 1 in the code that follows)

* By nesting the <f:passThroughAttributes> tag within a UIComponent
tag for a single attribute (see Pass through attributes 2 in the
following code)

[50]

Chapter 3

* By nesting the <f:passThroughAttributes> tag within a UIComponent
tag for an EL value that is evaluated to Map<String, Object> (see Pass
through attributes 3 in the code that follows)

<!-- namespace -->
<html
xmlns:pta="http://xmlns.jcp.org/jsf/passthrough">

<h:form>
<!-- Pass through attributes 1 -->
<h:inputText pta:type="image" pta:src="img submit.gif"
value="imagel" pta:width="58" pta:height="58" />

<!-- Pass through attributes 2 -->
<h:inputText value="image2" >
<f:passThroughAttribute name="type" value="image" />
<f:passThroughAttribute name="src" value="img submit.gif"
/>
<f:passThroughAttribute name="width" value="68" />
<f:passThroughAttribute name="height" value="68" />
</h:inputText>

<!-- Pass through attributes 3 -->
<h:inputText value="image3" >
<f:passThroughAttributes
value="#{html5Bean.mapOfParameters}" />
</h:inputText>
</h:form>

Pass-through elements

In contrast to pass-through attributes that allow you to pass HTML attributes to the
browser without interpretation, pass-through elements allow you to use the HTML
tag as a JSF component. This gives you the opportunity to enrich the HTML tag
with JSF features and take advantage of the JSF component lifecycle. To make this
possible, the framework will establish a correspondence between the HTML markup
specified by the developer, which is rendered to the browser, and an equivalent JSF
component for server-side processing.

To use pass-through elements in a given HTML tag, you must prefix at least one
of its attributes with the short name assigned to the http://xmlns.jcp.org/jst
namespace.

[51]

The Presentation Layer

The following code snippet shows how to use pass-through elements:

<!-- namespace -->
<html
xmlns:pte="http://xmlns.jcp.org/jsf"">

<h:form>
<!-- Pass through element -->
<input type="submit" value="myButton"
pte:actionListener="#{html5Bean.submitListener}"/>
</h:form>

Resource Library Contracts

The Resource Library Contracts provide a JSF mechanism for applying templates to
different parts of your web application. This feature announces a major change: the
ability to download a look and feel (theme) and apply it to your account or website
by using a button or management console, as in Joomla!.

For now, the Resource Library Contracts enable you to group resources (template
files, JavaScript files, style sheets, and images) of your various templates in the
contracts folder of your web application. To improve the maintainability of your
application, resources for each template can be grouped into a subfolder called
contract. The following code demonstrates a web application with three templates
stored in three different contracts: templatel, template2, and template3:

src/main/webapp
WEB-INF/
contracts/
templatel/
header.xhtml
footer.xhtml
style.css
logo.png
scripts.js
template2/
header.xhtml
footer.xhtml
style.css
logo.png
scripts.js
Template3/
header.xhtml
footer.xhtml
style.css

[52]

Chapter 3

logo.png
scripts.js

index.xhtml

In addition to the deployment in the contracts folder, your templates

can be packaged in a JAR file; in this case, they must be stored in the META- INF/
contracts folder of the JAR which will be deployed in the WwEB-INF/1ib folder
of your application.

Once defined, templates must be referenced within an application's faces-config.
xml file, with the resource-1library-contracts element. The configurations of the
following request mean that template1l is applied to pages whose URLs respect the
pattern /templatepages/*. And for other pages, the template2 will be applied.

<resource-library-contractss
<contract-mapping>
<url-pattern>/templatepages/*</url-pattern>
<contracts>templatel</contracts>
</contract-mapping>
<contract-mapping>
<url-pattern>*</url-patterns
<contracts>template2</contracts>
</contract-mapping>
</resource-library-contracts>

The following code snippet shows us what the header of templatel looks like.
It contains only a picture to be displayed in the header. You can add text, style,
and color if you want.

<?xml versgion='1.0' encoding='UTF-8' ?>
<!DOCTYPE htmls>
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets">
<h:heads>
<title>Resource Library Contracts</titles>
</h:head>
<h:body>
<uil:insert name="header" >
<img src="image.jpg" width="400" height="50" alt="Header
image"/>
</ui:insert>
</h:body>
</html>

[53]

The Presentation Layer

The following code demonstrates how a template can be used in a web page:

<f:view>
<h:form>
<h:panelGrid border="1" columns="3" >
<f:facet name="header">
<ui:composition template="/header.xhtml">

</ui:composition>
</f:facet>
<f:facet name="footer">
<ui:composition template="/footer.xhtml">

</ui:composition>
</f:facet>
</h:panelGrid>
</h:form>
</f:view>

Faces Flow

Faces Flow is used to define and perform processes that are split over several forms.
If we take, for example, the case of online registration, the registration form can be
split over several pages, each representing a step. In our case we have: the acceptance
conditions, entering identification information, contact information, medical
information, school information, and finally the validation. To implement this type of
application with previous versions of JSF, it was necessary to use beans with session
scope and declare hard links between pages that formed the flow. This reduces the
usability of the flow in another application and does not give the possibility to open
the same flow in many windows.

A flow is made up of an entry called the starting point, an exit point called

a return node and zero, or many other nodes. A node can be a JSF page
(viewNode), a navigation decision (SwitchNode), an application logic invocation
(MethodCallNode), a call to another flow (FlowCallNode), or a return to the calling
flow (ReturnNode).

A flow can be configured either with an XML configuration file or programmatically.
It can be packaged in a JAR file or folder. The following example demonstrates

how to implement an online preregistration website with Faces Flow (our flow is
configured with an XML configuration file; for program configuration, please
consult the Java EE 7 tutorial.)

[54]

Chapter 3

In the case of a flow packaged in a folder, the following conventions are followed
by default:

* The package folder of the flow has the same name as the flow
* The starting node of the flow has the same name as the flow

* All pages of the flow are assumed to be in the same folder except the
exit points

* For a flow that is configured with an XML configuration file, the configuration
file is a faces-config whose name is <name_of flows-flow.xml

According to the rule we have just presented, the web application that the
tree is showing contains a flow named inscriptionFlow with six views. This
flow is configured in inscriptionFlow-flow.xml and its starting node is
inscriptionFlow.xhtml.

webapp
WEB-INF
inscriptionFlow

inscriptionFlow-flow.xml

inscriptionFlow.xhtml
inscriptionFlowl.xhtml
inscriptionFlow2.xhtml
inscriptionFlow3.xhtml
inscriptionFlow4.xhtml
inscriptionFlow5.xhtml

index.xhtml

In the configuration file, we must define the ID of the flow and the ID of exit points.
The following code shows the contents of the file inscriptionFlow-flow.xml:

<?xml version='1.0' encoding='UTF-8'?>

<faces-config version="2.2"
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee

http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig 2 2.xsd">

<flow-definition id="inscriptionFlow">
<flow-return id="inscriptionFlowExit">
<from-outcome>#{inscriptionFlowBean.exitValue}</from-
outcome>
</flow-returns>
</flow-definition>
</faces-config>

[55]

The Presentation Layer

Navigation between different views can be done through the action attribute of
the tag that will actuate the display of the next view. In this attribute you put the
name of the page to which you want to go after the current page. The following
code shows the contents of the inscriptionFlowl view. This view corresponds to
the input form for personal information; it contains a field for entering the name,

a button to go to the next view (inscriptionFlow2), and a button to return to the
previous view (inscriptionFlow).

<!-- inscriptionFlowl view -->
<f:view>
<h:form>
<hls>Identification information</hls>
<p>Name : <h:inputText id="name"
value="#{inscriptionFlowBean.name}" /></p>

<p><h:commandButton value="Next" action="inscriptionFlow2" /></p>
<p><h:commandButton value="Back" action="inscriptionFlow" /></p>
</h:form>
</f:view>

To end a flow, just pass to the action attribute of the dedicated tag for this action the
ID of the exit point defined in the configuration file (inscriptionFlowExit). And to

save data between different views, you must use a Flow-Scoped Managed Bean. The

following code shows the skeleton of the inscriptionFlowBean managed bean that

we use in our inscription flow:

@Named

@FlowScoped (value="inscriptionFlow")

public class InscriptionFlowBean {
/...

}

If all settings have been made, you can call your inscriptionFlow in
the start page with a button as follows:

<h:commandButton id="start" value="Registration"
action="inscriptionFlow">
<f:attribute name="toFlowDocumentId" value=""/>
</h:commandButton>

[56]

Chapter 3

Stateless views

JSF 2.2 did not only add new widgets, it also improved memory usage. Prior to
Version 2.0 of the specification, the whole component tree was saved and restored
whenever there was any change in the view. This degraded system performance and
stuffed the memory. With Version 2.0, the specification has introduced the partial
state saving mechanism. This mechanism consists of saving only the state that has
changed after the creation of the component tree and reduces the amount of data

to be saved. In the same light, JSF 2.2 offers us the possibility to define stateless
views. As the name suggests, no data about the UIComponent state of the view's
components will be saved.

To transform a simple view into a stateless view, you just need to specify true as the
value of the transient attribute of the £ :view tag (see the following code).

<h:heads>
<titles>Facelet Title</title>
</h:head>
<h:body>
<f:view transient="true">
<h:form>
Hello from Facelets
</h:form>
</f:views>
</h:body>

Summary

In this chapter, we discussed the specifications related to data presentation that

have been improved in Java EE 7. These are: Servlet, Expression Language, and

the JSF Specification. Each presentation was followed by an analysis of the various
improvements made and a small example to show how these new features can be
implemented. In the next chapter, we will talk about Java APIs used to communicate
with databases, which will lead us to another chapter that focuses on putting
together all of the APIs that we have seen.

[57]

The Java Persistence API

This chapter deals with the improvements in APIs for communicating with data
sources. Although Java is object oriented, it is designed to handle data of relational
models as objects, which might pose a serious problem because the two concepts
are not theoretically compatible. In addition to introducing you to the world of
object-relational mapping, this chapter will show you how to manipulate (create,
delete, search, or edit) the data of relational models as objects transparently and
transactional. Topics covered in this chapter are:

¢ Java Persistence API 2.1

* Java Transaction API 1.2

Java Persistence API 2.1

The Java Persistence API 2.1 Specification was developed under JSR-338. This section
just gives you an overview of the improvements in the API. The complete document
specification (for more information) can be downloaded from http://jcp.org/
aboutJava/communityprocess/final/jsr338/index.html.

JPA (Java Persistence API)

JPA (Java Persistence API) is a Java specification that aims to define the standard
features of ORMs (Object-Relational Mappings). However, JPA is not a product
but a set of interfaces that require implementations. The most well-known
implementations are as follows: Hibernate, Toplink, Open]JPA, and EclipseLink,
which is the reference implementation.

Briefly, we can say that an ORM is an API used to establish a correspondence
between the object model and a relational database. It gives you the ability to handle
the data of your database as if they were objects, without too much worry about the
physical schema.

The Java Persistence API

JPA in action

JPA is based on the concept of entities, in order to make object-relational mapping
possible. An entity is a simple Java class (like POJO) with @eEntity annotation

(or XML equivalent) whose name is by default associated with the table having the
same name in the database. In addition to the @Ent ity annotation, an entity class
must have at least one primary key equivalent attribute that is designated with the
@Id annotation (or XML equivalent). For the other attributes of the entity, the
provider associates each of them to the column having the same name in the

table, as shown in the following screenshot:

| student v
ID YARCHAR(15)
FIRSTNAME Y ARCHAR(30)
LASTNAME YARCHAR(30)
BIRTHDATE DATE
PHOKNE VARCHAR(10)
EMAIL Y ARCHAR(60)

LW W

M -t ot ot

@Tempora

(wiy’

The parameters that indicate the database that will be associated to a set of
entities must be defined in the persistence unit within the persistence.xml
file of your application.

The following code is an example of the persistence unit of a Java SE Application:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1"
xmlns="http://xmlns.jcp.org/xml/ns/persistence"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence 2 1.xsd">

<persistence-unit name="chapter04PU"
transaction-type="RESOURCE LOCAL">
<providers>org.eclipse.persistence.jpa.PersistenceProvider
</providers>
<class>com.packt.chO4.entities.Student</class>
<propertiess
<property name="javax.persistence.jdbc.url"
value="jdbc:derby://localhost:1527/ONLINEREGISTRATION" />
<property name="javax.persistence.jdbc.password"
value="userapp"/>

[60]

Chapter 4

<property name="javax.persistence.jdbc.driver"
value="org.apache.derby.jdbc.ClientDriver"/>
<property name="javax.persistence.jdbc.user"
value="userapp"/>
</properties>
</persistence-units>
</persistence>

Concerning the manipulation of entities, JPA offers through the EntityManager
interface a set of methods to create, read, update, and delete the data (see the
following table).

The following table presents some methods for manipulating the entities:

Method Description

void persist (Object o) This is used to save the entity passed as a
parameter.

T merge (T t) This allows you to merge the entity passed

as a parameter with the persistence context.
It returns a managed version of the entity to
be merged.

void remove (Object o) This allows you to delete the entity passed as
parameter in the database.

T find(Class<T> type, Object This allows you to search for an entity using
o) its identifier.

void detach(Object o) This allows you to detach an entity from the
persistence context so that the changes will
not be saved

The following code demonstrates how to save, read, update, and delete the data
using JPA in a Java SE application:

public static void main(String[] args) {
EntityManagerFactory emf =
Persistence.createEntityManagerFactory ("chapter04PU") ;
EntityManager em = emf.createEntityManager () ;
//create entity manager

Student student = createStudent () ;
em.getTransaction() .begin() ;//begin transaction

em.persist (student) ; //save the student

em.getTransaction () .commit (); // commit transaction

[61]

The Java Persistence API

Student std = em.find(Student.class, student.getId()) ;
//£find student

System.out.println("ID : "+std.getId()+",
last name : "+std.getLastname()) ;

em.getTransaction() .begin() ;//begin transaction
std.setLastname ("NGANBEL") ; //Update student's last name

em.getTransaction() .commit () ; // commit transaction
std = em.find(Student.class, student.getId());//find student
System.out.println("ID : "+std.getId()+",

last name : "+std.getLastname()) ;

em.getTransaction() .begin() ;//begin transaction
em.remove (std) ; //remove student
em.getTransaction () .commit () ; // commit transaction

The latest improvements of JPA 2.1 in action

Since its last version (JPA 2.0), the JPA Specification has had many enhancements.
The most important enhancements are in the following features: persistence
context synchronization, Entities, JPQL, Criteria API, and Data Definition
Language (DDL) generation.

Persistence context synchronization

Before JPA 2.1, the container-managed persistence context was automatically joined
to the current transaction, and any update made to the persistence context was
propagated to the underlying resource manager. With the new specification, it is
now possible to have a persistence context that will not be automatically enlisted in
any JTA transaction. This can be done by simply creating a container-managed entity
manager of synchronization type SynchronizationType .UNSYNCHRONIZED as shown
in the following code.

Creation and enlistment of a SynchronizationType . UNSYNCHRONIZED
persistence context:

@Stateless
@LocalBean
public class MySessionBean {

/* Creation of an entity manager for
* unsynchronized persistence context

[62]

Chapter 4

*/

@PersistenceContext (synchronization = SynchronizationType.
UNSYNCHRONIZED)

EntityManager em;

public void useUnsynchronizedEntityManager () {
//enlisting of an unsynchronized persistence context
em.joinTransaction () ;
Y
}
}

In the preceding code, you will notice that we called the EntityManager.
joinTransaction () method; this is justified by the fact that a persistence context

of type SynchronizationType .UNSYNCHRONIZED is enlisted in a JTA transaction
only after calling the EntityManager.joinTransaction () method, and after a
commit or rollback, the SynchronizationType.UNSYNCHRONIZED persistence context
will be dissociated from the transaction to which it was enlisted. You need to call

the EntityManager.joinTransaction () method again to enlist the dissociated
persistence context.

Entity

An entity listener is a simple Java class (not an entity), which allows you to define the
lifecycle callback methods that can be invoked for the lifecycle events of one or many
entities. The JPA 2.1 Specification adds to these classes the support of CDI injection
and the ability to define @PostConstruct and @PreDestroy lifecycle callback
methods. These methods are respectively called after the dependency injections and
before the destruction of the entity listener. The following code presents an entity
listener that has the post construct and pre destroy methods with an EJB injection.

It is followed by code that shows how to associate an entity listener to an entity.

public class LogEntityListener {
@EJB
BeanLoggerLocal beanlLogger;

@PrePersist
public void prePersistCallback (Object entity) {
beanLogger.logInformation (entity) ;

}

@PostConstruct
public void init () {
System.out.println ("Dependency injected in
LogEntityListener") ;

[63]

The Java Persistence API

}

@PreDestroy
public void destroy () {
System.out.println("LogEntityListener will be destroy");

}
}

@Entity
@EntityListeners (LogEntityListener.class)
public class Student implements Serializable {

//
}

New annotations

JPA 2.1 added an annotation (@Index) to create indexes on tables when a schema is
generated from entities and an annotation (eForeignKey) to designate foreign keys
of a table.

The @Index annotation has one mandatory parameter (columnList) to list the
columns that make up the index with different sort orders. It also has two optional
parameters: the name parameter, which allows you to change the default name

of the index, and the unique parameter to set the index as unique or not unique.
In parallel, @Index annotation was added as a part of Table, SecondaryTable,
CollectionTable, JoinTable, and TableGenerator annotations.

The @ForeignKey can be used as element of JoinColumn, JoinColumns,
MapKeyJoinColumn, MapKeyJoinColumns, PrimaryKeyJoinColumn,
PrimaryKeyJoinColumns, CollectionTable, JoinTable, SecondaryTable,

and AssociationOverride annotations to either define or modify the foreign

key constraints on a table. It takes three parameters: name, value for the constraint,
and the definition of the foreign key. The three parameters are optional.

An example of an entity with a foreign key and indexed columns is shown in the
following code:

@Entity
@Table (indexes = @Index(columnList = "name ASC, id DESC"))
public class MyEntity implements Serializable

@Id

private Long id;

private String name;

@JoinColumn (foreignKey = @ForeignKey (name = "FK"))
private Student student;

Y

[64]

Chapter 4

Entity graphs

When we talk about an entity graph, we have to keep in mind a data structure
involving several related entities. With the previous version of JPA, the efficient
loading of data of an entity was essentially managed through the fetch setting.
The consequence was that it was necessary to set the fetch attribute of some
annotations before compiling the application (or before deployment in the case of
XML configuration) in order to request that an entity attribute be loaded eagerly
(when entity is loaded) or lazily (when data is needed). Through entity graphs,
you can now override or change the fetch setting at runtime.

An entity graph can be defined statically by using a vast NamedEntityGraph,
NamedEnt ityGraphs, NamedSubgraph, and NamedAttributeNode annotations,
or dynamically through EntityGraph, subgraph, and AttributeNode interfaces.

Static or named entity graphs

The eNamedEntityGraph annotation is used to define an entity graph that can
be used at runtime when executing queries or using the £ind () method. The
following code shows an example of the definition of a named entity graph
with one field: students.

@Entity
@NamedEntityGraph (name="includeThis",
attributeNodes={@NamedAttributeNode ("students") })
public class Department implements Serializable {
private static final long serialVersionUID = 1L;
@Id
@Basic (optional = false)
private String id;
private String name;
private Integer nbrlevel;
private String phone;
@OneToMany (mappedBy = "depart",fetch = FetchType.LAZY)
private List<Student> students;

/*getter and setter*/

}

Once defined, we need to retrieve our named entity graph using the
getEntityGraph () method of EntityManager in order to use it as a property when
searching with the find method or as a query hint with a query. After executing the
following code, you will notice that in the first search, the students attribute will not
be loaded while in the second search it will be.

[65]

The Java Persistence API

The following code is an example of using a named entity graph:

EntityManager em = emf.createEntityManager () ;
//create entity manager
PersistenceUnitUtil pUtil = emf.getPersistenceUnitUtil() ;

Department depart = (Department) em.createQuery
("Select e from Department e")

.getResultList () .get (0) ;

System.out.println("students Was loaded ? "+pUtil.isLoaded
(depart, "students"));

EntityGraph includeThis = em.getEntityGraph("includeThis") ;

depart = (Department) em.createQuery("Select e from Department e")

.setHint ("javax.persistence.fetchgraph", includeThis)

.getResultList () .get (0) ;

System.out.println("students Was loaded ? "+pUtil.isLoaded (depart,
"students")) ;

Dynamic entity graphs

Entity graphs can also be defined at runtime. To do this, we must use the
createEntityGraph () method of the entity manager and not getEntityGraph () as
with the named entity graphs. Once defined, the dynamic entity graph is associated
with the £ind () method or a query in the same way as a named entity graph as
shown in the following code.

The following code is an example of using a dynamic entity graph:

EntityManager em = emf.createEntityManager () ;
//create entity manager
PersistenceUnitUtil pUtil = emf.getPersistenceUnitUtil() ;

Department depart = (Department) em.createQuery (
"Select e from Department e")
.getResultList () .get (0) ;
System.out.println("students Was loaded ? " + pUtil.isLoaded (depart,
"students")) ;

EntityGraph includeThis = em.createEntityGraph (Department.class);
includeThis.addAttributeNodes ("students") ;

depart = (Department) em.createQuery("Select e from Department e")
.setHint ("javax.persistence.fetchgraph", includeThis)
.getResultList () .get (0) ;
System.out.println ("students Was loaded ? " +

pUtil.isLoaded (depart, "students"));

[66]

Chapter 4

JPQL

JPQL (Java Persistence Query Language) is an object-oriented SQL-like query
language. It is platform independent and allows you to access your data through
entities instead of manipulating the physical structure of your database. The
following code demonstrates how to query for all registered students whose

ID is greater than 123.

The following code is an example of a JPQL query:

String queryString = "SELECT a FROM Student a WHERE a.id > 123";
Query query = em.createQuery (queryString) ;
System.out.println("result : "+query.getResultList()) ;

Despite its power and its vastness, the JPQL continues to receive significant
improvements. In JPA 2.1, it has among other enhancements integrated support for
stored procedures, added new reserved identifiers, and the support for creation of
named queries at runtime.

Support for stored procedures

JPA 2.1 now allows you to execute stored procedures. Through the various API
that it offers, you can define and execute named stored procedures or dynamically
stored procedures.

The following script is an example of a script to create a stored procedure in MySQL.:

DELIMITER $$
CREATE
PROCEDURE ~“ONLINEREGISTRATION™ . getStudentsName~ ()
BEGIN
SELECT ID,LASTNAME FROM STUDENT ORDER BY LASTNAME ASC;
ENDS$
DELIMITER ;

The following code demonstrates how to execute the stored procedure
getStudentsName we just created:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("ch
apter04PUM") ;

EntityManager em = emf.createEntityManager () ;
//create entity manager

StoredProcedureQuery spQuery = em.createStoredProcedureQuery
("getStudentsName", Student.class) ;

List<Student> results = spQuery.getResultList () ;
for (Student std : results)
System.out.println(std.getLastname()) ;

[67]

The Java Persistence API

New reserved identifiers
The JQPL has introduced the following new keywords:

oN: This keyword allows us to make explicit joins as in SQL with the onx
condition. Before, joins were made with the liaison attributes between the
two entities, which required minimal configuration. The following code
demonstrates the use of oN:
String queryString = "SELECT a FROM Student a "+

" JOIN Department b ON a.departId = b.id";
Query query = em.createQuery (queryString) ;
System.out.println("result : "+query.getResultList()) ;

FUNCTION: This keyword allows you to invoke functions in your queries
other than those originally intended by JPQL (such SUBSTRING, LENGTH, ABS,
TRIM, and so on). With this keyword, you can use a database function or
functions that you have defined yourself. The following query gives us the
list of students born in July by using the month () method of derby database
in order to extract the month from a birth date:
String queryString= "SELECT a FROM Student a "+

" WHERE FUNCTION ('MONTH',a.birthdate) = 7 ";
Query query = em.createQuery (queryString) ;
System.out.println("result : "+query.getResultList()) ;

TREAT: This keyword allows you to do the downcasting of an entity in order
to obtain a subclass state. It is used in the FrRoM and WHERE clauses. In the
following code, the entity Appuser inherits from the entity Person; with the
keyword TREAT we can put conditions on attributes that are not contained in
the base entity (Person).

//Entity downcasting

String queryString = "SELECT a FROM Person a "
+" WHERE TYPE (a) = Appuser AND "
+" TREAT (a AS Appuser) .userLogin = 'adwiner'";

Query query = em.createQuery (queryString) ;
System.out.println("result : "+query.getResultList()) ;

Support for creating named queries at runtime

Before JPA 2.1, named queries were defined statically as metadata before
compiling the program. Through the addNamedQuery method that was added
to the EntityManagerFactory interface, you can now create a named query at
runtime as shown in the following code:

EntityManagerFactory emf =
Persistence.createEntityManagerFactory ("chapter04PU") ;

[68]

Chapter 4

EntityManager em = emf.createEntityManager () ;

Query query = em.createQuery ("SELECT a FROM Student a");
emf . addNamedQuery ("runt imeNamedQuery", query) ;

System.out.println("result
"+em.createNamedQuery ("runtimeNamedQuery") .getResultList ()) ;

The Criteria API

JPA since Version 2.0 offers two options for defining queries on entities. The first
option is the JPQL which is a query language based on SQL. The second option is the
Criteria API where a query is constructed essentially with Java objects, as shown in
the following code:

EntityManagerFactory emf =
Persistence.createEntityManagerFactory ("chapter04PU") ;

EntityManager em = emf.createEntityManager () ;

//create entity manager

//criteria builder declaration

CriteriaBuilder cb = em.getCriteriaBuilder () ;

//declaration of the object that will be returned by the query

CriteriaQuery<Student> cqg = cb.createQuery (Student.class);

//Declaration of the entity to which the request is made

Root<Student> student = cqg.from(Student.class) ;

//Query construction

cqg.select (student) .where (cb.greaterThan (student.<Strings>
get ("id"), "123"));

TypedQuery<Student> tg = em.createQuery(cq) ;

//execution of the query

System.out.println("result : "+tg.getResultList()) ;

//JPQL equivalent query
SELECT a FROM Student a WHERE a.id > 123

Given that the two solutions do not evolve at the same rate, the major changes in the
Criteria API are support for bulk update/delete and new reserved identifiers.

Support for bulk update/delete

The bulk update and delete in the Criteria API are respectively constructed with
javax.persistence.criteria.CriteriaUpdate and javax.persistence.
criteria.CriteriaDelete interfaces. The following code demonstrates how
to update a lot of information with just one Criteria API request:

//bulk update
CriteriaUpdate cUpdate = cb.createCriteriaUpdate (Student.class);
Root root = cUpdate.from(Student.class);

[69]

The Java Persistence API

cUpdate.set (root.get ("departId"), "GT")
.where (cb.equal (root.get ("departId"), "GI"));

Query g = em.createQuery (cUpdate) ;

em.getTransaction() .begin() ;//begin transaction

int num = g.executeUpdate() ;
em.getTransaction () .commit () ;//commit transaction
System.out.println ("number of update : "+num) ;

//JPQL equivalent query

UPDATE Student a SET a.departId = 'GT' WHERE a.departId = 'GI'

Support for new reserved identifiers

Just like the JPQL, the Criteria API incorporates the possibility of making downcasts
and defines joins using ON conditions. To do that, overloaded treat () methods have
been added to the javax.persistence.criteria.CriteriaBuilder interface for
downcasting, while on () and geton () methods have been added to some interfaces
(such as Join, ListJoin, SetJoin, MapJoin, CollectionJdoin,and Fetch) of the
javax.persistence.criteria package for joins with onN conditions. The following
query is equivalent to the JPQL downcasting shown in the preceding code:

//Downcasting

CriteriaQuery<Person> cgp = cb.createQuery (Person.class) ;

Root<Person> person = cgp.from(Person.class);

cqgp.select (person) .where (cb.equal (person. type () ,Appuser.class),
cb.equal (cb.treat (person, Appuser.class) .get ("userLogin"),
"adwiner")) ;

TypedQuery<Person> tgp = em.createQuery (cgp) ;

System.out.println("result : " + tgp.getResultList()) ;

DDL generation

Since the previous version of the JPA Specification, it is possible to create or drop
and create tables. However, the support for this feature was not required and the
specification document made us understand that the use of this feature could reduce
application portability. Well, with JPA 2.1, the DDL (Data Definition Language)
generation was not only standardized but has been expanded and is now required.

In this case, new properties have been added. You have for example the
following properties:

* Jjavax.persistence.schema-generation.database.action: This defines
the action (none, create, drop-and-create, or drop) that should be taken by
the provider.

[70]

Chapter 4

* Jjavax.persistence.schema-generation.create-source: This defines
the source (entities, specific scripts, or both) to be used by the provider in the
case of a DDL generation.

* javax.persistence.schema-generation.drop-source: This defines the
source (entities, specific scripts, or both) to be used by the provider in the
case of drop table.

* Jjavax.persistence.schema-generation.connection: This defines the
JDBC connection parameters to use for the DDL schema generation in order
to take into account the management of privileges in some databases such as
Oracle. This parameter was thought of for Java EE environments.

The following persistence unit provides an example of configuration to generate
tables at the creation of EntityManagerFactory. This generation will be based on
entities' information (metadata) and it will take place if and only if the tables to be
created do not exist, because we defined create instead of drop-and-create for the
action of the provider.

<persistence-unit name="chapter04PUM" transaction-type="RESOURCE
LOCAL" >
<providers>org.eclipse.persistence.jpa.PersistenceProvider
</providers>
<class>com.packt.chO4.entities.Department</class>
<class>com.packt.chO4.entities.Person</class>
<class>com.packt.chO4.entities.Student</class>
<propertiess
<property name="javax.persistence.jdbc.url"
value="jdbc:mysql://localhost:3306/onlineregistration"/>
<property name="javax.persistence.jdbc.password"
value="onlineapp"/>
<property name="javax.persistence.jdbc.driver"
value="com.mysqgl.jdbc.Driver"/>

<property name="javax.persistence.jdbc.user" value="root"/>

<property name="javax.persistence.
schema-generation.database.action" value="create"/>

<property name="javax.persistence.
schema-generation.create-source" value="metadata"/>

</properties>
</persistence-unit>

Another aspect of this standardization is the addition of a new method
(Persistence.generateSchema ()), which provides more opportunity for the
generation. Before (in JPA 2.0), the DDL generation was done at the creation of the
entity manager. Henceforth, you can generate your tables before, during, or after the
creation of the EntityManagerFactory

[71]

The Java Persistence API

The following code demonstrates how to generate tables regardless of the creation of
the EntityManagerFactory:

Map props = new HashMap () ;

props.put ("javax.persistence.
schema-generation.database.action", '"create");

props.put ("javax.persistence.
schema-generation.create-source", "metadata");

Persistence.generateSchema ("chapter04PUM", props) ;

The following code demonstrates another way to generate the tables at the creation
of the EntityManagerFactory:

Map props = new HashMap () ;
props.put ("javax.persistence.

schema-generation.database.action", '"create");
props.put ("javax.persistence.

schema-generation.create-source", "metadata") ;
EntityManagerFactory emf = Persistence.

createEntityManagerFactory ("chapter04PUM", props) ;

Java Transaction APl 1.2

The Java Transaction API 1.2 Specification was developed under JSR 907.

This section just gives you an overview of improvement in the API. The

complete document specification (for more information) can be downloaded from
http://jcp.org/aboutJava/communityprocess/mrel/jsr907/index2.html.

The Java Transaction API

The Java Transaction API (JTA) is a standard Java API for managing transactions
on one or more resources (distributed transactions) in server environments.

It consist of three main APIs: javax.transaction.UserTransaction

interface used by applications for explicit transaction demarcation, javax.
transaction.TransactionManager interface used by application servers to
demarcate transactions implicitly on behalf of the application, and javax.
transaction.xa.XAResource, which is a Java mapping of the standard XA
interface for distributed transaction processing.

[72]

Chapter 4

JTA in action

As we said, JTA transactions are used in Java EE environments. In order to enable
this transaction type, the transaction-type attribute of the persistence unit should
be set to JTA instead of RESOURCE_LOCAL and the data source (if there is one), should
be defined within the <jta-datasource> element. The following code gives an
example of a persistence unit to manage transactions using JTA:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.1"
xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
Xs1i:schemalLocation="http://xmlns.jcp.org/xml/ns/persistence
http://xmlns.jcp.org/xml/ns/persistence/persistence 2 1.xsd">

<persistence-unit name="chapter04PU" transaction-type="JTA">
<providers>org.eclipse.persistence.jpa.PersistenceProvider
</providers>
<jta-data-sources>onlineRegDataSource</jta-data-source>
</persistence-unit>

</persistence>

After declaring a JTA transaction type persistence unit, the developer can either
leave the transaction management to the server (by default, the container considers
a method as a transaction) or take control and define the transaction boundaries
programmatically.

The following code is an example of a container-managed transaction:

@Stateless
public class StudentServiceCMT {

@PersistenceContext
EntityManager em;

public void createStudent () {
Student student = new Student () ;
student.setBirthdate (new Date()) ;
student .setDepartid ("GI") ;
student.setId(""+ new Date() .getTime()) ;
student.setFirstname ("CMT - FIRST NAME") ;
student.setLastname ("CMT - Last name") ;

em.persist (student) ;

[73]

The Java Persistence API

The following code is an example of bean-managed transaction:

@Stateless
@TransactionManagement (TransactionManagementType . BEAN)
public class StudentServiceBMT {

@PersistenceContext
EntityManager em;

@Resource
UserTransaction userTx;

public void createStudent () throws Exception {

try {
userTx.begin() ;//begin transaction

Student student = new Student () ;

student .setBirthdate (new Date()) ;

student .setDepartid ("GI") ;
student.setId(""+ new Date() .getTime()) ;
student.setFirstname ("BMT - FIRST NAME") ;
student.setLastname ("BMT - Last name") ;

em.persist (student) ;

userTx.commit (); // commit transaction

} catch (Exception ex) ({
userTx.rollback();//rollback transaction
throw ex;

Innovations introduced by JTA 1.2

Unlike the JPA Specification, JTA has known only a few improvements that can
be summarized in the following lines. First we have the addition of two new
annotations. The first is javax.transaction.Transactional, which provides
the possibility to demarcate transactions declaratively on CDI-managed beans
or classes defined as managed beans by the Java EE Specification. The second
annotation added is the javax.transaction.TransactionScoped annotation,
which provides the possibility to define beans whose lifecycle is identical with
the current transaction. The JTA API also added one exception class javax.
transaction.TransactionalException.

[74]

Chapter 4

Summary

In this chapter we have, with examples, presented and analyzed the improvements
provided by two APIs whose major objective is to facilitate interaction with your
data base. The first presented was JPA API, which gives you the ability to create,
read, update, and delete data from a database by using Java objects. The second was
JTA API, which is an API designed for transparent management of transactions in
one or more data sources.

In the next chapter, we'll talk about EJBs and we will make a small example,
which will consist of putting together most of the APIs that we have studied.

[75]

The Business Layer

Here we will begin with a presentation of improvements in the business layer and
then, in a small project, we will try to put together some of the specifications seen
previously. The topics to be covered include:

* Enterprise JavaBeans 3.2

* Putting all Java EE 7 specifications together

Enterprise JavaBeans 3.2

The Enterprise JavaBeans 3.2 Specification was developed under JSR 345. This section
just gives you an overview of improvements in the API. The complete document
specification (for more information) can be downloaded from http://jcp.org/
aboutJava/communityprocess/final/jsr345/index.html.

The business layer of an application is the part of the application that is located
between the presentation layer and data access layer. The following diagram
presents a simplified Java EE architecture. As you can see, the business layer
acts as a bridge between the data access and the presentation layer.

) A D (e

Presentation layer siness layer Data access layer

~N

(Cross Cutting Concerns
[Bean validation] [CDI] [Interceptor]

o N

USERS
7'y
A4
Serviet
facade

\[Transaction] [Security])

The Business Layer

It implements business logic of the application. To do so, it can use some
specifications such as Bean Validation for data validation, CDI for context and
dependency injection, interceptors to intercept processing, and so on. As this layer
can be located anywhere in the network and is expected to serve more than one
user, it needs a minimum of non functional services such as security, transaction,
concurrency, and remote access management. With E]Bs, the Java EE platform
provides to developers the possibility to implement this layer without worrying
about different non functional services that are necessarily required.

In general, this specification does not initiate any new major feature. It continues
the work started by the last version, making optional the implementation of certain
features that became obsolete and adds slight modification to others.

Pruning some features

After the pruning process introduced by Java EE 6 from the perspective of removing
obsolete features, support for some features has been made optional in Java EE

7 platform, and their description was moved to another document called EJB 3.2
Optional Features for Evaluation. The features involved in this movement are:

* EJB 2.1 and earlier Entity Bean Component Contract for Container-Managed
Persistence

* EJB 2.1 and earlier Entity Bean Component Contract for Bean-Managed
Persistence

* Client View of EJB 2.1 and earlier Entity Bean

* EJB QL: Query Language for Container-Managed Persistence Query Methods

* JAX-RPC-based Web Service Endpoints

* JAX-RPC Web Service Client View

The latest improvements in EJB 3.2

For those who have had to use EJB 3.0 and EJB 3.1, you will notice that EJB 3.2

has brought, in fact, only minor changes to the specification. However, some
improvements cannot be overlooked since they improve the testability of
applications, simplify the development of session beans or Message-Driven Beans,
and improve control over the management of the transaction and passivation of
stateful beans.

[78]

Chapter 5

Session bean enhancement

A session bean is a type of E]JB that allows us to implement business logic accessible
to local, remote, or Web Service Client View. There are three types of session beans:
stateless for processing without states, stateful for processes that require the
preservation of states between different calls of methods, and singleton for

sharing a single instance of an object between different clients.

The following code shows an example of a stateless session bean to save an entity in
the database:

@Stateless
public class ExampleOfSessionBean {

@PersistenceContext EntityManager em;

public void persistEntity (Object entity) {
em.persist (entity) ;

}
}

Talking about improvements of session beans, we first note two changes in stateful
session beans: the ability to execute life-cycle callback interceptor methods in a
user-defined transaction context and the ability to manually disable passivation

of stateful session beans.

It is possible to define a process that must be executed according to the lifecycle

of an EJB bean (post-construct, pre-destroy). Due to the @TransactionAttribute
annotation, you can perform processes related to the database during these phases
and control how they impact your system. The following code retrieves an entity
after being initialized and ensures that all changes made to the persistence context
are sent to the database at the time of destruction of the bean. As you can see in the
following code, TransactionAttributeType of init () method is NOT SUPPORTED;
this means that the retrieved entity will not be included in the persistence context
and any changes made to it will not be saved in the database:

@Stateful
public class StatefulBeanNewFeatures

@PersistenceContext (type= PersistenceContextType.EXTENDED)
EntityManager em;

@TransactionAttribute (TransactionAttributeType.NOT SUPPORTED)
@PostConstruct
public void init ()

[79]

The Business Layer

entity = em.find(...);

@TransactionAttribute (TransactionAttributeType.REQUIRES NEW)
@PreDestroy
public void destroy () {

em.flush () ;

}

The following code demonstrates how to control passivation of the stateful bean.
Usually, the session beans are removed from memory to be stored on the disk after
a certain time of inactivity. This process requires data to be serialized, but during
serialization all transient variables are skipped and restored to the default value

of their data type, which is null for object, zero for int, and so on. To prevent

the loss of this type of data, you can simply disable the passivation of stateful
session beans by passing the false value to the passivationCapable attribute

of the @stateful annotation.

@Stateful (passivationCapable = false)
public class StatefulBeanNewFeatures

/...
}

For the sake of simplicity, EJB 3.2 has relaxed the rules to define the default local
or remote business interface of a session bean. The following code shows how a
simple interface can be considered as local or remote depending on the case:

//In this example, yellow and green are local interfaces

public interface yellow { ... }

public interface green { ... }

@Stateless

public class Color implements yellow, green { ... }

//In this example, yellow and green are local interfaces

public interface yellow { ... }

public interface green { ... }

@Local

@Stateless

public class Color implements yellow, green { ... }

//In this example, yellow and green are remote interfaces
public interface yellow { ... }

[80]

Chapter 5

public interface green { ... }

@Remote
@Stateless
public class Color implements yellow, green { ... }

//In this example, only the yellow interface is exposed as a remote
interface

@Remote
public interface yellow { ... }
public interface green { ... }

@Stateless
public class Color implements yellow, green { ... }

//In this example, only the yellow interface is exposed as a remote
interface

public interface yellow { ... }
public interface green { ... }

@Remote (yellow.class)
@Stateless
public class Color implements yellow, green { ... }

EJB Lite improvements

Before EJB 3.1, the implementation of a Java EE application required the use of a full
Java EE server with more than twenty specifications. This could be heavy enough
for applications that only need some specification (as if you were asked to take

a hammer to kill a fly). To adapt Java EE to this situation, JCP (Java Community
Process) introduced the concept of profile and EJB Lite. Specifically, EJB Lite is a
subset of E]Bs, grouping essential capabilities for local transactional and secured
processing. With this concept, it has become possible to make unit tests of an EJB
application without using the Java EE server and it is also possible to use E]Bs in
web applications or Java SE effectively.

[81]

The Business Layer

In addition to the features already present in EJB 3.1, the E]JB 3.2 Specification has
added support for local asynchronous session bean invocations and non persistent
EJB Timer Service. This enriches the embeddable EgBContainer, web profiles, and
augments the number of testable features in an embeddable EgBContainer. The
following code shows an EJB packaged in a WAR archive that contains two methods.
The asynchronousMethod () is an asynchronous method that allows you to compare
the time gap between the end of a method call on the client side and the end of
execution of the method on the server side. The nonPersistentEJBTimerService ()
method demonstrates how to define a non persistent EJB Timer Service that will be
executed every minute while the hour is one o'clock:

@Stateless
public class EjbLiteSessionBean

@Asynchronous
public void asynchronousMethod () {
try{
System.out.println("EjbLiteSessionBean - start : "+new
Date ()) ;
Thread.sleep(1000*10) ;
System.out.println("EjbLiteSessionBean - end : "+new
Date ()) ;
}catch (Exception ex)
ex.printStackTrace () ;
}
}
@Schedule (persistent = false, minute = "*", hour = "1")

public void nonPersistentEJBTimerService () {
System.out.println("nonPersistentEJBTimerService method
executed") ;

}
}

Changes made to the TimerService API

The E]B 3.2 Specification enhanced the TimerService API with a new method
called getAllTimers (). This method gives you the ability to access all active
timers in an EJB module. The following code demonstrates how to create different
types of timers, access their information, and cancel them; it makes use of the
getAllTimers () method:

@Stateless
public class ChangesInTimerAPI implements ChangesInTimerAPILocal

@Resource
TimerService timerService;

[82]

Chapter 5

public void createTimer () {
//create a programmatic timer
long initialDuration = 1000*5;
long intervalDuration = 1000*60;

String timerInfo = "PROGRAMMATIC TIMER";
timerService.createTimer (initialDuration, intervalDuration,
timerInfo) ;
@Timeout

public void timerMethodForProgrammaticTimer () {

System.out.println ("ChangesInTimerAPI - programmatic timer
"+new Date()) ;

}

@Schedule (info = "AUTOMATIC TIMER", hour = "*", minute = "*")
public void automaticTimer () {
System.out.println ("ChangesInTimerAPI - automatic timer

"+new Date()) ;

}

public void getListOfAllTimers () {

Collection<Timer> alltimers = timerService.getAllTimers () ;

for (Timer timer : alltimers) {

System.out.println("The next time out : "+timer.
getNextTimeout () +", "

+ " timer info : "+timer.getInfol());
timer.cancel () ;

}

In addition to this method, the specification has removed the restrictions that

required the use of javax.ejb.Timer and javax.ejb.TimerHandlereferences
only inside a bean.

[83]

The Business Layer

Harmonizing with JMS's novelties

A Message-Driven Bean (MDB) is a kind of a JMS Message listener allowing

Java EE applications to process messages asynchronously. To define such a bean,
simply decorate a simple POJO class with @MessageDriven annotation and make

it implement the javax.jms.MessageListener interface. This interface makes
available to the MDB the onMessage method that will be called each time a new
message is posted in the queue associated with the bean. That's why you have to put
inside this method the business logic for the processing of incoming messages. The
following code gives an example of an MDB that notifies you when a new message
arrives by writing in the console:

@MessageDriven (activationConfig = {

@ActivationConfigProperty (propertyName = "destinationType",
propertyValue = "javax.jms.Queue"),

@ActivationConfigProperty (propertyName = "destinationLookup",
propertyValue = "jms/messageQueue")

Iy

public class MessageBeanExample implements MessageListener ({

public MessageBeanExample () {

}

@Override
public void onMessage (Message message) {
try{
System.out.println("You have received a new message of type
"+message.getJMSType ()) ;
}catch (Exception ex) {
ex.printStackTrace () ;

}

}

Given the changes in JMS 2.0 Specification, the EJB 3.2 Specification has a revised
list of JMS MDB activation properties to conform to the list of standard properties.
Theseproperﬁesare:destinationLookup,connectionFactoryLookup,clientId,
subscriptionName, and shareSubscriptions. In addition, it has added the ability
in MDB to implement a no-method message listener, resulting in the exposure of all
public methods of the bean as message listener methods.

[84]

Chapter 5

Other improvements

As we said earlier, the E]B 3.1 Specification has given developers the opportunity to
test EJB applications outside a full Java EE server. This was made possible through
an embeddable EgBContainer. The following example demonstrates how to test an
EJB using an embeddable EJBContainer:

@Test
public void testAddition()
Map<String, Object> properties = new HashMap<String, Object>() ;
properties.put (EJBContainer.APP NAME,
"chapterO05EmbeddableEJBContainer") ;
properties.put (EJBContainer .MODULES, new File ("target\\classes")) ;
EJBContainer container = javax.ejb.embeddable.EJBContainer.
createEJBContainer (properties) ;

try {
NewSessionBean bean = (NewSessionBean) container.getContext ().
lookup ("java:global/chapter05EmbeddableEJBContainer/NewSessionBean") ;

int restult = bean.addition (10, 10);
Assert.assertEquals (20, restult);
} catch (NamingException ex) {
Logger .getLogger (AppTest.class.getName ()) .log(Level .FINEST,
null, ex);
} finally {
container.close() ;

}

Since the embeddable EgBContainer reference by maven was not up-to-date
while writing this book (which caused the error "No EJBContainer provider
available"), I directly addressed the glassfish-embedded-static-shell.jar
file in the following way:

¢ Maven variable declaration:

<properties>

<glassfish.installed.embedded.container>glassfish dir\lib\
embedded\glassfish-embedded-static-shell.jar</glassfish.installed.
embedded.container>

</propertiess>

[85]

The Business Layer

* Declaration of dependence:

<dependencys>
<groupId>glassfish-embedded-static-shell</groupId>
<artifactId>glassfish-embedded-static-shell</artifactId>
<version>3.2</version>
<scope>system</scope>

<systemPath>${glassfish.installed.embedded.container}</
systemPath>

</dependency>

During operation, the embeddable EJBContainer acquires resources that would
normally be released at the end of the process to allow other applications to take
advantage of the maximum power of the machine. In the previous version of the
specification, a developer used the EgBContainer.close () methodina finally
block to perform this task. But, with the try-with-resources statement introduced
in Java SE 7, EJB 3.2 added the implementation of the java.lang.AutoCloseable
interface in the EgBContainer class to free the developer from a task that could
easily be forgotten and have negative repercussions on the performance of a
machine. Now, the embeddable EgBContainer will be automatically closed at

the end of a statement, provided that it is declared as a resource in a try-with-
resources statement. Thus, we no longer need a finally block like in the earlier
example, which simplifies the code. The following example demonstrates how to
take advantage of the try-with-resources statement while testing EJB with an
embeddable EJBContainer:

@Test
public void testAddition()

/] ...

try (EJBContainer container = javax.ejb.embeddable.EJBContainer.cre
ateEJBContainer (properties) ;) {

/] ...
} catch (NamingException ex) {
Logger .getLogger (AppTest.class.getName ()) .log(Level .FINEST,

null, ex);

}
}

The final improvement of this specification concerns removal of the restriction on
obtaining the current class loader when you want to access files or directories in the
file system from a bean.

[86]

Chapter 5

Putting it all together

The example that will allow us to put together most of the APIs already studied
since the first chapter, is an online preregistration site. In this example, we will not
write any code. We limit ourselves to the presentation of an analysis of a problem
that will help you understand how to use each of the pieces of code that are used
to illustrate points in this book, in order to make a quality application based on the
latest functionality of Java EE 7.

Presenting the project

The virtual enterprise software technology has received from a private university
the order for creating an application to manage the preregistration of students online
(candidate registration, validation of applications, and notifications of different
candidates) and provide a real-time chat room for connected students. Furthermore,
for statistical purposes, the system will allow the ministry of education access to
certain information from a heterogeneous application.

The system called ONPRINS must be robust, efficient, and available 24 x 7 during
periods of registration.

The business domain model in the following diagram represents the main objects of
our system (the required application will be built based on these objects):

class Domain Model
Person Address
1 1.
Candidate Student Administrator
0.1 1
1 1.
Department Preregistration Validation
1 o= 1 1

[87]

The Business Layer

Disclaimer

These diagrams have been designed and built in Enterprise Architect,
by Sparx Systems.

s

Use Case Diagram (UCD)

The following diagram represents all the features that will be supported by our
system. We have three actors as follows:

A Candidate is any user wishing to preregister for a department. To this
end, it has the ability to view the list of departments, select a department,
and complete and submit the application form. Through a chat room,
he/she can share his/her ideas with all candidates connected with
respect to a given theme.

An Administrator is a special user who has the right to run the validation
process of preregistration. It is this process that creates the students and
sends e-mails to different candidates to let them know whether they have
been selected or not.

The Ministry of Education is a secondary actor of the system; it seeks access
to the number of preregistered students and the list of students during an
academic year.

% \
Candidate hﬁ“‘“ﬂ

Administrator

uc Use Case Model

Register for a
,,_'—ﬂ"' department

Ministry of Education

Access to
registration data

Validate inscripfion

[88]

Chapter 5

Class diagram

The following class diagram shows all the main classes used for the realization of
our online preregistration. This diagram also highlights the relationships that exist
between different classes.

The candidateSessionBean class is a bean that records the preregistration of

candidates through registercandidate method. It also provides methods for
accessing all the registered candidates (1istofCandidates) and preregistered
students (1istofStudents).

The InscriptionvalidationBean class contains the startvalidationBatchJob
method which, as its name suggests, launches batch processing to validate the
preregistration and notify different candidates. Batch processing presented here
is the chunk type in which the validationReader class is used to read the data
useful for validation, the validationProcessor class is used to validate the
preregistration, and the validationWriter class is used to notify the candidate.
This class also serves to create a student when the candidate is selected. As you
can see, in order to send an e-mail, the validationWriter class firstly sends a
JMS message through MsgSenderSessionBean to the component responsible
for sending the e-mail. This allows us to avoid blockages in ValidationWriter
when there is a connection breakdown. Also, in the batch process, we have the
listener validationJobListener, which enables us to record a certain amount
of information in the validation table at the end of batch processing.

For the sake of simplicity and reusability, navigation between web pages during the
preregistration of a candidate (departmentList.xhtml, acceptanceConditions.
xhtml, identificationInformation.xhtml, contactInformation.

xhtml, medicalInformation.xhtml, schoolInformation.xhtml, and
InformationvValidation.xhtml) will be made using the Faces Flow. On the other
hand, the content of various pages will be structured with the Resource Library
Contracts and communication in the chat room will be managed using WebSocket;
it is for this reason that you have the chatServerEndpoint class, which is the server
endpoint for this communication.

[89]

The Business Layer

The execution of the validation process of preregistration is made from the
inscriptionvalidation.xhtml facelet. In order to give the administrator a
feedback on the progress of the validation process, the facelet will contain a progress
bar updated in real time, which leads us once again to use the WebSocket protocol.

class Class Model
acceptanceConditions.xhiml | | departementList xhtml ‘ e —
\ 1 : |
' ! //
\ 1 contactinformation.xhtml P
4 1
— | 4
idenfificationinformation.xhiml \\ : - inscripionValidation.xhiml
| s ! ! P
\ 1 / -
. ' ! ! P -
\ 1 s -
~ % -
medicallnformation.xhtml - \ I 4 P -
~ ' ! ! I -7 schoolinformation.xhtml
| | i ‘ -
N / & -
~ Ay \ : B s e
. B \ s -
- S e 1 ’ » s s
. “ N | / - - Pt
~. “ \ ! f" - - - Access o standard
InformationValidation xhtml ~ Y oo h < - T
- P - - -
-~ -
. RS ! S POttt
~ -~ PR
T MW g~
Contraller
[|
- T R,
- ' ~me
. 1 Ry
4y = Candidate SessionBean{@stateless)
ChatServerEndPointi@ ServerEndPoint) InscriptionValidationBean(@stateless) + find(T, Object) : <T>
- - + ESIOTC <(C:) - List<Cs =
+ unn.-‘e,,sge[sh;[gm String) : »:»d + stariVaidationBatch ob(Administrator) : vaid N ::| fsfu':::,'ﬁsfu:::f5,'_’}:“;":“::;d'd“
+ openConnection(Session) : o sto |) : List
+ daseCanneckon(Beain] NEY + registerCandidate(Preregisiration, Address, Candidste) : void
T
! T
’
’ / ' 3
v i -
/ I
Enify Per 4 !
+ sendMesssge(Candidate, String) : void e ® - |
I
—{=| 7 I
1 P !
‘.\ / 1
N / I
5 Y v ! !
e 1
\\balch artifscts = & \\
’ !
b \\ |
1
balch arfifacts:: Student{@Enfity) N '
ValidationWriter | | \\ |
““““ I
| ™, !
- ™, |
- ~ 1
—— . H
. - ~ |
batch artifacts:: Tl \\ !
ValidationProcessor Sl ., \y 1
e R
batoh artifacts:: T
ValidationReader By
batch artifacts:
ValidationJ obListener Validation({@Enfity)
———————— ——— -

ibraries of Java has nat
been mentioned for clarity

1.

Department{@Entity)

[90]

Chapter 5

Component diagram

The following diagram shows the various components that constitute our system.
As you can see, the exchange of data between the application of the ministry and
ONPRINS will be through web services, which aims to make both systems completely
independent from one another, while our system uses a connector to have access to
user information stored on the ERP system of the university.

| Prasentation layer '
' '
1 1
! Connecfion and E '
! deconnection facelets Inscription validation Pre-registration ':'_“t LB e s i .
! [connection.xhiml, facelets facelets (all other Is [Bha‘ﬂDDm-i_hn'”'. '
deconnection.xhiml, home (inscriptionValidation.xhtml) class diagram websocketjs) !
T facelets) '
T 4 \\ '
| i %
____________ ,_______________________J,__.
| 4 5 ™
I \ | B
I ! | \
| i 5 B
! \ 4 i
----------- U
' 1 \ Business layer 5 \\ !
' Y Y 3 a\
User a:lmir_lisn'atinn Validation batch Pre-registration Chat room logic
logic processing logic logic
T T
| |
___________ L
| |
| \
: II ‘Webservice connection
\ \
Pmmmemmaa R L LT T prmmmmm e
' 1 Integration layer | N
| \;f | Application| of the Ministry
\{,'f '
'
1
RH connector Email DAD ' School component
T T
| |
___________ o
! |
I |
1 |
RH application server Email server

[91]

The Business Layer

Summary

As promised, in this chapter we presented the innovations introduced by E]Bs, and
then focused on the analysis and design of an application for online preregistration.
In this exercise, we were able to look at practical cases allowing us to use almost all
of the concepts already discussed (WebSocket and Faces Flow) and discover new
concepts (web service, connector, and Java e-mail). In the next chapter, we will focus
on these new concepts in order to try to answer the following question: when and
how should we implement these concepts?

[92]

Communicating with
External Systems

In this chapter, we are going to add the possibility to communicate with different
systems in our application. Technically, we will resolve a systems integration problem.
System integration problems include several cases: two applications that exchange data
synchronously or asynchronously, an application that accesses information provided
by another, an application that executes processes implemented in another, and so on.
Given the number of solutions that exist today, it is necessary to know which one to
choose depending on the problem, hence the importance of this chapter. At the end of
this chapter, you will be able to choose an integration solution and have an overview
of the changes made in the following APIs:

* JavaMail
e Java EE connector architecture

* Java message service
e JAX-RS: Java API for RESTful Web Services

JavaMail

The JavaMail 1.5 Specification was developed under JSR 919. This section just gives
you an overview of improvements in the API. The complete document specification
(for more information) can be downloaded from http://jcp.org/aboutJava/
communityprocess/mrel/jsr919/index2.html.

Communicating with External Systems

Sending e-mails in Java

The expansion of the Internet has greatly facilitated communication across the world
through electronic messages (e-mail). Today, people at the ends of the earth can
exchange information in a very short time. In order for this to be done, there must

be a mail server for storage of data exchanged and clients (for example, Outlook)

for sending and retrieving data. Communication between these elements requires
different types of protocols, for example, SMTP (Simple Mail Transport Protocol)
for sending mails, POP3 (Post Office Protocol) for receiving mails, IMAP (Internet
Message Access Protocol) for receiving e-mails. This multitude of protocols can pose
a problem to the developer.

Given the multitude of protocols and the difficulties of low-level programming, the
Java language provides the JavaMail API in order to simplify sending and retrieving
e-mails regardless of the underlying protocols. But the JavaMail API is not enough;
because it was designed to handle the transmission aspect of the message (connection
parameter, source, destination, subject, and so on), the body of the message is managed
by JavaBeans Activation Framework (JAF framework). That is why, in addition to the
mail.jar library, you have to import the activation.jar library.

Sending an e-mail via the SMTP protocol

Sending an e-mail using JavaMail is done as follows:

1. Obtain the session object. This object encapsulates various information such
as the address of the mail server. The following code shows how to get an
object of type session:

Properties prop = System.getProperties() ;
//serveurAddress is the host of you mail server

prop.put ("mail.smtp.host", serveurAddress) ;
Session session = Session.getDefaultInstance (prop,null) ;

2. Construct the message. To send an e-mail, it is necessary to define some
parameters such as the content of the e-mail, the sender, and destination. In
addition to these settings, you may need to specify the subject of your e-mail
and its header. All this is made possible through the MimeMessage class
that offers several methods to construct a message for a given session. The
following code shows how to get an object of type MimeMessage and build a
mail to send:

Message msg = new MimeMessage (session) ;
msg.setFrom(new InternetAddress
("xxx-university@yahoo.fr")) ;
InternetAddress[] internetAddresses = new InternetAddress]([1];
internetAddresses[0] = new InternetAddress ("malindaped@yahoo.fr") ;

[94]

Chapter 6

msg.setRecipients (
Message.RecipientType.TO, internetAddresses) ;

msg.setSubject ("Pre-inscription results");
msg.setText ("Dear Malinda, we inform you that ..");

3. Send the message. We send a message in one line with the Transport class.
The following code shows how to send the message:

Transport.send (msg) ;

The following code shows how to send the results of preregistration for individual
candidates from a Gmail account. As you can see, the Gmail sender account

and its password are passed as a parameter to the send method. This allows the
application to be authenticated by the server when sending the message. To test the
sending code associated with this chapter, you need to have a Gmail account and
replace username with the username of your account and user_password with the
password of this account.

The following code is an example of sending an e-mail via Gmail SMTP server by
using JavaMail API:

public class MailSender {

private final String userName = "username@gmail.com";
private final String userPassword = "user password";
private Session session;

public MailSender () ({
Properties props = new Properties();

props.put ("mail.smtp.auth", "true");

props.put ("mail.smtp.starttls.enable", "true");
props.put ("mail.smtp.host", "smtp.gmail.com") ;
props.put ("mail.smtp.port", "587");

session = Session.getInstance (props, null);

public void sendMesage (String message, String toAddress) ({
try {

Message msg = new MimeMessage (session) ;
InternetAddress[] internetAddresses =

new InternetAddress|[1l];
internetAddresses [0] = new InternetAddress (toAddress) ;
msg.setRecipients

(Message.RecipientType.TO, internetAddresses) ;
msg.setSubject ("Pre-inscription results");

[95]

Communicating with External Systems

msg.setText (message) ;

Transport.send (msg, userName, userPassword) ;
} catch (Exception ex) ({
ex.printStackTrace () ;

}

}
}

Of course, the JavaMail API provides the ability to retrieve messages, attach
documents to your messages, write messages in HTML format, and do lots
of other things.

The latest improvements in action

Although it is affected by a maintenance release, the JavaMail 1.5 Specification has
undergone many changes. The most important can be grouped into three categories,
which are: addition of annotations, addition of methods, and changing of some
access modifiers.

The added annotations

In all, JavaMail 1.5 introduced two new annotations (eMailSessionDefinition and
@MailSessionDefinitions) to configure JavaMail session resources in a Java EE 7
application server.

The eMailSessionDefinition annotation contains several parameters (see the Java
class in the following code) with the goal of offering the possibility to define a Mail
Session that will be registered in any valid Java EE namespace and accessed by other
components through the JNDI.

The following code highlights the attributes of @MailSessionDefinition annotation:

public @interface MailSessionDefinition {
String description() default "";
String name () ;
String storeProtocol() default "";
String transportProtocol () default "";

String host () default "";

[96]

Chapter 6

}

String user() default "";
String password() default "";
String from() default "";

String[] properties() default {};

With this annotation, we can now define and use objects of session type as
in the case of the following code which is an example to show how to use
@MailSessionDefinition:

@MailSessionDefinition (

)

name = "java:app/env/MyMailSession',
transportProtocol = "SMTP",

user = "username@gmail.com",
password = "user_ password"

Y

@WebServlet (name = "MailSenderServlet")
public class MailSenderServlet extends HttpServlet {

@Resource (lookup="java:app/env/MyMailSession")
Session session;

public void doPost (HttpServletRequest request, HttpServletResponse

response)

}

throws IOException, ServletException {

Y

While the eMailSessionDefinition annotation allows us to define MailSession,
@MailSessionDefinitions annotation allows us to configure many

MailSession instances. The following code shows how to define two
MailSession using instances @MailSessionDefinitions at a time:

@MailSessionDefinitions (

{ eMailSessionDefinition (name = "java:/en/..."),
@MailSessionDefinition (name = "java:/en/...") }

[97]

Communicating with External Systems

The added methods

In order to ease the developer's work, JavaMail 1.5 added new methods that provide
really interesting shortcuts. For example, the addition of the Transport . send (msg,
username, password) method avoids creating additional objects for authentication
parameters when sending the message. Before this, authentication parameters were
defined at the session object and as you can see with the following code:

Session session = Session.getInstance (props,
new javax.mail.Authenticator() {

protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication (username, password) ;

}
I3

As another example of an added method, you have the Message .getSession ()
method, which allows you to access the session type object that was used to create
the message. This may prevent you from having to drag the session throughout
your treatment. The last added method that we will talk about is the MimeMessage .
reply (replyToAll, setAnswered) method, which, due to the second parameter,
allows you to automatically add a rRe prefix to the subject line when you respond,
for example, to a message.

The changing of some access modifiers

Concerning access modifiers, the JavaMail 1.5 Specification has put an emphasis on
good practice in some classes and facilitated the extension of others.

You will see, for example, that the access modifiers of the protected fields in the final
classes of the javax.mail.search package have been changed to private. In fact,

it is not important that the final class contains protected fields with public getter/
setter method. So it is better to make them private and let getter/setter be
public so that we can access/edit their values from outside.

Still, in the changing of access modifier, JavaMail 1.5 has transformed the fields
cachedContent (of classes MimeBodyPart and MimeMessage) and MimeMultipart
class's fields from private to protected in order to facilitate the extension of the
relevant classes.

[98]

Chapter 6

Java EE Connector Architecture (JCA)

The Java EE Connector Architecture 1.7 Specification was developed under

JSR 322. This section just gives you an overview of improvements in the API. The
complete document specification (for more information) can be downloaded from
http://jcp.org/aboutJava/communityprocess/final/jsr322/index.html.

What is JCA?

Generally, Enterprise Information Systems (EISs) of large companies are composed
of a number of tools such as Enterprise Resource Planning applications (ERP, that is
SAP), Customer Relationship Management applications (CRM, that is salesforce.
com), mainframe Transaction Processing applications, legacy applications and
Database Systems (such as Oracle). In such an environment, the development of a
new solution may require access to one or more of these tools to retrieve information
or perform processing: we then talk of an Enterprise Application Integration

(EAI). In the absence of a standard solution, this integration will be costly to both
vendors and developers. Vendors will develop APIs to manage communication
between different kinds of servers and developers will address EISs case by case

and will implement the technical features (connection polling, transaction security
mechanism, and so on) required by the application. Hence the need for JCA.

The Java EE Connector Architecture (JCA) is a specification that aims to standardize
access to heterogeneous existing EISs from Java EE platforms. To this end, it defines
a set of contracts that enable developers to access the different EISs seamlessly from
a common interface called the Common Client Interface (CCI). For those who have
already been working with JDBC, understanding of the functioning of JCA is a little
easier. A JCA connector consists of two main elements:

* Common Client Interface (CCI): This API is to EISs as JDBC is to databases.
In other words, the CCI defines a standard client API that allows components
to access EISs and perform processing.

* Resource Adapter: This is a specific implementation of the CCI for a given
EIS. It is provided by the vendor, which guarantees the execution of the
features of its EIS through the JCA. The Resource Adapter, is packaged in
a .rar archive called Resource Adapter Module, and it must obey some
contracts (system level contracts) in order to be integrated into a Java EE
platform and take advantage of services such as Connection, Transaction,
and Security Management.

That said, you can consider using JCA when you want to access an EIS that offers a
Resource Adapter.

[99]

Communicating with External Systems

JCA in action

Failing to take a concrete example that shows you how to access the list of employees
managed by SAP with a connector (which would be very long), to allow you to
understand the essential features), the following code shows you just an overview

of the use of the JCA API. These include the general principle of the connection,

the possibility of data manipulation, and disconnection.

For those who wish to go further, GlassFish offers a complete example of
implementing a connector to access a mail server, and the tutorial available at
http://www.ibm.com/developerworks/java/tutorials/j-jca/index.html,
provides you additional information.

The following code is a overview of interactions with a resource adapter:

try {
javax.naming.Context ic = new InitialContext () ;
javax.resource.cci.ConnectionFactory cf =
(ConnectionFactory)
ic.lookup ("java:comp/env/eis/ConnectionFactory") ;
//Connection
javax.resource.cci.Connection ctx = cf.getConnection() ;

System.out.println (
"Information about the result set functionality "
+ "supported by the connected EIS : " +
ctx.getResultSetInfol()) ;

System.out.println
("Metadata about the connection : " + ctx.getMetaDatal()) ;

//Get object for accessing EIS functions

javax.resource.cci.Interaction interaction =
ctx.createInteraction() ;

//Get record factory

javax.resource.cci.RecordFactory rfact = cf.getRecordFactory() ;

javax.resource.cci.IndexedRecord input
rfact.createIndexedRecord ("<recordName>") ;

javax.resource.cci.IndexedRecord output =
rfact.createIndexedRecord ("<recordName>") ;

//Look up a preconfigured InteractionSpec
javax.resource.cci.InteractionSpec interSp = ... ;
interaction.execute (interSp, input, output);

[100]

Chapter 6

int index of element = ...;//index of element to return
System.out.println

("The result : "+output.get (index of element));
//close

interaction.close () ;
ctx.close () ;

} catch (Exception ex) ({
ex.printStackTrace () ;

Latest improvements

Talking about novelty, the Java EE Connector Architecture 1.7 was slightly
improved. Indeed, in this specification, it is more a matter of clarification and
requirements statements. That said, JCA 1.7 has introduced the following changes:

* Itinsists on the availability of the the application component
environment namespace of the endpoint to the resource adapter when the
endpointActivation and endpointDeactivation methods are called

* Itadds CconnectionFactoryDefinition and
AdministeredObjectDefinition annotations for defining and configuring
the resource adapter's resources

* It clarifies the behavior of the dependency injection when Managed
JavaBeans are used as CDI-managed Beans

Java Message Service (JMS)

The Java Message Service 2.0 Specification was developed under JSR 343.

This section just gives you an overview of improvements in the API. The
complete document specification (for more information) can be downloaded from
http://jcp.org/aboutJava/communityprocess/final/jsr343/index.html.

When to use JMS

JMS is a Java API for interacting with Message Oriented Middleware (MOM). This
type of middleware is born from the need to solve observed limits in synchronous
connections. This is because synchronous connections are susceptible to network
failures and require that the connected systems are available at the same time. Hence,
the MOMs offer an integration system based on the exchange of messages that can
be treated synchronously or asynchronously depending on the availability of the
integrated systems.

[101]

Communicating with External Systems

The following image shows an architecture in which systems communicate

through MOM:
J G

Based on the foregoing, we conclude that JMS can be used in the following cases:

* Transaction processing large amount of data (for example, synchronization
of databases) through an unstable network

* Communication between systems that are not always available simultaneously
* Sending of data to multiple systems

* Asynchronous processing

To finish with this point, you should notice that the establishment of an integration
system based on JMS requires that all components that need to be integrated be
under your control. Hence, JMS would be better for the integration of internal
solutions of a company.

The latest improvements in action

Released in March 2002, the JMS 1.1 Specification was getting old and heavy
compared to other APIs of the Java EE platform that have been simplified through
the evolution of the platform. Based on this observation, you will understand

why one of the main goals of JMS 2.0 API was to update the API so that it can be

as simple as the other APIs of the platform and can integrate easily with them. To
make this possible, several areas have been reviewed; these include the reduction of
boilerplate code, removing redundant items, adding new features, and integration
of the novelties of the Java language.

New features

In the JMS 2.0 Specification, three new features are highlighted: sending of messages
asynchronously, delivery delay, and modification of the JMSXDeliveryCount
message property.

[102]

Chapter 6

Sending messages asynchronously

In synchronous processing, if a method A invokes a method B, method A will
remain blocked until the method B has completed. This can induce a waste of time.
To overcome this problem, JMS 2.0 provides a set of methods to send messages
asynchronously without losing sight of the progress of the operation. The following
code demonstrates how to send messages asynchronously. The method setAsync ()
takes a listener as a parameter, which allows you to be informed at the end of the
process or when an exception is thrown. If the listener is not null, the message will be
sent asynchronously (the process will be performed by another thread different from
the caller's thread). Otherwise, the message will be sent synchronously.

public void sendMessageAsynchronously
(ConnectionFactory cfactory, Queue destination){
try (JMSContext context = cfactory.createContext();){

context.createProducer () .setAsync
(new Completion()) .send(destination, "Hello world") ;

}
}

class Completion implements CompletionListener{

public void onCompletion (Message message) {
System.out.println("message sent successfully");

}

public void onException(Message message, Exception ex) {
System.out.println(ex.getMessage()) ;

}
}

Delivery delay

In addition to the possibility of sending messages asynchronously, JMS now
permits us to defer the time of delivery of a message already in the broker, which
is a MOM server. After sending, the message will be stored at the broker, but it will
stay unknown to the receiver until the time fixed by the sender. The message of the
following code will be delivered to the recipient at least one hour after sending.

public void sendMessageWithDelay (ConnectionFactory cfactory,Queue
destination)
try (JMSContext context = cfactory.createContext () ;) {
context.createProducer () .setDeliveryDelay (1000*60*60) .
send (destination, "Hello world") ;

}
}

[103]

Communicating with External Systems

Handling of the JMSXDeliveryCount message property

Since Version 1.1, the JMS Specification has defined an optional JMsxDeliveryCount
message property, which can be used to determine the messages that were delivered
more than once and apply an action when the number of deliveries exceeds the
maximum value. But, because the management of this property was optional,

all providers had no obligation to increment it, which had the effect of making
applications that used it non portable. The JMS 2.0 Specification has introduced

this as standard, to allow us to customize the management of poisonous messages
in a portable way. A poisonous message is a JMS message that has exceeded the
maximum number of deliveries for a given receiver. The following code shows how
to retrieve the JMSXDeliveryCount message property and specify the action to be
taken when one message has been delivered more that five time:

public class JmsMessagelistener implements MessageListener ({

@Override
public void onMessage (Message message) {
try {
int jmsxDeliveryCount =
message.getIntProperty ("JMSXDeliveryCount") ;

/] ...
if (jmsxDeliveryCount > 5) {
// do something
}
} catch (JMSException ex) {
ex.printStackTrace () ;

}
}
}

Simplification of the API

The JMS 2.0 Specification introduces three new interfaces (JMSContext,
JMSProducer, and JMSConsumer) which contribute to the elimination of

boilerplate code and simplifying the API. It is important to note that these

interfaces (which constitute the simplified API) co-exist with the old interfaces to
provide an alternative. So JMsContext replaces the Connection and Session objects,
JMSProducer replaces the MessageProducer object, and JMSConsumer replaces the
MessageConsumer object in the old version. As you can see in the following code, the
difference between the two approaches is very clear. In the sending method based on
JMS API 1.1 (sendMessageJMSWithO1dAPI), we note: an excessive object creation, a
mandatory throw of an exception, and a need to explicitly close connections.

[104]

Chapter 6

Whereas, in the sending method based on JMS API 2.0
(sendMessageJdMSWithNewdAPI), we have: the try-with-resources statement that saves
the developer from having to explicitly close the connection and a send code reduced
to the essentials that would fit on one line if we had injected dMscontext object.

//Sending message with JMS 1.1
public void sendMessagedJMSWithOldAPI (ConnectionFactory
connectionFactory, Queue destination) throws JMSException {
Connection connection = connectionFactory.createConnection() ;
try {
Session session = connection.createSession(false, Session.AUTO_
ACKNOWLEDGE) ;

MessageProducer messageProducer = session.
createProducer (destination) ;

TextMessage textMessage = session.createTextMessage ("Message send
with the old API");
messageProducer. send (textMessage) ;
} finally {
connection.close() ;

//Sending message with JMS 2.0
public void sendMessageJMSWithNewdAPI (ConnectionFactory
connectionFactory, Queue destination) {

try (JMSContext context = connectionFactory.createContext ();) {
context.createProducer () .send (destination, "Message send with
the new API");

}

Java API for RESTful Web Services

The Java API for RESTful Web Services 2.0 Specification was developed under
JSR 339. This section just gives you an overview of improvements in the API. The
complete document specification (for more information) can be downloaded from
http://jcp.org/aboutJava/communityprocess/final/jsr339/index.html.

[105]

Communicating with External Systems

When to use Web Services

A Web Service is a software system based on open standards (such as HTTP, XML,
and URI) and designed to allow exchanges between applications across the network.
By using these open standards, it has everything required to be the most suitable
solution for integrating heterogeneous systems. However, as we saw when we were
talking about JMS, the choice of an integration solution should be made after a series
of questions: Is the network connection good? Are the processes transactional? Is the
amount of data to be processed huge? Must processing be synchronous? and so on.

If after investigation, your choice is Web Services, you must now select the type of
web service to implement : the SOAP Web Services based on SOAP (Simple Object
Access Protocol) and XML, or RESTful Web Services that are focused on resource
sharing and thus their functioning is modeled on the Web. In this book, we will only
discuss RESTful Web Services.

JAX-RS in action

RESTful Web Services are a variant of Web Services in which any concepts that

can be addressed (functionality or data) are considered as resources and therefore
can be accessed through Uniform Resource Identifiers (URIs). Once located, the
representation or state of the resource is transferred in the form of an XML or a JSON
document. In the case of our online preregistration application, the resources may be
the list of selected students and the representation will be in a JSON document.

JAX-RS is the Java API to implement RESTful Web Services. The following code
demonstrates how to write a REST service that returns a list of all students who
were selected:

@Path ("students")

@Stateless

@Produces ({MediaType . APPLICATION JSON})
public class StudentInformation {

@PersistenceContext (unitName = "integrationPU")
private EntityManager em;

@GET
@Path ("getListOfStudents")
public List<Student> getListOfStudents () {
TypedQuery<Student> query = em.createQuery
("SELECT s FROM Student s", Student.class);
return query.getResultList () ;

}
I

[106]

Chapter 6

The latest improvements in action

JAX-RS 2.0 not only simplified the implementation of RESTful Web Services, but also
introduced new features in the API, among which we have client API, asynchronous
processing, filters, and interceptors.

The Client API

Since Version 1.0, the JAX-RS Specification did not define client APIs to interact
with a RESTful service. So, each implementation provided a proprietary API, which
had the effect of limiting the portability of applications. JAX-RS 2.0 fills this gap by
providing a standard client API.

The following code demonstrates the implementation of a client that will access the
list of selected students through the REST service exposed in the preceding code:

String baseURI =
"http://localhost:8080/chapter06EISintegration-web";
Client client = ClientBuilder.newClient () ;
WebTarget target = client.target
(baseURI+"/rs-resources/students/getListOfStudents") ;
GenericType<List<Student>> list = new GenericType<List<Student>>() {};
List<Student> students =
target.request (MediaType.APPLICATION JSON) .get (list);

Asynchronous processing

In addition to the standardization of the client API, JAX-RS 2.0 has integrated

a feature already present in many of the APIs of the Java EE platform, which is
asynchronous processing. It is now possible for a JAX-RS client to send requests
or process responses asynchronously.

The following code demonstrates how a JAX-RS client can perform a get request
asynchronously and wait for the response passively. As shown in the code, the
execution of a JAX-RS request asynchronously requires a call to the async () method.
This method returns an object of type AsyncInvoker whose get, post, delete, and
put methods allow us to obtain the object type Future that will be used for further
processing of the response.

The following code is an example of the execution of a asynchronous process in a
JAX-RS client:

public class AppAsynchronousRestfulClient

public static void main(Stringl[] args) {
String baseURI =
"http://localhost:8080/chapter06EISintegration-web";

[107]

Communicating with External Systems

String location = "/rs-resources";
String method = "/students/getListOfAllStudentsAs";
Client client = ClientBuilder.newClient () ;

WebTarget target =

(WebTarget) client.target (baseURI+location+method) ;
System.out.println("Before response : "+new Date()) ;
Future<String> response = target.request

(MediaType .APPLICATION JSON) .async () .get (String.class) ;

new PassiveWaiting(response) .start () ;

System.out.println ("After PassiveWaiting : "+new Date()) ;

}

static class PassiveWaiting extends Thread ({
Future<String> response;

public PassiveWaiting (Future<String> response) {
this.response = response;

}

public void run() {

try{
System.out.println ("response
"+response.get ()+", time : "+new Date());
}catch (Exception ex) {
ex.printStackTrace () ;

}
}
}
}

To ensure that the processing is executed asynchronously, we have defined a break
of 20 seconds in the getListOfAllStudentsAs method before executing the JPQL
queries. The following code,which is a simulation of a slow processing, shows the
contents of the method executed by the client:

@GET
@Path ("getListOfAllStudentsAs")
public List<Student> getListOfAllStudentsAs()
try(
Thread.sleep(20%1000) ;//20 seconds
}catch (Exception ex) {}

TypedQuery<Student> query = em.createQuery
("SELECT s FROM Student s", Student.class);

return query.getResultList () ;

[108]

Chapter 6

Similarly, the JAX-RS servers are able to run processes asynchronously. The method
that contains the instructions to perform the task asynchronously must inject

an object of type AsyncResponse as a method parameter with the @Suspended
annotation. However, you should know that the asynchronous mode of the server
differs from the asynchronous mode of the client; the former consists of suspending
the client connection from which the request was send during the processing of

the request before resuming it later through the resume () method of the object
AsyncResponse. The method itself will not run asynchronously. To make it
asynchronous, you must either delegate the process to a thread (that is what we did
in the getList0fAllStudentsAs2 method of the following example), or decorate

it with the @Asynchronous annotation. The following code demonstrates how to
perform asynchronous processing at the server side.

The following code is an example of the execution of a process asynchronously in a
JAX-RS server:

@Path ("students")

@Stateless

@Produces ({MediaType . APPLICATION JSON, MediaType.APPLICATION XML})
public class StudentInformation {

@PersistenceContext (unitName = "integrationPU")
private EntityManager em;

@Resource (lookup =
"java:comp/DefaultManagedScheduledExecutorService")
ManagedExecutorService taskExecutor;

@GET
@Path ("getListOfAllStudentsAs2")

public void getListOfAllStudentsAs2
(final @Suspended AsyncResponse response) {

System.out.println("before time : "+new Date());
taskExecutor.submit (
new Runnable() {
public void run()
String queryString = "SELECT s FROM Student s

WHERE 1 = 1";

TypedQuery<Student> query = em.createQuery
(queryString, Student.class);

List<Student> studentList = query.getResultList () ;
try {

Thread.sleep (10 * 1000);//1 second
} catch (Exception ex) ({

[109]

Communicating with External Systems

}
response.resume (studentList) ;
}
13N
System.out.println ("After time : "+new Date()) ;
}
}

Filters and entity interceptors

Another big ticket of the JAX-RS 2.0 Specification is the introduction of two
mechanisms for interception: filters and interceptors. These new features bring to the
specification a standard way to intercept processing in order to seamlessly manage
security, compression, encoding, logging, editing, and auditing of exchanges between
a JAX-RS server and the different clients that will access the server resources.

Although the two concepts are very similar (as they all relate to interception),

we must say that the filter is often used for the processing of the headers of requests
or responses. Whereas, interceptors are generally set up to manipulate the content
of messages.

Filters

The JAX-RS 2.0 specification defines four types of filters: two types of filters on
each side (client and server). On the client side, one filter that must be run before
sending the HTTP request implements the ClientRequestFilter interface and the
other filter, which must be run immediately after the receipt of the response from
the server, (but before the control is rendered to the application) implements the
ClientResponseFilter interface. On the server side, the filter that will be executed
before the access to a JAX-RS resource implements the ContainerRequestFilter
interface and the filter that will run just before the response is sent to the client
implements the ContainerResponseFilter interface. The following code

shows an example of ContainerRequestFilter implementation that verifies

the information that ensures a secure access to the resources available to external
users of our online preregistration application. The @Provider annotation on top

of the MyJaxRsRequestFilter class in the following code allows the filter to be
automatically discovered by the container and applied to all resources of the
server. Failing to use this annotation, you must manually registered the filter.

[110]

Chapter 6

The following code is an example of ContainerRequestFilter implementation:

@Provider

public class MyJaxRsRequestFilter implements ContainerRequestFilter

@Override
public void filter (ContainerRequestContext crqg)
// If the user has not been authenticated
if (crg.getSecurityContext () .getUserPrincipal () == null)
throw new WebApplicationException (Status.UNAUTHORIZED) ;

List<MediaType> supportedMedia =
crg.getAcceptableMediaTypes () ;
if ("GET".equals (crg.getMethod()) &&
! supportedMedia.contains (MediaType .APPLICATION JSON TYPE))

throw new WebApplicationException
(Status.UNSUPPORTED MEDIA TYPE) ;

// external users must only access student methods
String path = crqg.getUriInfo () .getPath() ;

if (!path.startsWith("/students"))
throw new WebApplicationException (Status.FORBIDDEN) ;

List<String> encoding = crqg.getHeaders () .get
("accept-encoding") ;
// If the client does not support the gzip compression
if (!encoding.toString() .contains ("gzip"))
throw new WebApplicationException
(Status.EXPECTATION FAILED) ;

Entity interceptors

In addition to the differences noted between filters and entity interceptors, JAX-RS
provides two types of entity interceptors instead of four. There is a reader interceptor
that implements the ReaderInterceptor interface and a writer interceptor, which
implements the WriterInterceptor interface. Due to the elements that they are
supposed to handle (message bodies), interceptors can be used to compress large
content to optimize network utilization; they can also be used for some processing
such as the generation and verification of digital signatures.

[111]

Communicating with External Systems

Given that the database of our online preregistration application will contain
thousands of students, the following code demonstrates how we can take advantage
of interceptors in the data exchange with the Ministry of Education in order to avoid
network overloading when transmitting information about students.

The following code shows the implementation of WriterInterceptor (on the
server side) that will compress data to send to the JAX-RS client. The @zipResult
annotation allows us to bind the interceptor only to some JAX-RS resources.

If we remove this annotation, all JAX-RS resources of our application will be
automatically compressed.

The following code is an example of a WriterInterceptor implemention:

@ZipResult

@Provider

public class MyGzipWriterJaxRsInterceptor implements
WriterInterceptor(

@Override
public void aroundWriteTo (WriterInterceptorContext wic) throws
IOException {
try (GZIPOutputStream gzipStream = new GZIPOutputStream(wic.
getOutputStream());)
wic.setOutputStream(gzipStream) ;
wic.proceed() ;

}

To bind the MyGzipWriterJaxRsInterceptor interceptor to a resource, we will
only decorate the given resource with the @ziprResult annotation. The following
code demonstrates how to bind MyGzipWriterJaxRsInterceptor interceptor to a
resource so that its representation can be always compressed before being sent to
the client.

The following code is an example of of interceptor binding;:

@GET

@ZipResult

@Path ("getListOfAllStudentsGzip")

public List<Student> getListOfAllStudentsGzip()

TypedQuery<Student> query = em.createQuery
("SELECT s FROM Student s", Student.class);

return query.getResultList () ;

[112]

Chapter 6

The following code is an example of the declaration of @zipResult annotation:

@NameBinding

@Target ({ ElementType.TYPE, ElementType.METHOD })
@Retention(value = RetentionPolicy.RUNTIME)
public @interface ZipResult {}

The following code shows the implementation of the ReaderInterceptor interface
(on the client side) that will decompress the data compressed by the server with the
MyGzipWriterJaxRsInterceptor class:.

public class MyGzipReaderJaxRsInterceptor implements ReaderInterceptor

{

@Override
public Object aroundReadFrom(ReaderInterceptorContext context)
throws IOException {
try (InputStream inputStream = context.getInputStream();) {
context.setInputStream(new GZIPInputStream(inputStream)) ;
return context.proceed() ;

}

To bind the interceptor to a particular client, we will use the register method of the
Client object. The following code demonstrates how to associate an interceptor or a
filter to a JAX-RS Client:

public static void main(String[] args) throws IOException {

String baseURI = "http://localhost:8080/
chapter06EISintegration-web";

String location = "/rs-resources";
String method = "/students/getListOfAllStudentsGzip";
//client creation and registration of the interceptor/filter
Client client = ClientBuilder.newClient ()
.register (MyGzipReaderJdaxRsInterceptor.class) ;
WebTarget target = (WebTarget)
client.target (baseURI + location + method) ;
System.out.println
("response : " + target.request (MediaType.APPLICATION JSON)
.get (String.class)) ;

[113]

Communicating with External Systems

Summary

During the analysis of the online preregistration application presented in the
previous chapter, we realized that our system should communicate with other
systems. This chapter has given us the knowledge to identify and implement the

best way to exchange data with different kinds of heterogeneous systems. In the next
chapter, we will revisit some concepts that we have used in a natural way so that you
have a better understanding of them.

[114]

Annotations and CDI

Right up to this moment, we had to use annotations and dependency injections
without trying to understand how they work. This chapter therefore aims to
present and highlight improvements in the relevant APIs. The APIs concerned are:

* Common annotations for the Java Platform 1.2

* Contexts and Dependency Injection 1.1

Common annotations for the Java
platform

The common annotations for the Java platform 1.2 Specification was developed
under JSR 250. This section just gives you an overview of improvements in the API.
The complete document specification (for more information) can be downloaded
from http://jcp.org/aboutJava/communityprocess/mrel/jsr250/index.html.

The goal of this specification

Annotations are a form of metadata that are generally used to describe,
configure, or mark elements (such as class, method, and attribute) of Java
code. In the following code, we use the @stateless annotation to configure
MySessionBean class as a stateless session bean, we use the @Deprecated
annotation to mark oldMethod () method as obsolete, and finally we set the
save () method with the @TransactionAttribute annotation so that it will
always use a dedicated transaction.

@Stateless
public class MySessionBean

@Deprecated
public void oldMethod () {}

Annotations and CDI

@TransactionAttribute (TransactionAttributeType.REQUIRES NEW)
public void save(){}

}

The annotations have been integrated into the Java language since JDK 5 and they
are now widely used in many APIs. To avoid redefining some annotations in several
APIs, the JCP developed the common annotations for the Java platform specification
with the goal of regrouping annotations that are common to different Java EE APIs,
which avoids redundancy and facilitates the maintenance of regrouped annotations.
In the following code, we have the example of the @Resource annotation from the
common annotations for the Java platform API, which permits us to access an object
of type SessionContext in a web container and in an EJB container.

@Stateless
public class MySessionBean {

@javax.annotation.Resource
private SessionContext sctx;

/...
}

@ManagedBean

public class MyJsfManagedBean
@javax.annotation.Resource
private SessionContext sctx;

/...

Building your own annotation

Although there are already several annotations, Java offers the opportunity to create
new custom annotations if you need. To do this, you should know that an annotation
is declared as a Java interface. The only difference is that, in the case of the annotation
the keyword interface must be preceded by the character @. The following code
shows the declaration of the custom annotation Unfinished. This annotation contains
a parameter named message whose default value is Nothing has been done.

public @interface Unfinished {
String message () default "Nothing has been done";

}

[116]

Chapter 7

Once you declare your annotation, you must now define its characteristics. The basic
characteristics of an annotation are defined through dedicated annotations contained
in the java.lang.annotation package. These annotations are as follows:

@Target: This is used to define the element types that can be annotated
(such as class, method, and attribute), for example @Target ({ElementType.
METHOD, ElementType.TYPE})

@Retention: This is used to define the retention level (such as RUNTIME, CLASS,
or SOURCE) of your annotation, for example @Retention (RetentionPolicy.
RUNTIME)

@Inherited: This is used to say that the annotation will be automatically
applied to classes that inherit from the class that has the annotation

@Documented: This is used to make your annotation appear in the Javadoc
of the code that contains it

It is important to note that there are other characteristics such as the scope (set using
the @scopeType) in the case of custom CDI scope annotations.

After all changes, our annotation takes the form shown in the following code.
According to the settings, this annotation can decorate methods, types of objects
(such as class, interface, or enum) and attributes. It will be removed at the compile
time (because the retention level is SOURCE).

@Target ({ElementType.METHOD, ElementType.TYPE, ElementType.FIELD})
@Retention (RetentionPolicy.SOURCE)
public @interface Unfinished {

}

String message () default "Nothing has been done";

The following code demonstrates the usage of the Unfinished annotation:

public class 2App {

@Unfinished (message = "Make sure that this element is not null")
String size;

@Unfinished
public static void main(String[] args) {
System.out.println("Hello World annotation!");

[117]

Annotations and CDI

Although our annotation already looks like a standard annotation, it is not yet
operational. For this, a class called processor must be available to the compiler.
This class will describe the action to take when an item is annotated with our
custom annotation.

To achieve a custom processor for Java 6 annotation, we mainly need to implement
the process () method of the javax.annotation.processing.Processor

interface and define the annotations supported by this processor with the
@SupportedAnnotationTypes annotation. The following code shows the processor
of our custom Unfinished annotation. As you can see, for the implementation of the
process () method, we used the abstract class AbstractProcessor that implements
the Processor interface. (This prevents us from having to implement all the methods
defined in this interface.)

@SupportedAnnotationTypes ("com.packt.ch07.annotations.Unfinished")
public class UnfinishedProcessor extends AbstractProcessor {

/**

* For the Serviceloader

*/

public UnfinishedProcessor() {

}

@Override
public boolean process(Set<? extends TypeElement>
annotations, RoundEnvironment roundEnv) {
try {
//For each annotated element do
for (Element e
roundEnv.getElementsAnnotatedWith (Unfinished.class))
Unfinished unf = e.getAnnotation(Unfinished.class) ;

System.out.println("***** Class
"+e.getEnclosingElement () +", "
+ "Annotated element : " + e.getSimpleName()+", "
+ " Kind : "+e.getKind()+", Message
"+unf .message () +"*F*x** "),

}

} catch (Exception ex) ({
ex.printStackTrace () ;

}

return true;

[118]

Chapter 7

Once the processor is realized, we must now declare it so that it can be found by
the compiler. The simplest way to do this is to use the Java mechanism for services
declarations using the following steps:

1. Package your annotation in a JAR file.
2. Include a META-INF/services directory in this JaR file.

3. Include a file named javax.annotation.processing.Processor in the
META-INF/services directory.

4. Specify in this file the fully qualified names of the processors contained in the
JAR file (one processor per line).

The following screenshot shows the structure of the project that contains the
Unfinished annotation. Failing to put the annotation and the processor in the same
project as is the case of our example, you can use one project for annotations and
another for processors. But whatever your option, do not forget to define the service
in the META- INF/services project directory that contains the processor.

—'&' annotations

—.,_fj Source Packages

—{:] corn, packt, chO?, annokations

“|d@) Unfinished. java

—{::} com, packt, chO? processars
|§| UrfinishedProcessar, java

#-I[F Test Packages

—.,__a Other Sources

—.,_a srfmain/resources

= [_] META-INF services

------ D javax, annotation. processing, Processor

The following screenshot shows the contents of the file javax.annotation.
processing.Processor. As the package contains only a single processor,
then it is obvious that we will have a single line in this file as shown in the
following screenshot:

1 com. packt.ch07. processors. InfinishedProcessor

For those using Maven v2.3.2, to achieve the project that contains the processors,
they must set the option <compilerArgument>-proc:none</compilerArgument>
in the configuration of the plugin maven-compiler-plugin so that the code is
properly compiled.

[119]

Annotations and CDI

Now you can import the package that contains the annotation in another project and
use it at your convenience. When compiling our preceding App class, we have the
following result:

x%* Class :com.packt.ch07.App, Annotated element : size, Kind :
FIELD, Message : Make sure that this element is not null**xx*

x%* Class :com.packt.ch07.App, Annotated element : main, Kind :
METHOD, Message : Nothing has been done****

Latest improvements in action

Affected by maintenance release, the common annotation specification has not
greatly changed. We have in all, the addition of a new annotation and update of
some sections of the specification document.

The new annotation

The new annotation that was added to the specification concerns the management
of priorities when using a series of classes in a given order. This is the javax.
annotation.priority annotation.

The exact role and the ranges of acceptable values for this annotation are defined by
each specification that uses it.

For example, this annotation could be used to manage the execution order
of interceptors.

Contexts and Dependency Injection

The Contexts and Dependency Injection(CDI) for Java EE 1.1 Specification was
developed under JSR 346. This section just gives you an overview of improvements
in the API. The complete document specification (for more information) can be
downloaded from http://jcp.org/aboutJava/communityprocess/final/
jsr346/index.html.

[120]

Chapter 7

What is CDI ?

Introduced in the Java EE platform from Version 6, Contexts and Dependency
Injection for Java EE (CDI) is a specification that has brought to the platform a set of
services that simplify the management of the lifecycle of objects, and standardize and
encourage the use of dependency injection in the Java EE environment. In concrete
terms, this specification gives us the ability to easily link in a loosely coupled and
type-safe way the different layers (presentation, business and data access) of n-tier
architectures. In order to do this, the CDI primarily relies on two services that are:

* Context: This is used for the management of the lifecycle of the objects
(the time of creation and destruction) based on their scope.

* Dependency Injection: This includes a number of elements such as the
injection of a component into another, the choice of implementation to be
injected for a given interface and the type of object provided to access the
injected dependence: a proxy or a reference that gives direct access to
the instance.

To get a better idea of the power of CD], let us take some examples.

Example 1 — instantiation of a POJO

Suppose we have a JSF managed bean that wants to access an instance of a POJO that
implements an interface. The basic approach is to create an instance of the POJO in
the managed bean by using the new keyword as is the case in the following code:

@ManagedBean
public class MyManagedBean {

IHelloWorld hw = new HelloWorld() ;

public String getMyHelloWorld() {
return hw.getHelloWorld () ;
}
}

public class HelloWorld implements IHelloWorld({

@Override
public String getHelloWorld() {
return "Hello World";
}
}

[121]

Annotations and CDI

The drawback with this approach is that the instance of the Helloworld class

is created in hard code, which causes a very strong coupling between the
managed bean and implementation of THelowWorld interface. Therefore, to change
IHelloWorld implementation, you must have an access to the managed bean and
modify it.

With the CDI, the managed bean will just declare a dependency on an IHelloWorld
instance and inject it. This gives us the following code:

@ManagedBean
public class MyManagedBean

@Inject
IHelloWorld hw;

public String getMyHelloWorld() {
return hw.getHelloWorld () ;
}

}

The CDI will look for the implementation of the THellowWorld interface, instantiate
and inject it. Better still, the CDI will take care of managing the lifecycle of the bean
that will be injected. Thus, to change the implementation of IHelloWorld interface,
we just have to change the class HellowWorld. We will complete our code by
specifying the scope of the POJO with @RequestScoped annotation.

@RequestScoped
public class HelloWorld implements IHelloWorld{

/...
}

Example 2 — accessing an EJB from a JSF page

Suppose we have a JSF page where we want to access a method of an EJB
component. The typical scenario requires you to first access an instance of the EJB
from the managed bean associated with the JSF page and then call the EJB method in
a managed bean method that will be called in the JSF page. In terms of code that can
be translated as shown in the following code.

The following code is an example of an EJB component:

@Stateless
public class MyEJB implements IMyEJB({

public String getHelloWorld() {
return "Hello world By EJB";
}
}

[122]

Chapter 7

The following code is an example of a JSF-managed bean:

@ManagedBean
public class MyManagedBean {

@EJB
IMyEJB ejb;

public String getMyEjbHelloWorld () {
return ejb.getHelloWorld() ;

}
}

From a JSF page, we can call the method myEjbHelloWorld.

Hello EJB

The message : #{myManagedBean.myEjbHelloWorld}

With CDI, we do not necessarily need to go through a managed bean to access the
methods of an EJB. In fact, we only need to add the @Named annotation to our EJB
component and it will be accessed from our JSF page like a simple JSF-managed
bean. The difference between the two annotations (eNamed and @ManagedBean)

is visible in at least two points: the first point concerns the scope. Indeed, the
@ManagedBean annotation is specific to the JSF Specification while the @Named
annotation can create managed beans accessible to a greater number of specifications
(including JSF) and provides more flexibility in the handling of JavaBean
components. The second point relates to the features available to the component. The
@Named annotation allows you to create CDI beans, which gives you the opportunity
to use features that you will not have access to in a JSF bean, such as: interceptors,
Producer, and Disposer. As a general rule, it is advisable to use CDI beans
whenever possible.

The following code shows an EJB component annotated with CDI @Named annotation:

@Named

@Stateless

public class MyEJB implements IMyEJB {
/...

}

[123]

Annotations and CDI

The following code shows the access to an EJB from a JSF page:

CDI Hello EJB

The message : #{myEJB.helloWorld}

Example 3 — setting a bean with a specific scope for
simple operations

For one reason or another you may want to implement the singleton pattern. In the
traditional approach, you will implement a singleton EJB type even if you do not
necessarily need all of the services that such a component offers (scalability, roles-
based security, concurrency management, transaction management, and others).

With CDI, you can create your bean with the desired scope without the obligation

of implementing heavy components for marginal processing. In fact, CDI offers
several types of scope that can be defined using annotations (eApplicationScoped,
@RequestScoped, and @SessionScoped). Thus, to implement the singleton pattern
without cluttering the services offered by the EJB components, we can simply use the
application scope annotation of the CDI as shown in the following code:

@ApplicationScoped

public class MySingletonBean {
/] ...

}

Example 4 — use of objects usually created by
a factory

You want to send an asynchronous message via JMS from EJB. The classical
approach will require you to instantiate many objects as is the case in the
following code:

@Stateless
public class SendMessageBean

@Resource (name = " java:global/jms/javaee7ConnectionFactory")
private ConnectionFactory connectionFactory;

@Resource (name = " java:global/jms/javaee7Queue")

private Queue queue;

public void sendMessage (String message) {
try {

[124]

Chapter 7

}

Connection connection =
connectionFactory.createConnection () ;

Session session = connection.createSession (false,
Session.AUTO ACKNOWLEDGE) ;

MessageProducer messageProducer =
session.createProducer (queue) ;

TextMessage textMessage =
session.createTextMessage (message) ;

messageProducer.send (textMessage) ;

connection.close() ;

catch (JMSException ex) {

// handle exception (details omitted)

With CDJ, all this mass of code is reduced to a line, as shown in the following code:

@Stateless
public class SendMessageBean2 {

}

@Inject
JMSContext context;
@Resource (lookup = "java:global/jms/javaee7Queue")

Queue queue;

public void sendMessage (String message) {
context.createProducer () .send (queue, message) ;

Latest improvements in action

Having been introduced to the platform from Java EE 6, CDI has become an
important solution for component oriented programming in the Java EE platform.
Now it only has to spread its tentacles into almost all specifications of the platform
so that it can link seamlessly more components and integrate more APIs. In the long
list of improvements that have been made, we will present a few including: the
possibility of avoiding a bean being processed by the CDI, access to the current CDI
container, access to the non contexual instances of a bean, and finally the ability to
explicitly destroy bean instances. The improvement of CDI relating to interceptors
and decorators will be presented in the next chapter when we will discuss the
relevant specification.

[125]

Annotations and CDI

Avoiding CDI processing on a bean

Version 1.1 of the CDI Specification came with the annotation @vetoed that
prevents an object being considered as a CDI bean. However, a bean decorated
with this annotation cannot have a lifecycle similar to the contextual instance.
So, it cannot be injected.

By looking at this annotation, some might wonder about its usefulness. To preserve
the integrity of some data, it may happen that you need to control the use of some
components. But, by using CDI, your components can be manipulated from any
other component. Hence the role of the @vetoed annotation. The following code
shows us the use of the @vetoed annotation on the Student entity in order to

avoid unknown manipulations that can lead to inconsistencies:

@Entity

@Vetoed

public class Student implements Serializable {
@Id
private String id;
private String firstname;

/...

Accessing the non contexual instance of a bean

This version also added the ability to inject and execute lifecycle callbacks of
unmanaged instances of beans. The following code demonstrates how to inject
and execute lifecycle callbacks of non contexual instances of the bean student:

Unmanaged<Student> unmanagedBean = new
Unmanaged<Students> (Student.class) ;

UnmanagedInstance<Student> beanInstance =
unmanagedBean.newInstance () ;

Student foo =
beanInstance.produce () .inject () .postConstruct () .get () ;

// Usage of the injected bean

beanInstance.preDestroy () .dispose () ;

[126]

Chapter 7

Accessing the current CDI container

The CDI Specification 1.1 has added the ability to access the current CDI container
programmatically and perform some operations. The following code demonstrates
how to access a CDI container to explicitly destroy a context object:

CDI container = CDI.current () ;
container.destroy (destroableManagedInstance) ;

Destroying CDI bean instances explicitly

To allow explicit destruction of bean instances in applications, CDI 1.1

has introduced the AlterableContext interface, which contains the void
destroy(Contextual<?> contextual) method. Extensions should implement
this interface instead of the Context interface.

Summary

After several chapters focused on the realization of a complete system using the Java
EE 7 platform, this chapter has allowed us to take a break and try to review some
key concepts that we were using. Thus, we learned to make our own annotations
and link layers of n-tier applications. In the next chapter, we will continue with the
implementation of our application by integrating, this time, the validation of data
exchanged between the different layers.

[127]

Validators and Interceptors

In this chapter, we will see data validation with constraints. This will give us the
opportunity to put a small part of AOP (Aspect Oriented Programming) in action
and discover the novelties in the validation and interception APIs. The specifications
concerned are:

¢ Bean Validation 1.1

* Interceptors 1.2

Bean Validation

The Bean Validation 1.1 Specification was developed under JSR 349. This section
just gives you an overview of improvements in the API. The complete document
specification (for more information) can be downloaded from http://jcp.org/
aboutJava/communityprocess/final/jsr349/index.html.

We are almost at the end of the realization of our online preregistration application.
In the previous chapters, we developed the different layers of our application and
now we need to validate the data that will be handled by this application.

Validating your data

The Java language provides for Java SE and Java EE developers the Bean Validation
Specification, which allows us to express constraints on objects. By default, it offers
a small number of constraints (compared to the needs that you may have) called
built-in constraints (see the following table). But, it gives you the opportunity to
combine these constraints in order to make much more complex constraints (custom
constraints) that suit your needs. This is what makes its power. This specification
can be used in conjunction with many other specifications such as CD], JSF, JPA,
and JAX-RS.

Validators and Interceptors

The list of the built-in constraints in Bean Validation 1.1 is shown in the

following table:

Constraint Supported type Description

@Null Object This ensures that the value of the

object is null

@NotNull Object This ensures that the value of the

object is not null

@AssertTrue boolean, Boolean This ensures that the value of the

object is true

@AssertFalse boolean, Boolean This ensures that the value of the

object is false

@Min BigDecimal, BigInteger This ensures that the value of the
byte, short, int, long, and object is greater than or equal
the respective wrappers (such to the value specified in the
as Byte and Short) annotation

@Max BigDecimal, BigInteger This ensures that the value of the
byte, short, int, long, and object is less than or equal to the
the respective wrappers (such value specified in the annotation
as Byte and Short)

@DecimalMin BigDecimal, BigInteger, This ensures that the value of the
CharSequence object is greater than or equal
byte, short, int, long, and to the Vglue specified in the
the respective wrappers (such annotation
as Byte and Short)

@DecimalMax BigDecimal, BigInteger, This ensures that the value of the
CharSequence object is less than or equal to the
byte, short, int, long, and value specified in the annotation
the respective wrappers (such
as Byte and Short)

@Size CharSequence, Collection, This ensures that the size of the
Array, and Map object is in the defined range

@Digits BigDecimal, BigInteger, This ensures that the value of the
CharSequence object is in the defined range
byte, short, int, long, and
the respective wrappers (such
asByte and Short)

@Past java.util.Date and java. This ensures that the date

util.Calendar

contained in the object is prior
to the date of treatment

[130]

Chapter 8

Constraint Supported type Description
@Future java.util.Date and This ensures that the date
java.util.Calendar contained in the object is later

than the date of treatment

@Pattern CharSequence This ensures that value of the
item meets the regular expression
defined in the annotation

One advantage of this specification is the ability to define the different constraints it
offers via annotations, which facilitates its use. According to the characteristics of the
annotation (explained in detail in Chapter 7, Annotations and CDI), you can express
constraints for a class, field, or property. The following example shows a Student
entity whose fields are decorated with the built-in constraints. You can see the
constraints to avoid the null value or to define the size and format of attributes

in the following code:

@Entity
public class Student implements Serializable

@Id

@NotNull

@Size(min = 1, max = 15)

private String id;

@Size (max = 30)

private String firstname;

@Pattern (regexp=""\\ (2 (\\@{3})\\)2[- 12 (\\da{3}) [- 1?2 (\\d{4})
$", message="Invalid phone/fax format,
should be as xXXxX-XxXxX-XxxX")

//if the field contains phone or fax number consider using this
//annotation to enforce field validation

@Size (max = 10)

private String phone;

@Pattern (regexp="[a-z0-9!#8%&"'*+/=2" ~{|}~-1+(?2:\\.
[a-20-91#35%&'*+/=2" ~{|}~-1+)*@(?:[a-20-9] (?: [a-20-9-]%*
[a-2z0-9])?\\.)+[a-20-9] (?: [a-2z0-9-]1*[a-20-9])°?",
message="Invalid email")

//if the field contains email address consider using this
//annotation to enforce field validation

@Size (max = 60)

@Email

private String email;

/...

[131]

Validators and Interceptors

Once the constraints are defined, the Bean Validation Specification allows you

to validate the data under constraints manually or automatically through other
specifications. We begin by presenting manual validation. The following example
demonstrates how to validate the constraints of a class manually. We must say that
the validator API also provides methods to validate a single attribute or a specific
value as shown in the following code:

public static void main(String[] args) {
Student student = new Student () ;
student .setEmail ("gsdfgsdfgsdfsgdfgsdfgsdf™) ;

'dfgsdfgsdfgsdfgsdfgsdfgsd") ;

(l
student . setPhone (

ValidatorFactory factory =
Validation.buildDefaultValidatorFactory () ;

Validator validator = factory.getValidator() ;

Set<ConstraintViolation<Student>> violations =
validator.validate (student) ;

System.out.println ("Number of violations : "+violations.size()) ;
for (ConstraintViolation<Student> cons : violations) {
System.out.println("Calss :"+cons.getRootBeanClass()+",

Instance : "+cons.getLeafBean()+", "
+ " attribute : "+cons.getPropertyPath()+",
message :"+cons.getMessage());

}

As we mentioned, the Bean Validation Specification can be combined with other
specifications. In the example that follows, we present the coupling between Bean
Validation and JSF. We take this opportunity to highlight automatic validation.
The example that follows demonstrates how to validate the input of a student

in our online preregistration website:

@ManagedBean
public class InscriptionBean {

@Size (min=4, message="The full name must have "
+ " at least four characters!")

private String name;

@Past

private Date birthday;

@NotNull

@Size (min=1, max=1,message="Enter only one character")

private String gender;

@Pattern (regexp=""\\ (2 (\\d{3}1)\\)2[- 12 (\\d{3}) [- 12 (\\d{4a})s",

message="Invalid phone format, should be as xxx-xxx-xxXxx")

[132]

Chapter 8

}

@Size(max = 10)

private String phone;

@Pattern (regexp="[a-z0-9!#8%&"'*+/=?" ~{|}~-1+(?:
\\. [a-z0-9!1#8%&"'*+/=2" ~{|}~-1+)"

+ "*@(?:[a-2z0-9] (?:[a-20-9-]1*[a-20-9])?\\.)+[a-20-9]
(?:[a-z0-9-1*[a-20-9])?",

message="Invalid email")

private String email;

//...getter and setter

The following code shows an example of the content of the web page allowing
candidates to enter their personal identification. As you can see, we used the pass
through attribute explained in Chapter 3, The Presentation Layer, to use the calendar

of HTMLS5 and we put the tag <h:message/> next to each field with the ID of the
concerned field in order to display error messages in case of violation of the constraint.
This allows us to have the screen capture shown in the following screenshot.

The following code is an example of the contents of the
identificationInformationPage.xml JSF page:

<html xmlns="http://www.w3.0rg/1999/xhtml"

xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:pta="http://xmlns.jcp.org/jsf/passthrough"
xmlns:f="http://xmlns.jcp.org/jsf/core">
<h:head>
<title>Inscription information</titlex>
</h:head>
<h:body>
<f:view>
<h:form>
<table border="0">
<tbody>
<tr>
<th>Name :</th>
<th><h:inputText value="#{inscriptionBean.name}"
id="name"/></th>
<th><h:message for="name" style="color:red"/></th>
</tr>
<tr>
<td>Birthday :</td>
<td><h:inputText pta:type="date"
value="#{inscriptionBean.birthday}" id="birth"s>
<f:convertDateTime pattern="yyyy-MM-dd" />

[133]

Validators and Interceptors

</h:inputText></td>
<th><h:message for="birth" style="color:red"/></th>
</tr>
<tr>
<td>Gender :</td>
<td><h:inputText value="#{inscriptionBean.gender}"
id="gender"/></td>
<th><h:message for="gender" style="color:red"/></th>
</tr>
<tr>
<td>Phone :</td>
<td><h:inputText value="#{inscriptionBean.phone}"
id="phone"/></td>
<th><h:message for="phone" style="color:red"/></th>
</tr>
<tr>
<td>Email :</td>
<td><h:inputText value="#{inscriptionBean.email}"
id="email"/></td>
<th><h:message for="email" style="color:red"/></th>
</tr>
</tbody>
</table>
<p>
<h:commandButton value="Submit" />
</p>
</h:form>
</f:view>
</h:body>
</html>

As shown in the following screenshot, when submitting the entry, the contents of the
form will automatically be validated and error messages will be returned to the form.
Thus, this association (JSF and Bean validation) allows you to define the constraints
on a single bean and use it for multiple forms.

[134]

Chapter 8

The result of the validation is shown in the following screenshot:

<« C' | [} localhost: 8080/ chapter0syalidationAndInterceptors faces /identificationInformati

Name : |TO | The full name must have at least four characters!

Birthday |25f 03/2013 x5 ¥ | Conversion Error setting value '2013-08-25' for 'null Converter'.

Gender | | Enter only one character
Phone : |120f-1 | Inwvalid phone format, should be as xoe-xooe- oo
Email : | | Invalid email

Building a custom constraint

In the previous example, we wanted to have a constraint that allows us to ensure
that the value of the Gender field was entered in uppercase, but this constraint does
not exist explicitly. To do this, we must have some knowledge of regular expressions
and use the @Pattern annotation. This requires some background. Fortunately, we
have the ability to create custom constraints. We will set up a constraint that allows
us to perform this task.

The creation of a new constraint substantially follows the same rules as the

creation of a simple annotation (as explained Chapter 7, Annotations and CDI). The
fundamental difference lies in the fact that instead of implementing a processor,

we will implement a validator in the case of constraints. That said, the creation of a
custom constraint includes the following steps: creating a constraint annotation and
implementing a validator.

Creating a constraint annotation

Although the goal is to create a constraint that ensures that a string character
is capitalized, we will create a generic annotation. This annotation will take as
parameter the type of the expected case. Thus, it may, in the future, allow us to
test if the characters are uppercase or lowercase .

[135]

Validators and Interceptors

We will create the enumeration CaseType, which contains different types of case,
as shown in the following code:

public enum CaseType {
NONE,
UPPER,
LOWER

}

Once we have defined the possible types of cases, we will create our annotation
and define its characteristics directly. Already, it should be noted that in addition
to the basic features we've seen in the creation of annotations, you'll have to add
the eConstraint annotation that defines the validator of this constraint. For other
features, please refer to Chapter 7, Annotations and CDI. The following code is the
code of our annotation:

@Target ({ElementType.FIELD, ElementType.METHOD,
ElementType.PARAMETER,
ElementType.LOCAL VARIABLE})

@Retention (RetentionPolicy.RUNTIME)

@Constraint (validatedBy = CaseValidator.class)

public @interface Case {
String message () default "This value must be uppercase";
CaseType type() default CaseType.UPPER;
Class<? extends Payload>[] payload() default {};
Class<?>[] groups() default {};

Implementing a validator

Instead of a processor that is required for simple annotations, constraints need
to implement the javax.validation.ConstraintValidator <A extends
Annotation, T extends Objects interface, which provides two methods
that are as follows:

* void initialize (A constraintAnnotation): This method is always called
before processing a constraint. It allows you to initialize the parameters that
will be useful during the execution of the isvalid () method.

®* Dboolean isValid(T value, ConstraintValidatorContext context):
This method contains the validation logic.

[136]

Chapter 8

The following code shows the validator of our constraint:

public class CaseValidator implements ConstraintValidator<Case,
String>{
private CaseType type;

public void initialize(Case annotation) {
type = annotation.type() ;
}

public boolean isValid(String value,
ConstraintValidatorContext context) {
if (value == null)
return true;

if (type == CaseType.UPPER)
return value.equals (value.toUpperCase()) ;
} else {

return value.equals(value.toLowerCase()) ;
}
}
1

After you create your validator, you must register the service (see Chapter 7,
Annotations and CDI). Then, import the package containing your annotation.
The following screenshot shows the structure of the project in which we have
defined our annotation:

a'&f chapterd3Constraink
E—}.jj Source Packages
é---l_] com.packt.ch08, annaotation
: @ Case.java
o wlE) caseTypeava
EIE:} com.packt.chod, validatar
----- @ Casevalidatar.java
#-ILF) Test Packages
= IC3 Other Sources
EI.._E stc/main/resources

- [META-INF services

------ E] jarvax, validation. Constraintalidator

Now, we just need to add ecase (type = CaseType.UPPER) on an attribute of type
String to ensure that the value will always be in capital letters. The following code
shows the change in the InscriptionBean Bean code that was presented earlier:

@Case (type= CaseType.UPPER, message="This value must be uppercase")

private String gender;

[137]

Validators and Interceptors

And the result is simply beautiful, as shown in the following screenshot:

L C' | [localhost: 5080/chapter0syvalidationAndinterceptorsfaces/identificatio

Name : |Louis Poyere

Birthday : |01/08/2013 x5 ¥

Gender © |m This value must be uppercase
Phone : |182-354-2122

Emal: |lovispoyere@javase. com

Latest improvements in action

Chapter 2 of the Bean Validation 1.1 Specification Document presents the major
changes of this version. These are: openness, support for dependency injection,
better integration with CDI, support for method and constructor validation,
support for group conversion, and finally support for message interpolation
using expression language.

Openness

The implementation of the Bean Validation 1.1 Specification has been managed as
an open source project. Thus, the source code, reference implementation and test
compatibility kit of the API are accessible to the community. For more information,
please access the site http://beanvalidation.org.

Support for dependency injection and CDI
integration

The Bean Validation 1.1 Specification has standardized the management of objects
used to implement validators inside a container and reviewed all the services that
were offered to these objects. That helped support dependency injection in Bean
Validation components and improve integration with CDI. Henceforth, we can use
the @rResource and @Inject annotations to inject objects of type validatorFactory
and validator. The following example demonstrates the use of the @Inject
annotation to validate an object using Bean Validation components:

@Singleton
@Startup
public class InjectValidators {

[138]

Chapter 8

private Logger logger =
Logger .getLogger (InjectValidators.class.getName ()) ;

@Inject
private Validator validator;

@PostConstruct
public void init() {
Student student = new Student () ;
Set<ConstraintViolation<Student>> violations =
validator.validate (student) ;

logger.info("InjectValidators-Number of violations : " +
violations.size()) ;

Support for method and constructor validation

The Bean Validation Specification 1.1 has added the ability to define constraints

on the parameters of a method or constructor. It also allows the definition of the
constraints on the return value of a method. The following code demonstrates how to
declare and validate constraints on the parameters of a method and its return value:

@Singleton
@Startup
public class ParameterConstraints

private Logger logger =
Logger .getLogger (InjectValidators.class.getName ()) ;

@Inject
ExecutableValidator validator;

@PostConstruct
public void init() {
try {
ParameterConstraints pc = new ParameterConstraints() ;

Method method = ParameterConstraints.class.getMethod
("createStudent", Student.class) ;

Object[] params = {null};

Set<ConstraintViolation<ParameterConstraints>>
violations = validator.validateParameters
(pc, method, params) ;

logger.info ("ParameterConstraints-Number of
violations : " + violations.size());

} catch (Exception ex) ({

[139]

Validators and Interceptors

Logger .getLogger (ParameterConstraints.class.getName ()) .log
(Level.SEVERE, null, ex);

@Size (max = 2)
public String createStudent (@NotNull Student std) {
return "123456";

Support for group conversion

While cascading a data validation, it may happen that the data to validate belongs to
groups that are different from the requested group. For a concrete example, consider
the following two classes student and Address:

public class Student {

@NotNull

@Size(min = 1, max = 15)
private String id;

@Size (max = 30)

private String firstname;
@Size (max = 30)

private String lastname;

@Valid//To propagate the validation of a student object
private Address address;

//getter and setter

public class Address {

}

@NotNull (groups=AddressCheck.class)
@Size (max = 10,groups=AddressCheck.class)
private String phone;

@NotNull (groups=AddressCheck.class)
@Email (groups=AddressCheck.class)
private String email;

//getter and setter

public interface AddressCheck { }

[140]

Chapter 8

To enable the validation of an object step-by-step, the Bean Validation Specification
proposes the notion of groups. This gives you the ability to define a subset of
constraints that can be validated separately. By default, validation constraints
belongs to the Default group. And if a validation group is not specified when
validating data, only the constraints of the befault group will be checked. This
justifies the fact that the code of the testDefaultGroup () method will run entirely
without errors. Although the phone and the e-mail attributes of the Address class are
not conformed to the constraints, they will not be validated for the simple reason that
the constraints that decorate them are not a part of the Default group. This can be
seen in the following code:

public void testDefaultGroup () {
ValidatorFactory factory =
Validation.buildDefaultValidatorFactory () ;
Validator validator = factory.getValidator() ;

Student student = new Student () ;
student.setId("ST23576") ;

student.setFirstname ("Stelba")
student .setLastname ("estelle")
student . setAddress (new Address

1

)

//Only the default group will be test.

Set<ConstraintViolation<Student>> constraintViolations =
validator.validate (student) ;

assertEquals (0, constraintViolations.size());

}

So, to validate the attributes of the Address object at the same time as the validation
of the student object, you have two options. The first is to list all the groups in the
validate () method as is the case in the following code:

Student student = new Student () ;
student.setId ("ST23576") ;

student .setFirstname ("Stelba")
student .setLastname ("estelle")
student .setAddress (new Address

0);

Set<ConstraintViolation<Student>> constraintViolations =
validator.validate (student, Default.class, AddressCheck.class);
assertEquals (2, constraintViolations.size());

[141]

Validators and Interceptors

The second method is to use the concept of group conversion via the eConvertGroup
or @ConvertGroup.List for several conversions. As its name implies, this feature
gives you the ability to perform conversions from one group to another to validate
attributes whose constraints belong to a group different from the requested group.
The following code shows the changes that should be added on the Address attribute
of the student class in order to take advantage of the group conversion feature:

@Valid//To propagate the validation of a student object
@ConvertGroup (from=Default.class, to=AddressCheck.class)
private Address address;

The following code shows the joint validation attributes of the student object and
attributes of the Address object after using the @eConvertGroup annotation. As you
can see in the following code, we did not have to list all the groups of constraints.

Student student = new Student () ;

student.setId ("ST23576") ;

student.setFirstname ("Stelba") ;

student.setLastname ("estelle") ;

student .setAddress (new Address()) ;

Set<ConstraintViolation<Student>> constraintViolations =
validator.validate (student) ;

assertEquals (2, constraintViolations.size());

The following code shows how to use the @ConvertGroup.List annotation:

//annotation
@ConvertGroup.List ({
@ConvertGroup (from = Default.class, to = Citizen.class),
@ConvertGroup (from = Salaried.class, to = Foreign.class)
3

List<Student> studentlList;

Support message interpolation using expression
language

With this version of the specification, it is possible to use expression language when
defining the error message. It helps in better formatting of the message and the use
of conditions in the description of the message. The following code shows a possible
use of expression language in the definition of an error message:

public class Department implements Serializable

@Size (max = 30, message="A department must have at most {max}
level${max > 1 2 's' : ''}")

[142]

Chapter 8

private Integer nbrlevel;

/...
}

Interceptors

The Interceptors 1.2 Specification was developed under JSR 318. This section just
gives you an overview of improvements in the API. The complete document
specification (for more information) can be downloaded from http://jcp.org/
aboutJava/communityprocess/final/jsr318/index.html.

Intercepting some processes

Interceptors are a Java mechanism that allows us to implement some concepts
of AOP, in the sense that they give us the ability to separate the code from the
crosscutting concerns such as logging, auditing, and security. Thus, due to this
specification, we can intercept invocations of methods, lifecycle callback events,
and timeout events.

Interceptors allow you to intercept method calls as well as the outbreak of some
events. During the interception, you can access the method name, method
parameters, and a lot of other information. That said, the interceptors can be used to
manage cross cutting concerns such as logging, auditing, security (to ensure that a
user has the right to execute a method), and modification of the method parameters.
You can define them in a dedicated class or within the target class directly.

The signature of an interceptor is as follows: Object <method_

name> (InvocationContext ctx) throws Exception { ... }"andtovoid
<method_name> (InvocationContext ctx) { ... }.Itcan throw an exception of
type Exception and should be decorated with an annotation that defines the type of
elements it must intercept. For example, @aroundInvoke to intercept methods and
@AroundTimeout to intercept services' timers. Failing to use these annotations, you
can always make use of XML configuration.

Defining interceptors in the target class

The following code shows a session bean with method and timer service
interceptors. The service timer interceptor (targetClassTimerInterceptor) only
does the logging, while the method interceptor (targetClassMethodInterceptor),
in addition to a little logging, demonstrates how to access and modify the parameters
of an intercepted method. In this case, we check that the names of candidates start
with sir, if this is not the case, it is added.

[143]

Validators and Interceptors

The following code is an example of a session bean containing interceptors:

@Stateless
public class StudentSessionBean {

private Logger logger = Logger.getLogger (
"studentSessionBean.targetClassInterceptor") ;

public Student createEntity (Student std){
logger.info("createEntity-Name of the student
"+std.getFirstname ()) ;
return std;

@AroundInvoke
public Object targetClassMethodInterceptor
(InvocationContext ctx) throws Exception{
logger.info ("targetClassMethodInterceptor - method
"+ctx.getMethod () .getName () +", "
+ "parameters : "+Arrays.toString(ctx.getParameters())+", date
"+new Date()) ;
if (ctx.getMethod () .getName () .equals ("createEntity")) {

Student std = (Student) ctx.getParameters() [0];
logger.info("targetClassMethodInterceptor -
Name of student before : "+std.getFirstname()) ;

if(lstd.getFirstname().startsWith("Sir")){
std.setFirstname ("Sir "+std.getFirstname()) ;

}

return ctx.proceed() ;

@Schedule (minute="*/2", hour="*")
public void executeEvery2Second(){
logger.info ("executeEvery2Second - executeEvery5Second - date
"+new Date()) ;

@AroundTimeout
public Object targetClassTimerInterceptor
(InvocationContext ctx) throws Exception{
logger.info("targetClassTimerInterceptor - method
"+ctx.getMethod () .getName () +", timer : "+ctx.getTimer()) ;

return ctx.proceed();

[144]

Chapter 8

Defining interceptors in an interceptor class

The following code shows a class that can be used as an interceptor. To complete
this class, we extract the interceptor methods contained in the studentSessionBean
class. As you can see, this class has no special annotation. But to be explicit, you can
decorate it with javax.interceptor.Interceptor annotation (in our case, we have
not done it to show you that this is optional).

public class MyInterceptor {
private Logger logger = Logger.getLogger (
"studentSessionBean.targetClassInterceptor") ;

@AroundInvoke
public Object targetClassMethodInterceptor
(InvocationContext ctx) throws Exception{
logger.info("targetClassMethodInterceptor - method
"+ctx.getMethod () .getName () +", "
+ "parameters : "+Arrays.toString(ctx.getParameters())+", date
: "+new Date()) ;
if (ctx.getMethod () .getName () .equals ("createEntity")) {

Student std = (Student) ctx.getParameters() [0];
logger.info("targetClassMethodInterceptor - Name of student
before : "+std.getFirstname()) ;

if (!std.getFirstname () .startsWith("Sir")) {
std.setFirstname ("Sir "+std.getFirstname()) ;

}

return ctx.proceed() ;

@AroundTimeout
public Object targetClassTimerInterceptor
(InvocationContext ctx)throws Exception{
logger.info("targetClassTimerInterceptor - method
+ctx.getMethod () .getName () +", timer : "+ctx.getTimer());

return ctx.proceed() ;

}

The following code shows how to declare an interceptor class in order to intercept
some processes of a given class. The result is the same as what you get in the case
of the studentSessionBean class presented in the preceding code.

@Interceptors (MyInterceptor.class)

@Stateless
public class StudentSessionBeanWithoutInterceptor

[145]

Validators and Interceptors

private Logger logger = Logger.getLogger (
"studentSessionBean.targetClassInterceptor") ;

@Schedule (minute="*/2", hour="*")
public void executeEvery2Second () {

logger.info ("executeEvery2Second - executeEveryS5Second - date
"+new Date()) ;

}

public Student createEntity(Student std) {

logger.info("createEntity-Name of the student : "+std.
getFirstname()) ;

return std;

Latest improvements in action

For all the new features added to the Interceptors 1.2 Specification, the most
important are certainly: adding of a lifecycle callback interceptor for constructors,
adding of standard annotation for managing the execution order of interceptors, and
finally, the transfer of interceptor binding from the CDI Specification to Interceptors
Specification 1.2.

Intercept constructor invocation

Due to the @aroundConstruct annotation, you can define an interceptor that will
run just before the creation of the target instance to intercept the execution of the
target instance constructor. Interceptor methods decorated with this annotation
should not be defined in the target class.

The following code demonstrates how to use the @aAroundconstruct. The example is
to record the time at which the different methods have been called to be sure that the
method @AroundConstruct is indeed run before the constructor. It also shows you
how to access the name of the constructor and its parameters.

public class AroundConstructInterceptor {
private Logger logger = Logger.getLogger (
"AroundConstructInterceptor.interceptorClass") ;

@AroundConstruct
public Object initialize
(InvocationContext ctx) throws Exception{
logger.info("initialize - constructor
"+ctx.getConstructor () +", "

[146]

Chapter 8

+ "parameters : "+Arrays.toString(ctx.getParameters())+","
+ " execution time : "+4+new Date()) ;
return ctx.proceed() ;

}
}

@Stateless
@Interceptors (AroundConstructInterceptor.class)
public class AroundConstructBean {

private Logger logger = Logger.getLogger (
"AroundConstructManagedBean. interceptorClass") ;

public AroundConstructBean () {

logger.info ("AroundConstructManagedBean - Execution time :
"+new Date()) ;

Associating an interceptor with a class using
interceptor binding

Associating Interceptors using Interceptor Bindings, Chapter 3 of the Interceptors

1.2 Specification Document, was extracted from Chapter 9 of the CDI Specification
Document. It discusses the possibility of using annotations to associate interceptors
with another component that is not an interceptor. To make this possible you must:
create an interceptor binding type, declare the interceptor bindings, and bind this
interceptor to the desired component.

Creation of interceptor binding types

The interceptor binding type is created exactly like a simple annotation, except that
it adds at least the @InterceptorBinding among the annotations used to define the
characteristic of the interceptor binding. The following code shows the declaration
of an interceptor binding type to log some information:

@InterceptorBinding

@Target ({ElementType.TYPE, ElementType.METHOD})
@Retention (RetentionPolicy.RUNTIME)

public @interface Log

}

[147]

Validators and Interceptors

Declaring interceptor binding

We can declare interceptor binding by annotating an interceptor with the interceptor
binding type and the @javax. interceptor. Interceptor annotation. The following
code demonstrates how to declare an interceptor binding:

@Log

@Interceptor

public class LoggerInterceptor {
// Interceptors methods

}

Binding an interceptor by using interceptor binding type
After all these operations, it is up to you to decorate a non interceptor component
with the interceptor binding types to bind the interceptor to a component. The

following code demonstrates how to bind the LoggerInterceptor interceptor
to our EJB:

@Stateless

@Log

public class StudentSessionBeanWithoutInterceptor {
//Method to intercept

}

By default, the interceptor is not enabled. To do this, you must declare the
interceptor in the bean.xml file as follows:

<interceptorss>
<class>com.packt.ch08.bean.LoggerInterceptor</class>
</interceptors>

Defining the execution order of interceptors

When we talked about the CDI Specification in the Chapter 7, Annotations and CDI,
we discussed adding the @Priority annotation. This annotation was adopted

by the Interceptors 1.2 Specification and permits us to define an execution order

for interceptors that were declared with interceptor bindings. When using this
annotation, the interceptor with the smallest priority is called first. The following
code demonstrates how to use this annotation. In our case, the LoggerInterceptor
interceptor will be called before the LoggerInterceptorl interceptor.

@Log

@Interceptor

@Priority (2000)

public class LoggerInterceptor (
// interceptor method

[148]

Chapter 8

@Logl

@Interceptor

@Priority (2050)

public class LoggerInterceptorl
//Interceptor method

}

@Stateless

@Logl

@Log

public class StudentSessionBeanWithoutInterceptor (

//Methods to intercept

}

In parallel to this the annotation permits us to enable the interceptors. In other
words, it saves you from using the <interceptors> element in the bean.xml
file as we did in the preceding case.

Summary

At the end of this chapter, we are now able to validate inputs on JSF forms and the data
that will be manipulated by an application through the Bean Validation Specification.
We also learned how to intercept different types of processes such as the creation of an
object, invocation of a method, or service timer execution in order to audit or modify

a method's parameters. In the next chapter, we will end our journey into the Java EE 7
world by addressing the security aspect of our online preregistration application.

[149]

Security

We will finish up our project by securing it with Java EE solutions. But first, we will
analyze the improvements in the concerned APIs. The development of this chapter
will be focused on JASPIC 1.1.

JASPIC 1.1

The Java Authentication SPI for Containers (JASPIC) Specification was developed
under JSR 196. This section just gives you an overview of improvements in the API.
For more information, the complete document specification can be downloaded from
http://jcp.org/aboutJava/communityprocess/final/jsr349/index.html.

Secure access to forms

Also called JASP], the JASPIC Specification defines a set of standard interfaces for
the development of modules for authentication, which allow secure access to web
resources (Servlets, JSP, and so on), among others. Generally speaking, the JASPIC
Specification was designed for message-level security; this means that JASPIC
modules are called to be integrated into message processing containers and thus,
offer a transparent secured mechanism for protocols such as SOAP and HttpServlet.

Security

Implementing an authentication module

In the case where you don't want to use a predefined authentication module, the
JASPIC Specification allows you to develop your own modules. This requires the
implementation of the javax.security.auth.message.module.ServerAuthModule
interface. For reasons that we will explain later, you may need to implement the
following interfaces:

® javax.security.auth.message.config.ServerAuthConfig
® javax.security.auth.message.config.ServerAuthContext

® javax.security.auth.message.config.AuthConfigProvider

Implementing the ServerAuthModule interface

The serverauthModule interface contains five methods that must be implemented
by the authentication module. These methods are the following:

* initialize(): This method is used to initialize the module and retrieve
objects necessary for the validation of access to resources.

* getSupportedMessageTypes (): This method returns an array of objects
designating message types supported by the module. For example,
for a module that will be compatible with a Servlet Container profile,
the returned array will contain the HttpServletRequest.class and
HttpServletResponse.class Objects.

* wvalidateRequest (): This method is called by the container whenever an
HttpServletRequest is received for processing of the incoming message.
For this purpose, it receives from the container HttpServletRequest and
HttpServletResponse objects in the MessageInfo parameter. At the end
of request processing, this method must return a status that determines the
sequence of operations in the container.

* secureResponse (): This method is called by the container at the time
of returning a response to a client. Very often, it should return the
status SEND SUCCESS.

* cleansSubject (): This method is used to remove one or several principles of
a subject argument.

The following code provides an example implementation of the ServerauthModule
interface methods:

public class ServerAuthModuleImpl implements ServerAuthModule

private MessagePolicy requestPolicy;

[152]

Chapter 9

private CallbackHandler handler;
public void initialize (MessagePolicy requestPolicy, MessagePolicy
responsePolicy, CallbackHandler handler, Map options) throws
AuthException {
this.requestPolicy = requestPolicy;
this.handler = handler;

public Class[] getSupportedMessageTypes ()
return new Class[] {HttpServletRequest.class,
HttpServletResponse.class};

}

public AuthStatus validateRequest (MessageInfo messageInfo, Subject
clientSubject, Subject serviceSubject) throws AuthException {

try {

String username = validation (messageInfo, clientSubject) ;
if (username == null && requestPolicy.isMandatory()) ({

HttpServletRequest request = (HttpServletRequest)
messageInfo.getRequestMessage () ;

HttpServletResponse response = (HttpServletResponse)
messageInfo.getResponseMessage () ;

String header = "Basic" + " realm=\"" + request.
getServerName () + "\"";
response.setHeader ("WWW-Authenticate", header) ;

response.setStatus (HttpServletResponse.SC
UNAUTHORIZED) ;
return AuthStatus.SEND_CONTINUE;

handler.handle (new Callback[]{
new CallerPrincipalCallback (clientSubject,
username) }) ;
if (username != null) {
messageInfo.getMap () .put ("javax.servlet.http.
authType", "ServerAuthModuleImpl") ;

}

return AuthStatus.SUCCESS;

[153]

Security

} catch (Exception e) {
e.printStackTrace() ;
throw new AuthException(e.getMessage()) ;

public String validation (MessageInfo mInfo, Subject cSubject)
throws Exception {
HttpServletRequest request = (HttpServletRequest) mInfo.
getRequestMessage () ;

String headerAutho = request.getHeader ("authorization") ;
if (headerAutho != null && headerAutho.startsWith("Basic"))
headerAutho = headerAutho.substring(6) .trim() ;

String decodedAutho = new String (Baseé64.
decode (headerAutho.getBytes())) ;

int colon = decodedAutho.indexOf(':"');
if (colon <= 0 || colon == decodedAutho.length() - 1) {
return null;

String username = decodedAutho.substring(0, colon) ;
String password = decodedAutho.substring(colon + 1);

//Container password validation, you can put your

//own validation process instead of delegating it to the
container

PasswordValidationCallback pwdvValidCallback =
new PasswordValidationCallback (cSubject, username,
password. toCharArray ()) ;

handler.handle (new Callback[]{pwdvalidCallback}) ;
//Removes the stored password
pwdvValidCallback.clearPassword() ;

[154]

Chapter 9

password = null;

if (pwdvalidCallback.getResult()) {//if the user is
authenticated

return username;

}

return null;

public AuthStatus secureResponse (MessageInfo messageInfo, Subject
serviceSubject) throws AuthException {

return AuthStatus.SEND_SUCCESS;

}

public void cleanSubject (MessageInfo messageInfo, Subject subject)
throws AuthException {

}
}

Installing and configuring the authentication module

Install the authentication module by copying the JAR file of the module in the
install_glassfish\ glassfish\domains\domainl\1ib directory of your
GlassFish Server.

Once the module is installed, you can configure it in the GlassFish administration
console as follows:
1. Log on to the GlassFish administration console.
Expand the server-config menu.
In the menu that appears, expand the Security menu.
In the submenu, expand the Message security menu.

Click on the HttpServlet menu.

AL N

On the form that appears, click on the Providers tab to add a new provider.

[155]

Security

7. Click on the New button and fill out the appropriate form. Before recording
your entry, your form should look like the following screenshot:

New Provider Configuration [OK | |Cancel|

Configuration Name: server-config

Unique provider ID l

Provider ID: * AuthModule

. Provider type
Default Provider: .~ - server/client-servery

Provider Type: *

semer b

Class Name: © com.packt,ch09.chapterd, sam. ServerAuthModulelmp|

Request Policy

The fully qualified class name of the }

Authenticate Source: . ServerAuthModule implementationf

Authenticate Recipient: 7

Response Policy

Authenticate Source: o

Authenticate Recipient: o

Binding the authentication module to a web application

To bind an authentication module to an application, you have two options
in GlassFish:

* The first option (which is by far the simplest) is to configure the ht tpservlet-
security-provider attribute of the element glassfish-web-app in the
glassfish-web.xml file of the application. The purpose of this configuration
is to make you use the AuthConfigpProvider implementation provided by
GlassFish to instantiate your security module. The following code shows the
contents of the glassfish-web.xml file of our application. As you can see,
we passed the ID of our provider to the httpservlet-security-provider
attribute. Thus, whenever it is necessary to analyze the security of a request,
the GlassFish server through its AuthConfigpProvider implementation will
instantiate our security module in order to make it operational.
<glassfish-web-app error-url="" httpservlet-security-
provider="AuthModulel">

<class-loader delegate="true"/>
</glassfish-web-app>

[156]

Chapter 9

* The second method is to implement your own implementation of the
AuthConfigProvider interface. Therefore, in this case, you need to
implement javax.security.auth.message.config.ServerAuthConfig,
javax.security.auth.message.config.ServerAuthContext, and javax.
security.auth.message.config.AuthConfigProvider interfaces. For
those who are thrilled about the adventure, you will find all the necessary
information in this blog: http://arjan-tijms.blogspot.com/2012/11/
implementing-container-authentication.html.

Creating a realm

We will tell the GlassFish server where all the associated users and groups that
can access the secure sections of our application are stored. In other words,
we will configure the realm of our application.

For your information, GlassFish provides the ability to define several types of realms.
They are listed as follows:

* The file realm, for storing user information in files. This is the
default realm.

* The 1dap realm, for storage in an LDAP directory server.

* The jdbc realm, for storing in a database.

* The solaris realm, for authentication management based on Solaris
username and password.

* The certificate realm, for authentication management using certificates.

* And if none of these realms satisfy your need, don't worry; GlassFish offers
the possibility of creating your own realm.

In our case, we opt for the jdbc realm; we need a database structure to store the
necessary information (the user name, its password, and the group to which it
belongs). The following screenshot shows the structure of tables in which our
information is stored:

—_| realm_users v | users_groups v —_| realm_groups v
USERID ¥ARCHAR{255) _1\ GROUPID ¥ARCHAR(20) =l GrOUPID Y ARCHAR(20)
PASSWORD VARCHAR(25S) USERID VARCHAR{255) DESCRIPTION Y ARCHAR(4S)

> > >

[157]

Security

The realm users table will store all user IDs and passwords, the realm_groups
table will store all the group IDs of our application with their description, while

the users_groups table will tell us what groups a user belongs to. Thus, a user

can belong to several groups.

Once you have defined the structure of the database that will host different users,
you must configure GlassFish so that it can connect to your database (MySQL 5,

in our case) and access authentication information. To do this, you have to start by
copying the Java connector of your database (mysql-connector-java-5.1.23-bin.
jar, in our case) into the directory: glassfish install dir\glassfish\domains\
domaini\1lib. Then, you have to connect to the GlassFish administration console
and gain access to the realms creation form by navigating to Configurations |
server-config | Security | Realms. By clicking on the Realms menu, the following
form will be displayed; you then need to click on the New button and the realms
creation form will appear:

Realms

ate, modify, or delete security (authentication) realms

Configuration Name: server-config

Realms (3)

ov] (@ I

5% 8 -

Select Name + | Class Name
O admin-realm com.sun.enterprise.security. auth.realm file. FileRealm
O ceificate com.sun.enterprise_security. auth realm certificate. CerificateRealm
O e com.sun.enterprise. security. auth.realm. file. FileRealm

The following table shows the fields that you need to fill for a JDBCRealm:

Field Example value Description
Name MyJDBCRealm The name of the realm that will be used
to configure security in application
Class Name com.sun.enterprise. The class that implements the realm to
security.auth.realm. configure, in our case, JDBCRealm
jdbc.JDBCRealm
JAAS Context jdbcRealm JAAS (Java Authentication and
Authorization Service) context ID
JNDI jdbcRealmbataSource The JNDI name of the JDBC Resources
to connect to the database containing
the realm
User Table realm users The name of the table containing the list

of system users with their passwords

[158]

Chapter 9

Field Example value Description

User Name USERID The name of the column containing

Column the ID of the user in the table
realm users

Password PASSWORD The name of the column containing

Column the passwords of users

Group Table users_groups The name of the table that associates
groups and users

Group Table USERID The name of the column in the

User Name association table containing the ID

Column of the user

Group Name GROUPID The name of the column in the

Column association table containing the
identifier of the group

Password SHA-256 To set the password encryption

Encryption algorithm

Algorithm

Digest SHA-256 (even if it is the

Algorithm default value)

After filling the form, you can save your realm. With this configuration, we can

now use the password validation mechanisms provided by the container to validate
incoming connections. This is what we have done in the validation method using the
following statement:

PasswordValidationCallback pwdvValidCallback = new PasswordValidationCa
llback (cSubject, username, password.toCharArray()) ;

Apart from using the container validation mechanism, you can access your database
and make this validation yourself.

Security configuration
To configure the security of an application, you will need to do the following;:

1. Determine the different roles of the application and declare them in web.
xml. In our application, we only need an administrator role to perform batch
processing and some administrative tasks. The following code demonstrates
how to create a role named admin for this purpose:
<security-role>

<role-names>admin</role-name>
</security-roles>

[159]

Security

2.

Map URL patterns to appropriate roles in the web.xm1 file. This will define
the forms that each role can access. Before performing this configuration,
you must group the forms depending on the access constraints you want
to define. In the case of our application, we have grouped the forms

into two folders: a folder for preregistration forms in the registration
folder and another folder for administration forms in the administration
folder. Thus, to ensure that only users of the admin role will have access
to the administration forms, we will associate the URL pattern /faces/
administration/* to the admin role. The following code demonstrates
how to define a constraint that associates the URL pattern /faces/
administration/* to the admin role (the word faces of the previous
pattern represents the pattern defined in the <servlet-mapping>
element of the web.xml file).

<security-constraints>
<display-name>Constraintl</display-name>
<web-resource-collection>
<web-resource-name>Administration</web-resource-name>
<url-pattern>/faces/administration/*</url-pattern>
</web-resource-collections>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
</security-constraints>

Associate each role with a user group in the glassfish-web.xml file. In the
realm, each user is associated with a user group. However, the URL patterns
are associated with roles. So, you need to tell the server which group a role
belongs to. In GlassFish, this is possible through the <security-role-
mapping> element. The following code shows the complete contents of
the glassfish-web.xml file with the role-group combination:
<glassfish-web-app error-url="" httpservlet-security-
provider="AuthModulel">
<security-role-mapping>
<role-names>admin</role-name>
<group—name>administrator< /group—name>
</security-role-mappings>
<class-loader delegate="true"/>
</glassfish-web-app>

[160]

Chapter 9

4. Declare the realm and authentication types to be used by our application in
web . xml. The following code demonstrates how to declare the MyJDBCRealm
we created in the preceding step. The authentication type we have chosen is
DIGEST. It transmits the password in an encrypted form.

<login-configs>
<auth-method>DIGEST</auth-methods>
<realm-name>MyJDBCRealm</realm-name>
</login-config>

Once you complete these configurations, candidates can access the registration forms
without any problem. But, if they try to connect to an admin form, a window similar
to the following window will be displayed:

Authentication Required

The server httpefflocalhost: 3080 requires a username and
passwiord, The server savs: lacalhost,

User Name: |

Passwiord:

Log In Cancel

Before finishing up this project, you should know that it is possible to customize the
login screen and even integrate it into your application. The tutorial at URL: http://
blog.eisele.net/2013/01/jdbc-realm-glassfish312-primefaces342.html can
help you.

The latest improvements in action

The Maintenance Release B of JASPIC Specification has made some significant
changes, some of which help to standardize the use of the specification regardless of
the server; others help to enrich the user experience. Among the changes, we present
only some relatively important changes and advise you to browse the specification
document and blog found at: http://arjan-tijms.blogspot.com/2013_04_01_
archive.html, which will provide you with more information.

[161]

Security

Integrating the authenticate, login, and logout
methods called

Since Version 3.0 of the Servlet, the authenticate, login, and logout methods have

been added to the HttpServletRequest interface for managing the login and logout
programmatically. However, the behavior of JASPIC modules after calling one of
these three methods was not clearly established. It was left under the care of the server
vendors to provide their own method of login and logout. The direct consequence is
the non portability of applications between Java EE-compliant servers.

In the recent changes, Version 1.1 of JASPIC has clearly defined the expected
behavior of JASPIC modules after calling one of these three methods. We now
know that:

* The container implementation of the 1ogin method must throw a
ServletException when there is an incompatibility between the
login method and the configured authentication mechanism.

Here, the behavior of the module after calling the 1ogin
L method is not clearly defined.

e A call to the authenticate method must call the validateRequest method.
This is true if the authenticate method is not called in the context of a call it
made to validateRequest.

e A call to the 1ogout method must call the cleanSubject method. This is
true if the 1ogout method is not called in the context of a call it made to
the cleanSubject method.

Standardizing access to the application
context identifier

The application context identifier is an ID used to identify or select
AuthConfigProvider and ServerAuthConfig objects for a given application

(it is contained in the appContext parameter). Prior to JASPIC 1.1, there was no
standard way to get it. As usual, each server vendor proposed a method that was
vendor-specific. Now it is possible in standard with the following code:

ServletContext context = ...

/] ...

String appContextID = context.getVirtualServerName() + " " + context.
getContextPath () ;

[162]

Chapter 9

Support for forward and include mechanisms

The JASPIC 1.1 Specification has insisted on the fact that authentication modules
must be able to forward and include during the processing of the validateRequest
method. Concretely, this is possible by using request and response within the
MessageInfo parameter type. The following code gives an overview of a redirection
to an error page based on the results of a condition:

public AuthStatus validateRequest (MessageInfo messageInfo, Subject
clientSubject, Subject serviceSubject) throws AuthException {

HttpServletRequest request = (HttpServletRequest) messageInfo.
getRequestMessage () ;
HttpServletResponse response = (HttpServletResponse) messagelnfo.

getResponseMessage () ;

try{
if(...)
request.getServletContext () .getRequestDispatcher ("specificErr
orPage")
.forward (request, response) ;
}catch (Exception ex) {}

return SEND CONTINUE;

Summary

Having reached the end of this chapter, which is the last chapter of the book, we are
now able to deploy a Java EE public solution with at least some level of security.
Indeed, through this chapter, readers become aware of a specification allowing them
to restrict access to the forms. However, it is important to note that we have just dealt
with one small aspect of security, given the objectives of this book. We ask you to
complete your knowledge about security with additional reading. This is because

the domain is made up of several aspects such as the transmission of data across the
network, method execution, construction, and execution of SQL queries.

[163]

Symbols

@AroundConstruct annotation 146
@AssertFalse constraint 130
@AssertTrue constraint 130
@Asynchronous annotation 109
@DecimalMax constraint 130
@DecimalMin constraint 130
@Digits constraint 130
@Documented annotation 117
@ForeignKey annotation 64
@Future constraint 131
@Index annotation 64
@Inherited annotation 117
@MailSessionDefinition annotation 96
@Max constraint 130
@MessageDriven annotation 84
@Min constraint 130
@Named annotation 123
@NamedEntityGraph annotation 65
@NotNull constraint 130
@Null constraint 130
@OnClose annotation 29
@OnError annotation 29
@OnMessage annotation 29
@OnOpen annotation 29
@Past constraint 130
@Pattern constraint 131
@PostConstruct lifecycle callback method
63
@PreDestroy lifecycle callback method 63
@Provider annotation 110
@Resource annotation 14,116
@Retention annotation 117
@ServerEndpoint annotation 29
@Size constraint 130

Index

@Stateful annotation 80
@SupportedAnnotationTypes annotation
118

@Target annotation 117
@TransactionAttribute annotation 79, 115
@vetoed annotation 126

@WebServlet annotation 35

@ZipResult annotation 112

A

annotations
@Documented annotation 117
@Inherited annotation 117
@Named annotation 123
@Resource annotation 116
@Retention annotation 117
@Supported AnnotationTypes annotation
118
@Target annotation 117
@TransactionAttribute annotation 115
about 115, 116
building 116-119
for Java platform 115
improvements 120
javax.annotation.priority annotation 120
new annotation 120
Unfinished annotation 117,119
annotations, JPA 2.1
@ForeignKey annotation 64
@Index annotation 64
about 64
AOP (Aspect Oriented Programming) 129
API
simplifying 104, 105

application context identifier
access, standardizing 162
array 23
Assignment operator(=) 46
asynchronousMethod() 82
asynchronous processing 107
AsyncInvoker 107
async() method 107
AuthConfigProvider implementation 156
AuthConfigProvider object 162
authenticate method 162
authentication module
application security, configuring 159-161
binding, to web application 156, 157
configuring 155
implementing 152
installing 155
realm, creating 157-159
ServerAuthModule interface,
implementing 152

B

Batch API
about 18
batchlet 21
batch.xml configuration file 22
chunk 20
features 18
Job 19
JobOperator 22
JobRepository 19
Step 19
Batch Applications
for Java Platform 1.0 17
for Java Platform 1.0, URL 8
batchlet 18,21
batch processing
about 17
dedicated API 18
batch.xml configuration file 22
bean
CDI bean instances, destroying 127
CDI processing, avoiding 126
non contexual instance, accessing 126
setting, with specific scope 124

Bean Validation
about 129
constraint annotation, creating 135, 136
custom constraint, building 135
data, validating 129-135
improvements 138
validator, implementing 136, 137
Bean Validation 1.1
dependency injection and CDI integration,
support for 138
group conversion, support for 140-142
message interpolation, support for 142
method and constructor validation, support
for 139
URL 9
boolean isValid(T value,
ConstraintValidatorContext context)
method 136

C

CandidateSessionBean class 89
CDI
about 120,121
bean, setting with specific scope 124
beans instances, destroying 127
current CDI container, accessing 127
EJB, accessing from JSF page 122,123
factory created objects, using 124, 125
for Java EE 1.1, URL 9
improvements 125
non contexual bean instance, accessing 126
POJO instantiation 121, 122
processing on bean, avoiding 126
CDI injection 63
certificate realm 157
ChatServerEndPoint class 89
chunk 18-20
class diagram 89
cleanSubject method 162
cleanSubject() method 152
client endpoint 31
ClientResponseFilter interface 110
Collection objects support
assignment operator(=) 46
Collection objects construction 44
collection operations 45

[166]

semi-colon operator (;) 46

static fields and methods 47

string concatenation operator (+=) 46
Common Annotations for Java Platform 1.2

URL 9
Common Client Interface (CCI) 99
component diagram 91
concurrency

about 11

and Java EE 12

benefits 12

risks 12
concurrency utilities

about 7

for Java EE 1.0, URL 8
ConnexionServlet class 35
constraint

annotation, creating 135, 136

custom constraint, building 135
container

CDI container, accessing 127
ContainerResponseFilter interface 110
context 121
Contexts and Dependency Injection. See

CDI

createEntityGraph() method 66
criteria API

about 69

bulk update/delete, support 69

new reserved identifiers, support 70
Customer Relationship Management (CRM)

99

D

dependency injection 121
DLL generation 70, 72
DOM API 26

dynamic entity graphs 66

E

eagerly 65
EJB
accessing, from JSF page 122,123
EJB 3.2, improvements
EJB Lite improvements 81, 82
other 85, 86

session bean enhancement 79, 80

TimerService API, modifications 82, 83
EJBContainer class 86
EJBContainer.close() method 86
EJB injection 63
EL (Expression Language) 42
ELProcessor class 43
e-mails

sending, in Java 94

sending, via SMTP protocol 94-96
endpointActivation method 101
endpointDeactivation method 101
Enterprise Application Integration (EAI) 99
Enterprise Information Systems (EISs) 99
Enterprise JavaBeans 3.2

about 77,78

URL 9
Enterprise Resource Planning (ERP) 99
entity graphs, JPA 2.1

about 63-65

dynamic entity graphs 66

named entity graphs 65, 66

static entity graphs 65, 66
entity interceptor 111, 112
ETL (extract-transform-load) 17
Expression Language 3.0

about 41

API, for standalone environment 43

Collection objects support 44

improvements 42

Lambda expression 43

URL 8

F

Faces Flow 54-56

file realm 157

filter 110

find() method 66

Flash 7

forward and include mechanism 163
FUNCTION keyword 68

G

getAllTimers() method 82
getEntityGraph() method 65
getJobOperator() factory 22

[167]

getListOf AllStudentsAs2 method 109
getListOfAllStudentsAs method 108
getOn() method 70
getSupportedMessageTypes() method 152
GlassFish Server 4.0

URL 8

H

HTMLS 7,8

HttpServletRequest class 40
httpservlet-security-provider attribute 156
HttpUpgradeHandler class 40

IHelloWorld implementation 122
IHeloWorld interface 122
IMAP (Internet Message Access Protocol)
94
initialize() method 152
init() method 79
InscriptionCheckpoint 20
InscriptionValidationBean class 89
inscriptionValidation.xhtml facelet 90
interceptor binding
declaring 148
types, creating 147
type, used for binding interceptor 148
used, for associating interceptor with class
147
interceptor class
interceptors, defining 145
interceptors
about 143
associating with class, interceptor bindings
used 147
binding, declaring 148
binding, interceptor binding type used 148
binding types, creating 147
defining, in interceptor class 145
defining, in target class 143
execution order, defining 148
improvements 146
Interceptors 1.2
URL 9

J

J2EE. See Java EE
JASPIC 151
Java API
for JSON Processing 25
for JSON Processing 1.0 23
for RESTful Web Services 105
for WebSocket 1.0 27
Java API for JSON Processing 1.0
URL 8
Java API for WebSocket 1.0
URL 8
Java Authentication Service Provider
Interface for Containers 1.1
(JASPIC1.1)
URL 9
Java Authentication SPI for Containers. See
JASPIC
Java Authorization Service Provider
Contract for Containers 1.5
(JACC1.5)
URL 9
JavaBeans Activation Framework
(JAF framework) 94
Java EE
and concurrency 12
history 5, 6
Java EE 7
goals 6
HTML5 support 7, 8
productivity 7
specifications 8-10
Java EE Concurrency API 12-16
Java EE Connector Architecture. See JCA
Java EE Connector Architecture 1.7
URL 10
java.lang.annotation package 117
java.lang.AutoCloseable interface 86
JavaMail
about 93
access modifiers, modifications 98
annotations, added 96
improvements 96
@MailSessionDefinition annotation 96, 97
methos, added 98

[168]

JavaMail 1.5
URL 10
Java Message Service. See JMS
Java Message Service 2.0
URL 9
Java Persistence 2.1
URL 9
Java Persistence API. See JPA
Java Persistence API 2.1
about 59
Java Persistence API (JPA) 59
URL 59
Java Persistence Query Language. See JPQL
Java platform
annotations 115
JavaScript Object Notation. See JSON
JavaServer Faces 2.2
about 47
URL 9
JavaServer Pages 2.3
URL 9
Java Servlet 3.1 Specification
URL 8
Java Specification Request (JSR 342) 8
Java Transaction API. See JTA
Java Transaction API 1.2
about 72
URL 10
java.util.concurrent.ExecutorService
interface 13
javax.annotation.processing.Processor
interface 118
javax.jms.MessageListener interface 84
javax.persistence.criteria.CriteriaBuilder
interface 70
javax.persistence.schema-generation.con-
nection property 71
javax.persistence.schema-generation.create-
source property 71
javax.persistence.schema-generation.data-
base.action property 70
javax.persistence.schema-generation.drop-
source property 71
javax.security.auth.message.module.
ServerAuthModule interface 152
javax.transaction.TransactionScoped an-
notation 74

JAX-RS 2.0
about 107
asynchronous processing 107
client API 107
URL 9
JCA
about 99
endpointActivation method 101
endpointDeactivation method 101
improvements 101
in action 100
JCP (Java Community Process) 6, 81
jdbc realm 157
JMS
about 101, 102
API, simplifying 104
broker 103
delivery delay 103
features 102
improvements 102
JMSXDeliveryCount message property,
handling 104
messages, sending asynchronously 103
setAsync() method 103
JMS1.1 7
JMSProducer 104
JMSXDeliveryCount message property
handling 104
Job 18,19
JobOperator 22
JobRepository 19
JPA
about 59
in action 60, 61
JPA 21
about 62
annotations 64
DDL generation 70-72
entity graphs 65
entity listener 63
JPQL 67
persistence context synchronization 63
persistence context, synchronization 62
JPQL
about 67
FUNCTION keyword 68
named queries, creating at runtime 68

[169]

ON keyword 68
stored procedures, support 67
TREAT keyword 68
JSF (JavaServer Faces)
about 8,47
Faces Flow 54-56
HTML5-friendly markup 50
identification page 48
improvements 50
Pass-through attributes 50, 51
Pass-through elements 51, 52
Resource Library Contracts 52-54
stateless views 57
JSON
about 23
array 23
need for 24
object 23
value 24
JSON data presentation 24
JSON processing
object model API 26
streaming API 25, 26
JSP Standard Tag Library (JSTL) 42
JSR-338 59
JTA
about 72
in action 73
innovations 74

L

Lambda expression 43
lazily 65

ldap realm 157

List object construction 44
login method 162

logout method 162

ManagedExecutorService interface 13-15

ManagedExecutorService resource
environment 13

ManagedScheduledExecutorService inter-

face 15
ManagedThreadFactory interface 15

Map object construction 45
MessageConsumer object 104
Message-Driven Bean (MDB) 84
Messagelnfo parameter type 163

Message Oriented Middleware (MOM) 101

MessageProducer object 104
MimeMessage class 94

MyGzipWriterJaxRsInterceptor class 113
MyGzipWriterJaxRsInterceptor interceptor

112
MySessionBean class 115

N

named entity graphs 65, 66
Non blocking I/O API 36

nonPersistentE]BTimerService() method 82

(0

object model API 26
objects
about 23
used by factory, creating 124, 125
oldMethod() method 115
ON keyword 68
onMessage method 84
on() method 70
ONPRINS 87
ORMs (Object-relational mapping)
URL 59

P

passivationCapable attribute 80
persistence context, JPA 2.1
synchronization 62, 63
poisonous messages 104
POJO
instantiation 121, 122
POP3 (Post Office Protocol) 94
process() method 118

Q

query hint 65

[170]

R

ReaderInterceptor interface 111
Reader-Processor-Writer pattern 18
ReadListener 37
ReadListenerImpl 39
realm

certificate realm 157

creating 157-159

file realm 157

jdbc realm 157

Idap realm 157

solaris realm 157
realm_users table 158
registerCandidate method 89
resource adapter 99
Resource Library Contracts 52-54
RESTful Web Services

Java API for 105
resume() method 109

S

secureResponse() method 152
security

configuring 159, 160
Semi-colon operator (;) 46
ServerAuthConfig object 162
ServerAuthModule interface method 152
server endpoint 29
Servlet

about 33

login page with 34

login with 35, 36
Servlet 3.1

about 33

improvements 36

Non blocking I/O API 36-38

protocol processing, upgrade 39, 40
ServletInputStream class 38
ServletOutputStream class 38
session bean

singleton session bean 79

stateful session bean 79

stateless session bean 79
SessionContext 116
session object 94
setAsync() method 103

Set object construction 44

SGML (Standardised Generalised Markup
Language) 24

singleton session bean 79

SMTP protocol

used, for sending e-mail 94-96

SMTP (Simple Mail Transport Protocol) 94

SOAP (Simple Object Access Protocol) 106

solaris realm 157

startValidationBatchJob method 89

stateless session bean 79

stateless view 57

static entity graphs 65

StAX API 25

step 19

stored procedure 67

streaming API 25

stream() method 45

String concatenation operator (+=) 46

SynchronizationType. UNSYNCHRONIZED
persistence context 62

T

TCP (Transmission Control Protocol) 28
T find(Class<T> type, Object o) method 61
TimerService API
modifications 82
T merge(T t) method 61
TREAT keyword 68
treat() method 70
try-with-resources statement 86

U

UCD 88

Unfinished annotation 117,119

Uniform Resource Identifiers (URIs). 106
Use Case Diagram. See UCD
users_groups table 158

\'

validateRequest method 163
validateRequest() method 152
ValidationJobListener 89
ValidationProcessor class 89
ValidationReader class 89

[171]

ValidationWriter class 89

value 24

void detach(Object 0) method 61

void initialize(A constraintAnnotation)
method 136

void persist(Object o) method 61

void remove(Object 0) method 61

w

web application

authentication module, binding to 156
WebConnection class 40
Web Services

uses 106

Web Services for Java EE 1.4

URL 9
WebSocket API

about 28, 29

Client endpoint 31

need for 28

Server endpoint 29, 30
WriteListener 37
WriterInterceptor implemention 112
WriterInterceptor interface 111

X

XML data presentation 24
XML (Extensible Markup Language) 24

[172]

Thank you for buying
rustisnine Java EE 7 First Look

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub. com.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub. com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

"PUBLISHING

Java EE 7 Developer
Handbook

Peter A Pilgrim

Java EE 7 Developer Handbook
ISBN: 978-1-84968-794-2 Paperback: 634 pages

Develop professional applications in Java EE 7 with
this essential reference guide

1. Learn about local and remote service endpoints,
containers, architecture, synchronous and
asynchronous invocations, and remote
communications in a concise reference

2. Understand the architecture of the
Java EE platform and then apply the
new Java EE 7 enhancements to benefit
your own business-critical applications

3. Learn about integration test development on
Java EE with Arquillian Framework and the
Gradle build system

Java EE 6 with GlassFish 3
Application Server

Java EE 6 with GlassFish 3

Application Server
ISBN: 978-1-84951-036-3 Paperback: 488 pages

A practical guide to install and configure the
GlassFish 3 Application Server and develop Java EE 6
applications to be deployed to this server

1. Install and configure the GlassFish 3
Application Server and develop Java EE 6
applications to be deployed to this server

2. Specialize in all major Java EE 6 APIs, including
new additions to the specification such as CDI
and JAX-RS

3. Use GlassFish v3 application server and gain
enterprise reliability and performance with
less complexity

Please check www.PacktPub.com for information on our titles

"PUBLISHING

Java EE6 Cookbook for
securing, tuning, and extending

enterprise appl?c'ations

Mick Knutson

Java EE 6 Cookbook for
Securing, Tuning, and Extending

Enterprise Applications
ISBN: 978-1-84968-316-6 Paperback: 356 pages

Packed with comprehensive recipes to secure, tune,
and extend your Java EE applications

1. Secure your Java applications using Java EE
built-in features as well as the well-known
Spring Security framework

2. Utilize related recipes for testing various Java
EE technologies including JPA, EJB, JSF, and
Web services

3. Explore various ways to extend a Java EE
environment with the use of additional
dynamic languages as well as frameworks

1 using

Java EE 5 Development using
GlassFish Application Server
ISBN: 978-1-84719-260-8 Paperback: 424 pages

The complete guide to installing and configuring
the GlassFish Application Server and developing
Java EE 5 applications to be deployed to this server

1. Concise guide covering all major aspects of Java
EE 5 development

2. Uses the enterprise open-source GlassFish
application server

3. Explains GlassFish installation and
configuration

4. Covers all major Java EE 5 APIs

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What's New in Java EE 7

	A brief history of Java EE
	The main goals of Java EE 7
	Productivity
	HTML5 support

	Novelties of Java EE 7
	Summary

	Chapter 2
: New Specifications
	Concurrency Utilities for Java EE 1.0
	Why concurrency?
	Benefits of concurrency
	Risks of concurrency

	Concurrency and Java EE
	Java EE Concurrency API

	Batch Applications for Java Platform 1.0
	What is batch processing?
	Why a dedicated API for batch processing?
	Understanding the Batch API
	JobRepository
	Job
	Step
	Chunk
	Batchlet

	The batch.xml configuration file
	JobOperator

	Java API for JSON Processing 1.0
	What is JSON?
	Object
	Array
	Why JSON?
	Java API for JSON processing

	Java API for WebSocket 1.0
	What is WebSocket?
	Why WebSockets?
	The WebSockets API
	Server endpoint
	Client endpoint

	Summary

	Chapter 3
: The Presentation Layer
	Servlet 3.1
	What is a Servlet?
	A login page with a Servlet
	Latest improvements of Servlet 3.1 in action
	Non-blocking IO API
	Protocol upgrade processing

	Expression Language 3.0
	What is Expression Language?
	The latest improvements of EL 3.0 in action
	API for stand-alone environments
	Lambda expressions
	Collection object support

	JavaServer Faces 2.2
	What is JavaServer Faces?
	An identification page with JSF
	The latest improvements of JSF 2.2 in action
	HTML5-friendly markup
	Resource Library Contracts
	Faces Flows
	Stateless views

	Summary

	Chapter 4
: The Java Persistence API
	The Java Persistence API 2.1
	JPA (Java Persistence API)
	JPA in action
	The latest improvements of JPA 2.1 in action
	Persistence context synchronization
	Entity
	New annotations
	Entity graphs
	JPQL
	The Criteria API
	DDL generation

	The Java Transaction API 1.2
	The Java Transaction API (JTA)
	JTA in action
	Innovations introduced by JTA 1.2

	Summary

	Chapter 5
: The Business Layer
	Enterprise JavaBeans 3.2
	Pruning some features
	The latest improvements in EJB 3.2
	Session bean enhancement
	EJB Lite improvements
	Changes made to the TimerService API
	Harmonizing with JMS's novelties
	Other improvements

	Putting it all together
	Presenting the project
	Use Case Diagram (UCD)
	Class diagram
	Component diagram

	Summary

	Chapter 6
: Communicating with
External Systems
	JavaMail
	Sending e-mails in Java
	Sending an e-mail via the SMTP protocol

	The latest improvements in action
	The added annotations
	The added methods
	The changing of some access modifiers

	Java EE Connector Architecture (JCA)
	What is JCA?
	JCA in action
	Latest improvements

	Java Message Service (JMS)
	When to use JMS
	The latest improvements in action
	New features

	Java API for RESTful Web Services
	When to use Web Services
	JAX-RS in action
	The latest improvements in action
	The Client API
	Asynchronous processing
	Filters and entity interceptors

	Summary

	Chapter 7
: Annotations and CDI
	Common annotations for the Java platform
	The goal of this specification
	Building your own annotation
	Latest improvements in action
	The new annotation

	Contexts and Dependency Injection
	What is CDI ?
	Example 1 – instantiation of a POJO
	Example 2 – accessing an EJB from a JSF page
	Example 3 – setting a bean with a specific scope for simple operations
	Example 4 – use of objects usually created by
a factory

	Latest improvements in action
	Avoiding CDI processing on a bean
	Accessing the non-contextual instance of a bean
	Accessing the current CDI container
	Destroying CDI bean instances explicitly

	Summary

	Chapter 8
: Validators and Interceptors
	Bean Validation
	Validate your data
	Building a custom constraint
	Creating a constraint annotation
	Implementation of a validator
	Latest improvements in action
	Openness
	Support for dependency injection and CDI integration
	Support for method and constructor validation
	Support for group conversion
	Support message interpolation using expression language

	Interceptors
	Intercepting some processes
	Defining interceptors in the target class
	Defining interceptors in an interceptor class

	Latest improvements in action
	Intercept constructor invocation
	Association of an interceptor with a class using interceptor binding
	Defining the execution order of interceptors

	Summary

	Chapter 9
: Security
	JASPIC 1.1
	Secure access to forms
	Implementing an authentication module

	The latest improvements in action
	Integration of authenticate, login, and logout methods called
	Standardizing access to the application context identifier
	Support for forward and include mechanisms

	Summary

	Index

