[image: First Edition]
RESTful Web APIs

Leonard Richardson

Mike Amundsen

Sam Ruby

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Praise for RESTful Web APIs

“This book is the best place to start learning the essential craft of API Design.”
—Matt McLarty
Cofounder, API Academy

“The entire time I read this book, I was cursing. I was cursing because as I read each explanation, I was worried that they were so good that it would be hard to find a better one to use in my own writing. You will not find another work that explores the topic so thoroughly yet explains the topic so clearly. Please, take these tools, build something fantastic, and share it with the rest of the world, okay?”
—Steve Klabnik
Author, Designing Hypermedia APIs

“Wonderfully thorough treatment of hypermedia formats, REST’s least well understood tenet."
—Stefan Tilkov
REST evangelist, author, and consultant

“The best practical guide to hypermedia APIs. A must-have.”
—
Ruben Verborgh
Semantic hypermedia researcher

Dedication

For Sienna, Dalton, and Maggie. —Leonard
For Milo “The Supervisor,” my constant and patient companion throughout this and so many other projects. Thanks, buddy! —Mike
Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
Foreword

Sam Ruby

Progressive Disclosure is a concept in User Interface Design which
advocates only presenting to the user the information they need when
they need it. In many ways, the book you are reading right now is an
example of this principle. In fact, it is quite likely that this book
wouldn’t have “worked” a mere seven years ago.
For you see, the programming world was quite a different place when
RESTful Web Services, the predecessor of this book, was written. At
that time, the term “REST” was was rarely used. And when it was used it
was often misapplied, and widely misunderstood.
This was the case despite the fact that the standards upon which REST is
based, namely HTTP and HTML, were developed and became IETF and W3C
standards in roughly their current form in the second half of the 1990s.
 Roy Fielding’s thesis paper in which he introduced the term REST and on
which this book was based was itself published in 2000.
Leonard Richardson and I set out to correct this injustice. To do this,
we focused primarily on the concepts underpinning HTTP, and we provided
practical guidance on how to apply those concepts to applications.
I’d like to think that we helped kick a few pebbles loose that started
the avalanche of support for REST that came forth since that time. REST
rapidly took on a life of its own, and in the process has become a
buzzword. In fact it now is pretty much the case that presenting a web
interface and calling it REST is practically the default. We’ve
definitely come a long way in a few short years.
Admittedly, REST as a term is often over applied, and not always
correctly. But all things considered, I am very pleased that the
concepts of resources and URIs have successfully managed to infiltrate
their way into application interface design. The web, after all, is a
resilient place, and these new interfaces, albeit imperfect, are leaps
and bounds better than the ones that they replace.
But we can do better.
Now that those building blocks are in place, it is time to take a step back,
survey the territory, and build on top of these concepts. The next
logical step is to explore media types in general, and hypermedia
formats in specific. While the first book focused almost exclusively on
the correct application of HTTP, it is time to delve more deeply into
the concepts behind hypertext media types like HTML—media types
that aren’t tightly bound to a single application or even a single vendor.
HTML remains a prime example of a such a hypermedia format, and
it continues to hold a special place in web architecture. In fact, my
personal journey of discovery has been to take a deep dive into
development of the W3C standard for HTML, now branded as HTML5. And
while HTML does have a prominent place in this new book, there is so
much more to cover on the topic of hypermedia. So while I have remained in
touch, Leonard picked up a capable replacement for my role as coauthor
in Mike Amundsen.
It has been a pleasure to watch this book be written, and in reading
this book I’ve learned about a number of media types that I had not been
exposed to by any other source. More importantly, this book shows what
these types have in common, and how to differentiate them, as each has
its own specialty.
Hopefully the pebbles that this book kicks loose will have the same
effect as its predecessor did. Who knows, perhaps in another seven
years it will be time to do this all over again, and highlight some
other facet of Representational State Transfer that continues to be
under-appreciated.
Introduction

“Most software systems are created with the implicit assumption that
the entire system is under the control of one entity, or at least that
all entities participating within a system are acting towards a common
goal and not at cross-purposes. Such an assumption cannot be safely
made when the system runs openly on the Internet.”
—
Roy Fielding
Architectural Styles and the Design of Network-based Software Architectures

“A Discordian Shall Always use the Official Discordian Document
Numbering System.”
—
Malaclypse the Younger and Lord Omar Khayyam Ravenhurst
Principia Discordia

I’m going to show you a better way to do distributed computing, using
the ideas underlying the most successful distributed system in
history: the World Wide Web. I hope you’ll read this book if you’ve
decided (or your manager has decided) that your company needs to
publish a web API. It doesn’t matter whether you’re planning a public
API, a purely internal API, or an API accessible by trusted partners—they can all benefit from the philosophy of REST.
This is not necessarily the book for you if you want to learn how to
write API clients. That’s because most existing API designs are
based on assumptions that are several years old, assumptions that I’d
like to destroy.
Most of today’s APIs have a big problem: once deployed, they can’t
change. There are big-name APIs that stay static for years at a time,
as the industry changes around them, because changing them would be
too difficult.
But RESTful architectures are designed for managing change. The World
Wide Web is made of millions of websites, running atop thousands of
different server implementations, and undergoing periodic
redesigns. Websites are accessed by billions of users who are using
hundreds of different client implementations on dozens of hardware
platforms. Your deployment won’t look like this howling mess, but the
closer you come to web scale, the more familiar this picture will
look.
A very simple system is always easy to change. At small scales, a
RESTful system has a larger up-front design cost than a push-button
solution. But as your API matures and starts to change, you’ll really need some way—like REST—of adapting to change.
	
An API that’s commercially successful will stay available for years
on end. Some APIs have hundreds or even thousands of users. Even if the
problem domain only changes occasionally, the cumulative effect on
clients can be huge.

	
Some APIs change all the time, with new data elements and business
rules constantly being added.

	
In some APIs, each client can change the workflow to suit its
needs. Even if the API itself never changes, each client will
experience it differently.

	
The people who write the API clients usually don’t work on the same
team as the people who write the servers. All APIs that are open to
the public fall under this category. If you don’t know what kind of
clients are out there, you need to be very careful about making
changes—or you need to have a design that can change without breaking
all the clients.

If you copy existing designs for your API, you will probably only
repeat the mistakes of the past. Unfortunately, most of the
improvements are happening below the surface, in experiments and
through slow-moving standards processes. I’ll cover dozens of specific
technologies in this book, including many that are still under
development. But my main goal is to teach you the underlying
principles of REST. Learn those, and you’ll be able to exploit
whichever experiments pan out and whichever standards are approved.
There are two specific problems I’m trying to solve with this book: duplication of effort and avoidance of hypermedia. Let’s take a look at them.
Duplication of Effort

An API released today will be named after the company that hosts it. We
talk about the “Twitter API,” the “Facebook API,” and the “Google+
API.” These three APIs do similar things. They all have some notion
of user accounts and (among other things) they all let users post a
little bit of text to their accounts. But each API has a completely different
design. Learning one API doesn’t help you learn the next one.
Of course, Twitter, Facebook, and Google are big companies that compete
with each other. They don’t want to make it easy for you to learn
their competitors’ APIs. But small companies and nonprofits do the
same thing. They design their APIs as though nobody else had ever had
a similar idea. This interferes with their goal of getting people to
actually use their APIs.
Let me show you just one example. The website ProgrammableWeb has a directory of over
8,000 APIs. As I write this, it knows about 57
microblogging APIs—APIs whose main purpose is posting a little bit of
text to a user account.[1] It’s great that
there are 57 companies publishing APIs in this field, but do
we really need 57 different designs? We’re not talking
about something complicated here, like insurance policies or
regulatory compliance. We’re talking about posting a little bit of
text to a user account. Do you want to be the one who designs the
58th microblogging API?
The obvious solution would be to create a standard for microblogging
APIs. But there already is a standard that would work just fine: the
Atom Publishing Protocol. It was published in 2005, and almost nobody
uses it. There’s something about APIs that makes everyone want to
design their own from scratch, even when that makes no sense from a
business perspective.
I don’t think I can single-handledly stop this wasted effort, but I do
think I can break down the problem into parts that make sense, and
present some ways for a new API to reuse work that’s already been
done.

Hypermedia Is Hard

Back in 2007, Leonard Richardson and Sam Ruby wrote the predecessor to
this book, RESTful Web Services (O’Reilly). That book also tried to address two
big problems. One of the problems has been solved; the other is
nowhere close to being solved.[2]
The first problem: in 2007, the REST school of API design was engaged
in a standoff against a rival school that used heavyweight
technologies based on SOAP and questioned the very legitimacy of
the REST school. RESTful Web Services was a salvo in this standoff,
a defense of RESTful design principles against the attacks of the SOAP
school.
Well, the standoff is over, and REST won. SOAP APIs are still used,
but only within the big companies that were backing the SOAP school in
the first place. Pretty much all new public-facing APIs pay lip
service to RESTful principles.[3]
Which brings me to the second problem: REST isn’t just a technical
term—it’s also a marketing buzzword. For a long time, REST was a
slogan that signified nothing beyond opposition to the SOAP school. Any
API that didn’t use SOAP was marketed as REST, even if its design
made no sense or betrayed the technical principles of REST. This was
inaccurate, confusing, and it gave REST—i.e., REST as a technical term—a
bad name.
This situation has improved a lot since 2007. When I look at new APIs,
I see the work of developers who understand the concepts I’ll be
explaining in the first few chapters of this book. Most developers who
fly the REST flag today understand resources and representations, how
to name resources with URLs, and how to properly use HTTP methods. The
first three chapters of this book don’t do much but get new developers
up to speed.
But there’s one aspect of REST that most developers still don’t
understand: hypermedia. We all understand hypermedia in the context of
the Web. It’s just a fancy word for links. Web pages link to each
other, and the result is the World Wide Web, driven by hypermedia. But
it seems we’ve got a mental block when it comes to hypermedia in web
APIs. This is a big problem, because hypermedia is the feature that
makes a web API capable of handling changes gracefully.
Starting in Chapter 4, my overriding goal for RESTful Web APIs will
be to teach you how hypermedia works. If you’ve never heard of this
term, I’ll teach it to you along with the other important REST concepts. If
you’ve heard of hypermedia but the concept intimidates you, I’ll do
what I can to build up your courage. If you just haven’t been able to
wrap your head around hypermedia, I’ll show it to you in every way I
can think of, until you get it.
RESTful Web Services covered hypermedia, but it wasn’t central to
the book. It was possible to skip the hypermedia parts of the book
and still design a functioning API. By contrast, RESTful Web APIs is
effectively a book about hypermedia.
I did it this way because hypermedia is the single most important
aspect of REST, and the least understood. Until we all understand
hypermedia, REST will continue to be viewed as a marketing buzzword rather
than a serious attempt to handle the complexity of distributed
computing.

What’s in This Book?

The first four chapters introduce the concepts behind REST, as it
applies to web APIs.
	
Chapter 1, Surfing the Web

	
This chapter explains basic
terminology using a RESTful system you’re already familiar with: a
website.

	
Chapter 2, A Simple API

	
This chapter translates the lessons of the
Web to a programmable API with identical functionality to the
website discussed in Chapter 1.

	
Chapter 3, Resources and Representations

	
Resources are the
fundamental concept underlying HTTP, and representations are the
fundamental concept underlying REST. This chapter explains how they’re
related.

	
Chapter 4, Hypermedia

	
Hypermedia is the missing ingredient that
ties representations together into a coherent API. This chapter shows
what hypermedia is capable of, mostly using a hypermedia data format
you’re already familiar with: HTML.

The next four chapters describe different strategies for designing a
hypermedia API:
	
Chapter 5, Domain-Specific Designs

	
The obvious strategy is to
design a completely new standard that deals with your exact problem. I
use the Maze+XML standard as an example.

	
Chapter 6, The Collection Pattern

	
One pattern in particular—the
collection pattern—shows up over and over again in API design. In
this chapter, I show off two different standards that capture this
pattern: Collection+JSON and AtomPub.

	
Chapter 7, Pure-Hypermedia Designs

	
When the collection pattern
doesn’t fit your requirements, you can convey any representation you
want using a general-purpose hypermedia format. This chapter shows how
it works using three general hypermedia formats (HTML, HAL, and Siren)
as examples. This chapter also introduces HTML microformats and
microdata, which lead in to the next chapter.

	
Chapter 8, Profiles

	
A profile fills in the gaps between a data
format (which can be used by many different APIs) and a specific API
implementation. The profile format I recommend is ALPS, but I also
cover XMDP and JSON-LD.

In this chapter, my advice begins to outstrip the state of the art at the
time this book was written. I had to develop the ALPS format for this
book, because nothing else would do the job. If you’re already
familiar with hypermedia-based designs, you might be able to skip up
to Chapter 8, but I don’t think you should skip past it.

Chapters 9 through 13 cover practical topics like choosing the right hypermedia format and getting the most out of the HTTP protocol.
	
Chapter 9, The Design Procedure

	
This chapter brings together
everything discussed in the book so far, and gives a step-by-step
guide to designing a RESTful API.

	
Chapter 10, The Hypermedia Zoo

	
In an attempt to show what
hypermedia is capable of, this chapter discusses about 20
standardized hypermedia data formats, most of them not covered
elsewhere in the book.

	
Chapter 11, HTTP for APIs

	
This chapter gives some best practices
for the use of HTTP in API implementations. I also discuss some
extensions to HTTP, including the forthcoming HTTP 2.0 protocol.

	
Chapter 12, Resource Description and Linked Data

	
Linked Data is
the Semantic Web community’s approach to REST. JSON-LD is arguably the most
important Linked Data standard. It’s covered briefly in
Chapter 8, and I revisit it here. This chapter also covers the
RDF data model, and some RDF-based hypermedia formats that I
didn’t get to in Chapter 10.

	
Chapter 13, CoAP: REST for Embedded Systems

	
This chapter closes out
the core body of the book by covering CoAP, a RESTful protocol that doesn’t use HTTP at
all.

	
Appendix A, The Status Codex

	
An extension of Chapter 11, this appendix provides an in-depth look at the 41 standard status codes defined
in the HTTP specification, as well as a few useful codes defined as
extensions.

	
Appendix B, The Header Codex

	
Similar to Appendix A, this appendix is also an extension of Chapter 11. It provides a detailed outline of the
46 request and response headers defined in the HTTP
specification, as well as a few extensions.

	
Appendix C, An API Designer’s Guide to the Fielding Dissertation

	
This appendix includes an in-depth discussion of the foundational document of REST, in terms
of what it means for API design.

	
Glossary

	
The glossary contains definitions to terms you’ll frequently encounter when working with RESTful web APIs. It’s a good place
 to turn for familiarizing yourself with basic concepts or if you need a quick,
 at-a-glance reminder of a particular concept’s definition.

What’s Not in This Book

RESTful Web Services was the first book-length treatment of REST,
and it had to cover a lot of ground. Fortunately, there are now over a
dozen books on various aspects of REST, and that frees up RESTful Web
APIs to focus on the core concepts.
To keep this book focused, I’ve removed a few topics that you might
have been expecting me to cover. I want to tell you what is not in
this book, so that you don’t buy it and then feel disappointed:
	
Client programming is not covered here. Writing a client to consume a hypermedia-based
API is a new kind of challenge. Right now, the closest thing we have
to a generic API client is a library that sends HTTP requests. This
was true in 2007, and it’s still true. The problem is on the server
side.

When you write a client for an existing API, you’re at the mercy of
the API designer. I can’t give you any general advice, because right
now there’s no consistency across APIs. That’s why, in this book,
I’m trying to drum up enthusiasm for a little server-side
consistency. When APIs become more similar to each other, we’ll be
able to write more sophisticated client-side tools.
Chapter 5 contains some sample client implementations and tries to
classify different types of clients, but if you want a whole book on
API clients, this is not your book. I don’t think the book you want
exists right now.

	
The most widely deployed API client in the world is JavaScript’s
XMLHttpRequest library. There’s a copy in every web browser, and
most websites today are built atop APIs designed for consumption by
XMLHttpRequest. But that’s far too big a field to cover properly in
this book. There are whole books written about individual JavaScript
libraries.

	
I spend quite a bit of time on the mechanics of HTTP (Chapter 11,
Appendix A, and Appendix B), but I don’t cover any given HTTP topic in a
lot of depth, and there are some topics—notably HTTP intermediaries
like caches and proxies—which I barely cover at all.

	
RESTful Web Services focused heavily on breaking down your
business requirements into a set of interlinked resources. My
experience since 2007 has convinced me that thinking of API design as
resource design is a very effective way to avoid thinking about
hypermedia. This book takes a different approach, focusing on
representations and state transitions rather than resources.

That said, the resource design approach is certainly valid. For advice on moving in that direction, I
recommend RESTful Web Services Cookbook by Subbu Allamaraju (O’Reilly).

Administrative Notes

This book has two authors (Leonard and Mike), but for the duration of
this book we’ve merged our identities into a single
authorial “I.”
Nothing in this book is tied to any particular programming
language. All of the code takes the form of messages (usually JSON
or XML documents) sent over a network protocol (usually HTTP). I will
be assuming that you’re familiar with common programming
concepts like antipatterns and breadth-first search, and that you have
a basic understanding of how the World Wide Web works.
I won’t be presenting it, but there is real code behind the servers
and clients I talk about in Chapter 1, Chapter 2, and Chapter 5. You
can get that code from the RESTful Web APIs GitHub repository, or from the
official website, and run it
yourself. These clients and servers are written in JavaScript, using
the Node library.
I chose Node because it lets me use the same programming language for
client and server code. You won’t need to mentally switch back and
forth between programming langauges to understand both sides of a
client-server transaction. Node is open source and available on
Windows, Mac, and Linux systems. It is easy to install on these
operating systems, and you shouldn’t have much trouble getting the
examples up and running.
I’m hosting the code on GitHub because that will make it easy to
update the implementations over time. This also makes it possible for
readers to contribute ports of the example clients and servers to
other programming languages.

Understanding Standards

The World Wide Web isn’t an objective thing that’s out there to be
studied scientifically. It’s a social construct—a set of agreements
to do things a certain way. Fortunately, unlike other social
constructs (like etiquette), the agreements underlying the Web are generally agreed upon. The core agreements underlying
the human web are RFC 2616 (the HTTP standard), the W3C’s
specification for HTML 4, and ECMA-262 (the standard that underlies
JavaScript, also known as ECMAScript). Each standard does a different
job, and over the course of this book, I’ll discuss dozens of other
standards designed specifically for use in APIs.
The great thing about these standards is the solid baseline they give
you. You can use them to build a completely new kind of website or
API, something that no one has ever tried before. Instead of having to
explain your entire system to all your users, you’ll only have to
explain the part that’s new.
The bad news is that these agreements are often borderline unreadable:
long walls of ASCII text written in tooth-achingly precise English in
which everyday words like “should” have technical meanings and are
capitalized “SHOULD.”[4] A lot of technical books are bought by people who are
hoping to avoid having to read a standards document.
Well, I can’t make any guarantees. If one of these standards looks
like something you can use in your work, you need to be willing to
dive into its spec and really understand it (or buy a book that
covers it in more detail). I don’t have space to give more than a
basic overview of standards like Siren, CoAP, and Hydra. Not to
mention that giving a lot of detail would bore all the readers who
don’t need those particular standards to do their work.
When navigating the forest of standards, it’s useful to keep in mind
that not all standards have equal force. Some are extremely
well established, used by everyone, and if you go against them you’re
causing a lot of trouble for yoursef. Other standards are just one
person’s opinion, and that opinion might be no better than yours.
I find it helpful to divide standards into four categories: fiat standards, personal standards, corporate standards, and open standards. I’ll be
using these terms throughout the book, so let me explain each one in a bit more depth before we move on.
Fiat Standards

Fiat standards aren’t really standards; they’re behaviors. No one
agreed to them. They’re just a description of the way somebody does
things. The behavior may be documented, but the core assumption of a
standard—that other people ought to do things the same way—is
missing.
Pretty much every API today is a fiat standard, a one-off design
associated with a specific company. That’s why we talk about the
“Twitter API,” the “Facebook API,” and the “Google+ API.” You may need
to understand these designs to do your job and you may write your own
clients for these designs, but unless you work for the company in
question, there’s no expectation that you should use this design for
your API. If you reuse a fiat standard, we don’t say your API
conforms to a standard; we say it’s a clone.
The main problem I’m trying to solve in this book is that hundreds of
person-years of design work is locked up in fiat standards where it
can’t be reused. This needs to stop. Designing a new API today means
reinventing a long series of wheels. Once your API is finished, your
client developers have to reinvent corresponding wheels on the client
side.
Even under ideal circumstances, your API will be a fiat standard, since
your business requirements will be slightly different from everyone
else’s. But ideally a fiat standard would be just a light gloss over a
number of other standards.
When I describe a fiat standard, I’ll link to its human-readable
documentation.

Personal Standards

Personal standards are standards—you’re invited to read the documents
and implement the standards yourself—but they’re just one person’s
opinion. The Maze+XML standard I describe in Chapter 5 is a good
example. There’s no expectation that Maze+XML is the standard way to
implement a maze game API, but if it works for you, you might as well
use it. Someone else has done the design work for you.
Personal standards generally use less formal language than other kinds
of standards. Many open standards start off as personal standards—as side projects that are formalized after a lot of
experimentation. Siren, which I cover in Chapter 7, is a good
example.
When I describe a personal standard, I’ll link to its specification.

Corporate Standards

Corporate standards are created by a consortium of companies trying to
solve a problem that plagues them all, or by a single company trying
to solve a recurring problem on behalf of its customers. Corporate
standards tend to be better defined and to use more formal language
than personal standards, but they have no more force than personal
standards. They’re just one company’s (or a group of companies')
opinion.
Corporate standards include Activity Streams and schema.org’s
microdata schemas, both of which are covered in Chapter 10. Many industry
standards start off as corporate standards. OData (also discussed in Chapter 10)
started as a Microsoft project, but it was submitted to OASIS in 2012
and will eventually become an OASIS standard.
When I describe a corporate standard, I’ll link to its specification.

Open Standards

An open standard has gone through a process of design by committee,
or at least had an open comment period during which a lot of people
read the specification, complained about it, and made
suggestions for improvement. At the end of this process, the
specification was blessed by some kind of recognized standards body.
This process gives an open standard a certain amount of moral
force. If there’s an open standard that does more or less what you
want, you really should use it instead of making up your own fiat
standard. The design process and the comment period probably turned up
a lot of issues that you won’t encounter until it’s too late.
In general, open standards come with some kind of agreement that
promises you can implement them without getting hit with a patent infringement lawsuit from a company that was involved in the
standards process. By contrast, implementing someone else’s fiat
standard may incite them to file a patent infringement
lawsuit against you.
A few open standards mentioned in this book came out of the
big-name standards bodies: ANSI, ECMA, ISO, OASIS, and especially the
W3C. I can’t say what it’s like to sit on one of these standards
bodies, because I’ve never done it. But the most important standards
body[5] is one anyone can
contribute to: the IETF, the group that manages the all-important
RFCs.
Requests for Comments (RFCs) and Internet-Drafts

Most RFCs are created through a process called the Standards
Track. Throughout this book, I’ll be referencing documents that are in
different places on the Standards Track. I’d like to briefly discuss
how the track works, so that you’ll know how seriously to take my
recommendations.
An RFC begins life as an Internet-Draft. This is a document that
looks like a standards document, but you’re not supposed to build
implementations based on it. You’re supposed to find problems with the
specification and give feedback.
An Internet-Draft has a built-in lifetime of six months. Six months
after it is published, a draft must be approved as an RFC or replaced
with an updated draft. If neither of those things happens, then the
draft expires and should not be used for anything. On the other hand,
if the draft is approved, it expires immediately and is replaced by an
RFC.
Because of the built-in expiration date, and because an Internet-Draft
isn’t technically any kind of standard, it’s tricky business
mentioning them in a book. At the same time, API design is a field
that’s changing rapidly, and an Internet-Draft is better than
nothing. I will be mentioning many Internet-Drafts in this book under
the assumption that they’ll become RFCs without major changes. That
assumption has held up pretty well; several Internet-Drafts that I mention here became RFCs while I was writing the book. If a
particular draft doesn’t pan out, all I can do is apologize in
advance.
RFCs and Internet-Drafts are given code names. When I describe one of
these, I won’t link to its specification. I’ll just refer to it by
its code and let you look it up. For example, I’ll refer to the HTTP/
1.1 specification as RFC 2616. I’ll refer to an Internet-Draft by
its name. For example, I’ll use “draft-snell-link-method” to refer to
the proposal to add LINK and UNLINK methods to HTTP.
Whenever you see one of these code names, you can do a web search and
find the latest version of the RFC or Internet-Draft. If an
Internet-Draft becomes an RFC after this book is published, the final
version of the Internet-Draft will link to the RFC.
When I describe a W3C or OASIS standard, I’ll link to the
specification, because those standards aren’t given code names.

Conventions Used in This Book

The following typographical conventions are used in this book:
	
Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	
Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	
Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	
Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, if this book includes code examples, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “RESTful Web APIs by Leonard Richardson and Mike Amundsen (O’Reilly). Copyright 2013 Leonard Richardson and amundsen.com, Inc., and Sam Ruby. 978-1-449-35806-8.”
If you feel your use of code examples falls outside fair use or the permission given here, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.
Safari Books Online offers a range of product mixes and pricing programs for organizations, government agencies, and individuals. Subscribers have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://oreil.ly/RESTful-Web-APIs.
To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgements

We owe a debt of thanks to Glenn Block who spent untold hours listening to ideas and working through real code to test those ideas. To Benjamin Young and all the folks at RESTFest who agreed to be part of our experiments, and who gave great feedback and advice even when we didn’t want to hear it. To Mike’s colleagues at Layer 7 Technologies, including Dimitri Sirota and Matt McLarty, who supported and encouraged his work on this project. To Sam Ruby and Mike Loukides, who were essential to RESTful Web Services, this book’s predecessor. To Sumana Harihareswara, Leonard’s supportive wife. To the social communities that create an excellent place to collaborate and converse on REST and APIs; especially Yahoo’s REST-Discuss, Google Groups’ API-Craft, and the Hypermedia group at LibreList.
And finally, to all those who read the early drafts of this manuscript and provided much-needed criticism and support: Carsten Bormann, Todd Brackley, Tom Christie, Timothy Haas, Jamie Hodge, Alex James, David Jones, Markus Lanthaler, Even Maler, Mark Nottingham, Cheryl Phair, Sergey Shishkin, Brian Sletten, Mark Stafford, Stefan Tilkov, Denny Vrandečić, Ruben Verborgh, and Andrew Wahbe.

[1] The full list of ProgrammableWeb APIs tagged with microblogging provides information about each of these APIs.

[2] RESTful Web Services is now freely available as part of O’Reilly’s Open Books Project. You can download
a PDF copy of the book from the book’s page.

[3] If you’re wondering, this is
why we changed the title. The term “web services” became so tightly
coupled with SOAP that when SOAP went down, it took “web services”
with it. These days, everyone talks about APIs instead.

[4] The meaning of “SHOULD” is given in
RFC 2119.

[5] For the purposes of this book, anyway. If you need standard
sizes for screws and bolts, you want ANSI or ISO.

Chapter 1. Surfing the Web

The World Wide Web became popular because ordinary people can use it
to do really useful things with minimal training. But behind the
scenes, the Web is also a powerful platform for distributed computing.
The principles that make the Web usable by ordinary people also work
when the “user” is an automated software agent. A piece of software
designed to transfer money between bank accounts (or carry out any
other real-world task) can accomplish the task using the same basic
technologies a human being would use.
As far as this book is concerned, the Web is based on three
technologies: the URL naming convention, the HTTP protocol, and the
HTML document format. URL and HTTP are simple, but to apply them to
distributed programming you must understand them in more detail than
the average web developer does. The first few chapters of this book
are dedicated to giving you this understanding.
The story of HTML is a little more complicated. In the world of web
APIs, there are dozens of data formats competing to take the place of
HTML. An exploration of these formats will take up several chapters of
this book, starting in Chapter 5. For now, I want to focus on URL and
HTTP, and use HTML solely as an example.
I’m going to start off by telling a simple story about the World Wide
Web, as a way of explaining the principles behind its design and the
reasons for its success. The story needs to be simple because although
you’re certainly familiar with the Web, you might not have heard of
the concepts that make it work. I want you to have a simple, concrete
example to fall back on if you ever get confused about terminology
like “hypermedia as the engine of application state.”
Let’s get started.
Episode 1: The Billboard

One day Alice is walking around town and she sees a billboard (Figure 1-1).
[image: The billboard]

Figure 1-1. The billboard

(By the way, this fictional billboard advertises a real website that I
designed for this book. You can try it out yourself.)
Alice is old enough to remember the mid-1990s, so she recalls the public’s reaction when
URLs started showing up on billboards. At first, people made fun of
these weird-looking strings. It wasn’t clear what “http://” or
“youtypeitwepostit.com” meant. But 20 years later, everyone knows
what to do with a URL: you type it into the address bar of your web
browser and hit Enter.
And that’s what Alice does: she pulls out her mobile phone and puts http://www.youtypeitwepostit.com/ in her browser’s address bar. The
first episode of our story ends on a cliffhanger: what’s at the other
end of that URL?
Resources and Representations

Sorry for interrupting the story, but I need to introduce some basic
terminology. Alice’s web browser is about to send an HTTP request to a
web server—specifically, to the URL
http://www.youtypeitwepostit.com/. One web server may host many
different URLs, and each URL grants access to a different bit of the
data on the server.
We say that a URL is the URL of some thing: a product, a user, the
home page. The technical term for the thing named by a URL is
resource.
The URL http://www.youtypeitwepostit.com/ identifies a
resource—probably the home page of the website advertised on the
billboard. But you won’t know for sure until we resume the story
and Alice’s web browser sends the HTTP request.
When a web browser sends an HTTP request for a resource, the server
sends a document in response (usually an HTML document, but sometimes
a binary image or something else). Whatever document the server sends, we call that
document a representation of the resource.
So each URL identifies a resource. When a client makes an HTTP
request to a URL, it gets a representation of the underlying
resource. The client never sees a resource directly.
I’ll talk a lot more about resources and representations in Chapter 3. Right now I just want to use the terms resource and
representation to discuss the principle of addressability, to which I’ll now turn.

Addressability

A URL identifies one and only one resource. If a website has two
conceptually different things on it, we expect the site to treat them
as two resources with different URLs. We get frustrated when a website
violates this rule. Websites for restaurants are especially bad about
this. Frequently, the whole site is buried inside a Flash interface and
there’s no URL that points to the menu or to the map that shows where
the restaurant is located—things we would like to talk about on their
own.
The principle of addressability just says that every resource should
have its own URL. If something is important to your application, it
should have a unique name, a URL, so that you and your users can
refer to it unambiguously.

Episode 2: The Home Page

Back to our story. When Alice enters the URL from the billboard into
her browser’s address bar, it sends an HTTP request over the Internet to
the web server at http://www.youtypeitwepostit.com/:
GET / HTTP/1.1
Host: www.youtypeitwepostit.com
The web server handles this request (neither Alice nor her web browser
need to know how) and sends a response:
HTTP/1.1 200 OK
Content-type: text/html

<!DOCTYPE html>
<html>
 <head>
 <title>Home</title>
 </head>
 <body>
 <div>
 <h1>You type it, we post it!</h1>
 <p>Exciting! Amazing!</p>

 <p class="links">
 Get started
 About this site
 </p>
 </div>
 </body>
</html>
The 200 at the beginning of the response is a status code, also
called a response code. It’s a quick way for the server to tell the
client approximately what happened to the client’s request. There are
a lot of HTTP status codes, and I cover them all in Appendix A, but
the most common one is the one you see here. 200 (OK) means that the
request was fulfilled with no problems.
Alice’s web browser decodes the response as an HTML document and
displays it graphically (see Figure 1-2).
[image: Home]

Figure 1-2. You Type It… home page

Now Alice can read the web page and understand what the billboard was
talking about. It was advertising a microblogging site, similar to
Twitter. Not as exciting as advertised on the billboard, but good
enough as an example.
Alice’s first real interaction with the web server reveals a couple more
important features of the Web.
Short Sessions

At this point in the story, Alice’s web browser is displaying the
site’s home page. From her perspective, she’s “landed” on that page,
which is is her current “location” in cyberspace. But as far as the
server is concerned, Alice isn’t anywhere. The server has already
forgotten about her.
HTTP sessions last for one request. The client sends a request, and
the server responds. This means Alice could turn her phone off
overnight, and when her browser restored the page from its internal
cache, she could click on one of the two links on this page and it
would still work. (Compare this to an SSH session, which is terminated
if you turn your computer off.)
Alice could leave this web page open in her phone for six months, and
when she finally clicks on a link, the web server would respond as if
she’d only waited a few seconds. The web server isn’t sitting up late
at night worrying about Alice. When she’s not making an HTTP request,
the server doesn’t know Alice exists.
This principle is sometimes called statelessness. I think this is a
confusing term because the client and the server in this system both
keep state; they just keep different kinds of state. The term
“statelessness” is getting at the fact that the server doesn’t care
what state the client is in. (I’ll talk more about the different
kinds of state in the following sections.)

Self-Descriptive Messages

It’s clear from looking at the HTML that this site is more than just a
home page. The markup for the home page contains two links: one to the
relative URL /about (i.e., to
http://www.youtypeitwepostit.com/about) and one to /messages (i.e., http://www.youtypeitwepostit.com/messages). At
first Alice only knew one URL—the URL to the home page—but now she knows three. The server is slowly revealing its structure
to her.
We can draw a map of the website so far (Figure 1-3), as revealed to
Alice by the server.
[image: Site map]

Figure 1-3. A map of the website

What’s on the other end of the /messages and /about links? The
only way to be sure is to follow them and find out. But Alice can look
at the HTML markup, or her browser’s graphical rendering of the
markup, and make an educated guess. The link with the text “About this
site” probably goes to a page talking about the site. That’s nice, but
the link with the text “Get started” is probably the one that gets
her closer to actually posting a message.
When you request a web page, the HTML document you receive doesn’t just
give you the immediate information you asked for. The document also
helps you answer the question of what to do next.

Episode 3: The Link

After reading the home page, Alice decides to give this site a try. She
clicks the link that says “Get started.” Of course, whenever you
click a link in your web browser, you’re telling your web browser
to make an HTTP request.
The code for the link Alice clicked on looks like this:
Get started
So her browser makes this HTTP request to the same server as before:
GET /messages HTTP/1.1
Host: www.youtypeitwepostit.com
That GET in the request is an HTTP method, also known as an HTTP
verb. The HTTP method is the client’s way of telling the server what
it wants to do to a resource. “GET” is the most common HTTP method. It
means “give me a representation of this resource.” For a web browser,
GET is the default. When you follow a link or type a URL into the address
bar, your browser sends a GET request.
The server handles this particular GET request by sending a
representation of /messages:
HTTP/1.1 200 OK
Content-type: text/html
...

<!DOCTYPE html>
<html>
 <head>
 <title>Messages</title>
 </head>
 <body>
 <div>
 <h1>Messages</h1>

 <p>
 Enter your message below:
 </p>

 <form action="http://youtypeitwepostit.com/messages" method="post">
 <input type="text" name="message" value="" required="true"
 maxlength="6"/>
 <input type="submit" value="Post" />
 </form>

 <div>
 <p>
 Here are some other messages, too:
 </p>

 Later
 Hello

 </div>

 <p class="links">
 Home
 </p>

 </div>
 </body>
</html>
As before, Alice’s browser renders the HTML graphically (Figure 1-4).
[image: Getting started]

Figure 1-4. You Type It… “Get started” page

When Alice looks at the graphical rendering, she sees that this page
is a list of messages other people have published on the site. Right at the
top there’s an inviting text box and a Post button.
Now we’ve revealed a little more about how the server works. Figure 1-5 shows an updated map of the site, as seen by Alice’s browser.
[image: The browser’s view]

Figure 1-5. The browser’s view of You Type It…

Standardized Methods

Both of Alice’s HTTP requests used GET as their HTTP method. But
there’s a bit of HTML in the latest representation that will trigger
an HTTP POST request if Alice clicks the Post button:
 <form action="http://youtypeitwepostit.com/messages" method="post">
 <input type="text" name="message" value="" required="true"
 maxlength="6"/>
 <input type="submit" />
 </form>
The HTTP standard (RFC 2616) defines eight methods a client can apply
to a resource. In this book, I’ll focus on five of them: GET, HEAD,
POST, PUT, and DELETE. In Chapter 3, I’ll cover these methods in
detail, along with an extension method, PATCH, designed specifically
for use in web APIs. Right now the important thing to keep in mind is that there are a
small number of standard methods.
It’s not impossible to come up with a new HTTP method (it happened
with PATCH), but it’s a very big deal. This is not like a programming
language, where you can name your methods whatever you want. When I
built the simple microblogging website for use in this example, I didn’t
define new HTTP methods like GETHOMEPAGE and
HELLOPLEASESHOWMETHEMESSAGELISTTHANKSBYE. I used GET for both “show
the home page” and “show the message list,” because in both cases GET
(“give me a representation of this resource”) was the best match
between HTTP’s interface and what I wanted to do. I distinguished
between the home page and the message list not by defining new
methods, but by treating those two documents as separate resources,
each with its own URL, each accessible through GET.

Episode 4: The Form and the Redirect

Back to our story. Alice is tempted by the form on the microblogging
site. She types in “Test” and clicks the Post button.:
Again, Alice’s browser makes an HTTP request:
POST /messages HTTP/1.1
Host: www.youtypeitwepostit.com
Content-type: application/x-www-form-urlencoded

message=Test&submit=Post
And the server responds with the following:
HTTP/1.1 303 See Other
Content-type: text/html
Location: http://www.youtypeitwepostit.com/messages/5266722824890167
When Alice’s browser made its two GET requests, the server sent the
HTTP status code 200 (“OK”) and provided an HTML document for Alice’s
browser to render. There’s no HTML document here, but the server did
provide a link to another URL, in the Location header—and here, the
status code at the beginning of the response is 303 (“See Other”), not
200 (“OK”).
Status code 303 tells Alice’s browser to automatically make a fourth
HTTP request, to the URL given in the Location header. Without
asking Alice’s permission, her browser does just that:
GET /messages/5266722824890167 HTTP/1.1
This time, the browser responds with 200 (“OK”) and an HTML document:
HTTP/1.1 200 OK
Content-type: text/html

<!DOCTYPE html>
<html>
 <head>
 <title>Message</title>
 </head>
 <body>
 <div>
 <h2>Message</h2>
 <dl>
 <dt>ID</dt><dd>2181852539069950</dd>
 <dt>DATE</dt><dd>2014-03-28T21:51:08Z</dd>
 <dt>MSG</dt><dd>Test</dd>
 </dl>
 <p class="links">
 Home
 </p>
 </div>
 </body>
</html>
Alice’s browser displays this document graphically (Figure 1-6), and,
finally, goes back to waiting for Alice’s input.
[image: Message]

Figure 1-6. You Type It… posted message

Note
I’m sure you’ve encountered HTTP redirects before, but HTTP is full of
small features like this, and some may be new to you. There are many
ways for the server to tell the client to handle a response
differently, and ways for the client to attach conditions or extra
features to its request. A big part of API design is the proper use of
these features. Chapter 11 covers
the features of HTTP that are most important to web APIs, and Appendix A and Appendix B provide supplementary information on this topic.

By looking at the graphical rendering, Alice sees that her message
(“Test”) is now a fully fledged post on YouTypeItWePostIt.com. Our
story ends here—Alice has accomplished her goal of trying out
the microblogging site. But there’s a lot to be learned from these four
simple interactions.

Application State

Figure 1-7 is a state diagram that shows Alice’s entire adventure from
the perspective of her web browser.
[image: The client’s journey]

Figure 1-7. Alice’s adventure: the client’s perspective

When Alice started up the browser on her phone, it didn’t have any
particular page loaded. It was an empty slate. Then Alice typed in a
URL and a GET request took the browser to the site’s home page. Alice
clicked a link, and a second GET request took the browser to the list
of messages. She submitted a form, which caused a third request (a
POST request). The response to that was an HTTP redirect, which
Alice’s browser made automatically. Alice’s browser ended up at a web
page describing the message Alice had just created.
Every state in this diagram corresponds to a particular page (or to no
page at all) being open in Alice’s browser window. In REST terms, we
call this bit of information—which page are you on?—the
application state.
When you surf the Web, every transition from one application state to
another corresponds to a link you decided to follow or a form you
decided to fill out. Not all transitions are available from all
states. Alice can’t make her POST request directly from the home page,
because the home page doesn’t feature the form that allows her browser
to construct the POST request.

Resource State

Figure 1-8 is a state diagram showing Alice’s adventure from the
perspective of the web server.
[image: The server’s journey]

Figure 1-8. Alice’s adventure: the server’s perspective

The server manages two resources: the home page (served from /) and
the message list (served from /messages). (The server also manages a
resource for each individual message. I’ve omitted those resources
from the diagram for the sake of simplicity.) The state of these
resources is called, simply enough, resource state.
When the story begins, there are two messages in the message list:
“Hello” and “Later.” Sending a GET to the home page doesn’t change
resource state, since the home page is a static document that never
changes. Sending a GET to the message list won’t change the state
either.
But when Alice sends a POST to the message list, it puts the server in
a new state. Now the message list contains three messages: “Hello,”
“Later,” and “Test.” There’s no way back to the old state, but this
new state is very similar. As before, sending a GET to the home page
or message list won’t change anything. But sending another POST to the
message list will add a fourth message to the list.
Because HTTP sessions are so short, the server doesn’t know anything
about a client’s application state. The client has no direct control
over resource state—all that stuff is kept on the server. And
yet, the Web works. It works through REST—representational state
transfer.
Application state is kept on the client, but the server can manipulate
it by sending representations—HTML documents, in this
case—that describe the possible state transitions. Resource
state is kept on the server, but the client can manipulate it by
sending the server a representation—an HTML form submission, in
this case—describing the desired new state.

Connectedness

In the story, Alice made four HTTP requests to
YouTypeItWePostIt.com, and she got three HTML documents in
return. Although Alice didn’t follow every single link in those
documents, we can use those links to build a rough map of the website
from the client’s perspective (Figure 1-9).
[image: What the client saw]

Figure 1-9. What the client saw

This is a web of HTML pages. The strands of the web are the HTML <a>
tags and <form> tags, each describing a GET or POST HTTP request
Alice might decide to make. I call this the principle of
connectedness: each web page tells you how to get to the adjoining
pages.
The Web as a whole works on the principle of connectedness, which is
better known as “hypermedia as the engine of application state,”
sometimes abbreviated HATEOAS. I prefer “connectedness” or “the
hypermedia constraint,” because “hypermedia as the engine of
application state” sounds intimidating. But at this point, you should
have no reason to find it intimidating. You know what application
state is—it’s which web page a client is on. Hypermedia is the
general term for things like HTML links and forms: the techniques a
server uses to explain to a client what it can do next.
To say that hypermedia is the engine of application state is to say
that we all navigate the Web by filling out forms and following
links.

The Web Is Something Special

Alice’s story doesn’t seem that exciting. because the World Wide Web
has been the dominant Internet application for the past 20
years. But back in the 1990s, this was a very exciting story. If you
compare the World Wide Web to its early competitors, you’ll see the
difference.
The Gopher protocol (defined in RFC 1436) looks a lot like HTTP, but
it lacks addressability. There is no succinct way to identify a
specific document in Gopherspace. At least there wasn’t until the
World Wide Web took pity on Gopherspace and released the URL standard
(first defined in RFC 1738), which provides a gopher:// URL scheme
that works just like http://.
FTP, a popular pre-Web protocol for file transfer (defined in RFC
959), also lacks addressability. Until RFC 1738 came along with its
ftp:// URL scheme, there simply was no machine-readable way to point
to a file on an FTP server. You had to use English prose to explain
where the file was. It took the brainpower of a human being just to
locate a file on a server. What a waste!
FTP also featured long-lived sessions. A casual user could log on to
an FTP server and tie up one of the server’s TCP connections
indefinitely. By contrast, even a “persistent” HTTP connection
shouldn’t tie up a TCP connection for longer than 30 seconds.
The 1990s saw a lot of Internet protocols for searching different
kinds of archives and databases—protocols like Archie, Veronica,
Jughead, WAIS, and Prospero. But it turns out we don’t need all
those protocols. We just need to be able to send GET requests to
different kinds of websites. All these protocols died out or were
replaced by websites. Their complex protocol-specific rules were
folded into the uniformity of HTTP GET.
Once the Web took over, it became a lot more difficult to justify
creating a new application protocol. Why create a new tool that only
techies will understand, when you can put up a website that anyone can
use? All successful post-Web protocols do something the Web can’t do:
peer-to-peer protocols like BitTorrent and real-time protocols like
SSH. For most purposes, HTTP is good enough.
The unprecedented flexibility of the Web comes from the principles of
REST. In the 1990s, we discovered that the Web works better than its
competition. In 2000, Roy T. Fielding’s Ph.D dissertation[6] explained why this is,
coining the term “REST” in the process.

Web APIs Lag Behind the Web

The Fielding dissertation also explains a lot about the problems of
web APIs in the 2010s. The simple website I just walked you
through is much more sophisticated than most currently deployed web
APIs—even self-proclaimed REST APIs. If you’ve ever designed a
web API, or written a client for one, you’ve probably encountered some
of these problems:
	
Web APIs frequently have human-readable documentation that explains
how to construct URLs for all the different resources. This is like
writing English prose explaining how to find a particular file on an
FTP server. If websites did this, no one would bother to use the
Web.

Instead of telling you what URLs to type in, websites embed URLs
in <a> tags and <form> tags—hypermedia controls that
you can activate by clicking a link or a button.
In REST terms, putting information about URL construction in
separate human-readable documents violates the principles of
connectedness and self-descriptive messages.

	
Lots of websites have help docs, but when was the last time you used
them? Unless there’s a serious problem (you bought something and it
was never delivered), it’s easier to click around and figure out how
the site works by exploring the connected, self-descriptive HTML
documents it sends you.

Today’s APIs present their resources in a big menu of options
instead of an interconnected web. This makes it difficult to see
what one resource has to do with another.

	
Integrating with a new API inevitably requires writing custom
software, or installing a one-off library written by someone
else. But you don’t need to write custom software to use a new
website. You see a URL on a billboard and plug it into your web
browser—the same client you use for every other website in the
world.

We’ll never get to the point where a single API client can understand
every API in the world. But today’s clients contain a lot of code
that really ought to be refactored out into generic libraries. This
will only become possible when APIs serve self-descriptive
representations.

	
When APIs change, custom API clients break and have to be fixed. But
when a website undergoes a redesign, the site’s users grumble about
the redesign and then they adapt. Their browsers don’t stop working.

In REST terms, the website redesign is entirely encapsulated in the
self-descriptive HTML documents served by the website. A client that
could understand the old HTML documents can understand the new ones.

These are the problems I’m trying to solve with this book. The good
news is that it used to be a lot worse. A few years ago, it was common to
see RESTful APIs that used safe HTTP methods in unsafe ways, or
mixed up application and resource state. This doesn’t happen much
anymore. Designs have gotten better, and they can get better still.

The Semantic Challenge

Now for the bad news. The story I’ve told you, the story of Alice’s
trip through a website, went as smoothly as it did thanks to a very
slow and expensive piece of hardware: Alice herself. Every time her
browser rendered a web page, Alice, a human being, had to look at the
rendered page and decide what to do next. The Web works because human
beings make all the decisions about which links to click and which
forms to fill out.
The whole point of web APIs is to get things done without making a
human sit in front of a web browser all day. How can we program a
computer to make the decisions about which links to click? A computer
can parse the HTML markup Get started, but
it can’t understand the phrase “Get started.” Why bother to design
APIs that serve self-descriptive messages if those messages won’t be
understood by their software consumers?
This is the biggest challenge in web API design: bridging the semantic
gap between understanding a document’s structure and understanding
what it means. As a shorthand, I’m going to call it the semantic
challenge. Very little progress has been made on the semantic
challenge, and we will never solve it completely. The good news is
that because so little progress has been made so far, the first bit
of progress is really easy. We just have to start working together,
instead of duplicating each other’s work.
I’ll be checking in with the semantic challenge over the
next few chapters, as I talk about the technologies of the Web and how
you can use them in API designs. By Chapter 8, we’ll have the tools
necessary to tackle the semantic challenge head-on.

[6] Fielding, Roy Thomas. Architectural Styles and the Design of
Network-based Software Architectures. Doctoral dissertation,
University of California, Irvine, 2000.

Chapter 2. A Simple API

In Chapter 1, I showed off a very simple microblogging website
located at http://www.youtypeitwepostit.com/. As it happens, I’ve
also designed a programmable API for this website. You can see it live
at http://www.youtypeitwepostit.com/api/.
The ideal API would have the same characteristics that make the World
Wide Web easy to use. As a developer, you would be able to figure out
how to use it, starting with nothing but a URL you saw on a billboard.
Let’s spin out that fantasy to see how it would work. First, you would
have your programmable client make a GET request for the billboard
URL—the equivalent to entering that URL into your web browser’s
address bar. Your client would take over from there, examining the
response to see what the available options are. It would follow links
(not necessarily HTML links), fill out forms (not necessarily HTML
forms), and eventually accomplish the task you set out for it.
This book is not going to get us all the way to that goal. There are
problems I can’t solve with a book: problems surrounding the absence
of standards, problems with the current level of tool support, and the
brute fact that computers just aren’t as smart as human beings. But we
can get a long way toward that goal—a lot further than you may
think.
As I said, there is a real microblogging API at
http://www.youtypeitwepostit.com/api/. If you’re feeling adventurous,
go ahead and write some code to do something with that API. See how
much you can figure out, knowing nothing but that URL. You’ve done
this before with websites: all you knew was the home page URL, and
you figured it out. How far can you get with an API?
If you’re not feeling adventurous or don’t have much experience
writing clients for web APIs (or you’re reading this book in the far
future, and I’m not hosting that website anymore), we’ll go through it
together. The first step is to get a representation of the API’s home
page.
HTTP GET: Your Safe Bet

If you have a URL that starts with http:// or https://, and you
don’t know what’s on the other side, the first thing to do is to issue
an HTTP GET request. In REST terms, you know the URL to a resource
and nothing else. You need to discover your options, and that means
getting a representation of the resource. That’s what HTTP GET is for.
You can write code in a programming language to make that GET request,
but when doing an initial reconnaissance of an API, it’s often easier
to use a command-line tool like Wget. Here I use the -S option,
which prints out the full HTTP response from the server, and the -O -
option, which prints out the document instead of saving it to a file:
$ wget -S -O - http://www.youtypeitwepostit.com/api/
This sends an HTTP request like this to the server:
GET /api/ HTTP/1.1
Host: www.youtypeitwepostit.com
The HTTP standard says that a GET request is a request for a
representation. It’s not intended to change any resource state on the
server. This means that if you have a URL to a resource and don’t know
anything more, you can always make a GET request and get a
representation in return. Your GET request won’t do something
disastrous like delete all the data. We say that GET is a safe
method.
It’s OK for the server to change incidental things because of a GET
request, like incrementing a hit counter or logging the request to a
file, but that’s not the purpose of the GET request. Nobody makes an
HTTP request just to increment the hit counter.
In real life, there’s no guarantee that HTTP GET is safe. Some older
designs will force you to make an HTTP GET
request if you want to delete some data. But this misfeature is pretty
rare in newer designs. Most API designers now understand that clients
frequently GET a URL just to see what’s behind it. It’s not fair to
give that GET request significant side effects.

How to Read an HTTP Response

In response to my GET request, the server sends a big chunk of data
that looks like this:
HTTP/1.1 200 OK
ETag: "f60e0978bc9c458989815b18ddad6d75"
Last-Modified: Thu, 10 Jan 2013 01:45:22 GMT
Content-Type: application/vnd.collection+json

{ "collection":
 {
 "version" : "1.0",
 "href" : "http://www.youtypeitwepostit.com/api/",
 "items" : [

 { "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",
 "data": [
 { "name": "text", "value": "Test." },
 { "name": "date_posted", "value": "2013-04-22T05:33:58.930Z" }
],
 "links": []
 },

 { "href" : "http://www.youtypeitwepostit.com/api/messages/3689331521745771",
 "data": [
 { "name": "text", "value": "Hello." },
 { "name": "date_posted", "value": "2013-04-20T12:55:59.685Z" }
],
 "links": []
 },

 { "href" : "http://www.youtypeitwepostit.com/api/messages/7534227794967592",
 "data": [
 { "name": "text", "value": "Pizza?" },
 { "name": "date_posted", "value": "2013-04-18T03:22:27.485Z" }
],
 "links": []
 }
]
 },

 "template": {
 "data": [
 {"prompt": "Text of message", "name": "text", "value":""}
]
 }
}
How much can we learn from this? Well, every HTTP response can be
split into three parts:
	
The status code, sometimes called the response code

	
This is a
three-digit number that summarizes how the request went. The response code is the first thing an API client sees, and it sets
the tone for the rest of the response. Here, the status code was
200 (OK). This is the status code a client hopes for—it means that
everything went fine.

In Appendix A, I explain all of the standard HTTP response codes, as
well as several useful extensions.

	
The entity-body, sometimes called just the body

	
This is a
document written in some data format, which the client is expected to
understand. If you think of a GET request as a request for a
representation, you can think of the entity-body as the
representation (technically, the entire HTTP response is the
‘representation’, but the important information is usually in the
entity-body).

In this case, the entity-body is the huge document at the end of
the response, the one full of curly brackets.

	
The response headers

	
These are a series of key-value pairs
describing the entity-body and the HTTP response in
general. Response headers are sent between the status code and the
entity-body. In Appendix B, I explain all the standard HTTP
headers and many useful extensions.

The most important HTTP header is Content-Type, which tells
the HTTP client how to understand the entity-body. It’s so important
that its value has a special name. We say the value of the
Content-Type header is the entity-body’s media type. (It’s also
called the MIME type or the content type. Sometimes “media type”
is hyphenated: media-type.)
On the part of the Web that human beings can see with their web browsers, the most common media types are
text/html (for HTML) and image types like image/jpeg. Here, the
media type is one you probably haven’t seen before:
application/vnd.collection+json.

JSON

If you’re a web developer, you probably recognize this entity-body as a
JSON document. In case you don’t, here’s a very quick introduction to
JSON.
JSON, described in RFC 4627, is a standard for representing simple
data structures in plain text. It uses double quotes to describe
strings:
"this is a string"
It uses square brackets to describe lists:
[1, 2, 3]
It uses curly brackets to describe objects (collections of key-value pairs):
{"key": "value"}
JSON data looks a lot like JavaScript or Python code. The JSON
standard puts constraints on plain text. It says that a bare string
like It was the best of times. is unacceptable, even though a human
being can look at it and see what’s going on. To be valid JSON, a
string has to go inside double quotes: "It was the best of times."

Collection+JSON

So, this entity-body document is JSON, right? Not so fast! You can
feed this document into a JSON parser without crashing the parser, but
that’s not what the web server wants you to do. Here’s what the server
said:
Content-Type: application/vnd.collection+json
That conflicts with the JSON RFC, which says a JSON document should be
served as application/json, like this:
Content-Type: application/json
So what is this application/vnd.collection+json stuff? Clearly this
format is based on JSON, since it looks like JSON and its media type
has “json” in the name. But what is it, really?
If you search the web for application/vnd.collection+json, you’ll
discover that it’s a media type registered for
Collection+JSON.[7] When you make a GET
request to http://www.youtypeitwepostit.com/api/, you don’t get just
any JSON document—you get a Collection+JSON document.
In Chapter 6, I’ll talk about Collection+JSON in detail, but here’s the
short version. Collection+JSON is a standard for publishing a
searchable list of resources over the Web. JSON puts constraints on
plain text, and Collection+JSON puts constraints on JSON. A server
can’t serve just any JSON document as
application/vnd.collection+json. It can only serve a JSON object:
{}
But not just any object. The object has to have a property called
collection, which maps to another object:
{"collection": {}}
The “collection” object ought to have a property called items that
maps to a list:
{"collection": {"items": []}}
The items in the “items” list need to be objects:
{"collection": {"items": [{}, {}, {}]}}
And on and on, constraint after constraint. Eventually you get the
highly formatted document you just saw, which starts out like this:
{ "collection":
 {
 "version" : "1.0",
 "href" : "http://www.youtypeitwepostit.com/api/",
 "items" : [

 { "href" : "http://www.youtypeitwepostit.com/api/messages/21818525390699506",
 "data": [
 { "name": "text", "value": "Test." },
 { "name": "date_posted", "value": "2013-04-22T05:33:58.930Z" }
],
 "links": []
 },
...
}
Look at the document as a whole, and the purpose of all these
constraints becomes clear. Collection+JSON is a way of serving
lists—not lists of data structures, which you can do with normal
JSON, but lists that describe HTTP resources.
The collection object has an href property, and its value is a JSON
string. But it’s not just any string—it’s the URL I just sent a GET request
to:
{ "collection":
 {
 "href" : "http://www.youtypeitwepostit.com/api/"
 }
}
The Collection+JSON standard defines this string as “the address used
to retrieve a representation of the document” (in other words, it’s
the URL of the collection resource). Each object inside the
collection’s items list has its own href property, and each value
is a string containing a URL, like
http://www.youtypeitwepostit.com/api/messages/21818525390699506 (in
other words, each item in the list represents an HTTP resource with
its own URL).
A document that doesn’t follow these rules isn’t a Collection+JSON
document: it’s just some JSON. By allowing yourself to be bound by
Collection+JSON’s constraints, you gain the ability to talk about
concepts like resources and URLs. These concepts are not defined in
JSON, which can only talk about simple things like strings and lists.

Writing to an API

How would I use the API to publish a message to the microblog? Here’s
what the Collection+JSON specification has to say:
To create a new item in the collection, the client first uses the
template object to compose a valid item representation and then uses
HTTP POST to send that representation to the server for processing.

That’s not exactly a step-by-step description, but it points toward
the answer. Collection+JSON works along the same lines as HTML. The
server provides you with some kind of form (the template), which you
fill out to create a document. Then you send that document to the
server with a POST request.
Again, Chapter 6 covers Collection+JSON in detail, so here’s the quick
version. Look at the big object I showed you earlier. Its template
property is the "template object” mentioned in the Collection+JSON
specification:
 {
 ...
 "template": {
 "data": [
 {"prompt": "Text of message", "name": "text", "value":""}
]
 }
To fill out the template, I replace the empty string under
value with the string I want to publish:
 { "template":
 {
 "data": [
 {"prompt": "Text of the message", "name": "text", "value": "Squid!"}
]
 }
 }
I then send the filled-out template as part of an HTTP POST request:
POST /api/ HTTP/1.1
Host: www.youtypeitwepostit.com
Content-Type: application/vnd.collection+json

{ "template":
 {
 "data": [
 {"prompt": "Text of the message", "name": "text", "value": "Squid!"}
]
 }
}
(Note that my request’s Content-Type is
application/vnd.collection+json. This filled-out template is a valid
Collection+JSON document all on its own.)
The server responds:
HTTP/1.1 201 Created
Location: http://www.youtypeitwepostit.com/api/47210977342911065
The 201 response code (Created) is a little more specific than 200
(OK); it means that everything is OK and that a new resource was
created in response to my request. The Location header gives the URL
to the newborn resource.
In Chapter 1, Alice posted to the microblogging site using the web
interface. Now I’ve successfully done the same thing using the site’s
web API.

HTTP POST: How Resources Are Born

To add a new item to a collection, you send a POST request to the URL
of the collection. This isn’t just how Collection+JSON does
things. It’s a basic fact about HTTP. RFC 2616, the HTTP
specification, has this to say about POST:
POST is designed to allow a uniform method to cover the following
functions:
	
Annotation of existing resources;

	
Posting a message to a bulletin board, newsgroup, mailing list,
or similar group of articles;

	
Providing a block of data, such as the result of submitting a
form, to a data-handling process;

	
Extending a database through an append operation.

That second bullet point, “posting a message to a… group of
articles,” covers the microblog exactly.
The POST request I sent looks a lot like an HTTP response. It’s got
a Content-Type header and an entity-body. Although the GET request I
showed earlier didn’t provide any headers, any HTTP request can have
headers, and there are a number of headers (such as Accept) that
are very important in GET requests. I’ll be discussing especially
important HTTP headers as they show up, but be sure to consult
Appendix B for the complete list of standard HTTP headers.
Let’s move on. Once again, here’s the response I got to my POST
request:
201 Created
Location: http://www.youtypeitwepostit.com/api/47210977342911065
When you get a 201 response code, the Location header tells you
where to look for the thing you just created. RFC 2616 specifies the
meaning of the 201 response code and the Location header, but the
Collection+JSON specification mentions this as well, just to be clear.
If I send the following GET request:
GET /api/47210977342911065 HTTP/1.1
Host: www.youtypeitwepostit.com
I’ll see a familiar sight:
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json

{ "collection":
 {
 "version" : "1.0",
 "href" : "http://www.youtypeitwepostit.com/api/47210977342911065",
 "items" : [

 { "href" : "http://www.youtypeitwepostit.com/api/messages/47210977342911065",
 "data": [
 { "name": "date_posted", "value": "2014-04-20T20:15:32.858Z" },
 { "name": "text", "value": "Squid!" }
],
 "links": []
 }
]
 }
}
This individual microblog post is represented as a full
application/vnd.collection+json document. It’s a collection with
an items list that only contains one item. The filled-out template
was also a valid application/vnd.collection+json document, even
though it didn’t use the collection property at all.
This is a convenience feature of Collection+JSON. Almost everything in
the document is optional. It means you don’t have to write different
parsers to handle different types of documents. Collection+JSON uses
the same JSON format to represent lists of items, individual items,
filled-out templates, and search results.

Liberated by Constraints

One counterintuitive lesson of RESTful design is that constraints can
be liberating. The safety constraint of HTTP’s GET method is a good
example. Thanks to the safety constraint, you know that if you don’t
know what to do with a URL, you can always GET it and look at the
representation. Even if that doesn’t help, nothing terrible will
happen just because you made a GET request. That’s a liberating
promise, and it’s only possible because of a very severe constraint on
the server side.
If the server sends you a plain text document that says 9, you have
no way to know if it’s supposed to be the number nine or the string
“9”. But if you get a JSON document that says 9, you know it’s a
number. The JSON standard constrains the meaning of the document, and
that makes it possible for client and server to have a meaningful
conversation.
Over the past few years, hundreds of companies have gone through this
general line of thinking:
	
We need an API.

	
We’ll use JSON as the document format.

	
We’ll use JSON to publish lists of things.

All three of these are good ideas, but they don’t say much about what
the API should look like. The end result is hundreds of APIs that are
superficially similar (they all use JSON to publish lists of things!)
but completely incompatible. Learning one API doesn’t help a client
learn the next one.
This is a sign that more constraints are necessary. The
Collection+JSON standard provides some more constraints. If I’d come
up with my own custom API design instead of using Collection+JSON, an
individual item in my list might have looked like this:
{
 "self_link": "http://www.youtypeitwepostit.com/api/messages/47210977342911065",
 "date": "2014-04-20T20:15:32.858Z",
 "text": "Squid!"
}
Instead, because I followed the Collection+JSON constraints, an
individual item looks like this:
 { "href" : "http://www.youtypeitwepostit.com/api/messages/1xe5",
 "data": [
 { "name": "date_posted", "value": "2014-04-20T20:15:32.858Z" },
 { "name": "text", "value": "Squid!" }
],
 "links": []
 }
The custom design is certainly more compact, but that’s not very
important—JSON compresses very well. In exchange for this less
compact representation, I get a number of useful features:
	
I don’t have to tell all my users that the value of href is a
URL, and I don’t have to explain what it’s the URL of. The
Collection+JSON standard says that an item’s href contains the URL
to the item.

	
I don’t have to write a separate human-readable document explaining
to my users that text is the text of the message. That information
goes where it’s actually needed—in the template you fill out to post a
new message:

 "template": {
 "data": [
 {"prompt": "Text of the message", "name": "text", "value": null}
]
 }

	
Any library that understands application/vnd.collection+json
automatically knows how to use my API. If I came up with a custom
design, I’d have to write brand new client code based on nothing but a
JSON parser and an HTTP library, or ask all my users to write that
code themselves.

By submitting to the Collection+JSON constraints, I free myself from
having to write a whole lot of documentation and code, and I free my
users from having to learn yet another custom API.

Application Semantics Create the Semantic Gap

Of course, the Collection+JSON constraints don’t constrain
everything. Collection+JSON doesn’t specify that the items in a
collection should be microblog posts with a date_posted and a
text. I made that part up, because I wanted to design a simple
microblogging example for this book. If I’d chosen to do a “recipe
book” example, I could still use Collection+JSON, but the items
would have data fields like ingredients and preparation_time.
I’m going to call these extra bits of design the application
semantics, because they vary from one application to
another. Application semantics are the cause of the semantic gap I
mentioned in Chapter 1.
If I were designing a real microblogging API, I’d come up with
application semantics more complicated than just text and
date_posted. That’s fine, on its own. But there are currently dozens
of companies designing microblogging APIs, coming up with dozens of
designs that feature mutually incompatible application semantics,
creating dozens of distinct semantic gaps. All of these companies are
doing the same thing in different ways. Their users have to write
different software clients to accomplish the same task.
The fact that Collection+JSON doesn’t solve this problem doesn’t mean
there’s no point to using Collection+JSON. Compatibility is a matter
of degree. We took a big step toward compatibility in the 1990s when
we stopped inventing custom Internet protocols and standardized on
HTTP. If we all agreed to serve JSON documents, that might not be a
good idea technically, but it would narrow the semantic gap.
Standardizing on Collection+JSON would narrow it even more.
If the publishers of microblogging APIs got together and agreed to use
a common set of application semantics, the semantic gap for microblogging would disappear
almost entirely. (This would be a profile, and I’ll cover this idea
in Chapter 8.) The more constraints we share and the more compatible our
designs, the smaller the semantic gap and the more our users
benefit.
Maybe you don’t want your API to be interoperable with your
competitor’s APIs, but there are better ways to differentiate yourself than
by artificially widening the semantic gap. My goal for this book is to
get you focused on the parts of your API that have something new to
offer, in the spots where a semantic gap exists because no one else
has ever taken that path.

[7] Collection+JSON is a personal standard defined at
this page.

Chapter 3. Resources and Representations

So far I’ve shown you two examples of REST in action: a website
(Chapter 1) and a web API (Chapter 2). I’ve talked in terms of
examples, because there’s no RFC for REST the way there is for HTTP or
JSON.
REST is not a protocol, a file format, or a development framework. It’s
a set of design constraints: statelessness, hypermedia as the engine
of application state, and so on. Collectively, we call these the
Fielding constraints, because they were first identified in Roy T.
Fielding’s 2000 dissertation on software architecture, which gathered
them together under the name “REST.”
The runaway popularity of the term “REST” is out of proportion to the
importance of REST to Fielding’s dissertation. Fielding used REST
primarily as an example, to tie something you’re already familiar
with (the Web) into a general design process. REST became popular
because the term happens to describe the architecture of one of the
most successful technologies in human history.
In this chapter, I’ll finish my explanation of the Fielding constraints
in terms of the World Wide Web. My “bible,” as it were, will not be
the Fielding dissertation. (You can see Appendix C for a detailed,
API-centric discussion of Fielding.) Instead, I’ll be drawing from the
W3C’s guide to the Web, The Architecture of the World Wide Web,
Volume One (there is no Volume Two). The Fielding dissertation explains the decisions
behind the design of the Web, but Architecture explains the three
technologies that came out of those decisions: URL, HTTP, and HTML.
I’m sure you already know about these technologies, but understanding
them on a deep level is the key to understanding the Fielding
constraints, how those constraints drive the success of the Web, and
how you can exploit those constraints in your own APIs.
Underlying the three web technologies are two essential concepts:
resources and representations. I’ve mentioned them before, but now
it’s time to take a closer look.
A Resource Can Be Anything

A resource is anything that’s important enough to be referenced
as a thing in itself. If your users might “want to create a
hypertext link to it, make or refute assertions about it, retrieve or
cache a representation of it, include all or part of it by reference
into another representation, annotate it, or perform other operations
on it” (Architecture), you should make it a resource.
A resource is usually something that can be stored on a computer: an
electronic document, a row in a database, or the result of running an
algorithm. Architecture calls these “information resources,” because
their native form is a stream of bits. But a resource can be anything
at all: a pomegranate, a human being, the color black, the concept of
courage, the relationship between mother and daughter, or the set of
all prime numbers. The only restriction is that every resource must
have a URL.
Do you remember that thing, the thing you had a while ago, but
then… do you know what I’m talking about? Of course you don’t. I
wasn’t specific enough. I could have been talking about anything. It’s
the same on the Web. Clients and servers can only talk about something
if they can agree on a name for it. On the Web, we use a URL to give
each resource a globally unique address. Giving something a URL
turns it into a resource.
From the client’s perspective, it doesn’t matter what a resource is,
because the client never sees a resource. All it ever sees are URLs
and representations.

A Representation Describes Resource State

A pomegranate can be an HTTP resource, but you can’t transmit a
pomegranate over the Internet. A row in a database can be an HTTP
resource; in fact, it can be an information resource, because you
can literally send it over the Internet. But what would the client
do with a chunk of binary data, ripped from an unknown database
without any context?
When a client issues a GET request for a resource, the server should
serve a document that captures the resource in a useful way. That’s a
representation—a machine-readable explanation of the current state of
a resource. The size and ripeness of the pomegranate, the data
contained in the database fields.
The server might describe a database row as an XML document, a JSON
object, a set of comma-separated values, or as the SQL INSERT
statement used to create it. These are all legitimate representations;
it depends on what the client asks for.
One application might represent a pomegranate as an item for sale,
using a custom XML vocabulary. Another might represent it with a
binary image taken by a Pomegranate-Cam. It depends on the
application. A representation can be any machine-readable document
containing any information about a resource.

Representations Are Transferred Back and Forth

In Chapter 2, I showed a client using a POST request to
create a new microblog entry. The client then sent an HTTP GET request,
asking for a representation of the new entry:
GET /api/5266722824890167 HTTP/1.1
Host: www.youtypeitwepostit.com
The server responded with a representation in
application/vnd.collection+json format, which looked like this:
HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
...
{
 "collection" :
 {
 "version" : "1.0",
 "href" : "http://localhost:1337/api/",

 "items" :
 [{
 "href": "http://localhost:1337/api/5266722824890167",
 "data": [
 {
 "name": "text",
 "value": "tasting"
 },
 {
 "name": "date_posted",
 "value": "2013-01-09T15:58:22.674Z"
 }
]
 }],

 "template" : {
 "data" : [
 {
 "prompt" : "Text of message",
 "name" : "text",
 "value" : ""
 }
]
 }
 }
}
But there’s another representation of that entry: the one the client
sent to the server in the first place, along with the POST
request. That was also an application/vnd.collection+json document,
and it looked like this:
{ "template":
 {
 "data": [
 {"prompt": "Text of the message", "name": "text", "value": "Squid."}
]
 }
}
The two representations look significantly different. One of them has
the essential information in a template object, and the other has it
in an items list. But they’re clearly different representations of
the same resource: a microblog entry that says, “Squid.”
When a client makes a POST request to create a new resource, it sends
a representation: the client’s idea of what the new resource should
look like. The server’s job is to create that resource, or else refuse
to create it. The client’s representation is just a suggestion. The
server may add to, alter, or ignore any part of it. (Here, the server
added a date_posted value to the data.)
The Web works the same way. Back in Chapter 1, my fictional character
Alice created a new entry on a microblogging website by sending a POST
request, along with a representation in
application/x-www-form-urlencoded format:
message=Test&submit=Post
That doesn’t look anything like the complex HTML document Alice got in
return, but they were both representations of a microblog post that
says, “Test.”
We think of representations as something the server sends to the
client. That’s because when we surf the Web, most of our requests are
GET requests. We’re asking for representations. But in a POST, PUT, or
PATCH request, the client sends a representation to the server. The
server’s job is then to change the resource state so it reflects the
incoming representation.
The server sends a representation describing the state of a
resource. The client sends a representation describing the state it
would like the resource to have. That’s representational state
transfer.

Resources with Many Representations

A resource can have more than one representation. Government documents
are often made available in multiple languages. Some resources have an
overview representation that doesn’t convey much state, and a
detail representation that includes everything. Some APIs serve the
same data in JSON and XML-based data formats. When this happens, how
is the client supposed to specify which representation it wants?
There are two strategies, and I’ll describe them in detail in Chapter 11. The first is content negotiation, in which the client
distinguishes between representations based on the value of an HTTP
header. The second is to give the resource multiple URLs—one URL for
every representation.
Just as one person may be addressed by different names in different
contexts,[8] one resource may be identified by many URLs. When
this happens, the server that publishes the resource should designate
one of those URLs the official or “canonical” URL. I’ll cover those
details, too, in Chapter 11.

The Protocol Semantics of HTTP

Although a resource can be anything at all, a client can’t do whatever
it wants to a resource. There are rules. In a RESTful system, clients
and servers interact only by sending each other messages that follow a
predefined protocol.
In the world of web APIs, that protocol is HTTP. (But see Chapter 13
for a RESTful API architecture that doesn’t use HTTP.) API clients can
interact with APIs by sending a few different types of HTTP
messages.
The HTTP standard defines eight different kinds of messages. These
four are the most commonly used:
	
GET

	
 Get a representation of this resource.

	
DELETE

	
 Destroy this resource.

	
POST

	
 Create a new resource underneath this one, based on the given representation.

	
PUT

	
 Replace this state of this resource with the one described in the given representation.

These two methods are mostly used as a client explores an API:
	
HEAD

	
 Get the headers that would be sent along with a
 representation of this resource, but not the representation itself.

	
OPTIONS

	
 Discover which HTTP methods this resource responds to.

The other two methods defined in the HTTP standard, CONNECT and TRACE,
are only used with HTTP proxies. I won’t be covering them.
I recommend that API designers consider a ninth HTTP method, defined
not in the HTTP standard but in a supplement, RFC 5789:
	
PATCH

	
 Modify part of the state of this resource based on the
 given representation. If some bit of resource state is not mentioned
 in the given representation, leave it alone. PATCH is like PUT, but
 allows for fine-grained changes to resource state.

I’d also like you to know about two extension HTTP methods that are
currently going through the standards process. They’re defined in the
Internet-Draft “snell-link-method,” and I’ll come back to them in
Chapter 11, at which point they should make a lot more sense:
	
LINK

	
Connect some other resource to this one.

	
UNLINK

	
Destroy the connection between some other resource and this
one.

Collectively, these methods define the protocol semantics of
HTTP. Just by looking at the method used in an HTTP request, you can
understand approximately what the client wants: whether it’s trying
to get a representation, delete a resource, or connect two
resources together.
You can’t understand exactly what’s going on, because a resource can
be anything at all. A GET request sent to a “blog post” resource looks
just like the GET request sent to a “stock symbol” resource. Those two
requests have identical protocol semantics, but different application
semantics. HTTP is HTTP, but a blogging API is not a stock quote API.
We can’t meet the semantic challenge just by using HTTP correctly,
because the HTTP protocol doesn’t define any application
semantics. But your application semantics should always be
consistent with HTTP’s protocol semantics. “Get a blog post” and
“get a stock quote” both fall under “get a representation of this resource,”
so both requests should use HTTP GET.
The following sections provide a more detailed look at the protocol semantics of the most
popular HTTP methods.
GET

You’re surely familiar with this method already. The client sends a
GET request to ask for a representation of a resource, identified by a
URL. Here, the client asks for a representation of a microblog post,
and the server sends it in application/vnd.collection+json format:
GET /api/45ty HTTP/1.1
Host: www.youtypeitwepostit.com

HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
...

{
 "collection" :
 {
 "version" : "1.0",
 "href" : "http://localhost:1337/api/",

 "items" :
 [{
 "href": "http://localhost:1337/api/2csl73jr6j5",
 "data": [
 {
 "name": "text",
 "value": "Bird"
 },
 {
 "name": "date_posted",
 "value": "2013-01-24T18:40:42.190Z"
 }
]
 }],

 "template" : {
 "data" : [
 {"prompt" : "Text of message", "name" : "text", "value" : ""}
]
 }
 }
}
I mentioned earlier that GET is defined as a safe HTTP method. It’s
just a request for information. Sending a GET request to the server
should have the same effect on resource state as not sending a GET
request—that is, no effect at all. Incidental side effects like
logging and rate limiting are OK, but a client should never make a
GET request hoping that it will change the resource state.
The most common response code to a GET request is 200 (OK). Redirect
codes like 301 (Moved Permanently) are also common.

DELETE

The client sends a DELETE request when it wants a resource to go
away. The client wants the server to destroy the resource and never
refer to it again. Of course, the server is not obliged to delete
something it doesn’t want to.
In this HTTP snippet, the client asks to delete a microblog post:
DELETE /api/45ty HTTP/1.1
Host: www.youtypeitwepostit.com
The server returns the status code 204 (No Content), indicating that
it’s deleted the post and has nothing more to say about it:
HTTP/1.1 204 No Content
If a DELETE request succeeds, the possible status codes are 204 (No
Content, i.e., “it’s deleted, and I don’t have anything more to say
about it”), 200 (OK, i.e., “it’s deleted, and here’s a message about
that”); and 202 (Accepted, i.e., “I’ll delete it later”).
If a client tries to GET a resource that has been DELETEd, the server
will return an error response code, usually 404 (Not Found) or 410
(Gone):
GET /api/45ty HTTP/1.1
Host: www.youtypeitwepostit.com

HTTP/1.1 404 Not Found

Idempotence

DELETE is obviously not a safe method. Sending a DELETE request is
very different from not sending a DELETE request. But the DELETE
method has another useful property: it’s idempotent.
Once you delete a resource, it’s gone. The resource state has
permanently changed. You can send another DELETE request, and you
might get a 404 error, but the resource state is exactly as it was
after the first request. The resource is still gone. That’s
idempotence. Sending a request twice has the same effect on resource
state as sending it once.
Idempotence is a useful feature, because the Internet is not a reliable
network. Suppose you send a DELETE request and your connection times
out. You never got a response, so you don’t know if the DELETE went
through. You can just send that DELETE request again, and keep trying
until you get a response. Nothing extra will happen if a DELETE
goes through twice instead of once.
The notion of idempotence comes from math. Multiplying a number by
zero is an idempotent operation. 5 × 0 is zero, but 5 × 0 × 0 is also
zero. Once you multiply a number by zero, you can keep multiplying it
by zero indefinitely and get the same result: zero. HTTP DELETE
effectively multiplies a resource by zero.
Multiplying by 1 is a safe operation, the way HTTP GET is supposed to
be safe. You can multiply a number by 1 all day long, and nothing will
change. Every safe operation is also idempotent.

POST-to-Append

POST is the other HTTP method you’ve surely used before. The POST
method has two jobs, which I’ll cover separately. The first is
POST-to-append, in which sending a POST request to a resource
creates a new resource underneath it. When a client sends a
POST-to-append request, it sends a representation of the resource it
wants to create in the request’s entity-body.
I used POST-to-append in Chapter 2 to add a new post to the
microblog API. Since I deleted that post while demonstrating
DELETE, let’s create a new one:
POST /api/ HTTP/1.1
Content-Type: application/vnd.collection+json

{
 "template" : {
 "data" : [
 {"name" : "text", "value" : "testing"}
]
 }
}
The most common response code to a POST-to-append request is 201
(Created). It lets the client know that a new resource was
created. The Location header lets the client know the URL to this
new resource. Another common response code is 202 (Accepted), which
means that the server intends to create a new resource based on the
given representation, but hasn’t actually created it yet.
The POST method is neither safe nor idempotent. If I send this POST
request five times, I’ll probably end up with five new microblog
posts, each with the same text but a slightly different
date_created.
That’s POST-to-append. But you’ve probably used POST for all sorts of
things other than “create a new resource.” That’s the other job of
POST. That’s called overloaded POST, and I’ll talk about it later in
this chapter.

PUT

A PUT request is a request to modify resource state. The client
takes the representation it got from a GET request, modifies it, and
sends it back as the payload of a PUT request. Here, I’m going to
modify the text of a microblog post (I want the value of the text
field to be the string tasting, instead of whatever it was before):
PUT /api/q1w2e HTTP/1.1
Content-Type: application/vnd.collection+json

{
 "template" : {
 "data" : [
 {"name" : "text", "value" : "tasting"}
]
 }
}
The server is free to reject a PUT request because the entity-body doesn’t
make sense, because the entity-body tries to change a bit of resource
state the server considers read-only, or really for any reason at
all. If the server decides to accept a PUT request, the server changes
the resource state to match what the client says in the
representation, and usually sends either 200 (OK) or 204 (No Content).
PUT is idempotent, just like DELETE. If you send the same PUT request
10 times, the result is the same as if you’d only sent it once.
The client can also use PUT to create a new resource, if it
knows the URL where the new resource should live. In the following hypothetical
example, I’m creating a new microblog post, and I happen to know the
URL of the new post:
PUT /api/a1s2d3
Content-Type: application/vnd.collection+json

{
 "template" : {
 "data" : [
 {"name" : "text", "value" : "Created."}
]
 }
}
How is the client supposed to construct that magical URL? We’ll look
at some possibilities, Chapter 4. For now, just note that PUT
is an idempotent operation even when you use it to create a new
resource. If I send that PUT request five times, it won’t create five
posts with the same text (the way five POST requests might).

PATCH

Representations can get really big. “Modify the representation and PUT
it back” is a simple rule, but if you just want to change one little
bit of resource state, it can be pretty wasteful. The PUT rule can
also lead to unintentional conflicts with other users who are
modifying the same document. It would be nice if you could just send
the server the parts of the document you want to change.
The PATCH method allows for this. Instead of PUTting a full
representation, you can create a special “diff” representation and
send it to the server as the payload of a PATCH request. RFC 5261
describes a patch format for XML documents, and RFC 6902 describes a
similar format for JSON documents:
PATCH /my/data HTTP/1.1
Host: example.org
Content-Length: 326
Content-Type: application/json-patch+json
If-Match: "abc123"

[
 { "op": "test", "path": "/a/b/c", "value": "foo" },
 { "op": "remove", "path": "/a/b/c" },
 { "op": "add", "path": "/a/b/c", "value": ["foo", "bar"] },
 { "op": "replace", "path": "/a/b/c", "value": 42 },
 { "op": "move", "from": "/a/b/c", "path": "/a/b/d" },
 { "op": "copy", "from": "/a/b/d", "path": "/a/b/e" }
]
The best response codes for a successful PATCH are the same as for PUT
and DELETE: 200 (OK) if the server wants to send data (such as an
updated representation of the resource) along with its response, and
204 (No Content) if the server just wants to indicate success.
PATCH is neither safe nor idempotent. A PATCH request might turn out
to be idempotent, so that if you accidentally apply the same patch
twice to the same document, you get an error the second time. But
that’s not in the standard. As far as PATCH’s protocol semantics are
concerned, it’s an unsafe operation, like POST.
Remember that PATCH is not defined in the HTTP specification. It’s an
extension designed specifically for web APIs, and it’s relatively
recent (RFC 5789 was published in 2010). This means that tool support
for PATCH, and for the diff documents it uses, is not as good as the
support for PUT.

LINK and UNLINK

LINK and UNLINK manage the hypermedia links between resources. To
understand these methods, you must understand hypermedia and link
relations, so I’m going to defer a detailed discussion to Chapter 11. I’ll just show some simple examples here.
Here’s an UNLINK request that removes the link between a story
(identified by http://www.example.com/story) and its author
(identified by http://www.example.com/~omjennyg):
UNLINK /story HTTP/1.1
Host: www.example.com
Link: <http://www.example.com/~omjennyg>;rel="author"
And here’s a LINK request that declares some other resource
(identified by http://www.example.com/~drmilk) to be the author of
the story resource:
LINK /story HTTP/1.1
Host: www.example.com
Link: <http://www.example.com/~drmilk>;rel="author"
LINK and UNLINK are idempotent, but not safe. These methods are
defined in an Internet-Draft (“snell-link-method”), and until that
draft is approved as an RFC, tool support for them will be even worse
than for PATCH.

HEAD

HEAD is a safe method, just like GET. In fact, it’s best to think of
HEAD as a lightweight version of GET. The server is supposed to treat
a HEAD request exactly the same as a GET request, but it’s not
supposed to send a an entity-body—only the HTTP status code and
the headers:
HEAD /api/ HTTP/1.1
Accept: application/vnd.collection+json

HTTP/1.1 200 OK
Content-Type: application/vnd.collection+json
ETag: "dd9b7c436ab247a7b69f355f2d57994c"
Last-Modified: Thu, 24 Jan 2013 18:40:42 GMT
Date: Thu, 24 Jan 2013 19:14:23 GMT
Connection: keep-alive
Transfer-Encoding: chunked
Using HEAD instead of GET may not save any time (the server still has
to generate all the appropriate HTTP headers), but it will definitely
save bandwidth.

OPTIONS

OPTIONS is a primitive discovery mechanism for HTTP. The response to
an OPTIONS request contains the HTTP Allow header, which lays out
which HTTP methods the resource supports. Here’s an OPTIONS
request to the microblog post I created in the PUT example:
OPTIONS /api/a1s2d3 HTTP/1.1
Host: www.youtypeitwepostit.com

200 OK
Allow: GET PUT DELETE HEAD OPTIONS
Now I know something about the HTTP requests I can make next. I can
GET a representation of this resource, modify it with PUT, or delete
it with DELETE. This resource supports HEAD and (of course) OPTIONS,
but it doesn’t understand the PATCH extension, or LINK or UNLINK.
OPTIONS is a good idea, but almost nobody uses it. Well-designed APIs
advertise a resource’s capabilities by serving hypermedia documents
(see Chapter 4) in response to GET requests. The links and forms in
those documents explain what HTTP requests a client can make
next. Poorly designed APIs use human-readable documentation to explain
which HTTP requests a client can make.

Overloaded POST

Now it’s time to reveal the skeleton in the HTTP closet. The HTTP POST
method has a dirty secret, one you’ve certainly encountered if you’ve
ever worked in web development. POST is not solely used to create new
resources. On the Web we surf with our browsers, HTTP POST is used to
convey any kind of change. It’s PUT, DELETE, PATCH, LINK, and
UNLINK all rolled into one.
Here’s an HTML form you might see on the Web. The purpose of the form
is to edit a previously published blog post:
<form method="POST" action="/blog/entries/123">
 <textarea>
 Original content of the blog post.
 </textarea>
 <input type="submit" class="edit-post" value="Edit this blog post.">
</form>
In terms of protocol semantics, this operation—“edit this blog
post”—sounds like a PUT request. But an HTML form can’t trigger a PUT
request. The HTML data format doesn’t allow it. So we use POST instead.
This is completely legal. The HTTP specification says that POST can be used
for:
Providing a block of data, such as the result of submitting a
form, to a data-handling process

That “data-handling process” can be anything. It’s legal to send any
data whatsoever as part of a POST request, for any purpose at all. The
definition is so vague that a POST request really has no protocol
semantics at all. POST doesn’t really mean “create a new resource”;
it means “whatever!”
I call this “whatever!” usage of POST overloaded POST. Because an
overloaded POST request has no protocol semantics, you can only
understand it in terms of its application semantics.
I’ll have a lot to say about application semantics in the next few
chapters, so for now I’ll just point them out in this HTML form. The application semantics in that form are the CSS class
attached to the submit button (edit-post) and the human-readable
label attached to the button (“Edit this blog post.”)
Those two strings are not much to work from. Until recently,
application semantics were so poorly understood that I recommended not
using overloaded POST at all. But if you follow the advice I give in
Chapter 8, you can use a profile to reliably communicate application
semantics to your clients. It won’t be as reliable as the protocol
semantics—every HTTP client ever made knows what GET means—but
you’ll be able to do it.
Since an overloaded POST request can do anything at all, the POST
method is neither safe nor idempotent. One particular overloaded POST
request may turn out to be safe, but as far as HTTP is concerned,
POST is unsafe.

Which Methods Should You Use?

A RESTful system is made up of independent components: servers,
clients, caches, proxies, caching proxies, and so on. These components
were created by different people, they’ve never heard of each other
before they start talking, and they can only communicate by passing
documents back and forth over HTTP (or some similar protocol). It’s
essential that everyone agree on a set of protocol semantics ahead of
time, or the components won’t understand each other.
The protocol semantics of HTTP are mostly defined by the HTTP
methods. But there’s a lot of redundancy in these methods. PUT can
substitute for PATCH. GET can do the job of HEAD. POST can substitute
for anything. Do we really need all these methods?
There’s no official set of protocol semantics. We can have a lot of
fun arguing over which HTTP methods are the best, but it really comes
down to membership in a community. When you choose the HTTP methods
you’re going to use, you choose a community of clients and other
components that understand those methods.
The methods I recommend for use in most web APIs are GET, POST,
PUT, DELETE, and PATCH. But I can think of a lot of cases where I’d
recommend different methods:
	
Before 2008, the PATCH method didn’t exist. Back then, the method
set I recommended for web APIs was GET, POST, PUT, and DELETE.

	
In 1997, the first version of the HTTP 1.1 specification (RFC 2068)
defined the HTTP methods LINK and UNLINK. In 1999, these methods
were removed from the final specification (RFC 2616), because no one
was using them.

LINK and UNLINK were part of HTTP’s official protocol semantics for
about two years. Then they went away. Since these methods would be
useful in a lot of APIs, the Internet-Draft “snell-link-method” is
trying to bring them back.

	
The WebDAV standard (specified in RFC 4918, and covered briefly in
Chapter 11) defines seven new HTTP methods for use in APIs that
treat HTTP resources as though they were files on a
filesystem. These methods include COPY, MOVE, and LOCK.

	
When we humans surf around on our web browsers, we completely
ignore most of the methods defined in the HTTP specification, and
get by with just GET and POST. That’s because the protocol semantics
of HTML documents only allow for GET and POST.

	
The CoAP protocol (described in Chapter 13) defines the methods GET,
POST, PUT, and DELETE. These methods were named after HTTP methods,
but they mean slightly different things, because CoAP is not HTTP.

If you want an API entirely described by HTML documents, then your
protocol semantics are limited to GET and POST. If you want to speak
to filesystem GUI applications like Microsoft’s Web Folders, you’ll be
using HTTP plus the WebDAV extensions. If you need to talk to a wide
variety of HTTP caches and proxies, you should stay away from PATCH
and other methods not defined in RFC 2616.
Some communities are bigger than others. When you go off the path and
make up your own protocol semantics, you’re isolating yourself in a
community of one.

[8] “Hey, Mike!”, “@mamund”, “Good evening,
Mr. Amundsen.”

Chapter 4. Hypermedia

The story so far: URLs identify resources. A client makes HTTP
requests to those URLs. A server sends representations in response,
and over time the client builds up a picture of the resource state, as
seen through the representations. Eventually the client makes that
fateful PUT or POST or PATCH request, sending a representation back to
the server and modifying resource state.
Look closer, and you’ll see a question that hasn’t been answered: how
does the client know which requests it can make? There are infinitely
many URLs. How does a client know which URLs have representations
behind them and which ones will give a 404 error? Should the client
send an entity-body with its POST request? If so, what should the
entity-body look like? HTTP defines a set of protocol semantics, but
which subset of those semantics does this web server support on
this URL right now?
The missing piece of the puzzle is hypermedia. Hypermedia connects
resources to each other, and describes their capabilities in
machine-readable ways. Properly used, hypermedia can solve—or at
least mitigate—the usability and stability problems found in
today’s web APIs.
Like REST, hypermedia isn’t a single technology described by a
standards document somewhere. Hypermedia is a strategy, implemented in
different ways by dozens of technologies. I’ll cover several
hypermedia standards in the next three chapters, and a whole lot more
in Chapter 10. It’s up to you to choose the technologies that fit your
business requirements.
The hypermedia strategy always has the same goal. Hypermedia is a way
for the server to tell the client what HTTP requests the client might
want to make in the future. It’s a menu, provided by the server, from
which the client is free to choose. The server knows what might
happen, but the client decides what actually happens.
There’s nothing new here. The World Wide Web works this way, and we
all take it for granted that it should work this way. Anything else
would be an unusable throwback to the 1980s. But in the world of APIs,
hypermedia is a confusing and controversial topic. That’s why today’s
APIs are terrible at managing change.
In this chapter, I want to dispel the mystery of hypermedia, so
you can create APIs that have some of the flexibility of the Web.
HTML as a Hypermedia Format

You’re probably already familiar with HTML,[9] so let’s start with an HTML example.
Here’s an HTML <a> tag:

 See the latest messages

This tag is a simple hypermedia control. It’s a description of an
HTTP request your browser might make in the near future. An <a> tag
is a signal to your browser that it can make an HTTP GET request that
would look something like this:
GET /messages HTTP/1.1
Host: www.youtypeitwepostit.com
The HTML standard says that when the user activates a link, the user
“visits” the resource on the other end of the link.[10] In practice, this
means fetching a representation of the resource and displaying it in
the browser window, replacing the original representation (the one
that included the link). Of course, that doesn’t happen
automatically. Nothing will happen until the user clicks on the
link. An <a> tag is a promise from the web server that a certain URL
names a resource you can visit. If you sent a GET request to a URL
you made up, such as http://www.youtypeitwepostit.com/give-me-the-messages?please=true,
you’d probably just get a 404 error.
Compare the <a> tag to another of HTML’s hypermedia controls, the
 tag:

The tag also describes an HTTP request your browser might make
in the near future, but there’s no implication that you’re moving from
one document to another. Instead, the representation of the linked
resource is supposed to be embedded as an image in the current
document. When your browser finds an tag, it makes the request
for the image automatically, without asking you to click on
anything. Then it incorporates the representation in the document
you’re viewing, again without asking your permission.
Let’s look at a more complex hypermedia control—an HTML form:
<form action="http://www.youtypeitwepostit.com/messages" method="post">
 <input type="text" name="message" value="" required="true" />
 <input type="submit" value="Post" />
</form>
This form describes a request to the URL
http://www.youtypeitwepostit.com/messages/. That’s the same URL I
used for the <a> tag. But the <a> tag described a GET request, and
this form describes a POST request.
This form doesn’t just give you the URL and send you off to make a
POST request. There are also two controls—a text field and a submit
button—which are rendered as GUI elements in a web browser.
When you click the submit button, the value you entered in the text
field and the value on the button are transformed into a representation, according to rules set
down in the HTML specification. Those rules say the media type of the
representation will be application/x-www-form-urlencoded, and it
will look something like this:
message=Hello%21&submit=Post
Putting it all together, that <form> tag tells your browser that it
can make a POST request that looks something like this:
POST /messages HTTP/1.1
Host: www.youtypeitwepostit.com
Content-Type: application/x-www-form-urlencoded

message=Hello%21&submit=Post
As with the <a> tag, the server’s guiding you, but its hand is
pretty light. If you don’t want to fill out this form, you can ignore
it. If you do fill out the form, you can put whatever you want in the
message field (although the server might reject certain values). The
<form> tag is the server telling you that, of all the possible POST
requests you might make, there’s one type of request that’s likely to
result in something useful. That’s a POST to /messages, which
includes a form-encoded entity-body that includes a value for
message.
Here’s one more <form> tag:
<form method="GET" action="http://www.youtypewepostit.com/messages/">
 <input type="text" id="query" name="query"/>
 <input type="submit" name="Search"/>
</form>
This form also has a text box you’re supposed to fill out, but the
form is telling you to make a GET request, and GET requests don’t
include an entity-body. Instead, the data you type into that text box
gets incorporated into the request URL—again, according to rules laid
out in the HTML specification.
If you fill out this form, the HTTP request your browser makes will
look something like this:
GET /messages/?query=rest HTTP/1.1
Host: www.youtypeitwepostit.com
To sum up, the familiar HTML controls allow the server to describe
four kinds of HTTP requests.
	
The <a> tag describes a GET request for one specific URL, which is
 made only if the user triggers the control.

	
The tag describes a GET request for one specific URL, which
 happens automatically, in the background.

	
The <form> tag with method="POST" describes a POST request to one
 specific URL, with a custom entity-body constructed by the
 client. The request is only made if the user triggers the control.

	
The <form> tag with method="GET" describes a GET request to a
 custom URL constructed by the client. The request is only made if
 the user triggers the control.

HTML also defines some more exotic hypermedia controls, and other data
formats may define controls that are stranger still. All of them fall
under the formal definition of hypermedia given in the Fielding
dissertation:
Hypermedia is defined by the presence of application control
information embedded within, or as a layer above, the presentation of
information.

The World Wide Web is full of HTML documents, and the documents are
full of things people like to read—prices, statistics, personal
messages, prose, and poetry. But all of those things fall under
presentation of information. In terms of presentation of
information, the Web isn’t much different from a printed book.
It’s the application control information that distinguishes an HTML
document from a book. I’m talking about the hypermedia controls that
people interact with all the time, but rarely examine closely. The
 tags that tell the browser to embed certain images, the <a> tags
that transport the end user to another part of the Web, and the
<script> tags that supply JavaScript for the browser to execute.
An HTML document that contains a poem will probably also feature a
link to “Other poems by this author,” or a form that lets the reader
“Rate this poem.” This is application control information that
couldn’t show up in a printed book of poetry. The presence of
application control information can certainly reduce the emotional
impact of a poem, but an HTML document containing only the text of a
poem is not a full participant in the Web. It’s just simulating a
printed book.

URI Templates

The custom URLs you can create using an HTML <form> tag are limited in
form. http://www.youtypeitwepostit.com/messages/?search=rest doesn’t
look very nice. On a technical level, this doesn’t matter. URLs don’t
have to look nice. URLs don’t even need to make sense to human
eyes. But we humans prefer nice-looking URLs, like
http://www.youtypeitwepostit.com/search/rest.
HTML’s hypermedia controls have no way of telling a browser how to
construct a URL like
http://www.youtypeitwepostit.com/search/rest. But URI Templates,
a different hypermedia technology, can do this. URI Templates are
defined in RFC 6570, and they look like this:
http://www.youtypeitwepostit.com/search/{search}
That’s not a valid URL, because it contains curly brackets. Those
brackets identify the string as a URI Template. RFC 6570 tells you how
to turn that string into an infinite number of URLs. It says you can
replace {search} with any string you want, so long as that string
would be valid in a URL:
	
http://www.youtypeitwepostit.com/search/rest

	
http://www.youtypeitwepostit.com/search/RESTful%20Web%20APIs

This HTML form:
<form method="GET" action="http://www.youtypeitwepostit.com/messages/">
 <input type="text" id="query" name="query"/>
 <input type="submit" name="Search"/>
</form>
is exactly equivalent to this URI Template:
http://www.youtypeitwepostit.com/messages/?query={query}
That’s a very common case, so the URI Templates standard defines a
shortcut for URLs that include a query string. This URI Template is
exactly equivalent to the previous one, and it’s also equivalent to the previous HTML form:
http://www.youtypeitwepostit.com/messages/{?query}
The URI Templates standard is full of examples, but here are a few
more sample templates, along with just a few of the URLs you can get
from them:
If parameter values are set to:
 var := "title"
 hello := "Hello World!"
 path := "/foo/bar"

Then these URI templates:
 http://www.example.org/greeting?g={+hello}
 http://www.example.org{+path}/status
 http://www.example.org/document#{+var}

Expand to these URLs:
 http://www.example.org/greeting?g=Hello%20World!
 http://www.example.org/foo/bar/status
 http://www.example.org/document#title
Although a URI Template is shorter and more flexible than an HTML GET
form, the two technologies aren’t much different. URI Templates and
HTML forms allow a web server to describe an infinite number of URLs
with a short string. The HTTP client can plug in some values, choose
one URL from that infinite family, and make a GET request to that
specific URL.
URI Templates don’t make sense on their own. A URI Template needs to
be embedded in a hypermedia format. The idea is that every standard
that needs this functionality should just use URI Templates, instead
of defining a custom format, which is what was happening before RFC
6570 was published.

URI Versus URL

I’ve put this off for as long as I can, but now I need to explain the
difference between URL (the term I use almost everywhere in this
book), and URI (the more general term used in the names of
technologies such as URI Templates). Most web APIs deal exclusively
with URLs, so for most of this book, the distinction doesn’t
matter. But when it’s important (as it will be in Chapter 12), it’s
really important.
A URL is a short string used to identify a resource. A URI is also a
short string used to identify a resource. Every URL is a URI. They’re
described in the same standard: RFC 3986.
What’s the difference? As far as this book is concerned, the
difference is this: there’s no guarantee that a URI has a
representation. A URI is nothing but an identifier. A URL is an
identifier that can be dereferenced. That is, a computer can somehow
take a URL and get a representation of the underlying resource.
If you see an http: URI, you know how a computer can get a
representation: by making an HTTP GET request. If you see an ftp:
URI, you know how a computer can get a representation: by starting up an
FTP client and executing certain FTP commands. These URIs are
URLs. They have protocols associated with them: rules for obtaining
representations of these resources (very detailed rules that a
computer can follow).
Here’s a URI that’s not a URL: urn:isbn:9781449358063. It
designates a resource: the print edition of this book. Not any
particular copy of this book, but the abstract concept of an entire
edition. (Remember that a resource can be anything at all.) This URI
is not a URL because… what’s the protocol? How would a computer get
a representation? You can’t do it.
Without a URL, you can’t get a representation. Without
representations, there can be no representational state transfer. A
resource that’s not identified by a URL cannot fulfill many of the
Fielding constraints. It can’t fulfill the self-descriptive message
constraint, because it can’t send any messages. A representation can
link to a URI that’s not a URL (),
but that won’t fulfill the hypermedia constraint, because a client
can’t follow the link.
Here’s a URL that identifies the print edition of this book:
http://shop.oreilly.com/product/0636920028468.do. You can send a GET
request to this URL and get a representation of the edition. Not a
physical copy of the book, but an HTML document that conveys some of
its resource state: the title, the number of pages, and so on. The
HTML document also contains hypermedia, like links to the book’s
authors—not the people themselves, but some information about them. A
resource identified by a URL can fulfill all the Fielding constraints.
There are some good reasons to use URIs that aren’t URLs, and I’ll
cover them when I discuss the resource description strategy in Chapter 12. But it’s a pretty rare situation. In general, when your web API
refers to a resource, it should use a URL with the http or https
scheme, and that URL should work: it should serve a useful
representation in response to a GET request.

The Link Header

Here’s a technology that puts hypermedia where you might not expect
it: inside the headers of an HTTP request or response. RFC 5988
defines an extension to HTTP, a header called Link. This header lets
you add simple hypermedia controls to entity-bodies that don’t normally
support hypermedia at all, like JSON objects and binary image files.
Here’s a plain-text representation of a story that’s been split into
multiple parts with cliffhangers (the entity-body of this HTTP
response contains the first part of the story, and the Link header
points to the second part):
HTTP/1.1 200 OK
Content-Type: text/plain
Link: <http://www.example.com/story/part2>;rel="next"

It was a dark and stormy night. Suddenly, a...
(continued in part 2)
The Link header has approximately the same functionality as an HTML
<a> tag. I recommend you use real hypermedia formats whenever
possible, but when that’s not an option, the Link header can be very
useful.
The LINK and UNLINK extension methods use the Link header. This
example from Chapter 3 (which assigns an author to the story) should
make a little more sense now:
LINK /story HTTP/1.1
Host: www.example.com
Link: <http://www.example.com/~drmilk>;rel="author"

What Hypermedia Is For

I’ll be covering a lot of hypermedia data formats in this book, but at
this point telling you about one technology after another won’t help
very much. We need to take a step back and see what hypermedia is for.
Hypermedia controls have three jobs:
	
They tell the client how to construct an HTTP request: what HTTP
 method to use, what URL to use, what HTTP headers and/or entity-body
 to send.

	
They make promises about the HTTP response, suggesting the status
 code, the HTTP headers, and/or the data the server is likely to send
 in response to a request.

	
They suggest how the client should integrate the response into its
 workflow.

HTML GET forms and URI Templates feel similar because they do the same
job. They both tell the client how to construct a URL for use in an HTTP
GET request.
Guiding the Request

An HTTP request has four parts: the method, the target URL, the HTTP
headers, and the entity-body. Hypermedia controls can guide the client
into specifying all four of these.
This HTML <a> tag specifies both the target URL and the HTTP method to
use:
An outbound link
The target URL is defined explicitly, in the href attribute. The
HTTP method is defined implicitly: the HTML spec says that an <a>
tag becomes a GET request when the end user clicks the link.
This HTML form defines the method, the target URL, and the entity-body
of a potential future HTTP request:
<form action="/stores" method="get">
 <input type="text" name="storeName" value="" />
 <input type="text" name="nearbyCity" value="" />
 <input type="submit" value="Lookup" />
</form>
Both the HTTP method and the target URL are defined explicitly. The
entity-body is defined in terms of a set of questions for the
client. The client needs to figure out what values it wants to provide
for the variables storeName and nearbyCity. Then it can construct
a form-encoded entity-body that the server will accept. (Who says it
needs to be form-encoded? That’s defined implicitly, by HTML’s rules
for processing a <form> tag.)
This URI Template specifies the target URL of an HTTP request, and
nothing else:
http://www.youtypeitwepostit.com/messages/{?search}
The target URL is defined in terms of a variable that needs to be
filled in, just like the entity-body of an HTML form would be. The
client uses an algorithm to turn the URI Template and its desired
value for the search variable into a real URL: say, for example,
http://www.youtypeitwepostit.com/messages/?search=rest.
A URI Template defines nothing about the HTTP request except for the
target URI. It’s not telling you to make a GET request, a POST
request, or any kind of request in particular. That’s why I said URI
Templates don’t make sense on their own, why they need to be combined
with another hypermedia technology.
Here’s an HTML form that tells the client to set a specific value for
the HTTP header Content-Type:
<form action="POST" enctype="text/plain">
 ...
</form>
Ordinarily, the entity-body of an HTML POST form is form-encoded, and
sent over the network with the Content-Type header set to
application/x-www-form-urlencoded. But specifying the enctype
attribute of the <form> tag overrides this behavior. A form with
enctype="text/plain" tells the browser to encode its entity-body in
a plain text format, and to send it over the network with the
Content-Type header set to text/plain.
This isn’t a great example, because the enctype attribute only
changes the Content-Type header as a side effect of changing the
entity-body. But it is the best example I can come up with using a
popular hypermedia format like HTML.
Hypermedia controls generally leave an HTTP client free to send
whatever headers it wants. But this laissez-faire attitude is only a
convention. A hypermedia control can describe an HTTP request in great
detail. It can instruct the client to send an HTTP request to a
specific URL, using a specific HTTP method, providing an entity-body
constructed according to specific rules, and providing specific values
for specific HTTP headers.

Promises About the Response

Here’s another HTML tag:

Like an <a> tag, an tag is a promise that the client can
make a GET request to a particular URL. But the tag makes
another promise: that the server will send some kind of image
representation in response to GET.
Here’s another example—a simple XML hypermedia control from the Atom
Publishing Protocol (which I’ll discuss in more detail in Chapter 6):
<link rel="edit" href="http://example.org/posts/1"/>
This looks simple enough; in fact, this <link> tag could legally
show up in an HTML document. But interpreted according to the AtomPub
standard, that rel="edit" gives you a lot of information about the
resource at http://example.org/posts/1.
First, rel="edit" says that the resource at
http://example.org/posts/1 supports PUT and DELETE as well as
GET. You can GET a representation of this resource, modify the
representation, and PUT it back to change the resource’s state. That’s
a perfectly standard use of HTTP, and perhaps not something that needs
to be stated explicitly. But given that most HTTP resources don’t
respond to PUT or DELETE, it’s worth spelling out.
More important, rel="edit" means the client needn’t speculate
about what kind of representation you’ll get if you send a GET request
to http://example.org/posts/1. You’ll get back the kind of document
AtomPub calls a Member Entry. (The details aren’t important right
now—skip to Chapter 6 if you want to learn more about AtomPub.)
The server is making a promise to the client: if you make that GET
request, you’ll receive an AtomPub Member Entry representation in
return. The client doesn’t have to make a blind GET and see what the
Content-Type says. It knows the representation will be of type
application/atom+xml, and it also knows something about the
representation’s application semantics.

Workflow Control

The third job of hypermedia is to describe the relationships between
resources. This is best explained by an example. Here’s an HTML <a> tag:
An outbound link
If you click this link in your web browser, the browser will move
to the web page mentioned in the link’s href attribute. The old page
will become completely irrelevant, except as an item in your browser
history. The <a> tag is an outbound link: a hypermedia control
that, when activated, replaces the client’s application state with a
brand new state.
Compare this to the tag in HTML:

This is a link, but it’s not an outbound link; it’s an embedded
link. Embedded links don’t replace the client’s application state.
They augment it. If you visit a web page whose HTML includes this
 tag, the image is automatically loaded in a separate HTTP
request (without you having to click anything), and displayed in the
same window as the web page itself. You’re still on the same page, but
now you have more information.
An HTML document can embed more than images. Here’s some HTML markup
that downloads and runs some executable code written in JavaScript:
<script type="application/javascript" src="/my_javascript_application.js"/>
Here’s some markup that downloads a CSS stylesheet and applies it to
the main document:
<link rel="stylesheet" type="text/css" href="/my_stylesheet.css"/>
Here’s some markup that embeds another full HTML document inside this
one:
<frameset>
 <iframe src="/another-document.html" />
</frameset>
All of these are embedding links. The process of embedding one
document in another is also called transclusion.
Of course, a client is free to ignore the server’s guidance. There are
browser extensions that prevent the browser from transcluding the
files referenced by <script> tags, and options to override the
formatting instructions specified by stylesheets for greater
readability. The point of these tags, as with the <form> tag, is to
give the client hints as to which HTTP requests are likely to get
the client what it wants. The client is always free not to make a
request.

Beware of Fake Hypermedia!

There are a lot of existing APIs that were designed by people who
understood the benefits of hypermedia, but that don’t technically
contain any hypermedia. Imagine a bookstore API that serves a JSON
representation like this:
HTTP/1.1 200 OK
Content-Type: application/json

{
 "title": "Example: A Novel",
 "description": "http://www.example.com/"
}
This is a representation of a book. The description field happens to
look like a URL: http://www.example.com/. But is this a link? Is
description supposed to link to a resource that gives the
description? Or is it supposed to be a textual description, and some
smart aleck typed in some text that happens to be a valid URL?
Formally speaking, "http://www.example.com/" is a string. The
application/json media type doesn’t define any hypermedia controls,
so even if some part of a representation really looks like a
hypermedia link, it’s not! It’s just a string!
If you’re trying to consume an API like this, you won’t get very far
dogmatically denying the existence of links. Instead, you’ll read some
human-readable documentation written by the API provider. That
documentation will explain the conventions the provider used to embed
hypermedia links in a format (JSON) that doesn’t support
hypermedia. Then you’ll know how to distinguish between links and
strings, and you’ll be able to write a client that can detect and
follow the hypermedia links.
But your client will only work for that specific API. The
documentation you read is the documentation for a one-off fiat standard. The
next API you use will have a different set of conventions for
embedding hypermedia links in JSON, and you’ll have to do the work all
over again.
That’s why API designers shouldn’t design APIs that serve plain
JSON. You should use a media type that has real support for
hypermedia. Your users will thank you. They’ll be able to use
preexisting libraries written against the media type, rather than
writing new ones specifically for your API.
JSON has been the most popular representation format for APIs for
quite a while, but as recently as a couple years ago, there were no
JSON-based hypermedia formats. As you’ll see in the next few chapters,
that has changed. Don’t worry that you’ll have to give up JSON to gain
real hypermedia.

The Semantic Challenge: How Are We Doing?

At the end of Chapter 1, I set out a challenge: “How can we program a
computer to decide which links to click?” A web browser works by
passing the representations it gets to a human, who makes all the
decisions. How can we get similar behavior without consulting a human
at each step?
Providing the links is a step in the right direction. Out of the
infinite set of legal HTTP requests, a hypermedia document explains
which requests might be useful right now, on this particular
site. The client doesn’t have to guess.
But that’s not enough. Suppose an HTML document contains only two
links, A and B. Two possible requests the client might make. How does
the client choose? On what basis can it make its decision?
Well, suppose one of those links is represented by an HTML
tag, and the other is represented by a <script> tag. As far as HTTP
is concerned, there’s no difference between these two links. They have
the same protocol semantics. They both trigger a GET request to a
predetermined URL. But the two links have different application
semantics. The representation at the other end of an tag is
supposed to be displayed as an image, and the representation at the
other end of a <script> tag is supposed to be executed as
client-side code.
For some clients, that’s enough information to make a decision. A
client designed to scrape all the images from a web page will follow
the link in the tag and ignore the link in the <script>
tag.
This shows that hypermedia controls can bridge the semantic gap. They
can tell the client why it might want to make a certain HTTP
request.
But for most clients, the distinction between and <script>
isn’t enough information to make a decision. “Image” and “script” are
very generic bits of application semantics. The application described
by HTML is the World Wide Web, a very flexible application that’s used
for all sorts of things.
When I think about application semantics, I usually think on a higher
level than that. I think about the concepts that separate a wiki from
an online store. They’re both websites, they both use embedded images
and scripts, but they mean very different things.
A hypermedia format doesn’t have to be generic like HTML. It can be
defined in enough detail to convey the application semantics of a wiki
or a store. In the next chapter, I’ll talk about hypermedia formats
that are designed to represent one specific type of problem. Outside
that problem space, they’re practically useless. But within their
limits, they meet the semantic challenge very well.

[9] There are two
HTML specifications you should know about: the HTML 4 spec and the HTML 5 spec.
 Both are open standards produced by
the W3C. HTML 4 has been stable for over 10 years; HTML 5 is a work
in progress.

[10] That’s
in section 12.1.1 of the HTML 4 specification.

Chapter 5. Domain-Specific Designs

In this chapter, I’ll choose a problem space and implement a web API
for representing it. The details of the problem space don’t
matter. The technique is always the same. So I’m going to choose the
most frivolous example I can think of: maze games!
Figure 5-1 shows a simple maze with one entrance and one exit. My
server’s job will be to invent mazes like this and present them to
clients.
[image: The maze (top view)]

Figure 5-1. The example maze (a view from above)

Although this is a frivolous example, the maze is a good metaphor for
hypermedia applications in general. Any complex problem can be
represented as a hypermedia maze that the client must navigate. If
you’ve ever been trapped in a phone tree, or searched for products on
an online store and then bought something from the search results,
you’ve navigated a hypermedia maze.
I’ve seen hypermedia APIs for modifying complex insurance policies;
for selecting products from a catalog and paying for them; and, yes,
for describing phone trees (see VoiceXML in Chapter 10). All of these
APIs have the same shape as the maze games I’m about to show you:
	
The problem is too complex to be understood all at once, so it’s
 split up into steps.

	
Every client begins the process at the same first step.

	
At each step in the process, the server presents the client with a number
 of possible next steps.

	
At each step, the client decides what next step to take.

	
The client knows what counts as success and when to stop.

As we go through this book, I’ll deal with more specialized problem
domains. The documents and the possible next steps will become more
complex, but the step-by-step problem-solving algorithm will always
work the same way.
Maze+XML: A Domain-Specific Design

Take another look at Figure 5-1. That’s a graphical representation of
a maze. It makes intuitive sense to a human, but a computer would need
to run it through a machine-vision algorithm to understand it. How can
we represent the shape of a maze in a format that’s easy for a
computer to understand?
There are many possible solutions, but instead of designing a solution
from scratch, I’m going to reuse some work that’s already been
done. There’s a personal standard called
Maze+XML, for
representing mazes in a machine-readable format.
The media type of a Maze+XML document is
application/vnd.amundsen.maze+xml. If you ever make an HTTP request
and see that string used as the Content-Type of the response, you’ll
know that you need the Maze+XML specification to fully understand the
entity-body. This is how a domain-specific design meets the semantic
challenge: by defining a document format that represents the problem
(such as the layout of a maze), and by registering a media type for
that format, so that a client knows right away when it’s encountered
an instance of the problem.
In general, I don’t recommend creating new domain-specific media
types. It’s usually less work to add application semantics to a
generic hypermedia format—a technique I’ll cover in the next two
chapters. If you set out to do a domain-specific design, you’ll
probably end up with a fiat standard that doesn’t take advantage of the
work done by your predecessors. You probably won’t have the
flexibility problems that plague most of today’s APIs, but you’ll have
done more work for no real benefit.
But a domain-specific design is the average developer’s first instinct
when designing an API. What could be more natural than simply solving
the problem at hand? That’s why I’m covering domain-specific designs
first. It’s easy to show how a custom hypermedia format can bridge the
semantic gap.

How Maze+XML Works

Instead of looking down on Figure 5-1 from above, imagine being inside
the maze. Instead of seeing the whole thing, you’d only see your
immediate vicinity. Upon entering the maze, you’d see something like
Figure 5-2: a wall in front of you and the entrance behind you. But you’d
have two choices: go left or go right. You’d have no way of knowing
which direction would take you to the exit.
[image: Inside the example maze]

Figure 5-2. Inside the example maze

The Maze+XML format simulates this rat’s-eye-view by representing a
maze as a network of “cells” that connect to each other. Figure 5-3
shows how the example maze from Figure 5-1 might be represented as a
network of cells. I’ve chopped the maze into a grid and created a cell
for each grid square.
[image: The example maze as a network of cells]

Figure 5-3. The example maze as a network of cells

Maze+XML cells connect to each other in the cardinal directions:
north, south, east, and west. Let’s say that north points to the top
of the page. This means the exit (cell C) is directly north of the
entrance (cell M), although you can’t just go north to find it—you
have to go east and loop around.
Each cell in a Maze+XML maze is an HTTP resource with its own URL. If
you send a GET request to the first cell in this maze, you’ll get a
representation that looks like this:
<maze version="1.0">
 <cell href="/cells/M" rel="current">
 <title>The Entrance Hallway</title>
 <link rel="east" href="/cells/N"/>
 <link rel="west" href="/cells/L"/>
 </cell>
</maze>
This representation includes a human-readable name of the cell, “The
Entrance Hallway,” like you’d see in an old, text-based adventure
game. But—this is where hypermedia comes in—the representation also
includes <link> tags that connect this cell to its neighbors. From
cell M, you have a choice of going west to cell L or east to cell N.
Link Relations

This representation shows off a powerful hypermedia tool called the
link relation. By themselves, rel="east" and rel="west" don’t
mean anything. A computer doesn’t carry around an understanding of the
words “east” and “west.” But the Maze+XML standard defines meanings
for “east” and “west,” and developers can program those definitions
into their clients. Here are the definitions:
	
east

	
 Refers to a resource to the east of the current
 resource. When used in the Maze+XML media type, the associated URI
 points to a neighboring cell resource to the east in the active
 maze.

	
west

	
 Refers to a resource to the west of the current
 resource. When used in the Maze+XML media type, the associated URI
 points to a neighboring cell resource to the west in the active
 maze.

These definitions seem circular. They just say that the link relations
east and west correspond to our everyday geographical notions with
the same names. But these definitions serve to bridge the semantic
gap, because again, link relations mean nothing by themselves. Without
a formal definition, east could mean south and west could mean
underneath.
The Maze+XML standard also defines the link relations north and
south. These definitions let us expect directional links to show
up in Maze+XML representations, and program a computer to understand
this bit of markup if it ever shows up:
 <link rel="east" href="/cells/N"/>
In Maze+XML, following a link marked with the link relation east
will move your client east through some abstract geographical
space. You’ll end up in another maze cell. Moving from your current
resource to the one to the east is analogous to moving east in real
life, or at least to moving your finger east on a map. This is how
Maze+XML meets the semantic challenge: by defining link relations that
convey its application semantics.
A link relation is a magical string associated with a hypermedia
control like Maze+XML’s <link> tag. It explains the change in
application state (for safe requests) or resource state (for unsafe
requests) that will happen if the client triggers the control. Link
relations are formally defined in RFC 5988, but the idea has been
around for a long time, and nearly every hypermedia format supports
them.
One of the most important web pages for a RESTful API developer is the
registry of link relations managed by the Internet Assigned Numbers
Authority (IANA). I’ll
be coming back to this registry throughout the book. It contains about
60 link relations that have been deemed to be generally useful and
not tied to a particular data format. The simplest examples are the
next and previous relations, for navigating a list. Maze+XML’s
east and west are not on this list; they were deemed not generally
useful enough.
RFC 5988 defines two kinds of link relations: registered relation
types and extension relation types. Registered link relations look
like the ones you see in the IANA registry: short strings like east
and previous. To avoid conflicts, these short strings need to be
registered somewhere—not necessarily with the IANA, but in some
kind of standard such as the definition of a media type.
Extension relations look like URLs. If you own mydoma.in, you can
name a link relation http://mydoma.in/whatever and define it to mean
anything you want. No one can define a link relation that conflicts
with yours, since you control the domain. When your users visit
http://mydoma.in/whatever in their web browsers, they should see a
human-readable explanation of the link relation.[11]
Chapter 9 includes a guide explaining when it’s OK to use the
shorter names of registered relations. Here’s a summary:
	
You can use extension relations wherever you want.

	
You can use IANA-registered link relations whenever you want.

	
If a document’s media type defines some registered relations, you
 can use them within the document.

	
If a document includes a profile that defines some link relations (see
 Chapter 8), you can treat them as registered relations within that
 document.

	
Don’t give your link relations names that conflict with the names in
 the IANA registry.

Follow a Link to Change Application State

A client can “go east” from cell M by following the appropriate link (i.e., by sending a GET request to the URL labeled with
rel="east"). A client that does this will get a second Maze+XML
representation, looking something like this:
<maze version="1.0">
 <cell href="/cells/N">
 <title>Foyer of Horrors</title>
 <link rel="north" href="/cells/I"/>
 <link rel="west" href="/cells/M"/>
 <link rel="east" href="/cells/O"/>
 </cell>
</maze>
This is the Maze+XML representation of cell N on the map. It links
back to cell M (using the link relation west), as well as to cells I
(north) and O (east).
The client’s application state has changed. To borrow a term from the
HTML standard, the client was “visiting” cell M, and now it’s
“visiting” cell N. The client has three new options, represented by
the links in the representation of cell N.
By following the right links (north, west, west, west,
north, east, east, and finally east), a client can make its
way from cell N to cell C. That cell includes the exit to the maze,
indicated here by a <link> tag with the link relation exit:
<maze version="1.0">
 <cell href="/cells/C">
 <title>The End of the Tunnel</title>
 <link rel="west" href="/cells/B"/>
 <link rel="exit" href="/success.txt"/>
 </cell>
</maze>
Here’s what the Maze+XML standard says about exit:
	
exit

	
 Refers to a resource that represents the exit or end of the
 current client activity or process. When used in the Maze+XML media
 type, the associated URI points to the final exit resource of the
 active maze.

Unlike with east and the other directional relations, Maze+XML
provides no guidance as to what should appear at the other end of an
exit link. It’s a “resource,” which means it can be anything at
all. In this implementation, I’ve chosen to link to a textual
congratulatory message (success.txt).

The Collection of Mazes

Cell C leads out of the maze, because its representation includes a
special link with rel="exit". But cell M, the entrance to the
maze, doesn’t include anything to distinguish it from the other
fourteen cells. There’s no rel="entrance" or anything. Cell M’s
title is “The Entrance Hallway,” but that phrase doesn’t mean anything
to a computer. How do we bridge the semantic gap? How is the client
supposed to know where to start the maze?
The Maze+XML standard solves this problem with a collection: a list
of mazes. If you send a GET request to the root URL of the maze API,
you might get a Maze+XML representation that looks like this:
<maze version="1.0">
 <collection>
 <link rel="maze" title="A Beginner's Maze" href="/beginner">
 <link rel="maze" title="For Experts Only" href="/expert-maze/start">
 </collection>
</maze>
A collection in Maze+XML is a <collection> tag that includes some
<link> tags with the link relation maze. This relation (defined in
the Maze+XML specification, just like east and exit) tells a client
that the resource on the other end is the starting cell of a
maze. This representation links to two mazes: the beginner’s maze
I diagrammed, Figure 5-1, and a more complicated maze that I won’t show here.
Send a GET request to a URL labeled with the relation maze
(/beginner, let’s say), and you’ll get a representation that looks
like this:
<maze version="1.0">
 <item>
 <title>A Beginner's Maze</title>
 <link rel="start" href="/cells/C"/>
 </item>
</maze>
This is a high-level representation of the maze as seen from the
outside. It’s got a link with the relation start which points to
cell C.
Here’s where Maze+XML represents the fact that /cells/C is the
entrance to the maze. It’s in the view of the maze from outside. Once
you enter the maze, there’s no longer anything special about cell C.
The URL to the collection of mazes is the proverbial “URL advertised
on the billboard.” Starting with no information but this URL, you can
do everything it’s possible to do with a Maze+XML API:
	
Start off by GETting a representation of the collection of
mazes. You know how to parse the representation, because you read the
Maze+XML specification and programmed this knowledge into your client.

	
Your client also knows that the link relation maze indicates an
individual maze. This gives it a URL it can use in a second GET
request. Sending that GET request gives you the representation of an
individual maze.

	
Your client knows how to parse the representation of an individual
maze (because you programmed that knowledge into it), and it
knows that the link relation start indicates an entrance into the
maze. You can make a third GET request to enter the maze.

	
Your client knows how to parse the representation of a maze
cell. It knows what east, west, north, and south mean, so it
can translate movement through an abstract maze into a series of HTTP
GET requests.

	
Your client knows what exit means, so it knows when it’s
completed a maze.

There’s more to the Maze+XML standard, but you’ve now seen the
basics. A collection links to a maze, which links to a cell. From one
cell you can follow links to other cells. Eventually you’ll find a
cell with an exit link leading out of the maze. That’s enough
information to start writing clients.

Is Maze+XML an API?

If you’ve got experience in this field, you may be wondering: where’s
the API? A maze game isn’t a complex application, but even so, you may
have expected more than a few XML tag names and link relations. The
Maze+XML specification lacks the things you may be accustomed to. It
doesn’t define any API calls or give any rules for constructing
URLs. In fact, it barely mentions HTTP at all! I’ve shown some URLs in
the example representations, but I deliberately made the URL formats
internally inconsistent (compare /beginner to /expert-maze/start)
so you wouldn’t think URL formats were defined by the standard.
The things you’re accustomed to are dangerous. In applications
intended for use within an organization, a design based on API calls
works well and is easy to develop. The API call metaphor assumes
away the network boundary and lets a client invoke a method on a
remote computer just like it would call the API of a local code
library. There are already lots of books and software tools to help
you with those designs.
My experience shows that the “API call” metaphor inevitably exposes
the server’s implementation details to the clients. This introduces
coupling between server code and client code. When all the people
involved with the API are friends and colleagues, this doesn’t matter
so much.
But this book focuses on web APIs, which is to say, web-scale
APIs (i.e., APIs where any member of the public can use a client, or
write a client, or, in some cases, write a server). When you allow
someone outside your organization to make API calls, you make that
person a silent partner in the implementation of your server. It
becomes very difficult to change anything on the server side without
hurting this unknown customer.
This is why public APIs change so rarely. You can’t change an API
based on API calls without causing huge pain among your users, any
more than you can change the API of a local code library without
causing pain. At web scale, API call designs become
paralyzed.
Designs based on hypermedia have more flexibility. Every time the
client makes an HTTP request, the server sends a response explaining
which HTTP requests make the most sense as a next step. If the
server-side options change, that document changes along with it. This
doesn’t solve all of our API problems—the semantic gap is a huge
problem!—but it solves the one we know how to solve.

Client #1: The Game

The obvious use for the Maze+XML API is a game to be played by a human
being. Here’s a single-page app that grabs a
collection of mazes and lets you choose one to play. Once you enter a
maze, you’re presented with a rat’s-eye view and you navigate the maze
by typing in directions. Once you find the exit, you get a score—the
number of “turns” you spent in the maze.[12]
We tend to think of an “API client” as an automated client. But
human-driven clients like this have a big part to play in the modern
API ecosystem. It’s very common for a mobile application, driven by a
human, to communicate with a server through a web API. Best of all,
with a human in the loop, the semantic gap is no problem.
Figure 5-4 shows what the Game client looks like just after I load it
in my web browser.
	[image: The initial state of the Game client]

Figure 5-4. The initial state of the Game client

I type in a billboard URL—the URL to a collection of mazes—and
click the Load button. This causes the Game client to make an HTTP
GET request to the URL I typed in:
GET /mazes/ HTTP/1.1
Host: example.org
Accept: application/vnd.amundsen.maze+xml
The server responds with a Maze+XML document:
<maze version="1.0">
 <collection href="http://example.org/mazes/">
 <link href="http://example.org/mazes/a-beginner-maze" rel="maze"
 title="A Beginner's Maze" />
 <link href="http://example.org/mazes/for-experts-only" rel="maze"
 title="For Experts Only" />
 </collection>
</maze>
The Game client reads this document—a representation of a collection
of mazes—and translates it into an HTML interface (Figure 5-5). I’m
presented with a choice between two mazes. These correspond to the two
links in the Maze+XML document with the link relation “maze.”
	[image: A choice between mazes]

Figure 5-5. A choice between mazes

I type in “1” to choose a maze, click the Go button, and I’m taken
inside the beginners maze. Figure 5-6 shows how the client renders the
first room of the maze.
[image: The first cell of the beginner’s maze]

Figure 5-6. The first cell of the beginner’s maze

How’d that happen? Through hypermedia. When I typed “1,” I told the
client to follow the first link with rel="maze", by making an HTTP
GET request. The interface was a lot different from clicking on a
link, but it had the same effect.
Here’s the request:
GET /mazes/beginner HTTP/1.1
Host: example.org
Accept: application/vnd.amundsen.maze+xml
And here’s the Maze+XML document the server sent in response:
<maze version="1.0">
 <item href="http://example.org/maze/beginner" title="A Beginner's Maze">
 <link href="http://example.org/mazes/beginner/0" rel="start"/>
 </item>
</maze>
Since there’s only one link in this document—the link to the start of
the maze—the human has no decision to make here. The Game client
doesn’t even display this representation to me. Instead, it’s
programmed to automatically follow the link with rel="start". This
means another GET request:
GET /mazes/beginner/0 HTTP/1.1
Host: example.org
Accept: application/vnd.amundsen.maze+xml
Which yields a representation of a cell in the maze:
<maze version="1.0">
 <cell href="http://example.org/mazes/beginner/0" rel="current"
 title="Entrance Hallway">
 <link href="http://example.org/mazes/beginner/5" rel="east"/>
 <link href="http://example.org/mazes/beginner/J" rel="south"/>
 </cell>
</maze>
That information is displayed to the human user, after being
translated into HTML. And that’s how I ended up looking at Figure 5-6.
Now I’m inside “A Beginner’s Maze.” From this point on, I navigate the
maze by typing in compass directions from the provided list: east,
north, and so on. Every time I click the Go button, I tell the
client to follow the corresponding link by making an HTTP GET
request. Figure 5-7 shows me in cell G (“The Tool Room”), halfway
through the beginner’s maze.
[image: In the middle of the beginner’s maze.]

Figure 5-7. In the middle of the beginner’s maze.

And Figure 5-8 shows me outside the maze, having just completed it.
	[image: Outside the beginner’s maze]

Figure 5-8. Outside the beginner’s maze

When I leave the maze, the client shows me the congratulatory message
at the other end of the exit link (a bit of resource state).

A Maze+XML Server

I’m going to write two more Maze+XML clients, but before I do that, I
should talk about the server implementation. All the clients in this
chapter run against a very simple server implementation of the
Maze+XML standard, which I wrote for this book.[13]
Most of today’s APIs are fiat standards, backed by a particular
company and only existing at one hostname, but Maze+XML is a personal
standard that anyone can implement. This means there can be any
number of Maze+XML servers, and any number of server
implementations. There’s nothing special about my server
implementation. In fact, it’s quite limited. It can only serve a small
subset of Maze+XML mazes: tidy, well-behaved mazes that fit into its
JSON-based file format.
My server is by no means the best Maze+XML implementation, but it’s
very easy to add mazes to it. My server stores maze data in simple
JSON documents. Here’s the JSON document representing the “beginner”
maze I’ve been using as an example. This is not a representation of
the maze in the REST sense, because it will never be sent over
HTTP. It’s the raw data used to generate the Maze+XML document that
is sent over HTTP:
{
 "_id" : "five-by-five",
 "title" : "A Beginner's Maze",
 "cells" : {
 "cell0":{"title":"Entrance Hallway", "doors":[1,1,1,0]},
 "cell1":{"title":"Hall of Knives", "doors":[1,1,1,0]},
 "cell2":{"title":"Library", "doors":[1,1,0,0]},
 "cell3":{"title":"Trophy Room", "doors":[0,1,0,1]},
 "cell4":{"title":"Pantry", "doors":[0,1,1,0]},
 "cell5":{"title":"Kitchen", "doors":[1,0,1,0]},
 "cell6":{"title":"Cloak Room", "doors":[1,0,0,1]},
 "cell7":{"title":"Master Bedroom", "doors":[0,0,1,0]},
 "cell8":{"title":"Fruit Closet", "doors":[1,1,0,0]},
 "cell9":{"title":"Den of Forks", "doors":[0,0,1,1]},
 "cell10":{"title":"Nursery", "doors":[1,0,0,1]},
 "cell11":{"title":"Laundry Room", "doors":[0,1,1,0]},
 "cell12":{"title":"Smoking Room", "doors":[1,0,1,1]},
 "cell13":{"title":"Dining Room", "doors":[1,0,0,1]},
 "cell14":{"title":"Sitting Room", "doors":[0,1,1,0]},
 "cell15":{"title":"Standing Room", "doors":[1,1,1,0]},
 "cell16":{"title":"Hobby Room", "doors":[1,0,1,0]},
 "cell17":{"title":"Observatory", "doors":[1,1,0,0]},
 "cell18":{"title":"Hot House", "doors":[0,1,0,1]},
 "cell19":{"title":"Guest Room", "doors":[0,0,1,0]},
 "cell20":{"title":"Servant's Quarters", "doors":[1,0,0,1]},
 "cell21":{"title":"Garage", "doors":[0,0,0,1]},
 "cell22":{"title":"Tool Room", "doors":[0,0,1,1]},
 "cell23":{"title":"Banquet Hall", "doors":[1,1,0,1]},
 "cell24":{"title":"Spoon Storage", "doors":[0,0,1,1]}
 }
}
Each cell is represented by a name ("title") and a list of binary
numbers ("doors") indicating whether or not there’s a door to the
north, west, south, or east. The cells listed form a two-dimensional
5 × 5 grid, with every cell being the same size. Mazes like this are
called perfect mazes,[14]
and they’re rather easy to solve. They are the only mazes my server
can understand. But the Maze+XML media type can represent a variety of
two-dimensional maze topologies of any size—think of mazes with
one-way passages or randomly generated mazes that are infinitely
large.

Client #2: The Mapmaker

The Game client relied on a human being making the decisions about
where to go. But there are algorithms for automatically solving mazes,
and there’s no reason we can’t write an automated client to go along
with the manually operated one.
I already wrote a client whose goal was to solve a maze (Client #1: The Game), so to keep things interesting, this client does
something a little different. I call it the Mapmaker, and it’s a
client for mapping a maze. (The code for the Mapmaker is in
the RESTful Web APIs GitHub repository, in the directory
Maze/the-mapmaker.) This client tries to visit every cell of a maze
and construct a map that can be displayed visually. This client isn’t
trying to leave the maze. It wants to see the whole thing. When it
finds the exit, it will mark the exit on its internal representation
of the map, and keep moving. It will never follow the “exit” link.
The Game was a web application written in Node that ran in a web
browser. The Mapmaker is also written in Node, but it’s a command-line
application that prints its output to the console. If you give it the
billboard URL of a Maze+XML installation, it will map all the mazes
on that site. If you give it the URL to an individual maze, it will
map that maze. Here’s the ASCII-art output of the Mapmaker program when I run it
against the beginner’s maze.
$ node the-mapmaker http://localhost:1337/mazes/tiny
Exploring A Beginner's Maze...

+----+----+----+----+----+
| | | | | |
S 00 05 10 | 15 20 |
| | | | | |
+----+----+- -+----+- -+
| | | | | |
| 01 06 | 11 16 21 |
| | | | | |
+----+- -+----+----+- -+
| | | | | |
| 02 07 12 | 17 22 |
| | | | | |
+- -+----+----+- -+----+
| | | | | |
| 03 | 08 13 | 18 | 23 |
| | | | | |
+- -+- -+- -+- -+- -+
| | | | | |
| 04 09 | 14 19 24 E
| | | | | |
+----+----+----+----+----+

Map Key:
S = Start
E = Exit
0:Entrance Hallway
1:Hall of Knives
2:Library
3:Trophy Room
4:Pantry
5:Kitchen
6:Cloak Room
7:Master Bedroom
8:Fruit Closet
9:Den of Forks
10:Nursery
11:Laundry Room
12:Smoking Room
13:Dining Room
14:Sitting Room
15:Standing Room
16:Hobby Room
17:Observatory
18:Hot House
19:Guest Room
20:Servant's Quarters
21:Garage
22:Tool Room
23:Banquet Hall
24:Spoon Storage
The server doesn’t define mazes in this graphical format; they’re
stored as JSON documents and served as XML documents. The Mapmaker
builds up this graphical view of the maze by automatic exploration.
When the Mapmaker enters a maze, it identifies all the doorways
(links) in the first room and “visits” them one at a time, effectively
teleporting from room to room without bothering to double back. In
each room, the Mapmaker looks at all the exits and builds up a list of
rooms it still needs to visit. The Mapmaker effectively does a
breadth-first search of the maze.
Once all the cells (and all the links between cells) are accounted
for, the Mapmaker uses the data it’s collected to generate an ASCII
map showing the grid of cells and the connections between them.
The Mapmaker client has a more expansive view of application state
than most API clients. The Game client acts like a human walking
through the maze. You are always “visiting” one particular cell, and
you can only transition to the cells directly adjacent to the one
you’re visiting. The adjacent cells are your possible next
states. When you type in a direction, you choose one of these possible
states and leave the others behind. You’ve moved on. Web browsers work
the same way.
The Mapmaker doesn’t move on. As far as it’s concerned, every link it
has ever seen is a possible next state. It doesn’t walk through the
maze like a human. It spreads, like a fungus, until it occupies every
cell in the maze.
From the server’s perspective, this looks like the Mapmaker
teleporting wildly around the maze. This is unusual, but as far as the
Maze+XML specification is concerned, it’s perfectly legal. The
Mapmaker just keeps more application state than the Game does.

Client #3: The Boaster

The Maze+XML standard defines a way of representing mazes and
collections of mazes as XML documents. It doesn’t say what mazes are
for. Faced with a maze, the natural inclination of a human being is
to walk through it looking for the exit. The Game client recreates that
experience. But Maze+XML doesn’t require that clients solve the maze
the way a human would.
We’ve already seen this. The Mapmaker client continually teleports
around the maze, and it never follows the “exit” link. It jumps around
until it’s mapped the entire maze, and then it simply stops making
HTTP requests. This seems counter to the purpose of a maze, but who’s
to say?
My third Maze+XML client, the Boaster, takes this logic to an
extreme. This client never even enters a maze. It reads a collection
of mazes, picks one at random, and simply claims to have completed
the maze.[15] Here it is
in action:
$ node the-boaster http://example.org/mazes
Starting the maze called: For Experts Only...
*** DONE and it only took 2 moves! ***
Clearly you can’t solve the expert’s maze in two moves. The Boaster
didn’t even try. It made one HTTP request, to
http://example.org/mazes. It read the collection of mazes, chose “For
Experts Only,” and claimed to have completed it in an unrealistic
number of moves.
Is this cheating? In terms of solving mazes, of course it’s
cheating. But in terms of RESTfulness, or compliance with the
Maze+XML standard, it’s completely legitimate. The Boaster really does
understand what a vnd.amundsen.application/maze+xml document
means. It knows that links with rel="maze" point to mazes. It just
doesn’t want to be bothered with solving the mazes.

Clients Do the Job They Want to Do

These three clients—the Game, the Mapmaker, and the Boaster—all work
from an understanding of the Maze+XML media type. But they have
different goals, so they do different things with the same data.
This is fine. The server’s job is to describe mazes in a way that the
client can engage with. The server’s job is not to dictate goals to
the client. The Maze+XML spec describes a problem space, not a
prescribed relationship between client and server. Client and server
must share an understanding of the representations they’re passing
back and forth, but they don’t need to have the same idea of what the
problem is that needs to be solved.

Extending a Standard

Maze+XML is a contrived example in a frivolous problem domain. But
let’s imagine that someone really does want to serve hypermedia mazes,
either as part of a business or just for fun. That doesn’t
automatically make Maze+XML the right answer. Even when a standard
already exists for your problem domain, it probably won’t fit your
needs exactly.
Anyone who wants to use Maze+XML for real won’t be satisfied with
what’s in the standard. The standard limits you to two-dimensional
mazes using the four cardinal directions: north, south, east, and
west. That’s not very fun. What if I want to serve three-dimensional
mazes?
Creating an entirely new standard from scratch just to support
three-dimensional mazes would be silly. The Maze+XML standard is
almost good enough. I just have to extend it a little to make it
support two new directions: up and down.
Fortunately, Maze+XML explicitly allows this sort of extension (see
section 5 of the specification). I can add anything I want to a
Maze+XML document, so long as I don’t redefine something that’s
already in the specification. To get my three-dimensional mazes, I’ll
just define two new link relations right here:
	
up

	
Refers to a resource spatially above the current resource.

	
down

	
Refers to a resource spatially below the current resource.

This is a simple extension, but it completely changes what a maze can
look like, and how a maze can be stored on the server. My server
implementation stores a maze in a two-dimensional array of cells, with
each cell having four possible neighbors. To support these two new
relations, I need to change the server code to reflect the fact that a
maze is a three-dimensional array and each cell now has six possible
neighbors.
But the client won’t see a big change at all. The client just sees two
new link relations in the representations:
<maze version="1.0">
 <cell href="/cells/middle-of-ladder">
 <title>The Middle of the Ladder</title>
 <link rel="up" href="/cells/top-of-ladder"/>
 <link rel="down" href="/cells/bottom-of-ladder"/>
 </cell>
</maze>
All that extra server-side complexity is hidden from the client by the
very thing that makes the Maze+XML standard seem simplistic. The
standard just doesn’t say much about what a maze “should” look
like. Defining two new ways for cells to be connected requires a
complete redesign of my server implementation, but the representations
are still compliant with the Maze+XML standard, and the clients can
still parse them.
But this doesn’t mean the clients automatically understand these new
application semantics. Consider what happens when the Game, the
Mapmaker, and the Boaster are served a three-dimensional maze.
Surprisingly, the Game works just fine! That client wasn’t hardcoded
to know about the four cardinal directions. It was programmed to
present every link it finds to the user, and to let the user choose
between them. Since I chose the names “up” and “down” for my new link
relations, a human being traversing a three-dimensional maze will see
a screen like Figure 5-9.
Those options make sense to a human user, and if the user types in
“up,” the client will follow the link with rel="up". Adding
application semantics to Maze+XML doesn’t require any changes to the
Game client, because there’s a human being in the loop.
The Boaster client also fares well in a three-dimensional maze, since
it never even enters the maze. In fact, the Boaster should work on any
Maze+XML-compatible server, no matter what extensions are made to it.
	[image: The Game client automatically supports “up” and “down”.]

Figure 5-9. The Game client automatically supports “up” and “down”.

But the Mapmaker client completely misses the point of a
three-dimensional maze. Consider a representation like the following:
<maze version="1.0">
 <cell href="/cells/bottom-of-ladder">
 <title>The Bottom of the Ladder</title>
 <link rel="up" href="/cells/middle-of-ladder"/>
 <link rel="east" href="/cells/tunnel"/>
 <link rel="north" href="/cells/underwater-garden"/>
 </cell>
</maze>
If the Mapmaker ever gets a representation like this, it will follow
the “east” link and the “north” link, but never the “up” link. Set the
Mapmaker loose on a three-dimensional maze and it will map one
level of the maze. It will see only a two-dimensional slice of the
maze.
That’s understandable. Clients can’t be expected to understand link
relations they weren’t programmed with. But you may not have
anticipated that simply telling the Mapmaker about the new link
relations won’t help!
Even if the Mapmaker knew how to follow an “up” link, it wouldn’t know
how to represent what it found at the other end of the link. The
Mapmaker client has a two-dimensional mind, just like our example
server implementation. It generates two-dimensional ASCII maps. A
three-dimensional maze is completely incompatible with the Mapmaker
client.

The Mapmaker’s Flaw

In fact, the Mapmaker can fall down on mazes that don’t use any
Maze+XML extensions at all. What would happen to the Mapmaker if a
server sent it the following representation?
<maze version="1.0">
 <cell href="/cells/44">
 <title>Hall of Mirrors</title>
 <link rel="east" href="/cells/45/>
 </cell>
</maze>
…and then this one, at the other end of the east link?
<maze version="1.0">
 <cell href="/cells/45">
 <title>Mirrored Hall</title>
 <link rel="west" href="/cells/129/>
 <link rel="east" href="/cells/44/>
 </cell>
</maze>
These are both legal Maze+XML documents, but they describe a maze
that’s non-Euclidian. Going east from the Hall of Mirrors takes you
to the Mirrored Hall, and going east again takes you back to the
Hall of Mirrors. You may recognize this trick from various video
games. This is a completely legal maze that uses no Maze+XML
extensions, but the Mapmaker will crash trying to map it.
It seems the Mapmaker was designed with a hidden assumption! It
assumed that the server would only serve tidy mazes that can be
represented on a grid. It’s no coincidence that the example server
only serves that kind of maze. I designed the Mapmaker client with one
specific server in mind. It turns out the client won’t work with the
full range of mazes allowed by the Maze+XML specification. It only
works with the sort of mazes you’ll find on that server.
I’ve found that this rule holds in general. A client written against
a specific server implementation can be optimized for that server’s
quirks, but it will fall down if you try to run it against another
implementation of the same standard. This doesn’t mean the Mapmaker is
a completely useless client; it’s just that it can only map certain mazes.
Imagine starting up a web browser that’s only ever been tested against
one particular website. As soon as you send that browser to a site it
wasn’t tested on, it’s going to crash. That’s the situation here. A
standard like Maze+XML may have multiple server
implementations. Client implementations need to be designed to work
against all server implementations, not just one.
The Fix (and the Flaw in the Fix)

Can we fix the Mapmaker? One “fix” is to have the client check whether
each newly discovered cell fits into the grid it’s trying to
build. Rather than crashing when it detects two different cells in the
same grid space, it would print an error message and exit gracefully.
But that just gets rid of the crash. We’ve given the client just
enough intelligence to recognize a maze it can’t understand. If we
want the client to actually understand mazes that aren’t perfect, then
the “grid” data structure has to go. The correct data structure to use
is a directed graph.
We can write a better Mapmaker that builds a directed graph as it
traverses the maze, then renders it using an algorithm like
force-directed graph drawing. For a maze that more or less fits into a
grid, an improved Mapmaker will render a directed graph that looks a
lot like the old Mapmaker’s ASCII diagrams (Figure 5-10).
[image: A well-behaved maze considered as a directed graph.]

Figure 5-10. A well-behaved maze considered as a directed graph.

Figure 5-10 was generated by a Mapmaker that tries to align “north”
with the top of the page. It’s not sure what to do about “up” and
“down,” but it’s figured out that they’re probably opposites, and it’s
able to represent them visually.
Now imagine a mischievous maze full of infinite loops and one-way
passages. Such a maze would crash the unimproved Mapmaker, but an
improved Mapmaker could render a graph like Figure 5-11.
[image: A mischevious maze]

Figure 5-11. A mischevious maze

Have we perfected the Mapmaker? Unfortunately, no. The improved
Mapmaker still contains hidden assumptions. Figure 5-12 shows a maze
that’s infinitely large. It’s easy to solve, but impossible to map.
[image: A simple but unmappable maze]

Figure 5-12. A simple but unmappable maze

There’s no Mapmaker client that can map an infinitely large maze:
it’ll never get a chance to draw the map. This doesn’t mean the
Mapmaker is useless. It’s just that it can’t handle every single maze
that the Maze+XML standard allows.

Maze as Metaphor

Take another look at Figures 5-10 through 5-12. Compare them to Figure 1-9, the directed graph I used earlier to capture the structure of a
website.
The similarity is no coincidence. As I said at the beginning of this
chapter, the maze is a metaphor for hypermedia applications in
general. Some “mazes” are tidy and well-behaved. Others are chaotic
and infinitely large. Thinking of a state diagram as a maze to be
navigated will get you in the right frame of mind to understand
hypermedia APIs.

Meeting the Semantic Challenge

For the designer of a domain-specific API, bridging the semantic gap
is a two-step process:
	
Write down your application semantics in a human-readable
 specification (like the Maze+XML standard).

	
Register one or more IANA media types for your design, (like
 vnd.amundsen.application/maze+xml. In the registration, associate
 the media types with the human-readable document you wrote. In
 Chapter 9, I’ll discuss the naming and registration process for
 media types.

Your client developers can reverse the process to bridge the semantic
gap in the other direction:
	
Look up an unknown media type in the IANA registry.

	
Read the human-readable specification to learn how to deal with
documents of the unknown media type.

There’s no magic shortcut. To get working client code, your users will
have to read your human-readable document and do some work. We can’t
get rid of the semantic gap completely, because computers aren’t as
smart as humans.

Where Are the Domain-Specific Designs?

When you need to publish an API, the first thing to do is to try to
find an existing domain-specific design. There’s no point in
duplicating someone else’s work.
That said, you’re not likely to find a complete solution. There are
hundreds of domain-specific data formats, but not many of them include
hypermedia controls. In Chapter 10, I cover a few exceptions, like
VoiceXML and SVG. The domain-specific design you’re most likely to
use is the problem detail document, a simple JSON-based format for
describing error conditions (also covered in Chapter 10).
But just because a data format doesn’t include hypermedia controls
doesn’t mean it’s useless. In Chapter 8, I’ll show you how JSON-LD can
add basic hypermedia capabilities to any JSON format. In Chapter 10,
I’ll show how XForms and XLink can do the same for XML. These technologies
let you graft hypermedia controls onto an existing API that doesn’t
include them.
The Prize at the End

Hypermedia APIs can also find uses for formats that don’t support
hypermedia. Consider the JPEG image format. It’s well documented, it’s
got a registered media type (image/jpeg), and nothing beats a binary
image file for representing a photograph. But you can’t use JPEG as
the basis for a web API, any more than you could design a website that
serves nothing but JPEGs. There’s no way for one JPEG to link to
another.
A web API for managing photographs will certainly send and receive
representations in JPEG format. It would be foolish to make up your
own binary image format just because JPEG doesn’t have any hypermedia
controls. But JPEG will not be the core of a hypermedia-based photo
API. That honor will go to a format like HTML. HTML can’t represent a
photograph, but it can embed a photograph in a textual document, pair
a photograph with its caption, represent a list of photographs, and
present forms for tagging and searching photographs.
An image/jpeg representation will be the client’s prize for
navigating the photo API’s hypermedia “maze” and locating one specific
photo. The “maze” itself will be described in a document format that
supports hypermedia controls. The two formats will work together to
form a complete API.

Hypermedia in the Headers

I showed in Chapter 4 how you can use the HTTP header Link to add
simple hypermedia links and forms to documents that have no hypermedia
controls of their own. Using these headers, you could conceivably
design an API that served nothing but JPEG images, but I don’t recommend
this.

Steal the Application Semantics

Here’s a much different technique. I’d like to introduce the vCard
format, defined in RFC 6350 and assigned the media type
text/vcard. This is a domain-specific plain-text format designed for
exchanging the kinds of personal information you find on business
cards. Sounds useful, right? Lots of web APIs deal with information
about people and businesses.
Here’s a simple vCard representation:
BEGIN:VCARD
VERSION:4.0
FN:Jennifer Gallegos
BDAY:19870825
END:VCARD
The rules set down in RFC 6350 define the semantics of a text/vcard
document. You can parse this document according to those rules and
build up a picture of a human being who has a name and a date of
birth. And… then what?
You’re stuck. The application semantics are well defined, but there
are no links. This document is a hypermedia dead end.
Of course, the protocol semantics of HTTP still apply. You sent a GET
request to get this representation. Maybe the API will let you modify
the representation and PUT it back. Maybe you can DELETE the
underlying resource. But you can’t move from this representation to a
related resource, because vCard is not a hypermedia format.
Since vCard is a common format used by phones and software address
books, it may make sense to make a vCard representation the prize at
the end of a hypermedia maze. The client would locate a “person”
resource through hypermedia, and then follow an “export to vCard” link
to get a text/vcard representation of that “person” resource.
But that’s probably not what you want. You don’t want basic
information about a person to be a “prize.” It’s probably a major part
of the API. You’d like to steal the application semantics of vCard and
use them inside a real hypermedia document.
That’s what the designers of the hCard microformat did. Rather than redoing
the work done by the framers of the vCard standard, they made it
possible to represent the same information in a hypermedia document
format: HTML.
I’ll have a lot more to say about hCard in Chapter 7, but here’s a
preview—an hCard version of the vCard document I showed you earlier:
<div class="vcard">
 Jennifer Gallegos
 1987-08-25
</div>
The hCard microformat lets you combine a vCard-like representation of
a human being with the hypermedia links and forms needed to implement
a full web API.
This is another reason why it’s important to look for domain-specific
data formats before you set off to design your API. A standard like
vCard represents a lot of time and money spent identifying the
application-level semantics for a problem domain. You don’t need to
start over just because vCard doesn’t have hypermedia controls.
Even if you can’t directly reuse a domain-specific standard, you may
be able to save yourself some time by adapting its application-level
semantics into a profile. But that’s a topic for Chapter 8.

If You Can’t Find a Domain-Specific Design, Don’t Make One

If you can’t find a domain-specific API for your problem domain, don’t
panic. People just don’t define reusable, domain-specific,
hypermedia-aware formats very often. That doesn’t mean you have to
start from scratch. You should be able to start with a standardized
foundation and extend it, reusing work done by other people whenever
possible. It’ll just take a little work on your part to glue
everything together.
In the next two chapters, I’ll discuss some of these foundations. In
particular, there are a few domain-specific designs that deal with a
domain so popular and so general—collections of things—that I
don’t really consider it a domain at all. It’s more like a design
pattern.

Kinds of API Clients

Apart from the three Maze+XML client implementations in this chapter,
I won’t be talking much about API clients in this book. I don’t know
enough to give a lot of guidance, because right now there aren’t many
deployed APIs that take full advantage of the Fielding constraints.
A deep understanding of hypermedia won’t help you write a client for
an API that doesn’t serve hypermedia documents. When you’re writing a
client, you’re at the mercy of the server design, and pragmatism
always trumps idealism. Right now, pragmatism means adopting a
different approach for every individual API.
But I have seen enough deployed hypermedia APIs (including the World
Wide Web itself) to say something about the kinds of clients
people tend to write. I’ve seen that the client and server must share
an understanding of the problem domain, but they don’t have to share a
goal. This is my first attempt, presented humbly, to classify the
clients we write to achieve our goals.
Human-Driven Clients

Human-driven clients can have relatively simple logic because they
don’t have to make any decisions. They present representations to a
human being, and convey the human’s decisions back to the server. The
differences between human-driven clients come down to how faithful
they are in presenting representations to their human users.
A typical web browser is a faithful renderer. Nearly every HTML tag
in a web page has some graphical effect on the page displayed on the
screen. Every hypermedia link and form in an HTML document appears on
screen, unless something else in the document says it should be
hidden.
Now consider a web browser that uses text-to-speech to present web
pages to a visually impaired user. It will be a little less
faithful. Some HTML tags translate well into the medium of speech
(is a good example), and some don’t (like <div>). But any web
browser must be very faithful when rendering hypermedia
controls. Every link and form that a sighted user can trigger should
also be available to a visually impaired user.
The Game client is a pretty faithful renderer of Maze+XML
documents. Maze+XML documents don’t contain layout information, the
way HTML documents do, but the Game makes sure to show its human user
all the bits of resource state (like the title of a cell) it can find,
as well as all the hypermedia links.
A Game client that replaced the directional links with tank controls
(“turn left,” “turn right,” “move forward”) would be even a less
faithful renderer, even though it sends the same requests to the
server as the Game client I showed you. A Game client that refused to
show its human users the “exit” link, leaving them trapped in the maze
forever, would not be very faithful at all.
A less faithful renderer puts its own editorial vision between what
the server sends and what the user experiences. This sounds
bad—nobody likes things that are “unfaithful”—but it depends on what
the user is trying to do. A store’s website may show you a lot of
expensive stuff you don’t need. You might prefer a less faithful
renderer: a client for the store’s API that filters out the expensive
stuff to help you find bargains.
When the human user selects a maze to play, the Game retrieves a
representation of the maze, but it doesn’t display that
representation. It just scans the representation for a link with
rel="start", and automatically follows that link. That’s
“unfaithful.” The Game client believes there’s nothing in the
representation of the maze that would be of interest to the human
user, and that making the human manually click the “start” link would
be a waste of time. This is probably true, but it means the Game
client is not a completely faithful renderer.
The more devoted a client is to faithfully rendering the
representations it receives, and not interposing its own judgment,
the less likely it is to break when it encounters a representation it
wasn’t expecting.

Automated Clients

Automated clients receive representations but don’t render
them. There’s no human to see the rendering. These clients must bridge
the semantic gap on their own, by deciding which hypermedia controls
to trigger. Of course, most clients don’t “decide” anything at
all. They carry out simple preprogrammed rulesets that hopefully help
them reach some predefined goal.
None of these clients are as smart as human beings, but they do free
us from repetitive tasks that don’t need our full intelligence. I’ve
seen and created several different types of automated clients.
The crawler

The crawler simulates a very curious but not very picky human. Give it
a URL to start with, and it will fetch a representation. Then it will
follow all the links it can find to get more representations. It will
do this recursively, until there are no more representations to be had.
The Mapmaker client from earlier in this chapter is a kind of crawler
for Maze+XML documents. The spiders used by search engines are
crawlers for HTML documents.
It’s quite difficult to write a crawler for an API that doesn’t use
hypermedia. But you can write a crawler for a hypermedia-based API
without even understanding that API’s link relations.
Generally speaking, a crawler will only trigger state transitions that
are safe. Otherwise, there’s no telling what will happen to resource
state. A crawler that sent a DELETE request to every resource it
encountered, just to see what happened, would be a terrible client.

The monitor

The monitor is the opposite of the crawler. It simulates a human who’s
obsessed with one particular web page. Give it a URL to start with,
and the monitor will fetch a representation of that URL and process it
somehow. But it won’t follow any links. Instead, the monitor will wait
a while and fetch a new representation of the same resource. Instead
of triggering a hypermedia control to change the resource state, the
monitor waits for someone else to change the resource state, and
checks back later to see what happened.
An RSS aggregator is a kind of monitor. A human user points an
aggregator at a number of interesting RSS and Atom feeds. The monitor
client periodically fetches the feeds and somehow notifies its user of
new entries. It never follows the links in those entries.
Suppose that one of those Atom feeds is hooked up to a full-featured
API that uses the Atom Publishing Protocol. The aggregator client
won’t even notice. It just wants to watch the feed. Nothing a user
does within an RSS aggregator will change resource state on the sites
that publish the feeds.

The script

Most of today’s automated API clients are scripts. A script simulates
a human with a set routine that never changes. A script happens when a
human is tired of this routine and wants to automate it.
The human chooses an API and figures out out which state transitions
(for an API that serves hypermedia documents) or API calls (for a
hypermedia-ignorant API) are necessary to carry out the routine. Then
the human writes an algorithm that automates the process of triggering
those state transitions or making those API calls.
The Boaster client from earlier in this chapter is a very simple
script. It knows about one bit of information (the title of a
maze), and it knows where to find it. It will give a different result
every time you run it (because it will choose a different maze every
time), but it always accomplishes the same task: pretending to solve
a maze.
A client that actually entered a maze and moved east three times would
be a more impressive script. If you gave it the right maze, it would
even be capable of finding the exit cell! But there’s clearly no
intelligence in the algorithm. It’s a script, playing back a
predefined set of state transitions.
A script tends to break when the assumptions underlying it become
invalid. A “maze solver” client that always goes east three times can
only solve a very small subset of mazes. A screen-scraping script that
extracts data from a website will break when the HTML representations
are redesigned.
A hypermedia-aware script is less likely to break when something
trivial happens, like the URL of a resource changing or new data
being added to a representation. This means a hypermedia API has some
room to change without breaking the scripts that depend on it. But a
script is a playback of a human being’s thought process. If it
encounters a situation the human didn’t originally consider, the
script won’t be able to fill in the blanks.

The agent

Forget the Boaster. Forget the script that moves east three times and
then stops. Imagine a client that actually solves a maze on its own,
using an algorithm such as wall-following. This client would be able
to solve mazes it had never seen before. It would change its behavior
on the fly, in response to the representations it got from the
server. In short, it would make decisions.[16]
A software agent simulates a human being who is actively engaged with
a problem. It’s not as smart as a human, and it has no ability to make
subjective judgments, but it does what a human would do in the same
situation. It looks at a representation, analyzes the situation, and
decides which hypermedia control to activate to get closer to its
final goal.
The monitor doesn’t do this; it never activates hypermedia controls at
all. The crawler doesn’t do this; it activates every safe hypermedia
control it can find. The script doesn’t do this; it always activates
the next hypermedia control it was programmed with. Human-driven
clients don’t do this; they delegate the task to the human. A software
agent is the only client that can be said to make autonomous
“decisions.”
Software agents can be simple, like maze-solving clients, or they can
be driven by complex reasoning engines that synthesize information
from many different sources. Right now, software-agent clients tend
toward the simple side. But we have a vision of what more
sophisticated agents would look like: the personal shoppers and
automated news gatherers of science fiction, and the high-frequency
trading algorithms used in real-life financial applications.
A software agent is the automated client best positioned to take
advantage of the flexibility of a hypermedia API. But it’s based on
two big underlying assumptions: that its goal makes sense and that
the reasoning process it’s been programmed with will eventually lead
to the goal. An agent will break if those assumptions are violated. If
a maze-solving agent encounters a maze where its algorithm doesn’t
work—say, a maze that contains one-way passages—it will break, just
like the script that always moves east three times.
Software agents are programmed by computer programmers, and we know
too much about how computers work to leave all important decisions to
software. At the moment of truth, an API client may choose to ask a
human being to confirm an unsafe state transition (“Do you want me to
buy you this shirt?”) or make a subjective judgment (“Which of these
landscapes is more beautiful?”). In that moment, the agent becomes a
human-driven client. This makes mistakes less likely, and reduces
their cost when they do happen.

[11] If you ever
need to format an IANA-registered link relation as an extension
relation, you can use the URI Template
http://alps.io/iana/relations#{name}. The alternate name for the
link relation author is http://alps.io/iana/relations#author. This
is a service we’re providing as part of the ALPS project described in
Chapter 8, not anything official or endorsed by the IANA.

[12] You’ll find the
Node source code for the Game client in the RESTful Web APIs GitHub
repository (look in the Maze/the-game/ directory).

[13] The code for
the server is in the RESTful Web APIs GitHub repository (look in the
Maze/server) directory.

[14] You’ll find lots of information on the topic
at Astrolog’s Maze Classification page.

[15] The code for the Boaster is in the RESTful Web
APIs GitHub repository (look in the Maze/the-boaster directory).

[16] You can see some
Maze+XML clients like this at this page.

Chapter 6. The Collection Pattern

Back in Chapter 2, I showed off a simple microblogging API that
served representations with a media type of
application/vnd.collection+json. The representations looked like
this:
{ "collection":
 {
 "version" : "1.0",
 "href" : "http://www.youtypeitwepostit.com/api/",

 "items" : [
 { "href" :
 "http://www.youtypeitwepostit.com/api/messages/21818525390699506",
 "data" : [
 { "name" : "text", "value" : "Test." },
 { "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }
],
 "links" : []
 },

 { "href" :
 "http://www.youtypeitwepostit.com/api/messages/3689331521745771",
 "data" : [
 { "name" : "text", "value" : "Hello." },
 { "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }
],
 "links" : []
 },

 { "href" :
 "http://www.youtypeitwepostit.com/api/messages/7534227794967592",
 "data" : [
 { "name" : "text", "value" : "Pizza?" },
 { "name" : "date_posted", "value" : "2013-04-18T03:22:27.485Z" }
],
 "links" : []
 }
],

 "template" : {
 "data" : [
 {"prompt" : "Text of message", "name" : "text", "value" : ""}
]
 }
 }
}
In this chapter, I’ll talk more about Collection+JSON,[17] the standard that
defines the structure of this document.
Collection+JSON is one of several standards designed not to represent
one specific problem domain (the way Maze+XML does), but to fit a
pattern—the collection—that shows up over and over again, in all
sorts of domains. This standard makes a good example, because it’s a
formalized version of the JSON-based APIs that first-time designers
tend to come up with. Collection+JSON lets you follow your natural
design inclinations without running afoul of the Fielding constraints.
The document just shown represents a collection of microblog posts. A
collection of goods in a shopping cart or a collection of
readings from a weather sensor would look pretty much the same, and
have pretty much the same protocol semantics. My only additions to the
Collection+JSON standard are a few bits of application semantics. I
decided that a microblog post should have a date_posted field and a
text field. An item in a shopping cart or a reading from a weather
sensor would have different fields, reflecting their different
application semantics.
If there’s no domain-specific standard for your problem domain (and
there probably isn’t), you may be able to use a collection-based
standard instead. Instead of starting from nothing, you’ll be able to
focus on adapting your application semantics to the collection
pattern. Not only will you save time, you’ll get access to a
preexisting base of client programs and server-side tools.
Although this chapter focuses on Collection+JSON, I’ll also cover the
Atom Publishing Protocol, or AtomPub. AtomPub is the original
standard for collection-based APIs, defined in RFC 5023. It’s a
relatively old standard, but apart from its use in Google’s public
APIs, it hasn’t caught on—partly because it’s an XML-based format in
a field now dominated by JSON representations.
In Chapter 10, I’ll cover OData, the third major standardization of the
collection pattern. OData is an open standard in progress that was
originally based on AtomPub. It has the advantages of a JSON
representation and backing by Microsoft, which has integrated OData
support into its Visual Studio development platform.
The Hydra standard (Chapter 12) also has support for the collection
pattern, although that’s not its main purpose. It would be nice if
there were a single, agreed-upon standard for collection-based APIs,
but four competing standards is better than thousands of one-off
designs, which is what we have now.
What’s a Collection?

Before going into detail about the standards designed around the
collection pattern, let’s talk about the pattern itself. It’s pretty
simple, but I want to spell everything out explicitly so there are no
surprises.
A collection is a special kind of resource. Recall from Chapter 3 that
a resource is anything important enough to have been given its own
URL. A resource can be a piece of data, a physical object, or an
abstract concept—anything at all. All that matters is that it has a
URL and the representation—the document the client receives when it
sends a GET request to the URL.
A collection resource is a little more specific than that. It exists
mainly to group other resources together. Its representation focuses
on links to other resources, though it may also include snippets from
the representations of those other resources. (Or even the full
representations!)
Note
A collection is a resource that lists other resources by linking
to them.

Collections Link to Items

An individual resource contained within a collection is sometimes
called an item, an entry, or a member of the collection. Think
about the contact list on your friend’s phone. You show up in that
list: your name and your phone number. You’re an item in the “contact
list” collection.
But you’re more than an item in a collection: you’re a human
being. That’s not you in your friend’s phone. That’s a link to you
(via your phone number) and some information about you (your
name). You have an independent existence; the data in your friend’s
phone is just a partial representation.
Similarly, a resource that’s described in a collection doesn’t
suddenly become a special thing called an “item.” That resource still
has its own URL and an independent existence outside the
collection. When we talk about an “item” or an “entry” or a “member,”
we’re talking about a standalone resource that happens to be linked
to from a collection’s representation.

Collection+JSON

Now let’s get specific, by seeing how Collection+JSON implements the
collection pattern. The Collection+JSON standard defines a
representation format based on JSON. It also defines the protocol
semantics for the HTTP resources that serve that format in response to
GET requests.
Here’s a Collection+JSON document:
{ "collection":
 {
 "version" : "1.0",
 "href" : "http://www.youtypeitwepostit.com/api/",

 "items" : [
 { "href" : "/api/messages/21818525390699506",
 "data" : [
 { "name" : "text", "value" : "Test." },
 { "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }
],
 "links" : []
 },

 { "href" : "/api/messages/3689331521745771",
 "data" : [
 { "name" : "text", "value" : "Hello." },
 { "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }
],
 "links" : []
 }
],

 "links" : [
 {"href" : "/logo.png", "rel" : "icon", "render" : "image"}
],

 "queries" : [
 { "href" : "/api/search",
 "rel" : "search",
 "prompt" : "Search the microblog archives",
 "data" : [{"name" : "query", "value" : ""}]
 }
],

 "template" : {
 "data" : [
 {"prompt" : "Text of message", "name" : "text", "value" : ""}
]
 }
 }
}
It’s basically an object with five special properties, predefined slots for
application-specific data:
	
href

	
A permanent link to the collection itself.

	
items

	
Links to the members of the collection, and partial
 representations of them.

	
links

	
Links to other resources related to the
 collection.

	
queries

	
Hypermedia controls for searching the collection.

	
template

	
A hypermedia control for adding a new item to the
 collection.

There’s also an optional error section, for error messages, but I
won’t cover that here.
Representing the Items

Let’s zoom in on items, the most important field in a
Collection+JSON representation:
 "items" : [
 { "href" : "/api/messages/21818525390699506",
 "data" : [
 { "name" : "text", "value" : "Test." },
 { "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }
],
 "links" : []
 },

 { "href" : "/api/messages/3689331521745771",
 "data" : [
 { "name" : "text", "value" : "Hello." },
 { "name" : "date_posted", "value" : "2013-04-20T12:55:59.685Z" }
],
 "links" : []
 }
]
I say it’s the most important field because it makes it clear which
items are in the collection. In Collection+JSON, each member is
represented as a JSON object. Like the collection itself, each member
has a number of predefined slots that can be filled with
application-specific data:
	
The href attribute

	
A permanent link to the item as a
 standalone resource.

	
links

	
Hypermedia links to other resources related to the item.

	
data

	
Any other information that’s an important part of the
 item’s representation.

An item’s permanent link

A member’s href attribute is a link to the resource outside the
context of its collection. If you GET the URL mentioned in the href
attribute, the server will send you a Collection+JSON representation
of a single item. It’ll look something like this:
{ "collection":
 {
 "version" : "1.0",
 "href" : "http://www.youtypeitwepostit.com/api/",

 "items" : [
 { "href" : "/api/messages/21818525390699506",
 "data": [
 { "name" : "text", "value" : "Test." },
 { "name" : "date_posted", "value" : "2013-04-22T05:33:58.930Z" }
],
 "links" : []
 }
]
 }
}
You might be able to modify an item with HTTP PUT to its permanent
link, or delete it with HTTP DELETE. These are the item’s protocol
semantics. They’re spelled out as part of Collection+JSON’s definition
of an “item.”

An item’s data

At the core of any Collection+JSON application are the
application-level semantics you’re trying to convey: the bits of data
associated with each individual item. Most of this data goes into an
item’s data slot. That slot needs to contain a list of JSON objects,
each with the properties name and value, each describing a single
key-value pair. Here’s one example from our microblogging API:
 "data" : [
 {
 "name" : "text",
 "value" : "Test.",
 "prompt" : "The text of the microblog post."
 },
 {
 "name" : "date_posted",
 "value" : "2013-04-22T05:33:58.930Z",
 "prompt" : "The date the microblog post was added."
 }
]
The name attribute is the key of the key-value pair, the value is
of course the value, and the (optional) prompt is a human-readable
description. The Collection+JSON standard says nothing about what
keys, values, or prompts you should use. That depends on your needs,
and the application-level semantics you’ve defined for your API.

An item’s links

The simplest of Collection+JSON’s hypermedia controls is the href
attribute. I covered this earlier; it’s a special link that provides a
URL the client should use whenever it wants to refer to one specific
item:
"href" : "/api/messages/21818525390699506"
An item’s representation may also contain a list called links. This
contains any number of other hypermedia links to related
resources. Here’s a link you might see in the representation of a
“book” resource:
{
 "name" : "author",
 "rel" : "author",
 "prompt" : "Author of this book",
 "href" : "/authors/441",
 "render" : "link"
}
That’s approximately equivalent to this snippet of HTML:
Author of this book
The rel attribute is a slot for a link relation, just like the rel
attribute in Maze+XML. It’s a place for you to put some application
semantics. The prompt attribute is a place to put a human-readable
description, like the link text inside an HTML <a> tag.
Here’s another link you might see in the representation of a book:
 {
 "name" : "cover",
 "rel" : "icon",
 "prompt" : "Book cover",
 "href" : "/covers/1093149.jpg",
 "render" : "image"
 }
That’s approximately equivalent to this snippet of HTML:

The difference between the author link and the icon link is the render
attribute. Setting render to "link" tells a Collection+JSON client
to present the link as an outbound link (see Chapter 4), like an HTML
<a> tag. The user can click on the link to move the client’s view to
another representation. Setting render to "image" tells the client
to present the link as an embedded image, like HTML’s
tag. That link is fetched automatically, and the resulting
representation is directly incorporated into the view of the current
representation.

The Write Template

Suppose you want to add a new item to a collection. What HTTP request
should you make? To answer this question, you need to look at the
collection’s write template.
Here’s the write template for our microblogging API:
"template": {
 "data": [
 {"prompt" : "Text of message", "name" : "text", "value" : ""}
]
}
Interpreting this template according to the Collection+JSON standard
tells you it’s OK to fill in the blanks and submit a document that
looks like this:
{ "template" :
 {
 "data" : [
 {"prompt" : "Text of the message", "name" : "text", "value" : "Squid!"}
]
 }
}
Where does that request go? The Collection+JSON standard says you add
an item to a collection by sending a POST request to the
collection (i.e., to its href attribute):
 "href" : "http://www.youtypeitwepostit.com/api/",
So the POST request will look like this:
POST /api/ HTTP/1.1
Host: www.youtypeitwepostit.com
Content-Type: application/vnd.collection+json

{ "template" :
 {
 "data" : [
 {"prompt" : "Text of the message", "name" : "text", "value" : "Squid!"}
]
 }
}
That means the write template is conceptually equivalent to this HTML
form:
<form action="http://www.youtypeitwepostit.com/api/" method="post">
 <label for="text">Text of the message</label>
 <input id="text"/>
 <input type="submit"/>
</form>
It’s not exactly the same, because filling out the HTML form sends an
application/x-www-form-urlencoded representation, and filling out a
write template sends an application/vnd.collection+json
representation. But conceptually, those two hypermedia controls are
very similar.

Search Templates

If a collection has millions of items, it would be foolish for the
server to send representations of all of them to every client that
makes a GET request. The server can avoid this by providing search
templates—hypermedia forms that the client fills out to filter a
Collection+JSON collection.
The search templates for a collection are stored in the queries
slot. Here’s a queries slot that includes a simple search template:
{
 "queries" :
 [
 {
 "href" : "http://example.org/search",
 "rel" : "search",
 "prompt" : "Search a date range",
 "data" :
 [
 {"name" : "start_date", "prompt": "Start date", "value" : ""},
 {"name" : "end_date", "prompt": "End date", "value" : ""}
]
 }
]
}
That Collection+JSON search template is equivalent to this HTML form:
<form action="http://example.org/search" method="get">
 <p>Search a date range</p>
 <label for="start_date">Start date</label>
 <input label="Start date" id="start_date" name="end_date" value=""/>

 <label for="end_date">End date</label>
 <input label="End date" id="end_date" name="end_date" value=""/>
</form>
Which is equivalent to this URI Template:
http://example.org/search{?start_date,end_date}
I say they’re equivalent because all three will make the same HTTP GET
request given the same inputs. It’ll look something like this:
GET /search?start_date=2010-01-01&end_date=2010-12-31 HTTP/1.1
Host: example.org

How a (Generic) Collection Works

There’s not much more to Collection+JSON than what I’ve just shown. It was designed without any real application semantics, so that
it can be used in many different applications. Because it’s so
general, it does a good job illustrating the common features of the
collection pattern.
Before moving on to AtomPub, I’d like to go up a level and lay out the
pattern itself as I see it, by describing the behavior of a generic
“collection” resource under HTTP. Collection+JSON, AtomPub, OData, and
Hydra take different approaches to collections, but they all have more
or less the same protocol semantics.
GET

Like most resources, a collection responds to GET by serving a
representation. Although the three main collection standards don’t say
much about what an item should look like within a collection, they go
into great detail about what a collection’s representation should look
like.
The media type of the representation tells you what you can do with
the resource. If you get an application/vnd.collection+json
representation, you know that the rules of the Collection+JSON
standard apply. If the representation is application/atom+xml, you
know that AtomPub rules apply.
If the representation is application/json, you’re out of luck,
because the JSON standard doesn’t say anything about collection
resources. You’re using an API that went off on its own and defined a
fiat standard. You’ll need to look up the details for the specific API
you’re using.

POST-to-Append

The defining characteristic of a collection is its behavior under HTTP
POST. Unless a collection is read-only (like a collection of search
results), a client can create a new item inside it by
sending it a POST request.
When you POST a representation to a collection, the server creates a
new resource based on your representation. That resource becomes the
latest member of the collection. Recall Chapter 2, when a POST sent to
the microblog API created a new entry “inside” the microblog.

PUT and PATCH

None of the main collection standards define a collection’s response
to PUT or PATCH. Some applications implement these methods as a way of
modifying several elements at once, or of removing individual elements
from a collection.
Collection+JSON, AtomPub, and OData all define an item’s response to
PUT: they say that PUT is how clients should change the state of an
item. But these standards are just repeating what the HTTP standard
says. They’re not putting new restrictions on item resources. PUT is
how clients change the state of any HTTP resource.

DELETE

None of the three big standards define how a collection should respond
to DELETE. Some applications implement DELETE by deleting the
collection; others delete the collection and every resource listed as
an item in the collection.
The main collection standards all define an item’s response to
DELETE, but again, they’re just restating what the HTTP standard
says. The DELETE method is for deleting things.

Pagination

A collection may contain millions of items, but again, the server is under no
obligation to serve millions of links in a single document. The most
common alternative is pagination. A server can choose to serve the
first 10 items in the collection, and give the client a link to the
rest:
<link rel="next" href="/collection/4iz6"/>
The "next" link relation is registered with the IANA to mean “the
next in the series.” Follow that link and you’ll get the second page
of the collection. You’ll probably be able to keep following
rel="next" links indefinitely, until you reach the end of the
collection.
There are a number of generic link relations for navigating paginated
lists. These include "next", "previous", "first", "last", and "prev" (which is a synonym for “previous”). These link relations were
originally defined for HTML, but now they’re registered with the IANA,
so you can use them with any media type.
Some collection-based standards explicitly define a pagination
technique. Others simply assume you know about "next" and
"previous". Collection+JSON falls into the latter category. It has no
explicit support for pagination, but you can get that feature by
combining its generic hypermedia links with the IANA’s generic link
relations:
"links" : [
 {
 "name" : "next_page",
 "prompt" : "Next",
 "rel" : "next",
 "href" : "/collection/page/3",
 "render" : "link"
 },
 {
 "name" : "previous_page",
 "prompt" : "Back",
 "rel" : "previous",
 "href" : "/collection/page/1",
 "render" : "link"
 }
]

Search Forms

The final common feature of the collection pattern is the hypermedia
search form. This also helps with very large collections. Search forms
let a client find the interesting parts of a collection without
downloading the whole thing.
Collection+JSON and OData explicitly define their own formats for
hypermedia search forms. I showed you a Collection+JSON search
template earlier in this chapter. AtomPub has no native support for
search. It assumes you’ll plug in another standard, such as
OpenSearch, if you need this feature.

The Atom Publishing Protocol (AtomPub)

The Atom file format was developed as an alternative to RSS for
syndicating news articles and blog posts. It’s defined in RFC 4287,
which was finalized in 2005. The Atom Publishing Protocol is a
standardized workflow for editing and publishing news articles, using
the Atom file format as the representation format. It’s defined in
RFC 5023, which was finalized in 2007. Those are pretty early dates in
the world of REST APIs. In fact, AtomPub was the first standard to
describe the collection pattern.
Here’s an Atom representation of the same microblog I showed you as a
Collection+JSON earlier. AtomPub has the same concepts as
Collection+JSON, but uses different terminology. Instead of a
“collection” that contains “items,” this is a “feed” that contains
“entries.”
<feed xmlns="http://www.w3.org/2005/Atom">

 <title>You Type It, We Post It</title>
 <link href="http://www.youtypeitwepostit.com/api" rel="self" />
 <id>http://www.youtypeitwepostit.com/api</id>
 <updated>2013-04-22T05:33:58.930Z</updated>

 <entry>
 <title>Test.</title>
 <link
 href="http://www.youtypeitwepostit.com/api/messages/21818525390699506" />
 <link rel="edit"
 href="http://www.youtypeitwepostit.com/api/messages/21818525390699506" />
 <id>http://www.youtypeitwepostit.com/api/messages/21818525390699506</id>
 <updated>2013-04-22T05:33:58.930Z</updated>
 <author><name/></author>
 </entry>

 <entry>
 <title>Hello.</title>
 <link
 href="http://www.youtypeitwepostit.com/api/messages/3689331521745771" />
 <link rel="edit"
 href="http://www.youtypeitwepostit.com/api/messages/3689331521745771" />
 <id>http://www.youtypeitwepostit.com/api/messages/3689331521745771</id>
 <updated>2013-04-20T12:55:59.685Z</updated>
 <author><name/></author>
 </entry>

 <entry>
 <title>Pizza?</title>
 <link
 href="http://www.youtypeitwepostit.com/api/messages/7534227794967592" />
 <link rel="edit"
 href="http://www.youtypeitwepostit.com/api/messages/7534227794967592" />
 <id>http://www.youtypeitwepostit.com/api/messages/7534227794967592</id>
 <updated>2013-04-18T03:22:27.485Z</updated>
 <author><name/></author>
 </entry>

</feed>
This document is served with the media type application/atom+xml,
and an AtomPub client is allowed to make certain assumptions about
it. You know you can POST a new Atom entry to the href of the
collection. An entry’s rel="edit" link is the URL you send a PUT to
if you want to edit the entry, or send a DELETE to if you want to
delete the entry.
None of this should come as a surprise. It’s similar to what
Collection+JSON does, and it mostly restates ideas found in the HTTP
standard.
There’s one big conceptual difference between Collection+JSON and
AtomPub. Collection+JSON defines no particular application semantics
for “item.” An “item” can look like anything. But since Atom was
designed to syndicate news articles, every AtomPub entry
looks a bit like a news article. Every entry in an AtomPub feed must
have a unique ID (I used the URL of the post), a title (I used the
text of the post), and the date and time it was published or last
updated. The Atom file format defines little bits of application
semantics for news stories: fields like “subtitle” and
“author.” Collection+JSON doesn’t do any of this; it doesn’t even
require that every member of a collection have a permalink (although
you really should have one).
Despite this focus on news and blog posts, AtomPub is a fully general
implementation of the collection pattern. Google, the biggest
corporate adopter of AtomPub, uses Atom documents to represent videos,
calendar events, cells in a spreadsheet, places on a map, and more.
The secret is extensibility. You’re allowed to extend Atom’s
vocabulary with whatever application semantics you care to
define. Google defined a common Atom extension called GData for all of
its Atom-based APIs, then defined additional extensions for
videos, calendars, spreadsheets, and so on.
A few interesting facts about AtomPub with respect to the collection
pattern:
	
Since news articles are often classified under one or more
 categories, the Atom file format defines a simple category system,
 and AtomPub defines a separate media type for a list of categories
 (application/atomcat+xml).

	
AtomPub also defines a media type for a Service
 Document—effectively a collection of collections.

	
Atom is strictly an XML-based file format. AtomPub installations do not
 serve JSON representations. This makes it difficult to consume an
 AtomPub API from an Ajax client. Google recognized this as a
 problem and added JSON representations of its documents alongside
 the AtomPub representations. But Google presented this as a fiat
 standard, not as something everyone is encouraged to reuse.

	
Although Atom is an XML file format, clients may POST binary files
 to an AtomPub API. An uploaded file is represented on the server
 as two distinct resources: a Media Resource whose representation
 is the binary data, and an Entry Resource whose representation is
 metadata in Atom format. This feature lets you use AtomPub to store
 a collection of photos or audio files, along with Atom documents
 containing descriptions and related links.

AtomPub Plug-in Standards

Because they’re so extensible, Atom and AtomPub are used as the basis
for a lot of small plug-in standards that enhance the collection
pattern:
	
The Atom Threading Extensions (defined in RFC 4685) make it easy to
 describe structures like the conversations found in email threads
 and message boards. This extension is nothing big—just a few extra
 tags and a new link relation called "replies".

	
The Atom deleted-entry element (defined in RFC 6721) lets the
 server put up a “tombstone” for an item when it’s deleted from a
 collection, rather than simply removing it. This tells clients they
 need to purge the deleted entry instead of caching it.

	
RFC 5005 (“Feed Paging and Archiving”) defines the concept of an
 “archived feed,” a more efficient way of paginating a large feed
 across multiple resources. It defines the link relations
 "next-archive", "prev-archive", and "current", to be used instead of
 "next", "prev", and "first".

	
OpenSearch
is a consortium standard for an XML-based search protocol. An OpenSearch
document is the equivalent of an HTML form, or the “queries” section
of a Collection+JSON document. A client that fills out the form can
perform a search (through HTTP GET) and get an Atom feed of search
results. OpenSearch defines a new link relation, "search", which
lets an Atom feed link to an OpenSearch document.

OpenSearch isn’t Atom-specific. Your web browser’s search bar also
uses OpenSearch. OpenSearch lets you search different websites without
actually going to those sites and using their HTML search
engines. I’m including OpenSearch here because AtomPub doesn’t
define a search protocol, and this is the one you should use.
In Chapter 10, I’ll cover OpenSearch in a little more detail.

	
PubSubHubbub is a
 corporate standard describing a publish-subscribe protocol that
 lets clients sign up to receive a notification (via HTTP POST)
 whenever an Atom feed is updated. It defines a new link relation,
 “hub”.

All the link relations defined by these plug-in standards are
registered with the IANA. This means that "replies", "next-archive",
"prev-archive", "current", "search", and "hub" are generic relations
that can also be used anywhere, without explanation. The "search"
link relation was defined for OpenSearch, but rel="search" doesn’t
mean “this is a link to an OpenSearch document.” It means “this is a
link to some kind of search form.”
Even if you’re not using AtomPub, you can benefit from the work done
by the people who’ve spent the past several years working on Atom
extensions. They’ve created a standard vocabulary for a lot of common
operations; you just have to decide to reuse it.

Why Doesn’t Everyone Use AtomPub?

Six years after the RFC was finalized, and despite all the plug-in
standards, it’s safe to say that AtomPub has not caught on. The
standard never got much traction outside of Google, and even Google
seems to be phasing it out. What’s wrong with AtomPub?
The problem stems from a technical decision made back in 2003: AtomPub
representations are XML documents. This seemed like the obviously
correct decision in 2003, but over the next 10 years, as in-browser
API clients became more and more popular, JSON gained an overwhelming
popularity as a representation format. It’s a lot easier to process
JSON from in-browser JavaScript code than it is to process XML. Today,
the vast majority of APIs either serve JSON representations
exclusively, or offer a choice between XML and JSON
representations. AtomPub is nowhere to be seen.[18]
So why devote a big section of this book to AtomPub? Partly because
there’s nothing wrong with the standard. It works fine for what it is.
It has historical significance as the first general implementation of
the “collection” API pattern. The plug-in standards define generic
IANA-registered link relations that can be cleanly reused in other
representation formats.
But the AtomPub story also shows that “nothing wrong with the
standard” isn’t good enough. People won’t go through the trouble of
learning a standard unless it’s directly relevant to their needs. It’s
easier to reinvent the “collection” pattern using a fiat standard
based on JSON, so that’s what thousands of developers did—and
continue to do.
My main purpose in writing this book is to try to halt this
duplication of effort. I don’t know whether the answer is
Collection+JSON or any of the other hypermedia formats I cover in the
next few chapters. There’s probably no single answer.
I do know that the “collection” pattern has proven itself
dominant. The question is whether we’ll collectively allow ourselves
to reinvent the same basic ideas over and over again.

The Semantic Challenge: How Are We Doing?

Remember, the semantic challenge is: How can we program a computer to
decide which links to click? To answer this question, we must bridge
the gap between the protocol semantics of HTTP (generic “resources”
identified by URLs and responding to methods like GET and PUT) and the
application semantics of your special, unique web API (a microblogging
service, a payment processor, or whatever it is you’re doing).
A domain-specific design like Maze+XML bridges the gap with a
custom-designed hypermedia type, plus link relations defined especially
for your problem space. But that’s a lot of work, and almost nobody
goes that far.
The collection pattern recognizes two different kinds of resources:
item-type resources (which tend to respond to GET, PUT, and DELETE)
and collection-type resources (which tend to respond to GET and
POST-to-append). A collection-type resource contains a number of
item-type resources. Its representation links to those items and
includes partial representations of them.
The distinction between collection and item is a small layer of
application semantics on top of HTTP’s protocol
semantics. Collection+JSON, AtomPub, and OData all define the same
collection/item distinction. With the distinction in place, a lot of
the IANA’s generic link relations suddenly make sense: relations for
navigating a collection, like "first", "next", and "next_archive"; the
"search" relation for searching through a collection; the "item"
relation for pointing out an item within a collection, the "edit"
relation for editing an item, and the "collection" relation that
connects an item to a collection that contains it.
But an "item" still isn’t anything in particular. It’s almost as vague
a term as “resource.” In a microblogging API, an "item" will be a
bit of text with a timestamp. In a payment processor, an "item" will
include a creditor, a debitor, a method of payment, and an amount of
money. There’s still an enormous gap between the application semantics of the
collection pattern and the application semantics of your individual API.
Take another look at this Collection+JSON representation of a microblog
post:
{ "collection":
 {
 "version" : "1.0",
 "href" : "http://www.youtypeitwepostit.com/api/",

 "items" : [
 {
 "href" :
 "http://www.youtypeitwepostit.com/api/messages/21818525390699506",
 "data" : [
 {
 "name" : "text",
 "value": "Test.",
 "prompt" : "The text of the microblog post."
 },
 {
 "name" : "date_posted",
 "value": "2013-04-22T05:33:58.930Z",
 "prompt" : "The date the microblog post was added."
 }
]
 }
]
 }
}
HTTP tells us how to edit this item: change the representation
(somehow) and PUT it back. Collection+JSON tells us what that
representation should look like. It should look like a filled-out
Collection+JSON “template”:
PUT /api/messages/21818525390699506 HTTP/1.1
Host: www.youtypeitwepostit.com
Content-Type: application/vnd.collection+json

"template" : {
 "data" : [
 {"prompt" : "Text of message", "name" : "text", "value" : "The new value"}
]
}
But Collection+JSON doesn’t say what "text" and "date_posted"
mean. To understand those things a human must read the
human-readable explanation in the prompt element. That’s how
Collection+JSON bridges the semantic gap. Maze+XML bridged the gap by
defining its application semantics ahead of time, in the specification
of the media type. Collection+JSON puts the application semantics in
prompt elements scattered throughout its representations.
If everyone used Collection+JSON for their APIs, we would all share a
common definition of “collection”. But there’d be 57
different definitions of “item”, 57 sets of data elements
with differing values for prompt. Some APIs would call the text
field "text"; others would call it "content" or "post" or "blogPost",
and they’d all describe the same thing in different words. We’d still
have 57 different microblogging APIs.
So we’re still not there. We still need something more.

[17] Defined in a personal standard at
http://amundsen.com/media-types/collection/.

[18] Joe
Gregorio, a major contributor to both Atom and AtomPub, makes the same case in a
blog post.

Chapter 7. Pure-Hypermedia Designs

The collection pattern is powerful, but it’s not ubiquitous. The maze
game from Chapter 5 could technically be implemented with
Collection+JSON representations, but it would look terrible. The whole
point of the game is that the client sees one cell at a time. There’s
nothing to “collect” inside a collection. The application semantics of
the maze game don’t match what the collection pattern can provide.
Nothing says you have to use the collection pattern, but it is the
most popular design pattern for APIs. If you want to implement some
other pattern, or if your API design doesn’t fit any particular
pattern, you can describe an API’s semantics using pure
hypermedia. You don’t have to create an entirely new standard like
Maze+XML, with its own media type. You can represent the state of your
resources using a generic hypermedia language.
In this chapter, I’ll discuss APIs that use a generic hypermedia
language as their representation format. I’ll talk about a number of
newfangled representation formats, but the focus of my explanation
will be an old format that you’re already familiar with: HTML.
Why HTML?

We think of HTML in the context of the World Wide Web: a network of
documents intended to be read by human beings. That popularity makes
it the obvious choice for any part of an API that serves documents
intended for human consumption. Even if the rest of your API serves XML-
or JSON-based representations, you can use HTML for the parts that will be
rendered to a human user. Such is HTML’s popularity that every modern
operating system ships with a tool for debugging HTML-based web APIs:
a web browser.
HTML has distinct advantages even for an API designed to be consumed
entirely by machines. HTML imposes more structure on a document than
XML or JSON does, but not so much structure as to solve only one
specific problem, the way Maze+XML does. HTML sits somewhere in the
middle, like Collection+JSON.
Unlike bare XML or JSON, HTML comes packaged with a standardized set
of hypermedia controls. But HTML’s controls are very general, and not
bound to a specific problem space. Collection+JSON defines a special
hypermedia control for search queries; HTML defines a hypermedia
control (the <form> tag) that can be used for any purpose at all.
Finally, there’s the popularity argument. HTML is by far the world’s
most popular hypermedia format. There are lots of tools for parsing
and generating HTML, and most developers know how to read an HTML
document. Because HTML is so popular, it’s the base standard for two
enormous, ongoing efforts to bridge the semantic gap: microformats and
microdata, which I’ll cover later in this chapter.

HTML’s Capabilities

HTML was designed to represent the nested structure of a text
document. Any HTML tag may contain a mixture of textual content and
other tags:
<p>
 This 'p' tag contains text
 and a link.
</p>
That document doesn’t correspond to any data structure—English
sentences rarely do—but HTML documents can include the same basic
data structures as you find in JSON. Ordered lists use the tag,
and sets of key-value pairs use the <dl> tag. (It’s called “dl”
because HTML calls that data structure a “definition list.”)
HTML also supports unordered lists (the tag), two-dimensional
arrays (the <table> tag), and arbitrary ways of grouping tags together
(using the <div> and tags) without regard to standard data
structures.
Hypermedia Controls

More important, HTML has built-in hypermedia controls. I mentioned
these controls back in Chapter 4, but just to recap, here are the most
important ones:
	
The <link> tag and <a> tag are simple outbound links, like the
 <link> tag in Maze+XML. They tell the client to make a GET request
 to a specific URL in order to get a representation. That
 representation becomes the current view.

	
The tag and <script> tags are embedding links. They tell
 the client to automatically make a GET request to another resource,
 and to embed the representation of that resource in the current
 view. The tag says to embed the other representation as an
 image; the <script> tag says to execute the representation as
 code. HTML defines a few other types of embedding links, but these
 are the main ones.

	
When the <form> tag has the string "GET" as its method attribute
 (i.e. <form method="GET">), it acts as a templated outbound
 link. This works like a URI Template, or the queries slot in
 Collection+JSON. The server provides the client with a base URL and
 some input fields (HTML <input> tags). The client plugs in values
 for those fields, combines them with the base URL to form a
 one-of-a-kind destination URL, and makes a GET request to that URL.

	
When the <form> tag has "POST" as its method attribute, it
 describes an HTTP POST request that can do anything at all. The
 <input> tags are still present, but instead of being used to
 create the request URL, they’re used to create an entity-body with
 the media type application/x-www-form-urlencoded. The request URL
 is hardcoded in the action attribute of the <form> tag.

Plug-in Application Semantics

HTML defines application semantics for a very general
application: human-readable documents. The HTML standard defines tags
for paragraphs, headings, sections, lists, and other structural
elements found in news articles and books.
HTML doesn’t define tags for mazes or for cells in mazes. That’s not
its application. But HTML is different from Maze+XML or
Collection+JSON in that it’s easy to use HTML outside of its
application. HTML 4 defines three generic attributes that we can
use to add application-level semantics not defined in the HTML
standard. (HTML 5 defines a few more, which I’ll cover later.)
The rel attribute

HTML’s <a> and <link> tags have an attribute called rel, which
defines the relationship between the resource being linked to and this
one. We’ve seen rel before:
<link rel="stylesheet" type="text/css" href="/my_stylesheet.css"/>
That bit of HTML says that the resource /my_stylesheet.css should be
retrieved and automatically used to style the current page. In this
context, HTML’s <link> tag serves as an embedding link. With a
different value for rel (say, rel="self") the <link> tag would
serve as an outbound link.[19]
Although there are standard lists of link relations (like the IANA
registry I mentioned in Chapter 5), there’s nothing special about the
strings “stylesheet” or “self”. Someone made them up for HTML. If
you’re publishing a maze API in HTML, you can adopt the link relations
defined in Maze+XML ("north", "south", and so on). Use them in an HTML
document. This will give the HTML format some application-level
semantics it didn’t have before: the semantics of mazes and cells in
mazes. You can also make up extension link relations (the ones that
look like URLs) to describe the very specific relationships between
the resources in your application.
The disadvantage of making up your own link relations is that your
users will have no idea what those relationships mean. You’ll need to
document these bits of application semantics in a profile (see Chapter 8).

The id attribute

Almost any HTML tag[20] can define a value for the id attribute. This attribute
uniquely identifies an element within a document:
<div id="content">
If you happen to be looking for the tag with id="content", well,
here it is. An HTML document can’t contain two elements with the same
ID.
I don’t recommend using the id attribute as a hook for your
application-level semantics. The requirement that IDs be unique across
a document is too limiting. It creates situations where two HTML
documents can’t be combined into a larger document, because they both
define the same id.

The class attribute

Almost any HTML tag[21] can define a value for the class attribute. This
is the most flexible of HTML’s semantic attributes. On the World Wide
Web, class is usually used to apply CSS formatting, but it can also
be used to convey something about a tag’s application semantics;
literally, what “class” it belongs to.:
Here’s a simple example of a <div> tag that contains two tags:
<div class="vcard">
 Jennifer Gallegos
 1987-08-25
</div>
By itself, the <div> tag means nothing—it’s just a way to group other
tags together. A tag also means nothing on its own. But suppose
I tell you that the vcard class groups together information about a
human being (for the moment, don’t worry about how I tell you this;
I’ll cover that later). I tell you that a tag marked with the fn
class contains the person’s name, and a tag marked with the bday
class contains the person’s date of birth in ISO 8601 format.
Now the <div> tag is a description of a person. Now it means
something. Now you know that “Jennifer Gallegos” is the name of a
human being, not the title of a book. You know that “1987-08-25” is a
date in a specific format, not a random string that happens to look
like a date. When you understand what certain values for class mean,
you understand some application semantics that were not defined by
the HTML specification.
Many tags in the same document can have the same class, and a single
tag can have multiple values for class, separated by spaces:

 Link 1
 Link 2
 Link 3

If you’re ever tempted to use id for a piece of application
semantics, I recommend using class instead. Unlike with id, many
tags in a representation can have the same class attribute.

Microformats

I chose some pretty cryptic CSS class names to turn a <div> tag and
a couple tags into a description of a human being: “vcard,”
fn, and bday. If I’d made up those class names myself, I’d have
used more descriptive names like birthday. But I didn’t make them
up. I took them from an existing standard called
hCard. If you ever see
class="vcard" on an HTML tag, you’ll know that everything inside
that tag should be interpreted according to the hCard standard.
Like Maze+XML, the hCard standard doesn’t have an associated RFC or
Internet-Draft. Unlike with Maze+XML, that’s not because it’s a
personal standard. hCard is a microformat: a lightweight industry
standard defined through informal collaboration on a wiki, rather than
through the formal IETF process that results in RFCs.
Consult the hCard standard and you’ll find out that the fn class is
used to mark up a person’s full name, and that the bday class is
used to mark up the person’s date of birth in ISO 8601 format. Now you know
what a document means when it uses those CSS classes. The HTML
standard says nothing about names or birthdates, but the hCard standard
does deal with those things.
Microformats let you add extra application semantics to
HTML. HTML’s class attribute, plus the hCard microformat, lets you
create an HTML document that’s also a description of a human being.
hCard only defines values for the class attribute. The and
<div> tags I used mean nothing to hCard; I could have used other
tags. Since almost every HTML tag supports the class attribute, I
can write unstructured text that’s also an hCard document:
<p class="vcard">My name is <i class="fn">Jennifer Gallegos</i> and I
was born on <date class="bday">1987-08-25</date>.</p>
A human being will read this representation as an English sentence.
An hCard processor will ignore all the “extraneous” text and focus on
the tags that use hCard’s CSS classes.
Although the hCard microformat didn’t go through a formal
standardization process, it’s based on a standard that did: vCard, a
heavyweight plain-text format for representing business cards, defined
in RFC 6350.
I mentioned vCard in Chapter 5 as an example of a domain-specific
standard that lacks hypermedia controls. hCard is just a translation
of vCard into HTML. That’s why the top-level class value of an hCard
document is vcard instead of hcard.
The vCard RFC was the result of a lot of expensive research into, and
long arguments about, what kind of information tends to go onto business
cards. As I said in Chapter 5, there’s no reason to redo that research
and rehash those arguments just because vCard has no hypermedia
controls. We can steal vCard’s semantics and adapt them to a generic
hypermedia language: HTML.

The hMaze Microformat

In this section, I’ll do to Maze+XML what hCard did for vCard. I’ll
take a non-HTML standard designed for a specific domain—mazes—and
turn it into an HTML microformat. This will let me use HTML to
represent the semantics of a domain that the base HTML standard
doesn’t understand.
I’m calling my new microformat “hMaze,” by analogy with “hCard.” (The
“h” stands for “HTML.”) My microformat defines a few special CSS
classes:
	
hmaze

	
Indicates the parent tag of an hMaze document. Analogous to
 hCard’s vcard class.

	
collection

	
May appear within hmaze. Describes a collection of mazes.

	
maze

	
May appear within hmaze. Describes an individual maze.

	
error

	
May appear within hmaze. Describes an error message.

	
cell

	
May appear within hmaze. Describes a cell in a maze.

	
title

	
May appear within cell. Contains the name of the cell.

Microformats can also define link relations, and I’ll steal all the
ones defined by Maze+XML. The relations north, south, east,
west, exit, and current have special meaning inside a tag with
class="cell" (specifically, the special meaning defined in the
Maze+XML standard). The relation maze has special meaning when found
inside a tag with class="collection" (it links to a particular maze,
just like it does in Maze+XML).
That’s it! That’s the hMaze microformat, at least the first version of
it. If I were going to put this on the Microformat Wiki, I’d spell out
a few more CSS classes like the ones that go beneath error, but this
is good enough for an example. This microformat can represent any maze
Maze+XML can represent, but in HTML.
My microformat only defines values for class and rel. As with
hCard, the choice of tags is left to the server. A server can serve a
stuffy-looking HTML document that looks more or less like Maze+XML:
<div class="hmaze">
 <div class="cell">
 <div class="title">
 Hall of Pretzels
 </div>
 <div>

 </div>
 </div>
</div>
Or a server can present the same data in a human-readable way that
allows human beings to use their web browsers as API clients:
<div class="hmaze">
 <div class="cell">
 <p><b class="title">Hall of Pretzels</p>

 Go west
 Go east

 </div>
</div>
Both of these are valid hMaze documents, and as far as hMaze is
concerned, they have identical application semantics. All that
matters is that you use the class and rel attributes the way the
hMaze specification says you should. (As far as HTML itself is
concerned, the documents have different application-level semantics,
because HTML’s “application” is human-readable documents.)

Microdata

Microdata is a refinement of the microformat concept for HTML 5. You
see, microformats are kind of a hack. HTML’s class attribute was
designed to convey information about visual display (via CSS), not to
convey bits of application semantics.
HTML Microdata[22].] introduces five new attributes
specifically for representing application semantics: itemprop,
itemscope, itemtype, itemid, and itemref. These attributes may
appear on any HTML tag.
I’ll be focusing on the first three of these attributes. The
itemprop attribute is used the way a microformat uses the class
attribute. The itemscope attribute is a Boolean attribute, used on a
tag to indicate that the tag contains microdata. And the itemtype
attribute is a hypermedia control that tells the client where it
should go to find out what the microdata means.
With a little tweaking, most of the information in a microformat can
be presented as microdata. Here’s an HTML document that presents a
microdata type that’s a slight variant of hMaze:
<div itemscope itemtype="http://www.example.com/microdata/Maze">
 <div itemprop="cell">
 <div itemprop="title">
 Hall of Pretzels
 </div>
 <div>

 </div>
 </div>
</div>
With microformats, the client needs to “just know” that if it finds a
tag labeled with class="hMaze", everything beneath that tag is an
hMaze document. With microdata, the class="hMaze" isn’t
necessary. The itemscope property indicates that everything beneath
this tag is described according to the rules laid out in some
document, and itemtype points to that document.[23]
A microformat does have one advantage over a microdata item. A
microdata item cannot define any values for the rel attribute—only
for itemprop. This means that rel="east" and rel="west" are not
technically part of my hMaze-like microdata item. The document at
http://www.example.com/microdata/Maze will probably mention that a
client can expect to see rel="east" and rel="west" in
representations of maze cells. But as far as the microdata standard is
concerned, there’s no relationship. You can’t define link relations in
a microdata item.
The main source of microdata items is schema.org, a project of four
big search engines (Bing, Google, Yahoo!, and Yandex) to define
application semantics for different problem domains. Search engines
have an interest in understanding the high-level application semantics
of a web page—that is, whatever real-world thing the web page is
talking about. Since APIs often deal with the real-world things we
talk about on web pages (people, products, events, and so on), we can
reuse their work for our APIs.
I’ll list the major microdata types near the end of Chapter 10, and
from this point on in the book, you’ll start seeing examples that refer
to schema.org microdata items. To a human being, it should be pretty
obvious what they mean. The URL http://schema.org/Person points to
the schema.org microdata item corresponding to our everyday notion of
a “person.”

Changing Resource State

I’ve now gotten hMaze roughly to the point where it can substitute for
Maze+XML. But you didn’t come here to see me rehash Maze+XML. Let’s
add a new feature: a mysterious switch that can rearrange the
structure of the maze.
I’ll add mysterious switches to the hMaze microformat by defining two
new CSS classes:
	
switch

	
May appear within cell. Describes a switch that
 can be set to one of two positions. Each position corresponds to a
 different configuration of the maze.

	
position

	
May appear within switch. Contains the position of the
 switch: either up or down.

Here’s a representation of a cell in the maze. You’ve seen it before,
but now there’s a switch in this cell:
<div class="hmaze">
 <div class="cell">
 <p>
 <b class="title">
 Hall of Pretzels

 </p>

 Go west
 Go east

 <div class="switch">
 A mysterious switch is mounted on one wall. The
 switch is up.
 </div>

 </div>
</div>
When the player flips the switch, the maze will completely change its
configuration. If the maze looked like Figure 7-1 before the client
flips the switch, it might look like Figure Figure 7-2 afterward.
[image: Before the switch]

Figure 7-1. Before the switch

[image: After the switch]

Figure 7-2. After the switch

Flipping the switch again would restore the original maze configuration.
Unfortunately, you’ll have to take my word for it, because I haven’t
explained how a client can actually flip the switch. I assure you,
it’s possible! I’ve devised a special HTTP request that a client can
make to flip that switch. But I’m not going to tell you what that
request looks like. You have to guess.
OK, I’ll tell you. But I won’t use English—I’ll use hypermedia.
Adding Application Semantics to Forms

The hMaze microformat defines values for HTML’s rel attribute that
give new application semantics to HTML links. When you notice that an
ordinary-looking HTML link has its rel set to east, it stops being
an ordinary link and becomes a passage through a geographical space.
The rel attribute describes the relationship between two
resources. It explains a state transition: the change in application
state that will happen if the client follows a link.
What I’d really like to do is create a value for rel that means
“flip this switch.” Instead of changing application state (moving the
client from one part of the maze to another), a link with rel="flip"
would change resource state. Your application state would be
unchanged—you’d still be in the Hall of Pretzels—but the switch
would now be in the other state, and the structure of the maze would
be different.
There’s a big problem with this idea. HTML links only support the GET
method, and I can’t use GET because “flip a switch” is not a safe
operation. It modifies resource state. That’s the whole point. The
position of the switch used to be off, and now it’s on. The exit
to the maze used to be in cell C, and now it’s in cell J.
Fortunately, HTML also defines hypermedia forms. An HTML form can tell
the client to make a POST request, and a POST request can do anything
at all.
There’s a smaller problem that’s specific to HTML. The buttons that
submit HTML forms don’t support the rel attribute. But they do
support class and (in HTML 5) itemprop. So let’s define a bit of
application semantics to be applied to the class of a form’s submit
button:
	
flip

	
May appear on a form submission control within
 switch. When activated, the control will have the effect of
 flipping the switch.

Now it’s clear how to flip a switch. You look inside the tag with
class="switch", find the form submission control with class="flip",
and activate that control. Here’s the representation of the Hall of
Pretzels again:
<div class="hmaze">
 <div class="cell">
 <p>
 <b class="title">
 Hall of Pretzels

 </p>

 Go west
 Go east

 <div class="switch">
 A mysterious switch is mounted on one wall. The
 switch is up.

 <form action="/switches/4" method="post">
 <input class="flip" type="submit" value="Flip it!"/>
 </form>
 </div>
 </div>
</div>
Now it’s clear how to flip the switch. Using the hypermedia form as a
guide, a client that understands hMaze can send the magical HTTP
request I refused to explain earlier. The request looks like this:
POST /switches/4 HTTP/1.1
Content-Type: application/x-www-form-urlencoded

submit=Flip%20it%21
The response might look like this:
303 See Other
Location: /cells/H
A client that follows the link in the Location header will refresh
its representation of its current maze cell:
<div class="hmaze">
 <div class="cell">
 <p>
 <b class="title">
 Hall of Pretzels

 </p>

 Go west
 Go north
 Go south

 <div class="switch">
 A mysterious switch is mounted on one wall. The
 switch is down.

 <form action="/switches/4" method="post">
 <input class="flip" type="submit" value="Flip it!"/>
 </form>
 </div>

 </div>
</div>
The resource state has changed! The “Go west” link is still there,
but the link to the east is missing, and there are two new links to
cells that weren’t accessible before (rel="north" and
rel="south"). The switch is still there, but its position is now
down instead of up.
I could add features to this game all day, but I think this shows how
I go about defining a set of application semantics that can be used
with a general hypermedia format like HTML. Here’s the entire hMaze
microformat in one place. I define seven CSS classes that can apply to
any tag at all:
	
hmaze

	
Indicates the parent tag of an hMaze document. Analogous to
 hCard’s vcard class.

	
collection

	
May appear within hmaze. Contains a collection of mazes.

	
error

	
May appear within hmaze. Indicates an error message.

	
cell

	
May appear within hmaze. Describes a cell in a maze.

	
title

	
May appear within cell. Contains the name
 of the cell.

	
switch

	
May appear within cell. Describes a switch found in the maze.

	
position

	
May appear within switch. Describes the position of
 the switch. There are two positions: up and down.

I define eight link relations, which only apply to hypermedia controls:
maze, start, north, south, east, west, current, and exit. These
 relations have the same meaning in hMaze as they do in Maze+XML.
And I define one CSS class that only applies to a submit button
within a <form> tag (again, I have to use CSS classes for this because
HTML’s form submit buttons don’t support the rel attribute):
	
flip

	
May appear on a form submission control within
 switch. When activated, the control will have the effect of
 flipping the switch.

And that’s the API. Specifically, that’s the specification for an
API, a personal standard with the same standing as Maze+XML. There are
a couple loose ends, things I didn’t define:
	
What exactly should the HTML documents look like? I didn’t define
this because I don’t care. Your hMaze implementation can serve full
human-readable documents with lots of flavor text, or it can serve
very compact documents optimized for automated clients. As long as you
use the hMaze CSS classes and link relations correctly, your choice
will have no effect on the application semantics of the maze.

	
Could a mysterious switch be a first-class resource, with its own
representation? The switch in the example appears to have its own
URL (/switches/4), but a client is never invited to make a GET
request to that URL, only a POST request. It’s easy to imagine a link
to that URL:

 A mysterious switch
 is mounted on one wall.
But I didn’t define a link relation called switch, so this is not
part of my design. I’ll come back to this idea in Chapter 9.

The Alternative to Hypermedia Is Media

I think it’s useful to contrast the hMaze specification with what
passes for API documentation today. In typical API documentation, a
bunch of server-side methods are exposed as discrete API calls. Each
call is given its own action URL and documented in excruciating
detail. You’ve probably seen this sort of thing before:
To flip a switch, send a POST request to:
 http://api.example.com/switches/{id}?action=flip
Where {id} is the switch ID.
You can only flip a switch if you are in the same cell as the switch.

If you find yourself writing up (or generating) documentation like this
example, you’re using human-readable documentation as a
substitute for hypermedia. That’s unacceptable. You’re creating
useless work for yourself and your users.
Certainly the server must provide that information somehow. The
client needs to know exactly what HTTP request to send, and
approximately what will happen if it sends that request. But almost
all of this information can be written for its intended audience—a
piece of software—and served when needed. You don’t need to spell it
out in English ahead of time.
By contrast, here’s my machine-readable explanation of how to flip the
mysterious switch:
 <div class="switch">
 A mysterious switch is mounted on one wall. The
 switch is down.

 <form action="/switches/4" method="post">
 <input class="flip" type="submit" value="Flip it!"/>
 </form>
 </div>
Or, stripped down to essentials:
<div class="switch">
 down
 <form action="/switches/4" method="post">
 <input class="flip" type="submit"/>
 </form>
 </div>

</div>
That takes care of the protocol semantics. It explains exactly what
HTTP request the client can make to trigger the state transition
flip. The only human-readable documentation I need to provide is the
hMaze spec, which defines the application semantics of flip:
	
flip

	
May appear on a form submission control within
 switch. When activated, the control will have the effect of
 flipping the switch.

I don’t have to provide a template for constructing the action URL, or
force the client to reckon with my internal concept of a “switch ID,”
because the <form> tag for flipping a switch includes the actual URL
the client should use. I don’t have to make caveats like “You can only
flip a switch if you’re in the same cell as the switch,” because
hypermedia controls are presented only when they can be used. If the
submit button isn’t there, the state transition isn’t available.
I used to think that you should design APIs by identifying the
resources and tying them together with hypermedia. This
resource-oriented approach is good advice when you’re trying to move
away from publishing all your internal methods as a huge list of API
calls. Thinking in terms of resources will at least group the API
calls together in sensible ways.
But in a hypermedia-based design, resources don’t matter as much. The
designer’s job is to identify all the state transitions. A
resource-oriented design would focus heavily on the mysterious switch
as a resource, as a thing in itself. But the switch itself isn’t all
that important. My design focuses on the state transition, on what you
can do with the switch.

HTML’s Limits

Technically, HTML is a domain-specific standard, not a general
hypermedia format. I’m covering it here instead of in Chapter 5
because HTML’s “domain” is a very general one: human-readable
documents. It’s fine to use HTML for other purposes, like maze games
played by robots, but you will quickly run into the limits of the data
format. On the World Wide Web, no one even notices these limits. But
if you design an API that serves HTML, you’ll notice very quickly.
	
HTML includes a lot of hypermedia controls, but the controls can’t
describe all of HTTP’s protocol semantics. There’s no way to tell an
HTML client to make a PUT or DELETE request without using JavaScript.

	
Forms in HTML 4 can only build entity-bodies in two different
formats: either application/x-www-form-urlencoded (for basic key-value
pairs) or multipart/form-data (for key-value pairs plus file
uploads).

	
Unlike JSON, HTML 4 doesn’t distinguish between strings and
numbers. Any string within an HTML tag is assumed to be just that—a
string. If you want to say that a string should be interpreted in some
other way, you’ll need to specify that yourself, outside of the HTML
document.

	
HTML 4 doesn’t define a way of representing dates (JSON has the
same problem). When the vCard standard defines the bday class, it
says that any data provided for bday should be interpreted as a date
in ISO 8601 format. Without that extra information (presented in
human-readable form), there’s no way to know for sure whether "1987-08-25" is a date, or just a string that happens to look
like a date.

HTML 5 to the Rescue?

The new HTML 5 standard[24] solves some of
HTML 4’s problems:
	
HTML 5 defines the time tag, which can be
used to represent a date or timestamp in a specific format.

	
There are a few cases where you can use HTML 5’s meter tag to
represent a number, but it doesn’t work in general.

	
HTML 5 offers a few new hypermedia controls for creating embedded
links, including: <audio>, <video>, <source>, and <embed>. None of them are
terribly useful in APIs, unless part of the API’s job is delivering
multimedia to human beings.

	
HTML 5 defines several new options for validating input tags. An input tag
can specify that it wants a date, a number, or
a url as input. An input tag can be marked as required, meaning
that the form can’t be submitted without providing a value for the
field. An HTML 5 client can use this information to do client-side
validation.

In HTML 4, validation must be done on the server side, or
using custom written JavaScript code that runs when the client tries
to submit the form.

	
I mentioned earlier that HTML 5 will define the microdata properties for
representing application semantics. That’s a definite improvement over
the way microformats reuse the class attribute.

Unfortunately, some things haven’t changed. HTML 5 forms still can’t
trigger PUT or DELETE requests. HTML 5 adds one new representation
format for its forms, text/plain, but it’s just a plain-text
representation of the same key-value pairs you’d get with
application/x-www-form-urlencoded.
In summary, HTML 5 offers some useful new features, but it doesn’t
drastically change HTML as a hypermedia format.

The Hypertext Application Language

HTML is old, crufty, and designed for human-readable
documents. Several new hypermedia formats have emerged in reaction to
HTML, formats designed specifically for use in web APIs. The Hypertext
Application Language (HAL) is a new format that takes the fundamental
concept of HTML—the hyperlink—and ruthlessly prunes away everything
else. I think it prunes too much, but it’s a good example of a general
hypermedia language that doesn’t have HTML’s historical baggage. Let’s
see how it works.
HAL comes in two flavors: one that uses XML (media type:
application/hal+xml) and one that uses JSON (media type:
application/hal+json). I’ll call them HAL+XML and HAL+JSON for
short.[25] The two are formally identical, but
I’m going to focus on HAL+XML, because I think it’s easier to look at
a HAL+XML document and see what’s going on.
Here’s a HAL+XML document I made up, a representation from a
hypothetical HAL version of the maze game. It represents a maze cell
in more or less the same way as hMaze. It includes a number of links
to other cells, and a switch that can be flipped:
<resource href="/cells/H">
 <title>Hall of Pretzels</title>

 <link href="/cells/G" rel="east"/>
 <link href="/cells/I" rel="west"/>

 <resource href="/switches/4">
 <switch>
 <position>up</position>
 <link href="/switches/4" rel="flip" title="Flip the mysterious switch."/>
 </switch>
 </resource>

</resource>
HAL only defines two concepts: resources and links. HAL+XML represents these as <resource> and <link> tags. All the other tags in that
document are application-specific tags I made up, based on hMaze.
The <resource> tag just says that the XML inside the tag is a
representation of some HTTP resource.
The <link> tag is a completely generic hypermedia control. This is
the big difference, hypermedia-wise, between HAL and HTML. HTML has
different controls for different purposes. The <a> tag makes a GET
request when activated, and when it gets a document in response, the
application’s focus moves to that document. The tag makes a
GET request automatically and embeds the resulting representation as
an image in the current document, without changing the application’s
focus. The <form> tag can be set up to make either a POST request or
a GET request. But there’s no HTML tag that can trigger a PUT or
DELETE request. If you want to describe an HTTP request using HTML,
but the W3C didn’t define a tag that does what you want, you’re out of
luck.
HAL has only one hypermedia control, but that control can do
anything. It can trigger a GET request, a POST request, or a PUT
request with a specific entity-body. It can offer the user a choice
between DELETE and UNLINK. The <link> tag in a HAL+XML document
can trigger any HTTP request at all when activated.
Let’s take a look at just the links in my HAL+XML document:
 <link href="/cells/G" rel="east"/>
 <link href="/cells/I" rel="west"/>
 <link href="/switches/4" rel="flip" title="Flip the mysterious switch."/>
This is why I think HAL strips too much away from HTML. How are you
supposed to know which of the infinite possibilities are present in a
given link? The <link> tag with rel="east" should trigger a GET
request that gives you a representation of the cell to the east. The <link> tag
with rel="flip" should trigger a POST request that flips the
switch. One of them is a safe operation that modifies application
state; the other is an unsafe, non-idempotent operation that modifies
resource state. In HAL, those two links look almost identical. The
only real difference is the link relation.
And that’s where HAL says to keep the distinguishing information about
any state transition: inside the link relation. When I define
rel="flip", I’m supposed to mention that the flip state transition
is triggered with a POST request. This means writing some
human-readable documentation like this:
	
flip

	
May appear within switch. When activated with a POST
 request, will have the effect of flipping the switch.

Do you see the problem? The API’s protocol semantics are creeping out
of machine-readable hypermedia and into human-readable text. We know
it’s possible to tell a computer to make a POST request instead of a
GET request. That’s what the HTML tag <form action="post"> does. But
HAL has no way of conveying protocol semantics in a machine-readable
way. I have to spell it out in the docs, and everyone who implements a
maze client has to read my docs and program the protocol
semantics into their client.
It’s understandable if an API’s application semantics are documented
in English. It’s hard to get a computer to understand that stuff
(although I’ll take a stab at it in Chapter 8). But it’s not hard to
tell a computer that it should make an HTTP POST request.
The flip relation is pretty simple, so this may not seem like a big
deal, but keep in mind that a link relation in HAL can represent any
state transition, or even a set of state transitions. Take a look at
the HAL Browser, an example application maintained by the creator of
HAL, and you’ll see what I mean.
To create an account on the HAL Browser you need to activate the link
with the relation ht:signup. Figure 7-3 shows the human-readable documentation
for that link relation.
[image: All about the ht:signup link relation]

Figure 7-3. All about the ht:signup link relation

This is very clear, well-written documentation, but it’s exactly the
sort of thing that gives web APIs a bad name. It looks like the “API
documentation” I slammed earlier. It spends a lot of time detailing
the HTTP request necessary to trigger a state transition, and only
mentions in passing that the purpose of the state transition is to
create a new account. Ideally, the HTTP request and response would be
described in machine-readable form, and only the part that a computer
can’t understand—the point of the whole thing—would be kept in
human-readable form.
HAL allows a link relation to trigger any state transition at all, but
the only way to describe the state transition is to write a bunch of
human-readable prose. That’s not a good combination.
If you keep the gap between your application semantics and HTTP’s
protocol semantics relatively small, this is not a big deal. For a
read-only API, where all the state transitions are safe, HAL would work
well. But you only have to go as far as the semi-official example
application to see HAL’s limitations. There’s a huge semantic gap
between HTTP’s POST method and the HAL Browser’s ht:signup link
relation. HTML would do a much better job than HAL of bridging that
gap.

Siren

I’ll close out this chapter by taking a brief look at another general
hypermedia format: Siren.[26] Siren is a newer
format than HAL, and although it’s based on JSON, it takes a more
HTML-like approach to hypermedia than HAL’s minimalism.
Here’s a sample Siren document—a representation of the maze cell
you’ve already seen in HTML and HAL formats:
{
 "class" : ["cell"],
 "properties" : { "title": "Hall of Pretzels" },

 "links" : [
 { "rel" : ["current"], "href" : "/cells/H" },
 { "rel" : ["east"], "href" : "/cells/G" },
 { "rel" : ["west"], "href" : "/cells/I" }
],

 "entities" : [
 { "class" : ["switch"],
 "href" : "/switches/4",
 "rel" : ["item"],
 "properties" : { "position" : ["up"] },
 "actions" : [
 { "name" : "flip",
 "href" : "/switches/4",
 "title" : "Flip the mysterious switch.",
 "method": "POST"
 }
]
 }
]
}
Siren is designed to represent abstract groupings of data it calls
entities. A Siren “entity” is conceptually similar to HTML’s <div>
tag. It’s a convenient way of splitting up your data. An entity may be
an HTTP resource with its own URL, but it doesn’t have to be.
Like a Collection+JSON item, a Siren entity defines a special slot
called links for containing links. My cell entity contains three
links: a current link to itself, and east and west links to
other cells.
This cell entity also contains a subentity: the mysterious
switch. The switch defines a resource state transition called flip,
a transition we’ve seen many times in this chapter.
The flip state transition is defined by a Siren action, a
hypermedia control analogous to an HTML form. (Note the method, just
like an HTML form.) The name of the Siren action serves the same
purpose as the class of an HTML form, or the rel of a link. It
makes it clear which state transition will happen if the client
decides to activate the control. The purpose of the state
transition—to flip the switch—still needs to be described in
human-readable text. I put this text in the title attribute.
The only new feature in this representation is that I started using
item as a link relation:
....
 "entities": [
 { "class" : ["switch"],
 "href" : "/switches/4",
 "rel" : ["item"],
 ...
This link relation describes the relationship between a switch and the
cell that contains the switch. The Siren standard requires that every
subentity provide a rel describing the relationship between its
parent and itself. The item link relation is an IANA-registered
relation describing the relationship between a collection (the cell)
and the things it contains (such as mysterious switches).
Siren sits somewhere between HTML and Collection+JSON. Its system of
nested entities would work well to implement the collection pattern I
described in Chapter 6. But where Collection+JSON defines certain
kinds of resources and sets out their behavior under HTTP POST, PUT,
and DELETE, Siren allows state transitions even more sophisticated
than those available through HTML forms.
The upside of this approach is greater flexibility in representing
state transitions that don’t fit the collection pattern. The downside
is that two Siren applications (or two HTML applications) will have
less in common, and require more special client-side programming, than
two Collection+JSON applications.

The Semantic Challenge: How Are We Doing?

Let’s recap the situation as it stands. We have a client-server
Internet protocol, HTTP, which assigns very general meanings to
different kinds of requests: GET, POST, PUT, and so on.
We have the idea of hypermedia, which allows the server to tell the
client which HTTP requests it might want to make next. This frees the
client from having to know the shape of the API ahead of time.
We have the idea of application semantics, which extend hypermedia
controls with information about what specifically will happen, to
application or resource state, if the client makes a certain HTTP
request.
And we have a whole lot of standards for building APIs.
We have domain-specific standards like Maze+XML, which define the
application-level semantics and the protocol-level semantics for one
tiny problem space (like maze games).
We have standards like Collection+JSON and the Atom Publishing
Protocol, which see the world in terms of “collection” and “item”
resources. These standards define protocol-level semantics in great detail, but they leave the application-level semantics almost
completely undefined. An item-type resource must respond to HTTP PUT in a
very specific way, but an item can mean absolutely anything.
We have microformats like hCard, and microdata items like schema.org’s
http://schema.org/Person. These define a lot of application-level
semantics for explaining what a document means, but little or no
protocol semantics for explaining how the underlying resource should behave
under HTTP.
And we have standards like HTML, HAL, and Siren, languages that give
you free rein to define your own protocol semantics and your own
application-level semantics.
Our challenge is to bridge the semantic gap I defined back in Chapter 1. Given an API, how can a client developer write a
computer program that makes decisions based on the API’s application
semantics?
If the API is described by a domain-specific standard like Maze+XML,
bridging the semantic gap is straightforward. All the information you
need is in the standard. It explains both the protocol semantics and
the application semantics. You read the standard, you decide how your
client should respond in any given situation, and you write your
client.
But domain-specific hypermedia standards are rare. Most hypermedia
APIs use collection standards like AtomPub, or generic hypermedia
languages like HTML. These standards define an API’s protocol
semantics, but they don’t say much about the application semantics. A
human being must read some other document to understand the meanings
encoded in the representations the API is serving.
But where is that document? Does the API use a microformat? Which
microformat? How do you find out? Are you just supposed to know about
all the microformats?
What if the API doesn’t use HTML? Siren has no support for
microformats or microdata. What if an API designer wants to put
hCard-like data in a Siren document?
At this point, we reach the limits of current technology. There are no
well-accepted answers to these questions. The result is that every API
designer simply makes up application-level semantics that fit with
their preexisting server-side design, and documents those
semantics… somewhere.
This is how we ended up with 57 microblogging APIs. We’re
stuck. API technology can’t advance beyond the “hypermedia” state
without answering these questions. In the next chapter, I’ll present
some preliminary answers.

[19] HTML 4 also allows links to have
the rev attribute, which is the opposite of rel. The value of
rev represents this resource’s relationship to the linked
one. In a link to the next page, rel would be next and rev would
be previous. It turns out the rev attribute is not really
necessary, and it was removed in HTML 5, which is why I’m only
mentioning it in a footnote. Don’t confuse rel with its
opposite.

[20] In HTML 4, the tags that can’t have an
id attribute are base, head, html, meta, script, style,
and title. In HTML 5, any tag can have an id attribute. I’m only
reprinting this list so you can see this probably won’t be a problem
for you.

[21] In HTML 5, any tag can have a class
attribute. In HTML 4, the seven tags mentioned in the previous
footnote can define neither id nor class. The param tag can
define id but it can’t define class. Again, this probably won’t be
a problem for you.

[22] An open standard, defined in a W3C specification [currently in draft form

[23] That
document is called a profile, and in Chapter 8, I’ll explore the
question of what it should look like.

[24] Open standard currently under
development.

[25] The JSON version of HAL is specified in the
Internet-Draft “draft-kelly-json-hal.” The XML version is a personal
standard. The
developer’s plan is to publish an RFC for HAL+JSON, and follow it up
with a separate RFC for HAL+XML.

[26] A personal standard,
defined at the GitHub Siren page.

Chapter 8. Profiles

Over the past three chapters, I’ve built up a set of rules for
designing a brand new API. There’s still some work to do on these
rules, but I can now present them in something approaching their
complete form:
	
Is there a domain-specific standard for your problem? If so, use
it. Document any application-specific extensions (Chapter 5).

	
Does your problem fit the collection pattern? If so, adopt one of
the collection standards. Define an application-specific vocabulary
and document it (Chapter 6).

	
If neither of those is true, choose a general hypermedia format. Break
down your application into its state transitions. Document those state
transitions (Chapter 7).

	
At this point, you have your protocol semantics nailed down. The
application semantics are all that remain. Are there existing
microdata items or microformats that cover your problem domain? If
so, use them. Otherwise, define an application-specific vocabulary and
document it (Chapter 7).

The issue here is not whether to use “hypermedia.” Maze+XML, AtomPub,
and HAL all use hypermedia to describe state transitions, but they use
it in different ways to solve different problems. The issue is
choosing a format that lets you represent the state transitions that
make up your API.
HAL is great for read-only applications. Maze+XML is great for
read-only applications that happen to be maze games. AtomPub is great
for read-write applications that work more or less like weblogs. Move
outside a format’s comfort zone, and you’ll find yourself stretching
it, defining more and more extensions, and defining fake resources
just to conform to the patterns set down by the standard.
Every one of these rules mentions one big thing I haven’t covered:
documentation. “Document any application-specific extensions.” “Define
an application-specific vocabulary and document it.” What do I mean
when I say “document it?”
Experience has made me very suspicious of the stuff that comes to mind
when one thinks of API documentation. The social norms in the API
community allow a barrage of human-readable documentation to
compensate for ignorance of the principles of REST, or for just plain
bad design. I’d like to cut down on the human-readable documentation,
but I can’t get rid of it altogether. At some point, I have to tell
you that in my maze game, rel="flip" means to flip a switch, not to
flip a coin, or to turn over a card on a blackjack table. The
hypermedia formats themselves—HTML, AtomPub, and the rest—are
defined in human-readable documents like RFCs.
This chapter is devoted to the question of documentation. If you add
one more API to the world, how much new human-readable documentation
do you really need to write? What form should the documentation take?
How do you avoid being the one who creates the 58th microblogging API?
How Does A Client Find the Documentation?

Before considering what API documentation should look like, let’s
think about how clients are supposed to find the documentation in the
first place. One of the Fielding constraints is “self-describing
messages.” The server shouldn’t have to guess what an HTTP request
means, and the client shouldn’t have to guess what a response
means. It should be spelled out, or at least implied, in the message
itself.
HTTP’s Content-Type header is the clearest example of this. The
value of this header tells you how to parse the entity-body. Some
examples:
Content-Type: text/html
Content-Type: application/json
Content-Type: application/atom+xml
Content-Type: application/vnd.collection+json
Content-Type: application/vnd.amundsen.maze+xml
If the media type is one that defines hypermedia controls (like an
HTML document), then parsing a response document lets you know what
HTTP requests you can make next. You now understand the document’s
protocol semantics. If the media type is a domain-specific format
(like Maze+XML), then parsing the document also gives you an
understanding of a state in the problem space (like a maze
cell). You now understand the document’s application semantics. Once
you understand both the protocol semantics and the application
semantics, you’re done. You (or your software) can make a decision
based on the available information.
Most of the time, you won’t get both types of semantics just from the
media type. Think about an HTML document that uses the hCard
microformat. Parsing the document as text/html gives you the
protocol semantics, but not the application semantics. Think about the
JSON document you get from Twitter’s API. It’s served as
application/json. Parsing that document doesn’t give you the
protocol semantics or the application semantics. There’s some other
mystery specification that’s missing.
These “missing” specifications aren’t really missing. For hCard, the
specification is at http://microformats.org/wiki/hcard. For Twitter,
the specification is at https://dev.twitter.com/docs. I’m going to
call these “missing” specifications profiles. Documents like these
are the main topic of this chapter.

What’s a Profile?

Here’s the formal definition of a profile, from RFC 6906:
A profile is defined to not alter the semantics of the resource
representation itself, but to allow clients to learn about additional
semantics… associated with the resource representation, in
addition to those defined by the media type…

The hCard microformat clearly fits this definition. An HTML document
that uses hCard is still an HTML document, but it gains some extra
application semantics that most HTML documents don’t have. The
document is now about something. It describes a person, not in
free-flowing prose, but in a way a computer can be programmed to
understand.
The human-readable documentation for the Twitter API is also a
profile. You can parse a Twitter representation without the documentation
(it’s just JSON), but you’ll know nothing about what it means. It’s
just a JSON object. Twitter’s API documentation lets you understand
the meaning of the JSON objects the API serves (“allow clients to
learn about additional semantics”), without contradicting anything in
RFC 4627, the JSON specification (“not alter the semantics of the
resource representation itself”).

Linking to a Profile

What’s “missing” from these representations—the HTML document that
uses hCard and the JSON document served by Twitter’s API—is not the
profile, but the connection between the profile and the document
that uses it. The client is supposed to “just know” which profile(s)
to apply to a given document. Well, we know how to solve that
problem. We can link a document to its profile using hypermedia.
There are three different ways to do this. Let’s take a look at each one in turn.
The profile Link Relation

RFC 6906 defines a link relation called profile. This relation is
registered with the IANA, which means you can use profile in any
hypermedia control that supports a link relation: the <a> tag
defined by HTML; the <link> tag defined by HTML, HAL, and Maze+XML; a Siren or Collection+JSON links object; or the
Link HTTP header defined by RFC 5988.
If you get an HTTP response that starts like this, you know that this
is an HTML document that uses the hCard microformat:
HTTP/1.1 200 OK
Content-Type: text/html

<html>
 <head>
 <link href="http://microformats.org/wiki/hcard" rel="profile">
...
JSON has no protocol semantics and next to no application semantics,
but if you get an HTTP response that starts like this, you’ll know
that this document contains an extra layer of semantics on top of
JSON’s:
HTTP/1.1 200 OK
Content-Type: application/json
Link: <https://dev.twitter.com/docs>;rel="profile"

...

The profile Media Type Parameter

Depending on the media type you’re using, you may be able to link to a
profile within the Content-Type header by adding a profile
parameter to the media type. Here’s what the Content-Type header might
look like for a Collection+JSON document:
application/collection+json;profile="http://www.example.com/profile"
That says: “this is a Collection+JSON document, but it has extra
semantics described by the profile found at
http://www.example.com/profile.”
Unfortunately, you can’t stick the profile parameter on any random
media type. According to section 4.3 of RFC 4288, you can only use a
parameter on a media type that explicitly defines it. The JSON spec
doesn’t mention the profile parameter, so the following is illegal,
as useful as it would be:
Content-Type: application/json;profile="https://dev.twitter.com/docs"
Right now, the only hypermedia types that allow for the profile
parameter are Collection+JSON, JSON-LD, HAL, and XHTML (not HTML!). If
you want to link to a profile within the HTTP headers, and you’re not
using one of those media types, I recommend using the Link header
instead.

Special-Purpose Hypermedia Controls

In Chapter 7 I showed off HTML microdata. I
said that the itemtype property was “a hypermedia control that tells
the client where it should go to find out what the microdata means.”
Here’s an example:
<div itemscope itemtype="http://schema.org/Person">
I didn’t say so at the time, but this is clearly a link to a
profile. It points to a document that provides application semantics
on top of those defined by the HTML 5 specification.
HTML 4 also has a special hypermedia control for linking an entire
document to its profile:
<HEAD profile="http://schema.org/Person">
 ...
</HEAD>
I don’t recommend you use this one, but it’s interesting for
historical reasons. As we’ll see in the next section, this is where the term
“profile” comes from in the first place.

Profiles Describe Protocol Semantics

When a profile describes an API’s protocol semantics, it usually uses
freeform English prose. We see this in the documentation for today’s
popular APIs, which use prose to describe the “API calls” you can
invoke by making GET and POST requests. Figure 8-1 shows an example
from Twitter’s API.:
[image: A list of API calls]

Figure 8-1. A list of API calls

We saw the same thing in Chapter 7, when I showed the human-readable
document (we can now call it a profile) that describes a HAL
representation:
	
flip

	
May appear within switch. When activated with a POST
 request, will have the effect of flipping the switch.

In both cases, the API provider wrote prose describing an HTTP request
the client might make in the future. You could give this information
more structure, and even make it understandable by a computer, but
then it wouldn’t be a profile: it would be hypermedia. A profile only
needs to describe protocol semantics when the media type has no
hypermedia controls (as with JSON), or when the controls aren’t
specific enough to explain exactly which HTTP request the client
should make (as with HAL).
This is why I recommend you choose a full-featured hypermedia format
like HTML or Siren as your representation format. You’ll still have to
write a profile, but the profile needn’t contain a lot of detail about
your API’s protocol semantics. That stuff will be embedded in the
representations themselves.

Profiles Describe Application Semantics

Protocol semantics deal with HTTP requests, but application semantics
refer to things in the real world, and computers are terrible at
understanding the real world. At some point, we must bridge the
semantic gap by writing prose that explains our application
semantics. There’s nothing analogous to hypermedia that will save us.
But we can exploit a pattern that has shown up over and over again, in
the thousands of profiles created over the past few years. An API’s
application semantics tend to be focused around short, mysterious
strings like “fn,” “bday,” “east,” and “flip.”
The profile for a microformat is a list of these mysterious strings,
with an English explanation of each. The profile for a microdata
item is similar. Traditional API documentation spends a lot of
time on protocol semantics, but it also spends a lot of time listing
and explaining these mysterious strings. They’re the keys in JSON
objects, they’re the names of XML tags, and they’re the variables
used to expand URI Templates and build query strings.
This is an important discovery. It’s a big task to get a computer to
understand what it means for a human being to have a name. But it’s
pretty easy for a computer to understand that “fn” is a magical string
that means something special—never mind what—when it’s used as a CSS
class.
These magical strings will help us simplify our profiles. I’ve divided
them into two categories: link relations and semantic descriptors.
Link Relations

As I said in Chapter 5, a link relation is a magical string attached
to a hypermedia control, which describes the state transition that
will occur if the client triggers the control. You’ve now seen many
examples of link relations in different media types. Here’s a Maze+XML
example from Chapter 5:
<link rel="east" href="/cells/N"/>
Here’s an AtomPub example from Chapter 6:
<link rel="next" href="/collection/4iz6"/>
Here’s a Collection+JSON example, also from Chapter 6:
{"name" : "cover", "rel" : "icon", "prompt" : "Book cover",
 "href" : "/covers/1093149.jpg", "render" : "image"}
Here’s an HTML example from Chapter 7:

Here are a few Siren examples from Chapter 7:
 "links" : [
 { "rel" : ["current"], "href": "/cells/H" },
 { "rel" : ["east"], "href": "/cells/G" },
 { "rel" : ["west"], "href": "/cells/I" }
]
A hypermedia control that supports a link relation defines one slot
(traditionally called href) for the target URL and a second slot
(traditionally called rel) for the link relation.
On their own, the names of link relations are just strings: “east,”
“next,” “icon,” “current.” Human beings may find these names
evocative, but without knowing exactly what they mean, there’s no
way of programming a computer to understand them. That’s what profiles
are for.
Note
As the API designer, you are responsible for documenting all of your
link relations ahead of time, in a profile document or in the
definition of a custom media type. The only exceptions are link relations
that you took from the IANA registry (see Chapter 10). You are not
excused from this if you think your link relations are
self-explanatory, because they never are.
If you use extension link relations (the ones that look like URLs), a
human being who puts that URL into a web browser should find an
explanation of that link relation.

Unsafe Link Relations

Now, here’s a HAL example from Chapter 7:
<link href="/switches/4" rel="flip" title="Flip the mysterious switch."/>
My other examples described, well, links—transitions between one
application state and another, to be triggered with GET requests. The
HAL example is unusual because its link relation (flip) describes a
change in resource state, to be triggered with a POST request.
The name attribute of a Siren action works the same way. It
associates a magical string with a potentially unsafe state
transition. Here’s the Siren equivalent of the HAL example:
 "actions" : [
 { "name": "flip",
 "href": "/switches/4"
 "title": "Flip the mysterious switch.",
 "method": "POST"
 }
]
It’s a little odd to call these magical strings “link relations,”
since we think of a “link” as something that’s activated with a GET
request. I considered introducing the more general term “transition
relation,” but given the fact that formats like HAL use “link
relation,” I think it’s best to stick with existing usage, and say
“link relation” for a string that describes any state transition.

Semantic Descriptors

Now for the second kind of magical string. The hCard microformat
defines the CSS class fn for marking up a person’s full name:
Jenny Gallegos
There’s a schema.org microdata item called http://schema.org/Person which defines the property name
for the same purpose:
Jenny Gallegos
The documentation for the Twitter API mentions a key called name, which is inserted into certain JSON dictionaries to indicate the name
associated with a Twitter account (not necessarily the name of a human
being):
{ "name": "Jenny Gallegos"}
These are three different approaches to the same goal: pointing out
which part of a representation is someone’s (or something’s) name. I’m
going to call this kind of thing a semantic descriptor.
Let’s look at a few more examples. The class of a Siren entity is a semantic
descriptor, and so are the names of the entity’s properties:
 "class" : ["person"],
 "properties" : { "name" : "Jenny Gallegos" },
 ...
}
The name of a data field in a Collection+JSON item is a semantic
descriptor:
"data" : [
 { "name" : "family-name", "value" : "Gallegos" }
],
In ad hoc JSON—not just in the documents served by the Twitter
API—it’s customary to use semantic descriptors as object keys:
{"name" : "Jenny Gallegos"}
(JSON-LD, which I’ll cover in an upcoming section, is based on this convention.)
Similarly, in ad hoc XML documents, the tag names often correspond to
semantic descriptors:
<person>
 <name>Jenny Gallegos</name>
</person>
But those last two are only conventions. Clients can’t rely on them in
general. That’s one reason I don’t think you should design APIs using
ad hoc JSON or XML.
Note
As the API designer, you are responsible for documenting all of your
semantic descriptors ahead of time, in a profile document or in the
definition of a custom media type. You are not excused from this if
you think your semantic descriptors are self-explanatory, because
they never are.

XMDP: The First Machine-Readable Profile Format

What would a profile look like if all you had to describe were these
magic strings, the link relations and the semantic descriptors? It
would look like a microformat; that’s what a microformat does. It’s no
surprise, then, that the first machine-readable profiles were
descriptions of microformats. The format used in these profiles, XMDP,
isn’t one I recommend using today, but it’s so simple that it makes
for a good introduction to the concept.
The idea of a profile ultimately stems from the HTML 4 specification,
which introduced the concept of a “meta data profile.” Unfortunately,
the specification didn’t define what a meta data profile should look
like. It only explained how you’d link to a profile from an HTML
document, if you somehow managed to get hold of a profile. The link
would look like this one, which I showed you earlier:
<HEAD profile="http://example.com/profile">
 ...
</HEAD>
This lack of detail in the spec was a recipe for inaction. There was
no real-world use case for a meta data profile (this was before web
APIs) and no guidance as to what a meta data profile should look
like. The profile attribute on <HEAD> wasn’t very good syntax,
either. HTML profiles never caught on, and the idea has been dropped
from HTML 5.
But one man, Tantek Çelik, kept the dream alive. He collected a few
obscure clues from the HTML 4 specification and defined the missing meta data profile standard, a microformat called XMDP. [27] XMDP is a microformat for
explaining other microformats.
The best way to explain XMDP is to see how it explains a microformat
I’ve already covered. Here’s an edited sample of the XMDP profile for
the hCard microformat.[28] The XMDP profile lists all
the CSS classes hCard defines, and gives a human-readable description
of each. The human-readable descriptions don’t really tell you
much. They just point you to RFC 2426, which defines the vCard
standard on which hCard is based:
<dl class="profile">

 <dt>class</dt>
 <dd>
 <p>All values are defined according to the semantics defined in the

 hCard specification
 and thus in
 RFC 2426.</p>
 <dl>

 <dt id="vcard">vcard</dt>
 <dd>A container for the rest of the class names defined in this
 XMDP profile. See section 1. of RFC 2426.</dd>
 </dt>

 <dt id="fn">fn</dt>
 <dd>See section 3.1.1 of RFC 2426.</dd>

 <dt id="family-name">family-name</dt>
 <dd>See "Family Name" in section 3.1.2 of RFC 2426.</dd>

 <dt id="given-name">given-name</dt>
 <dd>See "Given Name" in section 3.1.2 of RFC 2426.</dd>

 ...

 </dl>
 </dd>
</dl>
This doesn’t seem like much, but it gives us a very useful feature. A
computer can compare an HTML document against an XMDP description of
hCard and determine which CSS classes are part of hCard, and which are
not.
In the following snippet, bold is just an ordinary CSS class whose meaning is defined in
a stylesheet somewhere. The family-name class may be described in a
stylesheet, but it also has special meaning to hCard:
 <div class="family-name bold">Gallegos</div>
Without the profile, a computer has no way of knowing that
“family-name” is an hCard-specific CSS class. A human being must read
the hCard standard ahead of time and turn that knowledge into
software. With the XMDP profile, a computer that understands XMDP in
general will understand that “family-name” has special meaning to
this XMDP profile.
This doesn’t bring a computer any closer to knowing what a “family-name” is, but it does make it possible to write simple software tools
that combine HTML documents with XMDP profiles. Without XMDP, you’d
have to write such a tool especially for hCard, and then write an
identical tool for hCalendar, hRecipe, XFN, and every other
microformat.
To go along with XMDP, Çelik defined a simple microformat called
“rel-profile,”[29]
which simply defines a link relation called profile:
 <link rel="profile" href="http://example.com/profiles/microformats/hcard"/>
This eventually became the profile link relation defined in RFC 6906.

ALPS

XMDP is a good start, but we can do better. I’ve created a standard
called ALPS that addresses the major problem I see with XMDP: it’s an
HTML microformat designed for describing other HTML microformats. You
can only use it if your representation format is HTML.
Now, HTML is really, really popular. It’s the dominant representation
format on the human web. But it’s not the dominant format for web
APIs. That honor belongs to JSON, with XML a runner-up. HTML is a very
distant third or fourth.
This means that today’s APIs don’t use microformats or microdata,
even when that would make perfect sense. There are no rules for
applying these profiles to JSON or XML documents. I’ve seen API
designers reinvent JSON versions of hCard and the other microformats
over and over, slightly differently each time. When you use a
JSON-based representation, you have no way of reusing other peoples’
application semantics. You must write a profile from scratch. Then you
publish your API and your users must read your profile and write
special code to implement its application semantics.
What if there there were a profile format like XMDP that wasn’t
limited to describing HTML documents? What if it could express
application semantics like those found in microformats and microdata,
in a machine-readable way that could be translated to HTML,
Collection+JSON, Siren, and the other hypermedia formats I’ve
discussed in this book? I have tried to make ALPS into that format. It
won’t solve all our problems, but I think it represents progress.
Let’s take a look. Here’s an excerpt from an ALPS profile that
describes the application semantics of hCard. The human-readable text
is taken almost verbatim from the XMDP profile, but the document’s
structure is much different:
<?xml version="1.0" ?>
<alps>

 <link rel="self" href="http://alps.io/microformats/hcard" />

 <doc>
 hCard is a simple, open format for publishing people, companies,
 and organizations on the web.
 </doc>

 <descriptor id="vcard" type="semantic">
 <doc>
 A container element for an hCard document. See section 1. of RFC 2426.
 </doc>
 <descriptor href="#fn"/>
 <descriptor href="#family-name"/>
 <descriptor href="#given-name"/>
 </descriptor>

 <descriptor id="fn" type="semantic">
 <doc>See section 3.1.1 of RFC 2426.</doc>
 </descriptor>

 <descriptor id="family-name" type="semantic">
 <doc>See "Family Name" in section 3.1.2 of RFC 2426.</doc>
 </descriptor>

 <descriptor id="given-name" type="semantic">
 <doc>See "Given Name" in section 3.1.2 of RFC 2426.</doc>
 </descriptor>

 ...
</alps>
This ALPS document contains one <descriptor> tag for each semantic
descriptor defined by the hCard microformat. The type attribute of
the <descriptor> tag is set to semantic, and the <doc> tag
within the <descriptor> contains the human-readable
explanation. Apart from the contents of the <doc> tags, everything
in the document is machine-readable.
Syntactically, the main improvement over XMDP is that an ALPS <descriptor> tag can be a hypermedia link from one ALPS element to another. The <descriptor
href="#fn"/> within the <descriptor id="vcard"> indicates that
clients can expect to see fn elements nested inside elements tagged
with vcard. In XMDP, that information was conveyed in human-readable
text. Here, it’s machine-readable.
The XMDP profile of hCard explained how to express its application
semantics as an HTML microformat. The ALPS version of the same profile
allows an approximation of those application semantics to be
represented as microdata instead:
<div itemscope itemtype="http://alps.io/microformats/hcard#vcard">
 My name is <div itemprop="fn">Jennifer Gallegos</div>.
</div>
Or as part of a HAL representation:
<vcard>
 <fn>Jennifer Gallegos</fn>
 <family-name>Gallegos</family-name>
</vcard>
Or as a Siren entity:
{
 "class": ["vcard"],
 "properties": { "fn": "Jennifer Gallegos" }
}
Or as ad hoc JSON:
{"vcard": {
 "fn": "Jennifer Gallegos",
 "family-name": "Gallegos"
 }
}
This is also valid ad hoc JSON:
{
 "fn": "Jennifer Gallegos",
 "family-name": "Gallegos"
}
One ALPS profile can explain the application semantics of all of these
documents. All you have to do is connect the document to the profile
using the profile link relation.
But we’re just getting started. An ALPS profile can represent link
relations as well as semantic descriptors. Here’s part of an ALPS
document that approximates the application semantics of Maze+XML:
<?xml version="1.0" ?>
<alps>

 <link rel="self" href="http://alps.io/example/maze" />
 <link rel="help" href="http://amundsen.com/media-types/maze/" />

 <doc format="html">
 <h2>Maze+XML Profile</h2>
 <p>Describes a common profile for implementing Maze+XML.</p>
 </doc>

 ...

 <descriptor id="cell" type="semantic">
 <link rel="help"
 href="http://amundsen.com/media-types/maze/format/#cell-element" />
 <doc>Describes a cell in a maze.</doc>
 <descriptor href="#title"/>
 <descriptor href="http://alps.io/iana/relations#current"/>
 <descriptor href="#start"/>
 <descriptor href="#north"/>
 <descriptor href="#south"/>
 <descriptor href="#east"/>
 <descriptor href="#west"/>
 <descriptor href="#exit"/>
 </descriptor>

 <descriptor id="title" type="semantic">
 <doc>The name of the cell.</doc>
 </descriptor>

 <descriptor id="north" type="safe">
 <link rel="help"
 href="http://amundsen.com/media-types/maze/format/#north-rel" />
 <doc>Refers to a resource that is "north" of the current resource.</doc>
 </descriptor>

 <descriptor id="south" type="safe">
 <link rel="help"
 href="http://amundsen.com/media-types/maze/format/#south-rel" />
 <doc>Refers to a resource that is "south" of the current resource.</doc>
 </descriptor>

 ...

</alps>
The cell descriptor is a semantic descriptor, just like the vcard
element in the ALPS profile of hCard. But the north and south
descriptors represent link relations. They have their type set to
safe, which means that north and south are safe state
transitions that can be triggered with HTTP GET.
If you represented these semantics as HTML microdata, it might look
like this:
<p itemtype="http://alps.io/example/maze#cell">
 You are in the Foyer of Horrors.
 Exits: north,
 west,
 east.
</p>
If you represented the same semantics as a Siren document, it might
look like this:
{
 "class": ["cell"],
 "properties": { "title": "Foyer of Horrors" },
 "links": { "north": "/cells/I",
 "west": "/cells/M",
 "east": "/cells/O" }
}
ALPS can also describe unsafe state transitions. Here’s a snippet from
an ALPS document describing the application semantics of
hMaze (there’s a semantic descriptor for a switch, and an unsafe state
transition for flipping the switch):
 <descriptor id="switch" type="semantic">
 <doc>A mysterious switch found in the maze.</doc>
 <contains href="#flip"/>
 </descriptor>

 <element id="flip" type="unsafe">
 <description>Flips a switch.</description>
 </element>
Here, the type is unsafe, indicating that the state transition is
neither safe nor idempotent. ALPS also defines the
type="idempotent", for describing a transition that is idempotent
but not safe.
ALPS doesn’t say which HTTP method to use for an unsafe or
idempotent state transaction. That’s left up to the hypermedia
control. ALPS just explains the state transition that will happen when
the hypermedia control is triggered. In HTML, the HTTP method would be
POST:
<form action="/switches/4" method="POST">
 <input type="submit" class="flip" value="Flip it!">
</form>
A HAL document wouldn’t specify the HTTP method at all:
<link href="/switches/4" rel="flip"/>
Advantages of ALPS

An HTML document can invoke an ALPS profile by linking to it using the
profile link relation. Here’s an HTML document that uses profile
to bring in an ALPS profile that approximates the application
semantics of hCard:
<html>
 <head>
 <link href="http://alps.io/microformats/hcard" rel="profile"/>
 </head>

 <body>

 <p>Some unrelated content.</p>

 <div class="vcard">
 Jennifer Gallegos
 <date class="bday">1987-08-25
 </div>

 <p>More unrelated content.</p>

 </body>
</html>
The body of the page is just HTML plus hCard. However, consider a client
that understands HTML and ALPS, but not hCard. That client can
download the ALPS profile and use it to pinpoint the hCard document
within the HTML. The client can locate individual bits of data such as
fn, and cross-reference that data against a human-readable
description of it—despite having no idea what hCard means.
And we’re not limited to HTML. You’ve already seen ALPS profiles used
by Siren, HAL, XML, and JSON representations. It also works with
Collection+JSON:
{
 "collection" :
 {
 "version" : "1.0",
 "href" : "http://www.example.com/jennifer",

 "links" : [
 { "href" : "http://alps.io/microformats/hcard",
 "rel": "profile"
 }
],

 "items" : [
 { "_class" : "vcard",
 "fn" : "Jennifer Gallegos",
 "bday" : "1987-08-25"
 }
]
 }
}
There’s no need to create a special jCard microformat that adapts
the application semantics of hCard to JSON.[30] You can just use the ALPS profile
of hCard.
One ALPS document brings the application semantics of hCard to many
different hypermedia formats, and gives hypermedia capabilities to ad
hoc XML and JSON documents. All you have to do is link the
representation to the ALPS document using the link relation profile.
Now there’s no excuse for reinventing microformats and microdata items
over and over again. When a new hypermedia format comes on the scene,
defining how an ALPS profile applies to the new format makes it
possible to apply every ALPS profile to documents in the new format.
Even if you stick to HTML (which can use microformats and microdata
natively), you can get use out of the ALPS documents. I’ve set up a
searchable repository of ALPS documents here. I’ll talk
about the repository a bit more in The Semantic Zoo
in Chapter 10. The repository includes ALPS versions of most of the
microformats, of schema.org’s microdata items, and of a few other
standards.
The ALPS repository makes it easy to find and reuse individual
semantic descriptors and link relations that someone else has already
defined—even if they defined those elements for use with a
representation format you’re not using. By uploading your ALPS
document to the repository, you make your work available for reuse by
other interested parties, without having to go through a formal
standards process.
Instead of writing human-readable documentation, you can write an ALPS
document and convert to human-readable documentation using a simple
XSLT stylesheet. ALPS also allows representations to be integrated
with development tools in new ways. Imagine an IDE plug-in that finds
all the link relations and semantic descriptors in a document, and
provides mouseover explanations of what everything means. Back when
every microformat was defined in its own human-readable document,
writing that tool would require understanding every individual
microformat, and committing to adding new microformats as they were
approved. Now, you can write that tool based on nothing but an
understanding of ALPS.
I’m not saying that anyone will write that tool, but it illustrates
the pattern. A tool that understands ALPS doesn’t have to add support
for profiles one at a time. By supporting ALPS, you support ALPS
profiles of all the microformats—and all the schema.org microdata
items, and more.
There are a few more features of ALPS that I won’t cover here, because
I don’t want to turn this into a book about my pet standard. I will be
using ALPS snippets throughout the rest of the book as a shorthand way
of representing application semantics in a machine-readable form. If
you’re interested in ALPS as a standard, visit the ALPS website. As
I write this, I’m working on a specification for ALPS that I plan to
submit as an Internet-Draft.

ALPS Doesn’t Do Everything

Like XMDP, ALPS doesn’t have every feature you could possibly want
when writing a machine-readable profile. I omitted a lot of features
to keep ALPS simple, flexible, and as generic as possible across media
types.
ALPS is a very lenient format. It provides human-readable definitions
of an API’s magical strings, and a rough guide to where those strings
are likely to be found within representations. It doesn’t provide a
machine-readable way of saying that a semantic descriptor is required,
or can only show up once in a certain place.
Suppose you’ve defined an HTML microformat that says the tag with a
certain id attribute has special meaning within the document:
<div id="a-very-important-tag">
In Chapter 7, I recommended against this, but sometimes it
happens. There’s no way to represent this special id in ALPS. I
omitted this ability from ALPS because only XML-based representations
support a document-wide unique ID. You can use human-readable text to
say that a given semantic descriptor should only be used once per
document, but you can’t use ALPS to say that in machine-readable form.
In Chapter 12, I’ll cover RDF Schema, a profile language that goes a
lot further than ALPS does to make application semantics
machine-readable. I came up with ALPS because I saw that RDF Schema is
too complicated for most developers to even consider using.

JSON-LD

JSON-LD[31] is another profile
language that was invented because people weren’t using RDF Schema.
JSON-LD lets you combine a machine-readable document called a
context with an ordinary JSON document. This makes it easy to define
a profile for an existing API without changing the document format,
which would break existing clients.
JSON-LD comes out of the RDF tradition, and I’ll be returning to it in
Chapter 12, after I discuss RDF. But you don’t need to understand
anything about RDF to use JSON-LD as a simple profile language.
Here’s a bare JSON representation that’s pretty typical of what APIs
serve today:
HTTP/1.1 200 OK
Content-Type: application/json

{ "n": "Jenny Gallegos",
 "photo_link": "http://api.example.com/img/omjennyg" }
Looking at this through human eyes, we see one bit of data (a string)
that has a semantic descriptor (n), and one hypermedia link whose
link relation has the unwieldy name of photo_link. Looking
at it through the eyes of an automated client, we
see… nothing. Since the application/json media type has no
hypermedia controls, the link is just a string that happens to look
like a URL. The string “n” isn’t a semantic descriptor, it’s just a
string. The string “photo_link” isn’t a link relation, it’s
just a string.
There are hundreds of APIs like this. In fact, it’s the status quo as
I write this book. I’m trying to give the designers of new APIs the
tools to do better than this, but what about an API that already
exists? Can we improve this API without changing the document format?
We can improve the situation a little by having the API link each
document it serves to its human-readable profile—its API documentation:
HTTP/1.1 200 OK
Content-Type: application/json
Link: <http://help.example.com/api/>;rel="profile"

...
But that’s not much help.
Here’s how JSON-LD would do it. Instead of serving a link to a
human-readable profile or an ALPS profile, we’ll serve a link to a
JSON-LD context. The link relation here is more specific than the
IANA-registered relation profile. It’s an extension relation
designed specifically for linking to JSON-LD contexts:
HTTP/1.1 200 OK
Content-Type: application/json
Link: <http://api.example.com/person.jsonld>;rel="http://www.w3.org/ns/json-ld↵
#context"

{ "n": "Jenny Gallegos",
 "photo_link": "http://www.example.com/img/omjennyg" }
Make a second HTTP GET request to
http://api.example.com/person.jsonld, and you’ll find the
context. The HTTP response might look something like this:
HTTP/1.1 200 OK
Content-Type: application/ld+json

{
 "@context":
 {
 "n": "http://api.example.org/docs/Person#name",

 "photo_link":
 {
 "@id": "http://api.example.org/docs/Person#photo_link",
 "@type": "@id"
 }
 }
}
Any JSON object that defines the property @context can be a JSON-LD
context. This particular context explains the application semantics of
a JSON representation, in terms of human-readable API documentation.
The value of n is a JSON string, which JSON-LD interprets as a
URL. Whatever’s behind this URL will explain the application semantics
of the n property from the original JSON document.
This says…
"n": "http://api.example.org/docs/Person#name"
…that if you’re confused about how to understand this…
"n": "Jenny Gallegos"
…you can visit http://api.example.org/docs/Person#name and read the
explanation. Unlike ALPS profiles, JSON-LD contexts don’t usually
explain bits of application semantics directly. They use links to
point to an explanation somewhere else.
The value of photo_link is a JSON object:
"photo_link":
{
 "@id": "http://api.example.org/docs/Person#photo_link",
 "@type": "@id"
}
In JSON-LD, @id basically means “hypermedia link.” The object’s
@id property is a link to the explanation of the term’s application
semantics.
The @type of this term is also @id. This is the magic that turns a
JSON document into a hypermedia document. Setting the @type of
photo_link to @id says that whenever
photo_link occurs in a JSON document, the client can treat
it as a hypermedia link, not as a string that happens to look like a
URL.
Thanks to JSON-LD, our first HTTP response, which originally looked so
hopeless, has become a self-describing message:
HTTP/1.1 200 OK
Content-Type: application/json
Link: <http://api.example.com/person.jsonld>;rel=
 "http://www.w3.org/ns/json-ld#context"

{ "n": "Jenny Gallegos",
 "photo_link": "http://www.example.com/img/omjennyg" }
A computer can combine this JSON document with the JSON-LD context and
pick out the hypermedia links. In this example, that’s pretty much all
a computer can do. My JSON-LD context contains links to descriptions
of the resource type, n and photo_link, but they’re
links into the preexisting human-readable API documentation.
But a JSON-LD context can just as easily link to a machine-readable
ALPS description of the application semantics:
{
 "@context":
 {
 "@type": "http://alps.io/schema.org/Person",
 "n": "http://alps.io/schema.org/Person#name",
 "photo_link":
 {
 "@id": "http://alps.io/schema.org/Person#image",
 "@type": "@id"
 }
 }
}
Or, as we’ll see in Chapter 12, a JSON-LD context can describe a
resource’s application semantics in terms of an RDF vocabulary like
FOAF:
{
 "@context":
 {
 "@type": "http://xmlns.com/foaf/0.1/Person",
 "n": "http://xmlns.com/foaf/0.1/name",
 "photo_link":
 {
 "@id": "http://xmlns.com/foaf/0.1/image",
 "@type": "@id"
 }
 }
}
However you do it, the goal is always the same. JSON-LD lets you
explain the application semantics of a normal JSON document by adding
a context on top of it.

Embedded Documentation

Here’s the HTML form for flipping the mysterious switch in the maze game from Chapter 7:
 <form class="flip" action="/switches/4">
 <input type="submit" value="Flip it!"/>
 </form>
Here’s the HAL version:
<link href="/switches/4" rel="flip" title="Flip the mysterious switch."/>
Here’s the Siren version:
 "actions" : [
 { "name": "flip",
 "href": "/switches/4"
 "title": "Flip the mysterious switch.",
 "method": "POST"
 }
]
The value of the HTML button, the title of the HAL link, and the
title of the Siren action are all human-readable text explaining the
hypermedia control. HTML’s label tag and Collection+JSON’s prompt
attribute serve the same purpose for form fields. In all three cases,
the documentation of the application semantics—the sort of thing
you’d expect to find in a profile—is embedded in the document itself.
Here’s the weird thing: this text is redundant. “Flip the mysterious
switch.” isn’t a profile, because nothing technically connects the
English text to the link relation flip. Either you understand the
link relation, in which case the human-readable text is irrelevant; or
you don’t, in which case the link relation is meaningless. Why should
a document contain human-readable and machine-readable representations
of the same application semantics?
The two versions of the semantics are aimed at different
audiences. This redundancy allows human-driven clients and automated
clients to use the same representations. The formal definition of the
flip relation (as revealed in the profile) is written for client
programmers, and the English text (embedded in the document itself) is
intended for human consumption.
A human user will ignore the profile. The human reads “Flip the
mysterious switch.” and decides whether or not to flip the switch. An
automated client will ignore the embedded documentation. It sees
class="flip" (or rel="flip" or "name": "flip"), connects the
hypermedia control to the meaning of flip as revealed in the
profile, and makes its decision on that basis.
If you’re designing an API, and you know that all the decisions about
state transitions will be made by human endusers, you don’t need a
profile at all. Websites don’t have profiles. If you know that all
the decisions will be made by automated clients, you don’t need
embedded documentation at all.
But in reality, you don’t know any of this. You probably don’t know
what your users will do with your API, and you certainly don’t know
what will happen in the future. The best strategy is to define a
profile for use when writing automated clients, and to also embed
natural-language documentation inside your representations, for the
benefit of human endusers (assuming the media type supports it, of
course).
The markup title="Flip the mysterious switch." doesn’t explain the
markup rel="flip". They’re two ways of saying the same thing, aimed
at different audiences. Embedded documentation can be valuable, but it
“solves” the semantic challenge by bringing in an expensive piece of
hardware—a human being. It’s best saved for when you already know a
human being is making the decisions.

In Summary

This chapter covers a lot of ground—I had to define a whole new data
format to tell the story I needed to tell—but we’re finally at the
end of a journey that began in Chapter 5. We can solve the semantic
challenge with a combination of a well-chosen media type and a profile
that fills in the gaps. Here’s the essential information necessary to
solve it:
	
A link relation is a string describing the state transition that
 will happen if the client triggers a hypermedia control. Example:
 Maze+XML’s east relation, which lets you know that a certain link
 points to something geographically east of the current
 resource. Traditionally, the state transition is a change in
 application state (triggered with a GET request), but it can also be
 a change in resource state (triggered by PUT, POST, DELETE, or
 PATCH).

	
A semantic descriptor is a short string that indicates what some
 part of a representation means. Example: hCard’s fn descriptor,
 which is used as a CSS class to mark up a person’s name in
 HTML. Unlike “link relation,” this is a term I made up for this book.

	
Although link relations and semantic descriptors are meaningless on
 their own, there’s always some document nearby that contains a
 human-readable explanation. We call this document a profile.

	
Profiles have traditionally taken the form of tedious “API
 documentation.” But if you chose a good hypermedia format for
 your representations, your profile will just be a list of link
 relations and semantic descriptors, with a prose explanation for
 each. This optimization lets you create a machine-readable profile
 using XMDP, ALPS, or JSON-LD.

	
A machine-readable profile allows a client to automatically look up
 the human-readable definition of a link relation or semantic
 descriptor. Machine-readable profiles can be searched and
 remixed. The ALPS Registry contains a lot of ALPS
 profiles to work with.

	
JSON-LD contexts can take the ad hoc JSON documents served by
 today’s APIs, and describe their application and protocol semantics
 in a machine-readable way. You can use JSON-LD to retrofit a JSON API
 with simple hypermedia controls, without breaking the API’s existing
 clients.

	
ALPS profiles are representation agnostic. One ALPS profile can be
 applied to an HTML document, a HAL document, a Collection+JSON
 document, an ad hoc JSON or XML document, and many others.

	
Profiles are not a substitute for human-readable text embedded in
 hypermedia representations. There are two different use cases
 here. Profiles allow developers to write smart clients. Text
 embedded in a representation allows a human being to use an
 application through a client that faithfully renders
 representations.

In the next chapter, I’ll sum up the past few chapters by presenting a
general procedure for designing hypermedia-based APIs.

[27] The
XMDP specification is located here. You can
read Çelik’s exegesis of the HTML 4 standard at
this page.

[28] The full XMDP description of hCard is
located here. You can compare it against
hCard’s human-readable profile.

[29] More information on rel-profile is available at this page.

[30] This may seem
like a silly idea, but there’s an Internet-Draft
(draft-ietf-jcardcal-jcard) that does something very
similar. There’s also an xCard standard, defined in RFC 6351, which
is simply a port of vCard to XML.

[31] An open standard in progress, defined at
this page.

Chapter 9. The Design Procedure

It’s taken quite a while, but I’m now in a position to address the
basic concern that may have led you to buy this book. You need to
design an API: what should it look like? In this chapter, I’ll lay out
a procedure that begins with business requirements and ends with some
software and some human-readable documentation.
Two-Step Design Procedure

In its simplest form, the procedure has two steps:
	
Choose a media type to use in your representations. This puts
 constraints on your protocol semantics (the behavior of your API
 under the HTTP protocol) and your application semantics (the
 real-world things your representations can refer to).

	
Write a profile that covers everything else.

This won’t necessarily give you a good API. In fact, this version of
the procedure describes every API ever designed. If you wanted a
really generic design that’s hard to learn, you’d blaze through step 1
by choosing application/json as your representation format. Since
JSON puts no constraints on your protocol or application semantics,
you’d spend most of your time in step 2, defining a fiat standard and
describing it with human-readable API documentation.
That’s what most APIs do today, and that’s what I’m trying to stop. A
big chunk of the work that goes into creating a fiat standard is
unnecessary, and client code based on a fiat standard can’t be
reused. But doing anything else requires some preparatory thought and
a willingness to reuse other people’s work when possible.

Seven-Step Design Procedure

So I’ve expanded the procedure into seven detailed steps. Doing some
preparatory work up front will help you choose a representation
format and keep your profile as simple as possible.
	
List all the pieces of information a client might want to get out
of your API or put into your API. These will become your semantic
descriptors.

Semantic descriptors tend to form hierarchies. A descriptor that
refers to a real-world object like a person will usually contain
a number of more detailed, more abstract descriptors like
givenName. Group your descriptors together in ways that make
intuitive sense.

	
Draw a state diagram for your API. Each box on the diagram
represents one kind of representation—a document that groups together
some of your semantic descriptors. Use arrows to connect
representations in ways you think your clients will find natural. The
arrows are your state transitions, triggered by HTTP requests.

You don’t need to assign specific HTTP methods to your state
transitions yet, but you should keep track of whether each state
transition is safe, unsafe but idempotent, or unsafe and nonidempotent.
At this point, you may discover that something you put down as a
semantic descriptor (the customer of a business) makes more
sense as a link relation (a business links to a person or another business using
the link relation customer). Iterate steps 1 and 2 until you’re
satisfied with your semantic descriptors and link relations.

Now you understand your API’s protocol semantics (which HTTP requests
a client will be making) and its application semantics (which bits of
data will be sent back and forth). You’ve come up with a list of magic
strings (semantic descriptors and link relations) that make your API
unique, and you know roughly how those magic strings will be
incorporated into HTTP requests and responses. You can then move on to the following steps:
	
Try to reconcile your magic strings with strings from existing
profiles. I list some places to look in The Semantic Zoo.
Think about IANA-registered link relations, semantic
descriptors from schema.org or alps.io, names from domain-specific
media types, and so on.

This may change your protocol semantics! In particular, unsafe link
relations may switch back and forth between being idempotent and not
being idempotent.
Iterate steps 1 through 3 until you’re satisfied with your names and with the
layout of your state diagram.

	
You’re now ready to choose a media type (or define a new one). The
media type must be compatible with your protocol semantics and your
application semantics.

If you’re lucky, you may find a domain-specific media type that
already covers some of your application semantics. If you define
your own media type, you can make it do exactly what you need.
If you choose a domain-specific media type, you may need to go back
to step 3, and reconcile your names for semantic descriptors and
link relations with the names defined by that media type.

	
Write a profile that documents your application semantics. The
profile should explain all of your magic strings, other than
IANA-registered link relations and strings explained by the media
type.

I recommend you write the profile as an ALPS document, but a
JSON-LD context or a normal web page will also
work. The more semantics you borrowed from other people in step 4,
the less work you’ll have to do here.
If you defined your own media type, you may be able to skip this
step, depending on how much of this information you put in the
media type specification.

	
Now it’s time to write some code. Develop an HTTP server that
implements the state diagram from step 3. A client that sends a
certain HTTP request should trigger the appropriate state transition and
get a certain representation in response.

Each representation will use the media type you chose in step 4,
and link to the profile you defined in step 5. Its data payload
will convey values for the semantic descriptors you defined in step
1. It will include hypermedia controls to show the client how to
trigger the further state transitions you defined in state 2.

	
Publish your billboard URL. If you’ve done the first five steps
correctly, this is the only information your users will need to
know to get started with your API. You can write alternate
human-readable profiles (API documentation), tutorials, and
example clients to help your users get started, but that’s not part
of the design.

Now let’s take a closer look at each step, using the maze game from
Chapter 7 as an example.
Step 1: List the Semantic Descriptors

Here are all the pieces of data in play in the maze game:
	
A maze

	
A maze cell

	
A switch

	
The position of a switch (“up” or “down”)

	
The title of a maze cell

	
A doorway connecting one maze cell to another

	
An exit from a maze

	
A list of mazes

When I try to put them into a hierarchy, here’s what I come up with:
	
A list of mazes

	
A maze

	
A maze cell

	
A title

	
A doorway connecting one maze cell to another

	
An exit from the current maze

	
A switch

	
A position (“up” or “down”)

Figure 9-1 shows my first attempt at dividing the data into
representations. I took the hierarchical list of semantic descriptors
and drew boxes around the chunks of data I think belong together.
[image: Dividing the descriptors into representations]

Figure 9-1. Dividing the descriptors into representations

These divisions give me three different representations: the list of
mazes, an individual maze, and a cell within a maze (which may or may
not contain a switch).

Step 2: Draw a State Diagram

Now the question is this: how are these representations related? What are
the links between them? Figure 9-2 shows my first try at a state
diagram for the maze game.
[image: A state diagram for a maze game]

Figure 9-2. A state diagram for a maze game

Some of the links are obvious. In the hierarchical view of Figure 9-1,
if one box completely contains another box, those two representations
are probably related. Clearly, there should be a link from the list of
mazes to an individual maze, and from a maze to the starting cell in
the maze. For now, I’ll call the link relations for these links maze
and start.
Semantic descriptors may become link relations

Once you get a diagram with boxes and arrows, it may become obvious
that some of your semantic descriptors are actually the names of safe
state transitions. Looking at the diagram in Figure 9-2, it should be clear by
now that “a doorway connecting one maze cell to another” isn’t a
standalone piece of data. It’s a link: a relationship between two
cells. Similarly, “an exit from the current maze” is not a piece of
data. It’s a link between a maze cell and something else not on the
diagram. This means north and exit shouldn’t be semantic
descriptors: they should be link relations.
Figure 9-3 shows a revised version of the state diagram, in which
exits and doorways are represented as links rather than data.
[image: A revised state diagram for the maze game]

Figure 9-3. A revised state diagram for the maze game

Now the state diagram for the maze game resembles an actual
maze—compare it to Figure 5-3. It’s not a very interesting maze. All
the fun of solving a maze—of going north, then east, then east
again—has been abstracted into a single arrow that connects one
cell representation to another. But the important thing is that
every HTTP request a client makes can be represented as a journey
along one of those arrows, from one representation to another. You
can’t say that about Figure 9-2.
I’m going to turn one more semantic descriptor into a link
relation. Figure 9-4 shows a slightly different way of dividing
representations into resources than Figure 9-1: I’ve drawn an extra
box around the switch. In Figure 9-4, a switch is its own resource,
independent of the maze cell that contains it. The string switch
used to be a semantic descriptor, but now it’s a link relation
pointing to the switch as a standalone resource. Figure 9-5 shows how
that change is reflected in the state diagram.
[image: Splitting out the switches into standalone resources]

Figure 9-4. Splitting out the switches into standalone resources

[image: The state diagram when switches are standalone resources]

Figure 9-5. The state diagram when switches are standalone resources

I made this change because the switch supports a state transition
(flip) that the maze cell doesn’t support. That says to me that
client and server should be able to talk about the switch as a thing
in itself. As I said in Chapter 3, anything important enough to be the
topic of a client-server conversation should be a resource with its
own URL. Making a switch a standalone resource will eliminate any
ambiguity about whether an HTTP request is addressing a maze cell or a
switch.
If I wanted to, I could go further. I could turn the title of a maze
cell into a standalone resource with its own URL (say,
/cells/I/title). At that point, title would change from a semantic
descriptor to a link relation, the way switch just did.
This isn’t technically wrong, but I don’t see the point. A switch is
part of a maze cell, but it supports a state transition (flip) that
doesn’t apply to the cell as a whole. That’s why a switch makes sense
as a standalone resource. The title of a cell is just a bit of
information about the cell. Without a compelling performance reason to
serve that information separately, I don’t think it should be a
standalone resource.

Locating the home page

Your state diagram should include one arrow that comes in out of
nowhere. This represents the client’s initial GET request to your
billboard URL. Every other arrow must originate in one of the
representations, and every representation must be accessible from the
starting representation, via a state transition.
If there’s an obvious top level to the hierarchy you set up in step 1,
then you have an obvious candidate for your top-level
representation. In this case, the top-level representation is the list
of mazes. If there’s no obvious top level, you should create one. It
doesn’t have to be fancy. You just need a list of safe state
transitions that link to other important representations and perform
searches. You may also want to include some unsafe state transitions
that do important things like create new resources.

Step 3: Reconcile Names

Technically, you can skip this step. Your API will have the same
design no matter what names you give to your magic strings. But names
matter quite a bit to humans. Although computers will be your API’s
consumers, they’ll be working on behalf of human beings, who need to
understand what the magic strings mean. That’s how we bridge the
semantic gap.
Thousands of people have spent hundreds of person-years coming up with
profiles for all kinds of problem domains. (Again, see The Semantic Zoo.) There are profiles conveying the application
semantics necessary to represent people, groups of people, companies,
events, products, payment methods, geographical locations, landmarks,
books, TV shows, job listings, medical conditions, blog posts,
recipes, and more. Not to mention the online interactions of human
beings with all of these—joining groups, leaving groups, RSVPing
to events, writing blog posts, “liking” videos, and so on. The most generic,
most reusable bits of these profiles are promoted to the hall of fame:
the list of IANA-registered link relations.
I suggest you spend some time looking through these profiles for names
you can reuse. Reusing existing names when possible will reduce the
chance that a human being will misunderstand one of your magic
strings. It reduces the amount of documentation you have to write,
since you’ll be able to reuse the profiles that define those names. It
increases the chances that a client developer will be able to reuse an
existing library. And it reduces the chances that you’ll need to
change a name later.
It’s true that most existing profiles are tied to a specific media
type, and I think it’s a terrible idea to choose a media type just so
you can use a profile. This is why I came up with ALPS, and why I made
such a big deal about it in Chapter 8. ALPS liberates profiles from
their media types.
A Siren document can’t use schema.org’s microdata profile for
describing books. But it can use an ALPS profile that’s based on
schema.org’s profile. That’s a lot less work than coming up with a
brand new Siren profile, and it increases the chances that your users
will already be familiar with a given set of application semantics.
To take this back to my maze-game API: I called my directional link
relations north, south, east, and west because those are the
names Maze+XML uses. Even if I don’t end up choosing Maze+XML as my
media type in step 4, it’s useful to know that someone already thought
about this problem and decided that north was a better name than
n. And thanks to the ALPS profile at alps.io that describes
Maze+XML’s application semantics, I can reuse some of Maze+XML’s
application semantics without having to adopt the Maze+XML media type.
Almost any consumer-facing API can reuse some semantics in this
way. Most notably, you shouldn’t need to come up with your own terms
for describing personal information about human beings. Between hCard,
schema.org’s Person, and FOAF, that domain is pretty well covered.
The coverage is not as good for professional domains like finance,
law, or even software development. Terms tend to be defined from the
point of view of an average consumer, not a practitioner. And link
relations have much worse coverage than semantic descriptors.
For instance, there’s a schema.org item called http://schema.org/Offer, which
describes an offer to sell something. It defines semantic descriptors
like price, warranty, and deliveryLeadTime. But it doesn’t
define the unsafe link relation that would actually let a client buy
something. For that, you might use the purchase link relation,
defined by alps.io and taken from the Activity Streams standard. Or
you might make up your own name.
If you think my vision of reusable semantics across APIs is
ridiculously unrealistic, or that it’s too much work to scavenge for
reusable semantic descriptors, you’re free to make up your own names
for everything. As I said, on a technical level, the names don’t
matter at all. But I do have two rock-bottom pieces of advice that you
should always follow.
First, don’t autogenerate the names of your semantic descriptors from
the fields in your database schema or object model. That will give
your clients a software dependency on your server-side code. When you
change that code, you’ll break all your clients until you introduce a
compatibility layer that presents the old names through your API.
Second, don’t come up with link relations that duplicate the
functionality of IANA-registered link relations. Those link relations
were put in the registry specifically because they’re not tied to a
media type or an application domain. These are the most generic bits
of application semantics around, and they’re all listed in one place
for easy reuse.
Here are some specific examples:
	
Any time you’ve got a relationship between a list of things and an
 individual thing in the list, consider using the IANA-registered
 link relations collection and item, instead of (or in addition
 to) something more specific.

	
There are two main ways of paginating resource state across multiple
 representations. The obvious way, which you should be familiar with
 from websites, uses the link relations first, last, next and
 previous (or prev). The archive-based technique described in RFC
 5005 uses the link relations current, next-archive, and
 prev-archive. Unless you’ve come up with a third pagination
 technique, there’s no reason to make up new names for these
 relationships.

	
You can describe message threads with the replies relation,
 originally defined for Atom by RFC 4685.

	
If you keep the history of a resource’s state, you can link between
 different revisions of that state with latest-version,
 successor-version, predecessor-version, working-copy, and
 working-copy-of (defined in RFC 5829).

	
The link relations edit and edit-media are generic enough to
 cover a lot of unsafe state transitions. If you’ve got a state
 transition that does nothing but update some bit of resource state,
 you might be able to call it edit instead of something more
 specific.

Let me show you edit replacement in action. In the maze game, the
link relation flip relation inverts the position of a switch. If the
switch was up, the flip transition sets it in the down state, and
vice versa if the switch was down. It’s not a safe transition, and
it’s not idempotent. Flipping the switch twice is not the same as
flipping it once.
What if instead of flip, the link relation was called edit?
Instead of changing the position of a switch relative to its current
position, the client would decide what position it wanted—either up
or down—and send that information along when it triggered the
edit transition. The API’s state diagram would look like Figure 9-6.
[image: The state diagram with “flip” replaced with IANA “edit”]

Figure 9-6. The state diagram with “flip” replaced with IANA “edit”

Replacing flip with edit would have two advantages. Instead of
learning a brand new link relation, a client can reuse its existing
knowledge of an IANA-registered relation (edit). All it has to learn
is a custom semantic descriptor (position), which it would have had
to learn anyway if it wanted to read a representation.
Second, the state transition is now idempotent. Setting a switch to
down twice is the same as setting it to down once. If a hypermedia
document describes the edit transition with a PUT request, the
client knows it can retry the request if it doesn’t go through.
An HTML hypermedia form for the edit relation might look like this:
<form action="/switches/4" method="POST">
 <input type="radio" name="position" value="up" default="default"/>
 <input type="radio" name="position" value="down"/>
 <input type="submit" class="edit" value="Set the switch!"/>
</form>
(The method here is POST, not PUT. That’s because an HTML form can’t
use PUT. So a client for this HTML form can’t take advantage of the
fact that edit is idempotent. But a client is still more likely to
understand edit than flip. In a Siren API, the edit state
transition could be represented with PUT, and a client would know
that the state transition was idempotent.)
If you want the old, nonidempotent behavior of flip, you can
simulate it with edit. You’d do this by serving a different
hypermedia form that triggers the same state transition, but that
doesn’t allow the client to change the position away from a preset
value:
<form action="/switches/4" method="POST">
 <input type="hidden" name="position" value="off"/>
 <input type="submit" class="edit" value="Flip the switch!"/>
</form>
A client that activates this control will receive a new representation
containing a different control:
<form action="/switches/4" method="POST">
 <input type="hidden" name="position" value="on"/>
 <input type="submit" class="edit" value="Flip the switch!"/>
</form>
In this design, the edit link relation is always idempotent, but a
client that activates every edit control it sees will trigger a
nonidempotent series of state transitions.
As far as I’m concerned, all of these designs are RESTful. They all
use hypermedia to describe state transitions. The only reason to
prefer edit over flip is that everyone already agrees on what
edit means.

Step 4: Choose a Media Type

Now that you’ve got some semantics that meet your business
requirements, it’s time to choose a hypermedia format that can
represent them. This will probably be one of the hypermedia types I
mention in Chapter 6, Chapter 7, or Chapter 10. You’re also free to
design a new domain-specific media type, although you shouldn’t need
to.
Although there’s not one media type that’s always the best choice, a
few common patterns emerge at this point. If your state diagram
resembles Figure 9-7, your protocol semantics implement the
collection pattern. You should consider Collection+JSON, AtomPub, or
OData (see Chapter 10).
[image: Generic state diagram for the collection pattern]

Figure 9-7. Generic state diagram for the collection pattern

If your state diagram looks more like the mess in Figure 9-8, you
probably want a generic hypermedia language: HTML, HAL, or Siren.
[image: A job for hypermedia]

Figure 9-8. A job for hypermedia

If you’re thinking of using JSON at this point, I must remind you that JSON
is not a hypermedia format. The JSON standard defines concepts like
numbers, lists, strings, and objects. It does not define the concepts
of links or link relations, so it has no hypermedia capabilities. You want
something more specific: maybe HAL, Siren, Collection+JSON, or Hydra.
If you’re thinking of using XML at this point, well… XML is a hypermedia
format, since you can use XLink and XForms (Chapter 10 again) to give
HTML-like capabilities to any XML document. But I suspect that’s not
what you’re thinking of. You probably want something a little more
specific: HTML, HAL, Siren, or AtomPub.
If you want to serve JSON and XML representations that have the same
semantics, you should choose one hypermedia standard that offers both
“flavors.” Right now that means HAL or OData, although an XML version
of Siren is planned.
If your API is read-only—that is, your state diagram doesn’t include
any unsafe transitions—you’ve got a lot of good options. I suggest
HTML, HAL, or JSON-LD.
If your API does include unsafe transitions, that restricts your
choices. JSON-LD can’t represent unsafe state transitions on its own;
you’ll need to add Hydra (see Chapter 12). HAL supports unsafe
transitions, but in a way I don’t think works very well.
Collection+JSON supports three specific unsafe transitions: adding a
new item to a collection, editing an item, and deleting an
item. That’s it. You can’t use any unsafe transitions other than the
three defined by the media type.

Step 5: Write a Profile

When your server sends a representation, it will include the
Content-Type header, which tells the client how to parse the
representation. You’ll also include a link to one or more profiles,
which will explain the representation’s application semantics.
In step 3, you’ll probably find some existing profiles that cover some
of your application semantics, but you probably won’t be able to cover
everything. There will be something special about your API. You’ll
describe the special bits by writing a new profile.
This snippet of markup for Chapter 7’s maze game imports two ALPS
profiles—a profile from alps.io that brings in the semantics of
Maze+XML, and a custom profile that explains the only addition I made
to Maze+XML: the mysterious switches.
 <link rel="profile" href="http://alps.io/example/maze"/>
 <link rel="profile" href="/switches.alps"/>
Your profile can be an ALPS document, a JSON-LD context, or a web page
that uses the XMDP microformat. If none of these choices work for you,
you can give up on the idea of a machine-readable profile and write a
human-readable profile instead.
A human-readable profile looks like traditional API documentation.
It’s a web page laying out the meaning of all the link relations and
semantic descriptors. You can still reuse link relations and
descriptors from alps.io and other profiles—just copy and paste the
text, and be sure to link back to the original profile.

Step 6: Implementation

You’re going to spend most of your time in this step, and I don’t have
much advice, because it depends on the framework and programming
language you’re using. If you have a state diagram and a profile that
you’re happy with, it won’t necessarily be an easy job, but it should
at least be straightforward.

Step 7: Publication

If you got lucky and found an existing domain-specific standard that
does exactly what you need, with no extensions necessary, you skipped
right to step 6 and you’re now done. Your API documentation consists
of a URL (your API’s “billboard URL”) and a value for the
Content-Type header.
But that almost never happens. Meeting your business requirements
inevitably requires that you extend an existing standard, or design
something completely new. At this point in the procedure, you’ve
designed the “new” part, and described it using some combination of
machine-readable structure (like an ALPS profile) and human-readable
text (like the definition of a media type). The only thing left is to
publish that information.
This is more complicated than just putting some API documentation up
on your website, but it’s not much more complicated. I’m just
laying it all out so you don’t accidentally skip a step.
Publish your billboard URL

Back in step 2, I said you should have a box on your state diagram
that had an arrow coming into it out of nowhere. This box represents
your home page: a hypermedia gateway to all your other
resources. Everyone who wants to write a client for your API must know
the URL of your home page. The rest is negotiable.
If you got through step 2 without designing a “home page” resource, I
recommend you skip back to step 2 and design one. Your billboard URL
is the single most important piece of information about your API,
because it’s the gateway to everything else.

Publish your profile

Your profile document goes on your website, along with the rest of the
information about the API. If you’ve written an ALPS profile, I’d
appreciate it if you’d also register it with the ALPS Registry at
alps.io. This will help other people find and reuse the link relations
and semantic descriptors you defined.

Register new media types

You probably won’t need to design a new media type, so I won’t take up
space here explaining what to do once you’re done designing. (Instead,
I’ll cover it later, in If You Design a Media Type). Suffice to say
that once you have an implementation working, you should be confident
enough in your design to register your new media type with the IANA.

Register new link relations

If your link relations are URLs (what RFC 5988 calls “extension
relation types”), you don’t have to do anything special here. No one
can define a link relation that conflicts with yours, because you
named your relations after domain names you control. If you don’t
think any other API provider will want to reuse your link relations,
you might as well save yourself some trouble and use extension
relations.
But throughout this book I’ve shunned extension link relations.
They’re too long to use over and over again in print. Instead, I’ve
used link relations that are short strings, like west and
flip. RFC 5988 calls these “registered relation types,” and to avoid
conflicts they need to be registered somewhere. If you read an HTML
document that uses rel="current", it must be unambiguous whether
current refers to the most recent item in a collection, or to a
measurement of electrical current.
RFC 5988 doesn’t say exactly how a link relation might be
registered, but I’d say there are four ways:
	
It might be found in the IANA registry of link relations. Any API
provider is allowed to use IANA-registered link relations in its
representations without defining them. A useful example is the
replies relation defined in RFC 4685.

Section 6.2 of RFC 5988 describes the IANA registration process.
Getting a link relation into this registry requires writing an RFC
(or equivalent document), and only relations that are generally
useful are accepted, so relatively few developers will take this
route.

	
The link relation might be defined along with a media type, the way
Maze+XML defines west and exit. Some other media type may
define the exit relation differently, but who cares? A document
can only have one media type, so it’s always clear which rules to
apply.

If a media type defines a link relation that conflicts with a relation
registered with the IANA, the media type’s definition takes
precedence. Don’t do this intentionally! I’m spelling out this rule so
that your API’s application semantics don’t change because its media
type uses a link relation that someone just registered with the IANA.

	
The link relation might be defined in a machine-readable profile
such as an ALPS document. Some other profile may define things
differently, but who cares? This document doesn’t use that
profile.

If a profile defines a link relation that conflicts with a relation
defined by the media type or an IANA-registered relation, the
profile’s definition takes precedence. Again, don’t do this
intentionally. This is an “in case of emergency” rule.

	
The link relation might be registered with the Microformats
wiki.[32] The wiki page is not
very exclusive; it attempts to catalog every link relation ever seen
or proposed for use in HTML.

The Microformats wiki makes a good testbed for link relations that
might one day enter the IANA registry. If you want other people to
use the link relation you invented, putting it on this wiki is a
good way to test it out. If not, I recommend using an extension
relation instead.

With ALPS, you can split the difference. You can use the full URL to
any link relation defined in an ALPS document as an extension link
relation (e.g. http://alps.io/example/maze#exit), even if you haven’t
included that ALPS document as a profile. When you do include an ALPS
document as a profile, you can treat its link relations as registered
link relations (exit).

Publish the rest of the documentation

There’s plenty more documentation to be published, but it’s all
human-readable documentation specific to your API: summaries, examples,
sample code, instructions on setting up authorization, marketing copy
explaining how your API differs from others.
This stuff is important, but you don’t need my encouragement to
publish it. This is the stuff we think of when we think of API
documentation. I’ve downplayed human-readable documentation
throughout this process, because in my experience, it’s frequently used
as a substitute for hypermedia controls.
Software clients have a limited ability to adapt to changes in
hypermedia documents. Software based on human-readable documents have
no ability to adapt. If an API is described only in prose, then
changing the prose means rewriting all the clients. That’s a big
problem with current APIs, and it’s a problem I’m trying to mitigate
with this book.
I want to stretch client adaptability as far as possible. This means a
design process tightly focused on creating machine-readable
documents, with human-readable documents acting only for the
convenience of humans.

Well-known URIs

Here’s a thought: what if you didn’t need to advertise your billboard
URL? What if your clients just knew how to find the entry point to
your API? That’s the promise of the IANA’s “Well-Known
URIs,”
established in 2010 by RFC 5785.
If a server presents representations in CoRE Link Format (covered in
Chapter 13), there’s no need to wonder what the billboard URL is. It
should always be /.well-known/core. That (relative) URL is
registered with the IANA. Instead of learning a different billboard
URL for every server, a CoRE client can always send a GET request to
/.well-known/core, and get a list of hypermedia links to other
resources hosted on that server. A server that serves a web host
metadata document (Chapter 12) should always serve that document from
/.well-known/host-meta or /well-known/host-meta.json.
This is a pretty minor thing, but it closes the final bit of the
semantic gap. Thanks to the Well-Known URI Registry, it’s
theoretically possible for a client to explore and learn a new API,
given only the hostname.
The catch is that well-known URIs are generally associated with
specific media types. As I write this, if you’re not using CoRE Link
Format or web host metadata, you can’t publish your API at a
well-known URI. Those are the only two formats in the Well-Known URI
Registry that are useful for APIs.

Example: You Type It, We Post It

It took a while to run Chapter 7’s maze game through my design
process, because I was explaining each step of the process as I
went. Here’s another, much shorter example. I’ll just show my
decisions rather than explaining all the steps. My problem domain will
be the “You Type It, We Post It” website from Chapter 1. I’ll do the
first five steps and end up with a design and a profile, but no
implementation.
List the Semantic Descriptors

Looking at the description of the website from Chapter 1, I identified
the following semantic descriptors:
	
The home page

	
Some kind of “about this site” text

	
The list of messages

	
An individual message

	
The ID of a message

	
The text of a message

	
The publication date of a message

Then I grouped the descriptors in a way I think makes sense. The
result is in Figure 9-9. I’ve got three distinct kinds of
representations: the “about this site” text, the list of messages, and
an individual message. I decided to use the message list as the “home
page,” rather than having a separate home page that just links to the
message list and “about this site.”
[image: The semantic descriptors for You Type It…, grouped into representations]

Figure 9-9. The semantic descriptors for You Type It…, grouped into representations

Draw a State Diagram

Figure 9-10 shows the state diagram I came up with.
[image: Initial state diagram for the You Type It… API]

Figure 9-10. Initial state diagram for the You Type It… API

Using the links on the You Type It… website as a guide, I
connected the three types of resources with safe state transitions. I
also created an unsafe state transition, corresponding to the HTTP POST
form on the website that creates a new message.

Reconcile Names

When I was naming the safe state transitions for the state diagram, I
made sure to choose IANA-registered names: about, collection, and
item. The “about this site” text is a human-readable
document, so I won’t worry about its semantic descriptors.
There are six things left to name, for which IANA is no help: “list of
messages,” “message,” “create,” “ID,” “text,” and “publication
date.” A look through The Semantic Zoo helps with
five of them.
There’s a schema.org microdata item called BlogPosting
(http://schema.org/BlogPosting), which defines semantic descriptors
called articleBody and dateCreated. That takes care of “message,”
“text,” and “publication date.” A collection of schema.org
BlogPostings is called a Blog. That takes care of “message list.”
I’ll name my unsafe state transition post. I took that name from the
Activity Streams standard, where it means “The act of authoring an
object and then publishing it online.” Nobody ever intended schema.org
microdata and Activity Streams verbs to work together, but ALPS lets
me combine their application semantics.
That leaves the message ID. I decided I don’t really need to provide
this information at all. Each message already has a unique ID: its
URL. Why should a client care what internal ID the server uses? So I
decided to omit it from my API.
Figure 9-11 shows my state diagram after I reconciled names. Note that
the item link now has two link relations: item and blogPost. The
second link relation comes from the schema.org Blog item, which
defines blogPost as the relationship between a Blog and a
BlogPost. This is a little redundant with IANA’s more generic item
relation, but there’s no reason I can’t stick both link relations on a
single link. That way, clients that understand schema.org’s Blog and
BlogPost won’t also need to understand IANA’s item.
[image: State diagram for the You Type It… API, after name reconciliation.]

Figure 9-11. State diagram for the You Type It… API, after name reconciliation.

Am I creating the world’s 58th microblogging API? In a sense,
yes. But I didn’t define anything new. I took everything from the
IANA, schema.org, and Activity Streams. A client that already
understands these semantic descriptors and link relations will
understand my API. It’s not very likely that such a client exists, but
it’s a lot more likely that part of that client exists than it would
be if I’d redesigned these basic concepts for the 58th time.

Choose a Media Type

I can choose from a huge number of media types. My state diagram
resembles Figure 9-7, so a media type that implements the collection
pattern will help a lot. The actual YouTypeItWePostIt.com API, as
shown in Chapter 2, uses Collection+JSON. I can also go the pure
hypermedia route: the YouTypeItWePostIt.com website uses HTML. And I
can even choose a domain-specific standard. In Chapter 6, I treated
AtomPub as a general “collection pattern” standard, but it was
originally defined specifically for publishing standalone bits of
text.
My choice may change the vocabulary I use. If I choose Atom as my
representation format, I need to stop calling the text of the message
articleBody, and start calling it content, because that’s what
Atom calls it.
Just for the sake of variety, I’m going to choose HAL. A HAL+XML
representation of the message list might look like this:
<resource href="/">
 <link rel="profile" href="http://alps.io/schema.org/Blog"/>
 <link rel="profile" href="http://alps.io/schema.org/BlogPost"/>
 <link rel="profile" href="http://alps.io/activitystrea.ms/verbs"/>
 <link rel="about" href="/about-this-site">

 <Blog>
 <link rel="post" href="/messages"/>

 <resource href="/messages/2" rel="item">
 <BlogPost>
 <articleBody>This is message #2.</articleBody>
 <dateCreated>2013-04-24</dateCreated>
 </BlogPost>
 </resource>

 <resource href="/messages/1" rel="item">
 <BlogPost>
 <articleBody>This is message #1.</articleBody>
 <dateCreated>2013-04-22</dateCreated>
 </BlogPost>
 </resource>
 </Blog>
</resource>
This conveys all the necessary resource state (descriptions of the two
messages in the message list) and includes all the necessary
hypermedia links (with the link relations profile, about, item,
and post).
There’s a problem with the post link: it’s not clear that it’s an
unsafe state transition that should be triggered with POST, and it’s
not clear what entity-body the client should send along with the POST
request. But that’s due to a general shortcoming of HAL. If I don’t
like that feature of HAL, I can choose a different media type at this
point.

Write a Profile

Since I took all my application semantics from existing profiles, I
don’t technically need to write my own profile. The example
representation just links to three existing ALPS profiles:
<link rel="profile" href="http://alps.io/schema.org/Blog"/>
<link rel="profile" href="http://alps.io/schema.org/BlogPost"/>
<link rel="profile" href="http://alps.io/activitystrea.ms/verbs"/>
That covers everything except the IANA link relations about and
item, which I’m allowed to use without explaining.
Here’s a standalone ALPS profile for my “You Type It, We Post It”
design (it’s a little redundant, but it’s a single document containing
all the link relations and semantic descriptors my API actually uses):
<alps>
 <descriptor id="about" type="semantic"
 href="http://alps.io/iana/relations#about"/>

 <descriptor id="Blog" type="semantic" href="http://alps.io/schema.org/Blog">
 <descriptor id="blogPost" type="semantic"
 href="http://alps.io/schema.org/Blog#blogPost" rt="#BlogPosting"/>
 <descriptor id="item" type="semantic"
 href="http://alps.io/iana/relations#item" rt="#BlogPosting"/>
 <descriptor id="post" type="unsafe"
 href="http://alps.io/activitystrea.ms/verbs#post">
 <descriptor href="#BlogPosting"/>
 </descriptor>
 </descriptor>

 <descriptor id="BlogPosting" type="semantic"
 href="http://alps.io/schema.org/BlogPosting">
 <descriptor id="articleBody" type="semantic"
 href="http://alps.io/schema.org/BlogPosting#articleBody">
 <descriptor id="dateCreated" type="semantic"
 href="http://alps.io/schema.org/BlogPosting#dateCreated">
 </descriptor>
</alps>
Instead of having three profile links, one of my representations can
just link to this profile.
A client that doesn’t understand my profile can treat my
representations as pure HAL representations. This won’t be very
useful, because HAL doesn’t define any protocol or application
semantics on its own. A HAL browser can parse my representations, and
distinguish links from data, but it won’t know what the links or the
data mean.

Some Design Advice

Hopefully by this point you have a good idea of how I go through my
design process. Now I’d like to bring up some practical lessons I’ve
learned from developing and applying this process.
Resources Are Implementation Details

Most procedures for designing RESTful web APIs focus on resource
design. But there are no resources here. The boxes in the state
diagrams aren’t resources, they’re representations of resources—the
actual documents sent back and forth between client and server.
This was not an oversight. Resources are primary to HTTP, and they’re
very important to API implementations, but I’ve come to realize that
they’re not very important to REST, per se. My design process focuses
on state transitions and semantic descriptors. Once you have those
nailed down, you have your resources.
Think of the HTTP back-and-forth between client and server. A resource
receives a GET request and serves a representation with a certain
media type. The representation contains hypermedia controls, which
describe possible state transitions. A client activates a state
transition by sending an HTTP request to another resource, which
implements the state change and sends another representation. The
client never directly interacts with a resource.
If you get to step 6 and you find you need to implement some
unanticipated resource, I’m afraid you’ve skipped a step. The resource
you’re imagining needs to be linked to from some existing resource.
That link is a state transition and it should have shown up on an
arrow in your state diagram (step 2). If the resource manages state of
its own, it needs a representation. That representation should have
shown up as a box on your state diagram (step 2). The representation
must have a media type (step 4), and possibly a profile (step 5). The
data it conveys to the client should have shown up in the big list you
made in step 1. If the resource supports any unsafe state transitions,
those transitions should have shown up in step 2. They must be
described with a hypermedia control embedded within some
representation.
If you haven’t decided on a resource’s protocol semantics and
application semantics, you haven’t really designed it. If you have
decided on those things, there’s not much else to design.
Focusing on resources first won’t give you a bad design, but it does
tend to express a design in terms of the server-side implementation,
rather than in terms of the client’s experience. It’s also easy to use
good resource design (backed up by copious human-readable
documentation) as an excuse to avoid thinking about hypermedia.

Don’t Fall into the Collection Trap

Although the collection pattern is very general and powerful, it
contains a trap. I’ve seen this trap sprung dozens of times over the
past few years and my considered advice is not to take the
bait. Don’t use your database schema as the basis for your API
design. Draw a state diagram instead.
At first glance, using the database schema seems like a great idea. A
SQL database, with its four basic commands
(SELECT/INSERT/UPDATE/DELETE) maps naturally onto the CRUD pattern
(create/retrieve/update/delete), which maps naturally onto the
collection pattern for APIs, which maps naturally onto the four main
HTTP methods (GET/POST/PUT/DELETE). There’s no technical reason why
you can’t just skip most of my process and publish your database
schema through the collection pattern. What could go wrong?
Thanks to modern tools, this strategy will very quickly get you an API
that works, but it has two big problems. The first stems from the fact
that your users don’t care about your database schema. They care about
your application semantics, and the two are only vaguely related. You
wouldn’t set up a website that was just a raw interface into your
database. You should put the same thought into designing an API as
you would a website.
On the other hand, you do care about your database schema—so much
so that you reserve the right to change the schema as your
requirements change. That’s the second problem. When you publish an
API based on a database schema, changes to the schema become basically
impossible. You’ve given a software dependency on your database schema to
thousands of people you’ve never heard of. These people are your
clients and supporting them is your responsibility. Changes to the
schema, changes that your website users won’t even notice, will cause
big problems for your API users.
There are all sorts of techniques for dealing with these problems, and
I’ll discuss them in When Your API Changes. But the best
strategy is to avoid getting into this situation in the first place.
That’s another reason why my process uses a state diagram. Keeping you
out of this trap is a big concern of mine. Thinking about state
transitions forces you to consider your application, not the database
that contains all the resource state.
I’m not saying to avoid the collection pattern. It’s a great
pattern. If your state diagram looks like Figure 9-7, go ahead and
use it. But draw the state diagram first. Don’t confuse the protocol
semantics defined by your application with the interface defined by
your database.

Don’t Start with the Representation Format

You may be tempted to choose a representation format before starting
step 1, so that you can visualize what your documents will look like
as you work out the semantics. It’s fine to use a general format like
HTML for doodling, but I recommend you hold off on a decision until
you’ve gotten, however tentatively, to step 4. That’s because
representation formats aren’t just passive containers for data. They
introduce assumptions about protocol and application semantics into
every API that uses them. These assumptions may conflict with your
business requirements.
To take a silly example, suppose you start off your API design by
choosing to use Maze+XML, just because it’s the first representation
format I discussed in detail. You’re probably making a
mistake. Maze+XML defines a very specific state diagram that looks
similar to the one in Figure 9-6. It defines a set of application
semantics in which GET requests mean “enter a maze,” “move in a
certain direction,” or “exit a maze.” In short, Maze+XML is for maze
games.
You can’t choose Maze+XML until you’ve done the first two steps. You
need to decompose your business requirements into a set of protocol
semantics and application semantics. If it turns out they fit with the
semantics defined by Maze+XML, that’s great. But they probably won’t.
To take a less silly example, suppose you start off by deciding to use
Collection+JSON (or AtomPub, or OData) for your API. That means you’ve
chosen a set of semantics that implement the collection
pattern. You’re stating up front that your API’s state diagram looks
something like Figure 9-7.
How can you say that in advance? If it turns out your protocol
semantics fit the collection pattern (and they often will), then the
collection-pattern standards are just what you need. But you can’t go
on a gut feeling; you need to actually draw the state diagram.
Of course, if the use of a particular representation format is one
of your business requirements, you might as well make that decision
first, and design your API around the mandatory representation
format. If your API will be part of a low-power embedded system, you
may have to build it around CoRE Link Format (see Chapter 13). If you
work for a company that sits on the OData Technical Committee and has
already deployed 75 OData APIs (Chapter 10), guess what—you’re probably designing number 76.
This doesn’t mean your API is doomed. Hypermedia gives you a lot of
flexibility. If you had to, you could implement any API you wanted as
an extension to Maze+XML. Just think of it as an additional
constraint, on top of the Fielding constraints.

URL Design Doesn’t Matter

Some API design guides, including the original RESTful Web Services,
spend a lot of time talking about the URLs you should assign to your
resources. Each URL you serve should clearly identify the resource in such
a way that a human being looking at the URL can figure out what’s on
the other end.
If you publish a resource that’s a collection of user accounts, it
should be called something like /users/. Subordinate resources
should be published beneath their parents. So the resource
representing Alice’s account should be given a URL like
/users/alice.
Well, sort of.
Technically speaking, none of this matters. A URL is just the address
of a resource, which a client can use to get a representation. The URL
doesn’t technically say anything about the resource or its
representation. The Architecture of the World Wide Web, Volume One
puts it this way:
It is tempting to guess the nature of a resource by inspection of a
URI that identifies it. However, the Web is designed so that agents
communicate resource information state through representations, not
identifiers. In general, one cannot determine the type of a resource
representation by inspecting a URI for that resource.

This means it’s perfectly legal for the collection of user accounts to
have the URL /000000000000a, and for that collection to link to
Alice’s user account using the URL /prime-numbers?how_many=200. The
important thing is that the representation of a collection of users
makes it clear that it’s representing a collection of users, and that
the representation of Alice’s user account contains information
about the state of that resource.
When you look at a URL and try to make sense of the underlying
resource, you’re trying to figure out the resource’s application-level
semantics. That’s fine. The advice on URL design given in other books
and tutorials is good advice. But I won’t rehash that advice in this
book, because I don’t want your APIs relying on URLs to convey their
application-level semantics. We have more reliable ways of describing
that stuff: media type definitions and machine-readable profiles.
Here’s an example. Many of today’s APIs have URL construction rules in
their human-readable documentation:
The URL to a user’s account looks like this:
/users/{username}

That’s basically a URI Template. If you serve a representation format
that supports URI Templates, you can replace that documentation with
an equivalent hypermedia control. Here’s an example in JSON Home
Document format (which I’ll cover in Chapter 10):
 "user_lookup": {"href-template": "/users/{username}",
 "href-vars": {
 "username" : "http://alps.io/microformats/hCard#nickname"}
 }
Almost all of this is machine-readable to a machine that knows how to
parse JSON Home Documents. The only thing that must be explained in
human-readable terms is the semantic descriptor username. That can
go into inline text, or into a machine-readable profile such as the
alps.io profile linked to here.
Most formats don’t formally support URI Templates, but they include a
hypermedia control that does something similar—think of HTML’s
<form> tag with action="GET". You get two big advantages from
using these controls instead of human-readable equivalents.
Since hypermedia is machine-readable, your users can use a standard
library to manage it. This eliminates the possibility that they’ll
misunderstand your prose instructions. And since hypermedia is served
at runtime, you have a lot of leeway to change this control without
breaking your clients—something you couldn’t do when the exact same
information was kept in your API documentation.
Again, there’s nothing wrong with nice-looking URLs. Nice-looking URLs
are great! But they’re cosmetic. They look nice. They don’t do
anything. Your API clients should continue to work even if all of the
nice-looking URLs were suddenly replaced with randomly generated URLs.

Standard Names Are Probably Better Than Your Names

Let’s say that your application semantics include “a person’s first
name.” You’d write that down in step 1, you’d try to fit it into a
hierarchy, and you’d give it a temporary name based on the
corresponding field in your database schema or your data
model. Something like first_name, firstname, first-name, fn,
first name, first, fname, or given_name. That’s fine for step
1. But when you get to step 3 you need to look around, notice that
there are lots of existing profiles for describing peoples’ first
names, and adopt one of them.
You may be attached to the names you chose in step 1. But you’re not
doing this API for yourself. You’re doing this for your
users.[33] Over their careers, users will consume lots of
different APIs, and they’ll benefit from not having to learn 20
slightly different names for the same thing. In the short run, your
users will benefit from not having to learn about your internal
implementation details. You benefit, too: by adopting standard names
for common bits of application semantics, you can change your internal
names without changing your API.
But which profile to choose? The hCard standard says that the semantic
descriptor for a person’s given name is given-name. The xCard
standard says it’s given. The FOAF standard says it’s givenName,
but that firstName may be used when interpreting legacy data. The
schema.org Person item only allows for givenName. These are
well-defined, respected standards that conflict with each
other.
That’s annoying, but there’s no reason to make up more names and
make the situation worse. Just pick a profile—whichever one has the
best overall fit with your API’s application semantics—and use the
names it defines.
The people responsible for these standards took steps to avoid
conceptual pitfalls you probably haven’t considered. For instance,
“first name” is not an accurate term. It’s an artifact of Western
culture, in which we put a person’s given name first. In some other
cultures, the family name comes first. The current president of China
is named Xi Jinping. His “first name” is Jinping. That’s why givenname is a better semantic descriptor than firstname.[34]
If you’re a native English speaker, you probably didn’t consider
this. And if your internal database schema has a field called
firstname, it doesn’t matter much. But when you start sending your
data out to the world, it matters quite a bit how you describe that
data.
The designers of hCard, xCard, FOAF, and schema.org’s Person did
consider this. Considering tricky issues of naming was part of their
job. That’s why all those standards use the phrase “given name” as the
basis for their semantic descriptors. That’s why FOAF says firstName
should only be used to interpret legacy data. If you care about
cultural sensitivity and/or accuracy, you should follow the lead of
existing profiles. By adopting them whenever possible, you limit how
often you have to do the tricky work of naming.

If You Design a Media Type

The advantage of a new media type is the complete control it gives you
over how clients process your documents. You don’t have to base your
API on XML, JSON, or HTML. You can declare a brand new binary file
format and give byte-by-byte instructions for how to handle it. You
don’t have to scrounge around for profiles that reflect your
application semantics. Whatever you say, goes.
Many organizations have XML- or JSON-based file formats that were
designed for internal use and never specified formally. It wouldn’t
take much work to turn those formats into domain-specific hypermedia
types, usable by outsiders.[35] The work is the work of writing that formal specification. A
media type must come with complete, unambiguous processing
instructions.
If you ever find yourself defining 5 or 10 media types for a
single API, that’s a bad sign. You should use a generic hypermedia
type instead, or you should define one new media type, plus some
rules for applying an ALPS document (or other profile format) to the
media type. Those 5 or 10 different bits of semantics can go into
5 or 10 profiles.
Every new media type needs a name, and RFC 6838 explains how to name
them. You’ll probably end up with a name like
application/vnd.yourcompany.type-name. A media type based on JSON or
XML should be given the +json or +xml suffix, a la
vnd.amundsen.application/maze+xml.
If you expect people outside your organization to be passing around
documents that use your media type, you’ll also need to tell the world
how to process those documents. This means registering your media type
with the IANA.
Registration is a fairly formal procedure, described in sections 4 and
5 of RFC 6838. Basically, you’re telling the IANA (and everyone who
uses your media type afterward) where to find a description of the
media type, and whether it creates any special security concerns. You
can register a media type by filling out the form.
Here are the main things to consider when filling out that form:
	
You must have “a permanent and readily available public
specification of the format for the media type.” It needs to lay
out the format in enough detail that someone can write a parser for
your data format, using only the information in the specification.

You were probably planning on making the media type definition
“readily available” as part of your API documentation. But the IANA
wants a level of detail that might be more more work than you
anticipated. This work is necessary because when you register a media
type, people who’ve never heard of you, who have no connection with
your API, will be going to your website, and reading your
specification so they can generate their own documents in the format
you defined.

	
You’ll need to mention any security concerns associated with
handling documents in your media type. This is especially important
if your documents can include executable code.

RFC 6838 has a basic checklist of things to consider here. If your
media type is based on JSON, you should also reference section 6 of
RFC 4627, which describes the security concerns related to JSON
itself.

	
If your media type is based on XML, there are a few special tasks
you’ll need to do, described in section 7.1 of RFC 3023. These tasks
mostly involve adding XML-specific boilerplate to your submission.

	
If your media type is not based on XML, you’ll need to specify how
the data might appear over the wire. The answer will usually be
“binary.” For media types based on JSON, you can reference the JSON
standard, RFC 4627, or just say “binary.” If your media type is based
on XML, the boilerplate from RFC 3023 takes care of this part.

	
You should probably define the profile parameter for your media
type, so that clients can ask for a specific profile using the
Content-Type header. (I discussed this trick in Chapter 8.) This is
my opinion, not part of RFC 6838. You can just say that your media
type takes a profile parameter and that its value is the URI of a
profile, as per RFC 6906.

If you want to get advice from the community before making your
submission, send what you’ve got as an email message to
media-types@iana.org. If you want to see a simple example, check out
the approved registration for the Maze+XML media type.
You don’t have to register your type with the IANA if you don’t want
to. If you decide not to register, you’ll need to use the vnd.
prefix (for a commercial project—this is the prefix you were probably
using anyway) or the prs. prefix (for a personal project or
experimental work). But if your media type becomes generally popular,
you really should register it. Hundreds of vendor-specific media
types, like application/vnd.ms-powerpoint, are registered with the
IANA.

When Your API Changes

One of today’s most hotly debated topics in the API community is
versioning. It’s an enormous problem. Most companies that put out an
API never change that API after its initial release. They can’t do
it.
To be blunt, they can’t do it because they ignored the hypermedia
constraint. Most APIs put their protocol and application semantics
into human-readable documentation. The users of those APIs then write
a bunch of client software based on that documentation. Now the API
providers are stuck. They can change the documentation, but doing so
won’t automatically change the behavior of all those clients. They’ve
given their users veto power over any change in their design.
But a change to a hypermedia document does change the behavior of
every client that receives it. That’s why a website can undergo a
total redesign without breaking everyone’s web browsers. A website is
entirely contained in the representations it serves. There’s nothing
extra hidden away in human-readable documentation.
This is the point at which a lot of the suggestions I made in this
book—suggestions which may have initially seemed pedantic and
nitpicky—really start to pay off. One of my main goals has been to
reduce the amount of human-readable documentation that accompanies
your API. That’s not just because human-readable documentation is
liable to misinterpretation. It’s because changing a piece of
human-readable documentation requires a corresponding change in every
piece of code based on that documentation.
Moving your API’s semantics out of human-readable documentation and
into hypermedia documents makes your API more resilient in the face of
change. Choose a good hypermedia format, and you can add new resources
and state transitions to your API without affecting existing
clients. You’ll also have quite a bit of room to change your protocol
semantics.
Ideally it would be as easy to redesign an API as it is to redesign a
website. We’ll probably never get there, for the same reason we’ll
never fully bridge the semantic gap. If you add a new required field
to a state transition, you can add a new semantic descriptor to your
machine-readable profile, but the explanation of that semantic
descriptor will still need to be interpreted by a human. A fully
automated client might be able to understand the error message it
suddenly starts getting—“You didn’t provide a value for
required_field.”—but it won’t know what value it should send for
required_field.
There are also changes to which an ideal client would adapt, but that
might break real clients, such as changing a hypermedia control to use
PUT instead of POST. But overall, you’ll have more success changing
a bit of semantics if it’s described in machine-readable terms.
If you change a resource and your clients can’t automatically adapt to
the change, you’ll need to spend some period of time effectively
publishing two different resources—the old one and the new one—with
different application or protocol semantics. There are three common
strategies for doing this.
Partitioning the URL space

In the most common versioning technique, the entire API is split into
two disjoint APIs. Sometimes the two APIs have different billboard
URLs, like http://api-v1.example. com/ and http://api-v2.example.com/.
Sometimes there’s only one billboard URL, but the billboard
representation uses hypermedia to offer the client a choice between
versions:

Version 1
Version 2

Here, the version number is a semantic descriptor. A client that
doesn’t know what v2 means won’t follow the link.
Partitioning works because representations found beneath /v1 only
link to resources found beneath /v1. Both versions of the API
probably use the same underlying code, but they can have completely
different application semantics, because any given client will use one
or the other exclusively.

Versioning the media type

If you defined a domain-specific media type for your application, you
can give it a version parameter. Clients can then use content
negotiation (see Chapter 10) to ask for one version or the other:
Accept: application/vnd.myapi.document?version=2
I don’t think you should define a domain-specific media type in the
first place, but even if you do, this is a bad idea. Your media type
is not your API. Here’s a thought experiment: could another company use
your media type in their own, unrelated API? Would they get any
benefits from doing that, other than compatibility with your fiat
standard? If there’s no compelling reason for someone else to adopt
your media type, then you’ve put too much of your API into your media
type definition.
Does your media type define every aspect of an API’s protocol and
application semantics, the way Maze+XML does? If so, then adding a
version parameter will work. By definition, a change to the
semantics means a change in the media type. But if you keep a profile,
or any human-readable documentation other than the media type
definition, you’ll probably end up changing the API without changing
the media type definition. Then you’ll have a problem: what does the
version property really apply to? Is it the media type, or the API?
Standardized media types don’t do this. HTML 5 is very different from
HTML 4, but they’re both served as text/html, and HTML 5 is roughly
backward compatible with HTML 4.[36]

Versioning the profile

I recommended that you base your API around a standardized media type,
and obviously you can’t go in and declare a new version of someone
else’s media type. But I also recommended that you define your
application semantics in a machine-readable profile, and you can
declare a new version of a profile.
Your profile neatly isolates the parts of the application that will
break clients when they change (because they’re described by
human-readable text) from the parts that clients should be able to
adapt to (because they’re described by hypermedia). Keeping two
profiles lets you keep two sets of application semantics. A client can
use the Link header to request one profile or the other. Or, if the
media type supports the profile parameter, a client can use the
Content-Type header and do normal content negotiation.

Versoning isn’t special

API versioning gets a lot of attention because the problem is a lot
worse for an API that ignores the hypermedia constraint. But it’s just
one example of the general problem addressed by hypermedia. How does
the client know which resource has the representation it wants? Once
the client gets a representation, how is it supposed to know what the
representation means? The techniques I gave earlier are the techniques a
server uses in general when giving the client a choice between
representations.
A server can give out links to two different URLs, and the client can
choose which link to follow based on an understanding of the
application semantics. It’s the same whether the two URLs point to
completely different resources, or to the v1 and v2 versions of a
single underlying resource.
A single resource may have representations in different media types.
The client can select the representation it wants using content
negotiation (with the Accept header; see Chapter 11) or hypermedia.
It’s the same whether the media types are completely different
(Collection+JSON and HTML), or whether they differ only by a version
parameter. I think the version parameter is a bad idea, but if you
use it, it’ll work the same way as if you used two completely different
media types.
A single resource may be described by many different profiles, and the
client can use content negotiation or hypermedia to select the one it
wants. It’s the same whether the profiles are different approaches
to the same idea (hCard versus schema.org’s Person) or whether they’re
the “v1” and “v2” profiles of a single API.

Have an end-of-life plan

Ultimately, then, versioning is not a technical issue. It’s an aspect
of your relationship with your users. You don’t want a minor change to
break everyone’s client software, so you describe as many changes as
possible using machine-readable hypermedia rather than human-readable
docs. When you must change a resource’s semantics in a way that breaks
backward compatibility, you create a second version of that resource
for use by new clients. The second version can be identified by a
different URL, a different media type, or whatever. Unmodified clients
can still use the old version.
Eventually you’d like to get rid of the old version. After all, if you
liked the old functionality, you wouldn’t have changed it. Again,
there’s no technical solution here. The issue is your relationship
with your users. You need to set expectations for when one version of
your API will be deprecated, and how long a client can expect to keep
using a deprecated API.
When you publish your API, include some level of assurance on how long
it will be valid. You can give a lifetime assurance (“We’ll
continue to support this API for 5 years.”) or you can give a
notification assurance (“We’ll give you a one-year warning before we
stop supporting this API.”) Also set up a communication channel
specifically for communication about this: a web page or a mailing
list.
When you want to make a change to your API that breaks backward
compatibility, here’s a procedure that’s worked well for me in the
past:
	
Declare the current version “deprecated.” It will still work, but
it is no longer the current version. Announce this on the
communication channel you set up for this purpose. Update your
documentation and tutorials so that new developers start on the
current version, not the deprecated one.

	
After a while, use the communications channel to announce that you
no longer will fix bugs on the “deprecated” API, and remind your users
of the new version.

	
After some no-bug-fix period, announce a deadline after which the
“deprecated” API will be shut off.

	
You’ll probably need a grace period after the deadline, but at some
point after the deadline, shut off the old API. Requests should result
in the HTTP status code 410 (Gone), along with an HTML entity-body
that explains this is a dead API and links to the current version.

How quickly you can move through these steps depends on the size of
your user base and the average speed at which your community can
change. Changing a banking API will take a long time; changing a
microblogging API will go faster.
Doesn’t sound like much fun, does it? Yeah, it’s horrible! But this is
how you deploy new server software without breaking all those deployed
clients you have no control over. That’s why hypermedia is so
important. The more of your protocol and application semantics you can
put into machine-readable form, the more ability you have to change
your API without going through this slow, cumbersome process.

Don’t Keep All the Hypermedia in One Place

One of the defining features of old-style, non-RESTful APIs was the
service description document. This was a large document (usually in
WSDL format) that gave a complete description of the API’s protocol
and application semantics. The file was usually generated by a
push-button tool that understood the API based on its server-side
implementation.
Users could download a service description document and use it to
automatically generate a corresponding client implementation. They
could use the client to make remote API calls as though they were
local programming-language calls. There was no need to understand
anything about hypermedia, representation formats, or HTTP. And then
something would change in the server-side implementation, and the
whole thing would fall apart.
The problem with this design is that it creates tight coupling between
the server-side implementation of the API, its machine-readable
description, and the client generated from that machine-readable
description. When the server-side implementation changes, the change
won’t be reflected in the generated client, and the client will break.
Now, you’re probably not thinking about generating a WSDL description
of your API. But traditional API documentation is effectively a
human-readable service description document. It’s one big file
explaining the API’s application and protocol
semantics. Human-readable documentation is easier for a human to
understand than a WSDL file, but it has the same problem. A change to
the server-side implementation results in a change to the “service
document,” but that change isn’t propagated to the already deployed
clients. The clients break.
A hypermedia-based API has a limited ability to express server-side
changes without breaking clients. But you don’t get this ability
automatically; you have to work for it. It’s quite possible to write a
machine-readable “service description document” in HTML. On the Web,
we’d call that a site map. A site map is a complete description of a
website’s protocol semantics, all in one document. You can
automatically generate an API client based on an HTML site map. And
when the server-side implementation changes, your client will break,
because it’s based on an out-of-date map.
A client for a hypermedia API can’t expect to know about all the
possible state transitions ahead of time. It needs to be designed like
a maze solver, capable of making a decision based on the possible next
steps presented by the server at runtime. That’s why I recommend
splitting up your hypermedia controls so that each representation, as
it’s served, contains the controls that are relevant to the current
application and resource state. This will force client developers to
reckon with hypermedia, instead of pretending they can ignore it.
I bring this up because there are push-button tools that will inspect
your server implementation and generate an API for you, an API
described by a hypermedia-based service document. There’s nothing
technically wrong with this—hypermedia in a service document is still
hypermedia—but it will encourage your users to put their faith in the
idea that the service document won’t change. Everything will seem fine
at first, but as your API evolves, you’ll start running into
problems. You will have checked a feature box labeled “hypermedia,”
but you won’t actually get the benefits that come from adopting
hypermedia.
Any hypermedia format might be used to write a service document, but
there are three in particular that especially lend themselves to this
antipattern. They are OData and WADL (which I’ll cover in Chapter 10)
and Hydra (which I’ll cover in Chapter 12). As I cover them, I’ll
remind you of this forewarning.

Adding Hypermedia to an Existing API

Suppose you already have an API designed and deployed. It’s an API
typical of today’s designs, a fiat standard serving ad hoc JSON or XML
representations, with no hypermedia:
{
 "name": "Jennifer Gallegos",
 "bday": "1987-08-25"
}
You should be able to get your API up to the level of quality I
advocate in this book, without breaking your existing clients. Here’s
a modified version of the seven-step process I laid out earlier, for
fixing up a JSON-based API:
	
Document all your existing representations. Each one will contain a
number of semantic descriptors. You can’t change these, but you should
be able to add new ones.

	
Draw a state diagram for your API. The boxes on the diagram are
your existing representations. You probably won’t have any state
transitions, because most existing APIs don’t have any hypermedia
links. Now’s the time to add some. Use arrows to connect
representations in ways that make sense. The names of the arrows are
your link relations.

At this point it may turn out that some of your semantic descriptors
are actually link relations:
{ "homepage": "http://example.com" }
You can convert them to link relations at this point, but be sure not
to rename them when you get to the next step.

	
You can’t change the name of anything you wrote down in step 1,
because that would break your existing clients. But you can go through
the link relations you created in step 2, and make sure their names
come from the IANA and other well-known sources whenever possible.

	
You can’t change your media type, because that would break your
clients. It’ll have to stay application/json (or whatever it is
now).

	
Since you can’t change the media type, all your application
semantics and protocol semantics must be defined somewhere
else. You’ve got two choices: an ALPS profile or a JSON-LD context.

If you wrote down any unsafe link relations in step 2, your best
choice is JSON-LD with Hydra (see Chapter 12). You should be able to
take your human-readable descriptions of API calls and convert them
into machine-readable Hydra operations.

	
You’ve already got most of the code written. You’ll just need to
extend each representation by serving appropriate links.

	
Your billboard URL will be the same as before. If you didn’t have
one before, because your API was a group of discrete API calls, you
can create a new resource to act as your home page, and know that only
hypermedia-aware clients will access it.

Fixing Up an XML-Based API

The procedure is similar for an API that serves XML
representations. You can use XLink and XForm (see Chapter 12) to add
hypermedia controls to any XML documents.
In step 2, when you discover that one of your semantic descriptors
would make more sense as a link relation, like homepage here…
<homepage>http://example.com/</homepage>
…you can’t just convert it to a link relation. That would break your
existing clients. You’ll need to add redundancy. This example uses
XLink to use homepage as both a link relation (xlink:arcrole) and a semantic
descriptor:
<homepage xlink:href="http://example.com" xlink:arcrole="homepage">
 http://example.com/
</homepage>
You may also have some trouble in step 5. You can’t use JSON-LD on an
XML document, but you might be able to write an ALPS profile. If all
else fails, you can fall back to a human-readable profile based on
your existing API documentation.

Is It Worth It?

Although it’s technically possible to turn a hypermedia-ignorant API
into a full hypermedia API, the only profit you gain from the exercise
may be a glowing sense of satisfaction. The problem is, your old API
already has clients. That’s why you couldn’t just scrap it and design
a new API from scratch. Because the existing clients don’t have the
flexibility that comes from a knowledge of hypermedia, it’s going to
be very tough to migrate them to the new API. And why should your
users bother to learn the new API? They’ve already got scripts that
work.
If you were planning on changing your API anyway, it makes sense to
retrofit it with profiles and hypermedia controls, so that future
changes will be easier. But adding hypermedia to an existing API won’t
solve any problems on its own.

Alice’s Second Adventure

In Chapter 1, I talked about a website that used a billboard to
advertise the URL to its home page. I told a story about Alice, a fictional character
who typed that URL into her web browser and gradually discovered
the site’s capabilities.
The story was pretty dull, because it just showed the World Wide Web
working the way it’s supposed to. But now I can tell the same sort of
story about an API that has nothing in common with the Web except
the HTTP protocol.
Like my earlier story, this one starts with a URL—the billboard URL
for an API:
https://www.example.com/
(As you can tell from the hostname, unlike the website in Chapter 1
and the API in Chapter 2, this API is purely imaginary.)
Episode 1: The Nonsense Representation

It’s a dark and stormy night. An HTTP client makes a GET request:
GET / HTTP/1.1
Host: www.example.com
Someone is driving this client. It’s Alice, the fictional character from
Chapter 1. But this time she’s not using a web browser. She’s using a
programmable HTTP client to probe the capabilities of a new API. With no
web browser to display the representations graphically, Alice may have
a hard time understanding what this API does, but she will be able to
figure it out.
The server sends back a representation, and Alice examines it:
200 OK HTTP/1.1
Content-Type: application/vnd.myapi.qbit

===1 wkmje
<{data} {name:"qbe"} 1005>
<{link} {tab:"profile"} "https://www.example.com/The-Metric-System-And-You">
<{link} {tab:"search"} "https://www.example.com/sosuy{?ebddt}">
===2 qmdk
<{link} {tab:"gyth"} "https://www.example.com/click%20here%20for%20prizes">
<{data} {name:"ebddt"} "Zerde">
<{data} {name:"gioi"} "Snup">
“What the heck is this?” says Alice. “It’s not quite XML and it’s not
quite JSON. It’s full of nonsensical strings like qbe and URLs that
seem to lead to educational filmstrips from the 1970s.”
Alice’s only clue is the Content-Type header, which identifies the
data format as something called application/vnd.myapi.qbit. With
nowhere else to go, Alice looks up application/vnd.myapi.qbit in the
IANA registry of media types. This points her to a corporate website
that describes the not-quite-XML, not-quite-JSON data format she’s
looking at. That website also features some code libraries for parsing
the file format. Using these tools, she’s able to extend her
programmable HTTP client so it can turn the stream of gibberish into a
useful data structure.
Now Alice knows a few things. She knows that the document is in two
sections, one called wkmje and one called qmdk. She knows that the
document contains three semantic descriptors (gioi, ebddt, and
qbe), and three hypermedia controls (two links and a URI
Template). For some strange reason, this media type refers to a link
relation as a “tab”, which means that the three hypermedia controls
have the link relations profile, search, and gyth.
But Alice doesn’t know what wkmje or qmdk means. They’re nonsense
words that are not defined along with the media type. One of the
hypermedia controls points to
https://www.example.com/click%20here%20for%20prizes, but Alice has no
idea what’s at the other end, because the URL looks like spam and the
link relation (gyth) is not registered with the IANA.
Alice knows that the search control is a URI Template that defines
a variable called ebddt, but she doesn’t know what ebddt
means. The link relation search is registered with the IANA, and
reading the definition gives Alice confidence that this is some kind
of search form. This means ebddt is probably a search term. It
probably has something to do with the semantic descriptor called
ebddt, but what does ebddt mean?

Episode 2: The Profile

The answer to all these questions sits behind the document’s first
link:
<{link} {tab:"profile"} "https://www.example.com/The-Metric-System-And-You">
By this point, Alice has read Chapter 8 of this book. She knows that
the link relation profile is registered with the IANA, and that it
indicates a link to a profile document. She makes her second request,
hoping to get a profile document that will make sense of all this
ebddt and gyth stuff:
GET /The-Metric-System-And-You HTTP/1.1
Host: www.example.com
When Alice read the definition of application/vnd.myapi.qbit, she
noticed that it included rules for applying an ALPS profile to a
representation, so Alice is hoping for an ALPS profile. But even a
human-readable web page would be useful.
As it happens, the server sends Alice an ALPS document:
HTTP/1.1 200 OK
Content-Type: application/vnd.amundsen.alps+xml

<alps version="1.0">
 <doc>
 A searchable database of recipes.
 </doc>

 <descriptor id="wkmje" type="semantic">
 Information about the recipe database as a whole.
 <descriptor href="#qbe">
 </descriptor>

 <descriptor id="qmdk" type="semantic">
 Information about the currently featured recipe.
 <descriptor href="#gyth">
 <descriptor href="#ebddt">
 <descriptor href="#gioi">
 </descriptor>

 <descriptor id="qbe" type="semantic">
 Indicates the total number of recipes in a list.
 </descriptor>

 <descriptor id="gyth" type="safe">
 A link to a recipe.
 </descriptor>

 <descriptor id="ebddt" type="semantic">
 The name of a recipe.
 </descriptor>

 <descriptor id="gioi" type="semantic">
 Whether the recipe meets various dietary restrictions. The value
 "Snup" indicates a vegetarian recipe. The value "5a" indicates a
 recipe that includes meat. Other values are allowed (for gluten
 free, kosher, etc.), but any other value must start with the
 extension prefix "paq-". If two or more values are given, they must
 be separated by the character SNOWMAN, e.g. "Snup☃paq-vegan"
 </descriptor>
 ...
</alps>
Alice combines the ALPS profile with the vnd.myapi.qbit document,
either mentally or using an automated tool. Now it all makes
sense. This API is a recipe database. The first section of the
representation describes the database as a whole. It includes a way to
search by recipe name (ebddt), and a total number of recipes
(qbe). The second section is a link to a featured recipe
(gyth). It mentions the recipe’s name (ebddt="Zerde") and the fact
that it’s a vegetarian recipe (gioi="Snup").
Combining the vnd.myapi.qbit document with the ALPS profile in a
program that understands both media types might yield a GUI that looks
like Figure 9-12.
[image: Possible rendering of the *qbit* GUI using the ALPS Profile]

Figure 9-12. Possible rendering of the qbit GUI using the ALPS Profile

This isn’t perfect—the human-readable explanations
weren’t written to be used in a GUI, so the GUI reads awkwardly—but
it’s a whole lot better than the incomprehensible vnd.myapi.qbit
document is on its own.
As a programmer, Alice could use the ALPS profile to implement any of
the client types I described in Figure 5-3. Here are some examples:
	
A human-driven client for searching the recipe database.

	
A crawler that downloads all the recipes it can find.

	
A monitor that periodically runs a search for new vegetarian recipes.

	
An agent that takes a list of ingredients on hand and plans a
meal. The agent uses the recipe API to find recipes that use already available
ingredients. It also integrates with a grocery store’s pricing
API to look up the cost of missing ingredients. Its output is a list
of recipes that use most of the ingredients on hand and have minimal
additional cost.

But as it happens, Alice doesn’t care about cooking at all. Once she
understands the meaning of the document she was originally served, she
stops using this bizarre API and never comes back.

Alice Figured It Out

When I designed this API, I took every step I could to obscure its
purpose. I made up a confusing media type,
application/vnd.myapi.qbit. I used the nonsensical term tab to
label link relations, instead of the standard term rel. I served
URLs with misleading names. I used random strings of letters to name
the semantic descriptors and link relations. I invented ridiculous,
arbitrary rules for saying whether a recipe meets different dietary
restrictions. The only useful human-readable text in the
vnd.myapi.qbit document is “Zerde”, the name of the featured
recipe.[37] And there was no API documentation as it’s
commonly understood: just a billboard URL.
Despite all this, Alice was able to figure out how the API works,
because even in my sadism I played by the rules I’ve set down in this
book. I served a Content-Type header that contained the media type
of the confusing representation format. Alice was able to look it up
in the IANA registry and read a formal explanation of the
format. Within the vnd.myapi.qbit document, I used a IANA-registered
link relation (search) to describe a search form, and another
(profile) to link to a profile document. The profile document was
machine-readable, but it also contained the essential human-readable
information about what the representation means. Once she found
that information and read it, Alice understood the application
semantics, and knew she didn’t want to use the API.
Obviously you shouldn’t set out to make things difficult for your
users. You shouldn’t serve meaningless URLs, or randomly generate the
names of your link relations.[38] The point of
this story is that’s not what matters on a technical level. You need
to make sure that your API’s protocol and application semantics are
documented, through a combination of profiles and media type
definitions. You need to treat your documentation not as a separate
product, but as a first-class part of your API, as a representation
linked to from other representations using a hypermedia control and
a link relation.
Within your API’s representations, human-readable link relations and
URLs are helpful hints—shorthands that keep client developers from
having to constantly look up ebddt in your documentation. They are
not themselves the documentation. The documentation is embedded in
your API. That’s what allows your API to change over time.

[32] The page is
located here.

[33] If you are doing this API for yourself, then do
whatever you want.

[34] The given name used to be called the “Christian name”: the
name given as part of infant baptism ceremonies. That term
is an artifact of Catholic European culture. Not everyone in the world undergoes that ceremony (I never
did), so we switched to a more general term. Then we switched again.

[35] But it also wouldn’t take much
work to convert that JSON format to Hydra, a format I cover in Chapter 12.

[36] Version 3.0 of HTML, back in
1995, actually did what APIs are doing now. It introduced a version
parameter and suggested that HTML documents be served as
text/html;version=3.0. This was dropped in HTML 4. Backward
compatibility works better.

[37] Zerde is a Turkish dessert, a kind of rice
pudding. I chose it thinking that not many of my readers would
recognize the word.

[38] Unless you want to make
absolutely sure they write hypermedia-aware clients.

Chapter 10. The Hypermedia Zoo

There are a lot of hypermedia document formats in active use. Some are
designed for very specialized purposes—the people who use them may
not even think of them as hypermedia formats. Other hypermedia formats
are in such common usage that people don’t really think about them at
all. In this chapter, I’ll take you on an educational tour of a “zoo”
containing the most popular and most interesting hypermedia formats.
I won’t be going into a lot of technical detail. Any one of these
formats probably isn’t the one you want to use, and I’ve covered many
of them earlier in the book. Many of the formats are still under
active development, and their details might change. If you’re
interested in one of the zoo’s specimens, the next step is to read its
formal specification.
My goal is to give you a sense of the many forms hypermedia can take,
and to show how many times we’ve tackled the basic problems of
representing it. The hypermedia zoo is so full that you probably don’t
need to define a brand new media type for your API. You should be able
to pick an existing media type and write a profile for it.
I’ve organized the hypermedia zoo along the lines of my introduction
to hypermedia. There’s a section for domain-specific formats (a la
Chapter 5), a section for formats whose primary purpose is to
implement the collection pattern (a la Chapter 6), and a section for
general hypermedia formats (a la Chapter 7).
For formats like Collection+JSON, which I’ve already covered in some
depth, I’ll briefly summarize the format and point you to the earlier
discussion. There are a few hypermedia formats that I won’t
discuss in this chapter, because they take different approaches to
REST than the one I’ve advocated so far in this book. I’ll cover RDF
and its descendants in Chapter 12, and CoRE Link Format in Chapter 13.
Domain-Specific Formats

These media types are designed to represent problems in one particular
domain. Each defines some very specific application semantics, and
although you might be able to use them to convey different semantics, it’s probably a bad idea.
Maze+XML

	
Media type: application/vnd.amundsen.maze+xml

	
Defined in: personal standard

	
Medium: XML

	
Protocol semantics: navigation using GET links

	
Application semantics: maze games

	
Covered in: Chapter 5

Maze+XML defines XML tags and link relations relating to mazes, cells
in mazes, and the connections between cells. Figure 10-1 gives the
state diagram of its protocol semantics.
[image: The protocol semantics of Maze+XML]

Figure 10-1. The protocol semantics of Maze+XML

Maze+XML defines a <link> tag that takes a link relation and defines
a safe state transition; that is, it allows the client to make a GET
request. You can extend Maze+XML by bringing in custom link relations,
or by defining extra XML tags. Since it’s an XML format, you could
also use XForms (q.v.) to represent unsafe state transitions.
I don’t seriously recommend using Maze+XML, even if you happen to be
making a maze game. It’s just an example, and I’m putting it first to
serve as an example of how I judge hypermedia formats.

OpenSearch

	
Media type: application/opensearchdescription+xml (pending registration)

	
Defined in: consortium standard

	
Medium: XML

	
Protocol semantics: searching using GET

	
Application semantics: search queries

	
Covered in: Chapter 6

OpenSearch is a standard for representing search forms. It can be used
standalone, or incorporated into another API using the search link
relation. Its state diagram looks like this:
[image: image with no caption]

Here’s a simple OpenSearch representation. The destination of an
OpenSearch form (the template attribute of its <Url> tag) is a
string similar to a URI Template (RFC 6570), though it doesn’t have
all of URI Template’s features:
<?xml version="1.0" encoding="UTF-8"?>
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/">
 <ShortName>Name search</ShortName>
 <Description>Search the database by name</Description>
 <Url type="application/atom+xml" rel="results"
 template="http://example.com/search?q={searchTerms}"/>
</OpenSearchDescription>
OpenSearch does not define a way to represent the results of a
search. You should use whatever list format fits in with your main representation format.

Problem Detail Documents

	
Media type: application/api-problem+json

	
Described in: Internet-Draft “draft-nottingham-http-problem”

	
Medium: JSON (with rules for automatically converting to XML)

	
Protocol semantics: navigation with GET

	
Application semantics: error reports

A problem detail document describes an error condition. It uses
structured, human-readable text to add custom semantics to HTTP’s
status codes. It’s a simple JSON format designed to replace whatever
one-off format you were thinking of designing to convey your error
messages.
Like most JSON-based hypermedia documents, a problem detail takes the
form of a JSON object. Here’s a document that might be served along
with an HTTP status code of 503 (Service Unavailable):
{
 "describedBy": "http://example.com/scheduled-maintenance",
 "supportId": "http://example.com/maintenance/outages/20130533",
 "httpStatus" : 503
 "title": "The API is down for scheduled maintenance.",
 "detail": "This outage will last from 02:00 until 04:30 UTC."
}
Two of these properties are defined as hypermedia links. The
describedBy property is a link to a human-readable explanation of
the representation.[39]
The supportId property is a URL representing this particular
instance of the problem. There’s no expectation that the end user
will find anything at the other end of this URL. It might be an
internal URL for use by the API support staff, or it might be a URI, a
unique ID that doesn’t point to anything in particular.
The describedBy and title properties are required; the rest are
optional. You can also add extra properties specific to your API.

SVG

	
Media type: image/svg+xml

	
Medium: XML

	
Protocol semantics: the same as XLink

	
Application semantics: vector graphics

SVG is an image format. Unlike a JPEG, which represents an image on the
pixel level, an SVG image is made up of shapes. SVG includes a
hypermedia control that lets different parts of an image link to
different resources.
That hypermedia control is an <a> tag that has the same function as
HTML’s <a> tag. Here’s a simple SVG representation of a cell in
Chapter 5’s maze:
<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink">

 <rect x="100" y="80" width="100" height="50" stroke="black" fill="white"/>
 <text x="105" y="105" font-size="10">Foyer of Horrors</text>

 <a xlink:href="/cells/I" xlink:arcrole="http://alps.io/example/maze#north">
 <line x1="150" y1="80" x2="150" y2="40" stroke="black"/>
 <text x="130" y="38" font-size="10">Go North!</text>

 <a xlink:href="/cells/O" xlink:arcrole="http://alps.io/example/maze#east">
 <line x1="200" y1="105" x2="240" y2="105" stroke="black"/>
 <text x="240" y="107" font-size="10">Go East!</text>

 <a xlink:href="/cells/M" xlink:arcrole="http://alps.io/example/maze#west">
 <line x1="100" y1="105" x2="60" y2="105" stroke="black"/>
 <text x="18" y="107" font-size="10">Go West!</text>

</svg>
Figure 10-2 shows how a client might render this document.
[image: The SVG representation of a maze cell]

Figure 10-2. The SVG representation of a maze cell

SVG makes a good alternative to HTML for building mobile
applications. SVG can also be combined with HTML 5: just stick an
<svg> tag into HTML markup to get an inline SVG image.
SVG’s <a> tag doesn’t actually define any hypermedia
capabilities. It’s just a placeholder tag for XLink’s role and
href attributes (q.v.). Since SVG is an XML format, you can also add
XForms forms (q.v.) to SVG, and get protocol semantics comparable to
HTML’s. This is not as useful as embedding SVG into HTML, since it
requires a client that understands both SVG and XForms.

VoiceXML

	
Media type: application/voicexml+xml

	
Defined in: W3C open standard,
 with extensions

	
Medium: XML

	
Protocol semantics: GET for navigation; arbitrary state
 transitions through forms: GET for safe transitions, POST
 for unsafe transitions

	
Application semantics: spoken conversation

In Chapter 5, I made an analogy between an HTTP client navigating a
hypermedia API and a human being navigating a phone tree. Well, a lot
of those phone trees are actually implemented on the backend as
hypermedia APIs. The representation format they use is VoiceXML.
Here’s one possible VoiceXML representation of a cell in Chapter 5’s
maze game:
<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2001/vxml
 http://www.w3.org/TR/voicexml20/vxml.xsd"
 version="2.1">
 <menu>
 <prompt>
 You are in the Foyer of Horrors. Exits are: <enumerate/>
 </prompt>

 <choice next="/cells/I">
 North
 </choice>

 <choice next="/cells/M">
 East
 </choice>

 <choice next="/cells/O">
 West
 </choice>

 <noinput>Please say one of <enumerate/></noinput>
 <nomatch>You can't go that way. Exits are: <enumerate/></nomatch>
 </menu>
</vxml>
If you’re playing the maze game over the phone, you’ll never see this
representation directly. The VoiceXML “browser” lives on the other end
of the phone line. When it receives this representation, it handles
the document by reading the <prompt> aloud to you: “You are in the
Foyer of Horrors. Exits are: north, east, west.”
Each <choice> tag is a hypermedia link. The browser waits for you to
activate a link by saying something. It uses speech recognition to
figure out which link you’re activating. There’s a validation step: if
you say nothing, or you say something that doesn’t map onto one of the
links, the browser reads you an error message (either <noinput> or
<nomatch>) and waits for input again.
Once you manage to activate a link, the browser makes a GET request to
the URL mentioned in the corresponding next attribute. The server
responds with a new VoiceXML representation, and the browser processes
the representation and tells you which maze cell you’re in now.
The <menu> tag is only the simplest of VoiceXML’s hypermedia
controls. There’s also a <form> tag that uses a speech recognition
grammar to drive a GET or POST request based on what you tell
it. Here’s a VoiceXML form for flipping the mysterious switches I
defined in Chapter 7:
<form id="switches">
 <grammar src="command.grxml" type="application/srgs+xml"/>

 <initial name="start">
 <prompt>
 There is a red switch and a blue switch here. The red switch is
 up and the blue switch is down.

 What would you like to do?
 </prompt>
 </initial>

 <field name="command">
 <prompt>
 Would you like to flip the red switch, flip the blue switch, or
 forget about it?
 </prompt>
 </field>

 <field name="switch">
 <prompt>
 Say the name of a switch.
 </prompt>
 </field>

 <filled>
 <submit next="/cells/I" method="POST" namelist="command switch"/>
 </filled>
</form>
The <grammar> tag is an inline link analogous to an HTML or
<script> tag. It automatically imports a document written in a
format set down by the W3C’s Speech Recognition Grammar
Specification.[40] I won’t show the SRGS file
here, because SRGS is not a hypermedia format. Suffice to say that
when you say the words “flip the red switch,” or “forget about it,”
the SRGS grammar is what allows the VoiceXML browser to transform
those words into a set of key-value pairs that match the form fields
command and switch:
command=flip
switch=red switch
Once the fields are filled in with values obtained through speech
recognition, the <submit> tag tells the VoiceXML browser how to
format an HTTP POST request. It looks just like an HTML form submission:
POST /cells/I HTTP/1.1
Content-Type: application/x-www-form-urlencoded

command=flip&switch=red%20switch
A VoiceXML document resembles nothing so much as programming language
code. VoiceXML uses idioms from programming to represent the flow of
conversation through a dialog tree: <goto> to jump from one part
of the dialog to another, <if> to represent a conditional, and
even <var> to assign a value to a variable.

Collection Pattern Formats

The three standards in this section have similar application and
protocol semantics, because they all implement the collection pattern
I laid out in Chapter 6. In the collection pattern, certain resources
are designated “item” resources. An item usually responds to GET, PUT,
and DELETE, and its representation focuses on representing structured
bits of data. Other resources are designated “collection” resources. A
collection usually responds to GET and POST-to-append, and its
representation focuses on linking to item resources.
These three standards take different approaches to the collection
pattern; they may not use the terms “collection” or “item,” but they
all do pretty much the same thing.
Collection+JSON

	
Media type: application/vnd.amundsen.collection+json

	
Defined in: personal standard

	
Medium: JSON

	
Protocol semantics: collection pattern (GET/POST/PUT/DELETE),
 plus searching (using GET)

	
Application semantics: collection pattern (“collection” and “item”)

	
Covered in: Chapter 6

Collection+JSON was designed as a simple JSON-based alternative to the
Atom Publishing Protocol (q.v.). It’s a formalized, hypermedia-aware
version of the API developers tend to design their first time through
the process. Figure 10-3 shows its protocol semantics.
[image: The protocol semantics of Collection+JSON]

Figure 10-3. The protocol semantics of Collection+JSON

The Atom Publishing Protocol

	
Media types: application/atom+xml, application/atomsvc+xml,
 and application/atomcat+xml

	
Defined in: RFC 5023 and RFC 4287

	
Medium: XML

	
Protocol semantics: collection pattern
 (GET/POST/PUT/DELETE); well-defined extensions add searching and
 other forms of navigation, all using GET links or forms

	
Application semantics: collection pattern (feed and
 entry); entries have the semantics of blog posts (author, title,
 category, etc.); an entry that is not an Atom document (e.g., a
 binary graphic) is split into a binary Media Entry and an Atom
 Entry that contains metadata

	
Covered in: Chapter 6

The original API standard, AtomPub pioneered the collection pattern
and the RESTful approach to APIs in general. As an XML-based standard
in a field now dominated by JSON representations, AtomPub now looks
somewhat old-fashioned, but it inspired several other standards and
link relations that can be used with other hypermedia formats. Figure 10-4
 shows its protocol semantics.
[image: The protocol semantics of AtomPub]

Figure 10-4. The protocol semantics of AtomPub

Although Atom’s application semantics imply that it should be used
only for news-feed applications like blogging and content management
APIs, the standard is very extensible. Perhaps the most notable
extension is the Google Data Protocol, the foundation of Google’s API
platform. Google adds domain-specific tags to AtomPub to describe the
application semantics of each of its sites. An Atom feed becomes a
collection of videos (the YouTube API) or a collection of spreadsheet
cells (Google Spreadsheets).
If you think your application semantics won’t fit into the collection
pattern, a look at Google’s API directory may
convince you otherwise. The Google Data Protocol also defines a JSON
equivalent to AtomPub’s XML representations, though this is a fiat
standard, not something you’re invited to reuse.
Several open standards define AtomPub extensions, including the Atom
Threading Extensions and the deleted-entry element. I covered these
in Chapter 6.

OData

	
Media type: application/json;odata=fullmetadata

	
Defined in: open standard in progress

	
Medium: JSON for some parts, XML for others

	
Protocol semantics: modified collection pattern
 (GET/POST/PUT/DELETE) with PATCH for partial updates and GET for
 queries; arbitrary state transitions with forms (GET for safe
 transitions, and POST for unsafe transitions)

	
Application semantics: collection pattern (feed and
 entry)

The semantics of OData are heavily inspired by the Atom Publishing
Protocol. In fact, an OData API can serve Atom representations, and a
client can treat an OData API as an AtomPub API with a whole lot of
extensions. But I’ll be considering OData as an API that serves mostly JSON representations.
Figure 10-5 shows a view of OData’s protocol semantics, simplified to
show only the parts of OData I’ll be covering here. And here’s an
OData representation of a collection from a microblogging API, similar
to Chapter 2’s You Type It, We Post It:
{
 "odata.metadata":
 "http://api.example.com/YouTypeItWePostIt.svc/$metadata#Posts",
 "value": [
 {
 "Content": "This is the second post.",
 "Id": 2,
 "PostedAt": "2013-04-30T03:34:12.0992416-05:00",
 "PostedAt@odata.type": "Edm.DateTimeOffset",
 "PostedBy@odata.navigationLinkUrl": "Posts(2)/PostedBy",
 "odata.editLink": "Posts(2)",
 "odata.id": "http://api.example.com/YouTypeItWePostIt.svc/Posts(2)",
 "odata.type": "YouTypeItWePostIt.Post"
 },
 {
 "Content": "This is the first post",
 "Id": 1,
 "PostedAt": "2013-04-30T04:14:53.0992416-05:00",
 "PostedAt@odata.type": "Edm.DateTimeOffset",
 "PostedBy@odata.navigationLinkUrl": "Posts(1)/PostedBy",
 "odata.editLink": "Posts(1)",
 "odata.id": "http://api.example.com/YouTypeItWePostIt.svc/Posts(1)",
 "odata.type": "YouTypeItWePostIt.Post"
 },
 "#Posts.RandomPostForDate": {
 "title": "Get a random post for the given date",
 "target": "Posts/RandomPostForDate"
 }
}
[image: The protocol semantics of OData (simplified)]

Figure 10-5. The protocol semantics of OData (simplified)

Like the other JSON-based formats we’ve seen, OData representations
are JSON objects whose properties are named with short, mysterious
strings. A property like Content or PostedAt is ordinary JSON
data, and its name acts as a semantic descriptor. A property whose
name includes the odata. prefix is a hypermedia control or some
other bit of OData-specific metadata. Some examples from this document:
	
The property odata.id contains a unique ID—that is, a URI—for
 one specific entry-type resource.

	
The property PostedAt@odata.type contains semantic type
 information for the value of the PostedAt property. The type,
 Edm.DateTimeOffset, refers to OData’s schema format: the Entity
 Data Model.

	
The property odata.editLink acts like an AtomPub link with
 rel="edit". If you want to modify or delete one of the example posts, you can
 send a PUT, PATCH, or DELETE request to the relative URL Posts(2) or Posts(1).

	
The property PostedBy@odata.navigationLinkUrl contains a
 hypermedia link to another resource. The application-specific part
 of the property name, PostedBy, serves as a link relation. In
 human terms, this is a link to the user who published this
 particular post.

The protocol semantics of OData resources repeat what you’ve already
seen in Collection+JSON and AtomPub. A collection resource supports
GET (to get a representation) and POST (to append a new entry to the
collection). Entry-type resources support GET, as well as (via their
odata.editLink) PUT, DELETE, and PATCH.
Filtering

OData also defines a set of implicit protocol semantics for filtering
and sorting a collection, using a query language similar to SQL. If
you know you have the URL to an OData collection, you can manipulate
that URL in a wide variety of ways. Sending GET to the resulting URLs
will yield representations that filter and paginate the
collection in different ways.
I say these protocol semantics are implicit because you don’t have to
look for a hypermedia form that tells you how to make the HTTP request
that carries out a particular search. You can construct that request
based on rules found in the OData spec.
Let’s look at a few examples. Suppose the (relative) base URL of the microblog
collection is /Posts. You don’t need a hypermedia form to tell
you how to search for blog posts that include the string “second” in
their Content property. You can build the URL yourself[41]:
 /Posts$filter=substringof('second', Content)
You can search for posts that include “second” in their Content and
were PostedBy a resource whose Username property is “alice”:
/Posts$filter=substringof('second', Content)+ and +PostedBy/Username eq 'alice')
You can pick up only the last five posts that were published in the year 2012:
/Posts$filter=year(PostedAt) eq 2012&$top=5
Want to get the second page of that list? You don’t need to look for a
link with the relation next in the representation. The URL you
should use is defined by the OData spec:
/Posts$filter=year(PostedAt) eq 2012&$top=5&skip=5
By default, the microblog collection presents entries in reverse
chronological order based on the value of the PostedAt property. If
you want to use chronological order instead, the OData spec explains
what URL you should use:
/Posts$orderBy=PostedAt asc
In the other collection-pattern standards, the server must serve a
hypermedia control to explicitly describe each allowable family of
searches. Collection+JSON serves search templates, AtomPub serves
OpenSearch forms. An OData collection doesn’t need to provide this
information because every OData collection implicitly supports the
entire OData query protocol. A client doesn’t need a hypermedia form
to know it’s OK to send GET requests to certain URLs. The OData
format itself puts additional constraints on the server that
guarantee that certain URLs will work.
OData defines a few more bits of implicit protocol semantics, mostly
pertaining to the relationships between resources. I won’t be covering
them here.

Functions and the metadata document

In addition to the impressive set of state transitions implicitly
defined by OData’s query protocol, an OData representation may include
explicit hypermedia controls describing any state transition
at all. These controls have protocol semantics similar to HTML
forms. Safe transitions are called “functions,” and they use HTTP
GET. Unsafe transitions are called “actions,” and they use HTTP
POST. I’ll be focusing on functions, but actions work the same
way.
Here’s a simple OData form that takes a date as input. It triggers a
state transition where the server looks at all of a microblog’s
entries from the given date, picks one at random, and serves a
representation of it.
"#Posts.RandomPostForDate": {
 "title": "Get a random post for the given date",
 "target": "Posts/RandomPostForDate"
 },
If this was a simple query like “all the microblog entries from a
given date,” the form wouldn’t be necessary. The state transition
would be implicitly described by OData’s query protocol. But that
protocol can’t express the concept of “random selection,” so this
state transition must be described explicitly, using a hypermedia
form. Now, here’s a question: can you look at this form and figure out
which HTTP request to make?
It’s a trick question. You can’t figure it out, because I didn’t show
you the whole form. The part of the form gives you the base URL to use
(Posts/RandomPostforDate), but it doesn’t explain how to format your
contribution—the date for which you want a random post. It’s
equivalent to this HTML form:
<form action="Posts/RandomPostForDate" method="GET">
 <input class="RandomPostForDate" type="submit"
 value="Get a random post for the given date."/>
</form>
That’s obviously incomplete. It’s missing a formal description for
“the given date.” What format should “the given date” take? What’s its
semantic descriptor? Do you trigger the state transition by sending
GET to Posts/RandomPostforDate?Date=9/13/2009, or to
Posts/RandomPostForDate?the_date_to_use=13%20August%202009, or to
Posts/RandomPostForDate?when=yesterday? You just don’t have that
information.
In the HTML example, the missing information should go into a second
<input> tag within the <form> tag. But with OData, that
information is kept in a different document—a “metadata document”
written not in JSON but in XML, using a vocabulary called the Comma
Schema Definition Language
(CSDL).[42]
An OData representation links to its metadata document using the
odata.metadata property
{
 "odata.metadata":
 "http://api.example.com/YouTypeItWePostIt.svc/$metadata#Posts",
 ...
}
Here’s the part of the metadata document that completes the definition
of the RandomPostForDate state transition:
<FunctionImport Name="RandomPostforDate" EntitySet="Posts"
 IsBindable="true" m:IsAlwaysBindable="false"
 ReturnType="Post" IsSideEffecting="false">
 <Parameter Name="date" Type="Edm.DateTime" Mode="In" />
</FunctionImport>
Now you know the whole story. You trigger the state transition
RandomForDate by formatting a date as a string, in a format defined
by OData’s Entity Data Model.[43] You know that this state transition is safe,
because its CSDL description has the IsSideEffecting attribute set
to false. That means you should trigger the state transition with a
GET request rather than with POST.
Combine the metadata document with the OData representation, and you
have all the information necessary to trigger the state transition
RandomPostForDate. You send an HTTP request that looks something
like this:
GET /YouTypeItWePostIt.svc/Posts/RandomPostForDate?date=datetime'2009-08-13T12:↵
00' HTTP/1.1
Host: api.example.com
Although RandomPostForDate is a simple transition, OData state
transitions can get very complicated. The metadata document stores the
messy details that explain exactly how to trigger whatever state
transitions you might find mentioned in an OData document. This saves
the server from having to include a complete description of a complex
state transition in every representation that supports it. A client
that’s interested in a given state transition can look up a complete
description of it.

Metadata documents as service description documents

I’ve presented OData in a way that makes it look like Collection+JSON
or Siren. A microblog post is represented as a JSON object containing
data fields like DatePublished, along with hypermedia controls and
other “metadata” explaining the possible next steps.
That’s the version of OData I recommend, and it has the media type
application/json;odata=fullmetadata. But there’s another way to
write down an OData document: a way that keeps all the hypermedia
controls, not just the complicated ones, in the metadata document.
The media type of such a document is
application/json;odata=minimalmetadata. Here’s what a representation
of the microblog would look like in this format:
{
 "odata.metadata":
 "http://api.example.com/YouTypeItWePostIt.svc/$metadata#Posts",
 "value": [
 {
 "Content": "This is the first post.",
 "Id": 1,
 "PostedAt": "2013-04-30T01:42:57.0901805-05:00"
 },
 {
 "Content": "This is the second post.",
 "Id": 2,
 "PostedAt": "2013-04-30T01:45:03.0901805-05:00"
 },
]
}
That’s a lot smaller, but in the world of REST, smaller isn’t
necessarily better. Where’d the metadata go? What happened to
PostedBy@odata.navigationLinkUrl and #Posts.RandomPostForDate? How
are you supposed to decide which HTTP request to make next?
All of that information went into the CSDL document at the other end
of the odata.metadata link. I showed you part of the CSDL document
earlier when I was discussing RandomPostForDate, but here’s a bit more
of it (this excerpt shows what happened to PostedBy and
RandomPostForDate):
<edmx:Edmx Version="1.0"
 xmlns:edmx="http://schemas.microsoft.com/ado/2007/06/edmx">
 <edmx:DataServices
 xmlns:m="http://schemas.microsoft.com/ado/2007/08/dataservices/metadata"
 m:DataServiceVersion="3.0" m:MaxDataServiceVersion="3.0">

 <Schema Namespace="YouTypeItWePostIt">
 <EntityType Name="Post">
 <Key><PropertyRef Name="Id"/></Key>
 <Property Name="Id" Type="Edm.Int32" Nullable="false"/>
 <Property Name="Content" Type="Edm.String"/>
 <Property Name="PostedAt" Type="Edm.DateTimeOffset" Nullable="false"/>
 <NavigationProperty Name="PostedBy"
 Relationship="YouTypeItWePostIt.Post_PostedBy"
 ToRole="PostedBy" FromRole="Post"/>
 </EntityType>

 ...

 <EntityContainer Name="YouTypeItWePostItContext"
 m:IsDefaultEntityContainer="true">

 <EntitySet Name="Posts" EntityType="YouTypeItWePostIt.Post"/>

 <FunctionImport Name="RandomPostforDate" EntitySet="Posts"
 IsBindable="true" m:IsAlwaysBindable="false"
 ReturnType="Post" IsSideEffecting="false">
 <Parameter Name="date" Type="Edm.DateTime" Mode="In" />
 </FunctionImport>

 <EntitySet Name="Users" EntityType="YouTypeItWePostIt.User"/>

 </EntityContainer>

 ...

 </Schema>
 </edmx:DataServices>
</edmx:Edmx>
There’s nothing wrong with keeping extra information about a resource
outside of that resource’s representation. After all, that’s what a
profile or a JSON-LD context does. The problem here is that the CSDL
document can be seen as a service description document: an overview of
the API as a whole that makes it look like a relational database.
As I mentioned in Chapter 9, users who see a document like this have a
tendency to automatically generate client code based on it. Doing this
creates a tight coupling between the generated client and this
specific edition of the service description. If the server
implementation changes, the CSDL document will change along with it,
but the clients won’t change to match. They’ll just break.
Fortunately, no one is making you use OData this way. If you use the
media type application/json;odata=fullmetadata, your OData
representations will contain their own hypermedia controls. A client
will only need to consult the CSDL metadata document when it needs to
trigger a complicated state transition—a function or action—that
can’t be completely described with OData.

Pure Hypermedia Formats

These media types have very generic application semantics, or else
they have no application semantics at all. They focus on representing
the protocol semantics of HTTP. You provide your own application
semantics, by plugging link relations and semantic descriptors into
predefined slots.
HTML

	
Media types: text/html and application/xhtml+xml

	
Defined in: open standards for HTML 4,
 for XHTML, and
 for HTML 5

	
Medium: XML-like

	
Protocol semantics: navigation through GET links; arbitrary
 state transitions through forms (GET for safe transitions, POST
 for unsafe transitions)

	
Application semantics: human-readable documents (“paragraph,”
 “list,” “table,” “section,” etc.)

	
Covered in: Chapter 7

The original hypermedia format, and a highly underrated choice for an
API. HTML can make direct use of microformats and microdata, instead
of using an approximation such as an ALPS profile. HTML’s <script>
tag lets you embed executable code to be run on the client, a feature
of RESTful architectures (“code on demand”; see Appendix C) not
supported by any other hypermedia format. And HTML documents can be
graphically displayed to human beings—invaluable for APIs designed to
be consumed by an Ajax or mobile client, and useful when debugging any
kind of API.
Here’s HTML’s state diagram:
[image: image with no caption]

HTML comes in three flavors. HTML 4 has been the stable standard since
1997. HTML 5, its replacement, is still under development. There’s also
XHTML, an HTML-like format that happens to be valid XML.
As far as this book is concerned, the only important differences
between these three standards are HTML 5’s new rules for client-side
input validation, and the fact that HTML 5 will eventually support microdata.

HAL

	
Media types: application/hal+json and application/hal+xml

	
Defined in: the JSON version is defined in the Internet-Draft
 “draft-kelly-json-hal”; the XML version is defined in a [personal
 standard here]

	
Medium: Either XML or JSON

	
Protocol semantics: arbitrary state transitions through links that
 may use any HTTP method; links do not mention the HTTP method to be
 used—that’s kept in human-readable documentation

	
Application semantics: none to speak of

	
Covered in: Chapter 7

HAL is a minimalist format. Its state diagram is so generic it looks
like something out of the HTTP specification:
[image: image with no caption]

HAL relies on custom link relations (and their human-readable
explanations in profiles) to do the heavy lifting.

Siren

	
Media types: application/vnd.siren+json

	
Defined in: personal standard

	
Medium: JSON (an XML version is planned)

	
Protocol semantics: navigation through GET links; arbitrary state
 transitions through “actions” (GET for safe actions,
 POST/PUT/DELETE for unsafe actions)

	
Application semantics: very generic

A Siren document describes an “entity,” a JSON object that has
approximately the same semantics as HTML’s <div> tag. An entity may
have a “class” and a list of “properties.” It may contain a list of
“links,” which work like HTML <a> tags (with a rel and an
href). It may also contain a list of actions, which work like HTML
<form> tags (with a name, an href, a method, and a number of
fields).
An entity may also have some number of subentities, similar to how
one <div> tag may contain another. You can implement the collection
pattern this way.
Siren’s state diagram looks like a cross between HAL’s and HTML’s:
[image: image with no caption]

The Link Header

	
Media type: n/a

	
Described in: RFC 5988

	
Medium: HTTP header

	
Protocol semantics: navigation through GET links

	
Application semantics: none

	
Covered in: Chapter 4

The Link header is not a document format, but I’m putting it in the
zoo because it lets you add simple GET links to representations that
lack hypermedia controls, like binary images or JSON documents. The
header’s rel parameter is a slot for the link relation:
Link: <http://www.example.com/story/part2>;rel="next"
RFC 5988 defines some other useful parameters for the Link header,
including type (which gives a hint as to the media type at the other
end of the link) and title (which contains a human-readable title
for the link).
As far as I’m concerned, the most important use of the Link header
is to connect a JSON document with a profile. JSON is incredibly
popular despite having no hypermedia controls, and the
application/json media type doesn’t support the profile parameter,
so Link is the only reliable way to point to the profile that
explains what a JSON document means.
Content-Type: application/json
Link: <http://www.example.com/profiles/hydraulics>;rel="profile"

The Location and Content-Location Headers

	
Media type: n/a

	
Described in: RFC 2616

	
Medium: HTTP header

	
Protocol semantics: depends on the HTTP response code

	
Application semantics: none

	
Covered in: Chapter 1, Chapter 2, Chapter 3, Appendix B

Here are two simple hypermedia controls defined in the HTTP standard
itself. I’ve mentioned Location in passing, but I’ll give both
detailed coverage in Appendix B.
The Content-Location header points to the canonical location of the
current resource. It’s equivalent to a link that uses the
IANA-registered link relation canonical.
The Location header is used as an all-purpose link whenever the
protocol semantics of an HTTP response demand a link. The exact
behavior depends on the HTTP status code. When the response code is
201 (Created), the Location header points to a newly created
resource. But when the response code is 301 (Moved Permanently), the
Location header points to the new URL of a resource that
moved. Again, the details are in Appendix B.

URL Lists

	
Media type: text/uri-list

	
Medium: none

	
Described in: RFC 2483

	
Protocol semantics: none

	
Application semantics: none

A text/uri-list document is just a list of URLs:
http://example.org/
https://www.example.com/
...
This is probably the most basic hypermedia type ever devised. It
doesn’t support link relations, so there’s no way to express the
relationship between these URLs and the resource that served the
list. There are no explicit hypermedia controls, so the client has no
way of knowing what kind of requests it’s allowed to send to these
URLs. The best you can do is send a GET request to each and see what
kind of representations you get.

JSON Home Documents

	
Media type: application/json-home

	
Described in: Internet-Draft “draft-nottingham-json-home”

	
Medium: JSON

	
Protocol semantics: completely generic

	
Application semantics: none

JSON Home Documents are a more sophisticated version of URL lists. The
format is intended for use as the “home page” of an API, listing all
the resources provided and their behavior under the HTTP protocol.
A JSON Home Document is a JSON object. The keys are link relations,
and the values are JSON objects known as “Resource Objects.” Here’s an
example from the world of the maze game:
{
 "east": { "href": "/cells/N" },
 "west": { "href": "/cells/L" }
}
A Resource Object is a hypermedia control that describes the protocol
semantics of a resource, or a group of related resources. Here’s a
search form, described by a URI Template:
{
 "search": {"href-template": "/search{?query}",
 "href-vars": {
 "query" : "http://alps.io/opensearch#searchTerms"
 }
}
A Resource Object may include “resource hints” that describe its
protocol semantics in more detail. The most common hint is allow,
which explains which HTTP methods the resource will respond to. Here’s
a JSON Home Document that uses the flip link relation I defined for
my extension of the maze game:
{
 "flip": { "href": "/switches/4",
 "hints": { "allow": ["POST"] }
 }
}
A JSON Home Document says nothing about the application semantics of
the resources it links to. That information is kept in the
representations on the other side of the links.
By combining a JSON Home Document (which describes an API’s protocol
semantics) with an ALPS document (which describes its application
semantics), you can take an existing API—even one that doesn’t use
hypermedia—and move most of its human-readable documentation into a
structured, machine-readable format.

The Link-Template Header

	
Media type: n/a

	
Described in: Internet-Draft “draft-nottingham-link-template” (see also RFC 6570)

	
Medium: HTTP header

	
Protocol semantics: navigation through GET

	
Application semantics: none

The Link-Template header works exactly the same way as the Link
header, except its value is interpreted as a URI Template (RFC 6570)
instead of as a URL. Here’s a search form in an HTTP header:
Link-Template: </search{?family-name}>; rel="search"
The Link-Template header has a special variable called var-base,
which allows you to specify a profile for the variables in the URI
Template. In the example, the variable name family-name is
suggestive of what kind of value you should plug into the variable,
but it doesn’t technically mean anything. It might as well be called
put-something-here. Add a var-base, and suddenly there’s a link to
a formal definition of family-name.
Link-Template: </search{?family-name}>; rel="search";↵
var-base="http://alps.io/microformats/hCard#"
Now the variable family-name expands to the URL
http://alps.io/microformats/hCard#family-name. The ALPS document at the
other end of that URL explains the application semantics of the
family-name variable.
Here’s another example that uses schema.org’s application semantics
instead of ALPS:
Link-Template: </search{?familyName}>; rel="search"; var-base="http://schema.org/"
Here, the variable familyName expands to the URL
http://schema.org/familyName, which means basically the same thing
as http://alps.io/microformats/hCard#family-name.
As of this writing, the Internet-Draft defining the Link-Template
header has expired. The author of the draft, Mark Nottingham, told me
to go ahead and put it in the book anyway. He said he’ll revive the
Internet-Draft if more people become interested in Link-Template.

WADL

	
Media type: application/vnd.sun.wadl+xml

	
Defined in: open standard

	
Medium: XML

	
Protocol semantics: completely generic

	
Application semantics: none, minimal support for extensions

WADL was the first hypermedia format to support a complete set of
protocol semantics. A WADL <request> tag (analogous to an HTML form)
can describe an HTTP request that uses any method, provides values for
any specified HTTP request headers, and includes an entity-body of any
media type. Like AtomPub, this doesn’t sound very special now, but it
was groundbreaking at the time. WADL can describe the protocol
semantics of any web API, even one that’s poorly designed and
violates the HTTP standard.
Here’s a snippet of WADL that explains how to flip a switch in
Chapter 7’s version of the maze game:
<method id="flip" name="POST" href="/switches/4">
 <doc>Flip the switch</doc>
</method>
WADL can also describe the content of XML representations. A WADL
document can point out which parts of a representation are
interesting—notably, which parts are links to other resources. A WADL
document can bring in an XML Schema document to explain the data types
of the XML data it describes. This is useful when an XML
representation has no associated schema of its own.
WADL’s <doc> tag makes it a basic profile format, capable of
describing the application semantics of an HTTP request or the inside
of an XML representation. But WADL can’t describe the inside of a JSON
representation at all.[44]
WADL is not in widespread use, but there are some Java JAX-RS
implementations that generate WADL descriptions of APIs. Therein lies
the problem. An automatically generated description of an API is
likely to be tightly coupled to the server-side implementation. What’s
more, an API that uses WADL typically serves one enormous WADL
document describing the protocol semantics of the entire API.
This is a service description document, and as I mentioned in Chapter 9
, it encourages users to create automatically generated clients,
based on the assumption that they’ve obtained a complete and
unchanging overview of the API’s semantics.
But APIs change. When that happens, the WADL description of the API
will also change, but the automatically generated clients will not. The
clients will break.

XLink

	
Media type: n/a

	
Defined in: W3C standard

	
Medium: XML documents

	
Protocol semantics: navigation and transclusion with GET

	
Application semantics: none

XLink is a plug-in standard that lets you add hypermedia links to any
XML document. Unlike HTML and Maze+XML, XLink doesn’t define special
XML tags that represent hypermedia links. XLink defines a family of
attributes that can be applied to any XML tag to turn that tag into
a link.
Here’s an ad hoc XML representation of a cell in the maze game. The
<root> and <direction> tags are tag names I made up for
demonstration purposes—they have no hypermedia capabilities of their
own, but I can turn them into links by adding XLink attributes.
<?xml version="1.0"?>
<root xmlns:xlink="http://www.w3.org/1999/xlink">
 <direction
 xlink:href="http://maze-server.com/maze/cell/N"
 xlink:title="Go east!"
 xlink:arcrole="http://alps.io/example/maze/#east"
 xlink:show="replace"
 />

<link
 xlink:href="http://maze-server.com/maze/cell/L"
 xlink:title="Go west!"
 xlink:arcrole="http://alps.io/example/maze/#west"
 xlink:show="replace"
 />
</root>
The href and title attributes should look familiar. The link
relation goes into the optional arcrole attribute. There’s a slight
twist here: the arcrole attribute only supports extension link
relations—the ones that look like URLs. Your link relation can’t look
like author or east; it has to look like http://alps.io/maze/#west.
The show attribute lets you switch between a navigation link that
works like HTML’s <a> tag (show="replace", the default) and an
embedding link that works like HTML’s tag
(show="embed"). The HTTP method used is always GET.
With XLink, I can give an ad hoc XML vocabulary approximately the same
hypermedia capabilities that were designed into Maze+XML. There are a
few advanced features of XLink I haven’t covered: notably, the extended
link type, which lets you connect more than two resources using a
single link, and the role attribute, which I’ll show off in Chapter 12.

XForms

	
Media type: n/a

	
Medium: XML documents.

	
Protocol semantics: arbitrary state transitions through forms (GET
 for safe transitions, POST/PUT/DELETE for unsafe transitions)

	
Application semantics: none

XForms does for hypermedia forms what XLink does for links. It’s a
plug-in standard that adds HTML-like forms to any XML document. Unlike
XLink, though, it does define its own tags. Here’s how XForms might
represent a simple search form:
<xforms:model>
 <xforms:submission action="http://example.com/search" method="get"
 id="submit-button"/>
 <xforms:instance>
 <query/>
 </xforms:instance>
<xforms:model>
The <model> tag is a container, like HTML’s <form> tag. The
<submission> tag explains what HTTP request to make: in this case, a
GET request to http://example.com/search. The children of the
<instance> tag explain how to construct the query string (for a GET
request) or the entity-body (for a POST or PUT request).
The <query> tag is one I made up for this example; it represents a
form field called query. The meaning of this tag—e.g.,
whether it’s a text field or a checkbox—is defined separately, in an
XForms <input> tag:
<xforms:input ref="query">
 <xforms:label>Search terms</xforms>
</xforms:input>

<xforms:submit submission="submit-button">
 <label>Search!</label>
</xforms:submit>
The <input> tag with ref="query" says that the query field is a
text input with a human-readable <label>. The <submit> tag gives a
<label> to the submit button. Together, the <model> tag and the
two <input> tags approximate the functionality of this HTML form:
<form action="http://example.com/search" method="GET">
 <input type="text" name="query"/>
 <label for="query">Search terms</label>
 <submit value="Search!">
</form>
This is a very basic example; there are many advanced features of
XForms that I won’t be covering. The W3C’s tutorial “XForms for XHTML
Authors”[45]
uses HTML forms to explain XForms in some detail, going beyond the
capabilities of pure HTML into some of the advanced features of
XForms.

GeoJSON: A Troubled Type

We’ve seen the healthy specimens in the hypermedia zoo. Now I’d like
to take a look at GeoJSON, a domain-specific document format with some
design flaws that hurt its usability in APIs.[46] I’m not doing this to pick on
GeoJSON; I’ve made exactly the same mistakes myself. They’re common
mistakes, so even if GeoJSON doesn’t sound like something you need
to learn about right now, stick around.
GeoJSON is a standard based on JSON, designed for representing
geographic features like points on a map. Here are its stats:
	
Media type: application/json

	
Defined in: corporate standard defined here

	
Medium: JSON

	
Protocol semantics: GET for transclusion of coordinate systems

	
Application semantics: geographic features and collections of features

Like almost all JSON-based documents used in APIs, a GeoJSON document
is a JSON object that must contain certain properties. Here’s a
GeoJSON document that pinpoints the location of an ancient monument on
Earth:
{
 "type": "FeatureCollection",
 "features":
 [
 {
 "type": "Feature",

 "geometry":
 {
 "type": "Point",
 "coordinates": [12.484281,41.895797]
 },

 "properties":
 {
 "type": null,
 "title": "Column of Trajan",
 "awmc_id": "91644",
 "awmc_link": "http://awmc.unc.edu/api/omnia/91644",
 "pid": "423025",
 "pleiades_link": "http://pleiades.stoa.org/places/423025",
 "description": "Monument to the emperor Marcus Ulpius Traianus"}
 }
]
}
I adapted this representation slightly from the real-world API
provided by UNC’s Ancient World Mapping
Center. GeoJSON’s application
semantics are simple, and it should be fairly easy for a human to
understand the document. It represents a collection called a
FeatureCollection. The collection only contains one item: a
Feature, which has a geometry (a single Point on the map) and a
bunch of miscellaneous properties like the human-readable
description.
A quick look at the GeoJSON standard reveals that instead of a
Point, the geometry could have been a LineString (representing a
border or a road) or a Polygon (representing the area of a city or
country).
GeoJSON Has No Generic Hypermedia Controls

Unfortunately, GeoJSON’s protocol semantics are anything but
straightforward. Do you see awmc_link and pleiades_link in that
representation? They look like hypermedia links, but they’re
not. According to the GeoJSON standard, those are just strings that
happen to look like URLs. When the Ancient World Mapping Center
designed their GeoJSON API, they had to stuff all their links into the
properties list, because GeoJSON doesn’t define hypermedia controls
for them. This means a generic GeoJSON client can’t follow the
pleiades_link, or even recognize it as a link. To follow that link,
you’ll need to write a client specifically for the Ancient World
Mapping Center’s API.
If GeoJSON didn’t define any hypermedia controls, this would be
understandable. Not every data format has to be a hypermedia format. I
simply wouldn’t mention GeoJSON in this book. The odd thing is that
GeoJSON does define a hypermedia control, but it can only be used
for one specific thing: changing the coordinate system in use.
By default, the coordinates in a GeoJSON representation
([12.484281,41.895797]) are measured in degrees of longitude and
latitude—a system we’re all familiar with. Since the planet Earth is
not a perfect sphere, these measurements are interpreted according to
a standard called WGS84,[47]
which lays down things like the approximate shape of Earth, the
location of the prime meridian, and what “sea level” means.
If you’re not a map geek, you can assume Earth is a sphere and be done
with it. But for map geeks, WGS84 is just a default. There are many
other coordinate systems you could use. British readers may be
familiar with the Ordnance Survey National Grid, a coordinate system
that uses “easting” and “northing” instead of latitude and longitude,
and that can only represent points within a specific
700-by-1300-kilometer area that covers the British Isles. There are
infinitely many coordinate systems, since you can define a system
that puts Earth’s prime meridian wherever you want.
And now our story comes back to hypermedia, because this is what
GeoJSON’s sole hypermedia control is for. GeoJSON lets you link to
a description of the coordinate system you’re using.
Here’s a GeoJSON document containing a genuine hypermedia link that
any GeoJSON client will recognize as such:
{
 "type":"Feature",
 "geometry":
 {
 "type":"Point",
 "coordinates":[60000,70000]
 },

 "crs": {
 "type": "link",
 "properties": {
 "href": "http://example.org/mygrid.wkt",
 "type": "esriwkt"
 }
 }
}
The coordinates [60000,70000] are not valid measurements of
longitude and latitude, but that’s fine, because we’re not using
longitude and latitude. We’re using a custom coordinate reference
system (crs) described by the resource at
http://example.org/mygrid.wkt. This is exactly the sort of thing
hypermedia is good for. The problem with GeoJSON is that the only
place it allows a link is within the definition of a coordinate
reference system.
This state diagram describes GeoJSON’s protocol semantics:
[image: image with no caption]

That’s not very useful! Most GeoJSON APIs don’t use custom coordinate
systems—we’re all used to ordinary longitude and latitude. But the
GeoJSON standard allows for them, because they are an essential aspect
of the problem domain. On the other hand, pretty much any API needs to
serve miscellaneous links between its resources, but the GeoJSON
standard lacks that capability, presumably because it’s not directly
related to the problem domain. The underlying data format is no help,
since JSON defines no hypermedia controls at all. That’s why API
implementers must resort to hacks like awmc_link.
Enough complaining; what would I do differently? A design more focused
on hypermedia would allow a list of links, each of which could specify a link relation. GeoJSON would look a lot more like Collection+JSON or
Siren. Then the Ancient World Mapping Center wouldn’t need to smuggle
awmc_link and pleiades_link into the properties object.
To link to a coordinate system, you’d use the same kind of link you’d
use for anything else. GeoJSON’s crs would become a link relation,
useful in any mapping application, even one that doesn’t use GeoJSON.
It’s OK to have application-specific hypermedia controls. HTML’s
 tag is an application-specific hypermedia control. But you
also need to make available a simple, generic link control.

GeoJSON Has No Media Type

There’s another problem with GeoJSON: it has no registered media
type. A GeoJSON document is served as application/json, just like
any other JSON document. How is a client supposed to distinguish
between GeoJSON and plain old JSON?
The best solution is for the server to treat GeoJSON as a profile of
JSON. This means serving a link to the GeoJSON standard with
rel="profile". Since JSON on its own has no hypermedia controls,
you’ll need to use the Link header:
Link: <http://www.geojson.org/geojson-spec.html>;rel="profile"
You could also write an ALPS profile or JSON-LD context for GeoJSON,
and serve a link to that using the Link header:
Link: <http://example.com/geojson.jsonld>;↵
rel="http://www.w3.org/ns/json-ld#context"
As far as I know, there’s no GeoJSON implementation that does either
of these. GeoJSON is served as application/json and the client is
simply expected to know ahead of time which resources serve GeoJSON
representations and which serve ordinary JSON. A client that wants to
understand different profiles of JSON must run heuristics against
every incoming JSON representation, trying to figure out which profile
the server is giving it.
Does it sound unrealistic that one client would need to handle
different profiles of JSON? Well, consider this. The ArcGIS platform
includes an API that presents the same kind of information as
GeoJSON. It serves JSON representations that superficially resemble
GeoJSON’s representations, and it serves them as application/json,
with no profile information.
I don’t think it’s a ludicrous fantasy to imagine a client that can
handle both GeoJSON and ArcGIS JSON. If GeoJSON was served as
application/geo+json and ArcGIS JSON was served as
application/vnd.arcgis.api+json, a client developer could split up
the client code based on the value of the Content-Type header, and
reunite the code paths once the incoming data was parsed. If GeoJSON
and ArcGIS JSON were consistently served as different profiles, a
developer could split up the code based on the value of the Link
header. If they were served with different JSON-LD contexts, a
developer could split up the code based on that.
But both formats are served as though they meant the same thing. A
unified client must try to distinguish between the two formats using
poorly defined heuristics. Or, more likely, the idea of a unified
client never occurs to anyone. Like two ships passing in the night,
one developer writes a GeoJSON client for GeoJSON APIs, while another
duplicates much of the first developer’s work, writing an ArcGIS
client to run against ArcGIS installations.
No one is to blame for this. The GeoJSON standard was finalized in
2008. Back then, our understanding of hypermedia APIs was pretty
poor. The GeoJSON designers didn’t forget to register a media type;
they considered it and then tabled the issue.
But it’s not 2008 anymore. We now have standards that add real
hypermedia controls to JSON. We can use profiles to add
application-level semantics to generic hypermedia types. We’ve seen
hundreds of one-off, mutually incompatible data formats served as
application/json, and we know we can do better.

Learning from GeoJSON

When a GeoJSON object is included in a hypermedia-capable JSON
document (such as an OData document, which has explicit support for
embedded GeoJSON), both of these problems go away. It doesn’t matter
that GeoJSON has no general hypermedia controls, because it’s embedded
in a document that can take care of that stuff. It doesn’t matter that
GeoJSON has no special media type, because it inherits the media type
of the parent document. At this point, GeoJSON becomes a plug-in
standard, similar to OpenSearch.
If you design a domain-specific format that’s not clearly a plug-in for
some other format, you should give it a unique media type. It helps if
you also register the media type with the IANA, but if you use the
vnd. prefix, you don’t have to register anything.
Also make sure your format features some kind of general hypermedia
control, like Maze+XML’s <link> tag. You might think it’s not your
job to provide a generic hypermedia control, since that has nothing to
do with your problem domain. But if you don’t provide a hypermedia
control, every one of your users will come up with their own one-off
design, a la awmc_link. You may be able to borrow a simple clip-on
hypermedia control by adopting XLink for XML documents, or JSON-LD for
JSON documents.
All in all, it may be better to forget the domain-specific media
type, and design a domain-specific set of application semantics—a profile. Those
semantics can then be plugged in to a general hypermedia type like
Siren, or a collection-pattern media type like Collection+JSON.

The Semantic Zoo

I’ve shown you the wonders of the hypermedia zoo to demonstrate the
diversity and flexibility of hypermedia-based designs. Now I’m going
to take you on a (much quicker) tour of a different zoo: a series of
butterfly gardens full of application semantics for different problem
domains. My goal here is more concrete: to help you save time by
reusing work other people have already done.
In Chapter 9, I played up the benefits of reusing existing application
semantics. The profiles listed here are the result of smart people
carefully considering a problem domain and navigating tricky naming
issues. There’s no reason you should have to duplicate that
work. Reusing existing semantics whenever possible also removes the
temptation to expose your server’s implementation details, leaving you
free to change those details without hurting your clients.
Most important of all, when different APIs share the same application
semantics, it becomes possible to write interoperable clients, or
general semantics-processing libraries, instead of a custom client
for each individual API. This is more of a hope than a reality right
now, but at least the immediate path forward is clear.
Rather than show you a lot of individual profiles in the semantic zoo,
I’ll focus mainly on the registries that house the profiles.
The IANA Registry of Link Relations

	
Media types: any

	
Site: this IANA page

	
Semantics: general navigation

I’ve talked about the IANA registry of link relations for practically
the entire book. It’s a global registry containing about 60 link
relations. You’re allowed to use any IANA-registered relation in any
representation, and to assume that your clients know what you’re
talking about.
Link relations only make it into the IANA registry if they are defined
in an open standard such as an RFC or W3C Recommendation, and are
generic enough to be useful for any media type. Each link relation is
given a short human-readable description and a link to the standard
that originally defined it.
In step 3 of Chapter 9’s design procedure, I mention several
IANA-registered link relations that are especially useful for API
design.

The Microformats Wiki

	
Media types: HTML (ALPS versions are available for some microformats)

	
Site: this microformats page

	
Semantics: the kind of things a human being might want to search
 for online

The Microformats project was the first successful attempt at defining
profiles for application semantics. Microformats are defined
collaboratively, on a wiki and mailing list. Of the stable
microformats, these are the ones you’re most likely to be interested
in:
	
hCalendar

	
Describes events in time. Based on the plain-text
 iCalendar format defined in RFC 2445.

	
hCard

	
describes people and organizations. Based on the plain-text
 vCard format (defined in RFC 2426), and covered in Chapter 7.

	
XFN

	
A set of link relations describing relationships between
 people, ranging from friend to colleague to sweetheart.

	
XOXO

	
Describes outlines. This microformat is interesting because it
 doesn’t add anything to HTML at all. It just suggests best practices
 for using HTML’s existing application semantics.

These microformat specifications are technically drafts, but most of
them haven’t changed in several years, so I’d say they’re pretty
stable:
	
adr

	
Physical addresses. This is a subformat of hCard, including
 only the parts that represent addresses. The idea is that if you
 don’t need all of hCard, you can just use adr.

	
geo

	
Latitude and longitude. (Using the WGS84 standard, naturally!)
 Another sub-format of hCard.

	
hAtom

	
Blog posts. Based on the Atom feed format (RFC 4287). This is
 an interesting example of one hypermedia format (HTML) adopting the
 application semantics of another (Atom).

	
hListing

	
Listings of services for hire, personal ads, and so
 on. This microformat mostly reuses semantics from related
 microformats: hReview, hCard, and hCalendar.

	
hMedia

	
Basic metadata about image, video, and audio files.

	
hNews

	
An extension of hAtom that adds a few extra descriptors
 specific to news articles, like dateline.

	
hProduct

	
Product listings.

	
hRecipe

	
Recipes.

	
hResume

	
Resumes/CVs.

	
hReview

	
Describes a review (of anything), with a rating.

There are several interesting microformats I haven’t mentioned because
they were effectively adopted by HTML 5, and are now IANA-registered
link relations: author, nofollow, tag, and license. The
rel-payment microformat also became the IANA-registered link relation
payment.
I’ve created ALPS documents that capture the essential application
semantics of most of the microformats listed here. They are
available from the ALPS registry.

Link Relations from the Microformats Wiki

	
Media types: HTML

	
Site: this microformats page

	
Semantics: very, very miscellaneous

The Microformats wiki also has a huge list of link relations defined
in standards or seen in real usage, but not registered with the
IANA. This wiki page is the official registry for link relations used
in HTML 5, but it’s also an unofficial registry of all link
relations that aspire to be useful outside a single
application. Maze+XML’s link relations would never cut it with the
IANA—they’re too application-specific—but they’re mentioned on the
Microformats wiki.
In Chapter 8, I mentioned this wiki page and gave some examples of the
relations defined there. I don’t recommend simply picking up link
relations from this wiki page and using them. Your clients will have
no idea what you’re talking about. The real advantage of this page is
as a way of finding standards you didn’t know about before.
If you were planning on making your own maze game API, and you
searched this page for maze or north, you’d discover Maze+XML. You
wouldn’t necessarily end up using Maze+XML, but you’d have a glimpse
into how someone else had solved a similar problem.

schema.org

	
Medium: HTML5, and RDFa (ALPS versions are available)

	
Site: schema home page

	
Semantics: the kind of things a human being might want to search
 for online

As I mentioned in Chapter 8, the main source for microdata items is a
clearinghouse called schema.org. This site takes the application
semantics of standards like rNews (for news) and GoodRelations (for
online stores) and ports them to microdata items. In turn, I’ve
automatically generated ALPS documents for schema.org’s microdata
items and made them available from alps.io.
There are hundreds of microdata items described on schema.org, and
more are on the way as the schema.org maintainers work with the
creators of other standards to represent those standards in
microdata. Rather than talk about all of the microdata items, I’ll
list the current top-level items and mention some of their notable
subclasses:
	
CreativeWork (including Article, Blog, Book, Comment, MusicRecording,
 SoftwareApplication, TVSeries, and WebPage)

	
Event (including BusinessEvent, Festival, and
 UserInteraction)

	
Intangible is sort of a catch-all category, which notably includes
 Audience, Brand, GeoCoordinates, JobPosting, Language, Offer, and Quantity

	
MedicalEntity (including MedicalCondition, MedicalTest, and
 AnatomicalStructure)

	
Organization (including Corporation, NGO, and SportsTeam)

	
Person

	
Place (including City, Mountain, and TouristAttraction)

	
Product (including ProductModel)

As you can see, there’s a lot of overlap between schema.org microdata
items and the microformats. The Person item covers the same ground as
the hCard microformat. The Event item is similar to hEvent, Article to
hAtom, NewsArticle to hNews, Recipe to hRecipe, GeoCoordinates to geo,
and so on.
A word of caution: the schema.org microdata items are very
consumer-focused. A Product is something the client can buy, not a
project the client is working on. The semantics of the Restaurant item
have a lot to do with eating at a restaurant, and almost nothing to do
with running one or inspecting one. There’s a SoftwareApplication
item, but nothing for a bug, a unit test, a version control
repository, a release milestone, or any of the other things we deal
with when we develop software. To my eyes, the only item described
in enough detail to be useful to a practitioner is MedicalEntity, and
a doctor would probably disagree with me on that.
In short, the schema.org project has a definite point of view. It’s
not encyclopedic, and even if it defines an item that overlaps with
your API’s domain, the application semantics it defines may have
nothing to do with how you look at things.

Dublin Core

	
Medium: HTML, XML, RDF, or plain text

	
Site: Dublin Core home page

	
Semantics: published works

The Dublin Core is the original standard for defining application
semantics, dating all the way back to 1995. It defines 15 bits of
semantics for information about published works: title, creator,
description, and so on. These bits of semantics can be used either
as semantic descriptors or as link relations.
The Dublin Core Metadata Initiative has also defined a more complete
profile, the DCMI Metadata Terms. This profile includes semantic
descriptors like dateCopyrighted, as well as link relations like
isPartOf and replaces.

Activity Streams

	
Medium: Atom, JSON

	
Site: Activity Streams home page

	
Families: things human beings do online

Activity Streams is a corporate standard for representing our online
lives as a sequence of discrete “activities.” Each activity has an
actor (usually a human being who’s using a computer), a verb
(something the actor is doing), and an object (the thing to which the
actor is doing the verb).
When you watch a video online, that’s an activity. You are the actor,
the video is the object, and the verb (according to Activity Streams)
is the literal string “play.” Some activities have a target as well as
an object. When I publish a new entry to my blog, I am the actor, the
blog entry is the object, the verb is “post,” and the target is my
blog.
I’ve put Activity Streams in this section, even though
it’s a data format, because the data format doesn’t define any
hypermedia controls. But there are a lot of really useful semantics in
here. Activity Streams defines names and semantic descriptors for a
lot of the things we interact with online (Article, Event,
Group, Person). More important, it defines a lot of useful names
for verbs (join, rsvp-yes, follow, cancel), which make sense
as the names of unsafe state transitions.
The Activity Streams standard explains how to represent a sequence of
activities as an Atom feed. Use this and Activity Streams will be a
real hypermedia format, an extension to Atom.
There’s also a standalone JSON-based version of Activity Streams. It
has the same problems as GeoJSON: there are no hypermedia controls,
and no way to distinguish Activity Streams documents from plain JSON
documents.[48] To add hypermedia controls to a JSON Activity
Streams document, you’ll need to use JSON-LD or Hydra (Chapter 12).
There’s a lot of overlap between Activity Streams’ semantics and
schema.org’s microdata items. There are microdata items called
Article, Event, Group, and Person. The UserCheckins microdata item is
like Activity Streams’ “checkin” verb, UserLikes is like “like,” and
UserPlays is like “play.” (For the record, Activity Streams predates
schema.org.)

The ALPS Registry

I’ve set up a registry of ALPS profiles at this page for general
reuse. As part of my work to liberate application semantics from their
media types, I’ve created ALPS versions of the schema.org metadata
items, several microformats, and the Dublin Core. That’s just a start;
hopefully by the time you read this I’ll have made ALPS profiles that
convey the application semantics of other standards as well.
If you want to use an ALPS profile to define your API’s application
semantics, you can search alps.io to find a profile that works for
you, or assemble a new profile out of bits of existing profiles.
If you decide to use an ALPS profile in your API, feel free to
reference bits of the profiles in the ALPS Registry. Once you’re done,
I’d appreciate it if you’d upload the profile to the ALPS Registry (as
well as hosting it locally as part of your API). That way other people
can find and reuse your application semantics.

[39] describedBy is an IANA-registered link
relation that’s a more general version of profile. A resource is
describedBy any resource that sheds any light on its
interpretation.

[40] Defined here.

[41] All
of these URLs need to be URL-encoded, obviously. I’ve left them
unencoded for the sake of clarity.

[42] For more information on CSDL, go to the OData website.

[43] The EDM is defined in the same
document as CSDL.

[44] The JSON Pointer standard, defined in
the Internet-Draft appsawg-json-pointer, may fix this.

[45] The tutorial is available at this w3.org page.

[46] These flaws
don’t hurt GeoJSON so much that no one uses it. It’s pretty popular—just not as good as it could be.

[47] An industry standard, but from a
different industry than the rest of the standards mentioned in this book. You
can get a PDF version of the standard at this page.

[48] The Internet-Draft
“draft-snell-activity-streams-type” will solve the second problem. It
registers the media type application/stream+json for Activity
Streams documents.

Chapter 11. HTTP for APIs

Think of the World Wide Web (and of any other RESTful API) as a
technology stack. URLs are on the bottom; they identify resources. The
HTTP protocol sits on top of those resources, providing read access to
their representations and write access to the underlying resource
state. Hypermedia sits on top of HTTP, describing the protocol
semantics of one particular website or API.
[image: []]

Figure 11-1. The technology stack that forms the World Wide Web

The bottom layer answers the question “Where is the resource?” The
middle layer answers the question “How do I communicate with the
resource?” The top layer answers the question “What next?”
So far, this book has focused on the top layer of the stack—“What
next?” That’s because the top layer is the tricky one. Most of today’s
APIs use URLs and HTTP correctly, but don’t even bother with
hypermedia.
In this chapter, I take a break from hypermedia, and go down a level to
explain the advanced protocol semantics of HTTP. I don’t want to
explain the HTTP protocol in detail; for that, I recommend HTTP: The Definitive Guide, by David Gourley and Brian Totty (O’Reilly). I’ll
focus on features of HTTP that are especially useful in APIs, and
features that new API developers may not be aware of.
The New HTTP/1.1 Specification

Throughout this book I’ve used “RFC 2616” as a shorthand for the HTTP
1.1 specification. But Roy Fielding (of Fielding dissertation fame)
and an IETF working group are working on a series of replacement RFCs
that will render RFC 2616 obsolete.
Nothing about the HTTP protocol will change; the point is to improve
the documentation. The new RFCs clarify HTTP’s protocol semantics, and
consolidate some add-ons that were defined after RFC 2616 was
published, such as the definition of the https:// URI scheme.
Hopefully the new RFCs have been published by the time you read this.
But if they’re still works in progress, you can read the drafts by
going to the working group’s document list. It’s an easier way to
understand some arcane part of the HTTP protocol than poring over RFC
2616.

Response Codes

RFC 2616 defines 41 HTTP response codes. Some of them are
useless for our purposes, but collectively, they represent a basic set
of semantics, defined in the most fundamental of all API
standards. There’s no excuse for ignoring this gift. If you reinvent
404 (Not Found) or 409 (Conflict) for your API, you’re just
creating more work for everybody. Use your response codes.
If a client sends some bad data to your API, you should send the
response code 400 (Bad Request) and an entity-body explaining what
the problem is. Don’t send 200 (OK) with an error message. You’re
lying to the client. You’ll have to write extra documentation
explaining that in your API, OK sometimes doesn’t mean “OK.”
In Appendix A, I talk about all of the response codes defined in the
HTTP standard, and a few more useful codes defined in supplementary
RFCs.

Headers

RFC 2616 defines 47 HTTP request and response headers. As
with response codes, some are nearly useless, but collectively they
define a basic set of semantics that every API can benefit
from. Use them.
A few headers correspond to features of HTTP that are important to
APIs: notably, content negotiation and conditional requests. I’ve
given these features their own sections in this chapter. In Appendix B,
 I talk about all the headers defined by the HTTP standard. I also
cover a number of useful extensions: notably, the Link header, which
you’ve seen already.

Choosing Between Representations

A single resource may have many representations. Usually the
representations are in different data formats: many web APIs serve XML
and JSON “flavors” of all their resources. Sometimes the
representations contain prose that’s been translated into different
human languages. Sometimes the different representations represent
different bits of resource state: a resource may have an “overview
representation” and a “detail representation.”:
When a server offers multiple representations for one resource, how is
the client supposed to distinguish between them? How does a client
signal whether it wants English or Spanish, XML or JSON, overview or
detail? There are two main strategies.
Content Negotiation

The client can use special HTTP request headers to tell the server
which representations it wants. This process is called content
negotiation, and the HTTP standard defines five request headers for
it. They’re collectively called the Accept-* headers. I’ll cover all
five in Appendix B, but here I want to highlight the two most
important: Accept and Accept-Language.
Most web API clients only understand a single media type. When they make a
request, they send a simple Accept header, asking for that media
type:
Accept: application/vnd.collection+json
The client tells the server that it only understands
Collection+JSON. If the server has the option of serving Atom or
Collection+JSON, it should serve Collection+JSON.
When I make an HTTP request from my web browser, it sends a much more
complicated Accept header:
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
RFC 2616 gives the complex details of what can go into an Accept-*
header, but this real-life example serves as a good indicator of
what’s possible. The main job of a web browser is to display web
pages, so my browser gives top priority to HTML representations (the
text/html media type) and XHTML representations
(application/xhtml). My browser can also display raw XML
(application/xml), but since that doesn’t look as nice, XML is given
a lower priority than HTML (q=0.9). If neither HTML nor XML
representations are available (maybe because the resource is a binary
image), my browser will accept any media type at all (*/*). But
that’s a last-ditch option, and it’s given the lowest priority of all
(q=0.8).
My web browser also has a setting for language preferences: which
languages I’d prefer to get web pages in. With every HTTP
request I make, my browser transforms my language preferences into a
value for the Accept-Language header:
Accept-Language: en-us,en;q=0.5
This says I would prefer American English, but I’ll accept any dialect
of English as a second-best substitute. (I’m actually not this picky
about it, but that’s what I told my web browser.)
If the server can’t fulfill a request due to Accept-* restrictions,
it can send the response code 406 (Not Acceptable).
Negotiating a profile

In Chapter 8, I kind of dismissed the profile media type parameter,
because not many media types support it, but it has a big advantage in
content negotiation. When a media type supports the profile
parameter, you can use content negotiation to ask for a specific
profile. Here’s a client that wants an XHTML representation that uses
the hCard microformat:
Accept: application/xml+xhtml;profile="http://microformats.org/wiki/hcard"
This client wants the same data format (XHTML), but wants the data
presented as schema.org microdata:
Accept: application/xml+xhtml;profile="http://schema.org/Person"
You can’t do that if the profile is conveyed through the Link
header. And, of course, you can’t do it if the media type doesn’t
support the profile parameter.

Hypermedia Menus

That’s content negotiation. But consider how a client finds the
representation it wants in general. There’s no “resource
negotiation” process. Instead, the client makes a GET request to an
API’s billboard URL, and the server serves a home page
representation that includes hypermedia links to other resources. The
client chooses which link it wants to follow, and makes another GET
request for another representation. The client finds the resource it’s
looking for by making choices, one after another.
This strategy works just as well when the choices are choices between
data formats. HTTP’s content negotiation features merely optimize for
a few common cases. Instead of using them, you can give each
representation its own URL, effectively making it an independent
resource.
A server offers a choice between these resources by sending the
response code 300 (Multiple Choices). The entity-body should contain
a hypermedia document that links to the different choices. If you do
it this way, you’ll need to use a hypermedia format capable of
explaining what sort of thing is on the other end of a
link. Otherwise, your clients will have no way of deciding which link
to click.
HTML’s <a> and <link> tags have good support for this, with the
type attribute:

 The Siren version.

 The HTML version.

The hreflang attribute is a hint as to the language at the other end
of the link:

 Para la versión en español, haga clic aquí.

Since most hypermedia formats don’t have these features, I generally
recommend header-based content negotiation for this.

The Canonical URL

Whenever a resource has more than one URL, you should identify one of
them as the official or canonical URL: the one clients should use
when talking about the resource rather than sending HTTP requests to
it.
There are two ways of doing this. First, you can use the standard HTTP
header Content-Location as a hypermedia control that points to the
current resource’s canonical URL. There’s also the IANA-registered
link relation canonical, which serves the same purpose. You can use
canonical within a representation or in the Link header.

HTTP Performance

HTTP clients are allowed to make whatever HTTP requests they want,
whenever they want. But some requests turn out to be pointless wastes
of time. HTTP defines several optimizations for discouraging requests
that are likely to be pointless (caching), for reducing the cost of a
request that turns out to be pointless (conditional requests), and for
reducing the cost of a request in general (compression).
Caching

Caching is one of the most complex parts of HTTP. RFC 2616 contains
detailed rules for cache invalidation, and there are many issues
involving HTTP intermediaries like caching proxies. I’m going to focus
on the simplest way to add caching to web APIs, using the HTTP header
Cache-Control. In Appendix B, I’ll also discuss the Expires header,
which is useful in another common scenario. For anything more complex,
I’ll refer you to HTTP: The Definitive Guide, and to the
Internet-Draft “draft-ietf-httpbis-p6-cache,” which is part of the
current effort to replace RFC 2616.
Here’s the Cache-Control header in action, as part of a response to
an HTTP GET request:
HTTP/1.1 200 OK
Content-Type: text/html
Cache-Control: max-age=3600
...
The max-age directive says how long the client should wait before
making this HTTP request again. If a client gets this response and
half an hour later, it wants to send the request again, it should hold
off. The server said to check back in an hour (3,600 seconds), and not
before.
A caching directive applies to the entire HTTP response, including the
headers and the response code, not just to the entity-body. The idea is
that if the client really needs to look at an HTTP response, it should
look at the cached response instead of making the request again.
Another common use of Cache-Control is for the server to tell the
client not to cache a response, even if it would otherwise:
HTTP/1.1 200 OK
Content-Type: text/html
Cache-Control: no-cache
...
This indicates that the resource state is so volatile that the
representation probably become obsolete during the time it took to
send it.
Setting Cache-Control when you serve a representation requires that
you make a judgment call on how often a representation will
change. If you get this wrong, it can lead to your users having data
that’s out of date.
For representations that consist entirely of hypermedia controls,
representations that only change when you upgrade your API
implementation, it makes sense to set max-age pretty high. Or you
can use…

Conditional GET

Sometimes you just don’t know when a resource’s state will
change. (Collection-type resources are the worst for this.) It might
change all the time, or it might change so rarely that you can’t
estimate how often a change happens. Either way, you can’t decide on a
value for max-age, so you can’t tell the client to stop making
requests for that resource for a while. Instead, you can let the
client make its request whenever it wants, and eliminate the server’s
response if nothing has changed.
This client-side feature is called a conditional request, and to
support it, you’ll need to serve the Last-Modified or ETag header
with your representations (better yet, serve both). The
Last-Modified header tells the client when the state of this
resource last changed. Here it is in an example HTTP response:
HTTP/1.1 200 OK
Content-Length: 41123
Content-type: text/html
Last-Modified: Mon, 21 Jan 2013 09:35:19 GMT

<html>
...
The client makes a note of the Last-Modified value, and the next
time it makes a request, it puts that value in the HTTP header
If-Modified-Since:
GET /some-resource HTTP/1.1
If-Modified-Since: Mon, 21 Jan 2013 09:35:19 GMT
If the resource state has changed since the date given in
If-Modified-Since, then nothing special happens. The server sends
the status code 200, an updated Last-Modified, and a full
representation:
HTTP/1.1 200 OK
Content-Length: 44181
Content-type: text/html
Last-Modified: Mon, 27 Jan 2013 07:57:10 GMT

<html>
...
But if the representation hasn’t changed since the last request, the
server sends the status code 304 (Not Modified), and no
entity-body:
HTTP/1.1 304 Not Modified
Content-Length: 0
Last-Modified: Mon, 27 Jan 2013 07:57:10 GMT
This saves both parties time and bandwidth. The server doesn’t have to
send the representation and the client doesn’t have to receive it. If
the representation was one that gets dynamically generated from the
resource state, a conditional request also saves the server the effort
of generating the representation.
Of course, this means some extra work for you. You’ll need to track
the last-modified date of all your resources. And remember that the
value for Last-Modified is the date the representation changed. If
you have a collection resource whose representation includes bits of
other representations, that resource’s Last-Modified represents the
last time any of that stuff changed.
There’s another strategy that is easier to implement than
Last-Modified, and that avoids some race conditions. The ETag
header (it stands for “entity tag”) contains a nonsensical
string that must change whenever the corresponding representation
changes.
Here’s an example HTTP response that includes ETag:
HTTP/1.1 200 OK
Content-Length: 44181
Content-type: text/html
ETag: "7359b7-a37c-45b333d7"

<html>
...
When the client makes a second request for the same resource, it sets
the If-None-Match header to the ETag it got in the original
response:
GET /some-resource HTTP/1.1
If-None-Match: "7359b7-a37c-45b333d7"
If the ETag in If-None-Match is the same as the representation’s
current ETag, the server sends 304 (Not Modified) and an empty
entity-body. If the representation has changed, the server sends 200
(OK), a full entity-body, and an updated ETag.
Serving Last-Modified requires that you keep track of a lot of
timestamps, but you can generate ETags for representations without
tracking any extra data at all. A transformation like the MD5 hash can
turn any string of bytes into a short string that’s reliably
unique.
The problem is, by the time you can run one of those transformations,
you’ve already created the representation as a string of
bytes. You may end up saving bandwidth by not sending the
representation over the wire, but you’ve already done the work
necessary to build it. Using ETag to save time, as opposed to
bandwidth, requires that you cache a representation’s ETag and
invalidate the cache when the representation changes.
Either Last-Modified or ETag will give you support for conditional
requests, but serving both would be ideal, and ETag is more reliable
than Last-Modified.

Look-Before-You-Leap Requests

Conditional GET is designed to save the server from sending enormous
representations to a client that already has them. Another feature of
HTTP, less often used, can save the client from fruitlessly sending
enormous (or sensitive) representations to the server. There’s
no official name for this kind of request, so the original RESTful
Web Services introduced a silly name—look-before-you-leap
requests—which seems to have stuck.
To make a LBYL request, a client sends an unsafe request such as a
PUT, omitting the entity-body. The client sets the Expect request
header to the literal string 100-continue. Here’s a sample LBYL
request:
PUT /filestore/myfile.txt HTTP/1.1
Host: example.com
Content-length: 524288000
Expect: 100-continue
This is not a real PUT request: it’s a question about a possible
future PUT request. The client is asking the server: “would you
allow me to PUT a new representation to
/filestore/myfile.txt? The server makes its decision based on
the current state of that resource, and the HTTP headers provided by
the client. In this case, the server would examine Content-Length and
decide whether it’s willing to accept a 500 MB file.
If the answer is yes, the server sends a status code of 100
(Continue). Then the client is expected to resend the
PUT request, omitting the Expect and including the 500 MB
representation in the entity-body. The server has agreed to accept
that representation.
If the answer is no, the server sends a status code of 417
(Expectation Failed). The answer might be no because the
resource at /filestore/myfile.txt is write-protected, because the
client didn’t provide the proper authentication credentials, or
because 500 MB is just too big. Whatever the reason, the initial
look-before-you-leap request has saved the client from sending 500 MB
of data only to have that data rejected. Both client and server are
better off.
Of course, a client with a bad representation can lie about it in the
headers just to get a status code of 100, but it won’t do any
good. The server won’t accept a bad representation on the second
request, any more than it would have on the first request. The
client’s massive upload will probably be interrupted by response code
413 (Request Entity Too Large).

Compression

Textual representations like JSON and XML documents can be compressed
to a fraction of their original size. An HTTP client library can
request a compressed version of a representation and then
transparently decompress it for its user.
Here’s how it works. When a client sends a request, it includes
an Accept-Encoding header that says which compression algorithms the
client understands. The IANA keeps a registry of acceptable values at this IANA page
(it’s the list of “content-codings”), but the value you want to use
is gzip:
GET /resource.html HTTP/1.1
Host: www.example.com
Accept-Encoding: gzip
If the server understands one of the compression algorithms mentioned
in Accept-Encoding, it can use that algorithm to compress the
representation before serving it. The server sends the same
Content-Type it would send if the representation wasn’t
compressed. But it also sends the Content-Encoding header, so the
client knows the document has been compressed:
HTTP/1.1 200 OK
Content-Type: text/html
Content-Encoding: gzip

[Binary representation goes here.]
The client decompresses the data using the algorithm given in
Content-Encoding, and then treats it as the media type given as
Content-Type. In this case, the client would use the gzip algorithm
to decompress the binary data back into an HTML document. As far as
the client is concerned, it asked for HTML and it got HTML. This
technique can save a lot of bandwidth, with very little cost in
additional complexity.

Partial GET

HTTP partial GET allows a client to fetch only a subset of a
representation. It’s usually used to resume interrupted
downloads. Most web servers support partial GET for static content. If
your API serves big static files, it’s worth the effort to support
partial GET on them.
A resource that supports partial GET advertises this fact in response
to a normal GET, by setting the Accept-Ranges response header to the
literal string bytes. Here’s the response to a successful GET
request for a very large video file:
HTTP/1.1 200 OK
Content-Length: 1271174395
Accept-Ranges: bytes
Content-Type: video/mpeg

[Binary representation goes here.]
If the download is interrupted, a client that supports partial GET can
resume the download from the point of interruption, rather than
starting over. Here’s a request for just the last kilobyte of that
video file:
GET /large-video-file
Range: 1271173371-
The response would look like this:
206 Partial Content
content-Type: video/mpeg
Content-Range: 1271173371-1271174395
Content-Length: 1024

[Binary representation goes here.]
In theory, partial GET can be used to slice up a representation not
into chunks of bytes, but into logical parts. In this fantasy world,
the Accept-Range header would have a value other than bytes, and
the Range header would be used to retrieve, let’s say, items 2
through 5 of a collection.
This is a nice idea, but there are no standards in this area, and I’m
generally opposed to making up your own protocol semantics. If you
want to split up a collection so that it takes several HTTP requests
to get the whole thing, you should create several “page” resources and
link their representations together using IANA-registered link
relations like next and previous.

Pipelining

Pipelining reduces latency by allowing the client to send several HTTP
requests at once. The server sends back responses from the server
in the order it received the requests. Pipelining depends on, but is
different from, persistent connections, a feature of HTTP that lets a
client send several requests over a single TCP connection.
A client may pipeline any series of idempotent HTTP requests, so long
as the series as a whole is also idempotent. If the connection is
interrupted, you must be able to play back the entire series and get
the same result.
Here’s a simple example. I’m going to send two requests over a
pipeline. First I’ll retrieve a representation of a resource, and
then I’ll delete the resource:
GET /resource
DELETE /resource
GET and DELETE are idempotent, but their combination is not. If there’s
a network problem after I send these requests, and I don’t get the
first response out of the pipeline, I won’t be able to send the
requests again and get the same result. The resource won’t be there
anymore. Due to this complication, I only recommend pipelining for
strings of GET requests.
On top of that complication, pipelining frequently doesn’t help
performance. Pipelining only pays off if the client makes a long
series of HTTP requests to the same domain, and most websites include
elements from different domains.
Non-browser API clients tend to make long series of requests to a
single domain, but pipelining isn’t terribly useful for
hypermedia-based APIs, either, because a hypermedia API generally
requires that a client examine the response to one request before
making another. Maybe that’s why most programmable HTTP client
libraries don’t support pipelining, either.
Basically, this feature is kind of a bust. The HTTP 2.0 protocol (covered in the final section of
this chapter) should implement HTTP pipelining in a more useful way. As it
is, pipelining could be useful for a client like Chapter 5’s mapmaker,
or a client that runs on a high-latency mobile device. It’s not a
must-have like conditional GET, but when you’re thinking of
performance improvements, pipelining is worth considering. That’s the
highest recommendation I can give it, though.

Avoiding the Lost Update Problem

I introduced ETag and Last-Modified as a way of saving time and
bandwidth when making GET requests. But conditional requests are also
useful as a way of avoiding data loss when using unsafe HTTP methods
like PUT and PATCH.
Suppose Alice and Bob are using different API clients to edit a
grocery list. They start by making identical HTTP requests:
GET /groceries HTTP/1.1
Host: www.example.com
And retrieving identical representations:
HTTP/1.1 200 OK
Content-Type: text/plain
ETag: "7359b7-a37c-45b333d7"
Last-Modified: Mon, 27 Jan 2013 07:57:10 GMT

Pastrami
Sauerkraut
Bagels
Alice adds an item to the list and PUTs back the new representation:
PUT /groceries HTTP/1.1
Host: www.example.com
Content-Type: text/plain

Pastrami
Sauerkraut
Bagels
Eggs
She gets a response of 200 (OK).
Bob, unaware of what Alice is doing, adds an item to the list and PUTs
back his new representation:
PUT /groceries HTTP/1.1
Host: www.example.com
Content-Type: text/plain

Pastrami
Sauerkraut
Bagels
Milk
Bob also gets a response of 200 (OK). But Alice’s version of the
list—the version that included “Eggs”—has been lost. Bob never
even knew about that version.
This sort of tragedy can be avoided by making unsafe requests
conditional. With conditional GET, we wanted the request to go through
only if the representation had changed. Here, Bob wants his PUT
request to go through only if the representation has not
changed. The technique is the same, but the conditional is
reversed. Instead of If-Match, the client uses the opposite header,
If-None-Match. Instead of If-Modified-Since, the client uses
If-Unmodified-Since.
Suppose Bob had made his PUT request conditional:
PUT /groceries HTTP/1.1
Host: www.example.com
Content-Type: text/plain
If-Match: "7359b7-a37c-45b333d7"
If-Unmodified-Since: Mon, 27 Jan 2013 07:57:10 GMT

Pastrami
Sauerkraut
Bagels
Milk
Instead of 200 (OK), the server would have sent the status code 412
(Precondition Failed). Bob’s client would then know that someone
else had modified the grocery list. Instead of overwriting the current
representation, Bob’s client could send a GET request for the new
representation, and try to merge it with Bob’s version. Or it could
escalate the issue and ask Bob to deal with it himself. It depends on
the media type and the application.
In my opinion, your API implementations should require clients to
make conditional PUT and PATCH requests. If a client tries to make an
unconditional PUT or PATCH, you should send the status code 428
(Precondition Required).

Authentication

For simplicity’s sake, the examples I’ve presented throughout this
book don’t require any kind of authentication. You make an HTTP
request, and you get a response. There are plenty of real APIs like
this, but most APIs require authentication.
There are two steps to authentication. Step 1 is a one-time step in
which a user sets up her credentials with the service
provider. Usually this means a human being using her web browser to
create an account on the API server, or tying in some existing user
account on a website with the API server.
Step 2 is the automated presentation of the user credentials
along with each request to the API.
Why present the user credentials along with every HTTP request?
Because of the statelessness constraint, which allows the server to
completely forget about a client between requests. There are no
sessions in a RESTful server implementation.[49]
Some authentication techniques also include a “step zero” called
registration. Here, a developer uses her web browser to set up
credentials for a software client she is writing. If a thousand people
end up using that client, each will have to set up her own personal
user credentials (step 1), but they will all share a set of client
credentials. When an API adopts this technique, a client that wants to
make an HTTP request must present both its client credentials and a
set of user credentials.
The WWW-Authenticate and Authorization Headers

I’m about to cover three popular authentication techniques. First I’ll
talk about what all three have in common: HTTP’s authentication
headers.
Our story begins, as it did in Chapter 1, with our heroine Alice making a simple
request for a representation:
GET / HTTP/1.1
Host: api.example.com
But this time, the server refuses to serve the requested
representation. Instead, it serves an error:
401 Unauthorized HTTP/1.1
WWW-Authenticate: Basic realm="My API"
The 401 response code is a demand for authorization. The
WWW-Authenticate header explains what sort of authorization the
server will accept. In this case, the server wants the client to
use HTTP Basic authentication.
Alice needs to get some credentials… somehow. The details depend on
the authentication mechanism in use. Once she’s got her credentials
she can make the HTTP request again, sending her credentials in the
Authorization request header:
GET / HTTP/1.1
Host: api.example.com
Authorization: Basic YWxpY2U6cGFzc3dvcmQ=
This time, the server will hopefully give Alice the representation she asked for.

Basic Auth

HTTP Basic authentication is described in RFC 2617. It’s a simple
username/password scheme. The user of an API is supposed to set up a
username and password ahead of time—probably by registering an
account on an affiliated website, or by sending an email requesting an
API account. There’s no standard for how to request a username and
password for a given site.
However it happens, once Alice has her username and password, she can
make that original HTTP request again. This time she uses her username
and password to generate a value for the request header
Authorization, as seen in the previous section.
The server authenticates her, accepts the request and serves a
representation instead of a 401 error:
HTTP/1.1 200 OK
Content-Type: application/xhtml+xml
...
Basic Auth is simple, but it has two big problems. The first is that
it’s not secure. YWxpY2U6cGFzc3dvcmQ= looks like encrypted
gibberish, but it’s actually the string alice:password run through a
simple, reversible transform called Base64.[50] This means that
anyone spying on Alice’s Internet connection now knows her
password. They can impersonate Alice by sending HTTP requests that
include Authorization: Basic YWxpY2U6cGFzc3dvcmQ=.
This problem goes away if the API uses HTTPS instead of plain
HTTP. Someone spying on Alice’s Internet connection will see her open
a connection, but the request and response will be encrypted by the
SSL layer.
RFC 2617 defines a second authentication method called Digest, which
avoids this problem even when HTTPS is not in use. I’m not covering
Digest in this book because Digest and Basic share a second problem,
which is not a big deal on the World Wide Web, but is very
serious in the world of APIs: the people who use an API generally
can’t trust their clients.
To make the problem obvious, imagine a very popular API such as the
Twitter API. This API is so popular that Alice is using 10 different
clients for this one API. There are a few on her mobile phone, a few
on her desktop computer, and she’s given permission to several
different websites to use this API on her behalf. (This happens all
the time.)
Ten different clients. What happens when one of the clients goes rogue
and starts posting spam to Alice’s account? (This also happens
frequently.)
In the wake of the attack, Alice must change her password. She must do
this so that the rogue client no longer has valid credentials. But
she’s given all 10 clients the same password. Nine of the clients are
still trustworthy, but changing the password breaks all 10. After
changing her password, Alice must go through her nine good clients and
tell them the new password. If one of the nine goes rogue, she has to
change her password again and go through the eight good clients,
telling each one again about her new password.
This wouldn’t have been a problem if Alice had been able to give each
client a different set of credentials in the first place. That’s where
OAuth comes in.

OAuth 1.0

Under OAuth, Alice gives each client an individual set of
credentials. If she decides she doesn’t like one of the clients, she
revokes its credentials, and the other nine clients are unaffected. If
a client goes rogue and starts posting spam under the names of its
users, the service provider can step in and revoke the credentials for
every instance of that client—Alice’s and everyone else’s.
There are two versions of OAuth. OAuth 1.0 (defined in RFC 5849) works
well for allowing the developers of consumer-facing websites to
integrate with your API. It starts falling apart when you want to
allow the integration of desktop, mobile, or in-browser applications
with your API. OAuth 2.0 is very similar to 1.0, but it defines
ways to handle these scenarios.
I’m going to briefly describe the concepts behind OAuth using OAuth
1.0, and point you to Ryan Boyd’s Getting Started with OAuth 2.0 (O’Reilly) for a readable, detailed explanation of OAuth 2.0.
Here’s what a 401 response code looks like when the server wants a
client to provide a set of OAuth credentials:
HTTP/1.1 401 Unauthorized
WWW-Authorization: OAuth realm="My API"
Obtaining those credentials is an elaborate process. Let’s suppose
Alice is using a website, YouTypeItWePostIt.com. She sees a
hypermedia control that tells her she can integrate her account on
Example.net with her account on YouTypeItWePostIt.com. She can do
this without telling YouTypeItWePostIt.com her password on
Example.net (see Figure 11-2).
[image: YouTypeItWePostIt.com with prompt to login via Example.net]

Figure 11-2. YouTypeItWePostIt.com with prompt to login via Example.net

This seems like a good idea to Alice, so she clicks the button to
activate the hypermedia control. What happens next?
	
The YouTypeItWePostIt.com server secretly requests a set of temporary
 credentials from the API provider, api.example.net. This step
 does not require Alice’s involvement at all.

	
The YouTypeItWePostIt.com server sends an HTTP redirect to Alice’s
browser. Alice leaves the website she was using, and ends up on a
web page served by the API provider, Example.net.

If Alice is not already logged in on Example.net, she needs to
log in or create a user account. This means entering her
password—but note that she’s giving her Example.net password to
api.example.net, not to YouTypeItWePostIt.com.

	
After logging in, Alice sees a web page that is tied to the
 temporary credentials obtained in step 1. The human-readable text
 of the page explains to Alice what’s going on, and asks her if she
 wants to authorize a set of api.example.net token credentials for
 YouTypeItWePostIt.com (see Figure 11-3).

	
Alice makes her decision and her browser is redirected back to
 YouTypeItWePostIt.com, the site she was using originally.

	a) If Alice said “no” in step 4, the client is out of luck. It won’t
 be getting any api.example.net token credentials from Alice.
b) If Alice said “yes” in step 4, the client is allowed to
 exchange the temporary credentials obtained in step 1, for a set
 of real token credentials. These credentials can be used to
 cryptographically sign HTTP requests, generating Authorization
 headers like the one in this request:

GET / HTTP/1.1
Host: api.example.net
Authorization: OAuth realm="Example API",
 oauth_consumer_key="rQLd1PciL0sc3wZ",
 oauth_signature_method="HMAC-SHA1",
 oauth_timestamp="1363723000",
 oauth_nonce="JFI8Bq",
 oauth_signature="4HBjJvupgIYbeEy4kEOLS%Ydn6qyV%UY"
At that point, the client can use the API normally, as though it were
Alice.
[image: Example.net requesting Alice’s credentials on behalf of YouTypeItWePostIt]

Figure 11-3. Example.net requesting Alice’s credentials on behalf of YouTypeItWePostIt.com

Depending on the API, the token credentials may be permanent, or they
may automatically expire after a time. (Once they expire, the client
will need to send Alice through this process again if it wants to keep
using the API.) The token credentials might give the client access to
everything Alice can do with the API, or they might allow only a
subset of what Alice can do. (One common restriction is read-only
access to the API.) These are just a few of the things that are not
specified in the OAuth standard, and must be defined by the API
provider.
You can see that OAuth is a lot more complicated than HTTP Basic Auth,
but—I can’t stress this enough—it keeps Alice from having to give
her password to 10 different pieces of software she doesn’t
trust. The complexities of OAuth yield up several other useful
features:
	
If Alice doesn’t like what a client is doing on her behalf, she can
 revoke its token credentials.

	
If the API provider sees that a piece of client software has gone
 rogue, the provider can revoke its client credentials. (That’s the
 oauth_consumer_key.) This means the API stops serving all
 copies of that client.

	
Unlike HTTP Basic (but like HTTP Digest), OAuth 1.0 can be used over
 insecure HTTP without revealing Alice’s credentials. The token
 credentials are necessary to create the oauth_signature part of
 the Authorization header, but the credentials don’t actually
 appear anywhere in that header. The server (which also knows
 Alice’s credentials) can verify that a request was signed by
 Alice’s credentials, but someone spying on the request won’t be able
 to figure out what her credentials are.

	
The oauth_timestamp and oauth_nonce values in the
 Authorization header prevent “replay attacks,” in which an
 attacker spies on Alice’s requests, then makes the same requests to
 impersonate her. (HTTP Digest auth also has this feature.)

Where OAuth 1.0 Falls Short

OAuth 1.0 works great when all the action happens inside Alice’s web
browser. What if Alice is using a desktop application?
In that case, Alice needs to switch to her web browser
temporarily. In step 2, instead of redirecting Alice to the page on
api.example.net, the desktop application opens a new browser window
set to that page. Once Alice makes her decision in step 4, there’s
nowhere for api.example.net to redirect her back to. In the
background, the desktop application needs to be continually asking
api.example.net whether Alice has authorized (or denied) the
temporary credentials.
That’s OAuth 1.0’s answer for integrating an API into a desktop
application without requiring a username/password entry. It’s a little
disruptive to have a web browser window suddenly pop up when you’re
using a desktop application, but it’s doable. Unfortunately, there are
several other scenarios where the five-step process I described previously
is inefficient or doesn’t work at all:
	
What if Alice is using an app on a mobile phone, or playing a game
 on a game console? It’s a lot more disruptive to suddenly pop up a
 browser window on these devices. It may not even be possible. Some
 devices don’t have web browsers.

	
What if Alice is the author of her own software client for
 api.example.net? Does it really make sense to make her get
 temporary credentials and ask her if she wants to authorize her own
 client?

	
What if Alice is using a desktop application that happens to run
 inside her web browser? Are the temporary credentials really
 necessary? In step 5, can’t api.example.net just serve a page that
 contains the real access token, and let the in-browser application
 read it using JavaScript code?

OAuth 2.0 was designed to accommodate these use cases.

OAuth 2.0

OAuth 2.0 is defined in RFC 6749. It specifies four different
processes for getting an OAuth access token (again, I won’t go into a
lot of detail; see Getting Started with OAuth 2.0 to learn more):
	
By providing an “authorization
 code” (section 1.3.1 of RFC 6749). This is the system I described
 for OAuth 1.0. The “resource owner” (Alice) authenticates with an
 “authorization server” (logs in to Example.net), which redirects
 her to the “client” (api.example.net), which gives out the access
 token.

	
Through an “implicit grant” (section 1.3.2 of RFC 6749). This is a
 good choice for an application that runs inside Alice’s web
 browser. After Alice logs in to Example.net, she’s redirected to
 api.example.net, which redirects her to a URL containing the
 access token. There’s no need to get temporary credentials; the
 in-browser application can just read the access token out of the
 browser’s address bar.

	
Through “resource owner password credentials” (section 1.3.3 of RFC
6749). That is, Alice provides her Example.net username and
password to the client, which exchanges them for an OAuth access
token.

This is exactly what OAuth is trying to avoid: Alice giving up her
password to an untrusted client. But on a mobile device or a game
console, there’s no good alternative.
At this point, a malicious client can steal Alice’s password. But a
legitimate client will forget Alice’s password as soon as it gets
an OAuth access token. This means that a legitimate client won’t
break if Alice changes her password for other reasons.

	
Through “client credentials” (section 1.3.4 of RFC 6749). This
 saves a lot of aggravation when Alice is the author of her own
 client. When Alice registers her client with api.example.net,
 she’s automatically given a set of credentials that will give her
 client free access to her own example.net account.

As an API provider, you don’t have to implement all four of these
application flows. If you’re writing an API to serve as a backend for
a mobile application, you can just implement the “resource owner
password credentials” flow. But if you want third parties to integrate
clients with your API, you’ll need to implement the application
flows your clients want to use.

When to Give Up on OAuth

Given the complexity of the OAuth standards and their various
application flows, it’s tempting to just give up and protect your API
using HTTP Basic or HTTP Digest authentication. I recommend sticking
it out and learning how OAuth works. If you need to, study and copy
the implementation of a big-name OAuth provider like Facebook.
OAuth’s fundamental advantage—the separation of Alice’s Example.net
username and password from her api.example.net credentials—is a
really important feature. In my opinion, there are only two scenarios
where you can do without it:
	
Your API is a frivolous piece of entertainment. If a malicious
 client steals Alice’s credentials, it can’t cause any real damage.

	
Every user of your API will be writing her own client. Then there
 is no security benefit in separating Alice the client developer
 from Alice the end user. This means that when Alice changes her
 password on the website, she’ll also need to change her password in
 all her API clients. This shouldn’t be a big problem.

If you understand the security issues, but you just don’t think your
API will ever become popular enough for malicious clients to be a
problem, you should go with OAuth anyway. Once you start using HTTP
Basic, it’s very difficult to switch all your clients to
OAuth. Don’t lock yourself out of success.[51]

Extensions to HTTP

Pretty much by definition, web APIs are based on the HTTP
protocol. But the underlying concepts of REST don’t require HTTP, any
more than the hypermedia constraint requires that you serve HTML
representations.
There are two extensions to HTTP that define new methods specifically
for use in APIs, and three major protocols that take HTTP as their
starting point. One of those protocols, CoAP, is so unusual that I’m
dedicating an entire chapter (Chapter 13) to it. WebDAV and HTTP 2.0
are closely based on HTTP, so I’m covering them here, along with a few
extension HTTP methods.
The PATCH Method

	
Defined in: RFC 5789 and others

	
Protocol semantics: neither safe nor idempotent

I covered this method in Chapter 3 as part of my suggested toolkit
for API developers. The PATCH method solves a performance problem with
HTTP PUT. PUT replaces a resource’s entire representation with a new
one, which means the client must resend the entire representation even
if it’s only making a small change. The PATCH method lets the client
send only the change it wants to make.
The downside of the PATCH method is that client and server must agree
on a new media type for patch documents. Fortunately, you don’t have
to come up with this format yourself. RFC 6902 defines a standard
patch format for JSON, and registers the media type
application/json-patch for documents in that format. RFC 5261
defines a patch format for XML documents, and the Internet-Draft
“draft-wilde-xml-patch” registers the media type
application/xml-patch+xml for documents in that format.

The LINK and UNLINK Methods

	
Defined in: Internet-Draft “snell-link-method”

	
Protocol semantics: idempotent but not safe

The LINK method creates a connection between two
resources. Presumably, when resource A is linked to resource B, a
hypermedia link to B will start showing up in the representations of
A.
But how is the link created? How can one HTTP request refer to two
different resources? By including hypermedia, of course. The LINK or
UNLINK request is sent to the URL of resource A, and resource B is
mentioned in the Link header. The link relation associated with the
Link header describes the desired relationship between A and B.
Here’s a request that adds an existing item to a collection (that’s a
common use case for the collection pattern, but it’s not defined in
AtomPub or Collection+JSON):
LINK /collections/a6o HTTP/1.1
Host: www.example.com
Link: <http://www.example.com/items/4180>;rel="item"
Here’s a request that removes the second resource from a chain of resources:
UNLINK /story/part1 HTTP/1.1
Host: www.example.com
Link: <http://www.example.com/story/part2>;rel="next"
After this request goes through, the resources at /story/part1 and
/story/part2 still exist. It’s just that there’s no longer a link
between them whose link relation is “next.” Perhaps /story/part1 now
has a link to /story/part3 with rel="next".
These methods aren’t technically necessary. You can duplicate their
functionality with PUT. But they simplify things. They split out a
common operation—manipulation of the hypermedia links between
resources—and give it its own protocol semantics.
In Chapter 3, I mentioned that between 1997 and 1999, these methods
were a standard part of HTTP. RFC 2616 removed them because it wasn’t
clear why or how they should be used. With the rise of web APIs, and
the introduction of the Link header, it’s a lot clearer.
The only thing stopping me from recommending the use of LINK and
UNLINK is the fact that the Internet-Draft describing them is not
approved as an RFC yet.

WebDAV

	
Defined in: RFC 4918 and others

	
Protocol semantics: Filesystem operations

The goal of WebDAV is to make it easy to publish HTTP resources for
files and directories on a remote filesystem. WebDAV defines so many
new HTTP methods and other extensions that it can almost be considered
a different protocol.
The highest profile uses of WebDAV are Microsoft’s Sharepoint and the
Subversion version control system. We don’t really think of those as
APIs, and most APIs that act like remote filesystems (Amazon’s S3,
the Dropbox API, and so on) don’t use WebDAV. They’re fiat standards
that use standard HTTP methods like PUT, and serve metadata using ad
hoc XML or JSON representations. In other words, they look like today’s other APIs.
Like AtomPub, WebDAV is an open standard that’s widely ignored
because it doesn’t fit with modern ideas about what an API ought to
look like. But it’s still useful to understand WebDAV, since it was an
early pioneer in the API field. Here are some of WebDAV’s more interesting features.
	
WebDAV implements the collection pattern (Chapter 6) by defining
“collection” resources that act like the directories on a local
filesystem. These resources respond to GET and DELETE. WebDAV also
defines a brand new HTTP method, MKCOL, which creates a new
collection.

A client uploads a file by sending a PUT request to whatever URL it
chooses for the new resource. RFC 5995 is an extension that allows the
client to upload new files using POST-to-append instead. In that case,
the server chooses the URL of the newborn resource, not the client.

	
A file on your local filesystem contains data, but it also has
associated metadata: a filename, the date the file was created, and
so on. WebDAV resources represent this metadata as “properties” like
displayname and creationdate.

WebDAV defines the HTTP method PROPPATCH for modifying a resource’s
properties, and the PROPFIND method for searching a collection to
turn up resources with certain properties.

	
WebDAV allows a client to explicitly lock a resource (using the new
HTTP methods LOCK and UNLOCK) so that other clients can’t access it.
This can be used with the techniques I described earlier in this
chapter to avoid the lost update problem.

	
WebDAV defines the new HTTP methods MOVE and COPY. They work like
the equivalent filesystem operations. MOVE changes the URL of a
resource, and COPY puts up a copy of the resource’s current representation
at some other URL.

WebDAV also defines a new hypermedia control for these methods: the
Destination request header. This header contains the new URL of
the resource, or the URL to use for the copy. Compare the Link
request header, as used with the LINK and UNLINK methods.

	
WebDAV defines five new HTTP status codes, including some that may
look tempting even if you’re not using WebDAV, like 423 (Locked)
and 507 (Insufficient Storage). But I don’t recommend using WebDAV
features outside of WebDAV. Fall back to a standard status code
instead. You can use 409 (Conflict) instead of 423 (Locked), and
provide the extra context in a problem detail document.

HTTP 2.0

	
Defined in: Internet-Draft “draft-ietf-httpbis-http2”

	
Protocol semantics: Identical to HTTP 1.1

HTTP 2.0 is the successor to the current version of HTTP defined in RFC
2616 and its replacement RFCs. HTTP 2.0 is based on SPDY, a corporate
standard defined by Google that adds a performance layer on top of
HTTP. Most web browsers now support SPDY, and many large sites serve
data using SPDY if the client supports it.
The goal of HTTP 2.0 is to improve HTTP’s performance while preserving
its protocol semantics. Despite its imposing name, HTTP 2.0 won’t
bring in new features that shake the foundations of API
design. Whether you’re developing an API, an API client, or a website,
you should be able to pretend you’re using HTTP 1.1, and let a
compatibility layer automatically convert between HTTP 1.1 and 2.0.
As I write this, it’s too early in the development process to say
exactly how HTTP 2.0 will work. It may end up looking nothing like
SPDY. But it needs to solve the problems SPDY solves, which means it
will probably have these two features:
	
HTTP 2.0 will save bandwidth by compressing HTTP headers, something
that’s not legal under HTTP 1.0.

	
An HTTP 2.0 client will be able to send multiple simultaneous
requests (“streams”) to a server over a single TCP connection. This is
similar to the pipelining feature of HTTP 1.1, but as I mentioned
earlier, pipelining doesn’t help performance very much. HTTP 2.0 needs
to include a pipelining-like feature that actually works.

These technical improvements will have a big, positive effect on
API design. They’ll eliminate the need for a common set of API design
patterns that improve performance by bundling requests
together.[52] These
patterns allow a client to fetch (or update) representations of
many resources using a single HTTP request. There’s no
standard way to package these “virtual requests” together, but doing
so saves a lot of time, because every HTTP 1.1 request has a large
setup cost.
HTTP 2.0 will eliminate that setup cost. Making 20 HTTP requests,
and getting 20 responses, will be almost as fast as making one big
request and getting one big response. There will no longer be any need
for an API to have special batch features.

[49] If you ignore
this advice and implement sessions in your API, the session ID becomes
a kind of temporary credential, presented with every request. All
you’ve done is add another layer of complexity on top of the existing
credential system.

[50] Base64 is
defined in section 6.8 of RFC 2045. Most programming languages have a
Base64 implementation in their standard libraries.

[51] When the Twitter
API switched from Basic Auth to OAuth in 2010, developers dubbed the
event the “OAuthpocalypse.”

[52] For a good explanation of these patterns, see
Chapter 11 of RESTful Web Services Cookbook (O’Reilly).

Chapter 12. Resource Description and Linked Data

The data formats I’ve covered in this book are used primarily to allow
resources to talk about themselves. That is, a client sends a GET
request to the URL of a resource and receives a representation of
that very resource. I’m calling this the representation strategy.
But a representation of resource A may also have something to say
about resource B. This simple Collection+JSON document is a
representation of one resource (a collection) but it has something to
say about two other resources (the items in the collection):
{ "collection":
 {
 "version" : "1.0",
 "href" : "http://www.youtypeitwepostit.com/api/",

 "items" : [

 { "href" : "/api/messages/21818525390699506",
 "data": [
 { "name": "text", "value": "Test." }
]
 },

 { "href" : "/api/messages/3689331521745771",
 "data": [
 { "name": "text", "value": "Hello." }
]
 }
]
 }
}
I’m calling this the description strategy. With the description
strategy, a representation spends most of its time talking about
resources other than the resource it’s a representation of.
All hypermedia formats mix the representation and description
strategies to some extent, but there’s a family of formats that
focuses heavily on the description strategy: formats inspired by the
Resource Description Framework (RDF) data model and associated with
the Semantic Web movement.
I didn’t cover these formats in Chapter 10 because, from a REST point
of view, they’re weird. A pure description strategy violates the
Fielding constraints. RDF documents frequently describe resources
that, from a REST perspective, “don’t exist.” To understand what these
documents are talking about, you must adopt a different way of
thinking.
Fortunately, a second-wave Semantic Web movement called Linked Data
aims to refocus RDF on the representation strategy. This is great
news, because there are several useful data formats derived from RDF,
and a very powerful language for creating machine-readable profiles:
RDF Schema.
But before I get to Linked Data, you need to understand
RDF. Everything in this chapter is based on, inspired by, or designed in
reaction to the RDF data model. You need to understand what RDF
documents look like, what they mean, and why the Linked Data movement
was necessary in the first place.
RDF

	
Media types: application/rdf+xml, text/turtle, etc.

	
Defined in: W3C open standards, defined here and notably here

	
Medium: plain text, XML, HTML, etc.

	
Protocol semantics: navigation with GET

	
Application semantics: none

Here’s an RDF description of a cell in a Maze+XML maze:
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:maze="http://alps.io/example/maze#">
<rdf:Description about="http://example.com/cells/M">
 <maze:title>The Entrance Hallway</maze:title>
 <maze:east resource="http://example.com/cells/N">
 <maze:west resource="http://example.com/cells/L">
</rdf:Description>
</rdf:RDF>
There are many ways of writing down RDF, including an HTML version
called RDFa, and a plain-text version called Turtle. You just saw the
XML version, called RDF+XML. Here’s a Turtle description of the maze
cell that means exactly the same thing:
<http://example.com/cells/M> <http://alps.io/example/maze#title> ↵
"The Entrance Hallway" .
<http://example.com/cells/M> <http://alps.io/example/maze#east> ↵
<http://example.com/cells/N> .
<http://example.com/cells/M>↵ <http://alps.io/example/maze#west> ↵
<http://example.com/cells/L> .
Set up a few Turtle shortcuts, and you can represent the same
information in a more compact way:
@prefix maze: <http://alps.io/example/maze#> .
<http://example.com/cells/M> maze:title "The Entrance Hallway" ;
 maze:east <http://example.com/cells/N> ;
 maze:west <http://example.com/cells/L> .
All three of these documents are describing the same resource: the one
with the URI http://example.com/cells/M. In RDF+XML, the URI being
described goes into the about attribute of a <Description> tag. In
Turtle, that URI goes at the beginning of a line, in angle
brackets. (Sort of like the way the HTTP Link header puts its
destination URL in angle brackets.)
Each of these documents makes the same assertions about the resource
it’s describing. Each says that the resource has a property called
http://alps.io/example/maze#title, with the value of this property
being the literal string The Entrance Hallway.
Each document also says that the resource has two properties called
http://alps.io/example/maze#east and
http://alps.io/example/maze#west. These properties act sort of like
extension link relations. Their values are URIs (such as
http://example.com/cells/L). They explain the relationship between the
resource on the right side of the property and the resource on the
left side:
<http://example.com/cells/M> <http://alps.io/example/maze#west> ↵
<http://example.com/cells/L> .
To translate into human terms, that line of Turtle says “cell L is
west of cell M.”
RDF gives you a framework for talking about a resource’s application
semantics. You can talk about the link relations that connect one
resource to others, and the semantic descriptors that bind it to its
own resource state. But unlike other formats, RDF properties can’t be
short strings like “title” and “east.” They can only be URIs, like
http://alps.io/example/maze#title and
http://alps.io/example/maze#east. You can use Turtle prefixes and
XML namespaces to shorten the URIs to maze:title and maze:east,
but behind the scenes, they’re still URIs.
RDF Treats URLs as URIs

So, an RDF document describes a maze cell using a number of properties
such as http://alps.io/example/maze#title. What do these properties
mean?
In the world of REST, this question has an obvious answer. An http:
URL identifies a resource on the Web, and if you send a GET request to
that URL, you’ll get a representation that captures the state of the
resource.
If you send a GET request to http://alps.io/example/maze, you’ll get
an ALPS document. Look up “east” and “title” in that document, and
you’ll get human-readable explanations. This isn’t enough to bridge
the semantic gap on its own, but if your automated client gets stuck
because it doesn’t understand something, you, the developer, know
where to go to fix the problem.
But RDF doesn’t treat URLs as URLs. It treats them as URIs, a term I
haven’t mentioned much since Chapter 4. A URI identifies a resource,
just like a URL, but there’s no guarantee that you can use a computer
to get a representation of the resource. This is why I’ve been
downplaying the importance of URIs throughout this book. As I said in
Chapter 4, identifying your resources with URIs makes it impossible to
fulfill many of the Fielding constraints.
But I used http: URIs in my RDF document. Those are URLs. So I’m
safe, right? Actually, no, I’m not safe. As far as RDF is concerned,
even http: URLs are nothing but URIs. The URI
http://example.com/cells/N may look tempting, but from an RDF
perspective there’s no guarantee that making a GET request to that URI
will give you a representation. An RDF client can try it and see what
happens, but is not allowed to assume that anything will happen.
If you sent an HTTP GET request to http://example.com/cells/M and got
one of these RDF documents in return, we’d say you had a
“representation” of the resource at http://example.com/cells/M. But in
real life, if you send that GET request, you’ll get a 404
error. http://example.com/cells/M is a fantasy, an example URI I
made up for purposes of this book. So we can’t say that these RDF
documents are “representations” of that resource. They’re
descriptions of a resource that, from a REST perspective, doesn’t
exist.
As far as RDF is concerned, this is completely legitimate. It’s OK
to write a description of a resource that has no representation. RDF
documents frequently mention http: URIs that don’t point to anything
in particular.
With other data formats, if you see a link, you know that the document
is trying to tell you about an HTTP request you could make. To quote Fielding’s definition of hypermedia, the link
is “application control information” explaining what your HTTP client
can do next.
But as far as the RDF standard is concerned, there’s no “application”
to be “controlled.” Links do nothing but name the abstract connections
between equally abstract resources. You’re supposed to reason about
those connections, not follow them to see what’s on the other
side.

When to Use the Description Strategy

From a REST perspective, this seems pretty crazy, but there are a few
good reasons to use the resource description strategy.
First, resource description lets you talk about a resource when you
don’t control the representation. This might be because the resource
is controlled by another server (like the OpenID resource that
identifies one of your users), or because the representation format is
fixed in stone. You can use the description strategy to have your say
about someone else’s resource.
Second, many existing APIs serve representations that contain no
hypermedia controls. Adding hypermedia to those documents might break
existing clients or violate a standard. But with a resource
description format, you can add an “exoskeleton” of phrase:[<phrase role="keep-together">hypermedia</phrase>]
annotations on top of a hypermedia-ignorant document. JSON-LD, which I
covered in Chapter 8 and will return to in an upcoming section, was designed for just
this purpose.
Finally, you can use the description strategy to talk about a resource
that has no representation because it’s not on the Web. I mentioned
in Chapter 4 that the print edition of this book is a resource with a
well-known URI, urn:isbn:9781449358063. You can’t GET a
representation of that resource, but you can GET an RDF document
describing it.
Let’s say you send a GET request to
http://www.example.com/book-lookup/9781449358063 and receive the
following response:
HTTP/1.1 200 OK
Content-Type: text/turtle

@prefix schema: <http://schema.org/> .
<urn:isbn:9781449358063> a schema:Book ;
 schema:name "RESTful Web APIs" ;
 schema:inLanguage "en" ;
 schema:isbn "9781449358063" ;
 schema:author _:mike ;
 schema:author _:leonard .

_:mike a schema:Person ;
 schema:name "Mike Amundsen" .

_:leonard a schema:Person ;
 schema:name "Leonard Richardson" .
The entity-body describes a resource: “the print edition of RESTful
Web APIs,” identified by the URI urn:isbn:9781449358063. This URI
has a big problem: you can’t use it to get a representation of the
resource. That’s why, when we design web APIs, we don’t use URIs. We
make up http: or https: URLs based on domain names we control. We
declare that those URLs correspond to things in the real world, and we
serve representations that capture the state of those real-world
things.
That’s not what I’ve done here. I’ve created a second resource, “the
output of a book lookup function,” identified by the URL
http://www.example.com/book-lookup/9781449358063. This resource
describes the resource state of the real-world thing identified by
urn:isbn:9781449358063, rather than trying to represent that
resource directly. Its representation makes a number of assertions
about a real-world thing. It says the real-world thing is a book (a
schema:Book). The book’s title is “RESTful Web APIs,” it’s written in
English, and it has two authors, who are people (_mike a
schema:Person), each with a name. (schema:name)..
There’s a really good idea here. If 10 different organizations define
10 web APIs that deal with books, we’ll end up with 10 different
URLs for any given ISBN. It will take extra work to establish that the
representation of http://example.com/books/9781449358063 and the
representation of http://api.example.org/work?isbn=9781449358063 are
talking about the same book. But if all those URLs serve RDF documents
that describe urn:isbn:9781449358063, it will be obvious that all
the representations are talking about the same underlying thing.
As I say, this is a great idea… for print books. It doesn’t work as
well for resources that lack a unique identifier. Take human
beings. You can use RDF and the schema.org vocabulary to make all
kinds of assertions about a human being:
HTTP/1.1 200 OK
Content-Type: text/turtle

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix schema: <http://schema.org/> .
_:jennifer a schema:Person ;
 schema:name "Jennifer Gallegos" ;
 schema:birthdate "1987-08-25" .
This RDF/Turtle document describes a resource. It says that the resource
is a person with a certain name and birthdate. But there’s no
agreed-upon URI scheme for people,[53] so the resource in question has no URI. It
just has an internal identifier, “jennifer.”
This document is a set of assertions about an anonymous
resource. There’s no agreed-upon way to identify which human being
we’re talking about. If 10 APIs serve RDF descriptions of the same
person, there’s no obvious way to discover they’re all talking about
the same person.
At this point, you might as well make up an http: URL for your
person resource. Then you can serve a representation of the resource
when someone makes a GET request to its URL. And once you decide to
use the representation strategy instead of the description strategy,
you probably want to use a data format with better hypermedia controls
than RDF/XML or RDF/Turtle.

Resource Types

One of the Semantic Web’s most useful ideas is that a resource can be
classified under one or more resource types (also called abstract
semantic types or just semantic types). These aren’t like data
types in a programming language. They’re classifications, like genres
of books or species of animals.
RDF’s type property assigns a type to a resource. Like everything
else in RDF, resource types are identified by URIs. Here’s a
description of a resource (http://example.com/~omjennyg) that
is classified as the resource type http://schema.org/Person:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
<http://example.com/~omjennyg> <rdf:type> <http://schema.org/Person> ;
 <http://schema.org/birthDate> "1987-08-25" .
Turtle defines a as a shortcut for RDF’s type property so you don’t have to bring the RDF
vocabulary into every single Turtle document just to talk about
resource types:
<http://example.com/~omjennyg> a <http://schema.org/Person> ;
 <http://schema.org/birthDate> "1987-08-25" .
Occasionally the concept of “resource type” bleeds out of the Semantic
Web world and into the wider world of web APIs. In the XLink format
(Chapter 10), a link may have a role attribute, which gives the type
of the resource on the other end of the link:
<a xlink:href="http://example.com/~omjennyg"
 xlink:arcrole="http://alps.io/iana/relations#author"
 xlink:role="http://schema.org/Person">
In CoRE Link Format, which I’ll cover in the next chapter, a link’s
rt attribute conveys the type of the resource on the other end (the
“rt” stands for “resource type”):
<http://example.com/~omjennyg>;rel="author";rt="http://schema.org/Person"
A link relation and a resource type are two different things. A
resource type (http://schema.org/Person) is a statement about the
resource on the other end of a link. A link relation (author or
http://alps.io/iana/relations#author) is a statement about the link
itself—about the relationship between the two resources.
Speaking of link relations, there’s an IANA-registered link relation
called type that lets a representation make claims about its own
resource type:
HTTP/1.1 200 OK
Content-Type: text/plain
Link: <http://schema.org/birthDate>;rel="type"

1987-08-25
The role and rt attributes are very useful. They let a client look
ahead to see what sort of resource is on the other end of a link. If
the client likes what it sees, it can go ahead and follow the link.
But how is the client supposed to know whether it likes what it sees?
The concept of “resource type” comes from RDF, and in RDF,
http://schema.org/Person, isn’t a URL. It’s a URI, a meaningless
identifier. The client is not invited to make a GET request to that
URI. If you want to know what http://schema.org/Person and
http://schema.org/birthDate mean, you need to find an RDF document
somewhere that describes those resources.
Without the hypermedia constraint, there are no rules for finding the
description document. You’re just supposed to poke around until you
find it. But that document is really important! It’s the only way to
bridge the semantic gap. Without it, http://schema.org/birthDate is
just a short, meaningless string.

RDF Schema

Disregard, for the moment, the question of finding that magical
document. What would the document look like once you found it? The
document would explain those short meaningless strings. It would say
that the URIs http://schema.org/Person and
http://schema.org/birthDate correspond roughly to our everyday
notions of “person” and “date of birth.” It would act as a profile, no
different in principle from an ALPS or XMDP profile.
An RDF profile is sometimes called a vocabulary or an
ontology. It’s written using a kind of metavocabulary called RDF
Schema. RDF Schema lets you use RDF to make statements about resource
types, not just individual resources.
Here’s an RDF Schema document that explains what a
http://schema.org/Person is:[54]
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
<http://schema.org/Person> a rdfs:Class ;
 rdfs:label "Person" ;
 rdfs:comment "A person (alive, dead, undead, or fictional)." ;
 rdfs:subClassOf <http://schema.org/Thing> .
The third line says that the resource type of
http://schema.org/Person is rdfs:Class. That means
http://schema.org/Person doesn’t stand in for one specific
real-world thing (an individual person). It stands in for a concept
(the concept of “person”).
The rdfs:label and rdfs:comment properties point to some
human-readable information about this mysterious concept. A human
being who reads this document learns that the resource
http://schema.org/Person corresponds to our everyday notion of a
“person.” So if the type of some other resource is
http://schema.org/Person, it means that resource corresponds to an
individual person.
But there’s also a machine-readable element to this RDF Schema
profile: the rdfs:subClassOf property. This says that every resource
that’s a http://schema.org/Person is also a
http://schema.org/Thing. Are you curious what a
http://schema.org/Thing is? You can satisfy your curiosity by
taking a look at the RDF description of that URI, conveniently
located in the same file as the description of
http://schema.org/Person:
...
<http://schema.org/Thing> a rdfs:Class
 rdfs:label "Thing"
 rdfs:comment "The most generic type of item."
It turns out a http://schema.org/Thing is… nothing in
particular. Kind of an anticlimax. But at least now you know that
http://schema.org/Thing does not refer to the 1982 John Carpenter
film The Thing, its 2011 remake, or the Marvel superhero named The
Thing.
What about http://schema.org/birthDate? What does that mean? Well,
here’s an RDF description of that resource, adapted from the same
vocabulary document as the two other descriptions I just showed you:
<http://schema.org/birthDate> a <rdf:Property> ;
 rdfs:label "birthDate" ;
 rdfs:comment "Date of birth." ;
 rdfs:domain <http://schema.org/Person> ;
 rdfs:range <http://schema.org/Date> .
The human-readable parts of this description merely confirm what you
already suspected: that http://schema.org/birthDate is a resource
corresponding to the real-world concept of “date of birth.” The real
interest here is in the machine-readable parts of the description—the
domain and the range:
 rdfs:domain <http://schema.org/Person> ;
 rdfs:range <http://schema.org/Date> .
These two lines of RDF/Turtle say that a birthDate is a relationship
between a Person and a Date. Think of birthDate as a
function. You put in a person, and you get out a date—the person’s
date of birth. The domain is the input and the range is the output.
These two machine-readable assertions are tiny ropes thrown across the
semantic gap. Nearly everything in schema.org’s RDF vocabulary is
blindingly obvious to a human being. But to program a computer to
understand just the parts of that vocabulary I’ve shown you, you have
to teach the computer four different concepts: Person, Thing,
birthDate, and Date. The schema.org vocabulary contains almost a
thousand concepts, with more being added all the time. Nobody’s going
to program a computer to understand all of them.
That’s why the machine-readable parts of an RDF Schema
vocabulary—properties like subclassOf, domain, and range—are
important. They give a computer a low-level understanding of the
application semantics, without the need for human tutoring. An RDF
client that doesn’t know what a birthDate is can muddle through with
the knowledge (derived from domain and range properties) that it’s
some kind of Date associated with a Person.
ALPS and XMDP profiles rely heavily on human-readable descriptions of
application semantics. This means they rely on human labor to turn
those descriptions into working client code. RDF Schema profiles put
more of an API’s application semantics into machine-readable form. An
extension to RDF Schema called OWL (which I won’t be covering) lets
you take this idea even further. The dream is that instead of teaching
your computer a million specific concepts, you can teach it a few
hundred basic concepts, and let it figure out the rest on its own.
The cost is that the explanations become very complex. You could use
RDF Schema and OWL to describe “date of birth” in terms of very basic
concepts. It would come out something like “the date of the event in
which a person changed state from nonexistence to
existence.”[55] For most
applications, it’s easier for the client authors to just write some
code that handles birthdates the way they want.

The Linked Data Movement

RDF is great for expressing application semantics in machine-readable
terms. But you can’t build a RESTful API on top of RDF alone, because
RDF uses URIs instead of URLs. There’s no guarantee a client can get a
representation of any of the resources it sees described. This renders
most of the Fielding constraints irrelevant.
Of course, as an API designer, you could just ignore that rule. You
could declare that all your URIs are URLs, and that all your
resources have representations. Your resources could serve RDF
documents that focus on describing themselves, rather than
describing other resources that might or might not have
representations. At that point, you’d get the Fielding constraints
back. All the URIs in your RDF representations would become hypermedia
links, and your clients could feel good about following them.
This school of thought is called Linked Data. The term comes from a
2006 essay by Tim Berners-Lee, in which he
identifies four principles for putting machine-readable data on the
Web. From a REST perspective, these principles relax RDF’s URI
constraint—they say it’s OK to treat a URI as a URL—to take
advantage of the Fielding constraints. They move the Semantic Web
philosophy closer to the REST philosophy. Here are Berners-Lee’s four
principles of Linked Data:
	
Use URIs as names for things.

In REST terms, this says that a URI identifies a resource. In Chapter 1,
I called this the principle of addressability.
	
Use HTTP URIs so that people can look up those names.

This has two parts. First, you shouldn’t identify your resources with
URIs like urn:isbn:9781449358063. You should use URLs like
http://example.com/books/9781449358063. It’s true that
urn:isbn:9781449358063 is a much more general way to refer to the
resource, but because it’s so general, a client can’t do anything
with the reference.
Second, resources should have representations. A client that sends a
GET request to a URL should get some useful data in return. A URL
like http://vocab.org/vnd/mamund.com/2013/numbers/primes looks good,
right up to the point when you send a GET request to it and get a 404
error. Then you find out that the URL was actually a URI. It has no
representation. There may be a magical document somewhere that
describes that URI, but good luck finding it.
	
When someone looks up a URI, provide useful information, using the
standards (RDF*, SPARQL).

Again, resources have representations. A client that sends a GET
request to a resource’s URL should receive a document capturing the
current state of the resource.
The exact standards don’t matter (I’m not even covering SPARQL in
this book). What matters is that you use some standard, instead of
making up a custom data format. That way, a client that
understands your standard automatically knows how to handle the data
you provide—at least on a basic level. This is a theme I’ve been
hitting throughout this book: you should use an existing hypermedia
format instead of defining your own.
	
Include links to other URIs. so that they can discover more things.

And finally, the big payoff: the hypermedia constraint. A URI is now a
URL, a link, which a client can follow to get a representation. That
representation will contain other links, and the client can follow
them to get closer to fulfilling whatever desire it was programmed
with.
If you want to write a Linked Data API, I suggest you use JSON-LD as
your representation format instead of RDF/XML or RDF/Turtle. JSON-LD
is a new serialization of RDF designed specifically for making APIs
that resemble today’s other hypermedia APIs.

JSON-LD

	
Media type: application/ld+json

	
Described in: open standard in progress, defined at http://www.w3.org/TR/json-ld/

	
Medium: JSON

	
Protocol semantics: navigation through GET links

	
Application semantics: very flexible, but each document must define its own

In Chapter 8, I covered JSON-LD as a profile format. I showed how a
bare JSON representation…
HTTP/1.1 200 OK
Content-Type: application/json

{ "n": "Jenny Gallegos",
 "photo_link": "http://api.example.com/img/omjennyg" }
…could be transformed into a hypermedia document by the addition of
a JSON-LD “context”:
HTTP/1.1 200 OK
Content-Type: application/ld+json

{
 "@context":
 {
 "n": "http://alps.io/schema.org/Person#name",
 "photo_link":
 {
 "@id": "http://alps.io/schema.org/Person#image",
 "@type": "@id"
 }
 }
}
This JSON-LD context explains the link relation photo_link
and the semantic descriptor n by linking to explanations. I showed
different versions of this context: one that linked to an ALPS
profile, one that linked to human-readable documentation, and one that
used URIs described by an RDF vocabulary. Here’s another example that
uses the schema.org vocabulary:
{
 "@context":
 {
 "n": "http://schema.org/name",
 "photo_link":
 {
 "@id": "http://schema.org/image",
 "@type": "@id"
 }
 }
}
JSON-LD as a Representation Format

So far, I’ve presented JSON-LD as a sort of profile format: an add-on
to a plain JSON document that explains its application semantics. You
use the Link header to connect the JSON document to its JSON-LD
context:
Link: <http://api.example.com/profile.person.jsonld>;↵
rel="http://www.w3.org/ns/json-ld#context"
It’s not quite accurate to say that JSON-LD is a profile
format. Knowing that a JSON document has a JSON-LD context doesn’t
just give a client some extra information about its application
semantics. It completely changes how a client should process the
document. Parse a JSON document without looking at the context, and
you use JSON rules and end up with a nested data structure. Parse the
same document along with its context, and you use RDF rules and end up
with a set of RDF assertions.
And JSON-LD isn’t limited to this add-on role. Any JSON object
becomes a JSON-LD document if you add a @context property and serve
it as application/ld+json. This means you can combine the JSON-LD
context with the data you’re serving, and serve the whole thing at
once:
HTTP/1.1 200 OK
Content-Type: application/ld+json

{
 "n": "Jenny Gallegos",
 "picture_link": "http://www.example.com/img/omjennyg",
"@type": "http://schema.org/Person",
 "@context":
 {
 "n": "http://schema.org/name",

 "photo_link":
 {
 "@id": "http://schema.org/image",
 "@type": "@id"
 }
 }
}
At this point, JSON-LD becomes a traditional hypermedia format. The
Link header is no longer necessary, because there’s only one
document. It’s still clear that photo_link is a hypermedia
link. In fact, it’s clearer than it was before, because all the
information is in one place.
But as representation formats go, JSON-LD isn’t very capable. Thanks
to its RDF heritage, JSON-LD can describe application semantics in
great detail, but its protocol semantics are very limited. A Linked
Data client can do nothing but follow links from one bit of data to
another. A client can’t change the data, because JSON-LD has no
hypermedia controls for triggering unsafe HTTP requests.
If you want to use JSON-LD in your API, I recommend you also use an
extension called Hydra.

Hydra

	
Media type: application/ld+json

	
Described in: personal standard in progress at http://www.markus-lanthaler.com/hydra/

	
Medium: JSON

	
Protocol semantics: completely generic

	
Application semantics: derived from JSON-LD; implements the
 collection pattern (“collection” and “resource”), but collections
 have no special protocol semantics

Hydra is a JSON-LD context that adds a lot of protocol semantics to
JSON-LD. By itself, JSON-LD only lets you specify links (using "@type":
"@id"), to be triggered with GET requests. Add Hydra to the mix, and
you can specify almost any HTTP request.
Here’s a Hydra document that describes the application and protocol
semantics of a blogging API along the lines of YouTypeItWePostIt.com
(let’s suppose this document is served from http://example.com/youtypeit.jsonld).
{
 "@context": "http://purl.org/hydra/core/context.jsonld",
 "@type": "ApiDocumentation",
 "title": "Microblogging API",
 "description": "You type it, we post it.",
 "entrypoint": "http://example.com/api/",
 "supportedClasses": [
 {
 "@id": "#BlogDirectory",
 "title": "A directory of blogs",
 "description": "Links to all blogs.",
 "supportedProperties": [
 {
 "@id": "#blogs",
 "@type": "link",
 "title": "Blogs",
 "description": "The available blogs.",
 "domain": "#BlogDirectory",
 "range": "#Blog"
 }
]
 },

 {
 "@id": "#Blog",
 "@type": "Class",
 "subClassOf": "Collection",
 "title": "Blog",
 "description": "A collection of posts.",
 "supportedOperations": [
 {
 "@type": "CreateResourceOperation",
 "method": "POST",
 "expects": "#BlogPost"
 }
]
 },

 {
 "@id": "#BlogPost",
 "@type": "Class",
 "title": "Post",
 "description": "A single blog post.",
 "supportedProperties": [
 {
 "@id": "#content",
 "@type": "rdfs:Property",
 "title": "Content",
 "description": "The content of a blog post.",
 "domain": "#BlogPost",
 "range": "xsd:string"
 }
]
 }
]
}
A client that understands JSON-LD and RDF Schema can get a lot of
information out of this document. It can learn about three resource
types (http://example.com/youtypeit.jsonld#BlogDirectory,
http://example.com/youtypeit.jsonld#Blog, and
http://example.com/youtypeit.jsonld#BlogPost), each of which has a
human-readable description.
Even if a client knows nothing about Hydra, that’s enough to make
sense of a representation. Here’s a JSON-LD representation of an API
home page, served from http://example.com/api/:
HTTP/1.1 200 OK
Content-Type: application/ld+json

{
 "@context": {
 "blogs": "http://example.com/youtypeit.jsonld#blogs",
 "Blog": "http://example.com/youtypeit.jsonld#Blog"
 },
 "@id":"http://example.com/api/",
 "blogs": [
 { "@id": "/api/blogs/1", "@type": "Blog" },
 { "@id": "/api/blogs/2", "@type": "Blog" }
]
}
Maybe you’re wondering what that blogs property means? Well, the
@context says that its application semantics are defined at
http://example.com/youtypeit.jsonld#blogs. Here it is:
 {
 "@id": "#blogs",
 "@type": "link",
 "title": "Blogs",
 "description": "The available blogs.",
 "domain": "#BlogDirectory",
 "range": "#Blog"
 }
It’s a list of blogs. More formally, it’s a function whose possible
outputs (range) all have the resource type
http://example.com/youtypeit.jsonld#Blog. That means this bit of JSON is a
description of two different blog-type resources:
 "blogs": [
 { "@id": "/api/blogs/1", "@type": "Blog" },
 { "@id": "/api/blogs/2", "@type": "Blog" }
]
Of course, that’s not much of a description. You know nothing about
these resources except their URIs and their semantic type. In a
traditional RDF document, the story would end here. You’d never learn
anything else about these resources unless you found a better
description of them lying around somewhere.
But this is a JSON-LD document, so you know it obeys the hypermedia
constraint. You’re encouraged to make a GET request to /api/blogs/1
or /api/blogs/2. You know that if you make that GET request, you can
expect a representation that fulfills the application semantics of a
Blog.
Getting to this point has required no knowledge of Hydra at all. A
JSON-LD client can make a GET request for the API home page,
understand the context, and make a second GET request to
/api/blogs/2. It can compare the representation it gets against the
description of the Blog resource type, and gain an understanding of
the application semantics of this particular “Blog.”
But a client that knows about Hydra has a big advantage here. It
understands a special property called supportedOperations. In this
context, supportedOperations says that a Blog—type resource
supports HTTP POST as well as GET. Take another look at this section:
 {
 "@id": "#Blog",
 ...
 "supportedOperations": [
 {
 "@type": "CreateResourceOperation",
 "method": "POST",
 "expects": "#BlogPost"
 }
]
 }
That says that a client can create a new resource (of type BlogPost)
by making an HTTP POST request to a resource of type Blog. The
entity-body of the request should be a JSON-LD representation that
fulfils the application semantics of a BlogPost.
What are the application semantics of a BlogPost? Well, the original
context says that a BlogPost has a single property, called
content, which is a string (xsd:string):
 {
 "@id": "#BlogPost",
 ...
 "supportedProperties": [
 {
 "@id": "#content",
 "@type": "rdfs:Property",
 "title": "Content",
 "description": "The content of a blog post.",
 "domain": "#BlogPost",
 "range": "xsd:string"
 }
]
 }
Put it all together, and a Hydra client knows that it can send a POST
request that looks something like this:
POST /api/blogs/2 HTTP/1.1
Host: www.example.com
Content-Type: application/ld+json

{
 "@context": {
 "content": http://www.example.com/youtypeit.jsonld#content"
 },
 "content": "This is my first post."
}
JSON-LD gives an API provider a way to explain the application
semantics of a seemingly ordinary JSON document. A JSON-LD context
also can explain the protocol semantics of that document, by giving
clients blanket permission to make an HTTP GET request to any URI they
find. But that’s as far as it goes. On its own, JSON-LD can only
describe safe state transitions.
Hydra goes further. A JSON-LD context that includes the special Hydra
properties can tell a client that it’s allowed to make any kind of
HTTP request, not just a GET. Hydra makes it possible to describe
unsafe state transitions in great detail.
Overall, I’d compare Hydra contexts to WADL documents and OData
metadata documents, both of which I covered in Chapter 10. These
documents tend to be used to define types of resources (Blog,
BlogPost) up front, rather than representing the behavior of
individual resources at runtime. There’s nothing inherently wrong with
this. Almost any API will have distinct resource types, and all the
resources of a given type will have similar application and protocol
semantics.
But there’s a strong temptation to confuse “the abstract semantic type
of a resource” with “the implementation details of a class in my data
model.” Hydra contexts, OData metadata documents, and WADL documents
tempt server-side API developers into automatically generating one-off
vocabularies based on their internal data models, instead of reusing
standard vocabularies.
And there’s a bigger problem, which I mentioned back in Chapter 9.
Since these documents don’t change very often, client-side API
developers are tempted to treat them as service description documents,
capable of providing a complete overview of an API’s application
semantics. Users will be tempted to generate client code based on a
Hydra context—client code that breaks when the context does change.
As I write this, the Hydra standard is still a work in progress, but
it’s a much better choice for JSON-based hypermedia APIs than plain
JSON-LD, because it can describe unsafe state transitions. Just be
sure you don’t use it in a way that negates the benefits of REST’s
hypermedia constraint.

The XRD Family

I recommend JSON-LD because it adopts a principle that’s fundamental
to both Linked Data and REST. URIs should be URLs, and they should
have useful representations behind them. URIs like
urn:isbn:9781449358063 are more trouble than they’re worth.
What if you refused to make this compromise? How far could you get
with an API that used a pure description strategy? That’s what I want
to explore with my coverage of the XRD format, and two standards that
build on it: web host metadata documents and WebFinger.
XRD is the description strategy’s answer to the ad hoc XML and JSON
formats used by today’s APIs. Web host metadata documents make it
possible to build a hypermedia API around resources you don’t control,
resources that may have no representations at all. This may seem like
a pointless party trick, but WebFinger shows us a real use case.
XRD and JRD

	
Media type: application/xrd+xml or application/jrd+json

	
Defined in: RFC 6415 (JRD), open standard (XRD)

	
Medium: XML or JSON

	
Protocol semantics: navigation using GET links

	
Application semantics: none

XRD is a traditional XML-based document format designed for describing
resources from the outside. Unlike RDF, XRD distinguishes between
semantic descriptors, which go into <Property> tags, and link
relations, which go into <Link> tags.
It’s pretty straightforward once you understand the description
strategy. Here’s an XRD description of a cell in a Maze+XML maze:
<XRD xmlns="http://docs.oasis-open.org/ns/xri/xrd-1.0">
 <Subject>http://example.com/cells/M</Subject>

 <Property type="http://alps.io/example/maze#title">
 The Entrance Hallway
 </Property>

 <Link rel="http://alps.io/example/maze#east"
 href="http://example.com/cells/N" />
 <Link rel="http://alps.io/example/maze#west"
 href="http://example.com/cells/L" />
</XRD>
Again, it doesn’t matter whether or not the resource identified by
http://example.com/cells/M “exists” (that is, has a
representation). This is just a document with a few things to say
about that resource.
RFC 6415 defines a simple way to translate an XRD document into a JSON
object. The result is called JRD, and it’s served as application/jrd+json:
{
 "subject": "http://example.com/cells/M",
 "properties": {
 "http://alps.io/example/maze#title": "The Entrance Hallway"
 },
 "links": [
 { "rel": "http://alps.io/example/maze#east",
 "href": "http://example.com/cells/N" },
 { "rel": "http://alps.io/example/maze#west",
 "href": "http://example.com/cells/L" }
]
}

Web Host Metadata Documents

	
Media type: application/xrd+xml or application/jrd+json

	
Defined in: RFC 6415

	
Medium: XML or JSON

	
Protocol semantics: navigation with GET; limited lookup capability with GET

	
Application semantics: none

A web host metadata document is an XRD document containing a top-level
description of an API as a whole. It’s sort of like the description
found in a JSON Home Document (see Chapter 10). The XRD version of a
web host metadata document is supposed to go under the Well-Known URI
/.well-known/host-meta. (See Chapter 9 for an introduction to
Well-Known URIs.) If there’s a JRD version of that document, it’s
supposed to go under the Well-Known URI /.well-known/host-meta.json.
Like any XRD document, a web host metadata document may include
properties and links. The properties are properties of the API as a
whole, such as the current version of the server implementation. The
links are links to especially important resources in the API, such as
top-level collections.
An XRD link may have a template attribute instead of a href
attribute. This turns the link into a directory lookup service for
URIs. Here’s a simple example that shows how useful a lookup service
can be in the high-level description of an API:
 <Link rel="copyright" template="http://example.com/copyright?resource={uri}" />
This <Link> tag says that if the client wants to find the copyright
statement for any resource, whether it’s identified by an http: URI
or a urn:isbn: URI, it should send a GET request and pass the URI
into the template that has rel="copyright". That GET request will
trigger the copyright state transition for the URI that was passed
in. This way, a client can trigger a state transition for a URI that
has no representation! The URI urn:isbn:9781449358063 has no
representation, but if you send a GET request to
http://example.com/copyright?resource=urn:isbn:9781449358063, you can
get the representation of a related resource: the copyright
information for the book.
The value of the template attribute resembles a URI Template, but
it’s not a URI Template, because the only variable you’re allowed to
use is {uri}. A web host metadata document can use the <Link> to
link to one specific other resource (using the href attribute), and
it can link to a URI-based lookup service (using the template attribute with the {uri} variable), but that’s it. You can’t put a
general search form into a web host metadata document.
Here’s the example the authors of RFC 6415 clearly had in mind:
 <Link rel="lrdd" href="http://example.com/lookup?resource={uri}" />
This tells the client that if he ever wants an XRD description of a
resource, he can plug its URI into the template and send a GET
request to the resulting URL. The lrdd link relation is an
IANA-registered link to an XRD description. (It’s called lrdd for
reasons too convoluted and dull to go into here.)
The web host metadata document is now an XRD document that tells you
how to look up other XRD documents. You may never be able to get a
representation of a URI, but a web host metadata document can help you
find a wide variety of descriptions of that URI.

WebFinger

	
Media type: application/jrd+json

	
Defined in: Internet-Draft “draft-ietf-appsawg-webfinger”

	
Medium: JRD

	
Protocol semantics: the same as JRD

	
Application semantics: user accounts

The WebFinger protocol is just a name for the use of JRD documents to
look up information about user accounts. An account may be identified
by email address, using the acct: URI scheme:[56]
acct:jenny@example.com
Or an account may be identified with an http: URL, probably a URL
managed by an OpenID provider:
http://openid.example.com/users/omjennyg
A client makes a WebFinger request by sending a GET request to the
passing in the URI to the account it wants to look up:
GET /.well-known/webfinger?resource=acct%3Ajenny%40example.com HTTP/1.1
The server should respond with a JRD description of the user
account. This description is supposed to include an extra JSON
property called subject, which gives the URI of the resource being
described:
HTTP/1.1 200 OK
Content-Type: application/jrd+json

{
 "subject": "acct:jenny@example.com",
 "properties": {
 "http://schema.org/name": "Jenny Gallegos",
 "http://schema.org/email": "jenny@example.com"
 }
}
That’s it, really. The JRD file format does most of the work, and the
acct: URI scheme does almost everything else. The only things unique
to WebFinger are the subject property and the Well-Known URI
template, /.well-known/webfinger?resource={uri}.
This is a perfect example of a situation where resource description
works better than resource representation. When a person signs up for
an account on your website, you probably identify her by her email
address or OpenID URL. An OpenID URL has a representation, but you
probably don’t control the OpenID server, so you can’t change its
representation. An email address has no representation at all!
Nonetheless, WebFinger lets you publish descriptions of your users’
accounts. You can say whatever you want to say about those accounts by
annotating the corresponding acct: URIs.

The Ontology Zoo

This is a follow-up to Chapter 10’s The Semantic Zoo, listing some RDF
Schema vocabularies of interest. There are a lot of RDF Schema
vocabularies, but they’re scattered all over the Internet. I’m just
going to mention two popular vocabularies, and one site that collects
vocabularies.
I’ve focused on vocabularies that are likely to be useful in
consumer-facing APIs. Most of the really heavy-duty vocabularies are
used in scientific or medical applications, not to describe the
semantics of documents served over the Web. Check out the SWEET
ontologies for a very large vocabulary
designed for scientific use.
schema.org RDF

	
Site: Schema home page

	
Vocabulary document: located here

	
Semantics: the kinds of things a human being might want to search
 for online

Earlier in this book, I presented the concepts defined by
schema.org—Person, CreativeWork, and so on—as HTML microdata
items. That’s how they’re presented on the schema.org website. But
behind the scenes, those concepts are defined by a machine-readable
RDF vocabulary. That’s the vocabulary I’ve been referencing throughout
this chapter, using URIs like http://schema.org/Person and
http://schema.org/birthDate. I used that same RDF vocabulary to
generate ALPS versions of all the schema.org microdata items for
my alps.io site.
If you’re using RDF or JSON-LD, you can reference the schema.org RDF
vocabulary when you describe resources. This lets you talk about all
the things schema.org talks about, using the description strategy
instead of the representation strategy.
Compare the use of schema.org microdata in the HTML representation of
a resource…
<div itemscope itemtype="http://schema.org/Person">
 1987-08-25
</div>
…with the use of schema.org’s RDF vocabulary to describe a resource
that has no representation:
@prefix schema: <http://schema.org/>
<acct:omjennyg@example.com> a schema:Person ;
 schema:birthDate "1987-08-25" .
Of course, you’re not limited to describing people. You can use any of
the nearly 1,000 concepts described by schema.org’s RDF vocabulary—so
long as schema.org sees those concepts the same way you do.

FOAF

	
Site: FOAF Vocabulary Specification page

	
Vocabulary document: Download index.rdf here

	
Semantics: people and organizations

FOAF is the most famous RDF Schema ontology. It’s an informal industry
standard for describing people, organizations, and the relationships
between them.
Here’s how to represent a person’s name and birthday[57] in RDF/Turtle, using the FOAF
vocabulary:
@prefix foaf: <http://xmlns.com/foaf/0.1/>
<acct:omjennyg@example.com> a foaf:Person ;
 foaf:name "Jennifer Gallegos" ;
 foaf:birthday "08-25" .

vocab.org

	
Site: located here

	
Vocabulary document: various

	
Semantics: miscellaneous

This is a site that hosts RDF Schema documents, maintained by Ian
Davis. It’s sort of like my own alps.io registry for ALPS
documents. The collection is eclectic, and includes the BIO vocabulary
I mentioned in a footnote earlier, as well as a vocabulary for
describing varieties of whiskey.
As a matter of policy, vocab.org also allows anyone to claim namespace
URIs that start with http://vocab.org/vnd/. This means I can publish
an RDF document that describes a resource with the URI
http://vocab.org/vnd/mamund.com/2013/my-wonderful-resource. I don’t
control vocab.org, and I’m not allowed to upload files to it, so that
resource will never have a representation. But I own that URI and
I can describe it however I want.

Conclusion: The Description Strategy Lives!

To a mind accustomed to REST, RDF documents look strange. This is
partly because there are many different ways of writing down an “RDF
document,” but mostly because RDF documents commonly ignore the
Fielding constraints. There are real RDF documents, which real people
use to do their jobs, containing URLs that give you 404 errors in
response to HTTP GET. From a REST perspective, devoted to the
representation strategy, these URLs “don’t exist” and the documents
that include them are broken. Understand the description strategy, and
things will make a little more sense.
This chapter, and life in general, would be simpler if it were
possible to ignore the description strategy. Thanks to Linked Data,
you sort of can! The Linked Data movement says it’s better to use RDF
in a way that fulfills the Fielding constraints. Just publish your RDF
Schema vocabulary on the Web, and make sure you only use it to
describe resources that also exist on the Web.
The upside of Linked Data is pretty big. RDF Schema and OWL are much
more powerful than ALPS when it comes to describing application
semantics in machine-readable ways. And you don’t have to give up the
Fielding constraints to take advantage of these technologies.
But I can’t pretend that Linked Data is the whole story. The Semantic
Web is much older than Linked Data, and even now, not everyone is on
the Linked Data bandwagon. When you use Semantic Web technologies,
you’ll encounter a lot of documents whose URLs turn out to be URIs. I
don’t think you should create more of these documents, but to deal
with the ones that already exist, you need to understand what they
mean. They’re descriptions of resources that have no representations.

[53] The acct: URI scheme,
defined in the Internet-Draft “draft-ietf-appsawg-acct-uri,” can’t
identify a human being, but it can identify a user account. For many
APIs, that’s close enough.

[54] The official RDF ontology for
schema.org is located
here. I wish I could quote
directly from that document in my examples, but it uses RDFa, the HTML
version of RDF, and I don’t have space to explain RDFa here. So I’ve
converted bits of that document into the text-based Turtle format I
use throughout this chapter.

[55] The BIO vocabulary
doesn’t go that far, but it does describe a “birth event” resource,
http://purl.org/vocab/bio/0.1/Birth, which brings together the
person who was born, their parents, a date and a place.

[56] Defined in the
Internet-Draft “draft-ietf-appsawg-acct-uri,” as I mentioned before.

[57] Not
date of birth! That’s more complicated.

Chapter 13. CoAP: REST for Embedded Systems

The Constrained Application Protocol[58] is a
protocol designed for use in low-power embedded environments like home
automation systems. CoAP is inspired by HTTP and can be used to
publish hypermedia-driven RESTful APIs, but it’s a very different
protocol from HTTP. CoAP brings a web-like architecture to a highly
constrained environment: an “Internet of Things” in which a lot of
small, cheap computers communicate over a low-capacity network.
CoAP is designed to live with severe limitations on electricity
consumption, network bandwidth, and processing power. Its world
resembles the ARPAnet of the 1970s rather than the network people
enjoy today. CoAP requests and responses are very small. On a
network that runs over home power lines, a CoAP message shouldn’t be
larger than about 1,024 bytes. On a low-power wireless network, you
probably don’t want to go above 80 bytes.
But in terms of network layout, these environments look a lot like the
World Wide Web. There’s no single “API provider” that serves a lot of
similar clients. Instead, devices from many different manufacturers
are placed into the same room, seemingly at random. Some of them have
data to provide. Some have the ability to make things happen in the
real world. Very rarely, one of these devices might get a human’s
attention long enough to answer a yes-or-no question.
These devices must locate each other over the network, learn each
other’s capabilities, and figure out how to work together, all with
little or no guidance from the human who installed the equipment. It’s
utter chaos. In this radically decentralized environment, as on the
Web, a strategy based on hypermedia is the only one with a chance of
working.
A CoAP Request

You know how a typical HTTP request works. The client opens a TCP
connection to the server, sends the request, and awaits a response
over the same connection. CoAP was designed to operate over UDP, a
sister protocol to TCP that doesn’t support connections at all. A
CoAP client sends a request message to a server, and then goes about
its business. The client has no idea when the response message, if
any, will arrive.
Here’s an example request message taken from the CoAP standard:
CON [0xbc90]
GET /temperature
(Token 0x71)
Caution
I need to make it clear that this is not the actual CoAP
message. This is a human-readable version of the message, which I
formatted to look as much like HTTP as possible. The message actually
sent over UDP is packed into a binary format that is pretty much
unintelligible to humans: CON becomes the 2-bit integer 00, GET
becomes 0001, and so on.

What does the request message mean? GET /temperature should make
sense to you from HTTP. CoAP defines the four basic HTTP methods (GET,
POST, PUT, and DELETE), though their semantics are slightly different
than in HTTP.
CON stands for “Confirmable”, which means that this message requires
an acknowledgment message from the server (I’ll talk more about this in the following section).
The hexadecimal number 0xbc90 is a “message ID,” which will be used in
that acknowledgment message. Without the message ID, a client that
makes two GET requests and gets two responses won’t know which
response goes with which request.
The hexadecimal number 0x71 is a “token.” A single CoAP request may
trigger several responses, and the token is used in every response,
not just the initial acknowledgment. Responses sent after the
acknowledgment will have new message IDs, but they’ll be tied to the
original request by the token.

A CoAP Response

So, the client sends its request, and then goes about its
business. But its message was a CON message, which requires an
acknowledgment. Eventually the original server will send that
acknowledgment, in the form of an acknowledgment (ACK) message.
Here’s a human-readable version of an acknowledgment message.
ACK [0xbc90]
2.05 Content
(Token: 0x71)
Content-Format: text/plain;charset=utf-8
22.5 C
Caution
Again, I formatted this message to resemble HTTP. It doesn’t
really look like this. A real CoAP message is packed into a tight
binary format. For instance, the media type application/json is
represented by the eight-bit bitstring 00110010.

	
“ACK” means that this message is acknowledging receipt of an earlier
message (the CON message I showed you earlier, with Message ID 0xbc90
and Token 0x71).

	
The line 2.05 Content is a status code, equivalent to HTTP’s 200
OK.

	
Content-Format is a CoAP option, which serves the same purpose
as an HTTP header. The Content-Format option does the job of HTTP’s
Content-Type header.

	
The string 22.5 C is the payload, what HTTP calls the
“entity-body”.

The request and the response are completely different messages. They
don’t share a TCP connection the way an HTTP request and response
do. They’re connected by data found in the messages themselves: by the
message ID (0xbc90) and the token (0x71).

Kinds of Messages

Each CoAP request has an associated method. CoAP defines four methods,
each named after an HTTP method: GET, POST, PUT, and DELETE. CoAP
methods are not exactly the same as the corresponding HTTP methods,
but they have the same basic properties: GET is safe, PUT is
idempotent, and so on.
CoAP defines one additional bit of protocol semantics—the message type—to deal with the
fact that CoAP requests and responses are carried in separate
messages. Every message is one of these four types:
	
A confirmable message (CON) requires an Acknowledgment message
 (ACK). A client will keep resending a CON message until it receives
 an ACK message with the same message ID.

	
A nonconfirmable (NON) message does not require an
 acknowledgment message (ACK). Only safe requests (that is, GET
 requests) should be made nonconfirmable.

	
An acknowledgment message (ACK) acknowledges that an earlier
 message was received and processed.

	
That’s in contrast to a reset message (RST), which acknowledges an
 earlier message, but says that the recipient couldn’t process
 it. The recipient may have rebooted and lost the necessary context,
 or it may have temporarily dropped off the network and missed an
 earlier message.

These message types basically recreate the request-response structure
of HTTP. A CON message plus an ACK message is equivalent to an HTTP
request and response. A client that sends a CON message and gets no
acknowledgment is supposed to resend the CON message, just as an HTTP
client that sends a GET request and gets no response is supposed to
resend the request.
But there are two interesting features of CoAP that are not found in
HTTP at all. One (delayed response) relies on the fact that one CoAP
request can trigger several responses. The other (multicast
messages) takes advantage of a feature that HTTP can’t use, because
TCP doesn’t support it.

Delayed Response

Suppose a client sends a CON message that will take a very long time
to process. The server can immediately respond with an ACK
message. This tells the client that the message has been received, and
that the client can stop resending the CON message. The client can
expect a second message later, containing the actual response.
This second response is not an ACK message. It’s either a CON
message or a NON message. The server is turning the tables on the
client. The third message has a different message ID from the initial
CON message, but it reuses the token, so the original client knows
that it’s a response to the original CON message.
The situation is analogous to buying a book from an online
bookstore. You send a CON message, and the store immediately sends you
an email receipt (an ACK message), confirming your purchase. But the
book itself won’t arrive for a few days. You might have to sign for
delivery (respond to the server’s CON message with an ACK message), or
the mail carrier might just leave the book on your front porch (the
book would be a NON message). Either way, you’ll receive your book,
along with a receipt (the token) that ties the book to your original
order (your original CON message).
HTTP defines a response code (202, Accepted) that works sort of
like this, but HTTP defines no way for the server to get back in touch
with the client once it’s finished processing the message that was
“accepted.” By the time that happens, the TCP connection has been
closed. There are ways to get around this (I’ll cover them when I talk
about Accepted in Appendix B), but there’s no one well-defined
solution. With CoAP, the solution is built into the protocol.

Multicast Messages

A CoAP client can use UDP multicast to broadcast a message to every
machine on the local network. TCP does not support multicast, so you
can’t really do this with HTTP.
The stereotypical use case for CoAP multicast (and for CoAP in
general) is home automation. In this scenario, your thermostat,
refrigerator, television, light switches, and other home appliances
have cheap embedded processors that communicate over a local
low-power network. When you plug in a new appliance, it detects other
computers on the network, discovers their capabilities through the
exchange of hypermedia documents, and starts collaborating with them.
This lets your appliances coordinate their behavior without direct
input from you. When you turn the oven on, the climate control system
can notice this event and turn down the heat in the kitchen. You can
pull out your mobile phone, get a list of all the lights in your
current room, and dim the lights through your phone, without having to
go over to the light switch.
The home automation use case has been around for over 50 years, and
I personally think it’s a cheesy pipe dream, but there are other
scenarios where multicast discovery is a lot less cheesy. Multicast
can let one mobile phone talk to all the other phones in the room. It
can allow a group of scientific instruments to share readings, or
connect low-bandwidth wireless peripherals to a desktop computer.
Any time there are a lot of small computers in the same place, CoAP
and UDP multicast lets them discover each other and figure out how
they can cooperate. The principles at work are statelessness,
addressability, and self-descriptive messages: core principles of REST.

The CoRE Link Format

	
Media type: application/link-format

	
Defined in: RFC 6690

	
Medium: plain text

	
Protocol semantics: navigation and searches with GET

	
Application semantics: none!

Of course, REST is a lot more than just the transport protocol. REST
works through the exchange of hypermedia representations, and
hypermedia representations tend to be pretty large. You can’t send
HTML or Collection+JSON representations when your entire response has
to fit in 80 or a 1024 bytes.[59]
HTTP can compress representations to save bandwidth, but compression
won’t help here. A light sensor may not have enough processing power
to decompress a representation in a reasonable time, much less parse
the decompressed document. It may not have enough memory to store
the whole document. That’s why the developers of CoAP designed a new
hypermedia format specifically for embedded applications: the CoRE
Link Format.
Here’s a CoRE Link Format representation of a cell from Chapter 5’s
maze game.
</cells/M>;rel="current";rt="http://alps.io/example/maze#cell",
</cells/N>;rel="east";rt="http://alps.io/example/maze#cell",
</cells/L>;rel="west";rt="http://alps.io/example/maze#cell",
<http://alps.io/example/maze>;rel="profile"
There are four links, each with a rel attribute. Three of the links
(current, west, and east) point to cells in the maze
(cell). The third link (profile) points to some kind of profile
that explains what current, east, west, and cell mean.
Unlike CoAP messages, documents in CoRE Link Format are
human-readable. It’s not a binary format. The only change I made to
this representation was to add a newline after every link, so it
would fit on the page. CoRE Link Format can fit a lot of hypermedia
into a kilobyte, without utterly sacrificing human-readability.
CoRE Link Format describes a link using the same syntax as the Link
HTTP header. RFC 6690 defines some extension parameters, notably
rt which contains a URI indicating the abstract semantic type (see
Chapter 12) of the resource on the other end of the link:
</cells/N>;rel="east";rt="http://alps.io/example/maze#cell"
RFC 6690 also proposes some optional techniques for sending search
queries to CoAP resources and getting back responses in CoRE Link
Format. This gives the application/link-format media type some
features similar to those found in Collection+JSON, OData, or any other
implementation of the collection pattern.
But there’s no space for data in a CoRE Link Format document. CoRE
Link Format is hypermedia in its purest form. It can only represent
state transitions. Real data—e.g., instrument readings, statistics, and
human-readable messages—must be served in some other data format,
such as JSON.

Conclusion: REST Without HTTP

CoAP is very different from HTTP, but its architecture is RESTful. A
CoAP system obeys the statelessness constraint. In fact, it’s more
stateless than HTTP, since a request and its responses are not tied
together by a TCP connection. CoAP defines protocol semantics that
are similar to (but not identical to) HTTP’s. CoRE Link Format can’t
represent data, but it’s a real hypermedia format with more hypermedia
controls than HAL.
A CoAP device can connect to a network, send out a UDP multicast
message to see who else is around, and start exploring what the other
devices have to offer—all without any human interaction. This
flexibility is made possible by REST’s hypermedia constraint, and it’s
the only realistic solution for a longstanding pipe dream like home
automation. A refrigerator that wants to talk to your microwave can’t
afford to be picky about what kind of microwave you have installed.
To my mind, this situation looks like the world of APIs as a whole. We
live in a house (the Internet) full of thousands of useful but obscure
programmable appliances (APIs). REST is about making those appliances
work together with minimal human involvement.
Success means agreeing on application semantics. Appliances and APIs
should use the same words when talking about the same things. It also
means advertising our protocol semantics. Every “appliance” must
explain what it does, not in a dusty manual kept in a folder, but
online, in terms another “appliance” can understand. This may seem like
a crazy pipe dream, but it’s the only way to manage the complexity of
all these things we’ve created.

[58] An open standard under
development as the Internet-Draft “draft-ietf-core-coap.”

[59] The Internet-Draft
“draft-ietf-core-block” will allow a large representation to be split
across several CoAP messages. This will help a lot, but building a
traditional web-style API around this feature would be very
inefficient.

Appendix A. The Status Codex

An HTTP status code is a three-digit number attached to an HTTP
response. It’s a bit of protocol semantics that lets the client know,
on the most basic level, what happened when the server tried to handle
the request. The 41 HTTP response codes defined in the HTTP
specification form a set of basic protocol semantics that any API can use.
Apart from HTTP redirects, and the famous “404 Not Found” error page
notwithstanding, we don’t really use status codes on the World
Wide Web. A human learns what happened to a request by reading the
entity-body served as part of the response, not by looking up a
numeric code in the HTTP standard. When you fill out a form on a
website, but you forget to fill in one of the required fields, the
server sends back an error message, but the response code associated
with the error message is 200 (OK).
That’s fine. You don’t even see the response code. You read the error
message and correct the problem. But an API that behaved that way
would be lying to its client! Computer programs are very good at
looking up numeric codes, and very bad at understanding prose. When
you serve the 200 status code on an error condition, you must write
extra documentation explaining that in your API, OK doesn’t
necessarily mean OK. That extra documentation means more work for
your users.
In the world of APIs, then, HTTP response codes become very
important. They tell a client how to regard the document in the
entity-body—whether it’s a representation or an error message—or
what to do if the client can’t understand the entity-body. A client (or
an intermediary between server and client, like a proxy or
firewall) can figure out how an HTTP request went, just by looking at
the first few bytes of the response.
That said, some of the HTTP status codes are completely useless. Some
are useful only in very limited situations, and some are only
distinguishable from one another by careful hairsplitting. To someone
used to the World Wide Web (that’s all of us), the variety of status
codes can be bewildering.
In this appendix, I give a brief explanation of each status code, with
tips on when to use it in your APIs, and my personal opinion as to how
important it is to API design. If a client must do something specific
to get a certain response code, I explain what that is. I also list
which HTTP response headers, and what kind of entity-body, the server
ought to send along with a response code. This is an appendix for the
 API developer, but it’s also for the client author, who’s
received a strange response code and doesn’t know what it means.
As with link relations and media types, the IANA keeps an
official
registry of HTTP status codes.
Here, “official” basically means “defined in an RFC.” In this appendix,
I’ll cover all 41 codes mentioned in RFC 2616, even though some of
them (mainly the ones to do with proxies) are a little beyond the
scope of this book. I’ll also cover a few status codes defined in
other RFCs, notably RFC 6585, the aptly named “Additional HTTP Status
Codes.”
I won’t be covering CoAP’s HTTP-inspired status codes (4.04 Not
Found), or the HTTP status codes defined by extensions like
WebDAV. Nor do I cover status codes introduced by web server
implementations but not formally defined anywhere. These include 509
(Bandwidth Limit Exceeded), and nginx’s many internal
error-reporting codes, like 499 (Client Closed Request).
Problem Detail Documents

In Chapter 10, I mentioned problem detail documents—short hypermedia
documents that give a human-readable explanation of an HTTP status
code. Don’t forget about these! You can use them to add API-specific
details to a generic status code like 400 (Bad Request). There’s no
need to invent a new representation format (or, worse, a new status
code) for conveying detailed error information. If your representation
format has a slot for error reporting, the way Collection+JSON does,
you probably don’t need problem detail documents.
Remember, detailed error reporting is not an excuse for serving 200
(OK) when something’s not OK. The meaning of your representation
must always be consistent with your HTTP status code.

Families of Status Codes

The first digit of an HTTP status code is a very general indication of
how the request went. The HTTP specification defines five families of
status codes using the initial digits 1 through 5. I’ll be covering
each of these in a separate section:
	
1xx: Informational

	
These response codes are used only in
 negotiations between an HTTP client and server.

	
2xx: Successful

	
Whatever state transition the client asked for has
 happened.

	
3xx: Redirection

	
The state transition the client asked for has not
 happened. But if the client is willing to make a slightly different
 HTTP request, that request should do what the client is asking
 for.

	
4xx: Client Error

	
The state transition the client has asked for has
 not happened, due to a problem with the HTTP request. The request was
 malformed, incoherent, self-contradictory, or one that the
 server cannot accept.

	
5xx: Server Error

	
The state transition the client has asked for has
 not happened, due to a problem on the server side. There’s probably
 nothing the client can do but wait for the problem to be fixed.

Four Status Codes: The Bare Minimum

Before going through the big list of status codes, I want to list just
four that I consider the bare minimum for APIs. There’s one code from
each family (apart from 1xx, which you can more or less ignore):
	
200 (OK)

	
Everything’s fine. The document in the entity-body, if
any, is a representation of some resource.

	
301 (Moved Permanently)

	
Sent when the client triggers a state
transition that moves a resource from one URL to another. After the
move, requests to the old URL will also result in a 301 status code.

	
400 (Bad Request)

	
There’s a problem on the client side. The
document in the entity-body, if any, is an error message. Hopefully
the client can understand the error message and use it to fix the
problem.

	
500 (Internal Server Error)

	
There’s a problem on the server
side. The document in the entity-body, if any, is an error
message. The error message probably won’t do much good, since the
client can’t fix a server problem.

If I could add just two more, they would be different kinds of client
errors: 404 (Not Found) and 409 (Conflict). When you need to give
more detail, you can adopt another status code from the big list, or
provide a problem detail document.
And now, the big list. Unless otherwise noted, all these status codes
are formally defined in RFC 2616.

1xx: Informational

The 1xx response codes are used only in negotiations between an HTTP
 client and server.
100 (Continue)

Importance: low to medium.
This is one of the possible responses to an HTTP look-before-you-leap
(LBYL) request, which I described in Chapter 11. This status code
indicates that the client should resend its initial request, including
the (possibly large or sensitive) representation that was omitted the
first time. The client no longer need worry about sending a
representation only to have it rejected. The other possible response
to a look-before-you-leap request is 417 (Expectation Failed).
Request headers: To make a LBYL request, the client must set the
Expect header to the literal value “100-continue.” The client must
also set any other headers the server will need when determining
whether to respond with 100 or 417.

101 (Switching Protocols)

Importance: Very low, potentially medium.
A client will only get this response code when its request uses the
Upgrade header to inform the server that the client would prefer to
use some protocol other than HTTP. A response of 101 means “All right,
now I’m speaking another protocol.” Ordinarily, an HTTP client would
close the TCP connection once it read the response from the
server. But a response code of 101 means it’s time for the client to
leave the connection open, but stop being an HTTP client and start
being some other kind of client.
The Upgrade header is hardly ever used, though it could be used to
trade up from HTTP to HTTPS, or from version 1.1 of HTTP to the
eventually forthcoming version 2.0. It could also be used to switch
from HTTP to a totally different protocol like IRC, but that would
require the web server also to be an IRC server and the web client to
also be an IRC client, because the server starts speaking the new
protocol immediately, over the same TCP connection.
Request headers: The client sets Upgrade to a list of protocols
it’d rather be using than HTTP.
Response headers: If the server wants to upgrade, it sends back an
Upgrade header saying which protocol it’s switching to, and then a
blank line. Instead of closing the TCP connection, the server begins
speaking the new protocol, and continues speaking the new protocol
until the connection is closed.

2xx: Successful

The 2xx status codes indicate that whatever state transition the
 client asked for has happened.
200 (OK)

Importance: Very high.
In most cases, this is the code the client hopes to see. It indicates
that the state transition is complete, and that no more specific code
in the 2xx series is appropriate.
Entity-body: For a GET request, a representation of the resource
that was the target of the GET. (This will cause a change in
application state.) For other requests, a description of the change in
resource state: a representation of the current state of the selected
resource, or a description of the state transition itself.

201 (Created)

Importance: High.
The server sends this status code when it creates a new resource at
the client’s request.
Response headers: The Location header should contain the canonical
URL to the new resource.
Entity-body: Should describe and link to the newly created
resource. A representation of that resource is acceptable, if you use
the Location header to tell the client where the resource actually
lives.

202 (Accepted)

Importance: Medium.
The client’s request can’t or won’t be handled in real time. It will
be processed later. The request looks valid, but it might turn out to
have problems when the server actually gets to it.
This is an appropriate response when a request triggers an
asynchronous action, an action in the real world, or a state
transition that would take so long that there’s no point making the
client wait around for a response.
Request headers: The Prefer header (see Appendix B) lets the
client tell the server how long it’s willing to wait around to get a
real response instead of a 202.
Response headers: The pending request should be exposed as some kind
of resource so the client can check up on it later. The Location
header can contain the URL to this resource.
Entity-body: If there’s no way for the client to check up on the
request later, at least give an estimate of when the request will be
processed. A problem detail document may be appropriate here, even
though this isn’t technically a “problem.”
Retry-After: The Retry-After header can be used to indicate the server’s
estimate of when the full response will be ready. This header was
designed for use with the 5xx and 3xx response codes, but can also be
used safely for 202 responses.

203 (Non-Authoritative Information)

Importance: Very low.
This status code is the same as 200 (OK), but the server wants the
client to know that some of the response headers do not come from the
server. They may be mirrored from a previous request of the client’s,
or obtained from a third party.
Response Headers: The client should know that some headers may not
be accurate, and others may be passed along without the server knowing
what they mean.

204 (No Content)

Importance: High.
This status code is usually sent out in response to an unsafe request
such as a PUT request. It means that the server has carried out the
state transition, but that it declines to send back any representation
or description of the state transition.
The server may also send 204 in response to a GET request. This means
that the resource requested exists, but has an empty
representation. Compare 304 (Not Modified).
204 is often in-browser JavaScript applications. It lets the server tell the
client that its input was accepted, but that the client shouldn’t
change any UI elements.
Entity-body: Not allowed.

205 (Reset Content)

Importance: Low.
This is just like 204 (No Content), but it implies that the client
should reset the view or data structure that was the source of the
data. If you submit an HTML form in your web browser and the response
is 204 (“No Content”), your data stays in the form and you can change
it. If you get a 205, the form fields reset to their original
values. In data entry terms: 204 is good for making a series of edits
to a single record; 205 is good for entering a series of records in
succession.
Entity-body: Not allowed.

206 (Partial Content)

Importance: Very high for APIs that support partial GET, low otherwise.
This is just like 200 (OK), but it designates a response to a
partial GET request: i.e., one that uses the Content-Range
request header. A client usually makes a partial GET request to resume
an interrupted download of a large binary representation. I cover
partial GET in Chapter 11.
Request headers: The client sends a value for the Content-Range header.
Response headers: The Date header is required. The ETag and
Content-Location headers should be set to the same values that would
have been sent along with the representation as a whole.
If the entity-body is a single byte range from the representation, the
response as a whole must have a Content-Range header explaining
which bytes of the representation are being served. If the body is a
multipart entity (that is, multiple byte ranges of the representation
are being served), the overall media type is multipart/byteranges,
and each part must have its own Content-Range header.
Entity-body: Will not contain a full representation, just one or
more sequences of bytes from the representation.

3xx: Redirection

The state transition the client asked for has not happened. But if the
client is willing to make a slightly different HTTP request, that
request should do what the client is asking for. In general, the
client needs to repeat its request to a different resource.
This is the trickiest set of response codes, because 301 (Moved
Permanently), 302 (Found), 303 (See Other), and 307 (Temporary
Redirect), are all very similar. Many applications use these status
codes indiscriminately as a way of bouncing the client like a ball
through a hypermedia pinball machine, with little regard for what this
means in terms of application semantics. My main goal in this section
is to clear up the confusion.
300 (Multiple Choices)

Importance: Low.
The server can send this status code when it has multiple
representations of a requested resource, and it doesn’t know which
representation the client wants. Either the client didn’t use the
Accept-* headers to specify a representation, or it asked for a
representation that doesn’t exist.
In this situation, the server can just pick its preferred
representation, and send it along with a 200 (OK) status code. But
it may decide instead to send a 300 along with a list of possible URIs
to different representations.
Response headers: If the server has a preferred representation, it
can put the URI to that representation in Location. As with most other
3xx status codes, the client may automatically follow the URI in
Location.
Entity-body: A list of hypermedia links, along with the necessary
application semantics to let the user make a choice between them.

301 (Moved Permanently)

Importance: Medium.
The server knows which resource the client is trying to access, but the client
doesn’t care for the URL it used to request the resource. It wants the
client to take note of the new URL and use it in future requests.
You can use this status code to keep old URLs from breaking when your
API changes its URL structure.
Response headers: The server should put the canonical URL in Location.
Entity-body: The server should send a hypermedia document that links
to the new location.

302 (Found)

Importance: Very important to know about, especially when writing
clients. I don’t recommend using it.
This status code is the ultimate source of most redirection-related
confusion. It’s supposed to be handled just like 307 (Temporary
Redirect). In fact, in HTTP 1.0 its name was Moved Temporarily.
Unfortunately, in real life most clients handle 302 just like 303
(See Other). The difference hinges on what the client is supposed to
do when it gets a 302 in response to a PUT, POST, or DELETE
request. See the entries for 307 and 308 (Permanent Redirect)
if you’re interested in the details.
To resolve this ambiguity, in HTTP 1.1 this response code was renamed
to Found, and response code 307 was created. This response code is
still in wide use, but it’s ambiguous, and I recommend that your
servers send 303, 307, and 308 instead.
Response headers: The Location header contains the URL to which
the client should resubmit the request.
Entity-body: Should contain a hypermedia link to the new URL, as with 301.

303 (See Other)

Importance: High.
The request has been processed, but instead of the server sending a
response document, it’s sending the client the URL of a response
document. This may be the URL of a static status message, or of some
more interesting resource. In the latter case, a 303 is a way for the
server to send a representation of a resource without forcing the
client to download all that data. The client is expected to follow up
with a GET request to the URL mentioned in Location, but it doesn’t have to.
The 303 status code is a good way to canonicalize your resources. You
can make them available through many URLs, but only have one “real”
URL per representation. All the other URLs use a 303 to point to the
canonical URL for that representation. For instance, a 303 might
redirect a request for
http://www.example.com/software/current.tar.gz to the URL
http://www.example.com/software/1.0.2.tar.gz.
Compare to 307 (Temporary Redirect).
Response headers: The Location header contains the URL of the representation.
Entity-body: Should contain a hypermedia link to the new URL, as with 301.

304 (Not Modified)

Importance: High.
This status code is similar to 204 (No Content) in that the response
body must be empty. But 204 is used when there is no body data to
send, and 304 is used when there is data but the client already has
it. There’s no point in sending it again.
This status code is used in conjunction with conditional HTTP
requests. If the client sends an If-Modified-Since header with a
date of Sunday, and the representation hasn’t changed since Sunday,
then a 304 is appropriate. A 200 (OK) would also be appropriate, but
sending the representation again would waste bandwidth, since the
client already has it.
Response headers: The Date header is required. The ETag and
Content-Location headers should be set to the same values that would
have been sent if the response code were 200 (OK).
The caching headers Expires, Cache-Control, and Vary are
required if they’ve changed from those sent previously.
There are complicated caching rules about this that I won’t cover
here, but the server can send updated headers without sending a new
body. This is useful when a representation’s metadata has changed, but
the entity-body hasn’t.
Entity-body: Not allowed.

305 (Use Proxy)

Importance: Low.
This status code is used to tell the client that it should repeat its
request, but go through an HTTP proxy instead of going to the server
directly. This code is rarely used because it’s very rare for a server
to care that the client used a specific proxy.
This code would be used more frequently if there were proxy-based
mirror sites. Today, a mirror site for http://www.example.com/
provides the same content but at a different URL, say
http://www.example.com.mysite.com/. The original site might use the
307 (Temporary Redirect) status code to send clients to an
appropriate mirror site.
If there were proxy-based mirror sites, then you would access the
mirror with the same URL as the original (http://www.example.com/),
but set http://proxy.mysite.com/ as your proxy. Here, the original
example.com might use the 305 status code to route clients to a
mirror proxy that’s geographically close to them.
Web browsers typically don’t handle this status code correctly:
another reason for its lack of popularity.
Response headers: The Location header contains the URL to the proxy.

306: Unused

Importance: None.
The 306 status code never made it into an RFC. It was described in the
Internet-Draft “draft-cohen-http-305-306-responses” as Switch Proxy,
a status code sent by a proxy server to get the client to start using
a different proxy. That Internet-Draft expired in 1996, so don’t worry
about it.

307 (Temporary Redirect)

Importance: High.
The request has not been processed, because the requested resource is
not home: it’s located at some other URL. The client should resubmit
the request to another URL.
For GET requests, where the only thing being requested is that the
server send a representation, this status code is identical to 303
(See Other). A typical case where 307 is a good response to a GET is
when the server wants to send a client to a mirror site. But for POST,
PUT, and DELETE requests, where the server is expected to take some
action in response to the request, this status code is significantly
different from 303.
A 303 in response to a POST, PUT, or DELETE means that the operation
has succeeded but that the response entity-body is not being sent
along with this request. If the client wants the response entity-body,
it needs to make a GET request to another URL.
A 307 in response to a POST, PUT, or DELETE means that the server has
not even tried to perform the operation. The client needs to resubmit
the entire request to the URL in the Location header.
An analogy may help. You go to a pharmacy with a prescription to be
filled. A 303 is the pharmacist saying “We’ve filled your
prescription. Go to the next window to pick up your medicine.” A 307
is the pharmacist saying “We’ve run out of that medicine. Go to the
pharmacy next door.”
Response headers: The Location header contains the URL to which
the client should resubmit the request.
Entity-body: Should contain a hypermedia link to the new URL, as with 301.

308 (Permanent Redirect)

Importance: Medium.
Defined in: Internet-Draft “draft-reschke-http-status-308”
A 308 in response to a GET request is the same as a 301 (Moved
Permanently). But a 308 in response to an unsafe request works like
307 (Temporary Redirect): the client should resubmit the request to
the URL given in the Location header. The difference is that the
client should also use the URL given in the Location header for any
future requests it was thinking about making.
To continue the pharmacy analogy from my discussion of 307 (Temporary
Redirect), a 308 response code is a pharmacy that’s gone out of
business. Coming back later won’t help. You’ll have to take your
prescription, and all future business, to the pharmacy next door.
This status code is defined in an extension to HTTP which is still in
Internet-Draft form. Even after it does become an RFC, it will
probably be safer to use 307 even for permanent redirects. Clients may
not undertand what a 308 response code means.

4xx: Client-Side Error

These status codes indicate that something is wrong on the client
side. There’s a problem with authentication, with the format of the
representation, with the timing of the request, or with the HTTP
client itself. The client needs to fix something on its end.
Problem details (see Chapter 10) are most useful for the 4xx series
of codes. For most of these error codes I say that the
entity-body may contain a “document.” Unless you’re using a
representation format with a built-in error reporting mechanism, I
suggest you make that document a problem detail.
400 (Bad Request)

Importance: Very high.
This is the generic client-side error status, used when no other 4xx
error code is appropriate. It’s commonly used when the client submits
a representation along with a PUT or POST request, and the
representation is in the right format, but it doesn’t make any sense.
Entity-body: May contain a document explaining the server’s view of
the client-side problem.

401 (Unauthorized)

Importance: High.
The client sent a request to a protected resource without providing
the proper authentication credentials. It may have provided the wrong
credentials, or none at all. The credentials may be a username and
password, an API key, or an authentication token—whatever the API
in question is expecting. It’s common for a client to make a request
for a URL and accept a 401 just so it knows what kind of credentials
to send and in what format. In fact, the HTTP Digest mode of
authentication depends on this behavior.
If the server doesn’t want to acknowledge the existence of the
resource to unauthorized users, it may lie and send a 404 (Not
Found) instead of a 401. The downside of this is that clients need to
know, in advance, what kind of authentication the server expects for
that resource. Protocols like HTTP Digest won’t work.
Response headers: The WWW-Authenticate header describes what kind
of authentication the server will accept.
Entity-body: A document describing the failure; why the credentials
(if any were provided) were rejected, and what credentials would be
accepted. If a human end-user can get credentials by signing up on a
website, or creating a “user account” resource, a hypermedia link to
the sign-up resource is also useful.

402 (Payment Required)

Importance: None.
Apart from its name, this status code is not defined in the HTTP
standard: it’s “reserved for future use.” This is because there’s no
micropayment system for HTTP. That said, if there ever is a
micropayment system for HTTP, APIs are among the first places that
system will start showing up. If you want to charge your users by the
HTTP request, and your relationship with them makes that
possible, you might have a use for this status code.
But there are already a lot of APIs that charge by the request,
and I don’t know of any that use this status code. It will probably
stay “reserved” forever.

403 (Forbidden)

Importance: Medium.
The client’s request is formed correctly, but the server just doesn’t want
to carry it out. This is not merely a case of insufficient
credentials: that would be 401 (Unauthorized). This is more like a
resource that is only accessible at certain times, or from certain IP
addresses.
A response of 403 implies that the client send a request to a resource
that really exists. As with 401 (Unauthorized), if the server
doesn’t want to give out even this information, it can lie and send a
404 (Not Found) instead.
If the client’s request is well formed, why is this status code in the
4xx series (client-side error) instead of the 5xx series (server-side
error)? Because the server made its decision based on some aspect of
the request other than its form: say, the time of day the request was
made.
Entity-body: An optional document explaining why the request was denied.

404 (Not Found)

Importance: High.
Probably the most famous HTTP status code. 404 indicates that the
server can’t map the client’s URL to a resource. Compare 410 (Gone),
which is slightly more helpful.
Remember that a 404 may be a lie to cover up a 403 or 401. It might be
that the resource exists, but the server doesn’t want to let the
client know about it.
Entity-body: An optional document explaining the error. The document
may contain a hypermedia control for creating a resource in this spot
(probably using HTTP PUT).

405 (Method Not Allowed)

Importance: Medium.
The client tried to use an HTTP method that this resource doesn’t
support. For instance, a read-only resource may support only GET and
HEAD. Collection resources (as defined by the collection pattern)
generally allow GET and POST, but not PUT or DELETE.
Response headers: The Allow header lists the HTTP methods that
this resource does support. The following is a sample header:
Allow: GET, POST

406 (Not Acceptable)

Importance: Medium.
The server may send this response code when the client places so many
restrictions on what it considers an acceptable representation
(probably using the Accept-* request headers) that the server can’t
send any representation at all. The server may instead choose to
ignore the client’s pickiness, and simply send its preferred
representation along with a response code of 200 (OK). This is
usually what happens on the human web.
Entity-body: A hypermedia document that links to acceptable
representations, in a format similar to that described in 300
(Multiple Choices).

407 (Proxy Authentication Required)

Importance: Low.
You’ll only see this status code from an HTTP proxy. It’s just like
401 (Unauthorized), except the problem is not that you can’t use the
API without credentials; it’s that you can’t use the proxy
without credentials. As with 401, the problem may be that the client
provided no credentials, or that the credentials provided are bad or
insufficient.
Request headers: To send credentials to the proxy, the client uses
the Proxy-Authorization header instead of the Authorization
header. The format is identical to that of Authorization.
Response headers: Instead of the Authenticate header, the proxy
fills the Proxy-Authenticate header with information about what kind
of authentication it expects. The format is identical to that of
Authenticate.
Note that both the proxy and the API may require credentials,
so the client may clear up a 407 only to be hit with a 401
(Unauthorized).
Entity-body: A document describing the failure, like the one I
described for status code 401.

408 (Request Timeout)

Importance: Low.
If an HTTP client opens a connection to the server, but never sends a
request (or never sends the blank line that signals the end of the
request), the server should eventually send a 408 response code and
close the connection.

409 (Conflict)

Importance: Very high.
The client tried to create an impossible or inconsistent resource
state on the server. What is “impossible” or “inconsistent” depends on
the API’s application semantics. A collection-based API may allow a
client to DELETE an empty collection, but send 409 when the client
tries to DELETE a collection that still contains members.
Response headers: If the conflict is caused by the existence of some
other resource (e.g., the client tries to create a special resource
that already exists), the Location header should link to the URL of
that resource: that is, the source of the conflict.
Entity-body: Should contain a document that describes the conflicts,
so that the client can resolve them if possible.

410 (Gone)

Importance: Medium.
This response code is like 404 (Not Found), but it provides a little
more information. It’s used when the server knows that the requested
URL used to refer to a resource, but no longer does. The server
doesn’t know any new URL for the resource; if it did, it would send a
301 (Permanent Redirect).
Like the permanent redirect, a 410 response code has the implication
that the client should remove the current URL from its vocabulary, and
stop making requests for it. Unlike the permanent redirect, the 410
offers no replacement for the bad URL: it’s just gone. RFC 2616
suggests using a 410 response code “for limited-time, promotional
services and for resources belonging to individuals no longer working
at the server’s site.”
You might be tempted to send this response code in response to a
successful DELETE request, but that’s a little too cute. The client
wouldn’t know whether it deleted the resource or whether it was gone
before it made their request. The correct response to a successful
DELETE request is 200 (OK).

411 (Length Required)

Importance: Low to medium.
An HTTP request that includes a representation should set the
Content-Length request header to the length (in bytes) of the
entity-body. Sometimes this is inconvenient for the client: for
instance, when the representation is being streamed from some other
source. So HTTP doesn’t require a client to send the Content-Length
header with each request. However, the HTTP server is within its
rights to require it for any given request. The server is allowed to
interrupt any request that starts sending a representation without
having provided a Content-Length, and demand that the client
resubmit the request with a Content-Length header. This is the
response code that goes along with the interruption.
If the client lies about the length, or otherwise sends too large a
representation, the server may interrupt it and close the connection,
but in that case, the response code is 413 (Request Entity Too
Large).

412 (Precondition Failed)

Importance: Medium.
The client specified one or more preconditions in its request headers,
effectively telling the server to carry out its request only if
certain conditions were met. Those conditions were in fact not met, so
instead of carrying out the request the server sends this status code.
A common precondition is If-Unmodified-Since. (I covered this in
Chapter 11.) The client may PUT a request to modify a resource, but
ask that the changes take effect only if no one else has modified the
resource since the client last fetched it. Without the precondition,
the client might overwrite someone else’s changes without realizing
it, or might cause a 409 (Conflict).
Request headers: The client might get this response code by using
any of the If-Match, If-None-Match, If-Modified-Since, or
If-Unmodified-Since headers.
If-None-Match is a bit special. If the client specifies
If-None-Match when making a GET or HEAD request, and the
precondition fails, then the response code is not 412 but 304 (Not
Modified). This is the basis of conditional HTTP GET (also covered in
Chapter 11). If a PUT, POST, or DELETE request uses If-None-Match,
and the precondition fails, then the response code is 412. The
response code is also 412 when a precondition uses the If-Match or
If-Unmodified-Since headers, no matter what the HTTP method is.

413 (Request Entity Too Large)

Importance: Low to medium.
This is similar to 411 (Length Required) in that the server can
interrupt the client’s request with this status code, and close the
connection without waiting for the request to complete. The 411 status
code was for requests that didn’t specify the length of their
representation. This status code is for requests that send a
representation that’s too large for the server to handle.
A look-before-you-leap request (see Chapter 11) is the best way for a
client to avoid being interrupted with this error. If the LBYL request
gets a response code of 100 (Continue), the client can go ahead and
submit the full representation.
Response headers: The problem may be temporary and on the server
side (a lack of resources) rather than on the client side (the
representation is too damn big). If so, the server may set the
Retry-After header to a date or a number of seconds, and the client
can retry its request later.

414 (Request-URL Too Long)

Importance: Low.
The HTTP standard imposes no official limit on the length of a URL
(and, in my opinion, there shouldn’t be any). However, most existing
web servers impose an upper limit on the length of a URL, and an API
may do the same. The most common cause is a client that puts resource
state in the URL, when it should be in the entity-body. Deeply nested
data structures can also cause very long URLs. If this is a problem
for you, give your resources opaque URLs generated using random
numbers, rather than let the URLs get longer than, say, a kilobyte.
If a client connects to a server and starts sending an infinitely long
URL, even a server that imposes no predefined maximum URL length may
eventually interrupt the request with a 414 response, to free up the
TCP connection. The server may also simply drop the connection.

415 (Unsupported Media Type)

Importance: Medium.
The server sends this status code when the client sends a
representation in a media type it doesn’t understand. The server might
have been expecting application/vnd.collection+json and the client
sent application/json.
If the client sends a document that’s got the right media type but the
wrong format (such as an XML document written in the wrong vocabulary,
or a Collection+JSON document that uses the wrong ALPS profile), a
better response is the more generic 400 (Bad Request).

416 (Requested Range Not Satisfiable)

Importance: Low.
The server sends this status code when the client asks for a series of
byte-ranges from a representation, but the representation is actually
too small for any of the byte-ranges to apply. In other words, if you
ask for byte 100 of a 99-byte representation, you’ll get this status
code.
Request headers: This status code will only be sent when the
original request included the Range header request field. It will
not be sent if the original request included the If-Range header
request field;
Response headers: The server should send a Content-Range field
that tells the client the actual size of the representation.

417 (Expectation Failed)

Importance: Low to medium.
This response code is the flip side of 100 (Continue). If you make a
look-before-you-leap request to see whether the server will accept
your representation, and the server decides it will, you get a
response code 100 and you can go ahead. If the server decides it won’t
accept your representation, you get a response code 417, and you
shouldn’t bother sending your representation.

428 (Precondition Required)

Importance: Medium.
Defined in: RFC 6585.
In Chapter 11, I recommend that API implementations require that
clients make their PUT and PATCH requests conditional, as a way of
avoiding the lost update problem. Web servers enforce that rule with
this status code, which says that the client’s request is being
rejected because it wasn’t made conditional.
Entity-body: Should contain a document explaining which conditional
headers (probably If-Match or If-Unmodified-Since) the server will
accept.

429 (Too Many Requests)

Importance: Medium.
Defined in: RFC 6585.
This status code enforces a server’s rate limiting policy. The client
has been sending too many requests lately, and needs to back off.
A server is allowed to simply ignore requests that violate the rate
limiting policy, rather than respond to each of them with a 429.
Response headers: The Retry-After header should give a hint as to
when the server will accept requests from this client again.
Entity-body: Should contain a document explaining the rate limiting policy.

431 (Request Header Fields Too Large)

Importance: Low.
Defined in: RFC 6585
This is like 413 (Request Entity Too Large) or 414 (Request-URL Too
Long), but here the problem is that there is too much data in the
request header fields.
It’s legal for a server to put predefined limits on the size of the
request headers but I don’t think it’s a good idea. The Link header,
in particular, can legitimately get pretty big. If a client connects
to a server and starts sending a request with infinitely long headers,
the server can just interrupt the request with a 431 response. (The
server may also simply drop the connection.)
Entity-body: If there’s one particular header that’s too large (as
opposed to the headers collectively being too large), the entity-body
should mention which header is the problem.

451 (Unavailable For Legal Reasons)

Importance: Ideally very low.
Defined in: Internet-Draft “draft-tbray-http-legally-restricted-status”
The client’s request is well formed, but the server is legally
required to reject it. Usually this is because the server is
prohibited from serving a representation through some kind of
censorship. The server may also use this status code when refusing to
carry out a resource state transition.
This is considered a client-side error even though the request is
well formed and the legal requirement exists on the server side. After
all, that representation was censored for a reason. There must be
something wrong with you, citizen.

5xx: Server-Side Error

The 5xx series of status codes is for representing problems on the
server side. These codes usually mean the server is not in a state to
carry out the client’s request or even see whether it’s correct, and
that the client should retry its request later. Sometimes the server
can estimate when the client should retry its request, and
put that information into the Retry-After response header.
There are fewer 5xx status codes than 4xx status codes, not because
fewer things might go wrong on the server, but because there’s not
much point in being specific. The client can’t do anything to fix a
problem on the server.
Responses that use these status codes can all include an explanatory
document (perhaps a problem detail!) in the entity-body.
500 (Internal Server Error)

Importance: High.
This is the generic server error response. Most web frameworks send
this status code if they run request handler code that raises an
exception.

501 (Not Implemented)

Importance: Low.
The client tried to use a feature of HTTP (possibly an extended
feature) that the server doesn’t support.
The most common case is when a client tries to make a request that
uses an extension HTTP method like PATCH, which a plain web server
doesn’t support. This is similar to the response code 405 (Method Not
Allowed), but 405 implies that the client is using a recognized
method on a resource that doesn’t support it. A response code of 501
means that the server doesn’t recognize the method at all.

502 (Bad Gateway)

Importance: Low.
You’ll only get this response code from an HTTP proxy. It indicates
that there was a problem with the proxy, or between the proxy and the
upstream server, rather than a problem on the upstream server.
If the proxy can’t reach the upstream server at all, the response code
will be 504 (Gateway Timeout) instead.

503 (Service Unavailable)

Importance: Medium to high.
This status code means that the HTTP server is up, but the application
underlying the API isn’t working properly. The most likely cause is
resource starvation: too many requests are coming in at once for the
API to handle them all.
Since repeated client requests are probably what’s causing the
problem, the HTTP server always has the option of refusing to accept a
client request, rather than accepting it only to send a 503 response
code.
Response headers: The server may send a Retry-After header telling
the client when to submit the request again.

504 (Gateway Timeout)

Importance: Low.
Like 502 (Bad Gateway), you’ll only see this from an HTTP
proxy. This status code signals that the proxy couldn’t connect to the
upstream server.

505 (HTTP Version Not Supported)

Importance: Very low.
The server doesn’t support the version of HTTP the client is trying to
use. You probably won’t see this status code until HTTP 2.0 is
announced. Even then, you’ll probably only see it when trying to use
HTTP 2.0 features on an HTTP 1.1 server.
Entity-body: Should contain a document describing which versions of
HTTP the server does support.

511 (Network Authentication Required)

Importance: Medium.
Defined in: RFC 6585
The 511 status code is an attempt to make captive portals less
annoying. A captive portal is the website that takes over your web
browser when you try to use the wireless network in a coffee shop or
hotel room. No matter what web page you request, the captive portal
serves the status code 200 (OK) along with a page telling you how to
pay for your Internet access. Sometimes the portal serves the status
code 302 (Found) and redirects the browser to a page telling you
how to pay for Internet access.
When this happens in your web browser, it’s annoying, but you’re a
human being. You can read the web page and figure out how to get on
the Web proper. When this happens to your API client, it’s
dangerous. As far as an automated client is concerned, it looks as if
the API has shut down and been replaced with an illegible HTML
document that probably says “sorry, we’re closed.” This will crash the
client, potentially leaving its data in an inconsistent state.
The 511 status code doesn’t make it any easier for an API client to
get past the captive portal, but it does give the client a chance to
figure out what’s going on and exit gracefully, instead of panicking
and crashing.
Serving the 511 status code requires that the developer of a captive
portal give a damn about user experience, so I don’t anticipate it
coming into wide use anytime soon. But anticipating a 511 status code
on the client side might let you avoid the worst case if someone fires
up your API client in a coffee shop.

Appendix B. The Header Codex

HTTP headers are bits of metadata that describe the protocol semantics
of an HTTP request or response. Some headers, like If-None-Match,
are used only in requests. They’re the client’s way of telling the
server how to handle the request. Some, like ETag, are used only in
responses. They’re the server’s way of conveying information about how
the request was processed, or information about the underlying
resource that’s not present in the representation. Some headers can be
used either in a request or response, like the all-important
Content-Type, which contains the media type of the entity-body.
There are two excellent guides to the standard HTTP headers. One’s in
RFC 2616, the HTTP standard itself, and the other’s in print, in
Appendix C of HTTP: The Definitive Guide by David
Gourley and Brian Totty (O’Reilly). In this appendix, I’m giving a somewhat perfunctory
description of the standard HTTP headers, with an eye toward their
use in RESTful APIs, as opposed to other HTTP-based applications like
websites and HTTP proxies.
Custom HTTP Headers

Creating a new HTTP method or status code is a very big deal. It
basically requires writing an RFC. But anyone who runs an HTTP server is
allowed to define their own HTTP headers. AtomPub defines an HTTP
header called Slug (covered in an upcoming section). Amazon defines headers like
X-amz-acl and X-amz-date for its S3 API.
In RESTful Web Services, I gave some advice for when to define a
custom HTTP header and what to name it. Over the past few years, I’ve
changed my mind about both of these things. You probably shouldn’t
create a new HTTP header at all.
A new HTTP header is an extension to HTTP, just like a new HTTP method
or status code. If you create a new header, you must document it the
way the existing HTTP headers are documented: with a big chunk of
precisely worded human-readable documentation. The difference is that
when your users put in the work to learn about your custom HTTP
header, they can’t apply that knowledge to other HTTP servers. Your
custom header is a fiat standard, specific to your API.
The good news is that a lot of the use cases for new HTTP headers no longer apply. Hypermedia data formats are more numerous and
more flexible than they were just a few years ago. Information that
used to go into custom headers can now go directly into a
representation. If you need to add new application semantics to an
existing media type, you can put that information in a
machine-readable profile instead of in a new HTTP header.
You should only create a new HTTP header if you find there’s something
missing from the HTTP protocol itself. Would the world be a better
place if your header became a standard extension to HTTP? In that
case, go ahead and define a new header. Maybe it will become a standard extension, the way the Link header was.
As for naming: I used to advise that custom header names start with
the string X- for “extension.” If you wanted to call your custom
header My-Header, I’d suggest you call it X-My-Header instead. RFC
6648 changed my mind. You shouldn’t do this. Just go with My-Header.
The hard-learned lesson from other protocols (as described in RFC
6646) is that the X- prefix is more trouble than it’s worth. If
your custom HTTP header ever is standardized, you won’t be able to
remove the X- because that would break all the existing
clients. This means the X- prefix doesn’t reliably indicate the
presence of an extension. Since X- doesn’t serve the purpose it was
designed for, there’s no reason to use it. Just pick a good, unique
name to start out with.

The Headers

These are the 46 headers listed in RFC 2616, as well as eight headers
defined in extension RFCs and Internet-Drafts. I’ll present a short
section for each header, saying whether it’s found in HTTP requests,
responses, or both. I’ll give my opinion as to how useful the header
is for APIs. I’ll give a short description of the header, which will
get a little longer for tricky or especially important headers. I
won’t go into detail on what the header values should look like. I
figure you’re smart and you can look up more detailed information as
needed.
Unless otherwise noted, the formal definition of a header can be found
in RFC 2616.
Accept

Type: Request header.
Importance: Medium.
The client sends an Accept header to tell the server what media
types it would prefer the server use for its representations. This is
the “content negotiation” technique I covered in Chapter 11. One
client might want a HAL document in XML format (Accept:
application/hal+xml); another might want the HAL+JSON representation
of the same HAL document (Accept: application/hal+json).
If you implement a parser for this header (or any of the other
Accept-* headers), see RFC 2616 for the details. The format
is a lot more complicated than you might think.

Accept-Charset

Type: Request header.
Importance: Low.
The client sends an Accept-Charset header to tell the server what
character encoding it would like the server to use in its
representations. One client might want the representation of a
resource containing Japanese text to be encoded in UTF-8; another
might want a Shift-JIS encoding of the same data.
Personally, I think everyone should use UTF-8 or UTF-16 for everything.

Accept-Encoding

Type: Request header.
Importance: Medium to high.
The client sends an Accept-Encoding header to tell the server that
it can save some bandwidth by compressing the response entity-body
with a well-known algorithm like gzip. Despite the name,
this has nothing to do with character encodings; that’s
Accept-Charset.
The value of Accept-Encoding is called a “content-coding.” The IANA
keeps a registry of acceptable content-codings at
http://www.iana.org/assignments/http-parameters/http-parameters.xml. In
general, content-codings are only used to compress data as it goes
over the wire.

Accept-Language

Type: Request header.
Importance: Low.
The client sends an Accept-Language header to tell the server what
human language it would like the server to use in its
representations. This doesn’t affect the format, of course, but it can
affect the data.
A value for Accept-Language is called a language tag. You’re
probably familiar with a few language tags: English is en and
American English specifically is en-us. RFC 5646 sets out the format
for language tags, and the IANA keeps a registry of languages (en)
and regions (us) in machine-readable form at this IANA page.

Accept-Ranges

Type: Response header.
Importance: Low to medium.
The server sends this header to indicate that it supports partial HTTP
GET (see Chapter 11) for a resource. The value of the header must be
the literal string bytes.
Accept-Ranges: bytes
This should only come up when the client’s download of a
representation is interrupted. If the server set the Accept-Ranges
header in the original response, the client knows it can make a second
request to the same URL, providing an appropriate Range header. The
client can then then restart the download at the point of
interruption, and not have to download the entire representation again.

Age

Type: Response header.
Importance: Low.
If the response entity-body does not come fresh from the server, the
Age header is a measure of how long ago, in seconds, the entity-body
left the server. This header is usually set by HTTP caches, so that
the client knows it might be getting an old copy of a representation.

Allow

Type: Response header.
Importance: Low to medium.
I briefly discuss this header in Chapter 3. It’s sent in response to
an OPTIONS request and tells the client a bit about the resource’s
protocol semantics: specifically, which HTTP methods this resource
will respond to.
This header isn’t very important, because hypermedia makes a much
better discovery mechanism than the OPTIONS method. But some APIs do
implement support for OPTIONS.

Authorization

Type: Request header.
Importance: Very high.
This request header contains authorization credentials, such as a
username and password, which the client has encoded according to some
agreed-upon scheme. The server decodes the credentials and decides
whether or not to carry out the request.
This is the only authorization header you should ever need
(except for Proxy-Authorization, which works on a different level),
because it’s extensible. The most common schemes are OAuth and HTTP
Basic, but the scheme can be anything, so long as both client and
server understand it.
There are some other authentication headers that work on top of
Authentication, notably X-WSSE, but those standards are pretty
much dead, so I don’t cover them in this book.

Cache-Control

Type: Request and response header.
Importance: High.
This header contains a directive to any caches between the client and
the server (including local caches on the client or server machines
themselves). It spells out the rules for how the data should be cached
and when it should be dumped from the cache. This is a very
complicated header, but I cover the most basic caching directives
(“cache” and “don’t cache”) in Chapter 11.

Connection

Type: Response header.
Importance: Low.
Most of an HTTP response is a communication from the server to the
client. Intermediaries like proxies can look at the response, but
nothing in there is aimed at them. But a server can insert extra
headers that are aimed at a proxy, and one proxy can insert headers
that are aimed at the next proxy in a chain. When this happens, the
special headers are named in the Connection header. These headers
apply to the TCP connection between one machine and another, not to
the HTTP connection between server and client. Before passing on the
response, the proxy is supposed to remove the special headers and the
Connection header itself. Of course, it may add its own special
communications, and a new Connection header, if it wants.
Here’s a quick example, since this isn’t terribly relevant to this
book. The server might send these three HTTP headers in a response
that goes through a proxy:
Content-Type: text/plain
Proxy-Directive: Deliver this as fast as you can!
Connection: Proxy-Directive
Proxy-Directive is a custom HTTP header. The server and the proxy
understand it, but the client might not. The proxy would remove
Proxy-Directive and Connection, and send the one remaining header
to the client:
Content-Type: text/plain
If you’re writing a client and not using proxies, the only value
you’re likely to see for Connection is close. That
just says that the server will close the TCP connection after
completing this request.

Content-Disposition

Type: Response header.
Importance: Medium.
Defined in: RFC 6266.
The Content-Disposition header is generally used to indicate that
the client should save the entity-body as a file, rather than
processing it as a representation. When used, it looks something like
this:
Content-Disposition: attachment; filename="bug-1234-attachment-1"
Any API that can store uploaded files should use Content-Disposition
to distinguish the uploaded files from documents generated by
the API. If an API serves a malformed document, that means there’s a
bug in the API—unless the malformed document was uploaded by a client
and the API is just accurately representing what was uploaded.
In this example, the value attachment says that this
entity-body is an attachment, and the filename parameter suggests
which filename to save the document as. That parameter opens up a can
of worms, security-wise, which is why the Content-Disposition header
was explicitly excluded from the HTTP standard. When writing a client
that respects Content-Disposition, or when allowing API clients to
name the files they upload, see the advice in RFC 6266, and please be
careful.

Content-Encoding

Type: Response header.
Importance: Medium to high.
This response header is the counterpart to the request header
Accept-Encoding. The request header asks the server to compress the
entity-body using a certain algorithm. This header tells the client
which algorithm, if any, the server actually used.
As with Accept-Encoding, the value of this header is called a
“content-coding”, and the IANA keeps a registry of acceptable
content-codings at
http://www.iana.org/assignments/http-parameters/http-parameters.xml. In
theory, the content-coding could be any sort of reversible data
transformation, but all the registered content-codings are ways of
compressing data.

Content-Language

Type: Response header.
Importance: Medium.
This response header is the counterpart to the Accept-Language
request header, or to a corresponding variable set in a resource’s
URI. It specifies the natural language a human must understand to get
meaning out of the entity-body.
Like all the Accept-* headers and their response equivalents, this
header may contain multiple values. If the entity-body is a movie in
Mandarin with Japanese subtitles, the value for Content-Language
might be zh-guoyu,jp. If one English phrase shows up in
the movie, en would probably not show up in the
Content-Language header.

Content-Length

Type: Response header.
Importance: High.
This response header gives the size of the entity-body in bytes. This
is important for two reasons: first, a client can read this ahead of
time and prepare for a small entity-body or a large one. Second, a
client can make a HEAD request to find out how large the entity-body
is, without actually requesting it. The value of Content-Length
might affect the client’s decision to fetch the entire entity-body,
fetch part of it with Range, or not fetch it at all.

Content-Location

Type: Response header.
Importance: Low.
This header tells the client the canonical URL of the resource it
requested. Unlike with the value of the Location header, this is
purely informative. The client is not expected to start using the new
URL.
This is mainly useful for APIs that assign different URLs to
different representations of a single resource. If the client wants to
link to the specific representation obtained through content
negotiation, it can use the URI given in Content-Location. So if you
request /documents/104, and use the Accept and Accept-Language
headers to specify an HTML representation written in English, you
might get back a response that specifies /documents/104.html.en as
the value for Content-Location. That’s the link to one specific
representation of the resource.
Note that this header is a simple hypermedia control. It works the
same way as a link with the IANA-registered link relation canonical.

Content-MD5

Type: Response header.
Importance: Low to medium.
This is a cryptographic checksum of the entity-body. The client can
use this to check whether or not the entity-body was corrupted in
transit. An attacker (such as a man-in-the-middle) can change the
entity-body and change the Content-MD5 header to match, so it’s no
good for security, just error detection.

Content-Range

Type: Response header.
Importance: Low to medium.
When the client makes a partial GET request with the Range request
header, this response header says what part of the representation the
client is getting.

Content-Type

Type: Request and response header.
Importance: Very high.
The most famous HTTP header, and probably the most important,
Content-Type gives the media type of the entity-body. The media type serves three purposes:
	
It determines which parser the recipient should use to parse the
entity-body.

	
It often determines the representation’s protocol semantics—which
parts of the representation are hypermedia controls, and what HTTP
requests can be triggered by activating those controls.

	
It may also determine the representation’s application
semantics—what the representation means in terms of real-world concepts and this specific
API.

There are other ways of conveying application and protocol semantics,
such as links to profiles, but Content-Type is the main one. This is
why it’s such a bad idea to serve application/json as your media
type. You’re passing up a big opportunity.
When serving a document that’s described by a media type and a
profile, you should serve a Link header with a link to the profile.

Cookie

Type: Request header.
Importance: High on the human web, low in the world of APIs.
Defined in: RFC 2109.
This is probably the second-most-famous HTTP header, after
Content-Type, but it’s not in the HTTP standard; it’s a Netscape
extension.
A cookie is an agreement between the client and the server where the
server gets to store some semipersistent state on the client side
using the Set-Cookie header (more on this in an upcoming section). Once the client gets a
cookie, it’s expected to return it with every subsequent HTTP request
to that server, by setting the Cookie header once for each of its
cookies. Since the data is sent invisibly in the HTTP headers with
every request, it looks like the client and server are sharing state.
Cookies have a bad reputation in REST circles for two reasons. First,
the “state” they contain is often just a session ID: a
short alphanumeric key that ties into a much larger data structure on
the server. This destroys the principle of statelessness, since
application state is being kept on the server.
More subtly, once a client accepts a cookie, it’s supposed to submit it with all subsequent
requests for a certain time. The server is telling the client that it
can no longer make the requests it made precookie. This also violates
the principle of statelessness.
If you must use cookies, make sure you store all the state on the
client side. Otherwise, you’ll lose a lot of the scalability benefits
of REST.

Date

Type: Request and response header.
Importance: High for request, required for response.
As a request header, this represents the time on the client at the
time the request was sent. As a response header, it represents the
time on the server at the time the request was fulfilled. The
response-header version of Date is used by caches when calculating
whether a cached document is still fresh.

ETag

Type: Response header.
Importance: Very high.
The value of ETag is an opaque string designating a specific version
of a representation. Whenever the representation changes, the ETag
should also change.
Servers should send ETag in response to GET requests whenever
possible. As I show in Chapter 11, clients can make a conditional GET
request by sending a previous value of ETag as the value of the
If-None-Match request header. If the representation hasn’t changed,
the ETag hasn’t changed either, and the server can save time and
bandwidth by not sending the representation again.
The main driver of conditional GET requests is the simpler
Last-Modified response header, and its request counterpart
If-Modified-Since. The main purpose of ETag is to provide a second
line of defense. If a representation changes twice in one second, it
will take on only one value for Last-Modified-Since, but two
different values for ETag.
If there’s an intermediary between your server and the client that
modifies your representations (such as Apache’s mod_compress module,
which transparently compresses representations), that intermediary
will also change the value of ETag, in ways that may break
conditional requests.

Expect

Type: Request header.
Importance: Medium, but rarely used.
This header is used to signal a look-before-you-leap request (covered
in Chapter 11). The server will send the response code 100
(Continue) if the client should “leap” ahead
and make the real request. It will send the response code 417
(Expectation Failed) if the client should not
“leap.”

Expires

Type: Response header.
Importance: Medium.
This header tells the client, or a proxy between the server and
client, that it may cache the HTTP response (not just the
entity-body!) until a certain time. This is useful because even a
conditional HTTP GET that ends up doing nothing has the overhead of an
HTTP request. By paying attention to Expires, a client can avoid the
need to make any HTTP requests at all—at least for a while.
It’s usually easier to use the max-age caching directive of the
Cache-Control header. (That’s the one I covered back in Chapter 11.) That is, it’s easier to say “this representation should be good
for about an hour” than to calculate the exact time an hour from
now. But if the server knows exactly when a representation will change
(because it changes at the same time every hour, every day, or every
week), Expires is better.
The client should take the value of Expires as a rough guide, not as
a promise that the entity-body won’t change until that time.

From

Type: Request header.
Importance: Very low.
This header works just like the From header in an email message. It
gives an email address associated with the person making the
request. This is never used on the World Wide Web because of privacy
concerns, and it’s never used in the world of APIs, where we have
other ways of identifying clients, like OAuth tokens.

Host

Type: Request header.
Importance: Required.
This header contains the domain name part of the request URL. If a client
makes a GET request for http://www.example.com/page.html, then the
URL that actually gets requested is /page.html and the value of the
Host header is www.example.com or
www.example.com:80.
From the client’s point of view, this may seem like a strange header
to require. It’s required because an HTTP server can host any number
of domains on a single IP address. This feature is called
“name-based virtual hosting,” and it saves someone who
owns multiple domain names from having to buy a separate computer
and/or network card for each one.
The problem with name-based virtual hosting is that when the client
opens up a TCP connection, it connects to a server based on its IP
address, not its domain name. Without the Host header to contain the
domain name, an HTTP server would have no idea which of its virtual
hosts was the target of the client’s request.

If-Match

Type: Request header.
Importance: High.
This header is best described in terms of other headers. It’s used
like If-Unmodified-Since (described later), to make HTTP actions
other than GET conditional—generally to avoid the lost update problem
I mentioned in Chapter 11. But where If-Unmodified-Since takes a
time as its value, this header takes an ETag as its value.
Tersely, this header is to If-None-Match and ETag as
If-Unmodified-Since is to If-Modified-Since and Last-Modified.

If-Modified-Since

Type: Request header.
Importance: Very high.
This request header is the backbone of conditional HTTP GET. Its value
is a value the client found in the Last-Modified response header
when it made a previous GET request to this resource. When the client
sends that value as If-Modified-Since, it’s asking to get a
representation only if the representation has changed since the last
request.
If the representation has in fact changed since that last request, its
new Last-Modified date is more recent than the previous one. That means that
the condition If-Modified-Since is met, and the server sends the new
representation. If the resource has not changed, the Last-Modified
date is the same as it was, and the condition If-Modified-Since
fails. The server sends a response code of 304 (Not
Modified) and no entity-body. That is, conditional HTTP GET
succeeds if this condition fails.
Since Last-Modified is only accurate to within one second,
conditional HTTP GET can occasionally give the wrong result if it
relies only on If-Modified-Since. This is the main reason why we
also use ETag and If-None-Match.

If-None-Match

Type: Request header.
Importance: Very high.
This header is also used in conditional HTTP GET. Its value is taken
from the ETag response header sent with a previous GET request.
If the representation’s ETag has changed since that last request, the
condition If-None-Match succeeds and the server sends the new
representation. If the ETag is the same as before, the condition
fails, and the server sends a response code of 304 (“Not
Modified”) with no entity-body.

If-Range

Type: Request header.
Importance: Low.
This header is used to make a conditional partial GET request. The
value of the header comes from the ETag or Last-Modified response
header from a previous range request. The server sends the new range
only if that part of the entity-body has changed. Otherwise the
server sends a 304 (Not Modified), even if something
changed elsewhere in the entity-body.
Conditional partial GET is not used very often, because it’s very
unlikely that a client will fetch a few bytes from a larger
representation, and then try to fetch only those same bytes later.

If-Unmodified-Since

Type: Request header.
Importance: Medium.
Normally a client uses the value of the response header
Last-Modified as the value of the request header If-Modified-Since
to perform a conditional GET request. This header also takes the value
of Last-Modified, but it’s usually used for making HTTP actions
other than GET into conditional actions. The goal is usually to avoid
the lost update problem I discussed in Chapter 11.
If you make your PUT or PATCH request conditional on
If-Unmodified-Since, then if someone else has changed the resource
without your knowledge, your request will always get a response code
of 412 (Precondition Failed). You can refetch the
representation and decide what to do with the new version that someone
else modified.
This header can be used with GET, too. See my discussion of the
Range header for an example.

Last-Modified

Type: Response header.
Importance: Very high.
This header makes conditional HTTP GET possible. It tells the client
the last time the representation changed. The client can keep track of
this date and use it in the If-Modified-Since header of a future
request.
In web applications, Last-Modified is usually the current time,
which makes conditional HTTP GET useless. APIs should try to do
better, since API clients often bombard their servers with
requests for the same URLs (especially the billboard URL) over and
over again.

Link

Type: Request and response header.
Defined in: RFC 5988.
This header serves as a general-purpose hypermedia link. I cover this
header many times in the book, notably in Chapter 4 and Chapter 11. Its value is a URL, in angle brackets, and then some parameters
(like rel) that give context to the URL. For example:
Link: <http://www.example.com/story/part2>; rel="next"
Although rel is the most important parameter associated with this
header, RFC 5988 defines a number of others: hreflang, media,
title, title*, and type. The hreflang and type parameters
designate the human language and media type of the target link, just
like in HTML’s <a> tag. The title and title* parameters are
different ways of providing a human-readable title for the link.
The media parameter works like the media attribute of an HTML
<style> tag: it explains which display media can be used to
display the representation at the other end of the link (screen,
print, braille, and so on).
Although Link is usually a response header, there are situations
where the client needs to send it with a request. If a document
requires a profile to make sense of its application semantics, the
client that POSTs, PUTs, or PATCHes that document should send a Link
header along with the document. The value of Link should point to
the profile document and have rel="profile". The same logic applies
to a document that only makes sense when combined with a JSON-LD context.
It’s legal to give the Link header more than one value:
Link: </story/part3>; rel="next", </story/part1>; rel="previous"
Or to send the header itself more than once:
Link: </story/part3>; rel="next"
Link: </story/part1>; rel="previous"
This is true of some other HTTP headers as well, but Link and
Link-Template are the headers where you’re most likely to need this
feature.

Link-Template

Type: Response header.
Defined in: Expired Internet-Draft “draft-nottingham-link-template”.
I covered this header in in Chapter 11. It works just like Link,
except that its value is a URI Template (RFC 5988). This gives it
hypermedia capabilities comparable to an HTML form with
action="GET". That’s a lot more flexible than Link, which is
comparable to an HTML <a> tag.
The Link-Template header supports all of Link’s parameters, plus
one more, “var-base,” which I covered in Chapter 11.

Location

Type: Response header.
Importance: Very high.
This is one of two HTTP headers defined in RFC 2616 that act as
hypermedia links. The other one, Content-Location, has a simple,
consistent meaning, but the meaning of a Location link depends on
the status code.
This header is strongly associated with the 3xx
(Redirection) family of status codes, and much of the
confusion surrounding HTTP redirects has to do with the fact that
Location has a slightly different meaning for each type of redirect:
	
When the client’s request creates a brand new resource, the response
 code is 201 (Created), and the Location header is a link to the
 newly created resource.

	When the server can’t decide which representation to serve, and each
 representation has its own URL, the status code is 300 (+Multiple
 Choices+), and the +Location+ header links to the representation the
 server prefers:
This is different from the more common situation where there are
 multiple representations, each with its own URL, and the client uses
 content negotiation to choose between them. In that case, the status
 code is 200 (+OK+), +Location+ is not provided, and
 +Content-Location+ points to the canonical URL of the representation
 that the client negotiated.

	
When the client’s request causes a resource to change its URL, the
 response code is 301 (Moved Permanently) and the Location
 header is a link to the original resource at its new location.

	
When the client makes a request to the “wrong” URL, but the server
 can still figure out which resource the client is referring to, the
 Location header is a link to the “right” URL. The response code
 might be 301, 302 (Found), 307 (Temporary
 Redirect), or 308 (Permanent Redirect), depending on why
 exactly this URL is the “wrong” one.

	
When the response code is 303 (See Other), the resource at the
 other end of Location is not a representation of the requested
 resource; it’s a message explaining how the request was
 processed. This is usually used by resources that respond to POST
 requests but that don’t have representations of their own.

Max-Forwards

Type: Request header.
Importance: Very low.
This header is mainly used with the TRACE method, which is used to
track the proxies that handle a client’s HTTP request. I don’t cover
TRACE in this book, but as part of a TRACE request, Max-Forwards is
used to limit how many proxies the request can be sent through.

Pragma

Type: Request or response.
Importance: Very low.
The Pragma header is a slot for special directives between the
client, server, and intermediaries such as proxies. The only official
pragma is no-cache, which is obsolete in HTTP 1.1; it’s
the same as sending a value of no-cache for the
Cache-Control header.
You may define your own HTTP pragmas, but it’s better to define your
own HTTP headers instead. See, (Not that you should do that, either.)

Prefer

Type: Request header.
Importance: Currently low, potentially high.
Defined in: Internet-Draft “draft-snell-http-prefer.”
The Prefer header lets the client communicate its preferences to the
server on various minor issues that aren’t covered by the HTTP
standard or by the rules associated with a media type. The
Internet-Draft that defines Prefer proposes an IANA registry of
preferences that other web standards can add to, but it also defines
six preferences for dealing with three issues that show up frequently
in APIs:
	
The handling=lenient preference tells the server to try to process
 the request even if there are minor problems with the syntax or
 semantics. The handling=strict preference is the opposite: it
 tells the server to send an error condition as soon as it finds even
 the slightest problem.

	
The respond-async preference lets the server know that if
 fulfilling the request is going to take a really long time, the
 client wants the server to send a response code 202 (Accepted)
 instead of making the client wait around for a response. The wait
 preference can be set to a number of seconds (e.g., wait=10), which
 represents how long the client is willing to wait for a real
 response.

	
The return=minimal preference is sent along with a request that
 creates or modifies a resource (PUT, POST, or PATCH). It’s the
 client’s way of telling the server that it doesn’t want a full
 representation of the new or modified resource resource. The
 return=representation preference is the opposite. It means the
 client does want a full representation, even if the server wouldn’t
 normally send one.

If you define your own preferences, keep in mind that they have the
same problems as custom HTTP headers. A new preference is an extension
to HTTP. You must document it very precisely, the way the other
preferences are documented. Your new preference will be a fiat
standard, so most clients won’t support it. All in all, it’s usually
easier to create a new hypermedia control than to define a new
preference.

Preference-Applied

Type: Response header.
Importance: A little less important than Prefer.
Defined in: Internet-Draft “draft-snell-http-prefer.”
When a server receives a request that uses Prefer, and decides to
accommodate some of the client’s preferences, it can mention which
preferences it accommodated in the Preference-Applied
header. Sometimes it’s not clear if an error was because of
handling=strict, or if the error would have happened anyway; or
whether an entity-body is small because of return=minimal or
because the representation is just small. The Preference-Applied
header makes it clear.

Proxy-Authenticate

Type: Response header.
Importance: Low to medium.
Some clients (especially in corporate environments) can only get HTTP
access through a proxy server. Some proxy servers require
authentication. This header is a proxy’s way of demanding
authentication. It’s sent along with a response code of 407
(Proxy Authentication Required), and it works just like
WWW-Authenticate, except it tells the client how to authenticate
with the proxy, not with the web server on the other end.
While the response to a WWW-Authenticate challenge goes into
Authorization, the response to a Proxy-Authenticate challenge goes
into Proxy-Authorization (see the next section). A single request may need to
include both Authorization and Proxy-Authorization headers: one to
authenticate with the API, the other to authenticate with the
proxy.
Since most APIs don’t include visible proxies in their architecture, this
header is not terribly relevant to the topics covered in this
book. But it may be relevant to a client, if there’s a proxy between
the client and the rest of the Web.

Proxy-Authorization

Type: Request header.
Importance: Low to medium.
This header is an attempt to get a request through a proxy that
demands authentication. It works similarly to Authorization. Its
format depends on the scheme defined in Proxy-Authenticate, just as
the format of Authorization depends on the scheme defined in
WWW-Authenticate.

Range

Type: Request.
Importance: Medium.
This header signifies the client’s attempt to request only part of a
resource’s representation (see Chapter 11). A client typically sends
this header because it tried earlier to download a large
representation and got cut off. Now it’s back for the rest of the
representation. Because of this, this header is usually coupled with
Unless-Modified-Since. If the representation has changed since your
last request, you’ll need to GET it from the beginning.

Referer

Type: Request header.
Importance: High on the World Wide Web, low for APIs.
When you click a link in your web browser, the browser sends an HTTP
request in which the value of the Referer header is the URL of the
page you were just on. That’s the URL that “refered” your
client to the URI you’re now requesting. Yes, it’s misspelled.
Though common on the human web, this header is rarely used in APIs. It can be used to convey a bit of application state
(the client’s recent path through the API) to the server.
I don’t consider the Referer header a hypermedia link, even though
its value is always a URL, because the header is sent from the client
to the server. Hypermedia links flow from the server to the client.

Retry-After

Type: Response header.
Importance: Low to medium.
This header usually comes with a response code that denotes failure:
either 413 (Request Entity Too Large), 429 (Too Many
Requests), or one of the 5xx series (Server-side
error). These codes tell a client that while the server
couldn’t fulfill the request right now, it might be able to fulfill
the same request at a later time. The value of the Retry-After
header is the time when the client should try again, or the number of
seconds it should wait.
If the problem is that the server is overloaded, and the server
chooses every client’s Retry-After value using the same rules, that
just guarantees the same clients will make the same requests in the
same order a little later, overloading the server again. The server
should use some randomization technique to vary Retry-After, similar
to Ethernet’s backoff period.

Set-Cookie

Type: Response header.
Importance: High on the World Wide Web, low for APIs.
Defined in: RFC 2106.
This is an attempt on the server’s part to set some semipersistent
state in a cookie on the client side. The client is supposed to send
an appropriate Cookie header with all future requests, until the
cookie’s expiration date. The client may ignore this header (and
that’s often a good idea), but there’s no guarantee that future
requests will get a good response unless they provide the Cookie
header. This violates the principle of statelessness, which is why I
don’t recommend using cookies in APIs.

Slug

Type: Request header.
Importance: Fairly high, but only in AtomPub APIs.
Defined in: RFC 5023.
When an AtomPub client POSTs a binary document (like a picture) to a
feed, it may put a title for that document in the Slug header. This
makes the upload a one-step process instead of a two-step process
(upload the file with POST, then edit its metadata with PUT).

TE

Type: Request header.
Importance: Low.
This is another Accept-type header, one that lets the
client specify which transfer encodings it will accept (see the
Transfer-Encoding section for an explanation of transfer
encodings). HTTP: The Definitive Guide points out that a better name would have been
Accept-Transfer-Encoding.
A value for TE is called a “transfer-coding”, and the IANA keeps a
registry of acceptable transfer-codings.

Trailer

Type: Response header.
Importance: Low.
When a server sends an entity-body using chunked transfer encoding, it
may choose to put certain HTTP headers at the end of the entity-body
rather than before it (see below for details). This turns them from
headers into trailers. The server signals that it’s going to send a
header as a trailer by putting its name as the value of the header
called Trailer. Here’s one possible value for Trailer:
Trailer: Content-Length
The server will be providing a value for Content-Length once it’s
served the entity-body and it knows how many bytes it served.

Transfer-Encoding

Type: Response.
Importance: Low.
Transfer-Encoding has the same purpose as Content-Encoding: to
apply some temporary transform to the entity-body (usually
compression) that will be transparently undone on the other end. The
difference is that “the other end” may be a lot closer to the server
with Transfer-Encoding than with Content-Encoding.
Consider a setup in which an HTTP client communicates with a server
through a proxy. As far as Content-Encoding is concerned, the two
ends of the conversation are the server and the client. But as far as
Transfer-Encoding is concerned, there are two conversations
happening: one between the client and the proxy, and one between the
proxy and the server.
If the server compresses the entity-body and sets Content-Encoding:
gzip, the proxy will (probably) leave the entity-body alone and pass
it along, still compressed, to the client. But if the server sets
Transfer-Encoding: gzip, it’s the proxy’s job to decompress the
entity-body and pass it along, uncompressed, to the client.
As with TE, the value of this header is called a “transfer-coding”,
and the IANA keeps a registry of acceptable transfer-codings at
http://www.iana.org/assignments/http-parameters/http-parameters.xml. Most
of the transfer-codings refer to compression algorithms, and can also
be used as values for Content-Encoding, but there’s one value that’s
unique to Transfer-Encoding: chunked.
Sometimes a server needs to send an entity-body without knowing
important facts like how large it is. Rather than omitting HTTP
headers like Content-Length and Content-MD5 which rely on this
information, the server may decide to send the entity-body in chunks,
and put Content-Length and the like after the entity-body rather
than before. Sending Transfer-Encoding: "chunked" is the server’s
way of announcing it’s going to do this. By the time all the chunks
have been sent, the server knows the things it didn’t know before, and
it can send Content-Length and Content-MD5 as
“trailers” instead of “headers.”
It’s an HTTP 1.1 requirement that clients support chunked
transfer-encoding, but a lot of programmable clients don’t have this
support.

Upgrade

Type: Request header.
Importance: Low, potentially high in the future.
If you’d rather be using some protocol other than HTTP, you can tell
the server that by sending a Upgrade header. If the server happens
to speak the protocol you’d rather be using, it will send back a
response code of 101 (Switching Protocols) and
immediately begin speaking the new protocol.
RFC 2817 sets up yet another IANA registry
containing the possible values of the Upgrade header. Right now
there are only three values in the registry: HTTP, TLS/1.0 (that
is, HTTPS) and WebSocket.
Apart from WebSocket (a protocol defined for use by web browsers but
that doesn’t fit the REST paradigm), the Upgrade header isn’t used
very often right now. A client that wants to use HTTPS can just start
off using HTTPS. But there will come a time when the HTTP 2.0 standard
has been finalized, but before clients can assume that any given
server supports HTTP 2.0. During that time, the Upgrade header could
become quite popular.

User-Agent

Type: Request header.
Importance: High.
This header lets the server know what kind of software is making the
HTTP request. On the human web, this is a string that identifies the
brand of web browser. In the world of APIs, it usually identifies the
HTTP library or client library that was used to write the client. It
may identify a specific client program instead.
Soon after the Web became popular, servers started sniffing
User-Agent to determine what kind of browser was on the other
end. They then sent different representations based on the value of
User-Agent. This is a terrible idea. Not only does User-Agent
sniffing perpetuate incompatibilities between web browsers, it’s led
to an arms race inside the User-Agent header itself.
Almost every browser these days pretends to be Mozilla, because that
was the internal code name of the first web browser to become popular
(Netscape Navigator). A browser that doesn’t pretend to be Mozilla may
not get the representation it needs. Some pretend to be both Mozilla
and Internet Explorer, so they can trigger code originally intended
only to be run on Internet Explorer. A few browsers even allow the
user to select the User-Agent for every request, to trick servers
into sending the right representations. It’s a huge mess.
Don’t let history repeat itself. An API should only use User-Agent
to gather statistics and to deny access to poorly programmed
clients. It should not use User-Agent to tailor its representations
to specific clients. The same goes for other ways of identifying a
particular software agent, such as OAuth client credentials.

Vary

Type: Response header.
Importance: Low to medium.
The Vary header tells the client which request headers it can vary
to get different representations of a resource. Here’s a sample value:
Vary: Accept Accept-Language
That value tells the client that it can ask for the representation in
a different data format, by setting or changing the Accept
header. It can ask for the representation in a different language, by
setting or changing Accept-Language.
That value also tells a cache to cache (say) the Japanese
representation of the resource separately from the English
representation, even if the two representations have the same URL. The
Japanese representation isn’t a brand new byte stream that invalidates
the cached English version. The two requests sent different values for
a header that varies (Accept-Language), so the responses should be
cached separately.
If the value of Vary is *, that means that the
response should not be cached at all.

Via

Type: Request and response header.
Importance: Low.
When an HTTP request goes directly from the client to the server, or a
response goes directly from server to client, there is no Via
header. When there are intermediaries (like proxies) in the way, each
one slaps on a Via header on the request or response message. The
recipient of the message can look at the Via headers to see the path
the HTTP message took through the intermediaries.

Warning

Type: Response header (can technically be used with requests).
Importance: Low.
The Warning header is a supplement to the HTTP response code. It’s
usually inserted by an intermediary like a caching proxy, to tell the
user about possible problems that aren’t obvious from looking at the
response.
Like response codes, each HTTP warning has a three-digit numeric
value: a “warn-code.” Most warnings have to do with cache
behavior. This Warning says that the caching proxy at
localhost:9090 sent a cached response even though it knew the
response to be stale:
Warning: 110 localhost:9090 Response is stale
The warn-code 110 means “Response is stale” as surely as
the HTTP response code 404 means “Not Found.” The HTTP
standard defines seven warn-codes, which I won’t go into here.

WWW-Authenticate

Type: Response header.
Importance: Very high.
This header accompanies a response code of 401
(Unauthorized). It’s the server’s demand that the client
send some authentication next time it requests the URI. It also tells
the client what kind of authentication the server expects. This will
probably be HTTP Basic Auth, or some version of OAuth.

Appendix C. An API Designer’s Guide to the Fielding Dissertation

Throughout this book, I use the term “Fielding constraints” as a
conceptual shorthand for the principles that a RESTful system should
obey. I talk about “statelessness,” “the hypermedia constraint,” and
so on. This appendix is my attempt to explain in a slightly more
formal way what I mean by these terms and how they interact with each
other.
The Fielding constraints are the “architectural properties” of the Web
defined in Roy Fielding’s Ph.D dissertation.[60] It’s a difficult work for the average developer to
understand, a dense piece of reasoning written in an academic style
and operating at a higher level of abstraction than, say, an
RFC. So let me start off by showing you the practical benefits that
came out of Fielding’s work.
Roy Fielding spent most of the 1990s formalizing version 1.0 of the
HTTP protocol (in RFC 1945), and developing version 1.1 (which became
the famous RFC 2616). The Web was already a huge success, but its very
success revealed design problems that would have prevented it from
scaling further, to the level we enjoy today.
The Fielding dissertation lays out a number of properties that
web-like systems might have, and then picks out the properties that
make the Web successful. Then it selects constraints—the Fielding
constraints—which will make a generic network system look like the
Web. These constraints are REST: a formal architectural definition
that captures the essence of the Web.
At first glance, this is pie-in-the-sky thinking. The real Web didn’t
come from an architectural definition. It was cobbled together by
physicists and hackers. There’s no reason it should fit into a
computer scientist’s theoretical framework. And guess what: it didn’t
fit! There were lots of disconnects between the idealized web
described by the Fielding constraints, and the real-life Web of the
mid-1990s. The original definition of “resource” was too focused on
static documents. The popular “cookies” extension to HTTP (originally
defined in RFC 2109) was causing huge problems. Servers sometimes got
valid HTTP requests that they just couldn’t figure out how to handle.
This is where Fielding’s theorizing paid off. The disconnects between
the Fielding constraints and the real-life Web don’t mean his model is
useless. Those disconnects point out where the problems are! Fixing
them will make the real Web more like the idealized web described by
REST: a Web without the scalability problems.
HTTP 1.1 (RFC 2616) and the URI standard (RFC 2396) fixed most of the
disconnects between theory and practice. The Web was repaired, using
the Fielding constraints as a blueprint. The disconnects that couldn’t
be fixed, such as HTTP cookies, still cause problems today.
I think the ideas behind “REST” are important because web APIs are in
roughly the same position as the Web was in the mid-1990s. We have a
bunch of cobbled-together systems designed for expedience rather than
scalability and long-term maintainability. The Fielding constraints
point the way to a better world. Comparing the web APIs we have to an
idealized set of principles can show us what needs to be fixed.
So let’s take a look at the architectural properties of the Web; the
thing the Fielding constraints are trying to capture.
All quotes in this appendix come from the Fielding dissertation. I
also recommend reading Fielding’s 2008 blog post, “REST APIs must be
hypertext-driven”.
Architectural Properties of the Web

Chapter 2 of the Fielding dissertation lays out a bunch of
“architectural properties” that a networked system might have:
performance, simplicity, reliability, and so on. It’s all
motherhood-and-apple-pie stuff. No one’s going to speak out against
“simplicity” or “reliability.”
In Chapter 4, Fielding makes the tough choices. That chapter
identifies four key architectural properties of the World Wide
Web. These are the properties that made the web a success, and
Fielding is willing to sacrifice other properties for their sake.
Low Entry-Barrier

Since participation in the creation and structuring of information
was voluntary, a low entry-barrier was necessary to enable sufficient
adoption.

The Web took off because it was easy to use. Learning how to use FTP
or Telnet required memorizing a lot of arcane commands. But when you
started up a web browser, you saw human-readable text, and scattered
throughout the text, you saw links to adjacent web pages. Each link
included a little bit of context, which helped you decide which link
to click on. You’d click on a link and the process would repeat.
Compared to pre-web hypertext systems, it’s also very easy to put up a
website. You don’t need to use a special authoring program to write an
HTML page; you can use a text editor.

Extensibility

While simplicity makes it possible to deploy an initial implementation
of a distributed system, extensibility allows us to avoid getting
stuck forever with the limitations of what was deployed. Even if it
were possible to build a software system that perfectly matches the
requirements of its users, those requirements will change over time
just as society changes over time. A system intending to be as
long-lived as the Web must be prepared for change.

Without extensibility, a system can be deployed only once. So long as
its users are happy (and they will be happy at first!), everything is
fine. When the users’ requirements change, they’ll switch to a
different system.
The Web has been keeping its users happy for 20
years. Billion-dollar empires have risen and fallen and been replaced
by new empires, all based on the same four technologies: HTTP, URI,
HTML, and JavaScript.

Distributed Hypermedia

Distributed hypermedia allows the presentation and control
information to be stored at remote locations.

In any client-server system, the server has authority over the
dataset. It’s “stored at remote locations.” A client can try to change
the dataset, but its changes are always subject to the server’s
approval.
The principle of distributed hypermedia takes the instructions about
what you can do with the data (“presentation and control
information”), and treats it the same way as the data itself. The
server is in charge of all of it.
A web server uses HTML documents to convey resource state, to announce
the links between resources (safe transitions), and to announce the
allowable mechanisms for modifying resource state (unsafe
transitions). The client reads all of this information out of
hypermedia documents it receives from the server, documents which can change as
the system changes.
Where else might the “presentation and control information” go? It can
be programmed into the client, or it can be kept outside the system
completely, in human-readable documentation. That’s how most of today’s APIs do it. Both of those techniques
make it very difficult to change the way the server works, without
breaking the client. And if you can’t change the server, you don’t
have extensibility.

Internet-Scale

“Internet-scale” sounds like a buzzword meaning “really big,” but
Fielding has two specific things in mind. The first, “anarchic
scalability,” rejects the idea of long-term relationships or
coordination between different parts of the system.
Clients cannot be expected to maintain knowledge of all
servers. Servers cannot be expected to retain knowledge of state
across requests. Hypermedia data elements cannot retain
“back-pointers,” an identifier for each data element that references
them, since the number of references to a resource is proportional to
the number of people interested in that information.

The second, “independent deployment,” says that since there are no
long-term relationships, different parts of the system will change at
different rates.
Multiple organizational boundaries also means that the system must be
prepared for gradual and fragmented change, where old and new
implementations co-exist without preventing the new implementations
from making use of their extended capabilities… The architecture as
a whole must be designed to ease the deployment of architectural
elements in a partial, iterative fashion, since it is not possible to
force deployment in an orderly manner.

APIs Are Not (Quite) the Web

Those are the four key architectural properties of the Web, as
Fielding sees them. It’s clear that some of these properties apply to
web APIs as well. All else being equal, we’d prefer an extensible
system to one that can’t change over time. Even a small API is
“Internet-scale” if it’s on the public Internet, because it faces the
problems that come with anarchic scalability and independent
deployment.
But it would be a mistake to assume that these principles can be
transferred directly to the world of web APIs. There’s one big,
defining difference between the Web and a web API: the semantic
gap. This one difference destabilizes the relationships between the
architectural properties of the Web and forces us to choose between
the four desirable properties.
When a human being is making all the decisions, “distributed
hypermedia” is the easiest way to lower the “entry-barrier.” A human
sees all the possible state transitions and gets to choose one, in the
moment. But without a human in the decision-making loop, a programmer
must create a software program capable of filling in for the missing
human. In that situation, “distributed hypermedia” raises the
“entry-barrier.” Hypermedia documents divide an individual problem
into tiny chunks, and creating a decision-making robot requires an
understanding of the problem space as a whole.
The easiest way to lower the “entry-barrier” for a web API is to get
rid of the “distributed hypermedia” property, and describe a system
ahead of time, in human-readable prose.
The problem with that is, the “distributed hypermedia” property is the
only thing holding up the “extensibility” property. Changing some
human-readable text won’t change the client’s view of the system to
match. Without “distributed hypermedia,” nothing is guaranteed to
change a client’s view of the system. “Internet scale” says there are
too many clients to track, and that un-upgraded clients might stick
around for a long time.
When those clients contain hardcoded information that could have gone
into “distributed hypermedia” instead, you lose “extensibility.” Your
API starts off looking like the answer to your users’ prayers, but as
their requirements change, they drift away, and you can’t change to
keep them.
On the Web, the four architectural principles reinforce each other. In
the world of web APIs, they’re in tension. There are three ways of
resolving the tension:
	
If you have some way of forcing all your clients to upgrade in
lockstep, you can give up “Internet-scale.” Then you can have a “low
entry-barrier” and “extensibility” without needing to use “distributed
hypermedia.” This is a common choice for an API deployed within a
company.

	
If you need “Internet scale,” you can give up “extensibility” and
“distributed hypermedia” for the sake of a “low entry-barrier.” Most
of today’s public web APIs do this.

	
Or you can embrace “distributed hypermedia,” and get
“extensibility” and “Internet scale” at the cost of a higher
“entry-barrier.” That’s the approach I take in this book. My work on
ALPS, and on profiles in general, is an attempt to lower the
“entry-barrier” for hypermedia APIs.

Interface Constraints

Now let’s take a look at the Fielding constraints, the rules that give
the World Wide Web its desirable architectural properties. The four
most famous Fielding constraints are found in a single remark in Chapter 5 of the dissertation:
REST is defined by four interface constraints: identification of
resources; manipulation of resources through representations;
self-descriptive messages; and, hypermedia as the engine of
application state. These constraints will be discussed in Section 5.2.

These constraints make up REST’s “uniform interface.” They are indeed
discussed in Section 5.2, but not in the convenient list format you
might have expected. In this section, I’ll discuss them individually.
Identification of Resources

Traditional hypertext systems… use unique node or document
identifiers that change every time the information changes, relying on
link servers to maintain references separately from the content. Since
centralized link servers are an anathema to the immense scale and
multi-organizational domain requirements of the Web, REST relies
instead on the author choosing a resource identifier that best fits
the nature of the concept being identified.

“Identification of resources” is Fielding’s name for what I call
“addressability.” A URI identifies a resource. The resource’s state
may change, but its URI stays the same. If a resource’s URI does
change, the server uses hypermedia (the Location header) to direct
clients to the new URI.
The Web is so dominant today that it’s now hard to imagine those
“traditional hypertext systems” that changed their identifiers all the
time. But it’s not hard to imagine another problem: websites and
APIs that assign too much resource state to a single URL, like the
restaurant websites I complained about in Chapter 1.

Manipulation of Resources Through Representations

REST components perform actions on a resource by using a
representation to capture the current or intended state of that
resource and transferring that representation between components. A
representation is a sequence of bytes, plus representation metadata to
describe those bytes.

The Web takes an expansive view of the concept of “resource.” A
resource can be anything. This means there are resources—physical
objects and abstract concepts—that can’t be sent over the
Internet. Nonetheless, we can talk about these resources, using
representations.
A representation is a “sequence of bytes,” so it can be transferred
over the network. It “capture[s] the current or intended state of the
resource,” so clients can use it as a stand-in for the real thing. And
a representation is not tied to the server-side code that generated
it, which means it doesn’t have to change when the server
implementation changes.
On the Web, clients and servers manipulate resources by sending
representations back and forth using a small set of standardized HTTP
methods (GET and POST). A web API may add a few more methods (PUT,
DELETE, and so on), but it’s still a small set that requires community
consensus to extend. The richness of the interactions between clients
and servers is almost entirely found in the representations they send
each other.

Self-Descriptive Messages

REST enables intermediate processing by constraining messages to be
self-descriptive: interaction is stateless between requests, standard
methods and media types are used to indicate semantics and exchange
information, and responses explicitly indicate cacheability.

An HTTP message contains all the information necessary for the
recipient to understand it. There’s no free-floating documentation
nearby that clients are also expected to understand. If understanding
a message requires comprehending some other document, like a media
type definition or a profile, then the message ought to contain a
reference to that document, in the Content-Type or Link header.
Let’s take Fielding’s examples one at a time:
	
“Interaction is stateless between requests.” The statelessness
constraint (covered below) is just a special case of the self-descriptive
message constraint. In a stateless system, a server can handle a
client’s request without having to remember how it handled all that client’s
previous requests. Each request stands alone.

	
“Standard methods and media types are used to indicate semantics
and exchange information.” Pretty straightforward. If an HTTP response
doesn’t include the Content-Type header, the client doesn’t know how
to parse the entity-body. If an HTTP request didn’t mention the HTTP
method to use, or made up its own methods, the server wouldn’t know
how to handle it.

	
“Responses explicitly indicate cacheability.” A client just got an
HTTP response from a web server. Does it make sense for the client to
cache the response? If so, for how long? For a minute, or for a
year?

The client shouldn’t have to make this decision. The server is in a
much better position to know how long the response can be safely
cached. Therefore, it’s the server’s job to give that information to
the client.
Now, here’s where self-describing messages come in. In HTTP, the
server conveys caching information by adding a header to the very
HTTP response that might be cached. There’s no out-of-band
communication where the server explains how to cache the message it
just sent. The caching instructions are part of the message, and
they’re cached along with the message. When it’s time to retrieve the
message from cache and check whether it’s still fresh, the client can
make that decision based on information that’s right there in the
message.

Earlier versions of HTTP fell short of the “self-descriptive messages”
ideal. Section 6.3.2 of Fielding discusses some problems that this
caused. Most notably, without the Host header, there was no way for
the server to know which domain name should handle an incoming HTTP
request. This made it very difficult to host multiple domains on one
server.
Even in HTTP 1.1, a response message doesn’t contain any information
tying it to the original request. This is a failure to live up to the
self-descriptive message constraint. Compare this to the CoAP
protocol, which ties responses to requests using tokens and message
IDs. HTTP 2.0 will probably do something similar.

The Hypermedia Constraint

The Fielding dissertation never explicitly defines the notorious
phrase “hypermedia as the engine of application state,” but if you
understand the individual concepts, it should make sense:
	
All application state is kept on the client side. Changes to
application state are the client’s responsibility.

	
The client can only change its application state by making an HTTP
request and processing the response.

	
How does the client know which requests it can make next? By
looking at the hypermedia controls in the representations it’s
received so far.

	
Therefore, hypermedia controls are the driving force behind changes
in application state.

The hypermedia constraint is not a chore you must perform to be
“RESTful.” It’s the payoff for obeying the other constraints. It gives
you extensibility. The hypermedia constraint allows a smart client to
automatically adapt to changes on the server side. It allows a server
to change its underlying implementation without breaking all of its
clients.
Hypermedia was chosen as the user interface because of its simplicity
and generality: the same interface can be used regardless of the
information source, the flexibility of hypermedia relationships
(links) allows for unlimited structuring, and the direct manipulation
of links allows the complex relationships within the information to
guide the reader through an application.

Architectural Constraints

Chapter 3 of Fielding takes a lot of different possible network
architectures and decomposes them into their “architectural
properties”: atomic, interchangeable constraints on a generic “null
style.” Chapter 3 shows that these primitive constraints can be
combined to describe common architectures like distributed object
systems.
Fielding’s famous Chapter 5, “Representational State Transfer,”
applies this deconstructive approach to the World Wide Web. It turns
out the Web is composed of five of the properties from Fielding’s
Chapter 3 (“Client-Server,” “Stateless,” “Cache,” “Layered System,”
and “Code on Demand”). There’s also a sixth property (“Uniform
Interface”), which is made up of the four interface constraints I
covered earlier. The uniform interface constraint covers most of the
things that make the Web unique.
In general, web APIs care a lot about “Client-Server,” “Stateless,”
“Cache,” and “Uniform Interface.” “Layered System” is more important
to the deployment of web APIs than to their design. Web APIs don’t
really use “Code on Demand” at all. That said, here’s a detailed look
at all of the Web’s architectural constraints.
Client-Server

A client component, desiring that a service be performed, sends a
request to the server via a connector. The server either rejects or
performs the request and sends a response back to the client.

This one should be familiar, because client-server is the dominant
network architecture on the Internet. It shows up even in places you
might not have expected it. Many peer-to-peer architectures are
client-server architectures; it’s just that a given peer sometimes
acts as a “client” and sometimes as a “server.”
The main competitor to the client-server architecture is the
event-based integration architecture, in which components continually
broadcast events over the network, while listening for events they’re
interested in. There’s no one-to-one communication between parts of
the system, in which one party could be considered the “client” and
another the “server.” There’s only broadcasting and eavesdropping.

Statelessness

The goal is to improve server scalability by eliminating any need for
the server to maintain an awareness of the client state beyond the
current request.

As far as an HTTP server is concerned, when a client is not currently
making a request, the client doesn’t exist. All application
state—information about a particular client’s path through the
application—belongs to the client. The server doesn’t care.
If some piece of application state is so important that the server
needs to care, it should become resource state. It should be made a
resource, with its own URL. That way the server has control over the
state, but the client can manipulate it the way it manipulates other
resources.
In particular, this means you should not store session IDs on the
server. To quote Fielding:
One form of abuse is to include information that identifies the
current user within all of the URI referenced by a hypermedia response
representation. Such embedded user-ids can be used to maintain session
state on the server, track user behavior by logging their actions, or
carry user preferences across multiple actions… by violating REST’s
constraints, these systems also cause shared caching to become
ineffective, reduce server scalability, and result in undesirable
effects when a user shares those references with others.

Caching

This form of replication is most often found in cases where the
potential data set far exceeds the capacity of any one client, as in
the WWW[.]

Thanks to the self-descriptive message constraint, all the information
necessary to understand a response is contained in the response
itself. Thanks to the statelessness constraint, an HTTP request can be
considered on its own, independent of any other requests. These two
constraints make caching possible. An HTTP client can automatically
match its requests to previous responses it received, possibly saving
a round trip over the network. As Fielding says, “the best application
performance is obtained by not using the network.”

Uniform Interface

Implementations are decoupled from the services they provide, which
encourages independent evolvability. The trade-off, though, is that a
uniform interface degrades efficiency, since information is
transferred in a standardized form rather than one which is specific
to an application’s needs. The REST interface is designed to be
efficient for large-grain hypermedia data transfer, optimizing for the
common case of the Web, but resulting in an interface that is not
optimal for other forms of architectural interaction.

I already covered the uniform interface. It’s made up of the four
interface constraints I covered earlier: addressability, manipulation
of resources through representations, self-descriptive messages, and
the hypermedia constraint.
Fielding points out that these constraints are biased toward
“large-grain hypermedia data transfer.” A typical Web browser starts
its day by sending a GET request to a URL (addressability) and
retrieving a big HTML representation full of links (use of
representations). Its human user reads the document and follows one of
the links (the hypermedia constraint). This makes the browser send
another GET request and retrieve another HTML representation full of
links.
The majority of HTTP requests are GET requests that carry out safe
state transitions. This is why so many of HTTP’s performance
optimizations—caching, conditional requests, partial requests—focus
on reducing the cost of GET requests.
If API designs were heavily oriented around unsafe state transitions,
there’d be a big disconnect between the Web’s uniform interface and
the interface that would best meet the needs of API clients. But it
turns out API clients also spend most of their time doing large-grain
data transfer (if not hypermedia transfer). That’s why a so-called
“RESTful” API can be very successful even without obeying the
hypermedia constraint. It’s giving its users the benefit of the other
three interface constraints.
Some hypermedia-aware APIs ignore the “large-grain” part of
“large-grain hypermedia transfer.” Instead of serving a big document
that conveys a lot of resource state (such as an hCard document
describing a person), they split up the information across several
resources (giving separate URLs to the person’s given name, family
name, and date of birth). The client must make several GET requests to
get the information it needs. The result is a “chatty” API with very
high latency.
This isn’t technically wrong, but it is bad for performance. HTTP 2.0
should make it practical to write this kind of API: one based on
small-grain hypermedia transfer.

Layered System

Layered-client-server adds proxy and gateway components to the
client-server style… These additional mediator components can be
added in multiple layers to add features like load balancing and
security checking to the system.

Throughout this book I talk about HTTP clients—bits of software that
originate HTTP requests—and HTTP servers—bits of software that
originate HTTP responses. But the HTTP spec defines two other bits of
software that can go between client and server: proxies and
gateways. All of these things are components in an HTTP system.
A proxy receives HTTP requests from components (clients, proxies, and
gateways), just like a web server. Unlike a web server, a proxy
doesn’t handle the request itself. Instead, it passes the request on
to another component (a server, a proxy, or a gateway) and waits for a
response. When it receives a response, the proxy passes it back to the
component that sent the request. A proxy may modify requests and
responses in transit; to compress data, to eliminate identifying
information, or to perform censorship.
A gateway is a proxy that translates between HTTP and some other
protocol. A gateway might take an HTTP request, turn it into a series
of commands to download a file from an FTP server, and then serve the
downloaded file as the entity-body of an HTTP response. As far as the
client is concerned, it’s making normal HTTP requests and getting
representations of HTTP resources.
The “layered system” constraint is less about proxies and gateways,
and more about the fact that adding one between client and server is a
nearly transparent operation. A client doesn’t know whether it’s
talking directly to a server, or whether it’s talking to a proxy that
talks to a proxy that talks to a gateway.
Clients, servers, proxies and gateways all have the same
interface. There’s no special “proxy protocol.” Proxies receive HTTP
requests and send HTTP responses. There are some special proxy-related
status codes (which I mention in Appendix A); a few HTTP headers for
controlling proxies (Appendix B); and two HTTP methods, CONNECT and
TRACE, for using and debugging proxies. But to a client, a proxy
looks just like an HTTP server. To a server, a proxy looks just like
an HTTP client.
HTTP does define a lot of complicated rules for how the “layered
system” architectural element interacts with the “caching” element,
but that drama plays out entirely within a proxy component. Clients
and servers don’t have to deal with it.
Proxies are very useful in real-world API deployments. A proxy can
perform load balancing by sending different requests off to different
servers. A proxy can cache frequently accessed representations so that
client requests don’t always make it to the server. But I don’t cover
proxies and gateways in this book, because the whole premise of a
layered system is that they’re invisible. The other Fielding
constraints, especially statelessness, make it possible to add and
remove huge chains of intermediaries between client and server,
without either client or server noticing.
For a detailed treatment of proxies and gateways, I recommend Chapters
6 and 8 of HTTP: The Definitive Guide.

Code on Demand

[A] client component has access to a set of resources, but not the
know-how on how to process them. It sends a request to a remote server
for the code representing that know-how, receives that code, and
executes it locally…. [T]he most significant limitation is the lack
of visibility due to the server sending code instead of simple
data. Lack of visibility leads to obvious deployment problems if the
client cannot trust the servers.

Code on demand does for software what hypermedia does for data. The
World Wide Web works on code on demand, but I don’t cover it in this
book, because I don’t have good advice for using it in the context of
a web API. Of the dozens of hypermedia formats I’ve covered, the only
one with support for code on demand is HTML.
HTML’s secret is the <script> tag, which automatically fetches a
representation of a resource and then executes that representation as
(JavaScript) code. Thanks to the <script> tag, a user who visits
your website can download and run a complex software application. When
the application changes, the human user “reinstalls” the code by
reloading the web page and downloading everything again.
The dominant deployment strategy for API client code is to write
libraries in various programming languages (APIs for APIs, if you
will), and offer them for download by individual developers. This is
a bad idea, for the same reason hypermedia-ignorant APIs are a bad
idea. It destroys extensibility. Eventually the client changes, but
nobody tells the existing installed base. The old version of the
client starts up and runs the same code it always ran, but now it’s
the wrong code.
Code on demand can solve this problem. With code on demand, client
libraries could download new versions of themselves as they were
released. As long as the client’s programming-language API stayed the
same, code based on the client library would continue to work as the
underlying implementation changed.
The problem is, nobody really likes the idea of automatically
downloading and running code from someone else’s server. If a server
that serves hypermedia documents is compromised, its clients might get
bogus data. That’s bad, but it could be a lot worse. If a server that
serves code on demand is compromised, its clients might also become
compromised!
Code on demand works on the Web because a web browser runs downloaded
JavaScript code in a sandbox. Even so, code on demand leads to browser
security problems like cross-site scripting attacks. Automated clients
typically don’t typically run in a sandbox. They need access to local
filesystems, databases, and other system resources. Bad code-on-demand
can do a lot of damage to a system.
In an environment where all parties trust each other (such as within a
company), it may make sense to deploy using code on demand. But that’s
the environment where the case for a RESTful architecture is weakest,
and there are other well-established ways for a trusted server to
deploy software to clients.
For all these reasons, I don’t anticipate code on demand replacing
downloadable clients anytime soon. A downloadable client for a
hypermedia-aware API is a lot less likely to break when the API
changes, making it possible to live without code-on-demand.

Summary

The Web’s success comes from these four architectural properties:
	
Low entry-barrier

	
It’s easy to learn how to use the Web, and it’s
easy to build a website.

	
Extensibility

	
Individual websites can change overnight, without
breaking their clients. Over the course of decades, the Web as a whole
changes drastically, but the underlying technologies don’t change all
that much.

	
Distributed hypermedia

	
Information about what a client might do
with a server’s data is kept in the same place as the data, and sent
to the client in the same documents.

	
Internet-scale

	
There are no long-term relationships between parts
of the system, and different parts can change at different rates.

These architectural properties are realized on the Web by the six
architectural constraints:
	
Client-server

	
All communication on the Web is one-to-one.

	
Stateless

	
When a client is not currently making a request, the
server doesn’t know it exists.

	
Cache

	
A client can save trips over the network by reusing previous
responses from a cache.

	
Layered system

	
Intermediaries such as proxies can be invisibly
inserted between client and server.

	
Code on demand

	
The server can send executable code in addition to
data. This code is automatically deployed when the client requests it, and will be
automatically redeployed if it changes.

	
The uniform interface

	
This is an umbrella term for the four
interface constraints:

	
Identification of resources

	
Each resource is identified by a
stable URI.

	
Manipulation of resources through representations

	
The server
describes resource state by sending representations to the client. The
client manipulates resource state by sending representations to the
server.

	
Self-descriptive messages

	
All the information necessary to
understand a request or response message is contained in (or at least
linked to from) the message itself.

	
The hypermedia constraint

	
The server manipulates the client’s
state by sending a hypermedia “menu” containing options from which the
client is free to choose.

These nine (or ten, depending on how you count) constraints are the
Fielding constraints.

Conclusion

If the semantic gap didn’t exist, designing a web API would be exactly
the same as designing a website. We could slavishly copy the Web
without really understanding how it worked. We wouldn’t need the
Fielding dissertation, and we wouldn’t need to judge our APIs against
the Fielding constraints, because we’d already have a successful
practical example of the system we wanted to create.
The Web is almost good enough for our purposes, but not quite. We’d
like to build on its success, but we can’t use the exact same
principles. The solution is in the often-ignored first half of the
Fielding dissertation, which shows where the Fielding constraints came
from in the first place. They came from a procedure that went
something like this:
	
Write down all the architectural properties it would be nice for
your system to have.

	
Figure out which of those properties you really need, and which
ones you’re willing to sacrifice.

	
Come up with a set of architectural constraints that will give your
system the properties you really need.

	
Design a set of protocols and other standards that work together to
embody the constraints (HTTP, URI, HTML, JavaScript).

	
Over the course of decades, as problems become apparent, iterate
steps 2—4 (HTTP 0.9, HTTP 1.0, HTTP 1.1, and the forthcoming HTTP
2.0).

Web APIs introduce a new constraint: the semantic gap. We’ve been
arguing around the semantic gap for over a decade, and although we’ve
reached consensus that a few of the Fielding constraints are still
relevant, a solution is nowhere in sight. To see which side of the
argument you’re on, you must decide which of the Web’s architectural
properties are most important to you.
Is it low entry-barrier, the property that allows people to use a
website with no site-specific training? Is it extensibility, the
property that allows a website to undergo a complete redesign without
breaking its clients? Or is it Internet scale, the property that
allows everyone to use the web browser of their choice and upgrade at
their own pace?
I’ve chosen extensibility and Internet scale, at the expense of low
entry-barrier. That’s because the semantic gap raises the
entry-barrier all on its own. Any API is more difficult to use than an
equivalent website. A hypermedia-based design raises the entry-barrier
higher, but it gives you extensibility and Internet scale, which are
essential for the long term.
And this is a long-term project. We can get the entry-barrier back
down with smarter client libraries, with agreements to use common
hypermedia types and common sets of application semantics. But if we
give up extensibility and Internet scale, we’ll never get them back.

[60] Fielding, Roy
Thomas. Architectural Styles and the Design of Network-based Software
Architectures. Doctoral dissertation, University of California,
Irvine, 2000.

Glossary

	
application semantics

	
A representation’s application semantics
explain the underlying resource in terms of real-world concepts. Two
HTML documents may use exactly the same tags but have completely
different application semantics—one of them describes a person, and
the other describes a medical procedure.

If a document format is designed to represent real-world concepts, we
can say the format itself has application semantics. The Maze+XML
format has the application semantics necessary to represent maze
games. The HTML format has the application semantics of a
human-readable document. The HAL format has no application semantics
to speak of: each user must supply their own.
The term “application semantics” was invented for this book. It’s not
a standardized term.

	
application state

	
Information about the client’s path through an
API is application state. Most clients start in the same state, at an
API’s “home page.” As they make different choices, they trigger
different hypermedia controls, they end up in different places, and
their application states diverge.

	
cache

	
A repository of HTTP responses, used to improve client
performance. A client can sometimes reuse a cached response instead of
sending a request over the network.

	
code on demand

	
One of the Fielding constraints. This one says that
the server may send executable code in addition to data. This code is
automatically deployed on the client and can change along with the
rest of the server implementation. APIs rarely implement this
constraint due to security concerns.

	
connectedness

	
My term for the hypermedia constraint (q.v.). I
prefer this term because it focuses on what I find important: that
resources are “connected” to each other by safe state transitions..

	
dereferencing

	
A computerized process that turns a URL into a
representation. For http: URLs, dereferencing means sending an HTTP
GET request to the URL.

	
embedded link

	
A link that, when triggered, adds to the client’s
application state instead of replacing it. Embedded links are often
triggered automatically, as with HTML’s and <script>
tags. Contrast outbound link, and see also transclusion.

	
entity-body

	
The document associated with an HTTP request or
response. Typically, this document is a representation of some
resource.

	
header

	
A key-value pair associated with an HTTP request or response.

	
HATEOAS

	
Acronym for “hypermedia as the engine of application
state” (q.v.).

	
hypermedia

	
Hypermedia is data, sent from the server to the client,
which explains what the client can do next. HTML links and forms are
hypermedia. The defining feature of a RESTful API is that it obeys the
hypermedia constraint: its representations contain hypermedia controls
which describe possible state transitions.

	
hypermedia as the engine of application state

	
One of the Fielding
constraints. I call it the “hypermedia constraint” for short. The
server manipulates the client’s state by sending a hypermedia “menu”
containing options from which the client is free to choose.

	
hypermedia control

	
A hypermedia control describes a state
transition. In a web API, a hypermedia control usually has two
parts. The most important part is the description of an HTTP request (or a family of requests) that the client might make. Less important
is the link relation, which explains the state transition that will
happen if the client makes that HTTP request.

Some hypermedia controls are supposed to be triggered automatically
(like HTML’s tag). Others will only be triggered if the client
decides to trigger them (like HTML’s <a> tag).

	
HTTP method

	
Also called “HTTP verb.” That part of an HTTP request
that tells the server, on a very basic level, what the client wants to
do to a resource.

	
idempotent

	
An idempotent state transition has the same effect
whether it is triggered once, or more than once. The HTTP methods PUT,
DELETE, LINK, and UNLINK are supposed to be idempotent. A client can
retry these methods over an unreliable network until they go through.

Any safe state transition (q.v.) is also idempotent.

	
information resource

	
A resource whose native form is a stream of
bits, as opposed to a physical object or an abstract concept. An
information resource can serve as its own representation.

	
link relation

	
A string associated with a hypermedia control. The
link relation explains which state transition will happen if the
client triggers the control. A link relation may describe a change in
application state (such as next and previous), or a
change in resource state (such as edit).

RFC 5988 defines two kinds of link relations: extension relations,
which are URIs; and registered relations, short strings that must
be “registered” somewhere to avoid collisions.

	
media type

	
A media type (also called a content type or MIME
type) is a short string identifying the format of a document. Once
you know a document’s media type, you can parse it. You may also be
able to understand of its application and protocol semantics.

	
outbound link

	
A hypermedia control that replaces the client’s
application state with a brand new state when triggered. An HTML <a>
tag contains an outbound link. Contrast embedded link.

	
overloaded POST

	
Using the HTTP POST method to trigger a state
transition that can do anything at all. Contrast POST-to-append.

	
POST-to-append

	
Using the HTTP POST method to create a new resource
“beneath” another one. Contrast overloaded POST.

	
profile

	
A profile explains bits of a document’s semantics that
aren’t covered by its media type. A profile is like a pair of magic
glasses that reveals previously unseen aspects of a document’s
meaning.

For example, the hCard profile can turn an ordinary HTML document into
a description of a human being. There’s nothing in the HTML standard
about describing human beings. The profile does the extra work.
A client that doesn’t understand a profile can still parse a document
and get information out of it, based on its understanding of the
document’s media type. But it’ll be missing an extra layer of
semantics.

	
protocol semantics

	
A hypermedia control talks about an HTTP
request (or a family of requests) that a client might make. These are
its protocol semantics. They tell you which subset of the HTTP
protocol is useful in this situation.

A hypermedia control may also have application semantics. The
application semantics explain in real-world terms what information
needs to be provided to the server along with the HTTP request, what
will happen in response to the request, or how the client should
incorporate the response into its workflow.
When a document contains hypermedia controls, we say the document
itself has protocol semantics. The document allows all of the HTTP
requests defined by its hypermedia controls.
When a document format allows for hypermedia controls, we say the
format itself has protocol semantics. For example, we can say that the
protocol semantics of HTML allow for GET and POST requests, but not
PUT requests.
The term “protocol semantics” was invented for this book. It’s not a
standard term.

	
representation

	
A representation is a piece of data that describes
the state of a resource. Typically, a representation is a document
used as the entity-body of an HTTP request or response. In some
cases, it may help to think of the entire request or response message
as a “representation.”

When a server sends a representation to a client, it’s describing the
current state of a resource. When a client sends a representation to a
server, it’s trying to modify the state of a resource.

	
resource

	
A resource can be anything: a web page, a person, that
person’s name, a measurement of his weight on a given day, his
relationship to another person… anything at all. The only
restriction is that a resource must have its own URI. Without a URI,
there’s nothing to talk about.

A client will never directly interact with a resource. It only sees
descriptions of a resource’s state, written down in representations.

	
resource state

	
Representations are full of resource state. A
representation conveys information about the current state of the
resource (when a server sends a representation to a client), or about
the desired new state of the resource (when a client sends a
representation to a server).

In the world of web APIs, resource state is typically divided up into
discrete chunks (such as a person’s name), with each piece described
by a semantic descriptor. But this is more a fact about the way we
write computer programs than a fact about REST. The World Wide Web
doesn’t work this way.

	
resource type

	
When you want to talk about the real-world thing or
concept behind a resource (as opposed to the data in its
representations), you can use a resource type. A resource type is a
URI that classifies a resource under an abstract category like person
(or, to be more precise, http://schema.org/Person or
http://xmlns.com/foaf/0.1/Person).

	
safe

	
Triggering a safe state transition should has the same effect
on resource state as doing nothing at all. The HTTP methods GET, HEAD,
and OPTIONS are supposed to be safe.

	
self-descriptive messages

	
One of the Fielding constraints. It says
that all the information necessary to understand a request or response
message is contained in (or at least linked to from) the message
itself.

	
semantic descriptor

	
A short string that names a discrete piece of
resource state. A semantic descriptor is usually given a
human-readable description by a nearby profile, and different profiles
may give different names to the same information: consider
“given-name” (hCard), “givenName” (schema.org), and “firstName”
(FOAF).

The term “semantic descriptor” was invented for this book. It’s not a
standard term.

	
semantic gap

	
The gap between the structure of a document and its
real-world meaning—its application semantics. Media types,
machine-readable profiles, and human-readable documentation bridge the
semantic gap in different ways, but bridging the gap always requires
the intervention of a human being at some point.

The term “semantic gap” was invented for this book. It’s not a
standard term. We call the challenge of bridging the semantic gap the
semantic challenge.

	
statelessness

	
One of the Fielding constraints. The upshot of the
statelessness constraint is that the client is in charge of all
application state, and the server is in charge of all resource state.

	
state transition

	
A change in application or resource state. A link
relation is the name of a state transition. A hypermedia control
explains which HTTP request will trigger a particular state
transition.

	
transclusion

	
Embedded links (q.v.) transclude one representation
into another. When a web browser encounters an tag in an HTML
document, it makes an HTTP request for a binary image and dynamically
inserts a rendering of that image into the rendering of the HTML
document. There’s no need to keep the image and the HTML document in
sync; they might even be on different servers.

	
uniform interface

	
One of the Fielding constraints. An umbrella term
for the four “interface constraints” that describe the workings of the
Web: identification of resources, manipulation of resources through
representations, self-descriptive messages, and hypermedia as the
engine of application state.

The uniform interface constraint covers most of what people think
about when they think about “REST.”

	
URI

	
A string that uniquely identifies a resource.

	
URL

	
A URI that can be dereferenced to get a representation. Not
every URI is a URL. There’s no way to dereference
the URI urn:isbn:9781449358063, so it’s not a URL.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	<a> tags, HTML as a Hypermedia Format, Hypermedia Controls
	
	Accept headers, Content Negotiation, Accept
	
	Accept-Charset headers, Accept-Charset
	
	Accept-Encoding headers, Compression, Accept-Encoding
	
	Accept-Language headers, Content Negotiation, Accept-Language
	
	Accept-Ranges headers, Partial GET, Accept-Ranges
	
	Activity Streams, Activity Streams
	
	addressability, Addressability, Identification of Resources
	
	Age headers, Age
	
	agent-type API clients, The agent
	
	Allow headers, Allow
	
	ALPS (Application-Level Protocol Semantics)
		application semantics in, ALPS
	
	benefits of, ALPS
	
	examples of, ALPS
	
	lenient format of, ALPS Doesn’t Do Everything
	
	profile link relation in, Advantages of ALPS
	
	repository for, Advantages of ALPS, The ALPS Registry
	

	API calls
		server implementation details and, Is Maze+XML an API?
	

	API clients
		automated, Client #2: The Mapmaker, Client #3: The Boaster, Automated Clients
	
	human-driven, Client #1: The Game–Client #1: The Game, Human-Driven Clients
	

	APIs (application programming interfaces)
		adding hypermedia to existing, Adding Hypermedia to an Existing API
	
	Collection+JSON in, Collection+JSON
	
	constraints and, Liberated by Constraints
	
	design of (see design procedure)
	
	downfalls of current, Introduction, Web APIs Lag Behind the Web, Is Maze+XML an API?, HTTP for APIs
	
	duplication of effort in, Duplication of Effort, Liberated by Constraints
	
	for microblogging, Duplication of Effort
	
	functionality needed in, Introduction, A Simple API, Beware of Fake Hypermedia!
	
	HTTP GET request in, HTTP GET: Your Safe Bet
	
	HTTP POST in, HTTP POST: How Resources Are Born
	
	HTTP response in, How to Read an HTTP Response
	
	JSON in, JSON
	
	life-time assurance of, Have an end-of-life plan
	
	semantic gap in, Application Semantics Create the Semantic Gap
	
	typical documentation in, The Alternative to Hypermedia Is Media, Profiles, ALPS
		(see also documentation)
	

	versioning of, When Your API Changes–Have an end-of-life plan
	
	vs. World Wide Web, APIs Are Not (Quite) the Web
	
	writing to, Writing to an API
	

	application semantics
		Activity Streams, Activity Streams
	
	adding to forms, Adding Application Semantics to Forms
	
	ALPS (Application-Level Protocol Semantics), The ALPS Registry
	
	definition of, Glossary
	
	Dublin Core, Dublin Core
	
	examples of, Application Semantics Create the Semantic Gap
	
	HTML plug-in semantics, Plug-in Application Semantics
	
	IANA registry of link relations, The IANA Registry of Link Relations
	
	in ALPS, ALPS
	
	link relations, Link Relations from the Microformats Wiki
	
	microdata items and, Microdata
	
	microformats and, Microformats
	
	Microformats wiki, The Microformats Wiki
	
	profiles and, Profiles Describe Application Semantics
	
	reusability of, The Semantic Zoo
	
	schema.org, schema.org
	
	vs. protocol semantics, The Semantic Challenge: How Are We Doing?
	

	application state, Application State
		definition of, Glossary
	
	examples of, Follow a Link to Change Application State
	

	Architecture of the World Wide Web, Volume One (W3C), Resources and Representations, URL Design Doesn’t Matter
	
	Atom Publishing Protocol
		AtomPub plug-in standards, AtomPub Plug-in Standards
	
	basics of, The Atom Publishing Protocol
	
	collection pattern in, The Atom Publishing Protocol (AtomPub)
	
	extensibility of, The Atom Publishing Protocol (AtomPub)
	
	original microblogging standard, Duplication of Effort
	
	shortcomings of, Why Doesn’t Everyone Use AtomPub?
	
	Slug header in, Custom HTTP Headers
	
	standards for, The Atom Publishing Protocol (AtomPub)
	
	vs. Collection+JSON, The Atom Publishing Protocol (AtomPub)
	

	authentication
		and statelessness, Authentication
	
	Digest method, Basic Auth
	
	HTTP Basic authentication, Basic Auth
	
	registration, Authentication
	
	steps of, Authentication
	
	with OAuth 1.0, OAuth 1.0
	
	with OAuth 2.0, OAuth 2.0
	
	WWW-Authenticate header, The WWW-Authenticate and Authorization Headers
	

	Authorization headers, Authorization
	

B
	Base64, Basic Auth
	
	Basic Auth, Basic Auth
	
	bday class, Microformats
	
	Berners-Lee, Tim, The Linked Data Movement
	

C
	cache, definition of, Glossary
	
	Cache-Control headers, Caching, Cache-Control
	
	caching, in World Wide Web, Caching, Summary
	
	canonical URLs, The Canonical URL
	
	Çelik, Tantek, XMDP: The First Machine-Readable Profile Format
	
	class attribute, The class attribute
	
	client credentials, Authentication
	
	client programming, What’s Not in This Book
	
	client-server architecture, Short Sessions, Hypermedia, Architectural Constraints, Summary
	
	CoAP (Constrained Application Protocol)
		CoRE Link Format, The CoRE Link Format
	
	delayed response in, Delayed Response
	
	multicast messages in, Multicast Messages
	
	network layout, CoAP: REST for Embedded Systems
	
	request-response structure in, Kinds of Messages
	
	requests in, A CoAP Request
	
	responses in, A CoAP Response
	
	RESTful architecture of, Conclusion: REST Without HTTP
	
	types of messages in, Kinds of Messages
	
	uses for, CoAP: REST for Embedded Systems
	

	code on demand
		definition of, Glossary
	
	in World Wide Web, Code on Demand, Summary
	

	Collection+JSON
		advantages of, HTTP POST: How Resources Are Born
	
	basics of, Collection+JSON, Collection+JSON
	
	constraints in, Liberated by Constraints
	
	document example, Collection+JSON
	
	item representation in, Representing the Items
	
	search template in, Search Templates
	
	semantic gap and, Application Semantics Create the Semantic Gap, The Semantic Challenge: How Are We Doing?
	
	standard for, The Collection Pattern
	
	vs. AtomPub, The Atom Publishing Protocol (AtomPub)
	
	write template in, The Write Template
	

	collection-based design
		adaptation of, The Collection Pattern
	
	benefits of, The Semantic Challenge: How Are We Doing?
	
	DELETE method, DELETE
	
	examples of, The Collection Pattern
	
	GET method, GET
	
	pagination in, Pagination
	
	PATCH method, PUT and PATCH
	
	POST-to-append method, POST-to-Append
	
	protocol semantics of, How a (Generic) Collection Works
	
	PUT method, PUT and PATCH
	
	search forms in, Search Forms
	

	collections
		definition of, What’s a Collection?
	
	individual resources in, Collections Link to Items
	

	compression, Compression
	
	conditional request, Conditional GET, Avoiding the Lost Update Problem
	
	connectedness
		definition of, Glossary
	
	example of, Connectedness
	

	Connection headers, Connection
	
	content negotiation, Content Negotiation
	
	content types (see media types)
	
	Content-Disposition headers, Content-Disposition
	
	Content-Encoding headers, Compression, Content-Encoding
	
	Content-Language headers, Content-Language
	
	Content-Length headers, Content-Length
	
	Content-Location headers, The Location and Content-Location Headers, Content-Location
	
	Content-MD5 headers, Content-MD5
	
	Content-Range headers, Content-Range
	
	Content-Type headers, How to Read an HTTP Response, Content-Type
	
	Cookie headers, Cookie
	
	cookies, An API Designer’s Guide to the Fielding Dissertation
	
	CoRE Link Format, The CoRE Link Format
	
	corporate standards, Corporate Standards
	
	crawler-type API clients, The crawler
	
	credentials, client vs. personal, Authentication
	
	CSS classes, Microformats
	

D
	data loss, avoiding, Avoiding the Lost Update Problem
	
	Date headers, Date
	
	DELETE method
		details of, DELETE
	
	function of, The Protocol Semantics of HTTP
	
	in collection-based design, DELETE
	

	deprecated APIs, Have an end-of-life plan
	
	dereferencing
		definition of, Glossary
	
	URLs vs. URIs and, URI Versus URL
	

	description strategy, Resource Description and Linked Data, When to Use the Description Strategy, Conclusion: The Description Strategy Lives!
	
	design procedure
		basic steps of, Two-Step Design Procedure
	
	database schema vs. state diagrams, Don’t Fall into the Collection Trap
	
	design advice, Some Design Advice–Don’t Keep All the Hypermedia in One Place
	
	detailed steps of, Seven-Step Design Procedure–Well-known URIs
	
	examples of, Example: You Type It, We Post It, Alice’s Second Adventure–Alice Figured It Out
	
	for existing API, Adding Hypermedia to an Existing API–Is It Worth It?
	
	new media types, If You Design a Media Type
	
	representation format and, Don’t Start with the Representation Format
	
	resources in, Resources Are Implementation Details
	
	standard vs. custom names, Standard Names Are Probably Better Than Your Names
	
	URL design in, URL Design Doesn’t Matter
	

	detail representations, Choosing Between Representations
	
	Digest authentication method, Basic Auth
	
	distributed computing, World Wide Web as, Introduction, Surfing the Web
	
	distributed hypermedia, Distributed Hypermedia, Summary
	
	documentation
		ALPS (Application-Level Protocol Semantics), ALPS
	
	application semantics and, Profiles Describe Application Semantics
	
	embedded, Embedded Documentation
	
	human-readable, Profiles, Publish the rest of the documentation
	
	importance of, Alice Figured It Out
	
	improved for new HTTP specification, The New HTTP/1.1 Specification
	
	JSON-LD (JSON for Linking Data), JSON-LD
	
	link relations and, Link Relations
	
	linking to profiles, Linking to a Profile
	
	location of, How Does A Client Find the Documentation?
	
	profile media type parameter, The profile Media Type Parameter
	
	profiles for, What’s a Profile?
	
	protocol semantics and, Profiles Describe Protocol Semantics
	
	semantic descriptors and, Semantic Descriptors
	
	special-purpose hypermedia controls, Special-Purpose Hypermedia Controls
	
	unsafe link relations and, Unsafe Link Relations
	
	XMDP (XHTML Meta Data Profile) format for, XMDP: The First Machine-Readable Profile Format
	

	domain-specific designs
		API calls in, Is Maze+XML an API?
	
	application state in, Follow a Link to Change Application State
	
	bridging the semantic gap in, Meeting the Semantic Challenge
	
	collections in, The Collection of Mazes
	
	hypermedia mazes and, Domain-Specific Designs
	
	link relations in, Link Relations
	
	locating, Where Are the Domain-Specific Designs?
	
	Maze+XML example, Maze+XML: A Domain-Specific Design
	
	reusing foundations for, If You Can’t Find a Domain-Specific Design, Don’t Make One
	
	server implementation and, A Maze+XML Server
	
	standard extensions, Extending a Standard–Extending a Standard
	

	draft-ietf-core-coap, CoAP: REST for Embedded Systems
	
	draft-ietf-httpbisp6-cache, Caching
	
	Dublin Core, Dublin Core
	
	duplication of effort, Duplication of Effort, Liberated by Constraints
	

E
	embedded documentation, Embedded Documentation
	
	embedded links
		definition of, Glossary
	
	examples of, HTML as a Hypermedia Format, Workflow Control
	
	HTML hypermedia controls for, Hypermedia Controls
	

	end-of-life plans, Have an end-of-life plan
	
	entity-bodies
		definition of, Glossary
	
	function of, How to Read an HTTP Response
	

	entries, Collections Link to Items
	
	error messages, The Status Codex, Problem Detail Documents
		(see also status codes)
	

	ETag headers, Conditional GET, ETag
	
	Expect headers, Expect
	
	Expires headers, Caching, Expires
	
	extensibility, The Atom Publishing Protocol (AtomPub), Extensibility, Summary
	
	extension link relations, Link Relations
	

F
	Fiat standards, Fiat Standards, Beware of Fake Hypermedia!, Two-Step Design Procedure
	
	Fielding constraints
		definition of, Resources and Representations, An API Designer’s Guide to the Fielding Dissertation
	
	development of, Conclusion
	
	for uniform interfaces, Interface Constraints
	
	hypermedia and, The Hypermedia Constraint
	
	Representational State Transfer, Architectural Constraints
	
	resource identification, Identification of Resources
	
	resource manipulation through representations, Manipulation of Resources Through Representations
	
	self-descriptive messages, Self-Descriptive Messages
	

	Fielding, Roy, Resources and Representations, An API Designer’s Guide to the Fielding Dissertation
	
	filesystems, WebDAV
	
	fn class, Microformats
	
	FOAF, FOAF
	
	<form> tags, HTML as a Hypermedia Format, Hypermedia Controls
	
	From headers, From
	
	FTP (file transfer protocol), The Web Is Something Special
	

G
	GeoJSON, GeoJSON: A Troubled Type–Learning from GeoJSON
	
	GET method, Episode 3: The Link
		as a safe method, HTTP GET: Your Safe Bet, Liberated by Constraints
	
	conditional GET, Conditional GET, Avoiding the Lost Update Problem
	
	details of, GET
	
	function of, The Protocol Semantics of HTTP
	
	in collection-based design, GET
	
	partial GET, Partial GET
	
	pipelining, Pipelining
	
	with <form> tag, HTML as a Hypermedia Format, Hypermedia Controls
	

	Gopher protocol, The Web Is Something Special
	
	gzip, Compression
	

H
	HAL (Hypertext Application Language)
		basics of, The Hypertext Application Language, HAL
	

	HAL+JSON documents, The Hypertext Application Language
	
	HAL+XML documents, The Hypertext Application Language
	
	HATEOAS (hypermedia as the engine of application state)
		definition of, Glossary
	
	example of, Connectedness
	

	hCard format, Microformats
	
	HEAD method
		details of, HEAD
	
	function of, The Protocol Semantics of HTTP
	

	header-based content negotiation, Hypermedia Menus
	
	headers
		definition of, Glossary
	
	number available, Headers
		(see also HTTP headers)
	

	hMaze microformat, The hMaze Microformat
	
	home pages, in design process, Locating the home page, Publish your billboard URL
	
	Host headers, Host
	
	HTML (HyperText Markup Language)
		adding application semantics to forms, Adding Application Semantics to Forms
	
	as hypermedia format, HTML as a Hypermedia Format, Why HTML?, HTML
	
	benefits of, Why HTML?
	
	changing resource state with, Changing Resource State
	
	class attribute, The class attribute
	
	data structure in, HTML’s Capabilities
	
	hMaze microformat, The hMaze Microformat
	
	HTML4 limitations, HTML’s Limits
	
	HTML5 advantages, HTML 5 to the Rescue?
	
	hypermedia controls in, Hypermedia Controls
	
	id attribute, The id attribute
	
	microdata in, Microdata
	
	microformats for, Microformats
	
	plug-in application semantics for, Plug-in Application Semantics
	
	rel attribute, The rel attribute
	

	HTTP extensions
		LINK method, The LINK and UNLINK Methods
	
	PATCH method, Extensions to HTTP
	
	UNLINK method, The LINK and UNLINK Methods
	
	WebDAV, WebDAV
	

	HTTP headers
		Accept, Content Negotiation, Accept
	
	Accept-Charset, Accept-Charset
	
	Accept-Encoding, Compression, Accept-Encoding
	
	Accept-Language, Content Negotiation, Accept-Language
	
	Accept-Ranges, Partial GET, Accept-Ranges
	
	Age, Age
	
	Allow, Allow
	
	Authorization, Authorization
	
	Cache-Control, Caching, Cache-Control
	
	Connection, Connection
	
	Content-Disposition, Content-Disposition
	
	Content-Encoding, Compression, Content-Encoding
	
	Content-Language, Content-Language
	
	Content-Length, Content-Length
	
	Content-Location, The Location and Content-Location Headers, Content-Location
	
	Content-MD5, Content-MD5
	
	Content-Range, Content-Range
	
	Content-Type, How to Read an HTTP Response, Content-Type
	
	Cookie, Cookie
	
	creating custom, Custom HTTP Headers
	
	Date, Date
	
	definition of, The Header Codex
	
	ETag, Conditional GET, ETag
	
	Expect, Expect
	
	Expires, Caching, Expires
	
	From, From
	
	guides to, The Header Codex
	
	Host, Host
	
	If-Match, If-Match
	
	If-Modified-Since, Conditional GET, If-Modified-Since
	
	If-None-Match, Conditional GET, If-None-Match
	
	If-Range, If-Range
	
	If-Unmodified-Since, If-Unmodified-Since
	
	Last-Modified, Conditional GET, Last-Modified
	
	Link, The Link Header, Link
	
	Link-Template, The Link-Template Header, Link-Template
	
	Location, The Location and Content-Location Headers, Location
	
	Max-Forwards, Max-Forwards
	
	number available, Headers
	
	Pragma, Pragma
	
	Prefer, Prefer
	
	Preference-Applied, Preference-Applied
	
	Proxy-Authenticate, Proxy-Authenticate
	
	Proxy-Authorization, Proxy-Authorization
	
	Range, Partial GET, Range
	
	Referer, Referer
	
	Retry-After, Retry-After
	
	Set-Cookie, Set-Cookie
	
	Slug, Slug
	
	TE, TE
	
	Trailer, Trailer
	
	Transfer-Encoding, Transfer-Encoding
	
	types of, The Header Codex
	
	Upgrade, Upgrade
	
	User-Agent, User-Agent
	
	Vary, Vary
	
	Via, Via
	
	Warning, Warning
	
	WWW-Authenticate, The WWW-Authenticate and Authorization Headers, WWW-Authenticate
	

	HTTP messages, overview of, The Protocol Semantics of HTTP
	
	HTTP methods
		choice of, Which Methods Should You Use?
	
	definition of, Glossary
	
	details on, The Protocol Semantics of HTTP–Overloaded POST
	
	example of, Episode 3: The Link
	
	standardization of, Standardized Methods
	

	HTTP protocols
		avoiding data loss, Avoiding the Lost Update Problem
	
	caching, Caching
	
	canonical URLs, The Canonical URL
	
	compression, Compression
	
	conditional requests, Conditional GET, Avoiding the Lost Update Problem
	
	content negotiation and, Content Negotiation
	
	discouraging pointless requests, HTTP Performance
	
	for authentication, Authentication–When to Give Up on OAuth
	
	headers, Headers
	
	HTTP extensions, Extensions to HTTP
	
	hypermedia menus, Hypermedia Menus
	
	look-before-you-leap (LBYL) requests, Look-Before-You-Leap Requests
	
	paritial GET, Partial GET
	
	pipelining, Pipelining
	
	representation choices and, Choosing Between Representations
	
	response codes, Response Codes
	
	version 1.0, An API Designer’s Guide to the Fielding Dissertation
	
	version 1.1, The New HTTP/1.1 Specification, An API Designer’s Guide to the Fielding Dissertation, Self-Descriptive Messages
	
	version 2.0, HTTP 2.0
	

	HTTP requests
		parts of, Guiding the Request
	
	types under HTML controls, HTML as a Hypermedia Format
	

	HTTP responses
		examples of, Promises About the Response
	
	number available, Response Codes
	
	parts of, How to Read an HTTP Response
	

	HTTP sessions, Short Sessions
	
	HTTP verbs (see HTTP methods)
	
	HTTP: The Definitive Guide (Gourley and Totty), HTTP for APIs
	
	human-readable documentation, The Alternative to Hypermedia Is Media, Profiles, Advantages of ALPS
	
	Hydra, Hydra
	
	hypermedia
		definition of, HTML as a Hypermedia Format, HTTP for APIs, Glossary
	
	distributed, Distributed Hypermedia, Summary
	
	examples of, Connectedness
	
	Fielding constraints and, The Hypermedia Constraint
	
	generic hypermedia language (see HTML)
	
	guiding HTTP requests, Guiding the Request
	
	HTML format for, HTML as a Hypermedia Format, Why HTML?
	
	HTTP responses and, Promises About the Response
	
	link headers and, The Link Header, The Link Header
	
	pipelining and, Pipelining
	
	poor understanding of, Hypermedia Is Hard
	
	pure-hypermedia designs, Pure-Hypermedia Designs
	
	URI Templates and, URI Templates
	
	URIs vs. URLs, URI Versus URL
	
	usefulness of, Hypermedia, What Hypermedia Is For, Is Maze+XML an API?, When Your API Changes
	
	vs. media, The Alternative to Hypermedia Is Media
	
	vs. strings, Beware of Fake Hypermedia!
	
	workflow control with, Workflow Control
	

	hypermedia control
		and semantic gap, The Semantic Challenge: How Are We Doing?
	
	definition of, Glossary
	
	examples of, HTML as a Hypermedia Format
	
	in World Wide Web, Summary
	
	uses for, What Hypermedia Is For
	

	hypermedia formats
		Atom Publishing Protocol, The Atom Publishing Protocol
	
	Collection+JSON, Collection+JSON
	
	collection-based, Collection Pattern Formats–Metadata documents as service description documents
	
	Content-Location headers, The Location and Content-Location Headers
	
	domain-specific, Domain-Specific Formats–VoiceXML
	
	GeoJSON, GeoJSON: A Troubled Type–Learning from GeoJSON
	
	HAL (Hypertext Application Language), The Hypertext Application Language, HAL
	
	HTML, HTML
	
	JSON Home Documents, JSON Home Documents
	
	Link-Template headers, The Link-Template Header
	
	Location headers, The Location and Content-Location Headers
	
	Maze+XML, Maze+XML
	
	OData, OData–Metadata documents as service description documents
	
	OpenSearch, OpenSearch
	
	problem detail documents, Problem Detail Documents
	
	pure hypermedia, Pure Hypermedia Formats–XForms
	
	Siren, Siren, Siren
	
	SVG (Scalable Vector Graphics), SVG
	
	URL lists, URL Lists
	
	variety of, The Hypermedia Zoo
	
	VoiceXML, VoiceXML
	
	WADL (Web Application Description Language), WADL
	
	XForms, XForms
	
	XLink, XLink
	

	hypermedia mazes
		common steps in, Domain-Specific Designs, The Collection of Mazes
	

	hypermedia menus, Hypermedia Menus
	
	hypermedia-based service documents, Don’t Keep All the Hypermedia in One Place
	

I
	id attribute, The id attribute
	
	idempotent state transition
		definition of, Glossary
	
	examples of, Idempotence
	
	pipelining and, Pipelining
	

	identification of resources, Identification of Resources, Summary
	
	If-Match headers, If-Match
	
	If-Modified-Since headers, Conditional GET, If-Modified-Since
	
	If-None-Match headers, Conditional GET, If-None-Match
	
	If-Range headers, If-Range
	
	If-Unmodified-Since headers, If-Unmodified-Since
	
	 tags, HTML as a Hypermedia Format, Hypermedia Controls
	
	implementation, design process and, Step 6: Implementation
	
	information resources, definition of, A Resource Can Be Anything, Glossary
	
	Internet Assigned Numbers Authority (IANA), Link Relations, The IANA Registry of Link Relations
	
	Internet of Things, CoAP: REST for Embedded Systems
	
	Internet-Drafts, Requests for Comments (RFCs) and Internet-Drafts, The Protocol Semantics of HTTP, LINK and UNLINK, Caching, CoAP: REST for Embedded Systems
	
	internet-scale, Internet-Scale, Summary
	
	itemdrop attribute, Microdata
	
	items
		data bits in, An item’s data
	
	definition of, Collections Link to Items
	
	links in, An item’s links
	
	permanent links to, An item’s permanent link
	
	representation of, Representing the Items
	

	itemscope attribute, Microdata
	
	itemtype attribute, Microdata
	

J
	JSON (JavaScript Object Notation)
		introduction to, JSON
	
	strings vs. links, Beware of Fake Hypermedia!
	

	JSON Home Documents, JSON Home Documents
	
	JSON-LD (JSON for Linking Data), JSON-LD–JSON-LD, JSON-LD
	

L
	Last-Modified headers, Conditional GET, Last-Modified
	
	layered systems, in World Wide Web, Layered System, Summary
	
	Link headers, The Link Header, The Link Header, Link
	
	LINK method
		details of, The LINK and UNLINK Methods
	
	examples of, LINK and UNLINK
	
	function of, The Protocol Semantics of HTTP
	

	link relation
		and ALPS, Advantages of ALPS
	
	definition of, Glossary
	
	examples of, Self-Descriptive Messages, Link Relations
	
	for profiles, The profile Link Relation, Link Relations
	
	in design process, Semantic descriptors may become link relations, Register new link relations
	
	in HTML, The rel attribute
	
	microformats and, The hMaze Microformat
	
	Microformats wiki and, Link Relations from the Microformats Wiki
	
	registration of, Register new link relations, The IANA Registry of Link Relations
	
	registry of, Link Relations
	
	types of, Link Relations
	
	unsafe, Unsafe Link Relations
	

	<link> tags, Hypermedia Controls
	
	Link-Template headers, The Link-Template Header, Link-Template
	
	Linked Data, The Linked Data Movement
	
	Location headers, The Location and Content-Location Headers, Location
	
	look-before-you-leap (LBYL) requests , Look-Before-You-Leap Requests
	
	low entry-barrier, Low Entry-Barrier, Summary
	

M
	machine-readable documentation, The Alternative to Hypermedia Is Media, XMDP: The First Machine-Readable Profile Format
	
	Mapmaker client, Client #2: The Mapmaker, The Mapmaker’s Flaw
	
	Max-Forwards headers, Max-Forwards
	
	Maze+XML example
		API calls and, Is Maze+XML an API?
	
	application state in, Follow a Link to Change Application State
	
	automated client for, Client #2: The Mapmaker, Client #3: The Boaster
	
	collections in, The Collection of Mazes
	
	format overview, Maze+XML
	
	goal of, Domain-Specific Designs
	
	human-driven client, Client #1: The Game–Client #1: The Game
	
	link relations in, Link Relations
	
	media type of, Maze+XML: A Domain-Specific Design
	
	rat’s-eye-view in, How Maze+XML Works
	
	semantic challenge and, Maze+XML: A Domain-Specific Design
	
	server for, A Maze+XML Server
	
	standard extensions, Extending a Standard–Extending a Standard
	

	media types
		definition of, How to Read an HTTP Response, Glossary
	
	in design process, Step 4: Choose a Media Type, Register new media types, Choose a Media Type, If You Design a Media Type
	
	negotiating content and, Negotiating a profile
	
	registration of, If You Design a Media Type
	
	versioning of, Versioning the media type
	

	members, Collections Link to Items
	
	messages, self-descriptive, Self-Descriptive Messages, Self-Descriptive Messages, Summary
	
	meta data profiles, XMDP: The First Machine-Readable Profile Format
	
	meta-vocabulary, RDF Schema
	
	microblogging APIs, Duplication of Effort
	
	microdata, Microdata, Special-Purpose Hypermedia Controls
	
	microformats, Microformats, Profiles Describe Application Semantics, The Microformats Wiki
	
	MIME types (see media types)
	
	monitor-type API clients, The monitor
	

N
	names, reconciling in design process, Step 3: Reconcile Names, Reconcile Names
	
	Node library, choice of, Administrative Notes
	

O
	OAuth 1.0
		concepts behind, OAuth 1.0
	
	drawbacks of, Where OAuth 1.0 Falls Short
	
	features of, OAuth 1.0
	

	OAuth 2.0, OAuth 2.0
	
	OData hypermedia format, OData–Metadata documents as service description documents
	
	ontology, RDF Schema, The Ontology Zoo
	
	open standards, Open Standards
	
	OpenSearch hypermedia format, OpenSearch
	
	OPTIONS method
		details of, OPTIONS
	
	function of, The Protocol Semantics of HTTP
	

	outbound links
		definition of, Glossary
	
	examples of, Workflow Control
	
	HTML hypermedia controls for, Hypermedia Controls
	

	overloaded POST
		definition of, Glossary
	
	examples of, Overloaded POST
	

	overview representations, Choosing Between Representations
	

P
	pagination, Pagination
	
	PATCH method
		details of, PATCH, Extensions to HTTP
	
	function of, The Protocol Semantics of HTTP
	
	in collection-based design, PUT and PATCH
	

	personal credentials, Authentication
	
	personal standards, Personal Standards
	
	pipelining, Pipelining
	
	POST method
		function of, HTTP POST: How Resources Are Born, The Protocol Semantics of HTTP
	
	with <form> tag, HTML as a Hypermedia Format, Hypermedia Controls
	

	POST-to-append
		definition of, Glossary
	
	details of, POST-to-Append
	
	in collection-based design, POST-to-Append
	

	Pragma headers, Pragma
	
	Prefer headers, Prefer
	
	Preference-Applied headers, Preference-Applied
	
	problem detail documents, Problem Detail Documents, Problem Detail Documents
	
	profiles
		ALPS (Application-Level Protocol Semantics) for, ALPS
	
	application semantics and, Profiles Describe Application Semantics
	
	definition of, What’s a Profile?, Glossary
	
	embedded documentation, Embedded Documentation
	
	in design process, Step 5: Write a Profile, Write a Profile
	
	JSON-LD (JSON for Linking Data) for, JSON-LD
	
	link relations and, Link Relations, Advantages of ALPS
	
	linking to, Linking to a Profile
	
	media type parameter for, The profile Media Type Parameter, Negotiating a profile
	
	protocol semantics and, Profiles Describe Protocol Semantics
	
	publishing, Publish your profile
	
	semantic descriptors and, Semantic Descriptors
	
	special-purpose hypermedia controls for, Special-Purpose Hypermedia Controls
	
	unsafe link relations and, Unsafe Link Relations
	
	versioning of, Versioning the profile
	
	XMDP (XHTML Meta Data Profile) format, XMDP: The First Machine-Readable Profile Format
	

	protocol semantics
		definition of, Glossary
	
	importance of, The Protocol Semantics of HTTP
	
	in collection-based design, How a (Generic) Collection Works
	
	profiles and, Profiles Describe Protocol Semantics
	
	vs. application semantics, The Semantic Challenge: How Are We Doing?
	

	Proxy-Authenticate headers, Proxy-Authenticate
	
	Proxy-Authorization headers, Proxy-Authorization
	
	publication, in design process, Step 7: Publication
	
	PUT method
		details of, PUT
	
	function of, The Protocol Semantics of HTTP
	
	in collection-based design, PUT and PATCH
	

R
	Range headers, Partial GET, Range
	
	RDF (Resource Description Framework)
		basics of, RDF
	
	description vs. representation strategies and, Resource Description and Linked Data, When to Use the Description Strategy
	
	RDF Schema, RDF Schema
	
	resource types in, Resource Types
	
	URL treatment in, RDF Treats URLs as URIs
	
	usefulness of, When to Use the Description Strategy
	

	Referer headers, Referer
	
	registered link relations, Link Relations
	
	registration, Authentication
	
	rel attribute, The rel attribute
	
	representation strategy, Resource Description and Linked Data
	
	Representational State Transfer
		architectural constraints and, Architectural Constraints
	
	example of, Representations Are Transferred Back and Forth
	

	representations
		choices of, Choosing Between Representations
	
	definition of, A Representation Describes Resource State, Glossary
	
	examples of, Resources and Representations
	
	manipulation of resources through, Manipulation of Resources Through Representations, Summary
	
	transfer of, Representations Are Transferred Back and Forth
	

	resource design approach, What’s Not in This Book
	
	resource state, Resource State
		changing with HTML, Changing Resource State, Adding Application Semantics to Forms
	
	definition of, Glossary
	
	representations of, A Representation Describes Resource State
	

	resource types, Resource Types
	
	resources
		collection resources, What’s a Collection?
	
	definition of, A Resource Can Be Anything, Glossary
	
	description of, Resource Description and Linked Data
	
	examples of, Resources and Representations
	
	identification of, Identification of Resources, Summary
	
	in design process, Resources Are Implementation Details
	
	manipulation through representations, Manipulation of Resources Through Representations, Summary
	
	multiple representations of, Resources with Many Representations, Choosing Between Representations
	
	relationships between, Workflow Control
	

	response codes, Episode 2: The Home Page, How to Read an HTTP Response, Response Codes, The Status Codex
		(see also HTTP responses)
	
	(see also status codes)
	

	response headers, How to Read an HTTP Response
		(see also HTTP headers)
	

	RESTful architectures
		ability to adapt to change, Introduction
	
	as marketing buzzword, Hypermedia Is Hard, Resources and Representations
	
	Fielding constraints and, An API Designer’s Guide to the Fielding Dissertation, Architectural Constraints
	
	HTTP headers in, The Header Codex–Warning
	
	uniform interfaces in, Interface Constraints
	
	vs. SOAP-based APIs, Hypermedia Is Hard
	

	RESTful Web Services (Richardson and Ruby), Hypermedia Is Hard
	
	Retry-After headers, Retry-After
	
	RFC 2616, The New HTTP/1.1 Specification
	
	RFCs (requests for comments), Requests for Comments (RFCs) and Internet-Drafts, The New HTTP/1.1 Specification
	
	Richardson, Leonard, Hypermedia Is Hard
	
	Ruby, Sam, Hypermedia Is Hard
	

S
	safe state, definition of, Glossary
	
	schema.org, Microdata, schema.org
	
	schema.org RDF, schema.org RDF
	
	<script> tags, Hypermedia Controls
	
	script-type API clients, The script
	
	search templates, Search Templates, Search Forms
	
	self-descriptive messages, Self-Descriptive Messages, Self-Descriptive Messages, Summary
		definition of, Glossary
	

	semantic descriptors, Semantic Descriptors
		definition of, Glossary
	
	in design process, Step 1: List the Semantic Descriptors, Semantic descriptors may become link relations, List the Semantic Descriptors
	

	semantic gap
		dealing with, The Semantic Challenge, APIs Are Not (Quite) the Web, Conclusion
	
	definition of, Glossary
	
	domain-specific designs and, Maze+XML: A Domain-Specific Design, Meeting the Semantic Challenge
	
	examples of, Application Semantics Create the Semantic Gap
	
	hypermedia controls and, The Semantic Challenge: How Are We Doing?
	
	solving, In Summary
	

	semantic types, Resource Types
	
	Semantic Web, Resource Description and Linked Data, Conclusion: The Description Strategy Lives!
	
	server implementation
		design process and, Step 6: Implementation
	
	for Maze+XML example, A Maze+XML Server
	

	service description documents, Don’t Keep All the Hypermedia in One Place
	
	sessions, Short Sessions, Authentication
	
	Set-Cookie headers, Set-Cookie
	
	seven-step design procedure
		implementation, Step 6: Implementation
	
	media type choice, Step 4: Choose a Media Type
	
	overview of, Seven-Step Design Procedure
	
	preparatory work, Seven-Step Design Procedure
	
	profile creation, Step 5: Write a Profile
	
	publication, Step 7: Publication
	
	reconciling names, Step 3: Reconcile Names
	
	semantic descriptor list, Step 1: List the Semantic Descriptors
	
	state diagram creation, Step 2: Draw a State Diagram
	

	short sessions, Short Sessions
	
	Siren, Siren, Siren
	
	Slug headers, Slug
	
	snell-link-method Internet-Draft, The Protocol Semantics of HTTP, LINK and UNLINK
	
	SOAP-based APIs, Hypermedia Is Hard
	
	software agents, The agent
	
	standards
		benefits/shortfalls of, Understanding Standards
	
	corporate standards, Corporate Standards
	
	Fiat standards, Fiat Standards, Beware of Fake Hypermedia!, Two-Step Design Procedure
	
	Internet-Drafts, Requests for Comments (RFCs) and Internet-Drafts, The Protocol Semantics of HTTP, LINK and UNLINK, Caching, CoAP: REST for Embedded Systems
	
	open standards, Open Standards
	
	personal standards, Personal Standards
	
	RFCs (requests for comments), Requests for Comments (RFCs) and Internet-Drafts, The New HTTP/1.1 Specification
	

	state diagrams, Step 2: Draw a State Diagram, Draw a State Diagram, Don’t Fall into the Collection Trap
	
	state transition
		definition of, Glossary
	
	in HTML, Adding Application Semantics to Forms
	

	statelessness
		and authentication, Authentication
	
	definition of, Glossary
	
	example of, Short Sessions
	
	in World Wide Web, Statelessness, Summary
	
	self-descriptive message constraint and, Self-Descriptive Messages
	

	status codes
		100 (Continue), 100 (Continue)
	
	101 (Switching Protocols), 101 (Switching Protocols)
	
	200 (OK), Episode 2: The Home Page, Response Codes, The Status Codex–Four Status Codes: The Bare Minimum, 200 (OK)
	
	201 (Created), Writing to an API, 201 (Created)
	
	202 (Accepted), 202 (Accepted)
	
	203 (Non-Authoritative Information), 203 (Non-Authoritative Information)
	
	204 (No Content), 204 (No Content)
	
	205 (Reset Content), 205 (Reset Content)
	
	206 (Partial Content), 206 (Partial Content)
	
	300 (Moved Permanently), Four Status Codes: The Bare Minimum
	
	300 (Multiple Choices), 300 (Multiple Choices)
	
	301 (Moved Permanently), 301 (Moved Permanently)
	
	302 (Found), 302 (Found)
	
	303 (See Other), 303 (See Other)
	
	304 (Not Modified), Conditional GET, 304 (Not Modified)
	
	305 (Use Proxy), 305 (Use Proxy)
	
	306 (Unused), 306: Unused
	
	307 (Temporary Redirect), 307 (Temporary Redirect)
	
	308 (Permanent Redirect), 308 (Permanent Redirect)
	
	400 (Bad Request), Response Codes, Problem Detail Documents–Four Status Codes: The Bare Minimum, 400 (Bad Request)
	
	400 (Not Found), Four Status Codes: The Bare Minimum
	
	401 (Unauthorized), 401 (Unauthorized)
	
	402 (Payment Required), 402 (Payment Required)
	
	403 (Forbidden), 403 (Forbidden)
	
	404 (Method Not Allowed), 405 (Method Not Allowed)
	
	404 (Not Found), 404 (Not Found)
	
	406 (Not Acceptable), 406 (Not Acceptable)
	
	407 (Proxy Authentication Required), 407 (Proxy Authentication Required)
	
	408 (Request Timeout), 408 (Request Timeout)
	
	409 (Conflict), Four Status Codes: The Bare Minimum, 409 (Conflict)
	
	410 (Gone), 410 (Gone)
	
	411 (Length Required), 411 (Length Required)
	
	412 (Precondition Failed), 412 (Precondition Failed)
	
	413 (Request Entity Too Large), 413 (Request Entity Too Large)
	
	414 (Request-URL Too Long), 414 (Request-URL Too Long)
	
	415 (Unsupported Media Type), 415 (Unsupported Media Type)
	
	416 (Requested Range Not Satisfiable), 416 (Requested Range Not Satisfiable)
	
	417 (Expectation Failed), 417 (Expectation Failed)
	
	428 (Precondition Failed), 428 (Precondition Required)
	
	429 (Too Many Requests), 429 (Too Many Requests)
	
	431 (Request Header Fields Too Large), 431 (Request Header Fields Too Large)
	
	451 (Unavailable For Legal Reasons), 451 (Unavailable For Legal Reasons)
	
	500 (Internal Server Error), Four Status Codes: The Bare Minimum, 500 (Internal Server Error)
	
	501 (Not Implemented), 501 (Not Implemented)
	
	502 (Bad Gateway), 502 (Bad Gateway)
	
	502 (Service Unavailable), 503 (Service Unavailable)
	
	504 (Gateway Timeout), 504 (Gateway Timeout)
	
	505 (HTTP Version Not Supported), 505 (HTTP Version Not Supported)
	
	511 (Network Authentication Required), 511 (Network Authentication Required)
	
	client error (4xx), Families of Status Codes, 4xx: Client-Side Error–451 (Unavailable For Legal Reasons)
	
	definition of, The Status Codex
	
	families of, Families of Status Codes
	
	function of, How to Read an HTTP Response
	
	informational (1xx), Families of Status Codes, 1xx: Informational–101 (Switching Protocols)
	
	problem detail documents and, Problem Detail Documents, Problem Detail Documents
	
	redirection (3xx), Families of Status Codes, 3xx: Redirection–308 (Permanent Redirect)
	
	server error (5xx), Families of Status Codes, 5xx: Server-Side Error–511 (Network Authentication Required)
	
	successful (2xx), Families of Status Codes, 2xx: Successful–206 (Partial Content)
	
	usefulness of, The Status Codex
	

	SVG (Scalable Vector Graphics), SVG
	

T
	TE headers, TE
	
	tight coupling, Don’t Keep All the Hypermedia in One Place
	
	Trailer headers, Trailer
	
	transclusion
		definition of, Glossary
	
	examples of, Workflow Control
	

	Transfer-Encoding headers, Transfer-Encoding
	

U
	uniform interfaces
		definition of, Glossary
	
	in World Wide Web, Uniform Interface, Summary
	

	UNLINK method
		details of, The LINK and UNLINK Methods
	
	examples of, LINK and UNLINK
	
	function of, The Protocol Semantics of HTTP
	

	unsafe link relation, Unsafe Link Relations
	
	Upgrade headers, Upgrade
	
	URI Templates, URI Templates, URL Design Doesn’t Matter
	
	URIs (Uniform Resource Identifiers)
		and RDF documents, RDF Treats URLs as URIs
	
	definition of, Glossary
	
	in World Wide Web, Summary
	
	standards for, An API Designer’s Guide to the Fielding Dissertation
	
	templates for, URI Templates
	
	vs. URLs, URI Versus URL
	
	Well-Known URI Registry, Well-known URIs
	

	URL lists, URL Lists
	
	URLs (Uniform Resource Locators)
		canonical URLs, The Canonical URL
	
	definition of, Glossary
	
	in design process, URL Design Doesn’t Matter
	
	in RDF documents, RDF Treats URLs as URIs
	
	publishing, Publish your billboard URL
	
	URL space partitions, Partitioning the URL space
	
	vs. URIs, URI Versus URL
	

	User-Agent headers, User-Agent
	

V
	Vary headers, Vary
	
	vCard format, Steal the Application Semantics, Microformats
	
	verbs (see HTTP methods)
	
	Via headers, Via
	
	vocab.org, vocab.org
	
	vocabulary, RDF Schema, The Ontology Zoo
	
	VoiceXML, VoiceXML
	

W
	WADL (Web Application Description Language), WADL
	
	Warning headers, Warning
	
	web host metadata documents, Web Host Metadata Documents
	
	WebDAV, WebDAV
	
	WebFinger, WebFinger
	
	Well-Known URI Registry, Well-known URIs
	
	World Wide Web
		addressability in, Addressability
	
	application state in, Application State
	
	architectural constraints and, Summary
	
	architectural properties of, Architectural Properties of the Web, Summary
	
	as distributed computing, Introduction, Surfing the Web
	
	caching in, Caching, Summary
	
	client-server architecture, Architectural Constraints
	
	code on demand in, Code on Demand, Summary
	
	connectedness in, Connectedness
	
	Fielding constraints and, An API Designer’s Guide to the Fielding Dissertation
	
	layered systems in, Layered System, Summary
	
	redirects in, Episode 4: The Form and the Redirect
	
	resource state in, Resource State
	
	resources/representations in, Resources and Representations
	
	self-descriptive messages in, Self-Descriptive Messages
	
	short sessions in, Short Sessions
	
	standardized HTTP methods in, Standardized Methods
	
	statelessness in, Statelessness
	
	technologies underlying, Surfing the Web, Resources and Representations, HTTP for APIs
	
	uniform interfaces in, Uniform Interface, Summary
	
	vs. APIs, APIs Are Not (Quite) the Web
	
	vs. competing technologies, The Web Is Something Special
	

	write template, The Write Template
	
	WSDL (Web Service Definition Language) descriptions, Don’t Keep All the Hypermedia in One Place
	
	WWW-Authenticate headers, The WWW-Authenticate and Authorization Headers, WWW-Authenticate
	

X
	XForms, XForms
	
	XLink, XLink
	
	XMDP (XHTML Meta Data Profile) format, XMDP: The First Machine-Readable Profile Format
	
	XRD format, The XRD Family
	

Y
	You Type It, We Post It design example, Example: You Type It, We Post It
	

About the Authors
Leonard Richardson (http://www.crummy.com/) is the author of the Ruby Cookbook (O'Reilly) and of several open source libraries, including Beautiful Soup. A California native, he currently lives in New York.
An internationally known author and lecturer, Mike Amundsen travels throughout the United States and Europe consulting and speaking on a wide range of topics including distributed network architecture, Web application development, Cloud computing, and other subjects. His recent work focuses on the role hypermedia plays in creating and maintaining applications that can successfully evolve over time. He has more than a dozen books to his credit and recently contributed to the book "RESTful Web Services Cookbook" (by Subbu Allamaraju). When he is not working, Mike enjoys spending time with his family in Kentucky, USA.
Sam Ruby is a prominent software developer who is a co-chair of the W3C HTML Working Group and has made significant contributions to many of the Apache Software Foundation's open source software projects. He is a Senior Technical Staff Member in the Emerging Technologies Group of IBM.

Colophon
The animal on the cover of RESTful Web APIs is Hoffmann’s two-toed sloth (Choloepus hoffmanni). Hoffmann’s two-toed sloth, named after German naturalist, Karl Hoffmann, is found in rainforests in Central and South America. Hoffmann’s two-toed sloth is named for its two curved forefeet, which it uses to hang upside down on tree limbs.
Adult two-toed sloths typically grow up to 21 to 28 inches in length and weigh around 4.6 to 20 pounds. The large difference in weight is due to the fact that it typically takes up to a month for its three stomachs to digest its food content. Female two-toed sloths tend to be larger than their male counterparts. Both male and female two-toed sloths have tan or light brown fur with a slight greenish color due to algae. The diet of the two-toed sloth consists of fruit, flowers, and mostly tree leaves.
The two-toed sloth is a primarily nocturnal creature that spends most of its time in trees. Like many sloths, the two-toed sloth is a notoriously slow animal, but this slowness is due to its low-energy diet. Like many other species of sloth, they have bad eyesight and hearing, making them an easy target for predators.
The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

RESTful Web APIs

Leonard Richardson

Mike Amundsen

Sam Ruby

Editor
Simon St. Laurent

Editor
Meghan Blanchette

	Revision History
	2013-09-10	First release

Copyright © 2013 Leonard Richardson, amundsen.com, Inc., and Sam Ruby

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department:
 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. RESTful Web APIs, the image of Hoffmann’s two-toed sloth,
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish
 their products are claimed as trademarks. Where those designations appear
 in this book, and O’Reilly Media, Inc., was aware of a trademark claim,
 the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
 the publisher and authors assume no responsibility for errors or omissions,
 or for damages resulting from the use of the information contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-09-11T06:10:14-07:00

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages1790038.png
signup relation

POST

Create an account

Request
Headers
The request should have the Content-Type applicationjson
Body
Required properties
+ username: siring
+ password: siring

Optional properties
* bio :string
* real_name : sting

Example
{
username”: "fred”,
password”: “pwnme”,
“real_name": "Fred Wilson"
¥
Responses
201 Created
Headers

* Location: URI of the created user account

OEBPS/httpatomoreillycomsourceoreillyimages1790036.png
Entrance

OEBPS/httpatomoreillycomsourceoreillyimages1790057.png
GET or POST
(function
or action)

Collection

GET or POST
(function or action)

OEBPS/httpatomoreillycomsourceoreillyimages1790047.png
safe,

unsafe,

unsafe, idempotey

idempotent

A

safe

7

sare

safe

unsafe,
non-idempotent

unsafe,
idempotent

OEBPS/httpatomoreillycomsourceoreillyimages1790050.png
I item, blogPost .
(safe)
Blog
_ collection
(safe)
post (unsafe,

non-idempotent)

y

BlogPosting
(articleBody)
(dateCreated)

Human-readable

about |

text

(safe)

OEBPS/bk01-toc.html
RESTful Web APIs

Table of Contents
		Praise for RESTful Web APIs

		Dedication

		Special Upgrade Offer

		Foreword

		Introduction		Duplication of Effort

		Hypermedia Is Hard

		What’s in This Book?

		What’s Not in This Book

		Administrative Notes

		Understanding Standards		Fiat Standards

		Personal Standards

		Corporate Standards

		Open Standards		Requests for Comments (RFCs) and Internet-Drafts

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgements

		1. Surfing the Web		Episode 1: The Billboard		Resources and Representations

		Addressability

		Episode 2: The Home Page		Short Sessions

		Self-Descriptive Messages

		Episode 3: The Link		Standardized Methods

		Episode 4: The Form and the Redirect

		Application State

		Resource State

		Connectedness

		The Web Is Something Special

		Web APIs Lag Behind the Web

		The Semantic Challenge

		2. A Simple API		HTTP GET: Your Safe Bet

		How to Read an HTTP Response

		JSON

		Collection+JSON

		Writing to an API

		HTTP POST: How Resources Are Born

		Liberated by Constraints

		Application Semantics Create the Semantic Gap

		3. Resources and Representations		A Resource Can Be Anything

		A Representation Describes Resource State

		Representations Are Transferred Back and Forth

		Resources with Many Representations

		The Protocol Semantics of HTTP		GET

		DELETE

		Idempotence

		POST-to-Append

		PUT

		PATCH

		LINK and UNLINK

		HEAD

		OPTIONS

		Overloaded POST

		Which Methods Should You Use?

		4. Hypermedia		HTML as a Hypermedia Format

		URI Templates

		URI Versus URL

		The Link Header

		What Hypermedia Is For		Guiding the Request

		Promises About the Response

		Workflow Control

		Beware of Fake Hypermedia!

		The Semantic Challenge: How Are We Doing?

		5. Domain-Specific Designs		Maze+XML: A Domain-Specific Design

		How Maze+XML Works		Link Relations

		Follow a Link to Change Application State

		The Collection of Mazes

		Is Maze+XML an API?

		Client #1: The Game

		A Maze+XML Server

		Client #2: The Mapmaker

		Client #3: The Boaster

		Clients Do the Job They Want to Do

		Extending a Standard

		The Mapmaker’s Flaw		The Fix (and the Flaw in the Fix)

		Maze as Metaphor

		Meeting the Semantic Challenge

		Where Are the Domain-Specific Designs?		The Prize at the End

		Hypermedia in the Headers

		Steal the Application Semantics

		If You Can’t Find a Domain-Specific Design, Don’t Make One

		Kinds of API Clients		Human-Driven Clients

		Automated Clients		The crawler

		The monitor

		The script

		The agent

		6. The Collection Pattern		What’s a Collection?		Collections Link to Items

		Collection+JSON		Representing the Items		An item’s permanent link

		An item’s data

		An item’s links

		The Write Template

		Search Templates

		How a (Generic) Collection Works		GET

		POST-to-Append

		PUT and PATCH

		DELETE

		Pagination

		Search Forms

		The Atom Publishing Protocol (AtomPub)		AtomPub Plug-in Standards

		Why Doesn’t Everyone Use AtomPub?

		The Semantic Challenge: How Are We Doing?

		7. Pure-Hypermedia Designs		Why HTML?

		HTML’s Capabilities		Hypermedia Controls

		Plug-in Application Semantics		The rel attribute

		The id attribute

		The class attribute

		Microformats

		The hMaze Microformat

		Microdata

		Changing Resource State		Adding Application Semantics to Forms

		The Alternative to Hypermedia Is Media

		HTML’s Limits		HTML 5 to the Rescue?

		The Hypertext Application Language

		Siren

		The Semantic Challenge: How Are We Doing?

		8. Profiles		How Does A Client Find the Documentation?

		What’s a Profile?

		Linking to a Profile		The profile Link Relation

		The profile Media Type Parameter

		Special-Purpose Hypermedia Controls

		Profiles Describe Protocol Semantics

		Profiles Describe Application Semantics		Link Relations

		Unsafe Link Relations

		Semantic Descriptors

		XMDP: The First Machine-Readable Profile Format

		ALPS		Advantages of ALPS

		ALPS Doesn’t Do Everything

		JSON-LD

		Embedded Documentation

		In Summary

		9. The Design Procedure		Two-Step Design Procedure

		Seven-Step Design Procedure		Step 1: List the Semantic Descriptors

		Step 2: Draw a State Diagram		Semantic descriptors may become link relations

		Locating the home page

		Step 3: Reconcile Names

		Step 4: Choose a Media Type

		Step 5: Write a Profile

		Step 6: Implementation

		Step 7: Publication		Publish your billboard URL

		Publish your profile

		Register new media types

		Register new link relations

		Publish the rest of the documentation

		Well-known URIs

		Example: You Type It, We Post It		List the Semantic Descriptors

		Draw a State Diagram

		Reconcile Names

		Choose a Media Type

		Write a Profile

		Some Design Advice		Resources Are Implementation Details

		Don’t Fall into the Collection Trap

		Don’t Start with the Representation Format

		URL Design Doesn’t Matter

		Standard Names Are Probably Better Than Your Names

		If You Design a Media Type

		When Your API Changes		Partitioning the URL space

		Versioning the media type

		Versioning the profile

		Versoning isn’t special

		Have an end-of-life plan

		Don’t Keep All the Hypermedia in One Place

		Adding Hypermedia to an Existing API		Fixing Up an XML-Based API

		Is It Worth It?

		Alice’s Second Adventure		Episode 1: The Nonsense Representation

		Episode 2: The Profile

		Alice Figured It Out

		10. The Hypermedia Zoo		Domain-Specific Formats		Maze+XML

		OpenSearch

		Problem Detail Documents

		SVG

		VoiceXML

		Collection Pattern Formats		Collection+JSON

		The Atom Publishing Protocol

		OData		Filtering

		Functions and the metadata document

		Metadata documents as service description documents

		Pure Hypermedia Formats		HTML

		HAL

		Siren

		The Link Header

		The Location and Content-Location Headers

		URL Lists

		JSON Home Documents

		The Link-Template Header

		WADL

		XLink

		XForms

		GeoJSON: A Troubled Type		GeoJSON Has No Generic Hypermedia Controls

		GeoJSON Has No Media Type

		Learning from GeoJSON

		The Semantic Zoo		The IANA Registry of Link Relations

		The Microformats Wiki

		Link Relations from the Microformats Wiki

		schema.org

		Dublin Core

		Activity Streams

		The ALPS Registry

		11. HTTP for APIs		The New HTTP/1.1 Specification

		Response Codes

		Headers

		Choosing Between Representations		Content Negotiation		Negotiating a profile

		Hypermedia Menus

		The Canonical URL

		HTTP Performance		Caching

		Conditional GET

		Look-Before-You-Leap Requests

		Compression

		Partial GET

		Pipelining

		Avoiding the Lost Update Problem

		Authentication		The WWW-Authenticate and Authorization Headers

		Basic Auth

		OAuth 1.0

		Where OAuth 1.0 Falls Short

		OAuth 2.0

		When to Give Up on OAuth

		Extensions to HTTP		The PATCH Method

		The LINK and UNLINK Methods

		WebDAV

		HTTP 2.0

		12. Resource Description and Linked Data		RDF		RDF Treats URLs as URIs

		When to Use the Description Strategy

		Resource Types

		RDF Schema

		The Linked Data Movement

		JSON-LD		JSON-LD as a Representation Format

		Hydra

		The XRD Family		XRD and JRD

		Web Host Metadata Documents

		WebFinger

		The Ontology Zoo		schema.org RDF

		FOAF

		vocab.org

		Conclusion: The Description Strategy Lives!

		13. CoAP: REST for Embedded Systems		A CoAP Request

		A CoAP Response

		Kinds of Messages

		Delayed Response

		Multicast Messages

		The CoRE Link Format

		Conclusion: REST Without HTTP

		A. The Status Codex		Problem Detail Documents

		Families of Status Codes

		Four Status Codes: The Bare Minimum

		1xx: Informational		100 (Continue)

		101 (Switching Protocols)

		2xx: Successful		200 (OK)

		201 (Created)

		202 (Accepted)

		203 (Non-Authoritative Information)

		204 (No Content)

		205 (Reset Content)

		206 (Partial Content)

		3xx: Redirection		300 (Multiple Choices)

		301 (Moved Permanently)

		302 (Found)

		303 (See Other)

		304 (Not Modified)

		305 (Use Proxy)

		306: Unused

		307 (Temporary Redirect)

		308 (Permanent Redirect)

		4xx: Client-Side Error		400 (Bad Request)

		401 (Unauthorized)

		402 (Payment Required)

		403 (Forbidden)

		404 (Not Found)

		405 (Method Not Allowed)

		406 (Not Acceptable)

		407 (Proxy Authentication Required)

		408 (Request Timeout)

		409 (Conflict)

		410 (Gone)

		411 (Length Required)

		412 (Precondition Failed)

		413 (Request Entity Too Large)

		414 (Request-URL Too Long)

		415 (Unsupported Media Type)

		416 (Requested Range Not Satisfiable)

		417 (Expectation Failed)

		428 (Precondition Required)

		429 (Too Many Requests)

		431 (Request Header Fields Too Large)

		451 (Unavailable For Legal Reasons)

		5xx: Server-Side Error		500 (Internal Server Error)

		501 (Not Implemented)

		502 (Bad Gateway)

		503 (Service Unavailable)

		504 (Gateway Timeout)

		505 (HTTP Version Not Supported)

		511 (Network Authentication Required)

		B. The Header Codex		Custom HTTP Headers

		The Headers		Accept

		Accept-Charset

		Accept-Encoding

		Accept-Language

		Accept-Ranges

		Age

		Allow

		Authorization

		Cache-Control

		Connection

		Content-Disposition

		Content-Encoding

		Content-Language

		Content-Length

		Content-Location

		Content-MD5

		Content-Range

		Content-Type

		Cookie

		Date

		ETag

		Expect

		Expires

		From

		Host

		If-Match

		If-Modified-Since

		If-None-Match

		If-Range

		If-Unmodified-Since

		Last-Modified

		Link

		Link-Template

		Location

		Max-Forwards

		Pragma

		Prefer

		Preference-Applied

		Proxy-Authenticate

		Proxy-Authorization

		Range

		Referer

		Retry-After

		Set-Cookie

		Slug

		TE

		Trailer

		Transfer-Encoding

		Upgrade

		User-Agent

		Vary

		Via

		Warning

		WWW-Authenticate

		C. An API Designer’s Guide to the Fielding Dissertation		Architectural Properties of the Web		Low Entry-Barrier

		Extensibility

		Distributed Hypermedia

		Internet-Scale

		APIs Are Not (Quite) the Web

		Interface Constraints		Identification of Resources

		Manipulation of Resources Through Representations

		Self-Descriptive Messages

		The Hypermedia Constraint

		Architectural Constraints		Client-Server

		Statelessness

		Caching

		Uniform Interface

		Layered System

		Code on Demand

		Summary

		Conclusion

		Glossary

		Index

		About the Authors

		Colophon

		Special Upgrade Offer

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages1790029.png
The Gams

e & [0 locathost

The Game

You are in the: Entrance Hallway.
You have the following options: east, maze, clear

What would you like to do?
’7‘ Go

OEBPS/httpatomoreillycomsourceoreillyimages1790028.png
sa @O M =

The Game

Select a maze:

1. A Beginner's Maze
2. For Experts Only

Go

OEBPS/httpatomoreillycomsourceoreillyimages1790055.png
GET
Collection

GET, PUT, DELETE
v

A

POST (create)
GET (search)

v

Item

OEBPS/httpatomoreillycomsourceoreillyimages1790033.png
it Penguin
Heights
A
The Cold Penguin |
Kitchen Towers |~ up/down
A A
3 3
s s
g g
= =
v v
Skating |, east/west | Ice Palace
Rink |~ Bailey
Entrance

A well-behaved maze

OEBPS/httpatomoreillycomsourceoreillyimages1790015.png
THE EXCITING
THE AMAZING

http://www.youtypeitwepostit.com/

YOUTYPEIT-WEPOSTIT

OEBPS/httpatomoreillycomsourceoreillyimages1790018.png
Messages
Enter your message below:

Post

Here are some other messages, too:

o Later
* Hello

Home

OEBPS/httpatomoreillycomsourceoreillyimages1790025.png.jpg
You are facing:

east

e
SRBERE R R RN R
#J J@memw_uﬂ
NI

I

OEBPS/httpatomoreillycomsourceoreillyimages1790031.png
The Game

£ [0 locathost

Congratulations! you've made it out of the maze!
east

You are in the: The Exit.
You have the following options: maze, clear

What would you like to do?

Go

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages1790051.png
[vnd-myapi-abit html

A SENRCHANASLE DNATASNSE OF RECiPES

INFFORMATION ABOUT THE RECIPE DATASASE NS A WHOLE

INDICATES THE TOTAL NUMB=R OF RECIPES IN A LIST:

S=ARCH

INFFORMATION ABOUT THE CURRENTLY FEATURED RECiP=

DIETARY RESTRICTIONS

OEBPS/httpatomoreillycomsourceoreillyimages1790062.png
Hypermedia

HTTP

URL

OEBPS/orm_front_cover.jpg
Services for a Changing World

RESTful

- n Leonard Richardson,
O'REILLY Mike Amundsen & Sam Ruby

OEBPS/httpatomoreillycomsourceoreillyimages1790039.png
W Developers [Search

Tweets

Twests are the atomic building blocks of Titter, 140-character status updates with additional associated metadata. People tweet for a varisty of reasons about a multtude

of topics.

Resource

GET statuses/retweets/:id

GET statuses/show/:id

POST statuses/destroy/:id

POST statuses/update

POST statuses/retweet/id

POST statuses/update_with_media

GET statuses/oembed

Description
Retums up to 100 of the first retweets of a given tweet.

Returns a single Tweet, specified by the id parameter. The Tweet's author will also be embedded within
the tweet. See Embeddable Timelines, Embeddable Tweets, and GET statuses/oembed for tools to
render Tweets according to Display Requirements.

Destroys the status specified by the required ID parameter. The authenticating user must be the author of
the specified status. Returns the destroyed status if successful.

Updates the authenticating user's current status, also known as tweeting. To upload an image to
‘accompany the tweet, use POST statuses/update_with_media. For each update attempt, the update text
s compared with the authenticating user's recent tweets. Any attempt that would result in duplication...

Retweets a tweet. Returns the original tweet with retweet details embedded.

Updates the authenticating user's current status and attaches media for upload. In other words, it creates
a Tweet with a picture attached. Unlike POST statuses/update, this method expects raw multipart data.
Your POST request's Content-Type should be set to multipart/form-data with the medial]

Returns information allowing the creation of an embedded representation of a Tweet on third party sites.
See the oEmbed specification for information about the response format. While this endpoint allows a bit of
customization for the final appearance of the embedded Tweet, be aware that the.

OEBPS/httpatomoreillycomsourceoreillyimages1790020.png
Message
ID 5266722824890167

DATE 2013-01-09T15:58:22.674Z
MSG Test

Home

OEBPS/httpatomoreillycomsourceoreillyimages1790046.png
safe I
Collection

update, delete

v (unsafe, idempotent)

create (unsafe,
idempotent)

A 4

[tem

update, delete

v (unsafe, idempotent)

>
safe

[tem

OEBPS/httpatomoreillycomsourceoreillyimages1790034.png
Entrance

. Inside the west
Exit < funhouse |~
east
v
Hallof | east Mirrored
Mirrors hall

f east

A mischievous, but mappable maze

OEBPS/httpatomoreillycomsourceoreillyimages1790041.png
List of
mazes

maze

(safe) N

Maze

start
(safe)
v

(title)

(doorways)
(switch)
(switch position)

Cell

(exit)

flip (unsafe,
non-idempotent)

OEBPS/httpatomoreillycomsourceoreillyimages1790021.png
[null]

1.GET/
v

Home page

2. GET /messages

v
o] Message
1 list
4. GET /messages/21818525390699506
3. POST /messages I
\ 4
Individual

message

OEBPS/httpatomoreillycomsourceoreillyimages1790052.png
GET

Maze
Collection

GET

v

Maze

Maze

GET start

\ 4

Cell

v

GET north,
south, east,
west, current

GET
Exit

OEBPS/httpatomoreillycomsourceoreillyimages1790042.png
List of
mazes

maze
L
(safe)

Maze

A 4

start
(safe)

Cell
(title)
(switch)

(switch position)

exit
(safe)

north, south, east,
west, current (safe)

flip (unsafe,
non-idempotent)

OEBPS/httpatomoreillycomsourceoreillyimages1790056.png
GET

Service
document

GET__,| Category

GET

A\ 4

Collection

document

£ GET, PUT, DELETE

GELPUT | ey

POST

(create entry)

DELETE

£ GET, PUT, DELETE

v

Media Entry

OEBPS/httpatomoreillycomsourceoreillyimages1790058.png
GET (link or form)

GET GET (embedded link
—»| Webpage {embedded link) Binary image, JavaScript, etc.

POST (form)

OEBPS/httpatomoreillycomsourceoreillyimages1790044.png
List of
mazes

MAz€ pf Maze
(safe)
start
(safe)
v
o cell | et
7| (title) | (safe)
north, south, east, | [syitch
west, current (safe) | | (safe)
\4
Switch
(position)
flip (unsafe,
non-idempotent)

OEBPS/httpatomoreillycomsourceoreillyimages1790063.png
You type it, we post it!

Exciting! Amazing!

OEBPS/httpatomoreillycomsourceoreillyimages1790026.png
Entrance

OEBPS/httpatomoreillycomsourceoreillyimages1790043.png
- Alist of mazes

- Amaze

- A maze cell
- Atitle
- A doorway to another cell
- An exit from the current maze
- A switch
- A position (“up” or “down”)

OEBPS/httpatomoreillycomsourceoreillyimages1790048.png
- The list of messages

- Some kind of “About this site” text

- An individual message
-The ID of a message
- The text of a message
- The publication date of a message

OEBPS/httpatomoreillycomsourceoreillyimages1790053.png
Search form

' GET (embedded link)

GET

A 4

Search results

Image

OEBPS/httpatomoreillycomsourceoreillyimages1790049.png
item Message
(safe) (ID)

l

Message list (text)

<llection (publication date)

(safe)

A
create (unsafe,
non-idempotent)

y

“About this site”

about” |
(safe)

OEBPS/httpatomoreillycomsourceoreillyimages1790037.png
Entrance

OEBPS/httpatomoreillycomsourceoreillyimages1790032.png
The Game

n

You are in the: Garage.
You have the following options: north, west, south, up, down, maze, clear

— What would you like to do?
| Go

OEBPS/httpatomoreillycomsourceoreillyimages1790054.png
Go North!

Go st Foyer of Horrors

www.example.com/cells/O

oo st

OEBPS/httpatomoreillycomsourceoreillyimages1790019.png
GET/

Message
list

GET /about

POST /messages

OEBPS/httpatomoreillycomsourceoreillyimages1790022.png
Home page
]

Message list I

(/messages)
2 messages

Initial state

Message list
(/messages)
3 messages

New state

OEBPS/httpatomoreillycomsourceoreillyimages1790061.png
GET GET (embedded link
—| GeoJSON document | ismbedaediing

OEBPS/httpatomoreillycomsourceoreillyimages1790060.png
GET (link)

—> Entity

GET, POST, PUT,
DELETE, PATCH (action)

OEBPS/httpatomoreillycomsourceoreillyimages1790016.png
You type it, we post it!

Exciting! Amazing!

Get started About this site

OEBPS/httpatomoreillycomsourceoreillyimages1790023.png
GET /messages/7534227794967592

GET /messaqges/3689331521745771

Message list

GET /messages/21818525390699506

POST /messages
(Redirect)

GET /messaqges

GET /about

(

Home page
/)

OEBPS/httpatomoreillycomsourceoreillyimages1790035.png
Entrance

Room 1 h »| Room?2 east »| Room3
Exit Exit Exit

A simple but unmappable maze

€

ast ..

OEBPS/httpatomoreillycomsourceoreillyimages1790030.png
The Game

e & [0 locathost

The Game

You are in the: Tool Room.
You have the following options: north, west, maze, clear

What would you like to do?

I Go

OEBPS/httpatomoreillycomsourceoreillyimages1790017.png
Get started

About this site

OEBPS/httpatomoreillycomsourceoreillyimages1790027.png
1 The Game. x

& € @D loclhost3000

The Game

LY @O M =

‘Which maze server?

MQ:I/example.orglmazes‘ Load‘

OEBPS/httpatomoreillycomsourceoreillyimages1790024.png
Exit

1

Entrance

OEBPS/httpatomoreillycomsourceoreillyimages1790045.png
List of
mazes

MAz€ pf Maze
(safe)
start
(safe)
v
o cell | et
7| (title) | (safe)
north, south, east, | [yitch
west, current (safe) | | (safe)
\4
Switch
(position)

edit (unsafe,
non-idempotent)

OEBPS/httpatomoreillycomsourceoreillyimages1790064.png
Example.net

Example.net

You Type It, We Post It would like to connect to your Example.net account.

| Cancel and go back | | Connect my Example.net account |

OEBPS/httpatomoreillycomsourceoreillyimages1790059.png
HTTP request

e

Resource

OEBPS/httpatomoreillycomsourceoreillyimages1790040.png
- Alist of mazes

- Amaze

- A maze cell
- Atitle
- A doorway to another cell
- An exit from the current maze
- A switch
- A position ("up” or “down”)

