[image: Fifth Edition]

[image: O'Reilly Strata Conference]

Oracle Essentials

Rick Greenwald

Robert Stackowiak

Jonathan Stern

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
Preface

We dedicate this book to the memory of one of our original coauthors, Jonathan Stern. Jonathan unexpectedly passed away in March of 2007. Yet his memory lives on for those of us who knew him and, in many ways, for those who will read this book. Let us explain.
The original outline for this book was first assembled at the ubiquitous coffee shop located
 in the Sears Tower in Chicago. It was 1998 and the authors had gathered there with a common
 goal. We were all Oracle employees working in technical sales roles and had visited many
 organizations and companies. We found that many IT managers, Oracle Database Administrators
 (DBAs), and Oracle developers were quite adept at reading Oracle’s documentation, but seemed
 to be missing an understanding of the overall Oracle footprint and how to practically apply
 what they were reading. It was as if they had a recipe book, but were unclear on how to
 gather the right ingredients and mix them together successfully. This bothered all of us,
 but it particularly frustrated Jonathan.
Jonathan was the kind of person who sought to understand how things worked. Nothing delighted Jonathan more than gaining such an understanding, then spending hours thinking of ways to translate his understanding into something that would be more meaningful to others. He believed that a key role for himself while at Oracle was the transfer of such knowledge to others. He continued to perform similar roles later at other companies at which he worked.
Writing the first edition of Oracle Essentials was a lengthy process. Jonathan wrote several of the original chapters, and he also reviewed some of the other original work and was quick to identify where he thought something was wrong. For Jonathan, “wrong” meant that the text could be misinterpreted and that further clarity was needed to make sure the right conclusion was drawn. The first edition became much more useful through Jonathan’s efforts. He was always quite proud of that effort. Even as the book changed with succeeding editions and Jonathan moved on to other companies, he continued to feel that this book remained an important accomplishment in his life.
Some explanations of how Oracle works are fundamental to the database and have not changed in
 subsequent editions of the book, so some of Jonathan’s original work remains here, although
 much of the surrounding text is now considerably different. Of course, some entire sections
 describing the complex steps that were once needed to manage and deploy older releases of
 the database are no longer relevant and thus are no longer included. Jonathan would probably
 view Oracle’s self-managing, self-tuning, and cloud-enabling improvements as incredible
 achievements, but would also wonder whether it is a good thing that people can know even
 less today about how the database works but still deploy it.
So, we introduce you to the fifth edition of Oracle Essentials. We have made many changes in this edition. Some, of course, result from changes in features in Oracle Database 12c and the ways that you can now use and deploy the latest release of the database. But we have also made a considerable effort to go back and rewrite parts of the book that we did not believe possessed the clarity needed by our readers—clarity that Jonathan would want in such a book. So, he influences us still.
Goals of This Book

Our main goal is to give you a foundation for using the Oracle Database effectively and
 efficiently. Therefore, we wrote with these principles in mind:
	Focus
	We’ve tried to concentrate on the most important Oracle issues. Every topic provides a comprehensive but concise discussion of how Oracle handles an issue and the repercussions of that action.

	Brevity
	One of the first decisions we made was to concentrate on principles rather than syntax. There simply isn’t room for myriad syntax diagrams and examples in this book.

	Uniqueness
	We’ve tried to make this an ideal first Oracle book for a wide spectrum of Oracle users—but not the last! You will very likely have to refer to Oracle documentation or other, more specific books for more details about using Oracle. However, we hope this book will act as an accelerator for you. Using the foundation you get from this book, you can take detailed information from other sources and put it to the best use.

This book is the result of more than 65 combined years of experience with Oracle and other
 databases. We hope you’ll benefit from that experience.

Audience for This Book

We wrote this book for people possessing all levels of Oracle expertise. Our target audiences
 include DBAs who spend most of their workday managing Oracle, application developers who
 build their systems on the data available in an Oracle Database, and system
 administrators who are concerned with how Oracle will affect their computing
 environments. Of course, IT managers and business users interact more peripherally with
 the actual Oracle Database, but can still gain from a better understanding of the
 product. On the one hand, anticipating the appropriate technical level of all our
 potential readers presented difficulties; on the other hand, we’ve tried to build a
 solid foundation from the ground up and believe that some introductory material benefits
 everyone. We’ve also tried to ensure that every reader receives all the fundamental
 information necessary to truly understand the topics presented.
If you’re an experienced Oracle user, you may be tempted to skip over material in this book with which you are already familiar. But experience has shown that some of the most basic Oracle principles can be overlooked, even by experts. We’ve also seen how the same small “gotchas” trip up even the most experienced Oracle practitioners and cause immense damage if they go unnoticed. After all, an ounce of prevention, tempered by understanding, is worth a pound of cure, especially when you are trying to keep your systems running optimally. So we hope that even experienced Oracle users will find valuable information in every chapter of this book—information that will save hours in their busy professional lives.
Our guiding principle has been to present this information compactly without making it overly tutorial. We think that the most important ratio in a book like this is the amount of useful information you get balanced against the time it takes you to get it. We sincerely hope this volume provides a terrific bang for the buck.

About the Fifth Edition (Oracle Database 12c)

The first four editions of this book, covering the Oracle Database up to the Oracle Database
 11g version, have been well received, and we were pleased that
 O’Reilly Media agreed to publish this fifth edition. In this update to the book, we have
 added information describing the latest release of Oracle, Oracle Database
 12c.
For the most part, the task of preparing this fifth edition was fairly clear-cut, because the Oracle Database 12c release is primarily incremental—the new features in the release extend existing features of the database. We’ve added the information about these extensions to each of the chapters, wherever this information was most relevant and appropriate. However, manageability has greatly changed over the release, and is reflected in many of the most significant changes to content.
Of course, this fifth edition cannot possibly cover everything that is new in Oracle Database
 12c. In general, we have followed the same guidelines for this
 edition that we did for the first four editions. If a new feature does not seem to be
 broadly important, we have not necessarily delved into it. As with earlier editions, we
 have not tried to produce a laundry list of every characteristic of the Oracle Database.
 In addition, if a feature falls into an area outside the scope of the earlier editions,
 we have not attempted to cover it in this edition unless it has assumed new
 importance.

Structure of This Book

This book is divided into 15 chapters and 2 appendixes, as follows:
Chapter 1 describes the range of Oracle Databases and data stores
 and Fusion Middleware products and features and provides a brief history of Oracle and
 relational databases.
Chapter 2 describes the core concepts and structures (e.g., files,
 processes, pluggable databases, and so on) that are the architectural basis of
 Oracle.
Chapter 3 briefly describes how to install Oracle and how to configure, start up, and shut down the database and Oracle Net.
Chapter 4 summarizes the various datatypes supported by Oracle and introduces the Oracle objects (e.g., tables, views, indexes). This chapter also covers query optimization.
Chapter 5 provides an overview of managing an Oracle system, including the advisors available as part of Oracle Database 12c, the role of Oracle Enterprise Manager (EM) 12c, information lifecycle management through the use of heat maps, and working with Oracle Support.
Chapter 6 provides an overview of basic Oracle security, Oracle’s security options, basic auditing capabilities, and ways you can leverage database security and audit options to meet compliance needs.
Chapter 7 describes the main issues relevant to Oracle performance—especially the major performance characteristics of disk, memory, and CPU tuning. It describes how Oracle Enterprise Manager, the Automatic Workload Repository, and the Automatic Database Diagnostic Monitor are used for performance monitoring and management, as well as parallelism and memory management in Oracle.
Chapter 8 describes the basic principles of multiuser concurrency (e.g., transactions, locks, integrity problems) and explains how Oracle handles concurrency.
Chapter 9 describes online transaction processing (OLTP) in Oracle.
Chapter 10 describes the basic principles of
 data warehouses and business intelligence, Oracle Database features used for such
 solutions, the role of Hadoop in Big Data solutions, Oracle’s business intelligence
 tools, relevant options such as OLAP and data mining, how Oracle’s engineered systems
 fulfill key roles such as in infrastructure, and best practices.
Chapter 11 discusses availability concepts, what happens
 when the Oracle Database recovers, protecting against system failure, Oracle’s backup
 and recovery facilities, and high availability and failover solutions.
Chapter 12 describes your choice of computer architectures, configuration considerations, and deployment strategies for Oracle, including the array of engineered systems that support that Oracle Database.
Chapter 13 briefly summarizes the Oracle facilities used in distributed processing including two-phase commits and Oracle replication and data transport offerings.
Chapter 14 describes Oracle’s object-oriented features,
 Java’s role, Web Services support, multimedia and text extensions to Oracle, XML DB
 support, spatial capabilities, and the extensibility framework.
Chapter 15 describes cloud definitions, the Oracle Database in the
 cloud, and the role of APEX.
Appendix A lists the Oracle Database 12c changes described in this book.
Appendix B lists a variety of additional resources—both online and offline—so you can do more detailed reading.

Conventions Used in This Book

The following typographical conventions are used in this book:
	Italic
	Used for file and directory names, emphasis, and the first occurrence of terms

	Constant width
	Used for code examples and literals

	Constant width italic
	In code examples, indicates an element (for example, a parameter) that you supply

	UPPERCASE
	Generally indicates Oracle keywords

	lowercase
	In code examples, generally indicates user-defined items such as variables

Note
This icon indicates a tip, suggestion, or general note. For example, we’ll tell you if you need to use a particular version of Oracle or if an operation requires certain privileges.

Warning
This icon indicates a warning or caution. For example, we’ll tell you if Oracle doesn’t behave as you’d expect or if a particular operation negatively impacts performance.

Using Code Examples

This book is here to help you get your job done. Though the nature of this book is such that you will find minimal code, you may use the code in this book in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Oracle Essentials: Oracle Database 12c, Fifth Edition, by Rick Greenwald, Robert Stackowiak, and Jonathan Stern. Copyright 2013 O’Reilly Media Inc., 978-1-4493-4303-3.”
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online (www.safaribooksonline.com)
 is an on-demand digital library that delivers expert content in both
 book and video form from the world’s leading authors in technology and
 business.

Technology professionals, software developers, web designers, and
 business and creative professionals use Safari Books Online as their
 primary resource for research, problem solving, learning, and
 certification training.
Safari Books Online offers a range of product mixes
 and pricing programs for organizations,
 government
 agencies, and individuals.
 Subscribers have access to thousands of books, training videos, and
 prepublication manuscripts in one fully searchable database from
 publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
 Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,
 Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
 Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
 McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more
 information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at http://bit.ly/oracle-essentials-5th.
To comment or ask technical questions about this book, send email to
 bookquestions@oreilly.com.
For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Each of the authors has arrived at this collaboration through a different path, but we would all like to thank the team at O’Reilly for making this book both possible and a joy to write. We’d like to thank our first editor for this edition, Ann Spencer, and the rest of the O’Reilly crew, especially Chris Hearse, the production editor. Also, we’d like to thank our editor from the first three editions, Debby Russell, who was among the first to see the value in such a book and who stepped in to perform final editing on the fifth edition as well. It’s incredible how all of these folks were able to strike the perfect balance—always there when we needed something, but leaving us alone when we didn’t.
We’re all grateful to each other. Giving birth to a book is a difficult process, but it can be
 harrowing when split multiple ways. Everyone hung in there and did their best throughout
 this process. We’d also like to give our sincere thanks to the technical reviewers for
 the fifth edition of this book: Penny Avril and Arup Nanda. Thanks as well to reviewers
 of previous editions that have included Darryl Hurley, Dwayne King, Arup Nanda, Bert
 Scalzo, Craig Shallahamer of OraPub, Domenick Ficarella, Jonathan Gennick, Jenny
 Gelhausen, and Dave Klein. This crucially important work really enhanced the value of
 the book you’re reading. And thanks as well to Lance Ashdown for clarifying Oracle
 Database writes.
Rick thanks the incredibly bright and gifted people who have shared their wealth of knowledge with him over the years, including Bruce Scott, Earl Stahl, Jerry Chang, and many others. In particular, he thanks his first technical mentor, Ed Hickland, who has repeatedly spent time explaining to and discussing with him some of the broader and finer points of database technology.
In subsequent years, Rick has benefitted from a wealth of brilliant co-workers and colleagues, who were always willing to share their views and knowledge, including Graham Wood, Andrew Holdsworth, Tom Kyte, and Bryn Llewellyn. In particular, Rick cherishes both the expertise and friendship of the marvelous Maria Colgan.
For the later editions of this book, Rick would also like to thank all those colleagues at
 Oracle who helped him in his time of need, checking on those last-minute clarifications,
 including John Lang, Bruce Lowenthal, Alice Watson, Dave Leroy, Sushil Kumar, Mughees
 Minhas, Daniela Hansell, and Mark Drake. And a special thank you to Jenny Tsai-Smith,
 who always seemed to have the time and knowledge to clear up any Oracle Database
 problem. Rick is part of a fantastic team in development at Oracle, whose members have
 been a source of advice and friendship. Those members include Mike Hichwa, Patrick Wolf,
 Jason Straub, Hilary Farrell, Shakeeb Rahman, Colm Divilly, Chris Rice, Joel Kalman, and
 Dom Lindars. And last, but certainly not least, his primary coauthor, Bob Stackowiak,
 who has become a good friend over the years of collaboration.
Bob acknowledges all his friends over the years around the world at Oracle Corporation, and
 from earlier stints at IBM, Harris Computer Systems, and the U.S. Army Corps of
 Engineers. Through personal relationships and social media, they have shared a lot and
 provided him with incredible opportunities for learning. At Oracle, he especially thanks
 members of Andy Mendelsohn’s team who have always been helpful in providing material
 ahead of releases, including George Lumpkin, Hermann Baer, Jean-Pierre Dijcks, Maria
 Colgan, and many others. Bob and Rick both call out the memory of Mark Townsend for his
 key role in Oracle’s database development over the years and whose talents are missed by
 all. Bob also extends special thanks to his team in Oracle’s Enterprise Solutions Group,
 especially Alan Manewitz, Louis Nagode, and Art Licht. His management continues to
 recognize the value of such projects, including David O’Neill and Joe Strada. Paul Cross
 has served as a mentor over the years. He’d also like to thank his customers, who have
 always had the most practical experience using the products and tools he has worked with
 and from whom he continues to learn. Finally, collaborating on books with Rick Greenwald
 always makes this process fun and has led to other memorable experiences including
 enjoying live performances of Bruce Springsteen together.
In early editions of this book, Jonathan thanked many of his professional contacts, including Murray Golding, Sam Mele, and the Oracle Server Technologies members and their teams, including Juan Tellez, Ron Weiss, Juan Loaiza, and Carol Colrain for their help during his years at Oracle. And we thank him for all that he gave us in too short a life.

Chapter 1. Introducing Oracle

Where do we start? One of the problems in comprehending a massive
 product such as the Oracle Database is getting a good sense of how the
 product works without getting lost in the details. This book aims to provide
 a thorough grounding in the concepts and technologies that form the
 foundation of Oracle’s Database Server, currently known as Oracle Database
 12c. The book is intended for a wide range of Oracle
 Database administrators, developers, and users, from the novice to the
 experienced. It is our hope that once you have this basic understanding of
 the product, you’ll be able to connect the dots when using Oracle’s
 voluminous feature set, documentation, and the many other books and
 publications that describe the database.
Oracle also offers an Application Server and Fusion Middleware,
 business intelligence tools, and business applications (the E-Business
 Suite, PeopleSoft, JD Edwards, Siebel, Hyperion, and Fusion, among others).
 Since this book is focused on the database, we will only touch on these
 other software products as they relate to specific Oracle Database topics
 covered.
This first chapter lays the groundwork for the rest of the book. Of
 all the chapters, it covers the broadest range of topics. Most of these
 topics are discussed later in more depth, but some of the basics—for
 example, the brief history of Oracle and the contents of the different
 “flavors” of the Oracle Database products—are unique to this chapter.
Over the past 30-plus years, Oracle grew from being one of many
 vendors that developed and sold a database product to being widely
 recognized as the database market leader. Although early products were
 typical of a startup company, the Oracle Database grew such that its
 technical capabilities are now often viewed as the most advanced in the
 industry. With each database release, Oracle has improved the scalability,
 functionality, and manageability of the database.
This book is now in its fifth edition. This edition, like earlier
 editions, required many changes, since the database has changed a great deal
 over this time. Highlights of Oracle releases covered in the many editions of this book
 include:
	Oracle8 (released in 1997) improved the performance and
 scalability of the database and added the ability to create and store
 objects in the database.

	Oracle8i (released in 1999) added a new twist
 to the Oracle Database—a combination of enhancements that made the
 Oracle8i Database a focal point in the world of
 Internet computing.

	Oracle9i (released in 2001) introduced Real
 Application Clusters as a replacement for Oracle Parallel Server and
 added many management and data warehousing features.

	Oracle Database 10g (released in 2003) enabled deployment of “grid”
 computing. A grid is simply a pool of computers and software resources providing resources for
 applications on an as-needed basis. To support this style of computing, Oracle added the
 ability to provision CPUs and data. Oracle Database 10g also further
 reduced the time, cost, and complexity of database management through the introduction of
 self-managing features such as the Automated Database Diagnostic Monitor, Automated Shared
 Memory Tuning, Automated Storage Management, and Automated Disk Based Backup and Recovery.

	Oracle Database 11g (released in 2007) highlighted improvement in
 self-tuning and managing capabilities, especially in the areas of Automatic Memory
 Management, partitioning, and security. The lifecycle of database change management was
 extended within Oracle’s Enterprise Manager with improved diagnosis capabilities and linkage
 to Oracle Support via a Support Workbench. This version also featured improved online
 patching capabilities. In 2008, Oracle announced that its first engineered system, the
 Oracle Exadata Database Machine, would support Oracle Database 11g
 Enterprise Edition.

	Oracle Database 12c (released in 2013) introduces a number of
 deployment, manageability, and rapid provisioning features especially useful in private and public cloud computing environments where hardware
 infrastructure and the database are delivered as a service over a network, building upon
 capabilities introduced in previous releases. Typically, many databases are deployed and
 managed using this model, so Oracle introduced a capability in the database to share
 services by defining multitenant container and pluggable databases.

Before we dive into further details, let’s step back and look at how
 databases evolved, how we arrived at the relational model, and Oracle’s
 history. We’ll then take an initial look at Oracle Database packaging and
 key Oracle features today.
The Evolution of the Relational Database

The relational database concept was described first by Dr. Edgar F.
 Codd in an IBM research publication entitled “System R4
 Relational” that was published in 1970. Initially, it was unclear whether
 any system based on this concept could achieve commercial success.
 Nevertheless, a company named Software Development Laboratories Relational Software came
 into being in 1977 and released a product named Oracle V.2 as the world’s
 first commercial relational database within a couple of years (also
 changing its name to Relational Software, Incorporated). By 1985, Oracle could
 claim more than 1,000 relational database customer sites. Curiously, IBM
 would not embrace relational technology in a commercial product until the
 Query Management Facility in 1983.
Why did relational database technology grow to become the de facto
 database technology? A look back at previous database technology may help
 to explain this phenomenon.
Database management systems were first defined in the 1960s to
 provide a common organizational framework for data formerly stored in
 independent files. In 1964, Charles Bachman of General Electric proposed a network model with data records linked together,
 forming intersecting sets of data, as shown on the left in Figure 1-1. This work formed
 the basis of the CODASYL Data Base Task Group. Meanwhile, the North American Aviation’s Space Division and IBM developed a
 second approach based on a hierarchical model in 1965. In this model, data
 is represented as tree structures in a hierarchy of records, as shown on
 the right in Figure 1-1.
 IBM’s product based on this model was brought to market in 1969 as the
 Information Management System (IMS). As recently as 1980, almost all database implementations
 used either the network or hierarchical approach. Although several
 competitors sold similar technologies around 1980, only IMS could still be
 found in many large organizations just 20 years later.
[image: Network model (left) and hierarchical model (right)]

Figure 1-1. Network model (left) and hierarchical model (right)

Relational Basics

The relational database uses the concept of linked
 two-dimensional tables consisting of rows and columns, as shown in Figure 1-2. Unlike the hierarchical
 approach, no predetermined relationship exists between distinct tables.
 This means that data needed to link together the different areas of the
 network or hierarchical model need not be defined. Because relational
 users don’t need to understand the representation of data in storage to
 retrieve it (many such business users create ad hoc queries), ease of
 access combined with improved flexibility to change data models to adapt
 to changing business needs and helped popularize the relational
 model.
[image: Relational model with two tables]

Figure 1-2. Relational model with two tables

Relational programming is nonprocedural and operates on a set of
 rows at a time. In a master-detail relationship between tables, there
 can be one or many detail rows for each individual master row, yet the
 statements used to access, insert, or modify the data simply describe
 the set of results. In many early relational databases, data access
 required the use of procedural languages that worked one record at a
 time. Because of this set orientation, programs access more than one
 record in a relational database more easily. Relational databases can be
 used more productively to extract value from large groups of
 data.
The contents of the rows in Figure 1-2 are sometimes referred to
 as records. A column within a row is
 referred to as a field. Tables are stored in a
 database schema, which is a logical organizational unit within the
 database. Other logical structures in the schema often include the
 following:
	Views
	Provide a single view of data derived from one or more tables
 or views. The view is an alternative interface to the data, which
 is stored in the underlying table(s) that makes up the
 view.

	Sequences
	Provide unique numbers, typically used for column values.

	Stored procedures
	Contain logical modules that can be called from
 programs.

	Synonyms
	Provide alternative names for database objects.

	Indexes
	Provide faster access to table rows.

	Database links
	Provide links between distributed databases.

The relationships between columns in different tables are
 typically described through the use of keys, which are implemented
 through referential integrity constraints and their supporting indexes. For example, in Figure 1-2, you can establish a link
 between the DEPTNO column in the second table, which is called
 a foreign key, to the DEPTNO column
 in the first table, which is referred to as the primary key of that table.
Finally, even if you define many different indexes for a table,
 you don’t have to understand them or manage the data they contain.
 Relational databases include a query optimizer that
 chooses whether to use indexes, and the best way to use
 those indexes, to access the data for any particular query.
The relational approach lent itself to the Structured Query Language (SQL). SQL was initially defined
 over a period of years by IBM Research, but it was Oracle Corporation
 that first introduced it to the market in 1979. SQL was noteworthy at
 the time for being the only language needed for relational databases
 since you could use SQL:
	For queries (using a SELECT statement)

	As a Data Manipulation Language or DML (using INSERT, UPDATE, and DELETE statements)

	As a Data Definition Language or DDL (using CREATE or DROP statements when adding or deleting
 tables)

	To set privileges for users or groups (using GRANT or REVOKE statements)

Today, SQL contains many extensions and follows ANSI/ISO standards
 that define its basic syntax.

How Oracle Grew

In 1983, Relational Software Incorporated was renamed Oracle
 Corporation to avoid confusion with a competitor named Relational Technologies Incorporated. At this time, the
 developers made a critical decision to create a portable version of
 Oracle written in C (version 3) that ran not only on Digital VAX/VMS
 systems, but also on Unix and other platforms. By 1985, Oracle claimed
 the ability to run on more than 30 platforms. Some of these platforms
 are historical curiosities today, but others remain in use. (In addition
 to VMS, early operating systems supported by Oracle included IBM MVS,
 HP/UX, IBM AIX, and Sun’s Solaris version of Unix.) Oracle was able to
 leverage and helped accelerate the growth in popularity of minicomputers
 and Unix servers in the 1980s. Today, this portability also includes
 releases for operating systems such as Microsoft Windows and
 Linux.
In addition to multiple platform support, other core Oracle
 messages from the mid-1980s still ring true today, including
 complementary software development and decision support (business
 intelligence) tools, ANSI standard SQL across platforms, and
 connectivity over standard networks. Since the mid-1980s, the database
 deployment model has evolved from single database and application
 servers to client/server, then to Internet computing implemented using
 browser-based clients accessing database applications, and now to
 private and public cloud deployment where the Oracle Database might be
 deployed as a service (DBaaS) or used as the foundation for a Cloud
 Platform as a Service (PaaS).
Oracle introduced many innovative technical features to the
 database as computing and deployment models changed (from offering the
 first distributed database to supporting the first Java Virtual Machine
 in the core database engine to enabling grid computing and providing
 needed services for public and private Cloud deployment). Oracle offered
 support for emerging standards such as XML, important in deploying a
 Service-Oriented Architecture (SOA). Table 1-1
 presents a short list of Oracle’s major product introductions.
Table 1-1. History of Oracle introductions
	Year
	Feature

	1977
	Software Development Laboratories founded by Larry Ellison, Bob Miner, Ed Oates

	1979
	Oracle version 2: first
 commercially available relational database to use
 SQL

	1983
	Oracle version 3: single
 code base for Oracle across multiple platforms

	1984
	Oracle version 4: with
 portable toolset, read consistency

	1986
	Oracle version 5
 generally available: client/server Oracle relational
 database

	1987
	CASE and 4GL
 toolset

	1988
	Oracle Financial
 Applications built on relational database

	1989
	Oracle6 generally
 available: row-level locking and hot backups

	1991
	Oracle Parallel Server on
 massively parallel platforms

	1993
	Oracle7: with cost-based
 optimizer

	1994
	Oracle version 7.1
 generally available: parallel operations including query, load,
 and create index

	1996
	Universal database with
 extended SQL via cartridges, thin client, and application
 server

	1997
	Oracle8 generally
 available: object-relational and Very Large Database (VLDB)
 features

	1999
	Oracle8i generally
 available: Java Virtual Machine (JVM) in the
 database

	2000
	Oracle9i Application
 server generally available: Oracle tools integrated in middle
 tier

	2001
	Oracle9i Database Server
 generally available: Real Application Clusters, OLAP, and data
 mining in the database

	2003
	Oracle Database
 10g and Oracle Application Server
 10g: “grid” computing enabled; Oracle
 Database 10g automates key management
 tasks

	2005
	Oracle completes
 PeopleSoft acquisition and announces Siebel acquisition, thus
 growing ERP and CRM applications and business intelligence
 offerings

	2007
	Oracle Database
 11g: extension of self-managing
 capabilities and end-to-end database change management; Hyperion
 acquisition adds database-independent OLAP and Financial
 Performance Management applications; Oracle Virtual Machine
 (Oracle VM) announced

	2008
	Oracle acquires BEA
 Systems (middleware software); Oracle’s first engineered system,
 Oracle Exadata, is introduced for data
 warehousing

	2009
	Oracle Exadata featuring Smart Flash Cache is enhanced as a platform for all Oracle Database
 use cases, including data warehousing, transaction processing, and database
 consolidation

	2010
	Oracle completes Sun
 acquisition; Oracle Exalogic Elastic Cloud engineered system
 introduced

	2011
	Oracle Database
 Appliance, SuperCluster, Exalytics (for business intelligence),
 and Big Data Appliance are introduced; Fusion Applications
 announced as available

	2012
	Oracle announces Oracle
 Database 12c: support for public and
 private Cloud deployment with multitenant container databases,
 pluggable databases, and improved management capabilities
 highlighted; Oracle continues acquisitions of Cloud-based
 applications solutions

	2013
	Oracle Database
 12c generally available

The Oracle Database Family

Oracle Database 12c is the most recent version
 of the Oracle Relational Database Management System (RDBMS) family of
 products that share common source code. The family of database products
 includes:
	Oracle Enterprise Edition
	Flagship database product and main topic of this book, aimed at
 large-scale implementations that require Oracle’s full suite of
 database features and options. For advanced security, only the
 Enterprise Edition features Virtual Private Database (VPD) support,
 Fine-Grained Auditing, and options including the Database Vault,
 Advanced Security, and Label Security. Data warehousing features
 only in Enterprise Edition include compression of repeating stored
 data values, cross-platform transportable tablespaces, Information
 Lifecycle Management (ILM), materialized views query rewrite, and
 the Partitioning, OLAP, and Advanced Analytics Options.
 High-availability features unique to the Enterprise Edition include
 Data Guard and Flashback Database, Flashback Table, and Flashback
 Transaction Query. The Enterprise Edition is the database version
 supported on Oracle’s engineered systems.

	Oracle Standard Edition
	Oracle’s database intended for small- and medium-sized implementations.
 This database can be deployed onto server configurations containing
 up to 4 CPUs on a single system or on a cluster using Real
 Application Clusters (RAC).

	Oracle Standard Edition One
	Designed for small implementations, this database can support up to 2
 CPUs and does not support RAC. The feature list is otherwise similar
 to Oracle Standard Edition.

	Oracle Personal Edition
	Database used by single developers to develop code for implementation on
 Oracle multiuser databases. It requires a license, unlike Express
 Edition, but gives you the full Enterprise Edition set of
 functionality.

	Oracle Express Edition
	Entry-level database from Oracle available at no charge for Windows and Linux and unsupported as a
 product, this database is limited to 1 GB of memory and 4 GB of disk. It provides a
 subset of the functionality in Standard Edition One, lacking features such as a Java
 Virtual Machine, server-managed backup and recovery, and Automatic Storage Management.
 Although this database is not manageable by Oracle Enterprise Manager, you can deploy it
 for and manage multiple users through the Oracle Application Express administration
 interface.

Oracle releases new versions of the flagship database every three to five years. New
 releases typically follow themes and introduce a significant number of new features. In recent
 releases, these themes are indicated in the product version naming. In 1998, Oracle announced
 Oracle8i, with the “i” added to denote new
 functionality supporting Internet deployment. Oracle9i continued using
 this theme. In 2003, Oracle announced Oracle Database 10g, with the
 “g” denoting Oracle’s focus on emerging grid computing deployment
 models, then announced Database 11g with further improvements in
 manageability in 2007. In 2012, Oracle announced Oracle Database 12c, the
 “c” denoting new database functionality supporting Cloud deployment. In
 between major versions, Oracle issues point releases that also add features but are more
 typically focused on improvements to earlier capabilities.
The terms “Oracle,” “Oracle Database,” “database,” “Oracle8,”
 “Oracle8i,” “Oracle9i,” “Oracle
 Database 10g,” “Oracle Database
 11g,” and “Oracle Database 12c”
 might appear to be used somewhat interchangeably in this book because
 Oracle Database 12c includes all the features of
 previous versions. When we describe a new feature that was first made
 available specifically in a certain release, we’ve tried to note that fact
 to avoid confusion, recognizing that many of you maintain older releases
 of Oracle. We typically use the simple terms “Oracle” and “database” when
 describing features that are common to all these releases.
Oracle Development has developed releases using a single source code
 model for the core family of database products since 1983. While each
 database implementation includes some operating-system-specific source
 code at very low levels in order to better leverage specific platforms,
 the interfaces that users, developers, and administrators deal with for
 each version are consistent. This development strategy enables Oracle to
 focus on implementing new features only once across its product
 set.
The introduction of Oracle’s engineered systems, Exadata storage,
 and the Exadata Storage Server software enabled Oracle to optimize the
 database for specific hardware server and storage configurations. Today,
 Oracle offers a family of engineered systems capable of running the Oracle
 Database. The Oracle Exadata Database Machine was the most popular engineered
 system as this edition of the book was published. The Oracle
 SuperCluster is a general purpose platform also featuring Exadata
 storage (and some general purpose storage) and is designed to run both the
 Oracle Database and Oracle Fusion Middleware. The Oracle Database
 Appliance is a two-node configuration designed to be a smaller
 departmental server. The Exalogic Elastic Cloud system is optimally
 designed to run Oracle’s Fusion Middleware and often is deployed as a
 middle-tier server in front of Exadata, but occasionally is deployed with
 the Oracle Database also running on it. Neither the Oracle Database
 Appliance nor Exalogic Elastic Cloud support Exadata storage.

Summary of Oracle Database Features

The Oracle Database is a broad and deep product. To give some initial perspective, we
 begin describing Oracle with a high-level overview of the basic areas of
 functionality. By the end of this portion of the chapter, you will have
 orientation points to guide you in exploring the topics in the rest of
 this book.
To give some structure to the broad spectrum of the Oracle Database,
 we’ve organized our initial discussion of these features and complementary
 software components into the following sections:
	Database application development features

	Database connection features

	The role of Oracle Fusion Middleware

	Distributed database features

	Data movement features

	Database performance features

	Managing the Oracle Database

	Database security features

	Database development tools

Note
In this chapter, we’ve included a lot of terminology and rather
 abbreviated descriptions of features. Oracle is a huge system. Our goal
 here is to quickly familiarize you with the full range of features in
 the system and introduce the concepts we are covering in this book.
 Subsequent chapters will provide additional details about these features
 and concepts. Obviously, though, whole books have been written about
 some of the feature areas summarized here, so this book is often used as
 a starting point in understanding where to go next.

Database Application Development Features

The Oracle Database is typically used to store and retrieve data through
 applications. The features of the Oracle Database and related products
 described in this section are used to create applications. We’ve divided
 the discussion in the following subsections into database programming and
 database extensibility options. Later in this chapter, we will describe
 Oracle’s development tools and Oracle’s other embedded database products
 that meet unique applications deployment needs.
Database Programming

All flavors of the Oracle Database include languages and interfaces
 that enable programmers to access and manipulate the data in the
 database. Database programming features usually interest developers who
 are creating Oracle-based applications to be sold commercially, or IT
 organizations building applications unique to their businesses. Data in
 Oracle can be accessed using SQL, SQL/XML, XQuery, and WebDAV. Programs
 deployed within the database can be written in PL/SQL and Java.
SQL

The ANSI standard Structured Query Language (SQL) provides basic functions
 for data manipulation, transaction control, and record retrieval from
 the database. Most business users of the database interact with Oracle
 through applications or business intelligence tools that provide
 interfaces hiding the underlying SQL and its complexity.

PL/SQL

Oracle’s PL/SQL, a procedural language extension to SQL, is
 commonly used to implement program logic modules for applications.
 PL/SQL can be used to build stored procedures and triggers, looping
 controls, conditional statements, and error handling. You can compile
 and store PL/SQL procedures in the database. You can also execute
 PL/SQL blocks via SQL*Plus, an interactive tool provided with all
 versions of Oracle. PL/SQL program units can be precompiled.
 Additionally, Oracle supplies a lot of additional functionality using
 PL/SQL programs included with the database, referred to as packages,
 which can be called from standard PL/SQL code.

Java

Oracle8i introduced the use of Java as a procedural language and a Java
 Virtual Machine (JVM) in the database (originally called JServer). The JVM
 includes support for Java stored procedures, methods, triggers,
 Enterprise Java Beans (EJBs), CORBA, IIOP, and HTTP.
The inclusion of Java within the Oracle Database allows Java
 developers to leverage their skills as Oracle applications developers.
 Java applications can be deployed in the client, Application Server,
 or database, depending on what is most appropriate. Current Oracle
 Database versions include a just-in-time Java compiler that is enabled
 by default. The importance of Java to Oracle is illustrated by the
 acquisition of Sun by Oracle in 2010 and continued development efforts
 around Java since.

Oracle and Web Services

As of Oracle Database 11g, the Database can serve as a Web Services provider implemented through XML DB in
 the database. Web services enable SQL or XQuery to submit queries and receive results as
 XML, or invoke PL/SQL functions or package functions and to receive results. XQuery
 provides support for the JSR standard and is further optimized for performance in the
 Oracle Database. As of Oracle Database 12c, XQuery updates are
 supported. You can also define RESTful Web Services to access both SQL and PL/SQL in an
 Oracle Database through the APEX Listener, described in Chapter 15.

Large objects

The Oracle Database has been able to store large objects since Oracle8 added the capability to
 store multiple LOB columns in each table. Oracle Database
 10g essentially removed the space limitation on
 large objects. Oracle Database 11g greatly
 improved the performance of query and insert operations when used with
 LOBs through the introduction of SecureFiles. SecureFiles serve as a place to securely
 store LOBs in the Oracle Database instead of in filesystems while
 delivering performance similar to that experienced when LOBs are
 stored in filesystems. Transparent Data Encryption, a security feature
 described below and later in the book, is supported for SecureFiles
 LOB data.

Object-oriented programming

Support of object structures has existed since
 Oracle8i to provide support for an
 object-oriented approach to programming. For example, programmers can
 create user-defined data types, complete with their own methods and
 attributes. Oracle’s object support includes a feature called Object
 Views through which object-oriented programs can make use of
 relational data already stored in the database. You can also store
 objects in the database as varying arrays (VARRAYs), nested tables, or
 index-organized tables (IOTs).

Third-generation languages (3GLs)

Programmers can interact with the Oracle Database from C, C++, Java,
 or COBOL by embedding SQL in those applications. Prior to compiling
 the applications using a platform’s native compilers, you must run the
 embedded SQL code through a precompiler. The precompiler replaces SQL
 statements with library calls the native compiler can accept. Oracle
 provides support for this capability through optional “programmer”
 precompilers for C and C++ using Pro*C and for COBOL using Pro*COBOL.
 In recent Oracle versions, Oracle features SQLJ, a precompiler for Java that replaces SQL
 statements embedded in Java with calls to a SQLJ runtime library, also
 written in Java.

Database drivers

All versions of Oracle include database drivers that allow
 applications to access Oracle via ODBC (the Open Database Connectivity standard) or
 JDBC (the Java Database Connectivity open standard).
 Also available are Oracle Data Access Connectors (ODAC) for .NET. ODAC
 provides a data provider for .NET, providers for ASP.NET and .NET
 stored procedures, and tools for developers using Visual
 Studio.

The Oracle Call Interface

If you’re an experienced programmer seeking optimum performance or a
 finer level of control, you may choose to define SQL statements within
 host-language character strings and then explicitly parse the
 statements, bind variables for them, and execute them using the Oracle
 Call Interface (OCI). OCI is a much more detailed interface that
 requires more programmer time and effort to create and debug.
 Developing an application that uses OCI can be time-consuming, but the
 added functionality and incremental performance gains could make
 spending the extra time worthwhile.
In certain programming scenarios, OCI improves application performance or adds
 functionality. For instance, in high-availability implementations in which multiple
 systems share disks using Real Application Clusters, you could write programs using OCI
 that allow users to reattach to a second server transparently if the first fails. As of
 Oracle Database 12c, the Transaction Guard API to the database can be used in order to preserve
 guaranteed commits where data is accessed via OCI (or alternatively via JDBC thin drivers,
 OOCI, or ODP.NET).

National Language Support

National Language Support (NLS) provides character sets and associated functionality,
 such as date and numeric formats, for a variety of languages. The
 initial release of Oracle Database 12c features
 Unicode 6.1 support. All data may be stored as Unicode, or select
 columns may be incrementally stored as Unicode. UTF-8 encoding and UTF-16 encoding provide support for more than 57
 languages and 200 character sets. Extensive localization is provided
 (for example, for data formats), and customized localization can be
 added through the Oracle Locale Builder. Oracle includes a Globalization Toolkit for creating applications that
 will be used in multiple languages.

Database Extensibility

The Internet and corporate intranets have created a growing demand for
 storage and manipulation of nontraditional data types within the
 database. There is a need for extensions to the standard functionality
 of a database for storing and manipulating image, audio, video, spatial,
 and time series information. These capabilities are enabled through
 extensions to standard SQL.
Oracle Multimedia

Oracle Multimedia (formerly interMedia)
 provides text manipulation and additional image, audio,
 video, and locator functions in the database. Oracle Multimedia offers
 the following major capabilities:
	The text portion of Multimedia (Oracle Text) can identify the gist of a document
 by searching for themes and key phrases within the document.

	The image portion of Multimedia can store and retrieve
 images of various formats; since Oracle Database
 11g, DICOM medical images are supported in
 the database.

	The audio and video portions of Multimedia can store and
 retrieve audio and video clips, respectively.

	The locator portion of Multimedia can retrieve data that
 includes spatial coordinate information.

Oracle Spatial and Graph Option

The Spatial and Graph Option is available for the Oracle Enterprise Edition. This option can be used to
 optimize the display and retrieval of data linked to coordinates,
 determine distance, and compute other geometric values such as area.
 It is often is used in the development of spatial information systems by vendors of Geographic
 Information Systems (GIS) products. Oracle Database 12c
 added support of named graphs in the database as defined by the
 Worldwide Web Consortium (W3C) in its Resource Description Framework (RDF).

XML DB

Oracle added native XML data type support to the
 Oracle9i Database with XML and SQL
 interchangeability for searching. The structured XML object is held
 natively in object relational storage, meeting the W3C DOM
 specification. XML standards supported include XML Schema, XPath
 (syntax for searching in SQL), XQuery, XSLT, and DOM. XMLIndex can be
 used with all forms of XML data in the database. As of Oracle Database
 12c, XML DB is a mandatory part of the database
 and cannot be uninstalled.

Database Connection Features

The connection between the client and the database server is a key
 component of the overall architecture. The database connection is
 responsible for supporting all communications between an application and
 the data it uses. Database users connect to the database by establishing a
 network connection. You can also link database servers via network
 connections. Oracle provides a number of features to establish connections
 between users and the database and/or between database servers, as
 described in the following subsections.
Oracle Net Services

Oracle’s Net Services provide the interface between networks and distributed
 Oracle Databases establishing database sessions for purposes of
 distributed processing. You can use Oracle Net Services over a wide
 variety of network protocols including TCP/IP, HTTP, FTP, and WebDAV.
 The Services include Oracle Net, used to establish sessions, and the
 Oracle Database Server Listener. Client requests can be handled through
 dedicated or shared servers.

Oracle Internet Directory

The Oracle Internet Directory (OID) is an LDAP (Lightweight Directory Access Protocol)
 directory and supports Oracle Net and other LDAP-enabled protocols.
 Database support first appeared in Oracle8i and
 replaced Oracle Names, which was used to enable user connections to an
 Oracle Database server without having a client-side configuration file.
 The directory services are provided by the Oracle Fusion Middleware
 Identity Management platform.

Oracle Connection Manager

Each connection to the database takes up valuable network
 resources, which can impact the overall performance of a database
 application. Oracle’s Connection Manager (CMAN), illustrated in Figure 1-3, reduces the number
 of Oracle Net client network connections to the database through the use
 of concentrators, which provide connection
 multiplexing to implement multiple connections over a single network
 connection. Connection multiplexing provides the greatest benefit when
 there are a large number of active users.
[image: Concentrators with Connection Managers for a large number of users]

Figure 1-3. Concentrators with Connection Managers for a large number of
 users

You can also use the Connection Manager to provide multiprotocol
 connectivity if you still have some clients and servers not using
 TCP/IP. Oracle Database 10g first introduced the
 dynamic Connection Manager configuration, enabling the changing of CMAN
 parameters without shutting down the CMAN process.

The Role of Oracle Fusion Middleware

The growing popularity of Internet and intranet applications in the late
 1990s led to a change in deployment from client/server (with fat clients
 running a significant piece of the application) to a three-tier
 architecture (with a browser supplying everything needed for a thin
 client). Hence, middleware is an important part of any database connection
 strategy discussion. Oracle’s WebLogic Server enables deployment of the
 middle tier in a three-tier solution for web-based applications,
 component-based applications, and enterprise application integration.
 Oracle WebLogic Server is a key part of Oracle’s Fusion Middleware,
 replacing Oracle’s earlier generation Internet Application Server, and is
 a component of Oracle’s Cloud Application Foundation.
Other Fusion Middleware components address transaction management,
 data integration, business process management, business intelligence,
 identity management, service-oriented architectures (SOA), and portal,
 social, and content platforms (WebCenter). We’ll introduce those after
 first describing the WebLogic Server.
Oracle’s WebLogic Server

The Oracle WebLogic Server comes in two editions, a Standard
 Edition and an Enterprise Edition. Both editions include support for the
 latest Java Enterprise Edition (EE) specification. At the time this
 edition of the book was published, the WebLogic Server was fully Java EE
 6 compatible with the following: JSF 2.0, Servlet 3.0, EJB 3.1, Java
 Persistence API (JPA) 2.0, CDI 1.0, JAX-RS 1.1, and Java Bean Validation
 1.0. Reference implementations used include the EclipseLink JPA and
 Jersey 1.1. (Oracle also offers an open source application server named
 Oracle GlassFish that is based on the Java EE 6 specification but not
 based upon the WebLogic Server—it is often positioned by Oracle as more
 of a lightweight platform and is less likely to appear where Oracle
 Databases are deployed as enterprise class solutions.)
The WebLogic Server Standard Edition includes the Hotspot and
 JRockit Java Virtual Machines (JVMs). Supported development and testing
 environments include:
	TopLink
	TopLink provides a Java persistence framework that includes support for
 Object-Relation Mapping with the JPA, Object-XML Binding with JAXB
 and SDO, and Database Web Services for data access using JAX-WS.
 It can be used to link Java objects to the Oracle Database via
 JDBC such that the Java developer need not build SQL calls or face
 broken Java applications resulting from database schema
 changes.

	Application Development Framework
 (ADF)
	ADF is built upon the Enterprise Java platform and provides
 infrastructure and development framework for Model View Controller
 (MVC) layers of an application.

	JDeveloper
	JDeveloper is Oracle’s Java Integrated Development Environment
 (IDE) for the Oracle Database and Fusion Middleware.

	Classloader Analysis Tool (CAT)
	CAT in the WebLogic Server is used for finding Java class and
 library conflicts.

	Other development environments
	Oracle provides Eclipse plug-ins and support for the
 NetBeans IDE, both of which are open source Java EE development
 offerings. WebLogic Server also provides a Maven plug-in for
 testing and development and can support and leverage Spring
 applications.

For deployment, the WebLogic Server Standard Edition features an
 administration console with a change center, a WebLogic Diagnostic
 Framework (WLDF), and support for command line and scripting
 control.
The Oracle WebLogic Server Enterprise Edition adds the following
 capabilities:
	Clustering and Failover
	WebLogic Servers clusters are load balanced and
 self-monitored to avoid overloading. If problems occur, servers
 can be migrated in whole, service can be automatically migrated,
 and the transaction recovery service can be invoked.

	High performance and reliable Java Message Service
 (JMS)
	JMS improvements include support for automatic migration of services
 from a failing server to a healthy one, store and forward
 messaging, and support for Oracle Database Streams Advanced
 Queuing (AQ).

	Oracle Virtual Assembly Builder
 (VAB)
	VAB enables packaging of software components for movement among
 development, test, and production environments and can be used
 with Oracle VM to create, configure, and provision applications to
 virtualized resources.

	JRockit Mission Control
	JRockit Mission Control provides JVM diagnostics using an Eclipse-based user
 interface and includes JRockit Flight Recorder (JFR) for further analysis of problems after they
 occur.

	Oracle Traffic Director
	The Oracle Traffic Director optimizes performance of the WebLogic Server
 Enterprise Edition when deployed on the Exalogic Elastic Cloud
 engineered system from Oracle.

Oracle also offers a WebLogic Suite designed for highly available
 and scalable Cloud deployment and includes the WebLogic Server
 Enterprise Edition and Coherence Enterprise Edition in this packaging.
 Coherence enables the pooling and sharing of memory across multiple
 servers and is managed using the WebLogic administration and scripting
 tools. TopLink Grid is used when deploying JPA applications in such
 deployments.
Other suites that are options for the WebLogic Suite
 include:
	Business Process Management (BPM)
 Suite
	The Business Process Management Suite includes BPM
 Studio client modeling, BPM (process) Composer, BPMN Service
 Engine and Workflow Extensions (for BPMN 2.0 and BPEL, the
 Business Process Engineering Language), BPM Process Spaces, and
 BPM Process Analytics (integrated with Oracle Business
 Intelligence and Oracle Business Intelligence Strategy Maps and
 Balanced Scorecards).

	SOA Suite for Oracle Middleware
	This suite bundles Oracle Fusion Middleware SOA offerings,
 including BPEL Process Manager, Business Activity Monitoring (BAM)
 for real-time alerting and dashboards, business rules engine,
 Enterprise Service Bus (for messaging, routing, and
 transformations), the Aqualogic Service Bus, Web Services
 Management (including a policy manager and monitoring dashboard),
 Web Services Registry, applications and technology adapters, and
 Oracle Event Processing.

The Fusion Middleware SOA Suite serves as the basis for Oracle’s
 Application Integration Architecture (AIA). AIA also includes
 prepackaged business objects and business processes known as Process
 Integration Packs and provides key underpinnings used in integrating
 Oracle’s applications.

Oracle Tuxedo

One could argue that the concept of a middle-tier platform began
 prior to the popularity of the Internet because of a need for
 transaction monitors. A transaction monitor is used to ensure data
 integrity across all resources (even if resource failures occur),
 enables distributed applications to work together seamlessly, and
 enables publish and subscribe event models. Oracle Tuxedo has a long
 history of providing these capabilities that evolved under the ownership
 of several vendors.
Oracle Tuxedo supports the ATMI programming model, the X/Open API
 for C, C++, COBOL, and Java. It also supports the SCA and CORBA
 programming models. A variety of LDAP servers are supported for
 authentication and authorization. An IDE is provided that supports
 metadata-driven development.
Tuxedo supervises two-phase commits for transactions via the XA
 protocol. It provides its own message queuing capability and has
 bi-directional adapters for IBM CICS/IMS applications and access to IBM
 WebSphere MQ queues. It is monitored through the Oracle Tuxedo System
 and Application Monitor (TSAM) and is integrated into Enterprise
 Manager.

Data Integration Tools

Oracle’s data integration products that are considered to be part of
 Fusion Middleware include the following:
	Oracle Data Integrator (ODI)
	ODI is an extraction, transformation, and loading declarative
 design tool sometimes referenced as an ELT (extraction, load, and
 transformation) tool by Oracle as transformations are pushed into
 the target database. Knowledge Modules define the technical
 implementation of the integration process. A variety of source and
 target databases are supported. ODI has replaced Oracle Warehouse
 Builder as Oracle’s primary offering for ELT.

	Enterprise Data Quality for Oracle Data
 Integrator
	Enterprise Data Quality Options for ODI are available for
 data profiling, batch processing, and address verification.

	Oracle GoldenGate
	GoldenGate enables lightweight capture, routing, transformation, and
 delivery of changed data among a variety of Oracle and non-Oracle
 databases in near real time. The Capture software component
 resides on the source database or monitors JMS messaging for
 changes. Trail Files containing changed data reside on the source
 or target server. The Delivery Module takes changed data from the
 Trail Files and applies it to the target database.

Business Intelligence Tools

Oracle data warehouses are often accessed using business intelligence tools from a
 variety of vendors. Usage of Oracle’s own tools became more common for
 such deployment as Oracle grew its offerings through acquisitions,
 replacing Oracle’s earlier Discoverer and Reports products.
Oracle’s flagship product in this area is Oracle Business Intelligence Foundation Suite, consisting
 of former Siebel Analytics/Oracle Business Intelligence Enterprise
 Edition and Hyperion Essbase components. The product has evolved into an
 integrated middle-tier platform that features reporting, ad hoc query
 and analysis, dashboards, balanced scorecard and strategy management,
 Office plug-ins, and mobile support.
Oracle also offers business intelligence applications that include
 data models and reporting and analysis with pre-populated business
 metadata. Applications include Oracle’s Business Intelligence
 Applications (the former Siebel Business Analytics applications) and
 Hyperion Financial Performance Management applications.
Other business intelligence offerings include Endeca Information Discovery (EID) and Real-Time Decisions (RTD). EID features a multifaceted
 server for data discovery that provides multiple drill paths through
 structured and unstructured data without the need to pre-define a
 schema. RTD is a real-time recommendation engine that can mine data or
 use input from other data mining and statistics models in order to
 present best recommendations to web interfaces and through
 applications.

WebCenter

The WebCenter Suite of products features WebCenter Portal and
 WebCenter Content. WebCenter Portal is Oracle’s enterprise portal
 framework based on the Oracle ADF and used for creating dynamic portals,
 websites, composite applications, and mash-ups. Social collaboration is
 enabled through services such as discussion forums, wikis, blogs, RSS,
 tags, links, social networking, and activity streams.
WebCenter Content is a content management platform that provides
 version control, security, indexing and search, metadata, a workflow
 engine, and replication. Capabilities include content publishing,
 digital asset management, document imaging, records and retention
 management, and archiving and storage management through the WebCenter
 Portal.

Identity Management

Oracle’s Identity Management platform for Fusion Middleware includes Oracle’s Access Management
 Suite, Oracle Identity Governance, and Oracle Directory Services. This
 suite of products enables the securing of applications and associated
 data, Web Services, and Cloud-based services.
The Access Management Suite provides authentication, single
 sign-on, mobile and social sign-on, entitlement management, and
 fine-grained authentication. Key components of the Access Management
 Suite include Access Manager, Adaptive Access Manager, Identity
 Federation, Entitlements Server, OpenSSO Fedlet, and Security Token
 Service (STS). External authorization is available through support of
 multiple standards including XACML, NIST, and Enterprise RBAC.
The Identity Governance Suite provides a platform for access
 requests, role lifecycle management, access certification, closed loop
 remediation, and privileged account management. A lengthy list of
 components are included: Identity Analytics, Identity Manager,
 Privileged Account Manager, Identity Manager Connector for Database User
 Management, Identity Manager Connector for Microsoft Active Directory,
 Identity Manager Connector for Microsoft Windows, Identity Manager
 Connector for Novell eDirectory, Identity Manager Connector for Oracle
 Internet Directory, Identity Manager Connector for Sun Java System
 Directory, and Identity Manager Connector for Unix.
Oracle’s Directory Services include the Virtual Directory, Oracle Internet Directory
 including Delegated Administration Service (DAS) and Directory
 Integration Platform (DIP), Directory Server Enterprise Edition, and
 Oracle Unified Directory. The Unified Directory is a Java-based
 directory service adhering to LDAP and Directory Services Markup
 Language standards with advanced storage, proxy, synchronization, and
 virtualization capabilities.

Distributed Database Features

The Oracle Database is well known for its ability to handle
 extremely large volumes of data and users. Oracle not only scales through
 deployment on increasingly powerful single platforms, but it also can be
 deployed in distributed configurations. Oracle deployed on multiple
 platforms can be combined to act as a single logical distributed
 database.
This section describes some of the basic ways that Oracle handles
 database interactions in a distributed database system.
Distributed Queries and Transactions

Data within an organization is often spread among multiple
 databases for reasons of both capacity and organizational
 responsibility. Users may want to query this distributed data or update
 it as if it existed within a single database.
Oracle first introduced distributed databases in response to the
 requirements for accessing data on multiple platforms in the early
 1980s. Distributed queries can retrieve data from multiple databases.
 Distributed transactions can insert, update, or delete data on distributed
 databases. Oracle’s two-phase commit mechanism guarantees that all the database servers
 that are part of a transaction will either commit or roll back the
 transaction. Background recovery processes can ensure database
 consistency in the event of system interruption during distributed
 transactions. Once the failed system comes back online, the same process
 will complete the distributed transactions.
Distributed transactions can also be implemented using popular
 transaction monitors (TPs) such as Tuxedo that interact with Oracle via
 XA, an industry standard (X/Open) interface.

Heterogeneous Services

Heterogeneous Services allow non-Oracle data and services to be accessed from an
 Oracle Database through generic connectivity via ODBC and OLE-DB, which
 are included with the database.
Optional Transparent Gateways use agents specifically tailored for a variety of target
 systems. Transparent Gateways allow users to submit Oracle SQL
 statements to a non-Oracle distributed database source and have them
 automatically translated into the SQL dialect of the non-Oracle source
 system, which remains transparent to the user. Gateways are available
 for Sybase, Microsoft SQL Server, DRDA, Informix, Teradata, APPC, and
 WebSphere MQ.
In addition to providing underlying SQL services, Heterogeneous Services provide
 transaction services utilizing Oracle’s two-phase commit with non-Oracle databases and
 procedural services that call third-generation language routines on non-Oracle systems.
 Users interact with the Oracle Database as if all objects are stored in the Oracle Database,
 and Heterogeneous Services handle the transparent interaction with the foreign database on
 the user’s behalf. Oracle 12c includes a new feature called SQL Translation, which allows
 the Oracle Database to dynamically translate SQL from a different database. This feature
 makes it easier to migrate data to an Oracle Database without the need for excessive
 rewrites of SQL in your applications. The feature is described in Chapter 4.

Data Movement Features

Moving data from one Oracle Database to another is often a requirement when using
 distributed databases, or when a user wants to implement multiple copies
 of the same database in multiple locations to reduce network traffic or
 increase data availability. You can export data and data dictionaries
 (metadata) from one database and import them into another. Oracle Database
 10g introduced a high-speed data pump for the import
 and export.
Oracle also offers many other advanced features in this category, including transportable
 tablespaces and Advanced Queuing—/Oracle Streams. We introduce these in the next section.
 Pluggable databases are a key new feature in Oracle Database 12c that can
 be used to move data from one instance to another. We’ll describe the impact of pluggable
 databases in Oracle Database 12c in the manageability section of this
 chapter.
Transportable Tablespaces

Transportable tablespaces first appeared in
 Oracle8i. Instead of using the export/import
 process, which dumps data and the structures that contain it into an
 intermediate file for loading, you can place a tablespace in read-only
 mode, move or copy it from one database to another, and then mount it.
 The same data dictionary information (metadata) describing the
 tablespace must exist on the source and the target. This feature can
 save a lot of time since it simplifies the movement of large amounts of
 data. Starting with Oracle Database 10g, you can
 move data with transportable tablespaces between heterogeneous platforms
 or operating systems.

Advanced Queuing and Oracle Streams

Advanced Queuing (AQ) was introduced in Oracle8 to provide a means to
 asynchronously send messages from one Oracle Database to another.
 Messages are stored in a queue in the database and sent asynchronously
 when a connection is made, so the amount of overhead and network traffic
 is much lower than it would be using traditional guaranteed delivery
 through the two-phase commit protocol between source and target. This
 approach enabled a content-based publish
 and subscribe solution using a rules engine to determine
 relevant subscribing applications. In Oracle9i, AQ
 added XML support and Oracle Internet Directory (OID)
 integration.
AQ became part of Oracle Streams in the second release of
 Oracle9i and features log-based replication for
 data capture, queuing for data staging, and user-defined rules for data
 consumption. However, Oracle now recommends GoldenGate in its Fusion Middleware for enabling change
 data capture and replication as it provides more flexibility since it
 supports Oracle and a variety of non-Oracle databases.

Database Performance Features

Oracle includes many features specifically designed to boost performance in
 certain situations. We’ve divided the discussion in the following
 subsections into two categories: database parallelization and data
 warehousing.
Database Parallelization

By breaking up a single task into smaller tasks and assigning each subtask
 to an independent process, you can dramatically improve the performance
 of certain types of database operations. Database tasks that are
 implemented in parallel speed the querying, tuning, and maintenance of
 the database. Examples of query features implemented in parallel in
 Oracle Database 12c include:
	Table scans

	Nested loops

	Sort merge joins

	GROUP BYs

	NOT IN subqueries (anti-joins)

	User-defined functions

	Index scans

	Select distinct UNION and UNION ALL

	Hash joins

	ORDER BY and aggregation

	Bitmap star joins

	Partition-wise joins

	Concurrent Union-All

	Correlated filters and expressions

	Stored procedures (PL/SQL, Java, external routines)

In addition to parallel query, many other Oracle features and capabilities can be
 parallelized.

Data Warehousing

While parallel features improve the overall performance of the
 Oracle Database, the Oracle Database also has particular performance
 enhancements for business intelligence and data warehousing applications
 that we briefly introduce in this section. Of course, as the Oracle BI
 Server most often accesses relational databases, these features can
 greatly speed the performance of that tool and other non-Oracle business
 intelligence tools.
Bitmap indexes

Stored bitmap indexes have been available in the Oracle
 Database since Oracle 7.3 and provide a fast way of selecting and
 retrieving certain types of data. Bitmap indexes typically work best
 for columns that have few different values relative to the overall
 number of rows in a table.
Rather than storing the actual value, a bitmap index uses an
 individual bit for each potential value with the bit either “on” (set
 to 1) to indicate that the row contains the value or “off” (set to 0)
 to indicate that the row does not contain the value.

Star query optimization

Typical data warehousing queries occur against a large fact table
 with foreign keys to much smaller dimension tables. Oracle added an
 optimization for queries against this type of star schema in Oracle 7.3. Performance gains are
 realized through the use of Cartesian product joins of dimension tables with a single join back to the
 large fact table. Oracle8 introduced a mechanism called a parallel bitmap star
 join, which uses bitmap indexes on the foreign keys to the dimension tables to speed star
 joins involving a large number of dimension tables.

Materialized views

Since Oracle8i, materialized
 views have provided another means of achieving a significant
 speedup of query performance. Summary-level information derived from a
 fact table and grouped along dimension values is stored as a
 materialized view. Queries that can use this view are directed to the
 view, transparently to the user and the SQL they submit. Oracle has
 continued to improve optimizer usage of materialized views with each
 new release of the database.

Analytic functions

A growing trend in Oracle and other databases is inclusion of
 SQL-accessible analytic and statistical functions in the database.
 Oracle first introduced such capabilities in
 Oracle8i with the CUBE and ROLLUP functions.
 Today, the functionality provided also includes ranking functions,
 windowing aggregate functions, lag and lead functions, reporting
 aggregate functions, statistical aggregates, linear regression,
 descriptive statistics, correlations, crosstabs, hypothesis testing,
 distribution fitting, and Pareto analysis.

OLAP Option

The OLAP Option physically stores dimensionally aware cubes in the
 Oracle relational database. These cubes are most frequently accessed
 using SQL, although a Java API is also supported. Since Oracle
 Database 11g, the Oracle Database optimizer
 recognizes the levels within these cubes. As a result, any business
 intelligence tool that submits SQL to an Oracle Database can
 transparently take advantage of the improved performance offered by
 deployment of this option. Refreshes of the values in these cubes are
 now maintained similar to refreshing materialized views.

Advanced Analytics Option

Since Oracle9i, popular data mining
 algorithms have been embedded in the database through
 the Data Mining Option and are exposed through a PL/SQL or Java data
 mining API. Data mining applications that use these algorithms are
 typically built using Oracle’s DataMiner. Data mining algorithms
 available for Oracle Database 12c include Naïve
 Bayes, Associations, Adaptive Bayes Networks, Clustering, Support
 Vector Machines (SVM), Nonnegative Matrix Factorization (NMF),
 Decision Trees, and Generalized Linear Models.
Oracle R Enterprise support was added to the Oracle Data Mining
 Option that was then renamed the Oracle Advanced Analytics Option in
 later releases of Oracle Database 11g. This
 capability enables R statistical programmers using open source tools
 to generate R scripts and then deploy those scripts in the Oracle
 Database. This eliminates the need to move data out of the Oracle
 Database onto a separate analysis platform and scales consistently
 with the Oracle Database.

Managing the Oracle Database

Oracle includes many features that make the database easier to
 manage. Oracle management fundamentally improved with the introduction of
 Oracle Database 10g, and has continued to evolve
 toward being more self-tuning and self-managing in subsequent database
 releases. If you are still managing Oracle Databases using older
 techniques (e.g., scripts), you might want to reevaluate your thinking on
 management.
Since Oracle Database 10g, statistics are
 automatically gathered to an Automatic Workload Repository (AWR) within
 the database. Oracle’s Automatic Database Diagnostic Monitor
 (ADDM) evaluates the statistics on a regular basis and sends
 alerts of potential problem conditions to Oracle Enterprise Manager, where
 you can evaluate the condition in more detail and potentially take
 corrective actions. Some of the newer fully automated features, such as
 Automatic Memory Management, also leverage data gathered in the
 AWR.
Oracle has a near real-time view of current database conditions as
 it makes automated recommendations. Such recommendations will often be
 more accurate than would be possible with the manual processes you might
 have used in the past. In the following subsections, we’ll introduce the
 impact this has on Oracle Enterprise Manager and add-on packs, Information
 Lifecycle Management, backup and recovery, and database availability.
 We’ll also describe the impact of pluggable databases in this
 section.
Oracle Enterprise Manager 12c

Many Oracle Database generations ago, Oracle Enterprise Manager (EM)
 was introduced as an Oracle Database manager framework. Today,
 Enterprise Manager 12c continues to be a framework
 used for managing the database, but it is also used for managing Fusion
 Middleware, Oracle’s Applications, Oracle’s engineered systems,
 Cloud-based infrastructure, and more. The framework consists of
 management services, monitoring, configuration management, task
 automation, security, and plug-ins for the managed platforms supported.
 Later in this book, we’ll focus our discussion on managing the database
 deployed to a traditional infrastructure and also to a Cloud-based
 infrastructure. We’ll also discuss the added capabilities provided by
 Enterprise Manager when managing the Oracle Exadata Database Machine
 including the monitoring of hardware alerts, configuration management,
 and proactive support.
Enterprise Manager is accessed via a browser or mobile device
 (e.g., iOS devices were supported when this edition of the book was
 published). Enterprise Manager provides a basic interface for monitoring
 and management of Oracle Database users and user privileges, database
 schema, and database configuration, status, and backup and recovery. The
 optional Enterprise Manager Packs that Oracle offers extend the
 management capabilities:
	Oracle Diagnostic Pack for Oracle
 Database
	The Oracle Diagnostic Pack for the Database provides an automatic and real-time
 performance interface to the Automatic Database Diagnostic Monitor
 (ADDM), an automatic workload capture interface to the Database
 Automatic Workload Repository (AWR), performance comparisons
 versus ASR baselines, active session history, system monitoring
 and notification, and Exadata-specific lights-out monitoring and
 management of nodes, Exadata Storage Server cells, and InfiniBand
 switches.

	Oracle Tuning Pack for Oracle
 Database
	The Oracle Tuning Pack for the Database provides real-time SQL
 monitoring used in identifying long-running SQL, a SQL Tuning
 Advisor that provides recommendations to administrators or that
 can be run in automatic mode, and a SQL Access Advisor that
 provides advice on schema design.

	Oracle Database Lifecycle Management
 Pack
	The Oracle Database Lifecycle Management Pack automatically discovers database and application
 physical servers, enables deployment procedures for provisioning
 and patching of databases, provides capability to perform patching
 lifecycle change management, configuration management, and
 compliance management, and provides Site Guard to manage disaster
 recovery through integration with Data Guard and filesystem data
 storage.

	Oracle Cloud Management Pack for Oracle
 Database
	The Cloud Management Pack enables identification of pooled resources,
 configuration of role-based access, definition of service catalogs
 and chargeback plans, and supports user requested database
 resource requests and provisioning where the database is deployed
 as a service (DBaaS).

	Oracle Data Masking Pack
	The Oracle Data Masking Pack enables scanning of an Oracle
 Database for sensitive data based on patterns, uses referential
 relationships when determining data elements that should be
 masked, provides a library of typical masks needed, and supports
 advanced masking techniques such as condition-based masking,
 compound masking, deterministic masking, and key-based reversible
 masking.

	Oracle Test Data Management Pack
	The Oracle Test Data Management Pack automatically discovers data relationships and table
 types, storing them in Application Data Models, and is used to
 create test databases from production databases.

Real Application Testing Option

Oracle Database 11g introduced the
 capability to rerun production workloads and test system changes through
 the Real Application Testing Option. This database option includes a
 Database Replay facility and the SQL Performance Analyzer (SPA).
 Database Replay captures production workload information, including
 concurrency, dependencies, and timing. It transforms the workload
 capture files into replay files, provides a Replay Client for processing
 the replay files, and provides the means to report on performance
 statistics and any errors that might occur. The SQL Performance Analyzer
 captures a SQL workload to be analyzed, measures the performance before
 database changes and afterward, and identifies performance changes among
 SQL statements.

Pluggable Databases

As of Oracle Database 12c, the database can
 function as a multitenant container database (CDB) where the Multitenant Option is licensed and hold one or more pluggable databases (PDBs). A PDB is a portable collection
 of schemas and schema objects that could be unplugged from one CDB and
 into another. Since PDBs share resources provided by the CDB, this
 increases the number of databases that can be deployed on a given
 hardware platform due to more efficient utilization of the
 resources.
CDBs and PDBs are an important piece of Oracle’s DBaaS Cloud
 strategy as they enable more rapid provisioning of platforms. Key
 management tasks are simplified since they are managed through the CDBs
 and related to PDBs. Examples of management features in the CDBs include
 Active Session History (ASH), alerts, automated database maintenance
 tasks, ADDM, automatic statistics optimizer collection, Automatic
 Segment Advisor, AWR, SQL Management Base (SMB), SPA, SQL Tuning
 Advisor, and SQL Tuning Sets (STS).

Storage Management

Automatic Storage Management (ASM) is provided as part of the Oracle Database. First
 introduced with Oracle Database 10g, ASM is used to
 manage pools of storage in designated disk groups that store the
 database files. The database data is evenly distributed (striped) across
 disks in a disk group for optimal performance. Data is typically
 mirrored using ASM for availability. Because an ASM interface is
 provided through Enterprise Manager, the database administrator can
 perform this critical management task.
Data in large Oracle Databases is often partitioned to provide a
 higher degree of manageability and availability. For example, you can
 take individual partitions offline for maintenance while other
 partitions remain available for user access. This partitioning
 capability is provided by the Partitioning Option and was introduced for
 Oracle8. Since then, the types of partitioning supported have continued
 to grow in sophistication.
In data warehousing implementations, partitioning is sometimes
 used to implement rolling windows based on date ranges. Other
 partitioning types include hash partitioning (used to divide data into
 partitions using a hashing function and providing an even distribution
 of data), list partitioning (enables partitioning of data based on
 discrete values such as geography), interval partitioning (used to
 automatically create new fixed ranges as needed during data insertions),
 reference partitioning (where a child table inherits the partitioning
 strategy of the parent table), and virtual column partitioning (defined
 by an expression linked to one or more columns). Many of these
 partitioning types can be used in combination as “composite” partitions.
 Examples of composite partitions in Oracle Database
 12c include range-range, range-hash, range-list,
 list-range, list-hash, and list-list, hash-hash, and
 interval-reference.
One of the goals of storage management is to minimize the amount
 of physical disk required. Compression techniques are often combined
 with partitioning strategies as it often makes sense to compress data on
 older nonchanging partitions to avoid performance hits during updates.
 Since Oracle9i Release 2, the Oracle Database has
 included basic compression that typically provides two to four times
 compression for read-only or inactive tables and partitions. The
 Advanced Compression Option provides two to four times compression for
 OLTP databases where updates occur and has been available since Oracle
 Database 11g. Hybrid Columnar Compression is
 available for Exadata Storage and provides about 10 times compression
 for data warehouses and 15 times compression for archiving data.

High Availability

Oracle defines a Maximum Availability Architecture (MAA)
 that addresses recovery time objectives, recovery point
 objectives, and service level agreement (SLA) objectives in an
 organization. Organizations use these guidelines and software
 capabilities to deliver highly available databases by minimizing planned
 downtime for maintenance tasks and reducing or eliminating unplanned
 downtime from outages. Features in the Oracle Database that help manage
 planned downtime for systems changes, data changes, and applications
 changes include the ability to do online reconfiguration with rolling
 upgrades, online redefinition, and edition-based redefinition.
Eliminating unplanned downtime focuses on two areas: data availability and server
 availability. Solutions for eliminating unplanned data outages include Recovery Manager
 (RMAN) for backup and recovery, Oracle Secure Backup, the Data Recovery Advisor, Flashback,
 ASM, Data Guard, and GoldenGate. Real Application Clusters (RAC) is the critical component
 that helps eliminate unplanned server availability. We’ve introduced a few of these
 capabilities previously in this chapter, so we focus on introducing recoverability features
 and RAC in this section.
Oracle Database 12c introduces Application
 Continuity for masking lost database sessions from users during planned
 and unplanned downtime. A JDBC replay driver intercepts execution errors
 when sessions are lost and saves the context of each SQL and PL/SQL call
 it is instructed to hold. The JDBC replay driver replays the calls when
 the session is reestablished as directed by a continuity director in the
 database.
Flashback

The Oracle Database features a variety of Flashback technologies that enable rapid recovery from
 human errors. A Flashback Query enables a query designating a point in time in the past to be
 submitted to see how data looked at that time and allows you to
 identify possible corruption that occurred since. The Flashback
 Version query enables looking at how a row of data changed over a time
 interval. A Flashback Transaction Query enables the administrator to see changes made by an
 individual transaction. Where dependencies exist, the Flashback
 Transaction capability can be used to back out all changes, relying on
 undo and archived redo logs.
When individual tables need to be recovered at a previous point
 in time, Flashback Table is used. Flashback Drop enables easy recovery of
 dropped tables. Flashback Database enables recovery of an entire
 Oracle Database to a previous point in time, relying on Flashback logs
 in the database to restore blocks that have changed.

Recovery Manager

As every database administrator knows, backing up a database is a
 rather mundane but necessary task. An improper backup makes recovery
 difficult, if not impossible. Unfortunately, people often realize the
 extreme importance of this everyday task only after losing
 business-critical data resulting from a failure of a related
 system.
Typical kinds of backups include complete database backups,
 tablespace backups, datafile backups, control file backups, and
 archivelog backups. Oracle’s Recovery Manager (RMAN) enables
 server-managed backup and recovery of the database and leverages a
 Recovery Catalog stored in the database. RMAN can automatically
 locate, back up, restore, and recover datafiles, control files, and
 archived redo logs. During backups, RMAN verifies all data blocks to
 ensure that corrupt blocks are not propagated to backup files.
 Efficient recovery can occur at the individual block level.
RMAN can restart backups and restore and implement recovery
 window policies when backups expire. A variety of compression levels
 are supported to assure reasonable performance where network
 bottlenecks or CPU limitations exist. A Fast Recovery Area (FRA)
 can be defined on a file system or ASM disk group
 enabling better space management. Oracle Enterprise Manager provides a
 GUI-based interface to RMAN and includes a job scheduler that can be
 used with RMAN for managing automatic backups to disk.
RMAN can perform incremental backups of Enterprise Edition
 Databases. Incremental backups will back up only the blocks modified
 since the last backup of a datafile, tablespace, or database; thus,
 they’re smaller and faster than complete backups. RMAN can also
 perform point-in-time recovery, which allows the recovery of data
 until just prior to an undesirable event (such as the mistaken
 dropping of a table).

Oracle Secure Backup

Various media-management software vendors leverage Oracle’s RMAN
 as part of their backup solutions. Since Oracle Database
 10g, Oracle has offered a tape backup solution integrated with RMAN for database and
 filesystem data named Oracle Secure Backup (OSB). OSB features
 policy-based and fine-grained control over backup media and to the
 Cloud through support of encryption and key management. OSB also
 supports tape duplication and managing the rotation of tapes among
 multiple sites.

Data Guard

Oracle first introduced a standby database feature in Oracle
 7.3. A standby database provides a copy of the production database to
 be used if the primary database is lost—for example, in the event of
 primary site failure or during routine maintenance. Primary and
 standby databases may be geographically separated. The standby
 database is created from a copy of the production database and updated
 through the application of archived redo logs generated by the
 production database. Since Oracle9i, Data Guard
 fully automates this process, including the copying and applying of
 logs. Agents are deployed on both the production and standby database,
 and a Data Guard Broker coordinates commands. A single Data
 Guard command invokes the steps required for failover.
Oracle Database 10g introduced support for real-time application
 of redo data, integration with the Flashback Database feature, archivelog, and support of
 rolling upgrades. The Active Data Guard Option introduced with Oracle Database 11g enabled a standby
 database to be used for queries, sorting, and reporting even as changes from the
 production system are being applied. Oracle Database 12c introduces a
 lightweight Oracle instance Far Sync standby (with no datafiles) that is used to reliably
 forward redo synchronously to one or more remote locations and greatly widen distances
 where Data Guard might be deployed.
In addition to providing physical standby database support, Data
 Guard can be used to create a logical standby database where Oracle
 archive logs are transformed into SQL transactions and applied to the
 open standby database. Data Guard also supports snapshot standbys
 where redo is received but not applied when data is simply to be
 replicated to the standby for testing purposes (such standbys can be
 converted to physical standbys, and then redo is applied).
If an outage occurs, the Data Recovery Advisor leverages RMAN and Data Guard
 (including standbys) in determining the best recovery options that
 minimize any data loss. Administrators can choose among these options
 or the Advisor can be set to automatically run the best choice.

Fail Safe

The Fail Safe feature provides a higher level of reliability for an Oracle
 Database on a Windows platform than simple high-availability
 approaches in leveraging Microsoft Cluster Services. Failover is
 implemented through a second system or node that provides access to
 data residing on a shared disk when the first system or node fails.
 Fail Safe is primarily a disaster recovery tool, so some downtime does
 occur as part of a failover operation. The recommended solution for
 high server availability on all platforms, including Windows, is
 RAC.

Oracle Real Application Clusters

RAC first appeared as an option for Oracle9i,
 replacing the Oracle Parallel Server (OPS) option. RAC can provide
 failover support as well as increased scalability on Unix operating
 system variations, Linux, and Windows clusters. Key to RAC’s improved
 scalability was the introduction of Cache Fusion that greatly minimized the amount of writing to disk
 that was formerly used to control data locks. Oracle Database
 10g introduced a new level of RAC portability and
 Oracle support by providing integrated “clusterware” for supported RAC
 platforms.
With Real Application Clusters, you can deploy multiple Oracle
 instances on multiple nodes of a clustered solution or in a grid
 configuration. RAC coordinates traffic among the systems or nodes,
 allowing the instances to function as a single database. As a result,
 the database has proven to scale across dozens of nodes. Since the
 cluster provides a means by which multiple instances can access the
 same data, the failure of a single instance will not cause extensive
 delays while the system recovers. You can simply redirect users to
 another instance that’s still operating. Applications can leverage the
 Oracle Call Interface (OCI) to provide failover to a second instance
 transparently to the user.
Data Guard can be used to provide automated failover with bounded recovery time in
 conjunction with Oracle Real Application Clusters. In addition, it provides client rerouting from the failed instance to the instance that is
 available with fast reconnect and automatically captures diagnostic data.

Database Security Features

Oracle includes basic security for managing user access through roles and privileges. These can be
 managed through Enterprise Manager on a local basis or on a global basis by leveraging
 Oracle’s enterprise user security, a feature in the Advanced Security Option.
Database security features allow you to implement a Virtual Private Database (VPD) using Oracle by creating and
 attaching policies to database tables, views, or synonyms. These policies
 are then enforced by placing a predicate WHERE clause on SELECT, INSERT, UPDATE, DELETE, and/or INDEX
 statements.
New in Oracle Database 12c, you can redact or
 mask data queried by users or applications, taking into account assigned
 privileges. Full data redaction, partial data redaction, or random data
 redaction of specified columns in tables or views is supported.
Many organizations face the need to meet more stringent compliance
 requirements for improved data protection, although database usage now can
 extend beyond organizational boundaries. Oracle has added several options
 to the database to enable secure deployment in such challenging
 environments. These options include the Advanced Security Option, Label
 Security Option, Database Vault Option, and Audit Vault and Database
 Firewall Option.
Advanced Security Option

The Advanced Security Option (ASO) enables data encryption of tablespaces and columns in the database via Transparent Data Encryption (TDE), which encrypts and decrypts data without
 requiring any code in the applications that access this data. Data encrypted in TDE remains
 encrypted when backed up using RMAN. ASO also provides strong authentication services to the database through two-tier key management
 consisting of a master encryption key and one or more data encryption keys. Oracle Database
 12c further enhanced the range of TDE key management capabilities
 available.
Standards-based network encryption is provided with authentication
 to the database through Kerberos, KPI, or RADIUS. Industry standard
 network encryption, enabling more secure Oracle Net connections,
 includes support for the Advanced Encryption Standard (AES) and the U.S. Triple Data Encryption Standard (3DES).

Label Security Option

Oracle Label Security controls access to data by comparing labels assigned to rows of data with label
 authorizations granted to users through their privileges. Multiple authorization levels are possible within a single database.
 Label security is a higher level interface to row-level security supported in Enterprise
 Edition.
Label security policies, data and user labels, and protected
 tables can all be managed through Oracle Enterprise Manager and can also
 be integrated with Oracle Identity Management. Since Policies are
 enforced in the database instead of through views, which greatly
 simplifies management of data accessibility and provides a more secure
 implementation.

Database Vault Option

The Oracle Database Vault Option allows for another dimension of database security. A
 standard problem with database security stems from the need for database
 administrators to have full access to the data they manage—a potential
 security hole. The Database Vault Option allows you to restrict access
 granted with system-wide privileges, such as preventing administrators
 read or write access to data, or restricting administrative access to a
 defined realm of data, allowing for finer grained separation of
 administrative duties frequently necessary as databases are
 consolidated. A security administrator can set factors to define access
 to the database including Oracle commands available to the different
 classes of users and administrators and audit-specific dimensions of
 security. At a more granular level, realms can be defined for limiting
 access to specific database schemas and roles.

Audit Vault and Database Firewall Option

The Audit Vault and Database Firewall Option includes the Audit Vault Server, Audit Vault Collection Agent, Database
 Firewall, and Database Firewall Management Server. The Oracle Audit Vault Server monitors Oracle Database audit tables and audit information from other database
 brands, redo logs, and operating system audit files for suspicious activities and is used to
 manage audit activities. It includes pre-built compliance reports and entitlement reports
 for Oracle Databases that show users, roles, and privileges and can send alerts showing
 where unusual or unauthorized activity is occurring.
The Database Firewall is used to monitor SQL statements
 transmitted to the Oracle Database and determine whether to allow, log,
 alert, substitute, or block the SQL. SQL statements from specific users
 or IP addresses of specific types can be blocked. Database Firewall
 events are logged to the Audit Vault Server.

Oracle Database Development Tools

Many Oracle tools are available to developers to help present data and build more
 sophisticated Oracle Database applications. As this book focuses on the
 Oracle Database, this section briefly describes the main Oracle tools used
 for database development today: Oracle SQL Developer and Oracle
 Application Express. Other legacy tools, such as Oracle Forms Developer,
 Oracle Designer, and Oracle Programmer, are used with much less frequency
 today.
Oracle SQL Developer

Oracle SQL Developer is an IDE for any currently supported Oracle Database
 version that you can download from the Oracle Technology Network at no
 charge and run on your Windows, Linux, or Apple MAC OS X workstation.
 With SQL Developer, you can create connections to Oracle Databases,
 browse database objects, create and modify database objects, query and
 update data, export data and DDL, import data, process commands, and run
 and create reports. The product’s tools support the editing, debugging,
 and running of PL/SQL scripts and the DBA Console can be used to manage
 the database. In addition, SQL Developer can be pointed at non-Oracle
 databases to view their database objects and data, and it provides
 capabilities to migrate to an Oracle Database.
The SQL Developer Data Modeler provides a graphical user tool for creating, browsing,
 and editing database models. Data dictionaries can be imported from Oracle Databases, IBM
 DB2, and Microsoft SQL Server. Data models can be imported from the Computer Associates
 ERwin product and Oracle’s previous generation design tool, Oracle Designer.

Oracle Application Express

Oracle Application Express (APEX) is an in-Oracle Database rapid development tool freely
 available for all current editions of the Oracle Database. The tool was
 designed to create HTML-based applications through a wizard-based
 approach and has proven to be fairly popular in the Oracle community.
 APEX has come with the Oracle Database since version
 10g R2 and is available as a download from the
 Oracle Technology Network forum.
Developers using APEX access a browser-based declarative
 development framework and are presented with wizards and property sheets
 for declaratively building and maintaining applications. Key components
 include an application builder, SQL workshop, team development
 environment, and administration and analytics interface. Typical use
 cases include creation of data-driven applications, SQL-based reporting,
 spreadsheet conversion to web applications, Oracle Forms applications
 modernization to HTML and Web 2.0, and Microsoft Access
 replacement.
APEX provides flexibility for development and deployment in a
 variety of scenarios including local, on multitenant private Clouds
 (with workspaces for each department and self-service provisioning), or
 on public Clouds such as the Oracle Database Cloud Service. The
 framework is flexible in how applications might be accessed and in 2011
 added support for mobile devices (leveraging jQuery Mobile) and
 HTML5.

Other Oracle Databases

Today, Oracle offers other databases including Oracle MySQL, Berkeley DB, Oracle
 NoSQL Database, and TimesTen. We’ll also briefly touch upon the Cloudera
 Hadoop distribution included with Oracle’s Big Data Appliance. These
 database engines have unique code lines with different intended roles.
 There are entire books written about these alternative databases. For this
 reason, we will describe these briefly in the following subsections but
 will not explore their capabilities in detail elsewhere in this
 book.
Oracle MySQL

The MySQL database is an open source relational database, with source code
 made available under the GNU General Public License (GPL). Development
 of MySQL began in 1994 by Michael Widenius and David Axmark and it was first released in 1995. Over time, the MySQL
 database grew into the most popular open source database. MySQL was
 acquired by Sun in 2008, and Sun was then acquired by Oracle in 2010. In
 addition to the MySQL Database, there is a free graphical data modeling,
 SQL development, and administration tool called the MySQL Workbench that
 is often deployed as part of the infrastructure. Oracle bundles the
 Workbench with its editions of MySQL.
A MySQL Community Edition remains freely downloadable today and is
 supported by open source developers. Oracle offers support for several
 editions, including a Classic Edition, Standard Edition, Enterprise
 Edition, and Cluster Carrier Grade Edition. The editions share in common
 a reputation for rapid installation, low total cost of ownership, and
 exceptional scalability and performance for many applications.
The Classic Edition is intended to be used as an embedded database
 by OEMs, ISVs, and VARs developing read-intensive applications using
 MyISAM. For more demanding OLTP applications, the Standard Edition
 provides a basic database engine that also includes the InnoDB
 engine.
As scalability and performance requirements grow, the Enterprise
 Edition is designed to provide additional functionality. Key components
 include:
	MySQL Enterprise Backup for hot compressed backups; full,
 incremental, and partial backups; full and partial restores; and
 point-in-time recovery

	MySQL Enterprise High Availability, which includes
 replication, Oracle VM template support, and Solaris and Windows
 failover clustering

	MySQL Enterprise Scalability for high-demand query and
 workload

	MySQL Enterprise Security for supporting pluggable
 authentication, including Windows Active Directory support

	MySQL Enterprise Audit for supporting policy-based auditing in
 applications

	MySQL Enterprise Monitor for proactive best practices tips and
 security alerting through the Enterprise Dashboard, Advisors,
 Replication Monitor, and Query Analyzer (that identifies SQL code
 slowing query performance)

The MySQL Cluster Carrier Grade Edition automatically partitions
 database tables across nodes of a multinode commodity hardware platform
 providing horizontal scalability using the NDB engine. This Edition also
 enables highly available configurations and supports active-active
 replication for clustering across distributed geographies, including for
 purposes of disaster recovery. Nodes can be added and database schema
 can be updated while the database is online. The MySQL Cluster Manager
 automates common cluster management tasks and provides extended cluster
 monitoring support.

Berkeley DB & Oracle NoSQL Database

Oracle Berkeley DB is an extremely small-footprint embedded database engine.
 The engine supports transactional workloads and features multiversion
 concurrency control, indexing, encryption, and replication. It comes in
 variations that Oracle labels as Berkeley DB, Berkeley DB Java Edition,
 and Berkeley DB XML. Data interfaces supported include the SQLite API,
 Java Objects, key value, and XQuery/XPath for XML. For example, the Java
 Edition provides a direct persistence layer (DPL) API for EJB-style
 persistence and a Java collection API and the database is a single JAR
 file.
Berkeley DB is designed to be deployed with and run in the same
 process as your applications. Footprints for the database have static
 library sizes of less than 1 MB and runtime dynamic memory requirements
 of a few kilobytes.
When mobile applications deployed using Berkeley DB are to be
 attached to an Oracle Database, the Oracle Database Mobile
 Server provides a sync engine and a mobile manager. This server
 can be deployed on WebLogic or GlassFish. Mobile clients can include
 Java, Android, Blackberry, Windows, and Linux.
In 2011, Oracle introduced the Oracle NoSQL Database that leverages the Berkeley DB Java Edition engine. It is
 designed to support large volume and low latency applications and is
 implemented on a distributed key value engine with transparent load
 balancing across the nodes it is deployed to. The applications are
 written specifying data consistency policies depending on the amount of
 overhead that is acceptable. These policies can range from absolute
 consistency to time-based consistency to weak consistency (and lowest
 latency). The NoSQL Database can be deployed as highly available through
 configurable multiple replicas and for disaster recovery by locating the
 replicas in secondary locations.
Two editions are available. The Oracle NoSQL Database Community Edition is Oracle’s open
 source offering (AGPL version 3 license). It is included with the Oracle Big Data Appliance.
 Oracle also offers the Oracle NoSQL Database Enterprise Edition, which is
 Oracle-supported.

Oracle TimesTen

Oracle TimesTen is a relational database that is stored in physical
 memory and is typically used where very high-performance
 transaction-processing workloads are present. Access to the TimesTen
 database is available through SQL, JDBC, JMS, and ODBC. TimesTen
 databases can be deployed as exclusive or shared and can be created as
 permanent or temporary.
The database is refreshed by gathering data using TimesTen
 libraries deployed to applications or by using a Cache Connect Option to
 an Oracle Database. Because data is read and updated in memory, average
 update or read response times are typically measured in the millionths
 of seconds. The Cache Connect Option supports both read and write
 caching of Oracle Database data. Updates between TimesTen and Oracle can
 be bidirectional. When paired with the Oracle Database, this is
 referenced as the Oracle In-Memory Database Cache (IMDB Cache).
As is typical for embedded databases, TimesTen requires almost no
 ongoing administration. Replication is possible from one TimesTen
 database to another through an option and is, by default,
 asynchronous.
Oracle introduced a variation named TimesTen for Exalytics with
 the Oracle Exalytics In-Memory Machine in 2011. As might be expected for
 optimizing performance of the BI Foundation Suite, key analytics and
 query functionality was added, including OLAP grouping operators,
 analytic functions, time functions, and columnar compression.

Cloudera Distribution of Hadoop

Apache Hadoop is an open source framework for data-intensive
 applications where the data is considered to be semi-structured or
 unstructured. Such data typically comes from sensors, social media
 feeds, text, and web log data and contains descriptors, data of value
 tied to those descriptors, and other miscellaneous data. Thus, the data
 of value is relatively sparse. It was recognized by developers of search
 engines such as Google and Yahoo! in the early 2000s that there was a
 need to map such data and reduce it down to data of value to make sense
 of it. Hence, MapReduce was developed as a programming paradigm and is embedded in
 Java, Python, and other programming languages. The data itself is stored
 and analyzed in the Hadoop Distributed File System (HDFS) that is deployed
 across a cluster of a multinode hardware configuration.
The most popular distribution of Hadoop, at the time this book was
 published, is the Cloudera Distribution of Hadoop (CDH). CDH is included
 with Oracle’s Big Data Appliance (BDA) and supported by Oracle. In
 addition to HDFS and MapReduce, CDH includes other Hadoop components
 including Flume, Fuse-DFS, HBase, Hive, Mahout, Oozie, Pig, Sqoop, and
 Zookeeper. CDH also provides the Cloudera Manager for managing the
 Hadoop cluster, and Oracle provides further platform management
 integration via Enterprise Manager.
As some organizations prefer to make the Oracle Database the
 source for all data, Oracle Database 12c introduced
 pattern matching within the Oracle Database. This enables organizations
 with Oracle Database skills to begin MapReduce-like development in a
 more familiar environment. More commonly, organizations will perform
 MapReduce on their Hadoop cluster and then will load the data of value
 into a data warehouse. Oracle offers a Loader for Hadoop (OLH) that
 optimizes performance when loading this data into an Oracle Database.

Chapter 2. Oracle Architecture

This chapter focuses on the concepts and structures at the core of the
 Oracle Database. When you understand the architecture of the Oracle Database
 server, you’ll have a context for understanding the rest of the features of
 Oracle described in this book.
An Oracle Database consists of both physical and logical components. The first section of
 this chapter covers the difference between an Oracle Database and an instance, and subsequent
 sections describe physical components, the instance, and the data dictionary.
Databases and Instances

Many Oracle practitioners use the terms instance and
 database interchangeably. In fact, an instance and a
 database are different (but related) entities. This distinction is
 important because it provides insight into Oracle’s architecture.
In Oracle, the term database refers to the
 physical storage of information, and the term
 instance refers to the software executing on the
 server that provides access to the information in the database and the
 resources that software uses. The instance runs on the computer or server;
 the database is stored on the disks attached to the server. Figure 2-1 illustrates this
 relationship.
The database is physical: it consists of files
 stored on disks. The instance is logical: it consists
 of in-memory structures and processes on the server. For example, Oracle
 uses an area of shared memory called the System Global Area (SGA) and a private memory
 area for each process called the Program Global Area (PGA). An instance can access one and
 only one database, although multiple instances can be part of the same
 database. Instances are temporal, but databases, with proper maintenance,
 last forever.
Users do not directly access the information in an Oracle Database.
 Instead, they pass requests for information to an Oracle instance.
[image: An instance and a database]

Figure 2-1. An instance and a database

The real world provides a useful analogy for instances and databases. An instance can be
 thought of as a bridge to the database, which can be thought of as an island. Traffic flows on
 and off the island via the bridge. If the bridge is closed, the island exists but no traffic
 flow is possible. In Oracle terms, if the instance is up, data can flow in and out of the
 database. The physical state of the database can change. If the instance is down, users cannot
 access the database even though it still exists physically. The database is static: no changes
 can occur to it. When the instance comes back into service, the data will be there waiting for
 it.
Pluggable databases, part of a new feature in Oracle Database
 12c called Oracle Multitenant and described below,
 give you the ability to isolate some of the logical capabilities of an
 Oracle instance within the instance itself, but the basic distinction
 between the database and the instance remains the core concept of Oracle
 Database architecture.
Oracle Database Structures

Oracle’s database structures include schemas, pluggable databases
 (new in Oracle Database 12c), tablespaces, control
 files, redo logfiles, archived logs, block change tracking files,
 Flashback logs, and recovery backup (RMAN) files. This section
 introduces many of the structures and other components that make up a
 complete database.
Schemas

Schemas are a core part of the logical organization of an Oracle
 Database. Schemas are matched to an Oracle Database user. When you
 create a schema, you specify a password for the user, the
 tablespace(s) for the schema, and the amount of each tablespace
 available to that schema/user.
The schema is the basic logical isolation unit of the Oracle Database. Table names
 must be unique only within the context of their schema. The owner of a schema gets access
 to all data structures within the schema, and access to those objects must be GRANTed
 specifically to other users. All accessible data structures within a schema can normally
 only be accessed by other users by adding the name of the schema before the data structure
 name, although you can create synonyms, discussed in Chapter 4, to provide a common name to other users.
Schemas are also used as the foundation for multitenancy for
 both Oracle Application Express and the Oracle Database Cloud, both
 discussed in Chapter 15.

Tablespaces

All of the data stored within an Oracle Database must reside in
 a tablespace. A tablespace is a
 logical structure; you can’t look at the operating system and see a
 tablespace. Each tablespace is composed of physical structures
 called datafiles; each tablespace
 must consist of one or more datafiles, and each datafile can belong to
 only one tablespace. When creating a table, you can specify the
 tablespace in which to create it. Oracle will then find space for it
 in one of the datafiles that make up the tablespace.
Figure 2-2 shows the
 relationship of tablespaces to datafiles for a database.
[image: Tablespaces and datafiles]

Figure 2-2. Tablespaces and datafiles

This figure shows two tablespaces within an Oracle Database.
 When you create a new table in this Oracle Database, you may place it
 in the DATA1 tablespace or the DATA2 tablespace. It will physically
 reside in one of the datafiles that make up the specified
 tablespace.
Oracle’s default tablespaces for all types of tables are
 locally managed tablespaces as of Oracle Database
 10g Release 2. As the name implies, locally
 managed tablespaces are typically more efficient, since the tracking
 of space in the tablespace is done locally, rather than contending for
 space management information in the shared data dictionary. Locally
 managed tablespaces enable creation of
 bigfiletablespaces that can leverage 64-bit systems and their ability to manage
 ultra-large files.
Oracle9i introduced the concept of
 Oracle Managed Files (OMFs), which enable your database
 to automatically create, name, and delete, where appropriate, all the
 files that make up your database. OMFs reduce the maintenance overhead
 of naming and tracking the filenames for your database, as well as
 avoiding the problems that can result from human errors in performing
 these tasks.
Oracle Databases can be deployed on up to 64,000 datafiles.
 Because a bigfiletablespace can contain a file that is 1,024 times
 larger than a smallfiletablespace, and bigfiletablespaces have 32 KB block sizes on 64-bit
 operating systems, the Oracle Database can grow to up to 8 exabytes in
 size (an exabyte is equivalent to a million terabytes).[1] The bigfiletablespace is designed for use with
 Oracle’s Automatic Storage Management (ASM), other logical volume
 managers that support striping, and RAID.[2]

Files of a database

There are three fundamental types of physical files that make up an
 Oracle Database:
	Control files

	Datafiles

	Redo logfiles

These three fundamental types represent the physical database
 itself. Figure 2-3
 illustrates the three types of files and their
 interrelationships.
[image: The files that make up a database]

Figure 2-3. The files that make up a database

The control file contains locations for other physical files
 that form the database: the datafiles and redo logfiles. It also contains key information about the
 contents and state of the database, including:
	The name of the database

	When the database was created

	Names and locations of datafiles and redo logfiles

	Tablespace information

	Datafile offline ranges

	The log history and current log sequence information

	Archived log information

	Backup set, pieces, datafile, and redo log
 information

	Datafile copy information

	Checkpoint information

In addition to providing this information at startup, control
 files are also useful when removing a database. Since Oracle Database
 10g, the DROP DATABASE command can be used to
 delete the database files listed in the database control file as well
 as the control file itself. With Oracle Database
 12c, the control file indicates whether the
 database is a multitenant container database or pluggable database, as
 well as additional information related to pluggables, which are
 described in the next section.

Pluggable Databases

All of the structures listed above have been a part of the Oracle Database since the first
 publication of this book, more than 10 years ago. Oracle Database 12c
 introduces a new structural concept, the pluggable database, included
 as part of a feature called the Multitenant database, which provides another layer of
 separation within a single database instance.
The concept behind pluggable databases is straightforward—a pluggable database is a
 layer of isolation between a database instance and a schema. Those operations and entities
 that apply to an instance are implemented at the level of the multitenant container database (CDB) and operate across multiple separate
 pluggable databases (PDBs). This separation increases the flexibility of privilege and
 responsibility assigned to a pluggable database, while not having to also increase the
 operational overhead associated with an instance. The separation also makes it quicker and
 easier to create a new pluggable database and to upgrade pluggable databases by simply
 plugging them into an upgraded CDB.
Schemas live within a PDB. Since a PDB can support multiple
 schemas, pluggable databases are a good tool to use for database
 consolidation, since they can support the complete structures of
 applications with multiple schemas without concern for conflicts within
 a single database instance. In effect, a PDB is a logically distinct
 database within an Oracle instance. The CDB can contain users and roles
 that are common across PDBs. Even better, in terms of consolidation,
 multiple PDBs share common database background processes, which means
 that multiple PDBs in a single instance require fewer resources than the
 multiple isolated instances.
All data and metadata for a PDB are stored within the PDB. This
 organization means that you will be able to unplug a PDB from one Oracle
 Database instance and plug it into another instance transparently,
 simplifying support of multiple environments such as for develop and
 test purposes. You will even be able to upgrade a PDB by simply moving
 it from one CDB to another CDB that has been upgraded.
Implementation

Oracle Database 12c will allow for a
 single-tenant version, which includes a single PDB in a CDB, or
 multiple PDBs with the Oracle Multitenant Option.
All CDBs come with a seed PDB, which is used as the template for
 other PDBs that are created by an instance administrator. You can move
 PDBs from one CDB to another, or plug in a non-PDB database to an
 Oracle Database 12c instance that supports PDBs,
 which will transform it into a PDB. You can also clone an existing PDB
 to create a copy.
If you define users for the container database, these entities are visible to all PDBs
 for that container and must be unique for the container and all PDBs. You can define a
 common user in a container database, who will be visible in all PDBs within that container.
Access to PDBs is defined through the use of services, which are
 defined at the CDB level and used in SQL*Net connect strings.
Finally, a PDB is completely backwards-compatible with a
 standard, non-PDB (pre 12c) Oracle
 Database.

PDBs and Oracle features

Oracle Database 12c instances are
 essentially seen as the complete collection of PDBs and the
 multitenant container database. System-wide processes, like backup,
 instance recovery, and the use of Data Guard apply to the entire
 instance. When using a PDB-enabled instance as a node in RAC, the node
 is seen as the instance, but individual sessions connect to a single
 PDB.
Since a single Oracle Database instance can support multiple
 PDBs, you can achieve separation between PDBs without multiplying the
 amount of overhead required for managing system processes. You can
 designate administrators for individual PDBs. Some administrative
 functions, such as point-in-time recovery or Flashback Query, can be
 applied to individual PDBs, and you can do ad hoc backups for PDBs
 separately from the CDB. Many system parameters are also settable for
 each PDB.
Database Resource Manager has been extended to allow for
 allocation of resources between PDBs, and Enterprise Manager and other
 tools have been integrated to allow for use with these new structures
 in Oracle Database 12c.
There are a number of implications for Oracle security. A
 common user can be defined for a CDB and must begin with c## or C##.
 Common users have schemas in one or more PDBs, and those schemas can
 contain different objects.
You can define common roles at the container level in Oracle Database
 12c. Privileges and roles can be granted locally,
 for a PDB, to either a local or common user, or commonly, across all
 PDBs to a common user. You can grant access to users across PDBs
 through the use of database links, similar to how you would allow
 access to objects in separate databases. The common role of PUBLIC is
 defined at the CDB level.

Database Initialization

At Oracle Database instance startup, initialization parameters are read to
 determine how the database will leverage physical infrastructure and for
 other key instance configuration information. Initialization parameters
 are stored in an instance initialization parameter file, often referred
 to as INIT.ORA, or, since
 Oracle9i, in a repository called the server
 parameter file (or SPFILE). The number of
 initialization parameters that must be specified has been greatly
 reduced with each Oracle Database release. Oracle provides a sample
 initialization file that can be used at database startup, and the
 Database Configuration Assistant (DCA) prompts you for values that must be provided on a custom
 basis (such as database name).
The recommended minimum set of initialization parameters that
 should be specified as of Oracle Database 12c
 include:
	CONTROL_FILES
	The control file locations

	DB_NAME
	The local database name

	MEMORY_TARGET
	The target memory size that is automatically allocated to SGA
 and instance PGA components

All other initialization parameters are pre-set to default values.
 As an example in the shift toward automation, since Oracle Database
 11g, the UNDO_MANAGEMENT parameter default is set to automatic undo management. Undo is used in the rollback of
 transactions, and for database recovery, read consistency, and Flashback
 features. (Redo records, though, reside in the physical redo logs; they
 store changes to data segments and undo segment data blocks, and they
 hold a transaction table of the undo segments. The different purposes of
 UNDO and redo are explored over the next few chapters.) The undo
 retention period, which controls how far back features like Flashback
 can work, is now self-tuned by Oracle based on how the undo tablespace
 is configured.
For your database release, check the documentation regarding
 optional initialization parameters, as these change from release to
 release. Some of them are described in the following sections.

Deploying Physical Components

This section is not a substitute for Oracle’s installation procedures, but
 it should provide you with some practical guidance as you plan deployment
 of an Oracle Database.
Note that for Oracle Database 12c, there are
 only one set of control files, redo logfiles, undo files, and temp files
 for each instance, while datafiles are associated with individual
 pluggable databases.
Control Files

A database should have at least two copies of the control file on
 different physical disks. Without a current copy of the control file,
 you run the risk of losing track of portions of your database. Losing
 control files is not necessarily fatal—there are ways to rebuild them.
 However, rebuilding control files can be difficult, introduces risk, and
 can be easily avoided.
The location of the control files is defined, as previously
 mentioned, by the CONTROL_FILES initialization parameter. You can specify
 multiple copies of control files by indicating multiple locations in the
 CONTROL_FILES parameter for the instance, as illustrated here:
control_files = (/u00/oradata/control.001.dbf,
 /u01/oradata/control.002.dbf,
 /u02/oradata/control.003.dbf)
This parameter tells the instance where to find the control files.
 Oracle will ensure that all copies of the control file are kept in sync
 so all updates to the control files will occur at the same time. If you
 do not specify this parameter, Oracle will create a control file using a
 default filename or by leveraging Oracle Managed Files (if
 enabled).
Many Oracle Databases are deployed on some type of redundant disk
 solution such as RAID-1 or RAID-5 to avoid data loss when a disk fails.
 (RAID is covered in more detail in Chapter 7.) You might conclude that storing the
 control file on protected disk storage eliminates the need for
 maintaining multiple copies of control files and that losing a disk
 won’t mean loss of the control file. But there are two reasons why this
 is not an appropriate conclusion:
	If you lose more than one disk in a striped
 array or mirror-pair, you will lose
 the data on those disks. This type of event is statistically rare,
 but if it does occur, you could be faced with a damaged or lost
 control file. As you would have your hands full recovering from the
 multiple disk failures, you would likely prefer to avoid rebuilding
 control files during the recovery process. Multiplexing your control
 files, even when each copy is on redundant disk storage, provides an
 additional level of physical security.

	Redundant disk storage does nothing to protect you from the
 perpetual threat of human error. Someone could inadvertently delete
 or rename a control file, copy another file over it, or move it. A
 mirrored disk will faithfully mirror these actions, and multiplexed
 control files will leave you with one or more surviving copies of
 the control file when one of the copies is damaged or lost.

You do not need to be concerned with additional performance impact
 when writing to multiple control files. Updates to the control files are
 insignificant compared to other disk I/O that occurs in an Oracle
 environment.

Datafiles

Datafiles contain the actual data stored in the database, the tables and
 indexes that store data, the data dictionary that maintains information
 about these data structures, and the rollback segments used to implement
 multiuser concurrency.
A datafile is composed of Oracle Database blocks that, in turn,
 are composed of operating system blocks on a disk. Oracle block sizes
 range from 2 KB to 32 KB. Prior to Oracle9i, only a
 single block size could be present in the entire database. In versions
 of the database since the introduction of Oracle9i,
 you still set a default block size for the database, but you can also
 have up to five other block sizes in a database (though only a single
 block size for each tablespace). Figure 2-4 illustrates the
 relationship of Oracle blocks to operating system blocks.
[image: Oracle blocks and operating system blocks]

Figure 2-4. Oracle blocks and operating system blocks

Datafiles belong to only one database and to only one tablespace within that database. Data is read in units of
 Oracle blocks from the datafiles into memory as needed, based on the
 work users are doing. Blocks of data are written from memory to the
 datafiles stored on disk as needed to ensure that the database reliably
 records changes made by users.
Datafiles are the lowest level of granularity between an Oracle Database and the
 operating system. When you lay out a database on the I/O subsystem, the smallest piece you
 place in any location is a datafile. Tuning the I/O subsystem to improve Oracle performance
 typically involves moving datafiles from one set of disks to another. Automatic Storage
 Management, included in Oracle Databases since Oracle Database 10g,
 provides automatic striping and eliminates manual effort for this tuning task.
Setting the Database Block Size
Prior to Oracle9i, you set the database block size for an Oracle Database at the
 time you created the database, and you couldn’t change it without
 re-creating the database. Since Oracle9i, you
 have more flexibility, because you can have multiple block sizes in
 the same database. In all versions, the default block size for the
 database is set using the DB_BLOCK_SIZE instance initialization
 parameter.
How do you choose an appropriate block size for an Oracle
 Database? Oracle defaults to a block size based on the operating
 system used, but understanding the implications of the block size can
 help you determine a more appropriate setting for your
 workload.
The block size is the minimum amount of data that can be read or
 written at one time. In online transaction processing (OLTP) systems, a
 transaction typically involves a relatively small, well-defined set of
 rows, such as the rows used for placing an order for a set of products
 for a specific customer. The access to rows in these operations tends
 to be through indexes, as opposed to through a scan of the entire
 table. Because of this, having smaller blocks (4 KB) might be
 appropriate. Oracle won’t waste system resources by accessing larger
 blocks that contain additional data not required by the
 transaction.
Data warehouses workloads can include reading millions of rows
 and scans of all the data in a table. For this type of activity, using
 bigger database blocks enables each block read to deliver more data to
 the requesting user. To support these operations best, data warehouses
 usually have larger blocks, such as 8 KB or 16 KB. Each I/O operation
 might take a little longer due to the larger block size, but the
 reduced number of operations will end up improving overall
 performance.

Datafile structure

The first block of each datafile is called the datafile header. It
 contains critical information used to maintain the overall integrity
 of the database. One of the most critical pieces of information in
 this header is the checkpoint structure. This is a
 logical timestamp that indicates the last point at which changes
 were written to the datafile. This timestamp is critical during an
 Oracle recovery process as the timestamp in the header determines
 which redo logs to apply in bringing the datafile to the current point
 in time.

Extents and segments

From a physical point of view, a datafile is stored as operating
 system blocks. From a logical point of view, datafiles have three
 intermediate organizational levels: data blocks, extents, and segments. An
 extent is a set of data blocks that are
 contiguous within an Oracle datafile. A segment
 is an object that takes up space in an Oracle Database, such as a
 table or an index that is composed of one or more extents.
When Oracle updates data, it first attempts to update the data
 in the same data block. If there is not enough room in the data block
 for the new information, Oracle will write the data to a new data
 block that could be in a different extent.
For more information on segments and extents and how they affect
 performance, refer to the section on What About Database Fragmentation? in Chapter 5. This discussion
 is especially important if you are running an older release of Oracle.
 Oracle Database 10g added a Segment Advisor that
 greatly simplifies reclaiming unused space in current database
 versions.

Redo Logfiles

Redo logfiles contain a “recording” of the changes made to the database
 as a result of transactions and internal Oracle activities. Since Oracle
 usually caches changed blocks in memory, when instance failure occurs,
 some changed blocks might not have been written out to the datafiles.
 The recording of the changes in the redo logs can be used to play back
 the changes lost when the failure occurred, thus protecting
 transactional consistency.
Warning
These files are sometimes confused with rollback buffers
 supporting concurrency, described in Chapter 8. They are not the
 same!

In addition, redo logfiles are used for “undo” operations when a
 ROLLBACK statement is issued. Uncommitted changes to the database are rolled
 back to the database image at the last commit.
Suppressing Redo Logging
By default, Oracle logs all changes made to the database. The
 generation of redo logs adds a certain amount of overhead. You can
 suppress redo log generation to speed up specific operations, but
 doing so means the operation in question won’t be logged in the redo
 logs and you will not be able to recover that operation in the event
 of a failure.
If you do decide to suppress redo logging for certain
 operations, you would include the NOLOGGING keyword in the SQL statement for the operation. (Note that
 prior to Oracle8, the keyword was UNRECOVERABLE.) If a failure occurred during the
 operation, you would need to repeat the operation. For example, you
 might build an index on a table without generating redo information.
 In the event that a database failure occurs and the database is
 recovered, the index will not be re-created because it wasn’t logged.
 You’d simply execute the script originally intended to create the
 index again.

To simplify operations in the event of a failure, we recommend
 that you always take a backup after an unlogged operation if you cannot
 afford to lose the object created by the operation or you cannot repeat
 the operation for some reason. In addition to using the NOLOGGING
 keyword in certain commands, you can also mark a table or an entire
 tablespace with the NOLOGGING attribute. This will suppress redo
 information for all applicable operations on the table or for all tables
 in the tablespace.
Multiplexing redo logfiles

Oracle defines specific terminology to describe how it manages
 redo logs. Each Oracle instance uses a thread of
 redo to record the changes it makes to the database. A thread of redo
 is composed of redo log groups, which are composed of one or more redo
 log members.
Logically, you can think of a redo log group as a single redo
 logfile. However, Oracle allows you to specify multiple copies of a
 redo log to protect the all-important integrity of the redo log. By
 creating multiple copies of each redo logfile, you protect the redo
 logfile from disk failure and other types of disasters.
Figure 2-5 illustrates a thread of redo
 with groups and members. The figure shows two members per group, with
 each redo log mirrored.
[image: A thread of redo]

Figure 2-5. A thread of redo

When multiple members are in a redo log group, Oracle maintains
 multiple copies of the redo logfiles. The same arguments used for
 multiplexing of control files apply here. However, though you can
 rebuild the static part of a control file if you lose it, there is no
 way to reproduce a lost redo logfile. So, be sure to have multiple
 copies of the redo file. Simple redundant disk protection is not
 sufficient for cases in which human error results in the corruption or
 deletion of a redo logfile.
Oracle writes synchronously to all redo log
 members. Oracle will wait for confirmation that all copies of the redo
 log have been successfully updated on disk before the redo write is
 considered done. If you put one copy on a fast or lightly loaded disk,
 and one copy on a slower or busier disk, your performance will be
 constrained by the slower disk. Oracle has to guarantee that all
 copies of the redo logfile have been successfully updated to avoid
 losing data.
Consider what could happen if Oracle were to write multiple redo
 logs asynchronously, writing to a primary log and then updating the
 copies later in the background. If a failure occurs that brings the
 system down and damages the primary log, Oracle might not have
 completed updating all the logs. At this point you have committed
 transactions that are lost—the primary log that recorded the changes
 made by the transactions is gone, and the copies of the log are not
 yet up to date with those changes. To prevent this from occurring,
 Oracle always waits until all copies of the redo log have been
 updated.

How Oracle uses the redo logs

Once Oracle fills one redo logfile, it automatically begins to use
 the next logfile. When the server cycles through all the available
 redo logfiles, it returns to the first one and reuses it. Oracle keeps
 track of the different redo logs by using a redo log sequence number.
 This sequence number is recorded inside the redo logfiles as they are
 used.
To understand the concepts of redo log filenames and redo log
 sequence numbers, consider three redo logfiles called
 redolog1.log, redolog2.log,
 and redolog3.log. The first time Oracle uses
 them, the redo log sequence numbers for each will be 1, 2, and 3,
 respectively. When Oracle returns to the first redo
 log—redolog1.log—it will reuse it and assign it a
 sequence number of 4. When it moves to
 redolog2.log, it will initialize that file with a
 sequence number of 5.
Remember that the operating system uses the redo logfile to
 identify the physical file, while Oracle uses the redo logfile
 sequence number to determine the order in which the logs were filled
 and cycled. Because Oracle automatically reuses redo logfiles, the
 name of the redo logfile is not necessarily indicative of its place in
 the redo logfile sequence.
Figure 2-6 illustrates the filling and
 cycling of redo logs.
[image: Cycling redo logs]

Figure 2-6. Cycling redo logs

Naming conventions for redo logs

The operating system names for the various files that make up a
 database are very important—at least to humans, who sometimes have to
 identify these files by their names. If you are not using Oracle
 Managed Files, you should use naming conventions that capture the
 purpose and some critical details about the nature of the file. Here’s
 one possible convention for the names of the actual redo logfiles
 shown in Figure 2-6:
redog1m1.log, redog1m2.log, ...
The redo prefix and .log suffixes indicate that this is redo log
 information. The g1m1 and g1m2 character strings capture the group and
 member numbers. This convention is only an example; it’s best to set
 conventions that you find meaningful and stick to them.

Archived redo logs

You may be wondering how to avoid losing the critical information
 in the redo log when Oracle cycles over a previously used redo
 log.
There are actually two ways to address this. The first is quite
 simple: you don’t avoid losing the information and you suffer the
 consequences in the event of a failure. You will lose the history
 stored in the redo file when it is overwritten. If a failure occurs
 that damages the datafiles, you must restore the entire database to
 the point in time when the last backup occurred. Since no redo log
 history exists to reproduce the changes made since the last backup
 occurred, you will lose the effects of those changes. Very few Oracle
 shops make this choice, because the inability to recover to the point
 of failure is unacceptable—it results in lost data.
The second and more practical way to address the issue is to
 archive the redo logs as they fill. To understand archiving redo logs,
 you must first understand that there are actually two types of redo
 logs for Oracle:
	Online redo logs
	The operating system files that Oracle cycles through to
 log the changes made to the database

	Archived redo logs
	Copies of the filled online redo logs made to avoid losing
 redo data as the online redo logs are overwritten

An Oracle Database can run in one of two modes with respect to
 archiving redo logs:
	NOARCHIVELOG
	As the name implies, no redo logs are archived. As Oracle cycles
 through the logs, the filled logs are reinitialized and
 overwritten, which erases the history of the changes made to the
 database. This mode essentially has the disadvantage mentioned
 above, where a failure could lead to unrecoverable data.
Choosing not to archive redo logs significantly reduces
 your options for database backups, as we’ll discuss in Chapter 11, and is not advised by
 Oracle.

	ARCHIVELOG
	When Oracle rolls over to a new redo log, it archives the previous redo
 log. To prevent gaps in the history, a given redo log cannot be
 reused until it is successfully archived. The archived redo
 logs, plus the online redo logs, provide a complete history of
 all changes made to the database. Together, they allow Oracle to
 recover all committed transactions up to the exact time a
 failure occurred. Operating in this mode enables tablespace and
 datafile backups.

The internal sequence numbers discussed earlier act as the guide
 for Oracle while it is using redo logs and archived redo logs to
 restore a database.

ARCHIVELOG mode and automatic archiving

Starting with Oracle Database 10g,
 automatic archiving for an Oracle Database is enabled with the
 following SQL command:
ARCHIVE LOG START
If the database is in ARCHIVELOG mode, Oracle marks the redo
 logs for archiving as it fills them. The full logfiles must be
 archived before they can be reused. The ARCHIVE LOG START command will by default turn on automatic archiving and the
 archivers are started.
Prior to Oracle Database 10g, logfiles
 marked as ready for archiving did not mean they would be automatically
 archived. You also needed to set a parameter in the initialization
 file with the syntax:
LOG_ARCHIVE_START = TRUE
Setting this parameter started an Oracle process to copy a full
 redo log to the archive log destination.
The archive log destination and the format for the archived redo
 log names are specified using two additional parameters, LOG_ARCHIVE_DEST and LOG_ARCHIVE_FORMAT. A setting such as the following:
LOG_ARCHIVE_DEST = C:\ORANT\DATABASE\ARCHIVE
specifies the directory to which Oracle writes the archived redo
 logfiles, and
LOG_ARCHIVE_FORMAT = ORCL%t_%s_%r.arc
defines the format Oracle will use for the archived redo log
 filenames. In this case, the filenames will begin with ORCL and will end with .arc. The parameters for the format
 wildcards are:
	%t
	Include thread number as part of the filename

	%s
	Include log sequence number as part of the filename

	%r
	Include resetlogs ID as part of the filename

If you want the archived redo log filenames to include the
 thread number, log sequence number, and resetlogs ID with the numbers
 zero-padded, capitalize the parameters and set:
 LOG_ARCHIVE_FORMAT = "ORCL%T_%S_%R.arc"
Since the initialization file is read when an Oracle instance is
 started, changes to these parameters do not take effect until an
 instance is stopped and restarted. Remember, though, that turning on
 automatic archiving does not put the database in ARCHIVELOG mode.
 Similarly, placing the database in ARCHIVELOG mode does not enable the
 automatic archiving process.
You should also make sure that the archive log destination has
 enough room for the logs Oracle will automatically write to it. If the
 archive logfile destination is full, Oracle will hang since it can’t
 archive additional redo logfiles.
Figure 2-7 illustrates
 redo log use with archiving enabled.
[image: Cycling redo logs with archiving]

Figure 2-7. Cycling redo logs with archiving

The archived redo logs are critical for database recovery. Just
 as you can duplex the online redo logs, you can also specify multiple
 archive log destinations. Oracle will copy filled redo logs to
 specified destinations. You can also specify whether all copies must
 succeed or not. The initialization parameters for this functionality
 are as follows:
	LOG_ARCHIVE_DUPLEX_DEST
	Specifies an additional location for redundant redo
 logs.

	LOG_ARCHIVE_MIN_SUCCEED_DEST
	Indicates whether the redo log must be successfully written to one or all of the
 locations. Valid values are 1 through 10 if multiplexing and 1
 or 2 if duplexing.

See your Oracle documentation for the additional parameters and
 views that enable and control this functionality.

Instance Memory and Processes

An Oracle instance can be defined as an area of shared memory and a collection of
 background processes. The area of shared memory for an instance is called
 the System Global Area, or SGA. The SGA
 is not really one large undifferentiated section of memory—it’s made up of
 various components that we’ll examine in the next section. All the
 processes of an instance—system processes and user processes—share the
 SGA. There is one SGA for an Oracle instance.
Prior to Oracle9i, the size of the SGA was set
 when the Oracle instance was started. The only way to change the size of
 the SGA or any of its components was to change the initialization
 parameter and then stop and restart the instance. Since
 Oracle9i, you can also change the size of the SGA or
 its components while the Oracle instance is running.
 Oracle9i also introduced the concept of the granule, which is the smallest
 amount of memory that you can add to or subtract from the SGA.
Oracle Database 10g introduced Automatic Shared
 Memory Management, while Oracle Database 11g added
 Automatic Memory Management for the SGA and PGA instance components.
 Whenever the MEMORY_TARGET (new to Oracle Database
 11g) or SGA_TARGET initialization parameter is set, the database automatically
 distributes the memory among various SGA components providing optimal
 memory management. The shared memory components automatically sized
 include the shared pool (manually set using SHARED_POOL_SIZE), the large pool (LARGE_POOL_SIZE), the Java pool (JAVA_POOL_SIZE), the buffer cache (DB_CACHE_SIZE), and the streams pool
 (STREAMS_POOL_SIZE). Automatic memory management initialization parameters can
 be set through Oracle Enterprise Manager.
The background processes interact with the operating system and each
 other to manage the memory structures for the instance. These processes
 also manage the actual database on disk and perform general housekeeping
 for the instance.
Figure 2-8 illustrates the memory
 structures and background processes discussed in the following
 section.
[image: An Oracle instance]

Figure 2-8. An Oracle instance

Additional background processes may exist when you use certain other
 features of the database; for example, shared servers (formerly the
 Multi-Threaded Server or MTS prior to Oracle9i), or
 job queues and replication.
Memory Structures for an Instance

As shown in Figure 2-8, the System Global Area is composed of multiple areas. These
 include a database buffer cache, a shared pool, and a redo log buffer as
 shown in the figure, and also possibly a Java pool, a large pool, and a
 Streams pool. The following sections describe these areas of the SGA.
 For a more detailed discussion of performance and the SGA, see How Oracle Uses the System Global Area in Chapter 7.
Database buffer cache

The database buffer cache holds blocks of data retrieved from the database. This
 buffer between the users’ requests and the actual datafiles improves
 the performance of the Oracle Database. If a piece of data can be
 found in the buffer cache (for example, as the result of a recent
 query), you can retrieve it from memory without the overhead of having
 to go to disk. Oracle manages the cache using a least recently used
 (LRU) algorithm. If a user requests data that has been recently used,
 the data is more likely to be in the database buffer cache; data in
 the cache can be delivered immediately without a disk-read operation
 being executed.
When a user wants to read a block that is not in the cache, the
 block must be read and loaded into the cache. When a user makes
 changes to a block, those changes are made to the block in the cache
 and a record of the change is written to the redo logfile. At some
 later time, those changes will be written to the datafile in which the
 block resides. This avoids making users wait while Oracle writes their
 changed blocks to disk.
This notion of waiting to perform I/O until absolutely necessary
 is common throughout Oracle. Disks are the slowest component of a
 computer system, so the less I/O performed, the faster the system
 runs. By deferring noncritical I/O operations instead of performing
 them immediately, an Oracle Database can deliver better
 performance.
The database buffer cache can be configured with buffer pools of
 the following types:
	DEFAULT
	The standard Oracle Database buffer cache. All objects use this
 cache unless otherwise indicated.

	KEEP
	For frequently used objects you wish to cache.

	RECYCLE
	For objects you’re less likely to access again.

Both the KEEP and RECYCLE buffer pools remove their objects from
 consideration by the LRU algorithm.
You can mark a table or index for caching in a specific buffer
 pool. This helps to keep more desirable objects in the cache and
 avoids the “churn” of all objects fighting for space in one central
 cache. Of course, to use these features properly you must be aware of
 the access patterns for the various objects used by your
 application.
Oracle Database 10g simplified management
 of buffer cache size by introducing a new dynamic parameter, DB_CACHE_SIZE. This parameter can be
 used to specify cache memory size and replaced the DB_BLOCK_BUFFERS
 parameter present in previous Oracle releases.
DB_CACHE_SIZE is automatically sized if MEMORY_TARGET or SGA_TARGET is set. Other initialization parameters
 include DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE
 and these must be manually sized if used.

Shared pool

The shared pool caches various constructs that can be shared among
 users. For example, SQL queries and query fragments issued by users
 and results are cached so they can be reused if the same statement is
 submitted again. PL/SQL functions are also loaded into the shared pool
 for execution and the functions and results are cached, again using an
 LRU algorithm. As of Oracle Database 11g, a
 PL/SQL function can be marked in such a way that its result will be
 cached to allow lookup rather than recalculation when it is called
 again using the same parameters. The shared pool is also used for
 caching information from the Oracle data dictionary, which is the
 metadata that describes the structure and content of the database
 itself.
You can specify a SHARED_POOL_SIZE initialization parameter, or it will be
 automatically sized if MEMORY_TARGET or SGA_TARGET is specified. Note
 that prior to Oracle Database 10g, “out of
 memory” errors were possible if the shared pool was undersized, but
 current Oracle Database releases now can leverage automatic shared
 memory tuning.

Redo log buffer

The redo log buffer caches redo information until it is
 written to the physical redo logfiles stored on a disk. This buffer
 also improves performance. Oracle caches the redo until it can be
 written to a disk at a more optimal time, which avoids the overhead of
 constantly writing the redo logs to disk.

Other pools in the SGA

The SGA includes several other pools:
	Large pool
	Provides memory allocation for various I/O server
 processes, backup, and recovery, and provides session memory
 where shared servers and Oracle XA for transaction processing
 are used.

	Java pool
	Provides memory allocation for Java objects and Java
 execution, including data in the Java Virtual Machine in the
 database.

	Streams pool
	Provides memory allocation used to buffer Oracle Streams
 queued messages in the SGA instead of in database tables and
 provides memory for capture and apply. Note that Oracle
 GoldenGate is now the recommended solution, instead of Streams,
 for queuing messages to be delivered among databases.

Dynamic initialization parameters available for these pools include LARGE_POOL _SIZE,
 JAVA_POOL_SIZE, and STREAMS_POOL_SIZE. These are automatically set if MEMORY_TARGET or SGA_TARGET
 is specified.

Automatic PGA management

Oracle automatically manages the memory allocated to an instance Program
 Global Area (PGA). The PGA consists of session memory and a private
 SQL area. There is a PGA allocated for each service, which corresponds
 to a pluggable database in Oracle Database 12c.
 The memory amount can be controlled by setting the PGA_AGGREGATE_TARGET initialization parameter.
 Automatic PGA management, available since Oracle Database
 10g, greatly simplified management of SQL work
 areas and eliminated the need to set several different initialization
 parameters that previously existed. As of Oracle Database
 11g, PGA memory allocation is automatically tuned
 along with the SGA memory allocations by setting MEMORY_TARGET. With
 Oracle Database 12c, this control has been
 refined by adding a parameter for the PGA_AGGREGATE_LIMIT. This parameter sets a hard
 limit on the total amount of memory that the PGA can use; when this
 limit is reached, the sessions using the greatest amount of the PGA
 are paused until the memory usage drops.

Background Processes for an Instance

The most common background processes are shown in Figure 2-8 and vary from Oracle release to release.
 Among the background processes in Oracle Database
 12c are the following:
	Database Writer (DBWn)
	Writes database blocks from the database buffer cache in the SGA to
 the datafiles on disk. An Oracle instance can have up to 20 DBW
 processes to handle the I/O load to multiple datafiles—hence the
 notation DBWn. Most instances run one DBW.
 DBW writes blocks out of the cache for two main reasons:
	If Oracle needs to perform a checkpoint (i.e., to update
 the blocks of the datafiles so that they “catch up” to the
 redo logs). Oracle writes the redo for a transaction when it’s
 committed, and later writes the actual blocks. Periodically,
 Oracle performs a checkpoint to bring the datafile contents in
 line with the redo that was written out for the committed
 transactions.

	If Oracle needs to read blocks requested by users into
 the cache and there is no free space in the buffer cache, the
 blocks written out are the least recently used blocks. Writing
 blocks in this order minimizes the performance impact of
 losing them from the buffer cache.

	Log Writer (LGWR)
	Writes the redo information from the log buffer in the SGA to
 all copies of the current redo logfile on disk. As transactions
 proceed, the associated redo information is stored in the redo log
 buffer in the SGA. When a transaction is committed, Oracle makes
 the redo information permanent by invoking the Log Writer to write
 it to disk.

	System Monitor (SMON)
	Maintains overall health and safety for an Oracle instance.
 SMON performs crash recovery when the instance is started after a
 failure and coordinates and performs recovery for a failed
 instance when you have more than one instance accessing the same
 database, as with Real Application Clusters. SMON also cleans up
 adjacent pieces of free space in the datafiles by merging them
 into one piece and gets rid of space used for sorting rows when
 that space is no longer needed.

	Process Monitor (PMON)
	Watches over the user processes that access the database. If a user
 process terminates abnormally, PMON is responsible for cleaning up
 any of the resources left behind (such as memory) and for
 releasing any locks held by the failed process.

	Archiver (ARCn)
	Reads the redo logfiles once Oracle has filled them and writes
 a copy of the used redo logfiles to the specified archive log
 destination(s).
Up to 10 Archiver processes are possible—hence the notation
 ARCn. LGWR will start additional Archivers as
 needed, based on the load, up to a limit specified by the
 initialization parameter LOG_ARCHIVE_MAX_PROCESSES. By default,
 this initialization parameter has a value of 2 and is rarely
 changed.

	Checkpoint (CKPT)
	Updates datafile headers whenever a checkpoint is
 performed.

	Recover (RECO)
	Automatically cleans up failed or suspended distributed
 transactions.

	Dispatcher
	Optional background processes used when shared server configurations are deployed.

	Global Cache Service (LMS)
	Manages resources for Real Application Clusters and inter-instance resource
 control.

	Job Queue
	Provides a scheduler service used to schedule user PL/SQL statements or
 procedures in batch.

	Queue Monitor (QMNn)
	Monitors Oracle Streams message queues with up to 10 monitoring processes supported.

	Automatic Storage Management (ASM)
 processes
	RBAL coordinates rebalancing of activities for disk groups.
 ORBn performs the actual rebalancing. ASMB
 provides communication between the database and the ASM instance.

Configuration, Engineered Systems, and the Cloud

The previous pages have introduced you to the basics of Oracle
 Database architecture. If you are brand new to Oracle, it may seem like a
 fair amount to digest. And, indeed, creating a database that can manage
 data state integrity reliably for tens of thousands of users is a
 nontrivial task that requires a fair amount of underlying
 architecture.
One of the constant complaints about the Oracle Database was that
 there were too many dials to twist and too much maintenance and
 configuration to attend to. The good part about these configuration
 options is that they allow fine-tuning of the general purpose Oracle
 Database to perform and scale optimally for any purpose you choose for
 your particular requirements. However, as we mentioned earlier, much of
 the initial setup and tuning is no longer required, as the database
 initialization parameters, with few exceptions, are set to defaults and
 the database has become more self-tuning and self-managing with each
 subsequent release.
There is a downside to exposing this flexibility. Every option that can be set can also be
 set incorrectly. Even highly knowledgeable database administrators may occasionally suffer
 from this fault, either through changing circumstances or lack of understanding. In order to
 reduce this downside, Oracle Corporation has been focusing on two areas: engineered systems
 and the cloud.
Engineered systems, such as Exadata, are, among other things, pre-assembled and
 pre-configured systems. The pre-assembly makes it faster to start using
 your Oracle Database, while the pre-configuration means that the system
 will be properly configured and balanced to operate optimally without the
 need for extensive tuning that was often required in the past. Oracle has
 found that these systems frequently end up being more suitable and less
 problematic for customer needs than customized configurations.
Of course, if you want to get away from both configuration and all other ongoing maintenance
 tasks, you may want to consider the Oracle Database Cloud, a public cloud offering described
 in more detail in Chapter 15.

The Data Dictionary

Each Oracle Database includes a set of metadata that
 describes the data structure including table definitions and integrity
 constraints. The tables and views that hold this metadata are referred to
 as the Oracle data dictionary. All of the
 components discussed in this chapter have corresponding system tables and
 views in the data dictionary that fully describe the characteristics of
 the component. You can query these tables and views using standard SQL
 statements. Table 2-1
 shows where you can find some of the information available about each of
 the components in the data dictionary.
The SYSTEM tablespace always contains the data dictionary tables. Data dictionary tables that are
 preceded by the V$ or GV$ prefixes are dynamic tables, which are continually updated to
 reflect the current state of the Oracle Database. Static data dictionary tables can have a
 prefix such as DBA_, ALL_, or USER_ to indicate the scope of the objects listed in the
 table.
With the introduction of the multitenant architecture in Oracle
 12c, a new level has been introduced to the Oracle
 Database dictionary. DBA_, ALL_ and USER_ views exist within the context
 of a pluggable database, while a new set of views with the prefix CDB_ are
 available in the root container, which aggregates the DBA_ views from all
 pluggable databases associated with that container. Common users defined
 within the container database will be able to see information for all PDBs
 for which they have privileges when querying CDB_ views. Users within a
 PDB will see data dictionary views just as if they were users within a
 standard non-CDB instance.
Table 2-1. Partial list of database components and their related data
 dictionary views
	Component
	Data dictionary tables
 and views

	Database

 Pluggable databases
	V$DATABASE, V$VERSION,
 V$INSTANCE
 V$CONTAINERS, V$PDBS

	Shared
 server
	V$QUEUE, V$DISPATCHER,
 V$SHARED_SERVER

	Connection
 pooling
	DBA_CPOOL_INFO,
 V$CPOOL_STATS, V$CPOOL_CC_STATS

	Tablespaces
	USER_FREE_SPACE,
 DBA_FREE_SPACE, V$TEMPFILE, DBA_USERS,
 DBA_TS_QUOTAS

	Control
 files
	V$CONTROLFILE, V$PARAMETER,
 V$CONTROLFILE_RECORD_SECTION

	Datafiles
	V$DATAFILE,
 V$DATAFILE_HEADER, DBA_DATA_FILES, DBA_EXTENTS,
 USER_EXTENTS

	Segments
	DBA_SEGMENTS,
 USER_SEGMENTS

	Extents
	DBA_EXTENTS,
 USER_EXTENTS

	Redo logs
	V$THREAD, V$LOG, V$LOGFILE,
 V$LOG_HISTORY

	Undo
	V$UNDOSTAT, V$ROLLSTAT,
 V$TRANSACTION

	Archiving
 status
	V$DATABASE, V$LOG,
 V$ARCHIVED_LOG, V$ARCHIVE_DEST

	Database
 instance
	V$INSTANCE, V$PARAMETER,
 V$SYSTEM_PARAMETER

	Memory
 structure
	VSGA, VSGASTAT,
 V$SGAINFO, V$SGA_DYNAMIC_COMPONENTS, V$SGA_DYNAMIC_FREE_MEMORY,
 VSGA_RESIZE_OPS, VSGA_RESIZE_CURRENT_OPS,
 V$MEMORY_TARGET_ADVICE, V$SGA_TARGET_ADVICE,
 V$PGA_TARGET_ADVICE

	Work area
 memory
	V$PGASTAT,
 V$SYSSTAT

	Processes
	V$PROCESS, V$BGPROCESS,
 V$SESSION

	Alerting
	DBA_THRESHOLDS,
 DBA_OUTSTANDING_ALERTS, DBA_ALERT_HISTORY, V$ALERT_TYPES,
 V$METRIC

	Performance
 monitoring
	V$LOCK, DBA_LOCK,
 V$SESSION_WAIT, V$SQLAREA, V$LATCH

	RMAN
 recovery
	V$RECOVER_FILE

	User
 passwords
	V$PWFILE_USERS

	Tables
	DBA_TABLES, ALL_TABLES,
 USER_TABLES

	Indexes
	DBA_INDEXES, ALL_INDEXES,
 USER_INDEXES

	Data
 dictionary
	DBA_OBJECTS, ALL_OBJECTS,
 USER_OBJECTS

[1] The ultimate size of a bigfile depends on the limitations of
 the underlying operating system.

[2] RAID stands for “redundant array of inexpensive disks” and
 is described in Chapter 7.

Chapter 3. Installing and Running Oracle

If you’ve been reading this book sequentially, you should understand the basics of the
 Oracle Database architecture by now. This chapter begins with a description of how to install a
 database and get it up and running. (If you’ve already installed your Oracle Database software,
 you can skim through this first section.) We’ll describe how to create an actual database and
 how to configure the network software needed to run Oracle, with a brief detour to look at how
 cloud computing changes this initial process. Finally, we’ll discuss how users access databases
 and begin a discussion of how to manage databases—a topic that will be continued in subsequent
 chapters.
Installing Oracle

Prior to Oracle8i, the Oracle installer came in
 both character and GUI versions for Unix. The Unix GUI ran in Motif using
 the X Window system. Windows NT came with a GUI version only. Since
 Oracle8i, the installer has been Java-based.
The Oracle installer is one of the first places in which you can see
 the benefits of the portability of Java; the installer looks and functions
 the same way across all operating systems. For some time now, installing
 Oracle has been fairly simple, requiring only a few mouse clicks and
 answers to some questions about options and features.
Oracle made great strides in further simplifying installation with
 Oracle Database 10g. Both that install and the
 installation of Oracle Database 12c can be
 accomplished in less than 20 minutes.
The current version of the Oracle Universal Installer begins the
 process by checking the target environment to make sure there are enough
 resources for the Oracle Database. If the target is a bit light, you will
 be informed with a warning and given the option to continue.
As part of the installation process, the Installer also runs the Net
 Configuration Assistant and the Database Configuration Assistant so that
 you will end up with a working Oracle instance when the process is
 complete.
If, for some reason, the installation fails, the commands that did
 not succeed are listed in a logfile, which helps you understand where the
 problem may lie and gives you a handy set of commands you can run yourself
 once the problem is fixed.
Although the installation process is now the same for all platforms,
 there are still particulars about the installation of Oracle that relate
 to specific platforms. Each release of the Oracle Database Server software
 is shipped with its own set of documentation. Included in each release is
 an installation guide, release notes (which include installation
 information added after the installation guide was published), and a
 “getting started” book. You should read all of these documents prior to
 starting the installation process, since each of them contains invaluable
 information about the specifics of the installation. You will need to
 consider details such as where to establish the Oracle Home directory and
 where database files will reside. These issues are covered in detail in
 the documentation. Online documentation is shipped on the database server
 media, and this provides additional information regarding the database and
 related products.
You’ll typically find the installation guide in the server software case. The installation
 guide includes system requirements (memory and disk), pre-installation tasks, directions for
 running the installation, and notes regarding migration of earlier Oracle Databases to the
 current release. You should remember that complete installation of the software includes not
 only loading the software, but also configuring and starting key services.
One of the more important decisions you needed to make before
 actually installing Oracle in older releases concerned the directory
 structure and naming conventions you would follow for the files that make
 up a database. Clear, consistent, and well-planned conventions were
 crucial for minimizing human errors in system and database administration.
 Today, this naming is largely automated during the installation process.
 Some of the more important database naming that takes place includes the
 following:
	Disk or mount point names

	Directory structures for Oracle software and database
 files

	Database filenames: control files, database files, and redo
 logfiles

The Optimal Flexible Architecture (OFA), described in the next section, became the basis
 for naming conventions for all of these files. In engineered systems, such as the Exadata
 Database Machine, an initial Oracle Database is installed as part of Oracle’s Start-Up Pack
 services with naming conventions based on OFA.
Optimal Flexible Architecture

Oracle consultants working at large Oracle sites created (out of necessity) a
 comprehensive set of standards for database directory structures and
 filenames prior to Oracle’s introduction of more automated installation
 procedures. This set of standards is called An Optimal
 Flexible Architecture for a Growing Oracle Database or, as it
 is lovingly known in the Oracle community, the OFA. For example, the OFA
 provides a clear set of standards for handling multiple databases and
 multiple versions of Oracle if deployed on the same machine. It includes
 recommendations for mount points, directory structures, filenames, and
 scripting techniques. Anyone who knows the OFA can navigate an Oracle
 environment to quickly find the software and files used for the database
 and the instance. This standardization increased productivity and
 avoided errors.
The OFA standards are embedded in the Oracle installer. System
 administrators and database administrators working with Oracle will find
 understanding the OFA worthwhile, even if your Oracle system is already
 installed. OFA documentation is included in the Oracle installation
 guide.

Supporting Multiple Oracle Versions on a Machine

You can install and run multiple versions of Oracle on a single-server machine. All
 Oracle products use a directory referred to by the environment or system variable ORACLE_HOME to find the base directory for the software they will use. Because of this, you
 can run multiple versions of Oracle software on the same server, each with a different
 ORACLE_HOME variable defined. Whenever a piece of software accesses a particular version of
 Oracle, the software simply uses the proper setting for the ORACLE_HOME environment variable.
Oracle supports multiple ORACLE_HOME variables on Unix and Windows
 systems by using different directories. The OFA provides clear and
 excellent standards for this type of implementation.

Upgrading an Oracle Database

Oracle Database 10g added two additional features that apply to upgrading an
 existing Oracle Database: the Database Upgrade Assistant and support for
 rolling upgrades.
If you want to upgrade a single instance, you can use the Database
 Upgrade Assistant, which can be started from the Oracle Universal
 Installer. As of Oracle Database 11g, you can
 upgrade from the free version of Oracle, Oracle XE, to a single instance
 of another edition with the Database Upgrade Assistant.
One of the longstanding problems with upgrades has been the
 requirement to bring down the database, upgrade the database software,
 and then restart the database. This necessary downtime can impinge on
 your operational requirements. If you are using a Real Application
 Clusters implementation since Oracle Database 10g,
 you can perform a rolling upgrade. A rolling
 upgrade allows you to bring down some of the nodes of the cluster,
 upgrade their software, and then bring them back online as part of the
 cluster. You can then repeat this procedure with the other nodes. The
 end result is that you can achieve a complete upgrade of your Oracle
 Database software without having to bring down the database.

Creating a Database

As we noted in Chapter 2, Oracle can be used to support a
 variety of workloads. You should take a two-step approach for any new databases you create.
 First, understand the purpose of the database, and then create the database with the
 appropriate parameters.
Planning the Database

You should spend some time learning the purpose of an Oracle Database before you
 create the database itself. Consider what the database will be used for and how much data it
 will contain. You should understand the underlying hardware that you’ll use—the number and
 type of CPUs, the amount of memory, the number of disks, the controllers for the disks, and
 so on. Because the database is stored on the disks, many tuning problems can be avoided with
 proper capacity and I/O subsystem planning.
Planning your database and the supporting hardware requires
 insights into the scale or size of the workload and the type of work the
 system will perform. Some of the considerations that will affect your
 database design and hardware configuration include the following:
	How many users will the database
 have?
	How many users will connect simultaneously and how many will
 concurrently perform transactions or execute queries?

	Is the database supporting OLTP applications or data
 warehousing?
	This distinction leads to different types and volumes of
 activity on the database server. For example, online transaction
 processing (OLTP) systems usually have a larger number of users performing
 smaller transactions, including a significant percentage of write
 operations, while data warehouses usually have a smaller number of
 users performing larger queries.

	What is the expected size and number of database
 objects?
	How large will these objects be initially and what growth
 rates do you expect?

	What are the access patterns for the various
 database objects?
	Some objects will be more popular than others. Understanding
 the volume and type of activity in the database is critical to
 planning and tuning your database. Some people employ a so-called CRUD matrix that
 contains Create, Read, Update, and Delete indicators, or even
 estimates for how many operations will be performed for each key
 object used by a business transaction. These estimates may be per
 minute, per hour, per day, or for whatever time period makes sense
 in the context of your system. For example, the CRUD matrix for a
 simple employee update transaction might be as shown in Table 3-1, with the
 checkmarks indicating that each transaction performs the operation
 against the object shown.
Table 3-1. Access patterns for database objects
	Object
	Create
	Read
	Update
	Delete

	EMP
	✓
	✓
	 	
	DEPT
	 	✓
	 	
	SALARY
	 	✓
	✓
	

	How much hardware do I have now, and how much will I
 add as the database grows?
	Disk drives tend to get cheaper and cheaper. Suppose you’re
 planning a database of 10 TB that you expect to grow to 90 TB over
 the next two years. You may have all the disk space available to
 plan for the 90 TB target, but it’s more likely that you’ll buy a
 smaller amount to get started and add disks as the database grows.
 It’s important that you plan the initial layout with the expected
 growth in mind, although Real Application Clusters make it much
 easier to scale out your database easily.
Prior to Oracle9i, running out of
 tablespace in the middle of a batch operation meant that the
 entire operation had to be rolled back.
 Oracle9i introduced the concept of resumable space
 allocation. When an operation encounters an
 out-of-space condition, if the resumable statement option has been
 enabled for the session, the operation is suspended for a specific
 length of time, which allows the operator to correct the
 out-of-space condition. You even have the option to create an
 AFTER SUSPEND trigger to fire when an operation has
 been suspended.
With Automatic Storage Management (ASM), introduced in Oracle Database
 10g, you can add additional disk space or
 take away disks without interrupting database service. Although
 you should still carefully estimate storage requirements, the
 penalty for an incorrect judgment, in terms of database downtime,
 is significantly reduced with ASM.

	What are the availability
 requirements?
	What elements of redundancy, such as additional disk drives, do you
 need to provide the required availability? ASM also provides
 automatic mirroring for data with different redundancies
 available, which can help to provide data resiliency.

	What are my performance
 requirements?
	What response times do your users expect, and how much of that
 time can you give them? Will you measure performance in terms of
 average response time, maximum response time, response time at
 peak load, total throughput, or average load?

	What are my security requirements?
	Will the application, the operating system, or the Oracle Database (or some
 combination of these) enforce security? Do I need to implement
 this security in my design or with additional security options for
 the Oracle Database? These options are described in Chapter 6.

The Value of Estimating

Even if you are unsure of things such as sizing and usage details,
 take your best guess as to initial values and growth rates and document
 these estimates. As the database evolves, you can compare your initial
 estimates with emerging information to react and plan more effectively.
 For example, suppose you estimate that a certain table will be 500 GB in
 size initially and will grow at 300 GB per year, but when you are up and
 running you discover that the table is actually 300 GB, and six months
 into production you discover that it has grown to 800 GB. You can now
 revise your plans to reflect the higher growth rate and thereby avoid
 space problems. Comparing production measures of database size, growth,
 and usage patterns with your initial estimates will provide valuable
 insights to help you avoid problems as you move forward. In this way,
 documented guesses at an early stage are useful later on.
The same is true for key requirements such as availability and
 performance. If the exact requirements are not clear, make some
 assumptions and document them. These core requirements will heavily
 influence the decisions you make regarding redundancy and capacity. As
 the system evolves and these requirements become clearer, the history of
 these key decision criteria will be crucial in understanding the choices
 that you made and will make in the future.
The Automatic Workload Repository (AWR), first available in
 Oracle Database 10g, maintains a history of
 workload and performance measurements, which are used by the Automatic
 Database Diagnostic Monitor (ADDM) to spot performance anomalies. You
 can also use AWR to track ongoing changes in workload.

Tools for Creating Databases

Traditionally, there have been two basic ways to create an Oracle
 Database:
	Use the graphical installer tool

	Run character-mode scripts

These days, the Oracle Database calls the Database Configuration
 Assistant (DBCA) Installer to create and configure the Oracle Database and its
 associated software, such as the Oracle Listener (described below). It
 is written in Java and therefore provides the same look and feel across
 platforms. The Installer is a quick and easy way to create, modify, or
 delete a database. It allows you to create a typical pre-configured
 database (with minimal input required) or a custom database (which
 involves making some choices and answering additional questions). The
 Installer in the midst of an installation is shown in Figure 3-1.
[image: Oracle Database 12c Installer]

Figure 3-1. Oracle Database 12c Installer

The DBCA walks you through the process of creating a database,
 including checking for prerequisites, copying files and linking
 binaries, and setting up your network configuration.The DBCA has become
 more intelligent over time, and the 12c version of
 this software will even generate a script file that you can simply run
 to correct any problems with prerequisites in the system software.The
 entire installation process takes less than 20 minutes for a standard
 desktop configuration.
The alternative method for creating a database is to create or
 edit an existing SQL script that executes the various required commands.
 Most Oracle DBAs have a preferred script that they edit as needed. In
 Oracle7 and Oracle8, you executed the script using a character-mode
 utility called Server Manager; since Oracle8i, you could use
 SQL*Plus. The Oracle software installation media for earlier versions of
 the Oracle Database also includes a sample script called
 BUILD_DB.SQL, described in the Oracle
 documentation. Today, most users choose to create the database with the
 standard installer interface; the command line method is actively
 discouraged for Oracle Database 12c Databases.

Oracle Net Services and Oracle Net

The overwhelming majority of applications that use an Oracle Database run on
 a different machine and connect to the Oracle Database over a network. The
 software used to transparently implement this connection process is known
 as Oracle Net Services.
Oracle Net Services handle interaction with underlying network
 protocols, such as TCP/IP, and the coordination between client requests
 and the server processes that fulfill them. Oracle Net Services include
 technology for clients to discover the appropriate database instance,
 establish communication with that instance, and maintain an ongoing
 interaction between the client and the server.
Oracle Net is a layer of software that allows different physical machines to
 communicate for the purpose of accessing an Oracle Database.
Note
The term “Oracle Net Services” in Oracle refers to all the
 components of Oracle Net, including dispatchers, listeners, and shared
 servers; these are explained later in this chapter.

A version of Oracle Net runs on the client machine and on the
 database server, and allows clients and servers to communicate over a
 network using virtually any popular network protocol. Oracle Net can also
 perform network protocol interchanges. For example, it allows clients that
 are speaking LU 6.2 to interact with database servers that are speaking
 TCP/IP.
Oracle Net also provides location transparency—that is,
 the client application does not need to know the server’s physical
 location. The Oracle Net layer handles the communications, which means
 that you can move the database to another machine and simply update the
 Oracle Net configuration details accordingly. The client applications will
 still be able to reach the database, and no application changes will be
 required.
Oracle Net supports the notion of service names, or
 aliases. Clients provide a service name or Oracle Net
 alias to specify which database they want to reach without having to
 identify the actual machine or instance for the database. Oracle Net looks
 up the actual machine and the Oracle instance, using the provided service
 name, and transparently routes the client to the appropriate
 database.
Resolving Oracle Net Service Names

With older versions of Oracle Net, you could use any of the following options to
 resolve the service name the client specifies into the host and instance
 names needed to reach an Oracle Database:
	Local name resolution
	For local name resolution, you install a file called TNSNAMES.ORA on each client machine that contains entries that provide the host and Oracle
 instance for each Oracle Net alias. You must maintain this file on the client machines
 if any changes are made to the underlying database locations. Your network topology is
 almost certain to change over time, so use of this option can lead to an increased
 maintenance load. If you are using Oracle Internet Directory or other centralized
 directories, described later in this section, you do not need a
 TNSNAMES.ORA file. This method is known as local naming.

	Oracle Names service
	Oracle Names was supported in earlier Oracle releases, providing
 a way to eliminate the need for a
 TNSNAMES.ORA file on each client. That was
 the good part. The bad part was that Oracle Names was a
 proprietary solution. Since Oracle Internet Directory is based on
 standards and provides this functionality, Oracle declared Oracle
 Names obsolete after the Oracle9i
 release.

	Oracle Internet Directory or other LDAP
 directories
	The need for a centralized naming service extends far beyond the Oracle
 environment. In fact, there is a well-defined standard for accessing this type of
 information, the Lightweight Directory Access Protocol (LDAP). As of the Oracle
 Database 11g release, Oracle Internet Directory (OID) is a part of Fusion. OID is an LDAP-enabled directory that can fulfill the
 same role as the previously available Oracle Names service. Since Oracle Database
 10g, you can export directory entries to create a local
 TNSNAMES.ORA file; this file may be used for clients not using
 the directory or if the directory is unavailable. This method is known as directory
 naming.

	Host naming
	Clients can simply use the name of the host on which the instance runs. This
 is valid for TCP/IP networks with a mechanism in place for
 resolving the hostname into an IP address. For example, the Domain
 Name Service (DNS) translates a hostname into an IP address, much as
 Oracle Names translates service names. Since Oracle Database
 10g, you can use this method with either a
 host name, domain-qualified if appropriate, or a TCP/IP address,
 but the connection will not support advanced services such as
 connection pooling. This method is known as Easy Connect.

	Third-party naming services
	Oracle Net can interface with external or third-party naming and authentication
 services such as Kerberos or RADIUS. Use of such services may require Oracle Advanced Security.This method is known as external naming.

These name resolution options are not mutually exclusive. For
 example, you can use Oracle Internet Directory and local name resolution
 (TNSNAMES.ORA files) together. In this case, you
 specify the order Oracle should use in resolving names in the SQLNET.ORA file (for example,
 check OID first, and if the service name isn’t resolved, check the local
 TNSNAMES.ORA file). This is useful for cases in
 which there are corporate database services specific to certain clients.
 You would use OID for the standard corporate database services, such as
 email, and then use TNSNAMES.ORA entries for the
 client-specific database services, such as a particular development
 database.
You also have the option to connect directly to an Oracle Database
 with what Oracle refers to as the easy connect naming
 method. This method uses the host name or TCP/IP identifier
 for the Oracle server machine and the name of the Oracle Database
 instance. The method is limited to use with TCP/IP networks, and is
 recommended only for fairly small installations where the host
 identifier is rarely changed.
From Oracle Database 11g on, Oracle Databases
 have used the concept of server registration. An instance
 is configured to be associated with one or more services. When the
 instance starts up, the instance dynamically informs the listeners of
 its associated services. Since this registration is dynamic, the
 listeners can also keep track of the availability of various instances
 associated with a service. An individual service can be associated with
 more than one database instance, and a single database instance can
 support more than one server.

Global Data Services

Oracle Database 12c introduces the concept of Global Data Services. Global Data Services give you the ability to have multiple database instances,
 even instances that are geographically dispersed, participate in a single global service.
 Oracle provides an infrastructure to allow for name resolution, and additional services,
 such as GoldenGate and DataGuard, are used to synchronize the information in different instances
 participating in a global service.

Oracle Net Manager

The Oracle Net Manager is written in Java, provides the same look and feel
 across platforms, and is typically first accessed from the Installer.
 The Oracle Net configuration files have a very specific syntax with
 multiple levels of nested brackets. Using the Oracle Net Manager allows
 you to avoid the errors that are common to handcoded files.
Oracle Enterprise Manager Cloud Control also gives you the ability
 to manage network configurations from the Enterprise Manager
 environment.
Debugging Network Problems
If you’re having a problem with your network, one of the first steps toward
 debugging the problem is to check that the Oracle Net files were
 generated, not handcoded. If you’re in doubt, back up the current
 configuration files and use the Oracle Net Manager to regenerate them.
 In fact, when Oracle Support assists customers with Oracle Net
 problems, one of the first questions they ask is whether or not the
 files were handcoded.

Oracle Connection Pooling

Many Oracle-based systems use a middle-tier server. This server is
 responsible for a number of tasks, including accepting requests from
 clients and passing them on to the database server. Since many clients
 only need a connection for a brief period, the middle tier can perform
 connection pooling. Connection pooling allows the
 middle tier to establish and manage a pool of connections that are
 shared between multiple clients, reducing the overall connection
 overhead needed by the database instance. The Oracle Connection Manager is responsible for the tasks of
 managing a connection pool from a middle tier.
Oracle Database 12c also supports database resident connection
 pooling. This capability allows connection pooling which is
 implemented in the database server without the need for a middle-tier
 component, so systems that require or desire a direct connection to the
 database can still benefit from the reduced overhead of shared
 connections.

Auto-Discovery and Agents

Beginning with Oracle 7.3, Oracle provided auto-discovery
 features that allowed it to find new databases automatically.
 Support for auto-discovery increased and improved with each Oracle
 release since then. Since Oracle8i, the Universal
 Installer and Oracle Net Manager work together smoothly to automatically
 configure your Oracle Net network.
A key piece of the Oracle network that enables auto-discovery is
 the Oracle Intelligent Agent. The agent is a piece of software
 that runs on the machine with your Oracle Database(s). It acts as an
 agent for other functions that need to find and work with the database
 on the machine. For example, the agent knows about the various Oracle
 instances on the machine and handles critical management functions, such
 as monitoring the database for certain events and executing jobs. The
 agent provides a central point for auto-discovery: Oracle Net discovers
 instances and databases by interrogating the agent. We’ll examine the
 general use of agents and their role in managing Oracle in Chapter 5.

Oracle Net Configuration Files

Oracle Net requires several configuration files. The default location for the
 files used to configure an Oracle Net network are as follows:
	On Windows servers,
 ORACLE_HOME\network\admin for
 Oracle8i and more current releases

	On Unix servers,
 ORACLE_HOME/network/admin

You can place these files in another location, in which case you
 must set an environment or system variable called TNS_ADMIN to the
 nondefault location. Oracle then uses TNS_ADMIN to locate the files. The
 vast majority of systems are configured using the default
 location.
The files that form a simple Oracle Net configuration used for
 local naming are as follows:
	LISTENER.ORA
	Contains details for configuring the Oracle Net Listener, such as which
 instances or services the Listener is servicing. As the name
 implies, the Listener “listens” for incoming connection requests
 from clients that want to access the Oracle Database over the
 network. For details about the mechanics of the Listener’s
 function, see the later section Oracle Net and Establishing Network Connections. Since
 Oracle Database 11g, services can dynamically
 register with listeners, as described above.

	TNSNAMES.ORA
	Decodes a service name into a specific machine address and Oracle instance for the
 connection request. (If you’re using OID or another directory service, as described
 earlier, you don’t need to use the TNSNAMES.ORA file as part of
 your configuration.) This file is key to Oracle Net’s location transparency. If you
 move a database from one machine to another, you can simply update the
 TNSNAMES.ORA files on the various clients to reflect the new
 machine address for the existing service name. For example, suppose that clients reach
 the database using a service name of SALES. The TNSNAMES.ORA file
 has an entry for the service name SALES that decodes to a machine named HOST1 and an
 Oracle instance called PROD. If the Oracle Database used for the SALES application is
 moved to a machine called HOST2, the TNSNAMES.ORA entry is
 updated to use the machine name HOST2. Once the TNSNAMES.ORA
 files are updated, client connection requests will be routed transparently to the new
 machine with no application changes required.

	SQLNET.ORA
	Provides important defaults and miscellaneous configuration details.
 For example, SQLNET.ORA contains the default
 domain name for your network.

For directory naming, you can either use an
 LDAP.ORA configuration file, described below, or
 use a standard DNS server to locate the LDAP server:
	LDAP.ORA
	For Oracle8i and later releases, the LDAP.ORA
 file contains the configuration information needed to use an LDAP
 directory, such as the Oracle Internet Directory. This information
 includes the location of the LDAP directory server and the default
 administrative context for the server. This is no longer required
 for an LDAP server that is registered with the Domain Name Server
 (DNS) since Oracle Database 10g.

As mentioned in Chapter 2,
 Oracle9i added a server parameter file, named SPFILE, which provides storage
 for system parameters you have changed while your
 Oracle9i instance is running, using the ALTER SYSTEM
 command. With the SPFILE, these new parameter
 values are preserved and used the next time you restart your Oracle
 instance. You can indicate whether a particular change to a system
 parameter is intended to be persistent (in which case it will be stored
 in the SPFILE) or temporary.
The SPFILE is a binary file that is kept on
 the server machine. By default, an Oracle9i or
 later instance will look for the SPFILE at startup
 and then for an instance of the INIT.ORA
 file.
The SPFILE can also be kept on a shared disk,
 so that it can be used to initialize multiple instances in an Oracle
 Real Application Clusters configuration.

Starting Up the Database

Starting a database is quite simple—on Windows you simply start the
 Oracle services (or specify that the services are started when the machine
 boots), and on Unix and Linux you issue the STARTUP command
 from SQL*Plus, or through Enterprise Manager. While starting a database
 appears to be a single action, it involves an instance and a database and
 occurs in several distinct phases. When you start a database, the
 following actions are automatically executed:
	Starting the instance. Oracle reads the instance initialization parameters from the
 SPFILE or INIT.ORA file on
 the server. Oracle then allocates memory for the System Global Area
 and starts the background processes of the instance. At this point,
 none of the physical files in the database have been opened, and the
 instance is in the NOMOUNT state. (Note that the number of parameters
 that must be defined in the SPFILE in Oracle
 Database 10g and Oracle Database
 11g as part of the initial installation setup
 have been greatly reduced. We described the initialization parameters
 required in Oracle Database 12c in Chapter 2.)
There are problems that can prevent an instance from starting.
 For example, there may be errors in the initialization file, or the
 operating system may not be able to allocate the requested amount of
 shared memory for the SGA. You also need the special privilege
 SYSOPER or SYSDBA, granted through either the operating
 system or a password file, to start an instance.

	Mounting the database. The instance
 opens the database’s control files. The initialization
 parameter CONTROL_FILES tells the instance where to find
 these control files. At this point, only the control files are open.
 This is called the MOUNT state, and the database is accessible only to
 the database administrator. In this state, the DBA can perform limited
 types of database administration. For example, the DBA may have moved
 or renamed one of the database files. The datafiles are listed in the
 control file but aren’t open in the MOUNT state. The DBA can issue a
 command (ALTER
 DATABASE) to rename a datafile. This command will update the
 control file with the new datafile name.

	Opening the database. The instance
 opens the redo logfiles and datafiles using the
 information in the control file. At this point, the database is fully
 open and available for user access.

Shutting Down the Database

Logically enough, the process of shutting down a database or making it
 inaccessible involves steps that reverse those discussed in the previous
 section:
	Closing the database. Oracle flushes any modified database blocks that haven’t yet
 been written to the disk from the SGA cache to the datafiles. Oracle
 also writes out any relevant redo information remaining in the redo
 log buffer. Oracle then checkpoints the datafiles, marking the
 datafile headers as “current” as of the time the database was closed,
 and closes the datafiles and redologfiles. At this point, users can no
 longer access the database.

	Dismounting the database. The Oracle
 instance dismounts the database. Oracle updates the
 relevant entries in the control files to record a clean shutdown and
 then closes them. At this point, the entire database is closed; only
 the instance remains.

	Shutting down the instance. The Oracle
 software stops the background processes of the instance
 and frees, or deallocates, the shared memory used for the SGA.

In some cases (e.g., if there is a machine failure or the DBA aborts
 the instance), the database may not be closed cleanly. If this happens,
 Oracle doesn’t have a chance to write the modified database blocks from
 the SGA to the datafiles. When Oracle is started again, the instance will
 detect that a crash occurred and will use the redo logs to automatically perform what is called crash recovery. Crash recovery
 guarantees that the changes for all committed transactions are done and
 that all uncommitted or in-flight transactions will be cleaned up. The
 uncommitted transactions are determined after the redo log is applied and
 automatically rolled back.
Oracle Database 12c includes a new feature
 called Transaction Guard, which allows applications to determine
 the state of transactions that have been sent to the database server but
 not acknowledged. You can learn more about Transaction Guard in Chapter 9.

Accessing a Database

The previous sections described the process of starting up and shutting
 down a database. But the database is only part of a complete system—you
 also need a client process to access the database, even if that process is
 on the same physical machine as the database.
Server Processes and Clients

To access a database, a user connects to the instance that
 provides access to the desired database. A program that accesses a
 database is really composed of two distinct pieces—a client program and
 a server process—that connect to the Oracle instance. For example,
 running the Oracle character-mode utility SQL*Plus involves two processes:
	The SQL*Plus process itself, acting as the client

	The Oracle server process, sometimes referred to as a shadow process, that
 provides the connection to the Oracle instance

Server process

The Oracle server process always runs on the computer on which the
 instance is running. The server process attaches to the shared memory
 used for the SGA and can read from it and write to it.
As the name implies, the server process works for the client
 process—it reads and passes back the requested data, accepts and makes
 changes on behalf of the client, and so on. For example, when a client
 wants to read a row of data stored in a particular database block, the
 server process identifies the desired block and either retrieves it
 from the database buffer cache or reads it from the correct datafile
 and loads it into the database buffer cache. Then, if the user
 requests changes, the server process modifies the block in the cache
 and generates and stores the necessary redo information in the redo
 log buffer in the SGA. The server process, however, does not write the
 redo information from the log buffer to the redo logfiles, and it does
 not write the modified database block from the buffer cache to the
 datafile. These actions are performed by the Log Writer
 (LGWR) and Database Writer (DBWR) processes, respectively.

Client process

The client process can run on the same machine as the instance or on a
 separate computer. A network connects the two computers and provides a
 way for the two processes to talk to each other. In either case, the
 concept is essentially the same—two processes are involved in the
 interaction between a client and the database. When both processes are
 on the same machine, Oracle uses local communications via Inter Process Communication (IPC); when the client is on
 one machine and the database server is on another, Oracle uses Oracle
 Net over the network to communicate between the two machines.

Application Servers and Web Servers As Clients

Although the discussion in the previous section used the terms
 client and server extensively,
 please don’t assume that Oracle is strictly a client/server database.
 Oracle was one of the early pioneers of client/server computing based on
 the notion of two tasks: a client and a server. But when you consider
 multitier computing involving web and application servers, the notion of
 a client changes somewhat. The “client” process becomes the middle tier,
 or application server.
You can logically consider any process that connects to an Oracle
 instance a client in the sense that it is served by the database. Don’t
 confuse this usage of the term client with the actual client in a
 multitier configuration. The eventual client in a multitier model is
 some type of program providing a user interface—for example, a browser
 running an application composed of HTML and Javascript.
The Oracle WebLogic Server application server, which is part of the
 overall Oracle platform, is designed to act as this middle tier.
 WebLogic Server works seamlessly with the Oracle Database.
Figure 3-2 illustrates users
 connecting to an Oracle instance to access a database in both two-tier
 and three-tier configurations, involving local and network
 communication. This figure highlights the server process connection
 models as opposed to the interaction of the background processes. There
 is a traditional two-tier client/server connection on the left side, a
 three-tier connection with an application server on the right side, and
 a local client connection in the middle of the figure. The two-tier and
 three-tier connections use a network to communicate with the database,
 while the local client uses local IPC.
[image: Accessing a database]

Figure 3-2. Accessing a database

Oracle Net and Establishing Network Connections

The server processes shown in Figure 3-2 are connected to
 the client processes using some kind of network. How do client processes get connected to
 Oracle server processes?
The matchmaker that arranges marriages between Oracle clients and server processes is called the Oracle
 Net Listener. The Listener “listens” for incoming connection requests
 for one or more instances. The Listener is not part of the Oracle
 instance—it directs connection requests to the instance. The Listener is
 started and stopped independently of the instance. If the Listener is
 down and the instance is up, clients accessing the database over a
 network cannot find the instance because there is no Listener to guide
 them. If the Listener is up and the instance is down, there is nowhere
 to send clients.
The Listener’s function is relatively simple:
	The client contacts the Listener over the network.

	The Listener detects an incoming request and introduces the
 requesting client to an Oracle server process.

	The Listener introduces the server to the client by letting
 each know the other’s network address.

	The Listener steps out of the way and lets the client and
 server process communicate directly.

Once the client and the server know how to find each other, they
 communicate directly. The Listener is no longer required.
Figure 3-3
 illustrates the steps outlined above for establishing a networked
 connection. Network traffic appears as dotted lines.
[image: Connecting with the Oracle Net Listener]

Figure 3-3. Connecting with the Oracle Net Listener

The Shared Server/Multi-Threaded Server

The server processes shown in the diagram are dedicated; they serve
 only one client process. So, if an application has 1,000 clients, the
 Oracle instance will have 1,000 corresponding server processes. Each
 server process uses system resources such as the memory and the CPU.
 Scaling to large user populations can consume a lot of system resources.
 To support the ever-increasing demand for scalability, Oracle introduced
 the Multi-Threaded Server (MTS) in Oracle7, known as the
 shared server since
 Oracle9i.
Shared servers allow the Oracle instance to share a set of server
 processes across a larger group of users. Instead of each client
 connecting to and using a dedicated server, the clients use shared
 servers, which can significantly reduce the overall resource
 requirements for serving large numbers of users.
In many systems there are times when the clients aren’t actively
 using their server process, such as when users are reading and absorbing
 data retrieved from the database. When a client is not using its server
 process in the dedicated model, that server process
 still has a hold on system resources even though it isn’t doing any
 useful work. In the shared server model, the shared
 server can use the resources of a free client to do work for another
 client process.
You don’t have to make a mutually exclusive choice between shared
 server processes and dedicated server processes for an Oracle instance.
 Oracle can mix and match dedicated and shared servers, and clients can
 connect to one or the other. The choice is based on your Oracle Net
 configuration files. In the configuration files there will be one
 service name that leads the client to a dedicated server, and another
 for connecting via shared servers. The Oracle Net manuals provide the
 specific syntax for this configuration.
The type of server process a client is using is transparent to the
 client. From a client perspective, the multithreading or sharing of
 server processes happens “under the covers,” on the database server. The
 same Listener handles dedicated and multithreaded connection
 requests.
The steps the Listener takes in establishing a shared server
 connection are a little different and involve some additional background
 processes for the instance dispatchers and the shared servers
 themselves, described here:
	Dispatchers
	In the previous description of the Listener, you saw how it forms the connection between a
 client and server process and then steps out of the way. The client must now be able
 to depend on a server process that is always available to complete the connection.
 Because a shared server process may be servicing another client, the client connects
 to a dispatcher, which is always ready to receive any client request. The dispatchers
 serve as surrogate dedicated servers for the clients. There are separate dispatchers
 for each network protocol being used (dispatchers for TCP/IP, etc.). Clients directly
 connect to their dispatchers instead of to a server process. The dispatchers accept
 requests from clients and place them in a request queue, which is a memory structure
 in the SGA. There is one request queue for each instance.

	Shared servers
	The shared server processes read from the request queue,
 process the requests, and place the results in the response queue
 for the appropriate dispatcher. There is one response queue for
 each dispatcher. The dispatcher then reads the results from the
 response queue and sends the information back to the client
 process.

There is a pool of dispatchers and a pool of shared servers.
 Oracle starts a certain number of each based on the initialization
 parameter SHARED_SERVERS that specifies the minimum number of shared servers. Oracle can
 start additional shared servers up to the value of an optionally
 specified initialization parameter MAX_SHARED_SERVERS. If Oracle starts additional
 processes to handle a heavier request load and the load dies down again,
 Oracle gradually reduces the number of processes to the floor specified
 by SHARED_SERVERS.
The following steps show how establishing a connection and using
 shared server processes differ from using a dedicated server
 process:
	The client contacts the Listener over the network.

	The Listener detects an incoming request and, based on the
 Oracle Net configuration, determines that it is for a multithreaded
 server. Instead of handing the client off to a dedicated server, the
 Listener hands the client off to a dispatcher for the
 network protocol the client is using.

	The Listener introduces the client and the dispatcher by
 letting each know the other’s network address.

	Once the client and the dispatcher know where to find each
 other, they communicate directly. The Listener is no longer
 required. The client sends each work request directly to the
 dispatcher.

	The dispatcher places the client’s request in the request
 queue in the SGA.

	The next available shared server process reads the request
 from the request queue and does the work.

	The shared server places the results for the client’s request
 in the response queue for the dispatcher that originally submitted
 the request.

	The dispatcher reads the results from its queue.

	The dispatcher sends the results to the client.

Figure 3-4
 illustrates the steps for using the shared servers. Network traffic
 appears as dotted lines.
[image: Connecting with the Oracle Net Listener (shared servers)]

Figure 3-4. Connecting with the Oracle Net Listener (shared
 servers)

Session memory for shared server processes versus dedicated
 server processes

There is a concept in Oracle known as session memory or state. State
 information is basically data that describes the current status of a session in Oracle.
 For example, state information contains information about the SQL statements being
 executed by the session. When you use a dedicated server, this state is stored in the
 private memory used by the dedicated server. This works out well because the dedicated server works with only one client. The term for
 this private memory is the Program Global Area (PGA).
If you’re using the shared servers, however, any server can work
 on behalf of a specific client. The session state cannot be stored in
 the PGA of the shared server process. All servers must be able to
 access the session state because the session can migrate between
 different shared servers. For this reason, Oracle places this state
 information in the System Global Area (SGA).
All servers can read from the SGA. Putting the state information in the SGA allows a
 session and its state to move from one shared server to another for
 processing different requests. The server that picks up the request
 from the request queue simply reads the session state from the SGA,
 updates the state as needed for processing, and puts it back in the
 SGA when processing has finished.
The request and response queues, as well as the session state, require additional
 memory in the SGA, so in older Oracle releases, you would allocate more memory manually if
 you were using shared servers. By default, the memory for the shared server session state
 comes from the shared pool. Alternatively, you could also configure something called the
 large pool as a separate area of memory for shared servers. (We
 introduced the large pool in Chapter 2 in the section Memory Structures for an Instance.) Using the large pool memory avoided the
 overhead of coordinating memory usage with the shared SQL, dictionary caching, and other
 functions of the shared pool. This allowed memory management from the large pool and
 avoided competing with other subsystems for space in and access to the shared pool. Since
 Oracle Database 10g, shared memory is automatically managed by
 default. Oracle Database 11g introduced automated memory management
 of the SGA and PGA size by default when you set the MEMORY_TARGET initialization
 parameter, and Oracle Database 12c enhanced this automatic memory
 management of the PGA.

Data dictionary information about the shared server

The data dictionary, which we introduced in Chapter 2, also contains information about the
 operation of shared servers in the following views:
	V$SHARED_SERVER_MONITOR
	This view contains dynamic information about the shared servers, such
 as high-water marks for connections and how many shared servers
 have been started and stopped in response to load
 variations.

	V$DISPATCHER
	This view contains details of the dispatcher processes used by the
 shared server. It can determine how busy the dispatchers
 are.

	V$SHARED_SERVER
	This view contains details of the shared server processes used by the
 shared server. It can determine how busy the servers are, to
 help set the floor and ceiling values appropriately.

	V$CIRCUIT
	You can think of the route from a client to its dispatcher and from the
 dispatcher to the shared server (using the queues) as a virtual
 circuit. This view details these virtual circuits for user
 connections.

Database Resident Connection Pooling

With Oracle Database 11g Release 1, Oracle
 introduced another type of connection sharing that is even more
 efficient and scalable than shared servers. As described above, shared
 servers share a number of server processes, storing session state in the
 SGA and using a dispatcher to connect requests with an available shared
 server.
Database resident connection pools are assigned to an application, or can be
 pooled across multiple applications by connection class. Initially
 designed for nonthreaded systems, like PHP, a database connection pool
 keeps a pool of servers available for connection requests, which are
 assigned by a connection broker (which then gets out of the
 interaction). When a server is requested, the server remains assigned to
 the application until the requesting script ends or the connection is
 explicitly closed.
You can configure multiple pools to handle multiple applications
 as well as specify the number of servers in each pool and the number of
 connection brokers.This architecture removes the overhead of having to
 create and destroy database sessions when connections are opened and
 closed as well as the creation and destruction of server processes
 required with dedicated servers. In addition, database resident
 connection pools eliminate the need for a dispatcher, as with shared
 servers, and the need to store session state. Due to these differences,
 database resident connection pooling can provide greater scalability for
 the highest level of connections to your Oracle Database.

Oracle in the Cloud

This is the fifth edition of this book, the first edition in the era of cloud computing. The Oracle Database
 is available in several flavors in the cloud, which is the subject of Chapter 15. Much of the discussion of installation and configuration
 in this chapter is no longer relevant when you are using an Oracle Database in the
 cloud.
One of the great attractions of using the Oracle Database Cloud,
 described in detail in Chapter 15, is the
 ease of getting started. There is no setup or installation of an Oracle
 Database. You simply request a Database Cloud Service from your browser
 and, within minutes, you have a working environment available to you with
 the full power of the Oracle Database.
But just because you don’t have to install or configure an Oracle
 Database Cloud Service does not mean that these tasks were not done. In
 fact, each Database Cloud Service is implemented with a specific
 configuration that you cannot change, such as the amount of storage you
 have selected as well as a variety of configuration options designed to
 give you adequate computing and I/O without imposing on other users of the
 Database Cloud.
When you access your Oracle Database Cloud Service, you do not use
 SQL*Net. You communicate from a browser (or application via RESTful Web
 Services, described in Chapter 15) with
 HTTP. The use of this common Internet protocol has two profound
 implications. First of all, you cannot use SQL*Net over HTTP. This
 limitation means you cannot simply move data from an on-premise Oracle
 Database to a Database Cloud Service, modify your TNSNAMES.ORA file, and use the same
 application, as you would if you moved your Oracle Database from one
 server to another.
Secondly, HTTP is a stateless protocol. This means that you cannot
 have a transaction span multiple interactions with an Oracle Database
 Cloud Service. In many cases, this limitation may not make any difference
 at all, but in some, it may cause you to modify the way you implement your
 applications.
The Oracle Database Cloud, as well as other ways to use an Oracle Database in the cloud,
 is the focus of Chapter 15, but for now, understand that although
 the Oracle Database is certainly well suited to deliver its functionality in a cloud computing
 environment, the surrounding infrastructure used in the cloud is quite different from a
 traditional deployment architecture, which means that the great benefits of the cloud will
 come with some necessary accommodations.

Oracle at Work

To help you truly understand how all the disparate pieces of the Oracle
 Database work together, this section walks through an example of the steps
 taken by the Oracle Database to respond to a user request. This example
 examines the work of a user who is adding new information to the
 database—in other words, executing a transaction.
Oracle and Transactions

A transaction is a work request from a client to retrieve, insert, update, or
 delete data. (The remainder of this section will focus on transactions
 that modify data, as opposed to retrieving data.) The statements that
 change data are a subset of the SQL language called Data Manipulation
 Language (DML). Transactions must be handled in a way that guarantees
 their integrity. Although Chapter 8 delves into transactions more
 deeply, we must visit a few basic concepts relating to transactions now
 in order to understand the example in this section:
	Transactions are logical and
 complete
	In database terms, a transaction is a logical unit of work
 composed of one or more data changes. A transaction may consist of
 multiple INSERT, UPDATE, and/or DELETE statements affecting data
 in multiple tables. The entire set of changes must succeed or fail
 as a complete unit of work. A transaction starts with the first
 DML statement and ends with either a commit or a rollback.
Note
Oracle also supports autonomous transactions—transactions
 whose work is committed or rolled back, but that exist within
 the context of a larger transaction. Autonomous transactions are
 important because they can commit work without destroying the
 context of the larger transaction.

	Commit or rollback
	Once a user enters the data for his transaction, he can
 either commit the transaction
 to make the changes permanent or roll back
 the transaction to undo the changes.

	System Change Number (SCN)
	A key factor in preserving database integrity is an awareness of which
 transaction came first. For example, if Oracle is to prevent a
 later transaction from unwittingly overwriting an earlier
 transaction’s changes, it must know which transaction began first.
 The mechanism Oracle uses is the System Change Number, a logical
 timestamp used to track the order in which events
 occurred. Oracle also uses the SCN to implement multiversion read
 consistency, which is described in detail in Chapter 8.

	Rollback segments
	Rollback segments are structures in the Oracle Database used
 to store “undo” information for transactions, in case
 of rollback. This undo information restores database blocks to the
 state they were in before the transaction in question started.
 When a transaction starts changing some data in a block, it first
 writes the old image of the data to a rollback segment. The
 information stored in a rollback segment is used for two main
 purposes: to provide the information necessary to roll back a
 transaction and to support multiversion read consistency.
A rollback segment is not the same as a redo log. The redo log is used to log all
 transactions to the database and to recover the database in the
 event of a system failure, while the rollback segment provides
 rollback for transactions and read consistency.
Blocks of rollback segments are cached in the SGA just like
 blocks of tables and indexes. If rollback segment blocks are
 unused for a period of time, they may be aged out of the cache and
 written to the disk.
Note
Chapter 8 discusses
 Oracle’s method for concurrency management, multiversion read
 consistency. This method uses rollback segments to retrieve
 earlier versions of changed rows. If the required blocks are no
 longer available, Oracle delivers a “snapshot too old”
 error.

Oracle9i introduced automatic
 management of rollback segments. In previous versions of the
 Oracle Database, DBAs had to explicitly create and manage rollback
 segments. Since Oracle9i, you have the
 ability to specify automatic management of all rollback segments
 through the use of an undo tablespace. With automatic undo
 management, you can also specify the length of time that you want
 to keep undo information; this feature is very helpful if you plan
 on using flashback queries, discussed in the following section.
 Oracle Database 10g added an undo management
 retention time advisor.

	Fast commits
	Because redo logs are written whenever a user commits an Oracle
 transaction, they can be used to speed up database operations.
 When a user commits a transaction, Oracle can do one of two things
 to get the changes into the database on the disk:
	Write all the database blocks the transaction changed to their respective
 datafiles.

	Write only the redo information, which typically
 involves much less I/O than writing the database blocks. This
 recording of the changes can be replayed to reproduce all the
 transaction’s changes later, if they are needed due to a
 failure.

To provide maximum performance without risking transactional
 integrity, Oracle writes out only the redo information. When a
 user commits a transaction, Oracle guarantees that the redo for
 those changes writes to the redo logs on disk. The actual changed
 database blocks will be written out to the datafiles later. If a
 failure occurs before the changed blocks are flushed from the
 cache to the datafiles, the redo logs will reproduce the changes
 in their entirety. Because the slowest part of a computer system
 is the physical disk, Oracle’s fast-commit approach minimizes the
 cost of committing a transaction and provides maximum risk-free
 performance.

Flashback

In Oracle9i, rollback segments were also used to implement a feature called
 Flashback Query. Remember that rollback segments
 are used to provide a consistent image of the data in your Oracle
 Database at a previous point in time. With Flashback Query, you can
 direct Oracle to return the results for a SQL query at a specific point
 in time. For instance, you could ask for a set of results from the
 database as of two hours ago. Flashback provided extra functionality by
 leveraging the rollback feature that was already a core part of the
 Oracle architecture.
Since Flashback uses rollback segments, you can only flash back as
 far as the information in the current rollback segment. This requirement
 typically limits the span of Flashback to a relatively short period of
 time—you normally would not be able to roll back days, since your Oracle
 Database doesn’t keep that much rollback information around. Despite
 this limitation, there are scenarios in which you might be able to use a
 Flashback Query effectively, such as going back to a point in time
 before a user made an error that resulted in a loss of data.
The use of Flashback has increased as Oracle has added more
 flashback capabilities to the database. Oracle Database
 10g greatly expanded the flashback capabilities
 available to include:
	Flashback Database, to roll back the entire database to a
 consistent state

	Flashback Table, to roll back a specific table

	Flashback Drop, to roll back a DROP operation

	Flashback Versions Query, to retrieve changes to one or more
 rows

Oracle Database 11g continued this expansion
 with the Flashback Transaction feature, which can be used to reverse the
 effect of a transaction and any other transactions that are dependent on
 it.Oracle Database 11g R2 added Flashback Data
 Archive, part of the Advanced Compression option.With this feature,
 older versions of rows are stored in shadow tables, allowing Flashback
 Queries against very old data without having to have to keep all of the
 versions in the undo tablespace. In Oracle Database
 12c, Flashback Queries are extended to support
 queries on temporal validity dimensions (for valid time periods).
 Additionally, with Oracle Database 12c you can
 recover an individual table from a database backup.

A Transaction, Step by Step

This simple example illustrates the complete process of a transaction.
 The example uses the EMP table of employee data, which is part of the
 traditional test schema shipped with Oracle Databases. In this example,
 an HR clerk wants to update the name of an employee. The clerk retrieves
 the employee’s data from the database, updates the name, and commits the
 transaction.
The example assumes that only one user is trying to update the
 information for a row in the database. Because of this assumption, it
 won’t include the steps normally taken by Oracle to protect the
 transaction from changes by other users, which are detailed in Chapter 8.
The HR clerk already has the employee record on-screen and so the
 database block containing the row for that employee is already in the
 database buffer cache. The steps from this point would be:
	The user modifies the employee name on-screen and the client
 application sends a SQL UPDATE statement over the network to the server
 process.

	The server process looks for an identical statement in the
 shared SQL area of the shared pool. If it finds one, it reuses it.
 Otherwise, it checks the statement for syntax and evaluates it to
 determine the best way to execute it. This processing of the SQL
 statement is called parsing and optimizing.
 (The optimizer is described in more detail in Chapter 4.) Once the processing is done,
 the statement is cached in the shared SQL area.

	The server process copies the old image of the employee data about to be changed
 notes the changes in a rollback segment and to a redo segment. The rollback segment
 changes are part of the redo. This may seem a bit odd, but remember that redo is
 generated for all changes resulting from the transaction. The contents of the rollback
 segment have changed because the old employee data was written to the rollback segment
 for undo purposes. This change to the contents of the rollback segment is part of the
 transaction and therefore part of the redo for that transaction.

	Once the server process has completed this work, the process modifies the database
 block to change the employee name. The database block is stored in the database cache at
 this time. Control is passed back to the client process.

	The HR clerk commits the transaction.

	The Log Writer (LGWR) process writes the redo information for
 the entire transaction from the redo log buffer to the current redo
 logfile on disk. When the operating system confirms that the write
 to the redo logfile has successfully completed, the transaction is
 considered committed.

	The server process sends a message to the client confirming
 the commit.

The user could have canceled or rolled back the transaction
 instead of committing it, in which case the server process would have
 used the old image of the employee data in the rollback segment to undo
 the change to the database block.
Figure 3-5 shows the steps
 described here. Network traffic appears as dotted lines.
[image: Steps for a transaction]

Figure 3-5. Steps for a transaction

Chapter 4. Oracle Data Structures

In the previous chapters, we examined some distinctions between the different components
 that make up an Oracle Database. For example, we pointed out that the Oracle instance differs
 from the files that make up the physical storage of the data in tablespaces, that you cannot
 access the data in a tablespace except through an Oracle instance, and that the instance itself
 isn’t very valuable without the data stored in those files.
The instance is the logical entity used by applications and users, separate from the
 physical storage of data. In a similar way, the actual tables and columns are logical entities
 within the physical database. The user who makes a request for data from an Oracle Database
 probably doesn’t know anything about instances and tablespaces, but does know about the
 structure of her data, as implemented with tables and columns. To fully leverage the power of
 Oracle, you must understand how the Oracle Database server implements and uses these logical
 data structures, the topic of this chapter.
Datatypes

The datatype is one of the attributes for a column or a
 variable in a stored procedure. A datatype describes and limits the type
 of information stored in a column, and can limit the operations that you
 can perform on columns.
You can divide Oracle datatype support into three basic varieties:
 character datatypes, numeric datatypes, and datatypes that represent other
 kinds of data. You can use any of these datatypes when you create columns
 in a table, as with this SQL statement:
CREATE TABLE SAMPLE_TABLE(
 char_field CHAR(10),
 varchar_field VARCHAR2(10),
 todays_date DATE)
You also use these datatypes when you define variables as part of a
 PL/SQL procedure.
Character Datatypes

Character datatypes can store any string value, including the string
 representations of numeric values. Assigning a value larger than the
 length specified or allowed for a character datatype results in a
 runtime error. You can use string functions, such as UPPER, LOWER,
 SUBSTR, and SOUNDEX, on standard (not large) character value
 types.
There are several different character datatypes:
	CHAR
	The CHAR datatype stores character values with a fixed length. A CHAR
 datatype can have between 1 and 2,000 characters. If you don’t
 explicitly specify a length for a CHAR, it assumes the default
 length of 1. If you assign a value that’s shorter than the length
 specified for the CHAR datatype, Oracle will automatically pad the
 value with blanks. Some examples of CHAR values are:
CHAR(10) = "Rick ", "Jon ", "Stackowiak"

	VARCHAR2
	The VARCHAR2 datatype stores variable-length character strings. Although you must assign a
 length to a VARCHAR2 datatype, this length is the maximum length for a value rather
 than the required length. Values assigned to a VARCHAR2 datatype aren’t padded with
 blanks. Because of this, a VARCHAR2 datatype can require less storage space than a
 CHAR datatype, because the VARCHAR2 datatype stores only the characters assigned to
 the column. Up until Oracle Database 12c, the maximum size of a
 column with a VARCHAR2 was to 4,000 characters; this limit became 32K in Oracle
 Database 12c.
At this time, the VARCHAR and VARCHAR2 datatypes are
 synonymous in Oracle8 and later versions, but Oracle recommends
 the use of VARCHAR2 because future changes may cause VARCHAR and
 VARCHAR2 to diverge. The values shown earlier for the CHAR values,
 if entered as VARCHAR2 values, are:
VARCHAR2(10) = "Rick", "Jon", "Stackowiak"

	NCHAR and NVARCHAR2
	The NCHAR and NVARCHAR2 datatypes store fixed-length or variable-length character data, respectively, using
 a different character set from the one used by the rest of the database. When you
 create a database, you specify the character set that will be used for encoding the
 various characters stored in the database. You can optionally specify a secondary
 character set as well (which is known as the National Language
 Set, or NLS). The secondary character set will be used for NCHAR and
 NVARCHAR2 columns. For example, you may have a description field in which you want to
 store Japanese characters while the rest of the database uses English encoding. You
 would specify a secondary character set that supports Japanese characters when you
 create the database, and then use the NCHAR or NVARCHAR2 datatype for the columns in
 question. The maximum length of NVARCHAR2 columns was also increased to 32K in Oracle
 Database 12c.
Starting with Oracle9i, you can specify
 the length of NCHAR and NVARCHAR2 columns in characters, rather
 than in bytes. For example, you can indicate that a column with
 one of these datatypes is 7 characters. The
 Oracle9i database will automatically make the
 conversion to 14 bytes of storage if the character set requires
 double-byte storage.
Note
Oracle Database 10g introduced the
 Globalization Development Kit (GDK), which is designed to aid in
 the creation of Internet applications that will be used with
 different languages. The key feature of this kit is a framework
 that implements best practices for globalization for Java and
 PL/SQL developers.
Oracle Database 10g also added
 support for case- and accent-insensitive queries and sorts. You
 can use this feature if you want to use only base letters or
 base letters and accents in a query or sort.

	LONG
	The LONG datatype can hold up to 2 GB of character data. It is
 regarded as a legacy datatype from earlier versions of Oracle. If
 you want to store large amounts of character data, Oracle now
 recommends that you use the CLOB and NCLOB datatypes. There are
 many restrictions on the use of LONG datatypes in a table and
 within SQL statements, such as the fact that you cannot use LONGs
 in WHERE, GROUP BY, ORDER BY, or CONNECT BY clauses or in SQL
 statements with the DISTINCT qualifier. You also cannot create an
 index on a LONG column.

	CLOB and NCLOB
	The CLOB and NCLOB datatypes can store up to 4 GB of
 character data prior to Oracle Database 10g.
 Starting with Oracle Database 10g, the limit
 has been increased to 128 TBs, depending on the block size of the
 database. The NCLOB datatype stores the NLS data. Oracle Database
 10g and later releases implicitly perform
 conversions between CLOBs and NCLOBs. For more information on
 CLOBs and NCLOBs, please refer to the discussion about large
 objects (LOBs) in the section Other Datatypes
 later in this chapter.

Numeric Datatype

Oracle uses a standard, variable-length internal format for storing
 numbers. This internal format can maintain a precision of up to 38
 digits.
The numeric datatype for Oracle is NUMBER. Declaring a column or variable as NUMBER will
 automatically provide a precision of 38 digits. The NUMBER datatype can
 also accept two qualifiers, as in:
column NUMBER(precision, scale)
The precision of the datatype is the total number of significant digits in the number. You can
 designate a precision for a number as any number of digits up to 38. If no value is
 declared for precision, Oracle will use a precision of 38. The
 scale represents the number of digits to the right of the decimal
 point. If no scale is specified, Oracle will use a scale of 0.
If you assign a negative number to the scale,
 Oracle will round the number up to the designated place to the
 left of the decimal point. For example, the
 following code snippet:
column_round NUMBER(10,−2)
column_round = 1,234,567
will give column_round a value
 of 1,234,600.
The NUMBER datatype is the only datatype that stores numeric
 values in Oracle. The ANSI datatypes of DECIMAL, NUMBER, INTEGER, INT,
 SMALLINT, FLOAT, DOUBLE PRECISION, and REAL are all stored in the NUMBER
 datatype. The language or product you’re using to access Oracle data may
 support these datatypes, but they’re all stored in a NUMBER datatype
 column.
With Oracle Database 10g, Oracle added
 support for the precision defined in the IEEE 754-1985 standard with the
 number datatypes of BINARY_FLOAT and BINARY_DOUBLE. Oracle Database
 11g added support for the number datatype
 SIMPLE_INTEGER.

Date Datatype

As with the NUMERIC datatype, Oracle stores all dates and times in a standard internal
 format. The standard Oracle date format for input takes the form of
 DD-MON-YY HH:MI:SS, where DD represents up to two digits for the day of
 the month, MON is a three-character abbreviation for the month, YY is a
 two-digit representation of the year, and HH, MI, and SS are two-digit
 representations of hours, minutes, and seconds, respectively. If you
 don’t specify any time values, their default values are all zeros in the
 internal storage.
You can change the format you use for inserting dates for an
 instance by changing the NLS_DATE_FORMAT parameter for the instance.
 You can do this for a session by using the ALTER SESSION SQL statement
 or for a specific value by using parameters with the TO_DATE expression
 in your SQL statement.
Oracle SQL supports date arithmetic in which integers represent
 days and fractions represent the fractional component represented by
 hours, minutes, and seconds. For example, adding .5 to a date value
 results in a date and time combination 12 hours later than the initial
 value. Some examples of date arithmetic are:
12-DEC-07 + 10 = 22-DEC-07
31-DEC-2007:23:59:59 + .25 = 1-JAN-2008:5:59:59
As of Oracle9i Release 2, Oracle also
 supports two INTERVAL datatypes, INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND, which are used for storing a specific amount of time.
 This data can be used for date arithmetic.
Temporal validity

Oracle Database 12c introduced a new concept related to dates
 called temporal validity. This feature allows you to specify the time period when a
 particular row of data is valid. For instance, a company might want to add a temporary
 address for a particular person that would only be valid for a set period of time.
When you create a table, you indicate that the rows of the table will allow for
 temporal validity, and you can then set a time, as well as a range of time, for each
 record. Subsequent SQL statements can query for records with a time selection component,
 which will use the values in the temporal validity columns.
The temporal validity functionality uses Flashback mechanisms
 for implementation, which are described in Chapter 8.

Other Datatypes

Aside from the basic character, number, and date datatypes, Oracle
 supports a number of specialized datatypes:
	RAW and LONG RAW
	Normally, your Oracle Database not only stores data but also interprets it. When data is
 requested or exported from the database, the Oracle Database sometimes massages the
 requested data. For instance, when you dump the values from a NUMBER column, the
 values written to the dump file are the representations of the numbers, not the
 internally stored numbers.
The RAW and LONG RAW datatypes circumvent any interpretation on the part of the
 Oracle Database. When you specify one of these datatypes, Oracle will store the data
 as the exact series of bits presented to it. The RAW datatypes typically store objects
 with their own internal format, such as bitmaps. Until Oracle Database
 12c, a RAW datatypecolumn could hold 2 KB, which was increased
 to 32K in that release. Oracle recommends that you convert LONG RAW columns to one of
 the binary LOB column types.

	ROWID
	The ROWID is a special type of column known as a pseudocolumn. The ROWID
 pseudocolumn can be accessed just like a column in a SQL SELECT statement. There is a
 ROWID pseudocolumn for every row in an Oracle Database. The ROWID represents the
 specific address of a particular row. The ROWID pseudocolumn is defined with a ROWID
 datatype.
The ROWID relates to a specific location on a disk drive.
 Because of this, the ROWID is the fastest way to retrieve an
 individual row. However, the ROWID for a row can change as the
 result of dumping and reloading the database. For this reason, we
 don’t recommend using the value for the ROWID pseudocolumn across
 transaction lines. For example, there is no reason to store a
 reference to the ROWID of a row once you’ve finished using the row
 in your current application.
You cannot set the value of the standard ROWID pseudocolumn
 with any SQL statement.
The format of the ROWID pseudocolumn changed with Oracle8. Beginning with Oracle8,
 the ROWID includes an identifier that points to the database object number in addition
 to the identifiers that point to the datafile, block, and row. You can parse the value
 returned from the ROWID pseudocolumn to understand the physical storage of rows in
 your Oracle Database.
You can define a column or variable with a ROWID datatype,
 but Oracle doesn’t guarantee that any value placed in this column
 or variable is a valid ROWID.

	ORA_ROWSCN
	Oracle Database 10g and later releases
 support a pseudocolumn ORA_ROWSCN, which holds the System Change Number
 (SCN) of the last transaction that modified the row. You can use
 this pseudocolumn to check easily for changes in the row since a
 transaction started. For more information on SCNs, see the
 discussion of concurrency in Chapter 8.

	LOB
	A LOB, or large object datatype, can store up to 4 GB of
 information. LOBs come in three varieties:
	CLOB, which can store only character data

	NCLOB, which stores National Language character set data

	BLOB, which stores data as binary information

You can designate that a LOB should store its data within the Oracle Database or
 that it should point to an external file that contains the data.
LOBs can participate in transactions. Selecting a LOB
 datatype from Oracle will return a pointer to the LOB. You must
 use either the DBMS_LOB PL/SQL built-in package or the OCI
 interface to actually manipulate the data in a LOB.
To facilitate the conversion of LONG datatypes to LOBs,
 Oracle9i included support for LOBs in most
 functions that support LONGs, as well as an option to the ALTER
 TABLE statement that allows the automatic migration of LONG
 datatypes to LOBs.

	BFILE
	The BFILE datatype acts as a pointer to a file stored outside of the Oracle Database.
 Because of this fact, columns or variables with BFILE datatypes don’t participate in
 transactions, and the data stored in these columns is available only for reading. The
 file size limitations of the underlying operating system limit the amount of data in a
 BFILE.

	XMLType
	As part of its support for XML,
 Oracle9i introduced a datatype called
 XMLType. A column defined as this type of data will
 store an XML document in a character LOB column. There are
 built-in functions that allow you to extract individual nodes from
 the document, and you can also build indexes on any particular
 node in the XMLType document.

	Identity datatype
	Oracle Database 12c introduces the identity datatype, which matches a datatype found in IBM’s DB2 database.
 This datatype is specifically designed to make it easier to migrate applications that
 have used DB2 to Oracle.

	User-defined data
	Oracle8 and later versions allow users to define their own complex
 datatypes, which are created as combinations of the basic Oracle
 datatypes previously discussed. These versions of Oracle also
 allow users to create objects composed of both basic datatypes and
 user-defined datatypes. For more information about objects within
 Oracle, see Chapter 14.

	AnyType, AnyData, AnyDataSet
	Oracle9i and newer releases include three datatypes that can be used to
 explicitly define data structures that exist outside the realm of
 existing datatypes. Each of these datatypes must be defined with
 program units that let Oracle know how to process any specific
 implementation of these types.

Type Conversion

Oracle automatically converts some datatypes to other datatypes, depending on
 the SQL syntax in which the value occurs.
When you assign a character value to a numeric datatype, Oracle
 performs an implicit conversion of the ASCII value represented by the
 character string into a number. For instance, assigning a character
 value such as 10 to a NUMBER column results in an automatic data
 conversion.
If you attempt to assign an alphabetic value to a numeric
 datatype, you will end up with an unexpected (and invalid) numeric
 value, so you should make sure that you’re assigning values
 appropriately.
You can also perform explicit conversions on data, using a variety
 of conversion functions available with Oracle. Explicit data conversions
 are better to use if a conversion is anticipated, because they document
 the conversion and avoid the possibility of going unnoticed, as implicit
 conversions sometimes do.

Concatenation and Comparisons

The concatenation operator for Oracle SQL on most platforms is two vertical lines
 (||). Concatenation is performed with
 two character values. Oracle’s automatic type conversion allows you to
 seemingly concatenate two numeric values. If NUM1 is a numeric column
 with a value of 1, NUM2 is a numeric column with a value of 2, and NUM3
 is a numeric column with a value of 3, the following expressions are
 TRUE:
NUM1 || NUM2 || NUM3 = "123"
NUM1 || NUM2 + NUM3 = "15" (1 || 2 + 3)
NUM1 + NUM2 || NUM3 = "33" (1+ 2 || 3)
The result for each of these expressions is a character string,
 but that character string can be automatically converted back to a
 numeric column for further calculations.
Comparisons between values of the same datatype work as you would expect. For example, a
 date that occurs later in time is larger than an earlier date, and 0 or any positive number
 is larger than any negative number. You can use relational operators to compare numeric
 values or date values. For character values, comparison of single characters are based on
 the underlying code pages for the characters. For multicharacter strings, comparisons are
 made until the first character that differs between the two strings appears.
If two character strings of different lengths are compared, Oracle uses two different
 types of comparison semantics: blank-padded comparisons and nonpadded comparisons. For a blank-padded comparison,
 the shorter string is padded with blanks and the comparison operates as previously
 described. For a nonpadded comparison, if both strings are identical for the length of the
 shorter string, the shorter string is identified as smaller. For example, in a blank-padded
 comparison the string “A ” (a capital A followed by a blank) and the string “A” (a capital A
 by itself) would be seen as equal, because the second value would be padded with a blank. In
 a nonpadded comparison, the second string would be identified as smaller because it is
 shorter than the first string. Nonpadded comparisons are used for comparisons in which one
 or both of the values are VARCHAR2 or NVARCHAR2 datatypes, while blank-padded comparisons
 are used when neither of the values is one of these datatypes.
Oracle Database 10g and later releases
 include a feature called the Expression Filter, which allows you to store a complex
 comparison expression as part of a row. You can use the EVALUATE
 function to limit queries based on the evaluation of the
 expression, similar to a normal comparison. The Expression Filter uses
 regular expressions, which are described later in this chapter.

NULLs

The NULL value is one of the key features of the relational database.
 The NULL, in fact, doesn’t represent any value at all—it represents the
 lack of a value. When you create a column for a table that must have a
 value, you specify it as NOT NULL, meaning that it cannot contain a NULL
 value. If you try to write a row to a database table that doesn’t assign
 a value to a NOT NULL column, Oracle will return an error.
You can assign NULL as a value for any datatype. The NULL value
 introduces what is called three-state logic to your SQL
 operators. A normal comparison has only two states: TRUE or FALSE. If
 you’re making a comparison that involves a NULL value, there are three
 logical states: TRUE, FALSE, and neither.
None of the following conditions are true for Column A if the
 column contains a NULL value:
	A > 0
	A < 0
	A = 0
	A != 0

The existence of three-state logic can be confusing for end users,
 but your data may frequently require you to allow for NULL values for
 columns or variables.
You have to test for the presence of a NULL value with the
 relational operator IS NULL, since a NULL value is not equal to 0 or any
 other value. Even the expression:
NULL = NULL
will always evaluate to FALSE, since a NULL value doesn’t equal
 any other value.
Should You Use NULLs?
The idea of three-state logic may seem somewhat confusing,
 especially when you imagine your poor end users executing ad hoc
 queries and trying to account for a value that’s neither TRUE nor
 FALSE. This prospect may concern you, so you may decide not to use
 NULL values at all.
We believe that NULLs have an appropriate use. The NULL value
 covers a very specific situation: a time when a column has not had a
 value assigned. The alternative to using a NULL is using a value with
 another meaning—such as 0 for numbers—and then trying to somehow
 determine whether that value has actually been assigned or simply
 exists as a replacement for NULL.
If you choose not to use NULL values, you’re forcing a value to
 be assigned to a column for every row. You are, in effect, eliminating
 the possibility of having a column that doesn’t require a value, as
 well as potentially assigning misleading values for certain columns.
 This situation can be misleading for end users and can lead to
 inaccurate results for summary actions such as AVG (average).
Avoiding NULL values simply replaces one problem—educating users
 or providing them with an interface that implicitly understands NULL
 values—with another set of problems, which can lead to a loss of data
 integrity.

Basic Data Structures

This section describes the three basic Oracle data structures: tables, views, and indexes.
 This section discusses partitioning, which affects the way that data in tables and
 indexes is stored.This section also covers editions, a new type of table
 introduced in Oracle Database 11g Release 2.
Tables

The table is the basic data structure used in a relational database. A
 table is a collection of rows. Each row in a table
 contains one or more columns. If you’re unfamiliar with relational databases, you can map a table
 to the concept of a file or database in a nonrelational database, just
 as you can map a row to the concept of a record in a nonrelational
 database.
As of Oracle9i, you can define
 external tables. As the name implies, the data for
 an external table is stored outside the database, typically in a flat
 file. The external table is read-only; you cannot update the data it
 contains. The external table is good for loading and unloading data to
 files from a database, among other purposes.
Oracle Database 11g introduced the ability to
 create virtual columns for a table. These columns are defined by an
 expression and, although the results of the expression are not stored,
 the columns can be accessed by applications at runtime. Oracle Database
 12c introduces the invisible column, which is
 stored and maintained like a regular column but is not accessible by
 user request or considered by the query optimizer.
Editions

Oracle Database 11g Release 2 introduced a new concept called an edition. An edition is simply a version of a
 table, and a table can have more than one edition simultaneously. Editions are used to implement edition-based redefinition (EBR), useful as
 table structures evolve over time.
This evolution previously presented a problem when table structures were changed as
 applications changed. Typically, a new release of an application would be run in test
 mode, and this testing is most valid if it can run on production data. Prior to EBR, this
 requirement would force testers to run on a duplicate copy of a potentially large
 database, and perform their testing outside of a real world production scenario.
With EBR, you can create a new version of a table with a
 different data structure that resides in the Oracle Database at the
 same time as a previous version. An application can access a specific
 edition of a table, so a new version of an application can run
 simultaneously with a previous one that uses a table with a different
 structure.
Not only can organizations run two versions of an application at the same time, but
 developers can roll back the changes in a new version by simply dropping the edition for
 that new version. In the same way, a new version can be made permanent by dropping a
 previous version and pointing applications to the newer version, which means an upgrade
 can take place without any downtime.
You need to do some initialization work to use editions, as well
 as creating edition-related triggers that will duplicate data
 manipulation actions in multiple versions.

Views

A view is an Oracle data structure defined through a SQL statement. The
 SQL statement is stored in the database. When you use a view in a query,
 the stored query is executed and the base table data is returned to the
 user. Views do not contain data, but represent ways to look at the base
 table data in the way the query specifies.
You can use a view for several purposes:
	To simplify access to data stored in multiple tables.

	To implement specific security for the data in a table (e.g.,
 by creating a view that includes a WHERE clause that limits the data
 you can access through the view). Starting with
 Oracle9i, you can use fine-grained
 access control to accomplish the same purpose.
 Fine-grained access control gives you the ability to automatically
 limit data access based on the value of data in a row.

	To isolate an application from the specific structure of the
 underlying tables.

A view is built on a collection of base tables, which can be either
 actual tables in an Oracle Database or other views. If you modify any of the base tables for
 a view so that they no longer can be used for a view, that view itself can no longer be
 used.
In general, you can write to the columns of only one underlying
 base table of a view in a single SQL statement. There are additional restrictions for
 INSERT, UPDATE, and DELETE operations, and there are certain SQL clauses
 that prevent you from updating any of the data in a view.
You can write to a nonupdateable view by using an INSTEAD OF
 trigger, which is described later in this chapter.
Oracle8i introduced materialized views. These are not
 really views as defined in this section, but are physical tables that
 hold pre-summarized data providing significant performance improvements
 in a data warehouse. Materialized views are described in more detail in
 Chapter 10.

Indexes

An index is a data structure that speeds up access to particular rows in
 a database. An index is associated with a particular table and contains
 the data from one or more columns in the table.
The basic SQL syntax for creating an index is shown in this
 example:
CREATE INDEX emp_idx1 ON emp (ename, job);
in which emp_idx1 is the name
 of the index, emp is the table on
 which the index is created, and ename
 and job are the column values that
 make up the index.
The Oracle Database server automatically modifies the values in the index when the
 values in the corresponding columns are modified. Because the index contains less data than
 the complete row in the table and because indexes are stored in a special structure that
 makes them faster to read, it takes fewer I/O operations to retrieve the data in them.
 Selecting rows based on an index value can be faster than selecting rows based on values in
 the table rows. In addition, most indexes are stored in sorted order (either ascending or
 descending, depending on the declaration made when you created the index). Because of this
 storage scheme, selecting rows based on a range of values or returning rows in sorted order
 is much faster when the range or sort order is contained in the presorted indexes.
In addition to the data for an index, an index entry stores the
 ROWID for its associated row. The ROWID is the fastest way to retrieve any row in a
 database, so the subsequent retrieval of a database row is performed in
 the most optimal way.
An index can be either unique (which means that no two rows in the table or view can
 have the same index value) or nonunique. If the column or columns on which an index is based
 contain NULL values, the row isn’t included in the index.
An index in Oracle refers to the physical structure used within
 the database. A key is a term for a logical entity, typically the value stored
 within the index. In most places in the Oracle documentation, the two
 terms are used interchangeably, with the notable exception of the
 foreign key constraint, which is discussed later in this chapter.
Four different types of index structures, which are described in
 the following sections, are used in Oracle: standard B*-tree indexes;
 reverse key indexes; bitmap indexes; and function-based indexes, which
 were introduced in Oracle8i. Oracle Database
 11g delivers the ability to use invisible indexes,
 which are described below. Oracle also gives you the ability to cluster
 the data in the tables, which can improve performance. This is described
 later, in the section Clusters. Finally, something
 called a storage index is available
 with the Exadata Database Machine, which is not really an index at
 all, but is described at the end of this section.
B*-tree indexes

The B*-tree index is the default index used in Oracle. It gets its name from its
 resemblance to an inverted tree, as shown in Figure 4-1.
[image: A B*-tree index]

Figure 4-1. A B*-tree index

The B*-tree index is composed of one or more levels of branch
 blocks and a single level of leaf blocks. The branch blocks contain
 information about the range of values contained in the next level of
 branch blocks. The number of branch levels between the root and leaf
 blocks is called the depth of the index. The leaf
 blocks contain the actual index values and the ROWID for the
 associated row.
The B*-tree index structure doesn’t contain many blocks at the
 higher levels of branch blocks, so it takes relatively few I/O
 operations to read quite far down the B*-tree index structure. All
 leaf blocks are at the same depth in the index, so all retrievals
 require essentially the same amount of I/O to get to the index entry,
 which evens out the performance of the index.
Oracle allows you to create index-organized tables (IOTs), in which the leaf blocks store the entire row of data rather than only the
 ROWID that points to the associated row. Index-organized tables reduce the total amount of
 space needed to store an index and a table by eliminating the need to store the ROWID in
 the leaf page. But index-organized tables cannot use a UNIQUE constraint or be stored in a
 cluster. In addition, index organized tables don’t support distribution, replication, and
 partitioning (covered in greater detail in other chapters), although IOTs can be used with
 Oracle Streams for capturing and applying changes with Oracle Database
 10g and later releases.
There were a number of enhancements to index-organized tables as of
 Oracle9i, including a lifting of the restriction against the use of
 bitmap indexes as secondary indexes for an IOT and the ability to create, rebuild, or
 coalesce secondary indexes on an IOT. Oracle Database 10g continued
 this trend by allowing replication and all types of partitioning for index-organized
 tables, as well as providing other enhancements.

Reverse key indexes

Reverse key indexes, as their name implies, automatically reverse the order of
 the bytes in the key value stored in the index. If the value in a row
 is “ABCD,” the value for the reverse key index for that row is
 “DCBA.”
To understand the need for a reverse key index, you have to
 review some basic facts about the standard B*-tree index. First and
 foremost, the depth of the B*-tree is determined by the number of
 entries in the leaf nodes. The greater the depth of the B*-tree, the
 more levels of branch nodes there are and the more I/O is required to
 locate and access the appropriate leaf node.
The index illustrated in Figure 4-1 is a nice, well-behaved,
 alphabetic-based index. It’s balanced, with an even distribution of
 entries across the width of the leaf pages. But some values commonly
 used for an index are not so well behaved. Incremental values, such as
 ascending sequence numbers or increasingly later date values, are
 always added to the right side of the index, which is the home of
 higher and higher values. In addition, any deletions from the index
 have a tendency to be skewed toward the left side as older rows are
 deleted. The net effect of these practices is that over time the index
 turns into an unbalanced B*-tree, where the left side of the index is
 more sparsely populated than the leaf nodes on the right side. This
 unbalanced growth has the overall effect of having an unnecessarily
 deep B*-tree structure, with the left side of the tree more sparsely
 populated than the right side, where the new, larger values are
 stored. The effects described here also apply to the values that are
 automatically decremented, except that the left side of the B*-tree
 will end up holding more entries.
You can solve this problem by periodically dropping and
 re-creating the index. However, you can also solve it by using the
 reverse value index, which reverses the order of the value of the
 index. This reversal causes the index entries to be more evenly
 distributed over the width of the leaf nodes. For example, rather than
 having the values 234, 235, and 236 be added to the maximum side of
 the index, they are translated to the values 432, 532, and 632 for
 storage and then translated back when the values are retrieved. These
 values are more evenly spread throughout the leaf nodes.
The overall result of the reverse index is to correct the
 imbalance caused by continually adding increasing values to a standard
 B*-tree index. For more information about reverse key indexes and
 where to use them, refer to your Oracle documentation.

Bitmap indexes

In a standard B*-tree index, the ROWIDs are stored in the leaf blocks of the index.
 In a bitmap index, each bit in the index
 represents a ROWID. If a particular row contains a particular value,
 the bit for that row is “turned on” in the bitmap for that value. A
 mapping function converts the bit into its corresponding ROWID. Unlike
 other index types, bitmap indexes include entries for NULL
 values.
You can store a bitmap index in much less space than a standard
 B*-tree index if there aren’t many values in the index. Figure 4-2 shows an illustration of how a bitmap index
 is stored. Figure 10-3
 in Chapter 10 shows
 how a bitmap index is used in a selection condition.
[image: Bitmap index]

Figure 4-2. Bitmap index

The functionality provided by bitmap indexes is especially
 important in data warehousing applications in which each dimension of
 the warehouse contains many repeating values, and queries typically
 require the interaction of several different dimensions. For more
 about data warehousing, see Chapter 10.

Function-based indexes

Function-based indexes were introduced in Oracle8i. A
 function-based index is just like a standard B*-tree index,
 except that you can base the index on the result of a SQL function,
 rather than just on the value of a column or columns.
Prior to Oracle8i, if you wanted to select
 on the result of a function, Oracle retrieved every row in the
 database, executed the function, and then accepted or rejected each
 row. With function-based indexes you can simply use the index for
 selection, without having to execute the function on every row, every
 time.
For example, without a function-based index, if you wanted to
 perform a case-insensitive selection of data you would have to use the
 UPPER function in the WHERE clause, which would retrieve every
 candidate row and execute the function. With a function-based index
 based on the UPPER function, you can select directly from the
 index.
Note
As of Oracle Database 10g, you can
 perform case- or accent-insensitive queries; these queries provide
 another way to solve this problem.

This capability becomes even more valuable when you consider that you can create your
 own functions in an Oracle Database. You can create a very sophisticated function and then
 create an index based on the function, which can dramatically affect the performance of
 queries that require the function.

Invisible indexes

Oracle Database 11g introduces a new
 option for all of the index types we’ve discussed in previous
 sections—the invisible index. Normally, all
 indexes are used by the optimizer, which is described later in this
 chapter. You can eliminate an index from optimizer consideration by
 taking the index offline or by deleting the index. But with both of
 these methods you will have to take some actions to bring the index up
 to date when you bring it back into the database environment.
But what if you want to just remove the index from optimizer
 consideration for a limited time, such as when you are testing
 performance? With the invisible option, an index is not considered as
 a possible step in an access path, but updates and deletes to the
 underlying data are still applied to the index.

Storage indexes

A storage index is a structure in Exadata Storage automatically created
 by the Exadata Storage Server software. A storage index is used to
 track the highest and lowest values for the most frequently accessed
 columns in a 1 MB section of storage. These high and low values are
 stored in memory and used to determine if that 1 MB block should be
 accessed as part of a SQL operation.A storage index is created when
 the 1 MB section is initially accessed.
Storage indexes will have the optimal effect when used on data that is sorted and then
 loaded. This process would limit the range of values for the sorted columns, which would
 make the access elimination more efficient. Storage indexes do not negatively impact any
 SQL, but could have different impacts on a statement based on the storage characteristics
 of data.
In one sense, a storage index provides the same benefits as a standard index, in that
 the storage index improves query response time by reducing I/O operations. However, an
 index is used to navigate to a particular row, while a storage index is used to filter the
 retrieval of rows needed to satisfy a query.

Partitioning

With the Enterprise Editions of Oracle8 and beyond, you can
 purchase the Partitioning Option. As the name implies, this option
 allows you to partition tables and indexes. Partitioning a data
 structure means that you can divide the information in the structure
 among multiple physical storage areas. A partitioned data structure is
 divided based on column values in the table. You can partition tables
 based on the range of column values in the table (often date ranges), or
 as the result of a hash function (which returns a value based on a
 calculation performed on the values in one or more columns). As of
 Oracle9i you can also use a list of values to
 define a partition, which can be particularly useful in a data warehouse
 environment.
Oracle Database 11g added several partitioning types over its
 releases. Interval partitioning provides the ability to automatically generate a new partition of a fixed
 interval or range when data to be inserted does not fit into existing partition ranges.
 Reference partitioning is used where a parent-child relationship can be defined between tables and the
 child table inherits the same partitioning characteristics as the parent. Virtual
 column-based partitioning
 enables partition keys to be defined by virtual columns.
You can have two levels of partitions, called composite partitions, using a combination of
 partition methods. Prior to Oracle Database 11g, you could partition
 using a composite of range and hash partitioning. Oracle Database 11g
 added the ability to combine list partitioning with list, range, or hash partitioning, or
 range partitioning with a different range partitioning
 scheme. Oracle Database 12c adds interval reference
 partitioning.
Oracle is smart enough to take advantage of partitions to improve
 performance in two ways:
	Oracle won’t bother to access partitions that don’t contain
 any data to satisfy the query.

	If all the data in a partition satisfies a part of the WHERE
 clause for the query, Oracle simply selects all the rows for the
 partition without bothering to evaluate the clause for each
 row.

Partitioned tables are especially useful in a data warehouse, in
 which data can be partitioned based on the time period it spans.
Equally important is the fact that partitioning substantially
 reduces the scope of maintenance operations and increases the
 availability of your data. You can perform all maintenance operations,
 such as backup, recovery, and loading, on a single partition. This
 flexibility makes it possible to handle extremely large data structures
 while still performing those maintenance operations in a reasonable
 amount of time. In addition, if you must recover one partition in a
 table for some reason, the other partitions in the table can remain
 online during the recovery operation.
If you have been working with other databases that don’t offer the
 same type of partitioning, you may have tried to implement a similar
 functionality by dividing a table into several separate tables and then
 using a UNION SQL command to view the
 data in several tables at once. Partitioned tables give you all the
 advantages of having several identical tables joined by a UNION command without the complexity that
 implementation requires.
To maximize the benefits of partitioning, it sometimes makes sense
 to partition a table and an index identically so that both the table
 partition and the index partition map to the same set of rows. You can
 automatically implement this type of partitioning, which is called equipartitioning, by
 specifying an index for a partitioned table as a LOCAL index. Local
 indexes simplify maintenance, since standard operations, such as
 dropping a partition, will work transparently with both the index
 partition and the table partition.
Oracle has continued to increase the functionality of partitioning
 features. Since Oracle Database 10g Release 2, you
 can reorganize individual partitions online, the maximum number of
 partitions increased from 64 KB – 1 to 128 KB – 1, and query
 optimization using partition pruning improved.
Oracle Database 11g further improved partition pruning, enabled
 applications to control partitioning, and added a Partition Advisor that can help you to understand when partitioning might improve the performance
 of your Oracle Database.
Oracle Database 12c has added the ability to use partial indexes
 for a partitioned table. This capability means that you do not have to index all partitions
 in a table. You can indicate that a particular partition should not have an index, which
 means that there will not be a local index, or that partition will be excluded from the
 global index. You can turn indexing on or off for any individual partition.
For more details about the structure and limitations associated
 with partitioned tables, refer to your Oracle documentation.

Additional Data Structures

There are several other data structures available in your Oracle Database that can be
 useful in some circumstances.
Sequences

One of the big problems that occurs in a multiuser database is the difficulty of
 supplying unique numbers for use as keys or identifiers. For this
 situation, Oracle allows you to create an object called a
 sequence. The sequence object is fairly simple.
 Whenever anyone requests a value from it, it returns a value and
 increments its internal value, avoiding contention and time-consuming
 interaction with the requesting application. Oracle can cache a range of
 numbers for the sequence so that access to the next number doesn’t have
 to involve disk I/O—the requests can be satisfied from the range in the
 SGA.
Sequence numbers are defined with a name, an incremental value,
 and some additional information about the sequence. Sequences exist
 independently of any particular table, so more than one table can use
 the same sequence number.
Consider what might happen if you didn’t use Oracle sequences. You
 might store the last sequence number used in a column in a table. A user
 who wanted to get the next sequence number would read the last number,
 increment it by a fixed value, and write the new value back to the
 column. But if many users tried to get a sequence number at the same
 time, they might all read the “last” sequence number before the new
 “last” sequence number had been written back. You could lock the row in
 the table with the column containing the sequence number, but this would
 cause delays as other users waited on locks. What’s the solution? Create
 a sequence.
Oracle Database 11g allowed the use of
 sequences within PL/SQL expressions. Oracle Database
 12c added the identity column datatype, which
 matches the functionality of identity columns in other brands of
 databases, which used to require conversion to a sequence.

Synonyms

All data structures within an Oracle Database are stored within a specific schema. A schema is associated with a particular
 username, and all objects are referenced with the name of the schema followed by the name of
 the object.
Note
Schemas are also used as the basis for a form of multitenancy used in Oracle cloud
 computing, described in Chapter 15.

For instance, if there were a table named EMP in a schema named
 DEMO, the table would be referenced with the complete name of DEMO.EMP.
 If you don’t supply a specific schema name, Oracle assumes that the
 structure is in the schema for your current username.
Schemas are a nice feature because object names have to be unique
 only within their own schemas, but the qualified names for objects can
 get confusing, especially for end users. To make names simpler and more
 readable, you can create a synonym for any table,
 view, snapshot, or sequence, or for any PL/SQL procedure, function, or
 package.
Synonyms can be either public, which means
 that all users of a database can use them, or private, which means that only the
 user whose schema contains the synonym can use it.
For example, if the user DEMO creates a public synonym called EMP for the table EMP in his schema, all other
 users can simply use EMP to refer to the EMP table in DEMO’s schema.
 Suppose that DEMO didn’t create a public synonym and a user called SCOTT
 wanted to use the name EMP to refer to the EMP table in DEMO’s schema.
 The user SCOTT would create a private synonym in his schema. Of course,
 SCOTT must have access to DEMO’s EMP table for this to work.
Synonyms simplify user access to a data structure. You can also
 use synonyms to hide the location of a particular data structure, making
 the data more transportable and increasing the security of the
 associated table by hiding the name of the schema owner.
Prior to Oracle Database 10g, if you changed
 the location referenced by a synonym, you would have to recompile any
 PL/SQL procedures that accessed the synonym.

Clusters

A cluster is a data structure that improves retrieval performance. A
 cluster, like an index, does not affect the logical view of the
 table.
A cluster is a way of storing related data values together on
 disk. Oracle reads data a block at a time, so storing related values
 together reduces the number of I/O operations needed to retrieve related
 values, since a single data block will contain only related rows.
A cluster is composed of one or more tables. The cluster includes
 a cluster index, which stores all the values for the corresponding
 cluster key. Each value in the cluster index points to a data block that
 contains only rows with the same value for the cluster key.
If a cluster contains multiple tables, the tables should be joined
 together and the cluster index should contain the values that form the
 basis of the join. Because the value of the cluster key controls the
 placement of the rows that relate to the key, changing a value in that
 key can cause Oracle to change the location of rows associated with that
 key value.
Clusters may not be appropriate for tables that regularly require full table scans, in
 which a query requires the Oracle Database to iterate through all the rows of the table.
 Because you access a cluster table through the cluster index, which then points to a data
 block, full table scans on clustered tables can actually require more I/O operations,
 lowering overall performance.

Hash Clusters

A hash cluster is like a cluster with one significant difference that makes
 it even faster. Each request for data in a clustered table involves at
 least two I/O operations, one for the cluster index and one for the
 data. A hash cluster stores related data rows together, but groups the
 rows according to a hash value for the cluster key.
 The hash value is calculated with a hash function, which means that each
 retrieval operation starts with a calculation of the hash value and then
 goes directly to the data block that contains the relevant rows.
By eliminating the need to go to a cluster index, a hash-clustered
 table can be even faster for retrieving data than a clustered table. You
 can control the number of possible hash values for a hash cluster
 with the HASHKEYS parameter when you create the
 cluster.
Because the hash cluster directly points to the location of a row
 in the table, you must allocate all the space required for all the
 possible values in a hash cluster when you create the cluster.
Hash clusters work best when there is an even distribution of rows
 among the various values for the hash key. You may have a situation in
 which there is already a unique value for the hash key column, such as a
 unique ID. In such situations, you can assign the value for the hash key
 as the value for the hash function on the unique value, which eliminates
 the need to execute the hash function as part of the retrieval process.
 In addition, you can specify your own hash function as part of the
 definition of a hash cluster.
Oracle Database 10g introduced sorted hash
 clusters, where data is not only stored in a cluster based on a hash
 value, but is also stored within that location in the order in which it was inserted. This
 data structure improves performance for applications that access data in
 the order in which it was added to the database.

Extended Logic for Data

There are several features that have been added to the Oracle
 Database that are not unique data structures, but rather shape the way you
 can use the data in the database: the Rules Manager and the Expression
 Filter.
Rules Manager

The Oracle Database has been continually extending the functionality
 it can provide, from mere data storage, which still enforced some
 logical attributes on data, to stored procedures, which allowed you to
 define extensive logical operations triggered by data manipulations. The
 Rules Manager, introduced with Oracle Database 10g
 Release 2, takes this extension a step further.
The concept behind the Rules Manager is simple. A
 rule is stored in the database and is called and evaluated by
 applications. If business conditions or requirements change, the rule
 covering those scenarios can be changed without having to touch the
 application code. Rules can be shared across multiple application
 systems, bringing standardization along with reduced maintenance across
 the set of applications. You can also create granular rules that can be
 used in different combinations to implement a variety of
 conditions.
Rules are invoked by events. The event
 causes the rule to be evaluated and results in a rule
 action being performed, either immediately or at some later time.
The Rules Manager follows the event-condition action structure and
 helps users to define five elements required for a Rules Manager
 application:
	Define an event structure, which is an object in your Oracle Database. Different
 events have different values for the attributes of the event object.

	Create rules, which include conditions and their subsequent
 actions.

	Create rule classes to store and group rules with similar
 structures.

	Create PL/SQL procedures to implement rules.

	Define a results view to configure the rules for external use
 when the PL/SQL actions cannot be called, such as an application
 that runs on multiple tiers and has rule actions that are invoked
 from the application server tier.

You can define conflict resolution routines to handle situations
 where more than one rule is matched by an event. The Rules Manager also
 can aggregate different events into composite events and maintain state
 information until all events are received.
Using Rules can be a very powerful tool for implementing complex logic, but the use of
 rules can affect your application design. For more information on the Rules Manager, please
 refer to the Oracle documentation.

The Expression Filter

The Expression Filter, available since Oracle Database
 10g, uses the Rules Manager to work with
 expressions. An expression is another object type
 that contains attributes evaluated by the Expression Filter. You add a
 VARCHAR2 column to a table that stores the values for the attributes of
 an expression, use a PL/SQL built-in package to add the expression to
 the column, and use standard SQL to set the values for the expression.
 To compare values to an expression, you use the EVALUATE operator in the
 WHERE clause of your SQL statement.
Expressions can be used to define complex qualities for rows,
 since an expression can have many attributes. You can also use
 expressions to implement many-to-many relationships without an
 intermediary table by using expressions from two tables to join the
 tables.
With the Enterprise Edition of Oracle, you can add an index to an
 expression, which can provide the same performance benefits of an index
 to the values defined as an expression.

Data Design

Tables and columns present a logical view of the data in a relational
 database. The flexibility of a relational database gives you many options
 for grouping the individual pieces of data, represented by the columns,
 into a set of tables. To use Oracle most effectively, you should
 understand and follow some firmly established principles of database
 design.
The topic of database design is vast and deep: we won’t even pretend
 to offer more than a cursory overview. However, there are many great books
 and resources available on the fundamentals of good database design. When
 E. F. Codd created the concept of a relational database in the 1960s,
 he also began work on the concept of normalized data
 design. The theory behind normalized data design is pretty
 straightforward: a table should contain only the information that is
 directly related to the key value of the table. The process of assembling
 these logical units of information is called
 normalization of the database design.
Normalized Forms
In fact, there is more than one type of normalization. Each step
 in the normalization process ends with a specific result called a
 normalized form. There are five standard normalized
 forms, which are referred to as first normal form (1NF), second normal
 form (2NF), and so on. The normalization process that we describe
 briefly in this section results in third normal form (3NF), the most
 common type of normalization.
Explaining the complete concepts that lie behind the different
 normal forms is beyond the scope of this chapter and book.

The concept of normalized table design was tailored to the
 capabilities of the relational database. Because you could join data from
 different tables together in a query, there was no need to keep all the
 information associated with a particular object together in a single
 record. You could decompose the information into associated units and
 simply join the appropriate units together when you needed information
 that crossed table boundaries.
There are many different methodologies for normalizing data. The
 following is one example:
	Identify the objects your application needs to know (the entities). Examples of
 entities, as shown in Figure 4-3,
 include employees, locations, and jobs.

	Identify the individual pieces of data, referred to by data
 modelers as attributes, for these
 entities. In Figure 4-3, employee
 name and salary are attributes. Typically, entities correspond to
 tables and attributes correspond to columns.

	As a potential last step in the process, identify relationships between the
 entities based on your business. These relationships are implemented
 in the database schema through the use of a combination known as a
 foreign key. For example, the primary key of the DEPARTMENT NUMBER
 table would be a foreign key column in the EMPLOYEE NAME table used to
 identify the DEPARTMENT NUMBER for the department in which an employee works. A foreign
 key is a type of constraint; constraints are discussed later in this
 chapter.

Normalization provides benefits by avoiding storage of redundant
 data. Storing the department in every employee record not only would waste
 space but also would lead to a data maintenance issue. If the department
 name changed, you would have to update every employee record, even though
 no employees had actually changed departments. By normalizing the
 department data into a table and simply pointing to the appropriate row
 from the employee rows, you avoid both duplication of data and this type
 of problem.
Normalization also reduces the amount of data that any one row in a
 table contains. The less data in a row, the less I/O is needed to retrieve
 it, which helps to avoid this performance bottleneck. In addition, the
 smaller the size of a row, the more rows are retrieved per data block,
 which increases the likelihood that more than one desired row will be
 retrieved in a single I/O operation. And the smaller the row, the more
 rows will be kept in Oracle’s system buffers, which also increases the
 likelihood that a row will be available in memory when it’s needed,
 thereby avoiding the need for any disk I/O at all.
Finally, the process of normalization includes the creation of
 foreign key relationships and other data constraints. These
 relationships build a level of data integrity directly into your database
 design.
Figure 4-3 shows a simple list of
 attributes grouped into entities and linked by a foreign key
 relationship.
[image: The normalization process]

Figure 4-3. The normalization process

However, there is an even more important reason to go through the
 process of designing a normalized database. You can benefit from
 normalization because of the planning process that normalizing a data
 design entails. By really thinking about the way the intended applications
 use data, you get a much clearer picture of the needs the system is
 designed to serve. This understanding leads to a much more focused
 database and application.
Gaining a deep understanding of the way your data will be used also
 helps with your other design tasks. For instance, once you’ve completed an
 optimal logical database design, you can go back and consider what indexes
 you should add to improve the anticipated performance of the database and
 whether you should designate any tables as part of a cluster or hash
 cluster.
Since adding these types of performance-enhancing data structures doesn’t affect the
 logical representation of the database, you can always make these types of modifications later
 when you see the way an application uses the database in test mode or in production.
Should You Normalize Your Data?
Whenever possible, we recommend that you go through the process of
 designing a normalized structure for your database.
Data normalization has been proven, both theoretically and in
 decades of practice, to provide concrete benefits. In addition, the
 process of creating a normalized data design is intimately intertwined
 with the process of understanding the data requirements for your
 application system. You can improve even the simplest database by the
 discoveries made during the process of normalization.
However, there may be times when you feel that the benefits of a
 fully normalized design will counteract the performance penalty that a
 design imposes on your production systems. For example, you may have
 one, two, or three contact names to be placed in their own table, with a
 foreign key linking back to the main row for the organization. But
 because you want to see all the contact names every time you request
 contact information, you might decide to save the overhead and added
 development effort of the join and simply include the three contact
 names in your organization table. This technique is common in
 decision-support/data warehousing applications.
Of course, this violation of the rules of normalization limits the
 flexibility of your application systems—for example, if you later decide
 that you need four contact names, some modification of every application
 and report that uses the contact names will be necessary. Normalization
 leads to a more flexible design, which is a good thing in the constantly
 changing world we live in.
For this reason, we suggest that you always implement a fully
 normalized database design and then, if necessary, go back and
 denormalize certain tables as needed. With this approach, you will at
 least have to make a conscious decision to “break” the normalization,
 which involves an active consideration of the price of
 denormalization.

Constraints

A constraint enforces certain aspects of data integrity within a database. When you add a constraint to
 a particular column, Oracle automatically ensures that data violating that constraint is never
 accepted. If a user attempts to write data that violates a constraint, Oracle returns an error
 for the offending SQL statement. Because a constraint is directly associated with the data it
 is constraining, the restriction is always enforced, eliminating the need to implement this
 integrity restriction in one or more other locations, such as multiple applications or access
 tools.
Constraints may be associated with columns when you create or add
 the table containing the column (via a number of keywords) or after the
 table has been created with the SQL command ALTER TABLE. Since Oracle8,
 the following constraint types are supported:
	NOT NULL
	You can designate any column as NOT NULL. If any SQL operation leaves a
 NULL value in a column with a NOT NULL constraint, Oracle returns an
 error for the statement.

	Unique
	When you designate a column or set of columns as unique, users
 cannot add values that already exist in another row in the table for
 those columns, or modify existing values to match other values in
 the column.
The unique constraint is implemented by a creation of an
 index, which requires a unique value. If you include more than one
 column as part of a unique key, you will create a single index that
 will include all the columns in the unique key. If an index already
 exists for this purpose, Oracle will automatically use that
 index.
If a column is unique but allows NULL values, any number of
 rows can have a NULL value, because the NULL indicates the absence
 of a value. To require a truly unique value for a column in every
 row, the column should be both unique and NOT NULL.

	Primary key
	Each table can have, at most, a single primary key constraint. The primary key may
 consist of more than one column in a table.
The primary key constraint forces each primary key to have a
 unique value. It enforces both the unique constraint and the NOT
 NULL constraint. A primary key constraint will create a unique
 index, if one doesn’t already exist for the specified
 column(s).

	Foreign key
	The foreign key constraint is defined for a table (known as the
 child) that has a relationship with another
 table in the database (known as the parent).
 The value entered in a foreign key must be present in a unique or
 primary key of the parent table. For example, the column for a
 department ID in an employee table might be a foreign key for the
 department ID primary key in the department table.
A foreign key can have one or more columns, but the referenced
 key must have an equal number of columns. You can have a foreign key
 relate to the primary key of its own table, such as when the
 employee ID of a manager is a foreign key referencing the ID column
 in the same table.
A foreign key can contain a NULL value if it’s not forbidden through another constraint.
By requiring that the value for a foreign key exist in another
 table, the foreign key constraint enforces referential integrity in
 the database. Foreign keys not only provide a way to join related
 tables but also ensure that the relationship between the two tables
 will have the required data integrity.
Normally, you would not allow applications to delete or update a row in a parent
 table if it causes a row in the child table to violate a foreign key constraint.
 However, you can specify that a foreign key constraint causes a cascade
 delete, which means that deleting a referenced row in the parent table
 automatically deletes all rows in the child table that reference the primary key value
 in the deleted row in the parent table. In addition, you could define the constraint to
 set the value of a corresponding child key to NULL if the parent key value is
 deleted.

	Check
	A check constraint is a more general purpose constraint. A check constraint is a Boolean
 expression that evaluates to either TRUE or FALSE. If the check constraint evaluates to
 FALSE, the SQL statement that caused the result returns an error. For example, a check
 constraint might require the minimum balance in a bank account to be over $100. If a
 user tries to update data for that account in a way that causes the balance to drop
 below this required amount, the constraint will return an error.

Some constraints require the creation of indexes to support them.
 For instance, the unique constraint creates an implicit index used to
 guarantee uniqueness. You can also specify a particular index that will
 enforce a constraint when you define that constraint.
All constraints can be either immediate or deferred. An
 immediate constraint is enforced as soon as a write operation affects a constrained
 column in the table. A deferred constraint is
 enforced when the SQL statement that caused the change in
 the constrained column completes. Because a single SQL statement can
 affect several rows, the choice between using a deferred constraint or an
 immediate constraint can significantly affect how the integrity dictated
 by the constraint operates. You can specify that an individual constraint
 is immediate or deferred, or you can set the timing for all constraints in
 a single transaction.
Finally, you can temporarily suspend the enforcement of constraints
 for a particular table. When you enable the operation of the constraint,
 you can instruct Oracle to validate all the data for the constraint or
 simply start applying the constraint to the new data. When you add a
 constraint to an existing table, you can also specify whether you want to
 check all the existing rows in the table.

Triggers

You use constraints to automatically enforce data integrity rules whenever a user
 tries to write or modify a row in a table. There are times when you want
 to use the same kind of timing for your own application-specific logic.
 Oracle includes triggers to give you this
 capability.
Note
Although you can write triggers to perform the work of a
 constraint, Oracle has optimized the operation of constraints, so it’s
 best to always use a constraint instead of a trigger if possible.

A trigger is a block of code that is fired whenever a particular
 type of database event occurs to a table. There are three types of common
 events that can cause a trigger to fire:
	A database UPDATE

	A database INSERT

	A database DELETE

You can, for instance, define a trigger to write a customized audit
 record whenever a user changes a row.
Triggers are defined at the row level. You can specify that a
 trigger be fired for each row or for the SQL statement that fires the
 trigger event. As with the previous discussion of constraints, a single
 SQL statement can affect many rows, so the specification of the trigger
 can have a significant effect on the operation of the trigger and the
 performance of the database.
There are three times when a trigger can fire:
	Before the execution of the triggering event

	After the execution of the triggering event

	Instead of the triggering event

Combining the first two timing options with the row and statement
 versions of a trigger gives you four possible trigger implementations:
 before a statement, before a row, after a statement, and after a
 row.
Oracle Database 11g introduced the concept of
 compound triggers; with this enhancement, a single trigger can have a
 section for different timing implementations. Compound triggers help
 to improve performance, since the trigger has to be loaded only once for
 multiple timing options.
INSTEAD OF triggers were introduced with Oracle8. The INSTEAD OF trigger has a specific purpose: to implement data manipulation operations on views that
 don’t normally permit them, such as a view that references columns in more than one base table
 for updates. You should be careful when using INSTEAD OF triggers because of the many
 potential problems associated with modifying the data in the underlying base tables of a view.
 There are many restrictions on when you can use INSTEAD OF triggers. Refer to your Oracle
 documentation for a detailed description of the forbidden scenarios.
You can specify a trigger restriction for any
 trigger. A trigger restriction is a Boolean expression that
 circumvents the execution of the trigger if it evaluates to FALSE.
Triggers are defined and stored separately from the tables that use
 them. Since they contain logic, they must be written in a language with
 capabilities beyond those of SQL, which is designed to access data.
 Oracle8 and later versions allow you to write triggers in PL/SQL, the
 procedural language that has been a part of Oracle since Version 6.
 Oracle8i and beyond also support Java as a procedural
 language, so you can create Java triggers with those versions.
You can write a trigger directly in PL/SQL or Java, or a trigger can
 call an existing stored procedure written in either language.
Triggers are fired as a result of a SQL statement that affects a row
 in a particular table. It’s possible for the actions of the trigger to
 modify the data in the table or to cause changes in other tables that fire
 their own triggers. The end result of this may be data that ends up being
 changed in a way that Oracle thinks is logically illegal. These situations
 can cause Oracle to return runtime errors referring to mutating tables, which are
 tables modified by other triggers, or constraining tables, which are
 tables modified by other constraints. Oracle8i
 eliminated some of the errors caused by activating constraints with
 triggers.
Oracle8i also introduced a very useful
 set of system event triggers (sometimes called
 database-level event triggers), and user event
 triggers (sometimes called schema-level event
 triggers). For example, you can place a trigger on system
 events such as database startup and shutdown and on user events such as
 logging on and logging off.

Query Optimization

All of the data structures discussed so far in this chapter are database
 entities. Users request data from an Oracle server through database
 queries. Oracle’s query optimizer must then determine the best way to
 access the data requested by each query.
One of the great virtues of a relational database is its ability to access data without
 predefining the access paths to the data. When a SQL query is submitted to an Oracle Database,
 Oracle must decide how to access the data. The process of making this decision is called
 query optimization, because Oracle looks for the optimal way to
 retrieve the data. This retrieval is known as the execution path. The trick behind query optimization is
 to choose the most efficient way to get the data, since there may be many different options
 available.
For instance, even with a query that involves only a single table,
 Oracle can take either of these approaches:
	Use an index to find the ROWIDs of the requested rows and then
 retrieve those rows from the table.

	Scan the table to find and retrieve the rows; this is referred to as a full table
 scan.

Although it’s usually much faster to retrieve data using an index,
 the process of getting the values from the index involves an additional
 I/O step in processing the query. This additional step could mean that
 there were more total I/Os involved to satisfy the query—if, for instance,
 all the rows in a table were being selected. Query optimization may be as
 simple as determining whether the query involves selection conditions that
 can be imposed on values in the index. Using the index values to select
 the desired rows involves less I/O and is therefore more efficient than
 retrieving all the data from the table and then imposing the selection
 conditions. But when you start to consider something as simple as what
 percent of the rows in a table will be eliminated by using an index, you
 can see that the complexity in selecting the right execution path can grow
 very complex very rapidly in a production scenario.
Another factor in determining the optimal query execution plan is
 whether there is an ORDER BY condition in the query that can be
 automatically implemented by the presorted index. Alternatively, if the
 table is small enough, the optimizer may decide to simply read all the
 blocks of the table and bypass the index since it estimates the cost of
 the index I/O plus the table I/O to be higher than just the table
 I/O.
The query optimizer has to make some key decisions even with a query on a single table.
 When a more involved query is submitted, such as one involving many tables that must be joined
 together efficiently, or one that has complex selection criteria and multiple levels of
 sorting, the query optimizer has a much more complex task.
Prior to Oracle Database 10g, you could choose
 between two different Oracle query optimizers, a rule-based
 optimizer and a cost-based optimizer;
 these are described in the following sections. Since Oracle Database
 10g, the rule-based optimizer is desupported. The
 references to syntax and operations for the rule-based optimizer in the
 following sections are provided for reference and are applicable only if
 you are running a very old release of Oracle.
Rule-Based Optimization

Oracle has always had a query optimizer, but until Oracle7 the optimizer was only rule
 based. The rule-based optimizer, as the name implies, uses a set of predefined rules as the
 main determinant of query optimization decisions. Since the rule-based optimizer has been
 desupported as of Oracle Database 10g, your interest in this topic is
 likely be limited to supporting old Oracle Databases where this choice may have been
 made.
Rule-based optimization sometimes provided better performance than
 the early versions of Oracle’s cost-based optimizer for specific
 situations. The rule-based optimizer had several weaknesses, including
 offering only a simplistic set of rules—and, at the time of this
 writing, has not been enhanced for several releases. The Oracle
 rule-based optimizer had about 20 rules and assigned a weight to each
 one of them. In a complex database, a query can easily involve several
 tables, each with several indexes and complex selection conditions and
 ordering. This complexity means that there were a lot of options, and
 the simple set of rules used by the rule-based optimizer might not
 differentiate the choices well enough to make the best choice.
The rule-based optimizer assigned an optimization score to each potential execution path
 and then took the path with the best optimization score. Another weakness in the rule-based
 optimizer was resolution of optimization choices made in the event of a “tie” score. When
 two paths presented the same optimization score, the rule-based optimizer looked to the
 syntax of the SQL statement to resolve the tie. The winning execution path was based on the
 order in which the tables occured in the SQL statement.
You can understand the potential impact of this type of tiebreaker by looking at a
 simple situation in which a small table with 10 rows, SMALLTAB, is joined to a large table
 with 10,000 rows, LARGETAB, as shown in Figure 4-4. If the optimizer chose to read SMALLTAB first, the Oracle Database would read the 10
 rows and then read LARGETAB to find the matching rows for each of the 10 rows. If the
 optimizer chose to read LARGETAB first, the database would read 10,000 rows from LARGETAB
 and then read SMALLTAB 10,000 times to find the matching rows. Of course, the rows in
 SMALLTAB would probably be cached, reducing the impact of each probe, but you could still see a
 dramatic difference in performance.
[image: The effect of optimization choices]

Figure 4-4. The effect of optimization choices

Differences like this could occur with the rule-based optimizer as
 a result of the ordering of the table names in the query. In the
 previous situation the rule-based optimizer returned the same results
 for the query, but it used widely varying amounts of resources to
 retrieve those results.

Cost-Based Optimization

To improve the optimization of SQL statements, Oracle introduced the
 cost-based optimizer in Oracle7. As the name
 implies, the cost-based optimizer does more than simply look at a set of
 optimization rules; instead, it selects the execution path that requires
 the least number of logical I/O operations. This approach avoids the
 problems discussed in the previous section. The cost-based optimizer
 would know which table was bigger and would select the right table to
 begin the query, regardless of the syntax of the SQL statement.
Oracle8 and later versions, by default, use the cost-based
 optimizer to identify the optimal execution plan. And, since Oracle
 Database 10g, the cost-based optimizer is the only
 supported optimizer. To properly evaluate the cost of any particular
 execution plan, the cost-based optimizer uses statistics about the
 composition of the relevant data structures. These statistics are
 automatically gathered by default since the Oracle Database
 10g release. Among the statistics gathered in the
 AWR are database segment access and usage statistics, time model
 statistics, system and session statistics, statistics about which SQL statements that produce
 the greatest loads, and Active Session History (ASH) statistics.
How statistics are used

The cost-based optimizer finds the optimal execution plan by assigning an
 optimization score for each of the potential execution plans using its
 own internal rules and logic along with statistics that reflect the
 state of the data structures in the database. These statistics relate
 to the tables, columns, and indexes involved in the execution plan.
 The statistics for each type of data structure are listed in Table 4-1.
Table 4-1. Database statistics
	Data
 structure
	Type of
 statistics

	Table
	Number of rows
 Number of blocks

 Number of unused blocks
 Average available
 free space per block
 Number of chained
 rows
 Average row length

	Column
	Number of distinct values per column

 Second-lowest column value
 Second-highest
 column value
 Column density factor

	Index
	Depth of index B*-tree structure
 Number of
 leaf blocks
 Number of distinct values

 Average number of leaf blocks per key

 Average number of data blocks per key

 Clustering factor

Oracle Database 10g and more current
 database releases also collect overall system statistics, including
 I/O and CPU performance and utilization. These statistics are stored
 in the data dictionary, described in this chapter’s final section,
 Data Dictionary Tables.
You can see that these statistics can be used individually and
 in combination to determine the overall cost of the I/O required by an
 execution plan. The statistics reflect both the size of a table and
 the amount of unused space within the blocks; this space can, in turn,
 affect how many I/O operations are needed to retrieve rows. The index
 statistics reflect not only the depth and breadth of the index tree,
 but also the uniqueness of the values in the tree, which can affect
 the ease with which values can be selected using the
 index.
Note
The accuracy of the cost-based optimizer depends on the
 accuracy of the statistics it uses, so updating statistics has
 always been a must. Formerly, you would have used the SQL statement
 ANALYZE to compute or estimate these statistics. When managing an
 older release, many database administrators also used a built-in
 PL/SQL package, DBMS_STATS, which contains a number of procedures
 that helped automate the process of collecting
 statistics.
Stale statistics can lead to database performance problems,
 which is why database statistics gathering has been automated by
 Oracle. This statistics gathering can be quite granular. For
 example, as of Oracle Database 10g, you can
 enable automatic statistics collection for a table, which can be
 based on whether a table is either stale (which means that more than
 10 percent of the objects in the table have changed) or
 empty.
The optimizer in Oracle Database 12c now automatically decides
 whether available statistics can generate a good execution plan during the compilation
 of SQL statements. If statistics are missing or out of date, dynamic sampling of tables
 automatically occurs to generate new statistics. Also in this database release,
 statistics are automatically created as part of bulk loading operations.

The use of statistics makes it possible for the cost-based
 optimizer to make a much more well-informed choice of the optimal
 execution plan. For instance, the optimizer could be trying to decide
 between two indexes to use in an execution plan that involves a
 selection based on a value in either index. The rule-based optimizer
 might very well rate both indexes equally and resort to the order in
 which they appear in the WHERE clause to choose an execution plan. The
 cost-based optimizer, however, knows that one index contains 1,000
 entries while the other contains 10,000 entries. It even knows that
 the index that contains 1,000 values contains only 20 unique values,
 while the index that contains 10,000 values has 5,000 unique values.
 The selectivity offered by the larger index is much greater, so that
 index will be assigned a better optimization score and used for the
 query.
Testing the Effect of New Statistics
There may be times when you don’t want to update your statistics, such as when the
 distribution of data in your database has reached a steady state or when your queries
 are already performing optimally (or at least deliver adequate, consistent performance).
 Oracle gives you a way to try out a new set of statistics to see if they might make
 things better while still maintaining the option of returning to the old set: you can
 save your statistics in a separate table and then collect new ones. If, after testing
 your application with these new statistics, you decide you preferred the way the old
 statistics worked, you can simply reload the saved statistics.

In Oracle9i, you have the option of
 allowing the cost-based optimizer to use CPU speed as one of the
 factors in determining the optimal execution plan. An initialization
 parameter turns this feature on and off. As of Oracle Database
 10g, the default cost basis is calculated on the
 CPU cost plus the I/O cost for a plan.
Even with all the information available to it, the cost-based
 optimizer did have some noticeable initial flaws. Aside from the fact
 that it (like all software) occasionally had bugs, the cost-based
 optimizer used statistics that didn’t provide a complete picture of
 the data structures. In the previous example, the only thing the
 statistics tell the optimizer about the indexes is the number of
 distinct values in each index. They don’t reveal anything about the
 distribution of those values. For instance, the larger index can
 contain 5,000 unique values, but these values can each represent two
 rows in the associated table, or one index value can represent 5,001
 rows while the rest of the index values represent a single row. The
 selectivity of the index can vary wildly, depending on the value used
 in the selection criteria of the SQL statement. Fortunately, Oracle
 7.3 introduced support for collecting histogram statistics for indexes
 to address this exact problem. You could create histograms using
 syntax within the ANALYZE INDEX
 command when you gathered statistics yourself in Oracle versions prior
 to Oracle Database 10g. This syntax is described
 in your Oracle SQL reference documentation.

Influencing the cost-based optimizer

There are two ways you can influence the way the cost-based optimizer selects an
 execution plan. The first way is by setting the OPTIMIZER_MODE initialization parameter. ALL_ROWS is the default setting for OPTIMIZER_MODE, enabling optimization with the goal
 of best throughput. FIRST_ROWS optimizes plans for returning the first set of rows from a SQL statement. You
 can specify the number of rows using this parameter. The optimizer mode tilts the
 evaluation of optimization scores slightly and, in some cases, may result in a different
 execution plan.
Oracle also gives you a way to influence the decisions of the
 optimizer with a technique called hints. A hint
 is nothing more than a comment with a specific format inside a SQL
 statement. Hints can be categorized as follows:
	Optimizer SQL hints for changing the query optimizer
 goal

	Full table scan hints

	Index unique scan hints

	Index range scan descending hints

	Fast full index scan hints

	Join hints, including index joins, nested loop joins, hash
 joins, sort merge joins, Cartesian joins, and join order

	Other optimizer hints, including access paths, query
 transformations, and parallel execution

Hints come with their own set of problems. A hint looks just
 like a comment, as shown in this extremely simple SQL statement. Here,
 the hint forces the optimizer to use the EMP_IDX index for the EMP
 table:
SELECT /*+ INDEX(EMP_IDX) */ LASTNAME, FIRSTNAME, PHONE FROM EMP
If a hint isn’t in the right place in the SQL statement, if the
 hint keyword is misspelled, or if you change the name of a data
 structure so that the hint no longer refers to an existing structure,
 the hint will simply be ignored, just as a comment would be. Because
 hints are embedded into SQL statements, repairing them can be quite
 frustrating and time-consuming if they aren’t working properly. In
 addition, if you add a hint to a SQL statement to address a problem
 caused by a bug in the cost-based optimizer and the cost-based
 optimizer is subsequently fixed, the SQL statement will still not use
 the corrected (and potentially improved) optimizer.
However, hints do have a place—for example, when a developer has
 a user-defined datatype that suggests a particular type of access. The
 optimizer cannot anticipate the effect of user-defined datatypes, but
 a hint can properly enable the appropriate retrieval path.
For more details about when hints might be considered, see the
 sidebar Accepting the Verdict of the Optimizer
 later in this chapter.

Specifying an Optimizer Mode

In the previous section, we mentioned two optimizer modes: ALL_ROWS and FIRST_ROWS.
 Two other optimizer modes for Oracle versions prior to Oracle Database
 10g were:
	RULE
	Forces the use of the rule-based optimizer

	CHOOSE
	Allowed Oracle to choose whether to use the cost-based optimizer or the
 rule-based optimizer

With an optimizer mode of CHOOSE, which previously was the default setting, Oracle would
 use the cost-based optimizer if any of the tables in the SQL statement had statistics
 associated with them. The cost-based optimizer would make a statistical estimate for the
 tables that lacked statistics. In the years since the cost-based optimizer was introduced,
 the value of using costs has proven itself as this version of the optimizer has grown in
 accuracy and sophistication, as the next section and the remainder of this chapter
 illustrate.
Newer database releases and the cost-based optimizer

The cost-based optimizer makes decisions with a wider range of
 knowledge about the data structures in the database than the previous
 rule-based optimizer. Although the cost-based optimizer isn’t flawless
 in its decision-making process, it does make more accurate decisions
 based on its wider base of information, especially because it has
 matured since its introduction in Oracle7 and has improved with each
 new release.
The cost-based optimizer also takes into account improvements and new features in the
 Oracle Database as they are released. For instance, the cost-based optimizer understands
 the impact that partitioned tables have on the selection of an execution plan, while the
 rule-based optimizer does not. The cost-based optimizer optimizes execution plans for star
 schema queries, heavily used in data warehousing, while the rule-based optimizer has not
 been enhanced to deal effectively with these types of queries or leverage many other such
 business intelligence query features.
Oracle Corporation was quite frank about its intention to make the cost-based
 optimizer the optimizer for the Oracle Database through a period of
 years when both optimizer types were supported. In fact, since Oracle Database
 10g, the rule-based optimizer is no longer supported.
We will remind you of one fact of database design at this point.
 As good as the cost-based optimizer is today, it is not a magic potion
 that remedies problems brought on by a poor database and application
 design or a badly selected hardware and storage platform. When
 performance problems occur today, they are most often due to bad
 design and deployment choices.
Accepting the Verdict of the Optimizer
Some of you may doubt the effectiveness of Oracle query optimization if you are on
 an old Oracle Database release prior to Oracle Database 10g. You
 may have seen cases in which the query optimizer chose an incorrect execution path that
 resulted in poor performance. You may feel that you have a better understanding of the
 structure and use of the database than the query optimizer. For these reasons, you might
 look to hints to force the acceptance of the execution path you feel is correct.
We recommend using the query optimizer for all of your queries rather than using
 hints. Although the Oracle developers who wrote the query optimizer had no knowledge of
 your particular database, they did depend on a lot of customer feedback, experience, and
 knowledge of how Oracle processes queries during the creation of the query optimizer.
 They designed the cost-based optimizer to efficiently execute all types of queries that
 may be submitted to the Oracle Database. And, oh yes, they have been in a process of
 continual improvement for over 15 years.
In addition, there are three advantages that the query
 optimizer has over your discretion in all cases:
	The optimizer sees the structure of the entire database. Many Oracle Databases
 support a variety of applications and users and it’s quite possible that your system
 shares data with other systems, making the overall structure and composition of the
 data somewhat out of your control. In addition, you probably designed and tested
 your systems in a limited environment, so your idea of the optimal execution path
 may not match the reality of the production environment, especially as it
 evolves.

	The optimizer has a dynamically changing view of the database and its data. The
 statistics used by the cost-based optimizer can change with each automated
 collection. In addition to the changing statistical conditions, the internal
 workings of the optimizer are occasionally changed to accommodate changes in the way
 the Oracle Database operates. Since Oracle9i, the cost-based
 optimizer takes into account the speed of the CPU, and since Oracle Database
 10g, leverages statistics on I/O. If you force the selection
 of a particular query plan with a hint, you might not benefit from changes in
 Oracle.

	A bad choice by the optimizer may be a sign that something
 is amiss in your database. In the overwhelming majority of
 cases, the optimizer selects the optimal execution path. What
 may be seen as a mistake by the query optimizer can, in reality,
 be traced to a misconception about the database and its design
 or to an improper implementation. A mistake is always an
 opportunity to learn, and you should always take advantage of
 any opportunity to increase your overall understanding of how
 Oracle and its optimizer work.

We recommend that you consider using hints only when you have determined them to be
 absolutely necessary by thoroughly investigating the causes for an optimization problem.
 The hint syntax was included in Oracle syntax as a way to handle exceptional situations,
 rather than to allow you to circumvent the query optimizer. If you’ve found a
 performance anomaly and further investigation has led to the discovery that the query
 optimizer is choosing an incorrect execution path, then and only then should you assign
 a hint to a query. In other words, do not use a hint until you can explain why the
 optimizer made a poor choice in the first place.
Even in this situation, we recommend that you keep an eye on
 the hinted query in a production environment to make sure that the
 forced execution path is still working optimally.

Saving the Optimization

There may be times when you want to prevent the optimizer from
 calculating a new plan whenever a SQL statement is submitted. For
 example, you might do this if you’ve finally reached a point at which
 you feel the SQL is running optimally, and you don’t want the plan to
 change regardless of future changes to the optimizer or the
 database.
Starting with Oracle8i, you could create a stored outline that stored
 the attributes used by the optimizer to create an execution plan. Once
 you had a stored outline, the optimizer simply used the stored
 attributes to create an execution plan. As of
 Oracle9i, you could also edit the hints that were
 in the stored outline.
With the release of Oracle Database 11g,
 Oracle suggested that you move your stored outlines to SQL
 plan baselines. Now, in addition to manually loading plans,
 Oracle can be set to automatically capture plan histories into these SQL
 plan baselines. Included in this gathered history is the SQL text,
 outline, bind variables, and compilation environment. When a SQL
 statement is compiled, Oracle will first use the cost-based optimizer to
 generate a plan and will evaluate any matching SQL plan baselines for
 relative cost, choosing the plan with the lowest cost.
Oracle Database 12c adds a new capability for SQL plans called
 adaptive plan management. This feature lets you specify multiple plans for query
 optimization and have the optimizer select between them based on runtime statistics and user
 directives.

Comparing Optimizations

Oracle makes changes to the optimizer in every release. These changes
 are meant to improve the overall quality of the decisions the optimizer
 makes, but a generally improved optimizer could still create an
 execution plan for any particular SQL statement that could result in a
 decrease in performance.
The Oracle SQL Plan Analyzer tool is designed to give you the ability to recognize potential
 problems caused by optimizer upgrades. This tool compares the execution
 plans for the SQL statements in your application, flagging the ones in
 which the plans differ. Once these statements are identified, SQL Plan
 Analyzer executes the SQL in each environment and provides feedback on
 the performance and resource utilization for each. Although SQL Plan
 Analyzer cannot avoid potential problems brought on by optimizer
 upgrades, the tool can definitely simplify an otherwise complex testing
 task.
Oracle Database 11g also includes a feature
 called Database Replay. This feature captures workloads from
 production systems and allows them to be run on test systems. With this
 capability, you can test actual production scenarios against new
 configurations or versions of the database, and Database Replay will
 spot areas of potential performance problems on the changed platform.
 Both SQL Plan Analyzer and Database Replay are part of the Real
 Application Testing toolkit from Oracle.

Performance and Optimization

The purpose of the optimizer is to select the best execution plan for your
 queries. But there is a lot more to optimizing the overall performance
 of your database. Oracle performance is the subject of Chapter 7 of this book.

SQL Translation

The Oracle Database supports a rich set of SQL syntax; however, other databases also have
 their own SQL syntax, which may differ from the exact syntax supported in Oracle. In the past,
 these differences would require a sometimes burdensome change in the actual SQL statements in
 an application.
Oracle Database 12c introduces a SQL
 Translation Framework. This feature uses SQL Translators to intercept
 non-Oracle SQL statements and translate the statements into Oracle syntax.
 The SQL statements are captured and translated, and the translations are
 automatically used once they are created.
If a SQL statement cannot be translated, the Oracle Database returns
 an error. You can add custom translations using the same framework,
 allowing you to address SQL issues without having to change the actual SQL
 statements in the application.
You would use SQL Developer, a very popular tool for the Oracle Database, to implement not
 only SQL translation, but to migrate data structures and data from other databases. SQL Developer is available as a free download from the Oracle Technology Network,
 and includes a great deal of useful functionality for managing and administration of your
 Oracle Database and Oracle Database Cloud Service, discussed in Chapter 15.

Understanding the Execution Plan

Oracle’s query optimizer uses an execution plan for each query
 submitted. By and large, although the optimizer does a good job of
 selecting the execution plan, there may be times when the performance of
 the database suggests that it is using a less-than-optimal execution
 plan.
The only way you can really tell what path is being selected by the
 optimizer is to see the layout of the execution plan. You can use two
 Oracle character-mode utilities to examine the execution plan chosen by
 the Oracle optimizer. These tools allow you to see the successive steps
 used by Oracle to collect, select, and return the data to the user.
The first utility is the SQL EXPLAIN PLAN statement. When you use EXPLAIN PLAN,
 followed by the keyword FOR and the SQL statement whose execution plan you
 want to view, the Oracle cost-based optimizer returns a description of the
 execution plan it will use for the SQL statement and inserts this
 description into a database table. You can subsequently run a query on
 that table to get the execution plan, as shown in SQL*Plus in Figure 4-5.
[image: Results of a simple EXPLAIN PLAN statement in SQL*Plus]

Figure 4-5. Results of a simple EXPLAIN PLAN statement in SQL*Plus

The execution plan is presented as a series of rows in the table,
 one for each step taken by Oracle in the process of executing the SQL
 statement. The optimizer also includes some of the information related to
 its decisions, such as the overall cost of each step and some of the
 statistics that it used to make its decisions.
 You can also view an execution plan for a single SQL statement with SQL Developer or in the SQL Workshop area of Application Express, which is discussed in Chapter 15.
The optimizer writes all of this information to a table in the database. By default, the
 optimizer uses a table called PLAN_TABLE; make sure the table exists before you use EXPLAIN
 PLAN. (The utlxplan.sql script included with your Oracle Database creates
 the default PLAN_TABLE table.) You can specify that EXPLAIN PLAN uses a table other than
 PLAN_TABLE in the syntax of the statement. For more information about the use of EXPLAIN PLAN,
 please refer to your Oracle documentation.
There are times when you want to examine the execution plan for a
 single statement. In such cases, the EXPLAIN PLAN syntax is appropriate.
 There are other times when you want to look at the plans for a group of
 SQL statements. For these situations, you can set up a trace for the
 statements you want to examine and then use the second utility, TKPROF, to give you the results of the trace in a more
 readable format in a separate file. At other times, you might also use
 Oracle’s SQL Trace facility to generate a file containing the SQL
 generated when using TKPROF in tuning applications.
You must use the EXPLAIN keyword when you start TKPROF, as this will
 instruct the utility to execute an EXPLAIN PLAN statement for each SQL
 statement in the trace file. You can also specify how the results
 delivered by TKPROF are sorted. For instance, you can have the SQL
 statements sorted on the basis of the physical I/Os they used; the elapsed
 time spent on parsing, executing, or fetching the rows; or the total
 number of rows affected.
The TKPROF utility uses a trace file as its raw material. Trace
 files are created for individual sessions. You can start collecting a
 trace file either by running the target application with a switch (if it’s
 written with an Oracle product such as Developer) or by explicitly turning
 it on with an EXEC SQL call or an ALTER SESSION SQL statement in an
 application written with a 3GL. The trace process, as you can probably
 guess, can significantly affect the performance of an application, so you
 should turn it on only when you have some specific diagnostic work to
 do.
You can also view the execution plan through Enterprise Manager for the SQL statements
 that use the most resources. Tuning your SQL statements isn’t a trivial task, but with the
 EXPLAIN PLAN and TKPROF utilities you can get to the bottom of the decisions made by the
 cost-based optimizer. It takes a bit of practice to understand exactly how to read an
 execution plan, but it’s better to have access to this type of information than not. In
 large-scale system development projects, it’s quite common for developers to submit EXPLAIN
 PLANs for the SQL they’re writing to a DBA as a formal step toward completing a form or
 report. While time-consuming, this is the best way to ensure that your SQL is tuned before
 going into production.

SQL Advisors

Oracle Database 10g added a tool called the SQL
 Tuning Advisor. This tool performs advanced optimization analysis on
 selected SQL statements, using workloads that have been automatically
 collected into the Automatic Workload Repository or that you have
 specified yourself. Once the optimization is done, the SQL Tuning Advisor
 makes recommendations, which could include updating statistics, adding
 indexes, or creating a SQL profile. This profile is stored in the database
 and is used as the optimization plan for future executions of the
 statement, which allows you to “fix” errant SQL plans without having to
 touch the underlying SQL.
The tool is often used along with the SQL Access Advisor since that tool provides advice on materialized views and indexes. Oracle Database
 11g introduces a SQL Advisor tool that combines functions of the SQL
 Tuning Advisor and the SQL Access Advisor (and now includes a new Partition Advisor). The
 Partition Advisor component advises on how to partition tables, materialized views, and indexes in
 order to improve SQL performance.

Data Dictionary Tables

The main purpose of the Oracle data dictionary is to store data that describes the structure of the objects in
 the Oracle Database. Because of this purpose, there are many views in the Oracle data
 dictionary that provide information about the attributes and composition of the data
 structures within the database.
All of the views listed in this section actually have three
 varieties, which are identified by their prefixes:
	DBA_
	Includes all the objects in the database. A user must have DBA
 privileges to use this view.

	USER_
	Includes only the objects in the user’s own database
 schema.

	ALL_
	Includes all the objects in the database to which a particular
 user has access. If a user has been granted rights to objects in
 another user’s schema, these objects will appear in this
 view.

This means that, for instance, there are three views that relate to
 tables: DBA_TABLES, USER_TABLES, and ALL_TABLES. Oracle Database
 12c includes views for container databases prefixed
 with CDB_.
Some of the more common views that directly relate to the data
 structures are described in Table 4-2.
Table 4-2. Data dictionary views about data structures
	Data dictionary
 view
	Type of
 information

	ALL_TABLES
	Information about the
 object and relational tables

	TABLES
	Information about the relational tables

	XML_TABLES
	Information about XML tables

	TAB_COMMENTS
	Comments about the table
 structures

	TAB_HISTOGRAMS
	Statistics about the use of
 tables

	TAB_PARTITIONS
	Information about the
 partitions in a partitioned table

	TAB_PRIVS*
	Different views detailing
 all the privileges on a table, the privileges granted by the user,
 and the privileges granted to the user

	TAB_COLUMNS
	Information about the
 columns in tables and views

	COL_COMMENTS
	Comments about individual
 columns

	COL_PRIVS*
	Different views detailing
 all the privileges on a column, the privileges granted by the
 user, and the privileges granted to the user

	LOBS
	Information about large
 object (LOB) datatype columns

	VIEWS
	Information about
 views

	INDEXES
	Information about the
 indexes on tables

	IND_COLUMNS
	Information about the
 columns in each index

	IND_PARTITIONS
	Information about each
 partition in a partitioned index

	PART_*
	Different views detailing
 the composition and usage patterns for partitioned tables and
 indexes

	CONS_COLUMNS
	Information about the
 columns in each constraint

	CONSTRAINTS
	Information about
 constraints on tables

	SEQUENCES
	Information about sequence
 objects

	SYNONYMS
	Information about
 synonyms

	TAB_COL_STATISTICS
	Statistics used by the
 cost-based analyzer

	TRIGGERS
	Information about the
 triggers on tables

	TRIGGER_COLS
	Information about the
 columns in triggers

Chapter 5. Managing Oracle

Many Oracle users are not fully aware of system and Oracle Database
 management activities that go on around them. But effective database and
 infrastructure management is vital to providing a reliable, available, and
 secure platform that delivers optimal performance. This chapter focuses on
 how Oracle can be managed to ensure these virtues for your
 environment.
Much of the management responsibility usually falls upon the database
 administrator (DBA). The DBA is typically responsible for the following
 management tasks:
	Installing and patching the database and options

	Creating tables and indexes

	Creating and managing tablespaces

	Managing control files, online redo logs, archived redo logs, job
 queues, and server processes

	Creating, monitoring, and tuning data-loading procedures

	Adding users and roles and implementing security procedures

	Implementing backup, recovery, information lifecycle management,
 and high availability plans

	Monitoring database performance and exceptions

	Reorganizing and tuning the database

	Troubleshooting database problems

	Coordinating with Oracle Global Customer Support

Where Oracle’s engineered systems such as the Oracle Exadata Database
 Machine are deployed, DBAs often take on other responsibilities such as
 operating system monitoring and patching, management of storage, and
 hardware monitoring and troubleshooting.
Particularly in smaller companies, DBAs are often called upon to take
 part in database schema design and security planning. DBAs in large
 enterprises may also help set up replication strategies, disaster and
 high-availability strategies, hierarchical storage management procedures,
 and the linking of database event monitoring (e.g., specific database tasks
 and status) into enterprise network monitors.
The feature list has grown with each Oracle Database
 release—inevitably, since more flexible functionality means more to
 configure and monitor. Yet managing Oracle can be much less labor-intensive
 today than it was in the past. While early editions of this book described
 the novelty of an easier-to-use management interface for Oracle, producing
 better versions of Oracle Enterprise Manager (EM) was only part of the
 effort to simplify management underway within Oracle Server Development. The
 database itself has become more self-tuning and self-managing with each
 release.
Initially, this effort was focused mostly on better management of single instances of the
 Oracle Database. For Oracle Database 10g and Oracle Database
 11g, the focus grew to effective management of scores of computers and
 Oracle Database instances and clusters common in grid computing. For Oracle Database
 12c, there is added emphasis on managing and provisioning Oracle
 Databases deployed on public and private clouds.
Manageability of grid and cloud infrastructures must take into account disk virtualization,
 resource pooling, provisioning of computer resources, dynamic workload management, and dynamic
 control of changing components. Oracle’s initiatives in these areas resulted in many significant
 changes in managing the database geared toward significantly reducing this complexity. While
 targeted at simplifying complex enterprise management tasks where dozens or hundreds of Oracle
 Databases are deployed, most of these improvements also have a significant impact in simplifying
 management of more traditional Oracle Database implementations.
Note
As a consequence of the grid, cloud, and self-tuning and self-managing initiatives,
 readers of early editions of this book will find a large number of management changes in this
 chapter and in other related chapters throughout this book.

All of the tasks we’ve just described come under the heading of
 managing the database. Many of the provisioning duties, including
 installation and initial are discussed in Chapter 3. Security issues are discussed in
 Chapter 6. This chapter
 explores the following aspects of managing Oracle:
	Database manageability features and advisors and how they aid
 management

	Oracle Enterprise Manager, which provides an intuitive interface
 and underlying framework for many database management tasks

	Backup and recovery operations and information lifecycle
 management, which are the foundation of database integrity
 protection

	Oracle Support

In subsequent chapters, we’ll cover other related topics in more
 depth, including security, performance, and high availability. You will need
 an understanding of all of these areas as you plan and implement effective
 management strategies for your Oracle Database environment.
Manageability Features

Oracle’s goal of simplifying management of the database became clear
 with the introduction of the “Intelligent Infrastructure,” first
 highlighted with Oracle Database 10g, eliminating
 many manual steps required to manage the database. Subsequent database
 versions and releases added more self-tuning and self-management features
 and advisor tools. Automatic database optimizer statistics gathering, the
 Segment Advisor, and the SQL Tuning Advisor are just a few of the many
 such features introduced.
Today, statistics containing active session history are
 automatically gathered and populate the Automatic Workload Repository
 (AWR). The Automatic Database Diagnostic Monitor (ADDM) tracks changes in database performance by leveraging the
 data in the AWR. Server-generated alerts occur “just in time” and appear
 in Enterprise Manager. Resolving system utilization problems can be as
 simple as reviewing the alerts and accepting the recommendations. This is
 in sharp contrast to steps typically taken prior to Oracle Database
 10g that included actively watching for events,
 exploring V$ views, identifying related
 SQL, and then figuring out the needed steps to resolve the problem.
With its focus on the cloud, Oracle Database 12c introduces pluggable
 databases that can further simplify management where large numbers of Oracle Databases are
 deployed since many management functions are more efficient when defined for multitenant
 container databases instead of dozens of pluggable databases. The number of database
 management activities online also continues to grow, further simplifying management
 considerations (e.g., datafile movement, partition and subpartition movement, and redefinition
 of tables that contain multiple partitions or that have Virtual Private Database (VPD) policies are a few of the recent additions).
Key to understanding the infrastructure Oracle has created for
 managing the database is exploring the various management components. We
 will start with the Oracle Database advisors and then describe the role of
 Automatic Storage Management.
Database Advisors

Oracle’s advisors deliver database performance, recoverability, and
 diagnostic service improvement recommendations via Oracle Enterprise
 Manager. Each database advisor has a unique role. Many can be set to
 automatically take action if preferred.
The Automated Database Diagnostic Monitor (ADDM) performs real-time database performance diagnostics,
 recommends potential solutions to performance problems, and quantifies
 benefits of those solutions. ADDM, usually set to run every hour,
 monitors current snapshots of the database state and workload gathered
 in the AWR. ADDM can also be manually triggered to analyze historical
 data for specific time periods. Real-time ADDM detects and diagnoses
 transient problems that include high CPU loads, I/O in CPU bound
 situations, over allocated memory, interconnect issues, session and
 process limits being reached, and hangs and deadlocks. In Oracle
 Database 12c, real-time ADDM is automatically run
 every three seconds, enabling DBAs to resolve deadlocks, hangs, shared
 pool connection issues, and other similar situations without having to
 restart the Oracle Database.
Other Oracle Database performance-related advisors include:
	SQL Tuning Advisor
	Available for the Oracle Database since Oracle Database
 11g, the SQL Tuning Advisor analyzes SQL
 statements, object statistics, access paths, and degree of
 parallelism to make improvement recommendations such as creating a
 new SQL profile or choosing an alternate execution plan from the
 AWR. In automatic mode, it will automatically create a better plan
 if that plan will yield significant improvement.

	SQL Access Advisor
	Also available since Oracle Database 11g, the SQL
 Access Advisor provides recommendations on materialized views,
 indexes, and materialized view logs that should be created,
 dropped, and retained. The Advisor also makes recommendations
 about partitioning to improve performance.

	SPM Evolve Advisor
	New in Oracle Database 12c, the
 SQL Plan Management (SPM) Evolve Advisor enables scheduling of testing of new
 plans added to the SQL plan baseline, described in Chapter 4, compares the new plans versus
 accepted plans for cost, and automatically accepts plans that have
 a much lower cost.

	Memory Advisors
	The Memory Advisor is an expert system that provides automatic
 memory management and eliminates manual adjustment
 of the SGA and PGA when enabled (and recommended in Oracle
 Database 11g or more recent releases). If
 just automatic shared memory is enabled instead, you will have
 access to the Shared Pool (SGA) Advisor and PGA Advisor. Finally, if you are manually managing
 shared memory, you will have access to the Shared Pool (SGA) Advisor, Buffer Cache Advisor,
 and PGA Advisor.

	Java Pool Advisor
	The Java Pool Advisor provides statistics about library cache memory used for Java
 and predicts parse rate based on changes in the Java pool
 size.

	Segment Advisor
	Use of the Segment Advisor eliminates the need to identify fragmented objects
 and reorganize the objects using scripts. The Segment Advisor
 advises which objects to shrink online. For tables that cannot be
 shrunk, it will recommend an online table redefinition. It can
 also make OLTP compression recommendations. The Segment Advisor
 can be run automatically or manually. (Note that Automatic Segment
 Space Management or ASSM is the default for locally managed tablespaces in
 recent Oracle Database releases.)

Advisors can also provide recommendations as you determine the
 recoverability characteristics of the Oracle Database. Such advisors
 include:
	Undo Advisor
	The Undo Advisor helps size a fixed-size undo tablespace and can be
 used to set the low threshold of undo retention for Flashback
 capabilities. You first estimate the length of your longest
 running query and the longest interval you will need for
 Flashback. The larger of these two values then serves as input to
 the Undo Advisor which returns a size recommendation.

	MTTR Advisor
	The Mean Time to Recovery (MTTR) Advisor provides guidance regarding the impact of MTTR
 settings and physical writes. The mean time for recovery from a
 system failure is specified based on business needs by the
 database administrator using Enterprise Manager, and then
 reconfiguration of Oracle parameters takes place to match
 requirements.

Another class of advisors used to resolve database and SQL issues
 first became available with Oracle Database 11g.
 When critical errors are detected, the fault diagnosis infrastructure
 for the Oracle Database can perform a deeper analysis called a health
 check using a Health Monitor. The advisors leverage diagnostic data
 including database traces, the alert log, Health Monitor reports, and
 other diagnostic information stored in the Automatic Diagnostic
 Repository (ADR). The infrastructure also includes a SQL Test Case
 Builder used for gathering information about problems and transmitting
 the information to Oracle Support. The advisors in this infrastructure
 include:
	SQL Repair Advisor
	If a SQL statement fails with a critical error, the SQL
 Repair Advisor will analyze the statement and recommend a patch to
 fix it.

	Data Recovery Advisor
	The Data Recovery Advisor is used in recovering from corrupted blocks,
 corrupted or missing files, and other data failures and is
 integrated with database health checks and RMAN.

Automatic Storage Management

Part of the Oracle Database since Oracle Database 10g,
 Automatic Storage Management (ASM) provides a file system and volume
 manager in the database, enabling automated striping of files and
 automating mirroring of database extents. DBAs simply define a pool of
 storage or disk group and manage the disk group through EM. Disk groups
 are created with normal redundancy as the default (two-way mirroring).
 You can also create disk groups with high redundancy (three-way
 mirroring) or external redundancy (no mirroring). Failure groups are ASM
 disks that share a common failure point, so mirroring will automatically
 occur to a different failure group to provide high availability.
Oracle manages the files that are stored in ASM disk groups. ASM
 manages Oracle datafiles, logfiles, control files, archive logs, and
 RMAN/backup sets. Workloads can be dynamically rebalanced as storage is
 reconfigured such that when storage is added or removed from the pool,
 data can be redistributed in the background.
Oracle Database 12c introduces a number of
 features that improve the availability and reliability of ASM. ASM disk
 scrubbing provides automatic repair of logical data corruptions. ASM
 disk resync allows multiple disks to be brought back online simultaneously.

Oracle Enterprise Manager

Oracle Enterprise Manager was first distributed with Oracle7 and was focused at that time on just
 simplifying database management. Early EM versions required Windows-based workstations as
 client machines. A Java applet browser-based EM console appeared with the
 Oracle8i database release. The HTML-based console was introduced with
 Oracle9i and is now the basis for Enterprise Manager
 12c used to manage the database and many other Oracle products and
 platforms for cloud-based and other deployments. Alternatively, Enterprise Manager
 12c can be accessed via iOS devices including iPhones and iPads.
Oracle Database 12c also comes with a small
 footprint version of Enterprise Manager called Enterprise Manager Express
 that requires no additional middleware. Enterprise Manager Express
 provides basic storage, security, and configuration administration support
 as well as advanced performance diagnostics and tuning.
Enterprise Manager provides a basic interface for monitoring and
 management of Oracle Database users and user privileges, database schema
 and database configuration status, and backup and recovery. Today, EM is
 far more than just an Oracle Database management interface and can be used
 for the following:
	Database management
	Enables DBA to more easily perform database change and
 configuration management, patching, provisioning, tasking, masking
 and subsetting, and performance management and tuning while
 leveraging automated management capabilities in the Oracle
 Database

	Database lifecycle management
	Oracle Database discovery, initial provisioning, patching,
 configuration management, and ongoing change management

	Exadata management
	Provides unified view of Exadata nodes, Storage Server cells,
 InfiniBand switches, software running on them, and resource
 utilization

	Hardware and virtualization
 management
	Used for managing Oracle VM where Linux, Unix/Solaris, and
 Windows are deployed and integrated with the Oracle Virtual Assembly
 Builder

	Middleware management
	Configuration and lifecycle management for Oracle WebLogic
 Server, SOA Suite, Coherence, Identity Management, WebCenter, Oracle
 Business Intelligence, and the Exalogic Elastic Cloud

	Cloud management
	Cloud management for the Oracle Database and Oracle Fusion
 Middleware that includes self-service provisioning balanced against
 centralized policy-based resource management, integrated chargeback,
 and capacity planning

	Heterogeneous (non-Oracle)
 management
	Oracle and partner plug-ins and connectors posted in the
 Enterprise Manager 12c Extensibility Exchange
 that enable Enterprise Manager to also manage TimesTen, Amazon Web
 Services, IBM DB2, IBM Websphere Application Server, Sun ZFS
 Appliance, EMC CLARiiON, and many others

	Packaged applications management
	Application monitoring and management of Oracle applications
 (E-Business Suite, PeopleSoft, Siebel, and Fusion
 applications)

	Application performance management
	Real user monitoring and synthetic transaction monitoring,
 monitoring and tracing of transactions/transaction instances, Java
 and Oracle Database monitoring and diagnostics, multilayer discovery
 of application topology and infrastructure, and application
 performance analytics and reporting for Oracle applications and
 custom applications

	Application quality management
	Application test management, functional testing, load testing,
 Real Application Testing (RAT), and test data management for Oracle
 applications and custom web-based applications running on the Oracle
 Database

Since the focus of this book is on the Oracle Database, we’ll focus
 the remainder of this chapter on capabilities in EM for managing the
 database infrastructure. For database management, in addition to basic
 management capabilities provided in EM, Oracle offers a number of optional
 packs, including:
	Diagnostic Pack for Oracle Database
	Provides automatic performance diagnostics, flexible system monitoring
 and notification, extended Exadata management, and database problem
 root cause analysis and baseline comparison interfaces, leveraging
 ADDM and the AWR in the Oracle Database

	Tuning Pack for Oracle Database
	Provides a real-time SQL monitor useful in identifying
 long-running queries, the SQL Tuning Advisor for analysis and
 automatic implementation of improved SQL profile recommendations,
 the SQL Access Advisor for recommending schema redesign, and an
 object reorganization wizard for removing wasted space

	Lifecycle Management Pack for Oracle
 Database
	Provides database discovery and inventory tracking, initial
 database provisioning, ongoing change management of patches,
 upgrades, and schema and data changes, configuration and compliance
 management, and site-level disaster protection automation (also
 called Site Guard)

	Oracle Data Masking Pack
	Provides search for sensitive data capability, common data
 masking formats, and supports condition-based masking, compound
 masking, deterministic masking, and key-based reversible
 masking

	Oracle Test Data Management Pack
	Detects and stores data relationships from a production Oracle
 Database in an Application Data Model which is then used to generate
 a subset of data useful in nonproduction Oracle Database
 testing

	Cloud Management Pack for Oracle
 Database
	Provides a Consolidation Planner for determining how to redistribute workloads and meet service level agreements (SLAs), a self-service portal through which new
 instances can be requested for single instance and Real Application Clusters (RAC) Oracle Databases and then started and
 monitored, and also provides a metering and chargeback interface

What About Database Fragmentation?
In earlier editions of Oracle Essentials, one area we focused on in
 this chapter was database fragmentation, where small amounts of “free space” on disk could
 negatively impact database performance. Remember that Oracle consists of blocks called
 extents. A collection of extents is referred to as a segment, and segments contain anything
 that takes up space—for example, a table, an index, or a rollback segment. Segments
 typically consist of multiple extents. As an extent fills up, a segment begins to use
 another extent. When fragmentation occurs by database activities that leave “holes” in the
 continuous space represented by extents, segments acquire additional extents. As
 fragmentation grows, increased I/O activity results in reduced database performance.
Prior to Oracle Database 10g, a popular topic
 at almost every Oracle Users Group conference was how to manage this
 fragmentation. Since Oracle Database 10g, you can
 simply perform an online segment shrink using the Tuning Pack (and
 Segment Advisor) noted above. ADDM recommends the segments to shrink,
 and you simply choose to accept the recommendations. You might also
 deploy locally managed tablespaces defaulted to ASSM.
In addition to solving fragmentation issues, Oracle has been
 working to diminish the impact of all disk I/O activity, which has been
 the key performance bottleneck for years. With Smart Scans and Smart
 Flash Cache, as well as ASM and many disks, Oracle Exadata engineered
 systems have gone a long way towards eliminating problems stemming from
 I/O access times.

Enterprise Manager Architecture

Enterprise Manager can be used for managing the database locally, remotely, and/or through firewalls.
 Individual consoles can manage single or multiple Oracle Databases. Since EM is used in
 managing Oracle deployed to on-premise servers or as part of cloud deployment, it is now
 often referenced as Cloud Control.
The Cloud Control console is your interface into EM, showing the software being
 managed and providing a high-level view of the status of components. You
 can drill from Cloud Control into the consoles for individual databases,
 application servers, and other targets. Figure 5-1 illustrates a typical Cloud
 Control home page.
EM also supports a command line interface (EMCLI).
[image: Typical Cloud Control home page]

Figure 5-1. Typical Cloud Control home page

Other key Enterprise Manager components in its architecture
 include the following:
	Oracle Management Agents
	Deployed on each host/database instance to be monitored, the
 agents automatically discover all Oracle components. The agents
 track each target’s health, status, and performance and also
 relevant hardware and software configuration data and store the
 data locally in XML files prior to uploading the XML files.
 Management Agents can also perform predefined jobs and can be used to
 send Simple Network Management Protocol (SNMP) traps to database
 performance monitors required by other system monitoring tools.
 Management Agents are available for the wide variety of operating
 systems on which the Oracle Database is available.

	Oracle Management Service (OMS)
	The OMS is a middle-tier web application (requiring the WebLogic Server)
 that, working with Oracle Management Agents, discovers targets,
 monitors and manages the targets, and stores the information it
 collects in the Oracle Management Repository by synchronously
 uploading XML files generated by the agents. OMS also renders the
 Cloud Control console user interface. To avoid EM outages, Oracle
 recommends deployment of multiple OMSs with a server load
 balancer.

	Oracle Management Repository
	The Management Repository is configured in an Oracle Database and stores
 performance and availability data and configuration and compliance
 data uploaded by the OMS from Management Agents on the managed
 targets. Once in the repository, the data can be accessed by
 designated administrators through Enterprise Manager Cloud
 Control. The Management Repository also stores EM configuration
 information including users and privileges, monitoring settings,
 and job definitions. Where OMS outages are to be avoided, Oracle
 recommends deployment of the Management Repository in a RAC
 configuration.

A simple EM architecture diagram is shown in Figure 5-2.
[image: Oracle Enterprise Manager architecture]

Figure 5-2. Oracle Enterprise Manager architecture

Oracle Management Agent and OMS software updates are provided
 through Oracle Management plug-ins on a more frequent basis than updates
 to EM itself. During a new EM installation, by default Oracle Management
 plug-ins are installed for the Oracle Database, Fusion Middleware, My
 Oracle Support, and Oracle Exadata. Plug-in updates can be automatically
 downloaded to EM by setting up the Self Update console.
EM supports three different categories of administrators. SYSMAN is in the most powerful category, the Super
 Administrator, and is created when EM is installed. Super
 Administrators have full access privileges to all targets and
 administrator accounts. They also create other types of administrators
 and have unique management capabilities. For example, Super
 Administrators can create OS-based notifications, set up notifications
 based on SNMP traps, troubleshoot the Management Repository, set up
 Enterprise Manager for self update, and fully manage the Software
 Library (where patches, virtual appliance images, reference gold images,
 application software, and directive scripts are stored).
More commonly, administrators are classified as “regular”
 administrators. The Super Administrator usually divides up work by
 granting access to regular administrators to certain targets and/or by giving them certain
 management task capabilities. A third type of EM administrator is the
 Repository Owner who is the DBA for the Management Repository.
A key underpinning to Enterprise Manager 12c used in managing
 Oracle hardware servers and virtual machines is Enterprise Manager Ops Center 12c. Ops Center 12c manages Oracle
 servers that support the Integrated Lights Out Manager (ILOM), Advanced Lights Out Manager (ALOM), and Embedded Lights Out Manager (ELOM). These include Oracle’s engineered systems, M-class servers, ZFS Storage
 Appliances, and InfiniBand and Ethernet switches. Supported operating systems include Oracle
 Solaris, Oracle Linux, Red Hat, SuSE, and Windows. Management capabilities extend to Oracle
 VM and Oracle Solaris Containers. Among the supported features are discovery and topology management, support for virtual
 DataCenter and server pool architectures, fault
 monitoring, Automatic Service Requests (ASR) and My Oracle Support integration, BIOS and
 firmware automation, operating system bare metal provisioning and performance monitoring,
 patch automation, configuration and compliance reporting, and energy usage awareness and
 management.

Oracle Enterprise Manager Consoles

EM’s popularity grew as deployment of the Oracle Database expanded within companies to multiple
 operating systems and as additional Oracle software components were added to the mix. EM
 provides a common interface to managing all of these environments in a wide array of
 traditional and cloud deployment models, something that DBA scripts were not usually
 designed for. Further, the Enterprise Manager 12c Cloud Control console
 and framework provide simple access to new database self-monitoring features, respond to
 alerts, and manage jobs, reports, roles, and privileges.
We are now going to look further at the layout of the Enterprise
 Manager 12c Cloud Control console, current as this edition of Oracle
 Essentials was published. Oracle often changes the scope of
 Enterprise Manager capabilities and interface details, so you will want
 to explore the version you have deployed. But some of the basic
 functionality for database management consistently appears in the
 various EM versions.
Logging into Enterprise Manager after installation requires that
 you provide an administrator username and password. As we saw in Figure 5-1, when viewing databases you
 are monitoring, you are presented with the general status, a diagnostic
 and resource summary, job activities, the status of individual Oracle
 Databases, an incident report, and a list of hosts and their status (not
 shown in the figure due to limitations in how much is visible on the
 screen—you’d simply scroll down the screen to see this). You’ll also
 notice in the upper-left corner of the screenshot links into cluster
 management and administration.
Cluster management provides monitoring metrics concerning the
 cluster status history, an incident manager, alert history, and list of
 blackouts. Job activities in the cluster are presented and there is an
 interface for publishing standard reports about the overall status.
 There is also a performance status area that shows performance of
 interconnects and member targets. The cluster topology and compliance
 status can be viewed here (see Figure 5-3). There is also an interface
 for setting up new targets.
[image: Oracle Enterprise Manager 12cComment [KV1]: Ed: I wasn’t sure if this should be roman or not? Should be consistent everywhere. cluster topology diagram]

Figure 5-3. Oracle Enterprise Manager 12c
 cluster topology diagram

As we explore the main administration link, we first see a page
 that gives us summaries of database compliance (see Chapter 6), status, and
 diagnostics. This page also provides a summary of performance, status of
 key database resources (host CPU, active sessions, memory allocation,
 and data storage), SQL Monitor, instances status, and a list of
 incidences and problems. We see a portion of this page in Figure 5-4. In the upper left
 are links that provide access to performance, availability, schema, and
 other administration management tools.
[image: Oracle Enterprise Manager 12c database administration overview]

Figure 5-4. Oracle Enterprise Manager 12c database administration
 overview

Let’s now take a look at where interfaces to the database
 management tools are presented:
	Performance page
	Includes Top Activity view, SQL Monitoring, Cluster Cache Coherency status, SQL
 Tuning Advisor, Performance Analyzer, SQL Access Advisor, other
 SQL tools and worksheets, links to AWR and the home for all
 Advisors, ADDM and Emergency Monitoring interface, Sessions
 status, and Database Replay

	Availability page
	Exposes the High Availability console, Maximum Availability
 Architecture (MAA) Advisor, Backup and Recovery interface, Add
 Standby Database interface, and Cluster Managed Services and
 Operations interface

	Schema page
	Includes links to interfaces for managing database users and
 privileges, Database objects (tables, indexes, views, synonyms,
 sequences, and database links), database programs, materialized
 views, user-defined types, database export and import, database
 change management, data discovery and modeling, data subsetting,
 data masking, XML DB, Text Manager, and workspace
 management

	Administration page
	Includes interfaces to manage database initialization parameters, security,
 storage, the Oracle Scheduler, Streams and replication, Exadata,
 and ASM (that includes migrate to home, diskgroups, Database
 Resource Manager, and database feature usage).

Figure 5-5
 illustrates the interface into management of Exadata.
[image: Oracle Enterprise Manager 12c Exadata management view]

Figure 5-5. Oracle Enterprise Manager 12c Exadata management view

You can access the full Enterprise Manager
 12c Cloud Control console through a browser on your
 mobile device. There is also an Enterprise Manager Cloud Control Mobile
 application available for installation on iOS-based mobile devices. The
 Cloud Control Mobile application is downloadable from the Apple iTunes
 App Store. The Cloud Control Mobile interface accesses the URL of your
 Enterprise Manager 12c Cloud Control console via
 WiFi or a mobile network connection over VPN. The URL is typically of
 the form https://youroraclesiteid.com/em. The Cloud Control Mobile
 interface provides a means to view incidents and problems in detail,
 acknowledge an incident or problem, log into My Oracle Support and view
 an SR and updates related to a problem, and take actions via a manage
 dialog.

EM Express

As previously noted, Oracle Database 12c includes
 EM Express that is pre-configured, installed, and requires no middleware
 components as all of the rendering occurs in the browser. As you might
 expect, EM Express has more limited basic administration support for
 configuration, security, and storage, though it does support advanced
 performance diagnostics and tuning. Configuration management options
 include initialization parameters, memory, database feature usage, and
 current database properties. Storage management includes tablespaces,
 undo management, redo log groups, archive logs, and control files.
 Security management includes users, roles, and profiles. Performance
 management includes the performance hub and SQL Tuning Advisor.

Backup and Recovery

Even if you’ve taken adequate precautions, critical database records can
 sometimes be destroyed as a result of human error or hardware or software
 failure. The only way to prepare for this type of potentially disastrous
 situation is to perform regular backup operations. Ensuring reliable
 backup and recovery is a key part of defining a Maximum Availability Architecture (MAA) for your Oracle
 Databases that is further described elsewhere in this book.
Two basic types of potential failures can affect an oracle database:
 instance failure, in which the Oracle instance terminates without going
 through the shutdown process; and media failure,
 in which the disks that store the information in an Oracle
 Database are corrupted or damaged.
After an instance failure, Oracle will automatically perform crash
 recovery. For example, you can use Real Application Clusters to
 automatically perform instance recovery when one of its instances crashes.
 However, DBAs must initiate recovery from media failure. The ability to
 recover successfully from this type of failure will be the result of
 careful planning. The recovery process restores older copies of the
 damaged Oracle datafile(s) and rolls forward by applying archived and
 online redo logs.
To ensure successful recovery, the DBA should have prepared for this
 eventuality by performing the following actions:
	Multiplexing online redo logs by having multiple log members per
 group on different disks and controllers

	Running the database in ARCHIVELOG mode when possible so that
 redo logfiles are archived

	Archiving redo logs to multiple locations

	Maintaining multiple copies of the control file(s)

	Backing up physical datafiles frequently—ideally, storing
 multiple copies in multiple locations

Running the database in ARCHIVELOG mode enables the DBA to perform online datafile backups while
 the database is available for use since archived logs are available for
 the recovery process. The archived redo logs can also be sent to a standby
 database to which they may be applied. If the database is being run in
 NOARCHIVELOG mode, it must first be shut down and then
 mounted to perform a consistent backup and is not available during this
 time.
Types of Backup and Recovery Options

There are two major categories of backup:
	Full backup
	Includes backups of Oracle datafiles, datafile copies,
 tablespaces, control files (current or backup), or the entire
 database (including all datafiles and the current control file)
 and reads entire files and copies all blocks into the backup set,
 skipping only datafile blocks that have never been used (with the
 exception of control files and redo logs where no blocks are
 skipped).

	Incremental backup
	Can include backups of Oracle datafiles, tablespaces, or the
 entire database. Reads entire files and backs up only those data
 blocks that have changed since a previous backup.

You can begin backups through the Recovery Manager (RMAN) or the
 Oracle Enterprise Manager interface to RMAN, which uses the database
 export facility, or you can initiate backups via standard operating system backup utilities.
RMAN is designed to support the types of database backups you are
 likely to perform. These include open or online backups, closed database
 backups, incremental backups at the Oracle block level, corrupt block
 detection, automatic backups, backup catalogs, and backups to sequential
 media. Backups and restores can be restarted. The testing of restores
 and recovery is supported. By setting recovery windows, expiration dates
 of backups are determined and managed.
RMAN can perform image copy backups of the database, tablespaces,
 or datafiles. RMAN can be used to apply incremental backups to datafile
 image backups. The speed of incremental backups is increased by a
 change-tracking feature that reads and backs up only changed
 blocks.
Recovery options include the following:
	Complete database recovery to the point of failure

	Time-based or point-in-time database recovery (recovery of the
 entire database to a time before the most current time)

	Tablespace point-in-time recovery (recovery of a tablespace to
 a time different from the rest of the database)

	Recovery of individual tables (a new feature in Oracle
 Database 12c)

	Backup and recovery of multitenant container databases
 including backup and point-in-time recovery of individual pluggable
 databases (new in Oracle Database 12c)

	Recovery until the CANCEL
 command is issued

	Change-based or log sequence recovery (to a specified System
 Change Number, or SCN)

You can recover through RMAN, using either the recovery catalog or
 control file or via SQL or SQL*Plus.
RMAN also supports the backup and restore of standby control
 files, has the ability to automatically retry a failed backup or restore
 operation, and can automatically create and recover Oracle datafiles not
 in the most recent backup. Where backups are missing or corrupt during
 the restore process, RMAN automatically uses an older backup.
To speed backups and restore operations, the Flash Recovery Area,
 featured in the Oracle Database since Oracle Database
 10g, organizes recovery files to a specific area on
 disk. These files include a copy of the control file, archived logfiles,
 flashback database logs, datafile copies, and RMAN backups. You can set
 a RETENTION AREA parameter to retain needed recovery files for specific
 time windows. As backup files and archive logs age beyond the time
 window, they are automatically deleted. ASM (described earlier in this
 chapter) can configure the Flash Recovery Area. If availability of disk
 space is an issue, you can also take advantage of RMAN’s ability to
 compress backup sets.
Making Sure the Backup Works
The key to providing an adequate backup and recovery strategy is
 to simulate recovery from failure using the backups with your test
 system before using the backups to restore a live production database.
 Many times, backup media that were thought to be reliable prove not to
 be, or backup frequencies that were thought to be adequate prove to be
 too infrequent to allow for timely recoveries. It’s far better to
 discover that recovery is slow or impossible in test situations than
 after your business has been affected by the failure of a production
 system.

This section provided only a very brief overview of standard
 backup and recovery. For more information on high availability and
 MAA, refer to Chapter 11.

Oracle Secure Backup

Oracle Secure Backup (OSB) for tape devices first appeared with Oracle Database
 10g and serves as a tape media manager, leveraging
 RMAN’s ability to read the database block layout directly. It supports
 major tape drives and tape libraries in SAN, gigabit Ethernet, and SCSI
 configurations. OSB can provide tape data protection for one server
 attached to a tape drive or support multiple drives for any number of
 servers. As a backup solution, it is unique in its ability to provide an
 interface for making RMAN encrypted backups directly to tape. The
 addition of the OSB Cloud Module enables backup to the Amazon S3 Cloud
 storage devices.
The architecture of OSB includes an administrative server that
 contains the backup catalog, configuration data, and performs as the
 certificate authority for server authentication, media servers that
 transfer data to and from tape devices, and clients that are the hosts
 to be backed up. OSB balances loads across like network interfaces from
 the client hosts to the media server hosts. Retention policies can be
 time-managed where administrators define when tape expiration will occur
 or they can be managed by RMAN.

Information Lifecycle Management

Oracle Information Lifecycle Management (ILM) for the Oracle Database and Oracle’s ILM Assistant were
 introduced in 2006. The ILM Assistant provides a means to define classes
 of data, create storage tiers for the data classes, create data access
 and data movement policies, and implement data compliance policies. ILM
 is most frequently used to move data in a partitioned Oracle Database
 among various storage devices that are most appropriate for hosting that
 data. The reason for doing this is that most administrators would like
 to have their most frequently accessed data on the fastest but most
 expensive storage devices, and the least frequently accessed data on the
 slowest but cheapest storage. One of the common use cases for ILM is
 setting up an online archive.
The ILM Assistant presents a graphical user interface used in
 creating lifecycle definitions and policies for database tables. It can
 advise when it is time to move, archive, or delete data, and also
 illustrate cost savings and storage required. The ILM Assistant can also
 guide you in creating partitioning to match your ILM needs. Once you
 have defined a strategy, it generates the scripts for moving the data.
 In addition to the ILM Assistant, you will need to have Oracle
 Application Express installed in the database where the data is
 managed.
The ILM Assistant is also used to define logical storage tiers
 (the level of performance of the storage in that tier and preferred
 database tablespaces), define the data lifecycle (how data will migrate
 over time), generate partition advice if the table is not partitioned,
 and assign tables to be managed by the Assistant. You might also view
 partition simulation, a lifecycle summary, and storage costs, and define
 policy notes during setup of the lifecycle.

ILM in Oracle Database 12c

Oracle Database 12c introduces Heat
 Maps and Automatic Data Optimization
 (ADO) for implementing ILM strategies. Oracle Database
 12c tracks data access at the segment level in the
 Heat Maps. Data modification is tracked using Heat Maps at the segment and row level.
ADO provides the ability to automate the compression and movement
 of data among different tiers of storage in the database. Heat Maps must
 be enabled to use this feature. You can specify compression levels in
 the tiers and when data movement should take place based on data access
 activity levels. Storage tier policies are usually set at the segment
 level, though compression policies can also be set at the row level in
 combination with segment level policies for finer control. For example,
 you might specify a policy for compression of rows of data not modified
 in the past 45 days.
ADO is deeply integrated with the Oracle Database and, as with
 other ILM strategies, disk savings and performance benefits can be
 significant. It is expected that organizations will increasingly use the
 new automated capabilities as they deploy Oracle Database
 12c and upgrade from older Oracle releases where
 the ILM Assistant was used.

Working with Oracle Support

Regardless of the extent of your training, there are bound to be some issues
 that you can’t resolve without help from Oracle. Part of the job of the
 DBA is to help resolve any issues with the Oracle Database. Oracle offers
 several levels of support, including Premier Support, Extended Support,
 and Sustaining Support. Given how critical the Oracle Database is to the
 business, most organizations choose Premier Support.
Premier Support includes software updates, fixes, security alerts,
 critical patch updates, and upgrade scripts. You have access to the
 web-based My Oracle Support system 24 hours a day and 7 days a week,
 including the ability to log Service Requests (SRs) online. You also can
 get assistance with SRs 24/7.
If you have Premier Support and have deployed the Oracle Database on
 an Oracle-engineered system such as the Exadata Database Machine, you have
 access to Platinum Services at no extra cost. Oracle provides remote fault
 monitoring of the system and Oracle Database 24/7 with response times of 5
 minutes for fault notification, 15 minutes for restoration or escalation
 to Oracle Development, and 30 minutes for joint debugging with Oracle
 Development to begin. Full Stack Download Patches (QDPs) are provided four
 times a year.
Oracle’s Advanced Customer Support (ACS) organization provides
 additional Oracle Database support through optional services. ACS Services
 offered include standard system installation, standard software
 installation and configuration, pre-production readiness review,
 production diagnostic review and recommendations, and patch review and
 installation. Oracle Consulting and Oracle partners also provide
 additional customization services.
Reporting Problems

The most common way of reporting SRs is via the web browser-based
 My Oracle Support interface. My Oracle Support has grown to be extremely
 popular, since you might find posted answers to problems similar to
 yours, eliminating time required for a physical response. My Oracle
 Support also provides proactive notifications and access to technical
 libraries and forums, product lifecycle information, and a bug
 database.
When contacting technical support, you will need your Customer
 Support Identification (CSI) number. Oracle Sales Consultants can also
 provide advice regarding how to report problems and Oracle ACS offers
 workshops for DBAs regarding more effectively supporting the database.
 As you report your SR, it is important for you to choose the right
 severity level. The severity levels are defined by Oracle as
 follows:
	Severity 1
	Your system hangs indefinitely or crashes repeatedly after
 restarts, data is corrupted, or a critical documented function
 necessary to run your business is not available

	Severity 2
	A severe loss of service occurs with important features not
 available though business operations can continue in a restricted
 fashion

	Severity 3
	A minor loss of service occurs; however, a workaround is
 available

	Severity 4
	You’ve requested information or an enhancement where no loss of service is involved

If business is halted because of the problem, the severity level
 assigned should be “severity 1.” However, if a problem is reported at
 level 1, you must be available to work with Oracle Support (even if
 after hours). Otherwise, Oracle will assume that the problem wasn’t as
 severe as initially reported and may lower the priority level for
 resolution.
A Support Workbench is accessible in Enterprise Manager through
 the Incident Manager and is used to package diagnostics from the ADR and
 open an SR. A SQL Test Case Builder automates the gathering of
 information about the problem and environment for uploading to Oracle
 Support to help them re-create the problem and resolve it sooner. You
 typically would first see problems as critical error alerts on the
 Enterprise Manager Database Cloud Control console, then would view
 problem details, gather additional information, create an SR, package
 and upload the diagnostic data to Oracle Support, then track the SR and
 close it when resolved.

Automated Patching

Oracle supports automated patching of the Oracle Database in a couple
 different ways. The recommended way is to use Enterprise Manager
 12c Cloud Control and leverage the agents present
 on each managed target to collect configuration data. From the Cloud
 Control console, you can select recommended patches, add to your plans
 once you’ve validated them, and deploy to selected targets. Once
 applied, they will disappear from the recommended patch list.
Alternatively, you can install the Oracle Configuration Manager or
 Enterprise Manager Cloud Control for My Oracle Support configuration
 collection on each managed target. You can then add recommended patches
 to plans once you have validated them, but the deployment process is not
 automated beyond this.
In RAC environments, “rolling” patch updates can be applied across
 your nodes without taking the cluster down. (We described the process of
 applying rolling patch updates in Chapter 3.) Further, you can roll back
 a patch (e.g., uninstall it) on an instance if you observe unusual
 behavior and want to remove the patch.

Chapter 6. Oracle Security, Auditing, and Compliance

The primary purpose of Oracle Database software is to manage the
 valuable data that lies at the core of virtually every operation in your
 organization. Part of the value of that data is that the data is
 yours—the data that can be used to give your company
 unique advantages. For this reason, you need to protect your data from
 others who should not have access to it. This protection is the subject of
 this chapter. Here we focus on three different aspects of the overall task
 of protecting your data:
	Security
	Covers the tools and features that you use to allow access only
 to those people authorized to view or use specific data.

	Auditing
	Allows you to discover who did what with your data. Auditing is the process of
 creating a history of access that can be used to understand database
 operations as well as spot access violations and attempts.

	Compliance
	This is the ability to prove that your data is secure and reliable—a proof that
 is now legally required in many cases. Although compliance may strike
 many technical folks as overkill, the simple fact is that a lack of
 compliance alone may result in significant penalties to your company.
 Compliance is thus a topic of great interest to management.

Security

One of the most important aspects of managing the Oracle Database
 effectively in a multiuser environment is the creation of a security
 scheme to control access to and modification of the database. In an Oracle
 Database, you grant security clearance to individual users or database
 roles, as we describe in the following sections.
Security management is typically performed at three different
 levels:
	Database level

	Operating system level

	Network level

At the operating system level, DBAs should have the ability to
 create and delete files related to the database, whereas typical database
 users do not need these privileges. Oracle includes operating
 system-specific security information as part of its standard documentation
 set. In many large organizations, DBAs or database security administrators
 work closely with computer system administrators to coordinate security
 specifications and practices.
Database security specifications control user database access and
 place limits on user capabilities through the use of username/password
 pairs. Such specifications may limit the allocation of resources (disk and
 CPU) to users and mandate the auditing of users. Database security at the
 database level also provides control of the access to and use of specific
 schema objects in the database. We believe that implementing data security
 in the database is a best practice, rather than using security controls in
 applications or other layers of the technology stack. However, as you will
 see, there are features in the Oracle Database that can work with concepts
 like application users.
Usernames, Privileges, Groups, and Roles

The DBA or database security administrator creates usernames that can be used to
 connect to the database. Two user accounts are automatically created as
 part of the installation process and are assigned the DBA role: SYS and SYSTEM. (The DBA role is described in a later
 section.)
Each database username has a password associated with it that
 prevents unauthorized access. A new or changed password should:
	Contain at least eight characters

	Contain at least one number and one letter

	Not be the username reversed

	Differ from the username or user name with 1 through 100
 appended

	Not match any word on an internal list of simple words

	Differ from the previous password (if there is one) by at
 least three characters

	Since 11g, passwords can require mixed
 cases for characters

Oracle can check for these characteristics each time a password is
 created or modified as part of enforced security policies. You can also
 set your own specifications for password complexity for your Oracle
 Database.
Once a user has successfully logged into the database, that user’s
 access is restricted based on privileges, which are the rights
 to execute certain SQL commands. Some privileges may be granted
 system-wide (such as the ability to delete rows anywhere in the
 database), while others may apply only to a specific schema object in
 the database (such as the ability to delete rows in a specific
 table).
Roles are named groups of privileges and may be created, altered, or
 dropped. In most implementations, the DBA or security administrator
 creates usernames for users and assigns roles to specific users, thereby
 granting them a set of privileges. This is most commonly done today
 through the Oracle Enterprise Manager (EM) console, described in Chapter 5. For example, you might grant a role to
 provide access to a specific set of applications, such as “Human
 Resources,” or you might define multiple roles so that users assigned a
 certain role can update hourly pay in the Human Resources applications,
 while users assigned other roles cannot.
Every database has a pseudorole named PUBLIC that includes every user. All users can use
 privileges granted to PUBLIC. For example, if database links are created
 using the keyword PUBLIC, they will be visible to all users who have
 privileges to the underlying objects for those links and synonyms. As
 database vulnerability is an increasing concern, you may want to
 consider limited privileges for the PUBLIC role.

Identity Management

As the number of database users and complexity of your database structures
 rises, managing user identities and their privileges can become
 increasingly complex. Oracle Identity Management can provide a solution by storing user information and
 their authorization in an LDAP directory such as the Oracle Internet
 Directory (OID). For example, you might use OID to authorize SYSDBA and SYSOPER connections. This centralization is even more
 useful when you use a centralized directory to manage security across
 multiple databases in your environment.

Security Privileges

Four basic types of database operations can be limited by security privileges
 in an Oracle Database:
	SELECT to perform queries

	INSERT to put rows into tables or views

	UPDATE to update rows in tables or views

	DELETE to remove rows from tables, table partitions, or views

In addition to these data-specific privileges, several other
 privileges apply to the objects within a database schema, such as:
	CREATE to create a table in a schema

	DROP to remove a table in a schema

	ALTER to alter tables or views

All of these privileges can be handled with two simple SQL
 commands. The GRANT command
 gives a particular privilege to a user or role, while the
 REVOKE command takes away a specific privilege. You can use GRANT and REVOKE to modify the privileges for an
 individual or a role. You can also grant the ability to re-grant
 privileges to others. You can use either of these commands with the
 keyword PUBLIC to issue or revoke a privilege for all database
 users.
Another security privilege, EXECUTE, allows users to run a PL/SQL procedure or function. By
 default, the PL/SQL routine runs with the security privileges of the
 user who compiled the routine. Alternately, you can specify that a
 PL/SQL routine run with what is termed invoker’s
 rights, which means that the routine is run with the security
 privileges of the user who is invoking the routine.

Special Roles: DBA, SYSDBA, and SYSOPER

Your Oracle Database comes with three special roles, which have been defined
 for a while, and more roles added in the last releases, such as sysasm in Oracle Database
 11g and sysbackup in Oracle
 Database 12c. The DBA role is one of the most important default roles in Oracle. The
 DBA role includes most system privileges. By default, it is granted to
 the users SYS and SYSTEM, both created at database creation time. Base
 tables and data dictionary views are stored in the SYS schema. SYSTEM
 schema tables are used for administrative information and by various
 Oracle tools and options. A number of other administrative users also
 exist, as consistent with the specific Oracle features deployed.
The DBA role does not include basic database administrative tasks
 included in the SYSDBA or SYSOPER system privileges. Therefore, SYSDBA or
 SYSOPER should be specifically granted to administrators. They will
 “CONNECT AS” either SYSDBA or SYSOPER to the database and will have
 access to a database even when it is not open. SYSDBA privileges can be
 granted to users by SYS or by other administrators with SYSDBA
 privileges. When granted, the SYSDBA privileges allow a user to perform
 the following database actions from the command line of SQL*Plus or by logging into Oracle Enterprise Manager’s
 point-and-click interface:
	STARTUP
	Start up a database instance.

	SHUTDOWN
	Shut down a database instance.

	ALTER DATABASE OPEN
	Open a mounted but closed database.

	ALTER DATABASE MOUNT
	Mount a database using a previously started instance.

	ALTER DATABASE BACKUP
 CONTROLFILE
	Start a backup of the control file. However, backups are more frequently
 done through RMAN today, as described in the section Backup and Recovery in Chapter 5.

	ALTER DATABASE
 ARCHIVELOG
	Specify that the contents of a redo logfile group must be archived
 before the redo logfile group can be reused.

	ALTER DATABASE
 RECOVER
	Apply logs individually or start automatic application of the redo logs.

	CREATE DATABASE
	Create and name a database, specify datafiles and their sizes, specify
 logfiles and their sizes, and set parameter limits.

	DROP DATABASE
	Delete a database and all of the files included in the control
 file.

	CREATE SPFILE
	Create a server parameter file from a text initialization
 (INIT.ORA) file.

	RESTRICTED SESSION
 privilege
	Allow connections to databases started in Restricted mode. Restricted
 mode is designed for activities such as troubleshooting and some
 types of maintenance, similar to what SYS can do, but limited to a
 different set of users.

Administrators connected as SYSOPER can perform a more limited set
 of commands: STARTUP and SHUTDOWN, CREATE
 SPFILE, ALTER DATABASE OPEN
 or MOUNT or BACKUP, ALTER
 DATABASE ARCHIVELOG, ALTER DATABASE
 RECOVER, and the RESTRICTED
 SESSION privilege.
Database administrators are authenticated using either operating
 system authentication or a password file. The CONNECT INTERNAL syntax
 supported in earlier releases of Oracle is no longer available. When
 operating system authentication is used, administrative users must be
 named in the OSDBA or OSOPER defined groups. For password file
 authentication, the file is created with the ORAPWD utility. Users are
 added by SYS or by those having SYSDBA privileges.
Note
With each release of Oracle, fewer default users and passwords
 are automatically created during database installation and creation.
 Regardless, it is generally recommended practice to reset all default
 passwords that are documented in Oracle.

These special roles are very powerful, granting broad powers to
 users. Some organizations have granted these system roles to users who
 may not need all that power. Oracle Database 12c
 includes the ability to analyze privileges to identify users with broad
 privileges who do not need them.

Policies

A policy is a way to extend your security framework. You can specify additional
 requirements in a policy that are checked whenever a user attempts to
 activate a role. Policies are written in PL/SQL and can be used, for
 example, to limit access to a particular IP address or to particular
 hours of the day.
Since the release of Oracle Database 10g, Oracle Enterprise Manager
 has featured a visual interface to a policy framework in the EM repository that aids
 management of database security. Security policies or rules are built and stored in a policy
 library. Violations of rules are reported as critical, warning, or informational through the
 EM interface. Out of the box, security violations are checked on a daily basis. Policies may
 be adjusted according to business demands, and violations can be overridden when they are
 reported.

Restricting Data-Specific Access

There are situations in which a user will have access to a table,
 but not all of the data in the table should be viewed. For example, you
 might have competing suppliers looking at the same tables. You may want
 them to be able to see the products they supply and the total of all
 products from suppliers, but not detailed information about their
 competitors. There are a number of ways to do this, as we’ll describe in
 the following sections, using other examples from Human Resources
 (HR).
View-based security

You can think of views as virtual tables defined
 by queries that extract or derive data from physical base
 tables. You can use views to present only the rows or
 columns that a certain group of users should be able to access.
For example, in an HR application, users from the HR department
 may have full access to the employee base table, which contains basic
 information such as employee names, work addresses, and work phone
 numbers, as well as more restricted information such as Social
 Security numbers, home addresses, and home telephone numbers. For
 other users in the company, you’ll want to hide more personal
 information by providing a view that shows only the basic
 information.
Creating a virtual private database or leveraging the Label
 Security Option, described in subsequent sections of this chapter,
 provide a more secure means of restricting access to certain
 data.

Fine-grained access control

Implementing security is a critical but time-consuming process, especially if you
 want to base security on an attribute with a wide range of values. A
 good example of this type of situation in the HR scenario previously
 described would be the need to limit the data an HR representative can
 see to only the rows relating to employees that he supports. Here
 you’re faced with a situation in which you might have to define a view
 for every HR representative, which might mean many, many different
 views, views that would have to change every time an HR representative
 left or joined the company. And if you want to grant write access for
 a representative’s own employees and read access for other employees,
 the situation gets even more complex. The smaller the scope, or
 grain, of the access control you desire, the more
 work is involved in creating and maintaining the security
 privileges.
Oracle offers a type of security that you can use to grant this
 type of fine-grained access control (FGAC).
 Security policies implemented as PL/SQL functions
 can be associated with tables or views enabling creation of a
 virtual private database (VPD). A security policy
 returns a condition that’s dynamically associated with a particular
 SQL statement, which transparently limits the data that’s returned. In
 the HR example, suppose that each representative supports employees
 with a last name in a particular alphabetic range, such as A through
 G.
The security policy would return part of a WHERE clause, based on a
 particular representative’s responsibilities, that limits the rows
 returned. You can keep the range for each representative in a separate
 table that is dynamically queried as part of the security policy
 function. This simplifies management of allowable access if roles and
 responsibilities change frequently.
You can associate a security policy with a particular view or
 table by using the built-in PL/SQL package DBMS_RLS, which also allows
 you to refresh, enable, or disable a security policy.
Oracle Database 10g and newer database releases feature a VPD
 that is even more fine-grained, enabling enforced rewrites when a query references a
 specific column. Performance of queries in VPD implementations was also improved since
 Oracle Database 10g through the support of parallel query.
 Fine-grained security can also be based on the type of SQL statement issued. The security
 policy previously described could be used to limit UPDATE, INSERT, and DELETE operations to one set of data, but allow
 SELECT operations on a different group of data.
 For a good description of FGAC through PL/SQL, please refer to: Oracle PL/SQL Programming
 by Steven Feuerstein and Bill Pribyl and Oracle PL/SQL for DBAs by
 Arup Nanda and Steven Feuerstein (O’Reilly).

Label Security Option

The Oracle Label Security Option eliminates the need to write VPD PL/SQL
 programs to enforce row-level label security where sensitivity labels
 are desired. The collections of labels, label authorizations, and
 security enforcement options can be applied to entire schemas or to
 specific tables.
Sensitivity labels are defined based on a user’s need to see
 and/or update data. They consist of a level denoting the data
 sensitivity, a category or compartment that further segregates the data,
 and a group used to record ownership (which may be hierarchical in
 nature) and access.
Standard group definitions given to users provide them access to
 data containing those group labels. Inverse groups in the data can be
 used to define what labels a user must have in his profile in order to
 access it.
Policies are created and applied, sensitivity labels are defined,
 and user labels are set and authorized through a policy manager tool
 accessible through EM. You can also add SQL predicates and label
 functions and manage trusted program units, Oracle VPD fine-grained
 access control policies, and VPD application contexts. Label Security
 policy management is possible in Oracle Database
 10g and later versions when the Oracle Internet
 Directory is also used.

Security and Application Roles and Privileges

Applications can involve data and logic in many different schemas with many different privileges. To simplify the
 issues raised by this complexity, roles are frequently used in
 applications. Application roles have all the privileges necessary to run
 the applications, and users of the applications are granted the roles
 necessary to execute them.
Application roles may contain privileges that should be granted to users only while
 they’re running the application. Application developers can place a SET ROLE command at the beginning of an application to enable the appropriate role and disable
 others only while the application is running. Similarly, you can invoke a
 DBMS_SESSION.SET_ROLE procedure from PL/SQL.
Another way application security is sometimes accomplished is by
 encapsulating privileges in stored procedures. Instead of granting
 direct access to the various tables for an application, you can create
 stored procedures that provide access to the tables and grant access to
 the stored procedures instead of the tables. For example, instead of
 granting INSERT privileges for the EMPLOYEE table, you might create and
 grant access to a stored procedure called HIRE_EMPLOYEE that accepts as
 parameters all the data for a new employee.
When you run a stored procedure normally, the procedure has the
 access rights that were granted to the owner of the procedure; that
 owner is the schema in which the procedure resides. If a particular
 schema has access to a particular database object, all stored procedures
 that reside in that schema have the same rights as the schema. When any
 user calls one of those stored procedures, that user has the same access
 rights to the underlying data objects that the procedure does.
For example, suppose there is a schema called HR_REP. This schema
 has write access to the EMP table. Any stored procedure in the HR_REP
 schema also has write access to the EMP table. Consequently, if you
 grant a user access to a stored procedure in the HR_REP schema, that
 user will also have write access to the EMP table regardless of her
 personal level of security privilege. However, she will have access only
 through the stored procedures in the schema.
Warning
One small but vitally important caveat applies to access through
 stored procedures: the security privilege must be
 directly granted to the schema, not granted by
 means of a role.

If you attach the keyword AUTHID CURRENT_USER to a stored
 procedure when it is compiled, security restrictions will be enforced
 based on the username of the user invoking the procedure, rather than
 the schema that owns the stored procedure (the definer of the
 procedure). If a user has access to a particular database object with a
 particular privilege, that user will have the same access through stored
 procedures compiled with the AUTHID CURRENT_USER.
Oracle Database 12c adds a whole new concept
 called Real Application Security, which is similar to a VPD but
 more flexible. With Real Application Security, you can define users
 outside the context of a database user and assign security privileges
 based on that user identity. This separation allows for more
 flexibility, as you do not need to have a database user defined for
 every application user, as well as the added flexibility of policy-based
 security definition. Real Application Security maps to a security
 architecture where data security is enforced in the database, and users
 are defined and authenticated in the context of the application.

Distributed Database and Multitier Security

All the security features available for standard Oracle Databases are also available
 for the distributed database environment, which is covered in Chapter 13. However, the
 distributed database environment introduces additional security
 considerations. For example, user accounts needed to support server
 connections must exist in all of the distributed databases forming the
 system. As database links (which define connections between distributed
 database instances) are created, you will need to allow the user
 accounts and roles needed at each site.
Distributed security management

For large implementations, you may want to configure global
 authentication across these distributed databases for users and roles.
 Global authentication allows you to maintain a single authentication
 list for multiple distributed databases. Where this type of external
 authentication is required, Oracle’s Advanced Security
 Option, discussed in the next section, provides a solution.
Enterprise Manager is commonly used to configure valid
 application users to Oracle’s LDAP-compliant OID server. A user who
 accesses an application for which he is not authenticated is
 redirected to a login server. There, he is prompted for a username and
 password that are checked against the OID server. A cookie is returned
 and the user is redirected from the login server to the
 application.
Oracle Identity Management, described earlier in this chapter,
 can be used to manage security across multiple platforms and security
 systems.

Multitier security

In typical three-tier implementations, the Oracle WebLogic
 Server runs some of the application logic, serves as an interface
 between the clients and database servers, and provides much of the
 Oracle Identity Management (OIM) infrastructure. The
 Oracle Internet Directory provides directory services running as
 applications on an Oracle Database. The directory synchronization
 service, provisioning integrated service, and delegated administrative
 service are part of OID. Security in middle-tier applications is
 controlled by applications’ privileges and the preservation of client
 identities through all three tiers.
Deploying multiple tiers, common with large applications or
 web-based applications, can also call for proxy authentication. The
 application connects to code in the middle tier, which accesses the
 database through a proxy, frequently through shared connections. Some
 databases associate security with a session, which means that sessions
 must be reestablished when the user identity changes. This limitation
 makes the multitier approach harder.
Oracle separates authentication from sessions, so the use of a
 proxy in the middle tier is feasible. A single session can support
 different users with different identities. Prior to Oracle
 10g Release 2, the only way to take advantage of
 this capability was by using the OCI interface, which was
 code-intensive. Since Oracle Database 10g Release
 2, this limitation was lifted, so standard SQL and SQL tools, such as
 SQL*Plus, could use proxy authentication.

Advanced Security Option

The Oracle Advanced Security Option (ASO) can be used in distributed environments linked via Oracle Net
 in which there are concerns regarding secure access and transmission of
 data. This option specifically provides data encryption during
 transmission to protect data from unauthorized viewing over Oracle Net,
 as well as Net/SSL, IIOP/SSL, and between thin JDBC clients and the
 database. Encryption algorithms supported include RC4_40, RC4_56,
 RC4_128, RC4_256, DES, DES_40, 3DES112, 3DES168, AES128, AES192, and
 AES256. Communications packets are protected against data modification,
 transaction replay, and removal through use of MD5 and SHA-1 algorithms.
 Network encryption is slated to be moved into Oracle Database
 12c Enterprise Edition.
Transparent Data Encryption (described in the next section) is
 included as part of the Advanced Security Option beginning with Oracle
 Database 10g Release 2. Transparent Data Encryption
 provides an easy way to encrypt data in the database, and the network
 data encryption option of ASO protects the data during transmission to
 the client.
ASO also provides support for a variety of identity authentication
 methods to ensure that user identities are accurately known. Third-party
 authentication services supported include Kerberos, RADIUS, and DCE.
 RADIUS enables support of third-party authentication devices, including
 smart cards and token cards. Public Key Infrastructure (PKI)
 authentication, popular for securing Internet-based e-commerce
 applications, uses X.509 v3 digital certificates and can leverage
 Entrust Profiles stored in Oracle Wallets. Oracle Database
 10g added authentication capabilities for users who
 have Kerberos credentials, and enables Kerberos-based authentication
 across database links. Strong authentication methods are also being
 moved into Oracle Database 12c.
In a typical scenario, the Oracle Enterprise Security Manager
 configures valid application users to the LDAP-compliant OID server. An
 X.509 certificate authority creates private key pairs and publishes them
 in Oracle Wallets (through Oracle Wallet Manager) to the LDAP directory.
 A user who wants to log in to a database server will need a certificate
 and a private key, which can be retrieved from that user’s
 password-protected wallet, which resides in the LDAP directory. When the
 user’s key on the client device is sent to the database server, it is
 matched with the paired key retrieved by the server via SSL from the
 LDAP directory and the user is authenticated to use the database.
Oracle Database 12c includes a number of
 enhancements for the Advanced Security Option, including the ability to
 manage keys more easily. In this release, the master key for encryption
 is associated with a pluggable database, so you could potentially have
 multiple master keys in a single container database.

Encryption

The previous sections of this chapter all deal with the need to
 protect access to data in the Oracle Database. There may be times when
 you want to take the extra step of protecting the actual data values
 from unauthorized viewing by encrypting the data.
Oracle has provided data encryption for several releases, but
 Oracle Database 10g Release 2 first introduced a
 significant new feature called Transparent Data Encryption. Prior to the introduction of this feature, encrypted data
 stored in the Oracle Database had to be decrypted by an application
 before it could be used. This scenario caused a number of limitations,
 such as the need to explicitly decrypt data in all applications that
 used the encrypted data and the possibility that some SQL options, such
 as sorting, would not work as expected. If you wanted to start
 encrypting a particular piece of data, you would have to change all data
 access routines in every application that used the data. This limitation
 alone made it difficult to consider adding encryption to existing
 data.
With Transparent Data Encryption, the database does the work of
 encrypting and decrypting data automatically. Data sent to the database
 is encrypted by Oracle, and data requested from the database is
 decrypted. No additional code is required in an application, which means
 that you can encrypt existing data without changing any of your SQL
 access statements.
Since Oracle Database 11g, you can encrypt
 entire tablespaces (described in Chapter 4) with Transparent Data Encryption,
 and this feature should reduce management overhead for this feature.

Data Redaction

Oracle Database 12c adds another option for
 obscuring data. Data redaction is the
 ability to return data with different values than the actual value
 stored in the database, such as returning “XXXX-XXXX-XXXX-4239” for a
 credit card number instead of the stored value of “1234-5678-9012-4239.”
 Data redaction in Oracle Database 12c allows you to
 implement redaction policies, which can specify users and conditions to
 redact data. You can completely redact values, partially redact values,
 redact values based on a regular expression to maintain formatting, or
 perform random redaction.
This redaction is frequently transparent to the use of the data by
 applications. The data redaction also maintains the proper data format
 for the affected data.
Data redaction is managed for Oracle Database
 12c through Enterprise Manager, SQL Developer, or
 through a command line interface.

Secure Backup

The security features described in previous sections give you the tools you need
 to keep the data in your Oracle Database secure. But what about when the
 data leaves your Oracle database—for example, when you perform the
 necessary maintenance step of backing up the data?
Lost backup tapes are always a possibility, and backup tapes can
 be stolen. Secure Backup, first released between Oracle Database
 10g Release 2 and Oracle Database
 11g, automatically encrypts your backup data. The
 data can be decrypted only by the source database, so even if a backup
 tape is lost or stolen, the recipient will not be able to see your
 data.

Auditing

The Oracle Database gives you the ability to restrict unauthorized access to your valuable
 data. However, your security is only as good as your implementation, and people do make
 mistakes. In addition, you may want to understand what type of activities—legitimate or not—are taking place with your data. The ability
 to audit database activity can address both of these issues.
Oracle’s audit capabilities let you track actions at the statement
 level, privilege level, or schema object level for the entire database or
 particular users. Auditing can also gather data about database activities
 for planning and tuning purposes. Auditing of connections with
 administrative privileges to an instance and audit records recording
 database startup and shutdown occur by default.
You can also audit sessions at the user level, which captures some
 basic but extremely useful statistics such as the number of logical I/Os, the number of
 physical I/Os, and the total time logged on. As noted in the previous
 chapter, gathering performance statistics is low in terms of collection overhead, and
 Oracle Database 10g and later releases automatically
 gather statistics in populating the Automatic Workload Repository
 (AWR).
Audit records always contain the following information:
	Username

	Session identifier

	Terminal identifier

	Name of schema object accessed

	Operation performed or attempted

	Completion code of the operation

	Date and timestamp

The records may be stored in a data dictionary table (AUD$ in the SYS schema), which is
 also called the database audit trail, or in an operating system audit
 trail.
Oracle9i added fine-grained auditing, which
 enabled selective audits of SELECT statements with bind variables based on access of
 specified columns. Oracle Database 10g added extended
 SQL support for fine-grained auditing. You can now perform granular
 auditing of queries, and UPDATE, INSERT, and DELETE operations through
 SQL.
With Oracle Database 12c, auditing is
 policy-based, which gives you even more flexibility and ease of use. You
 can choose when to save audit records based on conditions, as well as
 allowing user exceptions for audit record collection.
Since Oracle Database 11g, auditing is turned
 on by default, and the AUDIT_TRAIL initialization parameter is set to DB.
 Privileges audited by default include:
	ALTER ANY PROCEDURE

	ALTER ANY TABLE

	ALTER DATABASE

	ALTER PROFILE

	ALTER SYSTEM, ALTER USER

	AUDIT SYSTEM

	CREATE ANY JOB, CREATE ANY LIBRARY, CREATE ANY PROCEDURE, CREATE
 ANY TABLE, CREATE EXTERNAL JOB, CREATE PUBLIC DB LINK, CREATE SESSION,
 CREATE USER

	DROP ANY PROCEDURE, DROP ANY TABLE, DROP PROFILE, DROP
 USER

	EXEMPT ACCESS POLICY

	GRANT ANY OBJECT PRIVILEGE, GRANT ANY PRIVILEGE, and GRANT ANY
 ROLE

Oracle Database 12c gives you the option of
 requiring immediate audit record writes or allowing periodic writes of
 audit records every few seconds, which can lower the impact of auditing on
 resource consumption. Each pluggable database has its own audit trails and
 set of audit policies, which are automatically moved if you move the
 pluggable database.

Compliance

The slogan “trust, but verify” could apply to the functions of security and auditing. Compliance
 extends that slogan to “trust, verify, and prove it” and describes the
 tools necessary to provide proof that your data has been used
 properly.
Compliance is based on the security and audit features described in previous sections. For
 the most part, compliance is the result of a new element introduced into the corporate
 landscape—government requirements. In the United States and elsewhere, compliance is being increasingly required by government
 regulation, so the ability of the Oracle Database to make compliance easy is becoming
 correspondingly important. Compliance is crucial for many organizations, and the people
 responsible for guaranteeing compliance are not necessarily in the IT department.
 Consequently, the implementation of security and audit schemes has had to be simplified and
 coordinated to address compliance needs.
Oracle has two options specifically designed to address compliance
 challenges—Oracle Data Vault and Oracle Audit Vault; these are described in the following sections. The related
 Flashback Data Archive capability, also mentioned below, is described in
 greater detail in Chapter 3. In
 addition, privilege analysis, mentioned above, can be used to demonstrate
 the extent of privilege grants to auditors.
Oracle Database Vault Option

The Oracle Database Vault Option was introduced in 2006 and restricts DBAs and other highly
 privileged users from accessing application data to which they should
 not have access. It can also be set up so that applications’ DBAs are
 not allowed to manipulate the database or access other applications. A
 security administrator can use the Oracle Database Vault Option to
 describe the security scheme that the organization wants to implement,
 and this option automatically implements the schemes using the features
 described earlier in this chapter.
Key parameters defined in the Oracle Database Vault Option are
 called factors. A factor is
 essentially a descriptive dimension that will affect security across the
 entire database. Factors include things such as specific application
 programs, locations, or times of day. This option comes with more than
 40 factors defined, and users can create their own factors.
Factors are used to define access and audit particular security
 dimensions. You can create rules that limit types of access to a particular factor
 and rule sets that combine multiple factor rules together. Once you have
 defined rule sets, you can create application roles based on these sets,
 as well as command rules that control whether database commands can be
 executed, based on the outcome of rule evaluation. For example, you
 could prevent anyone from dropping a particular table unless the command
 came from a particular location defined by a factor, or specify that new
 users can be defined only by the combined actions of two
 administrators.
Rules can also be used to define database realms, which consist of a
 subset of the schemas and roles that an administrator can administer.
 This ability is essential if an organization uses its Oracle Database to
 service multiple communities. You can define a realm and give an
 administrator privileges on that realm without compromising data in
 other schemas. The overall effect of realms is to allow secure
 delegation of administrative responsibilities.
Mandatory realms were introduced with Oracle Database
 12c. Prior to this release, realms only operated on
 general system privileges used for specific tables. If you eliminated
 the use of SELECT on your PAYROLL table, that keyword would not be
 allowed for users who gained access to the table through a privilege
 like SYSDBA. With a mandatory realm, you can also block access for users
 who have been given that access through direct GRANT
 operations.
The installation and management of Database Vault has also been
 made significantly easier with Oracle Database 12c,
 allowing installation with just two commands.
All of the rule enforcement is audited as part of the Oracle
 Database Vault Option, which provides the type of documentation required
 for complete compliance. Figure 6-1 illustrates the
 various components of the Oracle Database Vault Option solution.
[image: Oracle Database Vault Option components]

Figure 6-1. Oracle Database Vault Option components

Oracle Audit Vault Server

The Oracle Audit Vault Server was introduced in 2007 and collects data from audit files
 in Oracle and in the underlying operating system. It consolidates this
 data in a secure repository and provides out-of-the-box compliance
 reporting. Among the reports provided are privileged user accesses,
 account management, data access, and failed login attempts. Stored in an
 Oracle data warehouse schema, the data is easily accessible by business
 intelligence tools such as Oracle’s BI Publisher.
Because the Oracle Audit Vault Server monitors all incoming audit
 data, it can generate alerts based on IT policies. For example, policies
 can be defined to trigger alerts for privileged users’ changes and
 sensitive data access. Oracle Databases dating back to Oracle
 9i Release 2 can be monitored. A software
 development kit (SDK) is available for building custom audit
 collectors.
Oracle acquired a product now known as Database Firewall in 2010. The product performs traditional network
 firewall operations, but with a focus on limiting access to database
 capabilities, such as SQL injection. In Oracle Database
 12c, the Database Firewall product has been added
 to Audit Vault.

Flashback Data Archive

Flashback technology was introduced in Chapter 3, because this capability is
 based on rollback segments. Although Flashback was initially introduced
 with Oracle9i, Oracle Database
 11g first enabled a particular use of Flashback
 that can help address compliance issues.
Flashback Data Archive gives you the ability to see all of the
 changes that occur to a record throughout its lifetime. This type of
 history tracking can provide the key information required to demonstrate
 compliance, as well as to track the source of errors in compliance or
 usage.

Transparent Sensitive Data Protection

Tied to the Oracle Database 12c release,
 Enterprise Manager includes a new capability called Sensitive Data Discovery. This procedure helps to discover
 the existence of potentially sensitive data by examining a number of
 sources, including the data dictionary and metadata for applications,
 and uses information such as data relationships to identify sensitive
 data that might need attention, such as encryption, redaction, or
 encrypting. All data security features in Oracle Database
 12c can use this information in a feature called
 Transparent Sensitive Data Protection to create policies to protect the sensitive data. The
 policy is uniformly implemented over all occurrences of a particular
 type of sensitive data, and the policies can be changed to keep in step
 with changing audit and protection requirements.

Chapter 7. Oracle Performance

This book illustrates the wide range of features that the Oracle
 Database has. As you gain experience with Oracle, you’ll reap more of the
 benefits it has to offer. One area on which you will eventually focus is
 performance tuning, since you will inevitably be forced to wring additional
 performance from your Oracle Database in the face of increasing demands.
 This chapter covers the basics you’ll need to understand as you address
 performance.
Oracle Database performance tuning has been extensively documented in
 the Oracle community. There are numerous books that provide detailed and
 excellent information. This book is focused more on the concepts of the
 Oracle Database, so we won’t delve too deeply into specific tuning
 recommendations. Instead, we’ll touch on the importance of tuning and
 discuss some basic notions of how Oracle uses resources. Here, we’re simply
 laying a foundation for understanding Oracle performance. This understanding
 will help you implement the tuning procedures most suited for your own
 particular implementation. Where appropriate, we’ll provide some basic
 guidance on how the latest Oracle Database features and Enterprise Manager
 help you manage performance.
Performance is one of the trickiest aspects in the operation of your
 database since so many factors can be involved. There is the Oracle
 Database, to be sure. But there are also platform deployment strategies to
 consider. Today, the infrastructure for your applications likely resides on
 multiple platforms, including database servers and applications servers.
 There is network and interconnect bandwidth to consider and varying
 complexity in use among your users.
One of the curious aspects of performance is that “good performance” is defined by its
 absence rather than by its presence. You can recognize bad performance easily, but good
 performance is usually defined as simply the absence of bad performance. Performance is
 simultaneously a very simple topic—any novice user can implicitly understand it—and an extremely
 complex topic that can strain the ingenuity of the most proficient database professional.
Certainly, Oracle provides more and better automated tuning options in
 current releases than it did when we wrote earlier editions of this book.
 These can help you better manage contention, identify high-load SQL, tune
 initialization parameters, and identify problems caused by badly designed
 applications. However, getting optimal performance also relies on proper
 configuration of your server and storage platform. There is no substitute
 for getting your hardware platform properly configured with appropriate CPUs
 and cores, memory, and especially storage and I/O (throughput).
We’ll begin this chapter by describing how Oracle uses system
 resources and how to efficiently use these resources to gain performance.
 Then we’ll cover some of the basic features and tools used for performance
 tuning the Oracle Database.
Oracle and Resource Usage

Chapter 12 covers some of the basics of good server and storage configurations and explains how
 Oracle-engineered systems provide a possible means of assuring balanced configurations. You
 are more likely to run into performance issues and face difficult tuning challenges if
 inadequate server and storage resources are available to the Oracle Database. Problems such as
 those caused by inadequate I/O, CPUs and CPU cores, or memory are still common today where
 unbalanced configurations are deployed. Where data is being accessed in a federated fashion
 across multiple servers, network bandwidth can also play a part in performance challenges.
 However, most organizations avoid this problem by minimizing use of such federated
 strategies.
Note
Network bandwidth can become a concern when using your Oracle Database to retrieve very
 large data sets over the network. Although you can’t typically surmount this type of problem
 simply by improving the performance of your Oracle Database, you can monitor network and application server bottlenecks with Oracle
 Enterprise Manager.

If your Oracle Database is not properly designed and configured, you could also have more
 fundamental problems. We will next focus on how Oracle uses the three key machine resources:
 CPU, memory, and disk I/O. The slowest access is to disk and, as a result, the most common
 database performance issues are I/O-related. The majority of this section therefore focuses on
 performance as it relates to physical disk I/O.
A database server may experience bottlenecks caused by contention
 for multiple resources at the same time. In fact, where platforms are
 managed such that one resource will try to compensate for the lack of
 another resource, there is sometimes a deficit in the compensating
 resource as well. For example, if you run out of physical memory, the
 operating system might swap areas of memory out to the disk and can cause
 I/O bottlenecks.
Oracle and Disk I/O Resources

From the perspective of machine resources, an input/output operation, or I/O, can
 be defined as the operating system of the computer reading or writing
 some bytes from or to the underlying disk subsystem of the database
 server. I/Os can be small, such as 4 KB of data, or large, such as 64 KB
 or 128 KB of data. The lower and upper limits on the size of an I/O
 operation vary according to the operating system. The Oracle Database
 also has a block size that you can define, called the database block size. The default
 size for Oracle is typically 4 KB or 8 KB depending on operating
 system.
An Oracle Database can issue I/O requests in two basic
 ways:
	Single database block I/Os
	For example, one 8 KB datablock I/O request at a time. This type
 of request reads or writes a specific block. After looking up a
 row in an index, Oracle uses a single block I/O to retrieve the
 desired database block.

	Multiblock I/Os
	For example, 32 database blocks, each consisting of 8 KB, for a total I/O size of
 256 KB. Multiblock I/O is used for large-scale operations. The number of blocks in one
 multiblock I/O is determined by the initialization parameter
 DB_FILE_MULTIBLOCK_READ_COUNT. Setting this value too high will favor full table
 scans.

The Oracle Database can read larger amounts of data with multiblock I/Os, so there are
 times when a full table scan might actually retrieve data faster than an index-based
 retrieval (e.g., if the selectivity of the index is low). Oracle can perform multiblock
 operations faster than the corresponding collection of single-block operations.

I/O Planning Principles for an Oracle Database

When you’re planning the disk layout and subsequent placement of the various files
 that make up your database, you need to consider why Oracle performs I/O
 and the potential performance impacts.
The amount of I/O is affected by the following in Oracle:
	Redo logs

	Data contained in tables

	Indexes on the tables

	The data dictionary, which goes in the SYSTEM
 tablespace

	Sort activity, which goes in the TEMP tablespace of the user
 performing the sort when outside the boundary of the sort area
 size

	Rollback information, which is spread across the datafiles of
 the tablespace containing the database’s rollback segments

	Archived redo logs, which go to the archived log destination
 (assuming the database is in ARCHIVELOG mode)

Striping of data across disk is used to spread I/O evenly across
 multiple spindles and speed performance. Striping data can assure I/O
 operations occur across multiple spindles, reducing contention on
 individual drives, and speeding database performance. For example,
 suppose you were to place a datafile containing an index on a single
 drive. If multiple processes use the index simultaneously, they will all
 issue I/O requests to the one disk drive, resulting in contention for
 the use of that drive.
Instead, suppose you placed the same datafile on a “disk” that was
 actually an array of five physical disks. Each physical disk in the
 array can perform I/O operations independently on different data blocks
 of the index, automatically increasing the amount of I/O Oracle can
 perform without causing contention.
Since Oracle Database 10g, Oracle’s Automatic
 Storage Management (ASM) provides automatic striping and rebalancing of stripe
 sets. ASM also provides mirroring for high availability and is typically
 accessed for managing storage through Enterprise Manager.
ASM divides files into extents and spreads the extents evenly across each disk group. Pointers are used
 to track placement of each extent (instead of using a mathematical
 function such as a hashing algorithm to stripe the data). So when the
 disk group configuration changes, individual extents can be moved. In
 comparison to traditional algorithm-based striping techniques, the need
 to rerun that algorithm and reallocate all of the data is eliminated.
 Extent maps are updated when rebalancing the load after a change in disk
 configuration, opening a new database file, or extending a database file
 by enlarging a tablespace. By default, each extent is also mirrored, so
 management of redundancy is also simplified. Mirroring can be extended
 to triple mirroring or can be turned off. Although you still have to
 consider how many disk groups to use, implementation of these groups
 with striping and redundancy is automated with ASM.
Other simple principles for managing I/O have been used by DBAs to
 optimize Oracle’s use of the database server’s disk subsystem. Some of
 these include:
	Use tablespaces to clearly segregate and target
 different types of I/O
	Separate table I/O from index I/O by placing these
 structures in different tablespaces. You can then place the
 datafiles for these tablespaces on various disks to provide better
 performance for concurrent access.
Using tablespaces to segregate objects also simplifies tuning later on.
 Oracle implements I/O activity at the level of the datafile, or
 the physical object the operating system sees as a file, and each
 file is a part of only one tablespace, as described in Chapter 4. Placing specific objects in
 specific tablespaces allows you to accurately measure and direct
 the I/O for those objects by tracking and moving the underlying
 datafiles as needed.
For example, consider a database with several large, busy
 tables. Placing multiple large tables in a single tablespace makes
 it difficult to determine which table is causing the I/O to the
 underlying datafiles. Segregating the objects allows you to
 directly monitor the I/O associated with each object. Your Oracle
 documentation details the other factors to consider in mapping
 objects to tablespaces.

	Place redo logs and redo log mirrors on the two
 least-busy devices
	This placement maximizes throughput for transactional systems.
 Oracle writes to all copies of the redo logfile, and this I/O is
 not completed until all copies have been successfully written to.
 If you have two copies of the redo logfile, one on a slow device
 and the other on a fast device, your redo log I/O performance will
 be constrained by the slower device.

	Distribute “system overhead” evenly over the
 available drives
	System overhead consists of I/O to the SYSTEM
 tablespace for the data dictionary, the TEMP tablespace for sorting, and the tablespaces
 that contain rollback segments for undo information. You should
 consider the system profile in spreading the system overhead over
 multiple drives. For example, if the application generates a lot
 of data changes versus data reads, the I/O to the rollback
 segments may increase due to higher writes for changes and higher
 reads for consistent read functionality.

	Use a different device for archiving and redo
 logfiles
	To avoid archiving performance issues due to I/O contention,
 make sure that the archive log destination uses different devices
 from those used for the redo logs and redo log mirrors.

Volume managers

Oracle began providing its own volume manager software for Linux and Windows with
 Oracle9i Release 2. Since Oracle Database 10g,
 all Oracle Database releases for all supported operating systems include a cluster
 filesystem and volume manager in the database that is leveraged by ASM. When using ASM, an
 operating system volume manager will do little to improve database performance.
Older Oracle Database releases were often deployed on operating system-specific
 non-Oracle logical volume managers (LVM). An LVM acts as an interface between the
 operating system that requests I/O and the underlying physical disks. Volume-management
 software groups disks into arrays, which are then seen by the operating system as single
 “disks.” The actual disks are usually individual devices attached to controllers or disks
 contained in a prepackaged array containing multiple disks and controllers. This striping is handled by the volume
 management software and is completely transparent to Oracle. Figure 7-1 illustrates host-based volume
 management.
[image: Host-based volume management]

Figure 7-1. Host-based volume management

Storage subsystems

Storage subsystems, often referred to as disk farms, contain disks,
 controllers, CPUs, and (usually) memory used as an I/O cache. Examples
 of providers of such storage subsystems include Oracle, EMC, Network
 Appliance, Hewlett-Packard, IBM, and others. These subsystems offload
 the task of managing the disk arrays from the database server. The I/O
 subsystem is attached to the server using controllers. These dedicated
 storage devices are sometimes grouped into storage area networks
 (SANs) to denote their logical organization as a separate set of
 networked devices. The disk arrays are defined and managed within the
 dedicated I/O subsystem, and the resulting logical “disks” are seen by
 the operating system as physical disks.
This type of disk volume management is completely transparent to the database server
 and offers the following characteristics:
	The database server does not spend CPU resources managing
 the disk arrays.

	The I/O subsystem uses memory for an I/O cache, so the
 performance of Oracle I/O can improve.

	Write I/O is completed as soon as the data has been written
 to the subsystem’s cache.

	The I/O subsystem will de-stage the data from cache to
 actual disk later.

	Read I/O can be satisfied from the cache. The subsystem can
 employ some type of algorithm to sense I/O patterns and preload
 the cache in anticipation of pending read activity.

Note that you must back up the cache in the subsystem with some
 type of battery so a power failure doesn’t result in the loss of data
 that was written to the cache, but hasn’t yet been written to the
 physical disk. Otherwise, data that Oracle assumes made it to disk may
 be lost, thereby potentially corrupting the database. Figure 7-2 illustrates a database
 server with a dedicated I/O subsystem.
[image: Dedicated I/O subsystems]

Figure 7-2. Dedicated I/O subsystems

Oracle’s engineered systems and storage

Oracle’s highest performing engineered systems for the Oracle Database, the Oracle Exadata
 Database Machine and the SuperCluster contain dedicated Exadata Storage Server cells. Why
 did Oracle use this approach?
For many years, getting I/O configurations right for storage attached to Oracle
 Database servers was problematic due to the number of vendors involved and the lack of
 focus on the potential negative performance impact of mismatched storage to workloads and
 servers. Suffice it to say, defining a balanced server and storage combination where
 Database Server node performance is matched to Exadata Storage Server cells and linked via
 a high-speed interconnect (InfiniBand) greatly helps. In addition, Exadata’s enabling of
 unique in-storage automated Oracle Database optimization techniques, storage indexes, and
 the Smart Flash Cache greatly speeds
 performance and simplifies challenges IT faces in designing optimally performing
 solutions. The use of balanced systems, with high bandwidth interconnects, and the
 “special sauce” of Exadata Storage Server software have greatly reduced the potential for
 I/O bottlenecks, which were previously the leading cause of reduced performance.
Where Oracle’s engineered systems are deployed, other storage subsystems are still
 sometimes attached as part of an Information Lifecycle Management (ILM) strategy for archiving data online.
 Obviously, performance requirements when accessing archived data are much less demanding.

Oracle and Parallelism

The ability to parallelize operations is one of the most important features of the Very
 Large Database (VLDB). Database servers or nodes with multiple CPUs and CPU cores
 are the norm today for database servers. Oracle supports parallelism
 within single servers and nodes. Oracle supports further parallelism
 across multiple node configurations using Oracle Real Application
 Clusters. Executing a SQL statement in parallel will consume more of the
 machine resources—CPU, memory, and disk I/O—but complete the overall task
 faster.
Parallelism affects the amount of memory and CPU resources used to
 execute a given task in a fairly linear fashion—the more parallel
 processes used, the more resources consumed for the composite task. Each
 parallel execution process has a Program Global Area (PGA) that consumes
 memory and performs work. Each parallel execution process takes its own
 slice of CPU, but more parallel processes can reduce the total amount of
 time spent on disk I/O, which is the place in which bottlenecks can most
 frequently appear.
Two types of parallelism are possible within an Oracle
 Database:
	Block-range parallelism
	Driven by ranges of database blocks

	Partition-based parallelism
	Driven by the number of partitions or subpartitions involved in the
 operation

The following sections describe these types of parallelism.
Block-Range Parallelism

Oracle has featured the ability to dynamically parallelize table scans and a variety of scan-based
 functions since Oracle7. This parallelism is based on the notion of block
 ranges, in which the Oracle server understands that each table contains a set
 of data blocks that spans a defined range of data. Block-range parallelism is implemented by
 dynamically breaking a table into pieces, each of which is a range of blocks, and then using
 multiple processes to work on these pieces in parallel. Oracle’s implementation of
 block-range parallelism is unique in that it doesn’t require physically partitioned tables
 to achieve parallelism.
With block-range parallelism, the client session that issues the
 SQL statement transparently becomes the parallel execution coordinator,
 dynamically determining block ranges and assigning them to a set of
 parallel execution (PE) processes. Once a PE process has
 completed an assigned block range, it returns to the coordinator for
 more work. Not all I/O occurs at the same rate, so some PE processes may
 process more blocks than others. This notion of “stealing work” allows
 all processes to participate fully in the task, providing maximum
 leverage of the machine resources.
Block-range parallelism scales linearly based on the number of PE
 processes if there are adequate hardware resources. The key to achieving
 scalability with parallelism lies in hardware basics. Each PE process
 runs on a CPU and requests I/O to a device. If you have enough CPU
 processing power reading enough disks, parallelism will scale. If the
 system encounters a bottleneck on one of these resources, scalability
 will suffer. For example, four CPU cores reading two disks will not
 scale much beyond the two-way scalability of the disks and may even sink
 below this level if the additional CPUs cause contention for the disks.
 Similarly, two CPU cores reading 20 disks will not scale to a 20-fold
 performance improvement. The system hardware must be balanced for
 parallelism to scale.
Historically, most large systems had far more disks than CPU
 cores. In these systems, parallelism results in a randomization of I/O
 across the I/O subsystem. This is useful for concurrent access to data
 as PE processes for different users read from different disks at
 different times, resulting in I/O that is distributed across the
 available disks.
A useful analogy for dynamic parallelism is eating a pie. The pie
 is the set of blocks to be read for the operation, and the goal is to
 eat the pie as quickly as possible using a certain number of people.
 Oracle serves the pie in helpings, and when a person finishes his first
 helping, they can come back for more. Not everyone eats at the same
 rate, so some people will consume more pie than others. While this
 approach in the real world is somewhat unfair, it’s a good model for
 parallelism because if everyone is eating all the time, the pie will be
 consumed more quickly. The alternative is to give each person an equal
 serving and wait for the slower eaters to finish.
Figure 7-3 illustrates the
 splitting of a set of blocks into ranges.
[image: Dynamic block-range parallelism]

Figure 7-3. Dynamic block-range parallelism

It is worth noting here that in engineered systems such as the
 Oracle Exadata Database Machine, the number of CPU cores in the Database
 Server nodes is almost equal the number of disk drives in the Exadata
 Storage Server cells. Furthermore, there are additional CPU cores
 present in the Storage Server cells that help process the
 workload.

Parallelism for Tables and Partitions of Tables

Since partitioned tables were introduced in Oracle8, an operation may involve one, some,
 or all of the partitions of a partitioned table. There is essentially no
 difference in how block-range parallelism dynamically splits the set of
 blocks to be read for a regular table as opposed to a partitioned table.
 Once the optimizer has determined which partitions should be accessed
 for the operation, all the blocks of all partitions involved are treated
 as a pool to be broken into ranges.
This assumption by the optimizer leads to a key consideration for
 using parallelism and partitioned tables. The degree of parallelism
 (i.e., the number of parallel execution processes used for the table as
 a whole) is applied to the set of partitions that will be used for an
 operation. The optimizer will eliminate the use of partitions that do
 not contain data an operation will use. For instance, if one of the
 partitions for a table contains ID numbers below 1,000, and if a query
 requests ID numbers between 1,100 and 5,000, the optimizer understands
 that this query will not access this partition.
The Oracle Database provides a variety of partitioning techniques,
 including various combinations called composite partitioning, in the Partitioning Option. We
 described partitioning techniques in Chapter 4.
As you might expect, when your queries will use partition elimination or pruning and
 parallelism, the partitions should be striped over a sufficient number of drives to scale
 effectively. This will ensure scalability regardless of the number of partitions accessed.
 As noted previously, such striping is provided by ASM today.

What Can Be Parallelized?

Oracle can parallelize far more than simple queries. Some of the
 operations that can be parallelized using block-range parallelism
 include the following:
	Tablespace creation

	Index creation and rebuilds

	Online index reorganizations and rebuilds

	Index-organized table reorganizations and movements

	Table creation, such as summary creation using CREATE TABLE ... AS SELECT

	Partition-maintenance operations, such as moving and splitting
 partitions

	Data loading

	Integrity constraints imposing

	Statistics gathering (automatically gathered since Oracle
 Database 10g)

	Backups and restores (including very large files since Oracle
 Database 11g)

	DML operations (INSERT,
 UPDATE, DELETE)

	Query processing operations

	OLAP aggregate (since Oracle Database
 10g)

Oracle can also provide the benefits of parallelism to individual processing steps for
 queries. Some of the specific features of query processing that may be parallelized include:
	Table scans

	Nested loops

	Sort merge joins

	Hash joins

	Bitmap star joins

	Index scans

	Partition-wise joins

	Anti-joins (NOT IN)

	SELECT DISTINCT

	UNION and UNION ALL

	ORDER BY

	GROUP BY

	Aggregations

	Import

	User-defined functions

Degree of parallelism

An Oracle instance has a pool of parallel execution (PE) processes that are available to the database
 applications. Controlling the number of active PE processes was an important task in older Oracle Database releases; too many
 PE processes would overload the machine, leading to resource bottlenecks and performance
 degradation. A high degree of parallelism would also force full table scans, and this may
 or may not be appropriate. Figure 7-4
 illustrates transparent parallelism within and between sets of PE processes.
Determining the optimal degree of parallelism in the presence of multiple users and
 varying workloads can be challenging. For example, a degree of 8 for a query would provide
 excellent performance for 1 or 2 users, but what if 20 users queried the same table? This
 scenario called for 160 PE processes (8 PEs for each of the 20 users), which could
 overload the machine.
Setting the degree to a lowest common denominator value (for
 example, 2) provided effective parallelism for higher user counts, but
 did not leverage resources fully when fewer users were active.
[image: Intra-operation and inter-operation parallelism]

Figure 7-4. Intra-operation and inter-operation parallelism

Self-tuning adaptive parallelism

Oracle8i introduced the notion of self-tuning adaptive
 parallelism. This feature is turned on when the
 initialization parameter PARALLEL_DEGREE_POLICY is set to AUTO. Oracle automatically scales down
 parallelism as the system load increases and scales it back up as the
 load decreases. When an operation requests a degree of parallelism,
 Oracle will check the system load and lower the actual degree the
 operation uses to avoid overloading the system. As more users request
 parallel operations, the degree they receive will become lower and
 lower until operations are executing serially. If activity decreases,
 subsequent operations will be granted increasing degrees of
 parallelism. This adaptability frees the DBA from the difficult task
 of trying to determine the optimal degree of parallelism in the face
 of constant changes in workload.
Adaptive parallelism takes two factors into account in
 determining the degree of parallelism granted to an operation:
	System load.

	Parallelism resource limitations of the user’s consumer
 group if the Database Resource Manager is active. (The Database
 Resource Manager is described later in this chapter.) This is
 important, because it means that adaptive parallelism respects
 resource plans if they’re in place.

When automatic degree of parallelism is set as noted above, the
 Oracle Database will also queue SQL statements that require parallel
 execution if there are not enough PE server processes available. It
 will then execute those statements as needed resources do become
 available.
The database will also automatically decide whether an object being accessed should be
 held in the buffer cache (SGA) to speed parallel execution. Oracle refers to this as in-memory parallel execution. We describe the SGA and
 memory resources later in this chapter.

Partition-Based Parallelism

A small subset of Oracle’s parallel functionality is based on the number of
 partitions or subpartitions accessed by the statement to be
 parallelized. For block-range parallelism, the piece of data each PE
 process works on is a range of blocks. For partition-based parallelism,
 the pieces of data that drive parallelism are partitions or
 subpartitions of a table. The operations in which parallelism is based
 on the number of partitions or subpartitions include the
 following:
	Updates and deletes

	Index scans

	Index creation and rebuilds on partitioned tables

Parallelism for partitions and subpartitions of a table

Oracle supports parallel Data Manipulation Language (DML), or the ability to execute INSERT, UPDATE, and DELETE
 statements in parallel. This type of parallelism improves the
 performance of large bulk operations (for example, an update to all
 the rows of a very large table).
Since Oracle8i, the degree of parallelism
 for updates and deletes is tied to the number of partitions or
 subpartitions involved. A table with 12 partitions (for example, one
 partition for each month of the year) can have a maximum number of 12
 PEs for an update or delete. An update to only one month of data would
 have no parallelism because it involves only one partition. If the
 table were created using Oracle’s composite partitioning (for example,
 with 4 hash subpartitions by PRODUCT_ID within each month), the
 maximum degree of parallelism for the entire table would be 48, or 12
 partitions with 4 subpartitions each. An update to one month of data
 could have a degree of 4 because each month contains 4 hash
 subpartitions. If the table is not partitioned, Oracle cannot perform
 updates or deletes in parallel.
Oracle can also execute index creation, index rebuilds, and
 index scans for partitioned indexes in parallel using the same
 semantics as parallel DML: one PE process per partition or
 subpartition of the index.

Fast full-index scans for nonpartitioned tables

People often assume that the Oracle Database can parallelize index scans only if the target
 index is partitioned. However, Oracle has the ability to perform parallel index scans on
 nonpartitioned indexes for certain cases. If the index scan operation were “unbounded,”
 meaning that the entire index was going to be accessed to satisfy the query, then Oracle
 would use block-range parallelism to access the entire index in parallel. While Oracle can
 perform index scans for nonpartitioned indexes, this feature applies to a narrow set of
 queries. Partition-based index scans apply to a much broader range of queries.

Parallel insert for nonpartitioned and partitioned
 tables

Oracle can execute an INSERT statement of the form INSERT INTO
 tableX SELECT . . . FROM
 tableY in parallel for nonpartitioned and
 partitioned tables. Oracle uses a set of PE processes executing
 block-range parallelism for the SELECT portion of the INSERT
 statement. These PE processes pass the rows to a second set of PE
 processes, which insert the rows into the target table. The target
 table can be a nonpartitioned or partitioned table. Parallelism for an
 insert is not exactly block-range or partition-based.

Oracle and Memory Resources

Accessing data in memory is much faster than accessing data on disk. An Oracle
 instance uses the database server’s memory resources to cache the
 information accessed to improve performance. Oracle utilizes an area of
 shared memory called the System Global Area (SGA) and a private memory
 area for each server process called the Program Global Area (PGA).
Prior to Oracle9i, you could only specify the
 size for the SGA or any of its components—database buffer cache, shared
 pool, or large pool—in the initialization file, and the size of these
 memory allocations could not be changed without shutting down and
 restarting the instance. Oracle9i enabled dynamic
 resizing of these pools based on a minimum memory allocation called a granule. Oracle Database
 10g and later releases can automatically manage
 shared memory. Oracle Database 11g added automatic
 memory management of the SGA and PGA.
Exhausting a database server’s supply of memory will cause poor
 performance. If you are running an older release of Oracle, you should
 gauge the size of the various memory areas Oracle uses or add more memory
 to the machine to prevent a memory deficit from occurring. What
 constitutes the right size for the various areas is a function of your
 application behavior, the data it uses, and your performance
 requirements.
How Oracle Uses the System Global Area

Oracle uses the SGA for the following operations:
	Caching of database blocks containing table and index data in
 the database buffer cache

	Caching of parsed and optimized SQL statements, stored
 procedures, and data dictionary information in the shared
 pool

	Buffering of redo log entries in the redo log buffer before
 they’re written to disk

In versions prior to Oracle 9i, the amount of
 memory allocated to each of these areas within the SGA was determined at
 instance startup using initialization parameters and could not be
 altered without restarting the instance. The majority of tuning efforts
 focused on the database buffer cache and the shared pool.
Automatic sizing for the SGA

Oracle Database 10g eliminated manual tuning of SGA pools with automatic sizing for the
 SGA. Using automatic shared memory management, the database
 automatically allocates memory for the following SGA pools: database
 buffer cache, shared pool, large pool, Java pool, and Streams pool.
 You have to specify only the total amount of memory required by
 setting the SGA_TARGET initialization parameter.
Since Oracle Database 10g, the database proactively monitors the
 memory requirements for each pool and dynamically reallocates memory when appropriate. You
 can also specify the minimum amount of memory for any of the SGA pools while using
 automatic SGA sizing using the following initialization parameters: DB_CACHE_SIZE, SHARED_POOL_SIZE, LARGE_POOL_SIZE, JAVA_POOL_SIZE,
 and STREAMS_POOL_SIZE. A few of the SGA pools are still manually managed by specifying
 parameters such as LOG_BUFFER, DB_KEEP_CACHE_SIZE, and DB_RECYCLE_CACHE_SIZE.

The database buffer cache

If you decide to disable SGA_TARGET by setting it to 0, you will need to manually set
 initialization parameters for the memory pools. For the database buffer cache, you would
 assess the percentage of the database blocks requested by users read from the cache versus
 from the disk. This percentage is termed the hit ratio. If query response times are too high and
 the hit ratio is lower than 90 percent (as a rule of thumb), increasing the value of the
 initialization parameter DB_CACHE_SIZE can improve performance.
Note
You can use Oracle Enterprise Manager to get information about
 the cache hit ratio.

It is tempting to assume that continually increasing the size of
 the database buffer cache will translate into better performance.
 However, this is true only if the database blocks in the cache are
 actually being reused. Most OLTP systems have a relatively small set of core tables
 that are heavily used (for example, lookup tables for things such as
 valid codes). The rest of the I/O tends to be random, accessing a row
 or two in various database blocks in the course of the transaction.
 Because of this, having a larger buffer cache may not contribute to
 performance since there isn’t much reuse of data blocks
 occurring.
In addition, not all operations read from the database buffer cache. For example,
 large full table scans are limited to a small number of buffers to avoid adversely
 impacting other users by dominating the cache. If your application performs a lot of table
 scans, increasing the buffer cache may not help performance because the cache will not
 contain the needed data blocks. Parallel table scans completely bypass the buffer cache
 and pass rows directly to the requesting user process, as do Smart Scan operations on
 Exadata. As with most performance issues, your understanding of how your application is
 actually using your data is the key that will help guide your database buffer cache
 tuning.

The shared pool

The shared pool is used at several points during the execution of
 every operation that occurs in the Oracle Database. For example, the
 shared pool is accessed to cache the SQL sent to the database and for
 the data dictionary information required to execute the SQL. Because
 of its central role in database operations, a shared pool that is too
 small may have a greater impact on performance than a database buffer
 cache that is too small. If the requested database block isn’t in the
 database buffer cache, Oracle will perform an I/O to retrieve it,
 resulting in a one-time performance hit.
A shared pool that is too small will cause poor performance for
 a variety of reasons, affecting all users. These reasons include the
 following:
	Not enough data dictionary information can be cached,
 resulting in frequent disk access to query and update the data
 dictionary.

	Not enough SQL can be cached, leading to memory churn or the flushing of useful
 statements to make room for incoming statements. A well-designed application issues
 the same statements repeatedly. If there isn’t enough room to cache all the SQL the
 application uses, the same statements get parsed, cached, and flushed over and over, wasting valuable CPU resources and
 adding overhead to every transaction.

	Not enough stored procedures can be cached, leading to
 similar memory churn and performance issues for the program logic
 stored and executed in the database.

If you are manually managing the shared pool and you’ve diagnosed which of these
 problems is occurring, the solution is fairly simple: increase the size of the shared pool
 using the SHARED_POOL_SIZE initialization parameter. For more information about
 examining shared pool activity to identify problems, see the appropriate Oracle
 Performance Tuning Guide, as well as the other books on this topic.

The redo log buffer

While the redo log buffer consumes a very small amount of memory
 in the SGA relative to the Oracle Database buffer cache and the shared
 pool, it is critical for performance. Transactions performing changes
 to the data in the database write their redo information to the redo
 log buffer in memory. The redo log buffer is flushed to the redo logs
 on disk when a transaction is committed (normally) or when the redo
 log buffer is one-third full. Oracle “fences” off the portion of the
 redo log buffer that’s being flushed to disk to make sure that its
 contents aren’t changed until the information is safely on disk.
 Transactions can continue to write redo information to the rest of the
 redo log buffer (the portion that isn’t being written to disk and
 therefore isn’t fenced off by Oracle). In a busy database,
 transactions may generate enough redo to fill the remaining unfenced
 portion of the redo log buffer before the I/O to the disks for the
 fenced area of the redo log buffer is complete. If this happens, the
 transactions will have to wait for the I/O to complete because there
 is no more space in the redo log buffer. This situation can impact
 performance. The statistic “redo buffer allocation retries” can be
 used to understand this situation.
You monitor these statistics over a period of time to gain
 insight into the trend. The values at one point in time reflect the
 cumulative totals since the instance was started and aren’t
 necessarily meaningful as a single data point. Note that this is true
 for all statistics used for performance tuning. Ideally, the value of
 “redo buffer allocation retries” should be close to 0. If you observe
 the value rising during the monitoring period, you would increase the
 size of the redo log buffer by resetting the LOG_BUFFER initialization
 parameter.

Query results caching

Oracle caches database and index blocks, eliminating the need to
 perform resource-intensive disk reads. Oracle also caches SQL plans,
 eliminating the need to reparse and optimize queries. But prior to
 Oracle Database 11g, a cached SQL plan would
 still have to execute and assemble a result set for repeated
 queries.
Oracle Database 11g and newer database releases cache the
 completed result set in the shared pool. This functionality means that a repeated query
 requesting the same result set can simply take that result set completely from memory.
 Since the result sets have to be the same for this feature to work, the query results
 cache has the biggest impact on situations like web page serving, where the same page is
 being retrieved repeatedly. This feature also works on the results of PL/SQL
 functions.
Oracle Database 11g and newer database releases also have the
 ability to cache query result sets on the client, while automatically keeping the result
 set consistent with any changes that could affect it. This feature gives the performance
 benefits of query result set caching on the server while eliminating network roundtrips as
 an added benefit.

How Oracle Uses the Program Global Area

Each server has a Program Global Area (PGA), which is a private memory area
 that contains information about the work the server process is
 performing. There is one PGA for each server process. The total amount
 of memory used for all the PGAs is a function of the number of server
 processes active as part of the Oracle instance. The larger the number
 of users, the higher the number of server processes and the larger the
 amount of memory used for their associated PGAs. Using shared servers
 reduces total memory consumption for PGAs because it reduces the number
 of server processes.
The PGA consists of a working memory area for things such as
 temporary variables used by the server process, memory for information
 about the SQL the server process is executing, and memory for sorting
 rows as part of SQL execution. The initial size of the PGA’s working
 memory area for variables, known as stack space, cannot be directly
 controlled because it’s predetermined based on the operating system you
 are using for your database server. The other areas within the PGA can
 be controlled as described in the following sections.
Memory for SQL statements

When a server process executes a SQL statement for a user, the
 server process tracks the session-specific details about the SQL
 statement and the progress by executing it in a piece of memory in the
 PGA called a private SQL area, also
 known as a cursor. This area should not be
 confused with the shared SQL area within the shared pool. The shared
 SQL area contains shareable details for the SQL statement, such as the
 optimization plan. Optimization plans are discussed in Chapter 4.
The private SQL area contains the session-specific information
 about the execution of the SQL statement within the session, such as
 the number of rows retrieved so far. Once a SQL statement has been
 processed, its private SQL area can be reused by another SQL
 statement. If the application reissues the SQL statement whose private
 SQL area was reused, the private SQL area will have to be
 reinitialized.
Each time a new SQL statement is received, its shared SQL area
 must be located (or, if not located, loaded) in the shared pool.
 Similarly, the SQL statement’s private SQL area must be located in the
 PGA or, if it isn’t located, reinitialized by the server process. The
 reinitialization process is relatively expensive in terms of CPU
 resources.
A server process with a PGA that can contain a higher
 number of distinct private SQL areas will spend less time
 reinitializing private SQL areas for incoming SQL statements. If the
 server process doesn’t have to reuse an existing private SQL area to
 accommodate a new statement, the private SQL area for the original
 statement can be kept intact. Although similar to a larger shared
 pool, a larger PGA avoids memory churn within the private SQL areas.
 Reduced private SQL area reuse, in turn, reduces the associated CPU
 consumption, increasing performance. There is, of course, a trade-off
 between allocating memory in the PGA for SQL and overall
 performance.
OLTP systems typically have a “working set” of SQL statements that
 each user submits. For example, a user who enters car rental
 reservations uses the same forms in the application repeatedly.
 Performance will be improved if the user’s server process has enough
 memory in the PGA to cache the SQL those forms issue. Application
 developers should also take care to write their SQL statements so that
 they can be easily reused, by specifying bind variables instead of
 different hardcoded values in their SQL statements.

Memory for sorting within the PGA

Each server process uses memory in its PGA for sorting rows
 before returning them to the user. If the memory allocated for sorting
 is insufficient to hold all the rows that need to be sorted, the
 server process sorts the rows in multiple passes called
 runs. The intermediate runs are written to the
 temporary tablespace of the user, which reduces sort performance
 because it involves disk I/O.
Sizing the sort area of the PGA was a critical tuning point in
 Oracle Database releases prior to Oracle Database
 10g. A sort area that was too small for the
 typical amount of data requiring sorting would result in temporary
 tablespace disk I/O and reduced performance. A sort area that was
 significantly larger than necessary would waste memory.
Since Oracle Database 10g, Oracle provides
 automatic sizing for the PGA. By default, this memory management is
 enabled, and sizing for PGA work areas is based on 20 percent of the
 SGA memory size. By using automatic sizing for the PGA, you eliminate
 the need to size individual portions of the PGA, such as
 SORT_AREA_SIZE.
Oracle Database 11g introduced automatic
 memory management that spans both the SGA and the PGA. By setting a
 single MEMORY_TARGET initialization parameter (given that the PGA size
 can be based on a percentage of the SGA memory size), the PGA and SGA
 will be automatically set to appropriate initial values. Oracle then
 tunes memory for optimal SGA and PGA performance on an ongoing basis.

Oracle and CPU Resources

The Oracle Database shares the CPU(s) with all other software running on the server. If there is a
 shortage of CPU power, reducing Oracle or non-Oracle CPU consumption will improve the
 performance of all processes running on the server.
If all the CPUs in a machine are busy, the processes line up and
 wait for a turn to use the CPU. This is called a run queue because processes
 are waiting to run on a CPU. The busier the CPUs get, the longer processes
 can spend in this queue. A process in the queue isn’t doing any work, so
 as the run queue gets longer, response times degrade.
Note
You can use the standard monitoring tools for your particular
 operating system to check the CPU utilization for that machine.

Tuning CPU usage is essentially an exercise in tuning individual
 tasks by reducing the number of commands required to accomplish the tasks
 and/or reducing the overall number of tasks to be performed. You can do
 this tuning through workload balancing, SQL tuning, or improved
 application design. This type of tuning requires insight into what these
 tasks are and how they’re being executed.
As mentioned earlier, an in-depth discussion of all the various tuning points for an
 Oracle Database is beyond the scope of this book. However, there is a set of common tasks that
 typically result in excess CPU consumption. Some of the usual suspects to examine if you
 encounter a CPU resource shortage on your database server include the following:
	Bad SQL
	Poorly written SQL is the number one cause of performance problems.
 The Oracle Database attempts to optimally execute the SQL it
 receives from clients. If the SQL contained in the client
 applications and sent to the database is written so that the best
 optimization plan Oracle can identify is still inefficient, Oracle
 will consume more resources than necessary to execute the SQL.
 Tuning SQL can be a complex and time-consuming process because it
 requires an in-depth understanding of how Oracle works and what the
 application is trying to do. Initial examinations can reveal flaws
 in the underlying database design, leading to changes in table
 structures, additional indexes, and so on. Changing the SQL required
 retesting and a subsequent redeployment of the application—until
 Oracle Database 10g.
Oracle Database 10g introduced the SQL
 Tuning Advisor, a tool that can not only recognize poorly written
 SQL, but also create an optimizer plan to circumvent the problem and
 replace the standard optimization plan with the improved plan. With
 this capability, you can improve the performance of poorly written
 SQL without changing any code in the application.
Since Oracle Database 11g, the Oracle
 Database can automatically spot the SQL queries with the largest
 loads and automatically create SQL profiles to improve their
 performance, if appropriate. This process can also result in advice
 on new indexes that could improve the performance of these
 statements.
These newer releases of the Oracle Database also track changes
 in execution plans for SQL statements. The optimizer can maintain
 the history of execution plans, and when a new plan is detected, the
 optimizer uses the old plan and evaluates the performance of the new
 plan. Once the optimizer verifies that the new plan can deliver the
 same performance, the old plan is replaced. This feature does not
 directly relate to bad SQL, but rather to the occasional effects of
 plan changes, which can result in unplanned performance
 degradation.

	Excessive parsing
	As we discussed in the section Memory for SQL statements, Oracle
 must parse every SQL statement before it’s processed. Parsing is very CPU-intensive,
 involving a lot of data dictionary lookups to check that all the tables and columns
 referenced are valid. Complex algorithms and calculations estimate the costs of the
 various optimizer plans possible for the statement to select the optimal plan. If your
 application isn’t using bind variables (discussed in Chapter 9), the Oracle Database will have to parse
 every statement it receives. This excessive and unnecessary parsing is one of the
 leading causes of performance degradation. Another common cause is a shared pool that’s
 too small, as discussed previously in the section “The shared pool.” Keep in mind that
 you can avoid the creation of execution plans by using stored outlines, as described in
 Chapter 4. And, since Oracle9i,
 you also have the ability to edit the hints that make up a stored outline. As described
 earlier, Oracle Database 11g and newer Oracle Database releases
 include the ability to cache complete result sets, which can minimize the impact of
 repeated execution of identical queries.

	Database workload
	If your application is well designed and your database is
 operating at optimal efficiency, you may experience a shortage of
 CPU resources for the simple reason that your server doesn’t have
 enough CPU power to perform all the work it’s being asked to do.
 This shortage may be due to the workload for one database (if the
 machine is a dedicated database server) or to the combined workload
 of multiple databases running on the server. Underestimating the
 amount of CPU resources required is a chronic problem in capacity
 planning. Unfortunately, accurate estimates of the CPU resources
 required for a certain level of activity demands detailed insight
 into the amount of CPU power each transaction will consume and how
 many transactions per minute or second the system will process, both
 at peak and average workloads. Most organizations don’t have the
 time or resources for the system analysis and prototyping required
 to answer these questions. The common solution is to simply add more
 CPU resources to the machine until the problem goes away.

	Nondatabase workload
	Not all organizations dedicate an entire machine to an Oracle Database to ensure
 that all CPU resources are available for that database. Use operating system utilities
 to identify the top CPU consumers on the machine. You may find that non-Oracle processes
 are consuming the bulk of the CPU resources and adversely impacting Oracle Database
 performance.

Performance Tuning Basics

There are three basic steps to understanding how to address performance issues
 with your Oracle Database:
	Define performance and performance problems.

	Check the performance of the Oracle Database software.

	Check the overall performance of the server and storage.

Database Administrators generally tune the Oracle Database proactively using Oracle’s
 real-time diagnostics capabilities, reactively (especially where transient performance
 problems are occurring), or most commonly using a combination of both techniques.
Defining Performance and Performance Problems

The first step in performance tuning is to determine if there
 actually is a performance problem. In the previous
 section, we mentioned the concept of poor performance and how users
 often are the first to recognize it. But what exactly is poor
 performance?
Poor performance is inevitably the result of disappointment—a user
 feels that the system is not performing as expected. Consequently, you
 must first evaluate how real these expectations are in the first
 place.
Note
Disappointment, in part, stems from expectations. Because of
 this, inconsistent performance is often identified as poor
 performance. If an operation runs fast sometimes and slower at other
 times, the slower executions stand out. This simple truism is why
 Oracle offers options such as fixed execution plans with stored
 outlines.

If expectations are realistic—for example, a scenario where
 performance has degraded from a previous level and the business is
 affected—you then need to identify which of the system’s components are
 causing the problems. You must refine a general statement like “the
 system is too slow” to identify which types of operations are too slow,
 what constitutes “too slow,” and when these operations are slowing down.
 For example, the problem may occur only on specific transactions and at
 specific times of day, or all transactions and reports may be performing
 below the users’ expectations.
Once you’ve defined the performance expected from your system, you
 can begin to try to determine where the performance problem lies.
 Performance problems occur when there is a greater demand for a
 particular resource than the resources available to service that demand,
 and the system slows down while applications wait to share the
 resource.

Monitoring and Tuning the Oracle Database for Performance

The first place you’ll likely begin looking for resource bottlenecks is in
 the Oracle Database software using Oracle Enterprise Manager (introduced
 in Chapter 5) to identify less than optimal use
 of Oracle’s internal resources. Bottlenecks within your Oracle Database
 result in sessions waiting for resources, and performance tuning is
 aimed at removing these bottlenecks. The Enterprise Manager Diagnostics
 Pack includes three important components used in performance tuning: the
 Automatic Workload Repository (AWR), the Active Session History (ASH),
 and the Automatic Database Diagnostic Monitor (ADDM).
The AWR captures and stores information about resource utilization by Oracle workloads. By default,
 statistics are captured every 60 minutes and are stored for 8 days. The AWR helps the Oracle
 Database identify potential performance issues by
 comparing workloads over time. It also acts as the foundation for many of the manageability
 features introduced since Oracle Database 10g, such as the ADDM.
AWR gathers statistics from dynamic performance views. The views were sometimes directly
 accessed by DBAs in the past, but most DBAs simply use Enterprise Manager to manage the
 database today. The performance views have names that begin with V$ or,
 if global views (for all nodes in a Real Application Clusters, or RAC, database), begin with
 GV$. For example, views that provide statistics useful in uncovering
 the sources of waits include:
	V$SYSTEM_EVENT
	Provides aggregated, system-wide information about the resources for
 which the whole instance is waiting

	V$SESSION_EVENT
	Provides cumulative list of events waited for in each session

	V$SESSION
	Provides session information for each current session
 including the event currently or last waited for

ASH captures statistics for active sessions in memory that are then
 written into storage using AWR snapshot processing. Data collected
 includes the SQL identifier of a SQL statement, the object, file, and
 block numbers, wait event identifier and event parameters, session
 identifier and serial number, module and action name, session client
 identifier, and service hash identifier. You can run ASH reports from
 the performance page in Oracle Enterprise Manager. The reports can help
 you determine what is causing spikes in Oracle Database activity and can
 indicate the top events (consuming CPU and wait for CPU), load profile,
 top SQL, top sessions (waiting for wait events), top Database objects,
 files, and latches, and activity over time.
ASH reports, in Enterprise Manager 12c, added
 three new reports. ASH analytics enables exploration of different
 session performance metrics at different points in time through the
 creation of filters. Support for Compare Period ADDM and Real-Time ADDM
 was also added.
Oracle’s ADDM automatically identifies and reports on resource
 bottlenecks, such as CPU contention, locking issues, or poor performance
 from specific SQL statements. Since Oracle Database
 11g, ADDM can also perform analysis on clusters.
 Real-time monitoring of user activity, instance activity, and host
 activity is supported.
Enterprise Manager Cloud Control displays the results of ADDM
 monitoring and provides both high-level and detailed views of resource
 utilization for Oracle Databases. The dashboards can help give a quick
 indication of the cause of performance problems. For example, the Top
 SQL section of the Top Activity Oracle performance page shows high load
 SQL statements by wait class and provides a SQL ID link to enable
 detailed viewing of a SQL statement in question. Thresholds on various
 metrics being gathered can be set such that the dashboard will clearly
 indicate when a particular resource is nearing a critical usage level
 and alerts are then sent as appropriate.
ADDM also sends Oracle Database change and management
 recommendations to Enterprise Manager that DBAs can take action upon.
 These include recommending Oracle Database initialization parameter
 changes, using hash partitioning on a table or index, using automatic
 segment space management (ASSM), using the cache option or bind variables in applications,
 making hardware changes (such as CPUs and/or I/O configuration), and
 running additional advisors including the SQL Tuning Advisor and Segment
 Advisor.
Enterprise Manager offers a number of optional Packs that include
 these and other advisors that we introduced in Chapter 5. The performance-related advisors can give
 you further suggestions on how to tune your applications or optimize
 performance in the Oracle Database.
Two of the key advisors for performance tuning, the SQL Tuning and
 SQL Access Advisor, are included in the Oracle Database Tuning Pack.
 These leverage information on CPU and I/O consumption captured in the
 AWR and are used to make tuning recommendations where high-load SQL
 statements are indicated by the ADDM. The SQL Tuning Advisor makes
 recommendations on how to better restructure SQL statements and the
 creation of SQL profiles. The SQL Access Advisor identifies optimal
 access paths through SQL profiling, and determines if the addition of
 indexes, materialized views, or other database structures would be
 beneficial. Using these two advisors together, the DBA can determine
 whether these changes to the high-load SQL statements would improve
 efficiency.
Note
Proactive Oracle Database performance tuning relies on DBAs
 reviewing ADDM findings and responding to ADDM recommendations.
 Techniques commonly used include real-time monitoring of the Oracle
 Database and response to alerts generated.
Reactive tuning also leverages ADDM, but often includes investigating ASH reports and
 setting up and preserving database baselines for generating AWR Compare reports to better
 understand database performance changes over time when transient problems occur. The
 baselines can be established for fixed times, moving windows, and can serve as
 templates.

Prior to making changes to your production Oracle Database, you
 might want to first test the changes on a test version of the Oracle
 Database to understand potential performance implications. DBAs often
 use Real Application Testing (RAT) and the Database Replay component to
 capture the workload on the production Oracle Database system, and then
 replay the workload on the test system with the same timing and
 concurrency characteristics. The SQL Performance Analyzer (SPA) in this
 Pack identifies the SQL statements that have slowed, stayed the same, or
 improved on the test system.

Using the Oracle Database Resource Manager

Oracle can help you manage resources and how they are allocated before performance becomes an issue.
 For example, the Oracle Database Resource Manager (DRM) works by
 leveraging consumer groups you’ve identified and enables you to place limits on the amount
 of computer resources that can be used by that group.
Note
Normally, the limits imposed by Database Resource Manager
 consumer groups are only imposed when there is too much demand for a
 resource, such as more demand for CPU than is available. This approach
 makes sense, since there is no reason to leave CPU cycles unused.
 Since Oracle Database 11g, you can specify a
 maximum amount of CPU that is used in all cases, whether the CPU is
 oversubscribed or not.

Implementing the DRM ensures that one group or member of a group
 does not end up using an excessive amount of any one resource, as well
 as acting to deliver guaranteed service levels for different sets of
 users. You can create DRM hierarchies in which you specify the amount of
 resources for groups within groups.
The following DRM features can be combined to protect against poor
 performance:
	Predicting resource utilization
	The DRM uses the query optimizer cost computations to
 predict the amount of resources that a given query will take and
 the query execution time. Note that, by default, the query
 optimizer uses a CPU + I/O cost model since Oracle Database
 10g.

	Switching consumer groups
	The DRM can switch consumer groups dynamically. You might
 want to give a particular consumer group a high allocation of CPU
 resources. But if a single query from that group looks as if it
 will take up too many CPU resources and impact the overall
 performance of the machine, the consumer group can be switched to
 another group that has a smaller CPU allocation—for example, a
 consumer group designed for batch operations.

	Limiting number of connections
	The DRM can limit the number of connections for any
 particular consumer group. If the limit on connections for a group
 has been reached and another connection request comes in, the
 connection request is queued until an existing connection is
 freed. By limiting the overall number of connections for a
 consumer group, you can place some rough limits on the overall
 resources that particular group might require.

Since Oracle Database 11g, the Oracle
 Database is installed with a default DRM plan. The default plan is
 designed to limit the amount of resources used by automated maintenance
 tasks such as optimizer statistics gathering, the Segment Advisor, and
 the SQL Tuning Advisor.
The DRM is monitored through the Enterprise Manager Performance
 page. Charts illustrate resources used by each consumer group.

Additional Monitoring and Tuning Available for Oracle
 Exadata

Tuning of Oracle Databases on Exadata has many similarities to tuning Oracle on any
 platform. The AWR repository, ADDM, and SQL Tuning and SQL Access advisors all provide
 important information. However, when using Enterprise Manager with Exadata, there are
 additional capabilities provided since the Oracle Database Performance page in Enterprise
 Manager is Exadata-aware. It is possible to examine Exadata Storage Server cell offloads,
 smart scan activity, and I/O activity of all databases sharing the same storage. Explain
 plans show how Exadata Storage is helping to resolve queries. The Exadata System Health page
 presents an overview of system component availability.
Exadata Storage Server cells in the Oracle Exadata Database
 Machine are monitored as if a single target when using Enterprise
 Manager 12c. On the Exadata Storage Cell Grid page,
 you can view I/O load, CPU utilization, InfiniBand network utilization,
 and average response time across the cells. You can also view the status
 of the Storage Server software and the I/O Resource Manager
 (IORM).
IORM is an important extension to the Database Resource Manager for enabling Exadata to
 meet service level agreements (SLAs) by managing I/O for different classes of workloads
 (e.g., interactive and reporting) and when multiple Oracle Databases are deployed on the
 same Exadata system. DBAs can define inter- and intra-database I/O bandwidth in addition to
 ensure that no database is starved for I/O. Database consumer groups can be allocated by
 percentage of available I/O bandwidth that is available. Inter-database I/O is managed
 within the cells by IORM. Intra-database consumer group I/O allocations are managed at the
 database server.
Quality of Service (QoS) Management and QoS Management Memory
 Guard are also supported on Exadata. QoS Management enables DBAs to set
 policies where critical business objectives can be assured of being met
 (at the expense of less critical objectives) and monitors response times
 of applications and relieving bottlenecks. QoS Management Memory Guard
 determines if nodes are about to fail due to memory over-commitment and
 prevents additional new connections from taking place.

A Final Note on Performance Tuning

Performance has real-world business implications. Whenever you
 attempt to address performance problems, you must make sure to carefully
 monitor the areas that you are attempting to improve, both before and
 after your changes. Important baseline data gathered by the AWR includes
 application, database, operating system, disk I/O, and network
 statistics.
You should use a systematic approach to both discovering the
 source of a performance problem and implementing the appropriate
 solution. This approach calls for establishing baselines for resource
 usage and response time before making any changes, and only making a
 small group of changes before reexamining the performance in the changed
 environment. It might be tempting to simply try to fix a problem without
 taking a measured approach, but this tactic will usually lead to
 additional problems down the road.

Chapter 8. Oracle Multiuser Concurrency

Sharing data is at the center of all information systems. As systems provide higher
 and higher levels of functionality, we can sometimes forget that the ability
 to efficiently share data is the underlying governor of overall system
 performance. At the same time, database systems must protect the integrity
 of the data, as the value of that data is directly proportional to the
 correctness of the data. Database systems must protect data integrity, while
 still providing high levels of performance for multiuser access. These two
 forces sometimes conflict and shape some of the core technology in any
 database system.
Data integrity must always come first. As Ken Jacobs, fondly known as Dr. DBA in the Oracle community, put
 it in his classic paper entitled “Transaction Control and Oracle7,” a
 multiuser database must be able to handle concurrently executing
 transactions in a way that “ensure(s) predictable and reproducible results.”
 This goal is the core issue of data integrity, which, in turn, is the
 foundation of any database system.
When multiple users access the same data, there is always the
 possibility that one user’s changes to a specific piece of data will be
 unwittingly overwritten by another user’s changes. If this situation occurs,
 the accuracy of the information in the database is compromised, and that can
 render the data useless or, even worse, misleading. At the same time, the
 techniques used to prevent this type of loss can dramatically reduce the
 performance of an application system, as users wait for other users to
 complete their work before continuing. These techniques act like a traffic
 signal, so you can’t solve this type of performance problem by increasing
 the resources available to the database. The problem isn’t due to a lack of
 horsepower—it’s caused by a red light.
Although concurrency issues are central to the success of applications, they are some of the
 most difficult problems to predict because they can stem from such complex interactive
 situations. The difficulties posed by concurrent access increase as the number of concurrent
 users increases. Even a robust debugging and testing environment may fail to detect problems
 created by concurrent access, since these problems are created by large numbers of users who may
 not be available in a test environment. Concurrency problems can also pop up as user access
 patterns change throughout the life of an application.
If problems raised by concurrent access aren’t properly handled by a
 database, developers may find themselves suffering in a number of ways. They
 will have to create their own customized solutions to these problems in
 their software, which will consume valuable development time. They will
 frequently find themselves adding code during the late stages of development
 and testing to work around the underlying deficiencies in their database
 systems, which can undercut the design and performance of the application.
 Worst of all, they may find themselves changing the optimal design of their
 data structures to compensate for weaknesses in the capabilities of the
 underlying database.
There is only one way to deal successfully with the issues raised by concurrent data access.
 The database that provides the access must implement strategies to transparently overcome the
 potential problems posed by concurrent access. Fortunately, Oracle has excellent methods for
 handling concurrent access. In fact, these methods have been one of the major differentiators of
 the Oracle Database for more than two decades.
This chapter describes the basics of concurrent data access and gives
 you an overview of the way that Oracle handles the issues raised by
 concurrent access. If you’ve worked with large database systems in the past
 and are familiar with concurrent user access, you might want to skip the
 first section of this chapter.
Basics of Concurrent Access

Before you can understand the problems posed by multiuser concurrent
 access to data, you need to understand the basic concepts that are used to
 identify and describe those potential concurrency issues.
Transactions

The transaction is the bedrock of data integrity in multiuser databases and the foundation
 of all concurrency schemes. A transaction is defined as a single
 indivisible piece of work that affects some data. All of the
 modifications made to data within a transaction are uniformly applied to
 a database with a COMMIT statement, or the data affected by the changes
 is uniformly returned to its initial state with a ROLLBACK statement.
 Once a transaction is committed, the changes made by that transaction
 become permanent and are made visible to other transactions and other
 users.
Transactions always occur over time, although most transactions
 occur over a very short period of time. Since the changes made by a
 transaction aren’t official until the transaction is committed, each
 individual transaction must be isolated from the effects of other
 transactions. The mechanism used to enforce transaction isolation is the
 lock.

Locks

A database uses a system of locks to prevent
 transactions from interfering with each other. A lock prevents users
 from modifying data. Database systems use locks to keep one transaction
 from overwriting changes added by another transaction.
Figure 8-1 illustrates the
 potential problems that could occur if a system did not use locks.
 Transaction A reads a piece of data; Transaction B reads the same piece
 of data and commits a change to the data. When Transaction A commits the
 data, its change unwittingly overwrites the changes made by Transaction
 B, resulting in a loss of data integrity.
[image: Transactions over time]

Figure 8-1. Transactions over time

Two types of locks are used to avoid this type of problem. The
 first is called a write lock, or an
 exclusive lock. An exclusive lock is applied and
 held while changes are made to data in the course of a transaction and
 released when the transaction is ended by either a COMMIT or a ROLLBACK statement. A write lock can be held
 by only one user at a time, so only one user at a time can change that
 data.
Some databases also use read locks, or
 shared locks. A read lock can be held by any number of users who are merely
 reading the data, since the same piece of data can be shared among many
 readers. However, a read lock prevents a write lock from being placed on
 the data, as the write lock is an exclusive lock. In Figure 8-1, if a read lock were placed on the
 data when Transaction A began, Transaction B would be able to read the
 same data but would be prevented from acquiring a write lock on the data
 until Transaction A ended.
Oracle uses locks when reading data only when a SQL operation specifically requests them with the FOR UPDATE clause in a SELECT statement, which causes write locks to be
 applied. You shouldn’t use
 the FOR UPDATE clause routinely because it unduly increases the probability that readers
 will interfere with writers—a situation that normally never occurs with Oracle, as you will
 see shortly.

Concurrency and Contention

A system of locks enforcing isolation between concurrent users of data can
 lead to its own problems. As described in the example above, a single
 transaction can cause significant performance problems as the locks it
 places on the database prevent other transactions from completing. The
 interference caused by conflicting locks is called
 contention. More contention in a database slows
 response times and lowers the overall throughput.
In most other databases, increased concurrent access to data
 results in increased contention and decreased performance. Oracle’s
 multiversion read concurrency scheme can greatly reduce contention, as
 later sections in this chapter will explain.

Integrity Problems

Some basic integrity problems can result if transaction isolation
 isn’t properly enforced. Four of these problems are common to many
 databases:
	Lost updates
	The most common type of integrity problem occurs when two
 writers are both changing the same piece of data, and one writer’s
 changes overwrite the other writer’s changes. This is the problem
 that exclusive locks are designed to prevent.

	Dirty reads
	Occur when a database allows a transaction to read data that has
 been changed by another transaction but hasn’t been committed yet.
 The changes made by the transaction may be rolled back, so the
 data read may turn out to be incorrect. Many databases allow dirty
 reads to avoid the contention caused by read locks.

	Nonrepeatable reads
	Occur as a result of changes made by another transaction. One
 transaction makes a query based on a particular condition. After
 the data has been returned to the first transaction, but before
 the first transaction is complete, another transaction
 changes the data so that some of the
 previously retrieved data no longer satisfies the selection
 condition. If the query were repeated in the same transaction, it
 would return a different set of results, so any changes made on
 the basis of the original results may no longer be valid. Data
 that was read once can return different results if the data is
 read again later in the same transaction.

	Phantom reads
	Also occur as a result of changes made by another transaction. One
 transaction makes a query based on a particular condition. After
 the data has been returned to the first transaction, but before
 the first transaction is complete, another transaction inserts
 into the database new rows that meet the selection criteria for
 the first transaction. If the first SQL statement in a transaction
 returned the number of rows that initially satisfied the selection
 criteria, and then performed an action on the rows that satisfied
 the selection criteria later in the transaction, the number of
 rows affected would be different from the initial number of rows
 indicated, based on the inclusion of new phantom rows.

Serialization

The goal of a complete concurrency solution is to provide the highest level of
 isolation between the actions of different users accessing the same
 data. As defined by the SQL92 standard, this highest level is called
 serializable. As the name implies, serializable
 transactions appear as though they have been executed in a series of
 distinct, ordered transactions. When one transaction begins, it is
 isolated from any changes that occur to its data from subsequent
 transactions.
To the user, a serializable transaction looks as though it has the
 exclusive use of the database for the duration of the transaction.
 Serializable transactions are predictable and reproducible, the two
 cardinal virtues of data integrity.
Of course, it’s not trivial to have a database server support
 thousands of users while each one thinks he is the only one. But Oracle
 manages to pull off this quietly dramatic feat.

Oracle and Concurrent User Access

Oracle solves the problems created by concurrent access through a technology called
 multiversion read consistency, sometimes referred to
 as MVRC. Multiversion read consistency guarantees that a user sees a
 consistent view of the data she requests. If another user changes the
 underlying data during the query execution, Oracle maintains a version of
 the data as it existed at the time the query began. If there were
 transactions underway but uncommitted at the time the query began, Oracle
 will ensure that the query ignores the changes made by those transactions.
 The data returned to the query will reflect all committed transactions at
 the time the query started.
This feature has two dramatic effects on the way queries impact the database. First,
 Oracle doesn’t place any locks on data for read operations. This means that a read operation
 will never block a write operation. Even where the database places a single lock on a single
 row as part of a read operation, that single lock can still cause contention in the database,
 especially since most database tables tend to concentrate update operations around a few “hot
 spots” of active data.
Second, a user gets a complete “snapshot” view of the data, accurate
 at the point in time that the query began. Other databases may reduce the
 amount of contention in the database by locking an individual row only
 while it’s being read, rather than over the complete duration of the row’s
 transaction. A row that’s retrieved at the end of a result set may have
 been changed since the time the result set retrieval began. Because rows
 that will be read later in the execution of the query weren’t locked, they
 could be changed by other users, which would result in an inconsistent
 view of the data.

Oracle’s Isolation Levels

Oracle, like many other databases, uses the concept of isolation
 levels to describe how a transaction will interact with other
 transactions and how it will be isolated from other transactions. An
 isolation level is essentially a locking scheme implemented by the
 database that guarantees a certain type of transaction isolation.
An application programmer can set an isolation level at the session
 level (ALTER SESSION) or transaction level (SET
 TRANSACTION). More restrictive isolation levels will cause more
 potential contention, as well as delivering increased protection against
 data integrity problems.
Two basic isolation levels are used frequently within Oracle: READ
 COMMITTED and SERIALIZABLE. (A third level, READ ONLY, is described later in this section.) Both of
 these isolation levels create serializable database operations. The
 difference between the two levels is in the duration for which they
 enforce serializable operations:
	READ COMMITTED
	Enforces serialization at the statement level. This means that every
 statement will get a consistent view of the data as it existed at
 the start of that statement. However, since a transaction can
 contain more than one statement, it’s possible that nonrepeatable
 reads and phantom reads can occur within the context of the complete
 transaction. The READ COMMITTED isolation level is the default
 isolation level for Oracle.

	SERIALIZABLE
	Enforces serialization at the transaction level. This means that every
 statement within a transaction will get the same consistent view of
 the data as it existed at the start of the transaction.

Because of their differing spans of control, these two isolation
 levels also react differently when they encounter a transaction that
 blocks their operation with an exclusive lock on a requested row. Once the
 lock has been released by the blocking transaction, an operation executing
 with the READ COMMITTED isolation level will simply retry the operation.
 Since this operation is concerned only with the state of data when the
 statement begins, this is a perfectly logical approach.
On the other hand, if the blocking transaction commits changes to
 the data, an operation executing with a SERIALIZABLE isolation level will
 return an error indicating that it cannot serialize operations. This error
 makes sense, because the blocking transaction will have changed the state
 of the data from the beginning of the SERIALIZABLE transaction, making it
 impossible to perform any more write operations on the changed rows. In
 this situation, an application programmer will have to add logic to his
 program to return to the start of the SERIALIZABLE transaction and begin
 it again.
Note
There are step-by-step examples of concurrent access later in this
 chapter (in the section Concurrent Access and Performance) that illustrate the
 different ways in which Oracle responds to this type of problem.

One other isolation level is supported by Oracle: you can declare
 that a session or transaction has an isolation level of READ ONLY. As the
 name implies, this level explicitly prohibits any write operations and
 provides an accurate view of all the data at the time the transaction
 began.

Oracle Concurrency Features

Three features are used by Oracle to implement multiversion read
 consistency:
	UNDO segments
	UNDO segments are structures in the Oracle Database that store “undo” information for
 transactions in case of rollback. This information restores database rows to the state
 they were in before the transaction in question started. When a transaction starts
 changing some data in a block, it first writes the old image of the data to an UNDO
 segment. The information stored in an UNDO segment provides the information necessary to
 roll back a transaction and supports multiversion read consistency.
An UNDO segment is different from a redo log. The redo log is
 used to log all transactions to the database and recover the
 database in the event of a system failure, while the UNDO segment
 provides rollback for transactions and read consistency.
Blocks of UNDO segments are cached in the System Global Area
 just like blocks of tables and indexes. If UNDO segment blocks are
 unused for a period of time, they may be aged out of the cache and
 written to disk.
UNDO segments are also used to implement Flashback features,
 which are described in Chapter 4 of
 this book.

	System Change Number (SCN)
	To preserve the integrity of the data in the database and enforce any
 type of serialization, it is critical to keep track of the order in
 which actions were performed. Oracle uses the System Change Number
 as an absolute determinant of the order of transactions.
The SCN is a logical timestamp that tracks the order in which
 transactions begin. Oracle uses the SCN information in the redo log
 to reproduce transactions in the original and correct order when
 applying redo. Oracle also uses the SCN to determine when to clean
 up information in rollback segments that are no longer needed, as you will see in the following
 sections.
Note
Since Oracle Database 10g, there is a
 pseudocolumn on each row that contains the SCN, ORA_ROWSCN. You
 can use this to quickly determine if a row has been updated since
 it was retrieved by comparing the value read from this
 pseudocolumn at the start of a transaction with the value read
 from this pseudocolumn at the end of the transaction.

	Locks in data blocks
	A database must have a way of determining if a particular row is locked. Most databases
 keep a list of locks in memory, which are managed by a lock manager process. Oracle
 keeps locks with an area of the actual block in which the row is stored. A data block is
 the smallest amount of data that can be read from disk for an Oracle Database, so
 whenever the row is requested, the block is read, and the lock is available within the
 block. Although the lock indicators are kept within a block, each lock affects only an
 individual row within the block.

In addition to the above features, which directly pertain to
 multiversion read consistency, another implementation feature in Oracle
 provides a greater level of concurrency in large user populations:
	Nonescalating row locks
	To reduce the overhead of the lock-management process, other
 databases will sometimes escalate locks to a
 higher level of granularity within the database. For example, if a
 certain percentage of rows in a table are locked, the database will
 escalate the lock to a table lock, which locks all the rows in a
 table, including rows that aren’t specifically used by the SQL
 statement in question. Although lock escalation reduces the number
 of locks the lock manager process has to handle, this escalation
 causes unaffected rows to be locked. With Oracle, the lock indicator
 is stored within the data block itself, so there is no increase in
 overhead for a lock manager when the number of locks increases.
 Consequently, there is never any need for Oracle to escalate a
 lock.

A lock manager called the Distributed Lock Manager (DLM) has historically been used with Oracle Parallel
 Server to track locks across multiple instances of Oracle. This is
 a completely different and separate locking scheme that doesn’t affect the
 way Oracle handles row locks. The DLM technology used in Oracle Parallel
 Server was improved and integrated into a core product in
 Oracle9i, Real Application Clusters. Real Application
 Clusters are described in more detail in Chapter 9.

How Oracle Handles Locking

If you’ve read this chapter from the beginning, you should now know enough about the concepts of
 concurrency and the features of Oracle to understand how the Oracle Database handles multiuser
 access. However, to make it perfectly clear how these features interact, we’ll walk you
 through three scenarios: a simple write to the database, a situation in which two users
 attempt to write to the same row in the same table, and a read that takes place in the midst
 of conflicting updates.
For the purposes of these examples, we’ll use the scenario of one or
 two users modifying the EMP table, a part of the standard sample Oracle
 schema that lists data about employees via a form.
A Simple Write Operation

This example describes a simple write operation, in which one user is
 writing to a row in the database. In this example, an HR clerk wants to
 update the name for an employee. Assume that the HR clerk already has
 the employee record on-screen. The steps from this point are as
 follows:
	The client modifies the employee name on the screen. The
 client process sends a SQL UPDATE statement over the network to the
 server process.

	The server process obtains a System Change Number and reads
 the data block containing the target row.

	The server records row lock information in the data
 block.

	The server writes the old image of the data to the redo buffers in memory, and then
 writes the changes to an UNDO segment and modifies the employee data, which includes
 writing the SCN to the ORA_ROWSCN pseudocolumn in Oracle Database
 10g or newer database releases.

	The server process writes the redo buffers to disk, and then writes the UNDO
 segments and the changed data to disk. The UNDO segment changes are part of the redo,
 since the redo log stores all changes coming from the transaction.

	The HR clerk commits the transaction.

	Log Writer (LGWR) writes the redo information for the entire transaction,
 including the SCN that marks the time the transaction was committed,
 from the redo log buffer to the current redo logfile on disk. When
 the operating system confirms that the write to the redo logfile has
 successfully completed, the transaction is considered
 committed.

	The server process sends a message to the client confirming
 the commit.

Oracle Database 10g Release 2 introduced the
 ability to have the server process return control to the client without
 waiting for all the redo information to be written. The plus side of
 this enhancement is that high-volume OLTP applications may benefit from
 improved performance. The downside of this feature is that it opens a
 window of vulnerability—the database could crash after a transaction had
 been committed, but before the redo was written, which would make it
 impossible to recover the committed transaction, so this feature should
 be used with caution.
Oracle Database 12c introduces a new feature called Transaction Guard. If you followed the description above closely, you can see
 that a transaction could be between step 7 and step 8 when some type of failure occurs that
 prevents the message relaying the successful commit to the application. (This failure could
 have nothing to do with the database and be quite short-lived—such as a network
 failure.)This series of events would mean that the Oracle Database has committed data, but
 the application does not know whether the commit failed or succeeded. Transaction Guard
 provides an API that allows an application to specifically check on the outcome of a
 potentially failed transaction. Transaction Guard is described in more detail in Chapter 9.

A Conflicting Write Operation

The write operation previously described is a little different if
 there are two users, Client A and Client B, who are trying to modify the
 same row of data at the same time. The steps are as follows:
	Client A modifies the employee name on the screen. Client A
 sends a SQL UPDATE statement over the network to the server
 process.

	The server process obtains an SCN for the statement and reads
 the data block containing the target row.

	The server records row lock information in the data
 block.

	The server process writes the changes to the redo log
 buffer.

	The server process copies the old image of the employee data about to be changed to
 an UNDO segment. Once the server process has completed this work, the process modifies
 the employee data, which includes writing the SCN to the ORA_ROWSCN pseudocolumn in Oracle Database 10g or newer
 database releases.

	Client B modifies the employee name on the screen and sends a
 SQL UPDATE statement to the server.

	The server process obtains an SCN and reads the data block
 containing the target row.

	The server process sees that there is a lock on the target row
 from the information in the header of the data block, so it takes
 one of two actions. If the isolation level on Client B’s transaction
 is READ COMMITTED, the server process waits for the blocking
 transaction to complete. If the isolation level for Client B’s
 transaction is SERIALIZABLE, an error is returned to the
 client.

	Client A commits the transaction, the server process takes the
 appropriate action, and the server sends a message to Client A
 confirming the commit.

	If Client B executed the SQL statement with the READ COMMITTED isolation level, the SQL statement then
 proceeds through its normal operation.

The previous example illustrates the default behavior of Oracle
 when it detects a problem caused by a potential lost update. Because the
 SERIALIZABLE isolation level has a more drastic effect when it detects a
 write conflict than the READ COMMITTED isolation level, many developers
 prefer the latter level. They can avoid some of the potential conflicts
 by either checking for changes prior to issuing an update (by comparing
 values in a row or using the Oracle Database 10g or
 later row SCN) or using the SELECT FOR UPDATE syntax in their SQL to avoid the problem
 altogether.

A Read Operation

You can really appreciate the beauty of Oracle’s read consistency model
 by looking at the more common scenario of one user reading data and one
 user writing to the same row of data. In this scenario, Client A is
 reading a series of rows from the EMP table, while Client B modifies a
 row before it is read by Client A, but after Client A begins her
 transaction:
	Client A sends a SQL SELECT statement over the network to the
 server process.

	The server process obtains an SCN for the statement and begins to read the requested
 data for the query. For each data block that it reads, it compares the SCN of the SELECT
 statement with the SCNs for any transactions for the relevant rows of the data block. If
 the server finds a transaction with a later SCN than the current SELECT statement, the
 server process uses data in the UNDO segments to create a “consistent read” version of
 the data block, current as of the time the SELECT was issued. This is what provides the multiversion read consistency (MVRC) and avoids the need for Oracle to use
 read locks on data. If a row has been updated since the transaction started, Oracle
 simply gets the earlier version of the data for a consistent view.

	Client B sends a SQL UPDATE statement for a row in the EMP
 table that has not yet been read by Client A’s SELECT statement. The
 server process gets an SCN for the statement and begins the
 operation.

	Client B commits his changes. The server process completes the operation, which
 includes recording information in the data block that contains the modified row that
 allows Oracle to determine the SCN for the update transaction.

	The server process for Client A’s read operation comes to the newly modified block.
 It sees that the data block contains changes made by a transaction that has an SCN that
 is later than the SCN of the SELECT statement. The server process looks in the data
 block header, which has a pointer to the UNDO segment that contains the data as it
 existed when Client A’s transaction started. The UNDO segment uses the old version of
 the data to create a version of the block as it existed when the SELECT statement
 started. Client A’s SELECT statement reads the desired rows from this consistent version
 of the data block.

Figure 8-2 illustrates the
 process of reading with multiversion read consistency.
[image: Multiversion read consistency]

Figure 8-2. Multiversion read consistency

We explained how MVRC works with two users for the sake of clarity. But imagine a
 database supporting one or more enterprise applications, with thousands of simultaneous
 users. Oracle’s concurrency handling could avoid an enormous amount of contention and performance degradation in a heavy use
 scenario—in fact, the greater the workload, the greater the benefits of MVRC.

Concurrent Access and Performance

When you read through all the steps involved in the above processes, you
 might think that Oracle would be a very slow database. This is not at all
 true. Oracle has consistently turned in benchmarks that show it to be one
 of the fastest databases, if not the fastest, on the market today.
Oracle provides good performance while implementing multiversion
 read consistency by minimizing and deferring unnecessary I/O operations.
 To assure the integrity of the data in a database, the database must be
 able to recover in the event of a system failure. This means that there
 must be a way to ensure that the data in the database accurately reflects
 the state of the committed data at the time of the crash. Oracle can do
 this by writing changed data to the database whenever a transaction
 commits. However, the redo log contains much less information than the
 entire data block for the changed data, so it’s much “cheaper” to write to
 disk. Oracle writes the redo information to disk as soon as a transaction
 commits and defers writing the changed data blocks to the database until
 several sets of changed blocks can be written together. Oracle can restore
 the database using the redo logs, and these procedures cut down on
 time-consuming I/O operations.
However, when you’re considering the performance of a database, you
 have to think about more than simple I/O operations. It doesn’t really
 matter how fast your database runs if your transaction is waiting for
 another transaction to release a lock. A faster database may complete the
 blocking transaction faster, but your transaction is still at a dead stop
 until the blocking transaction completes.
Because most databases perform a mixture of reading and writing, and
 because Oracle is one of the only databases on the market that doesn’t use
 read locks, Oracle will essentially always deliver the lowest amount of
 database contention. Less contention equals greater throughput for a mixed
 application load.
There is also more than one type of performance. Performance for
 database operations is measured in milliseconds of response time;
 performance for application developers is measured in months of
 development time. Because Oracle provides much less contention with its
 read consistency model, developers have to spend less time adding
 workarounds to their applications to handle the results of
 contention.
It’s not as though Oracle is the only database to give you a
 concurrency solution you can use to implement applications that provide
 adequate data integrity. But the multiversion read consistency model makes
 it easy for you to get a consistent view of data without excessive
 contention and without having to write workarounds in your application. If
 it sounds as if we’re big fans of Oracle’s locking scheme, well—we
 are.

Workspaces

A workspace is a way to isolate data from changes in the general database
 environment. Workspace Manager accomplishes this by creating
 workspace-specific versions of data. When you create a workspace, you
 essentially create a snapshot of the data in the workspace at a specific
 point in time. Further changes to that data from outside the workspace do
 not affect the view of the data in the workspace, and changes made to data
 within the workspace are not seen by users outside the workspace. And
 changes to data within a workspace are visible only to other workspace
 users.
Workspaces allow you to essentially create separate data environments for specialized
 usage. You can capture data at a certain point in time for historical analysis and can also
 perform various types of “what if” analysis, testing to see how changes would affect the
 overall composition of the data without disturbing the main production database. Both of these
 options would normally require you to create a duplicate database, so workspaces can save you
 time and resources.
Workspace Implementation

The key to workspaces is the support of multiple versions of the same
 data. To use workspaces to version data in a table, you must first
 enable the table for versioning. Workspace Manager can version-enable
 one or more user tables in the database. The unit of versioning is a
 row. When a table is version-enabled, all rows in the table can support
 multiple versions of the data. Versioned rows are stored in the same
 table as the original rows. The versioning infrastructure is not visible
 to the users of the database, and application SQL statements to select,
 insert, modify, and delete data continue to work in the usual way with
 version-enabled tables. Workspace Manager version-enables a table by
 renaming the table, adding a few columns to the table to store
 versioning metadata, creating a view on the version-enabled table using
 the original table name, and defining INSTEAD OF triggers on the view
 for SQL DML operations.
The workspace keeps changes to the data only to minimize the size
 of the workspace data and avoid data duplication.
You can have a hierarchy of workspaces, and a workspace can have
 more than one parent. All workspace operations, described in the next
 sections, affect a workspace and its parent workspaces. Multiple levels
 of workspaces can give you finer granularity on the isolation of changes
 for workspace-enabled tables.
Oracle implements workspaces by adding metadata to the rows of a table. This metadata can include
 a timestamp as to when a change was made, which can help in
 analysis of workspace activity. This option works with savepoints to
 provide a history of changes made to each row version created by a
 savepoint. The timestamp allows users in a workspace to go back to any
 point in time and view the database from the perspective of changes made
 in that workspace up to another point in time. You can think of this as
 a type of Flashback (described in Chapter 3) for a limited set of
 tables.
In addition, you can specify that a particular version of data in a workspace is valid
 only for a specific time period. For instance, you could make a change to data that would be
 visible to workspace users for the next 24 hours and that would then disappear. This type of
 functionality has been added to the core database in Oracle Database
 12c with the valid time temporal feature, described in Chapter 4.
Workspaces have their own locking mechanisms that apply only to
 other workspace users. You can exclusively lock a row of data in a
 workspace, but this lock prevents access only to that row for other
 workspace users. The underlying data could still be accessed or changed
 by users who are not part of the workspace. This additional locking
 makes sense, since both locks and workspaces are meant to isolate data
 from changes. A workspace exists outside the boundaries of the standard
 database, so workspace locks and standard database locks do not directly
 interact.

Workspace Operations

There are three basic operations that apply to workspaces:
	Rollback
	You can roll back changes to a workspace to return the
 workspace to the point in time when the workspace was created. You
 can also designate savepoints, which allow you to roll back the
 changes in a workspace to a subsequent point in time.

	Refresh
	Refreshing a workspace means bringing the data in a
 workspace into agreement with the same data in the overall
 database. This capability could be used if you chose to create a
 workspace with a snapshot of the data at the end of a day. At
 midnight, you would refresh the workspace to make the workspace
 reflect the data from the previous day.

	Merge
	A merge operation rolls changes made in a workspace into its
 parent workspace.

As you can imagine, both the refresh and the merge operations
 could end up with conflicts between data values in the workspace and its
 parent. Workspace management keeps track of conflicts on a per-table
 basis; you can resolve the conflicts manually.

Workspace Enhancements

Workspace Manager is tightly integrated with the Oracle Database. Oracle Database
 10g Workspace Manager enhancements included the ability to export and
 import version-enabled tables, to use SQL*Loader to bulk load data into version-enabled
 tables, to trigger events based on workspace operations, and to define workspaces that are
 continually refreshed.
Oracle Database 11g continues the stream of
 enhancements to workspaces, providing support for optimizer hints and
 more data maintenance operations on workspace-enabled tables. Oracle
 Database 12c includes enhancements to Workspace
 Manager and performance enhancements for the query optimizer to create
 better execution plans for workspace queries.

Chapter 9. Oracle and Transaction Processing

The value of information systems is clear from the ever-increasing
 number of transactions processed by the world’s databases. Transactions form
 the foundation of business computing systems. In fact, transaction
 processing (TP) was the impetus for business computing as we know it today.
 The batch-oriented automation of core business processes like accounting and
 payroll drove the progress in mainframe computing through the 1970s and
 1980s. Along the way, TP began the shift from batch to users interacting
 directly with systems, and online transaction processing (OLTP) was born. In
 the 1980s, the computing infrastructure shifted from large centralized
 mainframes with dumb terminals to decentralized client/server computing with
 graphical user interfaces (GUIs) running on PCs and accessing databases on
 other machines over a network.
The client/server revolution provided a much better user interface and
 reduced the cost of hardware and software, but it also introduced additional
 complexity in systems development, management, and deployment. After a
 decade of use, system administrators were being slowly overwhelmed by the
 task of managing thousands of client machines and dozens of servers, so the
 latter half of the 1990s saw a return to centralization, including the grid
 (introduced in Chapter 1). Throughout all of
 these shifts, Oracle Databases have continued to use their inherent
 architecture and constant enhancements to service the ever-growing load of
 transactions.
This chapter looks at the features of the Oracle Database that
 contribute to its ability to handle large transaction loads. Although many
 of the specific features covered in this chapter are touched upon in other
 chapters of this book, this chapter examines all of these features in light
 of their use in large OLTP systems.
OLTP Basics

Before we discuss how Oracle specifically handles OLTP, we’ll start by
 presenting a common definition of online transaction processing.
What Is a Transaction?

The concept of a transaction—and the relevant Oracle mechanics for dealing
 with the integrity of transactions—was discussed in Chapter 8. To recap that discussion, a
 transaction is a logical unit of work that must
 succeed or fail in its entirety. Each transaction typically involves one
 or more Data Manipulation Language (DML) statements such as INSERT,
 UPDATE, or DELETE, and ends with either a COMMIT to make the changes
 permanent or a ROLLBACK to undo the changes.
The industry bible for OLTP, Transaction Processing:
 Concepts and Techniques, by Jim Gray and Andreas Reuter (Morgan Kaufmann; see Appendix
 Additional Resources), introduced the notion of the ACID properties of a
 transaction. A transaction must be the following:
	Atomic
	The entire transaction succeeds or fails as a complete
 unit.

	Consistent
	A completed transaction leaves the affected data in a
 consistent or correct state.

	Isolated
	Each transaction executes in isolation and doesn’t affect
 the states of others.

	Durable
	The changes resulting from committed transactions are
 persistent.

If transactions execute serially—one after the other—their use of
 ACID properties can be relatively easily guaranteed. Each transaction
 starts with the consistent state of the previous transaction and, in
 turn, leaves a consistent state for the next transaction. Concurrent
 usage introduces the need for sophisticated locking and other
 coordination mechanisms to preserve the ACID properties of concurrent
 transactions while delivering throughput and performance. Chapter 8 covered Oracle’s handling of
 locking and concurrency in depth.

What Does OLTP Mean?

Online transaction processing can be defined in different ways: as
 a type of computing with certain characteristics, or as a type of
 computing in contrast to more traditional batch processing.
General characteristics

Most OLTP systems share some of the following general
 characteristics:
	High transaction volumes and large user
 populations
	OLTP systems are the key operational systems for many
 companies, so these systems typically support the highest volume
 and largest communities of any systems in the
 organization.

	Well-defined performance
 requirements
	OLTP systems are central to core business operations, so users
 must be able to depend on a consistent response time. OLTP
 systems often involve service level agreements that state the
 expected response times.

	High availability
	These systems are typically deemed mission-critical with
 significant costs resulting from downtime.

	Scalability
	The ability to increase transaction volumes without
 significant degradation in performance allows OLTP systems to
 handle fluctuations in business activity.

In short, OLTP systems must be able to deliver consistent
 performance at any time, regardless of system load. Anything that
 affects these core systems can produce a ripple effect throughout your
 entire organization, affecting both revenue and profitability.

Online and batch transaction processing

Online transaction processing implies direct and conversational interaction between
 the transaction processing system and its users. Users enter and query
 data using forms that interact with the backend database. Editing and
 validation of data occur at the time the transactions are submitted by
 users.
Batch processing occurs without user interaction. Batches of
 transactions are fed from source files to the operational system.
 Errors are typically reported in exception files or logs and are
 reviewed by users or operators later on. Virtually all OLTP systems
 have a batch component: jobs that can execute in off-peak hours for
 reporting, payroll runs, posting of accounting entries, and so
 on.
Many large companies have batch-oriented mainframe systems that
 are so thoroughly embedded in the corporate infrastructure that they
 cannot be replaced or removed. A common practice is to “frontend”
 these legacy systems with OLTP systems that provide more modern
 interfaces. Users interact with the OLTP system to enter transactions.
 Batch files are extracted from the OLTP system and fed into the
 downstream legacy applications.
Once the batch processing is done, extracts are produced from
 the batch systems and are used to refresh the OLTP systems. This
 extraction process provides the users with a more sophisticated
 interface with online validation and editing, but it preserves the
 flow of data through the entrenched batch systems. While this process
 seems costly, it’s typically more attractive than the major surgery
 that would replace older systems. To compound the difficulty, in some
 cases the documentation of these older systems is incomplete and the
 employees who understand the inner workings have retired or moved
 on.
The financial services industry is a leader in information
 technology for transaction processing, so this notion of feeding
 legacy downstream applications is very common in banks and insurance
 companies. For example, users often enter insurance claims into
 frontend online systems. Once all the data has been entered, if the
 claim has been approved, it’s extracted and fed into legacy systems
 for further processing and payment.
Oracle features, such as transportable tablespaces (discussed in
 Chapter 13), are
 aimed in part at providing the functionality required by distributed
 OLTP systems in a more timely fashion than traditional batch
 jobs.

OLTP Versus Business Intelligence

Mixed workloads—OLTP and reporting—are the source of many performance
 challenges and the topic of intense debate. The data warehousing
 industry had its genesis in the realization that OLTP systems could not
 realistically provide the needed transaction throughput while supporting
 the enormous amount of historical data and ad hoc query workload that
 business analysts needed for things like multiyear trend
 analysis.
The issue isn’t simply one of adequate machine horsepower; rather,
 it’s the way data is modeled, stored, and accessed, which is typically
 quite different. In OLTP, the design centers on analyzing and automating
 business processes to provide consistent performance for a well-known
 set of transactions and users. The workload revolves around large
 numbers of short and well-defined transactions—with a fairly significant
 percentage of write transactions.
Business intelligence typically operates on larger data stores
 that frequently are assembled from multiple data sources and contain
 long histories. The schema design for data warehouses is usually very
 different from the fully normalized design best suited for OLTP data
 stores. And data warehouses can support ad hoc queries that, because of
 their complexity and the amount of data accessed, can place significant
 loads on a system with only a handful of requests.
Reporting and query functions are part of an OLTP system, but the
 scope and frequency are typically more controlled than in a data
 warehouse environment. For example, a banking OLTP system will include
 queries for customer status and account balances, but potentially not
 multiyear transaction patterns.
An OLTP system typically provides forms that allow well-targeted
 queries that are executed efficiently and don’t consume undue resources.
 However, hard and fast rules—for example, that OLTP systems don’t
 include extensive query facilities—don’t necessarily hold true. The I/O
 performed by most OLTP systems tends to be approximately 70–80 percent
 reads and 20–30 percent writes. Most transactions involve the querying
 of data, such as product codes, customer names, account balances,
 inventory levels, and so on. Users submitting tuned queries for specific
 business functions are a key part of OLTP. Ad hoc queries across broad
 data sets are not.
Business intelligence data warehousing systems and OLTP systems
 could access much of the same data, but these types of systems also
 typically have different requirements in terms of CPU, memory, and data
 layout, which makes supporting a mixed workload less than optimal for
 both types of processing. Real Application Clusters, with dynamic
 service provisioning since Oracle Database 10g,
 makes it possible to allocate individual nodes for individual workloads.
 It also makes it more feasible to deploy these mixed workloads to a
 single database (albeit with multiple database instances).

Transactions and High Availability

As discussed in the previous chapter, the foundation of the transaction is the
 commit. Once a transaction is committed, it is a part of the core data
 store—if the transaction is not committed, its data is not visible to
 other users. Logically, this description is completely accurate. In
 operational terms, there is an additional step that is part of this
 process. Because commit operations are requested by a client
 application, the commit first takes place in the database and is then
 acknowledged to the requesting client. A failure could occur between the
 database commit operation and the reception of the acknowledgment. When
 this occurs, the transaction is in a grey area, with a crucial
 implication. If, when the system recovers, a transaction was committed
 on the database, it should not be redone; if the transaction did not
 complete, it should be redone. All the client knows is that the
 acknowledgment was not received. In a high-volume, mission-critical
 system, many crucial transactions may be in this state, even due to very
 temporary problems like network outages.
Oracle Database 12c introduces a new concept
 that addresses this specific problem, called Transaction Guard. Transaction
 Guard tracks the state of transactions in the database and provides an
 API that allows developers to query this state. With this advance, an
 application can find out the true state of a transaction that did not
 complete and take appropriate actions.
Another feature, Application Continuity, is also part of Oracle Database
 12c. Application Continuity allows developers to
 create Database Requests that can use the
 information provided by Transaction Guard to determine the state of a
 failed transaction and automatically take action to either redo the
 transaction or ignore the failure. This capability provides a higher
 level of consistency in the Oracle Database without forcing developers
 to create entire subsystems to track and correct incomplete transactions
 on their own.

Oracle’s OLTP Heritage

Oracle has enjoyed tremendous growth as the database of choice for OLTP in the
 mid range computing environment. Oracle6 introduced nonescalating
 row-level locking and read consistency (two of the most
 important of Oracle’s core OLTP features), but Oracle7 was really the
 enabler for Oracle’s growth in OLTP. Oracle7 introduced many key features,
 including the following:
	Multi-Threaded Server (MTS), now known as shared server

	Shared SQL

	Stored procedures and triggers

	XA support

	Distributed transactions and two-phase commits

	Data replication

	Oracle Parallel Server (OPS)[3]

Oracle8 enhanced existing functionality and introduced additional
 OLTP-related features, including the following:
	Connection pooling

	Connection multiplexing

	Data partitioning

	Advanced Queuing (AQ)

	Index organized tables

	Internalization of the Distributed Lock Manager (DLM) for Oracle
 Parallel Server

	Internalization of the triggers for replicated tables and
 parallel propagation of replicated transactions

Oracle8i provided the following additional
 enhancements and technologies for OLTP:
	Support for Java internally in the database kernel

	Support for distributed component technologies: CORBA v2.0 and Enterprise JavaBeans (EJB) v1.0

	Publish/subscribe messaging based on Advanced Queuing

	Online index rebuild and reorganization

	Database Resource Manager (DBRM)

	Use of a standby database for queries

	Internalization of the replication packages used to apply
 transactions at the remote sites

Oracle9i continued this trend, with the introduction of Real
 Application Clusters, which extended the benefits of Oracle Parallel Server to OLTP
 applications. Since Oracle Database
 10g, the capabilities of Real Application Clusters support deployment
 to a new computing model: grid computing. But many of the capabilities that enable OLTP with
 Oracle have been core to the database product for many years.
As described above, Oracle Database 12c extends
 the robustness of OLTP with Transaction Guard and Application Continuity,
 which practically eliminate the window of indeterminate transaction
 outcomes.
The remainder of this chapter examines many of these features in
 more depth.

Architectures for OLTP

Although all OLTP systems are oriented toward the same goals, there are
 several different underlying system architectures that you can use for the
 deployment of OLTP, including the traditional two-tier model, a three-tier
 model, and a centralized model that encompasses the use of the Web and the
 grid.
Traditional Two-Tier Client/Server

The late 1980s saw the rise of two-tier client/server applications. In this
 configuration, PCs acted as clients accessing a separate database server
 over a network. The client ran both the GUI and the application logic,
 giving rise to the term fat clients. The database
 server processed SQL statements and returned the requested results back
 to the clients. While the database server component of these systems was
 relatively simple to develop and maintain using visual tools, client
 components were difficult to deploy and maintain—they required fairly
 high-bandwidth networks and the installation and regular upgrading of
 specific client software on every user’s PC.
Figure 9-1
 illustrates the two-tier architecture.
[image: Two-tier client/server architecture]

Figure 9-1. Two-tier client/server architecture

Stored Procedures

Oracle7 introduced stored procedures written in PL/SQL, Oracle’s
 proprietary language for creating application logic. These procedures
 are stored in the database and executed by clients issuing remote procedure calls (RPCs) as opposed to executing SQL
 statements. Instead of issuing multiple SQL calls, occasionally with
 intermediate logic to accomplish a task, the client issues one procedure
 call, passing in the required parameters. The database executes all the
 required SQL and logic using the parameters it receives.
Stored procedures can also shield the client logic from internal
 changes to the data structures or program logic. As long as the
 parameters the client passed in and received back don’t change, no
 changes are required in the client software. Stored procedures move a
 portion of the application logic from the client to the database server.
 By doing so, stored procedures can reduce the network traffic
 considerably. This capability increases the scalability of two-tier
 systems. Figure 9-2
 illustrates a two-tier system with stored procedures.
[image: Two-tier system with stored procedures]

Figure 9-2. Two-tier system with stored procedures

Three-Tier Systems

The OLTP systems with the largest user populations and transaction
 throughput are typically deployed using a three-tier architecture. In
 the past, the three-tier architecture involved a transaction processing
 monitor, but now more frequently uses an application server. Clients
 access a transaction processing (TP) monitor or application server in
 the middle tier that, in turn, accesses a database server on the
 backend. The notion of a TP monitor dates back to the original mainframe
 OLTP systems. Of course, in the mainframe environment all logic ran on
 one machine. In an open system environment, application servers
 typically run on a separate machine (or machines), adding a middle tier
 between clients and the database server.
There are various classes of application servers:
	Older, proprietary servers such as Tuxedo from BEA Systems on
 Unix and Windows, or CICS from IBM on mainframes

	Industry-standard application servers based on Java 2
 Enterprise Edition (J2EE)

	The Microsoft .NET application server environment as part of
 the Windows operating systems for servers, for example, Windows 2000
 or Windows 2003

Application servers provide an environment for running services
 that clients call. The clients don’t interact directly with the database
 server. Some examples of calling services provided by a TP monitor on a
 remote machine seem similar in many ways to the stored procedure
 architecture described in the previous section, which is why stored
 procedure-based systems are sometimes referred to as “TP-Lite.”
Application servers provide additional valuable services, such
 as:
	Funneling
	Like Oracle’s shared servers, application servers leverage a
 pool of shared services across a larger user population. Instead
 of each user connecting directly to the database, the client calls
 a service running under the TP monitor or application server’s
 control. The application servers invoke one of its services; the
 service interacts with the database. This architecture can be used
 to protect crucial data from direct client access.

	Connection pooling
	The application server maintains a pool of shared,
 persistent database connections used to interact with the database
 on behalf of clients in handling their requests. This technique
 avoids the overhead of individual sessions for each client.

	Load balancing
	Client requests are balanced across the multiple shared
 servers executing on one or more physical machines. The
 application servers can direct client service calls to the
 least-loaded server and can spawn additional shared servers as
 needed.

	Fault tolerance
	The application server acts as a transaction manager; the
 monitor performs the commit or rollback of the
 transaction.[4] The
 underlying database becomes a resource manager, but doesn’t
 control the transaction. If the database server fails while
 executing some transaction, the application server can resubmit
 the transaction to a surviving database server, as control of the
 transaction lies with the application server.
This type of transaction resiliency is a hallmark of the
 older TP monitors such as Tuxedo, and the newer application
 servers and standards offer similar features.

	Transaction routing
	The logic in the middle tier can direct transactions to
 specific database servers, increasing scalability.

	Heterogeneous transactions
	Application servers can manage transactions across multiple
 heterogeneous database servers—for example, a transaction that
 updates data in Oracle and DB2.

While developing three-tier OLTP systems is complex and requires
 specialized skills, the benefits are substantial. Systems that use
 application servers provide higher scalability, availability, and
 flexibility than the simpler two-tier systems. Determining which
 architecture is appropriate for an OLTP system requires (among other
 things) careful evaluation and consideration of costs, available skills,
 workload profiles, scalability requirements, and availability
 requirements.
Figure 9-3 illustrates a
 three-tier system using an application server.
[image: Three-tier architecture]

Figure 9-3. Three-tier architecture

Application Servers and Web Servers

The middle tier of web-based systems is usually an application server and/or
 a web server. These servers provide similar services to the application
 server previously described, but are more web-centric, dealing with
 HTTP, HTML, CGI, and Java.
J2EE and .NET application servers have evolved a great deal in the
 last decade and are the clear inheritors of the TP monitor legacy for
 today’s N-tier systems. Different companies have
 different standards and preferences—the proprietary nature of .NET leads
 some firms to J2EE, while others prefer the tight integration of
 Microsoft’s offerings. A detailed discussion of the relative merits of
 J2EE and .NET, and application server technology in general, is beyond
 the scope of this book. Suffice to say that application servers play an
 extremely important role in today’s systems environment, and database
 management personnel need to understand N-tier
 systems architecture.
Figure 9-4 depicts an
 N-tier system with a client, web server,
 application server, and DBMS server.
[image: An N-tier system]

Figure 9-4. An N-tier system

The Grid

Oracle Database 10g introduced focus on
 another architecture variation—grid computing. The actual topology of
 the grid is not relevant to the discussion in this chapter, because the
 point of the grid is to provide an extremely simple user interface that
 transparently connects to a highly flexible source of computing power.
 In this way, the grid gives IT departments the ability to achieve the
 benefits of more complex architectures while not imposing undue
 complexity on users, and OLTP applications are deployed using grid
 computing resources.
In a similar fashion, the topology of underlying resources in the cloud are not visible
 to consumers, and the benefit of using complex architectures through a simple use model is
 one of the key features of cloud computing, which is the subject of Chapter 15.

OLTP and the Cloud

Use of centralized systems over the Internet, also known as cloud computing, is an
 increasingly popular approach. However, for truly high-volume OLTP systems, there are two
 significant obstacles to using the cloud.
The first is the unpredictable latency of the Internet. Not only
 can communications between a client application and database server take
 significantly longer over the Internet than in a dedicated system, but
 this latency can vary from one communication to the next, based on
 factors out of the control of the individual application, which is not
 an acceptable outcome when thousands of transactions are running
 simultaneously.
The second obstacle is based on the fact that all communications built on the HTTP
 protocol are, by definition, stateless. This means each interaction with a cloud database
 must be a complete transaction, since stateful communications are necessary for things like
 commits and rollbacks spanning over multiple interactions.
Many systems can run on the cloud despite these limitations, but high-end,
 mission-critical OLTP systems typically cannot accept these limitations.

Oracle Features for OLTP

Oracle has many features that contribute to OLTP performance, reliability,
 scalability, and availability. This section presents the basic attributes
 of many of these features. This section is by no means exhaustive; it is
 only intended to be an introduction. Please see the relevant Oracle
 documentation and third-party books for more information.
General Concurrency and Performance

As discussed in Chapter 8,
 Oracle has excellent support for concurrency and
 performance in OLTP systems. Some of the key features relevant to OLTP
 are as follows:
	Nonescalating row-level locking
	Oracle locks only the rows a transaction works on and never escalates
 these locks to page-level or table-level locks. In some databases,
 which escalate row locks to page locks when enough rows have been
 locked on a page, contention can result from false lock contention
 when users want to work on unlocked rows but contend for locks
 that have escalated to higher granularity levels.

	Multiversion read consistency
	Oracle provides statement-level and transaction-level data consistency without requiring read locks. A
 query is guaranteed to see only the data that was committed at the time the query
 started. The changes made by transactions that were in-flight but uncommitted at the
 time the query started won’t be visible. Transactions that began after the query
 started and were committed before the query finishes also won’t be seen by the query.
 Oracle uses UNDO segments to reproduce data as it existed at the time the query
 started. This capability avoids the unpleasant choice between allowing queries to see
 uncommitted data (known as dirty reads) or having readers block writers (and vice
 versa). It also provides a consistent snapshot view of data at a single point in
 time.

	Shared SQL
	The parsing of a SQL statement is fairly CPU-intensive.
 Oracle caches parsed and optimized SQL statements in the shared
 SQL area within the shared pool. If another user executes a SQL
 statement that is cached, the parse and optimize overhead is
 avoided. The statements must be identical to be reused; no extra
 spaces, line feeds, or differences in capitalization are allowed.
 OLTP systems involve a large number of users executing the same
 application code. These systems provide an ideal opportunity for
 reusing shared SQL statements.

	Stored outlines
	Oracle8i added support of execution
 plan stability, sometimes referred to as bound plans,
 with stored outlines. The route a SQL statement takes during
 execution is critical for high performance. Once application
 developers and DBAs have tuned a SQL statement for maximum
 efficiency, they can force the Oracle optimizer to use the same
 execution plan regardless of environmental changes. This provides
 critical stability and predictability in the face of software
 upgrades, schema changes, data-volume changes, and so on.
 Oracle9i added the capability for
 administrators to edit stored outlines.
Since Oracle Database 10g, you can
 select better execution plans for the optimizer to use in
 conjunction with poorly written SQL to improve OLTP performance
 without having to rewrite the SQL. The SQL Tuning
 Advisor performs these advanced optimizations on SQL
 statements, and can then create an improved SQL profile for the
 statement. This profile is used instead of the original
 optimization plan at runtime.

Bind Variables and Shared SQL
As we’ve mentioned, Oracle’s shared SQL is a key feature for
 building high-performance applications. In an OLTP application,
 similar SQL statements may be used repeatedly, but each SQL statement
 submitted will have different selection criteria contained in the
 WHERE clause to identify the different sets of rows on which to
 operate. Oracle can share SQL statements, but the statements must be
 absolutely identical.
To take advantage of this feature for statements that are
 identical except for specific values in a WHERE clause, you can use
 bind variables in your SQL statements. The values substituted for the
 bind variables in the SQL statement may be different, but the
 statement itself is the same.
Consider an example application for granting raises to
 employees. The application submits the following SQL:
UPDATE emp SET salary = salary * (1 + 0.1)
 WHERE empno = 123;
UPDATE emp SET salary = salary * (1 + 0.15)
 WHERE empno = 456;
These statements are clearly different; they update different
 employees identified by different employee numbers, and the employees
 receive different salary increases. To obtain the benefits of shared
 SQL, you can write the application to use bind variables for the
 percentage salary increase and the employee numbers, such as:
UPDATE emp SET salary = salary * (1 + :v_incr)
 WHERE empno = :v_empno;
UPDATE emp SET salary = salary * (1 + :v_incr)
 WHERE empno = :v_empno;
These statements are recognized as identical and would therefore
 be shared. The application would submit different values for the two
 variables, :v_incr and :v_empno—a percentage increase of 0.1 for
 employee 123 and 0.15 for employee 456. Oracle substitutes these
 actual values for the variables in the SQL. The substitution occurs
 during the phase of processing known as the bind
 phase, which follows the parse phase
 and optimize phase. For more details, see the
 relevant Oracle guide for your development language.
Oracle Database 10g and more recent
 versions include tuning tools that can easily spot this type of
 potential application optimization.

Scalability

Both the shared server and Database Resource Manager help Oracle support larger or mixed user
 populations.
Multi-Threaded Server/shared server

Oracle7 introduced the Multi-Threaded Server (MTS, renamed the shared server in
 Oracle9i) (described in Chapter 2) to
 allow Oracle to support larger user populations. While shared server / MTS reduced the
 number of server processes, each client still used its own physical network connection.
 The resources for network connections aren’t unlimited, so Oracle8 introduced two
 solutions for increasing the capabilities of the actual network socket layer at the
 operating system level:
	Oracle Net connection pooling
	Allows the client population to share a pool of shared
 physical network connections. Idle clients transparently “time
 out,” and their network connections are returned to the pool to
 be used by active clients. Each idle client maintains a virtual
 connection with Oracle and will get another physical connection
 when activity resumes. With the Oracle security model,
 authentication is separate from a specific connection, so a
 single pooled connection can represent different users at
 different times. Connection pooling is suitable for applications
 with clients that connect but aren’t highly active all the
 time.

	Oracle Net Connection Manager
	Reduces the number of network connections used on the database
 server. Clients connect to a middle-tier machine running the
 Oracle Net Connection Manager (CMAN). The Connection Manager
 multiplexes the traffic for multiple clients into one network
 connection per Oracle Net dispatcher on the database server.
 Unlike connection pooling, there is no notion of “timeout” for a
 client’s virtual network connection. The Oracle network topology
 can include multiple machines running the Connection Manager to
 provide additional scalability and fault tolerance.

In terms of scalability, you can think of connection pooling as
 the middleweight solution and multiplexing via Connection Manager as
 the heavyweight solution. Figure 9-5 illustrates these two
 network scaling technologies.
Connection Manager became more flexible in Oracle Database
 10g, with the added ability to dynamically alter
 configuration parameters without shutting down Connection Manager and
 improved access rules to filter CMAN traffic.
Oracle Database 11g added Database Resident Connection Pooling, which can be even
 more efficient for high-volume, middle-tier connections to the
 database. Database Resident Connection Pooling eliminates the need to
 store session information by pooling sessions as well as servers, and
 this feature also eliminates the need to use a dispatcher in
 communications between the middle tier and the database.
[image: Network scaling in Oracle Net]

Figure 9-5. Network scaling in Oracle Net

Database Resource Manager

Oracle8i introduced the Database Resource Manager (DRM) to simplify and automate the management of
 mixed workloads in which different users access the same database for different purposes.
 You can define different consumer groups to contain different groups of users. The DRM
 allocates CPU and parallelism resources to consumer groups based on resource plans. A
 resource plan defines limits for the amount of a particular computer resource a group of
 users can use. This allows the DBA to ensure that certain types of users receive
 sufficient machine resources to meet performance requirements. You can also use a set of
 rules to move a particular user from one consumer group to another, such as forcing a user
 into a lower priority consumer group after they have used a certain amount of CPU
 time.
For example, you can allocate 80 percent of the CPU resources to order-entry users,
 with the remaining 20 percent allocated to users asking for reports. This allocation
 prevents reporting users from dominating the machine while order-entry users are working.
 If the order-entry users aren’t using all the allocated resources, the reporting users can
 use more than their allotted percentage. If the order-entry workload increases, the
 reporting users will be cut back to respect their 20 percent allocation. In other words,
 the order-entry users will get up to 80 percent of CPU time, as needed, while the users
 asking for reports will get at least 20 percent of the CPU time, and more depending on how
 much the order-entry group is using. With the DRM, you can dynamically alter the details
 of the plan without shutting down the instance. Since Oracle Database
 11g R2, you can define an upper limit of CPU resources that is
 always enforced; prior to this enhancement, limits were only enforced when a CPU was
 oversubscribed.
Oracle9i added a number of significant improvements to the
 Database Resource Manager. The DRM now allows a DBA to specify the number of active
 sessions available to a consumer group. Any additional connection requests for the
 consumer group are queued. By limiting the number of active connections, you can start to
 avoid the situation where a request comes in that pushes the resource requirements for a
 group over the limit and affects all the other users in that group.
Oracle9i also added to the Database
 Resource Manager the ability to proactively estimate the amount of CPU
 that an operation will require. If an operation looks as if it will
 exceed the maximum CPU time specified for a resource group, the
 operation will not be executed, which can prevent inappropriately
 large operations from even starting.
Since Oracle9i, the DRM can also automatically switch a consumer
 group to another consumer group if that group is active for too long. This feature could
 be used to automatically switch a consumer group oriented toward short OLTP operations to
 another group that would be more appropriate for batch operations.
Since Oracle Database 10g, you can define a
 consumer group by the service name, application, host machine, or
 operating system username of a user.
Database Resource Manager was extended in connection with the
 release of Exadata. On this engineered system, resource plans can
 include the same type of distribution of I/O bandwidth between
 database instances and storage nodes that is available for CPU. Oracle
 Database 12c brings the Oracle Multitenant option
 and pluggable databases into the picture for Database Resource
 Manager.

Real Application Clusters

Arguably, the biggest advance in Oracle9i was a feature
 called Real Application Clusters. Real Application Clusters (RAC) was a
 new version of technology replacing Oracle Parallel Server (OPS).
In the first edition of this book, we described OPS as a feature
 that could be used for improving performance and scalability for certain
 data warehouse-style applications—applications in which data could be
 partitioned in logical ways and applications that primarily supported
 read activity. The reason why use of OPS was mostly limited to data
 warehousing implementations was the phenomenon known as pinging.
In the world of both OPS and RAC, multiple machines access the
 same database files on shared disk (either physically attached or
 appearing as physically attached through software), as shown in Figure 9-6.
[image: RAC architecture]

Figure 9-6. RAC architecture

This architecture allows you to add more machines to a cluster of
 machines, which in turn adds more overall horsepower to the system. But
 there was a problem with the implementation of this architecture for
 OPS, stemming from the fact that a page can contain more than a single
 row. If one machine in a cluster wanted to modify a row in a page that
 was already being modified by another machine, that page had to be
 flushed to the database file on the shared disk—a scenario that was
 termed a ping. This chain of events caused extra
 disk I/O, which in turn decreased the overall performance of the
 solution based on the number of writes.
The traditional way around this problem was simply to avoid it—to
 use OPS only when a database would not cause pings with a lot of write
 operations, or to segregate writes so that they would not require data
 in use on another node. This limitation required you to carefully
 consider the type of application to which you would deploy OPS and
 sometimes forced you to actually modify the design of your application
 to work around OPS’s limitations.
With Real Application Clusters, the problem caused by pings was
 eliminated. RAC fully supports the technology known as Cache Fusion.
 Cache Fusion makes all the data in every cache on every machine in a
 Real Application Cluster available to every other machine in the
 cluster. If one machine needs a block that is either being used by
 another machine or simply residing in the cache of another machine, the
 block is directly shipped to the requesting machine, usually over a very
 high-speed interconnect.
Cache Fusion means that you do not have to work around the
 problems of pinging. With Real Application Clusters, you will be able to
 see significant scalability improvements for most all applications,
 without any modifications. With that said, for OLTP applications
 deployed to RAC (where there are frequent modifications to indexes
 within a small set of leaf blocks), reverse key indexes might be used to
 distribute inserts across leaf keys in the index and eliminate possible
 performance issues for this special situation (see Chapter 4 for an explanation of reverse key
 indexes).
Real Application Clusters also delivers all the availability
 advantages that were a part of OPS. Because all the machines in a Real
 Application Cluster share the same disk, the failure of a single machine
 does not mean that the database as a whole has failed. The users
 connected to the failed machine have to be failed over to another
 machine in the cluster, but the database server itself will continue to
 operate.
As of Oracle Database 10g, the model
 implemented with RAC was extended beyond clusters to grid computing.
 Oracle now offers all the components you need to use to implement
 clusters on several operating system platforms as part of the Oracle
 software stack, including a volume manager and clusterware. In Oracle
 10g Release 2, Oracle made it possible to monitor
 the different nodes in a cluster and to issue advisories to ensure
 better load balancing across the nodes.
Oracle Database 11g Release 2 added the
 concept of server pools, which provide a higher
 level of organization within a RAC cluster. A server pool can have
 multiple nodes within it, and you can designate an application to run on
 all instances within the pool or a single instance. Instances can be
 added to a pool based on defined policies to handle shifting workload
 requirements.

Exadata and OLTP

The Oracle Exadata Database Machine and the Exadata Storage Server software represented a
 significant enhancement to the overall Oracle Database story, delivering
 performance that was up to an order of magnitude better than any other
 platform for the Oracle Database. Exadata is discussed in more detail
 elsewhere in this book.
In the first release, Exadata, the Exadata Storage Server
 software, was primarily used to speed up data warehouse operations,
 since the most dramatic improvements in performance revolved around read
 operations for large numbers of rows, which are not that common in OLTP
 workloads.
With the release of the Exadata X3 models and corresponding
 Exadata Storage Server software in 2012, a new feature called Smart
 Flash Cache writeback was added. Writeback takes advantage of the speed of I/O to the Flash
 Cache in each Exadata Storage Cell. With writeback enabled, write
 operations to disk are sent to the Flash Cache instead of the much
 slower disk writes. This option eliminates the overhead of random disk
 writes, providing more I/O bandwidth for other writes, such as redo
 writes, as well as providing fast access to the newly written data
 stored in the Flash Cache.
The latest version of Exadata marks data in the Flash Cache as
 dirty, so if there is a failure of the Flash Cache, those dirty rows can
 be recovered, protecting the all important integrity of the data. This
 recovery is typically very fast.
The improvements provided by the writeback feature help to deliver
 performance benefits to classic OLTP workloads as well as data warehouse
 workloads with Exadata.

High Availability

From an operational perspective, OLTP systems represent a company’s
 electronic central nervous system, so the databases that support these
 systems must be highly available. Oracle has a number of features that
 contribute to high availability:
	Standby database
	Oracle can provide database redundancy by maintaining a copy
 of the primary database on another machine, usually at another site.
 Redo logs from the primary server are shipped to the standby server
 and applied there to duplicate the production activity.
 Oracle8i introduced the automated shipping of
 redo logs to the standby site and the ability to open the standby
 database for read-only access for reporting.
Oracle9i Release 2 introduced the concept
 of logical standby. With a logical standby
 database, the changes are propagated with SQL statements, rather
 than redo logs, which allow the logical standby database to be used
 for other database operations.

	Transparent Application Failover
 (TAF)
	TAF is a programming interface that automatically connects a user session to another
 Oracle instance should the primary instance fail. Any queries that
 were in process are resumed from the point of the last row fetched
 for the result set.

	GoldenGate
	GoldenGate is an Oracle Fusion Middleware offering that provides a
 method for asynchronous, or deferred, intersystem replication,
 allowing systems to operate more independently. Avoiding direct
 system dependencies can help to avoid “cascading” failures, allowing
 interconnected systems to continue to operate even if one system
 fails. For example, Golden Gate can enable change data capture among
 Oracle Databases and can be used with non-Oracle databases. These
 capabilities are described in more detail in Chapter 11.

	Oracle Data Guard
	You can use Oracle Data Guard functionality to provide data
 redundancy. Changes made by transactions are replicated
 synchronously or asynchronously to other databases. If the primary
 database fails, the data is available from the other databases.
 Oracle Data Guard is described in more detail in Chapter 11.

	Real Application Clusters
	Real Application Clusters can increase the scalability of the Oracle Database
 over multiple nodes in a cluster. But by supporting multiple
 instances with full access to the same database, RAC also provides
 the highest levels of availability for protection from the failure
 of a node in a clustered environment. If one node fails, the
 surviving nodes provide continued access to the database. Grid
 computing deployment further extends availability
 capabilities.

Oracle Database 11g provides a number of
 high-availability enhancements, including the ability to easily capture
 diagnostic information about database failures. For a more detailed
 discussion of high-availability features and options, see Chapter 11.

[3] OPS was actually available for DEC VMS in 1989 and for NCR
 Unix with the last production release of Oracle6 (version 6.0.36),
 but it became widely available, more stable, and more popular in
 Oracle7.

[4] TP monitors usually control transactions using the
 X/Open Distributed Transaction Processing standard published
 by the X/Open standards body. A database that supports the XA
 interface can function as a resource manager under control of
 a TP monitor, which acts as a transaction manager.

Chapter 10. Oracle Data Warehousing and Business
 Intelligence

A database is general purpose software and it serves as the basis of a platform that meets a
 variety of needs, including:
	Recording and storing transactional
 data
	Reliably storing data and protecting each user’s data from the
 effects of other users’ changes

	Retrieving data for ad hoc questions (queries) and
 historical reporting
	Providing a consistent and persistent view of the data

	Analyzing data
	Summarizing and comparing data, detecting trends and data
 relationships, and forecasting

The last two capabilities are most often associated with a
 data warehouse, part of an infrastructure that provides
 business intelligence used in strategic and tactical
 business management of the corporation or organization. Such solutions
 expose valuable business information embedded in an organization’s data
 stores—essentially creating additional value from existing data resources.
 Because of this, data warehousing is the focus of a great deal of interest
 from business constituencies.
Data warehousing and business intelligence solutions are widely deployed and continue to be a focus
 for further development in many organizations. There is a very simple reason behind this: such
 projects and solutions are seen as core to making business decisions, providing a return on
 investment that can be grasped by the business community.
This trend is not new. Oracle began adding data warehousing features
 to Oracle7 in the early 1990s. Ever since, additional features for
 warehousing and analytics appeared, enabling better performance,
 functionality, scalability, and management. In addition to the Oracle
 Database, Oracle offers tools for building and using a business intelligence
 infrastructure, including data movement and data transformation tools,
 business analysis tools and applications, and Big Data solutions.
A business intelligence infrastructure enables business analysts to determine:
	How a business scenario compares to past business results

	New business possibilities by looking at the data
 differently

	Possible future business outcomes

	How business actions can be changed to impact the future

This chapter introduces the basic concepts, technologies, and tools
 used in building data warehousing and business intelligence solutions. To
 help you understand how Oracle addresses infrastructure and analyzes issues,
 we’ll first describe some of the basic terms and technologies.
Data Warehousing Basics

Why build a data warehouse? Why is the data in an online transaction
 processing (OLTP) database only part of a business intelligence solution?
 Where does Big Data fit in a data warehousing deployment strategy?
Data warehouse relational database platforms are often designed with
 the following characteristics in mind:
	Strategic and tactical analyses can discern trends in
 data
	Data warehouses often are used in creation of reports based on
 aggregate values culled from enormous amounts of data. If OLTP
 databases were used to create such aggregates on the fly, the
 database resources used would impact the ability to process
 transactions in a timely manner. These ad hoc queries often take
 advantage of computer-intensive analytic functions embedded in the
 database. Furthermore, if data volumes of this size were entirely
 pushed to in-memory databases in a middle tier, the platform cost
 would be prohibitive.

	A significant portion of the data in a data warehouse
 is often read-only, with infrequent updates
	Database manageability features can make it possible to deploy
 warehouses containing petabytes of data, even where near real-time
 updates of some of the data is occurring.

	The data in source systems is not “clean” or
 consistent across systems
	Data input to transactional systems, if not carefully
 controlled, is likely to contain errors and duplication. Often, a
 key portion of the data warehouse loading process involves
 elimination of these errors through data transformation. Since
 multiple source systems might differ in data definitions, data
 transformations during the ETL (extraction, transformation, and load) process
 can be used to modify data into a single common definition as well
 as improve its quality.

	The design required for an efficient data warehouse
 differs from the standard normalized design for a relational
 database
	Queries are typically submitted against a fact table, which may contain
 summarized data. The schema design often used, a star
 schema, lets you access facts quite flexibly along key
 dimensions or “lookup” values. (The star schema
 is described in more detail later in this chapter.) For instance, a
 business user may want to compare the total amount of sales, which
 comes from a fact table, by region, store in the region, and items,
 all of which can be considered key dimensions. Today’s data
 warehouses often feature a hybrid schema that
 is a combination of the star schema common in
 previous-generation data marts with third normal form schema for
 detailed data that is common in OLTP systems and enterprise data
 warehouses.

	The data warehouse often serves as a target for
 meaningful data found on Big Data platforms that optimally solve
 semi-structured data problems
	Big Data can be described as semi-structured data containing data descriptors, data
 values, and other miscellaneous data bits produced by sensors, social media, and
 web-based data feeds. Given the amount of irrelevant data present, the processing goal
 on a Big Data platform is to map the data and reduce it to data of value (hence
 “MapReduce” callouts in programs written using languages such as Java and Python that
 refine this data). This subset of Big Data is usually fed to a data warehouse where it
 has value across the business and might be analyzed side by side with structured
 data.

The Evolution of Data Warehousing and Business
 Intelligence

Gathering business intelligence from data warehouses is not a new idea. The use of
 corporate data for strategic decision-making beyond simple tracking and
 day-to-day operations has been going on for almost as long as computing
 itself.
Quite early, builders and users of operational systems recognized potential business
 benefits of analyzing the data in complementary systems. In fact, much of the early growth
 in personal computers was tied to the use of spreadsheets that performed analyses using data
 downloaded from the operational systems. Business executives began to direct IT efforts
 toward building solutions to better understand the business using such data, leading to new
 business strategies. Today, solutions are commonly provided in business areas such as
 customer relationship management, sales and marketing campaign analysis, product management and packaging, financial analysis, supply
 chain analysis, risk and fraud analysis, and a host of other areas.
In the 1980s, many organizations began using dedicated servers for
 these applications, collectively known then as decision
 support systems (DSS), supplementing their management information systems.
 Decision-support queries tended to be CPU, memory, and I/O intensive
 using read-only data. The characteristics of queries were much less
 predictable (e.g., more “ad hoc”) than what had been experienced in OLTP
 systems. This led to the development of data stores for decision support
 apart from those for OLTP.
When Bill Inmon and others popularized the term “data warehouse” in the early 1990s,
 a formalized common infrastructure for building a solution came into being. The topology of
 business intelligence solutions continued to evolve, as the next section illustrates.
 Today’s business intelligence solutions often include infrastructure that exposes data from
 relational data warehouses and also from specialty engines (e.g., OLAP, Big Data) and OLTP
 reporting systems.

A Topology for Business Intelligence

The classic data warehouse topology, serving as an enterprise-wide
 source of information, is represented by the multitier topology shown in
 Figure 10-1.
This topology developed over many years for a variety of reasons.
 Initial efforts at creating a single enterprise warehouse often resulted
 in “analysis paralysis.” Just as efforts to define an enterprise-wide
 OLTP model can take years (due to cross-departmental politics and the
 scope of the effort), similar attempts in data warehousing also took
 much longer than business sponsors were willing to accept. These efforts
 were further hampered by the continually changing analysis requirements
 necessitated by a changing marketplace and the introduction of new
 datatypes.
Consequently, attempts at building such enterprise-wide models
 that would satisfy everyone often satisfied no one and left out critical
 data needed to run the business.
[image: Typical initial business intelligence topology]

Figure 10-1. Typical initial business intelligence topology

Data Marts

When many early large-scale, enterprise-only data warehouse efforts
 ended in dismal failure, frustration and impatience followed. Some built
 department-focused independent data marts instead
 by extracting data from the appropriate operational source systems. Many
 data marts were initially quite successful because they fulfilled a
 specific business need relatively quickly.
However, problems began to surface. There was often no
 coordination between departments regarding basic definitions, such as
 “customer.” If a senior manager asked the same question of multiple
 departments, the answers provided by these independent data marts were
 often different, thus calling into question the validity of all of the
 marts. Many departments also encountered ongoing difficulty in managing
 these multiple data marts and in maintaining extractions from
 operational sources (which were often duplicated across multiple
 departments).
As architects took another look at their solutions, they began to
 realize that it was very important to have a consistent view of the
 detailed data at an enterprise data warehouse level. They also saw that
 data marts could solve business problems and provide return on
 investment in an incremental fashion. Today, most successful
 implementers simultaneously grow dependent data marts one business
 solution at a time while growing the enterprise warehouse server in an
 incremental fashion.
The currently accepted definition of a data mart is simply a
 subject- or application-specific data warehouse, usually implemented
 within a department. Typically, these data marts are built to solve
 specific business needs and may include a large number of summary
 tables. Data marts were initially thought of as being small, since not
 all the detail data for a department or data from other departments need
 be loaded in the mart. However, some marts get quite large as they
 incorporate data from outside sources (sometimes purchased) that isn’t
 relevant in other parts of the business.
In some organizations, data marts are deployed to meet specific
 project goals with models optimized for performance for that particular
 project. Such data marts are retired when the project is completed and
 the hardware is reused for other projects. As the analysis requirements
 for a business change, the topology of any particular data warehouse is
 subject to evolution over time, so developers must be aware of this
 possibility.
Increasing focus on cost savings, manageability, and compliance
 are leading many to reexamine the wisdom of having a large number of
 physically separate data marts. As a result, consolidation of marts into
 the enterprise warehouse is a common trend. More recent versions of
 Oracle enable effective management of different user communities,
 helping to make such consolidation possible.

The Operational Data Store and Enterprise Warehouse

The operational data store (ODS) concept
 also grew in popularity in the 1990s. The ODS may best be
 described as a distribution center for current data. Like the OLTP
 servers, the schema is highly normalized and the data is recent. The ODS
 serves as a consolidation point for reporting and can give the business
 one location for viewing current data that crosses divisions or
 departments. The popularity of the ODS grew in part as a result of
 companies in the midst of acquisitions and mergers. These organizations
 often face mixed-application environments. The ODS can act as a staging
 location that can be used as the source for further transformations into
 a data warehouse or into data marts.
The warehouse server, or enterprise data
 warehouse, is a multisubject historical information store
 usually supporting multiple departments and often serving as the
 corporate database of record. When an ODS is established, the warehouse
 server often extracts data from the ODS. When an ODS isn’t present, data
 for the warehouse is directly extracted and transformed from operational
 sources. External data may also feed the warehouse server.
As noted previously, platform consolidation is popular within
 these tiers today. The enterprise data warehouse can be the point of
 consolidation for the ODS and multiple data marts. Although different
 logical models remain, they are consolidated to a single platform and
 database.

OLTP Systems and Business Intelligence

True real-time data resides in the OLTP systems. Organizations can provide reporting from
 transaction processing systems side by side in portals or dashboards with information from
 data warehouse systems. A key to providing meaningful dashboards is to provide high-quality
 data with consistent meaning. The quality of data in OLTP systems is directly related to
 controlling data input to eliminate duplicate or error-prone entries.
Consistent meaning can be resolved using master data management
 (MDM) solutions. MDM solutions consist of data hubs that serve
 as a common reference point for data supporting key business
 measurements such as customers, products, or finance. Oracle offers a
 number of data hubs for these and other business areas to enable
 building out of such an infrastructure.
Projects that include data from data warehouses, OLTP systems, Big
 Data sources, and MDM solutions are called data integration projects.
 Most business intelligence deployments, at the time of publication of
 this edition, use just the data warehouse infrastructure as the primary
 source of historic data for business intelligence. The extraction,
 transformation, and loading (ETL) techniques applied to the data warehouse are
 designed to resolve differences in common data elements, to cleanse the
 data, and to provide a historical database of record.

Big Data and the Data Warehouse

Organizations are considering extending the business intelligence topology
 as they introduce Big Data platforms. These platforms are commonly
 defined as those that run a distribution of Apache Hadoop, an open source software framework ideal for
 analyzing unstructured or semi-structured data. At the base of any
 Hadoop cluster deployment is the Hadoop Distributed File System (HDFS) for storing the data
 and MapReduce for determining data of value. Other Hadoop software
 components that are often part of a deployment include:
	Flume
	Used for collecting and aggregating large amounts of
 log/event data on HDFS and deployed as a service

	Fuse-DFS
	Enables integration with other systems for data import and
 export by allowing mounting of HDFS volumes using the Linux FUSE
 filesystem

	HBase
	A columnar database with support of data summaries and ad
 hoc queries

	Hive
	A SQL-like language, metadata repository, and data
 warehousing framework with a rudimentary rules-based optimizer for
 Hadoop

	Mahout
	A machine learning and data mining programming
 library

	Oozie
	A workflow engine and job scheduler for Hadoop

	Pig
	A high level dataflow programming language and compiler for
 producing and executing MapReduce programs

	Sqoop
	A tool used in transferring data between Hadoop and
 relational databases that uses MapReduce for import and/or export
 and supports direct data import into Hive tables

	Zookeeper
	The coordination service for distributed applications
 running on Hadoop

Though MapReduce-like functionality is supported in Oracle Database
 12c through pattern matching (as we will note later), most
 organizations will likely continue to deploy separate optimized Hadoop clusters when
 analyzing such data. The data warehouse greatly complements the Hadoop cluster platform as
 the relational database serves as a destination for the Big Data of value and provides a
 standard SQL interface for querying all data. In addition, the data warehouse is generally
 deployed for higher availability and better recovery than a Hadoop cluster, and provides
 higher levels of security than possible with Hadoop today. We will describe later in this
 chapter how the data warehousing topology often evolves when Big Data is included.

Data Warehouse Design

The database serves as the foundation of the business intelligence
 infrastructure: it is the place where the data is stored. But there is
 more to business intelligence than data—the infrastructure becomes useful
 only when business users use the data to gain insight. This may seem like
 a trivial point, but we’ve seen numerous companies build elegant
 infrastructure without consulting business users to determine business
 needs or key performance indicators (KPIs) to be measured. Often, such deployed projects end up
 supporting very few users, generate little activity, and little business
 intelligence is gained.
Assuming that your infrastructure is well planned and there is a
 demand for the data, your next challenge will be to figure out how to
 handle the demand. You will be faced with the need to design your data
 warehouse and other infrastructure components to deliver appropriate
 performance to your users—performance that may initially seem far beyond
 your capabilities, since the information needed can involve comparisons of
 massive amounts of detailed data.
When you start your design, also remember that the data warehouse
 and business intelligence infrastructure will never be considered
 finished. When the business needs change, so too must components in the
 infrastructure. Thus, the ability to track changes through metadata stored
 in a repository often becomes critical as part of the design work. Various
 tools from Oracle and other vendors can provide this capability.
As noted previously, data warehouses historically have had a
 different set of usage characteristics from those of an OLTP database. One
 aspect that makes it easier to meet data warehousing performance
 requirements is the higher percentage of read operations. Oracle’s locking
 model, described in detail in Chapter 8, is ideally suited for data
 warehouse operations. Oracle doesn’t place any locks onto data that’s
 being read, thus reducing contention and resource requirements for
 situations where there are a lot of database reads. Since locks don’t
 escalate, Oracle is also frequently deployed where near real-time data
 feeds into the warehouse occur in a scenario not unlike OLTP
 workloads.
Warehousing usage characteristics lead to deploying different types
 of schema. In OLTP databases, transaction data is usually stored in
 multiple tables and data items are stored only once in what is called 3NF
 or third normal form (described in Chapter 4). If a query requests data from more
 than one transaction table, the tables are joined together. Typically, the
 database query optimizer decides which table to use as the starting point
 for the join, based on the assumption that the data in the tables is
 essentially equally important.
When business users need an understandable schema to formulate their
 own ad hoc queries or analytical processing is required, key transaction
 data can be more appropriately stored in a central fact table, surrounded
 by dimension or lookup tables, as shown in Figure 10-2. The fact table can contain summarized
 data for data items duplicated elsewhere in the warehouse, and dimension
 tables can contain multiple hierarchies. As noted previously, when
 organizations consolidate their data marts into enterprise data
 warehouses, many now deploy a variation called a hybrid schema, a mixture
 of third normal form and star schema.
Ralph Kimball, author of the widely read book The Data Warehouse Toolkit
 (Wiley), is largely credited with discovering that users of data warehouses typically pose
 their queries so that a star schema, illustrated in Figure 10-2, is
 an appropriate model to use. A typical query might be something such as the following:
Show me how many sales of computers (a product type) were sold by
 a store chain (a channel) in Wisconsin (a geography) over the past 6
 months (a time).

The schema in Figure 10-2 shows a
 relatively large sales transactions table (called a fact
 table) surrounded by smaller tables (called dimensions or lookup
 tables). The query just described is often called multidimensional, since several
 dimensions are included (and time is almost always one of them). Because
 these queries are typical in a data warehouse, the recognition of the star
 schema by Oracle’s cost-based optimizer can deliver enormous performance
 benefits.
[image: Typical star schema]

Figure 10-2. Typical star schema

Query Optimization

Oracle first provided the ability to recognize a star schema in the query
 optimizer in Oracle7 and has focused on making its cost-based query
 optimizer smarter in response to business intelligence queries in
 subsequent database releases. Since Oracle Database
 10g, optimizer predictions are compared to actual
 runtime performance to improve optimizer prediction accuracy and any
 errors are subsequently corrected automatically. The optimizer also can
 provide query rewrite transparently to summary levels commonly deployed
 with star schema through materialized views, described later in this
 chapter. Oracle Database 11g added query rewrite for
 the OLAP Option as well as improved solving of queries
 containing inline views.
In Oracle Database 12c, during the compilation of a SQL statement,
 the optimizer automatically decides whether available statistics can generate a good execution
 plan. If statistics are missing or out of date, dynamic sampling of tables automatically
 occurs to generate new statistics. Query performance is further improved by adaptive execution
 plans that make corrections during execution.
How does the optimizer handle a query against a star schema? First,
 it finds a sales transactions fact table (shown in Figure 10-2) with a lot more entries than the
 surrounding dimension tables. This is the clue that a star schema exists.
 Early databases would have tried to join each of the dimension tables to
 the fact table, one at a time. Because the fact table is usually very
 large, using the fact table in multiple joins takes a lot of computer
 resources.
Cartesian product joins were added to Oracle7 to first join the
 dimension tables, with a subsequent single join back to the fact table in
 the final step. This technique works relatively well when there are not
 many dimension tables (typically six or fewer, as a rule of thumb, to keep
 the Cartesian product small) and when data is relatively well
 populated.
In some situations, there are a fairly large number of dimension
 tables or the data in the fact table is sparse. For joining such tables, a
 parallel bitmap star join may be selected by the optimizer.
In earlier releases of the Oracle Database, DBAs had to set initialization parameters
 (e.g., STAR_TRANSFORMATION) and gather statistics, enabling the optimizer to recognize the best methods for
 solving such queries. Today, needed parameters are preset upon installation and statistics are
 automatically gathered by the Oracle Database.
Bitmap Indexes and Parallelism

Bitmap indexes, described in Chapter 4, were first introduced in Oracle7 to
 speed up the type of data retrieval and joins in data warehousing queries. Bitmap indexes in
 Oracle are typically considered for columns in which the data has low cardinality.
 Cardinality is the number of different values in an index divided by the number of rows. There
 are various opinions about what low cardinality actually is. Some consider cardinality as
 high as 10% to be low, but remember that if a table has a million rows, that “low”
 cardinality would mean 100,000 different values in a column!
In a bitmap index, a value of 1 in the index indicates that a
 value is present in a particular row, and 0 indicates that the value is
 not present. A bitmap is built for each of the values in the indexed
 columns. Because computers are built on a concept of 1s and 0s, this
 technique can greatly speed up data retrieval. In addition, join
 operations such as AND become a simple addition operation across
 multiple bitmaps. A side benefit is that bitmap indexes can provide
 considerable storage savings.
Figure 10-3
 illustrates the use of a bitmap index in a compound WHERE clause. Bitmap
 indexes can be used together for even faster performance. The bitmap
 indexes are essentially stacked together, as a set of punch cards might
 be. Oracle simply looks for those parts of the stack with all the bits
 turned on (indicating the presence of the value), in the same way that
 you could try to stick a knitting needle through the portions of the
 card stack that were punched out on all of the cards.
[image: Bitmap index operation in a compound WHERE clause]

Figure 10-3. Bitmap index operation in a compound WHERE clause

In Oracle, star-query performance is improved when bitmap indexes
 are created on the foreign-keys columns of the fact table that link to
 the surrounding dimension tables. A parallel bitmap star join occurs in
 which the bitmaps retrieve only the necessary rows from the fact table
 and the rows are joined to the dimension tables. During the join,
 sparseness (i.e., a large quantity of empty values) is recognized
 inherently in the bitmaps, and the number of dimension tables isn’t a
 problem. This algorithm can also efficiently handle a snowflake schema, which is
 an extension of a standard star schema in which there are multiple tables for each
 dimension.
To further speed queries, Oracle9i added a bitmap join index from
 fact tables to dimension tables. A bitmap join index is simply the bitmap index of a join of
 two or more tables. The speedup in performance comes from avoiding actual table joins or
 reducing the amount of data joined by taking into account restrictions in advance of the
 joining of data. Performance speedup for star queries with multiple dimension tables can be
 greatly improved since bitwise operations in star transformations can now be eliminated.
Performing queries in parallel also obviously improves performance. Joins and sorts are frequently used to solve
 business intelligence queries. Parallelism is described in Chapter 7. That chapter lists functions that
 Oracle can perform in parallel (see the section What Can Be Parallelized?).
Real Application Clusters, which replaced Oracle Parallel Server
 as of Oracle9i, further expands parallelism by
 enabling queries to transparently scale across nodes in clusters or in
 grids of computer systems.
Note
Since Oracle Database 10g, statistics
 gathering automatically populates the Automatic Workload Repository,
 an important source of information for Oracle’s cost-based optimizer.
 For example, the SQL Access Advisor leverages this information when
 making tuning recommendations. Oracle Database
 12c provides support for adaptive plans, query
 plans that are adjusted at run-time based on current data. Adaptive
 statistics at run-time and compile-time in Oracle Database
 12c enable optimization “learning” for future
 queries.

Optimization Provided by the Exadata Storage Server
 Software

The introduction of the Oracle Exadata Database Machine as an engineered
 system in 2008 enabled Oracle to define balanced hardware server and storage configurations
 that are linked via a high-speed interconnect (InfiniBand). Today, Exadata contains powerful
 Sun server components including those that provide the Exadata Storage Server cells. The
 Exadata Storage Server software enables the Oracle Database to perform unique query and
 analytics optimization in Exadata storage transparently to the applications.
Smart Scans offload query predicate evaluation to storage, performing row, column, and
 join filtering in the Exadata Storage Server cells. During star join filtering provided by Smart Scans, dimension table predicates are transformed into filters that are
 applied to the fact table scan. Storage indexes in the Exadata Storage Server software
 further assist by transparently keeping track of minimum and maximum values of columns
 stored in tables on a cell, eliminating scan I/O if a WHERE clause in the query is outside
 the bounds of those values. The optimizations are important in that they minimize both the
 occurrence of much slower full table scans and the need for extensive indexing to eliminate
 such full table scans.
Smart Scans transparently handle a variety of complex cases
 including uncommitted data and locked rows, chained rows, compressed
 tables, national language processing, date arithmetic, regular
 expression searches, and partitioned tables. Smart Scans also help in
 more efficient backups (since only changed blocks are returned from
 storage), more efficient creation of Oracle tablespaces, and can process
 Encrypted Tablespaces (TSE) and Encrypted Columns (TDE) in storage. Data
 mining scoring and statistics are also processed in Exadata Database
 Machine storage, beneficial since the number of processors in the
 Exadata Storage Server cells exceed the number of processors in the
 Database Server nodes.
The Exadata Storage Server software supports Hybrid Columnar Compression (HCC). HCC is most often
 associated with storage volume savings since typical compression of data
 warehouse data is about 8 to 10 times and compression of archive data is
 up to about 15 times. But there are some benefits during query
 processing as well. Queries run against compressed data do not require
 decompression in storage during Smart Scans, reducing the number of I/Os
 to scan a table. Only columns and rows that satisfy a given predicate
 are decompressed in memory on the Exadata Storage Server cell.
The Exadata Storage Server cells contain flash, which is used, by
 default, as a Smart Flash Cache by the Oracle Database. In a data
 warehouse, the Smart Flash Cache can speed performance as it transparently stores data
 that will be reused in other queries in the flash. Administrators can
 also direct at the table, index, or segment level what data should be
 retained in flash. The Smart Flash Cache can also reduce log write I/O
 latency, more often associated with transaction processing systems.
 However, for data warehouses, this reduction can also be beneficial
 during ETL processing.

Dimensional Data and Hierarchies in the Database

Next we’ll take a look at how the Oracle Database supports the concepts of dimensions and
 hierarchies in a bit more detail with a focus on summary tables,
 materialized views, and the Oracle OLAP Option.
Summary Tables

Data within dimensions is usually hierarchical in nature (e.g., in the
 time dimension, day rolls up to week, which rolls up to month, which
 rolls up to quarter, which rolls up to year). If the query is simply
 looking for data summarized at a monthly level, why should it have to
 sort through more detailed daily and weekly data? Instead, it can simply
 view data at or above that level of the hierarchy. Formerly, data
 warehousing performance consultants designed these types of summary
 tables—including multiple levels of pre-calculated summarization. For
 example, all the time periods listed in Figure 10-2 can be calculated on the fly using
 different groupings of days. However, to speed queries based on a
 different time series, a data warehouse can have values pre-calculated
 for weeks and months and stored in summary tables to which queries can
 be redirected.

Materialized Views

Oracle8i introduced the concept of materialized views for the
 creation of summary tables for facts and dimensions that can represent
 rollup levels in the hierarchies. A materialized view provides
 pre-computed summary data; most importantly, a materialized view is
 automatically substituted for a larger detailed table when appropriate.
 The cost-based query optimizer can perform query rewrites to these
 summary tables and rollup levels in the hierarchy transparently, often
 resulting in dramatic increases in performance. For instance, if a query
 can be answered by summary data based on sales by month, the query
 optimizer will automatically substitute the materialized view for the
 more granular table when processing the query. A query at the quarter
 level might use monthly aggregates in the materialized view, selecting
 the months needed for the quarter(s). Oracle Database
 10g added query rewrite capabilities such that the
 optimizer can make use of multiple appropriate materialized
 views.
Materialized views can be managed through Oracle Enterprise
 Manager (see also Chapter 5). The SQL
 Advisor accessible in Enterprise Manager includes a SQL Access Advisor that can recommend when to create materialized
 views.

OLAP Option

As business users become more sophisticated, their questions evolve
 from “what happened” to “what trends are present and what might happen
 in the future?” OLAP tools provide the ability to
 handle time-series and mathematical analysis for understanding past
 trends and forecasting the future.
OLAP initially grew around the early inability of relational
 databases to effectively handle multidimensional queries (described
 previously in the section Data Warehouse Design).
 This led to OLAP tools packaged with their own data “cubes” where data
 is downloaded from relational sources into the cubes.
These separate database engines are called Multidimensional Online Analytical Processing engines, or
 MOLAP engines. Oracle Essbase is one such example.
 This standalone OLAP solution (e.g., not part of the Oracle Database
 OLAP Option) is especially popular for Hyperion’s financial applications
 and in cases where business analysts want to generate their own cubes.
 Essbase cubes can also be accessed using Oracle Business Intelligence
 Enterprise Edition (OBI EE) and spreadsheet tools. Such MOLAP engines
 handle queries extremely quickly and work best when the cube is not
 updated frequently (because the cube-generation process takes time).
 Data can be gathered from a variety of database sources.
Within relational databases, OLAP functionality also appeared since star schema
 containing summary levels are supported to various degrees. When used in this fashion, the
 interaction is called ROLAP, which stands for Relational Online
 Analytical Processing. Tools that can work against
 either relational databases or MOLAP engines are sometimes referred to as hybrid
 tools.
The Oracle OLAP Option can be thought of as a MOLAP cube within
 the relational database, accessible via SQL. Though available since
 Oracle 9i, Oracle Database 11g
 significantly improved the flexibility of accessing the OLAP Option.
 Business users formerly needed to specifically point their queries to
 OLAP Option cubes. Since Oracle Database 11g, the
 OLAP cubes can be used transparently as an alternative to materialized
 views because Oracle’s SQL query rewrite recognizes the cubes. The
 materialized view refresh can refresh OLAP cubes as of Oracle Database
 11g.
OLAP Option cubes are deployed in what are called analytic workspaces.
 They can be created using a simplified logical dimensional modeling tool
 called the Analytic Workspace Manager (AWM). The tool provides an
 interface for creation of the cubes and for building maps from
 relational tables into the cubes.
Custom OLAP applications can be built using Oracle’s JDeveloper and business intelligence
 beans, although this is much less common than using off-the-shelf
 tools. The Java beans provide prebuilt components for manipulating
 tables, crosstabs, and graphs, and for building queries and calculations
 similar to the functionality previously found in Express. JDeveloper
 generates Java code utilizing these building blocks that maps to the
 Java OLAP API provided by Oracle’s OLAP Option.

Analytics and Statistics in the Database

Analysis of large data sets is faster when it takes place where the data is stored, since
 this approach avoids the overhead of moving the data sets around. This
 section describes the database functions and other features available for
 analytics, statistics, and data mining in the Oracle Database.
It is worth noting here that the growing use of Oracle for
 statistical computations led to support for floating-point number types
 providing the precision outlined in the IEEE 754–1985 standard (with minor differences). These
 are provided in the datatypes BINARY_FLOAT and BINARY_DOUBLE in Oracle Database 10g and more recent
 database releases.
Basic Analytic and Statistical Functions

Oracle releases dating back to Oracle8i have continued to add new
 analytic and statistical functions as SQL extensions to the core Oracle
 Enterprise Edition and Standard Edition databases. These analytic
 functions now include:
	Ranking functions
	Used to compute a record’s rank with respect to other records.
 Functions include RANK, DENSE_RANK, CUME_DIST, PERCENT_RANK,
 NTILE, and ROW_NUMBER. Hypothetical ranking is also
 supported.

	Windowing and Reporting aggregate
 functions
	Used to compute cumulative and moving averages. Functions include SUM, AVG,
 MIN, MAX, COUNT, VARIANCE, STDDEV, FIRST_VALUE, LAST_VALUE, and
 RATIO_TO_REPORT.

	LAG/LEAD functions
	Often used to compare values from similar time periods, such
 as the first quarter of 2013 and the first quarter of 2012.

	Linear regression functions
	Include REGR_COUNT, REGR_AVGX and REGR_AVGY, REGR_SLOPE,
 REGR_INTERCEPT, REGR_R2, and other functions used in regression
 line fitting for a set of numbers in pairs (e.g.,
 having X and Y values).

Also supported in Oracle are pivoting operations, histograms
 (using WIDTH_BUCKET), CASE expressions, filling gaps in data, and
 time-series calculations.
The database includes a statistics package, DBMS_STATS_FUNCS.
 Functions in the statistics package support linear
 algebra, frequent itemsets, descriptive statistics, hypothesis testing
 (T-test, F-test, Binomial test, Wilcoxon Signed Ranks test, One-Way
 ANOVA, Chi-square, Mann Whitney, Kolmogorov-Smirnov), crosstab
 statistics (% statistics, Chi-squared, phi coefficient, Cramer’s V,
 contingency coefficient, and Cohen’s kappa), and nonparametric
 correlation (Pearson’s correlation coefficients, and Spearman’s and
 Kendall’s).

Other SQL Extensions

The SQL MODEL clause first appeared in Oracle Database
 10g as an extension to the SELECT statement. This clause enables relational data to
 be treated as multidimensional arrays (much like spreadsheets) and is
 also used to define formulas for the arrays, avoiding multiple joins and
 UNION clauses.
MODEL supports analytical queries that include prior-year
 comparisons and mathematical business rules and it is particularly
 useful in budgeting, forecasting, and other statistical applications.
 Example MODEL usages include calculating sales differences in two
 geographies, calculating percentage change, and calculating net present
 value. The SQL MODEL clause can also use simultaneous equations and
 regression in calculations.
Oracle Database 12c introduces SQL pattern matching used in finding patterns in data across multiple rows. It is particularly
 useful when looking for repeating sequences in data, such as for when you might be trying to
 identify unusual behavior or are determining when to
 make an investment. This function is sometimes described as providing MapReduce-like
 functionality in the Oracle Database as it greatly simplifies pattern-matching coding and
 the maintenance of such code.
The MATCH_RECOGNIZE clause typically is used to perform a PARTITION BY to identify a
 data item of interest (such as a company name) and ORDER BY to order each row partition.
 Then it will search each row for matches in a defined PATTERN by incrementally looking for
 the match row by row. It calculates the row pattern measure columns after a match is found
 (as defined by MEASURES). It will report ONE ROW PER MATCH or ALL ROWS PER MATCH depending
 on which is specified, and uses AFTER MATCHES SKIP to determine where to continue to look
 for row pattern matches after a match is found.

Advanced Analytics Option

The Advanced Analytics Option consists of Oracle R Enterprise and Oracle’s former Data Mining Option. This option, first available in 2012, enables advanced
 statistics and data mining algorithms to be applied to data residing in an Oracle Enterprise
 Edition Database.
R is the increasingly popular open source
 programming language for statistical analysis and graphical display.
 First developed in 1994, R became popular in universities in the past
 decade and there are now over 2 million users.
Oracle R Enterprise is an embedded component of the Oracle Database available for Linux
 and several other popular operating systems. Workstation memory constraints and scalability
 are removed since R scripts and the development environment (RStudio) take advantage of the
 power of the database platform during data preparation, model development, and model
 deployment. Oracle R Enterprise includes an R-SQL package transparency framework providing
 transparent database table access and in-database execution, a database library statistics
 engine, and SQL extensions enabling in-database execution of R code. Any CRAN open source
 packages can be run in the database either via Oracle R Enterprise to SQL function pushdown
 or in native R mode. The Oracle Database statistics engine includes R support for:
	Density, probability, and quantile functions

	Special functions (such as Gamma functions)

	Tests (such as Chi-square, simple & weighted kappas, and
 correlation)

	Base SAS equivalents (such as frequency, summary, sort, rank,
 and others)

Data mining, an often overused and
 misunderstood term in data warehousing, is the use of mathematical
 algorithms to model relationships in the data that wouldn’t be apparent
 by using other tools. Most companies shouldn’t approach data mining
 unless analysts have met the following criteria:
	An understanding of the quality and meaning of the data in the
 warehouse.

	Business insight gained using other tools and the
 warehouse.

	An understanding of a business issue being driven by too many
 variables to model outcomes in any other way.

In other words, data mining tools are not a replacement for the
 analytical skills of data warehouse users.
The data mining tools themselves can rely on a number of
 techniques to produce the relationships, such as:
	Extended statistical algorithms, such as those provided by R
 and other statistical tools, to highlight statistical variations in
 the data.

	Clustering techniques that show how business outcomes can fall
 into certain groups, such as insurance claims versus time for
 various age brackets. In this example, once a low-risk group is
 found or classified, further research into influencing factors or
 “associations” might take place.

	Logic models (if A occurs, then B or C is a possible outcome)
 validated against small sample sets and then applied to larger data
 models for prediction, commonly known as decision
 trees.

	Neural networks “trained” against small sets, with known
 results to be applied later against a much larger set.

	Anomaly detection used to detect outliers and rare
 events.

	Visualization techniques used to graphically plot variables
 and understand which variables are key to a particular
 outcome.

Data mining is often used to solve difficult business problems
 such as fraud detection and churn in micro-opportunity marketing, as
 well as in other areas where many variables can influence an outcome.
 Companies servicing credit cards use data mining to track unusual
 usage—for example, the unexpected charging to a credit card of expensive
 jewelry in a city not normally traveled to by the cardholder.
 Discovering clusters of unusual buying patterns within certain small
 groups might also drive micro-opportunity market campaigns aimed at
 small audiences with a high probability of purchasing products or
 services.
Oracle first began to embed algorithms packaged as the Data Mining
 Option into the Oracle9i database. Algorithms now
 in the Advanced Analytics Option include Naïve Bayes, Associations,
 Adaptive Bayes Networks, Clustering, Expectation Maximization (EM),
 Support Vector Machines (SVM), Nonnegative Matrix Factorization (NMF),
 Decision Trees, Generalized Linear Models (supporting Binary Logistic
 Regression and Multivariate Linear Regression), Principal Component
 Analysis (PCA), and Singular Value Decomposition (SVD). The algorithms
 are accessible via Java and PL/SQL APIs. Other data mining capabilities
 available include text mining (providing document clustering and
 classification) and BLAST similarity searches leveraging the SVM
 algorithms (common in genetic research).
Data mining applications can be custom-built using Oracle’s Data Miner tool. Data Miner
 is used to develop, test, and score the models. The data is usually prepared for mining by
 binning, normalizing, and adjusting for missing values in the Oracle Database. Data Miner
 also provides the ability to define metadata, tune the generated Java code, view generated
 XML files, and test application components.

Other Datatypes and Big Data

A number of other types of data are often stored in an Oracle Database. Among the types
 of data are:
	Multimedia and Images
	The Multimedia feature set (once known as interMedia)
 opens up the possibilities of including documents, audio, video, and
 some locator functions in the warehouse. Of these, text retrieval
 (Oracle Text) is most commonly used in warehouses today. However,
 the number of organizations storing other types of data, such as
 images, is growing. Oracle first added DICOM imaging support,
 popular in medicine, to Oracle Database 11g.
 Often, storage of these types of data is driven by a need to provide
 remote users with access.

	Spatial Data
	The spatial locator capability in the Oracle Database enables retrieval of
 data based on a geo-spatial location. Where distances and other
 geographic computations are needed, the Spatial Option enables such applications to be built.
 An example of this option’s use for data warehousing is a marketing
 analysis application that determines the viability of retail outlets
 at various locations.

	XML
	Oracle first added native XML datatype support to Oracle9i, along with
 XML and SQL interchangeability for searching. Oracle provided key
 technology in the development of the XQuery standard, and began shipping a production
 version of XQuery with Oracle Database 10g
 Release 2. XML database performance was greatly improved in Oracle
 Database 11g through the introduction of binary
 XML.

Though most of this book describes SQL as the primary way to access
 data, various programming paradigms remain popular. As noted earlier in
 this chapter, MapReduce is gaining in popularity for processing semi-structured data
 stored in Hadoop using callouts from programming languages such as Java
 and Python. In some situations where the organization would prefer to
 store all of the data in an Oracle Database and most of the data to be
 analyzed is structured, Oracle Database 12c pattern
 matching capabilities might suffice for processing the semi-structured
 data.
Where huge data volumes of semi-structured or unstructured data are being gathered,
 separate Hadoop clusters are used to filter data and MapReduce results are often loaded into
 an Oracle data warehouse. Oracle offers an engineered system for deploying Hadoop clusters
 called the Oracle Big Data Appliance (BDA). A Full Rack consisted of 18 nodes, 648 terabytes of disk, 1,152 GB of memory,
 288 processing cores, and an InfiniBand interconnect when this edition of Oracle
 Essentials was published. Starter Racks populated with 6 nodes were also
 available. Multiple Full Racks can be connected via InfiniBand using internal switches in the
 Racks. The foundation software for the BDA includes the Cloudera Distribution of Hadoop (CDH), Cloudera Manager, Oracle NoSQL Database Community Edition, Java VM, and Linux. In a standard configuration,
 data is distributed across the entire platform using HDFS and triple replicated. As with other
 engineered systems, Oracle provides a single point of support for the entire configuration.

Loading Data into the Data Warehouse

Experienced data warehouse architects realize that the process of
 understanding the data sources, designing transformations, testing the
 loading process, and debugging is often the most time-consuming part of
 deployment. Transformations are used to remove bogus data (including
 erroneous entries and duplicate entries), convert data items to an
 agreed-upon format, and filter data not considered necessary for the
 warehouse. These operations are often used to improve the quality of data
 loaded into the warehouse.
The frequency of data extraction from sources and loading into the
 data warehouse is largely determined by the required timeliness of the
 data in order to make business decisions. Most data extraction and loading
 takes place on a “batch” basis and data transformations cause a time
 delay. Early warehouses were often completely refreshed during the loading
 process, but as data volumes grew, this became impractical. Today, updates
 to tables are most common. When a need for near real-time data exists,
 warehouses can be loaded nearly continuously using a trickle
 feed if the source data is relatively clean, eliminating the
 need for complex transformations. If real-time feeds are not possible but
 real-time recommendations are needed, engines such as Oracle’s Real-time
 Decisions are deployed.
Is Cleanliness Best?
Once the data in the warehouse is “clean,” is this version of the true
 nature of the data propagated back to the originating OLTP systems? This
 is an important issue for data warehouse implementation. In some cases,
 a “closed loop” process is implemented whereby updates are provided back
 to the originating systems. In addition to minimizing some of the
 cleansing that takes place during future extractions, operational
 reports become more accurate.
Another viable option is to avoid cleansing by improving the
 quality of the data at the time of its input into the operational
 system. As noted previously in this chapter, this is critical if OLTP
 systems are to be directly accessed for business intelligence. Improving
 data quality at the source also enables high-speed loading techniques to
 be used in near real-time data warehouses (since transformations can be
 eliminated).
Improving data quality at the source can sometimes be accomplished
 by not allowing a “default” condition as allowable input into a data
 field. Presenting the data-entry person with an array of valid options,
 one of which must be selected, is often a way to
 ensure the most consistent and valid responses. Many companies also
 provide education to the data-entry people, showing them how the data
 they’re keying in will be used and what the significance of it
 is.

Key Oracle products and database features that often help facilitate
 this process include:
	Oracle Data Integrator (ODI)
	Acquired by Oracle in 2007, this extraction, transformation, and
 loading (ETL) tool that handles heterogeneous sources and targets is
 sometimes referenced as an ELT tool since transformations are pushed
 into the target data warehouse. This product has replaced Oracle
 Warehouse Builder as Oracle’s primary offering for ETL. ODI features
 Knowledge Modules that define integration capabilities, including
 extraction with change data capture, loading and unloading
 utilities, SQL-based loading and unloading, and transformation logic
 SQL. Data Quality options include data quality profiling, batch
 processing, and address verification. The Knowledge Modules are
 modifiable. The product architecture includes a development
 environment that makes use of the Knowledge Modules as templates in
 declarative design processes and an orchestration agent. ODI can be
 used for data-based, event-based, and service-based data
 integration.

	Oracle GoldenGate
	Acquired by Oracle in 2009, GoldenGate has replaced Oracle Streams as the primary software recommended
 for log-based replication. Often used for zero downtime software upgrades, during
 software migrations, and for low latency transaction replication and recovery,
 GoldenGate supports a wide variety of data sources and targets. It is often used to load
 Oracle-based data warehouses where the need for data transformations is minimal and near
 real-time updates of the data in the data warehouse are desired.

	Transparent Gateways and Heterogeneous
 Services
	Provide a bridge to retrieve data from non-Oracle sources using Oracle SQL to load an
 Oracle Database. Heterogeneous Services provide ODBC connectivity to non-Oracle relational
 sources. Gateways can optionally provide a higher level of performance when extracting
 data from non-Oracle sources.

	Transportable Tablespaces
	Another feature for data movement, Transportable Tablespaces
 enable rapid data movement between Oracle instances
 without export/import. Metadata (the data dictionary) is exported
 from the source and imported to the target. The transferred
 tablespace can then be mounted on the target. Oracle Database
 10g introduced cross-platform Transportable
 Tablespaces, which can move a tablespace from one type of system
 (e.g., Solaris) to another (e.g., Linux).

	Transportable Partitions
	Oracle Database 11g introduced Transportable Partitions for rapid data movement
 between Oracle instances.

	Data Pump Fast Import/Export
	Added in Oracle Database 10g and enabled
 via external table support, Data Pump is a newer import/export format. Parallel direct path
 loading and unloading are supported.

	Oracle Big Data Connectors
	First available in 2011, Oracle’s Big Data
 Connectors include an Oracle Loader for Hadoop that pushes the
 preprocessing of data to be loaded into an Oracle data warehouse to
 the source Hadoop Big Data cluster. The result is lessened CPU and
 I/O impact on the target Oracle Database platform. An Oracle Data
 Integrator Application Adapter for Hadoop provides ODI Knowledge
 Modules optimized for Hive and the Oracle Loader for Hadoop. An
 Oracle Direct Connector for HDFS and an Oracle R Connector for
 Hadoop are also provided.

The Oracle Database helps the ETL and loading process in a variety of ways. For high-speed
 loading of flat files, Oracle SQL*Loader’s direct path
 load option provides rapid loading by bypassing the buffer
 cache and rollback mechanism and writing directly to the datafile. You can
 run SQL*Loader sessions in parallel to further speed the table-loading
 process (as many warehouses need to be loaded in a limited “window” of
 time). Many popular ETL tools, including ODI, generate SQL*Loader
 scripts.
The core Oracle Database engine features embedded ETL functions that
 ETL tools support to varying degrees. Examples of these features include
 support for external tables, table functions, merge (i.e., insert or
 update depending on whether a data item exists), multitable inserts,
 change data capture, and resumable statements.

Managing the Data Warehouse

Oracle Enterprise Manager (EM) provides a common GUI for managing your multiple database instances regardless of
 the underlying operating system and server platform you choose. EM is browser-based with a
 multiuser repository for tracking and managing the Oracle instances. (EM is discussed in much
 more detail in Chapter 5.)
In warehousing, in addition to basic management, ongoing tuning for performance is
 crucial. Enterprise Manager supports many of the automated diagnostics and tuning features
 added in recent database releases.
Within the largest warehouses and data marts, you may want to manage
 or maintain availability to some of the data even as other parts of the
 database are moved offline. Oracle’s Partitioning Option enables data
 partitions based on business value ranges (such as date) or discrete
 values for administrative flexibility, while enhancing query performance
 through the cost-based optimizer’s ability to eliminate access to
 nonrelevant partitions. For example, “rolling window” administrative
 operations can be used to add new data and remove old data using time
 ranges. A new partition can be added, loaded, and indexed in parallel, and
 optionally removed, all without impacting access to existing data.
Range partitioning first became available in the Oracle8 Partitioning Option. Hash
 partitioning was added to the Oracle8i Partitioning Option, enabling the
 spread of data evenly based on a hash algorithm for performance. Hashing may be used within
 range partitions (composite partitioning) to increase the performance of queries while still maintaining the manageability
 offered by range partitioning. Oracle9i introduced list
 partitioning—partitions based on discrete values such as geographies. A composite partitioning type,
 range-list partitioning, which allows you to partition by dates within
 geographies, was added in Oracle9i Release 2. More composite types were
 added in Oracle Database 11g including list-hash,
 list-list, list-range, range-range
 partitioning, (parent-child) reference partitioning, and virtual column
 partitioning. Interval partitioning, also added in Oracle Database 11g, provides automatic creation of
 range partitions when needed. Oracle Database 12c added
 interval-reference partitioning to the mix of available partitioning
 types.
Data Warehouses and Backups
Early data warehousing practitioners often overlooked the need to perform
 backups. Their belief was that since data for the warehouse was
 extracted from operational systems, the warehouses could easily be
 repopulated from those same systems if needed. However, as warehouses
 grew and the transformations needed to create and refresh them evolved,
 it became evident that backups of data warehouses were necessary because
 the transformation process had grown extremely complicated and
 time-consuming. Today, planning for warehouse availability includes not
 only an understanding of how long loading will take, but also backup and
 recovery operations. Due to the tactical nature of such warehouses,
 planning often also includes designs for high availability, disaster
 recovery, and information lifecycle management.
The approach of overlooking these needs could be repeating itself
 in Big Data platform deployment strategies today. As Hadoop advances,
 potentially rapidly, tools for managing and recovering data as the
 volumes continue to grow on the Hadoop clusters will assume a greater
 importance in day-to-day operations.

Business Intelligence Tools

Marketing, financial, and other business analysts are rarely interested in the
 storage and schema that hold their information. Their interest level rises
 when the discussion turns to the tools they’ll be using to help them make
 intelligent decisions based on that information. Business intelligence
 tools are often evaluated and purchased within individual business areas,
 sometimes without close IT coordination. When business analysts want to do
 query, reporting, and analysis against data residing in an Oracle data
 warehouse, you might choose the Oracle Business Intelligence Foundation
 Suite or popular independent vendors’ products, such as SAP Business
 Objects, IBM Cognos, MicroStrategy, and others.
A new class of tools has emerged in a category named data discovery
 tools. These tools are used for exploring data in schema-less data stores,
 extracting data from relational sources such as the Oracle Database and
 semi-structured data sources, such as Hadoop. One such example is Oracle
 Endeca.
In this section of the chapter, we will describe in more detail
 Oracle’s business intelligence tools and applications, and Oracle’s data
 discovery tools.
Oracle Business Intelligence Foundation Suite

The Oracle business intelligence tools that are most often selected today
 reside in Oracle’s Business Intelligence Foundation Suite. The Suite
 includes middle-tier server components and business analyst delivery
 components. Key server components include:
	Oracle BI Server
	This mid-tier query and analysis server provides linkage to
 data from Oracle Databases, other relational databases,
 semi-structured data sources, and OLAP technology. It can be used
 when federating data from multiple sources and supports query
 caching. A Common Enterprise Information Model provides a semantic
 model that consists of a physical layer (e.g., tables, columns,
 joins, and security parameters when describing an Oracle
 Database), a business model and mapping layer, and a presentation
 layer.

	Oracle Essbase
	This is a multidimensional online analytical processing
 (MOLAP) engine that can be accessed using Oracle’s
 BI tools and Hyperion applications. Essbase features an extensive
 calculation language that supports conditional and logical
 operations, Boolean functions, relationship functions, calculation
 operations, mathematical functions, member set functions, range
 and financial functions, allocation functions, forecasting
 functions, statistical functions, and date and time
 functions.

Key business intelligence components that deliver information to business analysts
 include:
	Enterprise Reporting and Publishing (BI
 Publisher)
	Template-based publishing solution that incorporates XML data extracts and produces
 reports in various output formats including PDF, RTF, HTML, Excel,
 XML, and eText. Report editors include popular desktop tools such
 as Adobe Acrobat and Microsoft Word.

	Ad hoc Query and Reporting
	A thin client interactive tool used for generating ad hoc
 queries and analysis, it can be used directly against relational
 databases and MOLAP data stores. Generated reports can be posted
 to the dashboard or serve as input to BI Publisher.

	Scorecard and Strategy Management
	A highly visual environment used for defining KPIs and then
 creating and managing strategy maps, cause and effect diagrams,
 and custom views.

	Interactive Dashboards
	The dashboards are an interactive web-based collection of
 content provided by the other BI components that can be highly
 customized. Guided navigation links can be set up to guide
 business analysts to more relevant dashboard content depending on
 the business situation. Briefing books consisting of report decks
 can also be defined using the dashboards.

	Action Framework
	The Action Framework enables invocation of workflows, Web Services, Java methods,
 and other custom procedures in response to predefined business events and/or data
 exceptions. An alerting engine can also capture and distribute notifications.

	Oracle BI Mobile
	Access to the BI dashboards from popular mobile devices
 (e.g., running iOS) is achievable with no reprogramming involved.
 As this book was published, the most popular form factor and
 device for accessing the dashboards was the Apple iPad.

	Microsoft Office Integration
	The BI Office plug-in enables the embedding of data from
 Interactive Dashboards, Ad hoc Query and Reporting, BI Publisher,
 and the BI Server into Microsoft Word, Excel, and
 PowerPoint.

Figure 10-4
 illustrates a typical dashboard in the Oracle Business Intelligence
 tools.
[image: Oracle Business Intelligence Dashboard]

Figure 10-4. Oracle Business Intelligence Dashboard

Oracle has an enterprise portal offering, WebCenter, available as
 part of the Oracle Application Server, providing an integration point
 for custom-built business intelligence applications using Oracle
 Business Intelligence tools. For example, the BI Presentation Services
 offer an interface using the Simple Object Access Protocol (SOAP) to
 embed results into WebCenter. WebCenter can also enable social
 collaboration using the BI content.

Business Intelligence Applications

Business intelligence applications are prebuilt solutions
 providing extended reporting and “dashboard-like” interfaces to display
 business trends. These applications directly access data warehouse
 schema and sometimes also blend in transactional data sources. The data
 warehousing type of solutions can include prebuilt ETL from known
 transactional data sources. The business intelligence applications often
 focus on specific areas of the business, such as marketing or financial
 analysis, or industry data models in areas such as communications,
 finance, healthcare, and retail.
Oracle Business Intelligence Applications include star schema data models with conformed dimensions
 deployed to relational databases such as Oracle, more than 2,500 KPIs
 displayed in predefined dashboards, and feature prebuilt ETL mappings
 from Oracle Fusion Applications, Siebel CRM, Oracle E-Business Suite,
 PeopleSoft, JD Edwards, SAP, and other applications. The applications
 cover the areas of Sales, Service and Contact Center, Marketing,
 Financial, Supply Chain, Projects, and Workforce. Oracle is continuing
 to extend the KPIs provided, the ETL mappings, and the business areas
 covered.
The Oracle Hyperion Financial Performance Management applications address financial planning and budgeting and
 are deployed to Essbase servers. Such applications include predefined
 queries, reports, and charts that deliver the kind of information
 required for a particular type of business analysis while sparing the
 business user the complexity of creating these objects from
 scratch.
The promise of such prebuilt solutions is that they provide
 easier-to-deploy solutions with more out-of-the-box functionality. While
 some customization will probably always be needed, the time required to
 deploy an initial and useful solution can be substantially
 reduced.

Data Discovery and Oracle Endeca Information Discovery

Data discovery tools are gaining interest in business communities that want to
 explore data without waiting for IT to build a data model and are
 particularly useful in qualitative analysis. Oracle’s
 Endeca Server provides a multifaceted key/value store into which you can
 load structured data (such as that stored in an Oracle Database) and
 semi-structured data (such as XML data, text, and Big Data). Loading is
 via the product’s Integration Suite.
Business analysts using the Endeca Studio interface can perform deep searches across all of the data.
 Navigation through the data is based on data context, meaning the
 analyst browses through the data without any predefined paths. Data is
 displayed in charts, crosstabs, as key metrics, as geospatial
 information, and as tag clouds. Figure 10-5
 illustrates a typical view in Endeca Studio.
[image: Oracle Endeca]

Figure 10-5. Oracle Endeca

Some organizations use the Endeca Server in lieu of building sandboxes in their data
 warehouse. Once business value has been identified using Endeca Studio, they incorporate the same data feeds in the warehouse, build out
 that schema appropriately, and provide access to KPIs and data via their standard business
 intelligence tools.

Oracle Exalytics

Oracle Exalytics is an engineered system designed to run the Oracle Business Intelligence Suite, Endeca
 Information Discovery, and Hyperion Planning applications. It is a rack mountable unit that
 contains 40 processing cores and terabytes of memory. The large number of cores delivers a
 unique visualization experience for the Oracle Business Intelligence tools where results are
 returned as a mouse is moved across a dashboard without the need to hit a “go”
 button.
Performance speed-up for queries and discovery occurs because
 needed data and data structure is stored in memory. With the Oracle BI
 Server, results can automatically be cached in-memory or a summary
 advisor can be used to persist aggregates in-memory in the TimesTen for
 Exalytics database. For Essbase applications (including Hyperion),
 designated Essbase cube subject areas are stored in memory. For data
 discovery with Endeca, the Endeca Server is housed in memory.

The Metadata Challenge

On the one hand, metadata—or descriptive data
 about data—is incredibly important. Virtually all types of interactions
 with a database require the use of metadata, from datatypes of the data to
 business meaning and history of data fields.
On the other hand, metadata is useful only if the tools and clients
 who wish to use it can leverage it. One of the great challenges is to
 create a set of common metadata definitions that allows tools and
 databases from different vendors to interact.
There have been a number of attempts to reach an agreement on common metadata definitions.
 In 2000, a standard was ratified that defines a common interface for interchange of metadata
 implementations. Named the Common Warehouse Metadata Interchange (CWMI) by the Object Management Group (OMG), this standard is based on XML interchange. Oracle was one of the early
 proponents and developers of CWMI; however, there has been limited adoption and metadata
 exchange capabilities remain very vendor-specific today.
As noted earlier in this chapter, an emerging complementary solution—one in which ETL into
 a single data warehouse is not the entire solution—is the leveraging of master data management
 and data hub solutions. Today, most organizations are still a long way from consolidated
 metadata, and when they have tried to do this as an IT best practice project, they generally
 have not been successful. Such projects are usually adopted only when delivered within a
 business intelligence project that delivers business value.

Putting It All Together

Earlier in this chapter, we described the components in a complete end-to-end
 analytics architecture. Now, we’ll take a look at what an end-to-end
 analytics infrastructure might look like with Oracle components for
 business intelligence, data warehousing, and Big Data. Then we’ll discuss
 some best practices.
A Complete Analytics Infrastructure

How extensive an analytics infrastructure your organization needs
 depends on your business needs. At a minimum, most organizations have a
 designated data store/data warehouse containing extracted data from key
 sources and a frontend BI tool or reporting engine. A more extensive
 footprint might also include Big Data, a variety of ETL, data movement,
 and event processing solutions (such as Oracle Event Processing, or
 OEP), data quality and master data management solutions, a mixture of
 reporting, dashboard, and ad hoc query tools, advanced analytics tools
 for statistical analysis and data mining, and a real-time recommendation
 engine.
A complex analytics infrastructure that contains Oracle components
 might look like the following diagram in Figure 10-6.
[image: Oracle Analytics Infrastructure Footprint]

Figure 10-6. Oracle Analytics Infrastructure Footprint

In this scenario, we find structured data in the Oracle data warehouse gathered from
 transactional data sources. A variety of other data sources, including sensor data, social
 media feeds, and web log information, are analyzed in a Hadoop cluster. We use a data
 discovery tool, Endeca, to explore all of our data, structured and unstructured. We populate
 the data warehouse with MapReduce output containing the data of value we find value in our
 Hadoop cluster. The broad business analyst community gains access to all of this data
 through BI tools using the Oracle BI Foundation Suite to access the data warehouse. Models
 of behavior are updated and sent to our real-time recommendation engine, Oracle Real-Time
 Decisions (RTD). RTD provides individual recommendations based on user profiles and user
 location as the website users traverse the site.

Best Practices

Those experienced in business intelligence generally agree that the following
 are typical reasons why these projects fail:
	Failure to involve business users, IT
 representatives, sponsoring executives, and anyone else with a
 vested interest throughout the project process
	Not only do all of these groups provide valuable input for
 creating a business intelligence solution, but lack of support by
 any of them can cause a project to fail.

	Overlooking the key reasons for the business
 intelligence infrastructure
	During the planning stages, IT architects can lose sight of
 the forces driving the creation of the solution.

	Overlooked details and incorrect
 assumptions
	A less-than-rigorous examination of the environment can doom the project to
 failure.

	Unrealistic time frames and scope
	As with all projects, starting the creation of a business
 intelligence solution with too short a time frame and too
 aggressive a scope will force the team to cut corners, resulting
 in the mistakes previously mentioned.

	Failure to manage expectations
	Data warehouses and business intelligence solutions, like all technologies, are
 not a panacea. You must make sure that all members of the team, as well as the
 eventual users of the solution, have an appropriate set of expectations. While setting
 these expectations, you must remember that these consumers are almost always business
 users, so you should make sure they understand the real-world implications of various
 IT decisions.

	Tactical decision making at the expense of long-term
 strategy
	Although it may seem overly time-consuming at the start, you must keep in mind the
 long-term goals of your project, and your organization, throughout the design and
 implementation process. Failing to do so delays the onset of problems, but it also
 increases the likelihood and severity of those problems.

	Failure to leverage the experience of
 others
	There’s nothing like learning from those who have succeeded
 on similar projects. It’s almost as good to gain from the
 experience of others who have failed at similar tasks; at least
 you can avoid the mistakes that led to their failures.

Successful business intelligence projects require the continuous
 involvement of business analysts and users, sponsoring executives, and
 IT. Ignoring this often-repeated piece of advice is probably the single
 biggest cause of many of the most spectacular failures. Establishing
 this infrastructure has to produce a clear business benefit and an
 identifiable return on investment (ROI). Executive involvement is
 important throughout the process because business intelligence
 coordination often crosses departmental boundaries, and continued
 funding likely will come from high levels.
Your business intelligence project should provide answers to
 business problems that are linked to key business initiatives.
 Ruthlessly eliminate any developments that take projects in another
 direction. The motivation behind the technology implementation schedule
 should be the desire to answer critical business questions. Positive ROI
 from the project should be demonstrated during the incremental building
 process.

Common Misconceptions

Having too simplistic a view during any part of the building process (a view that
 overlooks details) can lead to many problems. Here are just a few of the
 typical (and usually incorrect) assumptions people make in the process
 of implementing a business intelligence solution:
	Sources of data are clean and consistent.

	Someone in the organization understands what is in the source
 databases, the quality of the data, and where to find items of
 business interest.

	Extractions from operational sources can be built and
 discarded as needed, with no records left behind.

	Summary data is going to be adequate, and detailed data can be
 left out.

	IT has all the skills available to manage and develop all the
 necessary extraction routines, tune the database(s), maintain the
 systems and the network, and perform backups and recoveries in a
 reasonable time frame.

	Development is possible without continuous feedback and
 periodic prototyping involving analysts and possibly sponsoring
 executives.

	The warehouse won’t change over time, so “versioning” won’t be
 an issue.

	Analysts will have all the skills needed to make full use of
 the infrastructure or the business intelligence tools.

	IT can control what tools the analysts select and use.

	Big Data will continue to exist in a silo separate from the rest of the analytics
 infrastructure.

	The number of users is known and predictable.

	The kinds of queries are known and predictable.

	Computer hardware is infinitely scalable, regardless of
 choices made.

	If a business area builds a data mart or deploys an appliance
 independently, IT won’t be asked to support it later.

	Consultants will be readily available in a pinch to solve
 last-minute problems.

	Metadata or master data is not important, and planning for it
 can be delayed.

Effective Strategy

Most software and implementation projects have difficulty meeting schedules.
 Because of the complexity in business intelligence projects, they
 frequently take much longer than the initial schedule, and that is
 exactly what executives who need the information to make vital strategic
 decisions don’t want to hear! If you build in increments, implementing
 working prototypes along the way, the project can begin showing positive
 return on investment, and changes in the subsequent schedule can be
 linked back to real business requirements, not just back to technical
 issues (which executives don’t ordinarily understand).
You must avoid scope creep and expectations throughout the
 project. When you receive recommended changes or additions from the
 business side, you must confirm that these changes provide an adequate
 return on investment or you will find yourself working long and hard on
 facets of the infrastructure without any real payoff. The business
 reasoning must be part of the prioritization process; you must
 understand why trade-offs are made. If you run into departmental “turf
 wars” over the ownership of data, you’ll need to involve key executives
 for mediation and guidance.
The pressure of limited time and skills and immediate business
 needs sometimes leads to making tactical decisions in establishing a
 data warehouse at the expense of a long-term strategy. In spite of the
 pressures, you should create a long-term strategy at the beginning of
 the project and stick to it, or at least be aware of the consequences of
 modifying it. There should be just enough detail to prevent wasted
 efforts along the way, and the strategy should be flexible enough to
 take into account business acquisitions, mergers, and so on.
Your long-term strategy must embrace emerging trends, such as the need to meet
 compliance initiatives or the need for highly available solutions. The rate of change and
 the volume of products being introduced sometimes make it difficult to sort through what is
 real and what is hype. Most companies struggle with keeping up with the knowledge curve.
 Traditional sources of information include vendors, consultants, and data-processing
 industry consultants, each of whom usually has a vested interest in selling something. The
 vendors want to sell products; the consultants want to sell skills they have “on the bench,”
 and IT industry analysts may be reselling their favorable reviews of vendors and consultants
 to those same vendors and consultants. Any single source can lead to wrong conclusions, but
 by talking to multiple sources, some consensus should emerge and provide answers to your
 questions.
The best place to gain insight is discussing business intelligence
 projects with other similar companies—at least at the working-prototype
 stage—at conferences. Finding workable solutions and establishing a set
 of contacts to network with in the future can make attendance at these
 conferences well worth the price—and can be more valuable than the
 topics presented in the standard sessions.

Chapter 11. Oracle and High Availability

The data stored in your Oracle databases is one of your organization’s most valuable assets.
 Protecting and providing timely access to this data when it is needed for business decisions is
 crucial for any Oracle site.
As an Oracle database administrator, system administrator, or system architect, you’ll
 probably use a variety of techniques to ensure that your data is adequately protected from
 catastrophe. Of course, implementing proper backup operations is the foundation of any
 availability strategy, but there are other ways to avoid a variety of possible outages that
 could range from simple disk failures to a complete failure of your primary site. In addition,
 there are software solutions that can help avoid the loss of availability that these failures
 can create.
Computer hardware is, by and large, extremely reliable, and that can tempt you to postpone
 thinking about disaster recovery and high availability. Most software is also very reliable, and
 the Oracle database protects the integrity of the data it holds even in the event of software
 failure. However, hardware and software will fail occasionally. The more complicated the
 infrastructure, the greater the likelihood of downtime at the worst time.
The difference between inconvenience and disaster is often the
 presence or absence of adequate recovery plans and options. This chapter
 should help you understand all of the options available when deploying
 Oracle so you can choose the best approach for your site.
With Oracle, you can guarantee that your precious data is highly
 available by leveraging built-in capabilities such as instance recovery or
 options such as Active Data Guard and Real Application Clusters. However,
 equally important in deploying a high-availability solution is the
 implementation of the appropriate procedures to safeguard your data. This
 chapter covers these various aspects of high availability in what Oracle
 often describes as a Maximum Availability Architecture (MAA).
What Is High Availability?

Before we can begin a discussion of how to ensure a high level or
 maximum level of availability, you need to understand the exact meaning of
 the term availability.
Availability can mean different things for different organizations. For this discussion, we’ll
 consider a system to be available when it is up (meaning that the Oracle
 database can be accessed by users) and working (meaning that the database
 is delivering the expected functionality to business users at the expected performance). In
 other words, the system is exceeding service level agreements (SLAs).
When the database is unavailable, we refer to that as downtime. Of
 course, the goal is to eliminate unplanned downtime caused by server, storage, network, and/or software failures,
 and human error, a common source of problems. You will also want to minimize planned downtime
 during system and Oracle database changes, structural data changes, and application
 changes.
Most businesses depend on data being available when needed to make important decisions.
 Accessibility to data via web-based solutions means that database failures can have a broad
 impact. Failures of systems accessed by a wider community outside of company boundaries are,
 unfortunately, immediately and widely visible and can seriously impact a company’s financial
 health and image. Consider a web-based customer service application provided by a package
 shipping company that enables customers to perform package tracking. As these customers come
 to depend on such service, any interruption in that service could cause these same customers
 to move to competitors.
Taking this a step further, consider complexities in accessing data
 that resides in multiple systems. Integrating multiple systems can
 increase chances of failures and could cause access to an entire supply
 chain to be unavailable.
To implement Oracle databases that are highly available, you must design an infrastructure
 that can mitigate unplanned and planned downtime. You must embrace techniques that enable
 rapid recovery from disasters, such as implementing appropriate backup solutions. The goal of
 all of this is to ensure business continuity during situations that range from routine
 maintenance to dire circumstances. In some organizations, the requirements are 24/7/365. In
 others, less stringent business requirements might drive different solutions.
Measuring High Availability

To provide some perspective on what might be described as high
 availability, consider Table 11-1, which translates
 the percentage of availability into days, minutes, and hours of annual
 downtime based on a 365-day year.
Table 11-1. Percent availability and downtime per year
	%
 availability
	Downtime per
 year
	 	
	 	Days
	Hours
	Minutes

	95.000
	18
	6
	0

	96.000
	14
	14
	24

	97.000
	10
	22
	48

	98.000
	7
	7
	12

	99.000
	3
	15
	36

	99.500
	1
	19
	48

	99.900
	0
	8
	46

	99.990
	0
	0
	53

	99.999
	0
	0
	5

Large-scale systems that achieve over 99 percent availability can
 cost hundreds of thousands of dollars or more to design and implement
 and can have high ongoing operational costs. Marginal increases in
 availability can require large incremental investments in system
 components. While moving from 95 to 99 percent availability is likely to
 be costly, moving from 99 to 99.999 percent is usually costlier
 still.
You might also consider when the system must
 be available. A required availability of 99 percent of the time during
 normal working hours (e.g., from 8 a.m. to 5 p.m.) is very different
 from 99 percent availability based on a 24-hour day. In the same way
 that you must carefully define your required levels of availability, you
 must also consider the hours during which availability is measured. For
 example, many companies take orders during “normal” business hours. The
 cost of an unavailable order-entry system is very high during the
 business day, but drops significantly after hours. Thus, planned
 downtime can make sense after hours, which will, in turn, help reduce
 unplanned failures during business hours. Of course, in some
 multinational companies, the global reach implies that the business day
 never ends.
A requirement that a database be available 24/7/365 must be put in
 the context of the cost in deploying and maintaining such a solution. An
 examination of the complexity and cost of very high levels of
 availability will sometimes lead to compromises that reduce requirements
 for this level of availability.
The costs of achieving high availability are certainly justified
 in many cases. It might cost a brokerage house millions of dollars for
 each hour that key systems are down. A less-demanding use case, such as
 human resources reporting, might be perfectly fine with a lesser level
 of availability. But, regardless of the cost of lost business
 opportunity, an unexpected loss of availability can cut into the
 productivity of the lines of business and IT staff alike.

The System Stack and Availability

There are many different causes of unplanned downtime. You can prevent some
 very easily, while others require significant investments in site
 infrastructure, including software, servers, storage, networks, and
 appropriate employee skills. Figure 11-1 lists some of the most frequent
 causes of unplanned downtime.
[image: Causes of unplanned downtime]

Figure 11-1. Causes of unplanned downtime

When creating a plan to guarantee the availability of an application
 and Oracle Database, you should consider all of the situations shown in
 Figure 11-1 as well as other potential
 causes of system interruption that are specific to your own circumstances.
 As with all planning, it’s much better to consider all possible
 situations, even if you quickly dismiss them, than to be caught off guard
 when an unexpected event occurs.
A complete system is composed of hardware, software, and networking
 components operating as a technology stack. Ensuring
 the availability of individual components doesn’t necessarily guarantee
 system availability. Different strategies and solutions exist for
 achieving high availability for each of the system components. Figure 11-2 illustrates the
 technology stack used to deliver a potential system.
[image: Technology components in the system stack]

Figure 11-2. Technology components in the system stack

As this figure shows, a variety of physical and logical layers must cooperate to deliver
 an application. Failures in the components above the Oracle database can effectively prevent
 access to the database even though the database itself may be available. The server hardware,
 software, and database itself serve as the foundation for the stack. When an Oracle database
 fails, it immediately affects the higher levels of the stack. If the failure results in lost
 or corrupted data, the overall integrity of the application may be affected.
The potential threats to availability span all of the components
 involved in an application system, but in this chapter we’ll examine only
 availability issues relating specifically to the database.
Server Hardware, Storage, and Database Instance Failure

The failure of servers or storage hosting a database can be one of the most abrupt causes of unplanned
 downtime. A server may crash because of hardware problems, such as the failure of a power
 supply, or because of software problems, such as a process that begins to consume all the
 machine’s CPU resources. Even if the underlying server platform is fine, the Oracle instance
 itself can fail. Whatever the cause of the crash, the effect on Oracle is the same—the
 instance cannot deliver its promised functionality. Remember that when an Oracle Database
 crashes, it is the instance that crashes, not the database (as described in Chapter 2). Even if the system fails, the failure will not imperil
 any data that’s already safely stored within the disk files used by the Oracle
 database.
The impact of a crash will depend on the activity in progress at
 the time of the crash. Any connected sessions will no longer have a
 server process to which to talk. All active queries and transactions
 will be abruptly terminated. The process of cleaning up the resulting mess is called instance recovery or
 crash recovery.
Telltale Error Messages
The following two error messages are often good indicators that an Oracle
 instance is down:
ORA-03113: End-of-file on communication channel
This message is usually received by clients that try to resubmit
 an operation that failed due to an instance failure. The message is
 somewhat cryptic but becomes clear if you interpret it very literally.
 Oracle works using a pipe to communicate between the client
 application and its associated server process in the Oracle instance.
 When the instance fails, the client’s server process ceases to exist,
 so there is no one listening on the other end of the pipe. The
 communication channel between the client and the server is no longer
 valid.
ORA-01034: Oracle not available
This terse message means that when the client requested a
 connection to the Oracle instance, the instance was not there. Clients
 that try to connect to a failed instance will typically get this
 message. The client can connect to the Listener, but when the Listener
 attempts to hand the client off to the requested Oracle instance, the
 ORA-01034 condition results.

What Is Instance Recovery?

When you restart an Oracle instance after a failure, Oracle detects
 that a crash occurred using information in the control file and the
 headers of the database files. Oracle then performs instance recovery
 automatically and uses the online redo logs to guarantee that the physical database
 is restored to a consistent state as it existed at the time of the
 crash. This includes two actions:
	All committed transactions will be recovered.

	In-flight transactions will be rolled back or undone.

Note that an in-flight transaction might be one that a user didn’t commit or one that was
 committed by the user but not confirmed by Oracle before the system
 failure. A transaction isn’t considered committed until Oracle has written the
 relevant details of the transaction to the current online redo log and
 has sent back a message to the client application confirming the
 committed transaction.

Phases of Instance Recovery

Instance recovery has two phases: roll forward and roll
 back.
Recovering an instance requires the use of the redo logs,
 described in Chapter 2. The redo logs
 contain a recording of all the physical changes made to the database as
 a result of transactional activity, both committed and
 uncommitted.
The checkpoint concept, also described in Chapter 2, is critical to understanding crash
 recovery. When a transaction is committed, Oracle writes all associated
 database block changes to the current online redo log. The actual
 database blocks may have already been flushed to disk, or may be flushed
 at some later point. This means that the online redo log can contain
 changes not yet reflected in the actual database blocks stored in the
 datafiles. Oracle periodically ensures that the data blocks in the
 datafiles on disk are synchronized with the redo log to reflect all the
 committed changes up to a point in time. Oracle does this by writing all
 the database blocks changed by those committed transactions to the
 datafiles on disk. This operation is called a
 checkpoint. Completed checkpoints are recorded in
 the control file, datafile headers, and redo log.
The DBA defines bounded database startup recovery times through Enterprise Manager.
 Behind the scenes, self-tuned checkpoint processing (provided by Oracle since Oracle
 Database 10g) accounts for the increase in I/O that occurs as the
 database writer flushes all database blocks to disk to bring datafiles up to the time of the
 checkpoint. In older versions of the Oracle database, DBAs would sometimes reduce the
 checkpoint interval or timeout and reduce amounts of data between checkpoints for faster
 recovery times, but would also introduce the overhead of more frequent checkpoints and their
 associated disk activity. A common strategy to minimize the number of checkpoints was to set
 the initialization file parameters so that checkpoints would occur only with log switches, a
 situation that would normally occur anyway.
At any point in time, the online redo logs will be ahead of the
 datafiles by a certain amount of time or number of committed
 transactions. Instance recovery closes this gap and ensures that the
 datafiles reflect all committed transactions up to the time the instance
 crashed. Oracle performs instance recovery by rolling forward through
 the online redo log and replaying all the changes from the last
 completed checkpoint to the time of instance failure. This operation is
 called the roll forward phase of instance
 recovery and is now sometimes also referred to as cache recovery.
While implementing roll forward recovery, Oracle reads the necessary database blocks
 into the System Global Area and reproduces the changes that were originally applied to the
 data blocks, including reproducing the undo or rollback information. UNDO segments are
 composed of extents and data blocks just like tables, and all changes to UNDO segment blocks
 are part of the redo for a given transaction. For example, suppose that a user changed an
 employee name from “John” to “Jonathan.” As Oracle applies the redo log, it will read the
 block containing the employee row into the cache and redo the name change. As part of
 recovering the transaction, Oracle will also write the old name “John” to an UNDO segment,
 as was done for the original transaction.
When the roll forward phase is finished, all the changes for
 committed and uncommitted transactions have been reproduced. The
 uncommitted transactions are in-flight once again, just as they were at
 the time the crash occurred. These in-flight transactions must be rolled
 back to return to a consistent state. This next phase is called rollback or
 transaction recovery.
Oracle opens the database after the roll forward phase of recovery
 and performs the rollback of uncommitted transactions in the background
 in what is called deferred rollback. This process
 reduces database downtime and helps to reduce the variability of
 recovery times. If a user’s transaction begins working in a database
 block that contains some changes left behind by an uncommitted
 transaction, the user’s transaction will trigger a foreground rollback
 to undo the changes and will then proceed when rollback is complete.
 This action is transparent to the user—they don’t receive error messages
 or have to resubmit the transaction.

Protecting Against System Failure

There are a variety of approaches you can take to help protect your system against
 the ill effects of system crashes and other failures, including the
 following:
	Providing component redundancy

	Deploying Data Guard to provide an alternate site in case of
 primary site failure

	Deploying Real Application Clusters for database continuity in
 the event of failure of an instance

	Deploying application continuity or Transparent Application
 Failover software services

Component Redundancy

As basic protection, the various hardware components that make up the Oracle
 Database server itself must be fault-tolerant.
 Fault-tolerance, as the name implies, allows the
 overall hardware system to continue to operate even if one of its
 components fails. This, in turn, implies redundant components and the
 ability to detect component failure and seamlessly integrate the failed
 component’s replacement. The major system components that should have
 redundancy include the following:
	Disk drives

	Disk controllers

	Flash memory

	CPUs

	Power supplies

	Cooling fans

	Network cards

Systems designed with this in mind include Oracle’s engineered
 systems. For example, the Oracle Exadata Database Machine and other
 Oracle engineered systems designed to run the Oracle Database are
 pre-configured with redundant components to eliminate single point of
 failure for any of the above.
Disk failure is the largest area of exposure for hardware since
 disks have the shortest mean times to failure of any of the components
 in a computer system. Disks also present the greatest variety of
 redundant solutions, so discussing that type of failure here should
 provide a good example of how high availability can be implemented with
 hardware.

Disk Redundancy

Although the mean time to failure of an individual disk drive is very high,
 the ever-increasing number of disks used for today’s very large
 databases results in more frequent failures. Protection from disk
 failure is usually accomplished using RAID (Redundant Array of Inexpensive Disks) concepts. The
 use of redundant storage has become common for systems of all sizes and
 types for two primary reasons: the real threat of disk failure and the
 proliferation of packaged, relatively affordable RAID solutions.
RAID uses one of two concepts to achieve redundancy:
	Mirroring
	The actual data is duplicated on another disk in the system.

	Striping with parity
	Data is striped on multiple disks, but instead of duplicating the data
 itself for redundancy, a mathematical calculation termed
 parity is performed on the data and the result is stored on
 another disk. You can think of parity as the sum of the striped
 data. If one of the disks is lost, you can reconstruct the data on
 that disk using the surviving disks and the parity data. The lost
 data represents the only unknown variable in the equation and can
 be derived. You can conceptualize this as a simple formula:
A + B + C + D = E
in which A–D are data striped across four disks and E is the
 parity data on a fifth disk. If you lose any of the disks, you can
 solve the equation to identify the missing component. For example,
 if you lose the B drive you can solve the formula as:
B = E - A - C - D

There are a number of different disk configurations or types of
 RAID technology, which are formally termed levels.
 Table 11-2 summarizes
 the most relevant levels of RAID in a bit more detail, in terms of their
 cost, high availability, and the way Oracle uses each RAID level.
Table 11-2. RAID levels relevant to high availability
	Level
	Disk
 configuration
	Cost
	Comments
	Oracle
 usage

	0
	Simple striping, no
 redundancy
	Same cost as unprotected
 storage.
	The term RAID-0 is used
 to describe striping, which increases read and write throughput.
 However, this is not really RAID, as there is no actual
 redundancy.
	Striping simplifies
 administration for Oracle datafiles. Suitable for all types of
 data for which redundancy isn’t required.

	1
	Mirroring
	Twice the cost of
 unprotected storage.
	Same write performance as
 a single disk. Read performance may improve through servicing
 reads from both copies.
	Lack of striping adds
 complexity of managing a larger number of devices for Oracle.
 Often used for redo logs, since the I/O for redo is typically
 relatively small sequential writes. Striped arrays are more
 suited to large I/Os or to multiple smaller, random
 I/Os.

	0+1
	Striping and
 mirroring
	Twice the cost of
 unprotected storage.
	Best of both
 worlds—striping increases read and write performance and
 mirroring for redundancy avoids “read-modify-write” overhead of
 RAID-5.
	Same usage as RAID-0, but
 provides protection from disk failure.

	5
	Striping with rotating or
 distributed parity
	Storage capacity is
 reduced by 1/N, where
 N is the number of disks in the array. For
 example, the storage is reduced by 20%, or 1/5 of the total disk
 storage, for a 5-disk array.
	Parity data is spread
 across all disks, avoiding the potential bottleneck found in
 some other types of RAID arrays. Striping increases read
 performance. Maintaining parity data adds additional I/O,
 decreasing write performance. For each write, the associated
 parity data must be read, modified, and written back to disk.
 This is referred to as the “read-modify-write”
 penalty.
	Cost-effective solution
 for all Oracle data except redo logs. Degraded write performance
 must be taken into account. Popular for reads where adequate I/O
 is provided. Write penalties may slow loads and index builds.
 Often avoided for high-volume OLTP due to write penalties. Some
 storage vendors, such as EMC, have proprietary solutions (RAID-S) to minimize parity
 overhead on writes.

Figure 11-3
 illustrates the disk configurations for various RAID levels.
[image: RAID levels commonly used with an Oracle Database]

Figure 11-3. RAID levels commonly used with an Oracle Database

Automatic Storage Management

Oracle Database versions dating back to Oracle Database
 10g include Automatic Storage Management (ASM). We
 introduced ASM in Chapter 5 and described its
 manageability considerations. ASM enables you to create a pool of
 storage on disk groups and then manages the placement of database files
 on the storage. ASM features enable it to replace non-Oracle file
 systems and logical volume managers for files managed by the Oracle
 Database. An ASM instance manages each of the disks in the disk group,
 and one ASM instance is provided for each database node in a RAC
 environment.
ASM is an Oracle-recommended MAA solution to handle storage
 failures and data corruption. It provides “Striping and Mirroring
 Everything” (SAME) for many types of disks, including “Just a Bunch of
 Disks” (JBOD) arrays. You can specify groups of disks, and designate a
 failure group to be used in the result of a disk failure. Mirroring can
 also be set up on a per-file basis, and you can specify one mirror
 (normal redundancy) or two mirrors (high redundancy). ASM includes the
 ability to detect disk “hot spots” and redistribute data to avoid disk
 bottlenecks, as well as the capability of adding disks to a disk group
 without any interruption in service. DBAs add the disks to disk groups
 or remove disks from disk groups using Oracle Enterprise Manager.
Stored data is automatically rebalanced when disks are added or removed. When a drive
 fails, remirroring to remaining drives is automatic. These features make ASM ideal for
 managing a database storage grid and allow you to use cheaper disk systems while obtaining
 higher levels of availability and performance. Fast mirror resynchronization, supported
 since Oracle Database 11g, enables faster recovery from transient
 failures since ASM will only resynchronize changed ASM disk extents for limited duration
 failures.
Oracle Database 12c introduces Flex ASM enabling ASM
 servers to be run on a separate physical server from the Oracle Database
 servers. Large clusters of ASM instances can be configured to support
 large numbers of database clients while reducing the overall ASM
 footprint that would be present if Flex ASM were not deployed.
ASM and RAID Levels
Given the popular adoption of ASM and SAME for managing Oracle Database
 storage on Oracle’s engineered systems such as the Oracle Exadata
 Database Machine and other Oracle and non-Oracle server and storage
 platforms, RAID 0+1 has become the most common choice for deployment.
 For example, when Oracle installs the Exadata Database Machine, it
 includes full mirroring and striping as part of the standard
 installation. Advanced compression techniques such as Hybrid Columnar
 Compression more than offset additional storage required to deploy in
 this configuration.

Site and Computer Server Failover

The Oracle Database will recover automatically from a system crash. Automatic
 recovery protects data integrity, critical in a relational database, but also
 causes some downtime as the Oracle Database recovers. When a hardware
 failure occurs, the ability to quickly detect a system crash and initiate
 recovery is crucial to minimizing the associated downtime.
When an individual server fails, the instance(s) running on that
 server fail as well. Depending on the cause, the failed server may not
 return to service quickly or be noticed immediately. Either way, companies
 that wish to protect their systems from the failure of a server typically
 employ multiple servers to achieve failover. Although failover
 doesn’t directly address the issue of the reliability of the underlying
 hardware, automated failover reduces downtime from hardware failure. The
 primary means to mitigate unplanned downtime caused by server failures is
 through the use of Data Guard or Real Application Clusters (RAC). Data
 Guard is also useful for protecting against site failures while RAC is
 noteworthy for also providing timely database instance failure recovery.
 We’ll cover each of these in subsequent sections.
Protection from the complete failure of your primary Oracle data
 center site can pose significant challenges. Your organization must
 carefully evaluate the risks to its primary site. These risks include
 physical and environmental problems as well as hardware risks. For
 example, is the data center in an area prone to floods, tornadoes, or
 earthquakes? Are power failures a frequent occurrence?
Protection from primary site failure involves monitoring of and
 redundancy controls for the following:
	Data center power supply

	Data center climate control facilities

	Database server redundancy

	Database redundancy

	Data redundancy

The first two items on the list are aimed at preventing the failure of the data center.
 Data server redundancy provides protection from node failure within a data center but not from
 complete data center loss. Should the data center fail completely, the last two items—database
 redundancy and data redundancy—enable disaster recovery. In reality, this requires data center
 redundancy if the goal is to run at previous production levels of performance after the
 disaster.
Oracle Data Guard and Site Failures

Data Guard is an Oracle-recommended MAA solution that is used to recover databases from site and
 storage failures as well as data corruption. It is included with the Enterprise Edition of
 Oracle and supports database configurations for physical standby (an MAA best practice),
 snapshot standby for testing, and logical standby to reduce planned downtime. Applying redo
 to up to 30 physical standby Oracle databases is possible from the primary Oracle database
 cascading via a remote location onto the standbys. As of Oracle Database
 12c, Data Guard can also be used for disaster recovery of multitenant container databases (CDBs).
The concept of a physical standby database is simple—keep a copy of the database files
 at a second location, ship the redo logs to the second site, and apply them to the copy of
 the Oracle database. This process can keep the standby database “a few steps” behind the
 primary database when deployed asynchronously. If the primary site fails, a standby database
 is opened and becomes the production database. The potential data loss is limited to the
 transactions in any redo logs that have not been shipped to the standby site. Figure 11-4 illustrates a standby Oracle Database.
[image: Standby Oracle Database]

Figure 11-4. Standby Oracle Database

There are three possible causes of lost data in the event of
 primary site failure when deploying a physical standby database:
	Archived redo logs have not been shipped to the standby
 site.

	Filled online redo logs have not been archived yet.

	The current online redo log is not a candidate for archiving
 until a log switch occurs.

Archiving of redo logs to a destination on the primary server as
 well as on multiple remote servers serving as standby sites is automated
 and Oracle applies the archived redo logs to the standby database as
 they arrive. A fast-start failover is supported so redo loss exposure
 does not exceed the limits the administrator sets.
The Oracle Data Guard broker enables monitoring and control of
 physical and logical standby databases and components. A single command
 can be used to perform failover. Oracle Database
 12c added configuration health checks, resumable
 switchover operations, streamlined role transitions, support for the
 cascaded standby configurations, and user configurable thresholds
 regarding SLAs for recovery to the supported features. Oracle Enterprise
 Manager provides a Data Guard Manager GUI for setting up, monitoring,
 and managing the standby database.

Oracle Active Data Guard and Zero Data Loss

Active Data Guard is an option to Oracle Database Enterprise Edition and deployed where data loss
 must be completely avoided. It features a real-time apply, in which redo data is applied at
 the standby Oracle Database as soon as it is received, and automatic block repair. The DBA
 has a choice of three different data loss modes that can be specified. Maximum protection
 mode guarantees that switching over to the standby database will not result in any lost data
 as each log write must also be completed to a remote logfile before transactions commit on
 the primary database and, in the event that this does not occur, the primary database is
 shut down. Maximum performance mode provides a high level of protection but will not impact
 the performance of the primary database, as transactions commit as soon as they are written
 to the online redo log and then written asynchronously to one or more standby databases.
 Maximum availability mode ensures that transactions don’t commit unless they are written to
 the online redo log and one or more standby databases, but will fall back to maximum
 performance mode if writing to a standby is not possible.
Active Data Guard also enables the standby Oracle database to be used for reporting and,
 since the Oracle Database 12c release, you can also query the standby
 database with DML to global temporary tables while the redo apply is active. The ability to
 offload reporting requests provides flexibility for reporting and queries and can help
 performance on the primary server while making use of the standby server. Active Data Guard
 for Oracle Database12c also supports scaling of reads across multiple
 standby databases simultaneously.
The Far Synch capabilities introduced with Active Data Guard for
 Oracle Database12c enable zero-loss primary and
 standby configurations that are separated by distances that can span
 continents. A lightweight database instance consisting of a control file
 and archive logfile but no recovery or datafiles is deployed to a system
 outside of the primary database. Redo is transported to this location
 synchronously, and then is forwarded asynchronously to the distant
 standby database, the failover target. If the primary database fails,
 failover is executed as usual to the failover with zero data
 loss.

Oracle GoldenGate and Replication

An alternative for guarding against site and computer failures that cause
 unplanned downtime is to implement client and application failover
 leveraging log-based change data capture and replication software, such
 as Oracle’s GoldenGate. These types of solutions are typically used
 where there are heterogeneous server platforms and/or heterogeneous
 database implementations.
This type of platform failover architecture requires no additional
 Oracle software beyond GoldenGate. However, a solution of this type
 requires a great deal of additional scripting and testing. For example,
 data that is in a queue to be replicated from a server that goes down
 will not be available at the secondary site where GoldenGate replicates
 to. Maintaining consistency of data across the two servers when the
 first is brought back online also requires very careful
 scripting.
The extent of the data divergence and potential data loss
 resulting from the divergence is a very important consideration since
 transactions performed at the primary site are replicated some time
 later to the secondary site. Synchronous replication (e.g., Active Data Guard) is used when there is no
 tolerance for data divergence or lost data such that the data at the
 secondary site must match the primary site at all
 times and reflect all committed transactions.
GoldenGate provides asynchronous replication, so until the
 deferred transaction queue is “pushed” to the secondary site replicating
 the changes, the data at the secondary site will differ from the primary
 site data. If the primary database is irrevocably lost, any transactions
 that had not been pushed from the deferred queue will also be lost.
 Typically, asynchronous replication adds less overhead than synchronous
 replication, since the replication of changes can be efficiently batched
 to the secondary site.
Figure 11-5
 illustrates synchronous and asynchronous replication.
[image: Oracle replication for redundant data]

Figure 11-5. Oracle replication for redundant data

Considerations in setting up an asynchronous replication environment include the following:
	Tolerance for data divergence
	The smaller the data divergence, the more individual
 replication actions will have to be performed. You will reduce the
 resources needed to implement the replication by increasing the
 data divergence.

	Performance requirements
	Since replication requires resources, frequent replication
 can have an impact on performance.

	Network bandwidth
	Since replication uses network bandwidth, you have to
 consider the availability of this resource.

	Distance between sites
	The more distance between sites, the longer the physical
 transfer of data will take.

	Site and network stability
	If a site or a network goes down, all replications that use
 that network or are destined for that site will not be received.
 When either of these resources comes back online, the stored
 replication traffic can have an impact on the amount of time it
 takes to recover the site.

	Experience level of your database
 administrators
	Even the most effective replication plan can be undone by
 DBAs who aren’t familiar with replication.

While offering more flexibility, the added complexity and
 opportunity for data inconsistencies generally cause organizations to
 avoid using asynchronous replication by itself as part of a solution for
 unplanned downtime today and so GoldenGate is not on the list of Oracle
 MAA recommendations. That said, GoldenGate is often used during planned
 downtime for migrations and upgrades, and sometimes used in combination
 with Active Data Guard or Real Application Clusters as part of an MAA
 strategy where multimaster replication and other advanced replication
 techniques are desired.

Real Application Clusters and Instance Failures

Real Application Clusters (RAC) provides an Oracle-recommended MAA solution for instance or computer failures.
 With RAC, the Oracle database is spread across multiple nodes and each node has an active
 Oracle instance. Clients can connect to any of the instances to access the same
 database.
Using Real Application Clusters to spread the workload over
 several nodes or servers will result in a lower percentage of each
 server’s resources being used in normal operating conditions. Each node
 or server in the cluster must devote some overhead to maintaining its
 role in the cluster, although this overhead is minimal. You will have to
 weigh the benefits of carrying on with some performance degradation in
 the event of a node failure versus the cost of buying more nodes. The
 economics of your situation may dictate that a decrease in performance
 in the event of a node failure is more palatable than a larger initial
 outlay for more nodes or larger systems.
Because each Oracle instance runs on its own node, if a node fails, the instance on that
 node also fails. The overall Oracle database remains available since surviving instances are
 still running on other working nodes.
Figure 11-6
 illustrates Real Application Clusters on a simple two-node
 cluster.
[image: Oracle Real Application Clusters on a cluster]

Figure 11-6. Oracle Real Application Clusters on a cluster

With Oracle Database 12c, it is possible to
 configure large RAC clusters as Oracle Flex
 Clusters that are deployed using a hub-and-spoke architecture. Hub
 nodes are tightly connected and have direct access to shared storage
 while anchoring Leaf nodes. The Leaf nodes are loosely connected and may
 or may not have direct access to shared storage. If you choose to
 install an Oracle Flex Cluster during the installation of Oracle
 Clusterware, Oracle Flex ASM is installed by default since it is
 required by a Flex Cluster.
Real Application Clusters increases availability by enabling
 avoidance of complete database blackouts. With simple hardware failover,
 the database is completely unavailable until node failover, instance
 startup, and crash recovery are complete. With RAC, clients can connect
 to a surviving instance any time. Clients may be able to continue
 working with no interruption, depending on whether the data they need to
 work on was under the control of the failed instance. You can think of
 the failure of a Real Application Clusters instance as a potential
 database “brownout,” as opposed to the guaranteed blackout caused by
 hardware failover.
The multiple Oracle database instances provide protection for each other—if an instance
 fails, one of the surviving instances will detect the failure and automatically initiate RAC
 recovery. This type of recovery is different from the hardware failover discussed
 previously. No actual “failover” occurs—no disk takeover is required, since all nodes
 already have access to the disks used for the database. There is no need to start an Oracle
 instance on the surviving node or nodes, since Oracle is already running on all the nodes.
 The Oracle software performs the necessary actions without using scripts; the required steps
 are an integral part of Real Application Clusters software.
The phases of Real Application Clusters recovery are the
 following:
	Cluster reorganization
	When an instance failure occurs, Real Application Clusters
 must first determine which nodes of the cluster remain in service.
 Each database group member votes on what members are part of the
 current group. Based on arbitration, a correct current group
 configuration is established. The time required for this operation
 is very brief.

	Lock database rebuild
	The lock database, which contains the information used to
 coordinate Real Application Clusters traffic, is distributed
 across the multiple active instances. Therefore, a portion of that
 information is lost when a node fails. The remaining nodes have
 sufficient redundant data to reconstruct the lost information.
 Once the cluster membership is determined, the surviving instances
 reconstruct the lock database. The time for this phase depends on
 how many locks must be recovered, as well as whether the rebuild
 process involves a single surviving node or multiple surviving
 nodes. Oracle speeds the lock remastering process by optimizing
 lock master locations in the background while users are accessing
 the system.

	Instance recovery
	Once the lock database is rebuilt, the redo logs from the
 failed instance perform crash recovery. This is similar to
 single-instance crash recovery—a roll forward phase followed by a
 nonblocking, deferred rollback phase. The key difference is that
 the recovery isn’t performed by restarting a failed instance.
 Rather, it’s performed by the instance that detected the
 failure.

As a clustered solution, RAC avoids the various activities involved in disk takeover:
 mounting volumes, validating filesystem integrity, opening Oracle database files, and so on.
 Not performing these activities significantly reduces the time required to achieve full
 system availability. RAC gained in popularity partly because it eliminated the creation and
 maintenance of the complex scripts typically used to control the activities for hardware
 failover. For example, there is no need to script which disk volumes will be taken over by a
 surviving node.
While RAC recovery is in progress, clients connected to surviving
 instances remain connected and can continue working. In some cases users
 may experience a slight delay in response times, but their sessions
 aren’t terminated. Clients connected to the failed instance can
 reconnect to a surviving instance and can resume working. Uncommitted
 transactions will be rolled back and will have to be resubmitted.
 Queries that were active will also be terminated, but a seamless
 transition can be provided by Transparent Application Failover, as we’ll
 describe in the next section.

Oracle Transparent Application Failover

Transparent Application Failover (TAF) provides seamless migration of users’ sessions from one
 Oracle instance to another. You can use TAF to mask the failure of an
 instance for transparent high availability or for migration of users
 from a highly active instance to a less active one. Figure 11-7 illustrates TAF with
 Real Application Clusters.
[image: Failover with TAF and Real Application Clusters]

Figure 11-7. Failover with TAF and Real Application Clusters

As shown in this figure, TAF can automatically reconnect clients to another instance of
 the database, which provides access to the same Oracle database as the original instance.
 The high availability benefits of TAF include the following:
	Transparent reconnection
	Clients don’t have to manually reconnect to a surviving
 instance. You can optimally reconfigure TAF to preconnect clients
 to an alternate instance in addition to their primary instance
 when they log on. Preconnecting clients to an alternate instance
 removes the overhead of establishing a new connection when
 automatic failover takes place. For systems with a large number of
 connected clients, this preconnection avoids the overhead and
 delays caused by flooding the alternate instance with a large
 number of simultaneous connection requests.

	Automatic resubmission of queries
	TAF can automatically resubmit queries that were active at
 the time the first instance failed and can resume sending results
 back to the client. Oracle will re-execute the query as of the
 time the original query started. Oracle’s read consistency will
 therefore provide the correct answer regardless of any activity
 since the query began. However, when the user requests the “next”
 row from a query, Oracle will have to process through all rows
 from the start of the query until the requested row, which may
 result in a response lag.

	Callback functions
	An application developer can register a “callback function”
 with TAF. Once TAF has successfully reconnected the client to the
 alternate instance, the registered function will be called
 automatically. The application developer can use the callback
 function to re-initialize various aspects of session state as
 desired.

	Failover-aware applications
	Application developers can leverage TAF by writing
 “failover-aware” applications that resubmit transactions that were
 lost when the client’s primary instance failed, further reducing
 the impact of failure. Note that unlike query resubmission, TAF
 itself doesn’t automatically resubmit the transactions that were
 in-flight. Rather, it provides a framework for a seamless failover
 that can be leveraged by application developers.

How TAF works

TAF is implemented in the Oracle Call Interface (OCI) layer, a low-level API for establishing and managing
 Oracle Database connections. When the instance to which a client is
 connected fails, the client’s server process ceases to exist. The OCI
 layer in the client can detect the absence of a server process on the
 other end of the channel and automatically establish a new connection
 to another instance. The alternate instance to which TAF reconnects
 users is specified in the Oracle Net configuration files.
Because OCI is a low-level API, writing programs with OCI
 requires more effort and sophistication on the part of the developer.
 Fortunately, Oracle uses OCI to write client tools and various
 drivers, so that applications using these tools can leverage TAF.
 Support for TAF in ODBC and JDBC drivers is especially useful; it
 means that TAF can be leveraged by any client application that uses
 these drivers to connect to Oracle. For example, TAF can provide
 automatic reconnection for a third-party query tool that uses ODBC. To
 implement TAF with ODBC, set up an ODBC data source that uses an
 Oracle Net service name that is configured to use TAF in the Oracle
 Net configuration files. ODBC uses Oracle Net and can therefore
 leverage the TAF feature.

TAF and various Oracle configurations

Although the TAF-Real Application Clusters combination is the
 most obvious combination for high availability, TAF can be used with a
 single Oracle instance or with multiple databases, each accessible
 from a single instance. Some possible configurations are as
 follows:
	TAF can automatically reconnect clients back to their
 original instances for cases in which the instance failed but the
 node did not. An automated monitoring system, such as the
 management framework under Oracle Enterprise Manager, can detect
 instance failure quickly and restart the instance. The fast-start
 recovery features in Oracle enable very short crash recovery
 times. Users that aren’t performing heads-down data entry work can
 be automatically reconnected by TAF and might never be aware that
 their instance failed and was restarted.

	In simple clusters, TAF can reconnect users to the instance
 started by simple hardware failover on the surviving node of a
 cluster. The reconnection cannot occur until the alternate node
 has started Oracle and has performed crash recovery.

	When there are two distinct databases, each with a single
 instance, TAF can reconnect clients to an instance that provides
 access to a different database running in another data center.
 This clearly requires replication of the relevant data between the
 two databases.

Oracle Application Continuity

Oracle Database 12c introduces Application Continuity,
 an infrastructure that will replay an application request to the
 database when a recoverable error is received during unplanned or
 planned outages. During lost database sessions, the client will remain
 current with entered data, returned data, cached data, and variables.
 Where transactions are being initiated to the database, the client may
 not know if a commit occurred after it was issued or, if it was not
 issued or executed, whether it must resubmit the request upon rollback
 of an in-flight transaction. Restored sessions where Application
 Continuity is deployed include all states, cursors, variables, and the
 most recent transaction if there is one.
With the first release of Oracle Database
 12c, applications can take advantage of this
 infrastructure using the Oracle JDBC driver as well as the JDBC
 Universal Connection Pool. Key components in the architecture include
 the JDBC replay driver, continuity director, replay context information,
 and Transaction Guard.
After an outage occurs, the JDBC replay driver will receive a
 request from the client application and send the calls in the request to
 the Oracle Database. The replay driver receives directions for each call
 from the database, and a Fast Application Notification (FAN) or recoverable error. The replay driver then obtains a
 new database session and checks whether the replay can progress. (Where
 RAC FAN provides notification of configuration and service level status,
 connection cleanup will include attaching to a different live RAC
 instance where instance failure occurred.) If the continuity directory
 requires a replay, then the replay driver resubmits the calls as
 instructed by the database. The JDBC driver will relay the response to
 the client application and it will simply appear to be delayed if
 successful. If unsuccessful, the original error is received.

Recovering from Failures and Data Corruption

Despite the prevalence of redundant or protected disk storage, media failures can and do occur. In cases in which one or more Oracle datafiles
 are lost due to disk failure, you must use Oracle database backups to recover the lost
 data.
There are times when simple human or machine error can also lead to
 the loss of data, just as a media failure can. For example, an
 administrator may accidentally delete a datafile, or an I/O subsystem may
 malfunction and corrupt data on the disks. Oracle’s engineered systems
 containing Exadata Storage Servers help eliminate data corruption by being
 fully compliant with Oracle’s Hardware Assisted Resilient Data (HARD)
 initiative where integrity of data blocks is checked anytime data is
 being written to disk.
A useful management feature for non-RAC databases used for diagnosis of on-disk data
 failures and repair options is the Data Recovery Advisor. This Advisor
 provides early detection of corruption through a Health Monitor, failure diagnosis, a failure
 impact analysis, repair recommendations, repair feasibility check, repair automation, and
 validation of data consistency and recoverability. It can be used with primary, logical
 standby, physical standby, and snapshot standby Oracle databases.
The key to being prepared to handle failures of these types are implementing a good
 backup-and-recovery strategy and making use of Oracle’s growing number of Flashback
 capabilities. We’ll cover those next.
Developing a Backup-and-Recovery Strategy

Proper development, documentation, and testing of your backup-and-recovery strategy is one of the
 most important activities in implementing an Oracle database. You must test every phase of
 the backup-and-recovery process to ensure that the entire process works, because once a
 disaster hits, the complete recovery process must work
 flawlessly.
Some companies test the backup procedure but fail to actually test
 recovery using the backups taken. Only when a failure requires the use
 of the backups do companies discover that the backups in place were
 unusable for some reason. It’s critical to test the entire cycle from
 backup through restore and recovery.

Taking Oracle Backups

Two basic types of backups are available with Oracle:
	Online or hot backup
	The datafiles for one or more tablespaces are backed up
 while the database is active.

	Closed or cold backup
	The database is shut down and all the datafiles, redo
 logfiles, and control and server parameter files are backed
 up.

With an online backup, not all of the datafiles must be backed up
 at once. For instance, you may want to back up a different group of
 datafiles each night. You must be sure to keep backups of the archived
 redo logs that date back to your oldest backed-up datafile, since you’ll
 need them if you have to implement roll forward recovery from the time
 of that oldest datafile backup. Of course, much of this is automated
 today through the use of Oracle’s Recovery Manager (RMAN) that is accessed via Oracle Enterprise Manager.
Some DBAs back up the datafiles that contain data subject to
 frequent changes more frequently (for example, daily), and back up
 datafiles containing more static data less often (for example, weekly).
 If the database isn’t archiving redo logs (this is known as running in
 NOARCHIVELOG mode and is described in Chapter 2), you can take only complete closed
 backups. If the database is archiving redo logs, it can be backed up
 while running.
Oracle Database 12c introduces other possible backup strategies
 including multitenant container database (CDB) and pluggable database (PDB) backups. For
 example, you can back up a CDB and all of its PDBs or choose to back up individual PDBs. For
 more information about the different types of backups and variations on these types, please
 refer to your Oracle documentation as well as the third-party books listed.

Using Backups to Recover

Two basic types of recovery are possible with Oracle, based on whether or not
 you are archiving the redo logs:
	Complete database recovery
	If the database did not archive redo logs, only a complete
 closed backup is possible. Correspondingly, only a complete
 database recovery can be performed. You restore the database
 files, redo logs, and control and server parameter files from the
 backup. The database is essentially restored as of the time of the
 backup. All work done since the time of the backup is lost and a
 complete recovery must be performed even if only one of the
 datafiles is damaged. The potential for lost work, coupled with
 the need to restore the entire database to correct partial
 failure, are reasons most shops avoid this situation by running
 their databases in ARCHIVELOG mode. Figure 11-8 illustrates
 backup and recovery for an Oracle Database without archived redo
 logs.

[image: Database backup and recovery without archived redo logs]

Figure 11-8. Database backup and recovery without archived redo
 logs

	Partial or targeted restore and roll forward
 recovery
	When you’re running the Oracle database in ARCHIVELOG mode, you can restore only
 the damaged datafile(s) and can apply redo log information from the time the backup
 was taken to the point of failure. The archived and online redo logs reproduce all the
 changes to the restored datafiles to bring them up to the same point in time as the
 rest of the database. This procedure minimizes the time for the restore and recovery
 operations. Partial recovery like this can be done with the database down.
 Alternatively, the affected tablespace(s) can be placed offline and recovery can be
 performed with the rest of the database available. You can also restore and recover
 individual data blocks instead of entire datafiles. Figure 11-9 illustrates backup and recovery
 with archived redo logs.

[image: Database backup and recovery with archived redo logs]

Figure 11-9. Database backup and recovery with archived redo logs

Especially useful is the LogMiner utility, accessible through
 Oracle Enterprise Manager, and used for investigating redo logs
 providing analysis for all datatypes. If the redo log has become
 corrupted, the LogMiner can read past corrupted records as desired in
 order to analyze the impact on transactions after the corruption.

Recovery Manager

Recovery Manager (RMAN) is an Oracle-recommended MAA solution for data corruption that
 provides server-managed online backup and recovery. RMAN does the
 following:
	Backs up one or more datafiles to disk or tape

	Backs up archived redo logs to disk or tape

	Backs up automatically the control file and server parameter
 file to disk or tape

	Backs up CDBs and PDBs to disk or tape

	Restores datafiles from disk or tape

	Restores and applies archived redo logs to perform
 recovery

	Restores the control file and server parameter file

	Restores CDBs and PDBs from disk or tape

	Automatically parallelizes both the reading and writing of the
 various Oracle files being backed up

RMAN performs the full backup operations and updates a catalog
 (stored in an Oracle Database) with the details of what backups were
 taken and where they were stored. You can query this catalog for
 critical information, such as datafiles that have not been backed up or
 datafiles whose backups have been invalidated through NOLOGGING
 operations performed on objects contained in those datafiles.
RMAN also uses the catalog to perform incremental backups. RMAN will back up only
 database blocks that have changed since the last backup. When RMAN backs up only the
 individual changed blocks in the database, the overall backup and recovery time can be
 significantly reduced for Oracle databases in which a small percentage of the data in large
 tables changes. Improvements in methods used by RMAN in recent Oracle releases have greatly
 enhanced performance for incremental backups.
RMAN reads and writes Oracle blocks, not operating system blocks.
 While RMAN is backing up a datafile, Oracle blocks can be written to it,
 but RMAN will read and write in consistent Oracle blocks, not operating
 system blocks within an Oracle block.
The following list summarizes the RMAN capabilities that enable
 high availability:
	Automated channel failover during backup and restore

	Automated failover to a previous backup during restore when
 the current backup is missing or corrupt

	Automated new database and temporary file creation during
 recovery

	Automated recovery to a previous point in time

	Block media recovery while the datafile is online

	Block change tracking for fast incremental backups

	Merged incremental backups

	Backup and restore of required files only

	Retention policy ensuring that relevant backups are
 available

	Resumable backup and restore if operations failed

	Automatic backup of the control file and server parameter
 file

Since Oracle Database 10g, RMAN is also used
 to support automated disk-based backup. Disk-based strategies have an
 advantage over tape: they enable random access to any data such that
 only changes need be backed up or recovered. RMAN can be set up to run a
 backup job to disk at a specific time. RMAN manages the deletion of
 backup files that are no longer necessary. In combination with ASM, RMAN
 will write all backups, archive logs, control file autobackups, and
 datafile copies to a designated disk group. The single storage location
 is referred to as the Flash Recovery Area.

Read-Only Tablespaces and Backups

Once an Oracle tablespace is in read-only mode, it can be backed up once
 and doesn’t have to be backed up again, since its contents cannot change
 unless it’s placed in read/write mode. Marking a tablespace as read-only
 allows entire sections of a database to be marked read-only, backed up
 once, and excluded from regular backups thereafter.
If a datafile of a read-only tablespace is damaged, you can
 restore it directly from the backup without any recovery. Because no
 changes were made to the datafiles, no redo log information needs to be
 applied. For databases with significant static or historical data, this
 option can significantly simplify and streamline backup and restore
 operations.
Read-only tablespaces, combined with Oracle’s ability to partition
 a table on a range or list of column values (for example, a date),
 provide powerful support for the rolling windows common to data
 warehouses (described in Chapter 10). Once a new
 month’s data is loaded, indexed, and so on, the relevant tablespaces can
 be marked read-only and backed up once, removing the tablespaces
 datafile(s) from the cycle of ongoing backup and significantly reducing
 the time required for those backup operations.

Old-Fashioned Data Redundancy

You can also achieve data redundancy using Oracle’s standard utilities. Historically, one of
 the most common backup methods for Oracle was simply to export the contents of the Oracle
 database into a file using the Oracle Export utility. This file could then be shipped in
 binary form to any platform Oracle supports and subsequently imported into another database
 with Oracle’s Import utility. This approach can still provide a simple form of data
 redundancy if the amount of data is manageable.
Older releases featured a direct path export
 (beginning with Oracle 7.3) to avoid some of the overhead of a normal
 export by directly accessing the data in the Oracle datafiles. Oracle
 Database 10g and newer database releases provide a
 much higher speed export/import utility called Data Pump, and it is about 60
 percent faster for export and 15 to 20 times faster for import per
 stream.
Another export option is to unload data from the desired tables
 into simple flat files by spooling the output of a SELECT statement to
 an operating system file. You can then ship the flat file to the
 secondary site and use Oracle’s SQL*Loader utility to load the data into
 duplicate tables in the secondary database. For cases in which a
 significant amount of data is input to the primary system using loads,
 such as in a data warehouse, a viable disaster-recovery plan is simply
 to back up the load files to a secondary site on which they will wait,
 ready for reloading to either the primary or secondary site, should a
 disaster occur.
While these methods may seem relatively crude, they can provide
 simple data redundancy for targeted sets of data. Transportable
 tablespaces can also be used to move entire tablespaces to a backup
 platform. Transportable tablespaces in Oracle Database
 10g and newer releases let you transport
 tablespaces from one type of system to another without having to do an
 export and import of their data, increasing their flexibility for
 implementing redundancy, moving large amounts of data, and migrating to
 another database server platform.

Point-in-Time Recovery

Point-in-time datafile recovery enables a DBA to restore the datafiles for the Oracle database and
 apply redo information up to a specific time or System Change Number (SCN). This limited type of recovery is useful for cases in which an error
 occurred—for example, if a table was dropped accidentally or a large number of rows were
 deleted incorrectly. The DBA can restore the database to the point in time just prior to the
 event to undo the results of the mistake.
Point-in-time tablespace recovery allows a DBA to restore and recover a specific
 tablespace or set of tablespaces to a particular point in time. Only the
 tablespace(s) containing the desired objects need to be recovered.
 However, this tablespace feature needs to be used carefully, since
 objects in one tablespace may have dependencies, such as referential
 integrity constraints, on objects in other tablespaces. For example,
 suppose that Tablespace1 contains the EMP table and Tablespace2 contains
 the DEPT table, and a foreign key constraint links these two tables
 together for referential integrity. If you were to recover Tablespace2
 to an earlier point than Tablespace1, you might find that you had rows
 in the EMP table that contained an invalid foreign key value, since the
 matching primary key entry in the DEPT table had not been rolled forward
 to the place where the primary key value to which the EMP table refers
 had been added.
Point-in-time recovery was further extended in Oracle Database
 12c. You can now also recover tables and partitions
 to a specified point in time using your RMAN backups.

Flashback

Flashback is capability designed to help in recovering from errors caused by recent changes
 to data or tables in your Oracle database. It enables you to go back to a time to see when
 the data was considered valid in the database and undo damage caused in the interim.
 Flashback Query was the first example of this feature made available in
 Oracle9i. Today, in Oracle Database 12c, there
 are a host of Flashback capabilities. These include:
	Flashback Query
	Query returns results at a specific time or System Change Number
 (SCN) in the past, using undo log information segments to
 reconstruct the data.

	Flashback Version Query
	Query returns versions of rows in a table over a specified
 span of time.

	Flashback Transaction
	Used for backing out an individual transaction and its
 dependent transactions by utilizing undo data to its original
 state.

	Flashback Transaction Query
	Query returns all the changes made by a specific
 transaction.

	Flashback Drop
	When an object is dropped it is placed in a Recycle Bin,
 thus enabling a user to simply un-drop the object to restore
 it.

	Flashback Table
	A table is returned to a specific past point in time.

	Flashback Restore Points
	Labels created by DBAs that map to points in time via
 timestamps or SCNs.

	Flashback Database
	Returns the entire database to a particular point in time
 and can be used instead of point-in-time recovery in some
 situations.

	Flashback Logs and Block Media
 Recovery
	If data blocks are corrupted, enables retrieval of more recent
 copies of the data blocks to speed repair.

	Flashback Data Archive
	Contains transactional changes made to every record in a
 table for the life of the record. This capability is part of the
 Total Recall portion of the Advanced Compression option. To
 implement Total Recall, the Oracle Database creates a shadow table
 to hold historical changes to the main table, freeing flashback
 from the limitations of a fixed size to UNDO space.

Which to Choose?
All the choices we’ve discussed in this chapter offer you some
 type of protection against losing critical data—or your entire Oracle
 Database. But which of these is right for your needs?
To quote the standard answer to so many technical questions, “it
 depends.” Export/import strategies provide a simple and proven method,
 but the time lag involved with this method typically leaves larger
 time periods where data is lost in the event of a failure.
 Transportable tablespaces and other backups from RMAN also require
 time to restore. A physical standby database or RAC can offer zero
 data loss and faster time to recovery; however, these solutions do
 require the expense of redundant hardware. Asynchronous replication
 solutions also require redundant hardware, but while providing a great
 deal of flexibility, also require considerable effort in planning and
 coding.
You should carefully balance the cost, both in extra hardware
 and performance, of each of these solutions, and balance them against
 the potential cost of a database or server failure. Of course, any of
 these solutions is infinitely more valuable than not implementing any
 of them and simply hoping that a disaster never happens to you.
Likely, you’ll deploy combinations of these solutions such as RAC for rapid instance
 recovery and Data Guard to enable business continuity during primary site failure. If you
 choose to use RAC, Data Guard, or GoldenGate, you might also use Global Data
 Services, a new configuration, maintenance, and monitoring management
 framework supported by Oracle Database 12c, for global management of
 high availability configurations including cloud infrastructures.

Planned Downtime

Thus far, we have focused on preventing unplanned downtime. But much of
 availability planning seeks to reduce planned downtime for system
 maintenance operations. Planned downtime is usually a concern during
 certain system changes, data changes, and application changes. Today, much
 of this downtime has largely disappeared because of Oracle’s extensive
 online management capabilities.
For example, changes that can be made while a system is operational
 include hardware upgrades, operating system upgrades, patching, and
 storage migration. Where RAC configurations leverage ASM, rolling upgrades
 (first introduced in Oracle Database 10g Release 2)
 can take place with no downtime. In fact, Oracle’s engineered systems that
 run Oracle Databases are designed to take advantage of this.
Oracle Data Guard might be used to minimize downtime for system, database, and patch set
 upgrades where Oracle databases are not in RAC configurations. It offers a logical standby
 database capability where the standard Oracle archive logs are transformed into SQL
 transactions, and these are applied to an open standby database. The logical standby database
 can also be different physically from the primary database and can be used for different
 tasks. For example, the primary Oracle database might be indexed for transaction processing
 while the standby database might be indexed for data warehousing. Although physically
 different from the primary database, the secondary database is logically the same and can take
 over processing in case the primary fails. As archive logs are shipped from the primary to the
 secondary, undo records in the shipped archive log can be compared to the logical standby undo
 records to guard against potential corruption.
Pluggable databases in Oracle Database 12c
 offer a dramatic potential solution for reducing downtime for upgrades.
 The stated direction of Oracle is to allow users to upgrade the
 multitenant container database (CDB) only, and simply unplug a pluggable
 database from one container and move it to an upgraded multitenant
 container database, which could significantly reduce this type of planned
 downtime.
For data changes, Oracle provides online reorganization capabilities in recent releases, a
 task that often required extensive planning in the past. Years ago, discussions of how to
 reorganize the Oracle database were popular topics at most Oracle database conferences. Today,
 you can easily modify physical attributes of a table and change data and table structure while
 users are accessing the data. Also supported are online index builds and online moves of
 partitioned tables.
Edition-based redefinition, discussed in Chapter 4, enables
 an Oracle database upgrade to occur while an application is in use that accesses the database.
 In some cases, when the new edition is available, a rollover to that edition can occur with no
 downtime. Other online application maintenance and upgrade capabilities for the database, when
 deployed under applications, include use of GoldenGate for rolling upgrades and ability to set
 invisible indexes and invisible columns.
Many of the Oracle features and options we’ve covered in this
 chapter are also useful for speeding database migrations and minimizing
 possible downtime during the migration process. For example, migrations to
 new servers can be greatly aided by Data Guard, Data Pump, RMAN support of
 transportable tablespaces, and GoldenGate. Migrations to new storage are
 also aided by using transportable tablespaces with RMAN and
 GoldenGate.
Achieving RAC Benefits on Single Nodes
You might want some of the benefits of RAC such as online migration of Oracle database
 instances, patching, and upgrading of the operating system and the Oracle database with no
 downtime, but wish to deploy your Oracle database to a single node in a cluster. This is
 precisely the capability that Oracle RAC One Node provides. As with RAC, RAC One Node fully
 supports Data Guard. It can also be used to provide simple failover to a second node and
 provides a means to rapidly upgrade to multinode RAC configurations.

Chapter 12. Oracle and Hardware Architecture

In Chapter 2, we discussed the
 architecture of the Oracle Database, and in Chapter 7, we described how Oracle uses hardware
 resources. Your choice of servers and storage will ultimately help determine
 the scalability, performance tuning, management, and reliability options you
 will have. Where systems are configured without consideration of the proper
 balance of CPUs, memory, and I/O for projected workloads, database
 management and tuning becomes more complicated and limited in
 effectiveness.
Over the years, Oracle developed new features in its flagship Enterprise Edition Database to
 address evolving platform strategies, including clustered systems, grid computing, and cloud
 deployment. In 2008, Oracle introduced its first engineered system, the Oracle Exadata Database
 Machine, featuring Database Server nodes, Exadata Storage Server cells, and Oracle Database
 11g with Exadata Storage Server software that are uniquely optimized to
 work together. This chapter provides a basis for understanding how Oracle Database
 12c can take advantage of commodity systems and each of the Oracle
 engineered systems on which the Oracle Database is supported. The engineered systems most often
 used for deploying the Oracle Database are the following:
	Oracle Exadata Database Machine

	Oracle SuperCluster

	Oracle Database Appliance

First, we’ll discuss systems basics and the impact on performance.
 This portion of the chapter will be relevant for deploying commodity servers
 and storage, as well as providing a basis for understanding some of the
 optimizations provided by Oracle’s engineered systems. We’ll then provide an
 introduction to the varieties of Oracle engineered systems. When you
 complete this chapter, you should have a good understanding of the server
 and storage choices you have.
System Basics

We will begin with a review of the components that make up any hardware
 platform and the impact these components have on the overall platform.
 You’ll find the same essential components under the covers of any computer
 system:
	Nodes or systems consisting of CPUs (with multiple cores) for
 executing the basic instructions that make up computer programs and
 memory, storing recently accessed instructions and data

	Storage or storage cells that typically consist of a combination
 of disk storage and device controllers, sometimes also including PCI
 Flash (such as is present in Exadata Storage Server cells)

	Interconnects for distributing data to nodes and storage

	Network ports enabling connectivity for business usage and administration networks

The number, power, throughput, and capabilities of the individual
 components determine the ultimate cost and scalability of a system.
 Systems and nodes with more processors and cores are typically more
 expensive and capable of doing more work than systems and nodes with
 fewer; systems and nodes containing newer versions of components typically
 deliver superior capabilities at similar or lower price points than older
 versions.
Each system component has its own performance characteristics, including a time to access
 and transport data, or a latency cost. The latency cost of a component is the amount
 of latency the use of that component introduces into the system; in other words, how much
 slower each successive level of a component is than its previous level (e.g., Level 2 versus
 Level 1; see Table 12-1). Each component also
 has limited capacity and most components can use other resources when the demand for their
 capacity is exceeded.
The CPU and the Level 1 (L1) memory cache on the CPU have the
 lowest latency, as shown in Table 12-1, but also the least
 capacity. Disk has the most capacity but the highest latency. Note that
 the capacities for the storage components marked by the * are typical in
 balanced server and storage configurations optimized for
 performance.
Note
There are several different types of memory: an L1 cache, which is
 on the CPU chip; an L2 (Level 2) cache on the CPU surface, an L3 cache
 on the same board as the CPU (not as widely offered); and main memory,
 which is the remaining memory on the system accessible through the
 memory bus.

Table 12-1. Typical sizes and latencies of system components
	Element
	Typical storage
 capacity
	Typical
 latency

	CPU
	None
	None

	L1 cache (on each
 CPU)
	128 KBs
	1 nanosecond

	L2 cache (on each CPU
 surface)
	1.5 MBs
	4
 nanoseconds

	L3 cache (on each CPU
 board)
	12 MBs
	10
 nanoseconds

	Main memory (per
 node)
 Smart Flash Cache*
	100+ GBs
 0.5
 TBs
	75 nanoseconds

 50,000 nanoseconds

	Disk (per
 node)*
	10–50 TBs
	4-7 million
 nanoseconds

An important part of tuning any Oracle database involves reducing the need to read data
 from sources with the greatest latency (e.g., disk) and, when a disk must be accessed,
 ensuring that there are as few bottlenecks as possible in the I/O subsystem. As the Oracle
 database accesses a growing percentage of its data from memory rather than disk, the overall
 latency of the system is correspondingly decreased and performance is improved. The Smart Flash Cache in Exadata Storage Server cells is important in that it can
 transparently provide a cache for frequently accessed data in the storage tier of the
 platforms it is available for.
Today’s multicore processors, integrated circuits that contain
 multiple processors, enable simultaneous processing of multiple tasks.
 Processor developers are racing to provide more cores in CPUs to
 differentiate themselves.
Each thread in a server operating system can be used to support a
 concurrent process, which can execute in parallel. Oracle can determine
 the degree of parallelism when running DML, DDL, and queries based on the
 execution cost using the automatic degree of parallelism feature,
 described in Chapter 7. This adaptive
 multiuser feature makes use of algorithms that take into account the
 number of threads. Parallel statement queuing enabled using the Database
 Resource Manager can give the right priorities and number of parallel
 processes to consumer groups in complex multiuser environments. Additional
 tuning parameters can also affect parallelism, although the need for
 tuning of such parameters is much diminished in recent Oracle
 releases.
Symmetric Multiprocessing Systems and Nodes

Early systems, described as uniprocessor, contained single CPUs with their power
 limited by the ultimate speed of that processor—and all applications had
 to share this one resource. Symmetric Multiprocessing (SMP) systems were
 invented to overcome this limitation by adding CPUs to the memory bus
 and are common in today’s systems and nodes. Figure 12-1 represents such a
 node.
[image: Typical Symmetric Multiprocessing (SMP) node]

Figure 12-1. Typical Symmetric Multiprocessing (SMP) node

Each CPU has its own memory cache. Data resident in the cache of one CPU is sometimes
 needed for processing by a second CPU. Because of this potential sharing of data, the CPUs
 for such machines must be able to “snoop” the memory bus to determine where copies of data
 reside and whether the data is being updated. This snooping is managed transparently by the
 operating system that controls the SMP system. Oracle Standard Edition One, Standard
 Edition, or Enterprise Edition can be used on these platforms. SMP platforms have been
 available since the 1980s as midrange systems, primarily as Unix-based machines. Today, the
 most popular operating systems in this category are Linux and Windows variations, though
 Solaris, AIX, and HP-UX also remain popular. High-end systems and nodes feature CPUs
 containing high numbers of cores, larger L2 cache, a faster memory bus, and/or multiple
 higher-speed I/O channels. Each enhancement is intended to remove potential bottlenecks that
 can limit performance.
The number of CPUs possible in an SMP system or node is limited by
 scalability of the system (memory) bus. As more CPUs are added to the
 bus, the bus itself can become saturated with traffic between CPUs
 attached to the bus. Memory itself can now scale into the terabytes
 (TBs) on such systems.
Of course, the database must have parallelization features to take
 full advantage of the SMP architecture. Oracle operations such as query
 execution and other DML activity and data loading can run as parallel
 processes within the Oracle server, allowing Oracle to take advantage of
 the benefits of multiprocessor systems. Oracle, like all software
 systems, benefits from parallel operations, as shown by “Amdahl’s
 Law.”
	Total execution time = (parallel part / number of processors)
 + serial part

Amdahl’s Law, formulated by mainframe pioneer Gene Amdahl in 1967 to describe performance in mixed
 parallel and serial workloads, clearly shows that moving an operation
 from the serial portion of execution to a parallel portion provides the
 performance increases expected with the use of multiple processors. In
 the same way, the more serial operations that make up an application,
 the longer the execution time will be because the sum of the execution
 time of all serial operations can offset any performance gains realized
 from the use of multiple processors. In other words, you cannot speed up
 a serial operation or a sequence of serial operations by adding more
 processors.
Each subsequent release of Oracle has added more parallelized
 features to speed up the execution of queries as well as the tuning and
 maintenance of the database. For an extensive list of Oracle operations
 that can be parallelized, see the section What Can Be Parallelized? in Chapter 7.
Oracle’s parallel operations take advantage of available CPU
 resources. If you’re working with a system on which the CPU resources
 are already being completely consumed, this parallelism will not help
 improve performance; in fact, it could even hurt performance by adding
 the increased demands for CPU power required to manage the parallel
 processes. Oracle’s automatic degree of parallelism and management of
 consumer groups using the Database Resource Manager can help prevent
 this situation.

Clustered Solutions, Grid Computing, and the Cloud

Clustered systems have provided a highly available and highly scalable solution
 since initially appearing in the 1980s in a DEC VAXcluster
 configuration. Clusters can combine all the components of separate
 machines, including CPUs, memory, and I/O subsystems, into a single
 hardware entity. However, clusters are typically built by using shared
 disks linked to multiple “nodes” (computer systems). A high-speed
 interconnect between systems provides a means of exchanging data and
 instructions without writing to disk (see Figure 12-2). Each system or
 node runs its own copy of an operating system and Oracle instance.
 Grids, described later in this chapter, are typically made up of a few
 very large clusters.
[image: Typical cluster (two nodes shown)]

Figure 12-2. Typical cluster (two nodes shown)

Oracle’s support for clusters dates back to the VAXcluster. Oracle
 provided a sophisticated locking model so that the multiple nodes could
 access the shared data on the disks. Clusters require such a locking
 model because each machine in the cluster must be aware of the data
 locks held by other, physically separate machines in the cluster.
That Oracle solution evolved into Real Application Clusters (RAC), replacing the Oracle
 Parallel Server (OPS) that was available prior to
 Oracle9i. RAC is used when deploying the Oracle
 Database on generic Windows, Linux, or Unix-based clusters and on
 Oracle’s engineered systems. Oracle provides an integrated lock manager
 that mediates between different servers, or nodes, that seek to update
 data in the same block.
RAC introduced full support of Cache Fusion, where data blocks are shipped from one node’s cache to another,
 eliminating the latency of disk-based cache coordination. Cache Fusion is different from the
 standard locking mechanisms that are described in Chapter 8, in that it applies to blocks of data, rather
 than rows. The mediation is necessary since two different nodes might try to write to
 different rows in the same physical block, which is the smallest amount of data that can be
 used by Oracle.
Cache Fusion initially greatly improved performance for read/write
 operations compared to the previous OPS and later added improved
 performance for write/write operations in Oracle9i
 RAC. Today, Oracle supports Sockets Direct Protocol (SDP) and asynchronous I/O protocols, lighter-weight transports
 than those used in previous traditional TCP/IP-based RAC
 implementations, which resulted in lower resource usage and better
 performance for RAC systems. More recent database releases further
 improved performance, supporting faster interconnects such as InfiniBand
 using Reliable Datagram Sockets (RDS).
The “g” in Oracle nomenclature for Oracle Database 10g
 and Oracle Database 11g signified a focus on
 enabling grid computing. Grids are simply pools of
 computers that provide needed resources for applications on an as-needed
 basis. The goal is to provide computing resources that transparently
 scale to the user community, much as an electrical utility company can
 deliver power to meet peak demand by accessing energy from other power
 providers’ plants via a power grid. Computing grids enable this dynamic
 provisioning of CPU and data resources.
The Oracle Database with RAC forms the foundation for the provisioning of these
 resources. Today, such configurations are increasingly deployed in on-premise private clouds
 or to provide off-premise resources in public clouds. The “c” in Oracle
 nomenclature for Oracle Database 12c indicates Oracle’s growing focus here.
The Oracle Database with RAC forms the foundation used in
 provisioning of resources, enabling dynamic load balancing and workload
 management. Key features in Oracle Databases and related products
 further supporting such deployment models include:
	Pluggable Databases
	Introduced with Oracle Database 12c, this feature enables many
 pluggable databases (PDBs) to exist within single Oracle database occurrences (called
 multitenant container databases, or CDBs) and is useful when consolidating larger
 numbers of databases to a single platform than otherwise might be supported on a given
 platform configuration, provisioning of new databases, copying existing databases, and
 for fast patching and upgrades. Please refer to Chapter 2
 for a more detailed discussion of pluggable databases.

	Active Data Guard
	Active Data Guard is typically used for high availability implementations
 and enables the creation of farms of read-only databases. The Data
 Guard Broker enables creation, management, and monitoring of these
 configurations. Please refer to Chapter 11 for a more detailed
 discussion of Active Data Guard.

	GoldenGate
	GoldenGate enables replication of updates in near real-time
 among multiple databases. GoldenGate is also covered in more
 detail in Chapter 11.

	Enterprise Manager 12c
	Enterprise Manager 12c
 manages cloud and grid infrastructures from a central location, including
 Oracle RAC Databases, storage, Oracle Application Servers/Fusion Middleware, network
 services, and Oracle-engineered systems and storage. See Chapter 5 for a discussion regarding managing your Oracle database
 and engineered system using Enterprise Manager.

Disk and Storage Technology

The discussion of hardware architectures in this chapter has thus
 far centered on system resources such as CPUs, memory, and I/O
 subsystems, and noted that parallelism can take advantage of these
 resources. An important way to increase hardware performance is to tune
 for optimal I/O performance, which includes spreading data across disks
 and providing an adequate number of access paths to the data. Since
 access to disk has the greatest latency, another focus of I/O tuning is
 keeping as much data as possible retrieved from disk in-memory.
On systems designed for performance, disks are often directly
 attached to nodes or via a high-speed interconnect such as InfiniBand
 (in many of Oracle’s engineered systems). Network Attached Storage
 (NAS) and Storage Area Networks (SAN) provide cost-effective alternatives but with performance
 trade-offs. Disks are configured in a variety of ways for redundancy,
 eliminating the possibility of single points of disk failure resulting
 in loss of access to data.
Disk is commonly deployed in arrays, the industry standard being RAID (Redundant Array of Inexpensive/Independent Disks). You can use RAID as a
 part of any of the configurations we’ve discussed to provide higher performance and
 reliability. RAID disk arrays were introduced in this book in Chapter 7 and discussed in the context of their use in high
 availability scenarios in Chapter 11. Please refer to
 those chapters for more information about RAID. In addition, since Oracle Database
 10g, Automatic Storage Management (ASM) delivers much of the functionality of a RAID
 array, such as striping and mirroring, with a collection of commodity disks. ASM is further
 described in Chapter 5. The storage in an Oracle-engineered system
 running the Oracle database is typically mirrored once (e.g., two copies) for normal
 redundancy and twice (three copies) for a higher degree of redundancy.
Oracle9i first introduced table compression in the Oracle database
 as a means of decreasing disk storage requirements, primarily in data warehousing. Duplicate
 values in a data block are eliminated because values that are duplicated are stored in a
 symbol table at the beginning of the block, and all additional occurrences are replaced with
 a short reference to the symbol table. Oracle Database 11g introduced
 an Advanced Compression Option for insert, update, and delete operations important in OLTP operations. Data
 compression of three to four times is commonly observed today. Exadata Storage Servers added
 support for Hybrid Columnar Compression, described below. In addition to reducing disk
 storage, compressed data can also be advantageous for performance when it allows a set of
 data to fit entirely into cache (instead of requiring disk access).
Since disk capacities are constantly growing with newer disks available at lower cost,
 many organizations are now storing all relevant data online in disk storage for data
 warehousing and business intelligence implementations. Given that disks delivering the best
 performance are typically more expensive and of lower capacity, many now deploy such disks
 in combination with higher capacity but lower performing (and cheaper) disks for less
 frequently accessed data. Information Lifecycle Management (ILM) in the Oracle database, particularly the ILM Assistant (first made available in
 2007), provides the capability to manage such an environment.

Oracle’s Engineered Systems

Oracle refers to proper configurations—those that feature proper I/O
 (especially spindles that provide access paths to storage), memory, and
 CPUs—as balanced configurations. IT
 organizations found working with multiple hardware vendors in order to get
 proper storage configurations difficult. This led Oracle to develop
 reference configurations with several key hardware platform and storage
 vendors to help provide more accurate initial sizing.
However, many IT organizations still found integration of the components to be
 time-consuming, and such configurations often became unbalanced over time as server and
 storage modifications were made. As complexity grew, organizations also found the time to
 debug problems increasing partly due to multiple platform vendors being involved. Oracle came
 to realize the need to create and support engineered systems with predefined configurations
 and upgrade paths. The first such system introduced was the Oracle Exadata Database Machine.
 Today, Oracle offers a family of engineered systems that can be deployed as individual
 solutions or in combination. Our focus in this chapter is on engineered systems designed for
 the Oracle database.
All of the systems share some common traits. All are built from
 Oracle Sun servers that feature redundant power supplies and multiple
 interconnect and network connections. They feature GbE and 10 GbE ports
 providing connectivity to user networks. All of the Sun servers also
 feature Integrated Lights-Out Management ports that can send Automatic
 Service Requests to Oracle Support when components fail or are about to
 fail. The systems rely on RAC providing high availability for nodes and
 mirroring for high availability storage. All are managed using Oracle
 Enterprise Manager, including the hardware management extensions provided
 by Sun Operations Center components.
We’ll next explore some of the unique characteristics of each
 system.
Oracle Exadata Database Machine

As this edition of Oracle Essentials was published, the Oracle Exadata
 Database Machine was far and away the most popular Oracle-engineered system to deploy Oracle
 databases on. Initially introduced for data warehousing, Exadata is also widely used in
 hosting online transaction processing (OLTP) databases, and mixed workload databases, and as
 a consolidation platform where multiple OLTP and data warehousing databases are deployed. The systems are designed to
 run the Oracle Database 11g Enterprise Edition or more current
 releases. (The releases that are supported are dependent on Oracle database releases
 available when specific models were introduced. Upgrades to newer Oracle database releases
 are supported on older platforms.) The Linux operating system has proven to be the most
 popular choice on these platforms, though some models also support Solaris.
Details of the server and storage configurations change as Oracle releases new versions
 of Exadata. All Oracle Exadata Database Machine versions consist of Database Server nodes
 and Exadata Storage Server cells and house at least two InfiniBand switches. A third switch,
 called a spine switch, is provided on configurations designed to scale beyond a single Rack.
 The Database Server nodes are configured with two CPUs (especially appropriate for Oracle
 database applications that scale best with RAC) or eight CPUs (especially appropriate for
 database applications that scale best on SMP systems). Each node contains memory, local
 storage for the Oracle Database Server node software, InfiniBand, and Ethernet connections.
 Ethernet connections are used for administration (Exadata contains its own Ethernet switch
 for the administration network) and for user access to the databases. Eight dual-processor
 nodes or two 8-processor nodes make up a Full Rack configuration.
Exadata Storage Server cells each contain 12-high performance or
 high-capacity disk drives, Flash storage in the form of PCI cards, and
 InfiniBand connections. A Full Rack contains 14 Storage Server cells.
 With today’s disk capacities, a Full Rack can contain in excess of 500
 TB of disk. The Smart Flash Cache storage provides an intermediate area
 (measuring into the TBs) that is used by the database for a cache
 between memory and storage. Objects can be pinned into the Flash Cache
 using the ALTER TABLE statement. You can also create Flash Disks
 using this Flash Cache, keeping in mind that this is a volatile area (so
 a backup strategy should also be put in place). Figure 12-3 illustrates an Oracle
 Database Machine Full Rack configuration.
Where nodes containing two CPUs are deployed, partial Rack
 configurations are available in similar ratios of Database Server nodes
 to Exadata Storage Server cells as present in the Full Rack. For
 example, a Half Rack contains four Database Server nodes and seven
 Exadata Storage Server cells. For scaling beyond a single Full Rack, the
 InfiniBand spine switch in the Rack provides enough free ports for
 connecting up to eight Full Racks together without the need for another
 external switch.
The Exadata Storage Server software provides Oracle database optimization not available
 for non-Exadata storage devices. This software can implement smart scans, which occur in
 storage and utilize the CPUs and memory in the Exadata Storage Server cells for selection
 and other operations. Other Oracle database functionality is also pushed to the Exadata
 Storage cells and performed in parallel. Hybrid Columnar Compression (HCC) transparently organizes and stores data by table column increasing compression
 ratios, typically by 10 times for data warehouses, thus improving scans. Individual row
 organization is self-contained in compression units so minimal I/O is required to retrieve an entire row. In archival mode,
 compression ratios of 15 times are typical. During direct load operations, data is
 transformed into columnar format and compressed.
[image: Oracle Exadata Database Machine]

Figure 12-3. Oracle Exadata Database Machine

Other Exadata Storage Server software capabilities include smart
 scan offload for the aforementioned HCC, smart scan offload for tables
 with more than 255 columns, smart scan offload for encrypted tablespaces
 and columns, and offload to storage of data mining scoring and other
 statistics.
In addition to performance benefits obtained from the Exadata
 Server Software, faster querying of fully encrypted databases is
 possible because decryption processing is moved into the processors in
 the Exadata Storage Server cells. SQL monitoring support and I/O
 performance graphs for Exadata Storage are provided by Enterprise
 Manager Performance Diagnostics.

Oracle Exalogic

First introduced as Oracle’s Elastic Cloud platform, Oracle Exalogic is optimized to run
 applications, especially those that are built upon middle-tier Java servers. The Exalogic
 Elastic Cloud Software includes an Exalogic Base Image and System Utilities (device drivers,
 firmware, software libraries, and configuration files for Exalogic), an Oracle Traffic
 Director for load balancing, and an Oracle Virtual Assembly Builder with restricted use
 licenses of the WebLogic Server and Coherence. The Exalogic hardware features compute nodes
 and storage, an InfiniBand interconnect, and an Ethernet switch for administration. It has
 less disk capacity and Flash than Exadata and doesn’t contain Exadata Storage. Figure 12-4 illustrates an Oracle Exalogic configuration. Exalogic can
 be expanded to multiple racks.
[image: Oracle Exalogic]

Figure 12-4. Oracle Exalogic

Exalogic is often deployed to consolidate middle-tier WebLogic Servers to a single
 platform and as a frontend to Oracle Exadata Database Machines via InfiniBand or other
 servers via Ethernet. However, as Exalogic is deployed with either Linux or Solaris
 operating systems, it is sometimes used to also host Oracle databases, and some
 organizations use it to host both the middle tier and backend components of an
 application.

Oracle SuperCluster

The SuperCluster is designed to provide a general purpose engineered system to
 organizations that currently deploy or are planning to deploy Sun SPARC T-class platforms
 and the Solaris operating system. Similar to Exalogic, it can be used to host middle-tier
 applications and can run the Exalogic Elastic Cloud Software. Like the Oracle Exadata
 Database Machine, it features Exadata Storage Server cells and supports Oracle database
 versions that work with the Exadata Storage Server software. The SuperCluster also features
 fiber ports enabling the connection of SAN-based non-Exadata storage and can therefore run a
 wide variety of Oracle database versions that existed before Exadata. In addition, the
 system contains a ZFS Storage Appliance for near-line storage. Figure 12-5
 illustrates a typical SuperCluster configuration.
[image: Oracle SuperCluster]

Figure 12-5. Oracle SuperCluster

Similar to Exadata and Exalogic, the
 interconnect switch is InfiniBand and there is an Ethernet switch and network for
 administration. It can be expanded with additional SuperCluster Racks and Exadata
 Storage.
Thus, the SuperCluster supports the most varied types of use cases. It can provide a
 complete system in a smaller footprint than you can achieve with separate components. The
 trade-off is that the SuperCluster offers less flexibility in configuration options than
 choosing individual engineered systems that each have been targeted and optimized for unique
 workloads (e.g., Oracle database or middle tier).

Oracle Database Appliance

The Oracle Database Appliance (see Figure 12-6) is a much smaller configuration than the Oracle Exadata
 Database Machine or SuperCluster. It is designed to meet the database
 needs of mid-sized and smaller businesses or to serve as a departmental
 server. Consisting of two server nodes in a rack-mountable 4U chassis,
 the nodes are linked via redundant GbE connections. The system features
 a simple three-step installation process consisting of plugging in the
 power supplies, connecting the nodes into the network, and following a
 wizard-driven install when the nodes are first powered up.
The nodes each contain 10 disk drives for database data storage and 4 disk drives for
 redo logs. The nodes run the Linux operating system and each can run Oracle’s RAC One
 software, or more commonly are configured with Oracle RAC for scalability and availability.
 Unlike other engineered systems supporting the Oracle database, the Database Appliance
 cannot be scaled beyond the two server nodes. Exadata Storage Server software is not
 supported on the Oracle Database Appliance.
[image: Oracle Database Appliance]

Figure 12-6. Oracle Database Appliance

Other Engineered Systems

Oracle’s engineered systems extend beyond the four systems
 described above. Other systems are designed to support very different
 workloads from those typical in Oracle Databases. The Oracle Exalytics
 In-Memory Machine provides a large middle-tier memory footprint and
 large number of cores to drive advanced visualization and performance
 for Oracle’s Business Intelligence Foundation Suite. Exalytics can also
 be deployed as the platform under Oracle’s data discovery tool, Endeca,
 or to run the Hyperion Planning applications.
The Oracle Big Data Appliance is configured to deliver an optimal platform for
 Cloudera’s Hadoop distribution. Oracle’s NoSQL Database can also be
 deployed on this platform. Both Exalytics and the Big Data Appliance
 have InfiniBand interconnects that can provide linkage to Exadata, the
 SuperCluster, and Exalogic, building out an analytics footprint. We
 describe Oracle’s data warehousing and analytics footprint in much more
 detail in Chapter 10.

Choosing and Defining the Right Platform

As previously mentioned, choosing and defining the right custom platform can be difficult.
 Coordination among individuals skilled in server hardware, storage, networks, and Oracle
 database software is often a piecemeal undertaking requiring multiple iterations, sometimes
 only to be negated by budget limitations and policies. Where multiple vendors’ products are
 involved, arrival of ordered components is just the start of integration and testing. In most
 organizations, this process takes six to nine months, often with mixed results. When something
 breaks, problem resolution requiring the coordination of multiple vendors can also be
 time-consuming. We’ll cover justifying an Oracle-engineered system later in this section
 partly based on these considerations, but first we’ll touch on sizing and availability
 planning.
Sizing and Planning for Growth

Initial sizing and configuring of hardware platforms in most organizations is based on
 considering a combination of the following: data storage volume needs, performance required
 in order to solve business problems, matching IT service level agreements (SLAs) for both
 availability and performance, required memory where multiple Oracle databases are to be
 deployed, and costs of alternatives. Sizing a platform for a single transactional
 application or data warehousing workload can be readily accomplished by starting with a
 profile of the current workload characteristics and projecting future changes. Oracle has
 sizing tools for each of the engineered system platforms mentioned in this chapter and can
 assist in this exercise.
Sizing for platforms where multiple Oracle Databases are deployed can be trickier. For
 example, should the platform be sized around peak workloads in each Oracle database? Do the
 peak workloads occur at the same time in each database? Are availability requirements
 similar across the databases or very different? Depending on how you answer these questions,
 consolidation of multiple databases to a single system may be relatively easy or quite
 complicated.
As we noted in Chapter 5, Enterprise
 Manager provides access to a number of database utilities for managing
 concurrent workloads, including on platforms running multiple databases.
 Database server and connection pool configurations can help control
 resource utilization. The Database Resource Manager enables restriction of resources available to users by
 placing them in consumer groups with defined limitations. For example,
 placing upper limits on the Database CPU_COUNT will limit the number of
 CPU cores available for a single database instance, known as “instance
 caging.” The Database I/O Resource Manager is available for Exadata
 platforms and can segregate low-priority workloads from those of higher
 priority to keep them from flooding the disk queue when higher priority
 workloads are being executed. Quality of Service (QoS) management enables policy-driven resource allocation
 using data gathered from the entire Oracle stack, preventing such
 problems as memory starvation.
As you size your system, you are no doubt aware of the following
 truism—the longer you wait to buy your platform, the cheaper it will get
 for similar or even better levels of performance. According to Moore’s
 Law, credited by Intel to Gordon Moore in 1965 (and proven many times
 over since then), each chip will double in computing power every 18–24
 months, each time providing huge leaps in performance. Today, such
 performance increases are driven by increased clock speeds and the
 introduction of more cores in the processors, and have been demonstrated
 in configuration changes that have occurred on platforms such as the
 Oracle Exadata Database Machine.
This continual increase in performance characteristics often at
 little or no change in price is an ongoing fact of life in the computer
 hardware industry. You should buy what you need, when you need it, and
 plan for the obsolescence of hardware by recycling it into the
 organization for less demanding workloads when it no longer meets the
 needs of an individual application. For instance, today’s departmental
 server may turn into tomorrow’s web server. If you’ve deployed Oracle’s
 larger engineered systems, you have more flexibility since you can
 continue using older nodes and Storage Server cells as part of the
 existing computing footprint, either by filling out partially full Racks
 or connecting older Racks to new via InfiniBand.

Maximum Availability Architecture Considerations

While we have noted that there is a high degree of redundancy in
 engineered systems, configuring for planned and unplanned downtime is
 still a best practice. You should maintain separate development, test,
 and production systems in an enterprise class infrastructure. Where
 engineered systems are deployed, Oracle is able to monitor support
 requests across a large number of commonly configured systems in varied
 customers, and issue patches proactively in patch sets. The patch sets
 often fix problems you have not yet encountered, but it is a good idea
 to remain current as this will help you deliver much better levels of
 service. Typically, predefined suites of test cases are run on newly
 patched test systems before the patch sets are deployed into production.
 Oracle’s Real Application Testing tool can be useful here.
Chapter 11 covers high
 availability considerations in much more detail. Depending on business
 case, you might choose to simply deploy Real Application Clusters for
 high availability or develop a complete disaster recovery plan that
 includes Data Guard. Disaster recovery distances for Oracle-engineered
 systems connected by InfiniBand were limited to distances of 100 meters
 prior to the introduction of repeaters.
Part of such a strategy often includes additional hardware
 components including storage expansion racks and backup devices. For
 example, Exadata Storage Expansion Racks, holding up to 18 Exadata
 Storage Server cells, can be configured to support an online ILM
 deployment scenario when connected via InfiniBand to the Oracle Exadata
 Database Machine or SuperCluster. The Sun ZFS Storage Appliance provides
 “near-line” storage for RMAN-initiated backup and recovery and can
 provide over a petabyte of storage. When connected via InfiniBand, it
 has demonstrated NFS-based backup performance of over 20 TB per hour and
 restoration rates of over 9 TB per hour. Where larger capacities must be
 backed up, Oracle has tape libraries that can offer practical
 solutions.

Justifying an Oracle Engineered System

Engineered systems are generally implemented during deployment of new projects, to overcome
 issues caused by the current infrastructure, or for purposes of data center consolidation.
 Applications deployed on other platforms running Oracle can move unchanged onto Oracle’s
 engineered systems since the Oracle database versions are consistent and platform
 optimizations are transparent across the various Oracle-supported hardware platforms. So,
 Oracle mandates no special certification process for applications to run on the
 Oracle-engineered systems other than running on supported database versions for those
 platforms. A few applications providers have mandated their own certification process,
 however, and it is a good idea to check with your application providers regarding their
 policies and Oracle database versions supported.
Commonly cited reasons for choosing to deploy engineered systems
 instead of traditional commodity servers, storage, and components
 include:
	Reduced time to system delivery

	Improved Oracle database performance enabling new business revenue growth or cost
 savings

	Reduced total cost of power

	Reduced floor space footprint

	Reduced cost and complexity of management

	Improved time to problem resolution

Time to system delivery is essentially the time from system order to delivery and
 installation, typically about four to six weeks. This becomes especially important if
 delivery of the system will enable new business usage that drives revenue growth or cost
 savings, since the sooner these occur, the sooner return on investment can be reached. The
 packaging of multiple nodes and storage in single frames often reduces overall power
 consumption and floor space footprint in the data center. System management cost (and time
 to make changes) is reduced when database administrators take on the role of managing these
 systems via Enterprise Manager, including managing the Oracle Databases, operating system,
 and storage. As Oracle supports the entire footprint, time to problem resolution is also
 reduced, enabling an organization to better meet or exceed service level agreements.
Note
An interesting aspect of the engineered systems that contain
 CPUs in both the server nodes and Exadata Storage Server cells is how
 Oracle prices Oracle Database licenses. Only CPU cores on the server
 nodes count in the pricing equation. Of course, Exadata Storage Server
 software is priced separately, but many organizations find the
 trade-offs in license pricing and performance to be in their favor
 when comparing this model to their traditional commodity servers and
 storage.

A cost-benefit analysis is frequently part of the process of
 justifying the purchase and deployment of a new engineered system. Some
 or all of the potential benefits we just mentioned can lead to
 justification. However, your analysis should also include cost
 associated with change management and training that is common when
 moving to a new platform. It is likely that this process will go a long
 way toward determining whether an engineered system makes sense for your
 initiative.

Chapter 13. Oracle Distributed Databases and Distributed Data

Data in large and mid-sized companies can sometimes be spread over many different
 databases. The data can be on different servers running different operating
 systems or even different database management systems. The data needed to
 answer any specific business question may need to be accessed from more than
 one server. A user may need to access this separate data on several servers
 simultaneously, or the data required for an answer may need to be moved to a
 local server. Inserts, updates, or deletions of data across these
 distributed servers may also be necessary.
There are two basic ways to deal with data in distributed databases:
 as part of a single distributed entity in which the distributed architecture
 is transparent, or by using a variety of replication or data transportation
 techniques to create copies of the data in more than one location. This
 chapter examines these options and the technologies associated with each
 solution.
Of course, there can be performance challenges when there is a need to
 access data distributed among multiple databases, sometimes referenced as
 “federated databases,” and especially where databases from multiple vendors
 are mixed. Years of database query optimization techniques, developed for
 single databases, must be reproduced through custom programming to ensure
 reasonable performance. So, queries across federated databases are often out
 of necessity rather than by design. Such queries usually span databases in a
 way that was initially considered unlikely, but changing business needs
 force the data to be looked at differently. If such queries become a regular
 and troublesome occurrence, consolidation of the databases to a single
 database is likely a good topic to consider.
Accessing Distributed Databases

Users sometimes need to query or manipulate data that resides in multiple Oracle databases, or
 data in a mixture of Oracle and non-Oracle databases. This section describes a number of
 techniques and architectures you can use to interact with data in a distributed
 environment.
Distributed Data Across Multiple Oracle Databases

For many years, Oracle has offered access to distributed data residing on multiple
 Oracle Database servers on multiple systems, or sometimes distributed among various
 nodes. Users need not know the location of the data in distributed
 Oracle databases. Data is accessed using a unique identifier to a specific table name.
 Administrators can create simple identifiers so that data in an Oracle table in a separate
 machine can appear to users to be part of a single logical database.
Developers can create connections between individual databases by creating Oracle
 database links in SQL. These connections form a distributed database. The statement:
CREATE PUBLIC DATABASE LINK employees.northpole.bigtoyco.com
creates a path to a remote database table with Bigtoyco’s North
 Pole employees. Any application or user attached to a local employees
 database can access the remote North Pole database by using the global
 access name (employees.northpole.bigtoyco.com) in SQL
 queries, inserts, updates, deletions, and other statements. Oracle Net
 handles the interaction with any network protocols used to communicate
 with the remote database transparently.
Although the Oracle database link makes data access transparent to users, Oracle still
 has to treat interactions over distributed databases differently. When using distributed
 data in a query, the primary concern is to properly optimize the retrieval of data for a
 query. Queries in a single Oracle database are optimized for performance by the cost-based
 optimizer. Oracle can also perform global cost-based optimization for improvement of query
 performance across distributed databases. For example, the cost-based optimizer considers
 indexes on remote databases when choosing a plan, statistics on the remote databases, and
 optimizes for join and set operations to be performed, minimizing the amount of data sent
 between systems.
When a user wants to write data back to a distributed database, the solution becomes a
 bit more complicated. As we’ve mentioned before, a transaction is an atomic logical unit of
 work that typically contains one or more SQL statements. These statements write data to a
 database and must either be committed or rolled back as a unit. Distributed transactions can
 take place across multiple database servers. When distributed transactions are committed via
 the SQL COMMIT statement, Oracle uses a two-phase commit protocol to ensure transaction integrity and consistency across multiple
 systems. This protocol is further described as we describe two-phase commit below.

Access to and from Non-Oracle Databases

Oracle’s Gateways (illustrated in Figure 13-1) are Oracle software products that
 provide users with access to non-Oracle databases via Oracle SQL. Oracle SQL is
 automatically translated into the SQL of the target database, allowing applications
 developed for Oracle to be used against non-Oracle databases. You can also use native SQL
 syntax for the target database, which can be sent directly to the target without
 translation. Oracle datatypes such as NUMBER, CHAR, and DATE are converted into the
 datatypes of the target. Oracle data dictionary views are provided for target data store
 objects. Heterogeneous databases can also be accessed via Oracle database links to create a
 distributed database.
[image: Typical configuration and use of Oracle Gateways]

Figure 13-1. Typical configuration and use of Oracle Gateways

Key heterogeneous database connectivity support and options
 include:
	Heterogeneous Services
	Heterogeneous Services are included in the Oracle Database and determine optimal SQL for
 accessing remote databases. The Services work in tandem with Oracle Gateways.

	Open Database Connectivity
	Generic ODBC and OLE DB agents are commonly available for non-Oracle databases and are provided
 for the Oracle database by Heterogeneous Services.

	Oracle Gateways
	Oracle Gateways exist for non-Oracle data stores such as (IBM)
 Informix, Microsoft SQL Server, (SAP) Sybase, and Teradata. The
 DRDA Gateway provides access to IBM data stores via IBM
 Distributed Relational Database Architecture (DRDA) connections.

	Procedural Gateways
	Procedural Gateways implement remote procedure calls (RPCs) to applications built on non-Oracle data stores. The
 Gateway for APPC, the standard IBM protocol for RPCs, is used when
 Oracle applications need procedural access to applications built
 on CICS, DB2, IMS, VSAM, and other data stores on the mainframe
 and applications that use SNA LU6.2 to communicate to the
 mainframe. The Oracle Procedural Gateway for IBM WebSphere MQ
 allows Oracle-based applications to exchange messages with
 applications that communicate via IBM MQ (message queues).

Two-Phase Commit

One of the biggest issues associated with the use of distributed databases is the
 difficulty of guaranteeing the same level of data integrity for updates
 to distributed databases. Because a transaction that writes data to
 multiple databases must depend on a network for the transmission of
 information, it is inherently more susceptible to lost information than
 a single Oracle instance on a single machine. And since a transaction
 must guarantee that all writes occur, this increased instability could
 adversely affect data integrity.
The standard solution for this problem is to use two
 message-passing phases as part of a transaction commit; hence, the
 protocol used is referred to as a two-phase commit.
 The initiating database serves as a global coordinator and first polls
 each of the participants to determine if they are ready and then sends
 transactional updates to them. In the second phase, if all the
 participants are in agreement that the updates have properly occurred,
 the changes are committed. If any of the nodes involved in the
 transaction cannot verify receipt of the changes, the transactions are
 rolled back to their original state on all the nodes.
For example, if a transaction is to span databases A, B, and C, in
 the first phase of the commit operation, each of the databases is sent
 the appropriate transactional update. If each of these databases
 acknowledges that it has received the update, the second phase of the
 update executes the COMMIT command.
 By separating the transmission of the data for the update from the
 actual COMMIT operation, a two-phase
 commit greatly decreases the possibility of distributed data losing its
 integrity.
You can compare this approach to a single-phase update in which the COMMIT command is sent along with
 the transactional update information. There is no way of knowing whether the update ever
 reached all the databases, so any sort of interruption in the delivery of the update to any
 of the machines would cause the data to be in an inconsistent state. When a transaction
 involves more than one database, the possibility of the loss of an update to one of the
 databases increases greatly; that, in turn, mandates the use of the two-phase commit
 protocol. Of course, since the two-phase commit protocol requires more messaging to be
 passed between databases, a two-phase commit can take longer than a standard commit;
 however, the corresponding gain in all-important data integrity more than makes up for the
 decrease in performance.
In 1991, The Open Group defined an open systems standard interface known as X/Open
 eXtended Architecture (XA) for executing transactions including two-phase commit. XA-compliant transaction
 processing (TP) monitors communicate with XA resources, such as the Oracle database. Early
 examples of popular TP monitors that provided XA supported included Tuxedo, IBM’s CICS, and
 Encina. When Oracle acquired BEA in 2008, Tuxedo joined Oracle’s family of products.

Oracle Tuxedo

Where Oracle Tuxedo is deployed, distributed transaction applications
 can be developed in a variety of programming languages. Tuxedo can act
 as an ATMI (Applications to Model Interface) server where client applications written in C, C++, or
 COBOL can be deployed to make requests. Java ATMI (JATMI) extends the usefulness of these applications to Java
 programs. The programming model supports synchronous calls, asynchronous
 calls, nested calls, forwarded calls, conversational communication,
 unsolicited notification, event-based communication, queue-based
 communication, and using transactions for two-phase commit.
A Service Component Architecture (SCA) style of programming is often used. SCA composites are written in an XML-based
 format called the Service Component Definition Language that describes the components. SCA
 components can be configured as ATMI and JATMI clients, as workstation clients, as hosted in
 Tuxedo servers, or as web-service servers. Client security is offered through Tuxedo
 Application Domain Security and through Tuxedo Link-Level Security. Web service-based
 applications written in Python, Ruby, or PHP can be integrated with Tuxedo using the Oracle
 SALT (Service Architecture Leveraging Tuxedo). Coding using these languages can be advantageous compared to coding in C/C++
 since no compilation is required and dynamic data typing takes place.
CORBA applications development is another programming paradigm
 sometimes used, though Oracle’s CORBA Tuxedo Java Client and Tuxedo CORBA Java client ORB were deprecated as of Tuxedo 8.1. Tuxedo CORBA is limited
 to support for third-party object request brokers that implement
 standard IIOP.
A number of Oracle Tuxedo integration capabilities exist beyond those already mentioned.
 Oracle Tuxedo Jolt, a Java class library and API, enables the Oracle WebLogic Server to invoke ATMI services and provide Java client access to ATMI.
 Tuxedo .NET client support is offered. The Oracle Application Rehosting Workbench enables z/OS CICS applications to run unchanged through API emulation on Oracle
 Tuxedo. The MQ Adapter enables bi-directional connectivity to IBM WebSphere MQ
 queues.
Today, there are alternative means to assure reliable delivery of distributed
 transactions, a capability once available only with a TP monitor. In Chapter 9, we cover many of these capabilities
 provided by the Oracle database. Standalone TP monitors are also used less frequently today
 for workload management (see Figure 13-2) as
 applications leverage other features in middle-tier applications servers and clustered
 databases to better distribute the workload.
[image: Application server with TP monitor]

Figure 13-2. Application server with TP monitor

If you are still considering the use of TP monitors, you likely
 have one of these scenarios:
	Migration of legacy applications (usually originally written
 using CICS and COBOL for a mainframe) to Unix or Windows-based
 platforms

	Migration of older Tuxedo-based applications to a more modern footprint and current
 Tuxedo version

	Need for two-phase commits between Oracle and other
 XA-compliant databases

Next we will look at replication and how it has changed over the
 years in Oracle’s products. These approaches present one popular
 alternative to programming with TP monitors today.

Replication and Data Transport

The previous section discussed the use of multiple database servers
 acting together as part of a single logical database for users. In this
 section, we cover data replication and data transport in order to
 duplicate data.
Replication techniques are frequently used:
	When data available locally eliminates network bandwidth issues
 or contention for system resources

	When mobile database users can take their databases with them
 and operate disconnected from the network

	When redundant databases can help to deliver higher levels of
 reliability, as each database can be used as a backup for other
 databases

	During a database or application migration

In grid implementations, the ability to share resources across the
 grid of computer systems and databases can also require data to be
 replicated to multiple servers within the grid.
The biggest issue facing users of multiple identical or similar
 databases is how to keep the data on all of the servers in sync as the
 data is changed over time. As a user inserts, updates, or deletes data on
 one database, you need to have some way to get this new data to the other
 databases. In addition, you will have to deal with the possible
 data-integrity issues that can crop up if the changes introduced by
 distributed users contend with each other.
Oracle offered a number of strategies to address this situation over
 the years, including Advanced Replication in the Oracle Database, Oracle
 Advanced Queuing (AQ), and Streams. In Oracle Database 12c,
 some of Oracle’s features still leverage AQ and Streams under the covers.
 However, a number of years ago, Oracle began guiding its customers toward
 using Oracle GoldenGate for asynchronous replication and Data Guard for
 synchronous replication.
Replication Basics

The copying and maintaining of database tables among multiple
 Oracle Databases on distributed systems is known as replication. Changes that
 are applied at any local site are propagated automatically to all of the
 remote sites. These changes can include updates to data or changes to
 the database schema. Replication is frequently implemented to provide
 faster access for local users at remote sites or to provide a
 disaster-recovery site in the event of loss of a primary site.
A master database logs changes that are then applied to one or
 more targets. Synchronous replication is a
 means to guarantee zero data loss between the master and
 target database site since the replication is not considered complete
 until the target database is updated and acknowledges the update.
 Asynchronous replication is considered complete when the master is ready to forward
 the changes to the target, so there is usually a time lag between the
 master and the target being identical. Examples of asynchronous
 replication include read-only snapshots replicated from a single
 updateable master table to a target and disconnected updateable
 snapshots.
Multimaster replication introduces master groups where changes are logged at
 multiple locations. A more complex but potentially more highly available
 replication, multimaster replication solutions can handle conflict
 resolution scenarios to ensure consistency.

History of Oracle Replication Offerings

Oracle initially featured replication services as part of the Oracle database, and moved
 execution of replication triggers to the database kernel, enabling automatic parallelization
 of data replication to improve performance. Advanced Replication featured support for both
 asynchronous replication and synchronous replication and was capable of replication to
 non-Oracle databases through gateways. Multimaster replication was supported. Administrators
 configured database objects that needed to be replicated, scheduled replication, troubleshot
 error conditions, and viewed deferred transaction queues through Oracle Enterprise Manager.
 As of Oracle Database 12c, Advanced Replication was fully deprecated as
 an Oracle-supported feature, as its capabilities have been replaced by Oracle
 GoldenGate.
Message-oriented solutions gained popular
 usage since using messages to transmit information
 between systems doesn’t require the overhead of a two-phase commit.
 Control information (message destination, expiration, priority, and
 recipients) and the message contents are placed in a file-based queue.
 Delivery is guaranteed in that the message will remain in the queue
 until the destination is available and the message is forwarded.
Oracle’s Advanced Queuing (AQ) facility was introduced with Oracle8 Enterprise Edition and later became a part
 of Oracle Streams. The queues are stored in Oracle Database tables and the database enables queuing operations—in particular,
 enqueue to create messages and dequeue to
 consume them. These messages, which can either be unstructured (raw) or structured (as Oracle objects), correspond to rows in a
 table. Messages are stored in normal queues during normal message handling or in exception
 queues if they cannot be retrieved for some reason.
AQ also has publish-and-subscribe features for additional
 notification of database events that, in turn, improve the management of
 the database or business applications. Database events such as DML
 (inserts, updates, deletions) and system events (startup, shutdown, and
 so on) can be published and subscribed to. As an example, an application
 could be built to automatically inform a subscriber when a shipment
 occurs to certain highly valued customers; the subscriber would then
 know that she should begin to track the shipment’s progress and alert
 the customer that it is in transit.
Oracle9i Release 2 introduced Oracle Streams, which folded the
 capabilities of Advanced Replication and AQ into a single-product family and added a method
 of sharing data and events within a database or between databases. Streams enable the
 propagation of changes via a capture-and-apply process, including Oracle’s change data
 capture. Changes can be propagated between Oracle instances, from Oracle instances to
 non-Oracle instances (via Oracle Gateways), and from non-Oracle databases to Oracle (via
 messaging gateways in combination with custom code on the non-Oracle source to collect
 changes). Streams leverages log-based procedures to capture DML or DDL changes or
 synchronous capture for DML changes and then uses queuing procedures as part of the staging.
 User-supplied “apply” rules define consumption.
When changes are captured from an Oracle database redo log or changes in rows are
 gathered from synchronous capture, a background database process creates a logical change record (LCR). LCR and user message events are enqueued in a
 Streams queue. Events are propagated from source to target queues and then, via a background
 process, dequeued in the target database and applied. Since Oracle Database
 10g, downstream capture of changes and enqueue/dequeue of messages in
 batch are supported, and Streams can be configured to provide Database Change Notification
 via email, HTTP, and PL/SQL. This feature can send notifications to a client whenever the
 data in a query result set has changed.

Oracle GoldenGate

Shortly after Oracle acquired GoldenGate in 2007, Oracle began to provide guidance that it would become part of Oracle’s data
 integration middleware solution (Oracle Data Integrator Suite) and that organizations using
 Advanced Replication, AQ, and Streams should evaluate it as part of their go-forward
 strategy. Oracle then began adding features and functions present in earlier replication
 solutions that had been missing in GoldenGate. Today, GoldenGate supports replication to and
 from databases from multiple vendors including Oracle databases, Oracle TimesTen, Oracle
 MySQL, Microsoft SQL Server, IBM DB2, and others.
Data can be replicated using GoldenGate from a single source to a
 single target, a single source to many targets, many sources to a single
 target, many sources to many targets, and using cascading and
 bi-directional deployment models. GoldenGate provides conflict
 resolution in multimaster configurations where two systems can modify
 different instances of the same table.
Oracle GoldenGate is often used to provide near real-time updates. It can capture,
 route, transform, and deliver transactional data to other systems with subsecond latency
 (especially where minimal data transformations are required). It maintains atomicity,
 consistency, isolation, and durability (ACID) properties as transactions are moved between systems and ensures data
 consistency and referential integrity across multiple masters, backup systems, and reporting
 databases.
GoldenGate can be deployed in a variety of scenarios in addition
 to replication among transactional databases. As part of a data
 warehouse infrastructure, it can be integrated with Oracle Data
 Integrator Enterprise Edition for ETL and changed data can target
 staging tables.
Key components in Oracle GoldenGate include the Capture mechanism, Trail Files, the
 Delivery mechanism, and GoldenGate Manager. “Classic Capture” relies on access to
 transaction logs (in the case of Oracle or other databases such as Microsoft SQL Server, IBM
 DB2, and Sybase) or APIs (such as with Teradata). This Capture mode supports checkpoints,
 enabling restarts from the last good checkpoint. In “Integrated Capture Mode,” GoldenGate
 provides integration between GoldenGate Extract and the Oracle log mining server, enabling
 data to be received as Logical Change Records (LCRs).
Trail Files consist of changed data in the GoldenGate Universal
 Data Format. Trail Files exist on the source and are most often pumped
 to the target(s) using the GoldenGate Data Pump capabilities. Most
 often, data is transported using TCP/IP, though the Java Message Service
 (JMS) is also supported. Data can be compressed and encrypted (variable
 key length) during transportation.
On the Delivery side, transactional data is applied to the target
 database(s). This is where changed data is published to JMS or pushed to
 ETL tools. Changes can be applied immediately or on a deferred basis.
 Bounded recovery is supported.
The GoldenGate Manager provides a command line interface to set GoldenGate parameters, the capability
 to start, stop, and monitor the GoldenGate Capture and Delivery modules, event and threshold
 reporting, resource management, and Trail File management. The Management Pack for Oracle
 GoldenGate provides a monitor and plug-in for Oracle Enterprise Manager.
Oracle GoldenGate Veridata is an option for GoldenGate and is used
 to detect data discrepancies between databases. The databases might
 include Oracle and non-Oracle databases such as Teradata and Microsoft
 SQL Server. Administrators can pick and choose what data they want to
 compare between the various databases.
GoldenGate is paired with Data Guard for replication in high availability implementations
 where zero data loss is required. We covered high availability and
 introduced Data Guard and this concept in Chapter 11.

Global Data Services

Oracle Global Data Services (GDS), introduced in Oracle Database 12c, are used to integrate
 multiple replicated Oracle databases into a common configuration accessed by global clients.
 The GDS configuration acts as a single virtual server supporting one or more common
 workloads as global services. Optimal workload resource utilization is managed across the
 replicated Oracle databases. Key components in the architecture include Active Data Guard,
 Data Guard Broker, and GoldenGate.
GDS Oracle Databases that are managed by a common administrator are said to be in the
 same GDS pool. All Oracle databases providing the same global service(s) must be in the same
 pool.
GDS regions are typically geographically bounded. The Global
 Service Manager acts as a regional listener that clients use to connect
 to the global services they need. The Global Service Manager also
 provides service-level load balancing, failover, and centralized
 management of services. The metadata repository that stores GDS
 configuration and global service data is called the GDS catalog.

Data Transport Using Database Features

The previous sections focused on sharing data between distributed databases when the data is
 “live” by propagating changes among databases. Oracle also provides ways to speed up the
 distribution of data through the export and import of tablespaces, tables, or entire
 databases.
Transportable tablespaces are a way to
 speed up the distribution of complete tablespaces between
 multiple databases while the tablespaces are not active. They were
 introduced with Oracle8i Enterprise Edition to
 rapidly copy and distribute tablespaces among database instances.
 Previously, tablespaces needed to be exported from the source database
 and imported at the target (or unloaded and loaded). Transportable
 tablespaces enable copies to be moved simply through the use of file
 transfer commands such as ftp.
Transportable tablespaces have long been popular in data
 warehousing for copying from data warehouses to data marts. They’ve also
 been useful when used as backup copies for rapid point-in-time tablespace recovery.
Before you copy and move a copy of a tablespace, make sure the
 tablespace is read-only to avoid inadvertently changing it. Data
 dictionary information needs to be exported from the source prior to
 transfer, and then imported at the target. Cross-platform backups and
 restores using transportable tablespaces can be performed where Oracle
 Database 12c is deployed, somewhat simplifying data
 movement process across platforms.
Where transportable tables are used, they automatically identify the tablespaces used by
 the tables. In fact, you can use this feature to copy tables, partitions, or subpartitions
 from one database to another. When moving transportable tablespaces and tables among current
 Oracle Database releases, you must use the Oracle Data Pump (instead of the legacy import
 and export features of the Oracle database used prior to Oracle Database
 10g).
There are situations where you want to do a full transportable export and import of an
 Oracle database. You might do this when moving an Oracle database from an older computer
 system being retired to a new computer system. You might also use this capability during the
 upgrade to a newer Oracle database release (where the older release of Oracle is Oracle
 Database 11g Release 2 or later).
Similarly, where Oracle Database 12c is deployed, you might move an
 entire pluggable database (PDB) in an Oracle multitenant container database (CDB) into
 another PDB. You can also use Data Pump full transportable capabilities to move an Oracle
 database that is not a CDB (from Oracle Database 11g Release 2 or
 later) into an Oracle PDB.
If your replication needs allow it, you can also do a partition
 exchange, where a single partition of a table is moved to a target
 machine and then rapidly added to the table. This feature has similar
 characteristics to using transportable tablespaces, but typically
 requires a smaller amount of data, which reduces transmission times to
 the target database.

Chapter 14. Oracle Extended Datatypes

You might find that your data is diverse and extends beyond types of data typically
 found in most relational databases. Specialty databases, such as object
 databases and XML databases, emerged at various times to address these
 needs. As noted in Chapter 10, Hadoop and the
 Hadoop Distributed File System (HDFS) are popular as a data
 store and engine for unstructured and semi-structured data today.
Where most of the data to be processed is structured, it can make sense to do the processing
 of all of the data in the relational database. Earlier in Chapter 4, we covered the rich set of native datatypes in the Oracle database with a focus on what is
 required in traditional relational databases. Oracle also provides datatypes that are
 specifically designed to provide optimal storage, performance, and flexibility for other types
 of data—the focus of this chapter.
For example, object datatypes in Oracle can be used to represent purchase orders, claims
 forms, shipping forms, and so on in a single unified entity. The XML datatype and support for
 features such as XMLSchema, an XML DB repository (enabling URL-based access to XML documents
 stored in Oracle), and SQL/XML (for generating XML documents from SQL) extend Oracle’s ability
 to blend the relational database with characteristics of an XML database. Location-oriented data
 may best be represented using spatial coordinates stored in the Oracle database. Documents,
 images, video clips, and audio clips have their own special requirements for storage and
 retrieval and Oracle supports those as well.
Oracle extended the functionality of its basic relational database engine to support the
 storage and manipulation of these nontraditional datatypes through the introduction of
 additional features and options. By taking advantage of the extended types of data, extended SQL
 that manipulates that data, and the Oracle Extensibility Architecture framework, you will find
 even greater flexibility in how you might deploy and use the Oracle database.
Object-Oriented Development

An object-oriented approach to software development shifts
 focus from building computing procedures that operate on sets of data to
 modeling business processes. Building software components that model
 business processes with documented interfaces makes programming more
 efficient and allows applications to offer more flexible deployment
 strategies. It also makes applications easier to modify when business
 conditions change. In addition, since the modeling reflects real business
 use, application performance may improve as objects are built that do not
 require excessive manipulation to conform to the real-world behavior of
 the business processes they represent.
Oracle took an evolutionary approach to object technology by
 allowing data abstraction, or the creation of
 user-defined datatypes as objects and collections as extensions to the
 Oracle relational database. The objects and extensibility features date
 back to the late 1990s in Oracle8i, enabling Oracle
 to provide object-relational capabilities.
The Java language support in the Oracle database complements this approach. The JVM feature is a Java Virtual Machine integrated with Oracle. It supports the
 building and running of Java components, as well as Java stored procedures and triggers, in
 the server.
The Promise of Code Reuse
Although a number of object-oriented approaches and technologies have been introduced over several
 decades, many of the promised improvements in software development efficiency have largely
 been unrealized. One of the reasons that these productivity improvements have failed is the
 difficulty many developers have had in making the adjustment to building reusable
 components. In addition, the need to learn new languages (such as C++) and technologies
 (object-oriented databases, CORBA, DCOM, and .NET) slowed the adoption of object-oriented
 development. Developers did become more familiar with these techniques and skills as Java
 moved into the mainstream of development. Interestingly, Oracle leverages many of these
 object capabilities in the Oracle database in development of new extensions.

Object-Relational Features

This section describes the major object-relational features
 available in Oracle.
Objects in Oracle

Objects created in Oracle are reusable components representing real-world
 business processes. The objects created using the database objects and
 extensibility features occupy the same role as the table in a standard
 relational model: the object is a template for the creation of
 individual “instances” of the object, which take the same role as rows
 within a table. An object is “instantiated” using Oracle-supplied
 “constructors” in SQL or PL/SQL.
An object consists of a name, one or more
 attributes, and methods. Attributes model the structure and state of the real-world entity,
 while methods model the operations of the entity. Methods are
 functions or procedures, usually written either in
 PL/SQL or Java or externally in a language such as C. They provide an
 interface between an object and the outside programming environment.
 Each method is identified by the name of the object that contains the
 method and a method name. Each method can have one or more parameters, which are the
 vehicles for passing data to the method from the calling
 application.
For example, a purchase order can be represented as an object.
 Attributes can include a purchase order number, a vendor, a vendor
 address, a ship-to address, and a collection of items (with their
 associated quantity and price). You can use a method to add an item to
 the purchase order, delete an item from the purchase order, or return
 the total amount of the purchase order.
You can store objects as rows in tables or as values in columns.
 Each row object has a unique object identifier (OID) created by Oracle. Row objects can be referred to from
 other objects or relational tables. The REF datatype represents such
 references. For column objects, Oracle adds hidden columns for the
 object’s attributes.
Object views provide a means of creating virtual object tables from data stored
 in the columns of relational tables in the database. These views can
 also include attributes from other objects. Object views are created
 by defining an object type, writing a query defining the mapping
 between data and tables containing attributes for that type, and
 specifying a unique object identifier. When the data is stored in a
 relational table, the unique identifier is usually the primary key.
 This implementation means that you can use object-oriented programming
 techniques without converting existing relational tables to
 object-relational tables. The trade-off when using this approach is
 that performance may be less than optimal, since the data representing
 attributes for an object may reside in several different tables.
 Hence, it may make sense to convert the relational tables to object
 tables in the future.
Objects that share the same attributes and methods are said to
 be in the same datatype or class. For example, internal and external purchase orders can be in
 the same class as purchase orders. Collection
 types model a number of objects of the same datatype as
 varying arrays (VARRAYs) if the collection of objects is bounded and ordered or
 as nested tables if the collection is unbounded and unordered. If a
 collection has fewer than 4,000 bytes, it is stored in a VARRAY as
 part of the database table column as a raw value; if it is larger, it
 is stored as a Binary Large Object (BLOB) in a segment separate from
 the table that is considered “out-of-line” storage. Nested table rows
 are stored in a separate table identified through a hidden
 NESTED_TABLE_ID by Oracle. Typically, VARRAYs are used when an entire
 collection is being retrieved and nested tables are used when a
 collection is being queried, particularly if the collection is large
 and only a subset is needed.
An application can call object methods through SQL, PL/SQL, Pro*C/C++, Java, OCI, and
 the Oracle Type Translator (OTT). The OTT provides client-side mappings to object
 types by generating header files containing C structure declarations and indicators.
 Developers can tune applications by using a client-side object cache to improve performance.
Inheritance, or the use of one class of objects as the basis for
 another, more specific class, is one of the most powerful features of
 object-oriented design. The child class inherits all the methods and
 attributes of the parent class and also adds its own methods and
 attributes to supplement the capabilities of the parent class. The
 great power of inheritance is that a change in a parent class
 automatically ripples down to the child classes. Object-oriented
 design supports inheritance over many levels of parent, child, and
 grandchild classes.
Polymorphism allows handling of multiple datatypes and methods through a common
 interface. Polymorphism overriding describes the ability of a child
 class to supersede or “override” the operation of a parent method by
 redefining the method on its own. Once a method has been replaced in a
 child class, subsequent changes to the method in the parent class
 don’t ripple down to the child class or its descendants. In the
 purchase order example, as shown in Figure 14-1, purchase orders from
 contracted suppliers and suppliers not under contract inherit the
 methods and attributes of external purchase orders. However, the
 procedure for placing the order can exhibit polymorphism because
 additional approvals may be required for ordering from suppliers not
 under contract.
[image: Purchase order class hierarchy]

Figure 14-1. Purchase order class hierarchy

Inheritance and polymorphism were not supported in
 Oracle8i objects, though the
 Oracle8i database could act as persistent storage
 for objects, and an application interface in an object-oriented
 language such as C++ or Java could add these features to the
 client-side implementation of objects. Oracle9i
 added SQL-type inheritance to the database, as well as object view
 hierarchies, type evolution, generic and transient datatypes,
 function-based indexes for type method functions, and multilevel
 collections. Oracle Database 10g added support
 for remote access to object types and Oracle Database
 11g added an ANSI SQL feature that provided a
 method invocation scoping operator.

Other extensibility features

Several other extensibility features are included among the
 objects and extensibility features. These include:
	The ability to create new indexes on object tables

	The ability to store the index data inside or outside the
 Oracle Database

	The ability to create user-defined constructor functions for
 creating and initializing user-defined types

	The ability to create user-defined aggregate functions for
 use in standard SQL statements

	An interface to the cost-based optimizer to extend support
 for user-defined object types and indexes

The use of object-relational features is most common today among software developers
 who are building database extensions. As we noted earlier, Oracle itself has made use of
 these features in the creation of many of the database features—for example, in the
 spatial and multimedia capabilities. These capabilities are discussed in more depth later in this
 chapter.

Java’s Role and Web Services

Java has gained wide acceptance as an application language due to
 its portability and availability on a wide variety of platforms.
For Java developers wanting to use the Oracle database as a backend to their
 applications, Oracle offers support for the two common approaches for accessing it from a
 Java program: JDBC and SQLJ. Both of these approaches are based on industry-standard application programming interfaces (APIs):
	JDBC
	More commonly used since it can be used where SQL is
 dynamic, or when a developer wants explicit control over
 interactions with the database.

	SQLJ
	Used when static SQL statements are embedded into a Java program.
 SQLJ is similar to other Oracle precompilers in that Java source
 files are created with calls to the SQLJ runtime (as well as to
 additional profile files). The Java source code is then compiled,
 and the application is run with the SQLJ runtime library.

SQLJ and JDBC can be mixed in the same program when some SQL is
 static and other SQL is dynamic.
Oracle features a tightly integrated Java Virtual Machine and support for Java stored
 procedures in the Oracle database; these enable component-based development to take place
 through the use of JavaBeans. Java Messaging Support (JMS) is provided through Oracle Streams when deployed in the database.
The Oracle database can act as a Web Services consumer or provider and can be exposed using JPublisher, Oracle’s utility for generating Java classes that represent
 user-defined database entities. Web services capabilities in the Oracle database include
 SQL, PL/SQL, embedded Java, JDBC, HTTP client, and SOAP client, and are combined with those
 in Oracle Application Server (Java, J2EE, JDBC, HTTP, SOAP server, and XML). The latest
 releases of the APEX Listener and Oracle Application Express also support the easy creation and use of RESTful Web
 Services, which are described in more detail in Chapter 15.
As of Oracle Database 11g, the database can
 be treated as a service provider in a service-oriented architecture (SOA) environment using
 the XDB HTTP Server for SOA. PL/SQL packages, procedures, and
 functions can be exposed as Web Services. Dynamic SQL and XQuery queries
 can be executed when deploying the database in this manner.

JavaBeans

Java software components are referred to as JavaBeans (and sometimes referred to as Enterprise JavaBeans or EJBs when server-side). JavaBeans can be deployed in the
 Oracle database server or in the Oracle Fusion Middleware application server. The Java
 Virtual Machine in the database makes use of Oracle System Global Area (SGA) memory management capabilities to provide JavaBeans
 scalability beyond what would be expected in most JVM implementations. For example, each
 client within the JVM requires only about 50–150 KB of memory for session state.
Oracle8i introduced the session bean to the database,
 created by a specific call from the client and usually existing only
 during a single client/server session. Session beans may be
 stateless, allowing the server to reuse instances of the bean to service
 clients, or stateful (i.e., bound to clients
 directly). Database cache information maintained by stateful session
 beans is synchronized with the database when transactions occur by using
 JDBC or SQLJ. Entity Java beans, also known as persistent beans
 (because they remained in existence through multiple sessions), were
 introduced in Oracle9i but were later replaced by
 Java persistence API entities. Today, the other type of bean available is the message-driven bean,
 designed to receive asynchronous Java Message Services (JMS) messages
 and supported via Oracle’s more recent Applications Servers.

Extensibility Features and Options

Oracle’s extensibility features and options extend SQL and storage
 to perform tasks that can’t otherwise easily take place in relational
 databases, including manipulation of multimedia, text, XML data, and
 spatial and graph data. These features are often used by application
 developers. Some are key enablers to applications sold by Oracle and its
 partners.
Oracle Multimedia

Oracle Multimedia, formerly known as interMedia, is included with all editions of the
 Oracle database with the exception of the Express Edition. It is used to store, manage, and
 retrieve multimedia data including:
	Audio data
	Media data produced by an audio recorder or audio source are
 supported in the following audio file and compression formats:
 3GP, AIFF, AIFF-C, AU, MPEG, Real Networks Real Audio (RMFF), WAV,
 and Windows Media ASF

	DICOM data
	Medical image information objects encoded according to DICOM
 standards with methods and functions to copy and process this
 content into DICOM (Oracle Database 12c adds
 support for the DICOM communications protocol used in the exchange
 of DICOM images) and other image formats (JPEG, GIF, PNG, TIFF)
 and video formats

	Image data
	Data produced by scanners, video sources, other image
 capture devices, or programs producing image formats are supported
 in the following image file formats: BMPF, CALS, FPIX, GIFF, JFIF,
 PBMF, PCXF, PGMF, PICT, PNGF, PNMF, PPMF, RPIX, RASF, TGAF, TIFF,
 and WBMP; and supported in the following image compression
 formats: none, JPEG, JPEG-PROGRESSIVE, BMPRLE, PCXRLE, SUNRLE,
 TARGARLE, GIFLZW, GIFLZW-INTERLACED, LZW, LZWHDIFF, FAX3, FAX4,
 HUFFMAN3, PACKBITS, DEFLATE, DEFLATE ADAM7, ASCII, and RAW

	Video data
	Data produced by video recorders, video cameras, digitized
 animation, or other video devices or programs producing video
 formats are supported in the following formats: Apple QuickTime
 3.0, Microsoft Video for Windows (AVI), Real Networks Real Video
 (RMFF), 3GP, Video MPEG, and Windows Media File Format
 (ASF)

	Heterogeneous data
	Assorted audio, image, video, and other data in a variety of
 formats such as those previously listed

The JVM for Multimedia in the Oracle database provides a server media parser and an
 image processor. Five object relational types, collectively known as ORDSource, store data
 source information: ORDAudio (for audio multimedia), ORDDoc (for heterogeneous multimedia),
 ORDImage (for image multimedia), ORDVideo (for video multimedia), and ORDDicom (for DICOM
 image multimedia). In Oracle Database 12c, Multimedia can also be
 deployed to pluggable databases (PDBs). Oracle Fusion Middleware provides access to
 Multimedia through Oracle Java Multimedia classes.
Multimedia files are typically loaded into the Oracle database using SQL*Loader or
 PL/SQL scripts. They are stored as Multimedia object relational types or directly in BLOBs
 or BFILEs. Applications access multimedia data via the Multimedia Java API. You might also
 stream content via plug-ins, integrate multimedia into web applications using the Multimedia
 Servlets and JSP Java API class library, or use the Java Advanced Imaging (JAI) classes to
 interface to BFILE and BLOB data. Other Multimedia Java class libraries that are used in
 building applications include the Oracle Multimedia JSP tag library, DICOM Java API class
 library, and Mid-Tier Java API Class library.

Oracle Text

Oracle Text enables document and catalog retrieval and viewing, indexing, searching for words, and
 theme determination and classification. Text is included with all editions of the Oracle
 database. Documents accessed through Oracle Text might be stored in the Oracle database, in
 file systems, or on the Web. The Text SQL API supports creation and maintenance of Oracle
 Text indexes and enables searches that can be combined with other database searches. You can
 also manage the indexes through the Text Manager in Oracle Enterprise Manager.
Queries submitted that include text in the Oracle Database are
 optimized by Oracle’s cost-based optimizer. You can also use the CONTEXT
 index type to build web query applications using PL/SQL Server Pages (PSPs) or Java Server Pages (JSPs).
Typically, text that is searched includes HTML tagged documents or
 XML documents. You can also perform name searching and matching.
 Thesauruses can be created, modified, deleted, imported, and exported
 using Oracle Text.
Oracle Text supports the building of document classification
 applications that will perform an action based on content in the
 documents. Classification applications can be rule-based (where you
 formulate rules that define the classifications), supervised (using
 automated rule writing functions), and unsupervised automated
 clustering.

XML DB

XML DB is a term for a group of XML features that were first introduced as part of
 Release 2 of Oracle9i and is included with all editions of the Oracle
 database. XML DB provides support for the World Wide Web Consortium (W3C) XML Schema used to
 specify the structure, content, and semantics of an XML document. As of Oracle Database
 12c, XML DB is a mandatory part of the Oracle database installation.
 XML DB and the XMLType abstract datatype are what combine to make the Oracle database
 XML-aware. XML processing performance in Oracle is improved by XML storage optimization,
 reduced memory overhead, reduced parsing, optimized node searching, XML schema optimization,
 and load balancing through cached XML schema.
The XML DB Repository enables organizing of XML data via files and folders
 (directories, containers) in a hierarchy and provides a model of
 traversing paths and URLs when accessing this data. Oracle Database
 12c extended access from the XML DB Repository into
 the Oracle Database File System (DBFS) files and folders. The Repository secures access and
 manipulation control is through the use of Access Control Lists (ACLs). Repository documents can be
 accessed via HTTP(S), WebDAV and FTP, and SQL via Oracle Net Services
 including JDBC. XML messaging is supported thorough Web Services and
 Oracle Streams Advanced Queuing (AQ).
The XMLType datatype indicates to the Oracle database that the data is XML data, so that
 specific XML data operations, such as those initiated by XQuery or are XPath-based, can be
 performed. The default storage type in the Database for XMLType is binary XML storage (since
 Oracle Database 11g Release 2) and is stored using large objects (LOBs). XMLIndex is used to index data stored in binary XML.
XQuery is the W3C language used in querying and updating XML
 data. XPath is a subset of the XQuery language. Oracle Database
 12c added the XQuery update capability as well as
 XQuery Full Text and the XQuery API for Java (XQJ).
XML DB also provides the SQL functions that are defined by the
 SQL/XML standard. These functions provide the capability to generate or
 publish XML data from the result of a SQL query and also query and
 access XML data via SQL. They use the XQuery or XPath functions to
 search XML documents and access a subset of an XML document.
Programmatic access to XML DB is available using Java, PL/SQL, and
 C. Available APIs for XMLType include the Document Object Model (DOM),
 XML Parser, and the XSLT Processor APIs. Web-based applications can be
 built using servlets and Java Server Pages (JSPs), and using the
 Extensible Stylesheet Language (XSL) and XML Server Pages (XSPs).

Oracle Spatial and Graph Option

The Spatial and Graph Option (formerly Oracle Spatial Option) for the Oracle Database Enterprise Edition
 provides the following:
	Spatial Data Extended Support
	Spatial functions and GeoRaster types useful for defining
 topology data maps and building advanced geographic information system (GIS) and
 location-based services applications

	Network Data Model Graph
	Support for modeling and analyzing link-node graphs in the
 database useful in transportation modeling and similar
 applications

	Semantic Database Management
	Support for W3C Resource Description Framework
 (RDF) semantic graphs and Web Ontology Language
 (OWL)

Spatial data can be most simply defined as data that contains location information.
 Spatial data support has existed in the Oracle database for decades. The Oracle Spatial and
 Graph Option provides functions and procedures used to enable spatial data applications and
 is only available for Oracle Enterprise Edition.
Spatial queries can combine spatial and standard relational
 conditions, a typical example being “find all homes within two square
 miles of the intersection of Main Street and First Avenue in which the
 residents’ income is greater than $100,000, and show their location.”
 This query might return a list of home addresses or, when used with a
 Geographic Information System (GIS), plot the home locations on a map,
 as shown in Figure 14-2.
 Geocoding matches references such as addresses, phone numbers
 (including area codes), and postal codes (with longitude and latitude),
 which are then stored in the database.
[image: Geographic Information System display of a spatial query]

Figure 14-2. Geographic Information System display of a spatial
 query

Multiple geometric forms are supported by the Oracle Spatial and
 Graph Option to represent many different types of spatial data,
 including points and point clusters, lines and line strings, polygons
 and complex polygons with holes, arc strings, line strings, compound
 polygons, and circles. Oracle Database 12c adds
 support for nonuniform rational B-spline (NURBS) curve geometries that
 allow representation of arbitrary shapes. You can determine the
 interaction of these features through the use of operators such as
 TOUCH, OVERLAP, INSIDE, and DISJOINT.
Data that shares the same object space and coordinates but
 represents different characteristics (such as physical and economic
 information) is often modeled in layers. Each layer is divided into
 tiles representing smaller subareas within the larger area. A
 representation of this tile is stored with a spatial index that provides
 for quick lookups of multiple characteristics in the same tile. The
 Spatial and Graph Option uses these representations to rapidly retrieve
 data based on spatial characteristics. For example, you can perform a
 query against a physical area to examine where pollutants, minerals, and
 water are present. Each of these characteristics is likely to be stored
 in a separate layer, but they can be quickly mapped to their common
 tiles. The designers of these spatial-based databases can increase the
 resolution of the maps by increasing the number of tiles representing
 the geography.
The Spatial and Graph Option fully leverages Oracle’s object
 features through the use of a spatial object type
 that represents single or multi-element geometries. Spatial
 coordinates are stored in VARRAYs.
Support for GeoRaster data has existed since Oracle Database
 10g and enables storing, indexing, querying,
 analyzing, and delivering raster image data, associated spatial vector
 geometry data, and metadata. This feature enables storage of
 multidimensional grid layers and digital images in object-relational
 schema that are referenced to coordinate systems. Oracle Database
 11g added three-dimensional geometry objects and
 enhanced Web Services support including business directory, Web Feature Service (WFS), Catalog Services for the Web
 (CSW), and OpenLS support. Oracle Database
 12c adds support for raster algebraic expressions
 and analytics as well as support for advanced image processing. Examples
 of the advanced image processing now supported include advanced
 georeferencing, reprojection, rectification, orthorectification, raster
 update, raster appending, large-scale physical mosaics, virtual mosaics,
 and ad hoc spatial queries over virtual mosaics.
In the real world, most spatial implementations aren’t
 custom-built from SQL, but instead utilize purchased GIS solutions that
 are built on top of databases. Many of these GIS providers include
 Oracle Spatial and Graph Option technology as part of their product
 bundles.
Support for the Network Data Model Graph was first added to this option in Oracle Database
 11g for defining and modeling of nodes, links,
 paths, subpaths, logical networks (without geometric information), and
 spatial networks. Oracle Database 12c adds support
 for modeling objects of interest as features in the Network Data Model
 and for multimodal (e.g., multiple modes of transportation) and temporal
 modeling support.
Support for semantic graph data (RDF and OWL) was also first
 introduced in this option for Oracle Database 11g.
 Simply put, the RDF model is a means of representing URI references as
 subjects, objects, and predicates for processing. OWL is a semantic
 markup language for publishing ontologies on the Web and is an extension
 of RDF. Oracle added some additional capabilities to Oracle Database
 12c to enable user-defined rule-based inference and
 querying, ladder-based inference, and RDF views.

The Extensibility Architecture Framework

It is possible to extend the basic functionality of the Oracle database using Oracle’s Extensibility
 Architecture framework. The framework provides entry points for developers to add features to
 the existing database feature set. Using this framework you can:
	Create new relational or set operators for use in SQL
 statements
	These operators can be useful when working with extended
 datatypes, such as multimedia or spatial data. You can create
 relational operators that relate specifically to a particular
 datatype, such as the relational operator CLOSER TO, which you can
 use in SQL statements that access spatial data.

	Create cooperative indexing
	Cooperative indexing is a scheme in which an external
 application is responsible for building and using an index structure
 that you can use with complex datatypes. The indexes created are
 known as domain indexes.

	Extend the optimizer
	If you use extended indexes, user-defined datatypes, or other
 features, you can extend the statistics-collection process or define
 selectivity and cost functions for these extended features. The
 cost-based optimizer can then use these to choose an appropriate
 query plan.

	Add cartridge services
	These are services used by Oracle database extensions (such as spatial), providing
 memory management, context management, parameter management, string and number
 manipulation, file I/O, internationalization, error reporting, and thread management.
 These services are available to software developers to provide a means to create uniform
 integration of extensions with the Oracle database.

When you add and extend database functionality through the
 extensibility framework, you can still take advantage of core database
 features, such as security management, backup and recovery, and SQL.

Chapter 15. Oracle and the Cloud

In the first four editions of this book, this final chapter was
 something of a catch-all. We spent the previous 14 chapters outlining and
 hopefully illuminating the principles and processes that worked together to
 produce the Oracle database. This chapter would cover a number of things
 that did not fit into the overall structure of the book, but were still
 important enough that most Oracle practitioners would want and need to
 understand them.
With this edition, we can finally pull most of these separate parts together as we describe
 the Oracle database in the cloud. This chapter will cover some important, and frequently
 misunderstood, basics about the different varieties of cloud computing, describe the various
 options for using the Oracle database in the cloud, and look at the Oracle Database Cloud and
 your options for building your own Oracle Database Cloud in more depth.
Cloud Definitions

No doubt about it, at the time of this writing, the cloud is mentioned everywhere—it’s the hottest
 IT-related buzzword since the realization of the Internet. But there is a curious phenomenon
 associated with many people’s view of the cloud—they somehow think that there is a unitary
 class of products and offerings that are all, more or less, comparable.
Of course, this view does not add much clarity to any consideration of the cloud; after
 all, what does the Apple iCloud storage have in common with http://www.Salesforce.com’s
 CRM solution? Before we can talk about Oracle and the cloud in any meaningful way, we should
 go over a few basic cloud definitions.
Common Characteristics

Virtually all cloud offerings have some common characteristics, which account for both their appeal and their
 challenges:
	Subscription model
	The key driver for cloud computing is cost savings, and the key factor in that
 cost savings is the subscription model. Normally, you would use a large portion of
 your IT budget for initial capital expenses, including purchasing and installing
 hardware and a variety of system software, as well as the software you will be using
 for a particular project. With a subscription model, you simply pay as you go, with no
 (or relatively few) initial costs. Subscription models also include the ability to
 cancel at any time, although over time you may end up spending more overall when you
 rent rather than buy your IT
 resources.

	Rapid time-to-value
	This somewhat vague phrase is meant to encompass a wide range of features that,
 taken together, mean that you can get to your desired end result of a cloud-based solution faster. This characteristic includes
 rapid, self-service provisioning, highly efficient configuration and deployment
 capabilities, and a variety of ways of increasing your operational productivity. All
 in all, it means the time from starting on a project to realizing business value from
 that project is significantly reduced, increasing the value of the cloud for you and
 your customers or business users. As the initial capital expenditure disappears in the
 cloud, so too does the initial setup delays to prepare an appropriate
 environment.

	Universal access
	Although universal access has been around, in various forms, for awhile, the cloud
 essentially demands that you use Internet protocols to access the computing resources
 of the cloud. The use of the Internet as the communications level of the cloud has
 implications for the Oracle database, as you will see later in this chapter, but this
 type of access also has the important effect of making the location of cloud resources
 transparent. You should not really care where these resources are located, which means
 cloud vendors can use less costly locations for their infrastructure. There are
 significant and real factors that undercut this transparency, such as regulatory
 requirements and latency caused by distance, but the basic idea of transparency is
 central to a cloud solution. In the current environment, universal access also means
 access to the same systems from a variety of devices, from personal computers to
 tablets to mobile devices. Once this type of interface transparency is built into your
 cloud systems, you have guarded against obsolescence caused by any new platforms and
 user interfaces in the future.

	Elasticity
	One of the key factors for the cloud is the ability to scale usage of resources up
 and down. The subscription nature of the cloud means that you will only pay for those
 resources you use, so this elasticity is reflected in more efficient use of resources
 and the resulting lower cost. For databases, the focus of this book, elasticity mainly
 has to do with easy scaling up, since the amount of data typically only increases over
 time. However, even a database may use differing amounts of CPU and memory resources,
 so some cloud solutions offer differential rates based on fluctuations in these
 demands.

These four characteristics are common across virtually all cloud solutions. But all
 cloud solutions are not the same, as the following section details.

Cloud Levels

There are different levels of cloud products based on levels in the standard IT stack. These levels
 are, in ascending order in the stack:
	Infrastructure-as-a-Service (IaaS)
	Provides hardware and system-level software at a basic level. The
 leading IaaS product is Amazon’s Elastic Compute Cloud
 (EC2).

	Database-as-a-Service (DBaaS)
	Provides a dedicated database in the cloud. The Oracle Database is available as a
 DBaaS from Amazon as one of the Relational Data Services (RDS) and from Oracle’s Cloud Managed Services,
 among other vendors at the time of this writing.

	Platform-as-a-Service (PaaS)
	Provides a deployment and, optionally, a development environment in the cloud. The
 Oracle Database Cloud Service provides an Oracle database as a PaaS product, and the
 Oracle Java Cloud Service provides a Java deployment platform. The http://force.com platform from http://salesforce.com is another example of a PaaS product.

	Software-as-a-Service (SaaS)
	Provides a complete application system in the cloud. Oracle has a wide range of SaaS
 offerings, as do many other vendors.

All of these levels share two common, and crucially defining,
 characteristics:
	The service level of an offering determines the
 interface to the service
	Each level utilizes the interface normally used by the
 software service level. For example, you would connect to an
 Oracle Database instance using SQL*Net. You would interact with
 the functionality of the Oracle Database from a development
 environment using SQL or PL/SQL. In a similar way, you use SQL*Net
 to access an Oracle database in a DBaaS offering. You would use
 SQL and PL/SQL to access an Oracle database used in a PaaS
 offering.

	The service level of an offering determines the
 access you get to the component software
	In a nutshell, everything below the service level is hidden in the cloud. The
 downside of this characteristic is that you cannot, for instance, modify the
 configuration of your Oracle database in a PaaS offering; that software is in the
 cloud and inaccessible to you. The upside of this characteristic is that you do not
 have to manage any software in the cloud, which reduces the overhead of your
 development and deployment environment.

Based on these two characteristics, you can understand that
 comparing products from different levels of the stack is inappropriate.
 If you want administrative control over the underlying database, for any
 reason, you cannot use a PaaS solution—you must go with either a DBaaS
 product or use an IaaS product as the foundation and build a database on
 top of it.
Similarly, if you want to create new cloud-based solutions and are interested in doing
 this as productively as possible, you would select a PaaS product, rather than a DBaaS
 solution—assuming that you would not need configuration options that were not available in a
 PaaS product.
You would not compare a list of features to see whether you wanted to use an Oracle
 database running on EC2 or the Oracle Database Cloud Service. Rather, you would examine your
 requirements and goals for your cloud project, which would lead you to the proper service
 level as the essential starting point for an evaluation. The different service levels give
 you a range of options, based on the particular requirements of your situation.

Is the Cloud New?

There is certainly excitement around the cloud, but is the overall class of cloud solutions really
 anything new, or is the C-word just the latest marketing phrase meant to revitalize existing
 products with just a name change?
The answer to this question is both yes and no, and the specifics have to do with which
 portion of cloud solutions you focus on. On one hand, the lower end cloud levels, such as
 IaaS and DBaaS, are similar to hosting, which has been around for a long time. Replace
 physical machines with virtual machines and these two categories are pretty much like that
 old war horse, and will provide the same benefits. At the end of the day, someone else is
 running your software and hardware. They had to pay for it, as well as pay for people to
 manage it, the same as you would, and they need to make their own margins. In addition, the
 lower down you go in the software stack, the more of the installation, maintenance, and
 license costs you are responsible for, so the lower the benefits to you. Of course, these
 options still have the advantage of no additional capital outlay and rapid provisioning, but
 these could also be realized with efficient hosting companies.
Multitenancy

Once you start dealing with PaaS and SaaS solutions, an additional technical factor
 comes into play, which goes by the name of multitenancy. As the name
 implies, multitenancy supports multiple tenants sharing a pool of resources. That
 simple definition could apply to virtually any solution that runs on a general purpose
 computer, which shares resources among clients, or a server sharing resources between
 multiple virtual machines. But the key differentiator of multitenancy is a smaller
 granularity for sharing, which results in more efficient use of resources.
There are a couple of additional implications of multitenancy. One factor is that a
 multitenant architecture really doesn’t matter—the underlying computer resources are
 hidden in the cloud, so what does a tenant care about whether a solution is multitenant or
 not? It’s a good point, but the overall efficiency of a cloud offering has an impact on
 how the offering can be priced and how well it scales.
The other implication is that multitenancy, whether done with schemas (for) or some
 other architecture, is different from traditional architectures. This difference has an
 impact on whether application systems that have been designed for different architectures
 may not work optimally, or at all, in these new environments.

Stateless

Another key technical factor comes with the introduction of the Internet, which runs on
 the HTTP protocol. HTTP is a stateless protocol, which means that each communication using
 this protocol is a separate transaction. Since one of the characteristics of the cloud is
 the use of the Internet, cloud solutions are also stateless by nature.
This stateless nature may not make a big difference, as
 transactions are frequently restricted to a single communication as a
 good design practice. But sometimes this limitation can have a
 significant impact. Consider the case of an application that returns a
 page of results from a multipage result set. The page looks fine, with
 appropriate Next and Previous buttons to scroll through results. But
 be aware that each request for another page runs the underlying query
 again, in a different transaction. Any changes that have taken place
 since the previous run of the query will be in the new result set. So
 if the first page contained 10 rows, and one of those rows was deleted
 between the fetch of the first page and the fetch of the second, the
 second page would not start with the 11th
 row from the previous result set, but with what had been the
 12th, since one row is now gone.
Note
An Oracle Database, whether in the cloud or not, has a way to overcome this
 stateless limitation, at least for queries.When you ask for the first page, you can
 retrieve the System Change Number for the transaction, and then use this for a Flashback
 Query for subsequent requests to emulate full stateful data integrity over the stateless
 HTTP protocol.

Depending on the nature of the application, this type of potential integrity hole may
 not matter. However, the possibility of this type of issue has an impact on the potential
 use cases for the cloud, as discussed in the next section.

Use Cases for Cloud Computing

The cloud seems like a way to save money, at least in the short term, and get much faster
 results. So run, run, run to the cloud. Take your entire data center and move it to the
 cloud. Well, maybe, not so fast.
There are some inhibitors to keep you from moving entire systems to the cloud. The first
 is that moving to the cloud, like moving to any new platform, is a migration effort. As
 such, you will have to ensure that your system works the same on the new platform as on the
 old platform. This comes with a cost—at minimum, a significant round of testing, frequently
 extended with the need to correct problems that you find.
Application systems, which have not been designed to benefit (or even operate) in a
 multitenant architecture, may not transfer so well, and the stateless nature of cloud
 interactions may also interfere with the proper operation of systems.
Moving your data to the cloud may cause fewer problems, since the data will end up in an
 Oracle database. There are still a number of potential issues here, such as the time
 required to move data to the cloud. With even a big and dedicated network pipe, it could
 take more than a day to move 1 TB of data to the cloud, and you would still have to test to
 ensure the success of the transfer. There may be regulatory requirements or organizational
 issues that would prevent this type of data movement from your data center. There are also
 potential runtime issues, since your network connections to Oracle DBaaS would go over the
 Internet, which has both high latency and unpredictable routing. Together, these
 characteristics could add up to poor performance. The impact of these issues can be reduced
 by using things like dedicated leased lines and virtual private networks, but even these
 solutions may not match the performance you are accustomed to, and the additional cost and
 overhead of these components reduce the economic and productivity benefits that led you to
 the cloud in the first place.
And both application deployment environments and an Oracle database running in a shared
 cloud will inevitably be subject to some lockdowns for security and prevention of any one
 tenant from interfering with the overall performance of the system. These limitations could
 force you to make modifications to existing systems, adding to your migration
 overhead.
All in all, migration from an on-premise solution to the cloud frequently ends up being
 less attractive than initially thought, based on the costs of migration.
The best way to avoid migration costs is to simply avoid migration. The cloud is an
 ideal environment for creating new systems, where the rapid time-to-value of provisioning
 and environment and developing applications has immediate benefits. And, although the
 limitations of the cloud may seem constraining when trying to migrate a system that was not
 designed for that platform, most robust cloud offerings allow you to create rich and even
 enterprise-strength applications in the cloud.
We believe the optimal cloud strategy is to start to use cloud computing to create new
 systems, rather than expending resources to move existing systems to the cloud. Over time,
 your overall IT workload will start to shift towards the cloud, coincident with your growing
 in-house expertise in using the cloud.

Oracle Database in the Cloud

With the previous definitions and implications understood, we can move on to the specific case of
 the Oracle database in the cloud. In fact, the Oracle Database is accessible in two different
 cloud levels: DBaaS and PaaS.
This duality typically takes people by surprise. After all, doesn’t the Oracle database in
 the cloud belong in the DBaaS level, since it is the world’s leading enterprise
 database?
Oracle as a DBaaS

Oracle offers two DBaaS solutions for the Oracle Database. Oracle Cloud Managed Services was
 previously known as Oracle OnDemand. This offering gives customers their own instance of an
 Oracle database, running on Oracle hardware in Oracle facilities. The database is accessible
 through SQL*Net, just like a standard Oracle database instance. You have flexibility in how
 you configure and manage this database, since you own the instance. As with other cloud
 products, you pay for the service on a monthly basis.
As of the time of this writing, Oracle is in the process of
 rolling out another variation of DBaaS where the actual hardware sits in
 your data center. This service will run on Exadata and will be fully
 managed by Oracle, with most management operations being performed
 remotely by Oracle.
Other vendors also offer the Oracle Database as a DBaaS, most
 notably Amazon. Amazon has an RDS, or Relational Data Service, built on
 the Oracle Database. This RDS offering comes with the Oracle database
 included, so you don’t have to bring your own license.

Oracle as a PaaS

Oracle also has a significant offering in the PaaS space, Oracle database
 Cloud Service. You may find this a bit confusing, but remember that the
 Oracle database is the foundation of an enormous number of
 applications—the Oracle Database already acts as a deployment platform,
 and has long included development tools that have been used to build
 hundreds of thousands of applications, from quick and easy departmental
 solutions to rich, enterprise-wide systems.
The Oracle Database Cloud Service is described in detail in the following section.
 Before getting to the specifics, we should understand the difference between two types of
 clouds.

Consumer and Provider

There are two common words used in cloud discussions that you have not seen in this
 chapter yet: public and private. We don’t really like these words, because they are
 overloaded with different and somewhat confusing meanings.
Many people use the term public to indicate a cloud that runs
 offsite, and the term private to indicate a cloud that runs in your
 data center. But what about a cloud that runs in your data center but is owned, managed, and
 controlled by a vendor? Or a cloud that runs offsite but is exclusively for your use? And
 isn’t one of the core ideas of the cloud that the location of the supporting infrastructure
 should be transparent?
There is a difference between different types of cloud usage that we like to call
 consumer and provider. A consumer cloud offering is one where you simply use the cloud
 services. As described earlier, you do not have access to any of the software or the
 hardware inside the cloud—you simply take the product as offered. A company can have
 different varieties of consumer cloud offerings at the same service level, but each of them
 is fixed in terms of the underlying components.
You can also use those underlying components to build your own cloud offering—you would
 be acting as a cloud provider. You get to choose the options and configurations of your
 consumer cloud offering, and you get the privilege of designing and implementing
 provisioning, maintenance, and upgrade operations. Your consumers could be entirely internal
 customers to your organization, but they would have the same ease of use and lack of
 flexibility as other users of consumer cloud products.
The remainder of this chapter will discuss the main Oracle consumer cloud product, the
 Oracle Database Cloud Service, as well as the ability to use the Oracle Database as the
 foundation for cloud providers.

Oracle Database Cloud Service

The Oracle Database Cloud Service is a PaaS offering. The Database Cloud includes a complete development and
 deployment environment, based on the longstanding product Application Express.
The Database Cloud is fully managed and available within minutes.
 You do not have to perform installation or ongoing maintenance for the
 platform. A Database Cloud subscription is all inclusive, with no
 additional costs for support or any other feature.
The pricing for a Database Cloud Service is also straightforward.
 There is essentially one metric—storage—and three options for that
 metric.
At this time, the pricing for the Database Cloud Service is:
	A 5 GB Oracle Database Cloud Service for $175 a month.

	A 20 GB Oracle Database Cloud Service for $900 a month.

	A 50 GB Oracle Database Cloud Service for $2,000 a month.

In addition, you can get a 30-day free trial of the Database Cloud
 Service with a limit of 1 GB of storage.
Why Mention Pricing?
This book is focused on the concepts behind Oracle technology, so why mention pricing
 here, for the first time in this book? The only reason is to provide an illustration of the
 general level of cloud pricing, which most readers will immediately see is significantly
 different from Oracle’s license policy. The pricing cited is current, as of this writing,
 for purchasers in the United States, although similar pricing is in place throughout the
 world.

Subscriptions can be either month-by-month or for a term of one or
 more years, and discounts are available for term licenses.
There is another metric associated with a Database Cloud
 Service—data transfer—which refers to the data requested by Database Cloud
 application users. The monthly transfer amount is six times the storage
 allocation. At the time of this writing, Oracle is tracking the data
 transfer amounts but is not charging for any overages. Oracle’s experience
 with the public-facing http://apex.oracle.com site indicates that the data
 transfer allowance should be enough for legitimate uses of the Database Cloud
 Service.
You may wonder why there are no metrics associated with the type of
 resources that typically have an impact on performance, such as CPU cycles
 or memory. Remember that the Oracle Database Cloud Service is a PaaS, so
 you, as a tenant, would not get access to resources used by underlying
 software. Further, remember that one of the main functions of the Oracle
 Database is to share resources between many, many users. Much of what has
 been discussed in this book previously centered on how Oracle efficiently
 shares resources between users, from the SGA to pushing CPU processing to
 storage in Exadata machines. Since tenants in the Oracle Database Cloud
 are isolated on the basis of schemas, the Oracle database uses all the
 standard resource sharing between tenants that is used for normal database
 users, who are also associated with schemas. And the Oracle database is
 very good at this type of sharing.
The one factor that could impact performance in a shared environment
 like the Database Cloud is the possibility that one tenant could use too
 many resources, denying the resources to others. Some of the lockdown of
 the Database Cloud, discussed in more detail below in terms of security,
 is concerned with preventing this possibility. Any action that could soak
 up too many resources is either disallowed or limited, such as the limit
 on the number of database jobs each tenant can spawn. Additionally, the
 Database Cloud uses a series of Database Resource Manager consumer groups
 to reduce the priority of any user who exceeds certain thresholds of CPU
 usage. This approach means that virtually all requests are complete, but
 that requests with excessive requirements sacrifice some of their resource
 availability for the good of the overall Database Cloud community.
The Database Cloud Service is built on the foundation of Oracle
 Application Express, commonly referred to as APEX. The Database Cloud is a
 relatively new offering, but APEX has been a part of the Oracle Database
 technology stack for a while.
History of Application Express

The product known as Application Express began in the late 90s in an Oracle
 office in the Washington, DC area. Two sales consultants were interested
 in the then new environment of the Internet, and HTML, which was the
 language used to construct pages retrieved over the Internet. The Oracle
 database had a feature that allowed generation of HTML from PL/SQL, so
 the two intrepid consultants got to work creating a development and
 deployment environment that could be used to create HTML pages and serve
 them up to users from an Oracle database. They also created a listener
 that would handle URL requests for these pages.
By 2001, a version of their work, then known as WebDB, was in use
 inside Oracle for a variety of applications. The WebDB product underwent
 a transition, and another version of the same basic tool was created
 with the name HTML-DB. This product was more widely adopted, both inside
 Oracle and by customers, who could use it with the Oracle Database. The
 product was renamed Application Express in 2004.
In 2004, Oracle also started the http://apex.oracle.com website. This site gave developers a sandbox environment to create APEX applications.The
 site provided a fairly limited amount of data storage (50 MB), was specifically restricted
 to development, rather than production work, and was
 offered free of charge, as it still is. The http://apex.oracle.com site was essentially a PaaS platform before anyone had even
 thought of the label.
APEX itself has seen fairly wide adoption in the Oracle community.
 The http://apex.oracle.com site
 currently has more than 14,000 individual workspaces. APEX has been
 included as a free option for all editions of the Oracle Database since
 the Database 10g Release 2, so estimating the
 worldwide usage of APEX is a bit difficult. However, a “phonehome” check
 for updates was implemented in 2012, and in the first half of that year,
 more than 160,000 unique development sites called in. Considering the
 fact that these are development sites, rather than developers, and you
 can see that a pretty healthy APEX community is out there.

Architecture

As mentioned previously, the architecture of any cloud offering should be irrelevant to
 users—that architecture is hidden in the cloud. But some facets of the architecture of the
 Oracle Database Cloud are worth understanding, as they have implications for the use of the
 service.
Database Cloud architecture

The Oracle Database Cloud Service has all the features normally expected in the user
 interface to a cloud computing product. You can get a service in a matter of minutes
 through a self-serve process that starts at the general portal for all Oracle Cloud
 offerings, http://cloud.oracle.com.
The Oracle Database Cloud runs on a full Exa-stack, with the
 database running on Exadata and the APEX Listener running on a
 WebLogic Server on an Exalogic machine. Remember, the Database Cloud
 is a PaaS product, so the fact that your service uses both an Oracle
 database and a WebLogic Server is not some special dispensation—you
 need both to support the platform.
At the time of this writing, the Database Cloud uses Oracle Database
 11g Release 2 Enterprise Edition, the most current database
 release. Oracle has stated that they will always support at least two major versions
 running on the Oracle database cloud, so the appearance of Database
 12c means tenants have the option to upgrade to this version or
 not, at least until another major version is released. The only option available for
 customers to use in the Database Cloud at this time is partitioning. The Database Cloud
 also uses Transparent Data Encryption, which is a part of the Advanced Security
 Option.
Each individual Database Service is completely isolated from all other Database
 Services. The Database Cloud implements multitenancy on the basis of a schema—each tenant
 gets one and only one schema for each service. Because of this, the Database Cloud does
 not support a number of features such as database links and synonyms. For more information
 on restrictions on the Database Cloud, please see the section Security and architecture.

Please note that this single schema restriction is enforced on
 a Database Cloud Service, but not on the equivalent workspace for a
 version of Application Express running on your own instance. APEX
 workspaces can be configured to access multiple schemas.

Access architecture

The Database Cloud Service is a PaaS product. As such, you have
 access to the capabilities of the Oracle database through SQL and
 PL/SQL, which are executed by applications running in the Oracle
 Cloud. At the time of this writing, there are only two platforms
 supported in the Oracle Cloud: Application Express in the Database
 Cloud and Java in the Java Cloud. You can only run applications
 written for these two environments against your Oracle Database Cloud
 Service and none other.
You can access your Database Cloud Service from outside the Oracle Cloud, but only
 through RESTful Web Services. These Web Services are described in more detail later in
 this chapter. Remember, you cannot access a PaaS with a database network protocol like
 SQL*Net. So you cannot move your Oracle database to an Oracle database Cloud Service and
 then simply create a new entry in your TNSNAMES file
 to point to the cloud.

Security and architecture

The Oracle Database Cloud uses a multitenant architecture based on schema
 isolation. Because of this, some syntax, built-in packages, and
 capabilities are not allowed in the Database Cloud. For instance, you
 do not have the ability to read or write to the underlying filesystem,
 due to the potential for hacker mischief.
In addition, some capabilities could be used to swamp the
 underlying servers in a denial of service attack, so other features
 have had to be limited or prevented. The Database Cloud development
 team is working to minimize the impact that these security-based
 restrictions have, but the priority is protection of tenants, their
 data, and their environment. A white paper that lists the specific
 areas locked down is available at http://cloud.oracle.com under the Resources
 menu.
As mentioned above, the Database Cloud Service does use
 Transparent Data Encryption to protect all data at rest,
 as well as requiring HTTPS for communication from clients. RESTful Web
 Services have their own set of security capabilities, which are also
 described in a white paper on RESTful Web Services at the main Oracle
 Cloud site.
Each individual Database Cloud Service is unique and fully isolated, but there is an
 organizational hierarchy with the Database Cloud as shown in Figure 15-1. When you initially request a trial
 or purchase a Service, you act as the account owner. All account owners must have a valid
 login for http://www.oracle.com. When you initially
 create an account, the cloud creates an administrative user for the account in the Cloud
 Identity Manager with the same username and password as your http://oracle.com identity.
Each account can have one or more Identity Domains associated with it. An Identity Domain is a group of
 users. By default, the administrator of an Identity Domain is the
 administrator of the account that owns the Identity Domain. You can
 give administration privileges for an Identity Domain to one or more
 users defined in the Identity Domain.
Each Identity Domain can have one or more Database Cloud
 Services associated with it. When you create a Database Cloud Service,
 you assign a Database Cloud Service administrator to the service. Once
 again, by default, the Identity Domain administrator is given
 administrator privileges for any Database Cloud Service associated
 with it.
All users in an Identity Domain potentially have access to all
 Database Cloud Services associated with that Identity Domain, although
 you have to give specific privileges for a Database Cloud Service to users.
Finally, a Database Cloud Service can have three levels of user
 privileges: an administrator, who has full control over the Database
 Service; a database developer, who can create applications or Web
 Services in the Database Cloud Service; or a user, who can simply run
 applications in the service. You can also designate applications to
 allow all users to access them by making the applications
 public.
All administrators and database developers must be defined in the Cloud Identity
 Manager. Application users can be defined in the Cloud Identity
 Manager or within the Application Express administration area.
[image: Domain levels and security for the Oracle Database Cloud]

Figure 15-1. Domain levels and security for the Oracle Database
 Cloud

APEX architecture

The core of the Database Cloud is Oracle Application Express, or APEX.
 APEX, from its inception, has been a true multitenant environment that
 uses the resource-sharing capabilities of the Oracle database for
 optimal efficiency.
APEX runs entirely within the Oracle database, although APEX
 requires some type of listener to receive incoming HTTP requests and
 respond to them.
Note
There are three options for listeners for APEX: an embedded
 PL/SQL listener, a mod that can be used with Apache, and the APEX
 Listener that is used for the Oracle Database Cloud Service. Some
 capabilities of the overall environment discussed here, such as
 RESTful Web Services, are dependent on the use of the APEX
 Listener. The Database Cloud Service includes the APEX Listener.

APEX is a declarative development environment. When you create
 applications, pages, or components that are shared across pages or Web
 Services, APEX uses wizards to collect metadata. When a particular page is requested by a user, a PL/SQL
 procedure retrieves the metadata and constructs the HTML page based on
 that metadata.
This architecture has two important implications for APEX
 applications. The first is that applications are just a set of
 metadata, which means you can move them from one Oracle instance to
 another with a simple SQL script. As long as you have the metadata
 repository tables and the PL/SQL procedures installed, the application
 will run on the target instance.
The second implication is more profound. Since pages are built dynamically from
 metadata, there is absolutely no deployment process for APEX applications. This
 architecture, coupled with the high productivity of a declarative development process,
 leads to the capability to do iterative development. You are able to
 not only create applications rapidly, but you can change them in real time while working
 with users. The interaction with users and the high productivity are well suited to the
 world of cloud computing.

Development with the Database Cloud Service

As mentioned above, Application Express has been around since 2004, with a
 fairly large and very involved user community. Over the years,
 Application Express has become a very rich and robust development
 environment.
Since APEX is based in the Oracle Database, you can use the full
 power of SQL and PL/SQL to define data interactions and extend
 application logic, respectively. Although you do not have to know either
 of these interfaces to create and deploy APEX applications, the ability
 to use them means that you can build virtually any type of application
 with APEX. Since APEX applications are made up of HTML pages, you can
 also use features from HTML, including formatting and JavaScript, in
 your APEX applications, although you do not need to know HTML to create
 applications either.
Each APEX page includes metadata to control the appearance of the
 page and any special processing for the page, and typically uses a set
 of shared components across pages.
APEX application development

APEX applications are a set of pages, with navigation capabilities bringing them
 together into an integrated unit. There is a broad set of wizards you
 can use to create APEX pages. Figure 15-2 shows the top level
 of page wizards in the APEX development environment.
[image: Oracle Application Express page types]

Figure 15-2. Oracle Application Express page types

A page can contain more than one of the types shown in Figure 15-2, with different
 regions in the page containing different components. Also, each of the
 categories of pages shown in Figure 15-2 can have multiple
 types. For instance, you can create a form based on SQL, PL/SQL, or a
 web service, or a master detail form, or a report with an associated
 form, or a form with multiple editable rows, to name just some of the
 form options.
One type of component merits specific mention: the interactive
 report. An interactive report includes a wide range of customization
 capabilities, including the ability to define filters, sort data,
 create new columns from data in the report, format the report with
 control breaks and groupings, highlight data based on logical
 conditions, and create charts based on the data in the report. You can
 even look at data in the past with Flashback, download data in spreadsheet format, or
 allow subscriptions to a report so that the report will be sent to
 subscribers according to a schedule. Each individual user can
 customize their own versions of reports and save these versions for
 exclusive access or public use. As a developer, you can disable any of
 these options, depending on your requirements. Interactive reports
 enable users to shape reports to get answers on their own, which can
 remove a significant development overhead.
All APEX applications use themes and templates to create a
 uniform look and feel to pages and their components. APEX comes with a
 set of themes, as well as the ability to define your own theme. You
 can use this concept to create applications with mobile interfaces by
 either using a theme based on responsive design principles, which allow you to dynamically resize and reposition components based on the dimensions
 of the calling device, or by creating a mobile interface, which uses
 specific mobile-type interfaces, such as list views. An application
 can have a desktop interface and a mobile interface, with automatic
 selection of the interface based on the identity of the calling
 device.
Individual pages are the building blocks of APEX applications,
 but an APEX application also uses components that are shared across
 many pages in the applications. These components include:
	Navigation components, such as tabs, lists of links, and
 breadcrumbs

	Themes and templates, which control the look and feel of the
 overall application

	Application-level computations, processes, variables, and
 options

	Various authorization and authentication options

APEX applications are composed of HTML pages, which when
 submitted interact with the Oracle Database hosting the applications.
 APEX also gives you the ability to declaratively implement dynamic
 actions, which can operate in the browser environment through
 generated JavaScript.
APEX also includes team development capabilities, which help
 team members to communicate about projects, issues, and bugs. One
 additional and useful feature of APEX is the ability to assign a page
 or other object to a particular build option. You can then specify
 what build options are active at any time. This capability lets
 developers work on new options, but leave them out of export scripts
 created to move an application to a production environment.

SQL Workshop

The previous portions of this section described, at a very high level, the
 application development capabilities of Application Express and the
 Oracle Database Cloud. The Database Cloud and APEX also provide an
 area called SQL Workshop, designed for working with the data
 structures and data in the underlying Oracle Database.
SQL Workshop includes the following main areas:
	Object Browser
	Lets you see the structure and contents of your data
 objects. The Object Browser also includes the ability to create
 and modify objects.

	SQL Commands
	A text box where you can enter any SQL statement and show
 results. This area also can show you EXPLAIN PLAN or DESCRIBE
 output and includes a list of recently executed statements for
 rapid re-execution through links.

	SQL Scripts
	Allows you to upload scripts for storage in your Database
 Cloud Service and execute them. You can use this capability for
 loading data into your Database Cloud Service, although SQL
 Developer, described below, is more appropriate for larger
 amounts of data.

	Utilities
	Includes a number of useful tools, including: a graphical
 query builder, which is also accessible from different wizards
 in the application development area of APEX; a data workshop,
 for importing and exporting data; and tools to help you with
 common tasks, such as comparing schemas, creating PL/SQL packages
 for access to tables, and getting reports on objects in your
 database. You can also set user interface defaults on tables and
 columns that are used by the APEX application development
 wizards when you create new application components.

The SQL Workshop area also includes an area for working with
 RESTful Web Services, which includes a wizard that makes it easy to
 define and use RESTful Web Services for your Database Cloud Service or
 Oracle database, through the APEX Listener. This functionality is
 described below.

Packaged applications

All versions of APEX, including the Database Cloud, come with a set of packaged applications. These applications are production-ready and can be
 installed with a handful of clicks, emerging ready to run in minutes. Although packaged
 applications are locked by default, preventing access to the underlying application, you
 can unlock them to extend or modify the application, or simply to see how the packaged
 application operates.
APEX also includes a number of sample applications that provide
 examples of implementing various techniques in your own
 applications.

RESTful Web Services

Earlier, we mentioned that you can access the Database Cloud from within the cloud using
 APEX applications or Java applications running in the Java Cloud. You can also use RESTful
 Web Services to access your Database Cloud Service from outside the Oracle Cloud.
The RESTful Web Service interface is a specification for a lightweight web service that has become very popular on the Internet.
 A RESTful Web Service uses a URI to access a specific web service. In
 this way, using RESTful Web Services is different from using an API
 like SQL*Net, which has the ability to
 simply pass some SQL syntax to an Oracle instance. With RESTful Web
 Services, a URI calls a specific SQL statement or PL/SQL block in your
 Database Cloud Service.
APEX includes a wizard to define RESTful Web Services. You can
 specify that RESTful Web Services return data from queries in either
 JSON (a common web format), or as a .csv file. The APEX Listener will properly
 marshal the data being returned. You can also choose to have data sent
 back without intervention, which is best when you are returning media
 files.
There are a number of ways you can add security to your RESTful
 Web Service calls, including the use of OAUTH2, a popular Internet
 authentication protocol, as well as using logic within a RESTful Web
 Service call to limit access to data.

Portability with the Database Cloud Service

You can create and deploy applications in your Database Cloud
 Service, and you can use the underlying Oracle database to store data
 and implement logic with PL/SQL. Since the technology for this
 functionality is contained within the Oracle Database, you can easily
 move your data and the metadata for applications and RESTful Web
 Service definitions from the Database Cloud to any Oracle instance.
 The Database Cloud management console gives you the ability to export
 all of your data and definitions with a single click. The export file
 is placed on a secure FTP server, where you can retrieve it and simply
 load it into another Oracle Database as you would any other dump
 file.
You can export application metadata from within the APEX
 environment, or use a packaged application to archive your Database
 Cloud applications into SQL scripts. Similarly, you can export RESTful
 Web Service definitions into an SQL script. This architecture makes it
 easy to move from the Database Cloud to any other Oracle database
 instance.
However, moving an application from an Oracle instance outside the cloud into your
 Database Cloud Service may not be as clean. In order to protect the security and integrity
 of every tenant of the Oracle Cloud, Oracle has had to lock down some features and
 functionality. For instance, since the Database Cloud uses schemas for isolation, you do not have access to instance-level configuration
 options, or even internal tables and views that grant visibility over multiple schemas. In
 addition, some features, such as the ability to write directly to the filesystem of the
 server, have been blocked due to the potential for hacker mischief.
A proposed idea called “cloud bursting” has little chance of working properly in the
 real world. This concept calls for applications to automagically spill over into the cloud
 once they require resources beyond those available on-premise. It’s a nice idea, but the
 reality of having to coordinate transactional changes between completely separate data
 stores makes this dream extraordinarily difficult to implement in the real world. If you
 have designed your application from the ground up to work in this manner, you have a
 chance, but even this requires significant design and implementation considerations. With
 a PaaS solution, such as the Oracle Database Cloud, your optimal path is to create new
 systems in your Database Cloud Service, avoiding the overhead and complications that come
 with any migration effort.

SQL Developer and the Database Cloud

SQL Developer is a very popular tool used to view and manage Oracle database instances. SQL
 Developer, which is part of the same development organization as APEX, has been modified to
 allow for connections to an Oracle Database Cloud Service. At the time of this writing, this
 cloud connection has a more limited scope of functionality than a connection to a
 direct-connect Oracle database. The connection to your Database Cloud Service allows you to
 see the tables and other structures, but without the advanced capabilities of a standard
 connection.
You can use SQL Developer to load data to your Database Cloud
 Service, especially larger amounts of data. You start the process by
 creating a cart and then dragging the objects you wish to move from a
 connected database to the cart. Once you have loaded the cart, you
 simply click on the Deploy Cloud button to start the process of moving
 all the data structures and/or data to your Cloud Service.
The data is exported from the connected database and then
 compressed and moved to an SFTP server associated with your Database
 Cloud Service. Once on the SFTP server, a periodic process picks up the
 file, scans it for viruses, decompresses the file, and loads it into
 your Database Cloud Service. You can move up to a million rows a minute
 with this process, which makes SQL Developer the appropriate choice for
 moving larger amounts of data to your Database Cloud Service.

Implementing Provider Clouds

As described at the start of this chapter, the Database Cloud Service is a Platform-as-a-Service consumer cloud, where you
 can quickly provision and use the service for creating and deploying applications. Oracle’s
 enterprise software can also be used to build your own provider clouds. As with any provider
 cloud, you can specify what exactly you want in your cloud. In that sense, the rest of this
 book applies to what you can put in your own cloud.
There are a number of features in the Oracle Database that lend themselves to the creation
 of provider clouds. Of course, all the capabilities discussed in this book contribute to the
 overall richness of the Oracle Database and any cloud built using this database. Oracle
 Database 12c includes the Oracle Multitenant Option and pluggable databases, which can help in creating provider clouds in a
 number of ways. First of all, the multitenant architecture is a way to implement multitenancy within a single Oracle instance, which can be mapped to individual
 cloud consumer tenants. Pluggable databases are easy to clone, which can make provisioning
 tenants faster and easier. And pluggable databases can be used very effectively in a popular
 use case, where a test or development instance is used in a cloud and then moved to a
 different platform for production use.
There are some other features that lend themselves specifically to building your own
 Database Cloud. Enterprise Manager has a number of cloud-focused features, including
 self-service provisioning of seed databases, chargeback monitoring and tracking to allow for
 tenant billing, and Schema-as-a-Service provisioning, similar to the Oracle Database Cloud. However, you can enable
 access to more than one schema for a user, more like on-premise APEX. This service can also
 utilize Data Vault for security and Database Resource Manager for resource limiting, as well
 as assigning quotas, retirement policies, and associating services with chargeback
 plans.
Enterprise Manager also provides a “snap clone” feature, which uses
 database snapshots to create database clones. This process results in much
 faster provisioning for seed databases.
As with the Database Cloud, you would probably want to use Database
 Resource Manager to prevent any one tenant from using too many resources
 and impacting other users. Keep in mind that Database Resource Manager has
 a lot of flexibility as a standalone product, as was described in Chapter 7. You can not only limit CPU resources for
 users, but many other resource dimensions, including degree of parallelism
 and I/O bandwidth on Exadata machines.
The Oracle Database Cloud is designed to support a wide variety of general purpose cloud
 tenants, and so can only make fairly generic use of Database Resource Manager. For your own
 provider cloud, which you design for what could be a well-defined set of user requirements,
 you could be more exact in your use of this product.
You may choose to use RAC for your own provider cloud, either for fast failover, as in the
 Database Cloud, or for the other scalability-related features of RAC. Similarly, you could use
 DataGuard to provide high availability and failover for your cloud, if appropriate. The latest
 version of DataGuard, with its ability to use a failover machine located in a distant location with far
 synch, could also be used in your cloud.
Of course, you can also use Application Express as part of your provider cloud to include
 all the development capabilities of the Oracle Database Cloud Service in your own cloud.
 Depending on your own scenario, you could offer APEX without some of the limitations that
 Oracle must impose for a consumer cloud offering designed to be used by thousands of unrelated
 clients.
In closing, remember that you will have to take care of all the operational aspects of
 your provider cloud, which will involve creation of standardized operations to service all
 your cloud clients. The productivity and robustness of the Oracle database, probably the most
 sophisticated database in the world, is there for you to use to offer the most appropriate
 cloud for your particular customer needs.

Appendix A. What’s New in This Book for Oracle Database 12c

When we wrote the first edition of Oracle Essentials in 1999, our goal was to offer a new kind of book about Oracle, one that would clearly and concisely cover all of the essential features and concepts of the Oracle Database. In order to keep our focus on those essentials, we limited the scope of the book.
For instance, we decided not to cover SQL, or PL/SQL, in depth; these complex topics would have required a level of detail that would have run counter to the purpose of our book, and they are amply described in other books.
The latest release of Oracle, Oracle Database 12c, contains many new features. Most of these features build on the existing foundation of Oracle technology and enable new flexibility in deployment. We tried to add details about these features in the chapters in which their discussion seemed most appropriate, but there are (of course) some enhancements that are outside the scope of this book.
The following sections summarize the new features of Oracle Database 12c that are covered in this new edition, chapter by chapter. Although many of these features are mentioned in multiple chapters, they are listed here according to where the most relevant discussion occurs.
Chapter 1: Introducing Oracle

This introductory chapter was extensively updated to reflect the packaging changes in Oracle Database 12c and introduce many of the new features described in more detail in other chapters. Given Oracle’s acquisition and development strategy, there were also many changes to software and technologies that surround the Oracle database and many of those components are described here.

Chapter 2: Oracle Architecture

This chapter describes concepts and structures at the core of the Oracle database. Features new or modified in Oracle Database 12c or changed and mentioned here include:
	Multitenant Container Database (CDB)
	Operations and entities that apply to an Oracle instance are implemented here and are intended to operate across multiple separate Pluggable Databases (PDBs).

	Pluggable Database (PDB)
	Pluggable databases are plugged into container databases (CDB) and contain the database schema. PDBs are useful for database consolidation, provisioning of new databases, copying existing databases, and upgrades or patching.

	Database Resource Manager
	Now also manages resource allocation between PDBs.

	Minimum Initialization Parameters
	Only CONTROL_FILES, DB_NAME, and MEMORY_TARGET need be specified. Others parameters are set to default values.

	PGA_AGGREGATE_LIMIT
	A parameter used to place a limit on the total memory available to the PGA.

Chapter 3: Installing and Running Oracle

Although the standard installation and runtime operations of the Oracle database remain essentially the same, the installation process was improved such that it could take only 20 minutes on a desktop configuration. A few Oracle Database 12c enhancements covered in this chapter include:
	Global Data Services
	Enables widely geographically dispersed databases to participate in a single global service.

	Database Resident Connection Pooling
	Connection pooling implemented in the database server instead of a middle tier.

	Flashback Query improvement
	Flashback query support extended to queries on temporal validity dimensions.

Chapter 4: Data Structures

This chapter covers the basic data structures and optimization technology in the Oracle database. New features include:
	Maximum Column Size with VARCHAR2 or NVARCHAR2
	The maximum column size with VARCHAR2 or NVARCHAR2 can now be reset to 32K.

	Temporal Validity
	Enables specification of a time period for when a row or rows of data in a table are valid.

	RAW Datatype Column limit
	A RAW datatype column can now hold 32K.

	Identity Datatype Support
	A new datatype intended to ease migration from IBM DB2 to Oracle user-defined data.

	Invisible Columns
	Columns that are stored and maintained like regular columns but not accessible by users or considered during query optimization.

	Interval Reference Partitioning
	A new Oracle Partitioning Option composite consisting of interval partitioning (automatic creation of range partitions) and reference partitioning (parent-child).

	Statistics generation when needed during SQL statement compilation
	During compilation of SQL statements and creation of the execution plan, will automatically generate new statistics if they are missing or out of date.

	Adaptive Plan Management
	Multiple plans may be specified for query optimization and then be selected from depending on user directives or runtime statistics.

Chapter 5: Managing Oracle

This chapter covers Oracle Enterprise Manager 12c and other manageability features new in Oracle Database 12c including:
	Real-time ADDM
	Runs automatically every 3 seconds enabling DBAs to resolve deadlocks, hangs, shared pool connection issues, and similar situations with needing to restart Oracle.

	SQL Plan Management Evolve Advisor
	Enables scheduling of testing of new plans added to the SQL plan baseline, compares new plans versus accepted plans for cost, and automatically selects new plans that have a much lower cost.

	ASM improvements
	ASM disk scrubbing provides automatic repair of logical data corruptions. ASM disk resync
enables multiple disks to be brought back online simultaneously.

	Enterprise Manager Express
	A version of Enterprise Manager that doesn’t require middleware.

	Backup and Recovery enhancements
	Recovery of individual tables is supported as well as backup and recovery of multitenant container databases and point-in-time recovery of individual pluggable databases.

	Automatic Data Optimization (ADO) and Heat Maps
	ADO provides the ability to automate compression and movement of data among different tiers of Database storage and leverages the new Heat Maps.

Chapter 6: Oracle Security, Auditing, and Compliance

This chapter covers Oracle security and related features. Some significant new features available with Oracle Database 12c include:
	Privilege Analysis
	Identifies what users have broad privileges and don’t need them.

	Real Application Security
	Users are identified outside of database user context and assigned appropriate security privileges.

	Data Redaction
	Ability to obscure data returned in queries.

	Auditing flexibility
	Auditing of database activities can be policy based. Records can be written immediately or every few seconds to minimize resource consumption.

	Oracle Database Vault enhancements
	Mandatory realms added to block users who were granted access.

	Oracle Audit Vault enhancements
	The Database Firewall product is included with Audit Vault.

Chapter 7: Oracle Performance

In addition to Oracle database management improvements previously noted, performance tuning improvements in Enterprise Manager 12c including additional Active Session History (ASH) and ADDM reports. This is also the first edition of this book covering the Exadata Storage Servers describing optimizations provided there. (Optimizations for data warehousing are further described in Chapter 10.)

Chapter 8: Oracle Multiuser Concurrency

The ability to handle very large groups of users without excessive contention, while
protecting data integrity, has long been one of the best features of the Oracle database and a core
part of the Oracle database for over 20 years. This chapter also covers workspaces—the query
optimizer was further improved in Oracle Database 12c in support of
them.

Chapter 9: Oracle and Transaction Processing

Oracle has been one of the leading databases for OLTP for many years. New features in Oracle Database 12c include:
	Transaction Guard
	Provides an API enabling developers to build code that determines a transaction’s state.

	Application Continuity
	Enables creation of database requests to take action using information provided by Transaction Guard.

Chapter 10: Oracle Data Warehousing and Business Intelligence

In addition to covering the Oracle database for data warehousing, this chapter describes Oracle’s current suites of business intelligence tools and business intelligence applications. New in this edition is a description of the Advanced Analytics Option, the role of Big Data and Hadoop, and descriptions of how engineered systems are used for query optimization and analyses. For example, how Hybrid Columnar Compression and flash in Exadata are used to improve query performance is described. New features in Oracle Database 12c include:
	Data Mining enhancements in the Advanced Analytics Option
	A new probabilistic clustering algorithm, Expectation Maximization, was added to solve problems such as finding the most representative customer in the largest cluster. Other improvements to Data Mining features include Generalized Linear Model feature selection and creation, and simplified model building, deployment, and testing for unstructured text data.

	SQL Pattern Matching
	SQL capability added for matching patterns in multiple rows of data tied to a data item of interest.

Chapter 11: Oracle and High Availability

This chapter describes the Oracle characteristics that keep your database up and highly available. New features include:
	Flex ASM
	Enables ASM servers to be run on a separate physical server from Oracle Database servers.

	Data Guard enhancements
	Data Guard can now also be used for disaster recovery of multitenant container databases (CDBs). Other improvements include configuration health checks, resumable switchover operations, streamlined role transitions, support for the cascaded standby configurations, and user configurable thresholds regarding SLAs for recovery to the supported features.

	Far Synch
	Enables zero-loss primary and standby Active Data Guard configurations that are separated by distances that can span continents.

	Oracle Flex Clusters
	Large Oracle RAC Clusters deployed in a hub and spoke architecture while leveraging Flex ASM.

	Point-in-time Recovery enhancements
	Recovery of tables and partitions to a specified point in time is possible using RMAN backups.

Chapter 12: Oracle and Hardware Architecture

This chapter was extensively rewritten in this edition to cover the emergence of growing memory footprints in platforms and the impact of engineered systems, especially the Oracle Exadata Database Machine, Database Appliance, SuperCluster, and Exalogic.

Chapter 13: Oracle Distributed Databases and Distributed Data

As Advanced Replication, AQ, and Streams are depreciated, much of the focus of this chapter is now on the role of two complementary middleware offerings for distributed database deployment: Tuxedo and GoldenGate.

Chapter 14: Oracle Extended Datatypes

This chapter describes capabilities beyond Oracle’s standard set of datatypes. New features enhancing Oracle’s support of extended datatypes include:
	DICOM enhancements
	Protocol for exchange of DICOM images is supported.

	XML DB integration
	XML DB installation is mandatory and the Database is XML aware.

	XQuery enhancements
	XQuery updates, XQuery Full Text, and XQuery API for Java are supported.

	Oracle Spatial and Graph enhancements
	Support for NURBS was added.

Chapter 15: Oracle and the Cloud

This chapter covers a variety of cloud deployment models where Oracle might be deployed
leveraging capabilities described earlier in the book. This is the first edition of this book
covering cloud computing.

Appendix B. Additional Resources

In this concise volume, we have attempted to give you a firm grounding in all the basic concepts you need to understand Oracle and use it effectively. We hope we have accomplished this goal. At the same time, we realize that there is more to using a complex product such as Oracle than simply understanding how and why it works the way it does. Although you can’t use Oracle without a firm grasp of the foundations of the product, you will still need details if you’re actually going to implement a successful system.
This appendix lists two types of additional sources of information for the topics covered in this book—relevant web sites, which act as a constantly changing resource for a variety of information, and a chapter-by-chapter list of relevant books, articles, and Oracle documentation.
For the chapter-by-chapter list, the sources fall into two basic categories: Oracle
documentation/whitepapers and third-party sources. Typically, the Oracle documentation provides the
type of hands-on information you will need regarding syntax and keywords, and while the whitepapers
and third-party sources cover the topics in a more general and problem-solving way. We have listed
the third-party sources first and ended each listing with the relevant Oracle documentation and
whitepapers. Also note that some of the volumes listed here include previous Oracle release names in
their titles. You can assume that by the time you are reading this, similar volumes exist (or will
soon exist) for whatever version of Oracle you may be using (for example, Oracle Database
12c).
Web Sites

	 Oracle Corporation
	Oracle’s home page, featuring the latest company and marketing information, as well as some good technical and packaging information.

	Oracle Technology Network
[also accessible here]
	The focal point of Oracle Corporation’s information intended for an audience of developers and administrators. You can find tons of stuff at the Oracle Technology Network (OTN), including low-cost developer versions or free downloads of most Oracle software and lots of information and discussion forums.

	 International Oracle Users Group (IOUG)
	The International Oracle Users Group web site includes information on meetings, links to Oracle resources, a technical repository, discussion forums, and special interest groups.

	OraPub, Inc.
	Craig Shallahamer’s site devoted to all things Oracle. Craig was a long-time Oracle employee in the performance analysis group and technical reviewer for various editions of this book.

	
O’Reilly Media, Inc.
	The O’Reilly web site that contains web pages for O’Reilly books, including links to Safari Books Online, and a variety of other helpful information.

Books and Oracle Documentation

The following books and Oracle documentation provide additional information for each chapter of this book.
Chapter 1: Introducing Oracle

Bryla, Bob, and Kevin Loney. Oracle Database 11g DBA Handbook. New York, NY: McGraw-Hill Oracle Press, 2007.
Ellison, Lawrence. Oracle Overview and Introduction to SQL. Belmont, CA: Oracle Corporation, 1985.
Greenwald, Rick et al. Professional Oracle Programming, Indianapolis, IN: Wrox/John Wiley & Sons, 2005.
Kelly, David. Oracle Celebrates 30 Years of Innovation, Oracle Magazine, July / August 2007.
Ralston, Anthony, ed. Encyclopedia of Computer Science and Engineering. New York, NY: Nostrand Reinhold Company, 1983.
Getting Started with Oracle NoSQL Database (available as online
documentation). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database 12c Product Family (An Oracle White Paper). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database New Features Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database SQL Language Reference 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle In-Memory Database Cache Users Guide 11g Release 2 (11.2.2). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle MySQL Reference Manual 5.6 (available as online documentation).
Redwood Shores, CA: Oracle Corporation, 2013.
Plug into the Cloud with Oracle Database 12c (An Oracle White Paper). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 2: Oracle Architecture

Loney, Kevin. Oracle Database 11g The Complete Reference. New York, NY: McGraw-Hill, 2008.
Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Reference 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 3: Installing and Running Oracle

Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Installation Guide 12c Release 1 (12.1) for Microsoft Windows. Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Installation Guide 12c Release 1 (12.1) for Linux. Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Installation Guide 12c Release 1 (12.1) for Oracle Solaris. Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Net Services Administrators Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Enterprise Manager Cloud Control Basic Installation Guide 12c Release 2 (12.1.0.2). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 4: Data Structures

Date, C.J., Relational Theory for Computer Professionals. Sebastopol, CA: O’Reilly Media, Inc., 2013.
Date, C.J., SQL and Relational Theory. Sebastopol, CA: O’Reilly Media, Inc., 2011.
Feuerstein, Steven, with Bill Pribyl. Oracle PL/SQL Programming, Fifth Edition. Sebastopol, CA: O’Reilly Media, Inc., 2009.
Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database SQL Tuning Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 5: Managing Oracle

Himatsingka, Bhaskar, and Juan Loaiza. “How to Stop Defragmenting and Start Living: The Definitive Word on Fragmentation.” Paper no. 711. Belmont, CA: Oracle Corporation, 1998.
Oracle Automatic Storage Management Administrator’s Guide. Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Administrator’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Backup and Recovery User’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Enterprise Manager Cloud Control Administrator’s Guide 12c Release 3 (12.1.0.3). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Enterprise Manager Cloud Control Basic Installation Guide 12c Release 2 (12.1.0.2). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Enterprise Manager Lifecycle Management Administrator’s Guide 12c Release 3 (12.1.0.3). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 6: Oracle Security, Auditing, and Compliance

Knox, David et al. Applied Oracle Security. New York, NY: McGraw-Hill Oracle Press, 2009.
Feurstein Steven, and Bill Pribyl. Oracle PL/SQL Programming. Sebastopol, CA: O’Reilly Media, Inc., 2005.
Nanda, Arup, and Steven Feuersten. Oracle PL/SQL for DBAs. Sebastopol, CA: O’Reilly Media, Inc., 2005.
Oracle Database Security Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Advanced Security Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Enterprise User Security Administrator’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Label Security Administrator’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Vault Administrator’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database 2 Day + Security Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 7: Oracle Performance

Niemiec, Rich. Oracle Database 11g Release 2 Performance Tuning Tips & Techniques. New York, NY: McGraw-Hill, 2012.
Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Performance Tuning Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database SQL Tuning Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database 2 Day + Performance Tuning Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 8: Oracle Multiuser Concurrency

Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 9: Oracle and Transaction Processing

Gray, Jim, and Andreas Reuter. Transaction Processing: Concepts and Techniques. San Francisco, CA: Morgan Kaufmann Publishers, 1992.
Edwards, Jeri, with Deborah DeVoe. 3-Tier Client/Server at Work. New York, NY: John Wiley & Sons, 1997.
Oracle Database Development Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Java Developer’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Net Services Administrators Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database 2 Day + Real Application Clusters Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 10: Oracle Data Warehousing and Business Intelligence

Inmon, W.H. Building the Data Warehouse. New York, NY: John Wiley & Sons, 2005.
Kimball, Ralph, and Margy Ross. The Data Warehouse Lifecycle Toolkit. New York, NY: John Wiley & Sons, 2013.
Linoff, Gordon, and Michael Berr. Data Mining Techniques. New York, NY: John Wiley & Sons, 2011.
Miller, Simon, and William Hutchinson. Oracle Business Intelligence Applicaitons. New York, NY: McGraw-Hill Oracle Press, 2013.
Peppers, Don, and Martha Rogers. Enterprise One to One. New York, NY: Currency Doubleday, 1997.
Peppers, Don, Martha Rogers, and Bob Dorf. One to One Fieldbook. New York, NY: Currency Doubleday, 1999.
Plunkett, Tom et al. Oracle Big Data Handbook. New York, NY: McGraw-Hill Oracle Press, 2013.
Schrader, Michael et al. Oracle Essbase & Oracle OLAP. New York, NY: McGraw-Hill Oracle Press, 2010.
Stackowiak, Robert et al. Oracle Data Warehousing and Business Intelligence Solutions. Indianapolis, IN: John Wiley & Sons, 2007.
Stackowiak, Robert. “Why Bad Data Warehouses Happen to Good People.” The Journal of Data Warehousing, April 1997.
White, Tom. Hadoop: The Definitive Guide. Sebastopol, CA: O’Reilly Media, 2011.
Oracle Big Data Appliance Software User’s Guide Release 2 (2.2). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Data Mining Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Data Warehousing Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Exalytics In-Memory Machine: A Brief Introduction (An Oracle White Paper). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle OLAP User’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle R Enterprise User’s Guide 12c Release 1.2 for Linux, Solaris, AIX, and Windows. Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 11: Oracle and High Availability

Chen, Lee et al. “RAID: High Performance, Reliable Secondary Storage.” ACM Computing Surveys, June 1994.
Oracle Database Backup and Recovery User’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Global Data Services Concepts and Administration 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database 2 Day + Real Application Clusters Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Data Guard Concepts and Administration 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle High Availability Overview 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 12: Oracle and Hardware Architecture

Greenwald, Rick et al. Achieving Extreme Performance with Oracle Exadata. New York, NY: McGraw-Hill Oracle Press, 2011.
Morse, H. Stephen. Practical Parallel Computing. Cambridge, MA: AP Professional, 1994.
Pfister, Gregory. In Search of Clusters. Upper Saddle River, NJ: Prentice Hall PTR, 1995.
A Technical Overview of the Oracle Exadata Database Machine and Exadata Storage Server (An Oracle White Paper). Redwood Shores, CA: Oracle Corporation, 2012.
Oracle Database Appliance Owner’s Guide Release 2.6 for Linux x86-64. Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Appliance X3-2 (An Oracle White Paper). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Exalogic Elastic Cloud Machine Owner’s Guide Release EL X2-2 and EL X3-2. Redwood Shores, CA: Oracle Corporation, 2013.
Oracle SuperCluster T5-8: Servers, Storage, Networking, and Software – Optimized and Ready to Run (An Oracle White Paper). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 13: Oracle Distributed Databases and Distributed Data

Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Global Data Services Concepts and Administration Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle GoldenGate Windows and Unix Administrator’s Guide 11g Release 2 Patch Set 1 (11.2.0.1). Redwood Shores, CA: Oracle Corporation, 2012.
Oracle Tuxedo Product Overview 12c Release 1 (available as online
documentation). Redwood Shores, CA: Oracle Corporation, 2012.

Chapter 14: Oracle Extended Datatypes

Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Java Developer’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Object Relational Developer’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database SecureFiles and Large Objects Developer’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Multimedia User’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Multimedia DICOM Developer’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Multimedia Reference 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Spatial and Graph Developer’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Spatial and Graph GeoRaster Developer’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Text Reference 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle XML DB Developer’s Guide 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.

Chapter 15: Oracle and the Cloud

Oracle Application Express Administrator’s Guide Release 4.2 for Oracle Database 12c. Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Application Express Application Builder User’s Guide Release 4.2 for Oracle Database 12c. Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Database Concepts 12c Release 1 (12.1). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Enterprise Manager Cloud Administration Guide 12c Release 3 (12.1.0.3). Redwood Shores, CA: Oracle Corporation, 2013.
Oracle Enterprise Manager Lifecycle Management Administrator’s Guide 12c Release 3 (12.1.0.3). Redwood Shores, CA: Oracle Corporation, 2013.
Plug into the Cloud with Oracle Database 12c (An Oracle White Paper). Redwood Shores, CA: Oracle Corporation, 2013.

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

Symbols
	3DES (Triple Data Encryption Standard), Advanced Security Option
	
	3GLs (third-generation languages), Third-generation languages (3GLs)
	
	|| (concatenation operator), Concatenation and Comparisons
	

A
	access control, Restricting Data-Specific Access–Fine-grained access control
	
	Access Control Lists (ACLs), XML DB
	
	Access Management Suite, Identity Management
	
	ACID properties of transactions, What Is a Transaction?, Oracle GoldenGate
	
	ACLS (Access Control Lists), XML DB
	
	Active Data Guard Option, Data Guard, Oracle Active Data Guard and Zero Data Loss, Clustered Solutions, Grid Computing, and the Cloud
	
	Active Session History (ASH), Monitoring and Tuning the Oracle Database for Performance
	
	ADDM (Automatic Database Diagnostic Monitor), Managing the Oracle Database, Manageability Features, Database Advisors, Monitoring and Tuning the Oracle Database for Performance
	
	ADF (Application Development Framework), Oracle’s WebLogic Server
	
	administration
		administrator categories, Enterprise Manager Architecture
	
	Database Cloud Service, Security and architecture
	
	database management tools, Oracle Enterprise Manager Consoles
	
	security considerations, Usernames, Privileges, Groups, and Roles, Special Roles: DBA, SYSDBA, and SYSOPER
	

	ADO (Automatic Data Optimization), ILM in Oracle Database 12c
	
	Advanced Analytics Option, Advanced Analytics Option, Advanced Analytics Option–Advanced Analytics Option
	
	Advanced Compression Option, Disk and Storage Technology
	
	Advanced Encryption Standard (AES), Advanced Security Option
	
	Advanced Lights Out Manager (ALOM), Enterprise Manager Architecture
	
	Advanced Queuing (AQ), Advanced Queuing and Oracle Streams, Replication and Data Transport, History of Oracle Replication Offerings
	
	Advanced Security Option (ASO), Advanced Security Option, Resolving Oracle Net Service Names, Advanced Security Option
	
	advisors (see specific advisors)
	
	AES (Advanced Encryption Standard), Advanced Security Option
	
	AFTER SUSPEND trigger, Planning the Database
	
	aggregate functions, Basic Analytic and Statistical Functions
	
	aliases (service names), Oracle Net Services and Oracle Net–Resolving Oracle Net Service Names
	
	ALL_ROWS optimizer mode, Influencing the cost-based optimizer
	
	ALOM (Advanced Lights Out Manager), Enterprise Manager Architecture
	
	ALTER statement, Security Privileges
	
	ALTER DATABASE
 command, Starting Up the Database
	
	ALTER DATABASE ARCHIVELOG command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	ALTER DATABASE BACKUP CONTROLFILE command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	ALTER DATABASE MOUNT command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	ALTER DATABASE OPEN command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	ALTER DATABASE RECOVER command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	ALTER SESSION statement, Oracle’s Isolation Levels
	
	ALTER SYSTEM command, Oracle Net Configuration Files
	
	ALTER TABLE statement, Oracle Exadata Database Machine
	
	Amazon Elastic Compute Cloud (EC2), Cloud Levels
	
	Amdahl, Gene, Symmetric Multiprocessing Systems and Nodes
	
	Amdahl’s Law, Symmetric Multiprocessing Systems and Nodes
	
	analytic functions, Analytic functions, Basic Analytic and Statistical Functions
	
	Analytic Workspace Manager (AWM), OLAP Option
	
	analytic workspaces, OLAP Option
	
	analytics, database, Analytics and Statistics in the Database–Advanced Analytics Option
	
	AnyData datatype, Other Datatypes
	
	AnyDataSet datatype, Other Datatypes
	
	AnyType datatype, Other Datatypes
	
	Apache Hadoop framework, Cloudera Distribution of Hadoop, Big Data and the Data Warehouse
	
	APEX (Application Express)
		about, Oracle Application Express, Java’s Role and Web Services
	
	application development and, APEX application development–APEX application development
	
	architectural overview, APEX architecture
	
	history of, History of Application Express
	
	metadata and, APEX architecture
	

	APIs (application programming interfaces), Java’s Role and Web Services
	
	Application Continuity feature, Transactions and High Availability, Oracle Application Continuity
	
	application development
		APEX and, APEX application development–APEX application development
	
	code reusability, Object-Oriented Development
	
	Database Cloud Service and, Development with the Database Cloud Service–Portability with the Database Cloud Service
	
	database extensibility, Database Extensibility
	
	database programming, Database Programming–National Language Support
	
	object-oriented, Object-Oriented Development–JavaBeans
	
	Oracle tools, Oracle Database Development Tools–Oracle Application Express
	
	roles and privileges, Security and Application Roles and Privileges
	

	Application Development Framework (ADF), Oracle’s WebLogic Server
	
	Application Express (APEX)
		about, Oracle Application Express, Java’s Role and Web Services
	
	application development and, APEX application development–APEX application development
	
	architectural overview, APEX architecture
	
	history of, History of Application Express
	
	metadata and, APEX architecture
	

	application programming interfaces (APIs), Java’s Role and Web Services
	
	Application Rehosting Workbench, Oracle Tuxedo
	
	application servers, Application Servers and Web Servers As Clients, Three-Tier Systems–Application Servers and Web Servers
	
	Applications to Model Interface (ATMI), Oracle Tuxedo
	
	AQ (Advanced Queuing), Advanced Queuing and Oracle Streams, Replication and Data Transport, History of Oracle Replication Offerings
	
	ARC (Archiver), Background Processes for an Instance
	
	ARCHIVE LOG START command, ARCHIVELOG mode and automatic archiving
	
	ARCHIVELOG mode, Archived redo logs–ARCHIVELOG mode and automatic archiving, Backup and Recovery, Using Backups to Recover
	
	Archiver (ARC), Background Processes for an Instance
	
	archiving redo logfiles, Archived redo logs–ARCHIVELOG mode and automatic archiving, Special Roles: DBA, SYSDBA, and SYSOPER
	
	ASH (Active Session History), Monitoring and Tuning the Oracle Database for Performance
	
	ASM (Automatic Storage Management)
		about, Storage Management, Automatic Storage Management, I/O Planning Principles for an Oracle Database, Disk and Storage Technology
	
	background processes and, Background Processes for an Instance
	
	bigfiletablespace and, Tablespaces
	
	planning databases, Planning the Database
	
	protecting against system failure, Automatic Storage Management
	
	RAID levels and, Automatic Storage Management
	

	ASO (Advanced Security Option), Advanced Security Option, Resolving Oracle Net Service Names, Advanced Security Option
	
	ASSM (automatic segment space management), Database Advisors, Monitoring and Tuning the Oracle Database for Performance
	
	asynchronous replication, Oracle GoldenGate and Replication–Oracle GoldenGate and Replication, Replication Basics
	
	ATMI (Applications to Model Interface), Oracle Tuxedo
	
	attributes
		entity, Data Design
	
	object, Objects in Oracle
	

	Audit Vault Option, Audit Vault and Database Firewall Option, Compliance
	
	Audit Vault Server, Audit Vault and Database Firewall Option, Oracle Audit Vault Server
	
	auditing, Oracle Security, Auditing, and Compliance, Auditing–Auditing
	
	AUDIT_TRAIL parameter, Auditing
	
	authentication, Advanced Security Option, Distributed security management–Encryption
	
	auto-discovery feature, Auto-Discovery and Agents
	
	automated patching, Automated Patching
	
	Automatic Data Optimization (ADO), ILM in Oracle Database 12c
	
	Automatic Database Diagnostic Monitor (ADDM), Managing the Oracle Database, Manageability Features, Database Advisors, Monitoring and Tuning the Oracle Database for Performance
	
	automatic segment space management (ASSM), Database Advisors, Monitoring and Tuning the Oracle Database for Performance
	
	Automatic Shared Memory Management, Instance Memory and Processes
	
	Automatic Storage Management (see ASM)
	
	Automatic Workload Repository (AWR), The Value of Estimating, Monitoring and Tuning the Oracle Database for Performance, Bitmap Indexes and Parallelism
	
	availability, What Is High Availability?
		(see also high availability)
	
	about, What Is High Availability?
	
	database management tools, Oracle Enterprise Manager Consoles
	
	maximum, Maximum Availability Architecture Considerations
	
	planning for databases, Planning the Database
	

	AWM (Analytic Workspace Manager), OLAP Option
	
	AWR (Automatic Workload Repository), The Value of Estimating, Monitoring and Tuning the Oracle Database for Performance, Bitmap Indexes and Parallelism
	
	Axmark, David, Oracle MySQL
	

B
	B*-tree indexes, B*-tree indexes
	
	Bachman, Charles, The Evolution of the Relational Database
	
	background processes (instances), Background Processes for an Instance–Background Processes for an Instance
	
	backup and recovery
		about, Backup and Recovery–Backup and Recovery, Recovering from Failures and Data Corruption
	
	Data Recovery Advisor, Database Advisors
	
	data redundancy, Old-Fashioned Data Redundancy
	
	data warehouses and, Managing the Data Warehouse
	
	developing strategy, Developing a Backup-and-Recovery Strategy
	
	Flashback technology, Flashback–Flashback
	
	Oracle Secure Backup, Oracle Secure Backup, Oracle Secure Backup
	
	point-in-time recovery, Point-in-Time Recovery, Data Transport Using Database Features
	
	protecting against system failure, Protecting Against System Failure–Automatic Storage Management
	
	read-only tablespaces and, Read-Only Tablespaces and Backups
	
	recovering from backups, Using Backups to Recover–Using Backups to Recover
	
	Recovery Manager, Recovery Manager, Taking Oracle Backups, Recovery Manager–Recovery Manager
	
	security considerations, Secure Backup
	
	types of backups supported, Taking Oracle Backups
	
	types of options, Types of Backup and Recovery Options–Types of Backup and Recovery Options
	
	unplanned downtime and, What Is Instance Recovery?–Phases of Instance Recovery
	

	balanced configurations, Oracle’s Engineered Systems
	
	batch transaction processing, Online and batch transaction processing
	
	BDA (Big Data Appliance), Cloudera Distribution of Hadoop, Other Datatypes and Big Data, Other Engineered Systems
	
	Berkeley DB, Berkeley DB & Oracle NoSQL Database
	
	BFILE datatype, Other Datatypes
	
	BI Publisher, Oracle Audit Vault Server, Oracle Business Intelligence Foundation Suite
	
	Big Data Appliance (BDA), Cloudera Distribution of Hadoop, Other Datatypes and Big Data, Other Engineered Systems
	
	Big Data Connectors, Loading Data into the Data Warehouse
	
	bigfiletablespaces, Tablespaces
	
	BINARY_DOUBLE datatype, Analytics and Statistics in the Database
	
	BINARY_FLOAT datatype, Analytics and Statistics in the Database
	
	bitmap indexes, Bitmap indexes, Bitmap indexes, Bitmap Indexes and Parallelism–Bitmap Indexes and Parallelism
	
	blank-padded comparisons, Concatenation and Comparisons
	
	BLOB datatype, Other Datatypes, Objects in Oracle
	
	block size, database, Datafiles, Oracle and Disk I/O Resources
	
	block-range parallelism, Block-Range Parallelism
	
	bound plans, General Concurrency and Performance
	
	BPM (Business Process Management) Suite, Oracle’s WebLogic Server
	
	Buffer Cache Advisor, Database Advisors
	
	business intelligence
		about, Oracle Data Warehousing and Business
 Intelligence
	
	analytics infrastructure, Putting It All Together–Effective Strategy
	
	best practices, Best Practices–Best Practices
	
	common misconceptions, Common Misconceptions
	
	effective strategy, Effective Strategy
	
	evolution of, The Evolution of Data Warehousing and Business
 Intelligence
	
	metadata challenge, The Metadata Challenge
	
	OLTP systems and, OLTP Versus Business Intelligence, OLTP Systems and Business Intelligence
	
	query optimization and, Query Optimization–Optimization Provided by the Exadata Storage Server
 Software
	
	tools for, Business Intelligence Tools, Oracle Audit Vault Server, Business Intelligence Tools–Oracle Exalytics
	
	topology for, A Topology for Business Intelligence
	

	Business Intelligence Applications, Business Intelligence Applications
	
	business intelligence beans, OLAP Option
	
	Business Intelligence Foundation Suite, Business Intelligence Tools, Oracle Business Intelligence Foundation Suite–Oracle Business Intelligence Foundation Suite
	
	Business Process Management (BPM) Suite, Oracle’s WebLogic Server
	

C
	Cache Fusion, Oracle Real Application Clusters, Clustered Solutions, Grid Computing, and the Cloud
	
	cache hit ratio, The database buffer cache
	
	cache recovery, Phases of Instance Recovery
	
	cardinality, Bitmap Indexes and Parallelism
	
	Cartesian product joins, Star query optimization
	
	CAT (Classloader Analysis Tool), Oracle’s WebLogic Server
	
	Catalog Services for the Web (CSW), Oracle Spatial and Graph Option
	
	CDBs (container databases), Pluggable Databases, Pluggable Databases–PDBs and Oracle features, Oracle Data Guard and Site Failures
	
	CDH (Cloudera Distribution of Hadoop), Cloudera Distribution of Hadoop, Other Datatypes and Big Data
	
	CHAR datatype, Character Datatypes
	
	character datatypes, Character Datatypes
	
	check constraints, Constraints
	
	Checkpoint (CKPT), Background Processes for an Instance
	
	checkpoint structure, Datafile structure, Phases of Instance Recovery
	
	CHOOSE optimizer mode, Specifying an Optimizer Mode
	
	CKPT (Checkpoint), Background Processes for an Instance
	
	classes, Objects in Oracle
	
	Classloader Analysis Tool (CAT), Oracle’s WebLogic Server
	
	client processes
		about, Client process
	
	application servers as, Application Servers and Web Servers As Clients
	
	web servers as, Application Servers and Web Servers As Clients
	

	CLOB datatype, Character Datatypes, Other Datatypes
	
	closing databases, Shutting Down the Database
	
	cloud computing
		about, Introducing Oracle, Configuration, Engineered Systems, and the Cloud, Oracle in the Cloud, Clustered Solutions, Grid Computing, and the Cloud, Cloud Definitions
	
	common characteristics, Common Characteristics
	
	Database Cloud Service, Oracle Database Cloud Service–SQL Developer and the Database Cloud
	
	EM Cloud Control, Enterprise Manager Architecture–Enterprise Manager Architecture
	
	factors in, Is the Cloud New?–Stateless
	
	implementing provider Clouds, Implementing Provider Clouds–Implementing Provider Clouds
	
	levels of products, Cloud Levels, Oracle Database in the Cloud
	
	OLTP systems and, OLTP and the Cloud
	
	use cases, Use Cases for Cloud Computing
	

	Cloud Control (EM), Enterprise Manager Architecture–Enterprise Manager Architecture
	
	Cloud Control console, Enterprise Manager Architecture–Enterprise Manager Architecture, Oracle Enterprise Manager Consoles–Oracle Enterprise Manager Consoles
	
	Cloud Identity Manager, Security and architecture
	
	Cloud Management Pack for Oracle Database, Oracle Enterprise Manager 12c, Oracle Enterprise Manager
	
	Cloudera Distribution of Hadoop (CDH), Cloudera Distribution of Hadoop, Other Datatypes and Big Data
	
	Cloudera Manager, Other Datatypes and Big Data
	
	clusters, Real Application Clusters and Instance Failures
		(see also RACs)
	
	about, Clusters
	
	clustered solutions, Clustered Solutions, Grid Computing, and the Cloud–Clustered Solutions, Grid Computing, and the Cloud
	
	Flex Clusters, Real Application Clusters and Instance Failures
	
	hash, Hash Clusters
	
	managing, Oracle Enterprise Manager Consoles–Oracle Enterprise Manager Consoles
	
	pattern matching, Advanced Analytics Option
	

	CMAN (Connection Manager), Oracle Connection Manager, Oracle Connection Pooling, Multi-Threaded Server/shared server
	
	CODASYL Data Base Task Group, The Evolution of the Relational Database
	
	Codd, Edgar F., The Evolution of the Relational Database, Data Design
	
	collection types, Objects in Oracle
	
	columns
		about, Relational Basics, Tables
	
	constraints for, Constraints
	
	pseudocolumns, Other Datatypes, Indexes, Oracle Concurrency Features
	
	statistics for, How statistics are used
	
	virtual column-based partitioning, Partitioning
	

	commit mechanism
		transactions and, Oracle and Transactions, What Is Instance Recovery?
	
	two-phase, Distributed Queries and Transactions, Two-Phase Commit
	

	COMMIT statement, Locks, Two-Phase Commit
	
	Common Warehouse Metadata Interchange (CWMI), The Metadata Challenge
	
	comparing
		datatypes, Concatenation and Comparisons
	
	query optimizations, Comparing Optimizations
	

	compliance, Oracle Security, Auditing, and Compliance, Compliance–Transparent Sensitive Data Protection
	
	composite partitions, Partitioning, Parallelism for Tables and Partitions of Tables, Managing the Data Warehouse
	
	concatenating datatypes, Concatenation and Comparisons
	
	concatenation operator (||), Concatenation and Comparisons
	
	concurrent access
		about, Oracle Multiuser Concurrency–Oracle and Concurrent User Access
	
	isolation levels and, Oracle’s Isolation Levels
	
	locks and, How Oracle Handles Locking–A Read Operation
	
	multiversion read consistency and, Oracle and Concurrent User Access, A Read Operation, General Concurrency and Performance
	
	OLTP systems and, General Concurrency and Performance–General Concurrency and Performance
	
	Oracle features, Oracle Concurrency Features–Oracle Concurrency Features
	
	performance and, Concurrent Access and Performance
	
	workspaces and, Workspaces–Workspace Enhancements
	

	configuration files, Oracle Net, Oracle Net Configuration Files–Oracle Net Configuration Files
	
	Connection Manager (CMAN), Oracle Connection Manager, Oracle Connection Pooling, Multi-Threaded Server/shared server
	
	connection pooling
		about, Oracle Connection Pooling
	
	database resident, Oracle Connection Pooling, Database Resident Connection Pooling, Multi-Threaded Server/shared server
	
	Oracle Net, Multi-Threaded Server/shared server
	

	connections (database), Database Connection Features
	
	constraining tables, Triggers
	
	constraints
		about, Constraints–Constraints
	
	referential integrity, Relational Basics
	

	container databases (CDBs), Pluggable Databases, Pluggable Databases–PDBs and Oracle features, Oracle Data Guard and Site Failures
	
	contention, concurrency and, Concurrency and Contention
	
	control files, Files of a database, Control Files, Special Roles: DBA, SYSDBA, and SYSOPER
	
	CONTROL_FILES parameter, Database Initialization, Control Files, Starting Up the Database
	
	converting datatypes, Type Conversion
	
	CORBA Tuxedo Java Client, Oracle Tuxedo
	
	cost-based optimization, Cost-Based Optimization–Newer database releases and the cost-based optimizer
	
	CPU resources
		about, Oracle and CPU Resources–Oracle and CPU Resources, System Basics
	
	parallelism and, Oracle and Parallelism–Parallel insert for nonpartitioned and partitioned
 tables
	
	SMP systems and, Symmetric Multiprocessing Systems and Nodes–Symmetric Multiprocessing Systems and Nodes
	

	crash recovery, Shutting Down the Database, Server Hardware, Storage, and Database Instance Failure–Phases of Instance Recovery
	
	CREATE
 statement, Relational Basics, Security Privileges
	
	CREATE DATABASE command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	CREATE SPFILE command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	CRUD matrix, Planning the Database
	
	CSW (Catalog Services for the Web), Oracle Spatial and Graph Option
	
	cursor (private SQL area), Memory for SQL statements
	
	CWMI (Common Warehouse Metadata Interchange), The Metadata Challenge
	

D
	data blocks
		about, Extents and segments
	
	Flashback and, Flashback
	
	I/O operations and, Oracle and Disk I/O Resources
	
	locks in, Oracle Concurrency Features
	

	Data Definition Language (DDL), Relational Basics
	
	data dictionary
		about, The Data Dictionary–The Data Dictionary
	
	audit records, Auditing
	
	shared server and, Data dictionary information about the shared server
	
	views supported, Data Dictionary Tables
	

	data discovery tools, Data Discovery and Oracle Endeca Information Discovery
	
	Data Guard
		about, Global Data Services
	
	cloud computing and, Implementing Provider Clouds
	
	GoldenGate and, Oracle GoldenGate
	
	high availability and, Data Guard, High Availability
	
	site failover and, Oracle Data Guard and Site Failures–Oracle Data Guard and Site Failures
	

	Data Guard Broker, Data Guard
	
	data integration, Data Integration Tools, Oracle GoldenGate–Oracle GoldenGate
	
	data integrity
		automatic recovery and, Site and Computer Server Failover
	
	concurrent users and, Oracle Multiuser Concurrency
	
	constraints and, Constraints–Constraints
	
	enforcing, Triggers–Triggers, Integrity Problems
	

	Data Manipulation Language (DML), Relational Basics, Parallelism for partitions and subpartitions of a table
	
	data marts, Data Marts
	
	Data Masking Pack for Oracle Database, Oracle Enterprise Manager 12c, Oracle Enterprise Manager
	
	data mining, Advanced Analytics Option, Advanced Analytics Option–Advanced Analytics Option
	
	Data Mining Option, Advanced Analytics Option, Advanced Analytics Option
	
	Data Pump utility, Loading Data into the Data Warehouse, Old-Fashioned Data Redundancy
	
	Data Recovery Advisor, Data Guard, Database Advisors
	
	data redaction, Data Redaction
	
	data redundancy, Old-Fashioned Data Redundancy
	
	data transport, Data Transport Using Database Features
	
	Data Vault Option, Compliance
	
	data warehousing
		about, Data Warehousing–Advanced Analytics Option, Oracle Data Warehousing and Business
 Intelligence–Data Warehousing Basics
	
	analytics infrastructure, Putting It All Together–Effective Strategy
	
	backups and, Managing the Data Warehouse
	
	Big Data and, Big Data and the Data Warehouse
	
	classic topology, A Topology for Business Intelligence
	
	clean data and, Loading Data into the Data Warehouse
	
	data marts, Data Marts
	
	design considerations, Data Warehouse Design–Data Warehouse Design
	
	evolution of, The Evolution of Data Warehousing and Business
 Intelligence
	
	loading data, Loading Data into the Data Warehouse–Loading Data into the Data Warehouse
	
	managing, Managing the Data Warehouse
	
	operational data store and, The Operational Data Store and Enterprise Warehouse
	

	database buffer cache, Database buffer cache, The database buffer cache
	
	Database Cloud Service
		about, Oracle Database Cloud Service–Oracle Database Cloud Service
	
	APEX and, History of Application Express
	
	architectural overview, Architecture–APEX architecture
	
	development with, Development with the Database Cloud Service–Portability with the Database Cloud Service
	
	portability, Portability with the Database Cloud Service
	
	schemas and, Portability with the Database Cloud Service
	
	SQL Developer and, SQL Developer and the Database Cloud
	

	Database Configuration Assistant (DBCA), Database Initialization, Tools for Creating Databases
	
	Database File System (DBFS), XML DB
	
	Database Firewall, Audit Vault and Database Firewall Option, Oracle Audit Vault Server
	
	database links, Relational Basics
	
	Database Mobile Server, Berkeley DB & Oracle NoSQL Database
	
	Database Replay feature, Comparing Optimizations
	
	database resident connection pooling, Oracle Connection Pooling, Database Resident Connection Pooling, Multi-Threaded Server/shared server
	
	Database Resource Manager (DBRM)
		planning for growth, Sizing and Planning for Growth
	
	scalability, Scalability
	

	Database Resource Manager (DRM)
		about, Using the Oracle Database Resource Manager
	
	OLTP systems and, Database Resource Manager
	

	Database Vault Option, Database Vault Option, Oracle Database Vault Option–Oracle Database Vault Option
	
	Database Writer (DBWR), Background Processes for an Instance, Server process
	
	Database-as-a-Service (DBaaS), Cloud Levels, Oracle as a DBaaS
	
	databases, Database Extensibility
		(see also Oracle Database)
	
	about, Databases and Instances–Databases and Instances
	
	accessing, Accessing a Database–Database Resident Connection Pooling
	
	closing, Shutting Down the Database
	
	container, Pluggable Databases, Pluggable Databases–PDBs and Oracle features
	
	creating, Creating a Database–Tools for Creating Databases, Special Roles: DBA, SYSDBA, and SYSOPER
	
	deleting, Special Roles: DBA, SYSDBA, and SYSOPER
	
	dismounting, Shutting Down the Database
	
	distributed, Distributed Database Features–Heterogeneous Services, Distributed Database and Multitier Security–Multitier security, Oracle Distributed Databases and Distributed Data–Data Transport Using Database Features
	
	extensions to, Database Extensibility
	
	file types, Files of a database, Deploying Physical Components–ARCHIVELOG mode and automatic archiving
	
	fragmentation and, Oracle Enterprise Manager
	
	initializing, Database Initialization
	
	mounting, Starting Up the Database, Special Roles: DBA, SYSDBA, and SYSOPER
	
	normalizing, Data Design–Data Design, Data Warehouse Design
	
	opening, Starting Up the Database
	
	Oracle supported, Other Oracle Databases–Cloudera Distribution of Hadoop
	
	parallelization and, Database Parallelization
	
	planning, Planning the Database–Tools for Creating Databases, I/O Planning Principles for an Oracle Database–Oracle’s engineered systems and storage
	
	pluggable, Pluggable Databases, Pluggable Databases–PDBs and Oracle features, Clustered Solutions, Grid Computing, and the Cloud
	
	relational, The Evolution of the Relational Database–How Oracle Grew, NULLs
	
	setting block size, Datafiles, Oracle and Disk I/O Resources
	
	shutting down, Shutting Down the Database
	
	starting, Starting Up the Database
	
	statistics usage, How statistics are used–How statistics are used
	
	unplanned downtime, Server Hardware, Storage, and Database Instance Failure
	

	datafile headers, Datafile structure
	
	datafiles
		about, Tablespaces, Files of a database, Datafiles–Extents and segments
	
	instance recovery and, Phases of Instance Recovery
	
	point-in-time recovery, Point-in-Time Recovery
	
	tablespaces and, Tablespaces
	

	datatypes
		about, Datatypes, Other Datatypes and Big Data
	
	character, Character Datatypes
	
	comparing, Concatenation and Comparisons
	
	concatenating, Concatenation and Comparisons
	
	converting, Type Conversion
	
	date, Date Datatype
	
	extended, Oracle Extended Datatypes–The Extensibility Architecture Framework
	
	numeric, Numeric Datatype
	

	date datatype, Date Datatype
	
	DBA role, Usernames, Privileges, Groups, and Roles, Special Roles: DBA, SYSDBA, and SYSOPER
	
	DBaaS (Database-as-a-Service), Cloud Levels, Oracle as a DBaaS
	
	DBCA (Database Configuration Assistant), Database Initialization, Tools for Creating Databases
	
	DBFS (Database File System), XML DB
	
	DBMS_STATS package, How statistics are used
	
	DBMS_STATS_FUNCS package, Basic Analytic and Statistical Functions
	
	DBRM (Database Resource Manager)
		about, Using the Oracle Database Resource Manager
	
	planning for growth, Sizing and Planning for Growth
	
	scalability, Scalability
	

	DBWR (Database Writer), Background Processes for an Instance, Server process
	
	DB_CACHE_SIZE parameter, Instance Memory and Processes, Database buffer cache, Automatic sizing for the SGA
	
	DB_KEEP_CACHE_SIZE parameter, Database buffer cache, Automatic sizing for the SGA
	
	DB_NAME parameter, Database Initialization
	
	DB_RECYCLE_CACHE_SIZE parameter, Database buffer cache, Automatic sizing for the SGA
	
	DDL (Data Definition Language), Relational Basics
	
	debugging network problems, Oracle Net Manager
	
	decision support systems (DSS), The Evolution of Data Warehousing and Business
 Intelligence
	
	dedicated servers, The Shared Server/Multi-Threaded Server–Session memory for shared server processes versus dedicated
 server processes
	
	DEFAULT buffer pool, Database buffer cache
	
	deferred constraints, Constraints
	
	DELETE statement
		about, Relational Basics
	
	security privileges, Security Privileges, Fine-grained access control
	
	WHERE clause, Database Security Features
	

	deleting databases, Special Roles: DBA, SYSDBA, and SYSOPER
	
	Diagnostic Pack for Oracle Database, Oracle Enterprise Manager 12c, Oracle Enterprise Manager
	
	dimensional data, Dimensional Data and Hierarchies in the Database–OLAP Option
	
	direct persistence layer (DPL) API, Berkeley DB & Oracle NoSQL Database
	
	directory services, Identity Management
	
	dirty reads, Integrity Problems
	
	disk farms (storage subsystems), Storage subsystems
	
	disk redundancy, Disk Redundancy–Disk Redundancy
	
	dismounting databases, Shutting Down the Database
	
	Dispatcher process, Background Processes for an Instance, The Shared Server/Multi-Threaded Server
	
	distributed databases
		accessing, Accessing Distributed Databases–Oracle Tuxedo
	
	data transport, Data Transport Using Database Features
	
	mulitier security and, Distributed Database and Multitier Security–Multitier security
	
	Oracle features, Distributed Database Features–Heterogeneous Services
	
	replication and, Replication and Data Transport–Global Data Services
	

	Distributed Lock Manager (DLM), Oracle Concurrency Features
	
	distributed queries, Distributed Queries and Transactions
	
	Distributed Relational Database Architecture
 (DRDA), Access to and from Non-Oracle Databases
	
	distributed transactions, Distributed Queries and Transactions
	
	DLM (Distributed Lock Manager), Oracle Concurrency Features
	
	DML (Data Manipulation Language), Relational Basics, Parallelism for partitions and subpartitions of a table
	
	DNS (Domain Name Service), Resolving Oracle Net Service Names
	
	Domain Name Service (DNS), Resolving Oracle Net Service Names
	
	downtime
		about, What Is High Availability?
	
	measuring, Measuring High Availability–Measuring High Availability
	
	planned, Planned Downtime
	
	unplanned, What Is High Availability?, The System Stack and Availability–Server Hardware, Storage, and Database Instance Failure, Oracle GoldenGate and Replication–Oracle GoldenGate and Replication
	

	DPL (direct persistence layer) API, Berkeley DB & Oracle NoSQL Database
	
	DRDA (Distributed Relational Database
 Architecture), Access to and from Non-Oracle Databases
	
	DRM (Database Resource Manager)
		OLTP systems and, Database Resource Manager
	

	DROP statement, Relational Basics, Security Privileges
	
	DROP DATABASE command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	DSS (decision support systems), The Evolution of Data Warehousing and Business
 Intelligence
	

E
	easy connect naming method, Resolving Oracle Net Service Names, Resolving Oracle Net Service Names
	
	EBR (edition-based redefinition), Editions
	
	EC2 (Elastic Compute Cloud), Cloud Levels
	
	edition-based redefinition (EBR), Editions
	
	editions of tables, Editions
	
	EID (Endeca Information Discovery), Business Intelligence Tools, Data Discovery and Oracle Endeca Information Discovery
	
	EJBs (Enterprise JavaBeans), JavaBeans
	
	Ellison, Larry, How Oracle Grew
	
	ELOM (Embedded Lights Out Manager), Enterprise Manager Architecture
	
	EM (Enterprise Manager)
		about, Oracle Enterprise Manager 12c–Oracle Enterprise Manager 12c, Oracle Enterprise Manager–Oracle Enterprise Manager, Clustered Solutions, Grid Computing, and the Cloud
	
	architectural overview, Enterprise Manager Architecture–Enterprise Manager Architecture
	
	consoles supported, Oracle Enterprise Manager Consoles–Oracle Enterprise Manager Consoles
	
	managing data warehouses, Managing the Data Warehouse
	
	materialized views, Materialized Views
	
	setting memory management parameters, Instance Memory and Processes
	

	EM Express, EM Express
	
	Embedded Lights Out Manager (ELOM), Enterprise Manager Architecture
	
	EMCLI (EM command line interface), Enterprise Manager Architecture
	
	encryption, Advanced Security Option, Advanced Security Option–Encryption
	
	Endeca Information Discovery (EID), Business Intelligence Tools, Data Discovery and Oracle Endeca Information Discovery
	
	Endeca Server, Data Discovery and Oracle Endeca Information Discovery
	
	Endeca Studio interface, Data Discovery and Oracle Endeca Information Discovery
	
	engineered systems
		about, Configuration, Engineered Systems, and the Cloud, Oracle’s Engineered Systems–Other Engineered Systems
	
	justifying, Justifying an Oracle Engineered System
	
	performance and, Oracle’s engineered systems and storage
	

	enterprise data warehouse, The Operational Data Store and Enterprise Warehouse
	
	Enterprise JavaBeans (EJBs), JavaBeans
	
	Enterprise Manager (see EM)
	
	entities, Data Design
	
	entity Java beans, JavaBeans
	
	equipartitioning, Partitioning
	
	ETL techniques, Data Warehousing Basics, OLTP Systems and Business Intelligence, Loading Data into the Data Warehouse
	
	EVALUATE function, Concatenation and Comparisons
	
	events
		about, Rules Manager
	
	rules and, Rules Manager
	
	sources of waits, Monitoring and Tuning the Oracle Database for Performance
	
	triggering, Triggers–Triggers
	

	Exadata Database Machine
		about, The Oracle Database Family, Oracle Exadata Database Machine–Oracle Exadata Database Machine
	
	management view, Oracle Enterprise Manager Consoles
	
	OLTP systems and, Exadata and OLTP, Oracle Exadata Database Machine
	
	performance monitoring and tuning, Additional Monitoring and Tuning Available for Oracle
 Exadata
	
	query optimization and, Optimization Provided by the Exadata Storage Server
 Software
	
	storage indexes and, Indexes, Storage indexes
	

	Exalogic system, Oracle Exalogic
	
	Exalytics systen, Oracle Exalytics
	
	EXECUTE privilege, Security Privileges
	
	execution path, Query Optimization
	
	execution plan for queries, Understanding the Execution Plan–Understanding the Execution Plan
	
	EXPLAIN PLAN statement, Understanding the Execution Plan–Understanding the Execution Plan
	
	Expression Filter, Concatenation and Comparisons, The Expression Filter
	
	eXtended Architecture (XA), Two-Phase Commit
	
	Extensibility Architecture framework, The Extensibility Architecture Framework
	
	eXtensible Markup Language (XML), XML DB
	
	Extensible Stylesheet Language (XSL), XML DB
	
	extents (datafiles), Extents and segments, I/O Planning Principles for an Oracle Database
	

F
	fact tables, Data Warehousing Basics, Data Warehouse Design
	
	factors (parameters), Oracle Database Vault Option, Objects in Oracle
		(see also specific parameters)
	

	Fail Safe feature, Fail Safe
	
	failover
		about, Site and Computer Server Failover
	
	server, Site and Computer Server Failover
	
	site, Oracle Data Guard and Site Failures–Oracle GoldenGate and Replication, Oracle Active Data Guard and Zero Data Loss–Oracle GoldenGate and Replication
	
	TAF and, High Availability, Oracle Transparent Application Failover–Oracle Application Continuity
	
	zero data loss, Oracle Active Data Guard and Zero Data Loss
	

	FAN (Fast Application Notification), Oracle Application Continuity
	
	Fast Application Notification (FAN), Oracle Application Continuity
	
	fast commits, Oracle and Transactions
	
	Fast Recovery Area (FRA), Recovery Manager
	
	fault tolerance, Component Redundancy
	
	Feuerstein, Steven, Fine-grained access control
	
	FGAC (fine-grained access control), Fine-grained access control
	
	fields, Relational Basics
	
	file types, database, Files of a database, Deploying Physical Components–ARCHIVELOG mode and automatic archiving
	
	fine-grained access control (FGAC), Fine-grained access control
	
	FIRST_ROWS optimizer mode, Influencing the cost-based optimizer
	
	Flashback technology, Flashback, Flashback, Flashback Data Archive, Flashback–Flashback
	
	Flex ASM, Automatic Storage Management
	
	Flex Clusters, Real Application Clusters and Instance Failures
	
	foreign keys, Relational Basics, Data Design, Constraints
	
	FRA (Fast Recovery Area), Recovery Manager
	
	fragmentation, database, Oracle Enterprise Manager
	
	full table scans, Query Optimization
	
	function-based indexes, Function-based indexes
	
	functions
		aggregate, Basic Analytic and Statistical Functions
	
	analytic, Analytic functions, Basic Analytic and Statistical Functions
	
	linear regression, Basic Analytic and Statistical Functions
	
	methods and, Objects in Oracle
	
	ranking, Basic Analytic and Statistical Functions
	
	statistical, Basic Analytic and Statistical Functions
	

	Fusion Middleware, The Role of Oracle Fusion Middleware–Identity Management
	

G
	GDS (Global Data Services), Global Data Services, Global Data Services
	
	General Electric, The Evolution of the Relational Database
	
	geocoding, Oracle Spatial and Graph Option
	
	geographic information system (GIS), Oracle Spatial and Graph Option, Oracle Spatial and Graph Option
	
	GIS (geographic information system), Oracle Spatial and Graph Option, Oracle Spatial and Graph Option
	
	Global Cache Service, Background Processes for an Instance
	
	Global Data Services (GDS), Global Data Services, Global Data Services
	
	Globalization Toolkit, National Language Support
	
	GoldenGate
		about, High Availability, Clustered Solutions, Grid Computing, and the Cloud
	
	data capture and, Advanced Queuing and Oracle Streams
	
	Data Guard and, Oracle GoldenGate
	
	data integration and, Data Integration Tools, Oracle GoldenGate–Oracle GoldenGate
	
	data warehousing and, Loading Data into the Data Warehouse
	
	protecting against unplanned downtime, Oracle GoldenGate and Replication–Oracle GoldenGate and Replication
	
	synchronizing information, Global Data Services
	

	GoldenGate Manager, Oracle GoldenGate
	
	GRANT statement, Relational Basics, Security Privileges, Oracle Database Vault Option
	
	granule (memory), Instance Memory and Processes, Oracle and Memory Resources
	
	Gray, Jim, What Is a Transaction?
	
	grid computing, Introducing Oracle, The Grid, Clustered Solutions, Grid Computing, and the Cloud
	

H
	Hadoop Distributed File System (HDFS), Cloudera Distribution of Hadoop, Big Data and the Data Warehouse, Oracle Extended Datatypes
	
	hardware
		choosing and defining platforms, Choosing and Defining the Right Platform–Justifying an Oracle Engineered System
	
	engineered systems, Oracle’s Engineered Systems–Other Engineered Systems
	
	HARD initiative, Recovering from Failures and Data Corruption
	
	protecting against system failure, Protecting Against System Failure–Automatic Storage Management
	
	site and computer server failover, Site and Computer Server Failover–Oracle Application Continuity
	
	system basics, System Basics–Disk and Storage Technology
	
	unplanned downtime, Server Hardware, Storage, and Database Instance Failure
	

	Hardware Assisted Resilient Data (HARD) initiative, Recovering from Failures and Data Corruption
	
	hash clusters, Hash Clusters
	
	hash partitioning, Managing the Data Warehouse
	
	HASHKEYS parameter, Hash Clusters
	
	HCC (Hybrid Columnar Compression), Optimization Provided by the Exadata Storage Server
 Software, Disk and Storage Technology, Oracle Exadata Database Machine
	
	HDFS (Hadoop Distributed File System), Cloudera Distribution of Hadoop, Big Data and the Data Warehouse, Oracle Extended Datatypes
	
	Heat Maps, ILM in Oracle Database 12c
	
	Heterogeneous Services, Heterogeneous Services, Loading Data into the Data Warehouse, Access to and from Non-Oracle Databases
	
	hierarchies, database, Dimensional Data and Hierarchies in the Database–OLAP Option
	
	high availability
		about, High Availability–Oracle Real Application Clusters, What Is High Availability?
	
	measuring, Measuring High Availability–Measuring High Availability
	
	OLTP systems, High Availability
	
	planned downtime, Planned Downtime
	
	protecting against system failure, Protecting Against System Failure–Automatic Storage Management
	
	recovering from failures and data corruption, Recovering from Failures and Data Corruption–Flashback
	
	site and computer server failover, Site and Computer Server Failover–Oracle Application Continuity
	
	system stack and, The System Stack and Availability–Phases of Instance Recovery
	
	transactions and, Transactions and High Availability
	

	hit ratio, The database buffer cache
	
	host naming, Resolving Oracle Net Service Names
	
	Hybrid Columnar Compression (HCC), Optimization Provided by the Exadata Storage Server
 Software, Disk and Storage Technology, Oracle Exadata Database Machine
	
	hybrid schemas, Data Warehousing Basics
	
	Hyperion Financial Performance Management, Business Intelligence Applications
	

I
	I/O (input/output) operations, Oracle and Disk I/O Resources–Oracle’s engineered systems and storage
	
	IaaS (Infrastructure-as-a-Service), Cloud Levels
	
	identity datatype, Other Datatypes
	
	Identity Domains, Security and architecture
	
	Identity Governance Suite, Identity Management
	
	identity management, Identity Management, Identity Management, Multitier security
	
	IEEE 754–1985 standard, Analytics and Statistics in the Database
	
	ILM (Information Lifecycle Management), Information Lifecycle Management, Oracle’s engineered systems and storage, Disk and Storage Technology
	
	ILM Assistant, Information Lifecycle Management
	
	ILOM (Integrated Lights Out Manager), Enterprise Manager Architecture
	
	IMDB (In-Memory Database) Cache, Oracle TimesTen
	
	immediate constraints, Constraints
	
	IMS (Information Management System), The Evolution of the Relational Database
	
	In-Memory Database (IMDB) Cache, Oracle TimesTen
	
	in-memory parallel execution, Self-tuning adaptive parallelism
	
	index organized tables (IOTs), B*-tree indexes
	
	INDEX statement, Database Security Features
	
	indexes
		about, Relational Basics, Indexes
	
	B*-tree, B*-tree indexes
	
	bitmap, Bitmap indexes, Bitmap indexes, Bitmap Indexes and Parallelism–Bitmap Indexes and Parallelism
	
	function-based, Function-based indexes
	
	invisible, Invisible indexes
	
	nonpartitioned tables and, Fast full-index scans for nonpartitioned tables
	
	reverse key, Reverse key indexes
	
	statistics for, How statistics are used
	
	storage, Indexes, Storage indexes
	

	Information Lifecycle Management (ILM), Information Lifecycle Management, Oracle’s engineered systems and storage, Disk and Storage Technology
	
	Information Management System (IMS), The Evolution of the Relational Database
	
	Infrastructure-as-a-Service (IaaS), Cloud Levels
	
	inheritance, Objects in Oracle
	
	INIT.ORA file, Special Roles: DBA, SYSDBA, and SYSOPER
	
	initializing databases, Database Initialization
	
	Inmon, Bill, The Evolution of Data Warehousing and Business
 Intelligence
	
	input/output (I/O) operations, Oracle and Disk I/O Resources–Oracle’s engineered systems and storage
	
	INSERT statement
		about, Relational Basics
	
	parallel operations, Parallel insert for nonpartitioned and partitioned
 tables
	
	security privileges, Security Privileges, Fine-grained access control
	
	WHERE clause, Database Security Features
	

	installing Oracle, Installing Oracle–Installing Oracle
	
	instance failures
		about, Backup and Recovery, Server Hardware, Storage, and Database Instance Failure
	
	RACs and, Real Application Clusters and Instance Failures–Real Application Clusters and Instance Failures
	
	TAF and, Oracle Transparent Application Failover
	

	instance recovery, Shutting Down the Database, What Is Instance Recovery?–Phases of Instance Recovery
	
	instances
		about, Databases and Instances–Databases and Instances, Instance Memory and Processes
	
	background processes, Background Processes for an Instance–Background Processes for an Instance
	
	memory structures for, Memory Structures for an Instance–Automatic PGA management
	
	shutting down, Shutting Down the Database, Special Roles: DBA, SYSDBA, and SYSOPER
	
	starting, Starting Up the Database, Special Roles: DBA, SYSDBA, and SYSOPER
	
	unplanned downtime, Server Hardware, Storage, and Database Instance Failure
	

	INSTEAD OF trigger, Triggers
	
	Integrated Lights Out Manager (ILOM), Enterprise Manager Architecture
	
	Intelligent Agents, Auto-Discovery and Agents
	
	Inter Process Communication (IPC), Client process
	
	INTERVAL DAY TO SECOND datatype, Date Datatype
	
	interval partitioning, Partitioning, Managing the Data Warehouse
	
	INTERVAL YEAR TO MONTH datatype, Date Datatype
	
	invisible indexes, Invisible indexes
	
	IOTs (index organized tables), B*-tree indexes
	
	IPC (Inter Process Communication), Client process
	
	isolation levels, Oracle’s Isolation Levels
	

J
	Jacobs, Ken, Oracle Multiuser Concurrency
	
	JATMI (Java ATMI), Oracle Tuxedo
	
	Java ATMI (JATMI), Oracle Tuxedo
	
	Java Database Connectivity (JDBC), Database drivers, Java’s Role and Web Services
	
	Java Message Service (JMS), Oracle’s WebLogic Server
	
	Java Messaging Support (JMS), Java’s Role and Web Services
	
	Java Pool Advisor, Database Advisors
	
	Java programming language, Java, Java’s Role and Web Services
	
	Java Server Pages (JSPs), Oracle Text
	
	Java Virtual Machine (JVM), Java, Object-Oriented Development
	
	JavaBeans, JavaBeans
	
	JAVA_POOL_SIZE parameter, Instance Memory and Processes, Other pools in the SGA, Automatic sizing for the SGA
	
	JDBC (Java Database Connectivity), Database drivers, Java’s Role and Web Services
	
	JDeveloper IDE, Oracle’s WebLogic Server, OLAP Option
	
	JFR (JRockit Flight Recorder), Oracle’s WebLogic Server
	
	JMS (Java Message Service), Oracle’s WebLogic Server
	
	JMS (Java Messaging Support), Java’s Role and Web Services
	
	Job Queue process, Background Processes for an Instance
	
	JPublisher, Java’s Role and Web Services
	
	JRockit Flight Recorder (JFR), Oracle’s WebLogic Server
	
	JRockit Mission Control, Oracle’s WebLogic Server
	
	JSPs (Java Server Pages), Oracle Text
	
	JVM (Java Virtual Machine), Java, Object-Oriented Development
	

K
	KEEP buffer pool, Database buffer cache
	
	key performance indicators (KPIs), Data Warehouse Design
	
	keys
		about, Relational Basics, Indexes
	
	constraints for, Constraints
	
	normalizing data and, Data Design
	

	Kimball, Ralph, Data Warehouse Design
	
	KPIs (key performance indicators), Data Warehouse Design
	

L
	Label Security Option, Label Security Option, Label Security Option
	
	large objects (LOBs), Large objects, Other Datatypes, XML DB
	
	LARGE_POOL_SIZE parameter, Instance Memory and Processes, Other pools in the SGA, Automatic sizing for the SGA
	
	latency costs, System Basics
	
	LCR (logical change record), History of Oracle Replication Offerings
	
	LDAP.ORA file, Oracle Net Configuration Files
	
	least recently used (LRU) algorithm, Database buffer cache
	
	LGWR (Log Writer), Background Processes for an Instance, Server process, A Simple Write Operation
	
	Lifecycle Management Pack for Oracle
 Database, Oracle Enterprise Manager 12c, Oracle Enterprise Manager
	
	linear regression functions, Basic Analytic and Statistical Functions
	
	links to databases, Relational Basics
	
	list partitioning, Managing the Data Warehouse
	
	Listener (Oracle Net), Oracle Net and Establishing Network Connections–Oracle Net and Establishing Network Connections, The Shared Server/Multi-Threaded Server
	
	LISTENER.ORA file, Oracle Net Configuration Files
	
	LOBs (large objects), Large objects, Other Datatypes, XML DB
	
	local name resolution, Resolving Oracle Net Service Names
	
	Locale Builder utility, National Language Support
	
	location transparency, Oracle Net Services and Oracle Net
	
	locks
		about, How Oracle Handles Locking
	
	concurrent access and, Locks
	
	contention, Concurrency and Contention
	
	data blocks and, Oracle Concurrency Features
	
	read operations, A Read Operation
	
	row, Oracle Concurrency Features, Oracle’s OLTP Heritage, General Concurrency and Performance
	
	transactions and, Locks
	
	write operations and, A Simple Write Operation–A Conflicting Write Operation
	

	Log Writer (LGWR), Background Processes for an Instance, Server process, A Simple Write Operation
	
	logical change record (LCR), History of Oracle Replication Offerings
	
	logical volume managers (LVMs), Volume managers
	
	LOG_ARCHIVE_DEST parameter, ARCHIVELOG mode and automatic archiving
	
	LOG_ARCHIVE_DUPLEX_DEST parameter, ARCHIVELOG mode and automatic archiving
	
	LOG_ARCHIVE_FORMAT parameter, ARCHIVELOG mode and automatic archiving
	
	LOG_ARCHIVE_MIN_SUCCEED_DEST parameter, ARCHIVELOG mode and automatic archiving
	
	LOG_BUFFER parameter, Automatic sizing for the SGA
	
	LONG datatype, Character Datatypes
	
	LONG RAW datatype, Other Datatypes
	
	lost updates, Integrity Problems
	
	LRU (least recently used) algorithm, Database buffer cache
	
	LVMs (logical volume managers), Volume managers
	

M
	MAA (Maximum Availability Architecture), High Availability–Oracle Real Application Clusters, Backup and Recovery, Oracle and High Availability
	
	Management Agents, Enterprise Manager Architecture
	
	Management Repository, Enterprise Manager Architecture
	
	managing Oracle
		about, Managing Oracle–Managing Oracle
	
	auditing considerations, Auditing–Auditing
	
	automated patching, Automated Patching
	
	backup and recovery, Backup and Recovery–ILM in Oracle Database 12c
	
	compliance considerations, Compliance–Transparent Sensitive Data Protection
	
	Enterprise Manager, Oracle Enterprise Manager 12c–Oracle Enterprise Manager 12c, Instance Memory and Processes, Oracle Enterprise Manager–EM Express
	
	manageability features, Manageability Features–Automatic Storage Management
	
	reporting problems, Reporting Problems
	
	security considerations, Security–Secure Backup
	
	working with Oracle support, Working with Oracle Support–Automated Patching
	

	MapReduce, Cloudera Distribution of Hadoop, Big Data and the Data Warehouse, Other Datatypes and Big Data
	
	master data management (MDM), OLTP Systems and Business Intelligence
	
	materialized views, Materialized views, Views, Materialized Views
	
	maximum availability, Maximum Availability Architecture Considerations
	
	Maximum Availability Architecture (MAA), High Availability–Oracle Real Application Clusters, Backup and Recovery, Oracle and High Availability
	
	MAX_SHARED_SERVERS parameter, The Shared Server/Multi-Threaded Server
	
	MDM (master data management), OLTP Systems and Business Intelligence
	
	Mean Time to Recovery (MTTR) Advisor, Database Advisors
	
	media failures, Backup and Recovery, Recovering from Failures and Data Corruption
	
	Memory Advisor, Database Advisors
	
	memory management
		about, Databases and Instances
	
	instances, Instance Memory and Processes–Automatic PGA management
	
	Memory Advisor, Database Advisors
	
	performance and, Oracle and Memory Resources–Memory for sorting within the PGA
	
	state information and, Session memory for shared server processes versus dedicated
 server processes
	

	MEMORY_TARGET parameter, Database Initialization, Instance Memory and Processes, Database buffer cache
	
	message-driven beans, JavaBeans
	
	metadata
		about, The Data Dictionary
	
	APEX and, APEX architecture
	
	business intelligence and, The Metadata Challenge
	
	workspace implementation and, Workspace Implementation
	

	methods, Objects in Oracle
	
	Miner, Bob, How Oracle Grew
	
	mirroring disks, Disk Redundancy–Disk Redundancy
	
	MOLAP engines, OLAP Option, Oracle Business Intelligence Foundation Suite
	
	mounting databases, Starting Up the Database, Special Roles: DBA, SYSDBA, and SYSOPER
	
	MTS (Multi-Threaded Server), The Shared Server/Multi-Threaded Server–Session memory for shared server processes versus dedicated
 server processes, Multi-Threaded Server/shared server
	
	MTTR (Mean Time to Recovery) Advisor, Database Advisors
	
	Multi-Threaded Server (MTS), The Shared Server/Multi-Threaded Server–Session memory for shared server processes versus dedicated
 server processes, Multi-Threaded Server/shared server
	
	multidimensional queries, Data Warehouse Design
	
	multimaster replication, Replication Basics
	
	Multimedia feature, Oracle Multimedia, Other Datatypes and Big Data, Oracle Multimedia
	
	multitenancy (cloud computing), Multitenancy, Implementing Provider Clouds
	
	Multitenant Option, Pluggable Databases, Implementation, Implementing Provider Clouds
	
	multiuser concurrency (see concurrent access)
	
	multiversion read consistency (MVRC), Oracle and Concurrent User Access, A Read Operation, General Concurrency and Performance
	
	mutating tables, Triggers
	
	MVRC (multiversion read consistency), Oracle and Concurrent User Access, A Read Operation, General Concurrency and Performance
	
	MySQL database, Oracle MySQL
	

N
	naming redo logfiles, Naming conventions for redo logs
	
	Nanda, Arup, Fine-grained access control
	
	NAS (Network Attached Storage), Disk and Storage Technology
	
	National Language Support (NLS), National Language Support
	
	NCHAR datatype, Character Datatypes
	
	NCLOB datatype, Character Datatypes, Other Datatypes
	
	NESTED_TABLE_ID parameter, Objects in Oracle
	
	Network Attached Storage (NAS), Disk and Storage Technology
	
	Network Data Model Graph, Oracle Spatial and Graph Option
	
	NLS (National Language Support), National Language Support
	
	NLS_DATE_FORMAT parameter, Date Datatype
	
	NOARCHIVELOG mode, Archived redo logs, Backup and Recovery
	
	NOLOGGING keyword, Redo Logfiles
	
	nonpadded comparisons, Concatenation and Comparisons
	
	nonrepeatable reads, Integrity Problems
	
	nonuniform rational B-spline (NURBS) curve, Oracle Spatial and Graph Option
	
	normalizing data, Data Design–Data Design, Data Warehouse Design
	
	North American Aviation, The Evolution of the Relational Database
	
	NoSQL Database, Berkeley DB & Oracle NoSQL Database, Other Datatypes and Big Data
	
	NOT NULL constraints, Constraints
	
	NULL value, NULLs
	
	NUMBER datatype, Numeric Datatype
	
	numeric datatypes, Numeric Datatype
	
	NURBS (nonuniform rational B-spline) curve, Oracle Spatial and Graph Option
	
	NVARCHAR2 datatype, Character Datatypes
	

O
	Oates, Ed, How Oracle Grew
	
	object identifier (OID), Objects in Oracle
	
	Object Management Group (OMG), The Metadata Challenge
	
	object views, Objects in Oracle
	
	object-oriented programming, Object-oriented programming, Object-Oriented Development–JavaBeans
	
	objects, Objects in Oracle–Other extensibility features
	
	OCI (Oracle Call Interface), The Oracle Call Interface, How TAF works
	
	ODAC (Oracle Data Access Connectors), Database drivers
	
	ODBC (Open Database Connectivity), Database drivers, Access to and from Non-Oracle Databases
	
	ODI (Oracle Data Integrator), Data Integration Tools, Loading Data into the Data Warehouse
	
	ODS (operational data store), The Operational Data Store and Enterprise Warehouse
	
	OFA (Optimal Flexible Architecture), Optimal Flexible Architecture
	
	OID (object identifier), Objects in Oracle
	
	OID (Oracle Internet Directory), Oracle Internet Directory, Resolving Oracle Net Service Names
	
	OIM (Oracle Identity Management), Identity Management, Identity Management, Multitier security
	
	OLAP Option, OLAP Option, Query Optimization, OLAP Option–OLAP Option
	
	OLTP (online transaction processing)
		about, OLTP Basics–Transactions and High Availability
	
	architectures for, Architectures for OLTP–OLTP and the Cloud
	
	business intelligence and, OLTP Versus Business Intelligence, OLTP Systems and Business Intelligence
	
	cloud computing and, OLTP and the Cloud
	
	database block size and, Datafiles
	
	database buffer cache and, The database buffer cache
	
	Exadata and, Exadata and OLTP, Oracle Exadata Database Machine
	
	general characteristics, General characteristics
	
	high availability, High Availability
	
	Oracle background, Oracle’s OLTP Heritage–Oracle’s OLTP Heritage
	
	Oracle features, Oracle Features for OLTP–Exadata and OLTP
	
	planning considerations, Planning the Database
	
	SQL statements and, Memory for SQL statements
	

	OMFs (Oracle Managed Files), Tablespaces
	
	OMG (Object Management Group), The Metadata Challenge
	
	OMS (Oracle Management Service), Enterprise Manager Architecture
	
	online transaction processing, Online and batch transaction processing (see OLTP)
	
	Open Database Connectivity (ODBC), Database drivers, Access to and from Non-Oracle Databases
	
	opening databases, Starting Up the Database
	
	operational data store (ODS), The Operational Data Store and Enterprise Warehouse
	
	Ops Center (EM), Enterprise Manager Architecture
	
	Optimal Flexible Architecture (OFA), Optimal Flexible Architecture
	
	OPTIMIZER_MODE parameter, Influencing the cost-based optimizer
	
	Oracle Call Interface (OCI), The Oracle Call Interface, How TAF works
	
	Oracle Corporation, How Oracle Grew–How Oracle Grew
	
	Oracle Data Access Connectors (ODAC), Database drivers
	
	Oracle Data Integrator (ODI), Data Integration Tools, Loading Data into the Data Warehouse
	
	Oracle Database
		advisors supported, Database Advisors
	
	analytics and statistics in, Analytics and Statistics in the Database–Advanced Analytics Option
	
	application development, Database Application Development Features–XML DB, Oracle Database Development Tools–Oracle Application Express
	
	automated patching, Automated Patching
	
	connection features, Database Connection Features
	
	data movement features, Data Movement Features
	
	dimensional data in, Dimensional Data and Hierarchies in the Database–OLAP Option
	
	distributed databases, Distributed Database Features–Heterogeneous Services
	
	hierarchies in, Dimensional Data and Hierarchies in the Database–OLAP Option
	
	installing, Installing Oracle–Upgrading an Oracle Database
	
	managing, Managing the Oracle Database–Oracle Real Application Clusters, Oracle Enterprise Manager–EM Express
	
	performance considerations, Database Performance Features–Advanced Analytics Option, Monitoring and Tuning the Oracle Database for Performance–Monitoring and Tuning the Oracle Database for Performance
	
	product family, The Oracle Database Family–The Oracle Database Family
	
	release highlights, Introducing Oracle, How Oracle Grew, Summary of Oracle Database Features
	
	security features, Database Security Features–Audit Vault and Database Firewall Option
	
	upgrading, Upgrading an Oracle Database
	
	usage overview, Oracle at Work–A Transaction, Step by Step
	

	Oracle Database Appliance, Oracle Database Appliance
	
	Oracle Directory Services, Identity Management
	
	Oracle Enterprise Edition, The Oracle Database Family, Oracle Spatial and Graph Option
	
	Oracle Express Edition, The Oracle Database Family
	
	Oracle Identity Management (OIM), Identity Management, Identity Management, Multitier security
	
	Oracle Internet Directory (OID), Oracle Internet Directory, Resolving Oracle Net Service Names
	
	Oracle Managed Files (OMFs), Tablespaces
	
	Oracle Management Service (OMS), Enterprise Manager Architecture
	
	Oracle Names service, Resolving Oracle Net Service Names
	
	Oracle Net
		about, Oracle Net Services and Oracle Net
	
	configuration files, Oracle Net Configuration Files–Oracle Net Configuration Files
	
	connection pooling, Multi-Threaded Server/shared server
	
	establishing connections, Oracle Net and Establishing Network Connections–Oracle Net and Establishing Network Connections
	
	resolving service names, Resolving Oracle Net Service Names–Resolving Oracle Net Service Names
	

	Oracle Net Manager, Oracle Net Manager
	
	Oracle Net Services, Oracle Net Services, Oracle Net Services and Oracle Net–Resolving Oracle Net Service Names
	
	Oracle Personal Edition, The Oracle Database Family
	
	Oracle R Enterprise, Advanced Analytics Option
	
	Oracle Secure Backup (OSB), Oracle Secure Backup, Oracle Secure Backup
	
	Oracle Standard Edition, The Oracle Database Family
	
	Oracle Standard Edition One, The Oracle Database Family
	
	Oracle Streams, Java’s Role and Web Services
	
	Oracle Text, Oracle Text
	
	Oracle Type Translator (OTT), Objects in Oracle
	
	ORACLE_HOME environment variable, Supporting Multiple Oracle Versions on a Machine, Oracle Net Configuration Files
	
	ORA_ROWSCN pseudocolumn, Other Datatypes, A Conflicting Write Operation
	
	OSB (Oracle Secure Backup), Oracle Secure Backup, Oracle Secure Backup
	
	OTT (Oracle Type Translator), Objects in Oracle
	

P
	PaaS (Platform-as-a-Service), Cloud Levels, Oracle as a PaaS
	
	packaged applications, Packaged applications
	
	parallel bitmap star join, Star query optimization
	
	parallel execution (PE) processes, Block-Range Parallelism, Degree of parallelism–Parallel insert for nonpartitioned and partitioned
 tables
	
	Parallel Server, Oracle Concurrency Features
	
	parallelism
		about, Oracle and Parallelism
	
	bitmap indexes and, Bitmap Indexes and Parallelism–Bitmap Indexes and Parallelism
	
	block-range, Block-Range Parallelism
	
	databases and, Database Parallelization
	
	degree of, Degree of parallelism
	
	operations supporting, What Can Be Parallelized?–Self-tuning adaptive parallelism
	
	partition-based, Oracle and Parallelism, Partition-Based Parallelism–Parallel insert for nonpartitioned and partitioned
 tables
	
	queries and, Bitmap Indexes and Parallelism
	
	self-tuning adaptive, Self-tuning adaptive parallelism
	
	tables and, Parallelism for Tables and Partitions of Tables
	

	PARALLEL_DEGREE_POLICY parameter, Self-tuning adaptive parallelism
	
	parameters (factors), Oracle Database Vault Option, Objects in Oracle
		(see also specific parameters)
	

	parity, disk, Disk Redundancy
	
	parsing SQL statements, Oracle and CPU Resources, General Concurrency and Performance
	
	Partition Advisor, Partitioning, SQL Advisors
	
	partition-based parallelism, Oracle and Parallelism, Partition-Based Parallelism–Parallel insert for nonpartitioned and partitioned
 tables
	
	partitioned tables, Parallelism for Tables and Partitions of Tables, Parallelism for partitions and subpartitions of a table
	
	Partitioning Option, Partitioning–Partitioning
	
	patching, automated, Automated Patching
	
	pattern matching, Other SQL Extensions
	
	PDBs (pluggable databases), Pluggable Databases, Pluggable Databases–PDBs and Oracle features, Clustered Solutions, Grid Computing, and the Cloud
	
	PE (parallel execution) processes, Block-Range Parallelism, Degree of parallelism–Parallel insert for nonpartitioned and partitioned
 tables
	
	performance
		about, Oracle Performance
	
	concurrent access and, Concurrent Access and Performance
	
	CPU resources and, Oracle and CPU Resources–Oracle and CPU Resources
	
	database management tools, Oracle Enterprise Manager Consoles
	
	memory resources and, Oracle and Memory Resources–Memory for sorting within the PGA
	
	OLTP systems and, General characteristics, General Concurrency and Performance–General Concurrency and Performance
	
	Oracle features, Database Performance Features–Advanced Analytics Option
	
	parallelism and, Oracle and Parallelism–Parallel insert for nonpartitioned and partitioned
 tables, Bitmap Indexes and Parallelism
	
	planning for databases, Planning the Database
	
	query optimization and, Performance and Optimization
	
	resource usage and, Oracle and Resource Usage–Oracle’s engineered systems and storage
	
	tuning basics, Performance Tuning Basics–A Final Note on Performance Tuning
	

	persistent beans, JavaBeans
	
	PGA (Program Global Area)
		about, Databases and Instances
	
	memory management, Automatic PGA management, How Oracle Uses the Program Global Area–Memory for sorting within the PGA
	
	state information and, Session memory for shared server processes versus dedicated
 server processes
	

	PGA Advisor, Database Advisors
	
	PGA_AGGREGATE_LIMIT parameter, Automatic PGA management
	
	PGA_AGGREGATE_TARGET parameter, Automatic PGA management
	
	phantom reads, Integrity Problems
	
	pinging, Real Application Clusters
	
	PL/SQL language extension, PL/SQL
	
	PL/SQL Server Pages (PSPs), Oracle Text
	
	planned downtime, Planned Downtime
	
	planning databases, Planning the Database–Tools for Creating Databases, I/O Planning Principles for an Oracle Database–Oracle’s engineered systems and storage
	
	Platform-as-a-Service (PaaS), Cloud Levels, Oracle as a PaaS
	
	pluggable databases (PDBs), Pluggable Databases, Pluggable Databases–PDBs and Oracle features, Clustered Solutions, Grid Computing, and the Cloud
	
	PMON (Process Monitor), Background Processes for an Instance
	
	point-in-time recovery, Point-in-Time Recovery, Data Transport Using Database Features
	
	policies, Policies
	
	polymorphism, Objects in Oracle
	
	portability, Database Cloud Service, Portability with the Database Cloud Service
	
	precision in datatypes, Numeric Datatype
	
	Pribyl, Bill, Fine-grained access control
	
	primary keys, Relational Basics, Constraints
	
	private SQL area (cursor), Memory for SQL statements
	
	private synonyms, Synonyms
	
	privileges, Usernames, Privileges, Groups, and Roles
		(see also specific privileges)
	
	about, Usernames, Privileges, Groups, and Roles
	
	audit considerations, Auditing
	
	roles and, Security and Application Roles and Privileges
	
	security, Security Privileges–Special Roles: DBA, SYSDBA, and SYSOPER
	

	problem reporting, Reporting Problems
	
	Procedural Gateways, Access to and from Non-Oracle Databases
	
	Process Monitor (PMON), Background Processes for an Instance
	
	Program Global Area (PGA)
		about, Databases and Instances
	
	memory management, Automatic PGA management, How Oracle Uses the Program Global Area–Memory for sorting within the PGA
	
	state information and, Session memory for shared server processes versus dedicated
 server processes
	

	pseudocolumns, Other Datatypes, Indexes, Oracle Concurrency Features
	
	PSPs (PL/SQL Server Pages), Oracle Text
	
	PUBLIC pseudorole, Usernames, Privileges, Groups, and Roles
	
	public synonyms, Synonyms
	

Q
	QMN (Queue Monitor), Background Processes for an Instance
	
	QoS (Quality of Service), Sizing and Planning for Growth
	
	queries
		caching results, Query results caching
	
	distributed, Distributed Queries and Transactions
	
	execution plan for, Understanding the Execution Plan–Understanding the Execution Plan
	
	Flashback supported, Flashback, Flashback, Flashback
	
	multidimensional, Data Warehouse Design
	
	parallelism and, Bitmap Indexes and Parallelism
	

	Query Management Facility, The Evolution of the Relational Database
	
	query optimization
		about, Relational Basics, Query Optimization
	
	business intelligence and, Query Optimization–Optimization Provided by the Exadata Storage Server
 Software
	
	comparing, Comparing Optimizations
	
	cost-based, Cost-Based Optimization–Newer database releases and the cost-based optimizer
	
	Exadata and, Optimization Provided by the Exadata Storage Server
 Software
	
	execution plan, Understanding the Execution Plan–Understanding the Execution Plan
	
	performance and, Performance and Optimization
	
	rule-based, Rule-Based Optimization–Rule-Based Optimization
	
	saving, Saving the Optimization
	
	specifying mode, Specifying an Optimizer Mode–Newer database releases and the cost-based optimizer
	
	star queries, Star query optimization
	

	Queue Monitor (QMN), Background Processes for an Instance
	
	queues, run, Oracle and CPU Resources
	

R
	RACs (Real Application Clusters)
		about, Oracle Real Application Clusters, Real Application Clusters–Real Application Clusters, Clustered Solutions, Grid Computing, and the Cloud
	
	cloud computing and, Oracle Enterprise Manager
	
	high availability and, High Availability
	
	instance failures and, Real Application Clusters and Instance Failures–Real Application Clusters and Instance Failures
	
	single nodes and, Planned Downtime
	

	RAID technology
		about, Tablespaces, Control Files, Disk and Storage Technology
	
	ASM and, Automatic Storage Management
	
	disk redundancy and, Disk Redundancy–Automatic Storage Management
	

	range partitioning, Managing the Data Warehouse
	
	ranking functions, Basic Analytic and Statistical Functions
	
	RAW datatype, Other Datatypes
	
	RDF (Resource Description Framework), Oracle Spatial and Graph Option, Oracle Spatial and Graph Option
	
	RDS (Relational Data Services), Cloud Levels
	
	RDS (Reliable Datagram Sockets), Clustered Solutions, Grid Computing, and the Cloud
	
	READ COMMITTED isolation level, Oracle’s Isolation Levels, A Conflicting Write Operation
	
	read locks, Locks
	
	READ ONLY isolation level, Oracle’s Isolation Levels
	
	read operations, A Read Operation
	
	read-only tablespaces, Read-Only Tablespaces and Backups
	
	Real Application Clusters (see RACs)
	
	Real Application Security, Security and Application Roles and Privileges
	
	Real Application Testing Option, Real Application Testing Option
	
	Real-Time Decisions (RTD), Business Intelligence Tools
	
	realms, database, Oracle Database Vault Option
	
	RECO (Recover), Background Processes for an Instance
	
	records, Relational Basics, Auditing
	
	Recover (RECO), Background Processes for an Instance
	
	recovery (see backup and recovery)
	
	Recovery Manager (RMAN), Recovery Manager, Taking Oracle Backups, Recovery Manager–Recovery Manager
	
	RECYCLE buffer pool, Database buffer cache
	
	redo log buffer, Redo log buffer, The redo log buffer
	
	redo logfiles
		about, Files of a database, Redo Logfiles
	
	archiving, Archived redo logs–ARCHIVELOG mode and automatic archiving, Special Roles: DBA, SYSDBA, and SYSOPER
	
	crash recovery, Shutting Down the Database
	
	instance recovery and, What Is Instance Recovery?–Phases of Instance Recovery
	
	multiplexing, Multiplexing redo logfiles–Multiplexing redo logfiles
	
	naming conventions, Naming conventions for redo logs
	
	planning I/O operations, I/O Planning Principles for an Oracle Database
	
	recovery via, Special Roles: DBA, SYSDBA, and SYSOPER
	
	rollback segments and, Oracle and Transactions
	
	suppressing, Redo Logfiles
	
	usage overview, How Oracle uses the redo logs
	

	redo management, Database Initialization
	
	redundancy
		data, Old-Fashioned Data Redundancy
	
	disk, Disk Redundancy–Disk Redundancy
	
	hardware component, Component Redundancy
	

	reference partitioning, Partitioning
	
	referential integrity constraints, Relational Basics
	
	regular administrators, Enterprise Manager Architecture
	
	Relational Data Services (RDS), Cloud Levels
	
	relational databases, The Evolution of the Relational Database–How Oracle Grew, NULLs
	
	Relational Software, Incorporated, The Evolution of the Relational Database, How Oracle Grew
	
	Relational Technologies Incorporated, How Oracle Grew
	
	relationships between entities, Data Design
	
	Reliable Datagram Sockets (RDS), Clustered Solutions, Grid Computing, and the Cloud
	
	remote procedure calls (RPCs), Stored Procedures, Access to and from Non-Oracle Databases
	
	replication
		about, Replication Basics
	
	asynchronous, Oracle GoldenGate and Replication–Oracle GoldenGate and Replication, Replication Basics
	
	distributed databases, Replication and Data Transport–Global Data Services
	
	GoldenGate support, Oracle GoldenGate
	
	multimaster, Replication Basics
	
	Oracle backgorund, History of Oracle Replication Offerings
	
	synchronous, Oracle GoldenGate and Replication, Replication Basics
	

	reporting problems, Reporting Problems
	
	Repository Owner (administrator), Enterprise Manager Architecture
	
	Resource Description Framework (RDF), Oracle Spatial and Graph Option, Oracle Spatial and Graph Option
	
	resource usage, Oracle and Resource Usage–Oracle’s engineered systems and storage
	
	RESTful Web Services, Oracle in the Cloud, APEX architecture, RESTful Web Services
	
	restore points, Flashback
	
	RESTRICTED SESSION command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	restrictions
		data-specific access, Restricting Data-Specific Access–Fine-grained access control
	
	trigger, Triggers
	

	resumable space allocation, Planning the Database
	
	Reuter, Andreas, What Is a Transaction?
	
	reverse key indexes, Reverse key indexes
	
	REVOKE statement, Relational Basics, Security Privileges
	
	RMAN (Recovery Manager), Recovery Manager, Taking Oracle Backups, Recovery Manager–Recovery Manager
	
	roles
		about, Usernames, Privileges, Groups, and Roles
	
	common, PDBs and Oracle features
	
	privileges and, Security and Application Roles and Privileges
	
	special, Special Roles: DBA, SYSDBA, and SYSOPER
	

	roll forward phase (instance recovery), Phases of Instance Recovery
	
	rollback phase (instance recovery), Phases of Instance Recovery
	
	rollback segments, Oracle and Transactions, Oracle Concurrency Features
	
	ROLLBACK statement, Redo Logfiles, Locks
	
	rolling back transactions, Oracle and Transactions, Oracle Concurrency Features, What Is Instance Recovery?–Phases of Instance Recovery
	
	ROWID pseudocolumn, Other Datatypes, Indexes
	
	rows
		about, Relational Basics, Tables
	
	nonescalating locks, Oracle Concurrency Features, Oracle’s OLTP Heritage, General Concurrency and Performance
	

	RPCs (remote procedure calls), Stored Procedures, Access to and from Non-Oracle Databases
	
	RTD (Real-Time Decisions), Business Intelligence Tools
	
	RULE optimizer mode, Specifying an Optimizer Mode
	
	rule-based optimization, Rule-Based Optimization–Rule-Based Optimization
	
	rules
		about, Rules Manager
	
	events and, Rules Manager
	
	factors and, Oracle Database Vault Option
	

	Rules Manager, Rules Manager
	
	run queues, Oracle and CPU Resources
	

S
	SaaS (Software-as-a-Service), Cloud Levels
	
	SALT (Service Architecture Leveraging Tuxedo), Oracle Tuxedo
	
	SANs (storage area networks), Storage subsystems, Disk and Storage Technology
	
	SCA (Service Component Architecture), Oracle Tuxedo
	
	scale in datatypes, Numeric Datatype
	
	Schema-as-a-Service, Implementing Provider Clouds
	
	schemas
		about, Relational Basics, Schemas
	
	Database Cloud Service and, Portability with the Database Cloud Service
	
	database design and, Data Warehousing Basics
	
	database management tools, Oracle Enterprise Manager Consoles
	
	database realms and, Oracle Database Vault Option
	
	roles and privileges, Security and Application Roles and Privileges
	
	synonyms and, Synonyms
	

	SCN (System Change Number), Oracle and Transactions, Oracle Concurrency Features, Point-in-Time Recovery
	
	SDP (Sockets Direct Protocol), Clustered Solutions, Grid Computing, and the Cloud
	
	SecureFiles, Large objects
	
	security
		Database Cloud Service and, Security and architecture
	
	database features, Database Security Features–Audit Vault and Database Firewall Option
	
	managing, Security–Secure Backup
	
	planning for databases, Planning the Database
	

	Segment Advisor, Database Advisors
	
	segments (datafiles), Extents and segments
	
	segments (rollback), Oracle and Transactions, Oracle Concurrency Features
	
	SELECT statement
		about, Relational Basics
	
	audit considerations, Auditing
	
	FOR UPDATE clause, Locks, A Conflicting Write Operation
	
	MODEL clause, Other SQL Extensions
	
	security privileges, Security Privileges, Fine-grained access control
	
	WHERE clause, Database Security Features
	

	self-tuning adaptive parallelism, Self-tuning adaptive parallelism
	
	Sensitive Data Discovery, Transparent Sensitive Data Protection
	
	sequences, Relational Basics, Sequences
	
	SERIALIZABLE isolation level, Oracle’s Isolation Levels, A Conflicting Write Operation
	
	serialization, Serialization
	
	server failover, Site and Computer Server Failover
	
	Server Manager utility, Tools for Creating Databases
	
	server processes
		about, Server process
	
	establishing network connections, Oracle Net and Establishing Network Connections–Oracle Net and Establishing Network Connections
	
	multi-threaded servers, The Shared Server/Multi-Threaded Server–Session memory for shared server processes versus dedicated
 server processes
	
	PGA and, Memory for SQL statements
	
	shared servers, The Shared Server/Multi-Threaded Server–Data dictionary information about the shared server
	

	server registration, Resolving Oracle Net Service Names
	
	Service Architecture Leveraging Tuxedo (SALT), Oracle Tuxedo
	
	Service Component Architecture (SCA), Oracle Tuxedo
	
	service level agreements (SLAs), Oracle Enterprise Manager
	
	service names (aliases), Oracle Net Services and Oracle Net–Resolving Oracle Net Service Names
	
	service-oriented architecture (SOA), How Oracle Grew, Oracle’s WebLogic Server, Java’s Role and Web Services
	
	session beans, JavaBeans
	
	session memory (state), Session memory for shared server processes versus dedicated
 server processes, JavaBeans
	
	SET ROLE command, Security and Application Roles and Privileges
	
	SET TRANSACTION statement, Oracle’s Isolation Levels
	
	SGA (System Global Area)
		about, Databases and Instances, Instance Memory and Processes
	
	automatic sizing for, Automatic sizing for the SGA
	
	JavaBeans and, JavaBeans
	
	memory resources and, Memory Structures for an Instance–Automatic PGA management, How Oracle Uses the System Global Area–Query results caching
	
	state information and, Session memory for shared server processes versus dedicated
 server processes
	

	SGA Advisor, Database Advisors
	
	SGA_TARGET parameter, Instance Memory and Processes, Database buffer cache, Automatic sizing for the SGA
	
	shadow processes, Server Processes and Clients
	
	shared locks, Locks
	
	shared pool, Shared pool, The shared pool
	
	Shared Pool (SGA) Advisor, Database Advisors
	
	shared servers, The Shared Server/Multi-Threaded Server–Data dictionary information about the shared server, Multi-Threaded Server/shared server
	
	shared SQL, General Concurrency and Performance
	
	SHARED_POOL_SIZE parameter, Instance Memory and Processes, Shared pool, Automatic sizing for the SGA, The shared pool
	
	SHARED_SERVERS parameter, The Shared Server/Multi-Threaded Server
	
	SHUTDOWN command, Special Roles: DBA, SYSDBA, and SYSOPER
	
	shutting down
		databases, Shutting Down the Database
	
	instances, Shutting Down the Database, Special Roles: DBA, SYSDBA, and SYSOPER
	

	site failover
		Active Data Guard Option and, Oracle Active Data Guard and Zero Data Loss
	
	Data Guard and, Oracle Data Guard and Site Failures–Oracle Data Guard and Site Failures
	
	GoldenGate and, Oracle GoldenGate and Replication–Oracle GoldenGate and Replication
	

	SLAs (service level agreements), Oracle Enterprise Manager
	
	smallfiletablespaces, Tablespaces
	
	Smart Flash Cache, Exadata and OLTP, Optimization Provided by the Exadata Storage Server
 Software, System Basics
	
	Smart Scans, Optimization Provided by the Exadata Storage Server
 Software
	
	SMON (System Monitor), Background Processes for an Instance
	
	SMP (Symmetric Multiprocessing) systems, Symmetric Multiprocessing Systems and Nodes–Symmetric Multiprocessing Systems and Nodes
	
	snowflake schemas, Bitmap Indexes and Parallelism
	
	SOA (service-oriented architecture), How Oracle Grew, Oracle’s WebLogic Server, Java’s Role and Web Services
	
	Sockets Direct Protocol (SDP), Clustered Solutions, Grid Computing, and the Cloud
	
	Software Development Laboratories Relational
 Software, The Evolution of the Relational Database
	
	Software-as-a-Service (SaaS), Cloud Levels
	
	Spatial and Graph Option, Oracle Spatial and Graph Option, Oracle Spatial and Graph Option
	
	spatial information systems, Oracle Spatial and Graph Option, Other Datatypes and Big Data
	
	spatial object types, Oracle Spatial and Graph Option
	
	Spatial Option, Other Datatypes and Big Data, Oracle Spatial and Graph Option
	
	SPFILE file, Oracle Net Configuration Files, Special Roles: DBA, SYSDBA, and SYSOPER
	
	SPM (SQL Plan Management), Database Advisors
	
	SPM Evolve Advisor, Database Advisors
	
	SQL Access Advisor, SQL Advisors, Database Advisors, Materialized Views
	
	SQL Advisor, Materialized Views
	
	SQL Developer, Oracle SQL Developer, SQL Translation, SQL Developer and the Database Cloud
	
	SQL Plan Analyzer tool, Comparing Optimizations
	
	SQL Plan Management (SPM), Database Advisors
	
	SQL Repair Advisor, Database Advisors
	
	SQL statements
		about, Relational Basics, SQL
	
	CPU resources and, Oracle and CPU Resources
	
	date arithmetic, Date Datatype
	
	execution plan, Understanding the Execution Plan–Understanding the Execution Plan
	
	extensions for, Other SQL Extensions
	
	memory for, Memory for SQL statements
	
	OLTP systems and, Memory for SQL statements
	
	parsing, Oracle and CPU Resources, General Concurrency and Performance
	
	SQL Repair Advisor, Database Advisors
	
	transaction process and, A Transaction, Step by Step
	
	triggering events, Triggers
	
	views and, Views
	

	SQL Translation Framework, SQL Translation
	
	SQL Tuning Advisor, SQL Advisors, Database Advisors, Oracle and CPU Resources, General Concurrency and Performance
	
	SQL Workshop, SQL Workshop
	
	SQL*Plus utility, Server Processes and Clients, Special Roles: DBA, SYSDBA, and SYSOPER
	
	SQL92 standard, Serialization
	
	SQLJ, Third-generation languages (3GLs), Java’s Role and Web Services
	
	SQLNET.ORA file, Resolving Oracle Net Service Names, Oracle Net Configuration Files
	
	stack space, How Oracle Uses the Program Global Area
	
	standby databases, Data Guard
	
	star queries, Star query optimization
	
	star schemas, Data Warehousing Basics, Data Warehouse Design, Bitmap Indexes and Parallelism
	
	starting
		databases, Starting Up the Database
	
	instances, Starting Up the Database, Special Roles: DBA, SYSDBA, and SYSOPER
	

	STARTUP command, Starting Up the Database, Special Roles: DBA, SYSDBA, and SYSOPER
	
	STAR_TRANSFORMATION parameter, Query Optimization
	
	state (session memory), Session memory for shared server processes versus dedicated
 server processes, JavaBeans
	
	statelessness (cloud computing), Stateless
	
	statistical functions, Basic Analytic and Statistical Functions
	
	statistics
		auditing, Auditing
	
	database, How statistics are used–How statistics are used, Analytics and Statistics in the Database
	
	library cache memory, Database Advisors
	
	sources of waits, Monitoring and Tuning the Oracle Database for Performance
	

	storage area networks (SANs), Storage subsystems, Disk and Storage Technology
	
	storage indexes, Indexes, Storage indexes
	
	storage management (see ASM)
	
	storage subsystems (disk farms), Storage subsystems
	
	stored outlines, Saving the Optimization, General Concurrency and Performance
	
	stored procedures, Relational Basics, Stored Procedures
	
	STREAMS_POOL_SIZE parameter, Instance Memory and Processes, Other pools in the SGA, Automatic sizing for the SGA
	
	striping disks, Disk Redundancy–Disk Redundancy
	
	summary tables, Summary Tables
	
	Super Administrators, Enterprise Manager Architecture
	
	SuperCluster, The Oracle Database Family, Oracle SuperCluster–Oracle SuperCluster
	
	Symmetric Multiprocessing (SMP) systems, Symmetric Multiprocessing Systems and Nodes–Symmetric Multiprocessing Systems and Nodes
	
	synchronous replication, Oracle GoldenGate and Replication, Replication Basics
	
	synonyms, Relational Basics, Synonyms
	
	SYS user account, Usernames, Privileges, Groups, and Roles
	
	SYSASM role, Special Roles: DBA, SYSDBA, and SYSOPER
	
	SYSBACKUP role, Special Roles: DBA, SYSDBA, and SYSOPER
	
	SYSDBA privilege, Starting Up the Database, Identity Management, Special Roles: DBA, SYSDBA, and SYSOPER–Special Roles: DBA, SYSDBA, and SYSOPER
	
	SYSMAN administrator, Enterprise Manager Architecture
	
	SYSOPER privilege, Starting Up the Database, Identity Management, Special Roles: DBA, SYSDBA, and SYSOPER
	
	System Change Number (SCN), Oracle and Transactions, Oracle Concurrency Features, Point-in-Time Recovery
	
	system event triggers, Triggers
	
	system failure
		protecting against, Protecting Against System Failure–Automatic Storage Management
	
	site and computer server failover, Site and Computer Server Failover–Oracle Application Continuity
	

	System Global Area (SGA)
		about, Databases and Instances, Instance Memory and Processes
	
	automatic sizing for, Automatic sizing for the SGA
	
	JavaBeans and, JavaBeans
	
	memory resources and, Memory Structures for an Instance–Automatic PGA management, How Oracle Uses the System Global Area–Query results caching
	
	state information and, Session memory for shared server processes versus dedicated
 server processes
	

	System Monitor (SMON), Background Processes for an Instance
	
	system stack, The System Stack and Availability–Phases of Instance Recovery
	
	SYSTEM tablespace, The Data Dictionary, I/O Planning Principles for an Oracle Database
	
	SYSTEM user account, Usernames, Privileges, Groups, and Roles
	

T
	tables
		about, Relational Basics, Tables
	
	constraining, Triggers
	
	editions of, Editions
	
	Flashback supported, Flashback, Flashback
	
	mutating, Triggers
	
	parallelism for, Parallelism for Tables and Partitions of Tables
	
	partitioned, Parallelism for Tables and Partitions of Tables, Parallelism for partitions and subpartitions of a table
	
	statistics for, How statistics are used
	
	summary, Summary Tables
	

	tablespaces
		about, Tablespaces
	
	datafiles and, Datafiles
	
	planning I/O operations, I/O Planning Principles for an Oracle Database
	
	point-in-time recovery, Point-in-Time Recovery, Data Transport Using Database Features
	
	read-only, Read-Only Tablespaces and Backups
	
	transportable, Data Movement Features, Loading Data into the Data Warehouse, Data Transport Using Database Features
	

	TAF (Transparent Application Failover), High Availability, Oracle Transparent Application Failover
	
	TDE (Transparent Data Encryption), Advanced Security Option, Encryption, Security and architecture
	
	TEMP tablespace, I/O Planning Principles for an Oracle Database
	
	temporal validity, Temporal validity
	
	Test Data Management Pack for Oracle
 Database, Oracle Enterprise Manager 12c, Oracle Enterprise Manager
	
	third-generation languages (3GLs), Third-generation languages (3GLs)
	
	three-state logic, NULLs
	
	three-tier systems, Three-Tier Systems–Three-Tier Systems
	
	timestamps, Datafile structure, Oracle and Transactions, Workspace Implementation
	
	TimesTen database, Oracle TimesTen
	
	TKPROF utility, Understanding the Execution Plan
	
	TNSNAMES.ORA file, Resolving Oracle Net Service Names, Oracle Net Configuration Files
	
	TNS_ADMIN environment variable, Oracle Net Configuration Files
	
	TopLink environment, Oracle’s WebLogic Server
	
	Traffic Director, Oracle’s WebLogic Server
	
	Transaction Guard, The Oracle Call Interface, Shutting Down the Database, A Simple Write Operation, Transactions and High Availability
	
	transactions
		about, Oracle and Transactions–Oracle and Transactions, What Is a Transaction?
	
	ACID properties, What Is a Transaction?, Oracle GoldenGate
	
	concurrent access and, Transactions, Concurrency and Contention
	
	distributed, Distributed Queries and Transactions
	
	Flashback supported, Flashback, Flashback
	
	high availability and, Transactions and High Availability
	
	integrity problems, Integrity Problems
	
	isolation levels, Oracle’s Isolation Levels
	
	locks and, Locks
	
	rolling back, Oracle and Transactions, Oracle Concurrency Features, What Is Instance Recovery?–Phases of Instance Recovery
	
	serializable, Serialization
	
	step-by-step process, A Transaction, Step by Step–A Transaction, Step by Step
	

	Transparent Application Failover (TAF), High Availability, Oracle Transparent Application Failover
	
	Transparent Data Encryption (TDE), Advanced Security Option, Encryption, Security and architecture
	
	Transparent Gateways, Heterogeneous Services, Loading Data into the Data Warehouse, Access to and from Non-Oracle Databases
	
	Transparent Sensitive Data Protection feature, Transparent Sensitive Data Protection
	
	transportable partitions, Loading Data into the Data Warehouse
	
	transportable tablespaces, Data Movement Features, Loading Data into the Data Warehouse, Data Transport Using Database Features
	
	triggers, Triggers–Triggers
	
	Triple Data Encryption Standard (3DES), Advanced Security Option
	
	Tuning Pack for Oracle Database, Oracle Enterprise Manager 12c, Oracle Enterprise Manager
	
	Tuxedo, Oracle Tuxedo, Oracle Tuxedo–Oracle Tuxedo
	
	Tuxedo CORBA Java client ORB, Oracle Tuxedo
	
	two-phase commit, Distributed Queries and Transactions, Two-Phase Commit
	
	two-tier client/server model, Traditional Two-Tier Client/Server
	

U
	Undo Advisor, Database Advisors
	
	undo management
		about, Database Initialization
	
	redo logfiles and, Redo Logfiles–ARCHIVELOG mode and automatic archiving
	
	rollback segments, Oracle and Transactions
	
	Undo Advisor, Database Advisors
	

	UNDO segments, Oracle Concurrency Features
	
	UNDO_MANAGEMENT parameter, Database Initialization
	
	Unicode, National Language Support
	
	unique constraints, Constraints
	
	unplanned downtime
		about, What Is High Availability?
	
	causes of, The System Stack and Availability–Server Hardware, Storage, and Database Instance Failure
	
	GoldenGate and, Oracle GoldenGate and Replication–Oracle GoldenGate and Replication
	
	protecting against system failure, Protecting Against System Failure–Automatic Storage Management
	

	UNRECOVERABLE keyword, Redo Logfiles
	
	UPDATE statement
		about, Relational Basics
	
	security privileges, Security Privileges, Fine-grained access control
	
	WHERE clause, Database Security Features
	

	upgrading Oracle Database, Upgrading an Oracle Database
	
	user accounts and usernames
		common users, PDBs and Oracle features
	
	creating, Usernames, Privileges, Groups, and Roles
	
	Database Cloud Service, Security and architecture
	

	user-defined data, Other Datatypes
	
	UTF-8 encoding, National Language Support
	
	UTF-16 encoding, National Language Support
	

V
	V$CIRCUIT view, Data dictionary information about the shared server
	
	V$DISPATCHER view, Data dictionary information about the shared server
	
	V$SESSION view, Monitoring and Tuning the Oracle Database for Performance
	
	V$SESSION_EVENT view, Monitoring and Tuning the Oracle Database for Performance
	
	V$SHARED_SERVER view, Data dictionary information about the shared server
	
	V$SHARED_SERVER_MONITOR view, Data dictionary information about the shared server
	
	V$SYSTEM_EVENT view, Monitoring and Tuning the Oracle Database for Performance
	
	VAB (Virtual Assembly Builder), Oracle’s WebLogic Server
	
	VARCHAR2 datatype, Character Datatypes
	
	VARRAYs (varying arrays), Objects in Oracle, Oracle Spatial and Graph Option
	
	Very Large Database (VLDB), Oracle and Parallelism
	
	views
		about, Relational Basics, Views, View-based security
	
	data dictionary, Data Dictionary Tables
	
	materialized, Materialized views, Views, Materialized Views
	
	object, Objects in Oracle
	
	security considerations, View-based security
	
	shared server, Data dictionary information about the shared server
	
	sources of waits, Monitoring and Tuning the Oracle Database for Performance
	

	Virtual Assembly Builder (VAB), Oracle’s WebLogic Server
	
	virtual column-based partitioning, Partitioning, Managing the Data Warehouse
	
	Virtual Private Database (VPD), Database Security Features, Manageability Features, Fine-grained access control
	
	VLDB (Very Large Database), Oracle and Parallelism
	
	volume manages, Volume managers
	
	VPD (Virtual Private Database), Database Security Features, Manageability Features, Fine-grained access control
	

W
	W3C (Worldwide Web Consortium), Oracle Spatial and Graph Option
	
	Web Feature Service (WFS), Oracle Spatial and Graph Option
	
	web servers, Application Servers and Web Servers As Clients, Application Servers and Web Servers
	
	web services, Oracle and Web Services, Java’s Role and Web Services
	
	WebLogic Diagnostic Framework (WLDF), Oracle’s WebLogic Server
	
	WebLogic Server, The Role of Oracle Fusion Middleware–Oracle’s WebLogic Server, Application Servers and Web Servers As Clients, Oracle Tuxedo
	
	WFS (Web Feature Service), Oracle Spatial and Graph Option
	
	Widenius, Michael, Oracle MySQL
	
	WLDF (WebLogic Diagnostic Framework), Oracle’s WebLogic Server
	
	Workspace Manager, Workspace Enhancements
	
	workspaces
		about, Workspaces
	
	analytic, OLAP Option
	
	implementing, Workspace Implementation
	
	operations supported, Workspace Operations
	

	Worldwide Web Consortium (W3C), Oracle Spatial and Graph Option
	
	write operations, A Simple Write Operation–A Conflicting Write Operation
	
	writeback (Smart Flash Cache), Exadata and OLTP
	

X
	XA (eXtended Architecture), Two-Phase Commit
	
	XA interface, Distributed Queries and Transactions
	
	XDB HTTP Server for SOA, Java’s Role and Web Services
	
	XML (eXtensible Markup Language), XML DB
	
	XML datatype, Other Datatypes and Big Data
	
	XML DB, XML DB
	
	XML DB Repository, XML DB
	
	XML Server Pages (XSPs), XML DB
	
	XMLIndex, XML DB
	
	XMLType datatype, Other Datatypes, XML DB
	
	XQJ (XQuery API for Java), XML DB
	
	XQuery, Other Datatypes and Big Data, XML DB
	
	XQuery API for Java (XQJ), XML DB
	
	XSL (Extensible Stylesheet Language), XML DB
	
	XSPs (XML Server Pages), XML DB
	

Z
	ZFS Storage Appliance, Oracle SuperCluster
	

About the Authors
Rick Greenwald has been active in the world of computer software for over two decades, including stints with Data General, Cognos, and Gupta. He is currently Director of Product Management with Oracle Corporation, responsible for the Oracle Database Cloud. He has been a principal author of 19 books and countless articles on a variety of technical topics, and has spoken at conferences and training sessions across six continents. Rick’s titles include 4 editions of Oracle Essentials (principal author with Robert Stackowiak and Jonathan Stern, O'Reilly Media, Inc), a number of books on Application Express and its predecessors, and books on data warehousing, Oracle programming and Exadata.
Robert Stackowiak has more than 25 years of experience in data warehousing and business intelligence architecture, software development, new database and systems product introduction, and technical sales and sales consulting. During the writing of this edition of Oracle Essentials, he is Vice President of Big Data and Analytics Architecture in Oracle’s Enterprise Solutions Group. He has spoken on related Oracle topics at a wide variety of conferences including Gartner Group’s BI Summit, TDWI, ComputerWorld’s BI & Analytics Perspectives, Oracle OpenWorld, and numerous IOUG events. Among the other books he co-authored are the following: Achieving Extreme Performance with Oracle Exadata (McGraw-Hill Oracle Press), Professional Oracle Programming (WROX), and Oracle Data Warehousing and Business Intelligence Solutions (Wiley). He can be followed on Twitter @rstackow.
Jonathan Stern used more than 13 years of experience in contributing to the original edition of this book. His background included senior positions in consulting, systems architecture, and technical sales at Oracle and other companies. He demonstrated in-depth knowledge of the Oracle Database across major open systems hardware and operating systems. His expertise included Database tuning, scaling, parallelism, clustering, and high availability for transaction processing systems and data warehousing implementations. Some of the fundamentals of Oracle that he originally contributed to the first edition live on in this edition of Oracle Essentials though much has changed in the Oracle Database since Jonathan passed on. Each edition of this book is a reminder of the talent and attention to detail that he possessed.

Colophon
The animals on the cover of Oracle Essentials, Fifth Edition are
 cicadas. There are about 1,500 species of cicada. In general, cicadas are large insects with
 long thin wings that are perched above an inch-long abdomen. Their heads are also large and
 contain three eyes and a piercing and sucking mechanism with which to extrude sap from trees.
 Cicadas are known for their characteristic shrill buzz, which is actually the male’s mating
 song, one of the loudest known insect noises.
Cicadas emerge from the ground in the spring or summer, molt, then shed their skin in the
 form of a shell. They stay near trees and plants, where they live for four to six weeks with the
 sole purpose of mating. The adult insects then die, and their young hatch and burrow into the
 ground. They attach to tree roots and feed off the sap for 4 to 17 years, after which time they
 emerge and continue the mating cycle. Cicadas have one of the longest life spans of any insect;
 the most common species is the periodical cicada, which lives underground for 13 to 17
 years.
The cover image is an original 19th-century engraving from Cuvier’s
 Animals. The cover font is Adobe ITC Garamond. The text font is Adobe Minion Pro;
 the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
 Mono.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

Oracle Essentials

Rick Greenwald

Robert Stackowiak

Jonathan Stern

Editor
Ann Spencer

	Revision History
	2013-09-04	First release

Copyright © 2013 O’Reilly Media, Inc.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department:
 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Oracle Essentials, Fifth Edition, the image of cicadas,
 and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish
 their products are claimed as trademarks. Where those designations appear
 in this book, and O’Reilly Media, Inc., was aware of a trademark claim,
 the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
 the publisher and authors assume no responsibility for errors or omissions,
 or for damages resulting from the use of the information contained herein.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-10-18T06:08:39-07:00

OEBPS/httpatomoreillycomsourceoreillyimages1788942.png
Oracle Instance
Operating System

Volume Manager

- -
I I |
Volume 1 Volume 2 Volume 3
RAID-5 Array RAID-5 Array RAID-1 Array

OEBPS/httpatomoreillycomsourceoreillyimages1788946.png
Transaction A Transaction B

Reads data
Reads data
T
|
M
E
Writes data
Writes data Commits changes

Commits changes

OEBPS/httpatomoreillycomsourceoreillyimages1788940.png
ORACLE Enterprise Manager Cioud Corirol 12¢

Setw - Heb ~ | R TEANL- | Lgout O

Target Navigation 4 DB Machine atisun.us.orade.com ©
[pre—

vE
5 (3 Canoutetodes
R stamiowpus oadecom
B staninromncace com
) Exndta G st s v cam-
5 Bl Btk st oacecom

e m— —
o — —
e ——

i

n
w

Siackaut

Exodaa Coll

Compute Node.
Ininband Switeh
et suien
Keyboard-vides House,

B onitmsdemn
Puge Rebed Dec, 2012 103950 AMEST C

OEBPS/bk01-toc.html
Oracle Essentials

Table of Contents
		Special Upgrade Offer

		Preface		Goals of This Book

		Audience for This Book

		About the Fifth Edition (Oracle Database 12c)

		Structure of This Book

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgments

		1. Introducing Oracle		The Evolution of the Relational Database		Relational Basics

		How Oracle Grew

		The Oracle Database Family

		Summary of Oracle Database Features

		Database Application Development Features		Database Programming		SQL

		PL/SQL

		Java

		Oracle and Web Services

		Large objects

		Object-oriented programming

		Third-generation languages (3GLs)

		Database drivers

		The Oracle Call Interface

		National Language Support

		Database Extensibility		Oracle Multimedia

		Oracle Spatial and Graph Option

		XML DB

		Database Connection Features		Oracle Net Services

		Oracle Internet Directory

		Oracle Connection Manager

		The Role of Oracle Fusion Middleware		Oracle’s WebLogic Server

		Oracle Tuxedo

		Data Integration Tools

		Business Intelligence Tools

		WebCenter

		Identity Management

		Distributed Database Features		Distributed Queries and Transactions

		Heterogeneous Services

		Data Movement Features		Transportable Tablespaces

		Advanced Queuing and Oracle Streams

		Database Performance Features		Database Parallelization

		Data Warehousing		Bitmap indexes

		Star query optimization

		Materialized views

		Analytic functions

		OLAP Option

		Advanced Analytics Option

		Managing the Oracle Database		Oracle Enterprise Manager 12c

		Real Application Testing Option

		Pluggable Databases

		Storage Management

		High Availability		Flashback

		Recovery Manager

		Oracle Secure Backup

		Data Guard

		Fail Safe

		Oracle Real Application Clusters

		Database Security Features		Advanced Security Option

		Label Security Option

		Database Vault Option

		Audit Vault and Database Firewall Option

		Oracle Database Development Tools		Oracle SQL Developer

		Oracle Application Express

		Other Oracle Databases		Oracle MySQL

		Berkeley DB & Oracle NoSQL Database

		Oracle TimesTen

		Cloudera Distribution of Hadoop

		2. Oracle Architecture		Databases and Instances		Oracle Database Structures		Schemas

		Tablespaces

		Files of a database

		Pluggable Databases		Implementation

		PDBs and Oracle features

		Database Initialization

		Deploying Physical Components		Control Files

		Datafiles		Datafile structure

		Extents and segments

		Redo Logfiles		Multiplexing redo logfiles

		How Oracle uses the redo logs

		Naming conventions for redo logs

		Archived redo logs

		ARCHIVELOG mode and automatic archiving

		Instance Memory and Processes		Memory Structures for an Instance		Database buffer cache

		Shared pool

		Redo log buffer

		Other pools in the SGA

		Automatic PGA management

		Background Processes for an Instance

		Configuration, Engineered Systems, and the Cloud

		The Data Dictionary

		3. Installing and Running Oracle		Installing Oracle		Optimal Flexible Architecture

		Supporting Multiple Oracle Versions on a Machine

		Upgrading an Oracle Database

		Creating a Database		Planning the Database

		The Value of Estimating

		Tools for Creating Databases

		Oracle Net Services and Oracle Net		Resolving Oracle Net Service Names

		Global Data Services

		Oracle Net Manager

		Oracle Connection Pooling

		Auto-Discovery and Agents

		Oracle Net Configuration Files

		Starting Up the Database

		Shutting Down the Database

		Accessing a Database		Server Processes and Clients		Server process

		Client process

		Application Servers and Web Servers As Clients

		Oracle Net and Establishing Network Connections

		The Shared Server/Multi-Threaded Server		Session memory for shared server processes versus dedicated
 server processes

		Data dictionary information about the shared server

		Database Resident Connection Pooling

		Oracle in the Cloud

		Oracle at Work		Oracle and Transactions

		Flashback

		A Transaction, Step by Step

		4. Oracle Data Structures		Datatypes		Character Datatypes

		Numeric Datatype

		Date Datatype		Temporal validity

		Other Datatypes

		Type Conversion

		Concatenation and Comparisons

		NULLs

		Basic Data Structures		Tables		Editions

		Views

		Indexes		B*-tree indexes

		Reverse key indexes

		Bitmap indexes

		Function-based indexes

		Invisible indexes

		Storage indexes

		Partitioning

		Additional Data Structures		Sequences

		Synonyms

		Clusters

		Hash Clusters

		Extended Logic for Data		Rules Manager

		The Expression Filter

		Data Design

		Constraints

		Triggers

		Query Optimization		Rule-Based Optimization

		Cost-Based Optimization		How statistics are used

		Influencing the cost-based optimizer

		Specifying an Optimizer Mode		Newer database releases and the cost-based optimizer

		Saving the Optimization

		Comparing Optimizations

		Performance and Optimization

		SQL Translation

		Understanding the Execution Plan

		SQL Advisors

		Data Dictionary Tables

		5. Managing Oracle		Manageability Features		Database Advisors

		Automatic Storage Management

		Oracle Enterprise Manager		Enterprise Manager Architecture

		Oracle Enterprise Manager Consoles

		EM Express

		Backup and Recovery		Types of Backup and Recovery Options

		Oracle Secure Backup

		Information Lifecycle Management

		ILM in Oracle Database 12c

		Working with Oracle Support		Reporting Problems

		Automated Patching

		6. Oracle Security, Auditing, and Compliance		Security		Usernames, Privileges, Groups, and Roles

		Identity Management

		Security Privileges

		Special Roles: DBA, SYSDBA, and SYSOPER

		Policies

		Restricting Data-Specific Access		View-based security

		Fine-grained access control

		Label Security Option

		Security and Application Roles and Privileges

		Distributed Database and Multitier Security		Distributed security management

		Multitier security

		Advanced Security Option

		Encryption

		Data Redaction

		Secure Backup

		Auditing

		Compliance		Oracle Database Vault Option

		Oracle Audit Vault Server

		Flashback Data Archive

		Transparent Sensitive Data Protection

		7. Oracle Performance		Oracle and Resource Usage		Oracle and Disk I/O Resources

		I/O Planning Principles for an Oracle Database		Volume managers

		Storage subsystems

		Oracle’s engineered systems and storage

		Oracle and Parallelism		Block-Range Parallelism

		Parallelism for Tables and Partitions of Tables

		What Can Be Parallelized?		Degree of parallelism

		Self-tuning adaptive parallelism

		Partition-Based Parallelism		Parallelism for partitions and subpartitions of a table

		Fast full-index scans for nonpartitioned tables

		Parallel insert for nonpartitioned and partitioned
 tables

		Oracle and Memory Resources		How Oracle Uses the System Global Area		Automatic sizing for the SGA

		The database buffer cache

		The shared pool

		The redo log buffer

		Query results caching

		How Oracle Uses the Program Global Area		Memory for SQL statements

		Memory for sorting within the PGA

		Oracle and CPU Resources

		Performance Tuning Basics		Defining Performance and Performance Problems

		Monitoring and Tuning the Oracle Database for Performance

		Using the Oracle Database Resource Manager

		Additional Monitoring and Tuning Available for Oracle
 Exadata

		A Final Note on Performance Tuning

		8. Oracle Multiuser Concurrency		Basics of Concurrent Access		Transactions

		Locks

		Concurrency and Contention

		Integrity Problems

		Serialization

		Oracle and Concurrent User Access

		Oracle’s Isolation Levels

		Oracle Concurrency Features

		How Oracle Handles Locking		A Simple Write Operation

		A Conflicting Write Operation

		A Read Operation

		Concurrent Access and Performance

		Workspaces		Workspace Implementation

		Workspace Operations

		Workspace Enhancements

		9. Oracle and Transaction Processing		OLTP Basics		What Is a Transaction?

		What Does OLTP Mean?		General characteristics

		Online and batch transaction processing

		OLTP Versus Business Intelligence

		Transactions and High Availability

		Oracle’s OLTP Heritage

		Architectures for OLTP		Traditional Two-Tier Client/Server

		Stored Procedures

		Three-Tier Systems

		Application Servers and Web Servers

		The Grid

		OLTP and the Cloud

		Oracle Features for OLTP		General Concurrency and Performance

		Scalability		Multi-Threaded Server/shared server

		Database Resource Manager

		Real Application Clusters

		Exadata and OLTP

		High Availability

		10. Oracle Data Warehousing and Business
 Intelligence		Data Warehousing Basics		The Evolution of Data Warehousing and Business
 Intelligence

		A Topology for Business Intelligence

		Data Marts

		The Operational Data Store and Enterprise Warehouse

		OLTP Systems and Business Intelligence

		Big Data and the Data Warehouse

		Data Warehouse Design

		Query Optimization		Bitmap Indexes and Parallelism

		Optimization Provided by the Exadata Storage Server
 Software

		Dimensional Data and Hierarchies in the Database		Summary Tables

		Materialized Views

		OLAP Option

		Analytics and Statistics in the Database		Basic Analytic and Statistical Functions

		Other SQL Extensions

		Advanced Analytics Option

		Other Datatypes and Big Data

		Loading Data into the Data Warehouse

		Managing the Data Warehouse

		Business Intelligence Tools		Oracle Business Intelligence Foundation Suite

		Business Intelligence Applications

		Data Discovery and Oracle Endeca Information Discovery

		Oracle Exalytics

		The Metadata Challenge

		Putting It All Together		A Complete Analytics Infrastructure

		Best Practices

		Common Misconceptions

		Effective Strategy

		11. Oracle and High Availability		What Is High Availability?		Measuring High Availability

		The System Stack and Availability		Server Hardware, Storage, and Database Instance Failure

		What Is Instance Recovery?

		Phases of Instance Recovery

		Protecting Against System Failure		Component Redundancy

		Disk Redundancy

		Automatic Storage Management

		Site and Computer Server Failover		Oracle Data Guard and Site Failures

		Oracle Active Data Guard and Zero Data Loss

		Oracle GoldenGate and Replication

		Real Application Clusters and Instance Failures

		Oracle Transparent Application Failover		How TAF works

		TAF and various Oracle configurations

		Oracle Application Continuity

		Recovering from Failures and Data Corruption		Developing a Backup-and-Recovery Strategy

		Taking Oracle Backups

		Using Backups to Recover

		Recovery Manager

		Read-Only Tablespaces and Backups

		Old-Fashioned Data Redundancy

		Point-in-Time Recovery

		Flashback

		Planned Downtime

		12. Oracle and Hardware Architecture		System Basics		Symmetric Multiprocessing Systems and Nodes

		Clustered Solutions, Grid Computing, and the Cloud

		Disk and Storage Technology

		Oracle’s Engineered Systems		Oracle Exadata Database Machine

		Oracle Exalogic

		Oracle SuperCluster

		Oracle Database Appliance

		Other Engineered Systems

		Choosing and Defining the Right Platform		Sizing and Planning for Growth

		Maximum Availability Architecture Considerations

		Justifying an Oracle Engineered System

		13. Oracle Distributed Databases and Distributed Data		Accessing Distributed Databases		Distributed Data Across Multiple Oracle Databases

		Access to and from Non-Oracle Databases

		Two-Phase Commit

		Oracle Tuxedo

		Replication and Data Transport		Replication Basics

		History of Oracle Replication Offerings

		Oracle GoldenGate

		Global Data Services

		Data Transport Using Database Features

		14. Oracle Extended Datatypes		Object-Oriented Development		Object-Relational Features		Objects in Oracle

		Other extensibility features

		Java’s Role and Web Services

		JavaBeans

		Extensibility Features and Options		Oracle Multimedia

		Oracle Text

		XML DB

		Oracle Spatial and Graph Option

		The Extensibility Architecture Framework

		15. Oracle and the Cloud		Cloud Definitions		Common Characteristics

		Cloud Levels

		Is the Cloud New?		Multitenancy

		Stateless

		Use Cases for Cloud Computing

		Oracle Database in the Cloud		Oracle as a DBaaS

		Oracle as a PaaS

		Consumer and Provider

		Oracle Database Cloud Service		History of Application Express

		Architecture		Database Cloud architecture

		Access architecture

		Security and architecture

		APEX architecture

		Development with the Database Cloud Service		APEX application development

		SQL Workshop

		Packaged applications

		RESTful Web Services

		Portability with the Database Cloud Service

		SQL Developer and the Database Cloud

		Implementing Provider Clouds

		A. What’s New in This Book for Oracle Database 12c		Chapter 1: Introducing Oracle

		Chapter 2: Oracle Architecture

		Chapter 3: Installing and Running Oracle

		Chapter 4: Data Structures

		Chapter 5: Managing Oracle

		Chapter 6: Oracle Security, Auditing, and Compliance

		Chapter 7: Oracle Performance

		Chapter 8: Oracle Multiuser Concurrency

		Chapter 9: Oracle and Transaction Processing

		Chapter 10: Oracle Data Warehousing and Business Intelligence

		Chapter 11: Oracle and High Availability

		Chapter 12: Oracle and Hardware Architecture

		Chapter 13: Oracle Distributed Databases and Distributed Data

		Chapter 14: Oracle Extended Datatypes

		Chapter 15: Oracle and the Cloud

		B. Additional Resources		Web Sites

		Books and Oracle Documentation		Chapter 1: Introducing Oracle

		Chapter 2: Oracle Architecture

		Chapter 3: Installing and Running Oracle

		Chapter 4: Data Structures

		Chapter 5: Managing Oracle

		Chapter 6: Oracle Security, Auditing, and Compliance

		Chapter 7: Oracle Performance

		Chapter 8: Oracle Multiuser Concurrency

		Chapter 9: Oracle and Transaction Processing

		Chapter 10: Oracle Data Warehousing and Business Intelligence

		Chapter 11: Oracle and High Availability

		Chapter 12: Oracle and Hardware Architecture

		Chapter 13: Oracle Distributed Databases and Distributed Data

		Chapter 14: Oracle Extended Datatypes

		Chapter 15: Oracle and the Cloud

		Index

		About the Authors

		Colophon

		Special Upgrade Offer

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages1788915.png

OEBPS/httpatomoreillycomsourceoreillyimages1788922.png
member 1 member 2

member 1 member 2

member 1 member 2

Members in a group are identical

OEBPS/httpatomoreillycomsourceoreillyimages1788932.png
PARTS table

partno color size weight
1 GREEN MED 98.1
2 RED MED 1241
3 RED SMALL 100.1
4 BLUE LARGE 54.9
5 RED MED 1241
6 GREEN SMALL 60.1

Bitmap index on ‘color'

color= 'BLUE' 000100 ...
color= 'RED' 011010 ...
color= 'GREEN' 100001 ...

Partnumber 1 2 3 4 5 6

OEBPS/httpatomoreillycomsourceoreillyimages1788966.png
Before Failure After Failure

Instance Instance

lalainininis

Oracle Database

Oracle Database

« Client automatically reconnects to surviving instance
«TAF can resubmit queries automatically
« Applications can be made failover-aware and can resubmit transactions

OEBPS/oreilly_large.png.jpg
OREILLY®

OEBPS/httpatomoreillycomsourceoreillyimages1788937.png
Monitored Targets

Management
’"‘

Cloud Control i JDBC
console

Management
Repository

OEBPS/httpatomoreillycomsourceoreillyimages1788934.png
1logical /0
per join

10 logical I/0s

1logical /0
per join

10,000 logical I/0s

Total
20 logical I/0s

Total
20,000 logical I/0s

OEBPS/httpatomoreillycomsourceoreillyimages1788953.png
A1l

Noc:le 1 Noc:le 2 Not:le 3 Noqle 4

Disk 1 Disk 2

OEBPS/httpatomoreillycomsourceoreillyimages1788970.png
CPU with L1 Cache CPU with L1 Cache
L2 Cache L2 Cache
Memory Memory

Network Connection
1/0 1/0
» >
| Disk Disk Cabling Disk

OEBPS/httpatomoreillycomsourceoreillyimages1788952.png
CONNECTION POOLING

Concentrators

Shared Server

—)

Multiplexing

OEBPS/orm_front_cover.jpg
What You Need to Know
About Oracle Database Architecture
and Features

Oracle Database 12¢

Rick Greenwald,
Robert Stackowiak

O'REILLY* & Jonathan Stern

OEBPS/httpatomoreillycomsourceoreillyimages1788938.png
ORACLE Enterprise Manager Cloud Control 12¢ Setp - tep - | (R TEAWL- | Logout O

® atsunt-custer © 0 stanivemmsinn
Custer + Admistration + Page Refreshed Dec 2, 2012 10:04:29 AM EST G
Cluster Topology T Related Topologes ~

J

Ve G sttt

2588210105 it @ | oo s Oan+ &

7° ‘ g° g° 5°

smonsoukon) | sniosomkam (6 | snioiusacecm (1) | tsniosusomecon 10
- %@ i g
‘atisun105.us.oracke.com (13) ‘atisun104.us.orack.com (14) atisun106.us.oracke.com (15) ‘atisun102.us.oracke.com (14)

OEBPS/httpatomoreillycomsourceoreillyimages1788960.png
Software Failures

Unplanned Downtime

Hardware Failures

o]
[Memary_]
o]

Peripherals

Operator Error

DBA Error

System Administrator
Error

Earthquake

Chemical Spill

OEBPS/httpatomoreillycomsourceoreillyimages1788971.png.jpg
Exadata Storage Server Cells

4
a
a
=
-
-
A
“
A
-
=
=
=
“
-
-

Database Server Nodes

InfiniBand Leaf Switches

Database Server Nodes

Exadata Storage Server Cells

InfiniBand Spine Switch

OEBPS/httpatomoreillycomsourceoreillyimages1788916.png
DEPTNO DEPTNAME LOCATION

10 Accounting San Francisco

20 Research San Francisco

30 Sales Chicago

40 Operations Dallas
EMPNO EMPNAME TITLE DEPTNO
71712 Johnson (lerk 10
83321 Smith Mgr 20
85332 Stern SCMgr 30
88888 Carter Mgr 10

OEBPS/httpatomoreillycomsourceoreillyimages1788968.png
WITH ARCHIVING - Minimized restore, no work lost

@ TIME
o Hot Backup

Datafiles Control
Files

Archived Redo Logs

okeplay Changes from Logs

Restore Only
Damaged Datafiles

Online Redo Logs

T+10

T+10

OEBPS/httpatomoreillycomsourceoreillyimages1788944.png
Oracle Instance
Operating System

Volume Manager

I/AL\

I oisk1 [F] |05 visk2 [|0 oisks F |0 oisks IF] |05 visks [
FOrF Ire Irry |(Perrs | (Prem

RAID-5 Array RAID-5 Array RAID-5 Array RAID-5 Array RAID-5 Array

Volume Manager

OEBPS/httpatomoreillycomsourceoreillyimages1788967.png
WITHOUT ARCHIVING - The work from T to T+10 is lost

o Full Cold Backup

Datafiles Control
Files

@ TIME

Online
Redo Logs

© Complete

Restore to
Time=T

@ Disk failure

T+10

OEBPS/httpatomoreillycomsourceoreillyimages1788924.png
Archived Redo Logs Seq#=1 X

=l B

Group 2

Group 3

B

Logs are archived as they fill and Oracle switches to a new log

OEBPS/httpatomoreillycomsourceoreillyimages1788926.png
Oracle Database 12c Release

stalling database - Step 9 of 10

Install Product ORACLE’ 12;
" DATABASE

Progress

<] =]

Extracting files to '/home /oracle /app /oracle /product/12.1.0/dbhome 1,

I
)

)

!

T Oracle Database installation In Progress
J <« Copyfiles In Progress
& st roduc seup Fendng

Details

ORACLE 1 2;‘

" DATABASE

(o]

OEBPS/httpatomoreillycomsourceoreillyimages1788933.png
Employee number
Employee name
Hire date

Salary
Commission

Department number
Department name
Location

Job name
‘

OEBPS/httpatomoreillycomsourceoreillyimages1788939.png
ORACLE Enterprise Manager Cloud Control 12¢. Senp - teb - | g TEMOL. | gt O

fcco T stsun104.05.orace.com
ot e Pt - ity - S - Adrnn - LS ——y
PR —
ST S B o v o 2
= o v o |
Status. Database Instances |
Host cPU Active Sessions. Memory (GB) S Sy |
retarces 7(@5 @2 wory (G8)
e st i
Ve ti2030 pro— o a1 |
i & 4 it 0 |
s i i e | |
Tt A E o || 8 &5 - moes | [
A sia i | B 1n e B
e sz B 3 i imtted | | 20 el
Dlagmostics B B b =

et Gt A P 0
wsens @0 @o o Po

stsrdnems s
omanne
[
[
omgmoss 38

OEBPS/httpatomoreillycomsourceoreillyimages1788918.png
An Oracle instance consists of
Oracle Instance processes and memory on the
database server

An Oracle database consists of
physical files on the disk

OEBPS/httpatomoreillycomsourceoreillyimages1788961.png
THE SYSTEM STACK

and Software
and Operating System

Operating Sites and Facilities

Availability and
functionality
required at all
levels

OEBPS/httpatomoreillycomsourceoreillyimages1788958.png.jpg
ORACLE" Endeca Information Discovery Welcomal

Seomen e -

S—— %

f
i

e e
D] g doC Brown s st e ellie: frank afica amerka e califormia ceairca chicago ¢
o *| harry jack . jenny e john i ken kevin king | england flodda fance et assits bt oS vegas

o © e Marty MCfly e mel . potato head Tondon 105 aNgeles nwrn res rov s
©| ok pete peter princess fiona rachel rec 1 4 walter new jrsey NEW YOrk new york city paris
— - " e T R

OEBPS/httpatomoreillycomsourceoreillyimages1788973.png.jpg
Exadata Storage Server Cells

SPARCT Class Compute Nodes

ZFS Storage Appliance

Sun Storage (non-Exadata)

InfiniBand Leaf Switches

SPARCT Class Compute Nodes

Exadata Storage Server Cells

InfiniBand Spine Switch

OEBPS/httpatomoreillycomsourceoreillyimages1788951.png
HTTP(s)

>
RO || e A
>

Oracle Database
Server

Web Server Apglication
erver

J2EE Application J2EE Application
Server Proxy Server

Browser

OEBPS/httpatomoreillycomsourceoreillyimages1788957.png.jpg
i

erkOptaions e | et

Tt ntrctions by Tve ok

o

L

|

F

F

- |

:

ot 68 Sevea

Wi
il

s s i
oo,

OEBPS/httpatomoreillycomsourceoreillyimages1788930.png

OEBPS/httpatomoreillycomsourceoreillyimages1788969.png
CPU with L1 Cache CPU with L1 Cache

L2 Cache

OEBPS/httpatomoreillycomsourceoreillyimages1788976.png
\Y Application Server
= : with Transaction
i Processing Monitor

Clients Database
Servers

OEBPS/httpatomoreillycomsourceoreillyimages1788979.png
Account

Identi
Domair:&)

Services

Owner must have oracle.com user identity
Administrator(s) must be defined with
Cloud Identity Manager

Administrator(s) must be defined
with Cloud Identity Manager

Administrator(s) and developers must be
defined with Cloud Identity Manager
Users can be defined with Cloud Identity
Manager or within Application Express

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/httpatomoreillycomsourceoreillyimages1788950.png
Service Calls

Service

Application
gerver

Service

Oracle l Oracle
Inslant.e Database

Application Server Database

-Services logic -Data
-Funneling -sqQL
-Load-balancing

-Transaction control

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages1788978.png
ONUBAY)S|

s
[
v
=
k=3
v
£
[~}
=

OEBPS/httpatomoreillycomsourceoreillyimages1788941.png
e

User

v
Command Rules

OEBPS/ad_files/strata_ebook_ad.jpg
Change the world with data.
We'll show you how.
strataconf.com

Strata

CONFERENCE

A
HADOOP
#WORLD

Oct 28 - 30, 2013
New York, NY

OREILLY"

Strata

CONFERENCE
Making Data Work

O'REILLY"

Strata

CONFERENCE
Making Data Work

Nov 11 -13, 2013
London, England

Feb 11-13, 2014
Santa Clara, CA

OREILLY"

Strata&

CONFERENCE
Data Makes a Difference

April 23-25, 2014
Boston, MA

O'REILLY

Spreading the knowledge of innovators.

OEBPS/httpatomoreillycomsourceoreillyimages1788959.png.jpg
Data Discovery Persistent Source for All Reporting, Query &

Historic Data of Value Analysis Tools
P —
c Structured)]
Unstructured PataAnglysis Advanced
Data Analysis Analytics
Real-time Recommendations
Unstructured
\ata Analysis
Sensors Social Website Logs & Data —
Media DB) i
Feed
Website

User

OEBPS/httpatomoreillycomsourceoreillyimages1788974.png.jpg
Database Server Nodes with Storage

OEBPS/httpatomoreillycomsourceoreillyimages1788977.png
Purchase Order

Internal Purchase Order External Purchase Order
Purchase Order Purchase Order
Contracted Supplier Noncontracted Supplier

OEBPS/httpatomoreillycomsourceoreillyimages1788929.png
Dnnn
Dispatcher

aEEans

Datafiles

Shared Server
Connection
.. Request

Listener .-~ bie

Dispatcher

o Work Request
»

OEBPS/httpatomoreillycomsourceoreillyimages1788927.png
NETWORK

TTT T

OEBPS/httpatomoreillycomsourceoreillyimages1788931.png
>Miller

Branch
blocks

<Davis Smith
Davis Turner
Jones Turner>

Leaf
blocks

Deal - ROWID .
Howard - ROWID Detail of leaf node
Isis - ROWID

OEBPS/httpatomoreillycomsourceoreillyimages1788935.png
SQL> EXPLAIN PLAN FOR
2 SELECT DNAME, ENAME FROM EMP, DEPT
3 WHERE EMP.DEPTNO = DEPT.DEPTNO
4 ORDER BY DNAME;

Explained.

SQL> SELECT OBJECT_NAME, OPERATION, OPTIONS FROM PLAN_TABLE ORDER BY ID;

OBJECT_NAME OPERATION OPTIONS
SELECT STATEMENT
SORT ORDER BY
NESTED LOOPS

EMP TABLE ACCESS FULL

DEPT TABLE ACCESS BY INDEX ROWID

SYS_C004911 INDEX UNIQUE SCAN

6 rows selected.

OEBPS/httpatomoreillycomsourceoreillyimages1788954.png
a

OLTP Servers

. Operational Data Store

Warehouse Server

Data Marts

oo W W

OEBPS/httpatomoreillycomsourceoreillyimages1788965.png
Oracle Instance Oracle Instance

iasininls \

OEBPS/httpatomoreillycomsourceoreillyimages1788962.png
RAID-0: Simple Striping, No Redundancy

Y N <
WW
| —
— T

RAID-1: Simple Mirroring

) g

RAID-0+1: Striping and Mirroring

> Y > | > Y < Y > Y > Y <
N | e | e | s R | s | e |
/T —] |

RAID-5: Striping with Distributed Parity

5 — 3
e
[T + A + + +
D PARITY
.) .

OEBPS/httpatomoreillycomsourceoreillyimages1788963.png
Heartbeat

Oracle Instance

OEBPS/httpatomoreillycomsourceoreillyimages1788948.png
Oracle Oracle
Instance Database

Database

-Application logic -SQL

OEBPS/httpatomoreillycomsourceoreillyimages1788955.png
Product Geography

Cotegry pein
Brand State
Model City

Fact Table

Sales
Transactions

Channel

Year
Manufacturer Quarter

Distributor Month

Store Chain
Week
Store Day

OEBPS/httpatomoreillycomsourceoreillyimages1788980.png

OEBPS/httpatomoreillycomsourceoreillyimages1788920.png
Control

Record changes to

Datafiles

Redo Log Files

OEBPS/httpatomoreillycomsourceoreillyimages1788928.png
Connection
-*. Request

':.-‘ Listener . == . o
Server

° Let’s ;a-lk

Ll

Datafiles

NETWORK

OEBPS/httpatomoreillycomsourceoreillyimages1788923.png
redog1m1.log = redog1m2.log

redog2m1.log = redog2m2.log

redog3m1.log . redog3m2.log

Sequence number advances as logs fill and cycle

OEBPS/httpatomoreillycomsourceoreillyimages1788964.png
Heartbeat

Oracle Instance

Oracle Database

OEBPS/httpatomoreillycomsourceoreillyimages1788975.png
............................ R
-
Oracle SQL Other Database SQL
Oracle Database Other Database
with Transparent Server

Gateway

OEBPS/httpatomoreillycomsourceoreillyimages1788945.png
One
256-KB1/0
drives all
four disks

Fach 8-KB
1/0 hits one
disk

One
256-KB1/0
hits
one disk

OEBPS/httpatomoreillycomsourceoreillyimages1788947.png
ClientA
(SCN112)

ClientB
(SCN 113)

When Client B reads the rows, the changes made
to the "Edward" row with a later SCN are skipped.

Greenie

Value SCN

OEBPS/httpatomoreillycomsourceoreillyimages1788972.png.jpg
AAsRsansssasaana

Eﬁzé e

W LU ALLE LR T

”“ﬁﬂw. JUUMLLBMLLY g,

— — —

Compute Nodes
InfiniBand Leaf Switches
Integrated Storage
Compute Nodes
InfiniBand Spine Switch

OEBPS/httpatomoreillycomsourceoreillyimages1788921.png
data_01.dbf

Oracle 4

Blocks

Operating System Blocks

Datafile data_07.dbf consists of Oracle blocks.
Each Oracle block consists of four operating system blocks.

OEBPS/httpatomoreillycomsourceoreillyimages1788925.png
SGA

Database Buffer Cache Shared Pool R;:#::Q

ARCH
Datafiles Control Files Redo Logs

OEBPS/httpatomoreillycomsourceoreillyimages1788919.png
DATA1

data1_01.dbf

DATA2

data2_01.dbf data2_02.dbf

The DATAT
tablespace consists
of one datafile

The DATA2
tablespace consists
of two datafiles

OEBPS/httpatomoreillycomsourceoreillyimages1788943.png
Oracle Instance

Operating System

Frrrer rrree | e
Volume 1 Volume 2 Volume 3
RAID-5 Array RAID-5 Array RAID-1 Array

Volume Manager

OEBPS/httpatomoreillycomsourceoreillyimages1788917.png
Database Server

Tl

OEBPS/httpatomoreillycomsourceoreillyimages1788956.png
SELECT count(*)
FROM parts
WHERE

color ="RED"

Index on ‘color’

PARTS table

color= 'BLUE' 0001001 01
color= 'RED' 0110100 001
color= "GREEN' 10000 1 0 10
'SMALL' 0010010 01

—>||size= 'MED' 11300101 00
"LARGE' 0001000 10

Index on ‘size’

\ 3 bitsin

index entries

/

OEBPS/httpatomoreillycomsourceoreillyimages1788936.png
ORACLE Enterprise Manager Cioud Corirol 12¢

R Dec 2, 20125347 AN ST C Vw0t sy]
Gt ChustorDatabass
o ot Oty <
P ; |
o o () et e s oo e 09 e
At 00 08 « Y cics nz020
e SEanier S .
o coio 2020
Smensiis by () e * asoo 12020
Gt 4250 .
i oo = H cano w2020
e L o H coio 2020
Dhanostcsummary S—

InsmetEens o 0
incans @2 @2 o P

e - -
e el [amtst i e
@ |vmrir (oo |4 i smamornoToC N | R LmN [y TS [
R — @] © e dm Stmbmemnoscs | OMILBN b e s
et] = LIG26AM May 10, 127:1S:14PM None
o KRt sty Z) | © vhnidme dme ahpomihasrmncmoesu o1 miti .
Target, or on any o s members. © stanidse dse ora.gadhes 8 mstances i OFFLINE State. Feb 12,012 111426AM Moy 10, D2 ISP None

Fy e e TR oy s -

OEBPS/httpatomoreillycomsourceoreillyimages1788949.png
Procedure Calls
Oracle Oracle
Instance Database
Return Parameters

Database
-Data
-Application logic -SQL
-Program logic

