

 [image: First Edition]

 Jenkins: The Definitive Guide

John Ferguson Smart

Editor
Mike Loukides

Editor
Meghan Blanchette

Copyright © 2011 John Ferguson Smart

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Jenkins: The
 Definitive Guide, the image of an ornate chorus frog, and
 related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.
Jenkins: The Definitive Guide is available
 under the Creative
 Commons Attribution-Noncommercial-No Derivative Works 3.0 United States
 License.

While every precaution has been taken in the preparation of this
 book, the publisher and author assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Foreword

Kohsuke Kawaguchi
Creator of the Jenkins project and Architect at
 CloudBees

Seven years ago, I wrote the first line of code that started this
 whole project that is now known as Jenkins, and was originally called
 Hudson. I used to be the guy who broke the build, so I needed a program to
 catch my mistakes before my colleagues did. It was just a simple tool that
 did a simple thing. But it rapidly evolved, and now I’d like to think that
 it’s the most dominant CI server on the market bar none, encompassing a
 broad plugin ecosystem, commercial distributions, hosted
 Jenkins-as-a-Service, user groups, meet-ups, trainings, and so on.
As with most of my other projects, this project was open-sourced since
 its inception. Over its life it critically relied on the help and love of
 other people, without which the project wouldn’t be in the current state.
 During this time I’ve also learned a thing or two about running open source
 projects. From that experience, I think people often overlook that there are
 many ways to help an open source project, of which writing code is just one
 of many. There’s spreading words, helping other users, organizing meet-ups,
 and yes, there’s writing documentation.
In this sense, John is an important part of the Jenkins community,
 even though he hasn’t contributed code—instead, he makes Jenkins more
 approachable to new users. For example, he has a popular blog that’s
 followed by many, where he regularly talks about continuous integration
 practices and other software development topics. He is good at explaining
 things so that people new to Jenkins can still understand them, which is
 something often hard for people like me who develop Jenkins day in day out.
 He is also well-known for his training courses, of which Jenkins is a part.
 This is another means by which he makes Jenkins accessible for more people.
 He clearly has a passion for evangelizing new ideas and teaching fellow
 developers to be more productive.
These days I spend my time at CloudBees where I focus my time on Open
 Source Jenkins, the CloudBees pro version of Jenkins where we build plugins
 on top of Jenkins, and taking Jenkins to the private and public cloud with
 CloudBees DEV@cloud service. In this role I now have more interaction with
 John than before, and my respect for his passion has only grown.
So I was truly delighted that he took on the daunting task of writing
 a book about Jenkins. It gives a great overview of the typical main
 ingredients of continuous integration. And for me personally, I always get
 asked if there’s a book about Jenkins, and I can finally answer this
 question positively! But more importantly, this book reflects his passion,
 and his long experience in teaching people how to use Jenkins, in
 combination with other things. But don’t take my words for it. You’ll just
 need to read on to see it for yourself.

Preface

Audience

This book is aimed at relatively technical readers, though no
 prior experience with Continuous Integration is assumed. You may be new to
 Continuous Integration, and would like to learn about the benefits it can
 bring to your development team. Or, you might be using Jenkins or Hudson
 already, and want to discover how you can take your Continuous Integration
 infrastructure further.
Much of this book discusses Jenkins in the context of Java or
 JVM-related projects. Nevertheless, even if you are using another
 technology stack, this book should give you a good grounding in Continuous
 Integration with Jenkins. We discuss how to build projects using several
 non-Java technologies, including as Grails, Ruby on Rails and .NET. In
 addition, many topics, such as general configuration, notification,
 distributed builds and security are applicable no matter what language you
 are using.

Book Layout

Continuous Integration is like a lot of things: the more you put in,
 the more value you will get out. While even a basic Continuous Integration
 setup will produce positive improvements in your team process, there are
 significant advantages to gradually assimilating and implementing some of
 the more advanced techniques as well. To this end, this book is organized
 as a progressive trek into the world of Continuous Integration with
 Jenkins, going from simple to more advanced. In the first chapter, we
 start off with a sweeping overview of what Jenkins is all about, in the
 form of a high-level guided tour. From there, we progress into how to
 install and configure your Jenkins server and how to set up basic build
 jobs. Once we have mastered the basics, we will delve into more advanced
 topics, including automated testing practices, security, more advanced
 notification techniques, and measuring and reporting on code quality
 metrics. Next, we move on to more advanced build techniques such as matrix
 builds, distributed builds and cloud-based CI, before discussing how to
 implement Continuous Deployment with Jenkins. Finally, we cover some tips
 on maintaining your Jenkins server.

Jenkins or Hudson?

As we discuss in the introduction, Jenkins was originally, and up
 until recently, known as Hudson. In 2009, Oracle purchased Sun and
 inherited the code base of Hudson. In early 2011, tensions between Oracle
 and the open source community reached rupture point and the project forked
 into two separate entities: Jenkins, run by most of the original Hudson
 developers, and Hudson, which remained under the control of Oracle.
As the title suggests, this book is primarily focused on Jenkins.
 However, much of the book was initially written before the fork, and the
 products remain very similar. So, although the examples and illustrations
 do usually refer to Jenkins, almost all of what is discussed will also
 apply to Hudson.

Font Conventions

This book follows certain conventions for font usage.
 Understanding these conventions up-front makes it easier to use this
 book.
	Italic
	Used for filenames, file extensions, URLs, application names,
 emphasis, and new terms when they are first introduced.

	Constant width
	Used for Java class names, methods, variables, properties,
 data types, database elements, and snippets of code that appear in
 text.

	Constant width bold
	Used for commands you enter at the command line and to
 highlight new code inserted in a running example.

	Constant width italic
	Used to annotate output.

Command-Line Conventions

From time to time, this book discusses command-line instructions.
 When we do, output produced by the console (e.g., command prompts or
 screen output) is displayed in normal characters, and commands (what you
 type) are written in bold. For example:
$ ls -al
total 168
drwxr-xr-x 16 johnsmart staff 544 21 Jan 07:20 .
drwxr-xr-x+ 85 johnsmart staff 2890 21 Jan 07:10 ..
-rw-r--r-- 1 johnsmart staff 30 26 May 2009 .owner
-rw-r--r--@ 1 johnsmart staff 1813 16 Apr 2009 config.xml
drwxr-xr-x 181 johnsmart staff 6154 26 May 2009 fingerprints
drwxr-xr-x 17 johnsmart staff 578 16 Apr 2009 jobs
drwxr-xr-x 3 johnsmart staff 102 15 Apr 2009 log
drwxr-xr-x 63 johnsmart staff 2142 26 May 2009 plugins
-rw-r--r-- 1 johnsmart staff 46 26 May 2009 queue.xml
-rw-r--r--@ 1 johnsmart staff 64 13 Nov 2008 secret.key
-rw-r--r-- 1 johnsmart staff 51568 26 May 2009 update-center.json
drwxr-xr-x 3 johnsmart staff 102 26 May 2009 updates
drwxr-xr-x 3 johnsmart staff 102 15 Apr 2009 userContent
drwxr-xr-x 12 johnsmart staff 408 17 Feb 2009 users
drwxr-xr-x 28 johnsmart staff 952 26 May 2009 war
Where necessary, the backslash character at the end of the line is
 used to indicate a line break: you can type this all on one line (without
 the backslash) if you prefer. Don’t forget to ignore the “>” character
 at the start of the subsequent lines—it’s a Unix prompt character:
$ wget -O - http://jenkins-ci.org/debian/jenkins-ci.org.key \
> | sudo apt-key add -
For consistency, unless we are discussing a Windows-specific issue,
 we will use Unix-style command prompts (the dollar sign, “$”), as shown
 here:
$ java -jar jenkins.war
or:
$ svn list svn://localhost
However, unless we say otherwise, Windows users can safely use these
 commands from the Windows command console:
C:\Documents and Settings\Owner> java -jar jenkins.war
or:
C:\Documents and Settings\Owner> svn list svn://localhost

Contributors

This book was not written alone. Rather, it has been a
 collaborative effort involving many people playing different roles. In
 particular, the following people generously contributed their time,
 knowledge and writing skill to make this a better book:
	Evgeny Goldin is a Russian-born software engineer living in Israel. He
 is a lead developer at Thomson Reuters where he’s responsible for a
 number of activities, some of which are directly related to Maven,
 Groovy, and build tools such as Artifactory and Jenkins. He has a vast
 experience in a range of technologies, including Perl, Java,
 JavaScript and Groovy. Build tools and dynamic languages are Evgeny’s
 favorite subjects about which he often writes, presents or blogs.
 These days he is writing for GroovyMag, Methods & Tools and runs
 two open source projects of his own: Maven-plugins
 and GCommons. He
 blogs at http://evgeny-goldin.com/blog and can
 be found on Twitter as @evgeny_goldin.
Evgeny contributed a section on generating your Maven build jobs
 automatically in Chapter 10.

	Matthew McCullough is an energetic 15 year veteran of enterprise software
 development, open source education, and co-founder of Ambient Ideas,
 LLC, a Denver consultancy. Matthew currently is a trainer for
 GitHub.com, author of the Git Master Class series for O’Reilly,
 speaker at over 30 national and international conferences, author of 3
 of the top 10 DZone RefCards, and President of the Denver Open Source
 Users Group. His current topics of research center around project
 automation: build tools (Maven, Leiningen, Gradle), distributed
 version control (Git), Continuous Integration (Jenkins) and Quality
 Metrics (Sonar). Matthew resides in Denver, Colorado with his
 beautiful wife and two young daughters, who are active in nearly every
 outdoor activity Colorado has to offer.
Matthew wrote the section on integrating Git with Jenkins in
 Chapter 5.

	Juven Xu is a software engineer from China who works for Sonatype.
 An active member of the open source community and recognized Maven
 expert, Juven was responsible for the Chinese translation of
 Maven: The Definitive Guide as well as an
 original Chinese reference book on Maven. He is also currently working
 on the Chinese translation of the present book.
Juven wrote the section on IRC notifications in Chapter 8.

	Rene Groeschke is a software engineer at Cassidian Systems, formerly
 known as EADS Deutschland GmbH, as well as an open source enthusiast.
 A certified ScrumMaster with about 7 years experience as a programmer
 in several enterprise Java projects, he is especially focused on Agile
 methodologies like Continuous Integration and Test-Driven Development.
 Besides his daily business, the University of Corporate Education in
 Friedrichshafen allows him to spread the word about scrum and scrum
 related topics by giving lectures for the bachelor students of
 information technology.
Rene contributed the section on building projects with Gradle in
 Chapter 5.

The Review Team

The technical review process for this book was a little different to
 the approach taken for most books. Rather than having one or two technical
 reviewers read the entire book near the end of the book writing process, a
 team of volunteers from the Jenkins community, including many key Jenkins
 developers, were able to read chapters as they were written. This review
 team was made up of the following people: Alan Harder, Andrew Bayer, Carlo
 Bonamico, Chris Graham, Eric Smalling, Gregory Boissinot, Harald Soevik, Julien Simpson, Juven Xu, Kohsuke
 Kawaguchi, Martijn Verberg, Ross Rowe, and Tyler Ballance.

Book Sponsors

This book would not have been possible without the help of
 several organizations who were willing to assist with and fund the
 book-writing process.
Wakaleo Consulting

Wakaleo Consulting
 is a consulting company that helps organizations optimize
 their software development process. Lead by John Ferguson Smart, author
 of this book and Java Power
 Tools, Wakaleo Consulting provides consulting,
 training and mentoring services in Agile Java Development and Testing
 Practices, Software Development Life Cycle optimization, and Agile
 Methodologies.
Wakaleo helps companies with training and assistance in areas such
 as Continuous Integration, Build Automation, Test-Driven Development,
 Automated Web Testing and Clean Code, using open source tools such as
 Maven, Jenkins, Selenium 2, and Nexus. Wakaleo Consulting also runs
 public and on-site training around Continuous Integration and Continuous
 Deployment, Build Automation, Clean Code practices, Test-Driven
 Development and Behavior-Driven Development, including Certified Scrum
 Developer (CSD) courses.

CloudBees

CloudBees is the only cloud company focused on servicing the
 complete develop-to-deploy life cycle of Java web applications in the
 cloud. The company is also the world’s premier expert on the
 Jenkins/Hudson continuous integration tool.
Jenkins/Hudson creator Kohsuke Kawaguchi leads a CloudBees team of
 experts from around the world. They’ve created Nectar, a supported and
 enhanced version of Jenkins that is available on-premise by
 subscription. If you depend on Jenkins for mission-critical software
 processes, Nectar provides a highly-tested, stable, and fully-supported
 version of Jenkins. It also includes Nectar-only functionality such as
 automatic scaling to VMWare virtual machines.
If you’re ready to explore the power of continuous integration in
 the cloud, CloudBees makes Jenkins/Hudson available as part of its
 DEV@cloud build platform. You can get started with Jenkins instantly and
 can scale as needed—no big up-front investment in build servers, no more
 limited capacity for builds, and no maintenance hassles. Once an
 application is ready to go live, you can deploy on CloudBees’s RUN@cloud
 Platform as a Service in just a few clicks.
With CloudBees’s DEV@cloud and RUN@cloud services, you don’t have
 to worry about servers, virtual machines or IT staff. And with Nectar,
 you enjoy the most powerful, stable, supported Jenkins available.

Odd-e

Odd-e is an Asian-based company that builds products in innovative
 ways and helps others achieve the same. The team consists of experienced
 coaches and product developers who work according to the values of
 scrum, agile, lean, and craftsmanship, and the company is structured the
 same way. For example, Odd-e doesn’t have an organizational hierarchy or
 managers making decisions for others. Instead, individuals self-organize
 and use all their skills to continuously improve their competence. The
 company provides training and follow-up coaching to help others
 collaboratively seek and develop a better way of working.
It is not the job but the values that binds Odd-e together. Its
 members love building software, value learning and contribution over
 maximizing profit, and are committed to supporting open source
 development in Asia.

Using Code Examples

This book is an open source book, published under the Creative
 Commons License. The book was written in DocBook, using XmlMind. The
 book’s source code can be found on GitHub at http://www.github.org/wakaleo/jenkins-the-definitive-guide.
The sample Jenkins projects used in this book are open source and
 freely available online—see the book’s web page at http://www.wakaleo.com/books/jenkins-the-definitive-guide
 for more details.
This book is here to help you get your job done. In general, you may
 use the code in this book in your programs and documentation. You do not
 need to contact us for permission unless you’re reproducing a significant
 portion of the code. For example, writing a program that uses several
 chunks of code from this book does not require permission. Selling or
 distributing a CD-ROM of examples from O’Reilly books does require
 permission. Answering a question by citing this book and quoting example
 code does not require permission. Incorporating a significant amount of
 example code from this book into your product’s documentation does require
 permission.
We appreciate, but do not require, attribution. An attribution
 usually includes the title, author,
 publisher, and ISBN. For example: “Jenkins: The Definitive
 Guide by John Ferguson Smart (O’Reilly).
 Copyright 2011 John Ferguson Smart, 978-1-449-30535-2.”
If you feel your use of code examples falls outside fair use or the
 permission given above, feel free to contact us at
 permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that lets you
 easily search over 7,500 technology and creative reference books and
 videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from
 our library online. Read books on your cell phone and mobile devices.
 Access new titles before they are available for print, and get exclusive
 access to manuscripts in development and post feedback for the authors.
 Copy and paste code samples, organize your favorites, download chapters,
 bookmark key sections, create notes, print out pages, and benefit from
 tons of other time-saving features.
O’Reilly Media has uploaded this book to the Safari Books Online
 service. To have full digital access to this book and others on similar
 topics from O’Reilly and other publishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
 and any additional information. You can access this page at:
	http://www.oreilly.com/catalog/9781449305352

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

First and foremost, my wonderful wife, Chantal, and boys, James and
 William, without whose love, support, and tolerance this book would not
 have been possible.
I would like to thank Mike Loukides for working with me once again
 on this book project, and the whole O’Reilly team for their high standards
 of work.
Thank you to Kohsuke Kawaguchi for having created Jenkins, and for
 still being the driving force behind this brilliant product. Thanks also
 to Francois Dechery, Sacha Labourey, Harpreet Singh, and the rest of the
 CloudBees team for their help and support.
I am also very grateful to those who took the time and energy to
 contribute work to the book: Evgeny Goldin, Matthew McCullough, Juven Xu,
 and Rene Groeschke.
A great thanks goes out to the following reviewers, who provided
 valuable feedback throughout the whole writing process: Alan Harder,
 Andrew Bayer, Carlo Bonamico, Chris Graham, Eric Smalling, Gregory
 Boissinot, Harald Soevik, Julien Simpson, Juven Xu, Kohsuke Kawaguchi,
 Martijn Verberg, Ross Rowe, and Tyler Ballance.
Thank you to Andrew Bayer, Martijn Verburg, Matthew McCullough, Rob
 Purcell, Ray King, Andrew Walker, and many others, whose discussions and
 feedback provided me with inspiration and the ideas that made this book
 what it is.
And many other people have helped in various ways to make this book
 much richer and more complete than it would have been otherwise: Geoff and
 Alex Bullen, Pete Thomas, Gordon Weir, Jay Zimmerman, Tim O’Brien, Russ
 Miles, Richard Paul, Julien Simpson, John Stevenson, Michael Neale, Arnaud
 Héritier, and Manfred Moser.
And finally a great thank you to the Hudson/Jenkins developer and
 user community for the ongoing encouragement and support.

Chapter 1. Introducing Jenkins

Introduction

Continuous Integration, also know as CI, is a cornerstone of modern software development. In fact
 it is a real game changer—when Continuous Integration is introduced into
 an organization, it radically alters the way teams think about the whole
 development process. It has the potential to enable and trigger a series
 of incremental process improvements, going from a simple scheduled
 automated build right through to continuous delivery into production. A
 good CI infrastructure can streamline the development process right
 through to deployment, help detect and fix bugs faster, provide a useful
 project dashboard for both developers and non-developers, and ultimately,
 help teams deliver more real business value to the end user. Every
 professional development team, no matter how small, should be practicing
 CI.

Continuous Integration Fundamentals

Back in the days of waterfall projects and Gantt charts, before the
 introduction of CI practices, development team time and energy was
 regularly drained in the period leading up to a release by what was known
 as the Integration Phase. During this phase, the code changes made by
 individual developers or small teams were brought together piecemeal and
 forged into a working product. This was hard work, sometimes involving the
 integration of months of conflicting changes. It was very hard to
 anticipate the types of issues that would crop up, and even harder to fix
 them, as it could involve reworking code that had been written weeks or
 months before. This painful process, fraught with risk and danger, often
 lead to significant delivery delays, unplanned costs and, as a result,
 unhappy clients. Continuous Integration was born to address these
 issues.
Continuous Integration, in its simplest form, involves a tool that
 monitors your version control system for changes. Whenever a change is
 detected, this tool automatically compiles and tests your application. If
 something goes wrong, the tool immediately notifies the developers so that
 they can fix the issue immediately.
But Continuous Integration can do much more than this. Continuous
 Integration can also help you keep tabs on the health of your code base,
 automatically monitoring code quality and code coverage metrics, and
 helping keep technical debt down and maintenance costs low. The
 publicly-visible code quality metrics can also encourage developers to
 take pride in the quality of their code and strive to improve it. Combined
 with automated end-to-end acceptance tests, CI can also act as a
 communication tool, publishing a clear picture of the current state of
 development efforts. And it can simplify and accelerate delivery by
 helping you automate the deployment process, letting you deploy the latest
 version of your application either automatically or as a one-click
 process.
In essence, Continuous Integration is about reducing risk by
 providing faster feedback. First and foremost, it is designed to help
 identify and fix integration and regression issues faster, resulting in
 smoother, quicker delivery, and fewer bugs. By providing better visibility
 for both technical and non-technical team members on the state of the
 project, Continuous Integration can open and facilitate communication
 channels between team members and encourage collaborative problem solving
 and process improvement. And, by automating the deployment process,
 Continuous Integration helps you get your software into the hands of the
 testers and the end users faster, more reliably, and with less
 effort.
This idea of automated deployment is important. Indeed, if you take
 automating the deployment process to its logical conclusion, you could
 push every build that passes the necessary automated tests into
 production. The practice of automatically deploying every successful build
 directly into production is generally known as Continuous Deployment.
However, a pure Continuous Deployment approach is not always
 appropriate for everyone. For example, many users would not appreciate new
 versions falling into their laps several times a week, and prefer a more
 predictable (and transparent) release cycle. Commercial and marketing
 considerations might also play a role in when a new release should
 actually be deployed.
The notion of Continuous Delivery is a slight variation on the
 idea of Continuous Deployment that takes into account these
 considerations. With Continuous Delivery, any and every successful build
 that has passed all the relevant automated tests and quality gates can
 potentially be deployed into production via a fully
 automated one-click process, and be
 in the hands of the end-user within minutes. However, the process is not
 automatic: it is the business, rather than IT, that decides the best time
 to deliver the latest changes.
So Continuous Integration techniques, and in particular Continuous
 Deployment and Continuous Delivery, are very much about providing value to
 the end user faster. How long does it take your team to get a small code
 change out to production? How much of this process involves problems that
 could have been fixed earlier, had you known about the code changes that
 Joe down the corridor was making? How much is taken up by labor-intensive
 manual testing by QA teams? How much involves manual deployment steps, the
 secrets of which are known only to a select few? CI is not a silver bullet
 by any means, but it can certainly help streamline many of these
 problems.
But Continuous Integration is a mindset as much as a toolset. To get
 the most out of CI, a team needs to adopt a CI mentality. For example,
 your projects must have a reliable, repeatable, and automated build
 process, involving no human intervention. Fixing broken builds should take
 an absolute priority, and not be left to stagnate. The deployment process
 should be automated, with no manual steps involved. And since the trust
 you place in your CI server depends to a great extent on the quality of
 your tests, the team needs to place a very strong emphasis on high quality
 tests and testing practices.
In this book we will be looking at how to implement a robust and
 comprehensive Continuous Integration solution using Jenkins or Hudson.

Introducing Jenkins (née Hudson)

Jenkins, originally called Hudson, is an open source Continuous Integration tool
 written in Java. Boasting a dominant market share, Jenkins is used by
 teams of all sizes, for projects in a wide variety of languages and
 technologies, including .NET, Ruby, Groovy, Grails, PHP and more, as well
 as Java. So what has made Jenkins such a success? And why use Jenkins for
 your CI infrastructure?
Firstly, Jenkins is easy to use. The user interface is simple,
 intuitive, and visually appealing, and Jenkins as a whole has a very low
 learning curve. As we will see in the next chapter, you can get started
 with Jenkins in a matter of minutes.
However Jenkins does not sacrifice power or extensibility: it is
 also extremely flexible and easy to adapt to your own purposes. Hundreds
 of open source plugins are available, with more coming out every week.
 These plugins cover everything from version control systems, build tools,
 code quality metrics, build notifiers, integration with external systems,
 UI customization, games, and much more. And installing them is quick and
 easy.
Last, but certainly not least, much of Jenkins’s popularity comes
 from the size and vibrancy of its
 community. The Jenkins community is a large, dynamic, reactive and welcoming bunch, with passionate
 champions, active mailing lists, IRC channels and a very vocal blog and
 twitter account. The development pace is fast, with releases coming out
 weekly with the latest new features, bug fixes, and plugin updates.
However Jenkins also caters to users who are not comfortable with
 upgrading on a weekly basis. For those who prefer a less-hectic release
 pace, there is also a Long-term Support, or LTS, release line that lags behind the latest release in
 favor of more stability and a slower rate of change. New LTS releases come
 out every three months or so, with important bug fixes being backported.
 This concept is similar to the Ubuntu LTS releases.

From Hudson to Jenkins—A Short History

Jenkins is the result of one visionary developer, Kohsuke Kawaguchi, who started the project as a hobby
 project under the name of Hudson in late 2004 whilst working at Sun. As Hudson evolved
 over the years, it was adopted by more and more teams within Sun for their
 own projects. By early 2008, Sun recognized the quality and value of the
 tool, and ask Kohsuke to work on Hudson full-time, starting to provide
 professional services and support around Hudson. By 2010, Hudson had
 become the leading Continuous Integration solution with a market share of
 over 70%.
In 2009, Oracle purchased Sun. Towards the end of 2010, tensions
 arose between the Hudson developer community and Oracle, initially
 triggered by problems with the Java.net infrastructure, and aggravated by
 issues related to Oracle’s claim to the Hudson trademark. These tensions
 also reflected strong underlying disagreements about the way the project
 was being managed by Oracle. Indeed, Oracle wanted to move towards a more
 strictly controlled development process with a slower release schedule,
 whereas most of the core Hudson developers, led by Kohsuke, preferred to
 continue with the open, flexible, and fast-paced community-focused model
 that had worked so well for Hudson in the past.
In January 2011, the Hudson developer community decisively voted to
 rename the project to Jenkins. They subsequently migrated the original
 Hudson code base to a new GitHub
 project and continued their work there. The vast majority of core
 and plugin developers upped camp and followed Kohsuke Kawaguchi and other
 core contributors to the Jenkins camp, where the bulk of the development
 activity can be seen today.
After the fork, a majority of users also followed the Jenkins
 developer community and switched to Jenkins. At the time of writing, polls
 show that some 75% of Hudson users had switched to Jenkins, while 13% were
 still using Hudson, and another 12% were using both Hudson and Jenkins or
 in the process of migrating to Jenkins.
Nevertheless, Oracle and Sonatype (the company behind Maven and
 Nexus) have continued to work on the Hudson code base (now also hosted on
 GitHub at https://github.com/hudson), but with a
 very different focus. Indeed, the Sonatype developers have concentrating on major underlying
 infrastructure changes around, among other areas, Maven integration, the
 dependency injection framework and the plugin architecture.

Should I Use Jenkins or Hudson?

So should you use Jenkins or Hudson? Since this is a book on Jenkins,
 here are a few reasons why you might want to opt for Jenkins:
	Jenkins is the new Hudson. In fact, Jenkins
 is simply the old Hudson with a new name, so if you liked Hudson,
 you’ll like Jenkins! Jenkins uses the Hudson code base, and the
 development team and project philosophy remain the same. In a
 nutshell, the original developers, who wrote the vast majority of the
 Hudson core, simply resumed business as usual after the fork working
 on the Jenkins project.

	The Jenkins community. Like many of the more successful
 Open Source projects, much of Hudson’s strength came
 from its large and dynamic community, and its massive adoption. Bugs
 are identified (and generally fixed) much more rapidly, and, if you
 have a problem, chances are someone else will have had it too! If you
 run into trouble, post a question on the mailing list or IRC
 channel—there’s sure to be someone who can help.

	The fast development pace. Jenkins continues the rapid
 release cycles that typified Hudson, which many developers love. New
 features, new plugins and bug fixes come out weekly, and the
 turn-around time for bug fixes can be very short indeed. And, if you
 prefer more stability, there are always the LTS releases

And, in the interest of balance, here are some reasons you might
 prefer to stick with Hudson:
	If it ain’t broke, don’t fix it. You
 already have a Hudson installation that you are happy with, and don’t
 feel the need to upgrade to the latest version.

	Enterprise integration and Sonatype tools. Hudson is likely to place a
 strong emphasis on integration with enterprise tools such as
 LDAP/Active Directory, and the Sonatype products such as
 Maven 3, Nexus and M2Ecipse, whereas Jenkins is more open to other
 competing tools such as Artifactory and Gradle.

	Plugin architecture. If you intend to write your own
 Jenkins/Hudson plugins, you should be aware that Sonatype is working
 on providing JSR-330 dependency injection for Hudson plugins. New
 developers may find this approach easier to use, though it does raise
 issues about future plugin compatibility between Jenkins and
 Hudson.

The good news is, no matter whether you are using Jenkins or Hudson,
 the products remain very similar, and the vast majority of techniques and
 tips discussed in this book will apply equally well to both. Indeed, to
 illustrate this point, many screenshots in this book refer to Hudson
 rather than Jenkins.

Introducing Continuous Integration into Your Organization

Continuous Integration is not an all-or-nothing affair. In fact, introducing CI
 into an organization takes you on a path that progresses through several
 distinct phases. Each of these phases involves incremental improvements to
 the technical infrastructure as well as, perhaps more importantly,
 improvements in the practices and culture of the development team itself.
 In the following paragraphs, I have tried to paint an approximate picture
 of each phase.
Phase 1—No Build Server

Initially, the team has no central build server of any kind. Software is built manually on a
 developer’s machine, though it may use an Ant script or similar to do
 so. Source code may be stored in a central source code repository, but
 developers do not necessarily commit their changes on a regular basis.
 Some time before a release is scheduled, a developer manually integrates
 the changes, a process which is generally associated with pain and
 suffering.

Phase 2—Nightly Builds

In this phase, the team has a build server, and automated builds are scheduled on a regular (typically
 nightly) basis. This build simply compiles the code, as there are no
 reliable or repeatable unit tests. Indeed, automated tests, if they are
 written, are not a mandatory part of the build process, and may well not
 run correctly at all. However developers now commit their changes
 regularly, at least at the end of every day. If a developer commits code
 changes that conflict with another developer’s work, the build server
 alerts the team via email the following morning. Nevertheless, the team
 still tends to use the build server for information purposes only—they
 feel little obligation to fix a broken build immediately, and builds may
 stay broken on the build server for some time.

Phase 3—Nightly Builds and Basic Automated Tests

The team is now starting to take Continuous Integration and
 automated testing more seriously. The build server is configured to kick
 off a build whenever new code is committed to the version control
 system, and team members are able to easily see what changes in the
 source code triggered a particular build, and what issues these changes
 address. In addition, the build script compiles the application and runs
 a set of automated unit and/or integration tests. In addition to email,
 the build server also alerts team members of integration issues using
 more proactive channels such as Instant Messaging. Broken builds are now
 generally fixed quickly.

Phase 4—Enter the Metrics

Automated code quality and code coverage metrics are now run to help
 evaluate the quality of the code base and (to some extent, at least) the
 relevance and effectiveness of the tests. The code quality build also
 automatically generates API documentation for the application. All this
 helps teams keep the quality of the code base high, alerting team
 members if good testing practices are slipping. The team has also set up
 a “build radiator,” a dashboard view of the project status that is
 displayed on a prominent screen visible to all team members.

Phase 5—Getting More Serious About Testing

The benefits of Continuous Integration are closely related to
 solid testing practices. Now, practices like Test-Driven Development are
 more widely practiced, resulting in a growing confidence in the results
 of the automated builds. The application is no longer simply compiled
 and tested, but if the tests pass, it is automatically deployed to an
 application server for more comprehensive end-to-end tests and
 performance tests.

Phase 6—Automated Acceptance Tests and More Automated Deployment

Acceptance-Test Driven Development is practiced, guiding development efforts and providing
 high-level reporting on the state of the project. These automated tests
 use Behavior-Driven Development and Acceptance-Test Driven Development
 tools to act as communication and documentation tools and documentation
 as much as testing tools, publishing reports on test results in business
 terms that non-developers can understand. Since these high-level tests
 are automated at an early stage in the development process, they also
 provide a clear idea of what features have been implemented, and which
 remain to be done. The application is automatically deployed into test
 environments for testing by the QA team either as changes are committed,
 or on a nightly basis; a version can be deployed (or “promoted”) to UAT
 and possibly production environments using a manually-triggered build
 when testers consider it ready. The team is also capable of using the
 build server to back out a release, rolling back to a previous release,
 if something goes horribly wrong.

Phase 7—Continuous Deployment

Confidence in the automated unit, integration and acceptance tests
 is now such that teams can apply the automated deployment techniques
 developed in the previous phase to push out new changes directly into
 production.
The progression between levels here is of course somewhat
 approximate, and may not always match real-world situations. For
 example, you may well introduce automated web tests before integrating
 code quality and code coverage reporting. However, it should give a
 general idea of how implementing a Continuous Integration strategy in a
 real world organization generally works.

Where to Now?

Throughout the remainder of this book, as we study the various
 features Jenkins has to offer, as well as the practices required to make
 the most of these features, we will see how we can progress through each
 of these levels with Jenkins. And remember, most of the examples used in
 the book are available online (see http://www.wakaleo.com/books/jenkins-the-definitive-guide
 for more details), so you can get your hands dirty too!

Chapter 2. Your First Steps with Jenkins

Introduction

In this chapter, we are going to take a quick guided tour through
 some of Jenkins’s key features. You’ll get to see first-hand just how easy
 it is to install Jenkins and set up your first Jenkins automated build
 job. We won’t dwell on the details too much—there are more details to come
 in the following chapters, as well as a detailed chapter on Jenkins
 Administration at the end of the book (Chapter 13). This chapter is just an
 introduction. Still, by the end of the chapter, you will also be keeping
 tabs on test results, generating javadoc and publishing code coverage
 reports! We’ve got a lot of ground to cover, so let’s get started!

Preparing Your Environment

There are two ways you can tackle this chapter. You can read
 through it without touching a keyboard, just to get an overview of what
 Jenkins is about. Or you can get your hands dirty, and follow along on
 your own machine.
If you do want to follow along at home, you may need to set up some
 software on your local machine. Remember, the most basic function of any
 Continuous Integration tool is to monitor source code in a version control
 system and to fetch and build the latest version of your source code
 whenever any changes are committed. So you’ll need a version control
 system. In our case, we’ll be using Git. The central
 source code repository for our simple project is stored on GitHub. Don’t worry
 about messing up this repository with your own changes, though: you’ll be
 creating your own fork of the repository that you can use as you wish. If
 you haven’t used Git and/or don’t have an account on GitHub yet, don’t
 worry, we’ll walk through the basics, and the whole installation process
 is well documented on the GitHub website. We’ll explain how to set it all
 up in great detail further on.
In this chapter, we’ll be using Jenkins to build a Java application
 using Maven. Maven is a widely-used build tool in the Java world, with
 many powerful features such as declarative dependency management,
 convention over configuration, and a large range of plugins. For our
 build, we will also be using recent versions of the Java Development Kit (JDK) and Maven, but if you don’t have
 these installed on your machine, don’t fret! As we will see, Jenkins will
 install them for you.
Installing Java

The first thing you will need to install on your machine is
 Java. Jenkins is a Java web application, so you will need at least the
 Java Runtime Environment, or JRE to run it. For the examples in this chapter, you will
 need a recent version of Java 6 (these examples were written with Java 6
 update 17, and the latest release at the time of writing was Java 6
 update 19). If you are not sure, you can check this from the command
 line (by opening a DOS console on Windows), and running java
 -version. If Java is installed on your machine should get
 something like this:
$ java -version
java version "1.6.0_17"
Java(TM) SE Runtime Environment (build 1.6.0_17-b04-248-10M3025)
Java HotSpot(TM) 64-Bit Server VM (build 14.3-b01-101, mixed mode)
If you don’t have a version already installed, or if your version
 is an older one, download and install the latest JRE installer from the
 Java
 website, as shown in Figure 2-1.
[image: Installing Java]

Figure 2-1. Installing Java

Installing Git

Since we will be using Git, you will need to install and
 configure Git on your machine. If you are new to Git, you might want to
 run through the basics on the Git
 Reference website. And if you get lost, the whole process is
 well documented on the GitHub help
 pages.
First of all, you need to install Git on your machine. This
 involves downloading the appropriate installer for your operating system
 from the Git website. There are
 packaged installers for both Windows and Mac OS X. If you are using
 Linux, you are in Git’s home ground: most Linux distributions. On Ubuntu
 or some other Debian-based distribution, you could run something
 like:
$ sudo apt-get install git-core
On Fedora or another RPM-based distribution, you could use
 yum instead:
$ sudo yum install git-core
And, being Linux, you also have the option of installing the
 application from source. There are instructions on how to do this on the
 Git website.
Once you are done, check that Git is installed and available by
 invoking it from the command line:
$ git --version
git version 1.7.1

Setting Up a GitHub Account

Next, if you don’t already have one, you will need to create a
 GitHub account. This is easy and (for our purposes, at least) free of
 charge, and all the cool kids have one. Go to the GitHub signup page and choose the
 “Create a free account” option. You will just need to provide a
 username, a password, and your email address (see Figure 2-2).
[image: Signing up for a GitHub account]

Figure 2-2. Signing up for a GitHub account

Configuring SSH Keys

GitHub uses SSH keys to establish a secure connection between
 your computer and the GitHub servers. Setting these up is not hard, but
 involves a bit of work: fortunately there are clear and detailed
 instructions for each operating system on the GitHub
 website.

Forking the Sample Repository

As we mentioned earlier, all the sample code for this book is
 stored on GitHub, at the following URL: https://github.com/wakaleo/game-of-life. This is a public
 repository, so you can freely view the source code online and check out
 your own working copy. However, if you want to make changes, you will
 need to create your own fork. A fork is a personal copy of a repository
 that you can use as you wish. To create a fork, login to your GitHub
 account and navigate to the repository URL.
 Then click on the Fork button (see Figure 2-3).
 This will create your own personal copy of the repository.
Once you have forked the repository, you should clone a local
 copy to make sure everything is set up correctly. Go to the command line
 and run the following command (replacing
 <username> with your own GitHub
 username):
$ git clone git@github.com:<username>/game-of-life.git
This will “clone” (or check out, in Subversion terms) a copy of
 the project onto your local drive:
git clone git@github.com:john-smart/game-of-life.git
Initialized empty Git repository in /Users/johnsmart/.../game-of-life/.git/
remote: Counting objects: 1783, done.
remote: Compressing objects: 100% (589/589), done.
remote: Total 1783 (delta 1116), reused 1783 (delta 1116)
Receiving objects: 100% (1783/1783), 14.83 MiB | 119 KiB/s, done.
Resolving deltas: 100% (1116/1116), done.
You should now have a local copy of the project that you can build
 and execute. We will be using this project later on to trigger changes
 in the repository.
[image: Forking the sample code repository]

Figure 2-3. Forking the sample code repository

Starting Up Jenkins

There are several ways to run Jenkins on your machine. One
 of the easiest ways to run Jenkins for the first time is to use Java Web
 Start. Java Web Start is a technology that lets you start up a Java
 application on your local machine via a URL on a web page—it comes bundled
 with the Java JRE. In our case, this will start a Jenkins server running
 on your machine, and let you experiment with it as if it were installed
 locally. All you need for this to work is a recent (Java 6 or later)
 version of the Java Runtime Environment (JRE), which we installed in the
 previous section.
For convenience, there is a link to the Jenkins Java Web Start
 instance on the book
 resources page. Here you will find a large orange Launch button in
 the Book Resources section (see Figure 2-4). You can also find this link on the
 Meet Jenkins page on the Jenkins
 website, where, if you scroll down far enough, you should find a
 Test Drive section with an identical Launch button.
[image: Running Jenkins using Java Web Start from the book’s website]

Figure 2-4. Running Jenkins using Java Web Start from the book’s
 website

Java Web Start seems to work best on Firefox. When you click on the
 Launch button on either of these sites in Firefox, the browser will ask if
 you want to open a file called jenkins.jnlp using
 Java Web Start. Click on OK—this will download Jenkins and start it up on
 your machine (see Figure 2-5).
[image: Java Web Start will download and run the latest version of Jenkins]

Figure 2-5. Java Web Start will download and run the latest version of
 Jenkins

In other browsers, clicking on this button may simply download the
 JNLP file. In Internet Explorer, you may even need to right click on the
 link and select “Save Target As” to save the JNLP file, and then run it
 from Windows Explorer. However, in both of these cases, when you open the
 JNLP file, Java Web Start will download and start Jenkins.
Java Web Start will only need to download a particular version of
 Jenkins once. From then on, when you click on the “Launch” button again,
 Java Web Start will use the copy of Jenkins it has already downloaded
 (that is, until the next version comes out). Ignore any messages your
 operating system or anti-virus software may bring up—it is perfectly safe
 to run Jenkins on your local machine.
Once it has finished downloading, it will start up Jenkins on your
 machine. You will be able to see it running in a small window
 called “Jenkins Console” (see Figure 2-6). To stop Jenkins at any time, just close this window.
[image: Java Web Start running Jenkins]

Figure 2-6. Java Web Start running Jenkins

There are also installers available for the principal operating
 systems available on the Jenkins
 website. Or, if you are an experienced Java user versed in the
 ways of WAR files, you may prefer to simply download the latest version of
 Jenkins and run it from the command line. Jenkins comes in the form of an
 executable WAR file—you can download the most recent version from the
 Jenkins website home
 page. For convenience, there is also a link to the latest version
 of Jenkins in the Resources section of this book’s website.
Once downloaded, you can start Jenkins from the command line as
 shown here:
$ java -jar jenkins.war
Whether you have started Jenkins using Java Web Start or from the
 command line, Jenkins should now be running on your local machine. By
 default, Jenkins will be running on port 8080, so you can access Jenkins
 in your web browser on http://localhost:8080.
Alternatively, if you are familiar with Java application servers
 such as Tomcat, you can simply deploy the Jenkins WAR file to your
 application server—with Tomcat, for example, you could simply place the
 jenkins.war file in Tomcat’s
 webapps directory. If you are running
 Jenkins on an application server, the URL that you use to access Jenkins
 will be slightly different. On a default Tomcat installation, for example,
 you can access Jenkins in your web browser on http://localhost:8080/jenkins.
When you open Jenkins in your browser, you should see a screen
 like the one shown in Figure 2-7. You are
 now ready to take your first steps with Jenkins!
[image: The Jenkins start page]

Figure 2-7. The Jenkins start page

Configuring the Tools

Before we get started, we do need to do a little configuration.
 More precisely, we need to tell Jenkins about the build tools and JDK
 versions we will be using for our builds.
Click on the Manage Jenkins link on the home page (see Figure 2-7). This will take you to the Manage
 Jenkins page, the central one-stop-shop for all your Jenkins
 configuration. From this screen, you can configure your Jenkins server,
 install and upgrade plugins, keep track of system load, manage distributed
 build servers, and more! For now, however, we’ll keep it simple. Just
 click on the Configuring System link at the top of the list (see Figure 2-8).
[image: The Manage Jenkins screen]

Figure 2-8. The Manage Jenkins screen

This will take you to Jenkins’s main configuration screen (see Figure 2-9). From here you can configure everything
 from security configuration and build tools to email servers, version
 control systems and integration with third-party software. The screen
 contains a lot of information, but most of the fields contain sensible
 default values, so you can safely ignore them for now.
[image: The Configure Jenkins screen]

Figure 2-9. The Configure Jenkins screen

For now, you will just need to configure the tools required to build
 our sample project. The application we will be building is a Java
 application, built using Maven. So in this case, all we need to do is to
 set up a recent JDK and Maven installation.
However before we start, take a look at the little blue question
 mark icons lined to the right of the screen. These are Jenkins’s contextual help buttons. If you are curious about
 a particular field, click on the help icon next to it and Jenkins will
 display a very detailed description about what it is and how it
 works.
Configuring Your Maven Setup

Our sample project uses Maven, so we will need to install
 and configure Maven first. Jenkins provides great out-of-the-box support
 for Maven. Scroll down until you reach the Maven section in the
 Configure System screen (see Figure 2-10).
Jenkins provides several options when it comes to configuring
 Maven. If you already have Maven installed on your machine, you can
 simply provide the path in the MAVEN_HOME field. Alternatively, you can
 install a Maven distribution by extracting a zip file located in a
 shared directory, or execute a home-rolled installation script. Or you
 can let Jenkins do all the hard work and download Maven for you. To
 choose this option, just tick the Install automatically checkbox.
 Jenkins will download and install Maven from the Apache website the
 first time a build job needs it. Just choose the Maven version you want
 to install and Jenkins will do the rest. You will also need to give a
 name for your Maven version (imaginatively called “Maven 2.2.1” in the
 example), so that you can refer to it in your build jobs.
For this to work, you need to have an Internet connection. If you
 are behind a proxy, you’ll need to provide your proxy information—we
 discuss how to set this up in Configuring a Proxy.
[image: Configuring a Maven installation]

Figure 2-10. Configuring a Maven installation

One of the nice things about the Jenkins Maven installation
 process is how well it works with
 remote build agents. Later on in the book, we’ll see how Jenkins can
 also run builds on remote build servers. You can define a standard way
 of installing Maven for all of your build servers (downloading from the
 Internet, unzipping a distribution bundle on a shared server, etc.)—all
 of these options will work when you add a new remote build agent or set
 up a new build server using this Jenkins configuration.

Configuring the JDK

Once you have configured your Maven installation, you will
 also need to configure a JDK installation (see Figure 2-11). Again, if you have a Java JDK (as opposed
 to a Java Runtime Environment—the JDK contains extra development tools
 such as the Java compiler) already installed on your workstation, you
 can simply provide the path to your JDK in the JAVA_HOME field.
 Otherwise, you can ask Jenkins to download the JDK from the Oracle
 website the first time a build job requires it. This is similar
 to the automatic Maven installation feature—just pick the JDK version
 you need and Jenkins will take care of all the logistics. However, for
 licensing reasons, you will also need to tick a checkbox to indicate
 that you agree with the Java SDK License Agreement.
[image: Configuring a JDK installation]

Figure 2-11. Configuring a JDK installation

Now go to the bottom of the screen and click on the Save
 button.

Notification

Another important aspect you would typically set up is
 notification. When a Jenkins build breaks, and when it works again, it
 can send out email messages to the team to spread the word. Using
 plugins, you can also get it to send instant messages or SMS messages,
 post entries on Twitter, or get people notified in a few other ways. It
 all depends on what works best for your organizational culture. Email
 notification is easy enough to set up if you know your local SMTP server
 address—just provide this value in the Email Notification section
 towards the bottom of the main configuration page. However, to keep
 things simple, we’re not going to worry about notifications just
 yet.

Setting Up Git

The last thing we need to configure for this demo is to get
 Jenkins working with Git. Jenkins comes with support for Subversion and CVS out of the box, but you will need to install the
 Jenkins Git plugin to be able to complete the rest of this tutorial.
 Don’t worry, the process is pretty simple. First of all, click on the
 Manage Jenkins link to the left of the screen to go back to the main
 configuration screen (see Figure 2-8). Then
 click on Manage Plugins. This will open the plugin configuration screen,
 which is where you manage the extra features you want to install on your
 Jenkins server. You should see four tabs: Updates, Available, Installed,
 and Advanced (see Figure 2-12).
[image: Managing plugins in Jenkins]

Figure 2-12. Managing plugins in Jenkins

For now, just click on the Available tab. Here you will see a very
 long list of available plugins. Find the Git Plugin entry in this list
 and tick the corresponding checkbox (see Figure 2-13), and then scroll down to the
 bottom of the screen and click on Install. This will download and
 install the Jenkins Git plugin into your local Jenkins instance.
[image: Installing the Git plugin]

Figure 2-13. Installing the Git plugin

Once it is done, you will need to restart Jenkins for the changes
 to take effect. To do this, you can simply click on the “Restart Jenkins
 when no jobs are running” button displayed on the installation screen,
 or alternatively shut down and restart Jenkins by hand.
That is all we need to configure at this stage. You are now ready
 to set up your first Jenkins build job!

Your First Jenkins Build Job

Build jobs are at the heart of the Jenkins build process. Simply put,
 you can think of a Jenkins build job as a particular task or step in your
 build process. This may involve simply compiling your source code and
 running your unit tests. Or you might want a build job to do other related
 tasks, such as running your integration tests, measuring code coverage or
 code quality metrics, generating technical documentation, or even
 deploying your application to a web server. A real project usually
 requires many separate but related build jobs.
Our sample application is a simple Java implementation of John
 Conway’s “Game of Life.”[1] The Game of Life is a mathematical game which takes place on
 a two dimensional grid of cells, which we will refer to as the Universe.
 Each cell can be either alive or dead. Cells interact with their direct
 neighbors to determine whether they will live or die in the next
 generation of cells. For each new generation of cells, the following rules
 are applied:
	Any live cell with fewer than two live neighbors dies of
 underpopulation.

	Any live cell with more than three live neighbors dies of
 overcrowding.

	Any live cell with two or three live neighbors lives on to the
 next generation.

	Any dead cell with exactly three live neighbors becomes a live
 cell.

Our application is a Java module, built using Maven, that implements
 the core business logic of the Game of Life. We’ll worry about the user
 interfaces later on. For now, let’s see how we can automate this build in
 Jenkins. If you are not familiar with Maven, or prefer Ant or another
 build framework—don’t worry! The examples don’t require much knowledge of
 Maven, and we’ll be looking at plenty of examples of using other build
 tools later on in the book.
For our first build job, we will keep it simple: we are just going
 to compile and test our sample application. Click on the New Job link. You
 should get to a screen similar to Figure 2-14.
 Jenkins supports several different types of build jobs. The two most commonly-used are the freestyle
 builds and the Maven 2/3 builds. The freestyle projects allow you to configure just about any
 sort of build job: they are highly flexible and very configurable. The
 Maven 2/3 builds understand the Maven project structure, and
 can use this to let you set up Maven build jobs with less effort and a few
 extra features. There are also plugins that provide support for other
 types of build jobs. Nevertheless, although our project does use Maven, we
 are going to use a freestyle build job, just to keep things simple and general
 to start with. So choose “Build a freestyle software project”, as shown in
 Figure 2-14.
You’ll also need to give your build job a sensible name. In this
 case, call it gameoflife-default, as it will be the
 default CI build for our Game of Life project.
[image: Setting up your first build job in Jenkins]

Figure 2-14. Setting up your first build job in Jenkins

Once you click on OK, Jenkins will display the project configuration
 screen (see Figure 2-15).
In a nutshell, Jenkins works by checking out the source code of your
 project and building it in its own workspace. So the next thing you need
 to do is to tell Jenkins where it can find the source code for your project. You do this in the Source Code Management section (see Figure 2-15). Jenkins provides support for CVS and Subversion out of the box, and
 many others such as Git, Mercurial, ClearCase, Perforce and many more via
 plugins.
For this project, we will be getting the source code from the GitHub
 repository we set up earlier. On the Jenkins screen, choose “Git” and
 enter the Repository URL we defined in Forking the Sample Repository
 (see Figure 2-15). Make sure this is
 the URL of your fork, and not of the original repository: it should have
 the form
 git@github.com:<username>/game-of-life.git,
 where <username> is the username for your
 own GitHub account. You can leave all of the other options up until here
 with their default values.
[image: Telling Jenkins where to find the source code]

Figure 2-15. Telling Jenkins where to find the source code

Once we have told Jenkins where to find the source code for our
 application, we need to tell it how often it should check for updates. We
 want Jenkins to monitor the repository and start a build whenever any
 changes have been committed. This is a common way to set up a build job in
 a Continuous Integration context, as it provides fast feedback if the
 build fails. Other approaches include building on regular intervals (for
 example, once a day), requiring a user to kick of the build manually, or
 even triggering a build remotely using a “post-commit” hook in your
 SCM.
We configure all of this in the Build Triggers section (see Figure 2-16). Pick the Poll SCM option and enter “*
 * * * *” (that’s five asterisks separated by spaces) in the Schedule box.
 Jenkins schedules are configured using the cron syntax,
 well-known in the Unix world. The cron syntax consists
 of five fields separated by white space, indicating respectively the minute (0–59), hour (0–23), day of the
 month (1–31), month (1–12) and the day of the week (0–7, with 0 and 7
 being Sunday). The star is a wildcard character which accepts any valid
 value for that field. So five stars basically means “every minute of every
 hour of every day.” You can also provide ranges of values: “* 9-17 * * *”
 would mean “every minute of every day, between 9am and 5pm.” You can also
 space out the schedule using intervals: “*/5 * * * *” means “every 5
 minutes,” for example. Finally, there are some other convenient
 short-hands, such as “@daily” and “@hourly”.
Don’t worry if your Unix skills are a little rusty—if you click on
 the blue question mark icon on the side of the schedule box, Jenkins will
 bring up a very complete refresher.
[image: Scheduling the build jobs]

Figure 2-16. Scheduling the build jobs

The next step is to configure the actual build itself. In a
 freestyle build job, you can break down your build job into a number of
 build steps. This makes it easier to organize builds in clean, separate
 stages. For example, a build might run a suite of functional tests in one
 step, and then tag the build in a second step if all of the functional
 tests succeed. In technical terms, a build step might involve invoking an
 Ant task or a Maven target, or running a shell script. There are also
 Jenkins plugins that let you use additional types of build steps: Gant,
 Grails, Gradle, Rake, Ruby, MSBuild and many other build tools are all
 supported.
For now, we just want to run a simple Maven build. Scroll
 down to the Build section and click on the “Add build step” and choose
 “Invoke top-level Maven targets” (see Figure 2-17). Then enter “clean package” in the
 Goals field. If you are not familiar with Maven, this will delete any
 previous build artifacts, compile our code, run our unit tests, and
 generate a JAR file.
[image: Adding a build step]

Figure 2-17. Adding a build step

By default, this build job will fail if the code does not compile or
 if any of the unit tests fail. That’s the most fundamental thing that
 you’d expect of any build server. But Jenkins also does a great job of helping you
 display your test results and test result trends.
The de facto standard for test reporting in the Java world is
 an XML format used by JUnit. This format is also used by many other Java testing tools,
 such as TestNG, Spock and Easyb. Jenkins understands this format, so if
 your build produces JUnit XML test results, Jenkins can generate nice
 graphical test reports and statistics on test results over time, and also
 let you view the details of any test failures. Jenkins also keeps track of
 how long your tests take to run, both globally, and per test—this can come
 in handy if you need to track down performance issues.
So the next thing we need to do is to get Jenkins to keep tabs on
 our unit tests.
Go to the Post-build Actions section (see Figure 2-18) and tick “Publish JUnit test result
 report” checkbox. When Maven runs unit tests in a project, it
 automatically generates the XML test reports in a directory called
 surefire-reports in the target directory. So enter
 “**/target/surefire-reports/*.xml” in the “Test report XMLs” field. The
 two asterisks at the start of the path (“**”) are a best practice to make
 the configuration a bit more robust: they allow Jenkins to find the target
 directory no matter how we have configured Jenkins to check out the source
 code.
Another thing you often want to do is to archive your build
 results. Jenkins can store a copy of the binary artifacts generated by
 your build, allowing you to download the binaries produced by a build
 directly from the build results page. It will also post the latest binary
 artifacts on the project home page, which is a convenient way to
 distribute the latest and greatest version of your application. You can
 activate this option by ticking the “Archive the artifacts” checkbox and
 indicating which binary artifacts you want Jenkins to archive. In Figure 2-18, for example, we have configured
 Jenkins to store all of the JAR files generated by this build job.
[image: Configuring JUnit test reports and artifact archiving]

Figure 2-18. Configuring JUnit test reports and artifact archiving

Now we’re done—just click on the Save button at the bottom of the
 screen. Our build job should now be ready to run. So let’s see it in
 action!

[1] See http://en.wikipedia.org/wiki/Conway%27s_Game_of_Life.

Your First Build Job in Action

Once you save your new build job, Jenkins will display the home page
 for this job (see Figure 2-19). This is where
 Jenkins displays details about the latest build results and the build
 history.
If you wait a minute or so, the build should kick off
 automatically—you can see the stripy progress bar in the Build History
 section in the bottom left hand corner of Figure 2-19. Or, if you are impatient, you can also trigger the build
 manually using the Build Now button.
[image: Your first build job running]

Figure 2-19. Your first build job running

The build will also now figure proudly on your Jenkins server’s
 home page (see Figure 2-20). This page shows a
 summary of all of your build jobs, including the current build status and
 general state of heath of each of your builds. It tells you when each
 build ran successfully for the last time, and when it last failed, and
 also the result of the last build.
Once of Jenkins’s specialities is the way it lets you get an idea of
 build behavior over time. For example, Jenkins uses a weather metaphor to
 help give you an idea of the stability of your builds. Essentially, the
 more your builds fail, the worse the weather gets. This helps you get an
 idea of whether a particular broken build is an isolated event, or if the
 build is breaking on a regular basis, in which case it might need some
 special attention.
You can also manually trigger a build job here, using the build schedule button
 (that’s the one that looks a bit like a green play button on top of a
 clock).
[image: The Jenkins dashboard]

Figure 2-20. The Jenkins dashboard

When the build finishes, the ball in the Build History box
 becomes solid blue. This means the build was a success. Build failures are generally indicated by a red ball. For some
 types of project, you can also distinguish between a build error (such as
 a compiler error), indicated by a red ball, and other sorts of build
 failures, such as unit test failures or insufficient code coverage, which
 are indicated by a yellow ball. There are also some other details about
 the latest test results, when the last build was run, and so on. But
 before we look at the details, let’s get back to the core business model
 of a Continuous Integration server—kicking off builds when someone changes
 the code!
We are going to commit a code change to GitHub and see what
 happens, using the source code we checked out in Forking the Sample Repository. We now have Jenkins configured to monitor our
 GitHub fork, so if we make any changes, Jenkins should be able to pick
 them up.
So let’s make a change. The idea is to introduce a code change that
 will cause the unit tests to fail. If your Java is a bit rusty, don’t
 worry, you won’t need to know any Java to be able to break the build—just
 follow the instructions!
Now in normal development, you would first modify the unit test that
 describes this behaviour. Then you would verify that the test fails with
 the existing code, and implement the code to ensure that the test passes.
 Then you would commit your changes to your version
 control system, allowing Jenkins to build them. However this would be a
 poor demonstration of how Jenkins handles unit test failures. So in this
 example, we will, against all best practices, simply modify the
 application code directly.
First of all, open the Cell.java file, which you will find in the
 gameoflife-core/src/main/java/com/wakaleo/gameoflife/domain
 directory. Open this file in your favorite text editor. You should see
 something like this:
package com.wakaleo.gameoflife.domain;

public enum Cell {
 LIVE_CELL("*"), DEAD_CELL(".");

 private String symbol;

 private Cell(String symbol) {
 this.symbol = symbol;
 }

 @Override
 public String toString() {
 return symbol;
 }

 static Cell fromSymbol(String symbol) {
 Cell cellRepresentedBySymbol = null;
 for (Cell cell : Cell.values()) {
 if (cell.symbol.equals(symbol)) {
 cellRepresentedBySymbol = cell;
 break;
 }
 }
 return cellRepresentedBySymbol;
 }

 public String getSymbol() {
 return symbol;
 }
}
The application can print the state of the grid as a text array.
 Currently, the application prints our live cells as an asterisk
 (*), and dead cells appear as a minus character
 (–). So a five-by-five grid containing a single living
 cell in the center would look like this:

--*--

Now users have asked for a change to the application—they want
 pluses (+) instead of stars! So we are going to make a
 slight change to the Cell class method, and rewrite it as
 follows (the modifications are in bold):
package com.wakaleo.gameoflife.domain;

public enum Cell {
 LIVE_CELL("+"), DEAD_CELL(".");

 private String symbol;

 private Cell(String symbol) {
 this.symbol = symbol;
 }

 @Override
 public String toString() {
 return symbol;
 }

 static Cell fromSymbol(String symbol) {
 Cell cellRepresentedBySymbol = null;
 for (Cell cell : Cell.values()) {
 if (cell.symbol.equals(symbol)) {
 cellRepresentedBySymbol = cell;
 break;
 }
 }
 return cellRepresentedBySymbol;
 }

 public String getSymbol() {
 return symbol;
 }
}
Save this change, and then commit them to the local Git repository
 by running git commit:
$ git commit -a -m "Changes stars to pluses"
[master 61ce946] Changes stars to pluses
 1 files changed, 1 insertions(+), 1 deletions(-)
This will commit the changes locally, but since Git is a distributed
 repository, you now have to push these changes through to your fork on
 GitHub. You do this by running git push:
$ git push
Counting objects: 21, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (7/7), done.
Writing objects: 100% (11/11), 754 bytes, done.
Total 11 (delta 4), reused 0 (delta 0)
To git@github.com:john-smart/game-of-life.git
 7882d5c..61ce946 master -> master
Now go back to the Jenkins web page. After a minute or so, a new
 build should kick off, and fail. In fact, there are several other places
 which are affected by this change, and the regression tests related to
 these features are now failing. On the build job home page, you will see a
 second build in the build history with an ominous red ball (see Figure 2-21)—this tells you that the latest build has
 failed.
You might also notice some clouds next to the Build History
 title—this is the same “weather” icon that we saw on the home page, and
 serves the same purpose—to give you a general idea of how stable your
 build is over time.
[image: A failed build]

Figure 2-21. A failed build

If you click on the new build history entry, Jenkins will give
 you some more details about what went wrong (see Figure 2-22). Jenkins tells us that there
 were 11 new test failures in this build, something which can be seen at a
 glance in the Test Result Trend graph—red indicates test failures. You can
 even see which tests are failing, and how long they have been
 broken.
[image: The list of all the broken tests]

Figure 2-22. The list of all the broken tests

If you want to know exactly what went wrong, that’s easy enough to
 figure out as well. If you click on the failed test classes, Jenkins
 brings up the actual details of the test failures (see Figure 2-23), which is a great
 help when it comes to reproducing and fixing the issue.
[image: Details about a failed test]

Figure 2-23. Details about a failed test

Jenkins displays a host of information about the failed test in a
 very readable form, including the error message the test produced, the
 stack trace, how long the test has been broken, and how long it took to
 run. Often, this in itself is enough to put a developer on the right track
 towards fixing the issue.
Now let’s fix the build. To make things simple, we’ll just back out
 our changes and recommit the code in its original state (the end users
 just changed their mind about the asterisks, anyway). So just undo the
 changes you made to the Cell class (again, the changes
 are highlighted in bold):
package com.wakaleo.gameoflife.domain;

public enum Cell {
 LIVE_CELL("*"), DEAD_CELL(".");

 private String symbol;

 private Cell(String symbol) {
 this.symbol = symbol;
 }

 @Override
 public String toString() {
 return symbol;
 }

 static Cell fromSymbol(String symbol) {
 Cell cellRepresentedBySymbol = null;
 for (Cell cell : Cell.values()) {
 if (cell.symbol.equals(symbol)) {
 cellRepresentedBySymbol = cell;
 break;
 }
 }
 return cellRepresentedBySymbol;
 }

 public String getSymbol() {
 return symbol;
 }
}
When you’ve done this, commit your changes again:
$ git commit -a -m "Restored the star"
[master bc924be] Restored the star
 1 files changed, 1 insertions(+), 1 deletions(-)
$ git push
Counting objects: 21, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (7/7), done.
Writing objects: 100% (11/11), 752 bytes, done.
Total 11 (delta 4), reused 6 (delta 0)
To git@github.com:john-smart/game-of-life.git
 61ce946..bc924be master -> master
Once you’ve committed these changes, Jenkins should pick them up and
 kick off a build. Once this is done, you will be able to see the fruit of
 your work on the build job home page (see Figure 2-24)—the build status is blue again and
 all is well. Also notice the way we are building up a trend graph showing
 the number of succeeding unit tests over time—this sort of report really
 is one of Jenkins’s strong points.
[image: Now the build is back to normal]

Figure 2-24. Now the build is back to normal

More Reporting—Displaying Javadocs

For many Java projects, Javadoc comments are an important
 source of low-level technical documentation. There are even tools, such as
 UmlGraph, that let you produce Javadoc with embedded UML diagrams to give
 you a better picture of how the classes fit together in the application.
 This sort of technical documentation has the advantage of being cheap to
 produce, accurate and always up-to-date.
Jenkins can integrate Javadoc API documentation directly into the
 Jenkins website. This way, everyone can find the latest Javadoc easily, in
 a well known place. Often, this sort of task is performed in a separate
 build job, but for simplicity we are going to add another build step to
 the gameoflife-default build job to generate and
 display Javadoc documention for the Game of Life API.
Start off by going into the “gameoflife-default” configuration
 screen again. Click on “Add build step”, and add a new build step to
 “Invoke top level Maven targets” (see Figure 2-25). In the Goals field,
 place javadoc:javadoc—this will tell Maven to generate
 the Javadoc documentation.
[image: Adding a new build step and report to generate Javadoc]

Figure 2-25. Adding a new build step and report to generate Javadoc

Now go to the “Post-build Action” and tick the “Publish Javadoc”
 checkbox. This project is a multimodule project, so a separate
 subdirectory is generated for each module (core, services, web and so
 forth). For this example, we are interested in displaying the documentation for the core
 module. In the Javadoc directory field, enter
 gameoflife-core/target/site/apidocs—this is where
 Maven will place the Javadocs it generates for the core module. Jenkins
 may display an error message saying that this directory doesn’t exist at
 first. Jenkins is correct—this directory won’t exist until we run the
 javadoc:javadoc goal, but since we haven’t run this
 command yet we can safely ignore the message at this stage.
If you tick “Retain Javadoc for each successful build”, Jenkins will
 also keep track of the Javadocs for previous builds—not always useful, but
 it can come in handy at times.
Now trigger a build manually. You can do this either from the build
 job’s home page (using the Build Now link), or directly from the server
 home page. Once the build is finished, open the build job summary page.
 You should now see a Javadoc link featuring prominently on the screen—this
 link will open the latest version of the Javadoc documentation (see Figure 2-26). You will also see this link on
 the build details page, where it will point to the Javadoc for that
 particular build, if you have asked Jenkins to store Javadoc for
 each build.
[image: Jenkins will add a Javadoc link to your build results]

Figure 2-26. Jenkins will add a Javadoc link to your build results

Adding Code Coverage and Other Metrics

As we mentioned earlier, reporting is one of Jenkins’s
 strong points. We have seen how easy it is to display test results and to
 publish Javadocs, but you can also publish a large number of other very
 useful reports using Jenkins’s plugins.
Plugins are another one of Jenkins’s selling points—there are
 plugins for doing just about anything, from integrating new build tools or
 version control systems to notification mechanisms and reporting. In
 addition, Jenkins plugins are very easy to install and integrate smoothly
 into the existing Jenkins architecture.
To see how the plugins work, we are going to integrate code coverage
 metrics using the Cobertura plugin. Code coverage is an indication of how
 much of your application code is actually executed during your tests—it
 can be a useful tool in particular for finding areas of code that have not
 been tested by your test suites. It can also give some indication as to
 how well a team is applying good testing practices such as Test-Driven
 Development or Behavior-Driven Development.
Cobertura is
 an open source code coverage tool that works well with both Maven and
 Jenkins. Our Maven demonstration project is already configured to record
 code coverage metrics, so all we need to do is to install the Jenkins
 Cobertura plugin and generate the code coverage metrics for Jenkins to
 record and display.
[image: Jenkins has a large range of plugins available]

Figure 2-27. Jenkins has a large range of plugins available

To install a new plugin, go to the Manage Jenkins page and click on
 the Manage Plugins entry. This will display a list of the available
 plugins as well as the plugins already installed on your server (see Figure 2-27). If your build server doesn’t have
 an Internet connection, you can also manually install a plugin by
 downloading the plugin file elsewhere and uploading it to your Jenkins
 installation (just open the Advanced tab in Figure 2-27), or by copying the plugin to the
 $JENKINS_HOME/plugins
 directory.
In our case, we are interested in the Cobertura plugin, so go to the
 Available tab and scroll down until you find the Cobertura Plugin entry in
 the Build Reports section. Click on the checkbox and then click on the
 Install button at the bottom of the screen.
This will download and install the plugin for you. Once it is done,
 you will need to restart your Jenkins instance to see the fruits of your
 labor. When you have restarted Jenkins, go back to the Manage Plugins
 screen and click on the Installed tab—there should now be a Cobertura
 Plugin entry in the list of installed plugins on this page.
Once you have made sure the plugin was successfully installed, go to
 the configuration page for the gameoflife-default build
 job.
To set up code coverage metrics in our project, we need to do
 two things. First we need to generate the Cobertura coverage data in an
 XML form that Jenkins can use; then we need to configure Jenkins to
 display the coverage reports.
Our Game of Life project already has been configured to generate XML
 code coverage reports if we ask it. All you need to do is to run
 mvn cobertura:cobertura to generate the reports in XML
 form. Cobertura can also generate HTML reports, but in our case we will be
 letting Jenkins take care of the reporting, so we can save on build time
 by not generating the For this example, for simplicity, we will just add
 the cobertura:cobertura goal to the second build step
 (see Figure 2-28). You could also
 add a new build step just for the code coverage metrics. In a real-world
 project, code quality metrics like this are typically placed in a distinct
 build job, which is run less frequently than the default build.
[image: Adding another Maven goal to generating test coverage metrics]

Figure 2-28. Adding another Maven goal to generating test coverage
 metrics

Next, we need to tell Jenkins to keep track of our code coverage
 metrics. Scroll down to the “Post-build Actions” section. You should see a
 new checkbox labeled Publish Cobertura Reports. Jenkins will often add UI
 elements like this when you install a new plugin. When you tick this box,
 Jenkins will display the configuration options for the Cobertura plugin
 that we installed earlier (see Figure 2-29).
Like most of the code-quality related plugins in Jenkins, the
 Cobertura plugin lets you fine-tune not only the way Jenkins displays the
 report data, but also how it interprets the data. In the Coverage Metrics
 Targets section, you can define what you consider to be the minimum
 acceptable levels of code coverage. In Figure 2-29, we have configured Jenkins to list any builds with less than 50% test coverage
 as “unstable” (indicated by a yellow ball), and notify the team
 accordingly.
[image: Configuring the test coverage metrics in Jenkins]

Figure 2-29. Configuring the test coverage metrics in Jenkins

This fine-tuning often comes in handy in real-world builds. For
 example, you may want to impose a special code coverage constraint in
 release builds, to ensure high code coverage in release versions. Another
 strategy that can be useful for legacy projects is to gradually increase
 the minimum tolerated code coverage level over time. This way you can
 avoid having to retro-fit unit tests on legacy code just to raise the code
 coverage, but you do encourage all new code and bug fixes to be well
 tested.
Now trigger a build manually. The first time you run the build job
 with Cobertura reporting activated, you will see coverage statistics for
 your build displayed on the build home page, along with a Coverage Report
 link when you can go for more details (see Figure 2-30). The Cobertura report
 shows different types of code coverage for the build we just ran. Since we
 have only run the test coverage metrics once, the coverage will be
 displayed as red and green bars.
[image: Jenkins displays code coverage metrics on the build home page]

Figure 2-30. Jenkins displays code coverage metrics on the build home
 page

If you click on the Coverage Report icon, you will see code coverage
 for each package in your application, and even drill down to see the code
 coverage (or lack thereof) for an individual class (see Figure 2-31). When you get to this level,
 Jenkins displays both the overall coverage statistics for the class, and
 also highlights the lines that were executed in green, and those that
 weren’t in red.
This reporting gets better with time. Jenkins not only reports
 metrics data for the latest build, but also keeps track of metrics over
 time, so that you can see how they evolve throughout the life of the
 project.
For example, if you drill down into the coverage reports, you will
 notice that certain parts of this code are not tested (for example the Cell.java class
 in Figure 2-31).
[image: Jenkins lets you display code coverage metrics for packages and classes]

Figure 2-31. Jenkins lets you display code coverage metrics for packages and
 classes

Code coverage metrics are a great way to isolate code that has not
 been tested, in order to add extra tests for corner cases that were not
 properly tested during the initial development, for example. The Jenkins
 code coverage graphs are also a great way of keeping track of your code
 coverage metrics as the project grows. Indeed, as you add new tests, you
 will notice that Jenkins will display a graph of code coverage over time,
 not just the latest results (see Figure 2-32).
[image: Jenkins also displays a graph of code coverage over time]

Figure 2-32. Jenkins also displays a graph of code coverage over time

Note that our objective here is not to improve the code coverage
 just for the sake of improving code coverage—we are adding an extra test
 to verify some code that was not previously tested, and as a result the
 code coverage goes up. There is a subtle but important difference
 here—code coverage, as with any other metric, is very much a means to an
 end (high code quality and low maintenance costs), and not an end in
 itself.
Nevertheless, metrics like this can give you a great insight into the
 health of your project, and Jenkins presents them in a particularly
 accessible way.
This is just one of the code quality metrics plugins that have been
 written for Jenkins. There are many more (over fifty reporting plugins
 alone at the time of writing). We’ll look at some more of them in Chapter 9.

Conclusion

In this chapter, we have gone through what you need to know to get
 started with Jenkins. You should be able to set up a new build job, and
 setting up reporting on JUnit test results and javadocs. And you have seen
 how to add a reporting plugin and keep tabs on code coverage. Well done!
 But there’s still a lot more to learn about Jenkins—in the following
 chapters, we will be looking at how Jenkins can help you improve your
 build automation process in many other areas as well.

Chapter 3. Installing Jenkins

Introduction

One of the first things you will probably notice about
 Jenkins is how easy it is to install. Indeed, in less than five minutes,
 you can have a Jenkins server up and running. However, as always, in the
 real world, things aren’t always that simple, and there are a few details
 you should take into account when installing your Jenkins server for
 production use. In this chapter, we look at how to install Jenkins onto
 both your local machine and onto a fully fledged build server. We will
 also look at how to take care of your Jenkins installation once it’s up
 and running, and how to perform basic maintenance tasks such as backups
 and upgrades.

Downloading and Installing Jenkins

Jenkins is easy to install, and can run just about anywhere. You can
 run it either as a stand-alone application, or deployed on a conventional
 Java application server such as Tomcat or JBoss. This first option makes
 it easy to install and try out on your local machine, and you can be up
 and running with a bare-bones installation in a matter of minutes.
Since Jenkins is a Java application, you will need a recent
 version of Java on your machine. More precisely, you will need at least
 Java 5. In fact, on your build server, you will almost certainly need the
 full features of the Java Development Kit (JDK) 5.0 or better to execute
 your builds. If you’re not sure, you can check the version of Java on your machine by executing the java
 -version command:
$ java -version
java version "1.6.0_17"
Java(TM) SE Runtime Environment (build 1.6.0_17-b04-248-10M3025)
Java HotSpot(TM) 64-Bit Server VM (build 14.3-b01-101, mixed mode)
Jenkins is distributed in the form of a bundled Java web
 application (a WAR file). You can download the latest version from the
 Jenkins website (http://jenkins-ci.org—see Figure 3-1) or from the book website.
 Jenkins is a dynamic project, and new releases come out at a regular
 rate.
For Windows users, there is a graphical Windows installation
 package for Jenkins. The installer comes in the form of a ZIP file
 containing an MSI package for Jenkins, as well as a setup.exe file that can be used to install the
 .NET libraries if they have not already been installed on your machine. In
 most cases, all you need to do is to unzip the zip file and run the
 jenkins-x.x.msi file inside (see
 Figure 3-2). The MSI installer comes bundled
 with a bundled JRE, so no separate Java installation is required.
[image: You can download the Jenkins binaries from the Jenkins website]

Figure 3-1. You can download the Jenkins binaries from the Jenkins
 website

Once you have run the installer, Jenkins will automatically start on port 8080 (see Figure 3-3). The installer will have created a
 new Jenkins service for you, that you can start and stop just like any
 other Windows service.
There are also excellent native packages for Mac OS X and most of
 the major Linux distributions, including Ubuntu, RedHat (including CentOS
 and Fedora) and OpenSolaris. We discuss how to install Jenkins on Ubuntu
 and Redhat below.
If you are not installing Jenkins using one of the native
 packages, you can simply download the latest binary distribution from the
 Jenkins website. Once you have downloaded the latest and greatest Jenkins
 release, place it in an appropriate directory on your build server. On a
 Windows environment, you might put it in a directory called
 C:\Tools\Jenkins (it’s a good idea
 not to place Jenkins in a directory containing spaces
 in the path, such as C:\Program
 Files, as this can cause problems for Jenkins in some
 circumstances). On a Linux or Unix box, it might go in /usr/local/jenkins, /opt/jenkins, or in some other directory,
 depending on your local conventions and on the whim of your system
 administrator.
[image: Jenkins setup wizard in Windows]

Figure 3-2. Jenkins setup wizard in Windows

Before we go any further, let’s just start up Jenkins and take a
 look. If you didn’t try this out in the previous chapter, now is the time
 to get your hands dirty. Open a console in the directory containing the
 jenkins.war file and run the
 following command:
$ java -jar jenkins.war
[Winstone 2008/07/01 20:54:53] - Beginning extraction from war file
...
INFO: Took 35 ms to load
...
[Winstone 2008/07/01 20:55:08] - HTTP Listener started: port=8080
[Winstone 2008/07/01 20:55:08] - Winstone Servlet Engine v0.9.10 running:
 controlPort=disabled
[Winstone 2008/07/01 20:55:08] - AJP13 Listener started: port=8009
Jenkins should now be running on port 8080. Open your browser at http://localhost:8080 and take a look. (see Figure 3-3).
[image: The Jenkins start page]

Figure 3-3. The Jenkins start page

Preparing a Build Server for Jenkins

Installing Jenkins on your local development machine is one thing, but
 installing Jenkins on a proper build
 server deserves a little more forethought and planning.
Before you start your installation, the first thing you will need
 is a build server. To work well, Jenkins needs both processor power and
 memory. Jenkins itself is a relatively modest Java web application.
 However, in most configurations, at least some of the builds will be run
 on the principal build server. Builds tend to be both memory and
 processor-intensive operations, and Jenkins can be configured to run
 several builds in parallel. Depending on the number of build jobs you are
 managing, Jenkins will also need memory of its own for its own internal
 use. The amount of memory required will depend largely on the nature of
 your builds, but memory is cheap these days (at least in non-hosted
 environments), and it’s best not to be stingy.
A build server also needs CPU horsepower. As a rule of thumb, you
 will need one processor per parallel build, though, in practice, you can
 capitalize on I/O delays to do a little better than this. It is also in
 your best interest to dedicate your build server as much as possible to
 the task of running continuous builds. In particular, you should avoid
 memory or CPU-intensive applications such as test servers, heavily-used
 enterprise applications, enterprise
 databases such as Oracle, enterprise mail servers, and so on.
One very practical option available in many organizations today is to
 use a virtual machine. This way, you can choose the amount of memory and
 number of processors you think appropriate for your initial installation,
 and easily add more memory and processors later on as required. However,
 if you are using a virtual machine, make sure that it has enough memory to
 support the maximum number of parallel builds you expect to be running.
 The memory usage of a Continuous Integration server is best described as
 spiky—Jenkins will be creating additional JVMs as required for its build
 jobs, and these need memory.
Another useful approach is to set up multiple build machines.
 Jenkins makes it quite easy to set up “slaves” on other machines that can
 be used to run additional build jobs. The slaves remain inactive until a
 new build job is requested—then the main Jenkins installation dispatches
 the build job to the slave and reports on the results. This is a great way
 to absorb sudden spikes of build activity, for example just before a major
 release of your principal product. It is also a useful strategy if certain
 heavy-weight builds tend to “hog” the main build server—just put them on
 their own dedicated build agent! We will look at how to do this in detail
 later on in the book.
If you are installing Jenkins on a Linux or Unix build
 server, it is a good idea to create a special user (and user group) for
 Jenkins. This makes it easier to monitor at a glance the system resources
 being used by the Jenkins builds, and to troubleshoot problematic builds
 in real conditions. The native binary installation packages discussed
 below do this for you. If you did not use one of these, you can create a
 dedicated Jenkins user from the command line as shown here:
$ sudo groupadd build
$ sudo useradd --create-home --shell /bin/bash --groups build jenkins
The exact details may vary depending on your environment. For
 example, you may prefer to use a graphical administration console instead
 of the command line, or, on a Debian-based Linux server (such as Ubuntu),
 you might use the more user-friendly adduser and
 addgroup commands.
In most environments, you will need to configure Java correctly for
 this user. For example, you can do this by defining the
 JAVA_HOME and PATH variables in the
 .bashrc file, as shown here:
export JAVA_HOME=/usr/local/java/jdk1.6.0
export PATH=$JAVA_HOME/bin:$PATH
You will now be able to use this user to run Jenkins in an
 isolated environment.

The Jenkins Home Directory

Before we install Jenkins, however, there are some things
 you need to know about how Jenkins stores its data. Indeed, no matter
 where you store the Jenkins WAR file, Jenkins keeps all its important data
 in a special separate directory called the Jenkins home directory. Here,
 Jenkins stores information about your build server configuration, your
 build jobs, build artifacts, user accounts, and other useful information,
 as well as any plugins you may have installed. The Jenkins home directory
 format is backward compatible across
 versions, so you can freely update or reinstall your Jenkins executable
 without affecting your Jenkins home directory.
Needless to say, this directory will need a lot of disk
 space.
By default, the Jenkins home directory will be called .jenkins, and will be placed in your home
 directory. For example, if you are running a machine under Windows 7, if
 your username is “john”, you would find the Jenkins home directory under
 C:\Users\john\.jenkins. Under Windows
 XP, it would be C:\Documents and
 Settings\John\.jenkins. On a Linux machine, it would most
 likely be under /home/john/.jenkins.
 And so on.
You can force Jenkins to use a different directory as its home
 directory by defining the JENKINS_HOME environment variable.
 You may need to do this on a build server to conform to local directory
 conventions or to make your system administrator happy. For example, if
 your Jenkins WAR file is installed in /usr/local/jenkins, and the Jenkins home
 directory needs to be in the /data/jenkins directory, you might write a
 startup script along the following lines:
export JENKINS_BASE=/usr/local/jenkins
export JENKINS_HOME=/var/jenkins-data
java -jar ${JENKINS_BASE}/jenkins.war
If you are running Jenkins in a Java EE container such as Tomcat or
 JBoss, you can configure the webapp to expose its own environments
 variables. For example, if you are using Tomcat, you could create a file
 called jenkins.xml in the $CATALINA_BASE/conf/localhost directory:
<Context docBase="../jenkins.war">
 <Environment name="JENKINS_HOME" type="java.lang.String"
 value="/data/jenkins" override="true"/>
</Context>
In a previous life, Jenkins was known as Hudson. Jenkins remains
 compatible with previous Hudson installations, and upgrading from Hudson
 to Jenkins can be as simple as replacing the old hudson.war file with jenkins.war. Jenkins will look for its home
 directory in the following places (by order of precedence):
	A JNDI environment entry called JENKINS_HOME

	A JNDI environment entry called HUDSON_HOME

	A system property named JENKINS_HOME

	A system property named HUDSON_HOME

	An environment variable named JENKINS_HOME

	An environment variable named HUDSON_HOME

	The .hudson directory in
 the user’s home directory, if it already exists

	The .jenkins directory in
 the user’s home directory

Installing Jenkins on Debian or Ubuntu

If you are installing Jenkins on Debian and Ubuntu, it is
 convenient to install the native binary package for these platforms. This
 is easy enough to do, though these binaries are not provided in the
 standard repositories because of the high frequency of updates. First, you
 need to add the key to your system as shown here:
$ wget -q -O - http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key \
 | sudo apt-key add -
$ sudo echo "deb http://pkg.jenkins-ci.org/debian binary/" > \
 /etc/apt/sources.list.d/jenkins.list
Now, update the Debian package repository:
$ sudo aptitude update
Once this is done, you can install Jenkins using the aptitude tool:
$ sudo aptitude install -y jenkins
This will install Jenkins as a service, with a correctly configured
 startup script in /etc/init.d/jenkins
 and a corresponding system user called “jenkins”. If you didn’t already
 have Java installed on your server, it will also install the OpenJDK
 version of Java. By default, you will find the Jenkins WAR file in
 the/usr/share/jenkins directory, and
 the Jenkins home directory in /var/lib/jenkins.
The installation process should have started Jenkins. In general, to
 start Jenkins, simply invoke this script:
$ sudo /etc/init.d/jenkins start
Jenkins will now be running on the default port of 8080 (http://localhost:8080/).
You can stop Jenkins as follows:
$ sudo /etc/inid.d/jenkins stop
Jenkins will write log files to /var/log/jenkins/jenkins.log. You can also
 fine-tune the configuration parameters in the /etc/default/jenkins file. This is useful if
 you need to modify the Java startup arguments (JAVA_ARGS). You can also use this file to
 configure arguments that will be
 passed to Jenkins in this file, such as the HTTP port or web application
 context (see Running Jenkins as a Stand-Alone Application).

Installing Jenkins on Redhat, Fedora, or CentOS

There are also native binary packages available for Redhat,
 Fedora, and CentOS. First you need to set up the repository as
 follows:
$ sudo wget -O /etc/yum.repos.d/jenkins.repo \
 http://jenkins-ci.org/redhat/jenkins.repo
$ sudo rpm --import http://pkg.jenkins-ci.org/redhat/jenkins-ci.org.key
On a fresh installation, you may need to install the JDK:
$ sudo yum install java-1.6.0-openjdk
Next, you can install the package as shown here:
$ sudo yum install jenkins
This will install the latest version of Jenkins into the /usr/lib/jenkins directory. The default Jenkins
 home directory will be in /var/lib/jenkins.
Now you can start Jenkins using the service
 command:
$ sudo service jenkins start
Jenkins will now be running on the default port of 8080 (http://localhost:8080/).
Jenkins’s configuration parameters are placed in the /etc/sysconfig/jenkins file. However at the
 time of writing the configuration options are more limited than those
 provided by the Ubuntu package: you can define the HTTP port using
 the JENKINS_PORT parameter, for example, but to specify an
 application context you need to modify the startup script by hand. The
 principal configuration options are listed here:
	JENKINS_JAVA_CMD
	The version of Java you want to use to run Jenkins

	JENKINS_JAVA_OPTIONS
	Command-line options to pass to Java, such as memory options

	JENKINS_PORT
	The port that Jenkins will to run on

Installing Jenkins on SUSE or OpenSUSE

Binary packages are also available for SUSE and OpenSUSE, so the
 installation process on these platforms is straightforward. First, you
 need to add the Jenkins repository to the SUSE repository list:
$ sudo zypper addrepo http://pkg.jenkins-ci.org/opensuse/ jenkins
Finally, you simply install Jenkins using the
 zypper command:
$ sudo zypper install jenkins
As you can gather from the console output, this will install both
 Jenkins and the latest JDK from Sun, if the latter is not already
 installed. OpenSuse installations typically have the OpenJDK version of Java, but
 Jenkins prefers the Sun variety. When it downloads the Sun JDK, it will prompt you to
 validate the Sun Java license before continuing with the
 installation.
This installation process will also create a jenkins user and install Jenkins as a service,
 so that it will start up automatically whenever the machine boots. To
 start Jenkins manually, you can invoke the jenkins startup script in the
 /etc/init.d directory:
$ sudo /etc/init.d/jenkins jenkins start
Jenkins will now be running on the default port of 8080 (http://localhost:8080/).
The configuration options are similar to the Redhat installation
 (see Installing Jenkins on Redhat, Fedora, or CentOS). You can define a limited
 number of configuration variables in the /etc/sysconfig/jenkins file, but for any
 advanced configuration options, you need to modify the startup script in
 /etc/init.d/jenkins.
The zypper tool also makes it easy to update your
 Jenkins instance:
$ sudo zypper update jenkins
This will download and install the latest version of Jenkins from
 the Jenkins website.

Running Jenkins as a Stand-Alone Application

You can run the Jenkins server in one of two ways: either as a
 stand-alone application, or deployed as a standard web application onto a
 Java Servlet container or application server such as Tomcat, JBoss, or
 GlassFish. Both approaches have their pros and cons, so we will look at
 both here.
Jenkins comes bundled as a WAR file that you can run directly using
 an embedded servlet container. Jenkins uses the lightweight Winstone
 servlet engine to allow you to run the server out of the box, without
 having to configure a web server yourself. This is probably the easiest
 way to get started, allowing you to be up and running with Jenkins in a
 matter of minutes. It is also a very flexible option, and provides some
 extra features unavailable if you deploy Jenkins to a conventional
 application server. In particular, if you are running Jenkins as a
 stand-alone server, you will be able to install plugins and upgrades on
 the fly, and restart Jenkins directly from the administration
 screens.
To run Jenkins using the embedded servlet container, just go to the
 command line and type the following:
C:\Program Files\Jenkins>
 java -jar jenkins.war
[Winstone 2011/07/01 20:54:53] - Beginning extraction from war file
[Winstone 2011/07/01 20:55:07] - No webapp classes folder found - C:\Users\john\
 .jenkins\war\WEB-INF\classes
jenkins home directory: C:\Users\john\.jenkins
...
INFO: Took 35 ms to load
...
[Winstone 2011/07/01 20:55:08] - HTTP Listener started: port=8080
[Winstone 2011/07/01 20:55:08] - Winstone Servlet Engine v0.9.10 running:
 controlPort=disabled
[Winstone 2011/07/01 20:55:08] - AJP13 Listener started: port=8009
In a Linux environment, the procedure is similar. Note how we start
 the Jenkins server from with the “jenkins” user account we created
 earlier:
john@lambton:~$ sudo su - jenkins
jenkins@lambton:~$ java -jar /usr/local/jeknins/jenkins.war
[Winstone 2011/07/16 02:11:24] - Beginning extraction from war file
[Winstone 2011/07/16 02:11:27] - No webapp classes folder found - /home/jenkins/
 .jenkins/war/WEB-INF/classes
jenkins home directory: /home/jenkins/.jenkins
...
[Winstone 2011/07/16 02:11:31] - HTTP Listener started: port=8080
[Winstone 2011/07/16 02:11:31] - AJP13 Listener started: port=8009
[Winstone 2011/07/16 02:11:31] - Winstone Servlet Engine v0.9.10 running:
 controlPort=disabled
This will start the embedded servlet engine in the console window.
 The Jenkins web application will now be available on port 8080. When you
 run Jenkins using the embedded server, there is no web application
 context, so you access Jenkins directly using the server URL (e.g., http://localhost:8080).
To stop Jenkins, just press Ctrl-C.
By default, Jenkins will run on the 8080 port. If this doesn’t suit
 your environment, you can specify the port manually, using the
 --httpPort option:
$ java -jar jenkins.war --httpPort=8081
In a real-world architecture, Jenkins may not be the only web
 application running on your build server. Depending on the capacity of
 your server, Jenkins may have to cohabit with other web applications or
 Maven repository managers, for example. If you are running Jenkins along
 side another application server, such as Tomcat, Jetty, or GlassFish, you
 will also need to override the ajp13 port, using the
 --ajp13Port option:
$ java -jar jenkins.war --httpPort=8081 --ajp13Port=8010
Some other useful options are:
	--prefix
	This option lets you define a context path for your Jenkins
 server. By default Jenkins will run on the port 8080 with no context
 path (http://localhost:8080). However, if you
 use this option, you can force Jenkins to use whatever context path
 suits you, for example:
$ java -jar jenkins.war --prefix=jenkins
In this case, Jenkins will be accessible on http://localhost:8080/hudson.
This option is often used when integrating a stand-alone
 instance of Jenkins with Apache.

	--daemon
	If you are running Jenkins on a Unix machine, you can use this
 option to start Jenkins as a background task, running as a unix
 daemon.

	--logfile
	By default, Jenkins writes its logfile into the current
 directory. However, on a server, you often need to write your log
 files into a predetermined directory. You can use this option to
 redirect your messages to some other file:
$ java -jar jenkins.war --logfile=/var/log/jenkins.log

Stopping Jenkins using Ctrl-C is a little brutal, of course—in
 practice, you would set up a script to start and stop your server
 automatically.
If you are running Jenkins using the embedded Winstone application
 server, you can also restart and shutdown Jenkins elegantly by calling the
 Winstone server directly. To do this, you need to specify the
 controlPort option when you start Jenkins, as shown
 here:
$ java -jar jenkins.war --controlPort=8001
A slightly more complete example in a Unix environment might look
 like this:
$ nohup java -jar jenkins.war --controlPort=8001 > /var/log/jenkins.log 2>&1 &
The key here is the controlPort option. This
 option gives you the means of stopping or restarting Jenkins directly via
 the Winstone tools. The only problem is that you need a matching version
 of the Winstone JAR file. Fortunately, one comes bundled with your Jenkins
 installation, so you don’t have to look far.
To restart the server, you can run the following command:
$ java -cp $JENKINS_HOME/war/winstone.jar winstone.tools.WinstoneControl reload: \
 --host=localhost --port=8001
And to shut it down completely, you can use the following:
$ java -cp $JENKINS_HOME/war/winstone.jar winstone.tools.WinstoneControl shutdown \
 --host=localhost --port=8001
Another way to shut down Jenkins cleanly is to invoke the special
 “/exit” URL, as shown here:
$ wget http://localhost:8080/exit
On a real server, you would typically have set up security, so that
 only a system administrator could access this URL. In this case, you will
 need to provide a username and a password:
$ wget --user=admin --password=secret http://localhost:8080/exit
Note that you can actually do this from a different server, not just
 the local machine:
$ wget --user=admin --password=secret http://buildserver.acme.com:8080/exit
Note that while both these methods will shut down Jenkins relatively
 cleanly (more so than killing the process directly, for example), they
 will interrupt any builds in progress. So it is recommended practice to
 prepare the shutdown cleanly by using the Prepare for Shutdown button on
 the Manage Jenkins screen (see The Configuration Dashboard—The Manage Jenkins Screen).
Running Jenkins as a stand-alone application may not be to
 everyone’s taste. For a production server, you might want to take
 advantage of the more sophisticated monitoring and administration features
 of a full blown Java application server such as JBoss, GlassFish, or
 WebSphere Application Server. And system administrators may be wary of the
 relatively little-known Winstone server, or may simply prefer Jenkins to
 fit into a known pattern of Java web application development. If this is
 the case, you may prefer to, or be obliged to, deploy Jenkins as a
 standard Java web application. We look at this option in the following
 section.

Running Jenkins Behind an Apache Server

If you are running Jenkins in a Unix environment, you may want to
 hide it behind an Apache HTTP server in order to harmonize the server URLs
 and simplify maintenance and access. This way, users can access the
 Jenkins server using a URL like
 http://myserver.myorg.com/jenkins rather than
 http://myserver.myorg.com:8081.
One way to do this is to use the Apache mod_proxy
 and mod_proxy_ajp modules. These modules let you use
 implement proxying on your Apache server using the AJP13 (Apache JServer
 Protocol version 1.3). Using this module, Apache will transfer requests to
 particular URL patterns on your Apache server (running on port 80)
 directly to the Jenkins server running on a different port. So when a user
 opens a URL like http://www.myorg.com/jenkins, Apache
 will transparently forward traffic to your Jenkins server running on
 http://buildserver.myorg.com:8081/jenkins.Technically,
 this is known as “Reverse Proxying,” as the client has no knowledge that
 the server is doing any proxying, or where the proxied server is located.
 So you can safely tuck your Jenkins server away behind a firewall, while
 still providing broader access to your Jenkins instance via the
 public-facing URL.
The exact configuration of this module will vary depending on the
 details of your Apache version and installation details, but one possible
 approach is shown here.
First of all, if you are running Jenkins as a stand-alone
 application, make sure you start up Jenkins using the
 --prefix option. The prefix you choose must match the
 suffix in the public-facing URL you want to use. So if you want to access
 Jenkins via the URL
 http://myserver.myorg.com/jenkins, you will need to
 provide jenkins as a prefix:
$ java -jar jenkins.war --httpPort=8081 --ajp13Port=8010 --prefix=jenkins
If you are running Jenkins on an application server such as Tomcat,
 it will already be running under a particular web context
 (/jenkins by default).
Next, make sure the mod_proxy and
 mod_proxy_ajp modules are activated. In your httpd.conf file (often in the /etc/httpf/conf directory), you should have the
 following line:
LoadModule proxy_module modules/mod_proxy.so
The proxy is actually configured in the proxy_ajp.conf file (often in the /etc/httpd/conf.d directory). Note that the
 name of the proxy path (/jenkins in this example) must
 match the prefix or web context that Jenkins is using. An example of such
 a configuration file is given here:
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so

ProxyPass /jenkins http://localhost:8081/jenkins
ProxyPassReverse /jenkins http://localhost:8081/jenkins
ProxyRequests Off
Once this is done, you just need to restart your Apache
 server:
$ sudo /etc/init.d/httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]
Now you should be able to access your Jenkins server using a URL
 like
 http://myserver.myorg.com/jenkins.

Running Jenkins on an Application Server

Since Jenkins is distributed as an ordinary WAR file, it is easy
 to deploy it on any standard Java application server such as Tomcat,
 Jetty, or GlassFish. Running Jenkins on an application server is arguably
 more complicated to setup and to maintain. You also loose certain nice
 administration features such as the ability to upgrade Jenkins or restart
 the server directly from within Jenkins. On the other hand, your system
 administrators might be more familiar with maintaining an application
 running on Tomcat or GlassFish than on the more obscure Winstone
 server.
Let’s look at how you would typically deploy Jenkins onto a Tomcat
 server. The easiest approach is undoubtedly to simply unzip the Tomcat
 binary distribution onto your disk (if it is not already installed) and
 copy the jenkins.war file into the Tomcat webapps
 directory. You can download the Tomcat binaries from the Tomcat website.
You start Tomcat by running the startup.bat or startup.sh script in the Tomcat bin directory.
 Jenkins will be available when you start Tomcat. You should note that, in
 this case, Jenkins will be executed in its own web application context
 (typically “jenkins”), so you will
 need to include this in the URL you use to access your Jenkins server
 (e.g., http://localhost:8080/jenkins).
However, this approach is not necessarily the most flexible or
 robust option. If your build server is a Windows box, for example, you
 probably should install Tomcat as a Windows service, so that you can
 ensure that it starts automatically whenever the server reboots.
 Similarly, if you are installing Tomcat in a Unix environment, it should
 be set up as a service.

Memory Considerations

Continuous Integration servers use a lot of memory. This is the nature
 of the beast—builds will consume memory, and multiple builds being run in
 parallel will consume still more memory. So you should ensure that your
 build server has enough RAM to cope with however many builds you intend to
 run simultaneously.
Jenkins naturally needs RAM to run, but if you need to support a
 large number of build processes, it is not enough just to give Jenkins a
 lot of memory. In fact Jenkins spans a new Java process each time it kicks
 off a build, so during a large build, the build process needs the memory,
 not Jenkins.
You can define build-specific memory options for your Jenkins build
 jobs—we will see how to do this later on in the book. However if you have
 a lot of builds to maintain, you might want to define the JAVA_OPTS,
 MAVEN_OPTS and ANT_OPTS environment
 variables to be used as default values for your builds. The
 JAVA_OPTS options will apply for the main Jenkins
 process, whereas the other two options will be used when Jenkins kicks off
 new JVM processes for Maven and Ant build jobs respectively.
Here is an example of how these variables might be configured on a
 Unix machine in the .profile
 file:
export JAVA_OPTS=-Djava.awt.headless=true -Xmx512m -DJENKINS_HOME=/data/jenkins
export MAVEN_OPTS="-Xmx512m -XX:MaxPermSize=256m"
export ANT_OPTS="-Xmx512m -XX:MaxPermSize=256m"

Installing Jenkins as a Windows Service

If you are running a production installation of Jenkins on a
 Windows box, it is essential to have it running as a Windows service. This
 way, Jenkins will automatically start whenever the server reboots, and can
 be managed using the standard Windows administration tools.
One of the advantages of running Jenkins on an application server
 such as Tomcat is that it is generally fairly easy to configure these
 servers to run as a Windows service. However, it is also fairly easy to
 install Jenkins as a service, without having to install Tomcat.
Jenkins has a very convenient feature designed to make it easy to
 install Jenkins as a Windows servers. There is currently no graphical
 installer that does this for you, but you get the next best thing—a
 web-based graphical installer.
First, you need to start the Jenkins server on your target machine.
 The simplest approach is to run Jenkins using Java Web Start (see Figure 3-4). Alternatively, you can do this by
 downloading Jenkins and running it from the command line, as we discussed
 earlier:
C:\jenkins> java -jar jenkins.war
This second option is useful if the default Jenkins port (8080) is
 already being used by another application. It doesn’t actually matter
 which port you use—you can change this later.
[image: Starting Jenkins using Java Web Start]

Figure 3-4. Starting Jenkins using Java Web Start

Once you have Jenkins running, connect to this server and go to the
 Manage Jenkins screen. Here you will find an Install as Windows Service
 button. This will create a Jenkins service on the server that will
 automatically start and stop Jenkins in an orderly manner (see Figure 3-5).
Jenkins will prompt you for an installation directory. This will be
 the Jenkins home directory (JENKINS_HOME). The default
 value is the default JENKINS_HOME value: a directory
 called .jenkins in the current user’s
 home directory. This is often not a good choice for a Windows
 installation. When running Jenkins on Windows XP, you should avoid
 installing your Jenkins home directory anywhere near your C:\\Documents And Settings directory—not only
 is it a ridiculously long name, the spaces can wreak havoc with your Ant
 and Maven builds and any tests using classpath-based resources. It is much
 better to use a short and sensible name such as C:\Jenkins. The Vista and Windows 7 home
 directory paths like C:\Users\john
 will also work fine.
[image: Installing Jenkins as a Windows service]

Figure 3-5. Installing Jenkins as a Windows service

A short home directory path is sometimes required for other reasons,
 too. On many versions of Windows (Windows XP, Windows Server 2003, etc.),
 file path lengths are limited to around 260 characters. If you combine a
 nested Jenkins work directory and a deep class path, you can often overrun
 this, which will result in very obscure build errors. To minimize the
 risks of over-running the Windows file path limits, you need to redefine
 the JENKINS_HOME environment variable to point to a
 shorter path, as we discussed above.
This approach won’t always work with Windows Vista or Windows 7. An
 alternative strategy is to use the jenkins.exe program that the Web Start
 installation process will have installed in the directory you specified
 above. Open the command line prompt as an administrator (right-click, “Run
 as administrator”) and run the jenkins.exe executable with the
 install option:
C:\Jenkins> jenkins.exe install
This basic installation will work fine in a simple context, but you
 will often need to fine-tune your service. For example, by default, the
 Jenkins service will be running under the local System account. However,
 if you are using Maven, Jenkins will need an .m2 directory and a settings.xml file in the home directory.
 Similarly, if you are using Groovy, you might need a .groovy/lib directory. And so on. To allow
 this, and to make testing your Jenkins install easier, make sure you run
 this service under a real user account with the correct development
 environment set up (see Figure 3-6). Alternatively, run the
 application as the system user, but use the System Information page in
 Jenkins to check the ${user.dir}
 directory, and place any files that must be placed in the user home
 directory here.
[image: Configuring the Jenkins Windows Service]

Figure 3-6. Configuring the Jenkins Windows Service

You configure the finer details of the Jenkins service in a file
 called jenkins.xml, in the same
 directory as your jenkins.war file.
 Here you can configure (or reconfigure) ports, JVM options, an the Jenkins
 work directory. In the following example, we give Jenkins a bit more
 memory and get it to run on port 8081:
<service>
 <id>jenkins</id>
 <name>Jenkins</name>
 <description>This service runs the Jenkins continuous integration system
 </description>
 <env name="JENKINS_HOME" value="D:\jenkins" />
 <executable>java</executable>
 <arguments>-Xrs -Xmx512m
 -Dhudson.lifecycle=hudson.lifecycle.WindowsServiceLifecycle
 -jar "%BASE%\jenkins.war" --httpPort=8081 --ajp13Port=8010</arguments>
</service>
Finally, if you need to uninstall the Jenkins service, you can do
 one of two things. The simplest is to run the Jenkins executable with the
 uninstall option:
C:\jenkins> jenkins.exe uninstall
The other option is to use the Windows service tool sc:
C:> sc delete jenkins

What’s in the Jenkins Home Directory

The Jenkins home directory contains all the details of your
 Jenkins server configuration, details that you configure in the Manage
 Jenkins screen. These configuration details are stored in the form of a
 set of XML files. Much of the core configuration, for example, is stored
 in the config.xml file. Other
 tools-specific configuration is stored in other appropriately-named XML
 files: the details of your Maven installations, for example, are stored in
 a file called hudson.tasks.Maven.xml.
 You rarely need to modify these files by hand, though occasionally it can
 come in handy.
The Jenkins home directory also contains a number of subdirectories
 (see Figure 3-7). Not all of the
 files and directories will be present after a fresh installation, as some
 are created when required by Jenkins. And if you look at an existing
 Jenkins installation, you will see additional XML files relating to
 Jenkins configuration and plugins.
The main directories are described in more detail in Table 3-1.
Table 3-1. The Jenkins home directory structure
	Directory	Description
	.jenkins	The default Jenkins home directory (may be
 .hudson in older installations).
	fingerprints	This directory is used by Jenkins to keep track of
 artifact fingerprints. We look at how to track artifacts later on
 in the book.
	jobs	This directory contains configuration details about the
 build jobs that Jenkins manages, as well as the artifacts and data
 resulting from these builds. We look at this directory in detail
 below.
	plugins	This directory contains any plugins that you have
 installed. Plugins allow you to extend Jenkins by adding extra
 feature. Note that, with the exception of the Jenkins core plugins
 (subversion, cvs, ssh-slaves, maven, and scid-ad), plugins are not
 stored with the jenkins executable, or in the
 expanded web application directory. This means that you can update
 your Jenkins executable and not have to reinstall all your
 plugins.
	updates	This is an internal directory used by Jenkins to store
 information about available plugin updates.
	userContent	You can use this directory to place your own custom
 content onto your Jenkins server. You can access files in this
 directory at
 http://myserver/hudson/userContent (if you
 are running Jenkins on an application server) or
 http://myserver/userContent (if you are
 running in stand-alone mode).
	users	If you are using the native Jenkins user database, user
 accounts will be stored in this directory.
	war	This directory contains the expanded web application.
 When you start Jenkins as a stand-alone application, it will
 extract the web application into this directory.

[image: The Jenkins home directory]

Figure 3-7. The Jenkins home directory

The jobs directory is a crucial
 part of the Jenkins directory structure, and deserves a bit more
 attention. You can see an example of a real Jenkins jobs directory in
 Figure 3-8.
[image: The Jenkins jobs directory]

Figure 3-8. The Jenkins jobs directory

This directory contains a subdirectory for each Jenkins build job
 being managed by this instance of Jenkins. Each job directory in turn
 contains two subdirectories: builds
 and workspace, along with some other
 files. In particular, it contains the build job config.xml file, which
 contains, as you might expect, the configuration details for this build
 job. There are also some other files used internally by Jenkins, that you
 usually wouldn’t touch, such as the nextBuildNumber file (which contains the number
 that will be assigned to the next build in this build job), as well as
 symbolic links to the most recent successful build and the last stable
 one. A successful build is one that does not have any compilation errors.
 A stable build is a successful build that has passed whatever quality
 criteria you may have configured, such as unit tests, code coverage and so
 forth.
Both the build and the
 workspace directories are important.
 The workspace directory is where
 Jenkins builds your project: it contains the source code Jenkins checks
 out, plus any files generated by the build itself. This workspace is
 reused for each successive build—there is only ever one workspace directory per project, and the disk
 space it requires tends to be relatively stable.
The builds directory contains a
 history of the builds executed for this job. You rarely need to intervene
 directly in these directories, but it can be useful to know what they
 contain. You can see a real example of the builds directory in Figure 3-9, where three builds have
 been performed. Jenkins stores build history and artifacts for each build it performs in a
 directory labeled with a timestamp (“2010-03-12_20-42-05” and so forth in
 Figure 3-9). It also contains
 symbolic links with the actual build numbers that point to the build
 history directories.
[image: The builds directory]

Figure 3-9. The builds directory

Each build directory contains information such as the build result
 log file, the Subversion revision number used for this build (if you are
 using Subversion), the changes that triggered this build, and any other
 data or metrics that you have asked Jenkins to keep track of. For example,
 if your build job keeps track of unit test results or test coverage
 metrics, this data will be stored here for each build. The build directory
 also contains any artifacts you are storing—binary artifacts, but also
 other generated files such as javadoc or code coverage metrics. Some types
 of build jobs, such as the Jenkins Maven build jobs, will also archive
 binary artifacts by default.
The size of the build directory will
 naturally grow over time, as the build history cumulates. You will
 probably want to take this into account when designing your build server
 directory structure, especially if your build server is running in a
 Unix-style environment with multiple disk partitions. A lot of this data
 takes the form of text or XML files, which does not consume a large amount
 of extra space for each build. However, if your build archives some of
 your build artifacts, such as JAR or WAR files, they too will be stored
 here. The size of these artifacts should be factored into your disk space
 requirements. We will see later on how to limit the number of builds
 stored for a particular build job if space is an issue. Limiting the
 number of build jobs that Jenkins stores is always a trade-off between
 disk space and keeping useful build statistics, as Jenkins does rely on
 this build history for its powerful reporting features.
Jenkins uses the files in this directory extensively to display
 build history and metrics data, so you should be particularly careful not
 to delete any of the build history directories without knowing exactly
 what you are doing.

Backing Up Your Jenkins Data

It is important to ensure that your Jenkins data is
 regularly backed up. This applies in particular to the Jenkins home
 directory, which contains your server configuration details as well as
 your build artifacts and build histories. This directory should be backed
 up frequently and automatically. The Jenkins executable itself is less
 critical, as it can easily be reinstalled without affecting your build
 environment.

Upgrading Your Jenkins Installation

Upgrading Jenkins is easy—you simply replace your local copy
 of the jenkins.war file and restart
 Jenkins. However you should make sure there are no builds running when you
 restart your server. Since your build environment configuration details,
 plugins, and build history are stored in the Jenkins home directory,
 upgrading your Jenkins executable will have no impact on your
 installation. You can always check what version of Jenkins you are
 currently running by referring to the version number in the bottom right
 corner of every screen.
If you have installed Jenkins using one of the Linux packages,
 Jenkins can be upgraded using the same process as the other system
 packages on the server.
If you are running Jenkins as a stand-alone instance, you can also
 upgrade your Jenkins installation directly from the web interface, in the
 Manage Jenkins section. Jenkins will indicate if a more recent version is
 available, and give you the option to either download it manually or
 upgrade automatically (see Figure 3-10).
[image: Upgrading Jenkins from the web interface]

Figure 3-10. Upgrading Jenkins from the web interface

Once Jenkins has downloaded the upgrade, you can also tell it to
 restart when no jobs are running. This is probably the most convenient way
 to upgrade Jenkins, although it will not work in all environments. In
 particular, you need to be running Jenkins as a stand-alone application,
 and the user running Jenkins needs to have read-write access to the
 jenkins.war file.
If you are running Jenkins on an application server such as Tomcat
 or JBoss, you might need to do a bit more tidying up when you upgrade your
 Jenkins instance. Tomcat, for example, places compiled JSP pages in the
 CATALINA_BASE/work directory. When
 you upgrade your Jenkins version, these files need to be removed to
 prevent the possibility of any stale pages being served.
Any plugins you have installed will be unaffected by your
 Jenkins upgrades. However, plugins can also be upgraded, independently of
 the main Jenkins executable. You upgrade your plugins directly in the
 Jenkins web application, using the Jenkins Plugin Manager. We discuss
 plugins in more detail further on in this book.

Conclusion

In this chapter, we have seen how to install and run Jenkins in
 different environments, and learned a few basic tips on how to maintain
 your Jenkins installation once running. Jenkins is easy to install, both
 as a stand-alone application and as a WAR file deployed to an existing
 application server. The main things you need to consider when choosing a
 build server to host Jenkins are CPU, memory, and disk space.

Chapter 4. Configuring Your Jenkins Server

Introduction

Before you can start creating your build jobs in Jenkins,
 you need to do a little configuration, to ensure that your Jenkins server
 works smoothly in your particular environment. Jenkins is highly
 configurable, and, although most options are provided with sensible
 default values, or are able to find the right build tools in the system
 path and environment variables, it is always a good idea to know exactly
 what your build server is doing.
Jenkins is globally very easy to configure. The administration
 screens are intuitive, and the contextual online help (the blue question
 mark icons next to each field) is detailed and precise. In this chapter,
 we will look at how to configure your basic server setup in detail,
 including how to configure Jenkins to use different versions of Java,
 build tools such as Ant and Maven, and SCM tools such as CVS and
 Subversion. We will look at more advanced server configuration, such as
 using other version control systems or notification tools, further on in
 the book.

The Configuration Dashboard—The Manage Jenkins Screen

In Jenkins, you manage virtually all aspects of system
 configuration in the Manage Jenkins screen (see Figure 4-1). You can also get to this screen
 directly from anywhere in the application by typing “manage” in the
 Jenkins search box. This screen changes depending on what plugins you
 install, so don’t be surprised if you see more than what we show
 here.
[image: You configure your Jenkins installation in the Manage Jenkins screen]

Figure 4-1. You configure your Jenkins installation in the Manage Jenkins
 screen

This screen lets you configure different aspects of your Jenkins
 server. Each link on this page takes you to a dedicated configuration
 screen, where you can manage different parts of the Jenkins server. Some
 of the more interesting options are discussed here:
	Configure System
	This is where you manage paths to the various tools
 you use in your builds, such as JDKs, and versions of Ant and Maven,
 as well as security options, email servers, and other system-wide
 configuration details. Many of the plugins that you install will
 also need to be configured here—Jenkins will add the fields
 dynamically when you install the plugins.

	Reload Configuration from Disk
	As we saw in the previous chapter, Jenkins stores all
 its system and build job configuration details as XML files stored
 in the Jenkins home directory (see The Jenkins Home Directory). It also stores all of the
 build history in the same directory. If you are migrating build jobs
 from one Jenkins instance to another, or archiving old build jobs,
 you will need to add or remove the corresponding build job
 directories to Jenkins’s builds
 directory. You don’t need to take Jenkins offline to do this—you can
 simply use the “Reload Configuration from Disk” option to reload the
 Jenkins system and build job configurations directly. This process
 can be a little slow if there is a lot of build history, as Jenkins
 loads not only the build configurations but also all of the
 historical data as well.

	Manage Plugins
	One of the best features of Jenkins is its extensible
 architecture. There is a large ecosystem of third-party open source
 plugins available, enabling you to add extra features to your build
 server, from support for different SCM tools such as Git, Mercurial
 or ClearCase, to code quality and code coverage metrics reporting.
 We will be looking at many of the more popular and useful plugins
 throughout this book. Plugins can be installed, updated and removed
 through the Manage Plugins screen. Note that removing plugins needs
 to be done with some care, as it can sometimes affect the stability
 of your Jenkins instance—we will look at this in more detail in
 Migrating Build Jobs.

	System Information
	This screen displays a list of all the current Java
 system properties and system environment variables. Here, you can
 check exactly what version of Java Jenkins is running in, what user
 it is running under, and so forth. You can also check that Jenkins
 is using the correct environment variable settings. Its main use is
 for troubleshooting, so that
 you can make sure that your server is running with the system
 properties and variables you think it is.

	System Log
	The System Log screen is a convenient way to view the
 Jenkins log files in real time. Again, the main use of this screen
 is for troubleshooting.
You can also subscribe to RSS feeds for various levels of log
 messages. For example, as a Jenkins administrator, you might want to
 subscribe to all the ERROR and WARNING log messages.

	Load Statistics
	Jenkins keeps track of how busy your server is in
 terms of the number of concurrent builds and the length of the build
 queue (which gives an idea of how long your builds need to wait
 before being executed). These statistics can give you an idea of
 whether you need to add extra capacity or extra build nodes to your
 infrastructure.

	Script Console
	This screen lets you run Groovy scripts on the server.
 It is useful for advanced troubleshooting: since it requires a
 strong knowledge of the internal Jenkins architecture, it is mainly
 useful for plugin developers and the like.

	Manage Nodes
	Jenkins handles parallel and distributed builds well.
 In this screen, you can configure how many builds you want. Jenkins
 runs simultaneously, and, if you are using distributed builds, set
 up build nodes. A build node is another machine that Jenkins can use
 to execute its builds. We will look at how to configure distributed
 builds in detail in Chapter 11.

	Prepare for Shutdown
	If you need to shut down Jenkins, or the server
 Jenkins is running on, it is best not to do so when a build is being
 executed. To shut down Jenkins cleanly, you can use the Prepare for
 Shutdown link, which prevents any new builds from being started.
 Eventually, when all of the current builds have finished, you will
 be able to shut down Jenkins cleanly.

We will come back to some of these features in more detail later on
 in the book. In the following sections, we will focus on how to configure
 the most important Jenkins system parameters.

Configuring the System Environment

The most important Jenkins administration page is the Configure
 System screen (Figure 4-2). Here, you set up
 most of the fundamental tools that Jenkins needs to do its daily work. The
 default screen contains a number of sections, each relating to a different
 configuration area or external tool. In addition, when you install
 plugins, their system-wide configuration is also often done in this
 screen.
[image: System configuration in Jenkins]

Figure 4-2. System configuration in Jenkins

The Configure System screen lets you define global parameters for
 your Jenkins installation, as well as external tools required for your
 build process. The first part of this screen lets you define some general
 system-wide parameters.
The Jenkins home directory is displayed, for reference. This way, you
 can check at a glance that you are working with the home directory that
 you expect. Remember, you can change this directory by setting
 the JENKINS_HOME environment variable in
 your environment (see The Jenkins Home Directory).
The System Message field is useful for several purposes. This text is displayed at
 the top of your Jenkins home page. You can use HTML tags, so it is a
 simple way to customize your build server by including the name of your
 server and a short blurb describing its purpose. You can also use it to
 display messages for all users, such as to announce system outages and so
 on.
The Quiet Period is useful for SCM tools like CVS that commit file changes one
 by one, rather than grouped together in a single atomic transaction.
 Normally, Jenkins will trigger a build as soon as it detects a change in
 the source repository. However, this doesn’t suit all environments. If you
 are using an SCM tool like CVS, you don’t want Jenkins kicking off a build
 as soon as the first change comes in, as the repository will be in an
 inconsistent state until all of the changes have been committed. You can
 use the Quiet Period field to avoid issues like this. If you set a value
 here, Jenkins will wait until no changes have been detected for the
 specified number of seconds before triggering the build. This helps to
 ensure that all of the changes have been committed and the repository is
 in a stable state before starting the build.
For most modern version control systems, such as Subversion, Git or
 Mercurial, commits are atomic. This means that changes in multiple files
 are submitted to the repository as a single unit, and the source code on
 the repository is guaranteed to be in a stable state at all times.
 However, some teams still use an approach where one logical change set is
 delivered in several commit operations. In this case, you can use the
 Quiet Period field to ensure that the build always uses a stable source
 code version.
The Quiet Period value specified here is in fact the default
 system-wide value—if required, you can redefine this value individually
 for each project.
You also manage user accounts and user rights here. By default,
 Jenkins lets any user do anything. If you want a more restrictive
 approach, you will need to activate Jenkins security here using the Enable
 Security field. There are many ways to do this, and we look at this aspect
 of Jenkins later on (see Chapter 7).

Configuring Global Properties

The Global Properties (see Figure 4-3) section lets you define
 variables that can be managed centrally but used in all of your build
 jobs. You can add as many properties as you want here, and use them in
 your build jobs. Jenkins will make them available within your build job
 environment, so you can freely use them within your Ant and Maven build
 scripts. Note that you shouldn’t put periods (“.”) in the property names,
 as they won’t be processed correctly. So ldapserver or
 ldap_server is fine, but not
 ldap.server.
[image: Configuring environment variables in Jenkins]

Figure 4-3. Configuring environment variables in Jenkins

There are two ways you typically use these variables. Firstly, you
 can use them directly in your build script, using the
 ${key} or $key notation (so
 ${ldapserver} or $ldapserver in the
 example give above. This is the simplest approach, but means that there is
 a tight coupling between your build job configuration and your build
 scripts.
If your script uses a different property name (one containing dots,
 for example), you can also pass the value to your build script in the
 build job configuration. In Figure 4-4 we pass the
 ldapserver property value defined in Figure 4-3 to a Maven build job. Using
 the -D option means that this value will be accessible
 from within the build script. This is a flexible approach, as we can
 assign the global properties defined within Jenkins to script-specific
 variables in our build scripts. In Figure 4-4, for example, the
 ldapserver property will be available from within the
 Maven build via the internal ${ldap.server} property.
[image: Using a configured environment variable]

Figure 4-4. Using a configured environment variable

Configuring Your JDKs

Historically, one of the most common uses of Jenkins has
 been to build Java applications. So Jenkins naturally provides excellent
 built-in support for Java.
By default, Jenkins will build Java applications using whatever
 version of Java it finds on the system path, which is usually the version
 that Jenkins itself is running under. However, for a production build
 server, you will probably want more control than this. For example, you
 may be running your Jenkins server under Java 6, for performance reasons.
 However, your production server might be running under Java 5 or even Java
 1.4. Large organizations are often cautious when it comes to upgrading
 Java versions in their production environments, and some of the more
 heavyweight application servers on the market are notoriously slow to be
 certified with the latest JDKs.
In any case, it is always a wise practice to build your application
 using a version of Java that is close to the one running on your
 production server. While an application compiled with Java 1.4 will usually run fine
 under Java 6, the inverse is not always true. Or you may have different
 applications that need to be built using different versions of
 Java.
Jenkins provides good support for working with multiple JVMs.
 Indeed, Jenkins makes it very easy to configure and use as many versions
 of Java as you want. Like most system-level configuration, we do this in
 the Configure System screen (see Figure 4-2).
 Here, you will find a section called JDK which allows you to manage the
 JDK installations you need Jenkins to work with.
The simplest way to declare a JDK installation is simply to supply
 an appropriate name (which will be used to identify this Java installation
 later on when you configure your builds), along with the path to the Java
 installation directory (the same path you would use for the JAVA_HOME variable), as shown in Figure 4-5. Although you need to type the path
 manually, Jenkins will check in real time both that the directory exists
 and that it looks like a valid JDK directory.
[image: JDK configuration in Jenkins]

Figure 4-5. JDK configuration in Jenkins

You can also ask Jenkins to install Java for you. In this case,
 Jenkins will download the JDK installation and install a copy on your
 machine (see Figure 4-6). The first
 time a build needs to use this JDK, Jenkins will download and install the
 specified version of Java into the tools directory in the Jenkins home directory.
 If the build is running on a new build agent that doesn’t have this JDK
 installed, it will download and install it onto the build agent machine as
 well.
This is also a great way to configure build agents. As we’ll see
 later on in the book, Jenkins can delegate build jobs to other machines,
 or build agents. A build agent (or “slave”) is simply another computer
 that Jenkins can use to run some of its builds. If you use Jenkins’s
 Install automatically option, you don’t need to manually install all the
 JDK versions you need on the build agent machines—Jenkins will do it for
 you the first time it needs to.
By default, Jenkins proposes to download the JDK from the Oracle
 website. If your Jenkins installation is behind a proxy server, you may
 need to configure your proxy settings to ensure that Jenkins can access
 the external download sites (see Configuring a Proxy). Another option is to provide a
 URL pointing to your own internal copy of the JDK binaries (either in the
 form of a ZIP or a GZip-compressed TAR file), stored on a local server
 within your organization. This lets you provide standard installations on
 a local server and makes for faster automatic installations. When you use
 this option, Jenkins also lets you specify a label, which will restrict
 the use of this installation to the build notes with this label. This is a
 useful technique if you need to install a specific version of a tool on
 certain build machines. The same approach can also be used for other build
 tools (such as Maven and Ant).
[image: Installing a JDK automatically]

Figure 4-6. Installing a JDK automatically

The automatic installer will not work in all environments (if it
 can’t find or identify your operating system to its satisfaction, for
 example, the installation will fail), but it is nevertheless a useful and
 convenient way to set up new build servers or distributed build agents in
 a consistent manner.

Configuring Your Build Tools

Build tools are the bread-and-butter of any build server, and Jenkins
 is no exception. Out of the box, Jenkins supports three principal build
 tools: Ant, Maven, and the basic shell-script (or Batch script in
 Windows). Using Jenkins plugins, you can also add support for other build
 tools and other languages, such as Gant, Grails, MSBuild, and many
 more.
Maven

Maven is a high-level build scripting framework for Java
 that uses notions such as a standard directory structure and standard
 life cycles, Convention over Configuration, and Declarative Dependency
 Management to simplify a lot of the low-level scripting that you find in
 a typical Ant build script. In Maven, your project uses a standard,
 well-defined build life cycle—compile, test, package, deploy, and so
 forth. Each life cycle phase is associated with a Maven plugin. The
 various Maven plugins use the standard directory structure to carry out
 these tasks with a minimum of intervention on your part. You can also
 extend Maven by overriding the default plugin configurations or by
 invoking additional plugins.
Jenkins provides excellent support for Maven, and has a good
 understanding of Maven project structures and dependencies. You can
 either get Jenkins to install a specific version of Maven automatically
 (as we are doing with Maven 3 in the example), or provide a path to a
 local Maven installation (see Figure 4-7). You can configure as many versions of Maven for your build
 projects as you want, and use different versions of Maven for different
 projects.
[image: Configuring Maven in Jenkins]

Figure 4-7. Configuring Maven in Jenkins

If you tick the Install automatically checkbox, Jenkins will
 download and install the requested version of Maven for you. You can
 either ask Jenkins to download Maven directly from the Apache site, or
 from a (presumably local) URL of your choice. This is an excellent
 choice when you are using distributed builds, and, since Maven is
 cross-platform, it will work on any machine. You don’t need to install
 Maven explicitly on each build machine—the first time a build machine
 needs to use Maven, it will download a copy and install it to the
 tools directory in the Jenkins home
 directory.
Sometimes you need to pass Java system options to your Maven build
 process. For instance it is often useful to give Maven a bit of extra
 memory for heavyweight tasks such as code coverage or site generation.
 Maven lets you do this by setting the MAVEN_OPTS variable.
 In Jenkins, you can set a system-wide default value, to be used across
 all projects (see Figure 4-8). This comes
 in handy if you want to use certain standard memory options (for
 example) across all projects, without having to set it up in each
 project by hand.
[image: Configuring system-wide MVN_OPTS]

Figure 4-8. Configuring system-wide MVN_OPTS

Ant

Ant is a widely-used and very well-known build scripting
 language for Java. It is a flexible, extensible, relatively low-level
 scripting language, used in a large number of open source projects. An
 Ant build script (typically called build.xml) is made up of a number of
 targets. Each target performs a particular job in
 the build process, such as compiling your code or running your unit
 tests. It does so by executing tasks, which carry
 out a specific part of the build job, such as invoking javac to compile your code, or creating a new
 directory. Targets also have dependencies,
 indicating the order in which your build tasks need to be executed. For
 example, you need to compile your code before you can run your unit
 tests.
Jenkins provides excellent build-in support for Ant—you can invoke
 Ant targets from your build job, providing properties to customize the
 process as required. We look at how to do this in detail later on in
 this book.
If Ant is available on the system path, Jenkins will find it.
 However, if you want to know precisely what version of Ant you are
 using, or if you need to be able to use several different versions of
 Ant on different build jobs, you can configure as many installations of
 Ant as required (see Figure 4-9). Just provide
 a name and installation directory for each version of Ant in the Ant
 section of the Configure System screen. You will then be able to choose
 what version of Ant you want to use for each project.
If you tick the Install automatically checkbox, Jenkins will
 download and install Ant into the tools directory of your Jenkins home
 directory, just like it does for Maven. It will download an Ant
 installation the first time a build job needs to use Ant, either from
 the Apache website or from a local URL. Again, this is a great way to
 standardize build servers and make
 it easier to add new distributed build servers to an existing infrastructure.
[image: Configuring Ant in Jenkins]

Figure 4-9. Configuring Ant in Jenkins

Shell-Scripting Language

If you are running your build server on Unix or Linux, Jenkins
 lets you insert shell scripts into your build jobs. This is handy for
 performing low-level, OS-related tasks that you don’t want to do in Ant
 or Maven. In the Shell section, you define the default shell that will
 be used when executing these shell scripts. By default, this is
 /bin/sh, but there are times you
 may want to modify this to another command interpreter such as bash or Perl.
In Windows, the Shell section does not apply—you use Windows
 batch scripting instead. So, on a Windows build server, you should
 leave this field blank.

Configuring Your Version Control Tools

Jenkins comes preinstalled with plugins for CVS and
 Subversion. Other version control systems are supported by plugins that
 you can download from the Manage Plugins screen.
Configuring Subversion

Subversion needs no special configuration, since Jenkins
 uses native Java libraries to interact with Subversion repositories. If
 you need to authenticate to connect to a repository, Jenkins will prompt
 you when you enter the Subversion URL in the build job
 configuration.

Configuring CVS

CVS needs little or no configuration. By default, Jenkins will
 look for tools like CVS on the system path, though you can provide the
 path explicitly if it isn’t on the system path. CVS keeps login and
 password details in a file called .cvspass, which is usually in your home
 directory. If this is not the case, you can provide a path where Jenkins
 can find this file.

Configuring the Mail Server

The last of the basic configuration options you need to set
 up is the email server configuration. Email is Jenkins’s more fundamental
 notification technique—when a build fails, it will send an email message
 to the developer who committed the changes, and optionally to other team
 members as well. So Jenkins needs to know about your email server (see
 Figure 4-10).
[image: Configuring an email server in Jenkins]

Figure 4-10. Configuring an email server in Jenkins

The System Admin email address is the address from which the
 notification messages are sent. You can also use this field to check the
 email setup—if you click on the Test configuration button, Jenkins will
 send a test email to this address.
In many organizations, you can derive a user’s email address from
 their login by adding the organization domain name. For example, at ACME,
 user John Smith will have a login of “jsmith" and an email address of
 “jsmith@acme.com”. If this extends to your version control system, Jenkins
 can save you a lot of configuration effort in this area. In the previous
 example, you could simply specify the default user email suffix of
 acme.com and Jenkins will figure out the rest.
You also need to provide a proper base URL for your Jenkins server
 (one that does not use localhost). Jenkins uses this URL in the email
 notifications so that users can go directly from the email to the build
 failure screen on Jenkins.
Jenkins also provides for more sophisticated email configuration,
 using more advanced features such as SMTP authentication and SSL. If this
 is your case, click on the Advanced button to configure these
 options.
For example, many organizations use Google Apps for their
 email services. You can configure Jenkins to work with the Gmail service
 as shown in Figure 4-11. All you need to
 do in this case is to use the Gmail SMTP server, and provide your Gmail
 username and password in the SMTP Authentication (you also need to use SSL
 and the non-standard port of 465).
[image: Configuring an email server in Jenkins to use a Google Apps domain]

Figure 4-11. Configuring an email server in Jenkins to use a Google Apps
 domain

Configuring a Proxy

In most enterprise environments, your Jenkins server will be
 situated behind a firewall, and will not have direct access to the
 Internet. Jenkins needs Internet access to download plugins and updates,
 and also to install tools such as the JDK, Ant and Maven from remote
 sites. If you need to go through an HTTP proxy server to get to the Internet, you can configure the connection
 details (the server and port, and if required the username and password) in the Advanced tab
 on the Plugin Manager screen (see Figure 4-12).
If your proxy is using Microsoft’s NTLM authentication scheme, then you will need to provide a
 domain name as well as a username. You can place both in the User name
 field: just enter the domain name, followed by a back-slash (\), followed
 by the username, such as “MyDomain\Joe Bloggs”.
[image: Configuring Jenkins to use a proxy]

Figure 4-12. Configuring Jenkins to use a proxy

Finally, if you are setting up Proxy access on your Jenkins build
 server, remember that all of the other tools running on this server will
 need to know about the proxy as well. In particular, this may include
 tools such as Subversion (if you are accessing an external repository) and
 Maven (if you are not using an Enterprise Repository Manager).

Conclusion

You don’t need a great deal of configuration to get started with
 Jenkins. The configuration that is required is fairly straightforward, and
 is centralised in the Configure System screen. Once this is done, you are
 ready to create your first Jenkins build job!

Chapter 5. Setting Up Your Build Jobs

Introduction

Build jobs are the basic currency of a Continuous
 Integration server.
A build job is a particular way of compiling, testing, packaging,
 deploying or otherwise doing something with your project. Build jobs come
 in a variety of forms; you may want to compile and unit test your
 application, report on code quality metrics related to the source code,
 generate documentation, bundle up an application for a release, deploy it
 to production, run an automated smoke test, or do any number of other
 similar tasks.
A software project will usually have several related build jobs. For
 example, you might choose to start off with a dedicated build job that
 runs all of your unit tests. If these pass, you might proceed to a build
 job that executes longer-running integration tests, runs code quality
 metrics, or generates technical documentation, before finally bundling up your web application and
 deploying it to a test server.
In Jenkins, build jobs are easy to set up. In this chapter, we will
 look at the main types of build jobs and how to configure them. In later
 chapters, we will take things further, looking at how to organize multiple
 build jobs, how to set up build promotion pipelines, and how to automate
 the deployment process. But, for now, let’s start off with how to set up
 your basic build jobs in Jenkins.

Jenkins Build Jobs

Creating a new build job in Jenkins is simple: just click on the
 “New Job” menu item on the Jenkins dashboard. Jenkins supports several
 different types of build jobs, which are presented to you when you
 choose to create a new job (see Figure 5-1).
	Freestyle software project
	Freestyle build jobs are general-purpose build jobs,
 which provides a maximum of flexibility.

	Maven project
	The “maven2/3 project” is a build job specially
 adapted to Maven projects. Jenkins understands Maven pom files and project structures, and can
 use the information gleaned from the pom file to reduce the work you need to
 do to set up your project.

	Monitor an external job
	The “Monitor an external job” build job lets you keep
 an eye on non-interactive processes, such as cron jobs.

	Multiconfiguration job
	The “multiconfiguration project” (also referred to as
 a “matrix project”) lets you run the same build job in many
 different configurations. This powerful feature can be useful for
 testing an application in many different environments, with
 different databases, or even on different build machines. We will be
 looking at how to configure multiconfiguration build jobs later on
 in the book.

[image: Jenkins supports four main types of build jobs]

Figure 5-1. Jenkins supports four main types of build jobs

You can also copy an existing job, which is a great way to
 create a new job that is very similar to an existing build job, except for
 a few configuration details.
In this chapter, we will focus on the first two types of build jobs,
 which are the most commonly used. We will discuss the others later on.
 Let’s start with the most flexible option: the freestyle build job.

Creating a Freestyle Build Job

The freestyle build job is the most flexible and configurable
 option, and can be used for any type of project. It is relatively
 straightforward to set up, and many of the options we configure here also
 appear in other build jobs.
General Options

The first section you see when you create a new freestyle job
 contains general information about the project, such as a unique name
 and description, and other information about how and where the build job
 should be executed (see Figure 5-2).
[image: Creating a new build job]

Figure 5-2. Creating a new build job

The project name can be anything you like, but it is worth
 noting that it will be used for the project directory and the build job
 URL, so I generally avoid names with spaces. The project description will go on the project home page—use
 this to provide an overview of the build job’s goals and context. HTML
 tags will work fine in this field.
The other options are more technical, and we will be looking at
 some of them in detail later on in the book.
One important aspect that you should think about upfront is
 how you want to handle build history. Build jobs can consume a lot of
 disk space, especially if you store the build artifacts (the binary
 files, such as JARs, WARs, TARs, etc., generated by your build job).
 Even without artifacts, keeping a record of every build job consumes
 additional disk space and memory, which may or may not be justified,
 depending on the nature of your build job. For example, for a code
 quality metrics build that reports on static analysis and code coverage
 metrics over time, you might want to keep a record of the builds for the
 duration of the project, whereas, for a build job that automatically
 deploys an application to a test server, keeping the build history and
 artifacts for posterity might be less important.
The Discard Old Builds option lets you limit the number of builds
 you record in the build history. You can either tell Jenkins to only
 keep recent builds (Jenkins will delete builds after a certain number of
 days), or to keep no more than a specified number of builds. If a
 certain build has particular sentimental value, you can always tell
 Jenkins to keep it forever by using the Keep forever button on the build
 details page (see Figure 5-3). Note
 that this button will only appear if you have asked Jenkins to discard
 old builds.
[image: Keeping a build job forever]

Figure 5-3. Keeping a build job forever

In addition, Jenkins will never delete the last stable and
 successful builds, no matter how old they are. For example, if you limit
 Jenkins to only keep the last twenty builds, and your last successful
 build was thirty builds ago, Jenkins will still keep the successful
 build job as well as the last twenty failing builds.
You also have the option to disable the build. A disabled
 build will not be executed until you enable it again. Using this option
 when you create a new build job is quite rare. On the other hand, this
 option often comes in handy to temporarily suspend a build during
 maintenance work or major refactoring, when notification of the build
 failures will not be useful for the team.

Advanced Project Options

The Advanced Project options contains, as the name suggests,
 configuration options that are less frequently required. You need to
 click on the Advanced button for them to appear (see Figure 5-4).
[image: To display the Advanced Options, you need to click on the Advanced button]

Figure 5-4. To display the Advanced Options, you need to click on the
 Advanced button

The Quiet Period option in the build job configuration simply
 lets you override the system-wide quiet period defined in the Jenkins
 System Configuration screen (see Configuring the System Environment). This option is mainly used for
 version control systems that don’t support atomic commits, such as
 CVS, but it is also sometimes used in teams where
 developers have the habit of committing their work in several small
 commits.
The “Block build when upstream project is building” option is
 useful when several related projects are affected by a single commit,
 but they must be built in a specific order. If you activate this option,
 Jenkins will wait until any upstream build jobs (see Build Triggers) have finished before starting this
 build.
For instance, when you release a new version of a multimodule
 Maven project, version number updates will happen in many, if not all,
 of the project modules. Suppose, for example, that we have added a web
 application to the Game of Life project we used in Chapter 2, setting it up as a separate Maven
 project. When we release a new version of this project, both the core
 and the web application version numbers will be updated (see Figure 5-5). Before we can build
 the web application, we need to build a new version of the original Game
 of Life core module. However if you had a separate freestyle build job
 for each module, then the build jobs for both the core and the web
 application would start simultaneously. The web application build job
 will fail if the core build job hasn’t produced a new version of the
 core module for it, even if there are no test failures.
To avoid this issue, you could set up the web application build
 job to only start once the core build has
 successfully terminated. However this would mean that the web
 application would never be built if changes were made that only affected
 it, and not the core module. A better approach is to use the “Block
 build when upstream project” option. In this case, when the version
 numbers are updated in version control, Jenkins will schedule both
 builds to be executed. However it will wait until the core build has
 finished before starting the web application build.
[image: The “Block build when upstream project is building” option is useful when a single commit can affect several related projects]

Figure 5-5. The “Block build when upstream project is building” option is
 useful when a single commit can affect several related
 projects

You can also override the default workspace used by Jenkins to
 check out the source code and build your project. Normally, Jenkins will
 create a special workspace directory for your project, which can be
 found in the project’s build job directory (see What’s in the Jenkins Home Directory). This works fine in
 almost all cases. However, there are times when you need to override
 this option, and force Jenkins to use a special directory. One common
 example of this is if you want several build jobs to all work
 successively in the same directory. You can override the default
 directory by ticking the “Use
 custom workspace” option, and providing the path yourself. The path can
 be either absolute, or relative to Jenkins’s home directory.
We will look at some of the other more advanced options that
 appear in this section later on in the book.

Configuring Source Code Management

In its most basic role, a Continuous Integration server
 monitors your version control system, and checks out the latest changes as
 they occur. The server then compiles and tests the most recent version of
 the code. Alternatively, it may simply check out and build the latest
 version of your source code on a regular basis. In either case, tight
 integration with your version control system is essential.
Because of its fundamental role, SCM configuration options in
 Jenkins are identical across all sorts of build jobs. Jenkins supports CVS and Subversion out of the box, with built-in
 support for Git, and also integrates with a large number of other version
 control systems via plugins. At the time of writing, SCM plugin support
 includes Accurev, Bazaar, BitKeeper, ClearCase, CMVC, Dimensions, Git, CA
 Harvest, Mercurial, Perforce, PVCS, StarTeam, CM/Synergy, Microsoft Team
 Foundation Server, and even Visual SourceSafe. In the rest of this
 section, we will look at how to configure some of the more common SCM
 tools.
Working with Subversion

Subversion is one of the most widely used version control systems,
 and Jenkins comes bundled with full Subversion support (see Figure 5-6). To use source code from a
 Subversion repository, you simply provide the corresponding Subversion
 URL—it will work fine with any of the three Subversion protocols of
 (http, svn, or file). Jenkins will check that the URL is valid as soon
 as you enter it. If the repository requires authentication, Jenkins will
 prompt you for the corresponding credentials automatically, and store
 them for any other build jobs that access this repository.
[image: Jenkins provides built-in support for Subversion]

Figure 5-6. Jenkins provides built-in support for Subversion

By default, Jenkins will check out the repository contents into a
 subdirectory of your workspace, whose name will match the last element
 in the Subversion URL. So if your Subversion URL is svn://localhost/gameoflife/trunk, Jenkins will check out
 the repository contents to a directory called trunk in the build job workspace. If you
 would prefer another directory name, just enter the directory name you
 want in the Local module directory
 field. Place a period (“.”) here if you want Jenkins to check the source
 code directly into the workspace.
Occasionally you may need to get source code from more than one
 Subversion URL. In this case, just use the “Add more locations...”
 button to add as many additional repository sources as you need.
A well-designed build process should not modify the source code,
 or leave any extra files that might confuse your version control system
 or the build process. Both generated artifacts and temporary files (such
 as log files, reports, test data or file-based databases) should go in a
 directory set aside for this purpose (such as the target directory in Maven builds), and/or be
 configured to be ignored by your version control repository. They should
 also be deleted as part of the build process, once the build has
 finished with them. This is also an important part of ensuring a clean
 and reproducible build process—for
 a given version of your source code, your build should behave in exactly
 the same way, no matter where or when it is run. Locally changed source
 code files, and the presence of temporary files, both have the potential
 of compromising this.
You can fine-tune the way Jenkins obtains the latest source code
 from your Subversion repository by selecting an appropriate value in the
 Check-out Strategy drop-down list. If your project is well-behaved,
 however, you may be able to speed things up substantially by selecting
 “Use ‘svn update’ as much as possible”. This is the fastest option, but
 may leave artifacts and files from previous builds in your workspace. To
 be on the safe side, you may want to use the second option (“Use ‘svn
 update’ as much as possible, with ‘svn revert’ before update”), which
 will systematically run svn revert before running
 svn update. This will ensure that no local files have
 been modified, though it will not remove any new files that have been
 created during the build process. Alternatively, you can ask Jenkins to
 delete any unversioned or ignored files before performing an
 svn update, or play it safe by checking out a full
 clean copy for each build.
Another very useful feature is Jenkins’s integration with source
 code browsers. A good source code browser is an important part of your
 Continuous Integration setup. It lets you see at a glance what changes
 triggered a given build, which is very useful when it comes to
 troubleshooting broken builds (see Figure 5-7). Jenkins integrates with most of
 the major source code browsers, including open source tools such as
 WebSVN and Sventon, and commercial ones like Atlassian’s FishEye.
[image: Source code browser showing what code changes caused a build]

Figure 5-7. Source code browser showing what code changes caused a
 build

Jenkins also lets you refine the changes that will trigger a
 build. In the Advanced section, you can use the Excluded Regions field
 to tell Jenkins not to trigger a build if only certain files were
 changed. This field takes a list of regular expressions, which identify
 files that should not trigger a build. For example,
 suppose you don’t want Jenkins to start a new build if only images have
 been changed. To do this, you could use a set of regular expressions
 like the following:
/trunk/gameoflife/gameoflife-web/src/main/webapp/.*\.jpg
/trunk/gameoflife/gameoflife-web/src/main/webapp/.*\.gif
/trunk/gameoflife/gameoflife-web/src/main/webapp/.*\.png
Alternatively, you can specify the Included Regions, if you are
 only interested in changes in part of the source code directory
 structure. You can even combine the Excluded Regions and Included
 Regions fields—in this case a modified file will only trigger a build if
 it is in the Included Regions but not in the Excluded Regions.
You can also ignore changes coming from certain users
 (Excluded Users), or with certain commit messages (Excluded Commit Messages). For example,
 if your project uses Maven, you may want to use the Maven Release Plugin
 to promote your application from snapshot versions to official releases. This plugin will
 automatically bump up the version number of your application from a
 snapshot version used during development (such as 1.0.1-SNAPSHOT) to a
 release (1.0.1), bundles up and deploys a release of your application
 with this version number, and then moves the version on to the next
 snapshot number (e.g., 1.0.2-SNAPSHOT) for ongoing development. During
 this process Maven takes care of
 many SCM bookkeeping tasks, such as committing the source code with the
 release version number and creating a tag for the released version of
 your application, and then committing the source code with the new
 snapshot version number.
Now suppose you have a special build job for generating a new
 release using this process. The
 many commits generated by the Maven Release Plugin would normally
 trigger off build jobs in Jenkins. However, since the release build job
 is already compiling and testing this version of your application, you
 don’t need Jenkins to do it again in a separate build job. To ensure
 that Jenkins does not trigger a build for this case, you can use the
 Excluded Commit Messages field with the following value:
[maven-release-plugin] prepare release.*
This will ensure that Jenkins skips the changes corresponding to
 the new release version, but not those corresponding to the next
 snapshot version.

Working with Git

Contributed by Matthew McCullough
Git is a popular distributed version control system that is a
 logical successor to Subversion and a mind-share
 competitor to Mercurial. Git support in
 Jenkins is both mature and full-featured. There are a number of plugins
 that can contribute to the overall story of Git in Jenkins. We will
 begin by looking at the Git plugin, which provides core Git support in
 Jenkins. We’ll discuss the supplemental plugins shortly.
Installing the plugin

The Git plugin is available in the Jenkins Plugin Manager and is
 documented on its own wiki
 page. The plugin assumes that Git (version 1.3.3 or later) has
 already been installed on your build server, so you will need to make
 sure that this is the case. You can do this by running the following
 command on your build server:
$ git --version
git version 1.7.1
Next, go back to Jenkins, check the corresponding check box in
 the Jenkins Plugin Manager page and click the Install button.
System-wide configuration of the plugin

After installing the Git plugin, a small new set of
 configuration options will be available on the Manage Jenkins→Configure System page (see Figure 5-8). In particular, you need to
 provide the path to your Git executable. If Git is already installed
 on the system path, just put “git” here.
[image: System-wide configuration of the Git plugin]

Figure 5-8. System-wide configuration of the Git plugin

SSH key setup

If the Git repository you are accessing uses SSH
 passphrase-less authentication—for example, if the
 access address is similar to git@github.com:matthewmccullough/some-repo.git—you’ll
 need to provide the private half of the key as file ~/.ssh/id_rsa where ~ is the home directory of the user
 account under which Jenkins is running.
The fingerprint of the remote server will additionally need to
 be placed in ~/.ssh/known_hosts
 to prevent Jenkins from invisibly prompting for authorization to
 access this Git server for the first time.
Alternatively, if logging-in is enabled for the jenkins user, SSH into the Jenkins machine
 as jenkins and manually attempt
 to Git clone a remote repository. This will test your private key
 setup and establish the known_hosts file in the ~/.ssh directory. This is probably the
 simplest option for users unfamiliar with the intricacies of SSH
 configuration.

Using the plugin

On either an existing or a new Jenkins project, a new
 Source Code Management option for Git will be displayed. From here,
 you can configure one or more repository addresses (see Figure 5-9). One repository is usually enough
 for most projects: adding a second repository can be useful in more
 complicated cases, and lets you specify distinct named locations for
 pull and push operations.
Advanced per-project source code management
 configuration

In most cases, the URL of the Git repository you are using
 should be enough. However, if you need more options, click on the
 Advanced button (see Figure 5-10). This
 provides more precise control of the pull behavior.
The Name of repository is a shorthand
 title (a.k.a. remote in Git
 parlance) for a given repository, that you can refer to later on in
 the merge action configuration.
The Refspec is a Git-specific language for
 controlling precisely what is retrieved from remote servers and
 under what namespace it is stored locally.

Branches to build

The branch specifier (Figure 5-11) is the wildcard pattern or
 specific branch name that should be built by Jenkins. If left blank,
 all branches will be built. At the time of this writing, after the
 first time saving a job with a blank branches to
 build setting, it is populated with **, which means “build all
 branches.”
[image: Entering a Git repo URL]

Figure 5-9. Entering a Git repo URL

[image: Advanced configuration of a Git repo URL]

Figure 5-10. Advanced configuration of a Git repo URL

[image: Advanced configuration of the Git branches to build]

Figure 5-11. Advanced configuration of the Git branches to build

Excluded regions

Regions (seen in Figure 5-12)
 are named specific or wildcard paths in the codebase
 that, even when changed, should not trigger a build. Commonly these
 are noncompiled files such as localization bundles or images, which,
 understandably might not have an effect on unit or integration
 tests.
[image: Branches and regions]

Figure 5-12. Branches and regions

Excluded users

The Git plugin also lets you ignore certain users, even if
 they make changes to the codebase that would typically trigger a
 build.
This is not as spiteful as it sounds: excluded users are
 typically automated users, not human developers, that happen to have
 distinct accounts with commit rights in the source control system.
 These automated users often are performing small numeric changes
 such as bumping up version numbers in a pom.xml file, rather than making actual
 logic changes. If you want to exclude several users, just place them
 on separate lines.

Checkout/merge to local branch

There are times when you may want to create a local branch
 from the tree you’ve specified, rather than just using a direct
 detached HEAD checkout of the commit’s hash. In
 this case, just specify your local branch in the “Checkout/merge to
 a local branch” field.
This is a little easier to illustrate with an example. Without
 specifying a local branch, the plugin would do something like
 this:
git checkout 73434e4a0af0f51c242f5ae8efc51a88383afc8a
On the other hand, if you use a local branch named mylocalbranch, Jenkins would do the
 following:
git branch -D mylocalbranch
git checkout -b mylocalbranch 73434e4a0af0f51c242f5ae8efc51a88383afc8a

Local subdirectory for repo

By default, Jenkins will clone the Git repository
 directly into the build job workspace. If you prefer to use a
 different directory, you can specify it here. Note that the
 directory you specify is relative to the build job workspace.

Merge before build

The typical recipe for using this option is to fold an
 integration branch into a branch more similar to master. Keep in mind that only
 conflict-less merges will happen automatically. More complex merges
 that require manual intervention will fail the build.
The resultant merged branch will not automatically be pushed
 to another repository unless the later push
 post-build action is enabled.

Prune remote branches before build

Pruning removes local copies of remote branches that exist as
 a remnant of the previous clone, but are no longer present on the
 remote. In short, this is cleaning the local clone to be in perfect
 sync with its remote siblings.

Clean after checkout

Activate Git’s facilities for purging any untracked files or
 folders, returning your working copy to a pristine state.

Recursively update submodules

If you are using Git’s submodule facilities in the
 project, this option lets you ensure that every submodule is
 up-to-date with an explicit call to update, even if submodules are nested
 within other submodules.

Use commit author in changelog

Jenkins tracks and displays the author of changed code in a
 summarized view. Git tracks both the committer and author of code
 distinctly, and this option lets you toggle which of those two
 usernames is displayed in the changelog.

Wipe out workspace

Typically Jenkins will reuse the workspace, merely freshening
 the checkout as necessary and, if you activated the “Clean after
 checkout” option, cleaning up untracked files. However, if you
 prefer to have a completely clean workspace, you can use the “Wipe
 out workspace” option to delete and rebuild the workspace from the
 ground up. Bear in mind that this may significantly lengthen the
 time it takes to initialize and build the project.

Choosing strategy

Jenkins decides which branches to build based on a
 strategy (see Figure 5-13). Users can influence this
 branch-search process. The default choice is to search for all
 branch HEADs. If the Gerrit plugin is installed, additional options
 for building all Gerrit-notified commits are displayed.
[image: Choosing strategy]

Figure 5-13. Choosing strategy

Git executable

In the global options of Jenkins (see Figure 5-14), different Git executables can be
 set up and used on a per-build basis. This is infrequently used, and
 only when the clone or other Git operations are highly sensitive to
 a particular version of Git. Git tends to be very version-flexible;
 slightly older repositories can easily be cloned with a newer
 version of Git and vice-versa.
[image: Git executable global setup]

Figure 5-14. Git executable global setup

Repository browser

Like Subversion, Git has several source code browsers that
 you can use. The most common ones are Gitorious, Git Web, or
 GitHub. If you provide the URL to the corresponding
 repository browser, Jenkins will be able to display a link to the
 source code changes that triggered a build (see Figure 5-15).
[image: Repository browser]

Figure 5-15. Repository browser

Build triggers

The basic Git plugin offers the ability to Poll
 SCM on a timed basis, looking for changes since the last
 inquiry. If changes are found, a build is started. The polling log
 (shown in Figure 5-16) is accessible via a
 link on the left hand side of the page in the navigation bar when
 viewing a specific job. It offers information on the last time the
 repository was polled and if it replied with a list of changes (see
 Figure 5-17).
[image: Polling log]

Figure 5-16. Polling log

The Git polling is distilled into a more developer-useful format
 that shows commit comments as well as hyperlinking usernames and
 changed files to more detailed views of each.
[image: Results of Git polling]

Figure 5-17. Results of Git polling

Installing the Gerrit Build Trigger adds a
 Gerrit event option that can be more efficient
 and precise than simply polling the repository.
Gerrit Trigger

Gerrit
 is an open source web application that facilitates
 code
 reviews for project source hosted on a Git version control
 system. It reads a traditional Git repository, and provides a
 side-by-side comparison of changes. As the code is reviewed, Gerrit
 provides a location to comment and move the patch to an
 open, merged, or
 abandoned status.
The Gerrit
 Trigger is a Jenkins plugin that can trigger a Jenkins build
 of the code when any user-specified activity happens in a
 user-specified project in the Git repository (see Figure 5-18). It is a alternative to the more
 typically-used Build periodically or
 Poll SCM.
[image: Gerrit Trigger]

Figure 5-18. Gerrit Trigger

The configuration for this plugin is minimal and focused on
 the Project Type and
 Pattern and Branch Type
 and Pattern. In each pair, the
 type can be Plain,
 Path, or RegExp—pattern
 flavors of what to watch—and then the value
 (pattern) to evaluate using the
 type as the guide.

Post-build actions

The Git plugin for Jenkins adds Git-specific capabilities
 to the post-processing of the build artifacts. Specifically, the Git
 Publisher (shown in Figure 5-19) offers
 merging and pushing actions. Check the Git Publisher checkbox to
 display four options.
[image: Git Publisher]

Figure 5-19. Git Publisher

Push only if build succeeds

If a merge or other commit-creating action has been taken
 during the Jenkins build, it can be enabled to push to a
 remote.

Merge results

If prebuild merging is configured, push the merge-resultant
 branch to its origin (see Figure 5-20).
[image: Merge results]

Figure 5-20. Merge results

Tags

When pushing tags, each tag can be named and chosen to be
 created if it does not exist (which fails if it does already exist).
 Environment variables can be embedded in the tag name. Examples
 include the process ID such as HUDSON_BUILD_$PPID or even a build number,
 if that is provided by a Jenkins plugin, such as $HUDSON_AUTOTAG_$BUILDNUM. Tags can be
 targeted to a specific remote such as origin or integrationrepo.

Branches

The current HEAD used in the Jenkins build of the application
 can be pushed to other remotes as an after-step of the build. You
 only need to provide the destination branch name and remote
 name.
Names of remotes are validated against the earlier
 configuration of the plugin. If the remote doesn’t exist, a warning
 is displayed.

GitHub plugin

The GitHub plugin offers two integration points. First, it
 offers an optional link to the project’s GitHub home page. Just enter
 the URL for the project (without the tree/master or tree/branch part).
 For example, http://github.com/matthewmccullough/git-workshop.
Secondly, the GitHub plugin offers per-file-changed links that are
 wired via the Repository browser section of a
 job’s Source Code Management configuration (see
 Figure 5-21).
[image: GitHub repository browser]

Figure 5-21. GitHub repository browser

With the githubweb repository
 browser chosen, all changed-detected files will be linked to the
 appropriate GitHub source-viewing web page (Figure 5-22).
[image: GitHub repository browser]

Figure 5-22. GitHub repository browser

Build Triggers

Once you have configured your version control system, you need
 to tell Jenkins when to kick off a build. You set this up in the Build
 Triggers section.
In a Freestyle build, there are three basic ways a build job can be
 triggered (see Figure 5-23):
	Start a build job once another build job has completed

	Kick off builds at periodical intervals

	Poll the SCM for changes

[image: There are many ways that you can configure Jenkins to start a build job]

Figure 5-23. There are many ways that you can configure Jenkins to start a
 build job

Triggering a Build Job Once Another Build Job Has
 Finished

The first option lets you set up a build that will be run
 whenever another build has finished. This is an easy way to set up a
 build pipeline. For example, you might set up an initial build job to
 run unit and integration tests, followed by another separate build job
 to run more CPU-intensive code quality metrics. You simply enter the
 name of the preceding build job in this field. If the build job can be
 triggered by several other build jobs, just list their names here,
 separated by commas. In this case, the build job will be triggered once
 any of the build jobs in the list finish.
There is a symmetrical field in the Post-build actions section of
 the preceding build job called (appropriately enough) “Build other
 projects”. This field will be automatically updated in the corresponding
 build jobs whenever you modify the “Build after other projects are
 built” field. However, unlike the “Build after other projects are built”
 field, this field gives you the option to trigger a build even if the
 build is unstable (see Figure 5-24). This is useful,
 for example, if you want to run a code quality metrics build job even if
 there are unit test failures in the default build job.
[image: Triggering another build job even if the current one is unstable]

Figure 5-24. Triggering another build job even if the current one is
 unstable

Scheduled Build Jobs

Another strategy is simply to trigger your build job at regular
 intervals. It is important to note that this is not actually Continuous
 Integration—it is simply scheduled builds, something you could also do,
 for example, as a Unix cron job. In the early days of automated builds,
 and even today in many shops, builds are not run in response to changes
 committed to version control, but simply on a nightly basis. However, to
 be effective, a Continuous Integration server should provide feedback
 much more quickly than once a day.
There are nevertheless a few cases where scheduled builds do make
 sense. This includes very long running build jobs, where quick feedback
 is less critical. For example, intensive load and performance tests
 which may take several hours to run, or Sonar build jobs. Sonar is an excellent way to keep tabs
 on code quality metrics across your projects and over time, but the
 Sonar server only stores one set of data per day, so running Sonar
 builds more frequently than this is not useful.
For all scheduling tasks, Jenkins uses a cron-style syntax,
 consisting of five fields separated by white space in the following
 format:
	MINUTE HOUR DOM MONTH DOW

with the following values possible for each field:
	MINUTE
	Minutes within the hour (0–59)

	HOUR
	The hour of the day (0–23) DOM

	DOM
	The day of the month (1–31)

	MONTH
	The month (1–12)

	DOW
	The day of the week (0–7) where 0 and 7 are Sunday.

There are also a few short-cuts:
	“*” represents all possible values for a field. For example,
 “* * * * *” means “once a minute.”

	You can define ranges using the “M–N” notation. For example
 “1-5” in the DOW field would mean “Monday to Friday.”

	You can use the slash notation to defined skips through a
 range. For example, “*/5” in the MINUTE field would mean “every five
 minutes.”

	A comma-separated list indicates a list of valid values. For
 example, “15,45” in the MINUTE field would mean “at 15 and 45
 minutes past every hour.”

	You can also use the shorthand values of “@yearly”,
 “@annually”, “@monthly”, “@weekly”, “@daily”, “@midnight”, and
 “@hourly”.

Typically, you will only have one line in this field, but for more
 complicated scheduling setups, you may need multiple lines.

Polling the SCM

As we have seen, scheduled build jobs are usually not the
 best strategy for most CI build
 jobs. The value of any feedback is proportional to the speed in which
 you receive that feedback, and Continuous Integration is no exception.
 That is why polling the SCM is generally a better option.
Polling involves asking the version control server at regular
 intervals if any changes have been committed. If any changes have been
 made to the source code in the project, Jenkins kicks off a build.
 Polling is usually a relatively cheap operation, so you can poll
 frequently to ensure that a build kicks off rapidly after changes have
 been committed. The more frequent the polling is, the faster the build
 jobs will start, and the more accurate the feedback about what change
 broke the build will be.
In Jenkins, SCM polling is easy to configure, and uses the same
 cron syntax we discussed previously.
The natural temptation for SCM polling is to poll as often as
 possible (for example, using “* * * * *”, or once every minute). Since
 Jenkins simply queries the version control system, and only kicks off a
 build if the source code has been modified, this approach is often
 reasonable for small projects. It shows its limits if there are a very
 large number of build jobs, as this may saturate the SCM server and the
 network with queries, many of them unnecessary. In this case, a more
 precise approach is better, where the Jenkins build job is triggered by
 the SCM when it receives a change. We discuss this option in Triggering Builds Remotely.
If updates are frequently committed to the version control system,
 across many projects, this may cause many build jobs to be queued, which
 can in turn slow down feedback times further. You can reduce the build
 queue to some extent by polling less frequently, but at the cost of less
 precise feedback.
If you are using CVS, polling may not be a good option. When CVS checks for
 changes in a project, it checks each file one by one, which is a slow
 and tedious process. The best solution here is to migrate to a modern
 version control system such as Git or Subversion. The second-best
 solution is to use polling at very sparse intervals (for example, every
 30 minutes).

Triggering Builds Remotely

Polling can be an effective strategy for smaller projects, but it
 does not scale particularly well—with large numbers of build jobs, it is
 wasteful of network resources, and there is always a small delay between
 the code change being committed and the build job starting. A more
 precise strategy is to get the SCM system to trigger the Jenkins build
 whenever a change is committed.
It is easy to start a Jenkins build job remotely. You simply
 invoke a URL of the following form:
	http://SERVER/jenkins/job/PROJECTNAME/build

For example, if my Jenkins server was running on
 http://myserver:8080/jenkins, I could start the
 gameoflife build job by invoking the following URL
 using a tool like wget or
 curl:
$ wget http://myserver:8080/jenkins/job/gameoflife/build
The trick, then, is to get your version control server to do this
 whenever a change is committed. The details of how to do this are
 different for each version control system. In Subversion, for example,
 you would need to write a post-commit hook script, which would trigger a
 build. You could, for example, write a Subversion hook script that
 parses the repository URL to extract the project name, and performs a
 wget operation on the URL of the corresponding build
 job:
JENKINS_SERVER=http://myserver:8080/jenkins
REPOS="$1"
PROJECT=<Regular Expression Processing Goes Here>[image: 1]
/usr/bin/wget $JENKINS_SERVER/job/${PROJECT}/build
	[image: 1]
	Use regular expression processing here to extract your project
 name from the Subversion repository URL.

However, this approach will only trigger one particular build, and
 relies on a convention that the default build job is based on the
 repository name in Subversion. A more flexible approach with Subversion
 is to use the Jenkins Subversion API directly, as shown here:
JENKINS_SERVER=http://myserver:8080/jenkins
REPOS="$1"
REV="$2"
UUID=`svnlook uuid $REPOS`
/usr/bin/wget \
 --header "Content-Type:text/plain;charset=UTF-8" \
 --post-data "`svnlook changed --revision $REV $REPOS`" \
 --output-document "-" \
 --timeout=2 \
 $JENKINS_SERVER/subversion/${UUID}/notifyCommit?rev=$REV
This would automatically start any Jenkins build jobs monitoring
 this Subversion repository.
If you have activated Jenkins security, things become a little
 more complicated. In the simplest case (where any user can do anything),
 you need to activate the “Trigger builds remotely” option (see Figure 5-25), and provide a special string
 that can be used in the URL:
	http://SERVER/jenkins/job/PROJECTNAME/build?token=DOIT

[image: Triggering a build via a URL using a token]

Figure 5-25. Triggering a build via a URL using a token

This won’t work if users need to be logged on to trigger a build
 (for example, if you are using matrix or project-based security). In
 this case, you will need to provide a user name and password, as shown
 in the following example:
$ wget http://scott:tiger@myserver:8080/jenkins/job/gameoflife/build
or:
$ curl -u scott:tiger http://scott:tiger@myserver:8080/jenkins/job/gameoflife/build

Manual Build Jobs

A build does not have to be triggered automatically. Some
 build jobs should only be started manually, by human intervention. For
 example, you may want to set up an automated deployment to a UAT
 environment, that should only be started on the request of the QA folks.
 In this case, you can simply leave the Build Triggers section empty.

Build Steps

Now Jenkins should know where and how often to obtain the
 project source code. The next thing you need to explain to Jenkins is what
 it what to do with the source code. In a freestyle build, you do this by
 defining build steps. Build steps are the basic building blocks for the
 Jenkins freestyle build process. They are what let you tell Jenkins
 exactly how you want your project built.
A build job may have one step, or more. It may even occasionally
 have none. In a freestyle build, you can add as many build steps as you
 want to the Build section of your project configuration (see Figure 5-26). In a basic Jenkins installation, you
 will be able to add steps to invoke Maven and Ant, as well as running
 OS-specific shell or Windows batch commands. And by installing additional
 plugins, you can also integrate other build tools, such as Groovy, Gradle,
 Grails, Jython, MSBuild, Phing, Python, Rake, and Ruby, just to name some
 of the more well-known tools.
In the remainder of this section, we will delve into some of the
 more common types of build steps.
Maven Build Steps

Jenkins has excellent Maven support, and Maven build steps are
 easy to configure and very flexible. Just pick “Invoke top-level Maven
 targets” from the build step lists, pick a version of Maven to run (if
 you have multiple versions installed), and enter the Maven goals you
 want to run. Jenkins freestyle build jobs work fine with both Maven 2
 and Maven 3.
Just like on the command line, you can specify as many individual
 goals as you want. You can also provide command-line options. A few
 useful Maven options in a CI context are:
	-B, --batch-mode
	This option tells Maven not to prompt for any input from the
 user, just using the default values if any are required. If Maven
 does prompt for any input during the Jenkins build, the build will
 get stuck indefinitely.

	-U,
 --update-snapshots
	Forces Maven to check for updated releases and snapshot
 dependencies on the remote repository. This makes sure you are
 building with the latest and greatest snapshot dependencies, and
 not just using older local copies which may not by in sync with
 the latest version of the source code.

	-Dsurefire.useFile=false
	This option forces Maven to write JUnit output to the
 console, rather than to text files in the target directory as it
 normally would. This way, any test failure details are directly
 visible in the build job console output. The XML files that
 Jenkins needs for its test reporting will still be
 generated.

[image: Adding a build step to a freestyle build job]

Figure 5-26. Adding a build step to a freestyle build job

The advanced options are also worth investigating (click on the
 Advanced button).
The optional POM field lets you
 override the default location of the Maven pom.xml file. This is the equivalent of
 running Maven from the command line with
 the -f or --file option. This is
 useful for some multimodule Maven projects where the aggregate pom.xml file (the one containing the
 <modules> section) is located in a subdirectory
 rather than at the top level.
The Properties field lets you set property values that will be
 passed into the Maven build process, using the standard property file
 format illustrated here:
Selenium test configuration
selenium.host=testserver.acme.com
selenium.port=8080
selenium.broswer=firefox
These properties are passed to Maven as command-line options, as
 shown here:
$ mvn verify -Dselenium.host=testserver.acme.com ...
The JVM Options field lets you set any of the standard Java
 Virtual Machine options for your build job. So if your build process is
 particularly memory intensive, you might add some extra heap space with
 the -Xmx option (for example,
 -Xmx512m would set the maximum heap size to 512
 MB).
The final option lets you configure a private Maven repository for
 this build job. Normally, Maven
 will just use the default Maven repository (usually in the .m2/repository folder in the user’s home
 directory). Occasionally, this can lead to build jobs interfering with
 each other, or use inconsistent snapshot versions from one build to
 another. To be sure that your build is run in clean laboratory
 conditions, you can activate this option. Your build job will get its
 own private repository, reserved for its own exclusive use. On the
 downside, the first time the build job runs a build, this may take some
 time to download all of the Maven artifacts, and private repositories
 can take up a lot of space. However, it is the best way of guaranteeing
 that your build is run in a truly isolated environment.

Ant Build Steps

Freestyle build jobs work equally well with Ant. Apache Ant is a widely-used and
 very well-known Java build scripting tool. Indeed, a very large number
 of Java projects out there rely on Ant build scripts.
Ant is not only used as a primary build scripting tool—even if
 your project uses Maven, you may resort to calling Ant scripts to do
 more specific tasks. There are Ant libraries available for many
 development tools and low-level tasks, such as using SSH, or working
 with proprietary application servers.
In its most basic form, configuring an Ant build step very is
 simple indeed—you just provide the version of Ant you want to use and
 the name of the target you want to invoke. In Figure 5-27, for example, we are invoking an
 Ant script to run a JMeter test script.
[image: Configuring an Ant build step]

Figure 5-27. Configuring an Ant build step

As with the Maven build step, the “Advanced...” button provides
 you with more detailed options, such as specifying a different build
 script, or a build script in a different directory (the default will be
 build.xml in the root directory).
 You can also specify properties and JVM options, just as you can
 for Maven.

Executing a Shell or Windows Batch Command

Occasionally you may need to execute a command directly at the
 Operating System level. Some legacy build processes rely on OS-specific
 scripts, for example. In other cases, you may need to perform a
 low-level operation that is most easily done with an OS-level
 command.
You can do this in Jenkins with the Execute
 Shell (for Unix) or Execute Windows Batch
 command (for Windows). As an example, in Figure 5-28 we have added a step to execute
 the Unix ls command.
[image: Configuring an Execute Shell step]

Figure 5-28. Configuring an Execute Shell step

The output from this build step is shown here:
[workspace] $ /bin/sh -xe /var/folders/.../jenkins2542160238803334344.s
+ ls -al
total 64
drwxr-xr-x 14 johnsmart staff 476 30 Oct 15:21 .
drwxr-xr-x 9 johnsmart staff 306 30 Oct 15:21 ..
-rw-r--r--@ 1 johnsmart staff 294 22 Sep 01:40 .checkstyle
-rw-r--r--@ 1 johnsmart staff 651 22 Sep 01:40 .classpath
-rw-r--r--@ 1 johnsmart staff 947 22 Sep 01:40 .project
drwxr-xr-x 5 johnsmart staff 170 22 Sep 01:40 .settings
-rw-r--r--@ 1 johnsmart staff 437 22 Sep 01:40 .springBeans
drwxr-xr-x 9 johnsmart staff 306 30 Oct 15:21 .svn
-rw-r--r--@ 1 johnsmart staff 1228 22 Sep 01:40 build.xml
-rw-r--r--@ 1 johnsmart staff 50 22 Sep 01:40 infinitest.filters
-rw-r--r-- 1 johnsmart staff 6112 30 Oct 15:21 pom.xml
drwxr-xr-x 5 johnsmart staff 170 22 Sep 01:40 src
drwxr-xr-x 3 johnsmart staff 102 22 Sep 01:40 target
drwxr-xr-x 5 johnsmart staff 170 22 Sep 01:40 tools
You can either execute an OS-specific command (e.g.,
 ls), or store a more complicated script as a file in
 your version control system, and execute this script. If you are
 executing a script, you just need to refer to the name of your script
 relative to the work directory.
Shell scripts are executed using the -ex
 option—the commands are printed to the console, as is the resulting
 output. If any of the executed commands return a nonzero value, the
 build will fail.
When Jenkins executes a script, it sets a number of environment
 variables that you can use within the script. We discuss these variable
 in more detail in the next section.
In fact, there are some very good reasons why you should avoid
 using OS-level scripts in your build jobs if you can possibly avoid it.
 In particular, it makes your build job in the best of cases OS-specific,
 and at worst dependant on the precise machine configuration. One more
 portable alternative to executing OS scripts include writing an
 equivalent script in a more portable scripting language, such
 as Groovy or Gant.

Using Jenkins Environment Variables in Your Builds

One useful trick that can be used in virtually any build step
 is to obtain information from Jenkins about the current build job. In
 fact, when Jenkins starts a build step, it makes the following
 environment variables available to the build script:
	BUILD_NUMBER
	The current build number, such as “153”.

	BUILD_ID
	A timestamp for the current build id, in the format
 YYYY-MM-DD_hh-mm-ss.

	JOB_NAME
	The name of the job, such as
 game-of-life.

	BUILD_TAG
	A convenient way to identify the current build job, in the
 form of
 jenkins-${JOB_NAME}-${BUILD_NUMBER}
 (e.g.,
 jenkins-game-of-life-2010-10-30_23-59-59).

	EXECUTOR_NUMBER
	A number identifying the executor running this build among
 the executors of the same machine. This is the number you see in
 the “build executor status”, except that the number starts from 0,
 not 1.

	NODE_NAME
	The name of the slave if the build is running on a slave, or
 "" if the build is running on master.

	NODE_LABELS
	The list of labels associated with the node that this build
 is running on.

	JAVA_HOME
	If your job is configured to use a specific JDK, this
 variable is set to the JAVA_HOME of the
 specified JDK. When this variable is set, PATH
 is also updated to have $JAVA_HOME/bin.

	WORKSPACE
	The absolute path of the workspace.

	HUDSON_URL
	The full URL of the Jenkins server, for example http://ci.acme.com:8080/jenkins/.

	JOB_URL
	The full URL for this build job, for example http://ci.acme.com:8080/jenkins/game-of-life.

	BUILD_URL
	The full URL for this build, for example http://ci.acme.com:8080/jenkins/game-of-life/20.

	SVN_REVISION
	For Subversion-based projects, this variable contains the
 current revision number.

	CVS_BRANCH
	For CVS-based projects, this variable contains the branch of
 the module. If CVS is configured to check out the trunk, this
 environment variable will not be set.

These variables are easy to access. In an Ant script, you can
 access them using the <property> tag as shown
 here:
<target name="printinfo">
 <property environment="env" />
 <echo message="${env.BUILD_TAG}"/>
</target>
In Maven, you can access the variables either in the same way (using
 the “env.” prefix), or directly using the Jenkins environment variable.
 For example, in the following pom.xml file, the
 project URL will point to the Jenkins build job that ran the
 mvn site build:
<project...>
 ...
 <groupId>com.wakaleo.gameoflife</groupId>
 <artifactId>gameoflife-core</artifactId>
 <version>0.0.55-SNAPSHOT</version>
 <name>gameoflife-core</name>
 <url>${JOB_URL}</url>
Alternatively, if you are building a web application, you can also
 use the maven-war-plugin to insert
 the build job number into the web application manifest, e.g.:
<project>
 ...
 <build>
 ...
 <plugins>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <manifest>
 <addDefaultImplementationEntries>true</addDefaultImplementationEntries>
 </manifest>
 <archive>
 <manifestEntries>
 <Specification-Title>${project.name}</Specification-Title>
 <Specification-Version>${project.version}</Specification-Version>
 <Implementation-Version>${BUILD_TAG}</Implementation-Version>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
 ...
</project>
This will produce a MANIFEST.MF file along the following
 lines:
Manifest-Version: 1.0
Archiver-Version: Plexus Archiver
Created-By: Apache Maven
Built-By: johnsmart
Build-Jdk: 1.6.0_22
Jenkins-Build-Number: 63
Jenkins-Project: game-of-life
Jenkins-Version: 1.382
Implementation-Version: jenkins-game-of-life-63
Specification-Title: gameoflife-web
Specification-Version: 0.0.55-SNAPSHOT
And in a Groovy script, they can be obtained via the
 System.getenv() method:
def env = System.getenv()
env.each {
 println it
}
or:
def env = System.getenv()
println env['BUILD_NUMBER']

Running Groovy Scripts

Groovy is not only a popular JVM dynamic language, it is also a
 convenient language for low-level scripting. The Jenkins Groovy
 Plugin lets you run arbitrary Groovy commands, or invoke Groovy
 scripts, as part of your build process.
Once you have installed the Groovy plugin in the usual way, you
 need to add a reference to your Groovy installation in the system
 configuration page (see Figure 5-29).
[image: Adding a Groovy installation to Jenkins]

Figure 5-29. Adding a Groovy installation to Jenkins

Now you can add some Groovy scripting to your build job. When you
 click on “Add build step”, you will see two new entries in the drop-down
 menu: “Execute Groovy script” and “Execute system Groovy script”. The
 first option is generally what you want—this will simply execute a Groovy
 script in a separate JVM, as if you were invoking Groovy from the
 command line. The second option runs Groovy commands within Jenkins’s
 own JVM, with full access to Jenkins’s internals, and is mainly used to
 manipulate the Jenkins build jobs or build process itself. This is a
 more advanced topic that we will discuss later on in the book.
A Groovy build step can take one of two forms. For simple cases,
 you can just add a small snippet of Groovy, as shown in Figure 5-30. For more involved or
 complicated cases, you would probably write a Groovy script and place it
 under version control. Once your script is safely in your SCM, you can
 run it by selecting the “Groovy script file” option and providing the
 path to your script (relative to your build job workspace).
[image: Running Groovy commands as part of a build job]

Figure 5-30. Running Groovy commands as part of a build job

In Figure 5-31, you
 can see a slightly more complicated example. Here we are running a
 Groovy script called run-fitness-tests.groovy, which can be found
 in the scripts directory. This
 script takes the test suites to be executed as its parameters—we provide
 these in the Script parameters field. If we want to provide any options
 for Groovy itself, we can put these in the Groovy Parameters field.
 Alternatively, we can also provide command-line properties in the
 Properties field—this is simply a more convenient way of using the
 -D command-line option to pass property values to
 the Groovy script.
[image: Running Groovy scripts as part of a build job]

Figure 5-31. Running Groovy scripts as part of a build job

Building Projects in Other Languages

Jenkins is a flexible tool, and it can be used for much more than
 just Java and Groovy. For example, Jenkins also works well with Grails,
 .Net, Ruby, Python and PHP, just to name a few. When using other
 languages, you generally need to install a plugin to support your
 favorite language, which will add a new build step type for this
 language. We will look at some examples in Using Jenkins with Other Languages.

Post-Build Actions

Once the build is completed, there are still a few things you
 need to look after. You might want to archive some of the generated
 artifacts, to report on test results, and to notify people about the
 results. In this section, we look at some of the more common tasks you
 need to configure after the build is done.
Reporting on Test Results

One of the most obvious requirements of a build job is to
 report on test results. Not only whether there are any test failures,
 but also how many tests were executed, how long they took to execute,
 and so on. In the Java world, JUnit is the most commonly-used testing
 library around, and the JUnit XML format for test results is widely used
 and understood by other tools as well.
Jenkins provides great support for test reporting. In a freestyle
 build job, you need to tick the “Publish JUnit test result report”
 option, and provide a path to your JUnit report files (see Figure 5-32). You can use a wildcard
 expression (such as **/target/surefire-reports/*.xml
 in a Maven project) to include JUnit reports from a number of different
 directories—Jenkins will aggregate the results into a single
 report.
[image: Reporting on test results]

Figure 5-32. Reporting on test results

We look at automated tests in much more detail in Chapter 6.

Archiving Build Results

With a few exceptions, the principal goal of a build job is
 generally to build something. In Jenkins, we call this something an
 artifact. An artifact might be a binary executable (a JAR or WAR file
 for a Java project, for example), or some other related deliverable,
 such as documentation or source code. A build job can store one or many
 different artifacts, keeping only the latest copy or every artifact ever
 built.
Configuring Jenkins to store your artifacts is easy—just tick the
 “Archive the artifacts” checkbox in the Post-build Actions, and specify
 which artifacts you want to store (see Figure 5-33).
[image: Configuring build artifacts]

Figure 5-33. Configuring build artifacts

In the “Files to archive” field, you can provide the full paths of
 the files you want to archive (relative to the job workspace), or, use
 Ant-like wild cards (e.g., **/*.jar, for all the JAR
 files, anywhere in the workspace). One advantage of using wild cards is
 that it makes your build less dependent on your version control set up.
 For example, if you are using Subversion (see Configuring Source Code Management), Jenkins will check out your project
 either directly in your workspace, or into a subdirectory, depending on
 how you set it up. If you use a wild card expression like
 **/target/*.war, Jenkins will find the file no matter
 what directory the project is located in.
As usual, the Advanced button give access to a few extra options.
 If you are using wild cards to find your artifacts, you might need to
 exclude certain directories from the search. You can do this by filling
 in the Excludes field. You enter a pattern to match any files that you
 don’t want to archive, even if they would normally
 be included by the “Files to archive” field.
Archived artifacts can take a lot of disk space, especially if
 builds are frequent. For this reason, you may want to only keep the last
 successful one. To do this, just tick the “Discard all but the last
 successful/stable artifact” option. Jenkins will keep artifacts from the
 last stable build (if there where any). It will also keep the artifacts
 of the latest unstable build following the stable build (if any), and
 also from the last failed build that happened.
Archived build artifacts appear on the build results page (see
 Figure 5-34). The most recent build
 artifacts are also displayed on the build job home page.
[image: Build artifacts are displayed on the build results page and on the build job home page]

Figure 5-34. Build artifacts are displayed on the build results page and on
 the build job home page

You can also use permanent URLs to access the most recent build
 artifacts. This is a great way to reuse the latest artifacts from your
 builds, either in other Jenkins build jobs or in external scripts, for
 example. Three URLs are available: last stable build, last successful
 build and last completed build.
Before we look at the URLs, we should discuss the concept of
 stable and successful
 builds.
A build is successful when the compilation
 reported no errors.
A build is considered stable if it was built
 successfully, and no publisher reports it as unstable. For example,
 depending on your project configuration, unit test failures,
 insufficient code coverage, or other code quality metrics issues, could
 cause a build to be marked as unstable. So a stable build is always
 successful, but the opposite is not necessarily true—a build can be
 successful without being stable.
A completed build is simply a build that has
 finished, no matter what its result. Note that the archiving step will
 take place no matter what the outcome of the build was.
The format of the artifact URLs is intuitive, and takes the
 following form:
	Latest stable build
	<server-url>/job/<build-job>/lastStableBuild/artifact/<path-to-artifact>

	Latest successful build
	<server-url>/job/<build-job>/lastSuccessfulBuild/artifact/<path-to-artifact>

	Latest completed build
	<server-url>/job/<build-job>/lastCompletedBuild/artifact/<path-to-artifact>

This is best illustrated by some examples. Suppose your Jenkins
 server is running on http://myserver:8080, your
 build job is called game-of-life,
 and you are storing a file called gameoflife.war, which is in the target
 directory of your workspace. The URLs for this artifact would be the
 following:
	Latest stable build
	http://myserver:8080/job/gameoflife/lastStableBuild/artifact/target/gameoflife.war

	Latest successful build
	http://myserver:8080/job/gameoflife/lastSuccessfulBuild/artifact/target/gameoflife.war

	Latest completed build
	http://myserver:8080/job/gameoflife/lastCompletedBuild/artifact/target/gameoflife.war

Artifacts don’t just have to be executable binaries. Imagine, for
 example, that your build process involves automatically deploying each
 build to a test server. For convenience, you want to keep a copy of the
 exact source code associated with each deployed WAR file. One way to do
 this would be to generate the source code associated with a build, and
 archive both this file and the WAR file. We could do this by generating
 a JAR file containing the application source code (for example, by using
 the Maven Source Plugin for a Maven project), and then including this in
 the list of artifacts to store (see Figure 5-35).
[image: Archiving source code and a binary package]

Figure 5-35. Archiving source code and a binary package

Of course, this example is a tad academic: it would probably be
 simpler just to use the revision number for this build (which is
 displayed on the build result page) to retrieve the source code from
 your version control system. But you get the idea.
Note that if you are using an Enterprise Repository Manager such
 as Nexus or Artifactory to store your binary artifacts, you may not need
 to keep them on the Jenkins server. You may prefer simply to
 automatically deploy your artifacts to your Enterprise Repository
 Manager as part of the build job, and retrieve them from here
 when required.

Notifications

The point of a CI server is to let people know when a build
 breaks. In Jenkins, this comes under the heading of Notification.
Out of the box, Jenkins provides support for email notification.
 You can activate this by ticking the “E-mail Notification” checkbox in
 the Post-build Actions (see Figure 5-36). Then enter the email addresses
 of the team members who will need to know when the build breaks. When
 the build does break, Jenkins will send a friendly email message to the
 users in this list containing a link to the broken build.
[image: Email notification]

Figure 5-36. Email notification

You can also opt to send a separate email to the user who’s commit
 (presumably) broke the build. For this to work, you need to have
 activated Security on your Jenkins server (see Chapter 7).
Normally, Jenkins will send an email notification out whenever a
 build fails (for example, because of a compilation error). It will also
 send out a notification when the build becomes unstable for the first time (for example, if there are
 unit test failures). Unless you configure it to do so, Jenkins will not
 send emails for every unstable build, but only for the first one.
Finally, Jenkins will send a message when a previously failing or
 unstable build succeeds, to let everyone know that the problem has
 been resolved.

Building Other Projects

You can also start other build jobs in the Post-build Actions,
 using the “Build other projects” option. This is useful if you want to
 organize your build process in several, smaller steps, rather than one
 long build job. Just list the projects you want to start after this one.
 Normally, these projects will only be triggered if the build was stable,
 but you can optionally trigger another build job even if the current
 build is unstable. This might be useful, for example, if you wanted
 to run a code quality metrics reporting build job after a project’s main
 build job, even if there are test failures in the main build.

Running Your New Build Job

Now all you need to do is save your new build job. You can then
 trigger the first build manually, or just wait for it to kick off by
 itself. Once the build is finished, you can click on the build number to
 see the results of your work.

Working with Maven Build Jobs

In this section, we will have a look at the other most commonly
 used build job: Maven 2/3 build jobs.
Maven build jobs are specifically adapted to Maven 2 and Maven 3
 builds. Creating a Maven build job requires considerably less work than
 configuring the equivalent freestyle
 build job. Maven build jobs support advanced Maven-related features such
 as incremental builds on multimodule projects and triggering builds from
 changes in snapshot dependencies, and make configuration and reporting
 much simpler.
However, there is a catch: Maven 2/3 build jobs are less flexible
 than freestyle build jobs, and don’t support multiple build steps within
 the same build job. Some users also report that large Maven projects tend
 to run more slowly and use more memory when configured as Maven build jobs
 rather than as Freestyle ones.
In this section, we will investigate how to configure Maven 2/3
 builds, when you can use them, as well as their advantages and
 limitations.
To create a new Maven build job, just choose the “”Build a
 maven2/3 project” option in the New Job page (see Figure 5-37).
[image: Creating a new Maven build job]

Figure 5-37. Creating a new Maven build job

Building Whenever a SNAPSHOT Dependency Is Built

At first glance, the Maven 2/3 build job configuration screen is
 very similar to the one we saw for freestyle builds in the previous
 section. The first difference you may notice is in the Build Triggers
 section. In this section, an extra option is available: “Build whenever
 a SNAPSHOT dependency is built”. If you select this option, Jenkins will
 examine your pom.xml file (or
 files) to see if any SNAPSHOT dependencies are being built by other
 build jobs. If any other build jobs update a SNAPSHOT dependency that
 your project uses, Jenkins will build your project as well.
Typically in Maven, SNAPSHOT dependencies are used to share the
 latest bleeding-edge version of a library with other projects within the
 same team. Since they are by definition unstable, it is not recommended
 practice to rely on SNAPSHOT dependencies from other teams or from
 external sources.
For example, imagine that you are working on a new
 game-of-life web application. You are using Maven
 for this project, so you can use a Maven build job in Jenkins. Your team
 is also working on a reusable library called
 cooltools. Since these two projects are being
 developed by the same team, you are using some of the latest
 cooltools features in the
 game-of-life web application. So you have a
 SNAPSHOT dependency in the <dependencies> section of
 your game-of-life pom.xml file:
 <dependencies>
 <dependency>
 <groupId>com.acme.common</groupId>
 <artifactId>cooltools</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <scope>test</scope>
 </dependency>
 ...
 </dependencies>
On your Jenkins server, you have set up Maven build jobs for both
 the cooltools and the
 game-of-life applications. Since your
 game-of-life project needs the latest
 cooltools SNAPSHOT version, you tick the “Build
 whenever a SNAPSHOT dependency is built” option. This way, whenever the
 cooltools project is rebuilt, the
 game-of-life project will automatically
 be rebuilt as well.

Configuring the Maven Build

The next area where you will notice a change is in the Build
 section. In a Maven build job, the build section is entirely devoted to
 running a single Maven goal (see Figure 5-38). In this section, you specify
 the version of Maven you want to execute (remember, at the time of
 Maven, this will only work with Maven), the location of the pom.xml file, and the Maven goal (or goals)
 to invoke. You can also add any command-line options you need
 here.
[image: Specifying the Maven goals]

Figure 5-38. Specifying the Maven goals

In many cases, this is all you need to get your Maven build job
 configured. However, if you click on the “Advanced...” button, you can
 take your pick of some more advanced features (Figure 5-39).
[image: Maven build jobs—advanced options]

Figure 5-39. Maven build jobs—advanced options

The Incremental Build option comes in very handy for large, multimodule Maven builds.
 If you tick this option, when a change is made to one of the project
 modules, Jenkins will only rebuild that module and any modules that use
 the changed module. It performs this magic by using some new Maven
 features introduced in Maven 2.1 (so it won’t work if you are using
 Maven 2.0.x). Jenkins detects which modules have been changed, and then
 uses the -pl (--project-list)
 option to build only the updated modules, and the
 -amd (--also-make-dependents)
 option to build the modules that use the updated modules. If nothing has
 been changed in the source code, all of the modules are built.
By default, Jenkins will archive all of the artifacts generated by a Maven
 build job. This can come in handy at times, but it can also be very
 expensive in disk storage. If you want to turn off this option, just
 tick the “Disable automatic artifact archiving” option. Alternatively,
 you can always limit the artifacts stored by using the “Discard Old
 Builds” option at the top of the configuration page.
The “Build modules in parallel” option tells Jenkins to run each individual module in parallel
 as a separate build. In theory, this could speed up your builds quite a
 bit. In practice, it will only really work if your modules are totally
 independent (that is, you aren’t using aggregation), which is rarely the
 case. If you think building your modules in parallel could really speed
 up your multimodule project, you may want to try a freestyle build with
 Maven 3 and its new parallel build feature.
Another useful option is “Use [a] private Maven repository”.
 Normally, when Jenkins runs Maven, it will behave in exactly the same
 way as Maven on the command line: it will store artifacts in, and
 retrieve artifacts from the local Maven repository (found in ~/.m2/repository if you haven’t reconfigured
 it in the settings.xml file). This
 is efficient in terms of disk space, but not always ideal for CI builds.
 Indeed, if several build jobs are working on and with the same snapshot
 artifacts, the builds may end up interfering with each other.
When this option is checked, Jenkins will tell Maven to use
 $WORKSPACE/.repository as the local Maven
 repository. This means each job will get its own isolated Maven
 repository just for itself. It fixes the above problems, at the expense
 of additional disk space consumption.
With this option, Maven will use a dedicated Maven repository for
 this build job, located in the $WORKSPACE/.repository directory. This takes
 more disk space, but guarantees a better isolation between build
 jobs.
Another way of addressing this problem is to override the default
 repository location by using the maven.repo.local
 property, as shown here:
$ mvn install -Dmaven.repo.local=~/.m2/staging-repository
This approach has the advantage of being able to share a
 repository across several build jobs, which is useful if you need to do
 a series of related builds. It will also work with freestyle
 jobs.

Post-Build Actions

The Post-Build actions in a Maven build job are considerably
 simpler to configure than in a freestyle job. This is simply because,
 since this is a Maven build, Jenkins knows where to look for a lot of
 the build output. Artifacts, test reports, Javadoc, and so forth, are
 all generated in standard directories, which means
 you don’t have to tell Jenkins where to find
 things. So Jenkins will find, and report on, JUnit test results
 automatically, for example. Later on in the book, we will see how the
 Maven projects also simplify the configuration of many code quality
 metrics tools and reports.
Most of the other Post-build Actions are similar to those we
 saw in the freestyle build
 job.

Deploying to an Enterprise Repository Manager

One extra option does appear in the Maven build jobs is the
 ability to deploy your artifacts to a Maven repository (see Figure 5-40). An Enterprise Repository Manager
 is a server that acts as both a proxy/cache for public Maven artifacts,
 and as a central storage server for your own internal artifacts. Open
 Source Enterprise Repository Managers like Nexus (from Sonatype) and
 Artifactory (from JFrog) provide powerful maintenance and administration
 features that make configuring and maintaining your Maven repositories a
 lot simpler. Both these products have commercial versions, with
 additional features aimed at more sophisticated or high-end build
 infrastructures.
The advantage of getting Jenkins to deploy your artifacts (as
 opposed to simply running mvn deploy) is that, if you
 have a multimodule Maven build, the artifacts will only be deployed once
 the entire build has finished successfully. For example, suppose you
 have a multimodule Maven project with five modules. If you run
 mvn deploy, and the build fails after three modules,
 the first two modules will have been deployed to your repository, but
 not the last three, which leaves your repository in an instable state.
 Getting Jenkins to do the deploy ensures that the artifacts are only
 deployed as a group once the build has successfully finished.
[image: Deploying artifacts to a Maven repository]

Figure 5-40. Deploying artifacts to a Maven repository

To do this, just tick the “Deploy artifacts to Maven repository”
 option in the “Post-Build actions”. You will need to specify the URL of
 the repository you want to deploy to. This needs to be the full URL to
 the repository (e.g.,
 http://nexus.acme.com/nexus/content/repositories/snapshots,
 and not just http://nexus.acme.com/nexus)
Most repositories need you to authenticate before letting you
 deploy artifacts to them. The standard Maven way to do this is to place
 a <server> entry in your local settings.xml file, as shown here:
<settings...>
 <servers>
 <server>
 <id>nexus-snapshots</id>
 <username>scott</username>
 <password>tiger</password>
 </server>
 <server>
 <id>nexus-releases</id>
 <username>scott</username>
 <password>tiger</password>
 </server>
 </servers>
</settings>
For the more security-minded, you can also encrypt these passwords
 if required.
Then, enter the corresponding ID value in the Repository ID field
 in Jenkins. Jenkins will then be able to look up the right username and
 password, and deploy your artifacts. Once the build is finished, your
 artifacts should be available in your Maven Enterprise Repository (see
 Figure 5-41).
[image: After deployment the artifact should be available on your Enterprise Repository Manager]

Figure 5-41. After deployment the artifact should be available on your
 Enterprise Repository Manager

Using this option, you always don’t have to deploy straight
 away—you can always come back and deploy the artifacts from a previous
 build later. Just click on the “Redeploy Artifacts” menu on the left and
 specify the repository URL you want to deploy your artifact to (see
 Figure 5-42). As in the previous
 example, the Advanced button lets you provide the ID for the
 <server> entry in your local settings.xml file. As we will see later on in
 the book, you can also use this deployment as part of a build promotion
 process, configuring an automatic deployment to a different repository
 when certain quality metrics have been satisfied, for example.
[image: Redeploying an artifact]

Figure 5-42. Redeploying an artifact

This approach will work fine for any Enterprise Repository
 manager. However, if you are using Artifactory, you may prefer to install the Jenkins Artifactory
 Plugin, which provides tighter two-way integration with the
 Artifactory Enterprise Repository Manager. It works by sending
 additional information to the Artifactory server during the deployment,
 allowing the server to refer back to the precise build that generated a
 given artifact. Once you have installed the plugin, you can activate it
 in your Maven build job by ticking the “Deploy artifacts to Artifactory”
 option in the Post-build Actions. Then you choose what repositories your
 project should deploy to from a list of repositories on the server,
 along with the username and password required to perform the deployment
 (see Figure 5-43).
[image: Deploying to Artifactory from Jenkins]

Figure 5-43. Deploying to Artifactory from Jenkins

Your build job will now automatically deploy to Artifactory. In
 addition, a link to the artifact on the server will now be displayed on
 the build job home and build results pages (see Figure 5-44).
[image: Jenkins displays a link to the corresponding Artifactory repository]

Figure 5-44. Jenkins displays a link to the corresponding Artifactory
 repository

This link takes you to a page on the Artifactory server containing
 the deployed artifact (see Figure 5-45).
 From this page, there is also a link that takes you back to the build
 that built the artifact.
[image: Viewing the deployed artifact in Artifactory]

Figure 5-45. Viewing the deployed artifact in Artifactory

Deploying to Commercial Enterprise Repository Managers

An Enterprise Repository Manager is an essential part of any
 Maven-based software development infrastructure. They also play a key
 role for non-Maven projects using tools like Ivy and Gradle, both of
 which rely on standard Maven repositories.
Both of the principal Enterprise Repository Managers, Nexus and Artifactory, offer professional versions which
 come with extra integration features with Jenkins. Later on in the book,
 we will discuss how you can use advanced features such as Nexus Pro’s
 staging and release management to implement sophisticated build
 promotion strategies. On the deployment side of things, the commercial
 edition of Artifactory (Artifactory Pro Power Pack) extends the two-way
 integration we saw earlier. When you view an artifact in the repository
 browser, a “Builds” tab displays details about the Jenkins build that created the artifact,
 and a link to the Jenkins build page (see Figure 5-46). Artifactory also keeps track
 of the dependencies that were used in the Jenkins build, and will warn
 you if you try to delete them from the repository.
[image: Viewing the deployed artifact and the corresponding Jenkins build in Artifactory]

Figure 5-46. Viewing the deployed artifact and the corresponding Jenkins
 build in Artifactory

Managing Modules

When using Maven, it is common to split a project into several
 modules. Maven build jobs have an intrinsic understand of multimodule
 projects, and adds a Modules menu item that lets you display the
 structure of the project at a glance (see Figure 5-47).
[image: Managing modules in a Maven build job]

Figure 5-47. Managing modules in a Maven build job

Clicking on any of the modules will take you to the build page for
 that module. From here, you can view the detailed build results for each
 module, trigger a build of that module in isolation, and if necessary
 fine tune the configuration of individual module, overriding the
 configuration of the overall project.

Extra Build Steps in Your Maven Build Jobs

By default, the Maven build job only allows for a single
 Maven goal. There are times when this is a little limiting, and you
 would like to add some extra steps before or after the main build. You
 can do this with the Jenkins M2 Extra Steps Plugin. This plugin lets you add
 normal build steps before and after the main Maven goal, giving you the
 flexibility of a freestyle build while still having the convenience of
 the Maven build job configuration.
Install this plugin and go to the Build Environment section of
 your build job. Tick the “Configure Extra M2 Build Steps” option. You
 should now be able to add build steps that will be executed before
 and/or after your main Maven goal is executed (see Figure 5-48).
[image: Configuring extra Maven build steps]

Figure 5-48. Configuring extra Maven build steps

Using Jenkins with Other Languages

As we mentioned earlier, Jenkins provides excellent support for
 other languages. In this section, we will look at how to use Jenkins with
 a few of the more common ones.
Building Projects with Grails

Grails is an open source dynamic web application framework built
 on Groovy and many well-established open source Java frameworks such as
 Spring and Hibernate.
Jenkins provides excellent support for Grails builds. First, you
 need to install the Jenkins Grails
 plugin. Once you have installed this and restarted Jenkins, you
 will need to provide at least one version of Grails for Jenkins to use
 in the Grails Builder section of the Configure System screen (see Figure 5-49).
[image: Adding a Grails installation to Jenkins]

Figure 5-49. Adding a Grails installation to Jenkins

Now you can set up a freestyle build job to build your Grails
 project. The Grails plugin adds the “Build with Grails” build step,
 which you can use to build your Grails application (see Figure 5-50). Here, you provide the Grails
 target, or targets, you want to execute. Unlike the command line, you
 can execute several targets in the same command. However, if you need to
 pass any arguments to a particular target, you should enclose the target
 and its arguments in double quotes. In Figure 5-50, for example, we run
 grails clean, followed by grails test-app
 -unit -non-interactive. To get this to work properly, we
 enclose the options of the second command in quotes, which gives us
 grails clean "test-app -unit
 -non-interactive".
[image: Configuring a Grails build step]

Figure 5-50. Configuring a Grails build step

The Grails build step takes many optional parameters. For example,
 Grails is finicky about versions—if your project was created by an older
 version, Grails will ask you to upgrade it. To be on the safe side, for
 example, you may want to tick the Force Upgrade checkbox, which makes
 sure that runs a grails upgrade --non-interactive
 before it runs the main targets.
You can also specify the server port (useful if you are executing
 web tests), and any other properties you want to pass to the build.

Building Projects with Gradle

Contributed by Rene Groeschke
In comparison to the build tool veterans Ant and Maven,
 Gradle is a relatively new open
 source build tool for the Java Virtual Machine. Build scripts for Gradle
 are written in a Domain Specific Language (DSL) based on Groovy. Gradle
 implements convention over configuration, allows direct access to Ant
 tasks, and uses Maven-like declarative dependency management. The
 concise nature of Groovy scripting lets you write very expressive build
 scripts with very little code, albeit at the cost of loosing the IDE
 support that exists for established tools like Ant and Maven.
There are two different ways to run your Gradle builds with
 Jenkins. You can either use the Gradle plugin for Jenkins or the Gradle
 wrapper functionality.
The Gradle plugin for Jenkins

You can install the Gradle plugin in the usual way—just go to
 the Manage Plugins screen and select the Jenkins Gradle plugin. Click
 Install and restart your Jenkins instance.
Once Jenkins has restarted, you will need to configure your new
 Gradle plugin. You should now find a new Gradle section in your
 Configure System screen. Here you will need to add the Gradle
 installation you want to use. The process is similar to that used for
 the other tool installations. First, click the Add Gradle button to
 add a new Gradle installation, and enter an appropriate name (see
 Figure 5-51). If Gradle has already been
 installed on your build server, you can point to the local Gradle home
 directory. Alternatively, you can use the “Install automatically”
 feature to download a Gradle installation, in the form of a ZIP or
 GZipped TAR file, directly from a URL. You can use a public URL (see
 http://gradle.org/downloads.html), or may prefer
 to make these installations available on a local server
 instead.
[image: Configuring the Gradle plugin]

Figure 5-51. Configuring the Gradle plugin

You typically use Freestyle build jobs to configure your Gradle
 builds. When you add a build step to a Freestyle build job, you will
 now have a new option called “Invoke Gradle script”, which lets you
 add Gradle specific settings to your build job.
As an example, here is a very simple Gradle build script. It is
 a simple Java project that uses a Maven directory structure and a
 Maven repository manager. There is a customizable task, called
 uploadArchives, to deploy the generated archive
 to the local Enterprise repository manager:
apply plugin:'java'
apply plugin:'maven'

version='1.0-SNAPSHOT'
group = "org.acme"

repositories{
 mavenCentral()
 mavenRepo urls: 'http://build.server/nexus/content/repositories/public'
}

dependencies{
 testCompile "junit:junit:4.8.2"
}

uploadArchives {
 repositories.mavenDeployer {
 configuration = configurations.archives
 repository(url: "http://build.server/nexus/content/repositories/snapshots") {
 authentication(userName: "admin", password: "password")
 }
 }
}
In Figure 5-52, we use the just
 configured “Gradle-0.9RC2” instance to run this Gradle build. In this
 case, we want to run the JUnit tests and upload the build artifacts to
 our local Maven repository. Furthermore we configure our job to
 collect the test results from
 **/build/test-results, the default directory for
 storing test results in Gradle.

Incremental builds

While running a Gradle build job with unchanged sources, Gradle
 runs its builds incremental. If the output of a Gradle task is still
 available and the sources haven’t changed since the last build, Gradle
 is able to skip the task execution and marks the according task as
 up-to-date. This incremental build feature can decrease the duration
 of a running build job considerably.
If Gradle evaluates the test task as up-to-date even the
 execution of your unit tests is skipped. This can cause problems when
 running your Gradle build with Jenkins. In our sample build job above
 we configured a post build action to publish the JUnit reports of our
 build. If the test task is skipped by Gradle, the Jenkins job will be
 marked as failed with the following message:
Test reports were found but none of them are new. Did tests
 run?

You can easily fix this by invalidating the output and force a
 re-execution of your tests by adding the following snippet to your
 Gradle file:
test {
 outputs.upToDateWhen { false }
}
[image: Setting up a Gradle build job]

Figure 5-52. Setting up a Gradle build job

After adding the snippet above to your build file, your job
 console output should look like the one in Figure 5-53.
[image: Incremental Gradle job]

Figure 5-53. Incremental Gradle job

As you can see, all of the tasks except
 test and uploadArchives have
 been marked as up-to-date and not executed.

Building Projects with Visual Studio MSBuild

Jenkins is a Java application, but it also provides excellent
 support for .NET projects.
To build .NET projects in Jenkins, you need to install the
 MSBuild
 plugin.
You may also want to install the MSTest
 plugin and the NUnit
 plugin, to display your test results.
Once you have installed the .NET plugins and restarted Jenkins,
 you need to configure your .NET build tools. Go to the Configure System
 page and specify the path of the MSBuild executable (see Figure 5-54).
[image: Configuring .NET build tools in Jenkins]

Figure 5-54. Configuring .NET build tools in Jenkins

Once you have this set up, you can return to your freestyle
 project and add your .NET build step configuration.
Go to the Build section and choose “Build a Visual project or
 solution using MSBuild” option in the Add Build Step menu. Then enter
 the path to your MSBuild build script (a .proj or .sln file), along with any command-line
 options your build requires (see Figure 5-55).
[image: A build step using MSBuild]

Figure 5-55. A build step using MSBuild

Building Projects with NAnt

Another way to build your .NET projects is to use NAnt. NAnt is a
 .NET version of the Ant build scripting tool widely used in the Java
 world. NAnt build scripts are XML files (typically with a .build extension), with a very similar format
 to Ant build scripts.
To build with NAnt in Jenkins, you need to install the Jenkins
 NAnt
 plugin. Once you have installed the plugin and restarted
 Jenkins, go to the Configure System page and specify the NAnt
 installation directory in the Nant Builders section (see Figure 5-54).
Now go to the Build section of your freestyle project and choose
 “Execute NAnt build” (see Figure 5-56). Here
 you specify your build script and the target you want to invoke. If you
 click on the “Advanced...” option, you can also set property values to
 be passed into the NAnt script.
[image: A build step using NAnt]

Figure 5-56. A build step using NAnt

Building Projects with Ruby and Ruby on Rails

Jenkins makes an excellent choice when it comes to integrating CI
 into your Ruby and Ruby on Rails projects. The Rake Plugin lets you add
 Rake build steps to your build jobs. You can also use the Ruby Plugin
 lets you run Ruby scripts directly in your build job. Finally, the Ruby
 Metrics Plugin provides support for Ruby code quality metrics tools such
 as RCov, Rails stats, and Flog.
Another invaluable tool in this area is
 CI:Reporter. This library is an add-on to
 Test::Unit, RSpec, and
 Cucumber that generates JUnit-compatible XML reports
 for your tests. As we will see, JUnit-compatible test results can be
 used directly by Jenkins to report on your test results. You would
 install CI:Reporter using Gem as illustrated here:
$ sudo gem install ci_reporter
Successfully installed ci_reporter-1.6.4
1 gem installed
Next, you will need to set this up in your Rakefile, by adding the
 following:
require 'rubygems'
gem 'ci_reporter'
require 'ci/reporter/rake/test_unit' # use this if you're using Test::Unit
In Chapter 9, we discuss integrating
 code quality metrics into your Jenkins builds. Jenkins also provides
 support for code coverage metrics in Ruby. The Ruby Metrics Plugin
 supports code coverage metrics using rcov as well as general code statistics with
 Rails stats. To install the rcov-plugin, you will first need to run
 something along the following lines:
$./script/plugin install http://svn.codahale.com/rails_rcov
Once this is set up, you will be able to display your test results
 and test result trend in Jenkins.
Finally, you can configure a Rake build simply by using a Rake
 build step, as illustrated in Figure 5-57.
[image: A build step using Rake]

Figure 5-57. A build step using Rake

You also need to configure Jenkins to report on the test and
 quality metrics results. You can do this by activating the “Publish
 JUnit test result report”, “Publish Rails stats report”, and “Public
 Rcov report” options (see Figure 5-58).
 The JUnit XML reports will be found in the results directory (enter
 results/*.xml in the “Test report XMLs” field),
 and the Rcov date in the coverage/units directory.
[image: Publishing code quality metrics for Ruby and Rails]

Figure 5-58. Publishing code quality metrics for Ruby and Rails

Conclusion

In this chapter we have covered the basics of creating new build
 jobs for the most common cases you are likely to encounter. Later on in
 the book, we will build on these foundations to discuss more advanced
 options such as parameterized builds, matrix builds, and build promotion
 strategies.

Chapter 6. Automated Testing

Introduction

If you aren’t using automated tests with your Continuous
 Integration setup, you’re really missing out on something big. Believe
 me—CI without automated tests is really just a small improvement on
 automatically scheduled builds. Now don’t get me wrong, if you’re coming
 from nothing, that’s already a great step forward—but you can do much
 better. In short, if you are using Jenkins without any automated tests,
 you are not getting anywhere near as much value out of your Continuous
 Integration infrastructure as you should.
One of the basic principles of Continuous Integration is that a
 build should be verifiable. You have to be able to objectively determine
 whether a particular build is ready to proceed to the next stage of the
 build process, and the most convenient way to do this is to use automated
 tests. Without proper automated testing, you find yourself having to
 retain many build artifacts and test them by hand, which is hardly in the
 spirit of Continuous Integration.
There are many ways you can integrate automated tests into your
 application. One of the most efficient ways to write high quality tests is
 to write them first, using techniques such as Test-Driven Development (TDD) or Behavior-Driven Development (BDD). In this approach,
 commonly used in many Agile projects, the aim of your unit tests is to
 both clarify your understanding of the code’s behavior and to write an
 automated test that the code does indeed implement this behavior. Focusing
 on testing the expected behavior, rather than the implementation, of your
 code also makes for more comprehensive and more accurate tests, and thus
 helps Jenkins to provide more relevant feedback.
Of course, more classical unit testing, done once the code has
 been implemented, is also another commonly-used approach, and is certainly
 better than no tests at all.
Jenkins is not limited to unit testing, though. There are many other
 types of automated testing that you should consider, depending on the
 nature of your application, including integration testing, web testing,
 functional testing, performance testing, load testing and so on. All of
 these have their place in an automated build setup.
Jenkins can also be used, in conjunction with techniques like
 Behavior-Driven Development and Acceptance Test Driven Development, as a
 communications tool aimed at both developers and other project
 stakeholders. BDD frameworks such as easyb, fitnesse, jbehave, rspec,
 Cucumber, and many others, try to present acceptance tests in terms that
 testers, product owners, and end users can understand. With the use of
 such tools, Jenkins can report on project progress in business terms, and
 so facilitate communication between developers and non-developers within a
 team.
For existing or legacy applications with little or no automated
 testing in place, it can be time-consuming and difficult to retro-fit
 comprehensive unit tests onto the code. In addition, the tests may not be
 very effective, as they will tend to validate the existing implementation
 rather than verify the expected business behavior. One useful approach in
 these situations is to write automated functional tests (“regression”) tests that
 simulate the most common ways that users manipulate the application. For
 example, automated web testing tools such as Selenium and WebDriver can be
 effectively used to test web applications at a high level. While this
 approach is not as comprehensive as a combination of good quality unit,
 integration and acceptance tests, it is still an effective and relatively
 cost-efficient way to integrate automated regression testing into an
 existing application.
In this chapter, we will see how Jenkins helps you keep track of
 automated test results, and how you can use this information to monitor
 and dissect your build process.

Automating Your Unit and Integration Tests

The first thing we will look at is how to integrate your unit
 tests into Jenkins. Whether you are practicing Test-Driven Development, or
 writing unit tests using a more conventional approach, these are probably
 the first tests that you will want to automate with Jenkins.
Jenkins does an excellent job of reporting on your test results.
 However, it is up to you to write the appropriate tests and to configure
 your build script to run them automatically. Fortunately integrating unit
 tests into your automated builds is generally relatively easy.
There are many unit testing tools out there, with the xUnit family holding a predominant place. In the Java world,
 JUnit is the de facto standard, although TestNG is another popular Java unit testing framework with a
 number of innovative features. For C# applications, the NUnit testing framework proposes similar functionalities to
 those provided by JUnit, as does Test::Unit for Ruby. For C/C++, there is
 CppUnit, and PHP developers can use PHPUnit. And this is not an exhaustive list!
These tools can also serve for integration tests, functional tests, web tests and so forth. Many web testing tools, such as Selenium, WebDriver, and Watir,
 generate xUnit-compatible reports. Behaviour-Driven Development and
 automated Acceptance-Test tools such as easyb, Fitnesse, Concordion are
 also xUnit-friendly. In the following sections we make no distinction
 between these different types of test, as, from a configuration point of
 view, they are treated by Jenkins in exactly the same manner. However, you
 will almost certainly need to make the distinction in your build jobs. In
 order to get the fastest possible feedback loop, your tests should be
 grouped into well-defined categories, starting with the fast-running unit
 tests, and then proceeding to the integration tests, before finally
 running the slower functional and web tests.
A detailed discussion of how to automate your tests is beyond the
 scope of this book, but we do cover a few useful techniques for Maven
 and Ant in the Appendix A.

Configuring Test Reports in Jenkins

Once your build generates test results, you need to configure
 your Jenkins build job to display them. As mentioned above, Jenkins will
 work fine with any xUnit-compatible test reports, no matter what language
 they are written in.
For Maven build jobs, no special configuration is required—just
 make sure you invoke a goal that will run your tests, such as mvn
 test (for your unit tests) or mvn verify (for
 unit and integration tests). An example of a Maven build job configuration
 is shown in Figure 6-1.
[image: You configure your Jenkins installation in the Manage Jenkins screen]

Figure 6-1. You configure your Jenkins installation in the Manage Jenkins
 screen

For freestyle build jobs, you need to do a little more
 configuration work. In addition to ensuring that your build actually runs
 the tests, you need to tell Jenkins to publish the JUnit test report. You
 configure this in the “Post-build Actions” section (see
 Figure 6-2). Here, you provide
 a path to the JUnit or TestNG XML reports. Their exact location will
 depend on a project—for a Maven project, a path like
 **/target/surefire-reports/*.xml will find them for
 most projects. For an Ant-based project, it will depend on how you
 configured the Ant JUnit task, as we discussed above.
[image: Configuring Maven test reports in a freestyle project]

Figure 6-2. Configuring Maven test reports in a freestyle project

For Java projects, whether they are using JUnit or TestNG, Jenkins does an excellent job out of the
 box. If you are using Jenkins for non-Java projects, you might need
 the xUnit Plugin. This plugin lets Jenkins process test reports
 from non-Java tools in a consistent way. It provides support for MSUnit
 and NUnit (for C# and other .NET languages), UnitTest++ and Boost Test
 (for C++), PHPUnit (for PHP), as well as a few other xUnit libraries via
 additional plugins (see Figure 6-3).
[image: Installing the xUnit plugin]

Figure 6-3. Installing the xUnit plugin

Once you have installed the xUnit Plugin, you will need to configure
 the reporting for your particular xUnit reports in the “Post-build
 Actions” section. Check the “Publish testing tools result report”
 checkbox, and enter the path to the XML reports generated by your testing
 library (see Figure 6-4). When the
 build job runs, Jenkins will convert these reports to JUnit reports so
 that they can be displayed in Jenkins.
[image: Publishing xUnit test results]

Figure 6-4. Publishing xUnit test results

Displaying Test Results

Once Jenkins knows where to find the test reports, it does a
 great job of reporting on them. Indeed, one of Jenkins’s main jobs is to
 detect and to report on build failures. And a failing unit test is one of
 the most obvious symptoms.
As we mentioned earlier, Jenkins makes the distinction between failed
 builds and unstable builds. A failed build (indicated
 by a red ball) indicates test failures, or a build job that is broken in
 some brutal manner, such as a compilation error. An unstable build, on the
 other hand, is a build that is not considered of sufficient quality. This
 is intentionally a little vague: what defines “quality” in this sense is
 largely up to you, but it is typically related to code quality metrics
 such as code coverage or coding standards, that we will be discussing
 later on in the book. For now, let’s focus on the
 failed builds.
In Figure 6-5
 we can see how Jenkins displays a Maven build job containing
 test failures. This is the build job home page, which should be your first
 port of call when a build breaks. When a build results in failing tests,
 the Latest Test Result link will indicate the
 current number of test failures in this build job (“5 failures”
 in the illustration), and also the
 change in the number of test failures since the last build (“+5” in the
 illustration—five new test
 failures). You can also see how the tests have been faring over time—test failures from previous builds will
 also appear as red in the Test Result Trend graph.
[image: Jenkins displays test result trends on the project home page]

Figure 6-5. Jenkins displays test result trends on the project home
 page

If you click on the Latest Test Result link, Jenkins will give you a
 rundown of the current test results (see Figure 6-6). Jenkins understands Maven
 multimodule project structures, and for a Maven build job, Jenkins will
 initially display a summary view of test results per module. For more
 details about the failing tests in a particular module, just click on the
 module you are interest in.
[image: Jenkins displays a summary of the test results]

Figure 6-6. Jenkins displays a summary of the test results

For freestyle build jobs, Jenkins will directly give you a
 summary of your test results, but organized by high-level packages rather
 than modules.
In both cases, Jenkins starts off by presenting a summary of test
 results for each package. From here, you can drill down, seeing test
 results for each test class and then finally the tests within the test
 classes themselves. And if there are any failed tests, these will be
 prominently displayed at the top of the page.
This full view gives you both a good overview of the current state
 of your tests, and an indication of their history. The Age column tells
 you how for how long a test has been broken, with a hyperlink that takes
 you back to the first build in which this test failed.
You can also add a description to the test results, using the Edit
 Description link in the top right-hand corner of the screen. This is a
 great way to annotate a build failure with some additional details, in
 order to add extra information about the origin of test failures or some
 notes about how to fix them.
When a test fails, you generally want to know why. To see the
 details of a particular test failure, just click on the corresponding link
 on this screen. This will display all the gruesome details, including the
 error message and the stack trace, as well as a reminder of how long the
 test has been failing (see Figure 6-7). You should be wary of
 tests that have been failing for more than just a couple of builds—this is
 an indicator of either a tricky technical problem that might need
 investigating, or a complacent attitude to failed builds (developers might
 just be ignoring build failures), which is more serious and definitely
 should be investigated.
[image: The details of a test failure]

Figure 6-7. The details of a test failure

Make sure you also keep an eye on how long your tests take to
 run, and not just whether they pass or fail. Unit tests should be designed
 to run fast, and overly long-running tests can be the sign of a
 performance issue. Slow unit tests also delay feedback, and in CI, fast
 feedback is the name of the game. For example, running one thousand unit
 tests in five minutes is good—taking an hour to run them is not. So it is
 a good idea to regularly check how long your unit tests are taking to run,
 and if necessary investigate why they are taking so long.
Luckily, Jenkins can easily tell you how long your tests have been
 taking to run over time. On the build job home page, click on the “trend”
 link in the Build History box on the left of the screen. This will give
 you a graph along the lines of the one in Figure 6-8, showing how long each of your builds
 took to run. Now tests are not the only thing that happens in a build job,
 but if you have enough tests to worry about, they will probably take a
 large proportion of the time. So this graph is a great way to see how well
 your tests are performing as well.
[image: Build time trends can give you a good indicator of how fast your tests are running]

Figure 6-8. Build time trends can give you a good indicator of how fast your
 tests are running

When you are on the Test Results page (see Figure 6-6), you can also drill down and
 see how long the tests in a particular module, package or class are taking
 to run. Just click on the test duration in the test results page (“Took 31
 ms” in Figure 6-6) to view the
 test history for a package, class, or individual test (see Figure 6-9). This makes it easy to
 isolate a test that is taking more time than it should, or even decide
 when a general optimization of your unit tests is required.

Ignoring Tests

Jenkins distinguishes between test failures and skipped tests.
 Skipped tests are ones that have been deactivated, for example by using
 the @Ignore annotation in JUnit 4:
@Ignore("Pending more details from the BA")
@Test
public void cashWithdrawalShouldDeductSumFromBalance() throws Exception {
 Account account = new Account();
 account.makeDeposit(100);
 account.makeCashWithdraw(60);
 assertThat(account.getBalance(), is(40));
}
[image: Jenkins also lets you see how long your tests take to run]

Figure 6-9. Jenkins also lets you see how long your tests take to run

Skipping some tests is perfectly legitimate in some circumstances,
 such as to place an automated acceptance test, or higher-level technical
 test, on hold while you implement the lower levels. In such cases, you
 don’t want to be distracted by the failing acceptance test, but you don’t
 want to forget that the test exists either. Using techniques such as the
 @Ignore annotation are better than simply commenting
 out the test or renaming it (in JUnit 3), as it lets Jenkins keep tabs on
 the ignored tests for you.
In TestNG, you can also skip tests, using the
 enabled property:
@Test(enabled=false)
public void cashWithdrawalShouldDeductSumFromBalance() throws Exception {
 Account account = new Account();
 account.makeDeposit(100);
 account.makeCashWithdraw(60);
 assertThat(account.getBalance(), is(40));
}
In TestNG, you can also define dependencies between tests, so that
 certain tests will only run after another test or group of tests has run,
 as illustrated here:
@Test
public void serverStartedOk() {...}

@Test(dependsOnMethods = { "serverStartedOk" })
public void whenAUserLogsOnWithACorrectUsernameAndPasswordTheHomePageIsDisplayed(){..}
Here, if the first test (serverStartedOk())
 fails, the following test will be skipped.
In all of these cases, Jenkins will mark the tests that were not run
 as yellow, both in the overall test results trend, and in the test details
 (see Figure 6-10). Skipped tests are not
 as bad as test failures, but it is important not to get into the habit of
 neglecting them. Skipped tests are like branches in a version control
 system: a test should be skipped for a specific reason, with a clear idea
 as to when they will be reactivated. A skipped test that remains skipped
 for too long is a bad smell.
[image: Jenkins displays skipped tests as yellow]

Figure 6-10. Jenkins displays skipped tests as yellow

Code Coverage

Another very useful test-related metric is code coverage. Code
 coverage gives an indication of what parts of your application were
 executed during the tests. While this in itself is not a sufficient
 indication of quality testing (it is easy to execute an entire application
 without actually testing anything, and code coverage metrics provide no
 indication of the quality or accuracy of your tests), it is a very good
 indication of code that has not been tested. And, if
 your team is introducing rigorous testing practices such as
 Test-Driven-Development, code coverage can be a good indicator of how well
 these practices are being applied.
Code coverage analysis is a CPU and memory-intensive process, and will
 slow down your build job significantly. For this reason, you will
 typically run code coverage metrics in a separate Jenkins build job, to be
 run after your unit and integration tests are successful.
There are many code coverage tools available, and several are
 supported in Jenkins, all through dedicated plugins. Java developers can
 pick between Cobertura and Emma, two popular open source code coverage
 tools, or Clover, a powerful commercial code coverage tool from Atlassian.
 For .NET projects, you can use NCover.
The behavior and configuration of all of these tools is similar. In
 this section, we will look at Cobertura.
Measuring Code Coverage with Cobertura

Cobertura is an open source code coverage tool for Java and Groovy
 that is easy to use and integrates well with both Maven and
 Jenkins.
Like almost all of the Jenkins code quality metrics
 plugins,[2] the Cobertura plugin for Jenkins will not run any test
 coverage metrics for you. It is left up to you to generate the raw code
 coverage data as part of your automated build process. Jenkins, on the
 other hand, does an excellent job of reporting on
 the code coverage metrics, including keeping track of code coverage over
 time, and providing aggregate coverage across multiple application
 modules.
Code coverage can be a complicated business, and it helps to
 understand the basic process that Cobertura follows, especially when you
 need to set it up in more low-level build scripting tools like Ant. Code
 coverage analysis works in three steps. First, it modifies (or
 “instruments”) your application classes, to make them keep a tally of
 the number of times each line of code has been executed.[3] They store all this data in a special data file (Cobertura
 uses a file called cobertura.ser).
When the application code has been instrumented, you run your
 tests against this instrumented code. At the end of the tests, Cobertura
 will have generated a data file containing the number of times each line
 of code was executed during the tests.
Once this data file has been generated, Cobertura can use this
 data to generate a report in a more usable format, such as XML or
 HTML.
Integrating Cobertura with Maven

Producing code coverage metrics with Cobertura in Maven is
 relatively straightforward. If all you are interested in is producing
 code coverage data, you just need to add the cobertura-maven-plugin to the build section
 of your pom.xml file:
 <project>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <formats>
 <format>html</format>
 <format>xml</format>
 </formats>
 </configuration>
 </plugin>
 ...
 </plugins>
 <build>
 ...
</project>
This will generate code coverage metrics when you invoke the
 Cobertura plugin directly:
$ mvn cobertura:cobertura
The code coverage data will be generated in the target/site/cobertura directory, in a file
 called coverage.xml.
This approach, however, will instrument your classes and produce
 code coverage data for every build, which is inefficient. A better
 approach is to place this configuration in a special profile, as shown
 here:
 <project>
 ...
 <profiles>
 <profile>
 <id>metrics</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <formats>
 <format>html</format>
 <format>xml</format>
 </formats>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 ...
 </profiles>
</project>
In this case, you would invoke the Cobertura plugin using the
 metrics profile to generate the code coverage data:
$ mvn cobertura:cobertura -Pmetrics
Another approach is to include code coverage reporting in your
 Maven reports. This approach is considerably slower and more
 memory-hungry than just generating the coverage data, but it can make
 sense if you are also generating other code quality metrics and
 reports at the same time. If you want to do this using Maven 2, you
 need to also include the Maven Cobertura plugin in the reporting
 section, as shown here:
 <project>
 ...
 <reporting>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>cobertura-maven-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <formats>
 <format>html</format>
 <format>xml</format>
 </formats>
 </configuration>
 </plugin>
 </plugins>
 </reporting>
</project>
Now the coverage data will be generated when you generate the
 Maven site for this project:
$ mvn site
If your Maven project contains modules (as is common practice
 for larger Maven projects), you just need to set up the Cobertura
 configuration in a parent pom.xml
 file—test coverage metrics and
 reports will be generated separately for each module. If you use the
 aggregate configuration option, the Maven Cobertura
 plugin will also generate a high-level report combining coverage data
 from all of the modules. However, whether you use this option or not,
 the Jenkins Cobertura plugin will take coverage data from several
 files and combine them into a single aggregate report.
At the time of writing, there is a limitation with the Maven
 Cobertura plugin—code coverage will only be recorded for tests
 executed during the test life cycle
 phase, and not for tests executed during the integration-test phase. This can be an issue
 if you are using this phase to run integration or web tests that
 require a fully packaged and deployed application—in this case,
 coverage from tests that are only performed during the integration
 test phase will not be counted in the Cobertura code
 coverage metrics.

Integrating Cobertura with Ant

Integrating Cobertura into your Ant build is more complicated than
 doing so in Maven. However it does give you a finer control over what
 classes are instrumented, and when coverage is measured.
Cobertura comes bundled with an Ant task that you can use to
 integrate Cobertura into your Ant builds. You will need to download
 the latest Cobertura distribution, and unzip it somewhere on your hard
 disk. To make your build more portable, and therefore easier to deploy
 into Jenkins, it is a good idea to place the Cobertura distribution
 you are using within your project directory, and to save it in your
 version control system. This way it is easier to ensure that the build
 will use the same version of Cobertura no matter where it is
 run.
Assuming you have downloaded the latest Cobertura installation
 and placed it within your project in a directory called tools, you could do something like
 this:
<property name="cobertura.dir" value="${basedir}/tools/cobertura" />[image: 1]

<path id="cobertura.classpath">[image: 2]
 <fileset dir="${cobertura.dir}">
 <include name="cobertura.jar" />[image: 3]
 <include name="lib/**/*.jar" />[image: 4]
 </fileset>
</path>

<taskdef classpathref="cobertura.classpath" resource="tasks.properties" />
	[image: 1]
	Tell Ant where your Cobertura installation is.

	[image: 2]
	We need to set up a classpath that Cobertura can use to
 run.

	[image: 3]
	The path contains the Cobertura application itself.

	[image: 4]
	And all of its dependencies.

Next, you need to instrument your application classes. You have
 to be careful to place these instrumented classes in a separated
 directory, so that they don’t get bundled up and deployed to
 production by accident:
<target name="instrument" depends="init,compile">[image: 1]
 <delete file="cobertura.ser"/>[image: 2]
 <delete dir="${instrumented.dir}" />[image: 3]
 <cobertura-instrument todir="${instrumented.dir}">[image: 4]
 <fileset dir="${classes.dir}">
 <include name="**/*.class" />
 <exclude name="**/*Test.class" />
 </fileset>
 </cobertura-instrument>
</target>
	[image: 1]
	We can only instrument the application classes once they
 have been compiled.

	[image: 2]
	Remove any coverage data generated by previous
 builds.

	[image: 3]
	Remove any previously instrumented classes.

	[image: 4]
	Instrument the application classes (but not the test
 classes) and place them in the ${instrumented.dir}
 directory.

At this stage, the ${instrumented.dir}
 directory contains an instrumented version of our application classes.
 Now all we need to do to generate some useful code coverage data is to
 run our unit tests against the classes in this directory:
<target name="test-coverage" depends="instrument">
 <junit fork="yes" dir="${basedir}">[image: 1]
 <classpath location="${instrumented.dir}" />
 <classpath location="${classes.dir}" />
 <classpath refid="cobertura.classpath" />[image: 2]

 <formatter type="xml" />
 <test name="${testcase}" todir="${reports.xml.dir}" if="testcase" />
 <batchtest todir="${reports.xml.dir}" unless="testcase">
 <fileset dir="${src.dir}">
 <include name="**/*Test.java" />
 </fileset>
 </batchtest>
 </junit>
</target>
	[image: 1]
	Run the JUnit tests against the instrumented application
 classes.

	[image: 2]
	The instrumented classes use Cobertura classes, so the
 Cobertura libraries also need to be on the classpath.

This will produce the raw test coverage data we need to produce
 the XML test coverage reports that Jenkins can use. To actually
 produce these reports, we need to invoke another task, as shown
 here:
<target name="coverage-report" depends="test-coverage">
 <cobertura-report srcdir="${src.dir}" destdir="${coverage.xml.dir}"
 format="xml" />
</target>
Finally, don’t forget to tidy up after your done: the clean target should delete not only the
 generated classes, but also the generated instrumented classes, the
 Cobertura coverage data, and the Cobertura reports:
<target name="clean"
 description="Remove all files created by the build/test process.">
 <delete dir="${classes.dir}" />
 <delete dir="${instrumented.dir}" />
 <delete dir="${reports.dir}" />
 <delete file="cobertura.log" />
 <delete file="cobertura.ser" />
</target>
Once this is done, you are ready to integrate your coverage
 reports into Jenkins.

Installing the Cobertura code coverage plugin

Once code coverage data is being generated as part of your
 build process, you can configure Jenkins to report on it. This
 involves installing the Jenkins Cobertura plugin. We went through this
 process in Adding Code Coverage and Other Metrics, but we’ll run through it again to
 refresh your memory. Go to the Manage Jenkins screen, and click on
 Manage Plugins. This will take you to the Plugin Manager screen. If
 Cobertura has not been installed, you will find the Cobertura Plugin
 in the Available tab, in the Build Reports section (see Figure 6-11). To install it, just tick
 the checkbox and press enter (or scroll down to the bottom of the
 screen and click on the “Install” button). Jenkins will download and
 install the plugin for you. Once the downloading is done, you will
 need to restart your Jenkins server.
[image: Installing the Cobertura plugin]

Figure 6-11. Installing the Cobertura plugin

Reporting on code coverage in your build

Once you have installed the plugin, you can set up code
 coverage reporting in your build jobs. Since code coverage can be slow
 and memory-hungry, you would typically create a separate build job for
 this and other code quality metrics, to be run after the normal unit
 and integration tests. For very large projects, you may even want to
 set this up as a build that only runs on a nightly basis. Indeed,
 feedback on code coverage and other such metrics is usually not as
 time-critical as feedback on test results, and this will leave build
 executors free for build jobs that can benefit from snappy
 feedback.
As we mentioned earlier, Jenkins does not do any code coverage
 analysis itself—you need to configure your build to produce the
 Cobertura coverage.xml file (or
 files) before you can generate any nice graphs or reports, typically
 using one of the techniques we discussed previously (see Figure 6-12).
[image: Your code coverage metrics build needs to generate the coverage data]

Figure 6-12. Your code coverage metrics build needs to generate the
 coverage data

Once you have configured your build to produce some code
 coverage data, you can configure Cobertura in the “Post-build Actions”
 section of your build job. When you tick the “Publish Cobertura
 Coverage Report” checkbox, you should see something like Figure 6-13.
[image: Configuring the test coverage metrics in Jenkins]

Figure 6-13. Configuring the test coverage metrics in Jenkins

The first and most important field here is the path to the
 Cobertura XML data that we generated. Your project may include a
 single coverage.xml file, or
 several. If you have a multimodule Maven project, for example, the
 Maven Cobertura plugin will generate a separate coverage.xml file for each module.
The path accepts Ant-style wildcards, so it is easy to include
 code coverage data from several files. For any Maven project, a path
 like **/target/site/cobertura/coverage.xml will
 include all of the code coverage metrics for all of the modules in the
 project.
There are actually several types of code coverage, and it can
 sometimes be useful to distinguish between them. The most intuitive is
 Line Coverage, which counts the number of times any given line is
 executed during the automated tests. “Conditional Coverage” (also
 referred to as “Branch Coverage”) takes into account whether the
 boolean expressions in if statements and the like
 are tested in a way that checks all the possible outcomes of the
 conditional expression. For example, consider the following code
 snippet:
if (price > 10000) {
 managerApprovalRequired = true;
}
To obtain full Conditional Coverage for this code, you would
 need to execute it twice: once with a value that is more than 10,000,
 and one with a value of 10,000 or less.
Other more basic code coverage metrics include methods (how many
 methods in the application were exercised by the tests), classes and
 packages.
Jenkins lets you define which of these metrics you want to
 track. By default, the Cobertura plugin will record Conditional, Line,
 and Method coverage, which is usually plenty. However it is easy to
 add other coverage metrics if you think this might be useful for your
 team.
Jenkins code quality metrics are not simply a passive reporting
 process—Jenkins lets you define how these metrics affect the build
 outcome. You can define threshold values for the coverage metrics that
 affect both the build outcome and the weather reports on the Jenkins
 dashboard (see Figure 6-14). Each coverage
 metric that you track takes three threshold values.
[image: Test coverage results contribute to the project status on the dashboard]

Figure 6-14. Test coverage results contribute to the project status on the
 dashboard

The first (the one with the sunny icon) is the minimum value
 necessary for the build to have a sunny weather icon. The second
 indicates the value below which the build will be attributed a stormy
 weather icon. Jenkins will extrapolate between these values for the
 other more nuanced weather icons.
The last threshold value is simply the value below which a
 build will be marked as “unstable”—the yellow ball. While not quite as
 bad as the red ball (for a broken build), a yellow ball will still
 result in a notification message and will look bad on the dashboard.
This feature is far from simply a cosmetic detail—it provides a
 valuable way of setting objective code quality goals for your
 projects. Although it cannot be interpreted alone, falling code
 coverage is generally not a good sign in a project. So if you are
 serious about code coverage, use these threshold values to provide
 some hard feedback about when things are not up to scratch.

Interpreting code coverage metrics

Jenkins displays your code coverage reports on the build job
 home page. The first time it runs, it produces a simple bar chart (see
 Figure 2-30). From the
 second build onwards, a graph is shown, indicating the various types
 of coverage that you are tracking over time (see Figure 6-15). In both cases,
 the graph will also show the code coverage metrics for the latest
 build.
[image: Configuring the test coverage metrics in Jenkins]

Figure 6-15. Configuring the test coverage metrics in Jenkins

Jenkins also does a great job letting you drill down into the
 coverage metrics, displaying coverage breakdowns for packages, classes
 within a package, and lines of code within a class (see Figure 6-16). No matter what level
 of detail you are viewing, Jenkins will display a graph at the top of
 the page showing the code coverage trend over time. Further down, you
 will find the breakdown by package or class.
[image: Displaying code coverage metrics]

Figure 6-16. Displaying code coverage metrics

Once you get to the class details level, Jenkins will also
 display the source code of the class, with the lines color-coded
 according to their level of coverage. Lines that have been completely
 executed during the tests are green, and lines that were never
 executed are marked in red. A number in the margin indicates the
 number of times a given line was executed. Finally, yellow shading in
 the margin is used to indicate insufficient conditional coverage (for
 example, an if statement that was only tested with
 one outcome).

Measuring Code Coverage with Clover

Clover is an excellent commercial code coverage tool from Atlassian. Clover
 works well for projects using Ant, Maven, and even Grails. The
 configuration and use of Clover is well documented on the Atlassian
 website, so we won’t describe these aspects in detail. However, to give
 some context, here is what a typically Maven 2 configuration of Clover
 for use with Jenkins would look like:
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>com.atlassian.maven.plugins</groupId>
 <artifactId>maven-clover2-plugin</artifactId>
 <version>3.0.4</version>
 <configuration>
 <includesTestSourceRoots>false</includesTestSourceRoots>
 <generateXml>true</generateXml>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
This will generate both an HTML and XML coverage report, including
 aggregated data if the Maven project contains multiple modules.
To integrate Clover into Jenkins, you need to install the
 Jenkins Clover plugin in the usual manner using the Plugin Manager
 screen. Once you have restarted Jenkins, you will be able to integrate
 Clover code coverage into your builds.
Running Clover on your project is a multistep project: you
 instrument your application code, run your tests, aggregate the test
 data (for multimodule Maven projects) and generate the HTML and XML
 reports. Since this can be a fairly slow operation, you typically run it
 as part of a separate build job, and not with your normal tests. You can
 do this as follows:
$ clover2:setup test clover2:aggregate clover2:clover
Next, you need to set up the Clover reporting in Jenkins. Tick the
 Publish Clover Coverage Report
 checkbox to set this up. The configuration is similar to that of Cobertura—you need to provide the path to
 the Clover HTML report directory, and to the XML report file, and you
 can also define threshold values for sunny and stormy weather, and for
 unstable builds (see Figure 6-17).
[image: Configuring Clover reporting in Jenkins]

Figure 6-17. Configuring Clover reporting in Jenkins

Once you have done this, Jenkins will display the current level
 of code coverage, as well as a graph of the code coverage over time, on
 your project build job home page (see Figure 6-18).
[image: Clover code coverage trends]

Figure 6-18. Clover code coverage trends

[2] With the notable exception of Sonar, which we will look at
 later on in the book.

[3] This is actually a slight over-simplification; in fact,
 Cobertura stores other data as well, such as how many times each
 possible outcome of a boolean test was executed. However this does
 not alter the general approach.

Automated Acceptance Tests

Automated acceptance tests play an important part in many agile
 projects, both for verification and for communication. As a verification
 tool, acceptance tests perform a similar role to integration tests, and
 aim to demonstrate that the application effectively does what is expected
 of it. But this is almost a secondary aspect of automated Acceptance
 Tests. The primary focus is actually on communication—demonstrating to
 nondevelopers (business owners, business analysts, testers, and so forth)
 precisely where the project is at.
Acceptance tests should not be mixed with developer-focused tests,
 as both their aim and their audience is very different. Acceptance tests
 should be working examples of how the system works, with an emphasis on
 demonstration rather than exhaustive proof. The exhaustive tests should be
 done at the unit-testing level.
Acceptance Tests can be automated using conventional tools such as
 JUnit, but there is a growing tendency to use Behavior-Driven Development (BDD) frameworks for this
 purpose, as they tend to be a better fit for the public-facing nature of
 Acceptance Tests. Behavior-driven development tools used for automated
 Acceptance Tests typically generate
 HTML reports with a specific layout that is well-suited to nondevelopers.
 They often also produce JUnit-compatible reports that can be understood directly by
 Jenkins.
Behavior-Driven Development frameworks also have the notion of
 “Pending tests,” tests that are automated, but have not yet been
 implemented by the development team. This distinction plays an important
 role in communication with other non-developer stakeholders: if you can
 automated these tests early on in the process, they can give an excellent
 indicator of which features have been implemented, which work, and which
 have not been started yet.
As a rule, your Acceptance Tests should be displayed separately
 from the other more conventional automated tests. If they use the same
 testing framework as your normal tests (e.g., JUnit), make sure they are
 executed in a dedicated build job, so that non-developers can view them
 and concentrate on the business-focused tests without being distracted by
 low-level or technical ones. It can also help to adopt business-focused
 and behavioural naming conventions for your tests and test classes, to
 make them more accessible to non-developers (see Figure 6-19). The way you name your
 tests and test classes can make a huge difference when it comes to reading
 the test reports and understanding the actual business features and
 behavior that is being tested.
[image: Using business-focused, behavior-driven naming conventions for JUnit tests]

Figure 6-19. Using business-focused, behavior-driven naming conventions for
 JUnit tests

If you are using a tool that generates HTML reports, you can display
 them in the same build as your conventional tests, as long as they appear
 in a separate report. Jenkins provides a very convenient plugin for this
 sort of HTML report, called the HTML Publisher plugin (see Figure 6-20). While it is still your job
 to ensure that your build produces
 the right reports, Jenkins can display the reports on your build job page,
 making them easily accessible to all team members.
[image: Installing the HTML Publisher plugin]

Figure 6-20. Installing the HTML Publisher plugin

This plugin is easy to configure. Just go to the “Post-build
 Actions” section and tick the “Publish HTML reports” checkbox (see Figure 6-21). Next, give Jenkins the directory
 your HTML reports were generated to, an index page, and a title for your
 report. You can also ask Jenkins to store the reports generated for each
 build, or only keep the latest one.
[image: Publishing HTML reports]

Figure 6-21. Publishing HTML reports

Once this is done, Jenkins will display a special icon on your build
 job home page, with a link to your HTML report. In Figure 6-22, you can see the easyb reports we
 configured previously in action.
[image: Jenkins displays a special link on the build job home page for your report]

Figure 6-22. Jenkins displays a special link on the build job home page for
 your report

The HTML Publisher plugin works perfectly for HTML reports. If, on
 the other hand, you want to (also) publish non-HTML documents, such as
 text files, PDFs, and so forth, then the DocLinks plugin is for you. This plugin is similar to the
 HTML Publisher plugin, but lets you archive both HTML reports as well as
 documents in other formats. For example, in Figure 6-23, we have configured a build job
 to archive both a PDF document and an HTML report. Both these documents
 will now be listed on the build home page.
[image: The DocLinks plugin lets you archive both HTML and non-HTML artifacts]

Figure 6-23. The DocLinks plugin lets you archive both HTML and non-HTML
 artifacts

Automated Performance Tests with JMeter

Application performance is another important area of testing.
 Performance testing can be used to verify many things, such as how quickly
 an application responds to requests with a given number of simultaneous
 users, or how well the application copes with an increasing number of
 users. Many applications have Service Level Agreements, or SLAs, which
 define contractually how well they should perform.
Performance testing is often a one-off, ad-hoc activity, only
 undertaken right at the end of the project or when things start to go
 wrong. Nevertheless, performance issues are like any other sort of bug—the
 later on in the process they are detected, the more costly they are to
 fix. It therefore makes good of sense to automate these performance and
 load tests, so that you can spot any areas of degrading performance before
 it gets out into the wild.
JMeter is a
 popular open source performance and load testing tool. It works by
 simulating load on your application, and measuring the response time as
 the number of simulated users and requests increase. It effectively
 simulates the actions of a browser or client application, sending requests
 of various sorts (HTTP, SOAP, JDBC, JMS and so on) to your server. You
 configure a set of requests to be sent to your application, as well as
 random pauses, conditions and loops, and other variations designed to
 better imitate real user actions.
JMeter runs as a Swing application, in which you can configure your
 test scripts (see Figure 6-24). You can even run
 JMeter as a proxy, and then manipulate your application in an ordinary
 browser to prepare an initial version of your test script.
A full tutorial on using JMeter is beyond the scope of this book.
 However, it is fairly easy to learn, and you can find ample details about
 how to use it on the JMeter website. With a little work, you can have a
 very respectable test script up and running in a matter of hours.
What we are interested in here is the process of automating these
 performance tests. There are several ways to integrate JMeter tests into
 your Jenkins build process. Although at the time of writing, there was no
 official JMeter plugin for Maven available in the Maven repositories,
 there is an Ant plugin. So the simplest approach is to write an Ant script
 to run your performance tests, and then either call this Ant script
 directly, or (if you are using a Maven project, and want to run JMeter
 through Maven) use the Maven Ant integration to invoke the Ant script from
 within Maven. A simple Ant script running some JMeter tests is illustrated
 here:
<project default="jmeter">
 <path id="jmeter.lib.path">
 <pathelement location="${basedir}/tools/jmeter/extras/ant-jmeter-1.0.9.jar"/>
 </path>

 <taskdef name="jmeter"
 classname="org.programmerplanet.ant.taskdefs.jmeter.JMeterTask"
 classpathref="jmeter.lib.path" />

 <target name="jmeter">
 <jmeter jmeterhome="${basedir}/tools/jmeter"
 testplan="${basedir}/src/test/jmeter/gameoflife.jmx"
 resultlog="${basedir}/target/jmeter-results.jtl">
 <jvmarg value="-Xmx512m" />
 </jmeter>
 </target>
</project>
This assumes that the JMeter installation is available in the
 tools directory of your project.
 Placing tools such as JMeter within your project structure is a good
 habit, as it makes your build scripts more portable and easier to run on
 any machine, which is precisely what we need to run them on
 Jenkins.
[image: Preparing a performance test script in JMeter]

Figure 6-24. Preparing a performance test script in JMeter

Note that we are also using the optional
 <jvmarg> tag to provide JMeter with an ample
 amount of memory—performance testing is a memory-hungry activity.
The script shown here will execute the JMeter performance tests
 against a running application. So you need to ensure that the application
 you want to test is up and running before you start the tests. There are
 several ways to do this. For more heavy-weight performance tests, you will
 usually want to deploy your application to a test server before running
 the tests. For most applications this is not usually too difficult—the
 Maven Cargo plugin, for example, lets you automate the deployment process
 to a variety of local and remote servers. We will also see how to do this
 in Jenkins later on in the book.
Alternatively, if you are using Maven for a web application, you can
 use the Jetty or Cargo plugin to ensure that the application is deployed
 before the integration tests start, and then call the JMeter Ant script
 from within Maven during the integration test phase. Using Jetty, for
 example, you could so something like this:
<project...>
 <build>
 <plugins>
 <plugin>
 <groupId>org.mortbay.jetty</groupId>
 <artifactId>jetty-maven-plugin</artifactId>
 <version>7.1.0.v20100505</version>
 <configuration>
 <scanIntervalSeconds>10</scanIntervalSeconds>
 <connectors>
 <connector
 implementation="org.eclipse.jetty.server.nio.SelectChannelConnector">
 <port>${jetty.port}</port>
 <maxIdleTime>60000</maxIdleTime>
 </connector>
 </connectors>
 <stopKey>foo</stopKey>
 <stopPort>9999</stopPort>
 </configuration>
 <executions>
 <execution>
 <id>start-jetty</id>
 <phase>pre-integration-test</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <scanIntervalSeconds>0</scanIntervalSeconds>
 <daemon>true</daemon>
 </configuration>
 </execution>
 <execution>
 <id>stop-jetty</id>
 <phase>post-integration-test</phase>
 <goals>
 <goal>stop</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 ...
 </plugins>
 </build>
</project>
This will start up an instance of Jetty and deploy your web
 application to it just before the integration tests, and shut it down
 afterwards.
Finally, you need to run the JMeter performance tests during this
 phase. You can do this by using the
 maven-antrun-plugin to invoke the Ant script we wrote
 earlier on during the integration test phase:
<project...>
 ...
 <profiles>
 <profile>
 <id>performance</id>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.4</version>
 <executions>
 <execution>
 <id>run-jmeter</id>
 <phase>integration-test</phase>
 <goals>
 <goal>run</goal>
 </goals>
 <configuration>
 <tasks>
 <ant antfile="build.xml" target="jmeter" >
 </tasks>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
 ...
</project>
Now, all you need to do is to run the integration tests with the
 performance profile to get Maven to run the JMeter test suite. You can do
 this by invoking the integration-test
 or verify Maven life cycle
 phase:
$ mvn verify -Pperformance
Once you have configured your build script to handle JMeter, you can
 set up a performance test build in Jenkins. For this, we will use the
 Performance Test Jenkins plugin,
 which understands JMeter logs and can generate nice statistics and graphs
 using this data. So go to the Plugin Manager screen on your Jenkins server
 and install this plugin (see Figure 6-25). When you have
 installed the plugin, you will need to restart Jenkins.
[image: Preparing a performance test script in JMeter]

Figure 6-25. Preparing a performance test script in JMeter

Once you have the plugin installed, you can set up a performance
 build job in Jenkins. This build job will typically be fairly separate
 from your other builds. In Figure 6-26,
 we have set up the performance build to run on a nightly basis, which is
 probably enough for a long-running load or performance test.
[image: Setting up the performance build to run every night at midnight]

Figure 6-26. Setting up the performance build to run every night at
 midnight

All that remains is to configure the build job to run your
 performance tests. In Figure 6-27, we are running the Maven
 build we configured earlier on. Note that we are using the MAVEN_OPTS
 field (accessible by clicking on the Advanced button) to provide plenty of
 memory for the build job.
[image: Performance tests can require large amounts of memory]

Figure 6-27. Performance tests can require large amounts of memory

To set up performance reporting, just tick the “Publish
 Performance test result report” option in the Post-build Actions section
 (see Figure 6-28). You will need to
 tell Jenkins where to find your JMeter test results (the output files, not
 the test scripts). The Performance plugin is happy to process multiple
 JMeter results, so you can put wildcards in the path to make sure all of
 your JMeter reports are displayed.
If you take your performance metrics seriously, then the build
 should fail if the required SLA is not met. In a Continuous Integration
 environment, any sort of metrics build that does not fail if minimum
 quality criteria are not met will tend to be ignored.
You can configure the Performance plugin to mark a build as unstable
 or failing if a certain percentage of requests result in errors. By
 default, these values will only be raised in the event of real application
 errors (i.e., bugs) or server crashes. However you really should configure
 your JMeter test scripts to place a ceiling on the maximum acceptable
 response time for your requests. This is particularly important if your
 application has contractual obligations in this regard. One way to do this
 in JMeter is by adding a Duration Assertion element to your script. This
 will cause an error if any request takes longer than a certain fixed time
 to execute.
[image: Configuring the Performance plugin in your build job]

Figure 6-28. Configuring the Performance plugin in your build job

Now, when the build job runs, the Performance plugin will produce
 graphs keeping track of overall response times and of the number of errors
 (see Figure 6-29). There will be a
 separate graph for each JMeter report you have generated. If there is only
 one graph, it will appear on the build home page; otherwise you can view
 them on a dedicated page that you can access via the Performance Trend
 menu item.
[image: The Jenkins Performance plugin keeps track of response time and errors]

Figure 6-29. The Jenkins Performance plugin keeps track of response time and
 errors

This graph gives you an overview of performance over time. You would
 typically use this graph to ensure that your average response times are
 within the expected limits, and also spot any unusually high variations in
 the average or maximum response times. However if you need to track down
 and isolate performance issues, the Performance Breakdown screen can be
 more useful. From within the Performance Trend report, click on the Last
 Report link at the top of the screen. This will display a breakdown of
 response times and errors per request (see Figure 6-30). You can do the same thing
 for previous builds, by clicking on the Performance Report link in the
 build details page.
With some minor variations, a JMeter test script basically works by
 simulating a given number of simultaneous users. Typically, however, you
 will want to see how your application performs for different numbers of
 users. The Jenkins Performance plugin handles this quite well, and can
 process graphs for multiple JMeter reports. Just make sure you use a
 wildcard expression when you tell Jenkins where to find the
 reports.
Of course, it would be nice to be able to reuse the same JMeter test
 script for each test run. JMeter supports parameters, so you can easily
 reuse the same JMeter script with different numbers of simulated users.
 You just use a property expression in your JMeter script, and then pass
 the property to JMeter when you run the script. If your property is called
 request.threads, then the property expression in your
 JMeter script would be ${__property(request.threads)}.
 Then, you can use the <property> element in the
 <jmeter> Ant task to pass the property when you
 run the script. The following Ant target, for example, runs JMeter three
 times, for 200, 500 and 1000 simultaneous users:
 <target name="jmeter">
 <jmeter jmeterhome="${basedir}/tools/jmeter"
 testplan="${basedir}/src/test/jmeter/gameoflife.jmx"
 resultlog="${basedir}/target/jmeter-results-200-users.jtl">
 <jvmarg value="-Xmx512m" />
 <property name="request.threads" value="200"/>
 <property name="request.loop" value="20"/>
 </jmeter>
 <jmeter jmeterhome="${basedir}/tools/jmeter"
 testplan="${basedir}/src/test/jmeter/gameoflife.jmx"
 resultlog="${basedir}/target/jmeter-results-500-users.jtl">
 <jvmarg value="-Xmx512m" />
 <property name="request.threads" value="500"/>
 <property name="request.loop" value="20"/>
 </jmeter>
 <jmeter jmeterhome="${basedir}/tools/jmeter"
 testplan="${basedir}/src/test/jmeter/gameoflife.jmx"
 resultlog="${basedir}/target/jmeter-results-1000-users.jtl">
 <jvmarg value="-Xmx512m" />
 <property name="request.threads" value="1000"/>
 <property name="request.loop" value="20"/>
 </jmeter>
 </target>
[image: You can also view performance results per request]

Figure 6-30. You can also view performance results per request

Help! My Tests Are Too Slow!

One of the underlying principles of designing your CI builds is
 that the value of information about a build failure diminishes rapidly
 with time. In other words, the longer the news of a build failure takes to
 get to you, the less it is worth, and the harder it is to fix.
Indeed, if your functional or integration tests are taking several
 hours to run, chances are they won’t be run for every change. They are
 more likely to be scheduled as a nightly build. The problem with this is
 that a lot can happen in twenty-four hours, and, if the nightly build
 fails, it will be difficult to figure out which of the many changes
 committed to version control during the day was responsible. This is a
 serious issue, and penalizes your CI server’s ability to provide the fast
 feedback that makes it useful.
Of course some builds are slow, by their very
 nature. Performance or load tests fall into this category, as do some more
 heavyweight code quality metrics builds for large projects. However,
 integration and functional tests most definitely do not
 fall into this category. You should do all you can to make these tests as
 fast as possible. Under ten minutes is probably acceptable for a full
 integration/functional test suite. Two hours is not.
So, if you find yourself needing to speed up your tests, here are a
 few strategies that might help, in approximate order of difficulty.
Add More Hardware

Sometimes the easiest way to speed up your builds is to throw more
 hardware into the mix. This could be as simple as upgrading your build
 server. Compared to the time and effort saved in identifying and fixing
 integration-related bugs, the cost of buying a shiny new build server is
 relatively modest.
Another option is to consider using virtual or cloud-based
 approach. Later on in the book, we will see how you can use VMWare
 virtual machines or cloud-based infrastructure such as Amazon Web
 Services (EC2) or CloudBees to increase your build capacity on an
 “as-needed” basis, without having to invest in permanent new
 machines.
This approach can also involve distributing your builds across
 several servers. While this will not in itself speed up your tests, it
 may result in faster feedback if your build server is under heavy
 demand, and if build jobs are constantly being queued.

Run Fewer Integration/Functional Tests

In many applications, integration or functional tests are used by
 default as the standard way to test almost all aspects of the system.
 However integration and functional tests are not the best way to detect
 and identify bugs. Because of the large number of components involved in
 a typical end-to-end test, it can be very hard to know where something
 has gone wrong. In addition, with so many moving parts, it is extremely
 difficult, if not completely unfeasible, to cover all of the possible
 paths through the application.
For this reason, wherever possible, you should prefer
 quick-running unit tests to the much slower integration and functional
 tests. When you are confident that the individual components work well, you can
 complete the picture by a few end-to-end tests that step through common
 use cases for the system, or use cases that have caused problems in the
 past. This will help ensure that the components do fit together
 correctly, which is, after all, what integration tests are supposed to
 do. But leave the more comprehensive tests where possible to unit tests.
 This strategy is probably the most sustainable approach to keeping your
 feedback loop short, but it does require some discipline and
 effort.

Run Your Tests in Parallel

If your functional tests take two hours to run, it is unlikely
 that they all need to be run back-to-back. It is also unlikely that they
 will be consuming all of the available CPU on your build machine. So
 breaking your integration tests into smaller batches and running them in
 parallel makes a lot of sense.
There are several strategies you can try, and your mileage will
 probably vary depending on the nature of your application. One approach,
 for example, is to set up several build jobs to run different subsets of
 your functional tests, and to run these jobs in parallel. Jenkins lets
 you aggregate test results. This is a good way to take advantage of a
 distributed build architecture to speed up your builds even further.
 Essential to this strategy is the ability to run subsets of your tests
 in isolation, which may require some refactoring.
At a lower level, you can also run your tests in parallel at the
 build scripting level. As we saw earlier, both TestNG and the more
 recent versions of JUnit support running tests in parallel.
 Nevertheless, you will need to ensure that your tests can be run
 concurrently, which may take some refactoring. For example, common files
 or shared instance variables within test cases will cause problems
 here.
In general, you need to be careful of interactions between your
 tests. If your web tests start up an embedded web server such as Jetty,
 for example, you need to make sure the port used is different for each
 set of concurrent tests.
Nevertheless, if you can get it to work for your application,
 running your tests in parallel is one of the more effective way to speed
 up your tests.

Conclusion

Automated testing is a critical part of any Continuous Integration
 environment, and should be taken very seriously. As in other areas on CI,
 and perhaps even more so, feedback is king, so it is important to ensure
 that your tests run fast, even the integration and functional ones.

Chapter 7. Securing Jenkins

Introduction

Jenkins supports several security models, and can integrate
 with several user repositories. In smaller organizations, where developers
 work in close proximity, security on your Jenkins machine may not be a
 large concern—you may simply want to prevent unidentified users tampering
 with your build job configurations. For larger organizations, with
 multiple teams, a stricter approach might be required, where only team
 members and system administrators are allowed to modify their build job
 configurations. And in situations where the Jenkins server may be exposed
 to a broader audience, such as on an internal corporate website, or even
 on the Internet, certain build jobs may be visible to all users whereas
 others will need to be hidden to unauthorized users.
In this chapter, we will look at how to configure different security
 configurations in Jenkins, for different environments and
 circumstances.

Activating Security in Jenkins

Setting up basic security in Jenkins is easy enough. Go to the main
 configuration page and check the Enable security checkbox (see Figure 7-1). This will display a number of
 options, that we will investigate in detail in this chapter. The first
 section, Security Realms, determines where Jenkins will look
 for users during authentication, and includes options such as using users
 stored in an LDAP server, using the underlying Unix user accounts
 (assuming, of course, that Jenkins is running on a Unix machine), or using
 a simple built-in user database managed by Jenkins.
The second section, Authorization, determines what users can do
 once they are logged in. This ranges from simple options like “Anyone can
 do anything” or “Logged-in users can do anything,” to more sophisticated
 role and project-based authorization policies.
[image: Enabling security in Jenkins]

Figure 7-1. Enabling security in Jenkins

In the remainder of this chapter, we will look at how to configure
 Jenkins security for a number of common scenarios.

Simple Security in Jenkins

The most simple usable security model in Jenkins involves
 allowing authenticated users to do anything, whereas non-authenticated
 users will just have a read-only view of the build jobs. This is great for
 small teams—developers can manage the build jobs, whereas other users
 (testers, BAs, project managers and so on) can view the build jobs as
 required to view the status of the project. Indeed, certain build jobs may
 be set up just for this purpose, displaying the results of automated
 acceptance tests or code quality metrics, for example.
You can set up this sort of configuration to choose “Logged-in users
 can do anything” in the Authorization section. There are several ways that
 Jenkins can authenticate users (see Security Realms—Identifying Jenkins
 Users), but for this example, we will be using
 the simplest option, which is to use Jenkins’s own built in database (see Using Jenkins’s Built-in User Database). This is the configuration illustrated
 in Figure 7-1.
Make sure you tick the “Allow users to sign up” option. This
 option will display a Sign up link at the top of the screen to let users
 create their own user account as required (see Figure 7-2). It is a good idea for developers to
 use their SCM username here: in this case, Jenkins will be able to work
 out what users contributed to the SCM changes that triggered a particular
 build.
[image: The Jenkins Sign up page]

Figure 7-2. The Jenkins Sign up page

This approach is obviously a little too simple for many
 situations—it is useful for small teams working in close proximity, where
 the aim is to know who’s changes caused (or broke) a particular build,
 rather than to manage access in any more restrictive way. In the following
 sections, we will discuss the two orthogonal aspects of Jenkins security:
 identifying your users (Security Realms) and determining what they are
 allowed to (Authorization).

Security Realms—Identifying Jenkins
 Users

Jenkins lets you identify and manage users in a number of ways,
 ranging from a simple, built-in user database suitable for small teams to
 integration with enterprise directories, with many other options in
 between.
Using Jenkins’s Built-in User Database

The easiest way to manage user accounts in Jenkins is to use
 Jenkins’s internal user database. This is a good option if you want to
 keep things simple, as very little setup or configuration is required.
 Users who need to log on to the Jenkins server can sign up and create an
 account for themselves, and, depending on the security model chosen, an
 administrator can then decide what these users are allowed
 to do.
Jenkins automatically adds all SCM users to this database whenever
 a change is committed to source code monitored by Jenkins. These user
 names are used mainly to record who is responsible for each build job.
 You can view the list of currently known users by clicking on the People
 menu entry (see Figure 7-3). Here, you can
 visualize the users that Jenkins currently knows about, and also see the
 last project they committed changes to. Note that this list contains all
 of the users who have ever committed changes to the projects that
 Jenkins monitors—they may not be (and usually aren’t) all active Jenkins
 users who are able to log on to the Jenkins server.
[image: The list of users known to Jenkins]

Figure 7-3. The list of users known to Jenkins

If you click on a user in this list, Jenkins takes you to a page
 displaying various details about this user, including the user’s full
 name and the build jobs they have contributed to (see Figure 7-4). From here, you can also modify or
 complete the details about this user, such as their password or email
 address.
[image: Displaying the builds that a user participates in]

Figure 7-4. Displaying the builds that a user participates in

A user appearing in this list cannot necessarily log on to
 Jenkins. To be able to log on to Jenkins, the user account needs to be
 set up with a password. There are essentially two ways to do this. If
 you have activated the “Allow users to sign up” option,
 users can simply sign up with their SCM user name and provide their
 email address and a password (see Simple Security in Jenkins). Alternatively, you can activate a
 user by clicking on the Configure menu option in the user details
 screen, and provide an email address and password yourself (see Figure 7-5).
[image: Creating a new user account by signing up]

Figure 7-5. Creating a new user account by signing up

It is worth noting that, if your email addresses are
 synchronized with your version control user names (for example, if you
 work at acme.com, and user “joe” in your version control system has an
 email address of joe@acme.com), you can get Jenkins
 to derive the email address from a user name by adding a suffix that you
 configure in the Email Notification section (see Figure 7-6). If you have set up this sort of
 configuration, you don’t need to specify the email address for new users
 unless it does not respect this convention.
[image: Synchronizing email addresses]

Figure 7-6. Synchronizing email addresses

Another way to manage the current active users (those who can
 actually log on to Jenkins) is by clicking on the Manage Users link in
 the main Jenkins configuration page (see Figure 7-7).
[image: You can also manage Jenkins users from the Jenkins configuration page]

Figure 7-7. You can also manage Jenkins users from the Jenkins
 configuration page

From here, you can view and edit the users who can log in to
 Jenkins (see Figure 7-8). This includes
 both users that have signed up manually (if this option has been
 activated) and SCM users that you have activated by configuring them
 with a password. You can also edit a user’s details (for example
 modifying their email address or resetting their password), or even
 remove them from the list of active users. Doing this will not remove
 them from the overall user list (their name will still appear in the
 build history, for example), but they will no longer be able to log on
 to the Jenkins server.
[image: The Jenkins user database]

Figure 7-8. The Jenkins user database

The internal Jenkins database is sufficient for many teams and
 organizations. However, for larger organizations, it may become tedious
 and repetitive to manage large numbers of user accounts by hand,
 especially if this information already exists elsewhere. In the
 following sections, we will look at how to hook Jenkins up to other user
 management systems, such as LDAP repositories and Unix users and
 groups.

Using an LDAP Repository

Many organizations use LDAP directories to store user accounts
 and passwords across applications. Jenkins integrates well with LDAP,
 with no special plugins required. It can authenticate users using the
 LDAP repository, check group membership, and retrieve the email address
 of authenticated users.
To integrate Jenkins with your LDAP repository, Just select “LDAP”
 in the Security Realm section, and fill in the appropriate details about
 your LDAP server (see Figure 7-9). The
 most important field is the repository server. If you are using a
 non-standard port, you will need to provide this as well (for example,
 ldap.acme.org:1389). Or, if you are
 using LDAPS, you will need to specify this as well (for example,
 ldaps://ldap.acme.org)
If your server supports anonymous binding, this will probably be
 enough to get you started. If not, you can use the Advanced options to
 fine-tune your configuration.
Most of the Advanced fields can safely be left blank unless you
 have a good reason to change them. If your repository is extremely
 large, you may want to specify a root DN value (e.g., dc=acme,
 dc=com) and/or a User and Group search base (e.g.,
 ou=people) to narrow down the scope of user queries.
 This is not usually required unless you notice performance issues. Or,
 if your server does not support anonymous binding, you will need to
 provide a Manager DN and a Manager DN password, so that Jenkins can
 connect to the server to perform its queries.
[image: Configuring LDAP in Jenkins]

Figure 7-9. Configuring LDAP in Jenkins

Once you have set up LDAP as your Security Realm, you can
 configure your favorite security model as described previously. When
 users log on to Jenkins, they will be authenticated against the LDAP
 repository.
You can also use LDAP groups, though the configuration is not
 immediately obvious. Suppose you have defined a group called
 JenkinsAdmin in your LDAP repository, with a DN of
 cn=JenkinsAdmin, ou-Groups, dc=acme, dc=com. To refer to
 this group in Jenkins, you need to take the common name (cn) in
 uppercase, and prefix it with ROLE_. So
 cn=JenkinsAdmin becomes ROLE_JENKINSADMIN. You
 can see an example of LDAP groups used in this way in Figure 7-10.
[image: Using LDAP Groups in Jenkins]

Figure 7-10. Using LDAP Groups in Jenkins

Using Microsoft Active Directory

Microsoft Active Directory is a directory service product widely used in Microsoft
 architectures. Although Active Directory does provide an LDAP service,
 it can be a little tricky to set up, and it is simpler to get Jenkins to
 talk directly to the Active Directory server. Fortunately, there’s a
 plugin for that.
The Jenkins Active Directory plugin lets you configure Jenkins to authenticate against a Microsoft
 Active Directory server. You can both authenticate users, and retrieve
 their groups for Matrix and Project-based authorization. Note that,
 unlike the conventional LDAP integration (see Using an LDAP Repository), there is no need to prefix group names
 with ROLE_—you can use Active Directory groups (such as “Domain Admins”) directory.
To configure the plugin, you need to provide the full domain name
 of your Active Directory server. If you have more than one domain, you
 can provide a comma-separated
 list. If you provide the forest name (say “acme.com” instead of
 “europe.acme.com”), then the search will be done against the global
 catalog. Note that if you do this without specifying the bind DN (see
 below), the user would have to login as “europe\joe” or
 “joe@europe”.
The advanced options let you specify a site name (to improve
 performance by restricting the domain controllers that Jenkins queries),
 and a Binding DN and password, which come in handy if you are connecting
 to a multidomain forest. You need to provide a valid Binding DN and
 password values, that Jenkins can use to connect to your server so that
 it can establish the full identity of the user being authenticated. This
 way, the user can simply type in “jack” or “jill”, and have the system
 automatically figure out that they are
 jack@europe.acme.com or
 jack@asia.acme.com. You need to provide the full user principal name with
 domain name, like admin@europe.acme.com, or a
 LDAP-style distinguished name, such as
 CN=Administrator,OU=europe,DC=acme,DC=com.
Another nice thing about this plugin is that it works both in a
 Windows environment and in a Unix environment. So if Jenkins is running
 on a Unix server, it can still authenticate against a Microsoft Active
 Directory service running on another machine.
More precisely, if Jenkins is running on a Windows machine and you
 do not specify a domain, that machine must be a member of the domain you
 wish to authenticate against. Jenkins will use ADSI to figure out all
 the details, so no additional configuration is required.
On a non-Windows machine (or you specify one or more domains), you
 need to tell Jenkins the name of Active Directory domain(s) to
 authenticate with. Jenkins then uses DNS SRV records and LDAP service of
 Active Directory to authenticate users.
Jenkins can determine which groups in Active Directory that the user belongs to, so
 you can use these as part of your authorisation strategy. For example,
 you can use these groups in matrix-based security, or allow “Domain
 Admins” to administer Jenkins.

Using Unix Users and Groups

If you are running Jenkins on a Unix machine, you can also
 ask Jenkins to use the user and group accounts defined on this machine.
 In this case, users will log into Jenkins using their Unix account
 logins and passwords. This uses Pluggable Authentication Modules (PAM),
 and also works fine with NIS.
In its most basic form, this is somewhat cumbersome, as it
 requires new user accounts to be set up and configured for each new
 Jenkins user. It is only really useful if these accounts need to be set
 up for other purposes.

Delegating to the Servlet Container

Another way to identify Jenkins users is to let your Servlet
 container do it for you. This approach is useful if you are running
 Jenkins on a Servlet container such as Tomcat or GlassFish, and you already have an established way to
 integrate the Servlet container with your local enterprise user
 directory. Tomcat, for example, allows you to authenticate users against
 a relational database (using direct JDBC or a DataSource), JNDI, JAAS,
 or an XML configuration file. You can also use the roles defined in the
 Servlet container’s user directory for use with Matrix and Project-based
 authorization strategies.
In Jenkins, this is easy to configure—just select this option in
 the Security Realm section (see Figure 7-11). Once you have done this,
 Jenkins will let the server take care of everything.
[image: Selecting the security realm]

Figure 7-11. Selecting the security realm

Using Atlassian Crowd

If your organization is using Atlassian products such as JIRA
 and Confluence, you may also be using Crowd. Crowd is a commercial
 Identity Management and Single-Sign On (SSO) application from Atlassian
 that lets you manage single user accounts across multiple products. It
 lets you manage both an internal database of users, groups and roles,
 and integrate with external directories such as LDAP directories or
 custom user stores.
Using the Jenkins Crowd plugin, you can use Atlassian Crowd as the source of your Jenkins
 users and groups. Before you start, you need to set up a new application
 in Crowd (see Figure 7-12). Just
 set up a new Generic Application called “hudson” (or something similar),
 and step through the tabs. In the Connections tab, you need to provide
 the IP address of your Jenkins server. Then map the Crowd directories
 that you will be using to retrieve Jenkins user accounts and group
 information. Finally, you will need to tell Crowd which users from these
 directories can connect to Jenkins. One option is to allow all users to
 authenticate, and let Jenkins sort out the details. Alternatively, you
 can list the Crown user groups who are allowed to connect to
 Jenkins.
[image: Using Atlassian Crowd as the Jenkins Security Realm]

Figure 7-12. Using Atlassian Crowd as the Jenkins Security Realm

Once you have set this up, you need to install the Jenkins Crowd
 plugin, which you do as usual via the Jenkins Plugin Manager. Once you
 have installed the plugin and restarted Jenkins, you can define Crowd as
 your Security Realm in the main Jenkins configuration screen (see Figure 7-13).
[image: Using Atlassian Crowd as the Jenkins Security Realm]

Figure 7-13. Using Atlassian Crowd as the Jenkins Security Realm

With this plugin installed and configured, you can use users and
 groups from Crowd for any of the Jenkins Authorization
 strategies we discussed earlier on in the chapter. For example, in Figure 7-14, we are using user
 groups defined in Crowd to set up Matrix-based security in the main
 configuration screen.
[image: Using Atlassian Crowd groups in Jenkins]

Figure 7-14. Using Atlassian Crowd groups in Jenkins

Integrating with Other Systems

In addition to the authentication strategies discussed here,
 there are a number of other plugins that allow Jenkins to authenticate
 against other systems. At the time of writing, these include Central
 Authentication Service (CAS)—an open source single sign-on tool—and the
 Collabnet Source Forge Enterprise Edition (SFEE) server.
If no plugin is available, you can also write your own custom
 authentication script. To do this, you need to install the Script
 Security Realm plugin. Once you have installed the script and restarted
 Jenkins, you can write two scripts in your favorite scripting language.
 One script authenticates users, whereas the other determines the groups
 of a given user (see Figure 7-15).
[image: Using custom scripts to handle authentication]

Figure 7-15. Using custom scripts to handle authentication

Before invoking the authentication script, Jenkins sets two
 environment variables:
 U, containing the username, and P,
 containing the password. This script uses these environment variables to authenticate
 using the specified username and password, returning 0 if the
 authentication is successful, and some other value otherwise. If
 authentication fails, the output from the process will be reported in
 the error message displayed to the user. Here is a simple Groovy authentication script:
def env = System.getenv()
def username = env['U']
def password = env['P']

println "Authenticating user $username"

if (authenticate(username, password)) {
 System.exit 0
} else {
 System.exit 1
}

def authenticate(def username, def password) {
 def userIsAuthenticated = true
 // Authentication logic goes here
 return userIsAuthenticated
}
This script is enough if all you have to deal with is basic
 authentication without groups. If you want to use groups from your
 custom authentication source in your Matrix-based or Project-based authorizations (see
 Authorization—Who Can Do What), you can write a second script,
 which determines the groups for a given user. This groups uses the U
 environment variable to determine which user is trying to log on, and
 prints a comma-separated list of groups for this user to the standard
 output. If you don’t like commas, you can override the separating
 character in the configuration. A simple Groovy script to do this job is
 shown here:
def env = System.getenv()
def username = env['U']

println findGroupsFor(username)

System.exit 0

def findGroupsFor(def username) {
 return "admin,game-of-life-developer"
}
Both these scripts must return 0 when called for a user to
 be authenticated.

Authorization—Who Can Do What

Once you have defined how to identify your users, you need to decide
 what they are allowed to do. Jenkins supports a variety of strategies in
 this area, ranging from a simple approach where a logged-in user can do
 anything to more involved roles and project-based authentication
 strategies.
Matrix-based Security

Letting signed-in users do anything is certainly flexible, and
 may be all you need for a small team. For larger or multiple teams, or
 cases where Jenkins is being used outside the development environment, a
 more sophisticated approach is generally required.
Matrix-based security is a more sophisticated approach, where
 different users are assigned different rights, using a role-based
 approach.
Setting up matrix-based security

The first step in setting up matrix-based security in
 Jenkins is to create an administrator. This is an essential
 step, and must be done before all others. Now your
 administrator can be an existing user, or one created specially for
 the purpose. If you want to create a dedicated administrator user,
 simply create one by signing up in the usual way (see Figure 7-2). It doesn’t have to be associated
 with an SCM user.
Once you have your admin user ready, you can activate
 matrix-based security by selecting “Matrix-based security” in the
 Authorization section of the main configuration page. Jenkins will
 display a table containing authorized users, and checkboxes
 corresponding to the various permissions that you can assign to these
 users (see Figure 7-16).
[image: Matrix-based security configuration]

Figure 7-16. Matrix-based security configuration

The special “anonymous” user is always present in the table.
 This user represents unauthenticated users. Typically, you only grant
 very limited rights to unauthenticated users, such as read-only
 access, or no access at all (as shown in Figure 7-16).
The first thing you need to do now is to grant administration
 rights to your administrator. Add your administration user in the
 “User/group to add” field and click on Add. Your administrator will
 now appear in the permissions matrix. Now make sure you grant this
 user every permission (see Figure 7-17), and save your configuration.
 You should now be able to log in with your administrator account (if
 you aren’t already logged in with this account) and continue to set up
 your other users.
[image: Setting up an administrator]

Figure 7-17. Setting up an administrator

Fine-tuning user permissions

Once you have set up your administrator account, you can add any
 other users that need to access your Jenkins instance. Simply add the
 user names and tick the permissions you want to grant them (see Figure 7-18). If you are using an LDAP server
 or Unix users and groups as the underlying authentication schema (see
 Using an LDAP Repository), you can also configure
 permissions for groups of users.
[image: Setting up other users]

Figure 7-18. Setting up other users

You can grant a range of permissions, which are organized into
 several groups: Overall, Slave, Job, Run, View and SCM. Most of the
 permissions are fairly obvious, but some need a little more
 explanation. The individual permissions are as follows:
	Overall
	This group covers basic system-wide permissions:
	Administer
	Lets a user make system-wide configuration changes
 and other sensitive operations, for example in the main
 Jenkins configuration pages. This should be reserved for
 the Jenkins administrator.

	Read
	This permission provides read-only access to
 virtually all of the pages in Jenkins. If you want
 anonymous users to be able to view build jobs freely, but
 not to be able to modify or start them, grant the Read
 role to the special “anonymous” user. If not, simply
 revoke this permission for the Anonymous user. And if you
 want all authenticated users to be able to see build jobs,
 then add a special user called “authenticated”, and grant
 this user Overall/Read permission.

	Slave
	This group covers permissions about remote build nodes, or
 slaves:
	Configure
	Create and configure new build nodes.

	Delete
	Delete build nodes.

	Job
	This group covers job-related permissions:
	Create
	Create a new build job.

	Delete
	Delete an existing build job.

	Configure
	Update the configuration of an existing build
 jobs.

	Read
	View build jobs.

	Build
	Start a build job.

	Workspace
	View and download the workspace contents for a build
 job. Remember, the workspace contains source code and
 artifacts, so if you want to protect these from general
 access, you should revoke this permission.

	Release
	Start a Maven release for a project configured with
 the M2Release plugin.

	Run
	This group covers rights related to particular builds
 in the build history:
	Delete
	Delete a build from the build history.

	Update
	Update the description and other properties of a
 build in the build history. This can be useful if a user
 wants to leave a note about the cause of a build failure,
 for example.

	View
	This group covers managing views:
	Create
	Create a new view.

	Delete
	Delete an existing view.

	Configure
	Configure an existing view.

	SCM
	Permissions related to your version control system:
	Tag
	Create a new tag in the source code repository for a
 given build.

	Others
	There can also be other permissions available, depending
 on the plugins installed. One useful one is:
	Promote
	If the Promoted Builds plugin is installed, this
 permission allows users to manually promote a
 build.

Help! I’ve locked myself out!

Now it may happen that, during this process, you may end up
 locking yourself out of Jenkins. This can happen if, for example, you
 save the matrix configuration without having correctly set up your
 administrator. If this happens, do not panic—there is an easy fix, as
 long as you have access to Jenkins’s home directory. Simply open up
 the config.xml file at the root
 of the Jenkins home directory. This will contain something like
 this:
<hudson>
 <version>1.391</version>
 <numExecutors>2</numExecutors>
 <mode>NORMAL</mode>
 <useSecurity>true</useSecurity>
 ...
The thing to look for is the <useSecurity>
 element. To restore your access to Jenkins, change this value to
 false, and restart your server. You will now be able to access Jenkins
 again, and set up your security configuration correctly.

Project-based Security

Project-based security lets you build on the matrix-based security model
 we just discussed, and apply it to individual projects. Not only can you
 assign system-wide roles for your users, you can also configure more
 specific rights for certain individual projects.
To activate project-level security, select “Project-based Matrix
 Authorization Strategy” in the Authorization section of the main
 configuration screen (see Figure 7-19). Here, you set up the
 default rights for users and groups, as we saw with Matrix-based
 security (see Matrix-based Security).
[image: Project-based security]

Figure 7-19. Project-based security

These are the default permissions that apply to all projects that
 have not been specially configured. However, when you use project-based
 security, you can also set up special project-specific permissions. You
 do this by selecting “Enable project-based security” in the project
 configuration screen (see Figure 7-20). Jenkins will display a
 table of project-specific permissions. You can configure these
 permissions for different users and groups just like on the system-wide
 configuration page. These permissions will be added to the system-wide
 permissions to produce a project-specific set of permissions applicable
 for this project.
[image: Configuring project-based security]

Figure 7-20. Configuring project-based security

The way this works is easiest to understand with a few practical
 examples. In Figure 7-19, for
 instance, no permissions have been granted to the anonymous user, so by
 default all build jobs will remain invisible until a user signs on.
 However, we are using project-based security, so we can override this on
 a project-by-project basis. In Figure 7-20, for example, we have set
 up the game-of-life project to have read-only
 access for the special “anonymous” user.
When you save this configuration, unauthenticated users will be
 able to see the game-of-life project in read-only
 mode (see Figure 7-21). This
 same principle applies with all of the project-specific
 permissions.
[image: Viewing a project]

Figure 7-21. Viewing a project

Note that Jenkins permissions are cumulative—at the time of
 writing, there is no way to revoke a system-wide permission for a
 particular project. For example, if the anonymous user has read-access
 to build jobs at the system level, you can’t revoke read-only access for
 an individual project. So when using project-based security, use the
 system level matrix to define minimum default permissions applicable
 across all of your projects, and set up projects with additional
 project-specific authorizations.
There are many approaches to managing project permissions, and
 they depend as much on organizational culture as on technical
 considerations. One common strategy approach is to allow team members to have
 full access to their own projects, and read-only access to other
 projects. The Extended Read Permission plugin is a useful extension to have for this scenario. This
 plugin lets you let users from other teams see a read-only view of your
 project configuration, without being able to modify anything (see Figure 7-22). This is a great way to
 share build configuration practices and tips with other teams without
 letting them tamper with your builds.
[image: Setting up Extended Read Permissions]

Figure 7-22. Setting up Extended Read Permissions

It is worth noting that, whenever large and/or multiple teams are
 involved, the internal Jenkins database reaches its limits quite
 quickly, and it is worth considering integrating with a more specialized
 directory service such as an LDAP server, Active Directory or Atlassian
 Crowd, or possibly a more sophisticated permission system such as
 role-based security, discussed in the following section.

Role-based Security

Sometimes managing user permissions individually can be cumbersome,
 and you may not want to integrate with an LDAP server to set up groups
 that way. A more recent alternative option is to use the Role Strategy plugin, which allows you to define global
 and project-level roles, and assign these roles to users.
You install the plugin in the usual way, via the Plugin Manager.
 Once installed, you can activate this authorization strategy in the main
 configuration page (see Figure 7-23).
[image: Setting up Role-based security]

Figure 7-23. Setting up Role-based security

Once you have set this up, you can define roles that regroup sets
 of related permissions. You set up and configure your roles, and assign
 these roles to your users, in the Manage Roles screen, which you can
 access in the Manage Jenkins screen (see Figure 7-24).
[image: The Manage Roles configuration menu]

Figure 7-24. The Manage Roles configuration menu

In the Manage Roles screen, you can set up global and project-level permissions. Global permissions apply across
 all projects, and are typically system-wide administration or general
 access permissions (see Figure 7-25). Setting these roles up
 is intuitive and similar to setting up user permissions in the other
 security models we have seen.
[image: Managing global roles]

Figure 7-25. Managing global roles

Project roles are slightly more complicated. A project role
 regroups a set of permissions that are applicable to one or more
 (presumably related) projects. You define the relevant projects using a
 regular expression, so it helps to have a clear and consistent set of
 naming conventions in place for your project names (see Figure 7-26). For example, you may
 wish to create roles distinguishing developers with full configuration
 rights on their own project from users who can simply trigger a build
 and view the build results, or create roles where developers can
 configure certain automated deployment build jobs, but only production
 teams are allowed to execute these jobs.
[image: Managing project roles]

Figure 7-26. Managing project roles

Once you have defined these roles, you can go to the Assign Roles
 screen to set up individual users or groups with these roles (see Figure 7-27).
[image: Assigning roles to users]

Figure 7-27. Assigning roles to users

Role-based strategy is relatively new in Jenkins, but it is an
 excellent way to simplify the task of managing permissions in large,
 multiteam and multiproject organizations.

Auditing—Keeping Track of User Actions

In addition to configuring user accounts and access rights, it
 can also be useful to keep track of the individual user actions: in other
 words, who did what to your server configuration. This sort of audit trail
 facility is even required in many organizations.
There are two Jenkins plugins that can help you do this. The Audit
 Trail plugin keeps a record of user changes in a special log file. And the
 JobConfigHistory plugin lets you keep a copy of previous versions of the
 various system and job configuration files that Jenkins uses.
The Audit Trail Plugin keeps track of the main user actions in
 a set of rolling log files. To set this up, go to the Plugin Manager page
 and select the Audit Trail plugin in the list of available plugins. Then,
 as usual, click on Install and restart Jenkins once the plugin has been
 downloaded.
You can set up the audit trail configuration in the Audit Trail
 section of the main Jenkins configuration page (see Figure 7-28). The most important field is
 the Log Location, which is where you indicate the directory in which the
 log files are to be written. The audit trail is designed to produce
 system-style log files, which are often placed in a special system
 directory such as /var/log. You can
 also configure the number of log files to be maintained, and the
 (approximate) maximum size of each file. The simplest option is to provide
 an absolute path (such as /var/log/hudson.log), in which case Jenkins
 will write to log files with names like /var/log/hudson.log.1, /var/log/hudson.log.2, and so forth. Of course,
 you need to ensure that the user running your Jenkins instance is allowed
 to write to this directory.
[image: Configuring the Audit Trail plugin]

Figure 7-28. Configuring the Audit Trail plugin

You can also use the format defined in the Java logging FileHandler
 class for more control over the generated log files. In this format, you
 can insert variables such as %h, for the current user’s
 home directory, and %t, for the system temporary
 directory, to build a more dynamic file path.
By default, the details recorded in the audit logs are fairly
 sparse—they effectively record key actions performed, such as creating,
 modifying or deleting job configurations or views, and the user who
 performed the actions. The log also shows how individual build jobs
 started. An extract of the default log is shown here:
Dec 27, 2010 9:16:08 AM /job/game-of-life/configSubmit by johnsmart
Dec 27, 2010 9:16:42 AM /view/All/createItem by johnsmart
Dec 27, 2010 9:16:57 AM /job/game-of-life-prod-deployment/doDelete by johnsmart
Dec 27, 2010 9:24:38 AM job/game-of-life/ #177 Started by user johnsmart
Dec 27, 2010 9:25:57 AM job/game-of-life-acceptance-tests/ #107 Started by upstream
 project "game-of-life" build number 177
Dec 27, 2010 9:25:58 AM job/game-of-life-functional-tests/ #7 Started by upstream
 project "game-of-life" build number 177
Dec 27, 2010 9:28:15 AM /configSubmit by johnsmart
This audit trail is certainly useful, especially from a system
 administration perspective. However, it doesn’t provide any information
 about the exact changes that were made to the Jenkins configuration.
 Nevertheless, one of the most important reasons to keep track of user
 actions in Jenkins is to keep tabs on exactly what changes were made to
 build job configurations. When something goes wrong, it can be useful to
 know what changes were done and so be able to undo them. The
 JobConfigHistory plugin lets you do just this.
The JobConfigHistory plugin is a powerful tool that lets you
 keep a full history of changes made to both job and system configuration
 files. You install it from the Plugin Manager in the usual way. Once
 installed, you can fine-tune the job history configuration in the Manage
 Jenkins screen (see Figure 7-29).
[image: Setting up Job Configuration History]

Figure 7-29. Setting up Job Configuration History

Here, you can configure a number of useful nonstandard options. In
 particular, you should specify a directory where Jenkins can store
 configuration history, in the “Root history folder” field. This is the
 directory where Jenkins will store a record of both system-related and
 job-related configuration changes. It can be either an absolute directory
 (such as /var/hudson/history), or a relative
 directory, calculated from the Jenkins home directory (see The Jenkins Home Directory). If you don’t do this, job
 configuration history will be stored with the jobs, and will be lost if
 you delete a job.
There are a few other useful options in the Advanced section. The
 “Save system configuration changes” checkbox lets you keep track of
 system-wide configuration updates, and not just job-specific ones. And the
 “Do not save duplicate history” checkbox allows you to avoid recording
 configuration updates if no actual changes have been made. If not, a new
 version of the configuration will be recorded, even if you have only
 pressed the Save button without making any changes. Jenkins can also cause
 this to happen internally—for example, system configuration settings are
 all saved whenever the main configuration page is saved, even if no
 changes have been made.
Once you have set up this plugin, you can access the configuration
 history both for the whole server, including system configuration updates,
 as well as the changes made to the configuration of each project. In both
 cases, you can view these changes by clicking on the Job Config History
 icon to the right of the screen. Clicking on this icon from the Jenkins
 dashboard will display a view of all of your configuration history,
 including job changes and system-wide changes (see Figure 7-30).
[image: Viewing Job Configuration History]

Figure 7-30. Viewing Job Configuration History

If you click on a system-wide change (indicated by the “(system)”
 suffix in the list), Jenkins takes you to a screen that lists all of the
 versions of that file, and allows you to view the differences between the
 different versions (see Figure 7-31). The differences are
 displayed as diff files, which is not particularly
 readable in itself. However, for small changes, the readable XML format of
 most of the Jenkins configuration files makes this sufficient to
 understand what changes were made.
[image: Viewing differences in Job Configuration History]

Figure 7-31. Viewing differences in Job Configuration History

The JobConfigHistory plugin is a powerful tool. However, at the time
 of writing, it does have its limits. As mentioned, the plugin only
 displays the differences in raw diff format, and you
 can’t restore a previous version of a configuration file (those doing this
 out of context could be dangerous in some circumstances, particularly for
 system-wide configuration files). Nevertheless, it gives a very clear
 picture of the changes that have been made, both to your build jobs and to
 your system configuration.

Conclusion

In this chapter we have looked at a variety of ways to configure
 security in Jenkins. The Jenkins security model, with the two orthogonal
 concepts of Authentication and Authorization, is flexible and extensible.
 For a Jenkins installation of any size, you should try to integrate your
 Jenkins security strategy with the organization as a whole. This can go
 from simply integrating with your local LDAP repository to setting up or
 using a full-blown SSO solution such as Crown or CAS. In either case, it
 will make the system considerably easier to administrate in the long
 run.

Chapter 8. Notification

Introduction

While it is important to get your build server building your
 software, it is even more important to get your build server to let people
 know when it can’t do so. A crucial part of the value proposition of any
 Continuous Integration environment is to improve the flow of information
 about the health of your project, be it failing unit tests or regressions
 in the integration test suite, or other quality related issues such as a
 drop in code coverage or code quality metrics. In all cases, a CI server
 must let the right people know about any new issues, and it must be able
 to do so fast. This is what we call Notification.
There are two main classes of notification strategies, which I
 call passive and active (or
 pull/push). Passive notification
 (pull) requires the developers to consciously consult the latest build
 status, and includes RSS feeds, build radiators, and (to a certain extent)
 emails. Active notification (push) will pro-actively alert the developers
 when a build fails, and includes methods such as desktop notifiers, chat,
 and SMS. Both approaches have their good and bad points. Passive
 notification strategies such as build radiators can raise general
 awareness about failed builds, and help install a team culture where
 fixing broken builds takes a high priority. More direct forms of
 notification can actively encourage developers to take matters into their
 own hands and fix broken builds more quickly.

Email Notification

Email notification is the most obvious and most common form of CI
 notification. Email is well-known, ubiquitous, easy to use and easy to
 configure (see Configuring the Mail Server). So, when
 teams set up their first Continuous Integration environment, it is usually
 the most common initial notification strategy they try.
You activate email notification in Jenkins by ticking the E-mail
 Notification checkbox and providing the list of email addresses of the
 people who need to be notified (see Figure 8-1). By default, Jenkins will
 send an email for every failed or unstable build. Remember, it will also send
 a new email for the first successful build after a series of failed or
 unstable builds, to indicate that the issue has been fixed.
[image: Configuring email notification]

Figure 8-1. Configuring email notification

Normally a build should not take too many tries to get working
 again—developers should diagnose and reproduce the issue locally, fix it
 locally, and only then commit their fix to version control. Repeated build
 failures usually indicate either a chronic configuration issue or poor
 developer practices (for example, developers committing changes without
 checking that it works locally first).
You can also opt to send a separate email to any developers who have
 committed changes to the broken build. This is generally a good idea, as
 developers who have committed changes since the last build are naturally
 the people who should be the most interested in the build results. Jenkins
 will get the email address of the user from the currently-configured
 security realm (see Security Realms—Identifying Jenkins
 Users), or by
 deriving the email address from the SCM username if you have set this up
 (see Configuring the Mail Server).
If you use this option, it may be less useful to include the entire
 team in the main distribution list. You may want to simply include people
 who will be interested in monitoring the result of every build (such as
 technical leads), and let Jenkins inform contributing developers directly.
This assumes of course that the changes caused the build failure,
 which is generally (but not always) the case. However, if the builds are
 infrequent (for example, nightly builds, or if a build is queued for
 several hours before finally kicking off), many changes may have been
 committed, and it is hard to know which one was actually responsible for
 the build failure.
Not all builds are alike when it comes to email notification.
 Developers committing changes are particularly interested in the results
 of the unit and integration test builds (especially those triggered by
 their own changes), whereas BAs and testers might be more interested in
 keeping tabs on the status of the automated acceptance tests. So the exact
 email notification setup for each build job will be different. In fact, it
 is useful to define an email notification strategy. A sample of such an
 email notification strategy is outlined here:
	Fast builds (unit/integration tests, runs in less than 5
 minutes): notification is sent to the team lead and to developers
 having committed changes.

	Slow builds (acceptance tests builds, run after the fast
 builds): notification is sent to team lead, testers and developers
 having committed changes.

	Nightly builds (QA metrics, performance tests and so on; only
 run if the other builds work): all team members—these provide a
 snapshot picture of project health before the daily status
 meeting.

Indeed, you should consider what notification strategy is
 appropriate for each build job on a case-by-case basis, rather than
 applying a blanket policy for all build jobs.

More Advanced Email Notification

By default, Jenkins email notification is a rather blunt tool.
 Notification messages are always sent to basically the same group of
 people. You cannot send messages to different people depending on what
 went wrong, or implement any sort of escalation policy. It would be
 useful, for example, to be able to notify the developers who committed
 changes the first time a build breaks, and send a different message to the
 team lead or the entire team if the build breaks a second time
The Email-ext plugin lets you define a more refined email
 notification strategy. This plugin adds an Editable Email Notification
 checkbox (see Figure 8-2),
 which effectively replaces the standard Jenkins email notification. Here,
 you can define a default recipient list and fine-tune the contents of the
 email message, and also define a more precise notification strategy with
 different messages and recipient lists for different events. Note that
 once you have installed and configured this plugin for your build job, you
 can deactivate the normal E-mail Notification configuration.
[image: Configuring advanced email notification]

Figure 8-2. Configuring advanced email notification

This plugin has two related but distinct functionalities. Firstly,
 it lets you customize the email notification message. You can choose from
 a large number of predefined tokens to create your own customized message
 title and body. You include a token in your message template using the
 familiar dollar notation (e.g., ${BUILD_NUMBER} or
 $BUILD_NUMBER). Some of the tokens accept parameters,
 which you can specify using a name=value format (e.g.,
 ${BUILD_LOG, maxLines=100} or ${ENV,
 var="PATH"}). Among the more useful tokens are:
	${DEFAULT_SUBJECT}
	The default email subject configured in the Jenkins system
 configuration page

	${DEFAULT_CONTENT}
	The default email content configured in the Jenkins system
 configuration page

	${PROJECT_NAME}
	The project’s name

	${BUILD_NUMBER}
	Current build number

	${BUILD_STATUS}
	Current build status (failing, success, etc.)

	${CAUSE}
	The cause of the build

	${BUILD_URL}
	A link to the corresponding build job page on Jenkins

	${FAILED_TESTS}
	Shows information about failing unit tests, if any have
 failed

	${CHANGES}
	Displays the changes made since the last build

	${CHANGES_SINCE_LAST_SUCCESS}
	All the changes made since the last successful build

You can get a full list of the available tokens, and the options for
 those that accept parameters, by clicking on the Help icon opposite the
 Context Token Reference label.
The Advanced button lets you define a more sophisticated
 notification strategy, based on the concept of triggers (see Figure 8-3). Triggers determine when email notification messages should be sent
 out. The supported triggers include the following:
	Failure
	Any time the build fails.

	Still Failing
	Any successive build failures.

	Unstable
	Any time a build is unstable.

	Still Unstable
	Any successive unstable builds.

	Success
	Any successful build.

	Fixed
	When the build changes from Failure or Unstable to
 Successful.

	Before Build
	Sent before every build begins.

[image: Configuring email notification triggers]

Figure 8-3. Configuring email notification triggers

You can set up as many (or as few) triggers as you like. The
 recipients list and message template can be customized for each
 trigger—for example, by using the Still Failing and Still Unstable
 triggers, you can set up a notification strategy that only notifies
 developer having committed changes the first time a build job fails, but
 proceeds to notify the team leader if it fails a second time. You can
 choose to send the message only to the developers who have committed to
 this build (“Send to committers”), or to also include everyone who has
 committed since the last successful build. This helps ensures that
 everyone who may be involved in causing the build to break will be
 notified appropriately.
You can also customize the content of the message by clicking on the
 More Configuration option (as shown for the Still Failing trigger in Figure 8-3). This way, you can customize
 different messages to be sent for different occasions.
The triggers interact intelligently. So if you configure both the
 Failing and the Still Failing triggers, only the Still Failing trigger
 will be activated on the second build failure.
An example of such a customized message is illustrated in Figure 8-4.
[image: Customized notification message]

Figure 8-4. Customized notification message

Overall, however, as a notification strategy, email is not without
 its faults. Some developers shut down their email clients at times to
 avoid being interrupted. In large organizations, the number of email
 messages arriving each day can be considerable, and build failure
 notifications can be hidden among a host of other less important messages.
 So build failures may not always get the high-priority attention they
 require in a finely-tuned CI environment. In the following sections, we
 will look at some other notification strategies that can be used to raise
 team awareness of failed builds and encourage developers to get them
 fixed faster.

Claiming Builds

When a build does fail, it can be useful to know that someone
 has spotted the issue and is working on it. This avoids having more than
 one developer waste time by trying to fix the same problem
 separately.
The Claim plugin lets developers indicate that they have taken
 ownership of the broken build, and are attempting to fix it. You can
 install this plugin in the usual way. Once installed, developers can claim
 a failed build as their own, and optionally add a comment to explain the
 suspected cause of the build and what the developer intends to do about
 it. The claimed build will then be marked as such in the build history, so
 that fellow developers can avoid wasting time with unnecessary
 investigation.
To activate claiming for a build job, you need to tick the “Allow
 broken build claiming” option in the build job configuration page. From
 this point on, you will be able to claim a broken build in the build
 details page (see Figure 8-5).
 Claimed builds will display an icon in the build history indicating that
 they have been claimed. You can also make a build claim “sticky,” so that
 all subsequent build failures for this job will also be automatically
 claimed by this developer, until the issue is resolved.
[image: Claiming a failed build]

Figure 8-5. Claiming a failed build

RSS Feeds

Jenkins also provides convenient RSS feeds for its build results,
 both for overall build results across all of your builds (or just the
 builds on a particular view), or build results for a specific build. RSS
 Feed icons are available at the bottom of build dashboards (see Figure 8-6) and at the bottom of the
 build history panel in the individual build jobs, giving you access to
 either all of the build results, or just the failing builds.
[image: RSS Feeds in Jenkins]

Figure 8-6. RSS Feeds in Jenkins

The URLs for RSS feeds are simple, and work for any Jenkins page
 displaying a set of build results. You just need to append /rssAll to get an RSS feed of all of the build
 results on a page, or /rssFailed to
 only get the failing builds. And /rssLatest will provide you with a feed
 containing only the latest build results. But the simplest way to obtain
 the URL is just to click on the RSS icon in the corresponding Jenkins
 screen.
There are an abundance of RSS readers out there, both commercial and
 open source, available for virtually every platform and device, so this
 can be a great choice to keep tabs on build results. Many common browsers
 (Firefox in particular) and email clients also support RSS feeds. Some
 readers have trouble with authentication, however, so if your Jenkins
 instance is secured, you may need to do a little extra configuration to
 see your build results.
RSS feeds can be a great information source on overall build
 results, and let you see the state of your builds at a glance without
 having to connect to the server. Nevertheless, most RSS Readers are by
 nature passive devices—you can consult the state of your builds, but the
 RSS reader will usually not be able to prompt you if a new build
 failure occurs.

Build Radiators

The concept of information radiators is commonly used in Agile
 circles. According to Agile guru Alistair Cockburn:
An Information radiator is a display posted in a place where
 people can see it as they work or walk by. It shows readers information
 they care about without having to ask anyone a question. This means more
 communication with fewer interruptions.

In the context of a CI server, an information radiator is a
 prominent device or display that allows team members and others to easily
 see if any builds are currently broken. It typically shows either a
 summary of all the current build results, or just the failing ones, and is
 displayed on a large, prominently located wall-mounted flat screen. This
 sort of specialized information radiator is often known as a
 build radiator.
When used well, build radiators are among the most effective of the
 passive notification strategies. They are very effective at ensuring that
 everyone is aware of failing builds. In addition, unlike some of the
 Extreme Feedback Devices that we discuss later on in this chapter, a build
 radiator can cater for many build jobs, including many failing build jobs, and so can still be effectively
 used in a multiteam context.
There are several build radiator solutions for Jenkins. One of the
 easiest to use is the Jenkins Radiator View plugin. This plugin adds a new
 type of job that you can create: the (see Figure 8-7).
[image: Creating a build radiator view]

Figure 8-7. Creating a build radiator view

Configuring the build radiator view is similar to configuring the
 more conventional list views—you just specify the build jobs you want
 included in the view, either by choosing them individually or by using a
 regular expression.
Since the build radiator view takes up the entire screen, modifying
 or deleting a build radiator is a bit tricky. In fact, the only way to
 open the view configuration screen is to append
 /configure to the view URL: so if your build radiator
 is called “build-radiator,” you can
 edit the view configuration by opening
 http://my.hudson.server/view/build-radiator/configure.
The build radiator view (see Figure 8-8) displays a large red or
 yellow box for each failing or unstable build, with the build job name in
 prominent letters, as well as some other details. You can configure the
 build radiator view to display passing builds as well as failing ones
 (they will be displayed in small green boxes). However a good build
 radiator should really only display the failing builds, unless all the
 builds are passing.
[image: Displaying a build radiator view]

Figure 8-8. Displaying a build radiator view

Instant Messaging

Instant Messaging (or IM) is widely used today as a fast,
 lightweight medium for both professional and personal communication.
 Instant messaging is, well, instant, which gives it an edge over email
 when it comes to fast notification. It is also “push” rather than
 “pull”—when you receive a message, it will pop up on your screen and
 demand your attention. This makes it a little harder to ignore or put off
 than a simple email message.
Jenkins provides good support for notification via Instant
 Messaging. The Instant Messaging plugin provides generic support for
 communicating with Jenkins using IM. Protocol-specific plugins can then be added
 for the various IM protocols such as Jabber and IRC.
IM Notification with Jabber

Many instant messaging servers today are based on Jabber, an
 open source, XML-based instant messaging protocol. Jenkins provides good
 support for Jabber instant messaging, so that developers can receive
 real-time notification of build failures. In addition, the plugin runs
 an IM bot that listens to the chat channels and lets developers run
 commands on the Jenkins server via chat messages.
Setting up IM support in Jenkins is straightforward. First, you
 need to install both the Jenkins instant-messaging plugin and
 the Jenkins Jabber notifier plugin using the standard plugin
 manager page and restart Jenkins (see Figure 8-9).
[image: Installing the Jenkins IM plugins]

Figure 8-9. Installing the Jenkins IM plugins

Once this is done, you need to configure your Instant Messaging
 server. Any Jabber server will do. You can use a public service like
 Google Chat, or set up your own internal messaging server locally (the
 Java-based open source chat server OpenFire
 is a good choice). Using a public service for internal communications
 may be frowned upon by system administrators, and you may have
 difficulty getting through corporate fire walls. Setting up your own
 internal chat service, on the other hand, makes great sense for a
 development team or organization in general, as it provides another
 channel of communication that works well for technical questions or
 comments between developers. The following examples will be using a
 local OpenFire server, but the general approach will work for any
 Jabber-compatible server.
The first step involves creating a dedicated account on your
 Jabber server for Jenkins. This is just an ordinary chat account, but it
 needs to be distinct from your developer accounts (see Figure 8-10).
[image: Jenkins needs its own dedicated IM user account]

Figure 8-10. Jenkins needs its own dedicated IM user account

Once you have set up an IM account, you need to configure Jenkins
 to send IM notifications via this account. Go to the main configuration
 page and tick the Enable Jabber Notification checkbox (see Figure 8-11). Here, you provide
 the Jabber ID and password for your IM account. Jenkins can usually
 figure out the IM server from the Jabber ID (if it is different, you can
 override this in the Advanced options). If you are using group chat
 rooms (another useful communication strategy for development teams), you
 can provide the name of these chat rooms here too. This way, Jenkins
 will be able to process instructions posted into the chat rooms as well
 as those received as direct messages.
[image: Setting up basic Jabber notification in Jenkins]

Figure 8-11. Setting up basic Jabber notification in Jenkins

This is all you need for a basic setup. However, you may need to
 provide some extra details in the Advanced sector for details that are
 specific to your installation (see Figure 8-12). Here, you can
 specify the name and port of your Jabber server, if these cannot be
 derived from the Jenkins Jabber ID. You can also provide a default
 suffix that can be applied to Jenkins user IDs to generate the
 corresponding Jabber IDs. Most importantly, if you have secured your
 Jenkins server, you will need to provide a proper Jenkins username and
 password so that the IM bot can respond to instructions correctly.
[image: Advanced Jabber configuration]

Figure 8-12. Advanced Jabber configuration

Once this is configured, you need to set up a Jabber notification
 strategy for each of your build jobs. Open the build job configuration
 page and click on the Jabber Notification option.
First of all, you define a recipient list for the messages. You
 can send messages to individuals (just use the corresponding Jabber ID,
 such as joe@jabber.acme.com) or to chat rooms that
 you have set up. For chat rooms, you normally need to add a “*” to the
 start of the chat room ID (e.g.,
 “*gameoflife@conference.jabber.acme.org”). However, if the chat room ID
 contains “@conference.”, Jenkins will work out that it is a chat room
 and append the “*” automatically. The chat room approach is more
 flexible, though you do have to trust developers to be connected
 permanently to the chat room for this strategy to be truly
 effective.
You also need to define a notification strategy. This determines
 which build results will cause a message to be sent out. Options
 include:
	all
	Send a notification for every build.

	failure
	Only send notifications for failed or unstable
 builds.

	failure and fixed
	Send notifications for every failed or unstable builds, and
 the first successful build following a failed or unstable
 one.

	change
	Send notification whenever the build outcome changes.

If you are using chat rooms, you can also ask Jenkins to send
 notifications to the chat rooms whenever a build starts (using the
 “Notify on build starts” option).
For SCM-triggered builds, Jenkins can also notify additional
 recipients, using the default suffix discussed earlier to build the
 Jabber ID from the SCM username. You can opt to notify:
	SCM committers
	All users having committed changes for the current build,
 and therefore suspected of breaking the build.

	SCM culprits
	SCM committers of all builds since the last successful
 one.

	SCM fixers
	Commiters to the first successful build after a failed or
 unstable one.

	Upstream committers
	Also notifiers committers to upstream builds as well as the
 current one. This works automatically for Maven build jobs, but
 needs fingerprinting to be activated for other build types.

At the time of writing, you can only have one notification
 strategy, so some of the advanced options we saw in More Advanced Email Notification are not yet possible with
 IM.
Developers will be notified via their favorite IM client (see
 Figure 8-13). Developers can
 also interact with the build server via the chat session, using a set of
 simple commands. Some examples of a few of the more useful commands are
 shown here:
	!build game-of-life—Start the
 game-of-life build immediately.

	!build game-of-life 15m—Start the
 game-of-life build in 15 minutes.

	!comment game-of-life 207 'oops'—Add a
 build description to a given build.

	!status game-of-life—display the status of
 the latest build for this build job.

	!testresult game-of-life—display the full
 test results for the latest build.

	!health game-of-life—display a more
 complete summary of the health status of the latest build.

You can get a full list of commands by sending the
 !help message to the Jenkins user.
[image: Jenkins Jabber messages in action]

Figure 8-13. Jenkins Jabber messages in action

IM Notification using IRC

Another popular form of Internet-based Instant Messaging is
 Internet Relay Chat, or IRC. IRC is traditionally focused on group
 discussions (though direct messaging is also supported), and is a very
 popular form of communication for developers, particularly in the Open
 Source world.
The Jenkins IRC plugin lets you interact with your Jenkins
 server via an IRC channel, both to receive notification messages and to
 issue commands to the server. Like the Jabber plugin, you also need to
 install the Instant Messaging plugin for this to work.

IRC Notification

Contributed by Juven Xu
Internet Relay Chat (or IRC) is a popular form of instant messaging,
 primarily designed for group communication in channels. For example,
 Jenkins has a channel set
 up on Freenode so users and developers can discuss Jenkins related
 topics. You will see many users ask questions and most of the time more
 experienced users will be prompt in providing useful answers.
Just like instant messaging through Jabber, you can configure
 Jenkins to “push” notification through IRC. Some IRC clients such as
 xchat support alert configuration
 so that when the message arrives, it can blink the tray icon or make a
 beep sound. To set up IRC support on Jenkins, first you need to
 install the IRC
 plugin and the Instance
 Messaging plugin. Simply go to the standard plugin manager, tick
 their checkbox and then restart Jenkins (see Figure 8-14).
[image: Install the Jenkins IRC plugins]

Figure 8-14. Install the Jenkins IRC plugins

Once it’s done, you need to enable the IRC plugin and configure it
 to fit into your own environment. Basically, this involves providing the
 hostname and port of the IRC server you are using, a dedicated IRC
 channel, and a nickname for the IRC plugin. It’s a good practice to set up
 a dedicated channel for CI notification, so as people chat in other
 channels, they won’t be disturbed. You may also want to configure extra
 details in the Advanced sector. All of these are available in the
 Configure System page (see Figure 8-15).
[image: Advanced IRC notification configuration]

Figure 8-15. Advanced IRC notification configuration

In addition to the hostname, port, channel, and nickname we
 mentioned earlier, you can also configure IRC server password or NIckServ
 password if your environment requires them. Command prefixes need to be
 configured if you want to interact with the server via IRC messages. This
 is basically the same as using Jabber (see Instant Messaging). Finally, you may want
 to let the IRC plugin use the /notice command instead of the default
 /msg command. /notice is the same as
 /msg except that the message will be contained in
 dashes, which will prevent a response from most robots.
Once the global configuration is ready, you can enable IRC
 notification for each build job and set up a notification strategy. Open
 the build job configuration page, go to the Post-build Actions section and
 click on the IRC Notification option. If you want to set up a notification
 strategy rather than using the default one, click the “Advanced...” button
 (see Figure 8-16).
[image: Advanced build job IRC notification configuration]

Figure 8-16. Advanced build job IRC notification configuration

Notification strategies (when to send notification messages, and to
 whom) are discussed in Instant Messaging. Both the Jabber plugin
 and the IRC plugin depend on the Instant Messaging Plugin, so they share a
 number of common core features. Some options are specific to IRC plugin,
 however. Here, for example, you can define a customized channel if you
 don’t like the global default. Finally, for a channel notification
 message, you can choose what information to send in the notification
 messages. Your options are build summary, SCM changes, and failed
 tests.
Once you save the configuration, you should be good to go. Based on
 what you’ve configured, this plugin will join the appropriate IRC channels
 and send notification messages for build jobs.
In Figure 8-17, for example,
 the IRC plugin joins the #ci-book channel on freenode. First, user juven
 committed some change with scm message “feature x added” and IRC plugin
 let everyone on the channel know that the build was successful. Then juven
 committed another change for feature y, but this time the build failed.
 John noticed it and fixed the build error. The IRC plugin now happily said
 “Yippie, build fixed!” Note that some lines in this screen are
 highlighted, this is because I logged in as user “juven” and I configured
 my XChat IRC client to highlight messages containing my nickname.
[image: IRC notification messages in action]

Figure 8-17. IRC notification messages in action

Desktop Notifiers

The best push notification strategies integrate smoothly into
 the developer’s daily work environment. This is why instant messaging can
 be an effective strategy if developers are already in the habit of using
 instant messaging for other work-related activities.
Desktop notification tools also fall into this category. Desktop
 notification tools are tools that run locally on the developer machine,
 either as an independent application or widget, or as part of the
 developer’s IDE.
If you are using Eclipse, the Jenkins Eclipse
 plugin displays a health icon at the bottom of the Eclipse window.
 If you click on the icon, you can see a detailed view of the Jenkins
 projects (see Figure 8-18). In the
 Eclipse preferences, you provide the URL of your Jenkins server along with
 any required authentication details. The configuration is fairly simple,
 however, and you can only connect to a single Jenkins instance for a given
 Eclipse workspace.
[image: Jenkins notifications in Eclipse]

Figure 8-18. Jenkins notifications in Eclipse

The Jenkins Tray Application plugin (see Figure 8-19) lets you start up a small Java client
 application using Java Web Start from your Jenkins dashboard.
[image: Launching the Jenkins Tray Application]

Figure 8-19. Launching the Jenkins Tray Application

This application sits in your system tray, lets you view the current
 state of your builds at a glance, and also brings up pop-up windows
 notifying you of new build failures (see Figure 8-20).
[image: Running the Jenkins Tray Application]

Figure 8-20. Running the Jenkins Tray Application

This is certainly a useful application, but it suffers from a few
 limitations. At the time of writing, the Jenkins Tray Application did not
 support accessing secured Jenkins servers. In addition, the developer
 needs to remember to restart it each morning. This may seem a minor issue,
 but in general, when it comes to notification strategies, the less you
 have to ask of your developers the better.
One of the best options for Jenkins desktop notification is to use a
 service like Notifo (see Notification via Notifo), which provides
 both desktop and mobile clients. We will see how this works in detail in
 the next section.

Notification via Notifo

Notifo is a fast and economical service to send real-time
 notifications to your smartphone or desktop. In the context of a Jenkins
 server, you can use it to set up free or low-cost real-time notification
 for your Jenkins build results. Individual accounts (which you need to be
 able to receive notifications) are free. You need to set up a service
 account to send notification messages from your Jenkins server. This is
 where Notifo earn their keep, though at the time of writing a service
 account can send up to 10,000 notifications per month free of charge,
 which is usually plenty for an average Jenkins instance. One of the strong
 points of a real-time notification service like Notifo is that
 notification messages can be sent to the same users on different devices:
 smartphones and desk top clients, in particular.
Setting up Jenkins notification with Notifo is relatively
 straightforward. First, go to the Notifio website and sign up to create an
 account. Each team member who wants to be notified will need their own
 Notifo account. They will also need to install the Notifo client on each
 device on which they need to receive notification messages. At the time of
 writing, Notifo clients were available for Windows and Mac OS X desktops,
 and iPhones, with support for Linux and other smartphones on the
 way.
Next, you need to set up a Notifo service account for your Jenkins
 server. You can do this with one of your developer accounts, or create a
 new account for the purpose. Log on to the Notifo website, and go to the
 My Services menu. Here, click on Create Service (see Figure 8-21), and fill in the
 fields. The most important is the Service Username, which needs to be
 unique. You can also specify the Site URL and the Default Notification URL
 to point to your Jenkins instance, so that users can open the Jenkins
 console by clicking on the notification message.
[image: Creating a Notifo service for your Jenkins instance]

Figure 8-21. Creating a Notifo service for your Jenkins instance

To receive notification messages from the Jenkins server, developers
 now need to subscribe to this service. You can then add developers to the
 list of subscribers in the service Subscribers page, by sending them
 subscription requests. Once the service has been created and the users are
 all subscribed, you can configure your project to send out Notifo
 notifications (see Figure 8-22). You need the provide
 the API username of the Jenkins service you set up, as well as the API
 Secret, both of which you can see in the Notifo Service Dashboard.
[image: Configuring Notifo notifications in your Jenkins build job]

Figure 8-22. Configuring Notifo notifications in your Jenkins build
 job

Once this is set up, Jenkins will send almost real-time
 notifications of build failures to any Notifo clients the developer is
 running, whether it is on a desktop or on a mobile device (see Figure 8-23).
[image: Receiving a Notifo notification on an iPhone]

Figure 8-23. Receiving a Notifo notification on an iPhone

At the time of writing, sophisticated notification strategies are
 not supported—you just provide a list of Notifo usernames who need to be
 notified. Nevertheless, this remains a very effective notification tool
 for frontline developers.

Mobile Notification

If your Jenkins server is visible on the Internet (even if you have
 set up authentication on your Jenkins server), you can also monitor your
 builds via your iPhone or Android mobile device. The free Hudson Helper
 application (see Figure 8-24), for
 example, lets you list your current build jobs (either all of the build
 jobs on the server, or only the build jobs in a particular view). You can
 also view the details of a particular build job, including the current
 status, failing tests and build time, and even start and stop
 builds.
[image: Using the Hudson Helper iPhone app]

Figure 8-24. Using the Hudson Helper iPhone app

For Android phones, you can also install the Hudson Mood widget will
 also provide updates and alerts about build failures.
Note that these mobile applications rely on a data connection, so
 while they will typically work well locally, you should not rely on them
 if the developer in question is out of the country.

SMS Notification

These days, SMS is another ubiquitous communication channel which
 has the added advantage of reaching people even when they are out of the
 office. For a build engineer, this can be a great way to monitor critical
 builds, even when developers or team leads are away from their
 desks.
SMS
 gateways are services that let you send SMS notifications via
 specially-formatted email addresses (for example,
 123456789@mysmsgateway.com might send an SMS message
 to 123456789). Many mobile vendors provide this service, as do many
 third-party service providers. There is no built-in support for SMS
 Gateways in Jenkins, but the basic functionality of these gateways makes
 integration relatively easy: you simply add the special email addresses to
 the normal notification list. Alternatively, using the advanced email
 configuration, you can set up a separate rule containing only the SMS
 email addresses (see Figure 8-25). Doing this makes it
 easier to fine-tune the message contents to suit an SMS message
 format.
[image: Sending SMS notifications via an SMS Gateway Service]

Figure 8-25. Sending SMS notifications via an SMS Gateway Service

Once you have done this, your users will receive prompt notification
 of build results in the form of SMS messages (see Figure 8-26). The main disadvantage of this
 approach is arguably that it is not free, and requires the use of a
 third-party commercial service. That said, it is really the only
 notification technique capable of reaching developers when they are out of
 Internet range or who do not have a data-enabled smartphone. Indeed, this
 technique is popular among system administrators, and can be very useful
 for certain critical build jobs.
[image: Receiving notification via SMS]

Figure 8-26. Receiving notification via SMS

Making Noise

If you have your Jenkins instance running on a machine that is
 physically located in proximity to the development team, you may also want
 to add sounds into the mix of notification strategies. This can be an
 effective strategy for small co-located teams, though it becomes trickier
 if the build server is set up on a virtual machine or elsewhere in the
 building.
There are two ways to integrate audio feedback into your build
 process in Jenkins: the Jenkins Sounds plugin and the Jenkins Speaks
 plugin. Both can be installed via the Plugin Manager page in the usual
 manner.
The Jenkins Sounds plugin is the most flexible of the two. It
 allows you to build a detailed notification strategy based on the latest
 build result and also (optionally) on the previous build result as well
 (see Figure 8-27). For example, you can configure
 Jenkins to play one sound the first time a build fails, a different sound
 if the build fails a second time, and yet another sound when the build is
 fixed.
[image: Configuring Jenkins Sounds rules in a build job]

Figure 8-27. Configuring Jenkins Sounds rules in a build job

To set this up, you need to tick the Jenkins Sounds checkbox in the
 Post-build Actions section of your build job configuration page. You can
 add as many sound configuration rules as you like. Adding a rule is simple
 enough. First, you need to choose which build result will trigger the
 sound. You also need to specify the previous build results for which this
 rule is applicable: Not Build (NB), Aborted (Ab), Failed (Fa),
 Unsuccessful (Un) or Successful (Su).
The Jenkins Sounds plugin proposes a large list of pre-defined
 sounds, which usually offer plenty of choice for even the most discerning
 build administrator, but you can add your own to the list if you really
 want to. Sounds are stored as a ZIP or JAR file containing sound files in
 a flat directory structure (i.e., no subdirectories). The list of sounds
 proposed by the plugin is simply the list of filenames, minus the
 extensions. The plugin supports AIFF, AU, and WAV files.
In the System Configuration page, you can give Jenkins a new sound
 archive file, using the http://
 notation if your sound archive file is available on a local web server, or
 the file:// notation if it is
 available locally (see Figure 8-28). Once
 you have saved the configuration, you can test the sounds in your sound
 archive via the Test Sound button in the Advanced section.
[image: Configuring Jenkins Sounds]

Figure 8-28. Configuring Jenkins Sounds

The Jenkins Sounds plugin is an excellent choice if you want to
 complement your more conventional notification techniques. Short,
 recognizable sounds are a great way to grab a developer’s attention and
 let the team know that something needs fixing. They will then be a bit
 more receptive when the more detailed notifications follow.
Another option is the Jenkins Speaks plugin. With this plugin, you
 can get Jenkins to broadcast a customized announcement (in a very robotic
 voice) when your build fails (see Figure 8-29).
 You can configure the exact message using Jelly. Jelly is an XML-based
 scripting language used widely in the lower levels of Jenkins.
[image: Configuring Jenkins Speaks]

Figure 8-29. Configuring Jenkins Speaks

The advantage of this approach lies in it’s precision: since you can
 use Jenkins variables in the Jelly script, you can get Jenkins to say just
 about anything you want about the state of the build. Here is a simple
 example:
<j:choose>
 <j:when test="${build.result!='SUCCESS'}">
 Your attention please. Project ${build.project.name} has failed
 <j:if test="${build.project.lastBuild.result!='SUCCESS'}"> again</j:if>
 </j:when>
 <j:otherwise><!-- Say nothing --></j:otherwise>
</j:choose>
If you leave this field blank, the plugin will use a default
 template that you can configure in the System Configuration page. In fact,
 it is usually a good idea to do this, and only to use a project-specific
 script if you really need to.
The disadvantage is that the robotic voice can make it a little hard
 to understand. For this reason, it is a good idea to start your
 announcement with a generic phrase such as “Your attention please,” or to
 combine it with the Jenkins Sounds plugin, so that you have developers’
 attention before the actual message is broadcast. Using hyphens in your
 project names (e.g., game-of-life rather then
 gameoflife) will also help the plugin know how to
 pronounce your project names.
Both these approaches are useful for small teams, but can be limited
 for larger ones, when the server is not physically located in close
 proximity to the development team. Future versions may support playing
 sounds on a separate machine, but at the time of writing this feature was
 not available.

Extreme Feedback Devices

Many more imaginative notification tools and strategies exist, and
 there is plenty of scope for improvisation if you are willing to improvise
 with electronics a little. This includes devices such as Ambient Orbs,
 Lava Lamps, traffic lights, or other more exotic USB-controlled devices.
 The Build Radiator (see Build Radiators) also falls
 into this category if you project it onto a big enough screen.
One device that integrates very nicely with Jenkins is the
 Nabaztag. The Nabaztag (see Figure 8-30) is a
 popular WiFi-enabled robotic rabbit that can flash colored lights, play
 music, or even speak. Once advantage of the Nabaztag is that, since it
 works via WiFi, it is not constrained to be located near the build server,
 and so will work even if your Jenkins instance is in a server room or on a
 virtual machine. As far as extreme feedback devices go, these little
 fellows are hard to beat.
[image: A Nabaztag]

Figure 8-30. A Nabaztag

And best of all, there is a Jenkins plugin available for the
 Nabaztag. Once you have installed the Nabaztag plugin and restarted
 Jenkins, it is easy to configure. In Jenkins’s main Configuration page, go
 to the Global Nabaztag Settings section and enter the serial number and
 secret token for your electronic bunny (see Figure 8-31). You can also provide some
 default information about how your build bunny should react to changes in
 build status (should it report on starting and successful builds, for
 example), what voice it should use, and what message it should say when a
 build fails, succeeds, is fixed, or fails again. Then, to activate
 Nabaztag notification for a particular build job, you need to tick the
 Nabaztag Publisher option in your build job configuration. Depending on your environment, for example,
 you may or may not want all of your builds to send notifications to your
 Nabaztag.
[image: Configuring your Nabaztag]

Figure 8-31. Configuring your Nabaztag

With the notable exception of the build radiator, many of these
 devices have similar limitations to the Jenkins Speaks and Jenkins Sounds
 plugins (see Making Noise)—they are best
 suited for small, co-located teams, working on a limited number of
 projects. Nevertheless, when they work, they can be a useful addition to
 your general notification strategy.

Conclusion

Notification is a vital part of your overall CI strategy. After all,
 a failed build is of little use if there is no one listening. Nor is
 notification a one-size-fits-all affair. You need to think about your
 organization, and tailor your strategy to suite the local corporate
 culture and predominant tool set.
Indeed, it is important to define and implement a well thought-out
 notification strategy that suits your environment. Email, for example, is
 ubiquitous, so this will form the backbone of many notification
 strategies, but if you work in a larger team or with a busy technical
 lead, you may want to consider setting up an escalation strategy based on
 the advanced email options (see More Advanced Email Notification). But you should complement
 this with one of the more active strategies, such as instant messaging or
 a desktop notifier. If your team already uses a chat or IRC channel to
 communicate, try to integrate this into your notification strategy as
 well. And SMS notification is a great strategy for really critical build
 jobs.
You should also ensure that you have both passive and active (or
 pull and push) notification strategies. A prominent build radiator or an
 extreme feedback device, for example, sends a strong message to the team
 that fixing builds is a priority task, and can help install a more agile
 team culture.

Chapter 9. Code Quality

Introduction

Few would deny the importance of writing quality code. High
 quality code contains less bugs, and is easier to understand and easier to
 maintain. However, the precise definitions of code quality can be more
 subjective, varying between organizations, teams, and even individuals
 within a team.
This is where coding standards come into play. Coding standards
 are rules, sometimes relatively arbitrary, that define the coding styles
 and conventions that are considered acceptable within a team or
 organization. In many cases, agreeing on a set of standards, and applying
 them, is more important than the standards themselves. Indeed, one of the
 most important aspects of quality code is that it is easy to read and to
 understand. If developers within a team all apply the same coding
 standards and practices, the code will be more readable, at least for
 members of that team. And if the standards are commonly used within the
 industry, the code will also be more readable for new developers arriving
 on the team.
Coding standards include both aesthetic aspects such as code layout
 and formatting, naming conventions, and so forth, as well as potentially
 bad practices such as missing curly brackets after a condition in Java. A
 consistent coding style lowers maintenance costs, makes code clearer and
 more readable, and makes it easier to work on code written by other team
 members.
Only an experienced developer can really judge code quality in all
 its aspects. That is the role of code reviews and, among other things, practices like pair
 programming. In particular, only a human eye can decide if a piece of code
 is truly well written, and if it actually does what the requirements ask
 of it. However, code quality metrics tools can help a great deal. In fact
 it is unrealistic to try to enforce coding standards without the use of
 such tools.
These tools analyze your application source code or byte code, and
 check whether the code respects certain rules. Code quality metrics can
 encompass many aspects of code quality, from coding standards and best
 practices right through to code coverage, with everything from compiler
 warnings to TODO comments in between. Certain metrics concentrate on
 measurable characteristics of your code base, such as the number of lines
 of code (NLOC), average code complexity, or the number of lines per class.
 Others focus on more sophisticated static analysis, or on looking for
 potential bugs or poor practices in your code.
There are a wide range of code quality reporting plugins
 available for Jenkins. Many are for Java static analysis tools, such as
 Checkstyle, PMD, FindBugs, Cobertura, and JDepend. Others, such as fxcop
 and NCover, are focused on .NET applications.
With all of these tools, you need to configure your build job to
 generate the code quality metrics data before Jenkins can produce any
 reports.
The notable exception to this rule is Sonar. Sonar can extract
 code quality metrics from any Maven project, with no additional
 configuration required in your Maven project. This is great when you have
 large numbers of existing Maven projects that you need to integrate into
 Jenkins, and you want to configure consistent code quality reporting
 across all of your projects.
In the rest of this chapter, we will see how to set up code quality
 reporting in your Jenkins builds, and also how you can use it as an
 effective part of your build process.

Code Quality in Your Build Process

Before we look at how to report on code quality metrics in Jenkins,
 it can be useful to take a step back and look at the larger picture. Code
 Quality metrics are of limited value in isolation—they need to be part of
 a broader process improvement strategy.
The first level of code quality integration should be the IDE.
 Modern IDEs have great support for many code quality
 tools—Checkstyle, PMD, and FindBugs all have plugins for Eclipse,
 NetBeans, and IntelliJ, which provide rapid feedback for developers on
 code quality issues. This is a much faster and more efficient way to
 provide feedback for individual developers, and to teach developers about
 the organizational or project coding standards.
The second level is your build server. In addition to your
 normal unit and integration test build jobs, set up a dedicated code
 quality build, which runs after the normal build and test. The aim of this
 process is to produce project-wide code quality metrics, to keep tabs on
 how the project is doing as a whole, and to address any issues from a high
 level. The effectiveness of these reports can be increased by a weekly
 code quality review, in which code quality issues and trends are discussed
 within the team.
It is important to run this job separately, because code coverage
 analysis and many static analysis tools can be quite slow to run. It is
 also important to keep any code coverage tests well away from builds, as
 the code coverage process produces instrumented code which should never be
 deployed to a repository for production use.
Code quality reporting is, by default, a relatively passive process.
 No one will know the state of the project if they don’t seek out the
 information on the build server. While this is better than nothing, if you
 are serious about code quality, there is a better way. Rather than simply
 reporting on code quality, set up a dedicated code quality build, which
 runs after the normal build and test, and configure the build to fail if
 code quality metrics are not at an acceptable level. You can do this in
 Jenkins or in your build script, although one advantage of configuring
 this outside of your build script is that you can change code quality
 build failing criteria more easily without changing the project source
 code.
As a final word, remember that coding standards are guidelines and
 recommendations, not absolute rules. Use failing code quality builds and
 code quality reports as indicators of a possible area of improvement, not
 as measurements of absolute value.

Popular Java and Groovy Code Quality Analysis Tools

There are many open source tools that can help identify poor coding
 practices.
In the Java world, three static analysis tools have stood the
 test of time, and are widely used in very complementary ways. Checkstyle
 excels at checking coding standards and conventions, coding practices, as
 well as other metrics such code complexity. PMD is a static analysis tool
 similar to Checkstyle, more focused on coding and design practices. And
 FindBugs is an innovative tool issued from the ongoing research work of
 Bill Pugh and his team at the University of Maryland that focuses on
 identifying potentially dangerous and buggy code. And if you are working
 with Groovy or Grails, you can use CodeNarc, which checks Groovy coding
 practices and convention.
All of these tools can be easily integrated into your build process.
 In the following sections, we will look at how to set up these tools to
 generate the XML reports that Jenkins can then use for its own
 reporting.
Checkstyle

Checkstyle
 is a static analysis tool for Java. Originally designed to
 enforce a set of highly-configurable coding standards, Checkstyle now
 also lets you check for poor coding practices, as well as overly complex
 and duplicated code. Checkstyle is a versatile and flexible tool that
 should have its place in any Java-based code quality analysis
 strategy.
Checkstyle supports a very large number of rules, including ones
 relating to naming conventions, annotations, javadoc comments, class and
 method size, code complexity metrics, poor coding practices, and many
 others.
Duplicated code is another important code quality issue—duplicated
 or near-duplicated code is harder
 to maintain and to debug. Checkstyle provides some support for the
 detection of duplicated code, but more specialized tools such as CPD do
 a better job in this area.
One of the nice things about Checkstyle is how easy it is to
 configure. You can start off with the Sun coding conventions and tweak
 them to suit your needs, or start from scratch. Using the Eclipse plugin (or even directly in XML), you can pick and
 choose from several hundred different rules, and fine-tune the settings
 of the rules you do choose (see Figure 9-1). This is important, as
 different organizations, teams and even projects have different
 requirements and preferences with regards to coding standards, and it is
 better to have a precise set of rules that can be adhered to, rather
 than a broad set of rules that will be ignored. It is especially
 important where large legacy code bases are involved—in these cases, it
 is often better to start off with a more limited set of rules than to be
 overwhelmed with a large number of relatively minor formatting
 issues.
[image: It is easy to configure Checkstyle rules in Eclipse]

Figure 9-1. It is easy to configure Checkstyle rules in Eclipse

Configuring Checkstyle in your build is usually straightforward.
 If you are using Ant, you need to download the checkstyle JAR
 file from the website and make it
 available to Ant. You could place it in your Ant lib directory, but this would mean
 customizing the Ant installation on your build server (and any slave
 nodes), so it is not a very portable solution. A better approach would
 be to place the Checkstyle JAR file in one of your project directories,
 or to use Ivy or the Maven Ant Task library to declare a dependency on
 Checkstyle. If you opt for keeping the Checkstyle JAR file in the
 project directories, you could declare the Checkstyle task as shown
 here:
 <taskdef resource="checkstyletask.properties"
 classpath="lib/checkstyle-5.3-all.jar"/>
Then, to generate Checkstyle reports in an XML format that Jenkins
 can use, you could do the following:
<target name="checkstyle">
 <checkstyle config="src/main/config/company-checks.xml">
 <fileset dir="src/main/java" includes="**/*.java"/>
 <formatter type="plain"/>
 <formatter type="xml"/>
 </checkstyle>
</target>
Now, just invoke this task (e.g., ant
 checkstyle) to generate the Checkstyle reports.
In Maven 2, you could add something like the following to the
 <reporting> section:
<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <configLocation>
 src/main/config/company-checks.xml
 </configLocation>
 </configuration>
 </plugin>
 </plugins>
</reporting>
For a Maven 3 project, you need to add the plugin to the
 <reportPlugins> element of the
 <configuration> section of the
 maven-site-plugin:
<project>
 <properties>
 <sonar.url>http://buildserver.acme.org:9000</sonar.url>
 </properties>
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-site-plugin</artifactId>
 <version>3.0-beta-2</version>
 <configuration>
 <reportPlugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-checkstyle-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <configLocation>
 ${sonar.url}/rules_configuration/export/java/My_Rules/checkstyle.xml
 </configLocation>
 </configuration>
 </plugin>
 </reportPlugins>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>
Now, running mvn checkstyle:checkstyle or
 mvn site will analyse your source code and generate
 XML reports that Jenkins can use.
Note that in the last example, we used a Checkstyle ruleset that
 we have uploaded to a Sonar server (defined by the
 ${sonar.url} property). This strategy makes it easy
 to use the same set of Checkstyle rules for Eclipse, Maven, Jenkins, and
 Sonar.
Recent versions of Gradle also offer some integrated Checkstyle
 support. You can set up Checkstyle for your builds as shown here:
apply plugin: 'code-quality'
This will use the checkstyle ruleset in config/checkstyle/checkstyle.xml by default.
 You can override this with the checkstyleConfigFileName
 property: at the time of writing, however, you can’t get the Gradle code
 quality plugin to obtain the Checkstyle rules from a URL.
You can generate the Checkstyle reports here by running gradle checkstyleMain or
 gradle check.

PMD/CPD

PMD is another popular static analysis tool. It focuses on
 potential coding problems such as unused or suboptimal code, code size
 and complexity, and good coding practices. Some typical rules include
 “Empty If Statement,” “Broken Null Check,” “Avoid Deeply Nested If
 Statements,” “Switch Statements Should Have Default,” and “Logger Is Not
 Static Final.” There is a fair amount of overlap with some of the
 Checkstyle rules, though PMD does have some more technical rules, and
 more specialized ones such as rules related to JSF and Android.
PMD also comes with CPD, a robust open source detector of
 duplicated and near-duplicated code.
PMD is a little less flexible than Checkstyle, though you can
 still pick and choose the rules you want to use in Eclipse, and then export them as an XML file (see Figure 9-2). You can then import this rule set
 into other Eclipse projects, into Sonar, or use it in your Ant or Maven
 builds.
[image: Configuring PMD rules in Eclipse]

Figure 9-2. Configuring PMD rules in Eclipse

PMD comes with an Ant task that you can use to generate the
 PMD and CPD reports. First, though, you need to define these tasks, as
 shown in the following example:
<path id="pmd.classpath">
 <pathelement location="${build}"/>
 <fileset dir="lib/pmd">
 <include name="*.jar"/>
 </fileset>
</path>

<taskdef name="pmd" classname="net.sourceforge.pmd.ant.PMDTask"
 classpathref="pmd.classpath"/>

 <taskdef name="cpd" classname="net.sourceforge.pmd.cpd.CPDTask"
 classpathref="pmd.classpath"/>
Next, you can generate the PMD XML report by invoking the PMD task
 as illustrated here:
<target name="pmd">
 <taskdef name="pmd" classname="net.sourceforge.pmd.ant.PMDTask"
 classpathref="pmd.classpath"/>

 <pmd rulesetfiles="basic" shortFilenames="true">
 <formatter type="xml" toFile="target/pmd.xml" />
 <fileset dir="src/main/java" includes="**/*.java"/>
 </pmd>
</target>
And, to generate the CPD XML report, you could do something like
 this:
<target name="cpd">
 <cpd minimumTokenCount="100" format="xml" outputFile="/target/cpd.xml">
 <fileset dir="src/main/java" includes="**/*.java"/>
 </cpd>
</target>
You can place this XML ruleset in your project classpath (for
 example, in src/main/resources for a Maven project), or in
 a separate module (if you want to share the configuration between
 projects). An example of how to configure Maven 2 to generate PMD and
 CPD reports using an exported XML ruleset as shown here:
<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <!-- PMD options -->
 <targetJdk>1.6</targetJdk>
 <aggregate>true</aggregate>
 <format>xml</format>
 <rulesets>
 <ruleset>/pmd-rules.xml</ruleset>
 </rulesets>

 <!-- CPD options -->
 <minimumTokens>20</minimumTokens>
 <ignoreIdentifiers>true</ignoreIdentifiers>
 </configuration>
 </plugin>
 </plugins>
</reporting>
If you are using Maven 3, you would place the plugin
 definition in the <maven-site-plugin> configuration
 section. This example also shows how to use a ruleset in another
 dependency (in this case the pmd-rules.jar
 file):
<project>
 ...
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-site-plugin</artifactId>
 <version>3.0-beta-2</version>
 <configuration>
 <reportPlugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-pmd-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <!-- PMD options -->
 <targetJdk>1.6</targetJdk>
 <aggregate>true</aggregate>
 <format>xml</format>
 <rulesets>
 <ruleset>/pmd-rules.xml</ruleset>
 </rulesets>

 <!-- CPD options -->
 <minimumTokens>50</minimumTokens>
 <ignoreIdentifiers>true</ignoreIdentifiers>
 </configuration>
 </plugin>
 </reportPlugins>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>com.wakaleo.code-quality</groupId>
 <artifactId>pmd-rules</artifactId>
 <version>1.0.1</version>
 </dependency>
 </dependencies>
 </plugin>
 </plugins>
 </build>
</project>
Now, you can run either mvn site or
 mvn pmd:pmd pmd:cpd to generate the PMD and CPD
 reports.
Unfortunately there is currently no built-in Gradle support for
 PMD or CPD, so you have to fall back on invoking the PMD Ant plugin
 directly, as shown here:
configurations {
 pmdConf
}

dependencies {
 pmdConf 'pmd:pmd:4.2.5'
}

task pmd << {
 println 'Running PMD static code analysis'
 ant {
 taskdef(name:'pmd', classname:'net.sourceforge.pmd.ant.PMDTask',
 classpath: configurations.pmdConf.asPath)

 taskdef(name:'cpd', classname:'net.sourceforge.pmd.cpd.CPDTask',
 classpath: configurations.pmdConf.asPath)

 pmd(shortFilenames:'true', failonruleviolation:'false',
 rulesetfiles:'conf/pmd-rules.xml') {
 formatter(type:'xml', toFile:'build/pmd.xml')
 fileset(dir: "src/main/java") {
 include(name: '**/*.java')
 }
 fileset(dir: "src/test/java") {
 include(name: '**/*.java')
 }
 }

 cpd(minimumTokenCount:'50', format: 'xml',
 ignoreIdentifiers: 'true',
 outputFile:'build/cpd.xml') {
 fileset(dir: "src/main/java") {
 include(name: '**/*.java')
 }
 fileset(dir: "src/test/java") {
 include(name: '**/*.java')
 }
 }
 }
}
This configuration will use the PMD rule set in the src/config directory, and generate a PMD XML
 report called pmd.xml in the
 build directory. It will also run
 CPD and generate a CPD XML report called cpd.xml in the
 build directory.

FindBugs

FindBugs is a powerful code quality analysis tool that checks your
 application byte code for potential bugs, performance problems, or poor
 coding habits. FindBugs is the result of research carried out at the
 University of Maryland lead by Bill Pugh, that studies byte code
 patterns coming from bugs in large real-world projects, such as the
 JDKs, Eclipse, and source code from Google applications. FindBugs can
 detect some fairly significant issues such as null pointer exceptions,
 infinite loops, and unintentionally accessing the internal state of an
 object. Unlike many other static analysis tools, FindBugs tends to find
 a smaller number of issues, but of those issues, a larger proportion
 will be important.
FindBugs is less configurable than the other tools we have seen,
 though in practice you generally don’t need to fine-tune the rules as
 much as the other tools we’ve discussed. You can list the individual
 rules you want to apply, but you can’t configure a shared XML file
 between your Maven builds and your IDE, for example.
FindBugs comes bundled with an Ant task. You can define the
 FindBugs task in Ant as shown below. FindBugs needs to refer to the
 FindBugs home directory, which is where the binary distribution of
 FindBugs has been unzipped. To make the build more portable, we are
 storing the FindBugs installation in our project directory structure, in
 the tools/findbugs
 directory:
<property name="findbugs.home" value="tools/findbugs" />

<taskdef name="findbugs" classname="edu.umd.cs.findbugs.anttask.FindBugsTask" >
 <classpath>
 <fileset dir="${findbugs.home}/lib" includes="**/*.jar"/>
 </classpath>
</taskdef>
Then, to run FindBugs, you could set up a “findbugs” target as
 shown in the following example. Note that FindBugs runs against your
 application byte-code, not your source code, so you need to compile your
 source code first:
<target name="findbugs" depends="compile">
 <findbugs home="${findbugs.home}" output="xml" outputFile="target/findbugs.xml">
 <class location="${classes.dir}" />
 <auxClasspath refId="dependency.classpath" />
 <sourcePath path="src/main/java" />
 </findbugs>
</target>
If you are using Maven 2, you don’t need to keep a local copy
 of the FindBugs installation. You just need to configure FindBugs in the
 reporting section as shown here:
<reporting>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>2.3.1</version>
 <configuration>
 <effort>Max</effort>
 <xmlOutput>true</xmlOutput>
 </configuration>
 </plugin>
 </plugins>
</reporting>
Or for a Maven 3 project:
<project>
 ...
 <build>
 ...
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-site-plugin</artifactId>
 <version>3.0-beta-2</version>
 <configuration>
 <reportPlugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>2.3.1</version>
 <configuration>
 <effort>Max</effort>
 <xmlOutput>true</xmlOutput>
 </configuration>
 </plugin>
 </reportPlugins>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>
In both cases, you can generate the XML reports by running
 mvn site or mvn findbugs:findbugs.
 The XML reports will be placed in the target directory.
At the time of writing there is no special support for FindBugs in
 Gradle, so you need to invoke the FindBugs Ant plugin.

CodeNarc

CodeNarc is a static analysis tool for Groovy code, similar to PMD
 for Java. It checks Groovy source code for potential defects, poor
 coding practices and styles, overly complex code, and so on. Typical
 rules include “Constant If Expression,” “Empty Else Block,” “GString As
 Map Key,” and “Grails Stateless Service.”
For Ant or Maven-based projects, the CodeNarc Ant plugin is
 the simplest option (a Maven plugin is under development at the time of
 writing). A typical Ant configuration for use with Jenkins would look
 like this:
<taskdef name="codenarc" classname="org.codenarc.ant.CodeNarcTask"/>
<target name="runCodeNarc">
 <codenarc ruleSetFiles="rulesets/basic.xml,rulesets/imports.xml"
 maxPriority1Violations="0">

 <report type="xml">
 <option name="outputFile" value="reports/CodeNarc.xml" />
 </report>

 <fileset dir="src">
 <include name="**/*.groovy"/>
 </fileset>
 </codenarc>
</target>
You can integrate CodeNarc into a Grails project simply by
 installing the CodeNarc plugin:
$ grails install-plugin codenarc
This will configure CodeNarc to analyse the Groovy files in your
 Grails application code, as well as in the src/groovy and test directories.
Gradle 0.8 also provides support for CodeNarc in the
 code-quality plugin, that you can configure in your builds as shown
 here:
apply plugin: 'code-quality'
This will use the CodeNarc configuration file in config/codenarc/codenarc.xml by default. You
 can override this with the codeNarcConfigFileName
 property.
You can generate the CodeNarc reports here by running
 gradle codenarcMain or, more simply, gradle check.

Reporting on Code Quality Issues with the Violations Plugin

One of the most useful code quality plugins for Jenkins is the
 Violations plugin. This plugin will not analyse your project source code
 (you need to configure your build to do that), but it does a great job on
 reporting on the code quality metrics generated for individual builds and
 trends over time. The plugin caters for reports on code quality metrics
 coming from a large range of static analysis tools, including:
	For Java
	Checkstyle, CPD, PMD, FindBugs, and jcreport

	For Groovy
	codenarc

	For JavaScript
	jslint

	For .Net
	gendarme and stylecop

Installing the plugin is straightforward. Just go to the Plugin
 Manager screen and select the Jenkins Violations plugin. Once you have
 installed the plugin and restarted Jenkins, you will be able to use it for
 your projects.
The Violations plugin does not generate the code quality metrics
 data itself—you need to configure your built to do that, as shown in the
 previous section. An example of doing this for a Maven build job is
 illustrated in Figure 9-3. Notice that
 here we are invoking the Maven plugin goals directly. We could also just
 run mvn site, but if we are only interested in the code
 quality metrics, and not the other elements of the Maven-generated site,
 calling the plugins directly will result in faster builds.
[image: Generating code quality reports in a Maven build]

Figure 9-3. Generating code quality reports in a Maven build

Once you have set this up, you can configure the violations plugin
 to generate reports and, if required, trigger notifications, based on the
 report results. Just go to the Post-build Actions and check the Report
 Violations checkbox. The details of the configuration vary depending on
 the project type. Lets look at Freestyle build jobs first.
Working with Freestyle Build Jobs

Freestyle build jobs allow you the most configuration flexibility,
 and are your only option for non-Java projects.
When you use the Violations plugin with a Freestyle build job, you
 need to specify the paths to each of the XML reports generated by the
 static analysis tools you have used (see Figure 9-4). The plugin can
 cater for several reports from the same tool, which is useful for Maven
 multimodule projects—just use a wildcard expression to identify the
 reports you want (for example,
 **/target/checkstyle.xml).
[image: Configuring the violations plugin for a Freestyle project]

Figure 9-4. Configuring the violations plugin for a Freestyle
 project

The Violations plugin will generate a graph tracking the number of
 each type of issue over time (see Figure 9-5). The graph displays a
 different-colored line for each type of violations your are tracking, as
 well as a summary of the latest results.
[image: Violations over time]

Figure 9-5. Violations over time

You can also click on this graph to drill down into a particular
 build. Here, you can see the number of issues raised for that particular
 build (see Figure 9-6), with
 various breakdowns by violation type, severity, and file.
[image: Violations for a given build]

Figure 9-6. Violations for a given build

Finally, you can drill down into a particular class, to display
 the detailed list of issues, along with where they appear in the source
 code.
But the Violations plugin also allows for a more proactive
 management of code quality. You can use the results of the code quality
 analysis reports to influence the weather icon on the Jenkins dashboard.
 This weather icon is normally related to the number of failing builds in
 the previous five builds, but Jenkins can also take into account other
 factors, such as code quality results. Displaying a cloudy or stormy
 icon for a project on the dashboard is a much better way of raising
 awareness about code quality issues that simply relying on graphs and
 reports on the build job page.
To set this up, you need to go back to the Report Violations
 section in the Post-build Actions. The first three columns in Figure 9-4 show a sunny icon,
 a stormy icon, and a yellow ball. The one with the sunny icon is the
 maximum number of violations tolerated in order to keep the sunny
 weather icon on the dashboard page. The second column, with the stormy
 weather icon, is the number of violations that will cause a stormy icon
 to appear on the dashboard. If you have a number of violations between
 these two extremes, you will get one of the cloudy icons.
You can set different values for different tools. The exact
 thresholds will vary between teams and between projects, and also
 between tools. For example, Checkstyle will typically raise a lot more
 issues than FindBugs or CPD, with PMD being somewhere in between. You
 need to adjust the values you use to reflect how these tools work on
 your code base, and your expectations.
You can take this even further with the third column (the one with
 the yellow ball). This column lets you set a number of violations that
 will cause the build to be declared unstable. Remember, when a build becomes unstable Jenkins
 will send out notification messages, so this is an even more proactive
 strategy.
For example, in Figure 9-4, we have configured
 the minimum number of Checkstyle violations to 10, which means that the
 sunny weather icon will only appear if there are 10 or fewer Checkstyle
 violations. If there are more than 10, the weather will degrade
 progressively, until at the 200 violations mark, it will become stormy.
 And if there are 500 or more Checkstyle violations, the project will be
 flagged as unstable.
Now look at the configuration for CPD, the duplicated code
 detector that comes with PMD. In this project, we have adopted a
 zero-tolerance policy for duplicated code, so the sunny icon value is
 set to zero. The stormy icon is set to 10, so if there are 10 or more
 copy-paste violations, the project weather indicator will appear as
 stormy. And if the project has 15 or more copy-paste violations, it will
 be declared unstable.
Now, on the Dashboard page, this project will appear both with a
 stormy weather icon and as unstable, even though there are no test
 failures (see Figure 9-7). This particular
 build is unstable because there are 16 CPD violations. In addition, if
 you place your mouse over the weather icon, Jenkins will display some
 more details about how it calculated this particular status.
[image: Configuring the violations plugin for a Freestyle project]

Figure 9-7. Configuring the violations plugin for a Freestyle
 project

Working with Maven Build Jobs

Maven build jobs in Jenkins use the Maven conventions and
 information in the project pom.xml
 file to make configuration easier and more lightweight. When you use the
 Violations plugin with a Maven build job, Jenkins uses these conventions
 to reduce the amount of work you need to do to configure the plugin. You
 don’t need to tell Jenkins where to find the XML reports for many of the
 static analysis tools (for example, Checkstyle, PMD, FindBugs, and CPD),
 as Jenkins can figure this out based from the Maven conventions and
 plugin configurations (see Figure 9-8). If you do need to override
 these conventions, you can choose the Pattern option in the “XML
 filename pattern” drop-down list, and enter a path as you do for
 freestyle build jobs.
[image: Configuring the violations plugin for a Maven project]

Figure 9-8. Configuring the violations plugin for a Maven project

The Violations plugin works well with multimodule Maven projects,
 but at the time of writing it needs a little tweaking to obtain best
 results. Maven build jobs understand the structure of multimodule
 projects (see Figure 9-9); furthermore,
 you can drill down into any module and get a detailed view of the build
 results for that build job.
[image: Jenkins Maven build jobs understand Maven multimodule structures]

Figure 9-9. Jenkins Maven build jobs understand Maven multimodule
 structures

This is a very useful feature, but it means you need to do a
 little extra work to get all of the benefits out of the Violations
 plugins for the individual modules. By default, the violations plugin
 will display an aggregated view of the code quality metrics like the one
 in Figure 9-5. You can also
 click on the violations graph, and view the detailed reports for each
 module.
However, for this to work correctly, you need to activate the
 violations plugin individually for each module in addition to the main
 project. To do this, click on the module you want to configure in the
 Modules screen, and then click on the “Configure” menu. Here, you will
 see a small subset of the usual configuration options (see Figure 9-10). Here, you just need
 to activate the Violations option, and configure the thresholds if
 required. On the positive side, this means that you can define different
 threshold values for different modules.
[image: Activating the Violations plugin for an individual module]

Figure 9-10. Activating the Violations plugin for an individual
 module

Once you have done this, when you click on the violations
 aggregate graph on the project build job home page, Jenkins will list
 the individual violations graphs for each module.

Using the Checkstyle, PMD, and FindBugs Reports

You can also report individually on results from Checkstyle,
 PMD, and FindBugs. In addition to the Violations plugin, there are also
 Jenkins plugins that produce trend graphs and detailed reports for each of
 these tools individually. We will look at how to do this for Checkstyle,
 but the same approach also applies for PMD and FindBugs. You can even use
 the Analysis Collector Plugin to display the combined results in a graph
 similar to the one produced by the Violations plugin.
You can install these plugins through the Plugin Manager in the
 usual way. The plugins in question are called, unsurprisingly, Checkstyle
 plugin, PMD plugin, and FindBugs plugin. All of these plugins use the
 Static Analysis Utilities plugin, which you need to install as well (see
 Figure 9-11).
[image: Installing the Checkstyle and Static Analysis Utilities plugins]

Figure 9-11. Installing the Checkstyle and Static Analysis Utilities
 plugins

Once you have installed these plugins, you can set up the reporting
 in your project configuration. Tick the “Publish Checkstyle analysis
 results” checkbox. In a freestyle build, you will need to specify a path
 pattern to find the Checkstyle XML reports; in a Maven 2 build, Jenkins
 will figure out where to look for them by itself.
This will provide basic Checkstyle reporting, but as usual you can
 fine-tune things further by clicking on the Advanced button. In a Maven 2
 build, you can configure the health threshold values (how many violations
 will cause the build to go from sunny to stormy), and also filter the
 priority violations you want to include in this calculation. For example,
 you may only want high priority issues to be taken into account for the
 weather icon status.
The Freestyle builds have a few more options you can configure: in
 particular, you can cause the build to become unstable (yellow ball) or even to fail (red ball) if there
 are more than a given number of violations, or if there are more than a
 given number of new violations (see Figure 9-12). So, in the configuration in
 the illustration, if there are more than 50 new checkstyle violations of
 any priority in a build, the build will be flagged as unstable. This
 certainly has its uses for Checkstyle, but it can also come in very handy
 with FindBugs, where high priority issues often represent dangerous and
 potentially show-stopping bugs.
[image: Configuring the Checkstyle plugin]

Figure 9-12. Configuring the Checkstyle plugin

Now, when the build runs, Jenkins will now generate a trend graph
 and detailed reports for the Checkstyle violations (see Figure 9-13). From here, you can drill down
 to see violations per priority, per category, per run type, per package,
 and so on.
[image: Displaying Checkstyle trends]

Figure 9-13. Displaying Checkstyle trends

As we mentioned earlier, the same approach also works with the PMD
 plugin and the FindBugs plugin. These plugins are a great way to provide
 more focused reporting on the results of a particular tool, and also give
 you more control over the impact that these violations will have on the
 build results.

Reporting on Code Complexity

Code complexity is another important aspect of code quality. Code
 complexity is measured in a number of ways, but one commonly used (and
 easy-to-understand) complexity metric is Cyclometric Complexity, which
 involves measuring the number of different paths through a method. Using
 this metric, complex code typically has large numbers of nested
 conditional statements and loops, which make the code harder to understand
 and to debug.
There is also a code quality theory that correlates code complexity
 and code coverage, to give a general idea of how reliable a particular
 piece of code is. This is based on the (very understandable) idea that
 code that is both complex and poorly tested is more likely to contain bugs
 than simple, well-tested code.
The Coverage Complexity Scatter Plot plugin is designed to let
 you visualize this information in your Jenkins builds (see Figure 9-14). Dangerously complex and/or
 untested methods will appear high on
 the graph, where as the more well-written and well-tested methods will
 appear lower down.
[image: A coverage/complexity scatter plot]

Figure 9-14. A coverage/complexity scatter plot

The scatter graph gives you a good overview of the state of your
 code in terms of complexity and test coverage, but you can also drill down
 to investigate further. If you click on any point in the graph, you can
 see the corresponding methods, with their test coverage and complexity
 (see Figure 9-15).
[image: You can click on any point in the graph to investigate further]

Figure 9-15. You can click on any point in the graph to investigate
 further

At the time of writing, this plugin requires Clover, so your build
 needs to have generated a Clover XML coverage report, and you need to have
 installed and configured the Clover Jenkins plugin (see Measuring Code Coverage with Clover). However support for Cobertura and other
 tools is planned.

Reporting on Open Tasks

When it comes to code quality, static analysis is not the only
 tool you can use. Another indicator of the general health of your project
 can be found in the number of FIXME,
 TODO, @deprecated, and similar tags
 scattered through the source code. If there are a lot of these, it can be
 a sign that your code base has a lot of unfinished work, and is therefore
 not in a very finalized state.
The Jenkins Task Scanners plugin lets you keep track of these
 sorts of tags in your source code, and optionally flag a build with a bad
 weather icon on the dashboard if there are too many open tasks.
To set this up, you need to install both the Static Analysis
 Utilities plugin and the Task Scanner plugin. Once installed, you can
 activate the plugin in your project by checking the “Scan workspace for
 open tasks” checkbox in the Build Settings section of your project job
 configuration.
Configuring the Task Scanner plugin is pretty straightforward (see
 Figure 9-16). You simply enter the tags you
 want to track, with different priorities if you consider certain tags to
 be more important than others. By default, the plugin will scan all the
 Java source code in the project, but you can redefine this behavior by
 entering the Files to scan field. In Figure 9-16, for example, we also check XML and
 JSP files for tags.
[image: Configuring the Task Scanner plugin is straightforward]

Figure 9-16. Configuring the Task Scanner plugin is straightforward

The Advanced button gives you access to a few more sophisticated
 options. Probably the most useful are the Health thresholds, which let you
 define the maximum number of issues tolerated before the build can no
 longer be considered “sunny,” and the minimum number of issues required
 for “stormy weather” status.
The plugin generates a graph that shows tag trends by priority (see
 Figure 9-17). If you click on the
 Open Tasks report, you can also see a breakdown of tasks by Maven module,
 package or file, or even list the open tasks.
[image: The Open Tasks Trend graph]

Figure 9-17. The Open Tasks Trend graph

Integrating with Sonar

Sonar is a tool that centralizes a range of code quality metrics
 into a single website (see Figure 9-18). It uses
 several Maven plugins (Checkstyle, PMD, FindBugs, Cobertura or Clover, and
 others) to analyse Maven projects and generate a comprehensive set of code
 quality metrics reports. Sonar reports on code coverage, rule compliance,
 and documentation, but also on more high-level metrics such as complexity,
 maintainability and even technical debt. You can use plugins to extend its
 features and add support for other languages (such as support for CodeNarc
 for Groovy source code). The rules used by the various tools are managed
 and configured centrally on the
 Sonar website, and the Maven projects being analyzed don’t require any
 particular configuration. This makes Sonar a great fit for working on
 Maven projects where you have limited control over the pom files.
[image: Code quality reporting by Sonar]

Figure 9-18. Code quality reporting by Sonar

In one of the most common usages of Sonar, Sonar automatically runs
 a set of Maven code quality related plugins against your Maven project,
 and stores the results into a relational database. The Sonar server, which
 you run separately, then analyzes and displays the results as shown in
 Figure 9-18.
Jenkins integrates well with Sonar. The Jenkins Sonar Plugin lets
 you define Sonar instances for all of your projects, and then activate
 Sonar in particular builds. You can run your Sonar server on a different
 machine to your Jenkins instance, or on the same. The only constraint is
 that the Jenkins instance must have JDBC access to the Sonar database, as
 it injects code quality metrics directly into the database, without going
 through the Sonar website (see Figure 9-19).
[image: Jenkins and Sonar]

Figure 9-19. Jenkins and Sonar

Sonar also has an Ant bootstrap (with a Gradle bootstrap in the
 making at the time of writing) for non-Maven users.
You install the plugin in the usual way, via the Plugin Manager.
 Once installed, you configure the Jenkins Sonar plugin in the Configure
 System screen, in the Sonar section. This involves defining your Sonar
 instances—you can configure as many instances of Sonar as you need. The
 default configuration assumes that you are running a local instance of
 Sonar with the default embedded database. This is useful for testing
 purposes but not very scalable. For a production environment, you will
 typically run Sonar on a real database such as MySQL or Postgres, and you
 will need to configure the JDBC connection to the production Sonar
 database in Jenkins. You do this by clicking on the Advanced button and
 filling in the appropriate fields (see Figure 9-20).
[image: Configuring Sonar in Jenkins]

Figure 9-20. Configuring Sonar in Jenkins

The other thing you need to configure is when the Sonar build will
 kick off in a Sonar-enabled build job. You usually configure Sonar to run
 with one of the long-running Jenkins build jobs, such as the code quality
 metrics build. It is not very useful to run the Sonar build more than once
 a day, as Sonar stores metrics in 24-hour slices. The default
 configuration will kick off a Sonar build in a Sonar-enabled build job
 whenever the job is triggered by a periodically scheduled build or by a
 manual build.
To activate Sonar in your build job with the system-wide
 configuration options, just check the Sonar option in the Post-build
 Actions (see Figure 9-21). Sonar will
 run whenever your build is started by one of the trigger mechanisms
 defined above.
[image: Configuring Sonar in a build job]

Figure 9-21. Configuring Sonar in a build job

You typically set up Sonar to run on a regular basis, for example
 every night or once a week. So you can activate Sonar on your normal
 unit/integration test build job, simply by adding a schedule (see Figure 9-22). This avoids duplicated
 configuration details between jobs. Or, if you already have a scheduled
 build job that runs with an appropriate frequency (such as a dedicated
 code quality metrics build), you can activate Sonar on this build
 job.
[image: Scheduling Sonar builds]

Figure 9-22. Scheduling Sonar builds

If you click on the Advanced button, you can specify other more
 sophisticated options, such as running your Sonar build on a separate
 branch, passing Maven additional command-line options (such as extra
 memory), or overriding the default trigger configuration.
By default, Sonar will run even if the normal build fails. This is
 usually what you want, as Sonar should record build and test failures as
 well as successful results. However, if required, you can deactivate this
 option too in the Advanced options.

Conclusion

Code quality is an important part of the build process, and Jenkins
 provides excellent support for the wide range of code quality-related
 tools out there. As a result, Jenkins should be a key part of your code
 quality strategy.

Chapter 10. Advanced Builds

Introduction

In this chapter, we will look at some more advanced build job
 setups. We will discuss parameterized builds, which allows Jenkins to
 prompt the user for additional parameters that will be passed into the
 build job, and multiconfiguration build jobs, which let you run a single
 build job though a large number of variations. We will look at how to run
 build jobs in parallel, and wait for the outcome of one or more build jobs
 before continuing. And we will see how to implement build promotion
 strategies and build pipelines so that Jenkins can be used not only as a
 build server, but also as a deployment server.

Parameterized Build Jobs

Parameterized builds are a powerful concept that enable you to add
 another dimension to your build jobs.
The Parameterized Build plugin lets you configure parameters
 for your build job, that can be either entered by the user when the build
 job is triggered, or (as we will see later) from another build job.
For example, you might have a deployment build job, where you want
 to choose the target environment in a drop-down list when you start the
 build job. Or you may want to specify the version of the application you
 want to deploy. Or, when running a build job involving web tests, you
 might want to specify the browser to run your Selenium or WebDriver tests
 in. You can even upload a file to be used by the build job.
Note that it is the job of the build script to analyze and process
 the parameter values correctly—Jenkins simply provides a user interface
 for users to enter values for the parameters, and passes these parameters
 to the build script.
Creating a Parameterized Build Job

You install the Parameterized Build plugin as usual, via the
 Plugin Manager screen. Once you have done this, configuring a
 parameterized build job is straightforward. Just tick the “This build is
 parameterized” option and click Add Parameter to add a new build job
 parameter (see Figure 10-1). You
 can add parameters to any sort of build, and you can add as many
 parameters as you want for a given build job.
[image: Creating a parameterized build job]

Figure 10-1. Creating a parameterized build job

To add a parameter to your build job, just pick the parameter type
 in the drop-down list. This will let you configure the details of your
 parameter (see Figure 10-2).
 You can choose from several different parameter types, such as Strings, Booleans, and drop-down
 lists. Depending on the type you choose, you will have to enter slightly
 different configuration values, but the basic process is identical. All
 parameter types, with the exception of the File parameter, have a name
 and a description, and most often a default value.
In Figure 10-3, for
 example, we are adding a parameter called version to
 a deployment build job. The default value (RELEASE)
 will be initially displayed when Jenkins prompts the user for this
 parameter, so if the user doesn’t change anything, this value will be
 used.
[image: Adding a parameter to the build job]

Figure 10-2. Adding a parameter to the build job

When the user starts a parameterized build job (parameterized
 build jobs are very often started manually), Jenkins will propose a page
 where the user can enter values for each of the build job’s parameters
 (see Figure 10-3).
[image: Adding a parameter to the build job]

Figure 10-3. Adding a parameter to the build job

Adapting Your Builds to Work with Parameterized Build
 Scripts

Once you have added a parameter, you need to configure your
 build scripts to use it. Choosing the parameter name well is important
 here, as this is also the name of the variable that Jenkins will pass
 through as an environment variable when it runs the build job. To
 illustrate this, consider the very basic build job configuration in
 Figure 10-4, where we are simply
 echoing the build parameter back out to the console. Note that, to make
 the environment variables more portable across operating systems, it is
 good practice to put them all in upper case.
[image: Demonstrating a build parameter]

Figure 10-4. Demonstrating a build parameter

When we run this, we get a console output along the following
 lines:
Started by user anonymous
Building on master
[workspace] $ /bin/sh -xe /var/folders/y+/y+a+wZ-jG6WKHEm9KwnSvE+++TI/-Tmp-/
jenkins5862957776458050998.sh
+ echo Version=1.2.3
Version=1.2.3
Notifying upstream projects of job completion
Finished: SUCCESS
You can also use these environment variables from within your
 build scripts. For example, in an Ant or Maven build, you can use the
 special env property to access the current
 environment variables:
<target name="printversion">
 <property environment="env" />
 <echo message="${env.VERSION}"/>
</target>
Another option is to pass the parameter into the build script as a property value. The
 following is a more involved example from a Maven POM file. In this
 example, Maven is configured to deploy a specific WAR file. We provide
 the version of the WAR file to be deployed in the
 target.version property, which is used in the
 dependency declaration, as shown below:
 ...
 <dependencies>
 <dependency>
 <groupId>com.wakaleo.gameoflife</groupId>
 <artifactId>gameoflife-web</artifactId>
 <type>war</type>
 <version>${target.version}</version>
 </dependency>
 </dependencies>
 <properties>
 <target.version>RELEASE</target.version>
 ...
 </properties>
When we invoke Maven, we pass in the parameter as one of the build
 properties (see Figure 10-5).
 We can then use a tool like Cargo to do the actual deployment—Maven will
 download the requested version of the WAR file from the local Enterprise
 Repository Manager, and deploy it to an application server.
[image: Adding a parameter to a Maven build job]

Figure 10-5. Adding a parameter to a Maven build job

That, in a nutshell, is how you can integrate build job parameters
 into your build. In addition to plain old String parameters, however,
 there are a few more sophisticated parameter types, that we will look at
 in the following paragraphs (see Figure 10-6).
[image: Many different types of parameters are available]

Figure 10-6. Many different types of parameters are available

More Advanced Parameter Types

Password parameters are, as you would expect, very similar to String
 parameters, except that they are displayed as a password field.
There are many cases where you which to present a limited set of
 parameter options. In a deployment build, you might want to let the user
 choose one of a number of target servers. Or you may want to present a
 list of supported browsers for a suite of acceptance tests.
 Choice parameters let you define a set of values
 that will be displayed as a drop-down list (see Figure 10-7). You need to provide a
 list of possible values, one per line, starting with the default
 value.
[image: Configuring a Choice parameter]

Figure 10-7. Configuring a Choice parameter

Boolean parameters are, as you would expect, parameters that take a value of
 true or false. They are presented
 as checkboxes.
Two more exotic parameter types, which behave a little differently
 to the others, are Run parameters and
 File parameters.
Run parameters let you select a particular run (or build) of a given
 build job (see Figure 10-8).
 The user picks from a list of build run numbers. The URL of the
 corresponding build run is stored in the specified parameter.
[image: Configuring a Run parameter]

Figure 10-8. Configuring a Run parameter

The URL (which will look something like
 http://jenkins.myorg.com/job/game-of-life/197/) can
 be used to obtain information or artifacts from that build run. For
 example, you could obtain the JAR or WAR file archived in a previous
 build and run further tests with this particular binary in a separate
 build job. For example, to access the WAR file of a previous build in a
 multimodule Maven project, the URL would look something like
 this:
http://buildserver/job/game-of-life/197/artifact/gameoflife-web/target/
 gameoflife.war
So, using the parameter configured in Figure 10-8, you could access this
 WAR file using the following expression:
${RELEASE_BUILD}gameoflife-web/target/gameoflife.war
File parameters let you upload a file into the build job workspace, so
 that it can then be used by the build script (see Figure 10-9). Jenkins will store the
 file into the specified location in the project workspace, where you can
 access it in your build scripts. You can use the
 WORKSPACE variable to refer to the current Jenkins
 workspace directory, so you could manipulate the file uploaded in Figure 10-9 by using the expression
 ${WORKSPACE}/deploy/app.war.
[image: Configuring a File parameter]

Figure 10-9. Configuring a File parameter

Building from a Subversion Tag

The parameterized trigger has special support for Subversion,
 allowing you to build against a specific Subversion tag. This is useful
 if you want to run a release build using a tag generated by a previous
 build job. For example, an upstream build job may tag a particular
 revision. Alternatively, you might use the standard Maven release
 process (see Managing Maven Releases with the M2Release Plugin) to generate a
 new release. In this case, a tag with the Maven release number will
 automatically be generated in Subversion.
This approach is useful for projects that need to be partially or
 entirely rebuilt before they can be deployed to a given platform. For
 example, you may need to run the Ant or Maven build using different
 properties or profiles for different platforms, so that
 platform-specific configuration files can be embedded in the deployed
 WAR or EAR files.
You can configure a Jenkins build to run against a selected tag by
 using the “List Subversion Tag” parameter type (see Figure 10-10). You just need to
 provide the Subversion repository URL pointing to the tags directory of
 your project.
[image: Adding a parameter to build from a Subversion tag]

Figure 10-10. Adding a parameter to build from a Subversion tag

When you run this build, Jenkins will propose a list of tags to
 choose from (see Figure 10-11).
[image: Building from a Subversion tag]

Figure 10-11. Building from a Subversion tag

Building from a Git Tag

Building from a Git tag is not as simple as doing so from a
 Subversion tag, though you can still use a parameter to indicate which
 tag to use. Indeed, because of the very nature of Git, when Jenkins
 obtains a copy of the source code from Git, it clones the Git
 repository, including all of the tags. Once you have the latest version
 of the repository on your Jenkins server, you can then proceed to
 checkout a tagged version using git checkout
 <tagname>.
To set this up in Jenkins, you first need to add a String
 parameter to your build job (called RELEASE in this
 example—see Figure 10-12). Unlike
 the Subversion support, there is no way to list the available Git tags
 in a drop-down list, so users will need to know the name of the tag they
 want to release.
[image: Configuring a parameter for a Git tag]

Figure 10-12. Configuring a parameter for a Git tag

Once you have added this parameter, you need to checkout the
 corresponding tag once the repository has been cloned locally. So if you
 have a freestyle build, the first build step would be a command-line
 call to Git to check out the tag referenced by the
 RELEASE parameter (see Figure 10-13). Of course a more portable way to do
 this would be to write a simple Ant or Groovy script to do the same
 thing in a more OS-neutral way.
[image: Building from a Git tag]

Figure 10-13. Building from a Git tag

Starting a Parameterized Build Job Remotely

You can also start a parameterized build job remotely, by
 invoking the URL of the build job. The typical form of a parameterized
 build job URL is illustrated here:
http://jenkins.acme.org/job/myjob/buildWithParameters?PARAMETER=Value
So, in the example shown above, you could trigger a build like
 this:
http://jenkins.acme.org/job/parameterized-build/buildWithParameters?VERSION=1.2.3
When you use a URL to start a build job in this way, remember that
 the parameter names are case-sensitive, and that the values need to be
 escaped (just like any other HTTP parameter). And if you are using a Run
 parameter, you need to provide the name of the build job
 and the run number (e.g.,
 game-of-life#197) and not just the run number.

Parameterized Build Job History

Finally, it is indispensable to know what parameters were used to
 run a particular parameterized build. For example, in an automated
 deployment build job, it is useful to know exactly what version was
 actually deployed. Fortunately, Jenkins stores these values in the build
 history (see Figure 10-14), so you can always go
 back and take a look.
[image: Jenkins stores what parameter values where used for each build]

Figure 10-14. Jenkins stores what parameter values where used for each
 build

Parameterized Triggers

When you trigger another build job from within a parameterized
 build job, it is often useful to be able to pass the parameters of the
 current build job to the new one. Suppose, for example, that you have an
 application that needs to be tested against several different databases.
 As we have seen, you could do this by setting up a parameterized build job
 that accepts the target database as a parameter. You may want to kick of a
 series of builds, all of which will need this parameter.
If you try to do this using the conventional “Build other projects”
 option in the Post-Build Actions section, it won’t work. In fact, you
 can’t trigger a parameterized build in this way.
However, you can do this using the Jenkins Parameterized Trigger
 plugin. This plugin lets you configure your build jobs to both trigger
 parameterized builds, and to pass arbitrary parameters to these
 builds.
Once you install this plugin, you will find the option of
 “Triggering parameterized builds on other projects” in your build job
 configuration page (see Figure 10-16). This lets you start
 another build job in a number of ways. In particular, it lets you kick off
 a subsequent build job, passing the current parameters to this new build
 job, which is impossible to do with a normal triggered build. The best way
 to see how this works is through an example.
In Figure 10-15 we have
 an initial build job. This build job takes a single parameter,
 DATABASE, which specifies the database to be used for
 the tests. As we have seen, the user will be prompted to enter this value
 whenever the build is started.
[image: Jenkins stores what parameter values where used for each build]

Figure 10-15. Jenkins stores what parameter values where used for each
 build

Now suppose we want to trigger a second build job to run more
 comprehensive integration tests once this first build job has finished.
 However we need it to run the tests against the same database. We can do
 this by setting up a parameterized trigger to start this second build job
 (see Figure 10-16).
[image: Adding a parameterized trigger to a build job]

Figure 10-16. Adding a parameterized trigger to a build job

In this case, we are simple passing through the current build
 parameters. This second build job will automatically be started after the
 first one, with the DATABASE parameter value provided
 by the user. You can also fine-tune the triggering policy, by telling
 Jenkins when the build should be triggered. Typically, you would only
 trigger a downstream build after your build has completed successfully,
 but with the Parameterized Trigger plugin you can also configure builds to
 be triggered even if the build is unstable, only when the build fails or
 ask for it to be triggered no matter what the outcome of the first build.
 You can even set up multiple triggers for the same build job.
Naturally, the build job that you trigger must be a parameterized
 build job (as illustrated in Figure 10-17), and you must
 pass through all of the parameters it requires.
[image: The build job you trigger must also be a parameterized build job]

Figure 10-17. The build job you trigger must also be a parameterized build
 job

This feature actually has much broader applications than simply
 passing through the current build parameters. You can also trigger a
 parameterized build job with an arbitrary set of parameters, or use a
 combination of parameters that were passed to the current build, and your
 own additional ones. Or, if you have a lot of parameters, you can load
 them from a properties file. In Figure 10-18, we are passing
 both the current build parameters (the DATABASE
 variable in this case), and an additional parameter called TARGET_PLATFORM.
[image: Passing a predefined parameter to a parameterized build job]

Figure 10-18. Passing a predefined parameter to a parameterized build
 job

Multiconfiguration Build Jobs

Multiconfiguration build jobs are an extremely powerful feature of Jenkins. A
 multiconfiguration build job can be thought of as a parameterized build
 job that can be automatically run with all the possible combinations of
 parameters that it can accept. They are particularly useful for tests,
 where you can test your application using a single build job, but under a
 wide variety of conditions (browsers, databases, and so forth).
Setting Up a Multiconfiguration Build

To create a new multiconfiguration build job, simply choose
 this option on the New Job page (see Figure 10-19).
[image: Creating a multiconfiguration build job]

Figure 10-19. Creating a multiconfiguration build job

A multiconfiguration build job is just like any other build job,
 but with one very important additional element: the
 Configuration Matrix (see Figure 10-20). This is where you define
 the different configurations that will be used to run your
 builds.
[image: Adding an axis to a multiconfiguration build]

Figure 10-20. Adding an axis to a multiconfiguration build

You can define different axes of configuration options, including
 running the build job on different slaves or on different JDKs, or
 providing your own custom properties to the build. For example, in the
 build jobs discussed earlier, we might want to test our application for
 different databases and different operating systems. We could define one
 axis defining slave machines with different operating systems we wanted
 our build to run on, and another axis defining all the possible database
 values. Jenkins will then run the build job for each possible database
 and each possible operating system.
Let’s look at the types of axis you can define.

Configuring a Slave Axis

The first option is to configure your build to run
 simultaneously on different slave machines (see Chapter 11). Now of course, the idea of
 having a set of slave machines is usually that you can run your build
 job on any of them. But there are cases where it makes sense to be a
 little more choosy. For example, you might want your tests to run on
 Windows, Mac OS X, and Linux. In this case, you create a new axis for
 your slave nodes, as shown in Figure 10-21. You can choose the nodes you
 want to use in two ways: by label or by individual node. Using labels
 lets you identify categories of build nodes (for example, Windows
 machines), without tying the build to any one machine. This is a more
 flexible option, and makes it easier to expand your build capacity as
 required. Sometimes, however, you may really want to run a build on a
 specific machine. In this case, you can use the “Individual nodes”
 option, and choose the machine in this list.
[image: Defining an axis of slave nodes]

Figure 10-21. Defining an axis of slave nodes

If you need more flexibility, you can also use a Label Expression,
 which lets you define which slave nodes should be used for builds on a
 particular axis using boolean expressions and logical operators to
 combine labels. For example, suppose you have defined labels for slave
 machines based on operating system (“windows”, “linux”) and installed
 databases (“oracle”, “mysql”, “db2”). To define an axis running tests
 only on Windows machines installed with MySQL, you could use an
 expression like windows && mysql.
We discuss working with slave nodes and distributed builds in more
 detail in Chapter 11.

Configuring a JDK Axis

If you are deploying your application to a broad client base
 where you have limited control over the target environment, you may need
 to test your application using different versions of Java. In cases like
 this it is useful to be able to set up a JDK axis in a
 multiconfiguration build. When you add a JDK axis, Jenkins will
 automatically propose the list of JDK versions that it knows about (see
 Figure 10-22). If you need to
 use additional JDKs, just add them to your Jenkins configuration
 page.
[image: Defining an axis of JDK versions]

Figure 10-22. Defining an axis of JDK versions

Custom Axis

The third type of axis lets you define different ways to run
 your build job, based on arbitrary variables that you define. For
 example, you might provide a list of databases you need to test against,
 or a list of browsers to use in your web tests. These are like
 parameters for a parameterized build job, except that you provide the
 complete list of possible values, and rather than prompting for you to
 enter a value, Jenkins will run the build with all
 of the values you provide (Figure 10-23).
[image: Defining a user-defined axis]

Figure 10-23. Defining a user-defined axis

Running a Multiconfiguration Build

Once you have set up the axes, you can run your
 multiconfiguration build just like any other. However, Jenkins will
 treat each combination of variables as a separate build job. Jenkins
 displays the aggregate results in a table, where all of the combinations
 are shown (see Figure 10-24). If you click on any
 of the balls, Jenkins will take you to the detailed results for that
 particular build.
[image: Multiconfiguration build results]

Figure 10-24. Multiconfiguration build results

By default, Jenkins will run the build jobs in parallel. However
 there are some cases where this is not a good idea. For example, many
 Java web applications use Selenium or WebDriver tests running against a
 local instance of Jetty that is automatically started by the build job.
 Build scripts like this need to be specially configured to be able to
 run in parallel on the same machine, to avoid port conflicts. Concurrent
 database access during tests can be another source of problems if
 concurrency is not designed into the tests. If your builds are not
 designed to run in parallel, you can force Jenkins to run the tests
 sequentially by ticking the Run each configuration sequentially checkbox
 at the bottom of the Configuration Matrix section.
By default, Jenkins will run all possible combinations of the
 different axes. So, in the above example, we have three environments,
 two JDKs, and four databases. This results in a total of 24 builds.
 However, in some cases, it may not make sense (or be possible) to run
 certain combinations. For example, suppose you have a build job that
 runs automated web tests. If one axis contains the web browsers to be
 tested (Firefox, Internet Explorer, Chrome, etc.) and another the
 Operating Systems (Linux, Windows, Mac OS), it would make little sense
 to run Internet Explorer with Linux or Mac OS.
The Combination Filter option lets you set up rules about
 which combinations of variables are valid. This field is a Groovy
 boolean expression that uses the names of the variables you defined for
 each axis. The expression must evaluate to true for the build to
 execute. For example, suppose you have a build job running web tests in
 different browsers on different operating systems (see Figure 10-25). The tests need to
 run Firefox, Internet Explorer and Chrome, on Windows, Mac OS X, and
 Linux. However Internet Explorer only runs on Windows, and Chrome does
 not run on Linux.
[image: Setting up a combination filter]

Figure 10-25. Setting up a combination filter

To set this up with a Combination Filter, we could use an
 expression like the following:
(browser=="firefox")
|| (browser=="iexplorer" && os=="windows")
|| (browser=="chrome" && os != "linux")
This would result in only the correct browser/operating system
 combinations being executed (see Figure 10-26). Executed builds are
 displayed in the usual colors, whereas skipped builds are shown in
 gray.
[image: Build results using a combination filter]

Figure 10-26. Build results using a combination filter

Another reason to use a build filter is that there are simply too
 many valid combinations to run in a reasonable time. In this case, the
 best solution may be to upscale your build server. The second-best
 solution, on the other hand, might be to only run a subset of the
 combinations, possibly running the full set of combinations on a nightly
 basis. You can do this by using the special index variable.
 If you include the expression (index%2 == 0), for example,
 will ensure that only one build job in two is actually executed.
You may also want certain builds to be executed before the others,
 as a sanity check. For example, you might want to run the default (and,
 theoretically, the most reliable) configuration for your application
 first, before continuing on to more exotic combinations. To do this, you
 can use the “Execute touchstone builds first” option. Here, you enter a
 filter value (like the one seen above) to define the first build or
 builds to be executed. You can also specify if the build should proceed
 only if these builds are successful, or even if they are unsuccessful.
 Once these builds have completed as expected, Jenkins will proceed with
 the other combinations.

Generating Your Maven Build Jobs Automatically

Contributed by Evgeny Goldin
As mentioned in the previous section, the number of build jobs
 that your Jenkins server will host can vary. As the number of build jobs
 grows, it becomes harder not only to view them in Jenkins dashboard, but
 to configure them as well. Imagine what would it take to configure 20 to
 50 Jenkins jobs one-by-one! In addition, many of those jobs may have
 common configuration elements, such as Maven goals or build memory
 settings, which results in duplicated configuration and higher maintenance
 overhead.
For example, if you decide to run mvn clean
 install instead of mvn clean deploy for your
 release jobs and switch to alternative deployment methods, such as those
 provided by Artifactory
 plugin, you’ll have no choice but to visit all relevant jobs and
 update them manually.
Alternatively, you could take an advantage of the fact that Jenkins
 is a simple and straightforward tool that keeps all of its definitions in
 plain files on the disk. Indeed you can update the config.xml files of your jobs directly in the
 .jenkins/jobs directory where they
 are kept. While this approach will work, it is still far from ideal as it
 involves quite a lot of manual picking and fragile replacements in Jenkins
 XML files.
There is a third way to achieve the nirvana of massive job updates:
 generate your configuration files automatically using some sort of
 definition file. The Maven Jenkins
 Plugin does exactly that, generating config.xml files for all jobs using standard
 Maven definitions kept in a single pom.xml file.
Configuring a Job

When configuring a single job with the Maven Jenkins Plugin,
 you can define all the usual Jenkins configuration elements, such as
 Maven goals, POM location, repository URLs, e-mail addresses, number of
 days to keep the logs, and so on. The plugin tries to bring you as close
 to possible to Jenkins’ usual way of configuring a job manually.
Let’s take a look on a Google Guice build
 job:
<job>
 <id>google-guice-trunk</id>
 <description>Building Google Guice trunk.</description>
 <descriptionTable>
 <row>
 <key>Project Page</key>
 <value>

 <code>code.google.com/p/google-guice</code>

 </value>
 <escapeHTML>false</escapeHTML>
 <bottom>false</bottom>
 </row>
 </descriptionTable>
 <jdkName>jdk1.6.0</jdkName>
 <mavenName>apache-maven-3</mavenName>
 <mavenOpts>-Xmx256m -XX:MaxPermSize=128m</mavenOpts>
 <daysToKeep>5</daysToKeep>
 <useUpdate>false</useUpdate>
 <mavenGoals>-e clean install</mavenGoals>
 <trigger>
 <type>timer</type>
 <expression>0 0 * * *</expression>
 </trigger>
 <repository>
 <remote>http://google-guice.googlecode.com/svn/trunk/</remote>
 </repository>
 <mail>
 <recipients>jenkins@evgeny-goldin.org</recipients>
 </mail>
</job>
This job uses a number of standard configurations such as
 <jdkName>,
 <mavenName>, and
 <mavenOpts>. The code is checked out from a
 Subversion repository (defined in the
 <repository> element), and a cron
 <trigger> runs the job nightly at 00:00. Email
 notifications are sent to people specified with the
 <mail> element. This configuration also adds a
 link back to the project’s page in the description table that is
 generated automatically for each job.
The generated job is displayed in your Jenkins server as
 illustrated in Figure 10-27.
[image: A job generated by the Maven Jenkins plugin]

Figure 10-27. A job generated by the Maven Jenkins plugin

Here’s another job building the Jenkins master branch at
 GitHub:
<job>
 <id>jenkins-master</id>
 <jdkName>jdk1.6.0</jdkName>
 <numToKeep>5</numToKeep>
 <mavenName>apache-maven-3</mavenName>
 <trigger>
 <type>timer</type>
 <expression>0 1 * * *</expression>
 </trigger>
 <scmType>git</scmType>
 <repository>
 <remote>git://github.com/jenkinsci/jenkins.git</remote>
 </repository>
 <mail>
 <recipients>jenkins@evgeny-goldin.org</recipients>
 <sendForUnstable>false</sendForUnstable>
 </mail>
</job>
This would generate the job shown in Figure 10-28.
[image: jenkins-master job generated]

Figure 10-28. jenkins-master job generated

The plugin’s documentation
 provides a detailed reference of all settings that can be configured.

Reusing Job Configuration with Inheritance

Being able to generate Jenkins jobs using centralized
 configuration, such as Maven POM, solves the problem of creating and
 updating many jobs at once. All you has to do now is to modify the job
 definitions, re-run the plugin and load definitions updated with Manage
 Jenkins→“Reload Configuration from
 Disk”. This approach also has the advantage of making it easy to store
 your job configurations in your version control system, which in turn
 makes it easier to keep track of changes made to the build configurations.
But we still didn’t solve the problem of maintaining jobs that
 share a number of identical properties, such as Maven goals, email
 recipients or code repository URL. For that, the Maven Jenkins Plugin
 provides jobs inheritance, demonstrated in the following example:
<jobs>
 <job>
 <id>google-guice-inheritance-base</id>
 <abstract>true</abstract>
 <jdkName>jdk1.6.0</jdkName>
 <mavenName>apache-maven-3</mavenName>
 <daysToKeep>5</daysToKeep>
 <useUpdate>true</useUpdate>
 <mavenGoals>-B -e -U clean install</mavenGoals>
 <mail><recipients>jenkins@evgeny-goldin.org</recipients></mail>
 </job>

 <job>
 <id>google-guice-inheritance-trunk</id>
 <parent>google-guice-inheritance-base</parent>
 <repository>
 <remote>http://google-guice.googlecode.com/svn/trunk/</remote>
 </repository>
 </job>

 <job>
 <id>google-guice-inheritance-3.0-rc3</id>
 <parent>google-guice-inheritance-base</parent>
 <repository>
 <remote>http://google-guice.googlecode.com/svn/tags/3.0-rc3/</remote>
 </repository>
 </job>

 <job>
 <id>google-guice-inheritance-2.0-maven</id>
 <parent>google-guice-inheritance-base</parent>
 <mavenName>apache-maven-2</mavenName>
 <repository>
 <remote>http://google-guice.googlecode.com/svn/branches/2.0-maven/
 </remote>
 </repository>
 </job>
</jobs>
In this configuration,
 google-guice-inheritance-base is an abstract parent
 job holding all common properties: JDK name, Maven name, days to keep
 the logs, SVN update policy, Maven goals, and mail recipients. The three
 following jobs are very short, merely specifying that they extend a
 <parent> job and add any missing configurations
 (repository URLs in this case).
 When generated, they inherit all of the properties from the parent job
 automatically.
Any inherited property can be overridden, as demonstrated in
 google-guice-inheritance-2.0-maven job where
 Maven 2 is used instead of Maven 3. If you want to “cancel” an inherited
 property, you will need to override it with an empty value.
Jobs inheritance is a very powerful concept that allows jobs to
 form hierarchical groups of any kind and for any purpose. You can group
 your CI, nightly or release jobs this way, centralizing shared execution
 triggers, Maven goals or mail recipients in parent jobs. This approach
 borrowed from an OOP world solves the problem of maintaining jobs
 sharing a number of identical properties.

Plugin Support

In addition to configuring a job and reusing its definitions, you
 can apply special support for a number of Jenkins plugins. Right now, a
 simplified usage of Parameterized Trigger and Artifactory plugins is
 provided, with support for other popular plugins planned for future
 versions.
Below is an example of invoking jobs with the Parameterized
 Trigger plugin. Using this option assumes you have this plugin installed
 already:
<job>
 <id>google-guice-inheritance-trunk</id>
 ...
 <invoke>
 <jobs>
 google-guice-inheritance-3.0-rc3,
 google-guice-inheritance-2.0-maven
 </jobs>
 </invoke>
</job>

<job>
 <id>google-guice-inheritance-3.0-rc3</id>
 ...
</job>

<job>
 <id>google-guice-inheritance-2.0-maven</id>
 ...
</job>
The <invoke> element lets you invoke
 other jobs each time the current job finishes successfully. You can
 create a pipeline of jobs this way, making sure each job in a pipeline
 invokes the following one. Note that if there are more than one Jenkins
 executors available at the moment of invocation, the specified jobs will
 start running in parallel. For serial execution you’ll need to connect
 each upstream job to a downstream one with
 <invoke>.
By default invocation happens only when the current job is stable.
 This can be modified, as shown in the following examples:
<invoke>
 <jobs>jobA, jobB, jobC</jobs>
 <always>true</always>
</invoke>

<invoke>
 <jobs>jobA, jobB, jobC</jobs>
 <unstable>true</unstable>
</invoke>

<invoke>
 <jobs>jobA, jobB, jobC</jobs>
 <stable>false</stable>
 <unstable>false</unstable>
 <failed>true</failed>
</invoke>
The first invocation in the example above always invokes the
 downstream jobs. It can be used for a pipeline of jobs that should
 always be executed even if some of them or their tests fail.
The second invocation in the example above invokes downstream jobs
 even if an upstream job is unstable: the invocation happens regardless
 of test results. It can be used for a pipeline of jobs that are less
 sensitive to tests and their failures.
The third invocation in the example above invokes downstream jobs
 only when an upstream job fails but not when it is stable or unstable.
 You can find this configuration useful when a failing job needs to
 perform additional actions beyond traditional email
 notifications.
Artifactory is a
 general purpose binaries repository that can be used as a Maven
 repository manager. The Jenkins
 Artifactory plugin, shown in Figure 10-29, provides a number of benefits
 for Jenkins build jobs. We have already reviewed some of them in Deploying to an Enterprise Repository Manager, including an
 ability to deploy artifacts upon job completion or to send builds
 environment info together with artifacts for their better
 traceability.
[image: Artifactory Jenkins plugin configuration]

Figure 10-29. Artifactory Jenkins plugin configuration

You can also use the Artifactory Jenkins plugin in conjunction
 with the Maven Jenkins Plugin to deploy artifacts to Artifactory, as
 shown in the following example:
<job>
 ...
 <artifactory>
 <name>http://artifactory-server/</name>
 <deployArtifacts>true</deployArtifacts>
 <includeEnvVars>true</includeEnvVars>
 <evenIfUnstable>true</evenIfUnstable>
 </artifactory>
</job>
Default deployment credentials are specified when Jenkins is
 configured in the Manage Jenkins→Configure System screen. They can be also
 specified for each Jenkins job. The default Maven repositories are
 libs-releases-local and
 libs-snapshots-local. You can find more details in
 the plugin’s documentation at http://wiki.jenkins-ci.org/display/JENKINS/Artifactory+Plugin.

Freestyle Jobs

In addition to Maven jobs, the Maven Jenkins Plugin allows
 you to configure Jenkins freestyle jobs. An example is shown
 here:
<job>
 <id>free-style</id>
 <jobType>free</jobType>
 <scmType>git</scmType>
 <repository>
 <remote>git://github.com/evgeny-goldin/maven-plugins-test.git</remote>
 </repository>
 <tasks>
 <maven>
 <mavenName>apache-maven-3</mavenName>
 <jvmOptions>-Xmx128m -XX:MaxPermSize=128m -ea</jvmOptions>
 <properties>plugins-version = 0.2.2</properties>
 </maven>
 <shell><command>pwd; ls -al; du -hs .</command></shell>
 </tasks>
</job>
Freestyle jobs let you execute a shell or batch command, run Maven
 or Ant, and invoke other jobs. They provide a convenient run-time
 environment for system scripts or any other kind of activity not readily
 available with Jenkins or one of its plugins. Using this approach, you
 can generate Freestyle build job configuration files in a similar way to
 the approach we have seen for Maven build jobs, which can help make your
 build environment more consistent and maintainable.

Coordinating Your
 Builds

Triggering downstream build jobs is easy enough. However, when
 setting up larger and more complicated build job setups, you sometimes
 would like builds to be able to run concurrently, or possibly wait for
 certain build jobs to finish before proceeding. In this section, we will
 look at techniques and plugins that can help you do this.
Parallel Builds in Jenkins

Jenkins has built-in support for parallel builds—when a build job
 starts, Jenkins will assign it to the first available build node, so you
 can potentially have as many parallel builds running as you have build
 nodes available.
If you need to run slight variations of the same build job in
 parallel, multiconfiguration build jobs (see Multiconfiguration Build Jobs) are an excellent
 option. This can come in handy as a way of accelerating your build
 process. A typical application of multiconfiguration build jobs in this
 context is to run integration tests in parallel. One strategy is to set
 up an integration test build job that can be run in different ways to
 execute different subsets of the integration tests. You could define
 separate Maven profiles, for example, or configure your build to use a
 command-line parameter to decide which tests to run. Once you have set
 up your build script in this way, it is easy to configure a
 multiconfiguration build job to run the subsets of your integration
 tests in parallel.
You can also get Jenkins to trigger several downstream builds in
 parallel, simply by listing them all in the “Build other projects” field
 (see Figure 10-30). The subsequent
 build jobs will be executed in parallel as much as possible. However, as
 we will see further on, this may not always be exactly what you
 need.
[image: Triggering several other builds after a build job]

Figure 10-30. Triggering several other builds after a build job

Dependency Graphs

Before we investigate the finer points of parallel builds, it is
 useful to be able to visualize the relationships between your build
 jobs. The Dependency Graph View plugin analyzes your build jobs and
 displays a graph describing the upstream and downstream connections
 between your jobs. This plugin uses graphviz, which you will need to
 install on your server if you don’t already have it.
This plugin adds a Dependency Graph icon in the main menu, which
 displays a graph showing the relationships between all the build jobs in
 your project (at the dashboard level), or all of the build jobs related
 to the current build job (when you are inside a particular project [see
 Figure 10-31]). What’s more, if you
 click on a build job in the graph, Jenkins will take you directly to the
 project page of that build job.
[image: A build job dependency graph]

Figure 10-31. A build job dependency graph

Joins

When setting up more complicated build pipelines, you
 frequently come across situations where a build job cannot proceed until
 a number of other build jobs have been completed, but that these
 upstream build jobs do not need to be executed sequentially. For
 example, in Figure 10-31, imagine that
 the phoenix-deploy-to-uat build job
 actually requires three jobs to succeed before it can be executed:
 phoenix-compatibility-tests, phoenix-load-tests, and phoenix-performance-tests.
We can set this up by using the Joins plugin, which you will need
 to install in the usual way via the Update center. Once installed, you
 configure a join in the build job that initiates the join process (in
 our example, this would be phoenix-web-tests). In our example, we need to
 modify the phoenix-web-tests build
 job so that it triggers the phoenix-compatibility-tests, phoenix-load-tests, and phoenix-performance-tests first, and then, if
 these three succeed, the phoenix-deploy-to-uat build job.
We do this by simply configuring the Join Trigger field with the
 name of the phoenix-deploy-to-uat
 build job (see Figure 10-32). The “Build
 other projects” field is not modified, and still lists the build jobs to
 be triggered immediately after the current one. The Join Trigger field
 contains the build jobs to be built once all of the immediate downstream
 build jobs have finished.
[image: Configuring a join in the phoenix-web-tests build job]

Figure 10-32. Configuring a join in the phoenix-web-tests build job

As a result, you no longer need the original build trigger for the
 final build job, as it is now redundant.
This new flow shows up nicely in the dependency graphs
 as illustrated in Figure 10-33.
[image: A more complicated build job dependency graph]

Figure 10-33. A more complicated build job dependency graph

Locks and Latches

In other situations, you might be able to run a series of builds in
 parallel to some degree, but certain build jobs cannot be run in
 parallel because they access concurrent resources. Of course,
 well-designed build jobs should strive to be as independent as possible,
 but sometimes this can be difficult. For example, different build jobs
 may need to access the same test database or files on the hard disk, and
 doing so simultaneously could potentially compromise the results of the
 tests. Or a performance build job may need exclusive access to the test
 server, in order to have consistent results each time.
The Locks and Latches plugin lets you get around this problem
 to some extent. This plugin lets you set up “locks” for certain
 resources, in a similar way to locks in multithreaded programming.
 Suppose, for example, in the build jobs depicted in Figure 10-33, that the load tests and
 the performance tests run against a dedicated server, but only one build
 job can run against this server at any one time. Imagine furthermore
 that the performance tests for other projects also run against this
 server.
To avoid contention over the performance server, you could use the
 Locks and Latches plugin to set up a “lock” reserving access to this
 server to a single build job at a time. First, in the System
 Configuration page, you need to add a new lock in the Locks section (see
 Figure 10-34). This lock will then be
 available to all build jobs on the server.
[image: Adding a new lock]

Figure 10-34. Adding a new lock

Next, you need to set up each build job that will be using the
 contended resource. In the Build Environment section, you will find a
 Locks field. Tick the checkbox and select the lock you just created (see
 Figure 10-35). Once you do this for each
 of the build jobs that need to access the resource in question, only one
 of these build jobs will ever be able to run at a given time.
[image: Configuring a build job to use a lock]

Figure 10-35. Configuring a build job to use a lock

Build Pipelines and Promotions

Continuous Integration is not just about automatically building and
 testing software, but can also help in the broader context of the software
 product development and release life cycle. In many organizations, the
 life of a particular version of an application or product starts out in
 development. When it is deemed ready, it is passed on to a QA team for
 testing. If they consider the version acceptable, they pass it on to
 selected users for more testing in a User Acceptance Testing (UAT)
 environment. And if the users are happy, it is shipped out into
 production. Of course, there are almost as many variations on this as
 there are software development teams, but one common principle is that
 specific versions of your software are selected, according to certain
 quality-related criteria, to be “promoted” to the next stage of the life cycle. This is
 known as build promotion, and the broader process is known as a build
 pipeline. In this section, we will look at how you can implement build
 pipelines using Jenkins.
Managing Maven Releases with the M2Release Plugin

An important part of any build pipeline is a well-defined release
 strategy. This involves, among other things, deciding how and when to
 cut a new release, and how to identify it with a unique label or version
 number. If you are working with Maven projects, using the Maven Release plugin to handle version numbers comes as a
 highly recommended practice.
Maven projects use well-defined and well-structured version
 numbers. A typical version number is made up of three digits (e.g.,
 “1.0.1”). Developers work on SNAPSHOT versions (e.g.,“1.0.1-SNAPSHOT”),
 which, as the name would indicate, are not designed to be definitive.
 The definitive releases (e.g., “1.0.1”) are built once and deployed to
 the local enterprise repository (or the central Maven repository for
 open source libraries), where they can be used in turn by other
 projects. The version numbers used in Maven artifacts are a critical
 part of Maven’s dependency management system, and it is strongly advised
 to stick to the Maven conventions.
The Maven Release plugin helps automates the process of updating
 Maven version numbers in your projects. In a nutshell, it verifies,
 builds and tests your application, bumps up the version numbers, updates
 your version control system with the appropriate tags, and deploys the
 released versions of your artifacts to your Maven repository. This is a
 tedious task to do by hand, so the Maven Release plugin is an excellent
 way to automate things.
However the Maven Release plugin can be fickle, too. Uncommitted
 or modified local files can cause the process to fail, for example. The
 process is also time-consuming and CPU intensive, especially for large
 projects: it builds the application and runs the entire set of unit and
 integration tests several times, checks out a fresh copy of the source
 code from the repository, and uploads many artifacts to the Enterprise
 repository. Indeed, this is not the sort of thing you want running on a
 developer machine.
So it makes good sense to run this process on your build
 server.
One way to do this is to set up a special manual build job to
 invoke the Maven Release plugin. However, the M2Release plugin proposes
 a simpler approach. Using this plugin, you can add the ability to build a
 Maven release version in an existing build job. This way you can avoid
 duplicating build jobs unnecessarily, making build job maintenance
 easier.
Once you have installed this plugin, you can define any build job
 to also propose a manual Maven Release step. You do this by ticking the
 “Maven release build” checkbox in the Build Environment section (see
 Figure 10-36). Here, you define the
 goals you want to execute to trigger the build (typically
 release:prepare release:perform).
[image: Configuring a Maven release using the M2Release plugin]

Figure 10-36. Configuring a Maven release using the M2Release plugin

Once you have set this up, you can trigger a Maven release
 manually using a new menu option called “Perform Maven Release” (see
 Figure 10-37).
[image: The Perform Maven Release menu option]

Figure 10-37. The Perform Maven Release menu option

This will kick off a special build job using the goals you
 provided in the plugin configuration (see Figure 10-38). Jenkins gives you the option
 to either use the default version numbers provided by Maven (for
 example, version 1.0.1-SNAPSHOT will be released as version 1.0.1, and
 the development version number bumped up to 1.0.2-SNAPSHOT), or to provide your own custom
 numbers. If you want to release a major version, for example, you might
 choose to manually specify 1.1.0 as the release version number and
 1.1.1-SNAPSHOT as the next development version number.
If you have a multimodule Maven project, you can choose to provide
 a single version number configuration for all modules, or provide a
 different version number update for each module. Note that it is
 generally not recommended practice to provide different version numbers
 for different modules in a multimodule project.
[image: Performing a Maven release in Jenkins]

Figure 10-38. Performing a Maven release in Jenkins

Depending on your SCM configuration, you may also need to provide
 a valid SCM username and password to allow Maven to create tags in your
 source code repository.
The professional edition of the Nexus Enterprise Repository
 provides a feature called Staging Repositories, which is a way of
 deploying artifacts to a special staging area for further tests before
 releasing them officially. If you are using this feature, you need to
 fine-tune your build server configuration for best results.
Nexus Professional works by creating a new staging area for each
 unique IP Address, deploy users and HTTP User agent. A given Jenkins
 build machine will always have the same IP address and user. However,
 you will typically want to have a separate staging area for each build.
 The trick, then, is to configure Maven to use a unique HTTP User-Agent
 for the deployment process. You can do this by configuring the settings.xml file on your build server to
 contain something along the following lines (the ID must match the ID
 for the release repository in the deployment section of your project):
 <server>
 <id>nexus</id>
 <username>my_login</username>
 <password>my_password</password>
 <configuration>
 <httpHeaders>
 <property>
 <name>User-Agent</name>
 <value>Maven m2Release (java:${java.vm.version} ${env.BUILD_TAG }</value>
 </property>
 </httpHeaders>
 </configuration>
 </server>

Copying Artifacts

During a build process involving several build jobs, such as the
 one illustrated in Figure 10-33,
 it can sometimes be useful to reuse artifacts produced by one build job
 in a subsequent build job. For example, you may want to run a series of
 web tests in parallel on separate machines, using local application
 servers for improved performance. In this case, it makes sense to
 retrieve the exact binary artifact that was produced in the previous
 build, rather than rebuilding it each time or, if you are using Maven,
 relying on a SNAPSHOT build deployed to your enterprise repository.
 Indeed, both these approaches may run the risk of inconsistent build
 results: if you use a SNAPSHOT from the enterprise repository, for
 example, you will be using the latest SNAPSHOT build, which may not
 necessarily be the one built in the upstream build job.
The Copy Artifact plugin lets you copy artifacts from an
 upstream build and reuse them in your current build. Once you have
 installed this plugin and restarted Jenkins, you will be able to add a
 new type of build step called “Copy artifacts from another project” to
 your freestyle build jobs (see Figure 10-39).
[image: Adding a “Copy artifacts from another project” build step]

Figure 10-39. Adding a “Copy artifacts from another project” build
 step

This new build step lets you copy artifacts from another project
 into the workspace of the current project. You can specify any other
 project, though most typically it will be one of the upstream build
 jobs. And of course you can specify, with a great deal of flexibility
 and precision, the exact artifacts that you want to copy.
You need to specify where to find the files you want in the other
 build job’s workspace, and where Jenkins should put them in your current
 project’s workspace. This can be a flexible regular expression (such as
 **/*.war, for any WAR file produced by the build
 job), or it can be much more precise (such as
 gameoflife-web/target/gameoflife.war). Note that by
 default, Jenkins will copy the directory structure along with the file
 you retrieve, so if the WAR file you are after is nested inside the
 target directory of the
 gameoflife-web module, Jenkins will place it inside
 the gameoflife-web/target directory
 in your current workspace. If this is not to your tastes, you can tick
 the “Flatten directories” option to tell Jenkins to put all of the
 artifacts at the root of the directory you specify (or, by default, in
 your project workspace).
In many cases, you will simply want to retrieve artifacts from the
 most recent successful build. However, sometimes you may want more
 precision. The “Which builds” field lets you specify where to look for
 artifacts in a number of other ways, including the latest saved build
 (builds which have been marked to “keep forever”), the latest successful
 build, or even a specific build number.
If you have installed the Build Promotion plugin (see Build Promotions), you can also select the latest
 promoted artifact in a particular promotion process. To do this, choose
 “Specify by permalink”, then choose the appropriate build promotion
 process. This is an excellent way of ensuring a consistent and reliable
 build pipeline. For example, you can configure a build promotion process
 to trigger a build that copies a generated WAR file from the latest
 promoted build and deploys it to a particular server. This ensures that
 you deploy precisely the right binary file, even if other builds have
 occurred since.
If you are copying artifacts from a multimodule Maven build job,
 Jenkins will, by default, copy all of the artifacts from that build.
 However often times you are only interested in one specific artifact
 (such as the WAR artifact in a web application, for example.
This plugin is particularly useful when you need to run functional
 or performance tests on your web application. It is often a useful
 strategy to place these tests in a separate project, and not as part of
 your main build process. This makes it easier to run these tests against
 different servers or run the subsets of the tests in parallel, all the
 while using the same binary artifact to deploy and test.
For example, imagine that you have a default build job called
 gameoflife that generates a WAR file, and you would
 like to deploy this WAR file to a local application server and run a
 series of functional tests. Furthermore, you want to be able to do this
 in parallel on several distributed machines.
One way to do this would be to create a dedicated Maven project
 designed to run the functional tests against an arbitrary server. Then,
 you would set up a build job to run these functional tests. This build
 job would use the Copy Artifact plugin to retrieve the latest WAR file
 (or even the latest promoted WAR file, for more precision), and deploy
 it to a local Tomcat instance using Cargo. This build job could then be
 set up as a configurable (“matrix”) build job, and run in parallel on
 several machines, possibly with extra configuration parameters to filter
 the tests run by each build. Each build run would then be using its own
 copy of the original WAR file. An example of a configuration like this
 is illustrated in Figure 10-40.
[image: Running web tests against a copied WAR file]

Figure 10-40. Running web tests against a copied WAR file

The Copy Artifact plugin is not limited to fetching files from
 conventional build jobs. You can also copy artifacts from
 multiconfiguration build jobs (see Multiconfiguration Build Jobs). Artifacts from each
 executed configuration will be copied into the current workspace, each
 in its own directory. Jenkins will build a directory structure using the
 axes that were used in the multiconfiguration build. For example,
 imagine we need to produce a highly-optimized version of our product for
 a number of different targeted databases and application servers. We
 could do this with a multiconfiguration build job like the one
 illustrated in Figure 10-41.
[image: Copying from a multiconfiguration build]

Figure 10-41. Copying from a multiconfiguration build

The Copy Artifacts plugin can duplicate any and all of the
 artifacts produced by this build job. If you specify a
 multiconfiguration build as the source of your artifacts, the plugin
 will copy artifacts from all of the configurations into the workspace of
 the target build job, using a nested directory structure based on the
 multiconfiguration build axes. For example, if you define the target
 directory as multi-config-artifacts, Jenkins will
 copy artifacts into a number of subdirectories in the target directory,
 each with a name corresponding to the particular set of configuration
 parameters. So, using the build job illustrated in Figure 10-41, the JAR file customized
 for Tomcat and MySql would be copied to the $WORKSPACE/multi-config-artifacts/APP_SERVER/tomcat/DATABASE/mysql
 directory.

Build Promotions

In the world of Continuous Integration, not all builds are
 created equal. For example, you may want to deploy the latest version of
 your web application to a test server, but only after it has passed a
 number of automated functional and load tests. Or you may want testers
 to be able to flag certain builds as being ready for UAT deployment,
 once they have completed their own testing.
The Promoted Builds plugin lets you identify specific builds
 that have met additional quality criteria, and to trigger actions on
 these builds. For example, you may build a web application in on build
 job, run a series of automated web tests in a subsequent build, and then
 deploy the WAR file generated to the UAT server for further manual
 testing.
Let’s see how this works in practice. In the project illustrated
 above, a default build job (phoenix-default) runs unit and some
 integration tests, and produces a WAR file. This WAR file is then reused
 for more extensive integration tests (in the phoenix-integration-tests build job) and then
 for a series of automated web tests (in the phoenix-web-test build job). If the build
 passes the automated web tests, we would like to deploy the application
 to a functional testing environment where it can be tested by human
 testers. The deployment to this environment is implemented in the
 phoenix-test-deploy build job. Once
 the testers have validated a version, it can be promoted into UAT, and
 then into production. The full promotion strategy is illustrated in
 Figure 10-42.
[image: Build jobs in the promotion process]

Figure 10-42. Build jobs in the promotion process

This strategy is easy to implement using the Promoted Builds
 plugin. Once you have installed this in the usual way, you will find a
 new “Promote builds when” checkbox on the job configuration page. You
 use this option to set up build promotion processes. You define one or
 more build promotion processes in the initial build job of process
 (phoenix-default in this example), as
 illustrated in Figure 10-43. A build
 job may be the starting point of several build promotion processes, some
 automated, and some manual. In Figure 10-43, for example, there is an
 automated build promotion process called
 promote-to-test and a manual one called
 promote-to-uat. Automated build promotion processes
 are triggered by the results of downstream build jobs. Manual promotion processes (indicated by ticking
 the ‘Only when manually approved’ checkbox) can only be triggered by
 user intervention.
[image: Configuring a build promotion process]

Figure 10-43. Configuring a build promotion process

Let’s look at configuring the automated
 promote-to-test build process.
The first thing you need to define is how this build promotion
 process will be triggered. Build promotion can be either automatic,
 based on the result of a downstream build job, or manually activated by
 a user. In Figure 10-43, the build
 promotion for this build job will be automatically triggered when the
 automated web tests (executed by the phoenix-web-tests build job) are
 successful.
You can also have certain build jobs that can only be promoted
 manually, as illustrated in Figure 10-44. Manual build promotion
 is used for cases where human intervention is needed to approve a build
 promotion. Deployment to UAT or production are common examples of this.
 Another example is where you want to temporarily suspend automatic build
 promotions for a short period, such as nearing a release.
Manual builds, as the name suggests, need to be manually approved
 to be executed. If the promotion process is to trigger a parameterized
 build job, you can also provide parameters that the approver will need
 to enter when approving. In some cases, it can also be useful to
 designate certain users who are allowed to activate the manual
 promotion. You can do this by specifying a list of users or groups in
 the Approvers list.
[image: Configuring a manual build promotion process]

Figure 10-44. Configuring a manual build promotion process

Sometimes, it is useful to give some context to the person
 approving a promotion. When you set up a manual promotion process, you
 can also specify other conditions which must be met, in particular
 downstream (or upstream) build jobs which must have been built
 successfully (see Figure 10-45).
 These will appear in the “Met Qualifications” (for the successful build
 jobs) and in “Unmet Qualifications” (for the build jobs that failed or
 have not been executed yet).
[image: Viewing the details of a build promotion]

Figure 10-45. Viewing the details of a build promotion

Next you need to tell Jenkins what to do when the build is
 promoted. You do this by adding actions, just like in a freestyle build
 job. This makes build promotions extremely flexible, as you can add
 virtually any action available to a normal freestyle build job,
 including any additional steps made available by the plugins installed
 on your Jenkins instance. Common actions include invoking Maven or Ant
 scripts, deploying artifacts to a Maven repository, or triggering
 another build job.
One important thing to remember here is that you cannot rely on
 files in the workspace when promoting your build. Indeed, by the time
 you promote the build, either automatically or manually, other build
 jobs may have deleted or rewritten the files you need to use. For this
 reason, it is unwise, for example, to deploy a WAR file directly from
 the workspace to an application server from within a build promotion
 process. A more robust solution is to trigger a separate build job and
 to use the Copy Artifacts plugin (see Copying Artifacts) to retrieve precisely the right
 file. In this case, you will be copying artifacts that you have
 configured Jenkins to conserve, rather than copying the files directly
 from the workspace.
For build promotion to work correctly, Jenkins needs to be
 able to precisely link downstream build jobs to upstream ones. The more
 accurate way to do this is by using fingerprints. In Jenkins, a
 fingerprint is the MD5 checksum a file produced by or used in a build
 job. By matching fingerprints, Jenkins is able to identify all of the
 builds which use a particular file.
In the context of build promotion, a common strategy is to build
 your application once, and then to run tests against the generated
 binary files in a series of downstream build jobs. This approach works
 well with build promotion, but you need to ensure that Jenkins
 fingerprints the files that are shared or copied between build jobs. In
 the example shown in Figure 10-43, for
 instance, we need to do two things (Figure 10-46). First, we need
 to archive the generated WAR file so that it can be reused in the
 downstream project. Secondly, we need to record a fingerprint of the
 archived artifacts. You do this by ticking the “Record fingerprints of
 files to track usage” option, and specifying the files you want to
 fingerprint. A useful shortcut is simply to fingerprint all archived
 files, since these are the files that will typically be retrieved and
 reused by the downstream build jobs.
[image: Using fingerprints in the build promotion process]

Figure 10-46. Using fingerprints in the build promotion process

This is all you need to do to configure the initial build process.
 The next step is to configure the integration tests executed in the
 phoenix-integration build job. Here,
 we use the Copy Artifact plugin to retrieve the WAR file generated by
 the phoenix-default build job (see Figure 10-47). Since this build
 job is triggered immediately after the phoenix-default build job, we can simply fetch
 the WAR file from the latest successful build.
[image: Fetching the WAR file from the upstream build job]

Figure 10-47. Fetching the WAR file from the upstream build job

This is not quite all we need to do for the integration tests,
 however. The phoenix-integration
 build job is followed by the phoenix-web build job, which executes the
 automated web tests. To ensure that the same WAR file is used at each
 stage of the build process, we need to retrieve it from the upstream
 phoenix-integration build job, and
 not from the original phoenix-default
 build job (which may have been executed again in the meantime). So we
 also need to archive the WAR file in the phoenix-integration build job (see Figure 10-48).
[image: Archiving the WAR file for use in the downstream job]

Figure 10-48. Archiving the WAR file for use in the downstream job

In the phoenix-web build job,
 we then fetch the WAR file from the phoenix-integration build job, using
 a configuration very similar to the one shown above (see Figure 10-49).
[image: Fetching the WAR file from the integration job]

Figure 10-49. Fetching the WAR file from the integration job

For the build promotion process to work properly, there is one
 more important thing we need to configure in the phoenix-web build job. As we discussed
 earlier, Jenkins needs to be able to be sure that the WAR file used in
 these tests is the same one generated by the original build. We do this
 by activating fingerprinting on the WAR file we fetched from the
 phoenix-integration build job (which,
 remember, was originally built by the phoenix-default build job). Since we have
 copied this WAR file into the workspace, a configuration like the one in
 Figure 10-50 will work just
 fine.
[image: We need to determine the fingerprint of the WAR file we use]

Figure 10-50. We need to determine the fingerprint of the WAR file we
 use

The final step is to configure the phoenix-deploy-to-test build job to retrieve
 the last promoted WAR file (rather than just the last successful one).
 To do this, we use the Copy Artifact plugin again, but this time we
 choose the “Specified by permalink” option. Here Jenkins will propose,
 among other things, the build promotion processes configured for the
 build job you are copying from. So, in Figure 10-51, we are fetching the last
 promoted WAR file build by the phoenix-default job, which is precisely what
 we want.
[image: Fetching the latest promoted WAR file]

Figure 10-51. Fetching the latest promoted WAR file

Our promotion process is now ready for action. When the automated
 web tests succeed for a particular build, the original build job will be
 promoted and the corresponding WAR file deployed to the test
 environment. Promoted builds are indicated by a star in the build
 history (see Figure 10-52). By
 default, the stars are yellow, but you can configure the color of the
 star in the build promotion setup.
[image: Promoted builds are indicated by a star in the build history]

Figure 10-52. Promoted builds are indicated by a star in the build
 history

You can also use the “Promotion Status” menu entry (or click on
 the colored star in the build history) to view the details of a
 particular build promotion, and even to rerun a promotion manually (see
 Figure 10-45). Any build promotion
 can be triggered manually, by clicking on “Force promotion” (if this
 build job has never been promoted) or “Re-execute promotion” (if it has).

Aggregating Test Results

When distributing different types of tests across different
 build jobs, it is easy to loose a global vision about the overall test
 results. Test results are scattered among the various build jobs,
 without a central place to see the total number of executed and failing
 tests.
A good way to avoid this problem is to use the Aggregated Test
 Results feature of Jenkins. This will retrieve any test results recorded
 in the downstream jobs, and aggregate them in the upstream build job.
 You can configure this in the initial (upstream) build job by ticking
 the “Aggregate downstream test results” option (see Figure 10-53).
[image: Reporting on aggregate test results]

Figure 10-53. Reporting on aggregate test results

The aggregate test results can be seen in the build details page
 (see Figure 10-54).
 Unfortunately, these aggregate test results do not appear in the overall
 test results, but you can display the full list of tests executed by
 clicking on the Aggregate Test Result link on the individual build
 page.
[image: Viewing aggregate test results]

Figure 10-54. Viewing aggregate test results

For this to work correctly, you need to ensure that you have
 configured fingerprinting for the binary files you use at each
 stage. Jenkins will only aggregate downstream test results from builds
 containing an artifact with the same fingerprint.

Build Pipelines

The final plugin we will be looking at in this section is the
 Build Pipeline plugin. The Build Pipelines plugin takes the idea of
 build promotion further, and helps you design and monitor deployment
 pipelines. A deployment pipeline is a way of orchestrating your build
 through a series of quality gates, with automated or manual approval
 processes at each stage, culminating with deployment into
 production.
The Build Pipeline plugin provides an alternative way to
 define downstream build jobs. A build pipeline, unlike conventional
 downstream dependencies, is considered to be a linear process, a series
 of build jobs executed in sequence.
To use this plugin, start by configuring the downstream build jobs
 for each build job in the pipeline, using the “Build other projects”
 field just as you would normally do. The Build Pipelines plugin uses the
 standard upstream and downstream build configurations, and for automatic
 steps this is all you need to do. However the Build Pipeline plugin also
 supports manual build steps, where a user has to manually approve the
 next step. For manual steps, you also need to configure In the Post-build Actions of your upstream build job:
 just tick the “Build Pipeline Plugin -> Specify Downstream Project”
 box, select the next step in your project, and tick the “Require manual
 build executor” option (see Figure 10-55).
[image: Configuring a manual step in the build pipeline]

Figure 10-55. Configuring a manual step in the build pipeline

Once you have set up your build process to your satisfaction, you
 can configure the build pipeline view. You can create this view just
 like any other view (see Figure 10-56).
[image: Creating a Build Pipeline view]

Figure 10-56. Creating a Build Pipeline view

There is a trick when it comes to configuring the view, however.
 At the time of writing, there is no menu option or button that lets you
 configure the view directly. In fact, you need to enter the URL
 manually. Fortunately, this is not difficult: just add /configure to the end of the URL shown when
 you are displaying this view. For example, if you have named your view
 “phoenix-build-pipeline”, as shown here, the URL to configure this view
 would be http://my_jenkins_server/view/phoenix-build-pipeline.
 (see Figure 10-57).
[image: Configuring a Build Pipeline view]

Figure 10-57. Configuring a Build Pipeline view

The most important thing to configure in this screen is the
 initial job. This marks the starting point of your build pipeline. You
 can define multiple build pipeline views, each with a different starting
 job. You can also configure the maximum number of build sequences to
 appear on the screen at once.
Once you have configured the starting point, you can return to the
 view to see the current state of your build pipeline. Jenkins displays
 the successive related build jobs horizontally, using a color to
 indicate the outcome of each build (Figure 10-58). There is a column for each
 build job in the pipeline. Whenever the initial build job kicks off, a
 new row appears on this page. As the build progresses through the
 successive build jobs in the pipeline, Jenkins will add a colored box in
 the successive columns, indicating the outcome of each stage. You can
 click on the box to drill down into a particular build result for more
 details. Finally, if a manual execution is required, a button will be
 displayed where the user can trigger the job.
[image: A Build Pipeline in action]

Figure 10-58. A Build Pipeline in action

This plugin is still relatively new, and does not integrate with
 all of the other plugins we have seen here. In particular, it is really
 designed for a linear build pipeline, and does not cope well with
 branches or parallel build jobs. Nevertheless, it does give an excellent
 global vision of a build pipeline.

Conclusion

Continuous Integration build jobs are much more than simply the
 scheduled execution of build scripts. In this chapter we have reviewed a
 number of tools and techniques enabling you to go beyond your typical
 build jobs, combining them so that they can work together as part of a
 larger process. We have seen how parameterized and multiconfiguration
 build jobs add an element of flexibility to ordinary build jobs by
 allowing you to run the same build job with different sets of parameters.
 Other tools help coordinate and orchestrate groups of related build jobs.
 The Joins and Locks and Latches plugins helps you coordinate build jobs
 running in parallel. And the Build Promotions and Build Pipelines plugins,
 with the help of the Copy Artifacts plugin, make it relatively easy to
 design and configure complex build promotion strategies for your
 projects.

Chapter 11. Distributed Builds

Introduction

Arguably one of the more powerful features of Jenkins is its
 ability to dispatch build jobs across a large number of machines. It is
 quite easy to set up a farm of build servers, either to share the load
 across multiple machines, or to run build jobs in different environments.
 This is a very effective strategy which can potentially increase the
 capacity of your CI infrastructure dramatically.
Distributed builds are generally used either to absorb extra load,
 for example absorbing spikes in build activity by dynamically adding extra
 machines as required, or to run specialized build jobs in specific
 operating systems or environments. For example, you may need to run
 particular build jobs on a particular machine or operating system. For
 example, if you need to run web tests using Internet Explorer, you will
 need to be use a Windows machine. Or one of your build jobs may be
 particularly resource-heavy, and need to be run on its own dedicated
 machine so as not to penalize your other build jobs.
Demand for build servers can also fluctuate over time. If you are
 working with product release cycles, you may need to run a much higher
 number of builds jobs towards the end of the cycle, for example, when more
 comprehensive functional and regression test suites may be more
 frequent.
In this chapter, we will discuss how to set up and manage a farm of
 build servers using Jenkins.

The Jenkins Distributed Build Architecture

Jenkins uses a master/slave architecture to manage distributed
 builds. Your main Jenkins server
 (the one we have been using up until present) is the master. In a
 nutshell, the master’s job is to handle scheduling build jobs, dispatching
 builds to the slaves for the actual execution, monitor the slaves
 (possibly taking them online and offline as required) and recording and
 presenting the build results. Even in a distributed architecture, a master
 instance of Jenkins can also execute build jobs directly.
The job of the slaves is to do as they are told, which involves
 executing build jobs dispatched by the master. You can configure a project
 to always run on a particular slave machine, or a particular type of slave
 machine, or simply let Jenkins pick the next available slave.
A slave is a small Java executable that runs on a remote machine and
 listens for requests from the Jenkins master instance. Slaves can (and
 usually do) run on a variety of operating systems. The slave instance can
 be started in a number of different ways, depending on the operating
 system and network architecture. Once the slave instance is running, it
 communicates with the master instance over a TCP/IP connection. We will
 look at different setups in the rest of this chapter.

Master/Slave Strategies in Jenkins

There are a number of different ways that you can configure set up a
 distributed build farm using Jenkins, depending on your operating systems
 and network architecture. In all cases, the fact that a build job is being
 run on a slave, and how that slave is managed, is transparent for the
 end-user: the build results and artifacts will always end up on the master
 server.
Creating a new Jenkins slave node is a straightforward process.
 First, go to the Manage Jenkins screen and click on Manage Nodes. This
 screen displays the list of slave agents (also known as “Nodes” in more
 politically correct terms), shown in Figure 11-1. From here, you can set up new nodes
 by clicking on the New Node button. You can also configure some of the
 parameters related to your distributed build setup (see Node Monitoring).
[image: Managing slave nodes]

Figure 11-1. Managing slave nodes

There are several different strategies when it comes to managing
 Jenkins slave nodes, depending on your target operating systems and other
 architectural considerations. These strategies affect the way you
 configure your slave nodes, so we need to consider them separately. In the
 following sections, we will look at the most frequently used ways to
 install and configure Jenkins slaves:
	The master starts the slave agents via ssh

	Starting the slave agent manually using Java Web Start

	Installing the slave agent as a Window service

	Starting the slave agent directly from the command line on the
 slave machine from the command line

Each of these strategies has its uses, advantages, and
 inconveniences. Let’s look at each in turn.
The Master Starts the Slave Agent Using SSH

If you are working in a Unix environment, the most convenient way
 to start a Jenkins slave is undoubtedly to use SSH. Jenkins has its own
 build-in SSH client, and almost all Unix environments support SSH
 (usually sshd) out of the box.
To create a Unix-based slave, click on the New Node button as we
 mentioned above. This will prompt you to enter the name of your slave,
 and its type (see Figure 11-2). At the time
 of writing, only “dumb slaves” are supported out of the box; “dumb”
 slaves are passive beasts, that simply respond to build job requests
 from the master node. This is the most common way to set up a
 distributed build architecture, and the only option available in a
 default installation.
[image: Creating a new slave node]

Figure 11-2. Creating a new slave node

In this screen, you simply need to provide a name for your slave.
 When you click on OK, Jenkins will let you provide more specific details
 about your slave machine (see Figure 11-3).
[image: Creating a Unix slave node]

Figure 11-3. Creating a Unix slave node

The name is simply a unique way of identifying your slave machine.
 It can be anything, but it may help if the name reminds you of the
 physical machine it is running on. It also helps if the name is
 file-system and URL-friendly. It will work with spaces, but you will
 make life easier for yourself if you avoid them. So “Slave-1” is better
 than “Slave 1”.
The description is also purely for human consumption, and can be
 used to indicate why you would use this slave rather than
 another.
Like on the main Jenkins configuration screen, the number of
 executors lets you define how many concurrent build job this node can
 execute.
Every Jenkins slave node also needs a place that it can call home,
 or, more precisely, a dedicated directory on the slave machine that the
 slave agent can use to run build jobs. You define this directory in the
 Remote FS root field. You need to provide a local, OS-specific path,
 such as /var/jenkins for a Unix
 machine, or C:\jenkins on Windows.
 Nothing mission-critical is stored in this directory—everything
 important is transferred back to the master machine once the build is
 done. So you usually don’t need to be so concerned with backing up these
 directories as you should be with the master.
Labels are a particularly useful concept when your distributed
 build architecture begins to grow in size. You can define labels, or
 tags, to each build node, and then configure a build job to run only on
 a slave node with a particular label. Labels might relate to operating
 systems (unix, windows, macosx, etc.), environments (staging, UAT,
 development, etc.) or any criteria that you find useful. For example,
 you could configure your automated WebDriver/Selenium tests to run using
 Internet Explorer, but only on slave nodes with the “windows”
 label.
The Usage field lets you configure how intensively Jenkins will
 use this slave. You have the choice of three options: use it as much as
 possible, reserve it for dedicated build jobs, or bring it online as
 required.
The first option, “Utilize this slave as much as possible”, tells
 Jenkins to use this slave freely as soon as it becomes available, for
 any build job that it can run. This is by far the most commonly used
 one, and is generally what you want.
There are times, however, when this second option comes in handy.
 In the project configuration, you can tie a build job to a specific
 node—this is useful when a particular task, such as automated deployment
 or a performance test suite, needs to be executed on a specific machine.
 In this case, the “Leave this machine for tied jobs only” option makes
 good sense. You can take this further by setting the maximum number of
 Executors to 1. In this case, not only will this slave be reserved for a
 particular type of job, but it will only ever be able to run one of
 these build jobs at any one time. This is a very useful configuration
 for performance and load tests, where you need to reserve the machine so
 that it can execute its tests without interference.
The third option is “Take this slave on-line when in demand and
 off-line when idle” (see Figure 11-4). As
 the name indicates, this option tells Jenkins to bring this slave online
 when demand is high, and to take it offline when demand subsides. This
 lets you keep some build slaves in reserve for periods of heavy use,
 without having to maintain a slave agent running on them permanently.
 When you choose this option, you also need to provide some extra
 details. The “In demand delay” indicates how many minutes jobs must have
 been waiting in the queue before this slave will be brought online. The
 Idle delay indicates how long the slave needs to be idle before Jenkins
 will take it off-line.
[image: Taking a slave off-line when idle]

Figure 11-4. Taking a slave off-line when idle

The launch method is where you decide how Jenkins will start the
 node, as we mentioned earlier. For the configuration we are discussing
 here, you would choose “Launch slave agents on Unix machines via SSH”.
 The Advanced button lets you enter the additional details that Jenkins
 needs to connect to the Unix slave machine: a host name, a login and
 password, and a port number. You can also provide a path to the SSH
 private key file on the master machine (e.g., id_dsa
 or id_rsa) to use for “password-less” Public/Private
 Key authentication.
You can also configure when Jenkins starts and stops the slave. By
 default, Jenkins will simply keep the slave running and use it whenever
 required (the “Keep this slave on-line as much as possible” option). If
 Jenkins notices that the slave has gone offline (for example due to a
 server reboot), it will attempt to restart it if it can. Alternatively,
 Jenkins can be more conservative with your system resources, and take
 the slave offline when it doesn’t need it. To do this, simply choose the
 “Take this slave on-line when in demand and off-line when idle” option.
 This is useful if you have regular spikes and lulls of build activity,
 as an unused slave can be taken offline to conserve system resources for
 other tasks, and brought back online when required.
Jenkins also needs to know where it can find the build tools it
 needs for your build jobs on the slave machines. This includes JDKs as
 well as build tools such as Maven, Ant, and Gradle. If you have
 configured your build tools to be automatically installed, you will
 usually have no extra configuration to do for your slave machines;
 Jenkins will download and install the tools as required. On the other
 hand, if your build tools are installed locally on the slave machine,
 you will need to tell Jenkins where it can find them. You do this by
 ticking the Tool Locations checkbox, and providing the local paths for
 each of the tools you will need for your build jobs (see Figure 11-5).
[image: Configuring tool locations]

Figure 11-5. Configuring tool locations

You can also specify environment variables. These will be passed
 into your build jobs, and can be a good way to allow your build jobs to
 behave differently depending on where they are being executed.
Once you have done this, your new slave node will appear in the
 list of computers on the Jenkins Nodes page (see Figure 11-6).
[image: Your new slave node in action]

Figure 11-6. Your new slave node in action

Starting the Slave Agent Manually Using Java Web Start

Another option is to start a slave agent from the slave machine
 itself using Java Web Start (JNLP). This approach is useful if the
 server cannot connect to the slave, for example if the slave machine is
 running on the other side of a firewall. It works no matter what
 operating system your slave is running on, however it is more commonly
 used for Windows slaves. It does suffer from a few major drawbacks: the
 slave node cannot be started, or restarted, automatically by Jenkins.
 So, if the slave goes down, the master instance cannot restart
 it.
When you do this on a Windows machine, you need to start the
 Jenkins slave manually at least once. This involves opening a browser on
 the machine, opening the slave node page on the Jenkins master, and
 launching the slave using a very visible JNLP icon. However, once you
 have launched the slave, you can install it as a Windows service.
There are also times when you need to do this from the command
 line, in a Unix environment. You may need to do this because of
 firewalls or other networking issues, or because SSH is not available in
 your environment.
Lets step through both these processes.
The first thing you need to do in all cases is create a new slave.
 As for any other slave node, you do this by clicking on the New Node
 menu entry in the Nodes screen. When entering the details concerning
 your slave node, make sure you choose “Launch slave agents via JNLP” in
 the Launch Method field (see Figure 11-7).
 Also remember that if this is to be a Windows slave node, the Remote FS
 root needs to be a Windows path (such as C:\jenkins-slave). This directory does not
 have to exist: Jenkins will create it automatically if it is
 missing.
[image: Creating a slave node for JNLP]

Figure 11-7. Creating a slave node for JNLP

Once you have saved this configuration, Next, log on to the slave
 machine and open the Slave node screen in a browser, as shown in Figure 11-8. You will see a large orange Launch
 button—if you click on this button, you should be able to start a slave
 agent directly from within your browser.
[image: Launching a slave via Java Web Start]

Figure 11-8. Launching a slave via Java Web Start

If all goes well, this will open up a small window indicating that
 your slave agent is now running (see Figure 11-9).
[image: The Jenkins slave agent in action]

Figure 11-9. The Jenkins slave agent in action

Browsers are fickle, however, and Java Web Start is not always
 easy to use. This approach usually works best with Firefox, although you
 must have the Java JRE installed beforehand to make Firefox Java-aware.
 Using JNLP with Internet Explorer requires some (considerable) fiddling
 to associate *.jnlp files with the
 Java Web Start executable, a file called javaws, which you will find in the Java
 bin directory. In fact it is
 probably easier just to start it from the command line as discussed
 below.
A more reliable, albeit low-level, approach is to start the slave
 from the command line. To do this, simply invoke the javaws executable from a command window as
 shown here:
C:> javaws http://build.myorg.com/jenkins/computer/windows-slave-1/slave-agent.jnlp
The exact command that you need to execute, including the correct
 URL, is conveniently displayed on the Jenkins slave node window just
 below the JNLP launch button (see Figure 11-8).
If security is activated on your Jenkins server, Jenkins will
 communicate with the slave on a specific nonstandard port. If for some
 reason this port is inaccessible, the slave node will fail to start and
 will display an error message similar to the one shown in Figure 11-10.
[image: The Jenkins slave failing to connect to the master]

Figure 11-10. The Jenkins slave failing to connect to the master

This is usually a sign that a firewall is blocking a port. By
 default, Jenkins picks a random port to use for TCP communication with
 its slaves. However if you need to have a specific port that your
 firewall will authorize, you can force Jenkins to use a fixed port in
 the System configuration screen by selecting Fixed in the “TCP port for
 JNLP slave agents” option, as shown in Figure 11-11.
[image: Configuring the Jenkins slave port]

Figure 11-11. Configuring the Jenkins slave port

Installing a Jenkins Slave as a Windows Service

Once you have the slave up and running on your Windows machine,
 you can save yourself the bother of having to restart it manually each
 time your machine reboots by installing it as a Windows service. To do
 this, select the “Install as Windows Service” menu option in the File
 menu of the slave agent window (see Figure 11-12).
[image: Installing the Jenkins slave as a Windows service]

Figure 11-12. Installing the Jenkins slave as a Windows service

Once this is done, your Jenkins slave node will start
 automatically whenever the machine starts up, and can be administered
 just like any other Windows service (see Figure 11-13).
[image: Managing the Jenkins Windows service]

Figure 11-13. Managing the Jenkins Windows service

Starting the Slave Node in Headless Mode

You can also start a slave agent in headless mode, directly
 from the command line. This is useful if you don’t have a user interface
 available, for example if you are starting a JNLP slave node on a Unix
 machine. If you are working with Unix machines, it is generally easier
 and more flexible just to use an SSH connection, but there are sometimes
 network or architecture constraints that prevent you from using SSH. In
 cases like this, it is still possible to run a slave node from the
 command line.
To start the slave node this way, you need to use Jenkins’
 slave.jar file. You can find this
 in JENKINS_HOME/war/WEB-INF/slave.jar. Once you
 have located this file and copied it onto the Windows slave machine, you
 can run it as follows:
java -jar slave.jar \
 -jnlpUrl http://build.myorg.com/jenkins/computer/windows-slave-1/slave-agent.jnlp
And if your Jenkins server requires authentication, just pass in
 the -auth username:password option:
java -jar slave.jar \
 -jnlpUrl http://build.myorg.com/jenkins/computer/windows-slave-1/slave-agent.jnlp
 -auth scott:tiger
Once you have started the slave agent, be sure to install it as a
 Windows service, as discussed in the previous section.

Starting a Windows Slave as a Remote Service

Jenkins can also manage a remote Windows slave as a Windows
 service, using the Windows Management Instrumentation (WMI) service which is installed out of the box on Windows 2000 or later (see Figure 11-14). When you choose this option,
 you just need to provide a Windows username and password. The name of
 the node must be the hostname of the slave machine.
This is certainly convenient, as it does not require you to
 physically connect to the Windows machine to set it up. However, it does
 have limitations—in particular, you cannot run any applications
 requiring a graphical interface, so you can’t use a slave set up this
 way for web testing, for example. In practice this can be a little
 tricky to set up, as you may need to configure the Windows firewall to
 open the appropriate services and ports. If you run into trouble, make
 sure that your network configuration allows TCP connections to ports
 135, 139, and 445, and UDP connections to ports 137 and 138 (see https://wiki.jenkins-ci.org/display/JENKINS/Windows+slaves+fail+to+start+via+DCOM
 for more details).
[image: Letting Jenkins control a Windows slave as a Windows service]

Figure 11-14. Letting Jenkins control a Windows slave as a Windows
 service

Associating a Build Job with a Slave or Group of Slaves

In the previous section, we saw how you can assign labels to your
 slave nodes. This is a convenient way to group your slave nodes according
 to characteristics such as operating system, target environment, database
 type, or any other criteria that is relevant to your build process. A
 common application of this practice is to run OS-specific functional tests
 on dedicated slave nodes, or to reserve a particular machine exclusively
 to performance tests.
Once you have assigned labels to your slave nodes, you also need to
 tell Jenkins where it can run the build jobs. By default, Jenkins will
 simply use the first available slave node, which usually results in the
 best overall turn-around time. If you need to tie a build job to a
 particular machine or group of machines, you need to tick the “Restrict
 where this project can be run” checkbox in the build configuration page
 (see Figure 11-15). Next, enter the
 name of the machine, or a label identifying a group of machines, into the
 Label Expression field. Jenkins will provide a dynamic dropdown showing
 the available machine names and labels as you type.
[image: Running a build job on a particular slave node]

Figure 11-15. Running a build job on a particular slave node

This field also accepts boolean expressions, allowing you to define
 more complicated constraints about where your build job should run. How to
 use these expressions is best illustrated by an example. Suppose you have
 a build farm with Windows and Linux slave nodes (identified by the labels
 “windows” and “linux”), distributed over three sites (“sydney”,
 “sanfrancisco”, and “london”). Your application also needs to be tested
 against several different databases (“oracle”, “db2”, “mysql”, and
 “postgres”). You also use labels to distinguish slave nodes used to deploy
 to different environments (test, uat, production).
The simplest use of label expressions is to determine where a build
 job can or cannot be executed. If your web tests require Internet
 Explorer, for example, you will need them to run on a Windows machine. You
 could express this by simply quoting the corresponding label:
windows
Alternatively, you might want to run tests against Firefox, but only
 on Linux machines. You could exclude Windows machines from the range of
 candidate build nodes by using the ! negation
 operator:
!windows
You can also use the and
 (&&) and or
 (!!) operators to combine expressions. For example,
 suppose the Postgres database is only tested for Linux. You could tell
 Jenkins to run a particular build job only on Linux machines installed
 with postgres using the following expression:
linux && postgres
Or you could specify that a particular build job is only to be run
 on a UAT environment in Sydney or London:
uat && (sydney || london)
If your machine names contain spaces, you will need to enclose them
 in double quotes:
"Windows 7" || "Windows XP"
There are also two more advanced logical operators that you may find
 useful. The implies operator
 (=>) lets you define a logical constraint of the
 form “if A is true, then B must also be true.” For example, suppose you
 have a build job that can run on any Linux distribution, but if it is
 executed on a Windows box, it must be Windows 7. You could express this
 constraint as follows:
windows -> "Windows 7"
The other logical operator is the if-and-only-if (<=>)
 operator. This operation lets you define stronger constraints of the form
 “If A is true, then B must be true, but if A is false, then B must be
 false.” For example, suppose that Windows 7 tests are only to be run in a
 UAT environment, and that only Windows 7 tests are to be run in the UAT
 environment. You could express this as shown here:
"Windows 7" <-> uat

Node Monitoring

Jenkins doesn’t just dispatch build jobs to slave agents and hope
 for the best: it pro-actively monitors your slave machines, and will take
 a node offline if it considers that the node is incapable of safely
 performing a build. You can fine-tune exactly what Jenkins monitors int
 the Manage Nodes screen (see Figure 11-16). Jenkins monitors the slave
 agents in several different ways. It monitors the response time: an overly
 slow response time can indicate either a network problem or that the slave
 machine is down. It also monitors the amount of disk space, temporary
 directory space and swap space available to the Jenkins user on the slave
 machine, since build jobs can be notoriously disk-hungry. It also keeps
 tabs on the system clocks, as if the clocks are not correctly
 synchronized, odd errors can sometimes happen. If any of these criteria is
 not up to scratch, Jenkins will automatically take the server
 offline.
[image: Jenkins proactively monitors your build agents]

Figure 11-16. Jenkins proactively monitors your build agents

Cloud Computing

Cloud computing involves using hardware resources on the Internet as an
 extension and/or replacement of your local computing architecture. Cloud
 computing is expanding into many areas of the enterprise, including email
 and document sharing (Gmail and Google Apps are particularly well-known
 examples, but there are many others), off-site data storage (such as
 Amazon S3), as well as more technical services such as source code
 repositories (such as GitHub, Bitbucket, etc.) and many others.
Of course externalized hardware architecture solutions have been
 around for a long time. The main thing that distinguishes the cloud
 computing with more traditional services is the speed and flexibility with
 which a service can be brought up, and brought down when it is no longer
 needed. In a cloud computing environment, a new machine can be running and
 available within seconds.
However, cloud computing in the context of Continuous Integration is
 not always as simple as it might seem. For any cloud-based approach to
 work, some of your internal resources may need to be available to the
 outside world. This can include opening access to your version control
 system, your test databases, and to any other resources that your builds
 and tests require. All these aspects need to be considered carefully when
 choosing a cloud-based CI architecture, and may limit your options if
 certain resources simply cannot be accessed from the Internet.
 Nevertheless, cloud-based CI has the potential of providing huge benefits
 when it comes to scalability.
In the following sections, we will look at how to use the Amazon EC2
 cloud computing services to set up a cloud-based build farm.
Using Amazon EC2

In addition to selling books, Amazon is one of the more
 well-known providers of cloud computing services. If you are willing to
 pay for the service, Amazon can provide you build machines that can be
 either used permanently as part of your build farm, or brought online as
 required when your existing build machines become overloaded. This is an
 excellent and reasonably cost-efficient way to absorb extra build load
 on an as-needed basis, and without the headache of extra physical
 machines to maintain.
If you want the flexibility of a cloud-based CI architecture, but
 don’t want to externalize your hardware, another option is to set up a
 Eucalyptus cloud. Eucalyptus is an open source tool that
 enables you to create a local private cloud on existing hardware.
 Eucalyptus uses an API that is compatible with Amazon EC2 and S3, and
 works well with Jenkins.
Setting up your Amazon EC2 build farm

Amazon EC2 is probably the most popular and well-known
 commercial cloud computing service. To use this service, you will need
 to create an EC2 account with Amazon if you do not already have one.
 The process required to do this is well documented on the Amazon
 website, so we will not dwell on this here. Once you have created your
 account, you will be able to create the virtual machines and machine
 images that will make up your EC2-based build farm.
When using Amazon EC2, you create virtual machines, called
 instances, using the Amazon Web Services (AWS) Management Console (see Figure 11-17). This website is where you
 manage your running instances and create new ones. You create these
 instances from predefined images, called Amazon Machine Images (AMIs). There are many AMI images,
 both from Amazon and in the public domain, that you can use as a
 starting point, covering most of the popular operating systems. Once
 you have created a new instance, you can connect to it using either
 SSH (for unix machines) or Windows Remote Desktop Connection, to
 configure it for your purposes.
[image: You manage your EC2 instances using the Amazon AWS Management Console]

Figure 11-17. You manage your EC2 instances using the Amazon AWS Management
 Console

To set up a build farm, you will also need to configure your
 have one, just go to the Key Pairs menu in the Security build server
 to be able to access your EC2 instances. In particular, you will need
 to install the Amazon EC2 API tools, set up the appropriate
 private/public keys, and allow SSH connections from your server or
 network to your Amazon instances. Again, the details of how to do this
 are well documented for all the major operating systems on the EC2
 website.
You can use Amazon EC2 instances in two ways—either create slave
 machines on Amazon EC2 and use them as remote machines, or have
 Jenkins create them for you dynamically on demand. Or you can have a
 combination of the two. Both approaches have their uses, and we will
 discuss each of them in the following sections.

Using EC2 instances as part of your build farm

Creating a new EC2 instance is as simple as choosing the base
 image you want to use. You will just need to provide some details
 about the instance, such as its size and capacity, and the private key
 you want to use to access the machine. Amazon will then create a new
 running virtual machine based on this image. Once you have set it up,
 an EC2 instance is essentially a machine like any other, and it is
 easy and convenient to set up permanent or semipermanent EC2 machines
 as part of your build infrastructure. You may even opt to use an EC2
 image as your master server.
Setting up an existing EC2 instance as a Jenkins slave is little
 different to setting up any other remote slave. If you are setting up
 a Unix or Linux EC2 slave, you will need to refer to the private key
 file (see Figure 11-18) that you used to
 create the EC2 instance on the AWS Management console. Depending on
 the flavor of Linux you are using, you may also need to provide a
 username. Most distributions connect as root, but some, such as
 Ubuntu, need a different user name.
[image: Configuring an Amazon EC2 slave]

Figure 11-18. Configuring an Amazon EC2 slave

Using dynamic instances

The second approach involves creating new Amazon EC2 machines
 dynamically, as they are required. Setting up dedicated instances is
 not difficult, but it does not scale well. A better approach is to let
 Jenkins create new instances as require. To do this, you will need to
 install the Jenkins Amazon EC2 plugin. This plugin lets your Jenkins
 instance start slaves on the EC2 cloud on demand, and then kill them
 off when they are no longer needed. The plugin works both with Amazon
 EC2, and the Ubuntu Enterprise Cloud. We will be focusing on Amazon
 EC2 here. Note that at the time of writing the Amazon EC2 Plugin only
 supported managing Unix EC2 images.
Once you have installed the plugin and restarted Jenkins, go to
 the main Jenkins configuration screen and click on Add a New Cloud
 (see Figure 11-19). Choose Amazon EC2. You
 will need to provide your Amazon Access Key ID and Secret Access Key
 so that Jenkins can communicate with your Amazon EC2 account. You can
 access these in the Key Pairs screen of your EC2 dashboard.
[image: Configuring an Amazon EC2 slave]

Figure 11-19. Configuring an Amazon EC2 slave

You will also need to provide your RSA private key. If you don’t
 have one, just go to the Key Pairs menu in the Security Credentials
 screen and create one. This will create a new key pair for you and
 download the private key. Keep the private key in a safe place (you
 will need it if you want to connect to your EC2 instances via
 SSH).
In the advanced options, you can use the Instance Cap field to
 limit the number of EC2 instances that Jenkins will launch. This limit
 refers to the total number of active EC2 instances, not just the ones
 that Jenkins is currently running. This is useful as a safety measure,
 as you pay for the time your EC2 instances spend active.
Once you have configured your overall EC2 connection, you need
 to define the machines you will work with. You do this by specifying
 the Amazon Mirror Image (AMI) identifier of the server image you would
 like to start. Amazon provides some starter images, and many more are
 available from the community, however not all images will work with
 EC2. At the time of writing, only certain images based on 32-bit Linux
 distributions work correctly.
The predefined Amazon and public AMI images are useful starting
 points for your permanent virtual machines, but for the purposes of
 implementing a dynamic EC2-based cloud, you need to define your own
 AMI with the essential tools (Java, build tools, SCM configuration and
 so forth) preinstalled. Fortunately, this is a simple process: just start off with a generic
 AMI (preferably one compatible with the Jenkins EC2 plugin), and
 install everything your builds need. Make sure you use an EBS image.
 This way, changes you make to your server instance are persisted on an
 EBS volume so that you don't lose them when the server shuts down.
 Then create a new image by selecting the Create Image option in the
 Instances screen on the EC2 management console (see Figure 11-20). Make sure SSH is open from
 your build server’s IP address in the default security group on Amazon
 EC2. If you don’t do this, Jenkins will time out when it tries to
 start up a new slave node.
Once you have prepared your image, you will be able to use it
 for your EC2 configuration.
[image: Creating a new Amazon EC2 image]

Figure 11-20. Creating a new Amazon EC2 image

Now Jenkins will automatically create a new EC2 instance using
 this image when it needs to, and delete (or “terminate,” in Amazon
 terms) the instance once it is no longer needed. Alternatively, you
 can bring a new EC2 slave online manually from the Nodes screen using
 the Provision via EC2 button (see Figure 11-21). This is a useful way to
 test your configuration.
[image: Bringing an Amazon EC2 slave online manually]

Figure 11-21. Bringing an Amazon EC2 slave online manually

Using the CloudBees DEV@cloud Service

Another option you might consider is running your Jenkins instance
 using a dedicated cloud-based Jenkins architecture, such as the DEV@cloud
 service offered by CloudBees. CloudBees provides Jenkins as a service as
 well as various development services (like Sonar) around Jenkins. Using a
 dedicated Jenkins-specific service, there is no need to install (or
 manage) Jenkins masters or slaves on your machines. A master instance is
 automatically configured for you, and when you give a job to be built,
 CloudBees provisions a slave for you and takes it back when the job is
 done.
How does this approach compare with the Amazon EC2-based
 architecture we discussed in the previous section? The main advantage of
 this approach is that there is much less work involved in managing your CI
 architecture hardware. Using the Amazon EC2 infrastructure means you don't
 need to worry about hardware, but you still need to configure and manage
 your server images yourself. The CloudBees DEV@cloud architecture is more
 of a high-level, CI-centric service, which provides not only a Jenkins
 server but also other related tools such as SVN or Git repositories, user
 management, and Sonar. In addition, the pricing model (pay by the minute)
 is arguably better suited to a cloud-based CI architecture than the
 pay-by-the-hour approach used by Amazon.
Amazon EC2-based services are often, though not always, used in a
 “hybrid cloud” environment where you are offloading your jobs to the
 cloud, but a bulk of your builds remain in-house. The CloudBees DEV@cloud
 service is a public cloud solution where the whole build is happening on
 the cloud (though CloudBees does also offer a similar solution running on
 a private cloud).
Creating a CloudBees DEV@cloud account is straightforward, and you
 can use a free one to experiment with the service (note that the free
 CloudBees service only has a limited set of plugins available; you will
 need to sign up for the professional version to use the full plugin
 range). To signup for CloudBees, go to the signup
 page. You will need to enter some relevant information such as a
 user name, email information, and an account name. Once signed up, you
 will have access to both DEV@cloud and RUN@cloud (essentially the entire
 CloudBees platform) services.
At this point, you will have to subscribe to the DEV@cloud service.
 For our purposes, you can get away with simply choosing the “free” option.
 You will have to wait for a few minutes as CloudBees provisions a Jenkins
 master for you. The next step is to validate your account (this helps
 CloudBees prevent dummy accounts from running spurious jobs on the
 service). Click on the validation link, and enter your phone number. An
 automated incoming phone call will give your pin; enter the pin on the
 form. Once this is done, you can start running builds.
Your first port of call when you connect will be the management
 console (called GrandCentral). Click on the “Take me to Jenkins” button to
 go to your brand new Jenkins master instance.
From here, your interaction with DEV@cloud platform is exactly like
 in a standalone Jenkins. When you can create a new build job, just point
 to your existing source code repository and hit build. DEV@cloud will
 provision a slave for you and kick off a build (it may take a minute or
 two for the slave to be provisioned).

Conclusion

In Continuous Integration, distributed builds are the key to a truly
 scalable architecture. Whether you need to be able to add extra build
 capacity at the drop of a hat, or your build patterns are subject to
 periodic spikes in demand, a distributed build architecture is an
 excellent way to absorb extra load. Distributed builds are also a great
 way to delegate specialized tasks, such as OS-specific web testing, to
 certain dedicated machines.
Once you start down the path of distributed builds, cloud-based
 distributed build farms are a very logical extension. Putting your build
 servers on the cloud makes it easier and more convenient to scale your
 build infrastructure when required, as much as is required.

Chapter 12. Automated Deployment and Continuous Delivery

Introduction

Continuous Integration should not stop once your application
 compiles correctly. Nor should it stop once you can run a set of automated
 tests or automatically check and audit the code for potential quality
 issues. The next logical step, once you have achieved all of these, is to extend your
 build automation process to the deployment phase. This practice is
 globally known as Automated Deployment or Continuous Deployment.
In its most advanced form, Continuous Deployment is the process
 whereby any code change, subject to automated tests and other appropriate
 verifications, is immediately deployed into production. The aim is to
 reduce cycle time and reduce the time and effort involved in the
 deployment process. This in turn helps development teams reduce the time
 taken to deliver individual features or bug fixes, and as a consequence
 significantly increase their throughput. Reducing or eliminating the
 periods of intense activity leading up to a traditional release and
 deployment also frees up time and resources for process improvement and
 innovation. This approach is comparable to the philosophy of continual
 improvement promoted by lean processes such as Kanban.
Systematically deploying the latest code into production is not
 always suitable, however, no matter how good your automated tests are.
 Many organizations are not well prepared for new versions appearing
 unannounced every week; users might need to be trained, products may need
 to be marketed, and so forth. A more conservative variation on this theme,
 often seen in larger organizations, is to have the entire deployment
 process automated but to trigger the actual deployment manually in a
 one-click process. This is known as Continuous Delivery, and it has all
 the advantages of Continuous Deployment without the disadvantages.
 Variations on Continuous Delivery may also involve automatically deploying
 code to certain environments (such as test and QA) while using a manual
 one-click deployment for the other environments (such as UAT and
 Production). The most important distinguishing characteristic of
 Continuous Delivery is that any and every successful build that has passed
 all the relevant automated tests and quality gates can potentially be
 deployed into production via a fully automated one-click process and be in
 the hands of the end-user within minutes. However, the process is not
 automatic: it is the business, rather than IT, that decides the best time
 to deliver the latest changes.
Both Continuous Deployment and Continuous Delivery are rightly
 considered to represent a very high level of maturity in terms of build
 automation and SDLC practices. These techniques cannot exist without an
 extremely solid set of automated tests. Nor can they exist without a CI
 environment and a robust built pipeline—indeed it typically represents the
 final stage and goal of the build pipeline. However, considering the
 significant advantages that Continuous Deployment/Delivery can bring to an
 organization, it is a worthy goal. During the remainder of this chapter,
 we will use the general term of “Continuous Deployment” to refer to both
 Continuous Deployment and Continuous Delivery. Indeed, Continuous Delivery
 can be viewed as Continuous Deployment with the final step (deployment
 into production) being a manual one dictated by the business rather than
 the development team.

Implementing Automated and Continuous Deployment

In its most elementary form, Automated Deployment can be as simple
 as writing your own scripts to deploy your application to a particular
 server. The main advantage of a scripted solution is simplicity and ease
 of configuration. However, a simple scripted approach may run into limits
 if you need to perform more advanced deployment activities, such as
 installing software on a machine or rebooting the server. For more
 advanced scenarios, you may need to use a more sophisticated
 deployment/configuration management solution such as Puppet or
 Chef.
The Deployment Script

An essential part of any Automated Deployment initiative is a
 scriptable deployment process. While this may seem obvious, there are
 still many organizations where deployment remains a cumbersome,
 complicated and labor-intensive process, including manual file copying,
 manual script execution, hand-written deployment notes, and so forth.
 The good news is that, in general, it does not have to be this way, and,
 with a little work, it is usually possible to write a script of some
 sort to automate most, if not all, of the process.
The complexity of a deployment script varies enormously from
 application to application. For a simple website, a deployment script
 may be as simple as resyncing a directory on the target server. Many
 Java application servers have Ant or Maven plugins that can be used to
 deploy applications. For a more complicated infrastructure, deployment
 may involve deploying several applications and services across multiple
 clustered servers in a precisely
 coordinated manner. Most deployment processes tend to fall somewhere
 between these extremes.

Database Updates

Deploying your app to the application server is often only one part
 of the puzzle. Databases, relational or otherwise, almost always play a
 central role in any application architecture. Of course, ideally, your
 database would be perfect from the start, but this is rarely the case in
 the real world. Indeed, when you update your application, you will
 generally also need to update one or more databases as well.
Database updates are usually more difficult to manage smoothly
 than application updates, as both the structure and the contents of the
 database may be impacted. However, managing database updates is a
 critical part of both the development and the deployment process, and
 deserves some reflection and planning.
Some application frameworks, such as Ruby on Rails and Hibernate, can manage structural database changes
 automatically to some extent. Using these frameworks, you can typically
 specify if you want to create a new database schema from scratch at each
 update, or whether you which to update the database schema while
 conserving the existing data. While this sounds useful in theory, in
 fact it is very limited for anything other than noncritical development
 environments. In particular, these tools do not handle data migration
 well. For example, if you rename a column in your database, the update
 process will simply create a new column: it will not copy the data from
 the old column into the new column, nor will it remove the old column
 from the updated table.
Fortunately, this is not the only approach you can use. Another
 tool that attempts to tackle the thorny problem of database updates is
 Liquibase.
 Liquibase is an open source tool that can help manage and organize
 upgrade paths between versions of a database using a high-level
 approach.
Liquibase works by keeping a record of database updates applied in
 a table in the database, so that it is easy to bring any target database
 to the correct state for a given version of the application. As a
 result, you don’t need to worry about running the same update script
 twice—Liquibase will only apply the update scripts that have not already
 been applied to your database. Liquibase is also capable of rolling back
 changes, at least for certain types of changes. However, since this will
 not work for every change (for example, data in a deleted table cannot
 be restored), it is best not to place too much faith in this particular
 feature.
In Liquibase, you keep track of database changes as a set of
 “change sets,” each of which represents the database update in a
 database-neutral XML format. Change sets can represent any changes you
 would make in a database, from adding and deleting tables, to creating
 or updating columns, indexes and foreign keys:
<databaseChangeLog
xmlns="http://www.liquibase.org/xml/ns/dbchangelog/1.6"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.liquibase.org/xml/ns/dbchangelog/1.6
http://www.liquibase.org/xml/ns/dbchangelog/dbchangelog-1.6.xsd">
 <changeSet id="1" author="john">
 <createTable tableName="department">
 <column name="id" type="int">
 <constraints primaryKey="true" nullable="false"/>
 </column>
 <column name="name" type="varchar(50)">
 <constraints nullable="false"/>
 </column>
 <column name="active" type="boolean" defaultValue="1"/>
 </createTable>
 </changeSet>
</databaseChangeLog>
Change sets can also reflect modifications to existing tables. For
 example, the following change set represents the renaming of a
 column:
<changeSet id="1" author="bob">
 <renameColumn tableName="person" oldColumnName="fname" newColumnName="firstName"/>
</changeSet>
Since this representation records the semantic nature of the
 change, Liquibase is capable of handling both the schema updates and
 data migration associated with this change correctly.
Liquibase can also handle updates to the contents of your
 database, as well as to its structure. For example, the following change
 set inserts a new row of data into a table:
<changeSet id="326" author="simon">
 <insert tableName="country">
 <column name="id" valueNumeric="1"/>
 <column name="code" value="AL"/>
 <column name="name" value="Albania"/>
 </addColumn>
</changeSet>
Each changeset has an ID and an author, which makes it easier to
 keep track of who made a particular change and reduces the risk of
 conflict. Developers can test their change sets on their own database
 schema, and then commit them to version control once they are ready. The
 next obvious step is to configure a Jenkins build to run the Liquibase
 updates against the appropriate database automatically before any
 integration tests or application deployment is done, usually as part of
 the ordinary project build script.
Liquibase integrates well into the build process—it can be
 executed from the command line, or integrated into an Ant or Maven build
 script. Using Maven, for example, you can configure the Maven Liquibase
 Plugin as shown here:
<project>
 <build>
 <plugins>
 <plugin>
 <groupId>org.liquibase</groupId>
 <artifactId>liquibase-plugin</artifactId>
 <version>1.9.3.0</version>
 <configuration>
 <propertyFileWillOverride>true</propertyFileWillOverride>
 <propertyFile>src/main/resources/liquibase.properties</propertyFile>
 </configuration>
 </plugin>
 </plugins>
</build>
...
</project>
Using Liquibase with Maven this way, you could update a given
 target database to the current schema using this plugin:
$ mvn liquibase:update
The default database connection details are specified in the
 src/main/resources/liquibase.properties file,
 and might look something like this:
changeLogFile = changelog.xml
driver = com.mysql.jdbc.Driver
url = jdbc:mysql://localhost/ebank
username = scott
password = tiger
verbose = true
dropFirst = false
However you can override any of these properties from the command
 line, which makes it easy to set up a Jenkins build to update different
 databases.
Other similar commands let you generate an SQL script (if you need
 to submit it to your local DBA for approval, for example), or rollback
 to a previous version of the schema.
This is of course just one example of a possible approach. Other
 teams prefer to manually maintain a series of SQL update scripts, or
 write their own in-house solutions. The important thing is to have a
 solution that you can use reliably and reproducibly to update different
 databases to the correct state when deploying your applications.

Smoke Tests

Any serious automated deployment needs to be followed up by a
 series of automated smoke tests. A subset of the automated acceptance
 tests can be a good candidate for smoke tests. Smoke tests should be
 unobtrusive and relatively fast. They should be safe to run in a
 production environment, which may restrict the number of modifications
 the test cases can do in the system.

Rolling Back Changes

Another important aspect to consider when setting up Automated
 Deployment is how to back out if something goes wrong, particularly if
 you are thinking of implementing Continuous Deployment. Indeed, it is
 critical to be able to roll back to the previous version if
 required.
How you will do this depends a lot on your application. While it
 is relatively straight-forward to redeploy a previous version of an
 application using Jenkins (we will look at a technique to do this
 further on in this chapter), the application is often not the only
 player in the game. In particular, you will need to consider how to
 restore your database to a previous state.
We saw how it is possible to use Liquibase to manage database
 updates, and of course many other strategies are also possible. However
 rolling back a database version presents its own challenges. Liquibase,
 for example, lets you revert some, but not all changes to the database
 structure. However data lost (in dropped tables, for example) cannot be
 recovered using Liquibase alone.
The most reliable way to revert your database to a previous state
 is probably to take a snapshot of the database just before the upgrade,
 and use this snapshot to restore the database to its previous state. One
 effective strategy is to automate this process in Jenkins in the deployment build job, and
 then to save both the database snapshot and the deployable binary file
 as artifacts. This way, you can easily restore the database using the
 saved snapshot and then redeploy the application using the saved binary.
 We will look at an example of this strategy in action further on in this
 chapter.

Deploying to an Application Server

Jenkins provides plugins to help you deploy your application to a
 number of commonly-used application servers. The Deploy plugin lets you deploy to Tomcat, JBoss, and
 GlassFish. And the Deploy Websphere plugin tries to cater for the
 particularities of IBM WebSphere Application Server.
For other application servers, you will typically have to integrate
 the deployment process into your build scripts, or resort to custom
 scripts to deploy your application. For other languages, too, your
 deployment process will vary, but it will often involve some use of shell
 scripting. For example, for a Ruby on Rails application, you may use a
 tool like Capistrano or Chef, or simply a shell script. For a PHP
 application, an FTP or SCP file transfer may suffice.
Let’s first look at some strategies for deploying your Java
 applications to an application server.
This is known as a hot-deploy, where the application is deployed onto a running
 server. This is generally a fast and efficient way of getting your
 application online. However, depending on your application and on your
 application server, this approach has been known to result in memory leaks
 or resource locking issues—older versions of Tomcat, for example, were
 particularly well-known for this. If you run into this sort of issue, you
 may have to force the application to restart after each deployment, or
 possibly schedule a nightly restart of the application server on your test
 machine.
Deploying a Java Application

In this section we will look at an example of how to deploy your
 Java web or JEE application to an application server such as Tomcat, JBoss, or GlassFish.
One of the fundamental principles of automated deployment is to
 reuse your binaries. It is inefficient, and potentially unreliable, to
 rebuild your application during the deployment process. Indeed, imagine
 that you run a series of unit and integration tests against a particular
 version of your application, before deploying it to a test environment
 for further testing. If you rebuild the binary before deploying it to
 the test environment, the source code may have changed since the
 original revision, which means you may not know exactly what you are
 deploying.
A more efficient process is to reuse the binaries generated by a
 previous build. For example, you may configure a build job to run unit
 and integration tests before generating a deployable binary file
 (typically a WAR or EAR file). You can do this very effectively using
 the Copy Artifact plugin (see Copying Artifacts). This plugin lets you copy an
 artifact from another build job workspace into the current build job
 workspace. This, when combined with a normal build trigger or with
 the Build Promotion plugin, lets you deploy precisely the
 binary file that you built and tested in the previous phase.
This approach does put some constraints on the way you build your
 application. In particular, any environment-specific configuration must
 be externalized to the application; JDBC connections or other such
 configuration details should not be defined in configuration files
 embedded in your WAR file, for example, but rather be defined using JDNI
 or in an externalized properties file. If this is not the case, you may
 need to build from a given SCM revision, as discussed for Subversion in
 Building from a Subversion Tag.
Using the Deploy plugin

If you are deploying to a Tomcat, JBoss, or GlassFish server,
 the most useful tool at your disposition will probably be the Deploy
 plugin. This plugin makes it relatively straightforward to integrate
 deployment to these platforms into your Jenkins build process. If you
 are deploying to IBM Websphere, you can use the Websphere Deploy plugin to similar ends.
Let’s see how this plugin works in action, using the simple
 automated build and deployment pipeline illustrated in Figure 12-1.
[image: A simple automated deployment pipeline]

Figure 12-1. A simple automated deployment pipeline

Here, the default build (gameoflife-default) runs the unit and
 integration tests, and builds a deployable binary in the form of a WAR
 file. The metrics build (gameoflife-metrics) runs additional checks
 regarding coding standards and code coverage. If both these builds are
 successful, the application will be automatically deployed to the test
 environment by the gameoflife-deploy-to-test build job.
In the gameoflife-deploy-to-test build job,
 we use the Copy Artifact plugin to retrieve the WAR file generated in
 the gameoflife-default build job
 and copies it into the current build job’s workspace (see Figure 12-2).
[image: Copying the binary artifact to be deployed]

Figure 12-2. Copying the binary artifact to be deployed

Next, we use the Deploy plugin to deploy the WAR file to the
 test server. Of course it is generally possible, and not too
 difficult, to write a hand-rolled deployment script to get your
 application on to your application server. In some cases, this may be
 your only option. However, if a Jenkins plugin exists for your
 application server, it can simplify things considerably to use it. If
 you are deploying to Tomcat, JBoss, or GlassFish, the Deploy plugin
 may work for you. This plugin uses Cargo to connect to your
 application server and deploy (or redeploy) your application. Just
 select the target server type, and specify the server’s URL along with
 the username and password of a user with deployment rights (see Figure 12-3).
[image: Deploying to Tomcat using the Deploy Plugin]

Figure 12-3. Deploying to Tomcat using the Deploy Plugin

This is known as a hot-deploy, where the application is deployed onto a
 running server. This is generally a fast and efficient way of getting
 your application online, and should be the preferred solution because
 of its speed convenience. However, depending on your application and
 on your application server, this approach has been known to result in
 memory leaks or resource locking issues—older versions of Tomcat, for
 example, were particularly well-known for this. If you run into this
 sort of issue, you may have to force the application to restart after
 each deployment, or possibly schedule a nightly restart of the
 application server on your test machine.

Redeploying a specific version

When you deploy your application automatically or
 continually, it becomes of critical importance to precisely identify
 the version of the application currently deployed. There are a several
 ways you can do this, which vary essentially in the role Jenkins plays
 in the build/deployment architecture.
Some teams use Jenkins as the central place of truth, where
 artifacts are both built and stored for future reference. If you store
 your deployable artifacts on Jenkins, then it may make perfect sense
 to deploy your artifacts directly from your Jenkins instance. This is
 not hard to do: in the next section we will look at how to do this
 using a combination of the Copy Artifacts, Deploy, and Parameterized
 Trigger plugins.
Alternatively, if you are using an Enterprise repository such as
 Nexus or Artifactory to store your artifacts, then this repository
 should act as the central point of reference: Jenkins should build and
 deploy artifacts to your central repository, and then deploy them from
 there. This is typically the case if you are using Maven as your build
 tool, but teams using tools like Gradle or Ivy may also use this
 approach. Repository managers such as Nexus and Artifactory,
 particularly in their commercial editions, make this strategy easier
 to implement by providing features such as build promotion and staging
 repositories that help you manage the release state of your
 artifacts.
Let’s look at how you might implement each of these strategies
 using Jenkins.

Deploying a version from a previous Jenkins build

Redeploying a previously-deployed artifact in Jenkins is relatively
 straightforward. In Using the Deploy plugin, we saw how
 to use the Copy Artifacts and Deploy plugins to deploy a WAR file
 built by a previous build job to an application server. What we need
 to do now is to let the user specify the version to be deployed,
 rather than just deploying the latest build.
We can do this using the Parameterized Trigger plugin (see
 Parameterized Build Jobs). First, we add
 a parameter to the build job, using the special “Build selector for
 Copy Artifact” parameter type (see Figure 12-4).
[image: Adding a “Build selector for Copy Artifact” parameter]

Figure 12-4. Adding a “Build selector for Copy Artifact” parameter

This adds a new parameter to your build job (see Figure 12-5). Here you need to
 enter a name and a short description. The name you provide will be
 used as an environment variable passed to the subsequent build
 steps.
[image: Configuring a build selector parameter]

Figure 12-5. Configuring a build selector parameter

The build selector parameter type lets you pick a previous build
 in a number of ways, including the latest successful build, the
 upstream build that triggered this build job, or a specific build. All
 of these options will be available to the user when he or she triggers
 a build. The Default Selector lets you specify which of these options
 will be proposed by default.
When the user selects a particular build job, the build number
 will also be stored in the environment variables for use in the build
 steps. The environment variable is called
 COPYARTIFACT_BUILD_NUMBER_MY_BUILD_JOB,
 where MY_BUILD_JOB is the name of the
 original build job (in upper
 case and with characters other than A–Z converted to underscores). For
 example, if we copy an artifact from build number 4 of the
 gameoflife-default project, the
 COPYARTIFACT_BUILD_NUMBER_GAMEOFLIFE_DEFAULT environment
 variable would be set to 4.
The second part of the configuration is to tell Jenkins what to
 fetch, and from which build job. In the Build section of our project
 configuration, we add a “Copy artifacts from another project” step.
 Here you specify the project where the artifact was built and archived
 (gameoflife-default in our example). You also
 need to make Jenkins use the build specified in the parameter we
 defined earlier. You do this by choosing “Specified by a build
 parameter” in the “Which build” option, and providing the variable
 name we specified earlier in the build selector name field (see Figure 12-6). Then, just
 configure the artifacts to copy as we did in the previous
 example.
[image: Specify where to find the artifacts to be deployed]

Figure 12-6. Specify where to find the artifacts to be deployed

Finally, we deploy the copied artifact using the Deploy plugin,
 as illustrated in Figure 12-3.
So let’s see how this build works in practice. When we kick off
 a build manually, Jenkins will propose a list of options letting you
 select the build to redeploy (see Figure 12-7).
[image: Choosing the build to redeploy]

Figure 12-7. Choosing the build to redeploy

Most of these options are fairly self-explanatory.
The “latest successful build” is the most recent build excluding
 any failing builds. So this option will typically just redeploy the
 latest version again. If you use this option, you will probably want
 to select the “Stable builds only” checkbox, which will exclude any
 unstable builds as well.
If you have opted to discard old builds, you will be able to
 flag certain build jobs to be kept forever (see General Options). In this case, you can choose to
 deploy the “Latest saved build”.
A sensible option for an automated build job at the end of a
 build pipeline is “Upstream build that triggered this job”. This way,
 you can be sure that you are deploying the artifact that was generated
 by (or promoted through) the previous build job, even if other builds
 have happened since. It is worth noting that, although this sort of
 parameterized build job is often used to manual deploy a specific
 artifact, it can also be effectively used as part of an automated
 build process. If it is not triggered manually, it will simply use
 whatever value you define in the “default selector” field.
You can also choose the “Specified by permalink” option (see
 Figure 12-8). This lets you choose
 from a number of shortcut values, such as the last build, the last
 stable build, the last successful build, and so on.
[image: Using the “Specified by permalink” option]

Figure 12-8. Using the “Specified by permalink” option

However if you want to redeploy a particular version of your
 application, a more useful option is “Specific build” (see Figure 12-9). This option lets you provide
 a specific build number to be deployed. This is the most flexible way
 to redeploy an application—you will just need to know the number of
 the build you need to redeploy, but this usually isn’t too hard to
 find by looking at the build history of the original build job.
[image: Using a specific build]

Figure 12-9. Using a specific build

This is a convenient way to deploy or to redeploy artifacts from
 previous Jenkins build jobs. However, in some cases you may prefer to
 use an artifact stored in an enterprise repository like Nexus or
 Artifactory. We will look at an example of how to do this in the
 next section.

Deploying a version from a Maven repository

Many organizations use an Enterprise repository manager such
 as Nexus and Artifactory to store and share binary artifacts such as
 JAR files. This strategy is commonly used with Maven, but also with
 other build tools such as Ant (with Ivy or the Maven Ant Tasks) and
 Gradle. Using this approach in a CI environment, both snapshot and
 release dependencies are built on your Jenkins server, and then
 deployed to your repository manager (see Figure 12-10). Whenever a
 developer commits source code changes to the version control system,
 Jenkins will pick up the changes and build new snapshot versions of
 the corresponding artifacts. Jenkins then deploys these snapshot
 artifacts to the local Enterprise Repository Manager, where they can
 be made available to other developers on the team or on other teams
 within the organization. We discussed how to get Jenkins to
 automatically deploy Maven artifacts to an enterprise repository in
 Figure 12-10. A similar
 approach can also be done using Gradle or Ivy.
[image: Using a Maven Enterprise Repository]

Figure 12-10. Using a Maven Enterprise Repository

Maven conventions use a well-defined system of version numbers,
 distinguishing between SNAPSHOT and RELEASE versions. SNAPSHOT
 versions are considered to be potentially unstable builds of the
 latest code base, whereas RELEASE versions are official releases
 having undergone a more formal release process. Typically, SNAPSHOT
 artifacts are reserved for use within a development team, whereas
 RELEASE versions are considered ready for further testing.
A similar approach can be used for deployable artifacts such as
 WAR or EAR files—they are built and tested on the CI server, then
 automatically deployed to the Enterprise Repository, often as part of
 a build pipeline involving automated tests and quality checks (see
 Build Pipelines and Promotions). SNAPSHOT versions are
 typically deployed to a test server for automated and/or manual
 testing, in order to decide whether a version is ready to be
 officially released.
The exact strategy used to decide when a release version is to
 be created, and how it is deployed, varies greatly from one
 organization. For example, some teams prefer a formal release at the
 end of each iteration or sprint, with a well-defined version number
 and corresponding set of release notes that is distributed to QA teams
 for further testing. When a particular version gets the go-ahead from
 QA, it can then be deployed into production. Others, using a more lean
 approach, prefer to cut a new release whenever a new feature or bug
 fix is ready to be deployed. If a team is particularly confident in
 their automated tests and code quality checks, it may even be possible
 to automate this process completely, generating and releasing a new
 version either periodically (say every night) or whenever new changes
 are committed.
There are many ways to implement this sort of strategy. In the
 rest of this section, we will see how to do it using a conventional
 multimodule Maven project. Our sample project is a web application
 called gameoflife, consisting of
 three modules: gameoflife-core,
 gameoflife-services and gameoflife-web. The gameoflife-web module produces a WAR file
 that includes JAR files from the other two modules. It is this WAR
 file that we want to deploy:
tuatara:gameoflife johnsmart$ ls -l
total 32
drwxr-xr-x 16 johnsmart staff 544 16 May 09:58 gameoflife-core
drwxr-xr-x 8 johnsmart staff 272 4 May 18:12 gameoflife-deploy
drwxr-xr-x 8 johnsmart staff 272 16 May 09:58 gameoflife-services
drwxr-xr-x 15 johnsmart staff 510 16 May 09:58 gameoflife-web
-rw-r--r--@ 1 johnsmart staff 12182 4 May 18:07 pom.xml
Earlier on in this chapter we saw how to use the Deploy plugin
 to deploy a WAR file generated by the current build job to an
 application server. What we want to do now is to deploy an arbitrary
 version of the WAR file to an application server.
In Managing Maven Releases with the M2Release Plugin, we discussed how
 to configure Jenkins to invoke the Maven Release Plugin to generate a
 formal release version of an application. The first step of the
 deployment process starts here, so we will assume that this has been
 configured and that a few releases have already been deployed to our
 Enterprise Repository Manager.
The next step involves creating a dedicated project to manage
 the deployment process. This project will be a standard Maven
 project.
The first thing you need to do is to set up a dedicated
 deployment project. In its simplest form, this project will simply
 fetch the requested version of your WAR file from your enterprise
 repository to be deployed by Jenkins. In the following pom.xml file, we use the maven-war-plugin to fetch a specified
 version of the gameoflife-web WAR
 file from our enterprise repository. The version we want is specified
 in the target.version property:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
 maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.wakaleo.gameoflife</groupId>
 <artifactId>gameoflife-deploy-with-jenkins</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>war</packaging>
 <dependencies>
 <dependency>
 <groupId>com.wakaleo.gameoflife</groupId>
 <artifactId>gameoflife-web</artifactId>
 <type>war</type>d
 <version>${target.version}</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <warName>gameoflife</warName>
 <overlays>
 <overlay>
 <groupId>com.wakaleo.gameoflife</groupId>
 <artifactId>gameoflife-web</artifactId>
 </overlay>
 </overlays>
 </configuration>
 </plugin>
 </plugins>
 </build>
 <properties>
 <target.version>RELEASE</target.version>
 </properties>
</project>
Next, we configure a Jenkins build job to invoke this pom.xml file using a property value
 provided by the user (see Figure 12-11). Note that we have set the
 default value to RELEASE so that, by default, the most recent release
 version will be deployed. Otherwise, the user can provide the version
 number of the version to be deployed or redeployed.
[image: Deploying an artifact from a Maven repository]

Figure 12-11. Deploying an artifact from a Maven repository

The rest of this build job simply checks out the deployment
 project and invokes the mvn package goal, and then
 deploys the WAR file using the Deploy plugin (see Figure 12-12). The
 target.version property will be automatically
 passed into the build job and used to deploy the correct
 version.
[image: Preparing the WAR to be deployed]

Figure 12-12. Preparing the WAR to be deployed

Similar techniques can be used for other project types. If you
 are deploying to an application server that is not supported by the
 Deploy plugin, you also have the option of writing a custom script in
 whatever language is most convenient, and getting Jenkins to pass the
 requested version number as a parameter as described above.

Deploying Scripting-based Applications Like Ruby and PHP

Deploying projects using scripting languages such as PHP and Ruby is
 generally simpler than deploying Java applications, though the issues
 related to database updates are similar. Indeed, very often these
 deployments essentially involve copying files onto a remote server. To
 obtain the files in the first place, you have the choice of either
 copying them from another build job’s workspace using the Copy Artifacts
 option, or checking the source code out directly from the source code
 repository, if necessary using a specific revision or tag as described
 for Subversion in Building from a Subversion Tag and for Git
 in Building from a Git Tag. Then, once you have the
 source code in your Jenkins workspace, you simply need to deploy it onto
 the target server.
A useful tool for this sort of deployment is the Publish Over series of plugins for Jenkins (Publish Over
 FTP, Publish Over SSH, and Publish Over CIFS). These plugins provide a
 consistent and flexible way to deploy your application artifacts to
 other servers over a number of protocols, including CIFS (for Windows
 shared drives), FTP, and SSH/SFTP.
The configuration for each of these plugins is similar. Once you
 have installed the plugins, you need to set up the host configurations,
 which are managed centrally in the main configuration screen. You can
 create as many host configurations as you like—they will appear in a
 drop-down list in the job configuration page.
Configuration of the hosts is fairly self-explanatory (see Figure 12-13). The name is the name that will
 appear in the drop-down list in the build job configurations. You can
 configure authentication using a username and password for FTP, or
 either an SSH key or a username and password for SSH. You also need to
 provide an existing directory on the remote server that will act at the
 root directory for this configuration. In the Advanced options, you can
 also configure the SSH port and timeout options.
[image: Configuring a remote host]

Figure 12-13. Configuring a remote host

Once you have configured your hosts, you can set up your build
 jobs to deploy artifacts to these hosts. You can do this either as a
 build step (see Figure 12-14) or as a
 post-build action (see Figure 12-15). In
 both cases, the options are similar.
[image: Deploying files to a remote host in the build section]

Figure 12-14. Deploying files to a remote host in the build section

First of all, you select the target host from the list of hosts
 you configured in the previous section. Next, you configure the files
 you want to transfer. You do this by defining one or more “Transfer
 sets.” A Transfer set is a set of files (defined by an Ant fileset
 expression) that you deploy to a specified directory on the remote
 server. You can also provide a prefix to be removed—this lets you strip
 off unnecessary directories that you do not want to appear on the server
 (such as the target/site directory
 path in the example). You can add
 as many transfer sets as you need to get the files you want onto the
 remote server. The plugin also provides options to execute commands on
 the remote server once the transfer is complete (“Exec command”) or to
 exclude certain files or flatten the directories.
[image: Deploying files to a remote host in the post-build actions]

Figure 12-15. Deploying files to a remote host in the post-build
 actions

Conclusion

Automated Deployment, and in its most advanced form, Continuous
 Deployment or Continuous Delivery, can be considered the culminating point
 of a modern Continuous Integration infrastructure.
In this chapter we have reviewed several Automated Deployment
 techniques, mostly centered around Java-based deployments. However, the
 general principles discussed here apply for any technology. Indeed, the
 actual deployment process in many other technologies, in particular
 scripting languages such as Ruby and PHP, are considerably simpler than
 when using Java, and essentially involve copying files onto the production
 server. Ruby also benefits from tools such as Heroku and Capistrano to
 facilitate the task.
There are several important aspects you need to consider when
 setting up an Automated Deployment. First of all, Automated Deployment is
 the end-point of your CI architecture: you need to define a build pipeline
 to take your build from the initial compilation and unit tests, though
 more comprehensive functional and automated acceptance tests and code
 quality checks, culminating in deployment to one or more platforms. The
 degree of confidence you can have in your build pipeline depends largely
 on the degree of confidence you have in your tests. Or, in other terms,
 the less reliable and comprehensive your tests, the earlier in the build
 process you will have to fall back to manual testing and human
 intervention.
Finally, if at all possible, it is important to build your
 deployable artifact once and once only, and then reuse it in subsequent
 steps for functional tests and deployment to different platforms.

Chapter 13. Maintaining Jenkins

Introduction

In this chapter, we will be discussing a few tips and tricks
 that you might find useful when maintaining a large Jenkins instance. We
 will look at things like how to limit, and keep tabs on, disk usage, how
 to give Jenkins enough memory and how to archive build jobs or migrate
 them from one server to another. Some of these topics are discussed
 elsewhere in the book, but here we will be looking at things from the
 point of view of the system administrator.

Monitoring Disk Space

Build History takes disk space. In addition, Jenkins analyzes the build
 records when it loads a project configuration, so a build job with a
 thousand archived builds is going to take a lot longer to load than one
 with only fifty. If you have a large Jenkins server with tens or hundreds
 of build jobs, multiply this accordingly.
Probably the simplest way to keep a cap on disk usage is to limit
 the number of builds a project maintains in its history. You can configure
 this by ticking the Discard Old Builds checkbox at the top of the project
 configuration page (see Figure 13-1). If you tell Jenkins to
 only keep the last 20 builds, it will start discarding (and deleting)
 older build jobs once it reaches this number. You can limit them by number
 (i.e., no more than 20 builds) or by date (i.e., builds no older than 30
 days). It does this intelligently, though: if there has ever been a
 successful build, Jenkins will always keep at least the latest successful
 build as part of its build history, so you will never loose your last
 successful build.
[image: Discarding old builds]

Figure 13-1. Discarding old builds

The problem with discarding old builds is that you loose the build
 history at the same time. Jenkins uses the build records to produce graphs
 of test results and build metrics. If you limit the number of builds to be
 kept to twenty, for example, Jenkins will only display graphs containing
 the last twenty data points, which can be a bit limited. This sort of
 information can be very useful to the developers, but it is often good to
 be able to see how the project metrics are doing throughout the whole life
 of the project, not just over the last week or two.
Fortunately, Jenkins has a work-around that can keep both developers
 and system administrators happy. In general, the items that take up the
 most disk space are the build artifacts: JAR files, WAR files, and so on.
 The build history itself is mostly XML log files, which don’t take up too
 much space. If you click on the “Advanced...” button, Jenkins will let you
 discard the artifacts, but not the build data. In Figure 13-2, for example, we
 have configured Jenkins to keep artifacts for a maximum of 7 days. This is
 a great option if you need to put a cap on disk usage, but still want to
 provide a full scope of build metrics for the development teams.
[image: Discarding old builds—advanced options]

Figure 13-2. Discarding old builds—advanced options

Don’t hesitate to be ruthless, keeping the maximum number of builds
 with artifacts quite low. Remember, Jenkins will always keep the last
 stable and the last successful builds, no matter what you tell it, so you
 will always have at least one working artifact (unless of course the
 project has yet to successfully build). Jenkins also lets you mark an
 individual build as “Keep this log forever”, to exclude certain important
 builds from being discarded automatically.
Using the Disk Usage Plugin

One of the most useful tools in the Jenkins administrator’s
 tool box is the Disk Usage plugin. This plugin records and reports on
 the amount of disk space used by your projects. It lets you isolate and
 fix projects that are using too much disk space.
You can install the Disk Usage plugin in the usual way, from the
 Plugin Manager screen. Once you have installed the plugin and restarted
 Jenkins, the Disk Usage plugin will record the amount of disk space used
 by each project. It will also add a Disk Usage link on the Manage
 Jenkins screen, which you can use to display the overall disk usage for
 your projects (see Figure 13-3).
[image: Viewing disk usage]

Figure 13-3. Viewing disk usage

This list is sorted by overall disk usage, so the projects using
 the most disk space are at the top. The list provides two values for
 each project—the Builds column indicates the total amount of space used
 by all of the project’s build history, whereas the Workspace column is
 the amount of space used to build the project. For ongoing projects, the
 Workspace value tends to be relatively stable (a project needs what it
 needs to build correctly), whereas the Builds column will increase over
 time, sometimes at a dramatic rate, unless you do something about it.
 You can keep the space needed by a project’s history under control by
 limiting the number of builds being kept for a project, and by being
 careful about what artifacts are being stored.
To get an idea of how fast the disk space is being used up, you
 can also display the amount of disk space used in each project over
 time. To do this, you need to activate the plugin in the System
 Configuration screen (see Figure 13-4).
[image: Displaying disk usage for a project]

Figure 13-4. Displaying disk usage for a project

This will record and display how much space your projects are
 using over time. The Disk Usage plugin displays a graph of disk usage
 over time (see Figure 13-5),
 which can give you a great view of how fast your project is filling up
 the disk, or, on the contrary, if the disk usage is stable
 over time.
[image: Displaying project disk usage over time]

Figure 13-5. Displaying project disk usage over time

Disk Usage and the Jenkins Maven Project Type

If you are using the Jenkins Maven build jobs, there are some
 additional details you should know about. In Jenkins, Maven build jobs
 will automatically archive your build artifacts by default. This may not
 be what you intend.
The problem is that these SNAPSHOT artifacts take up space—a lot
 of it. On an active project, Jenkins might be running several builds per
 hour, so permanently storing the generated JAR files for each build can
 be very costly. The problem is accentuated if you have multimodule
 projects, as Jenkins will archive the artifacts generated for each
 module.
In fact, if you need to archive your Maven SNAPSHOT artifacts, it
 is probably a better idea to deploy them directly to your local Maven
 repository manager. Nexus Pro, for example, can be configured to do this
 and Artifactory can be configured to delete old snapshot
 artifacts.
Fortunately, you can configure Jenkins to this, go to the “Build”
 section of your build job configuration screen and click on the Advanced
 button. This will display some extra fields, as shown in Figure 13-6.
[image: Maven build jobs—advanced options]

Figure 13-6. Maven build jobs—advanced options

If you tick the “Disable automatic artifact archiving” checkbox
 here, Jenkins will refrain from storing the jar files your project build
 generates. This is a good way of making your friendly system
 administrator happy.
Note that sometimes you do need to store the
 Maven artifacts. For example, they often come in handy when implementing
 a build pipeline (see Build Pipelines and Promotions). In this
 case, you can always choose to archive the artifacts you need manually,
 and then use the “Discard old builds” option to refine how long you
 keep them for.

Monitoring the Server Load

Jenkins provides build-in monitoring of server activity. On the
 Manage Jenkins screen, click on the Load Statistics icon. This will
 display a graph of the server load over time for the master node (see
 Figure 13-7). This graph keeps track of
 three metrics: the total number of executors, the number of busy
 executors, and queue length.
The total number of executors
 (the blue line) includes the executors on the master and on the slave
 nodes. This can vary when slaves are brought on and offline, and can be a
 useful indicator of how well your dynamic provisioning of slave nodes is
 working.
The number of busy executors (the
 red line) indicates how many of your executors are occupied executing
 builds. You should make sure you have enough spare capacity here to absorb
 spikes in build jobs. If all of your executors are permanently occupied
 running build jobs, you should add more executors and/or slave
 nodes.
The queue length (the gray line)
 is the number of build jobs awaiting executing. Build jobs are queued when
 all of the executors are occupied. This metric does not include jobs that
 are waiting for an upstream build job to finish, so it gives a reasonable
 idea of when your server could benefit from extra capacity.
[image: Jenkins Load Statistics]

Figure 13-7. Jenkins Load Statistics

You can get a similar graph for slave nodes, using the Load
 Statistics icon in the slave node details page.
Another option is to install the Monitoring plugin. This plugin uses
 JavaMelody to produce comprehensive HTML reports about the state of your
 build server, including CPU and system load, average response time, and
 memory usage (see Figure 13-8). Once
 you have installed this plugin, you can access the JavaMelody graphs from
 the Manage Jenkins screen, using the “Monitoring of Jenkins/Jenkins
 master” or “Jenkins/Jenkins nodes” menu entries.
[image: The Jenkins Monitoring plugin]

Figure 13-8. The Jenkins Monitoring plugin

Backing Up Your Configuration

Backing up your data is a universally recommended practice, and
 your Jenkins server should be no exception. Fortunately, backing up
 Jenkins is relatively easy. In this section, we will look at a few ways to
 do this.
Fundamentals of Jenkins Backups

In the simplest of configurations, all you need to do is to
 periodically back up your JENKINS_HOME directory.
 This contains all of your build jobs configurations, your slave node
 configurations, and your build history. This will also work fine while
 Jenkins is running—there is no need to shut down your server while doing
 your backup.
The downside of this approach is that the
 JENKINS_HOME directory can contain a very large
 amount of data (see What’s in the Jenkins Home Directory). If this becomes an
 issue, you can save a little by not backing up the following
 directories, which contain data that can be easily recreated on-the-fly
 by Jenkins:
	$JENKINS_HOME/war
	The exploded WAR file

	$JENKINS_HOME/cache
	Downloaded tools

	$JENKINS_HOME/tools
	Extracted tools

You can also be selective about what you back up in your build
 jobs data. The $JENKINS_HOME/jobs
 directory contains job configuration, build history and archived files
 for each of your build jobs. The structure of a build job directory is
 illustrated in Figure 13-9.
[image: The builds directory]

Figure 13-9. The builds directory

To understand how to optimize your Jenkins backups, you need to
 understand how the build job directories are organized. Within the
 jobs directory there is a subdirectory for each
 build job. This subdirectory contains two subdirectories of its own:
 builds and workspace. There is no need to backup the
 workspace directory, as it will
 simply be restored with a clean checkout if Jenkins finds it
 missing.
The builds directory, on the
 other hand, needs more attention. This directory contains the history of
 your build results and previously-generated artifacts, with a
 time-stamped directory for each previous build. If you are not
 interested in restoring build history or past artifacts, you don’t need
 to store this directory. If you are, read on! In each of these
 directories, you will find the build history (stored in the form of XML
 files such as JUnit test results) and archived artifacts. Jenkins uses
 the XML and text files to produce the graphs it displays on the build
 job dashboard, so if these are important to you, you should store these
 files. The archive directory
 contains binary files that were generated and stored by previous builds.
 These binaries may or may not be important to you, but they can take up
 a lot of space, so if you exclude them from your backups, you may be
 able to save a considerable amount of space.
Just as it is wise to make frequent backups, it is also wise to
 test your backup procedure. With Jenkins, this is easy to do. Jenkins
 home directories are totally portable, so all you need to do to test
 your backup is to extract your backup into a temporary directory and run
 an instance of Jenkins against it. For example, imagine we have
 extracted our backup into a temporary directory called /tmp/jenkins-backup. To test this backup,
 first set the JENKINS_HOME directory to this
 temporary directory:
$ export JENKINS_HOME=/tmp/jenkins-backup
Then simply start Jenkins on a different port and see if it
 works:
$ java -jar jenkins.war --httpPort=8888
You can now view Jenkins running on this port and make sure that
 your backup worked correctly.

Using the Backup Plugin

The approach described in the previous section is simple
 enough to integrate into your normal backup procedures, but you may
 prefer something more Jenkins-specific. The Backup plugin (see Figure 13-10) provides a simple user
 interface that you can use to back up and restore your Jenkins
 configurations and data.
[image: The Jenkins Backup Manager Plugin]

Figure 13-10. The Jenkins Backup Manager Plugin

This plugin lets you configure and run backups of both your build
 job configurations and your build history. The Setup screen gives you a
 large degree of control over exactly what you want backed up (see Figure 13-11). You can opt to only back up the
 XML configuration files, or back up both the configuration files and the
 build history. You can also choose to backup (or not to backup) the
 automatically-generated Maven artifacts (in many build processes, these
 will be available on your local Enterprise Repository Manager). You can
 also back up the job workspaces (typically unnecessary, as we discussed
 above) and any generated fingerprints.
[image: Configuring the Jenkins Backup Manager]

Figure 13-11. Configuring the Jenkins Backup Manager

You can trigger a backup manually from the Backup Manager screen
 (which you can access from the Manage Jenkins screen). The backup takes
 some time, and will shut down Jenkins during the process (unless you
 deactivate this option in the backup configuration).
At the time of writing, there is no way to schedule this operation
 from within Jenkins, but you can start the backup operation externally
 by invoking the corresponding URL (e.g., http://localhost:8080/backup/backup if your Jenkins
 instance is running locally on port 8080). In a unix environment, for
 example, this would typically be scheduled as a cron job using a tool
 like wget or curl to start the
 backup.

More Lightweight Automated Backups

If all you want to back up is your build job configuration, the
 Backup Manager plugin might be considered overkill. Another option is to
 use the Thin Backup plugin, which lets you schedule full and incremental
 backups of your configuration files. Because they don’t save your build
 history or artifacts, these backups are very fast, and there is no need
 to shut down the server to do them.
Like the Backup plugin, this plugin adds an icon to the Jenkins
 System Configuration page. From here, you can configure and schedule
 your configuration backups, force an immediate backup, or restore your
 configuration files to a previous state. Configuration is
 straightforward (see Figure 13-12),
 and simply involves scheduling full and incremental backups using a cron
 job syntax, and providing a directory in which to store the
 backups.
[image: Configuring the Thin Backup plugin]

Figure 13-12. Configuring the Thin Backup plugin

To restore a previous configuration, just go to the Restore page
 and choose the date of the configuration you wish to reinstate (see
 Figure 13-13). Once the configuration has
 been restored to the previous state, you need to reload the Jenkins
 configuration from disk or restart Jenkins.
[image: Restoring a previous configuration]

Figure 13-13. Restoring a previous configuration

Archiving Build Jobs

Another way to address disk space issues is to delete or archive
 projects that are no longer active. Archiving a project allows you to
 easily restore it later if you need to consult the project data or
 artifacts. Archiving a project is simple: just move the build project
 directory out of the job directory. Of course, typically, you would
 compress it into a ZIP file or a tarball first.
In the following example, we want to archive the
 tweeter-default project. So first we go to the
 Jenkins jobs directory and create a
 tarball (compressed archive) of the tweeter-default build job directory:
$ cd $JENKINS_HOME/jobs
$ ls
gameoflife-default tweeter-default
$ tar czf tweeter-default.tgz tweeter-default
$ ls
gameoflife-default tweeter-default tweeter-default.tgz
As long as the project you want to archive is not running, you can
 now safely delete the project directory and move the archive into
 storage:
$ rm -Rf tweeter-default
$ mv tweeter-default.tgz /data/archives/jenkins
Once you have done this, you can simply reload the configuration
 from the disk in the Manage Jenkins screen (see Figure 13-14). The archived project
 will promptly disappear from your dashboard.
[image: Reloading the configuration from disk]

Figure 13-14. Reloading the configuration from disk

On a Windows machine, you can do exactly the same thing by creating
 a ZIP file of the project directory.

Migrating Build Jobs

There are times when you need to move or copy Jenkins build jobs
 from one Jenkins instance to another, without copying the entire Jenkins
 configuration. For example, you might be migrating your build jobs to a
 Jenkins instance on a brand new box, with system configuration details
 that vary from the original machine. Or you might be restoring an old
 build job that you have archived.
As we have seen, Jenkins stores all of the data it needs for a
 project in a subdirectory of the jobs
 directory in your Jenkins home directory. This subdirectory is easy to
 identify—it has the same name as
 your project. Incidentally, this is one reason why your project names
 really shouldn’t contain spaces, particularly if Jenkins is running under
 Unix or Linux—it makes maintenance and admin tasks a lot easier if the
 project names are also well-behaved Unix filenames.
You can copy or move build jobs between instances of projects simply
 enough by copying or moving the build job directories to the new Jenkins
 instance. The project job directory is self-contained—it contains both the
 full project configuration and all the build history. It is even safe
 enough to copy build job directories to a running Jenkins instance, though
 if you are also deleting them from the original server, you should shut
 this one down first. You don’t even need to restart the new Jenkins
 instance to see the results of your import—just go to the Manage Jenkins
 screen and click on Reload Configuration From Disk. This will load the new
 jobs and make them immediately visible on the Jenkins dashboard.
There are a few gotchas, however. If you are migrating your jobs to
 a brand new Jenkins configuration, remember to install, or migrate, the
 plugins from your original server. The plugins can be found in the
 plugins directory, so you can simply
 copy everything from this directory to the corresponding directory in your
 new instance.
Of course, you might be migrating the build jobs to a new instance
 precisely because the plugin configuration on the
 original box is a mess. Some Jenkins plugins can be a bit buggy sometimes,
 and you may want to move to a clean installation with a well-known,
 well-defined set of vetted plugins. In this case, you may need to rework
 some of your project configurations once they have been imported.
The reason for this is straightforward. When you use a plugin in a
 project, the project’s config.xml
 will be updated with plugin-specific configuration fields. If for some
 reason you need to migrate projects selectively to a Jenkins installation
 without these plugins installed, Jenkins will no
 longer understand these parts of the project configuration. The same thing
 can also sometimes happen if the plugin versions are very different on the
 machines, and the data format used by the plugin has changed.
If you are migrating jobs to a Jenkins instance with a different
 configuration, it also pays to keep an eye on the system logs. Invalid
 plugin configurations will usually let you know through warnings or
 exceptions. While not always fatal, these error messages often mean that
 the plugin will not work as expected, or at all.
Jenkins provides some useful features to help you migrate your
 project configurations. If Jenkins finds data that it thinks is out of
 date or invalid, it will tell you so. On the Manage Jenkins screen, you
 will get a message like the one in Figure 13-15.
[image: Jenkins will inform you if your data is not compatible with the current version]

Figure 13-15. Jenkins will inform you if your data is not compatible with the
 current version

From here, you can choose to either leave the configuration as it is
 (just in case you roll back to a previous version of your Jenkins
 instance, for example), or let Jenkins discard the fields it cannot read.
 If you choose this option, Jenkins will bring up a screen containing more
 details about the error, and can even help tidy up your project
 configuration files if you wish (see Figure 13-16).
[image: Managing out-of-date build jobs data]

Figure 13-16. Managing out-of-date build jobs data

This screen gives you more details about the project containing the
 dodgy data, as well as the exact error message. This gives you several
 options. If you are sure that you no longer need the plugin that
 originally created the data, you can safely remove the redundant fields by
 clicking on the Discard Unreadable Data button. Alternatively, you may
 decide that the fields belong to a useful plugin that hasn’t yet been
 installed on the new Jenkins instance. In this case, install the plugin
 and all should be well. Finally, you can always choose to leave the
 redundant data and live with the error message, at least until you are
 sure that you won’t need to migrate the job back to the old server some
 day.
However, Jenkins doesn’t always detect all of the errors or
 inconsistencies—it still pays to keep one eye on the system logs when you
 migrate your build jobs. For example, the following is a real example from
 a Jenkins log file showing what can happen during the migration
 process:
Mar 16, 2010 2:05:06 PM hudson.util.CopyOnWriteList$ConverterImpl unmarshal
WARNING: Failed to resolve class
com.thoughtworks.xstream.mapper.CannotResolveClassException: hudson.plugins.ciga
me.GamePublisher : hudson.plugins.cigame.GamePublisher
 at com.thoughtworks.xstream.mapper.DefaultMapper.realClass(DefaultMapper
.java:68)
 at com.thoughtworks.xstream.mapper.MapperWrapper.realClass(MapperWrapper
.java:38)
 at com.thoughtworks.xstream.mapper.DynamicProxyMapper.realClass(DynamicP
roxyMapper.java:71)
 at com.thoughtworks.xstream.mapper.MapperWrapper.realClass(MapperWrapper
.java:38)
The error is essentially telling us that it can’t find a class
 called hudson.plugins.cigame.GamePublisher. In fact,
 the target installation is missing the CI Game plugin. And in this case
 (as sometimes happens), no warning messages where appearing on the Manage
 Jenkins page, so Jenkins was unable to correct the configuration files
 itself.
The simplest solution in this case would be to install the CI Game
 plugin on the target server. But what if we don’t want to install this
 plugin? We could leave the configuration files alone, but this might mask
 more significant errors later on—it would be better to tidy them
 up.
In that case, we need to inspect and update the project
 configuration files by hand. On this Unix box, I just used
 grep to find all the configuration files containing a
 reference to “cigame”:
$ cd $JENKINS_HOME/jobs
$ grep cigame */config.xml
project-a/config.xml: <hudson.plugins.cigame.GamePublisher/>
project-b/config.xml: <hudson.plugins.cigame.GamePublisher/>
project-c/config.xml: <hudson.plugins.cigame.GamePublisher/>
In these config.xml files, I found the
 reference to the CI Game plugin in the <publishers> sect1 (which is where the
 configuration for the reporting plugins generally goes):
<maven2-moduleset>
 ...
 <publishers>
 <hudson.plugins.cigame.GamePublisher/>
 <hudson.plugins.claim.ClaimPublisher/>
 </publishers>
 ...
</maven2-moduleset>
To fix the issue, all I have to do is to remove the offending
 line:
<maven2-moduleset>
 ...
 <publishers>
 <hudson.plugins.claim.ClaimPublisher/>
 </publishers>

 ...
</maven2-moduleset>
The exact location of the plugin configuration data will vary
 depending on the plugin, but in general the config.xml files are quite readable, and
 updating them by hand isn’t too hard.
So, all in all, migrating build jobs between Jenkins instances isn’t
 all that hard—you just need to know a couple of tricks for the corner
 cases, and if you know where to look Jenkins provides some nice tools to
 make the process smoother.

Conclusion

In this chapter, we looked at a number of considerations that you
 should be aware of if your job is to maintain your Jenkins server,
 including how to monitor disk and server usage, how to back up your build
 jobs and Jenkins configuration files, and also how to migrate build jobs
 and upgrade build data safely.

Appendix A. Automating Your Unit and Integration
 Tests

Automating Your Tests with Maven

Maven is a popular open source build tool of the Java world, that
 makes use of practices such as declarative dependencies, standard
 directories and build life cycles, and convention over configuration to
 encourage clean, maintainable, high level build scripts. Test automation
 is strongly supported in Maven. Maven projects use a standard directory
 structure: it will automatically look for unit tests in a directory called
 (by default) src/test/java. There is
 little else to configure: just add a dependency to the test framework (or
 frameworks) your tests are using, and Maven will automatically look for
 and execute the JUnit, TestNG, or even Plain Old Java Objects (POJO) tests
 contained in this directory structure.
In Maven, you run your unit tests by invoking the test life cycle phase, as shown here:
$ mvn test
[INFO] Scanning for projects...
[INFO] --
[INFO] Building Tweeter domain model
[INFO] task-segment: [test]
[INFO] --
...

 T E S T S

Running com.wakaleo.training.tweeter.domain.TagTest
Tests run: 13, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.093 sec
Running com.wakaleo.training.tweeter.domain.TweeterTest
Tests run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.021 sec
Running com.wakaleo.training.tweeter.domain.TweeterUserTest
Tests run: 4, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.055 sec
Running com.wakaleo.training.tweeter.domain.TweetFeeRangeTest
Tests run: 10, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.051 sec
Running com.wakaleo.training.tweeter.domain.HamcrestTest
Tests run: 8, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.023 sec

Results :

Tests run: 38, Failures: 0, Errors: 0, Skipped: 0
In addition to executing your tests, and failing the build if any of
 the tests fail, Maven will produce a set of test reports (again, by
 default) in the target/surefire-reports directory, in both XML
 and text formats. For our CI purposes, it is the XML files that interest
 us, as Jenkins is able to understand and analyze these files for its CI
 reporting:
$ ls target/surefire-reports/*.xml
target/surefire-reports/TEST-com.wakaleo.training.tweeter.domain.HamcrestTest.xml
target/surefire-reports/TEST-com.wakaleo.training.tweeter.domain.TagTest.xml
target/surefire-reports/TEST-com.wakaleo.training.tweeter.domain.TweetFeeRangeTest.xm
target/surefire-reports/TEST-com.wakaleo.training.tweeter.domain.TweeterTest.xml
target/surefire-reports/TEST-com.wakaleo.training.tweeter.domain.TweeterUserTest.xml
Maven defines two distinct testing phases: unit tests and
 integration tests. Unit tests should be fast and lightweight, providing a
 large amount of test feedback in as little time as possible. Integration
 tests are slower and more cumbersome, and often require the application to
 be built and deployed to a server (even an embedded one) to carry out more
 complete tests. Both these sorts of tests are important, and for a
 well-designed Continuous Integration environment, it is important to be
 able to distinguish between them. The build should ensure that all of the
 unit tests are run initially—if a unit test fails, developers should be
 notified very quickly. Only if all of the unit tests pass is it worthwhile
 undertaking the slower and more heavyweight integration tests.
In Maven, integration tests are executed during the integration-test life cycle phase, which you can
 invoke by running mvn integration-test or (more simply)
 mvn verify. During this phase, it is easy to configure
 Maven to start up your web application on an embedded Jetty web server, or
 to package and deploy your application to a test server, for example. Your
 integration tests can then be executed against the running application.
 The tricky part however is telling Maven how to distinguish between your
 unit tests and your integration tests, so that they will only be executed
 when a running version of the application is available.
There are several ways to do this, but at the time of writing there
 is no official standard approach used across all Maven projects. One
 simple strategy is to use naming conventions: all integration tests might
 end in “IntegrationTest”, or be placed in a particular package. The
 following class uses one such convention:
public class AccountIntegrationTest {

 @Test
 public void cashWithdrawalShouldDeductSumFromBalance() throws Exception {
 Account account = new Account();
 account.makeDeposit(100);
 account.makeCashWithdraw(60);
 assertThat(account.getBalance(), is(40));
 }
}
In Maven, tests are configured via the maven-surefire-plugin plugin. To ensure that
 Maven only runs these tests during the integration-test phase, you can configure this
 plugin as shown here:
<project>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skip>true</skip>[image: 1]
 </configuration>
 <executions>
 <execution>[image: 2]
 <id>unit-tests</id>
 <phase>test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <excludes>
 <exclude>**/*IntegrationTest.java</exclude>
 </excludes>
 </configuration>
 </execution>
 <execution>[image: 3]
 <id>integration-tests</id>
 <phase>integration-test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <includes>
 <include>**/*IntegrationTest.java</include>
 </includes>
 </configuration>
 </execution>
 </executions>
 </plugin>
 ...
	[image: 1]
	Skip all tests by default—this deactivates the default Maven
 test configuration.

	[image: 2]
	During the unit test phase, run the tests but exclude the
 integration tests.

	[image: 3]
	During the integration test phase, run the tests but
 only include the integration tests.

This will ensure that the integration tests are skipped during the
 unit test phase, and only executed during the integration test
 phase.
If you don’t want to put unwanted constraints on the names of your
 test classes, you can use package names instead. In the project
 illustrated in Figure A-1, all
 of the functional tests have been placed in a package called
 webtests. There is no constraint on the names of the
 tests, but we are using Page Objects to model our application user
 interface, so we also make sure that no classes in the
 pages package (underneath the
 webtests package) are
 treated as tests.
[image: A project containing freely-named test classes]

Figure A-1. A project containing freely-named test classes

In Maven, we could do this with the following configuration:
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 <executions>
 <execution>
 <id>unit-tests</id>
 <phase>test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <excludes>
 <exclude>**/webtests/*.java</exclude>
 </excludes>
 </configuration>
 </execution>
 <execution>
 <id>integration-tests</id>
 <phase>integration-test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <includes>
 <include>**/webtests/*.java</include>
 </includes>
 <excludes>
 <exclude>**/pages/*.java</exclude>
 </excludes>
 </configuration>
 </execution>
 </executions>
 </plugin>
TestNG currently has more flexible support for test groups than
 JUnit. If you are using TestNG, you can identify your integration tests
 using TestNG Groups. In TestNG, test classes or test methods can be tagged
 using the groups attribute of the
 @Test annotation, as shown here:
@Test(groups = { "integration-test" })
public void cashWithdrawalShouldDeductSumFromBalance() throws Exception {
 Account account = new Account();
 account.makeDeposit(100);
 account.makeCashWithdraw(60);
 assertThat(account.getBalance(), is(40));
}
Using Maven, you could ensure that these tests were only run during
 the integration test phase using the following configuration:
<project>
 ...
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skip>true</skip>
 </configuration>
 <executions>
 <execution>
 <id>unit-tests</id>
 <phase>test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <excludedGroups>integration-tests</excludedGroups>[image: 1]
 </configuration>
 </execution>
 <execution>
 <id>integration-tests</id>
 <phase>integration-test</phase>
 <goals>
 <goal>test</goal>
 </goals>
 <configuration>
 <skip>false</skip>
 <groups>integration-tests</groups>[image: 2]
 </configuration>
 </execution>
 </executions>
 </plugin>
 ...
	[image: 1]
	Do not run the integration-tests group during the test
 phase.

	[image: 2]
	Run only the tests in the integration-tests group during the
 integration-test phase.

It often makes good sense to run your tests in parallel where
 possible, as it can speed up your tests significantly (see Help! My Tests Are Too Slow!). Parallel tests are particularly
 intensive with slow-running tests that use a lot of IO, disk or network
 access (such as web tests), which is convenient, as these are precisely
 the sort of tests we usually want to speed up.
TestNG provides good support for parallel tests. For instance, using
 TestNG, you could configure your test methods to run in parallel on ten
 concurrent threads like this:
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <parallel>methods</parallel>
 <threadCount>10</threadCount>
 </configuration>
 </plugin>
As of JUnit 4.7, you can also run your JUnit tests in parallel using
 a similar configuration. In fact, the configuration shown above will work
 for JUnit 4.7 onwards.
You can also set the <parallel>
 configuration item to classes instead of
 methods, which will try to run the test classes in
 parallel, rather than each method. This might be slower or faster,
 depending on the number of test classes you have, but might be safer for
 some test cases not designed with concurrency in mind.
Mileage will vary, so you should experiment with the numbers to get
 the best results.

Automating Your Tests with Ant

Setting up automated testing in Ant is also relatively easy, though
 it requires a bit more plumbing than with Maven. In particular, Ant does
 not come packaged with the JUnit libraries or Ant tasks out of the box, so
 you have to install them somewhere yourself. The most portable approach is
 to use a Dependency Management tool such as Ivy, or to place the
 corresponding JAR files in a directory within your project
 structure.
To run your tests in Ant, you call the
 <junit> task. A typical Jenkins-friendly
 configuration is shown in this example:
<property name="build.dir" value="target" />
<property name="java.classes" value="${build.dir}/classes" />
<property name="test.classes" value="${build.dir}/test-classes" />
<property name="test.reports" value="${build.dir}/test-reports" />
<property name="lib" value="${build.dir}/lib" />

<path id="test.classpath">[image: 1]
 <pathelement location="${basedir}/tools/junit/*.jar" />
 <pathelement location="${java.classes}" />
 <pathelement location="${lib}" />
</path>

<target name="test" depends="test-compile">
 <junit haltonfailure="no" failureproperty="failed">[image: 2]
 <classpath>[image: 3]
 <path refid="test.classpath" />
 <pathelement location="${test.classes}" />
 </classpath>
 <formatter type="xml" />[image: 4]
 <batchtest fork="yes" forkmode="perBatch"[image: 5] todir="${test.reports}">
 <fileset dir="${test.src}">[image: 6]
 <include name="**/*Test*.java" />
 </fileset>
 </batchtest>
 </junit>
 <fail message="TEST FAILURE" if="failed" />[image: 7]
</target>
	[image: 1]
	We need to set up a classpath containing the junit and junit-ant JAR files, as well as the
 application classes and any other dependencies the application needs
 to compile and run.

	[image: 2]
	The tests themselves are run here. The
 haltonfailure option is used to make the build fail
 immediately if any tests fail. In a Continuous Integration
 environment, this is not exactly what we want, as we need to get the
 results for any subsequent tests as well. So we set this value to
 no and use the failureproperty
 option to force the build to fail once all of the tests have
 finished.

	[image: 3]
	The classpath needs to contain the JUnit libraries, your
 application classes and their dependencies, and your compiled test
 classes.

	[image: 4]
	The Junit Ant task can produce both text and XML reports, but
 for Jenkins, we only need the XML ones.

	[image: 5]
	The fork option runs your tests in a separate
 JVM. This is generally a good idea, as it can avoid classloader issues
 related to conflicts with Ant’s own libraries. However, the default
 behaviour of the JUnit Ant task is to create a new JVM for each test,
 which slows down the tests significantly. The
 perBatch option is better, as it only creates one
 new JVM for each batch of tests.

	[image: 6]
	You define the tests you want to run in a fileset element. This
 provides a great deal of flexibility, and makes it easy to define
 other targets for different subsets of tests (integration, web, and so
 on).

	[image: 7]
	Force the build to fail after the tests
 have finished, if any of them failed.

If you prefer TestNG, Ant is of course well supported here as well.
 Using TestNG with the previous example, you could do something like
 this:
<property name="build.dir" value="target" />
<property name="java.classes" value="${build.dir}/classes" />
<property name="test.classes" value="${build.dir}/test-classes" />
<property name="test.reports" value="${build.dir}/test-reports" />
<property name="lib" value="${build.dir}/lib" />

<path id="test.classpath">
 <pathelement location="${java.classes}" />
 <pathelement location="${lib}" />
</path>

<taskdef resource="testngtasks" classpath="lib/testng.jar"/>

<target name="test" depends="test-compile">
 <testng classpathref="test.classpath"
 outputDir="${testng.report.dir}"
 haltonfailure="no"
 failureproperty="failed">
 <classfileset dir="${test.classes}">
 <include name="**/*Test*.class" />
 </classfileset>
 </testng>
 <fail message="TEST FAILURE" if="failed" />
</target>
TestNG is a very flexible testing library, and the TestNG task has
 many more options than this. For example, to only run tests defined as
 part of the “integration-test” group that we saw earlier, we could do
 this:
<target name="integration-test" depends="test-compile">
 <testng classpathref="test.classpath"
 groups="integration-test"
 outputDir="${testng.report.dir}"
 haltonfailure="no"
 failureproperty="failed">
 <classfileset dir="${test.classes}">
 <include name="**/*Test*.class" />
 </classfileset>
 </testng>
 <fail message="TEST FAILURE" if="failed" />
</target>
Or to run your tests in parallel, using four concurrent threads, you
 could do this:
<target name="integration-test" depends="test-compile">
 <testng classpathref="test.classpath"
 parallel="true"
 threadCount=4
 outputDir="${testng.report.dir}"
 haltonfailure="no"
 failureproperty="failed">
 <classfileset dir="${test.classes}">
 <include name="**/*Test*.class" />
 </classfileset>
 </testng>
 <fail message="TEST FAILURE" if="failed" />
</target>

Index

A note on the digital index
A link in an index entry is displayed as the section title in which that entry appears. Because some sections have multiple index markers, it is not unusual for an entry to have several links to the same section. Clicking on any link will take you directly to the place in the text in which the marker appears.

A
	acceptance tests, automated, Phase 6—Automated Acceptance Tests and More Automated Deployment, Introduction, Automated Acceptance Tests, Automated Acceptance Tests
	Acceptance-Test Driven Development, Phase 6—Automated Acceptance Tests and More Automated Deployment
	active (push) notifications, Introduction
	Active Directory, Microsoft, as security realm, Using Microsoft Active Directory
	administrator, Using Jenkins’s Built-in User Database, Setting up matrix-based security
		for Jenkins internal user
 database, Using Jenkins’s Built-in User Database
	for matrix-based security, Setting up matrix-based security

	aggregate test results, Aggregating Test Results, Aggregating Test Results
	Amazon EC2 cloud computing service, Using Amazon EC2, Using dynamic instances
	Amazon EC2 plugin, Using dynamic instances
	Amazon Machine Image (AMI), Setting up your Amazon EC2 build farm
	Amazon Web Services (AWS), Setting up your Amazon EC2 build farm
	AMI (Amazon Machine Image), Setting up your Amazon EC2 build farm
	analysis, Audience (see code coverage metrics; code quality metrics; tests)
	Ant, Ant, Ant, Ant, Ant, Ant, Ant Build Steps, Ant Build Steps, Using Jenkins Environment Variables in Your Builds, Integrating Cobertura with Ant, Integrating Cobertura with Ant, Checkstyle, PMD/CPD, FindBugs, CodeNarc, Automating Your Tests with Ant, Automating Your Tests with Ant
		automating tests, Automating Your Tests with Ant, Automating Your Tests with Ant
	code coverage metrics with Cobertura, Integrating Cobertura with Ant, Integrating Cobertura with Ant
	code quality metrics, Checkstyle, PMD/CPD, FindBugs, CodeNarc
		with Checkstyle, Checkstyle
	with CodeNarc, CodeNarc
	with FindBugs, FindBugs
	with PMD and CPD, PMD/CPD

	configuring, Ant, Ant
	environment variables, accessing from, Using Jenkins Environment Variables in Your Builds
	in freestyle build steps, Ant Build Steps, Ant Build Steps
	installing, Ant

	ANT_OPTS environment variable, Memory Considerations
	application server, Starting Up Jenkins, Running Jenkins on an Application Server, Running Jenkins on an Application Server, Upgrading Your Jenkins Installation, Deploying to an Application Server, Deploying Scripting-based Applications Like Ruby and PHP, Deploying a Java Application, Deploying a version from a Maven repository, Deploying Scripting-based Applications Like Ruby and PHP, Deploying Scripting-based Applications Like Ruby and PHP
		automated deployment to, Deploying to an Application Server, Deploying Scripting-based Applications Like Ruby and PHP, Deploying a Java Application, Deploying a version from a Maven repository, Deploying Scripting-based Applications Like Ruby and PHP, Deploying Scripting-based Applications Like Ruby and PHP
		Java applications, Deploying a Java Application, Deploying a version from a Maven repository
	scripting-based applications, Deploying Scripting-based Applications Like Ruby and PHP, Deploying Scripting-based Applications Like Ruby and PHP

	deploying Jenkins to, Starting Up Jenkins, Running Jenkins on an Application Server, Running Jenkins on an Application Server
	upgrading Jenkins on, Upgrading Your Jenkins Installation

	archives of binary artifacts, Your First Jenkins Build Job, Archiving Build Results, Archiving Build Results, Configuring the Maven Build, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers
		deploying to Enterprise Repository Manager, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers
	disabling, Configuring the Maven Build
	in freestyle build jobs, Archiving Build Results, Archiving Build Results

	archiving build jobs, Archiving Build Jobs, Archiving Build Jobs
	Artifactory, Should I Use Jenkins or Hudson?, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers
		Enterprise Repository Manager, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers
	Jenkins support for, Should I Use Jenkins or Hudson?

	Artifactory plugin, Plugin Support
	artifacts, Copying Artifacts (see binary artifacts)
	Atlassian Crowd, as security realm, Using Atlassian Crowd, Using Atlassian Crowd
	Audit Trail plugin, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions
	auditing user actions, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions
	authorization, Introduction, Activating Security in Jenkins, Simple Security in Jenkins, Simple Security in Jenkins, Matrix-based Security, Help! I’ve locked myself out!, Project-based Security, Project-based Security, Role-based Security, Role-based Security
		(see also security)
	matrix-based security, Matrix-based Security, Help! I’ve locked myself out!
	no restrictions on, Simple Security in Jenkins, Simple Security in Jenkins
	project-based security, Project-based Security, Project-based Security
	role-based security, Role-based Security, Role-based Security

	automated deployment, Introduction, Rolling Back Changes, The Deployment Script, Database Updates, Database Updates, Smoke Tests, Rolling Back Changes, Deploying to an Application Server, Deploying Scripting-based Applications Like Ruby and PHP
		to application server, Deploying to an Application Server, Deploying Scripting-based Applications Like Ruby and PHP
	database updates with, Database Updates, Database Updates
	deployment script for, The Deployment Script
	rolling back changes in, Rolling Back Changes
	smoke tests for, Smoke Tests

	automated nightly builds, Phase 2—Nightly Builds
	automated tests, Phase 6—Automated Acceptance Tests and More Automated Deployment (see tests)
	AWS (Amazon Web Services), Setting up your Amazon EC2 build farm

B
	Backup plugin, Using the Backup Plugin
	backups, Backing Up Your Jenkins Data, Backing Up Your Configuration, More Lightweight Automated Backups
	batch scripts, Shell-Scripting Language, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command
	BDD (Behavior-Driven Development), Introduction
	BDD (Behaviour Driven Development), Automated Acceptance Tests
	binary artifacts, Your First Jenkins Build Job, Archiving Build Results, Archiving Build Results, Configuring the Maven Build, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers, Copying Artifacts, Copying Artifacts
		archiving, Your First Jenkins Build Job, Archiving Build Results, Archiving Build Results, Configuring the Maven Build, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers
		deploying to Enterprise Repository Manager, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers
	disabling, Configuring the Maven Build
	in freestyle build jobs, Archiving Build Results, Archiving Build Results

	reusing in build pipeline, Copying Artifacts, Copying Artifacts

	Boolean parameters, More Advanced Parameter Types
	build agents, Configuring Your JDKs, Node Monitoring
		configuring for multiple JDK versions, Configuring Your JDKs
	monitoring, Node Monitoring

	build history, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, What’s in the Jenkins Home Directory, What’s in the Jenkins Home Directory, General Options, Fine-tuning user permissions, Parameterized Build Job History, Monitoring Disk Space, Disk Usage and the Jenkins Maven Project Type
		in builds directory, What’s in the Jenkins Home Directory, What’s in the Jenkins Home Directory
	details regarding, Your First Build Job in Action, Your First Build Job in Action
	disk usage of, Monitoring Disk Space, Disk Usage and the Jenkins Maven Project Type
	number of builds to keep, General Options
	parameterized, Parameterized Build Job History
	permissions for, Fine-tuning user permissions
	results summary for, Your First Build Job in Action, Your First Build Job in Action

	build jobs, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, More Reporting—Displaying Javadocs, More Reporting—Displaying Javadocs, More Reporting—Displaying Javadocs, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics, Configuring the System Environment, Configuring Global Properties, Configuring Global Properties, Introduction, Jenkins Build Jobs, Jenkins Build Jobs, Jenkins Build Jobs, Jenkins Build Jobs, Jenkins Build Jobs, Jenkins Build Jobs, Triggering a Build Job Once Another Build Job Has
 Finished, Manual Build Jobs, Archiving Build Results, Notifications, Building Other Projects, Introduction, Displaying Test Results, Displaying Test Results, Displaying Test Results, Reporting on code coverage in your build, Email Notification, Email Notification, More Advanced Email Notification, More Advanced Email Notification, Claiming Builds, Code Quality in Your Build Process, Working with Freestyle Build Jobs, Using the Checkstyle, PMD, and FindBugs Reports, Parameterized Build Jobs, Parameterized Build Job History, Creating a Parameterized Build Job, Creating a Parameterized Build Job, Adapting Your Builds to Work with Parameterized Build
 Scripts, Adapting Your Builds to Work with Parameterized Build
 Scripts, More Advanced Parameter Types, More Advanced Parameter Types, More Advanced Parameter Types, Building from a Subversion Tag, Building from a Subversion Tag, Building from a Git Tag, Building from a Git Tag, Starting a Parameterized Build Job Remotely, Starting a Parameterized Build Job Remotely, Parameterized Build Job History, Multiconfiguration Build Jobs, Running a Multiconfiguration Build, Setting Up a Multiconfiguration Build, Setting Up a Multiconfiguration Build, Configuring a Slave Axis, Configuring a Slave Axis, Configuring a JDK Axis, Custom Axis, Running a Multiconfiguration Build, Running a Multiconfiguration Build, Running a Multiconfiguration Build, Running a Multiconfiguration Build, Parallel Builds in Jenkins, Locks and Latches, Dependency Graphs, Joins, Joins, Locks and Latches, Locks and Latches, Introduction, The Jenkins Distributed Build Architecture, The Jenkins Distributed Build Architecture, Starting a Windows Slave as a Remote Service, Master/Slave Strategies in Jenkins, The Master Starts the Slave Agent Using SSH, Starting a Windows Slave as a Remote Service, Associating a Build Job with a Slave or Group of Slaves, Associating a Build Job with a Slave or Group of Slaves, Node Monitoring, Cloud Computing, Using dynamic instances, Archiving Build Jobs, Archiving Build Jobs, Migrating Build Jobs, Migrating Build Jobs
		(see also freestyle build jobs; Maven build jobs)
	archiving, Archiving Build Jobs, Archiving Build Jobs
	binary artifacts from, Your First Jenkins Build Job (see binary artifacts)
	code coverage metrics in, Adding Code Coverage and Other Metrics (see code coverage metrics)
	code quality metrics in, Code Quality in Your Build Process (see code quality metrics)
	copying, Jenkins Build Jobs
	creating, Your First Jenkins Build Job, Your First Jenkins Build Job, Jenkins Build Jobs, Jenkins Build Jobs
	delaying start of, Configuring the System Environment
	dependencies between, Dependency Graphs
	distributed across build servers, Introduction, The Jenkins Distributed Build Architecture, The Jenkins Distributed Build Architecture, Starting a Windows Slave as a Remote Service, Master/Slave Strategies in Jenkins, The Master Starts the Slave Agent Using SSH, Starting a Windows Slave as a Remote Service, Associating a Build Job with a Slave or Group of Slaves, Associating a Build Job with a Slave or Group of Slaves, Node Monitoring, Cloud Computing, Using dynamic instances
		associating slave nodes to jobs, Associating a Build Job with a Slave or Group of Slaves, Associating a Build Job with a Slave or Group of Slaves
	cloud-based build farm for, Cloud Computing, Using dynamic instances
	creating slave nodes, Master/Slave Strategies in Jenkins
	master/slave architecture for, The Jenkins Distributed Build Architecture, Starting a Windows Slave as a Remote Service
	monitoring slave nodes, Node Monitoring
	starting slave nodes, The Master Starts the Slave Agent Using SSH, Starting a Windows Slave as a Remote Service

	external, monitoring, Jenkins Build Jobs
	failed, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, Your First Build Job in Action, Displaying Test Results, Displaying Test Results, Email Notification, More Advanced Email Notification, Claiming Builds
		claiming, Claiming Builds
	details regarding, Displaying Test Results, Displaying Test Results
	example of, Your First Build Job in Action, Your First Build Job in Action
	indicator for, Your First Build Job in Action, Your First Build Job in Action
	notifications for, Email Notification, More Advanced Email Notification

	global properties for, Configuring Global Properties, Configuring Global Properties
	history of, Your First Build Job in Action (see build history)
	Javadocs generation in, More Reporting—Displaying Javadocs, More Reporting—Displaying Javadocs
	joins in, Joins, Joins
	locking resources for, Locks and Latches, Locks and Latches
	migrating, Migrating Build Jobs, Migrating Build Jobs
	multiconfiguration, Multiconfiguration Build Jobs, Running a Multiconfiguration Build, Setting Up a Multiconfiguration Build, Setting Up a Multiconfiguration Build, Configuring a Slave Axis, Configuring a Slave Axis, Configuring a JDK Axis, Custom Axis, Running a Multiconfiguration Build, Running a Multiconfiguration Build, Running a Multiconfiguration Build, Running a Multiconfiguration Build
		combination filter for, Running a Multiconfiguration Build
	configuration matrix for, Running a Multiconfiguration Build
	creating, Setting Up a Multiconfiguration Build, Setting Up a Multiconfiguration Build
	custom axis for, Custom Axis
	JDK axis for, Configuring a JDK Axis
	running, Running a Multiconfiguration Build, Running a Multiconfiguration Build
	slave axis for, Configuring a Slave Axis, Configuring a Slave Axis

	naming, Your First Jenkins Build Job
	parameterized, Parameterized Build Jobs, Parameterized Build Job History, Creating a Parameterized Build Job, Creating a Parameterized Build Job, Adapting Your Builds to Work with Parameterized Build
 Scripts, Adapting Your Builds to Work with Parameterized Build
 Scripts, More Advanced Parameter Types, More Advanced Parameter Types, Building from a Subversion Tag, Building from a Subversion Tag, Building from a Git Tag, Building from a Git Tag, Starting a Parameterized Build Job Remotely, Starting a Parameterized Build Job Remotely, Parameterized Build Job History
		build scripts for, Adapting Your Builds to Work with Parameterized Build
 Scripts, Adapting Your Builds to Work with Parameterized Build
 Scripts
	creating, Creating a Parameterized Build Job
	history of, Parameterized Build Job History
	run against a Git tag, Building from a Git Tag, Building from a Git Tag
	run against a Subversion tag, Building from a Subversion Tag, Building from a Subversion Tag
	starting remotely, Starting a Parameterized Build Job Remotely, Starting a Parameterized Build Job Remotely
	types of parameters, Creating a Parameterized Build Job, More Advanced Parameter Types, More Advanced Parameter Types

	reports resulting from, Your First Jenkins Build Job (see reporting)
	run numbers for, as parameters, More Advanced Parameter Types
	running in parallel, Parallel Builds in Jenkins, Locks and Latches
	scheduling, Your First Jenkins Build Job (see build triggers)
	source code location for, Your First Jenkins Build Job
	status of, while running, Your First Build Job in Action
	steps in, adding, Your First Jenkins Build Job, Your First Jenkins Build Job, More Reporting—Displaying Javadocs, Adding Code Coverage and Other Metrics
	success of, indicator for, Your First Build Job in Action
	tests in, Introduction (see tests)
	triggering manually, Your First Build Job in Action, Your First Build Job in Action, Manual Build Jobs
	types of, Your First Jenkins Build Job, Jenkins Build Jobs
	unstable build from, Adding Code Coverage and Other Metrics, Triggering a Build Job Once Another Build Job Has
 Finished, Archiving Build Results, Notifications, Building Other Projects, Displaying Test Results, Reporting on code coverage in your build, Email Notification, More Advanced Email Notification, Working with Freestyle Build Jobs, Using the Checkstyle, PMD, and FindBugs Reports
		criteria for, Archiving Build Results, Reporting on code coverage in your build, Working with Freestyle Build Jobs, Using the Checkstyle, PMD, and FindBugs Reports
	indicator for, Adding Code Coverage and Other Metrics
	notifications for, Notifications, Email Notification, More Advanced Email Notification
	triggering another build after, Triggering a Build Job Once Another Build Job Has
 Finished, Building Other Projects

	Build Pipeline plugin, Build Pipelines
	build pipelines, Build Pipelines and Promotions, Build Pipelines, Build Pipelines and Promotions, Managing Maven Releases with the M2Release Plugin, Managing Maven Releases with the M2Release Plugin, Copying Artifacts, Copying Artifacts, Build Promotions, Build Promotions, Aggregating Test Results, Aggregating Test Results, Build Pipelines, Build Pipelines
		aggregating test results for, Aggregating Test Results, Aggregating Test Results
	deployment pipelines from, Build Pipelines, Build Pipelines
	Maven version numbers for, Managing Maven Releases with the M2Release Plugin, Managing Maven Releases with the M2Release Plugin
	promotions in, Build Pipelines and Promotions, Build Promotions, Build Promotions
	reusing artifacts in, Copying Artifacts, Copying Artifacts

	Build Promotion plugin, Deploying a Java Application
	build radiators, Build Radiators, Build Radiators
	build scripts, Adapting Your Builds to Work with Parameterized Build
 Scripts (see scripts)
	build server, Phase 1—No Build Server, Preparing a Build Server for Jenkins, Preparing a Build Server for Jenkins, Preparing a Build Server for Jenkins, Preparing a Build Server for Jenkins, Preparing a Build Server for Jenkins, Add More Hardware, Add More Hardware, Introduction, Monitoring the Server Load, Monitoring the Server Load
		installing Jenkins on, Preparing a Build Server for Jenkins, Preparing a Build Server for Jenkins
	memory requirements for, Preparing a Build Server for Jenkins
	monitoring load of, Monitoring the Server Load, Monitoring the Server Load
	multiple, running builds on, Introduction (see distributed builds)
	processor requirements for, Preparing a Build Server for Jenkins
	upgrading, Add More Hardware
	virtual machine for, Preparing a Build Server for Jenkins, Add More Hardware

	build tools, configuring, Configuring Your Build Tools, Shell-Scripting Language
	build triggers, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Build Job in Action, Your First Build Job in Action, Build Triggers, Manual Build Jobs, Triggering a Build Job Once Another Build Job Has
 Finished, Scheduled Build Jobs, Scheduled Build Jobs, Polling the SCM, Triggering Builds Remotely, Triggering Builds Remotely, Manual Build Jobs, Parameterized Triggers, Parameterized Triggers
		configuring, Your First Jenkins Build Job, Your First Jenkins Build Job
	for freestyle build jobs, Build Triggers, Manual Build Jobs
	manual, Your First Build Job in Action, Your First Build Job in Action, Manual Build Jobs
	parameterized, Parameterized Triggers, Parameterized Triggers
	polling SCM for version control changes, Polling the SCM
	at regular intervals, Scheduled Build Jobs, Scheduled Build Jobs
	remotely triggering from version control
 system, Triggering Builds Remotely, Triggering Builds Remotely
	when another build has finished, Triggering a Build Job Once Another Build Job Has
 Finished

	builds directory, What’s in the Jenkins Home Directory, What’s in the Jenkins Home Directory
	BUILD_ID environment variable, Using Jenkins Environment Variables in Your Builds
	BUILD_NUMBER environment variable, Using Jenkins Environment Variables in Your Builds
	BUILD_TAG environment variable, Using Jenkins Environment Variables in Your Builds
	BUILD_URL environment variable, Using Jenkins Environment Variables in Your Builds

C
	CAS (Central Authentication Service), Integrating with Other Systems
	Checkstyle, Checkstyle, Checkstyle, Using the Checkstyle, PMD, and FindBugs Reports
	Checkstyle plugin, Using the Checkstyle, PMD, and FindBugs Reports
	CI (Continuous Integration), Introduction, Continuous Integration Fundamentals, Introducing Continuous Integration into Your Organization, Phase 7—Continuous Deployment
	claiming failed builds, Claiming Builds
	cloud computing, for builds, Add More Hardware, Cloud Computing, Using dynamic instances
	CloudBees (sponsor), CloudBees
	Clover, Measuring Code Coverage with Clover, Measuring Code Coverage with Clover
	Clover plugin, Measuring Code Coverage with Clover
	Cobertura, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics, Measuring Code Coverage with Cobertura, Interpreting code coverage metrics, Integrating Cobertura with Maven, Integrating Cobertura with Maven, Integrating Cobertura with Ant, Integrating Cobertura with Ant, Reporting on code coverage in your build, Reporting on code coverage in your build, Interpreting code coverage metrics, Interpreting code coverage metrics
		with Ant, Integrating Cobertura with Ant, Integrating Cobertura with Ant
	configuring in build jobs, Reporting on code coverage in your build, Reporting on code coverage in your build
	with Maven, Integrating Cobertura with Maven, Integrating Cobertura with Maven
	reports from, Interpreting code coverage metrics, Interpreting code coverage metrics

	Cobertura plugin, Installing the Cobertura code coverage plugin
	code complexity, Reporting on Code Complexity, Reporting on Code Complexity
	code coverage metrics, Phase 4—Enter the Metrics, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics, Code Coverage, Measuring Code Coverage with Clover, Code Coverage, Measuring Code Coverage with Cobertura, Interpreting code coverage metrics, Measuring Code Coverage with Clover, Measuring Code Coverage with Clover
		with Clover, Measuring Code Coverage with Clover, Measuring Code Coverage with Clover
	with Cobertura, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics, Measuring Code Coverage with Cobertura, Interpreting code coverage metrics
	software for, Code Coverage

	code examples, using, Using Code Examples
	code quality metrics, Phase 4—Enter the Metrics, Introduction, Code Quality in Your Build Process, Introduction, Introduction, Code Quality in Your Build Process, Code Quality in Your Build Process, Code Quality in Your Build Process, Popular Java and Groovy Code Quality Analysis Tools, Checkstyle, Checkstyle, PMD/CPD, PMD/CPD, PMD/CPD, PMD/CPD, FindBugs, FindBugs, CodeNarc, CodeNarc, Reporting on Code Quality Issues with the Violations Plugin, Working with Maven Build Jobs, Using the Checkstyle, PMD, and FindBugs Reports, Using the Checkstyle, PMD, and FindBugs Reports, Using the Checkstyle, PMD, and FindBugs Reports, Reporting on Code Complexity, Reporting on Code Complexity, Reporting on Open Tasks, Reporting on Open Tasks, Integrating with Sonar, Integrating with Sonar
		in build jobs, Code Quality in Your Build Process
	with Checkstyle, Checkstyle, Checkstyle, Using the Checkstyle, PMD, and FindBugs Reports
	code complexity, Reporting on Code Complexity, Reporting on Code Complexity
	with CodeNarc, CodeNarc, CodeNarc
	with CPD, PMD/CPD, PMD/CPD
	with FindBugs, FindBugs, FindBugs, Using the Checkstyle, PMD, and FindBugs Reports
	with IDE, Code Quality in Your Build Process
	open tasks, Reporting on Open Tasks, Reporting on Open Tasks
	plugins for, Introduction
	with PMD, PMD/CPD, PMD/CPD, Using the Checkstyle, PMD, and FindBugs Reports
	software for, Code Quality in Your Build Process, Popular Java and Groovy Code Quality Analysis Tools
	with Sonar, Introduction, Integrating with Sonar, Integrating with Sonar
	with Violations plugin, Reporting on Code Quality Issues with the Violations Plugin, Working with Maven Build Jobs

	code reviews, Introduction
	CodeNarc, CodeNarc, CodeNarc
	coding standards, Introduction
	commit messages, excluding from triggering build
 jobs, Working with Subversion
	config.xml file, What’s in the Jenkins Home Directory
	configuration, Configuring the Tools, Setting Up Git, Configuring Your Maven Setup, Configuring Your Maven Setup, Configuring the JDK, Notification, Setting Up Git, Setting Up Git, Introduction, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen, Configuring the System Environment, Configuring the System Environment, Configuring the System Environment, Configuring the System Environment, Configuring Global Properties, Configuring Global Properties, Configuring Your JDKs, Configuring Your JDKs, Configuring Your Build Tools, Shell-Scripting Language, Maven, Maven, Ant, Ant, Configuring Your Version Control Tools, Configuring CVS, Configuring Subversion, Configuring CVS, Configuring the Mail Server, Configuring the Mail Server, Configuring a Proxy, Configuring a Proxy
		Ant, Ant, Ant
	build tools, Configuring Your Build Tools, Shell-Scripting Language
	Configure System screen, The Configuration Dashboard—The Manage Jenkins Screen, Configuring the System Environment, Configuring the System Environment
	CVS, Configuring CVS
	email server, Configuring the Mail Server, Configuring the Mail Server
	Git, Setting Up Git, Setting Up Git
	global properties, Configuring Global Properties, Configuring Global Properties
	JDK, Configuring the JDK, Configuring Your JDKs, Configuring Your JDKs
	Load Statistics screen, The Configuration Dashboard—The Manage Jenkins Screen
	Manage Nodes screen, The Configuration Dashboard—The Manage Jenkins Screen
	Manage Plugins screen, The Configuration Dashboard—The Manage Jenkins Screen
	Maven, Configuring Your Maven Setup, Configuring Your Maven Setup, Maven, Maven
	notifications, Notification
	Prepare for Shut down screen, The Configuration Dashboard—The Manage Jenkins Screen
	proxy, Configuring a Proxy, Configuring a Proxy
	quiet period before build starts, Configuring the System Environment
	Reload Configuration from Disk screen, The Configuration Dashboard—The Manage Jenkins Screen
	Script Console, The Configuration Dashboard—The Manage Jenkins Screen
	Subversion, Configuring Subversion
	System Information screen, The Configuration Dashboard—The Manage Jenkins Screen
	System Log screen, The Configuration Dashboard—The Manage Jenkins Screen
	system message on home page, Configuring the System Environment
	version control systems, Configuring Your Version Control Tools, Configuring CVS

	Configure System screen, The Configuration Dashboard—The Manage Jenkins Screen, Configuring the System Environment, Configuring the System Environment
	contact information for this book, How to Contact Us
	continuous delivery, Continuous Integration Fundamentals
	continuous deployment, Continuous Integration Fundamentals, Phase 7—Continuous Deployment, Introduction, Rolling Back Changes, The Deployment Script, Database Updates, Database Updates, Smoke Tests, Rolling Back Changes, Deploying to an Application Server, Deploying Scripting-based Applications Like Ruby and PHP
		to application server, Deploying to an Application Server, Deploying Scripting-based Applications Like Ruby and PHP
	database updates with, Database Updates, Database Updates
	deployment script for, The Deployment Script
	rolling back changes in, Rolling Back Changes
	smoke tests for, Smoke Tests

	Continuous Integration, Introduction (see CI)
	contributors for this book, Contributors
	conventions used in this book, Font Conventions
	Copy Artifact plugin, Copying Artifacts, Deploying a Java Application, Deploying a version from a previous Jenkins build
	Coverage Complexity Scatter Plot plugin, Reporting on Code Complexity
	CPD, PMD/CPD, PMD/CPD
	CppUnit, Automating Your Unit and Integration Tests
	CPUs, build server requirements for, Preparing a Build Server for Jenkins
	cron jobs, Jenkins Build Jobs (see external jobs)
	Crowd, Atlassian, as security realm, Using Atlassian Crowd
	CVS, Setting Up Git, Configuring the System Environment, Configuring CVS, Advanced Project Options, Polling the SCM
		configuring, Configuring CVS
	delaying build jobs, Configuring the System Environment, Advanced Project Options
	Jenkins supporting, Setting Up Git
	polling with, Polling the SCM

	CVS_BRANCH environment variable, Using Jenkins Environment Variables in Your Builds

D
	database, Simple Security in Jenkins, Using Jenkins’s Built-in User Database, Using Jenkins’s Built-in User Database, Database Updates, Database Updates, Rolling Back Changes
		rolling back changes to, Rolling Back Changes
	updating with automated deployment, Database Updates, Database Updates
	user database, Simple Security in Jenkins, Using Jenkins’s Built-in User Database, Using Jenkins’s Built-in User Database

	Dependency Graph View plugin, Dependency Graphs
	Deploy plugin, Deploying to an Application Server, Using the Deploy plugin, Using the Deploy plugin, Deploying a version from a previous Jenkins build
	Deploy Websphere plugin, Deploying to an Application Server, Using the Deploy plugin
	deployment, Audience (see automated deployment; continuous deployment)
	deployment pipelines, Build Pipelines, Build Pipelines
	deployment script, The Deployment Script
	desktop notifiers, Desktop Notifiers, Notification via Notifo
	disk space, What’s in the Jenkins Home Directory, Monitoring Disk Space, Disk Usage and the Jenkins Maven Project Type
		for build directory, What’s in the Jenkins Home Directory
	monitoring, Monitoring Disk Space, Disk Usage and the Jenkins Maven Project Type

	Disk Usage plugin, Using the Disk Usage Plugin, Using the Disk Usage Plugin
	distributed builds, Preparing a Build Server for Jenkins, Introduction, The Jenkins Distributed Build Architecture, The Jenkins Distributed Build Architecture, Starting a Windows Slave as a Remote Service, Master/Slave Strategies in Jenkins, The Master Starts the Slave Agent Using SSH, The Master Starts the Slave Agent Using SSH, Starting the Slave Agent Manually Using Java Web Start, Starting the Slave Agent Manually Using Java Web Start, Installing a Jenkins Slave as a Windows Service, Installing a Jenkins Slave as a Windows Service, Starting the Slave Node in Headless Mode, Starting a Windows Slave as a Remote Service, Associating a Build Job with a Slave or Group of Slaves, Associating a Build Job with a Slave or Group of Slaves, Node Monitoring, Cloud Computing, Using dynamic instances
		with cloud-based build
 farm, Cloud Computing, Using dynamic instances
	master/slave architecture for, The Jenkins Distributed Build Architecture, Starting a Windows Slave as a Remote Service
	slave nodes for, Master/Slave Strategies in Jenkins, The Master Starts the Slave Agent Using SSH, The Master Starts the Slave Agent Using SSH, Starting the Slave Agent Manually Using Java Web Start, Starting the Slave Agent Manually Using Java Web Start, Installing a Jenkins Slave as a Windows Service, Installing a Jenkins Slave as a Windows Service, Starting the Slave Node in Headless Mode, Starting a Windows Slave as a Remote Service, Associating a Build Job with a Slave or Group of Slaves, Associating a Build Job with a Slave or Group of Slaves, Node Monitoring
		associating with build jobs, Associating a Build Job with a Slave or Group of Slaves, Associating a Build Job with a Slave or Group of Slaves
	creating, Master/Slave Strategies in Jenkins
	installing as Windows service, Installing a Jenkins Slave as a Windows Service, Installing a Jenkins Slave as a Windows Service
	monitoring, Node Monitoring
	starting as remote service, Starting a Windows Slave as a Remote Service
	starting in headless mode, Starting the Slave Node in Headless Mode
	starting using SSH, The Master Starts the Slave Agent Using SSH, The Master Starts the Slave Agent Using SSH
	starting with Java Web Start, Starting the Slave Agent Manually Using Java Web Start, Starting the Slave Agent Manually Using Java Web Start

	DocLinks plugin, Automated Acceptance Tests
	documentation, More Reporting—Displaying Javadocs (see Javadocs)

E
	Eclipse, Desktop Notifiers, Checkstyle, PMD/CPD
		code quality metrics with Checkstyle, Checkstyle
	code quality metrics with PMD, PMD/CPD
	desktop notifiers with, Desktop Notifiers

	Eclipse plugin, Desktop Notifiers
	email notifications, Notification, Using Jenkins’s Built-in User Database, Email Notification, More Advanced Email Notification, More Advanced Email Notification
		(see also notifications)

	email server, configuring, Configuring the Mail Server, Configuring the Mail Server
	Email-ext plugin, More Advanced Email Notification, More Advanced Email Notification
	Enterprise Repository Manager, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers
	environment variables, Using Jenkins Environment Variables in Your Builds, Using Jenkins Environment Variables in Your Builds, Using Jenkins Environment Variables in Your Builds, Adapting Your Builds to Work with Parameterized Build
 Scripts
		(see also specific environment variables)
	build parameters as, Adapting Your Builds to Work with Parameterized Build
 Scripts
	using in build steps, Using Jenkins Environment Variables in Your Builds, Using Jenkins Environment Variables in Your Builds

	Eucalyptus cloud, Using Amazon EC2
	EXECUTOR_NUMBER environment variable, Using Jenkins Environment Variables in Your Builds
	Extended Read Permission plugin, Project-based Security
	external jobs, monitoring, Jenkins Build Jobs

F
	File parameters, More Advanced Parameter Types
	FindBugs, FindBugs, FindBugs, Using the Checkstyle, PMD, and FindBugs Reports
	FindBugs plugin, Using the Checkstyle, PMD, and FindBugs Reports
	fingerprints, Build Promotions, Aggregating Test Results
	fingerprints directory, What’s in the Jenkins Home Directory
	fonts used in this book, Font Conventions
	freestyle build jobs, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Your First Jenkins Build Job, Jenkins Build Jobs, Creating a Freestyle Build Job, Advanced Project Options, General Options, General Options, General Options, General Options, Advanced Project Options, Advanced Project Options, Advanced Project Options, Working with Subversion, Working with Subversion, Working with Subversion, Working with Subversion, Working with Subversion, Working with Subversion, Working with Git, GitHub plugin, SSH key setup, Using the plugin, Branches to build, Excluded regions, Excluded users, Checkout/merge to local branch, Local subdirectory for repo, Merge before build, Prune remote branches before build, Clean after checkout, Recursively update submodules, Use commit author in changelog, Wipe out workspace, Choosing strategy, Git executable, Repository browser, Build triggers, Gerrit Trigger, Post-build actions, Branches, Build Triggers, Manual Build Jobs, Build Steps, Building Projects in Other Languages, Maven Build Steps, Maven Build Steps, Ant Build Steps, Ant Build Steps, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command, Using Jenkins Environment Variables in Your Builds, Using Jenkins Environment Variables in Your Builds, Running Groovy Scripts, Running Groovy Scripts, Post-Build Actions, Building Other Projects, Reporting on Test Results, Reporting on Test Results, Archiving Build Results, Archiving Build Results, Notifications, Notifications, Building Other Projects, Running Your New Build Job, Building Projects with Grails, Building Projects with Grails, Building Projects with Gradle, Incremental builds, Building Projects with Visual Studio MSBuild, Building Projects with Visual Studio MSBuild, Building Projects with NAnt, Building Projects with Ruby and Ruby on Rails, Building Projects with Ruby and Ruby on Rails, Configuring Test Reports in Jenkins, Configuring Test Reports in Jenkins, Displaying Test Results, Working with Freestyle Build Jobs, Working with Freestyle Build Jobs, Freestyle Jobs
		archiving binary artifacts, Archiving Build Results, Archiving Build Results
	blocking for upstream projects, Advanced Project Options
	build history for, number of builds to keep, General Options
	build steps in, Your First Jenkins Build Job, Build Steps, Building Projects in Other Languages, Maven Build Steps, Maven Build Steps, Ant Build Steps, Ant Build Steps, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command, Using Jenkins Environment Variables in Your Builds, Using Jenkins Environment Variables in Your Builds, Running Groovy Scripts, Running Groovy Scripts
		Ant build scripts, Ant Build Steps, Ant Build Steps
	batch scripts, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command
	environment variables in, Using Jenkins Environment Variables in Your Builds, Using Jenkins Environment Variables in Your Builds
	Groovy scripts, Running Groovy Scripts, Running Groovy Scripts
	Maven build steps, Your First Jenkins Build Job, Maven Build Steps, Maven Build Steps
	shell scripts, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command

	build triggers for, Build Triggers, Manual Build Jobs
	code quality metrics in, with Violations, Working with Freestyle Build Jobs, Working with Freestyle Build Jobs
	creating, Your First Jenkins Build Job, Your First Jenkins Build Job
	delaying start of, Advanced Project Options
	description of, for project home page, General Options
	disabling, General Options
	failed, Displaying Test Results
	generating automatically, Freestyle Jobs
	Git used with, Working with Git, GitHub plugin, SSH key setup, Using the plugin, Branches to build, Excluded regions, Excluded users, Checkout/merge to local branch, Local subdirectory for repo, Merge before build, Prune remote branches before build, Clean after checkout, Recursively update submodules, Use commit author in changelog, Wipe out workspace, Choosing strategy, Git executable, Repository browser, Build triggers, Gerrit Trigger, Post-build actions, Branches
		branches to build, Branches to build, Choosing strategy
	build triggers, Build triggers, Gerrit Trigger
	checking out to local branch, Checkout/merge to local branch
	cleaning after checkout, Clean after checkout
	commit author, including in changelog, Use commit author in changelog
	excluding regions from triggering, Excluded regions
	excluding users from triggering, Excluded users
	Git executable, specifying, Git executable
	merging before build, Merge before build
	post-build merging and pushing actions, Post-build actions, Branches
	pruning branches before build, Prune remote branches before build
	recursively update submodules, Recursively update submodules
	repository address, Using the plugin
	source code browsers for, Repository browser
	SSH keys, SSH key setup
	workspace location, overriding, Local subdirectory for repo
	workspace, wiping out before build, Wipe out workspace

	Gradle projects in, Building Projects with Gradle, Incremental builds
	Grails projects in, Building Projects with Grails, Building Projects with Grails
	naming, General Options
	NAnt build scripts in, Building Projects with NAnt
	.NET projects in, Building Projects with Visual Studio MSBuild, Building Projects with Visual Studio MSBuild
	notifications sent after, Notifications, Notifications
	post-build actions, Post-Build Actions, Building Other Projects, Configuring Test Reports in Jenkins
	reporting on test results, Reporting on Test Results, Reporting on Test Results, Configuring Test Reports in Jenkins
	Ruby and Ruby on Rails projects in, Building Projects with Ruby and Ruby on Rails, Building Projects with Ruby and Ruby on Rails
	running, Running Your New Build Job
	starting other build jobs in, Building Other Projects
	Subversion used with, Working with Subversion, Working with Subversion, Working with Subversion, Working with Subversion, Working with Subversion, Working with Subversion
		excluding commit messages from triggering, Working with Subversion
	excluding regions from triggering, Working with Subversion
	excluding users from triggering, Working with Subversion
	source code browsers for, Working with Subversion

	workspace for, overriding, Advanced Project Options

	functional (regression) tests, Introduction, Automating Your Unit and Integration Tests, Help! My Tests Are Too Slow!, Run Fewer Integration/Functional Tests, Run Your Tests in Parallel
		number of, Run Fewer Integration/Functional Tests
	performance of, Help! My Tests Are Too Slow!
	running in parallel, Run Your Tests in Parallel

G
	Game of Life example application, Your First Jenkins Build Job, Adding Code Coverage and Other Metrics
	Gerrit Trigger plugin, Gerrit Trigger
	Git, Preparing Your Environment, Installing Git, Working with Git, GitHub plugin, SSH key setup, Using the plugin, Branches to build, Excluded regions, Excluded users, Checkout/merge to local branch, Local subdirectory for repo, Merge before build, Prune remote branches before build, Clean after checkout, Recursively update submodules, Use commit author in changelog, Wipe out workspace, Choosing strategy, Repository browser, Build triggers, Gerrit Trigger, Post-build actions, Branches, Building from a Git Tag, Building from a Git Tag
		branches to build, Branches to build, Choosing strategy
	build triggers, Build triggers, Gerrit Trigger
	checking out to local branch, Checkout/merge to local branch
	cleaning after checkout, Clean after checkout
	commit author, including in changelog, Use commit author in changelog
	excluding regions from triggering builds, Excluded regions
	excluding users from triggering builds, Excluded users
	with freestyle build jobs, Working with Git, GitHub plugin
	installing, Installing Git
	merging before build, Merge before build
	post-build merging and pushing actions, Post-build actions, Branches
	pruning branches before build, Prune remote branches before build
	recursively update submodules, Recursively update submodules
	repository address, Using the plugin
	source code browsers for, Repository browser
	SSH keys, SSH key setup
	tags, building against, Building from a Git Tag, Building from a Git Tag
	workspace location, overriding, Local subdirectory for repo
	workspace, wiping out before build, Wipe out workspace

	Git plugin, Setting Up Git, Setting Up Git, Installing the plugin, SSH key setup
	GitHub plugin, GitHub plugin
	GitHub project, From Hudson to Jenkins—A Short History
	GitHub repository, Preparing Your Environment, Setting Up a GitHub Account, Forking the Sample Repository, Forking the Sample Repository, Forking the Sample Repository, Repository browser, GitHub plugin
		account for, setting up, Setting Up a GitHub Account
	cloning a local copy of, Forking the Sample Repository
	forking, Forking the Sample Repository, Forking the Sample Repository

	GlassFish application server, deploying Java applications
 to, Deploying a Java Application, Deploying a version from a Maven repository
	GlassFish Servlet container, Delegating to the Servlet Container
	global properties, Configuring Global Properties, Configuring Global Properties
	Gmail, configuring, Configuring the Mail Server
	Goldin, Evgeny (contributor), Contributors
	Gradle, Should I Use Jenkins or Hudson?, Building Projects with Gradle, Incremental builds, Checkstyle, CodeNarc
		builds in, running with Jenkins, Building Projects with Gradle, Incremental builds
	code quality metrics, Checkstyle, CodeNarc
		with Checkstyle, Checkstyle
	with CodeNarc, CodeNarc

	Jenkins support for, Should I Use Jenkins or Hudson?

	Grails, Building Projects with Grails, Building Projects with Grails, CodeNarc
		builds in, running with Jenkins, Building Projects with Grails, Building Projects with Grails
	code quality metrics with CodeNarc, CodeNarc

	Groeschke, Rene (contributor), Contributors
	Groovy scripts, The Configuration Dashboard—The Manage Jenkins Screen, Using Jenkins Environment Variables in Your Builds, Running Groovy Scripts, Running Groovy Scripts, Integrating with Other Systems, Integrating with Other Systems, CodeNarc, CodeNarc
		authentication script, Integrating with Other Systems, Integrating with Other Systems
	code quality metrics with CodeNarc, CodeNarc, CodeNarc
	environment variables in, Using Jenkins Environment Variables in Your Builds
	running in build jobs, Running Groovy Scripts, Running Groovy Scripts
	running on Script Console, The Configuration Dashboard—The Manage Jenkins Screen

	groups, Using an LDAP Repository, Using Microsoft Active Directory, Using Microsoft Active Directory, Using Unix Users and Groups, Using Atlassian Crowd
		Active Directory, Using Microsoft Active Directory, Using Microsoft Active Directory
	Atlassian Crowd, Using Atlassian Crowd
	LDAP, Using an LDAP Repository
	Unix, Using Unix Users and Groups

H
	headless mode, starting slave nodes in, Starting the Slave Node in Headless Mode
	Hibernate, database updates with, Database Updates
	home directory for Jenkins, The Jenkins Home Directory, The Jenkins Home Directory, What’s in the Jenkins Home Directory, What’s in the Jenkins Home Directory, Configuring the System Environment
	home page, Starting Up Jenkins, Configuring the System Environment
	hot-deploy, Deploying to an Application Server, Using the Deploy plugin
	HTML Publisher plugin, Automated Acceptance Tests, Automated Acceptance Tests
	HTTP proxy server, Configuring a Proxy
	Hudson, Jenkins or Hudson?, Introducing Jenkins (née Hudson), From Hudson to Jenkins—A Short History, Should I Use Jenkins or Hudson?
		(see also Jenkins)

	HUDSON_HOME environment variable, The Jenkins Home Directory
	HUDSON_URL environment variable, Using Jenkins Environment Variables in Your Builds

I
	IDE, code quality metrics with, Code Quality in Your Build Process
	IM, Instant Messaging (see instant messaging)
	information radiators, Build Radiators, Build Radiators
	installation, Installing Java, Installing Git, Starting Up Jenkins, Starting Up Jenkins, Starting Up Jenkins, Configuring Your Maven Setup, Configuring Your Maven Setup, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics, Introduction, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Preparing a Build Server for Jenkins, Preparing a Build Server for Jenkins, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins as a Windows Service, Installing Jenkins as a Windows Service, Upgrading Your Jenkins Installation, Upgrading Your Jenkins Installation, Configuring Your JDKs, Maven, Ant
		Ant, Ant
	Git, Installing Git
	JDK, Configuring Your JDKs
	Jenkins, Starting Up Jenkins, Starting Up Jenkins, Starting Up Jenkins, Introduction, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Preparing a Build Server for Jenkins, Preparing a Build Server for Jenkins, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins as a Windows Service, Installing Jenkins as a Windows Service
		from binary distribution, Downloading and Installing Jenkins
	on build server, Preparing a Build Server for Jenkins, Preparing a Build Server for Jenkins
	on CentOS, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS
	on Debian, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Debian or Ubuntu
	on Fedora, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS
	with Java Web start, Starting Up Jenkins, Starting Up Jenkins
	on Linux, Downloading and Installing Jenkins
	on OpenSUSE, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins on SUSE or OpenSUSE
	on Redhat, Installing Jenkins on Redhat, Fedora, or CentOS, Installing Jenkins on Redhat, Fedora, or CentOS
	on SUSE, Installing Jenkins on SUSE or OpenSUSE, Installing Jenkins on SUSE or OpenSUSE
	on Ubuntu, Installing Jenkins on Debian or Ubuntu, Installing Jenkins on Debian or Ubuntu
	on Unix, Downloading and Installing Jenkins
	from WAR file, Starting Up Jenkins, Downloading and Installing Jenkins
	on Windows, Downloading and Installing Jenkins, Downloading and Installing Jenkins
	as Windows service, Installing Jenkins as a Windows Service, Installing Jenkins as a Windows Service

	JRE, Installing Java
	Maven, Configuring Your Maven Setup, Configuring Your Maven Setup, Maven
	plugins, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics
		(see also specific plugins)

	upgrading, Upgrading Your Jenkins Installation, Upgrading Your Jenkins Installation

	instant messaging (IM), Instant Messaging, IM Notification using IRC, IM Notification with Jabber, IM Notification with Jabber, IM Notification using IRC, IRC Notification
		IRC for, IM Notification using IRC, IRC Notification
	Jabber protocol for, IM Notification with Jabber, IM Notification with Jabber

	Instant Messaging plugin, Instant Messaging
	integration tests, Introduction, Automating Your Unit and Integration Tests, Help! My Tests Are Too Slow!, Run Fewer Integration/Functional Tests
		number of, Run Fewer Integration/Functional Tests
	performance of, Help! My Tests Are Too Slow!

	IRC (Internet Relay Chat), IM Notification using IRC, IRC Notification
	IRC plugin, IM Notification using IRC, IRC Notification

J
	Jabber Notifier plugin, IM Notification with Jabber
	Jabber protocol, IM Notification with Jabber, IM Notification with Jabber
	Java applications, Configuring Test Reports in Jenkins, Deploying a Java Application, Deploying a version from a Maven repository, Redeploying a specific version, Deploying a version from a previous Jenkins build, Deploying a version from a previous Jenkins build, Deploying a version from a Maven repository, Deploying a version from a Maven repository
		deploying from Maven repository, Deploying a version from a Maven repository, Deploying a version from a Maven repository
	deploying to application server, Deploying a Java Application, Deploying a version from a Maven repository
	redeploying a specific version, Redeploying a specific version
	redeploying from previous build, Deploying a version from a previous Jenkins build, Deploying a version from a previous Jenkins build
	test reports from, Configuring Test Reports in Jenkins

	Java Development Kit, Preparing Your Environment (see JDK)
	Java Runtime Environment (JRE), installing, Installing Java
	Java version installed, checking, Downloading and Installing Jenkins
	Java Web Start, Starting Up Jenkins, Starting Up Jenkins, Starting the Slave Agent Manually Using Java Web Start, Starting the Slave Agent Manually Using Java Web Start
		installing and starting Jenkins using, Starting Up Jenkins, Starting Up Jenkins
	starting slave nodes using, Starting the Slave Agent Manually Using Java Web Start, Starting the Slave Agent Manually Using Java Web Start

	Javadocs, More Reporting—Displaying Javadocs, More Reporting—Displaying Javadocs
	JAVA_ARGS parameter, Installing Jenkins on Debian or Ubuntu
	JAVA_HOME environment variable, Configuring Your JDKs, Using Jenkins Environment Variables in Your Builds
	JAVA_OPTS environment variable, Memory Considerations
	JBoss application server, deploying Java applications
 to, Deploying a Java Application, Deploying a version from a Maven repository
	JDK (Java Development Kit), Preparing Your Environment, Configuring the JDK, Downloading and Installing Jenkins, Configuring Your JDKs, Configuring Your JDKs, Configuring Your JDKs, Configuring a JDK Axis
		configuring, Configuring the JDK
	configuring multiple versions of, Configuring Your JDKs, Configuring Your JDKs
	installing, Configuring Your JDKs
	requirements for, Downloading and Installing Jenkins
	versions of, for multiconfiguration build
 jobs, Configuring a JDK Axis

	JEE applications, Deploying a Java Application (see Java applications)
	Jenkins, Jenkins or Hudson?, Introducing Jenkins (née Hudson), From Hudson to Jenkins—A Short History, From Hudson to Jenkins—A Short History, From Hudson to Jenkins—A Short History, Should I Use Jenkins or Hudson?, Should I Use Jenkins or Hudson?, Should I Use Jenkins or Hudson?, Should I Use Jenkins or Hudson?, Preparing Your Environment, Forking the Sample Repository, Starting Up Jenkins, Starting Up Jenkins, Starting Up Jenkins, Starting Up Jenkins, Starting Up Jenkins, Starting Up Jenkins, Configuring the Tools, Setting Up Git, Setting Up Git, Your First Jenkins Build Job, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Downloading and Installing Jenkins, Preparing a Build Server for Jenkins, Preparing a Build Server for Jenkins, The Jenkins Home Directory, The Jenkins Home Directory, Running Jenkins as a Stand-Alone Application, Running Jenkins as a Stand-Alone Application, Running Jenkins Behind an Apache Server, Running Jenkins Behind an Apache Server, Running Jenkins on an Application Server, Running Jenkins on an Application Server, Memory Considerations, Memory Considerations, What’s in the Jenkins Home Directory, What’s in the Jenkins Home Directory, Backing Up Your Jenkins Data, Upgrading Your Jenkins Installation, Upgrading Your Jenkins Installation, Introduction, Configuring the System Environment, Configuring the System Environment, Configuring Source Code Management, Introduction, Migrating Build Jobs, Monitoring Disk Space, Disk Usage and the Jenkins Maven Project Type, Monitoring the Server Load, Monitoring the Server Load, Backing Up Your Configuration, More Lightweight Automated Backups, Archiving Build Jobs, Archiving Build Jobs, Migrating Build Jobs, Migrating Build Jobs
		community for, Should I Use Jenkins or Hudson?
	configuring, Introduction (see configuration)
	CVS supported by, Setting Up Git
	dedicated user for, Preparing a Build Server for Jenkins
	environment, requirements for, Preparing Your Environment, Forking the Sample Repository
	help icons in, Configuring the Tools
	history of, Jenkins or Hudson?, From Hudson to Jenkins—A Short History, From Hudson to Jenkins—A Short History
	home directory for, The Jenkins Home Directory, The Jenkins Home Directory, What’s in the Jenkins Home Directory, What’s in the Jenkins Home Directory, Configuring the System Environment
	home page for, Starting Up Jenkins, Configuring the System Environment
	installing, Starting Up Jenkins (see installation)
	Java requirements for, Downloading and Installing Jenkins
	maintenance of, Backing Up Your Jenkins Data, Introduction, Migrating Build Jobs, Monitoring Disk Space, Disk Usage and the Jenkins Maven Project Type, Monitoring the Server Load, Monitoring the Server Load, Backing Up Your Configuration, More Lightweight Automated Backups, Archiving Build Jobs, Archiving Build Jobs, Migrating Build Jobs, Migrating Build Jobs
		archiving build jobs, Archiving Build Jobs, Archiving Build Jobs
	backups, Backing Up Your Jenkins Data, Backing Up Your Configuration, More Lightweight Automated Backups
	migrating build jobs, Migrating Build Jobs, Migrating Build Jobs
	monitoring disk space, Monitoring Disk Space, Disk Usage and the Jenkins Maven Project Type
	monitoring server load, Monitoring the Server Load, Monitoring the Server Load

	memory requirements for, Preparing a Build Server for Jenkins, Memory Considerations, Memory Considerations
	as Open Source project, Should I Use Jenkins or Hudson?
	port running on, Downloading and Installing Jenkins, Downloading and Installing Jenkins
	rapid release cycle of, Should I Use Jenkins or Hudson?
	reasons to use, Should I Use Jenkins or Hudson?
	running, Starting Up Jenkins, Starting Up Jenkins, Starting Up Jenkins, Downloading and Installing Jenkins, Running Jenkins as a Stand-Alone Application, Running Jenkins as a Stand-Alone Application, Running Jenkins Behind an Apache Server, Running Jenkins Behind an Apache Server, Running Jenkins on an Application Server, Running Jenkins on an Application Server
		on Apache server, Running Jenkins Behind an Apache Server, Running Jenkins Behind an Apache Server
	from application server, Starting Up Jenkins, Running Jenkins on an Application Server, Running Jenkins on an Application Server
	from command line, Starting Up Jenkins, Downloading and Installing Jenkins
	from Java Web Start, Starting Up Jenkins
	as stand-alone application, Running Jenkins as a Stand-Alone Application, Running Jenkins as a Stand-Alone Application

	stopping, Starting Up Jenkins
	upgrading, Upgrading Your Jenkins Installation, Upgrading Your Jenkins Installation
	version control systems supported by, Setting Up Git, Your First Jenkins Build Job, Configuring Source Code Management

	Jenkins Console, Starting Up Jenkins
	Jenkins M2 Extra Steps plugin, Extra Build Steps in Your Maven Build Jobs
	JENKINS_HOME environment variable, The Jenkins Home Directory, The Jenkins Home Directory, Configuring the System Environment
	JENKINS_JAVA_CMD parameter, Installing Jenkins on Redhat, Fedora, or CentOS
	JENKINS_JAVA_OPTIONS parameter, Installing Jenkins on Redhat, Fedora, or CentOS
	JENKINS_PORT parameter, Installing Jenkins on Redhat, Fedora, or CentOS
	JMeter, Automated Performance Tests with JMeter, Automated Performance Tests with JMeter
	JobConfigHistory plugin, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions
	jobs directory, What’s in the Jenkins Home Directory, What’s in the Jenkins Home Directory
	JOB_NAME environment variable, Using Jenkins Environment Variables in Your Builds
	JOB_URL environment variable, Using Jenkins Environment Variables in Your Builds
	joins, in build jobs, Joins, Joins
	JRE (Java Runtime Environment), installing, Installing Java
	JUnit reports, Your First Jenkins Build Job, Your First Jenkins Build Job, Automating Your Unit and Integration Tests, Configuring Test Reports in Jenkins, Automated Acceptance Tests
		for acceptance tests, Automated Acceptance Tests
	configuring in freestyle build job, Your First Jenkins Build Job, Configuring Test Reports in Jenkins
	format for, Your First Jenkins Build Job

K
	Kawaguchi, Kohsuke (developer of Hudson), From Hudson to Jenkins—A Short History

L
	LDAP repository, as security realm, Using an LDAP Repository, Using an LDAP Repository
	LDAP/Active Directory, Should I Use Jenkins or Hudson?
	lightweight backups, More Lightweight Automated Backups
	Linux, Installing Jenkins on Debian or Ubuntu, Upgrading Your Jenkins Installation
		(see also specific Linux platforms)
	upgrading Jenkins on, Upgrading Your Jenkins Installation

	Liquibase, Database Updates, Database Updates
	Load Statistics screen, The Configuration Dashboard—The Manage Jenkins Screen
	locking resources for build jobs, Locks and Latches, Locks and Latches
	Locks and Latches plugin, Locks and Latches
	LTS (Long-Term Support) releases, Introducing Jenkins (née Hudson)

M
	M2Eclipse, Should I Use Jenkins or Hudson?
	mail server, configuring, Configuring the Mail Server, Configuring the Mail Server
	maintenance, Backing Up Your Jenkins Data, Introduction, Migrating Build Jobs, Monitoring Disk Space, Disk Usage and the Jenkins Maven Project Type, Monitoring the Server Load, Monitoring the Server Load, Backing Up Your Configuration, More Lightweight Automated Backups, Archiving Build Jobs, Archiving Build Jobs, Migrating Build Jobs, Migrating Build Jobs
		archiving build jobs, Archiving Build Jobs, Archiving Build Jobs
	backups, Backing Up Your Jenkins Data, Backing Up Your Configuration, More Lightweight Automated Backups
	migrating build jobs, Migrating Build Jobs, Migrating Build Jobs
	monitoring disk space, Monitoring Disk Space, Disk Usage and the Jenkins Maven Project Type
	monitoring server load, Monitoring the Server Load, Monitoring the Server Load

	Manage Jenkins screen, Configuring the Tools, The Configuration Dashboard—The Manage Jenkins Screen, The Configuration Dashboard—The Manage Jenkins Screen
	Manage Nodes screen, The Configuration Dashboard—The Manage Jenkins Screen
	Manage Plugins screen, The Configuration Dashboard—The Manage Jenkins Screen
	master/slave architecture for distributed builds, The Jenkins Distributed Build Architecture, Starting a Windows Slave as a Remote Service
	matrix build jobs, Jenkins Build Jobs (see multiconfiguration build jobs)
	matrix-based security, Matrix-based Security, Help! I’ve locked myself out!
	Maven, Should I Use Jenkins or Hudson?, Preparing Your Environment, Configuring Your Maven Setup, Configuring Your Maven Setup, Configuring Your Maven Setup, Configuring Your Maven Setup, Your First Jenkins Build Job, Maven, Maven, Maven, Working with Subversion, Maven Build Steps, Maven Build Steps, Maven Build Steps, Using Jenkins Environment Variables in Your Builds, Building Whenever a SNAPSHOT Dependency Is Built, Building Whenever a SNAPSHOT Dependency Is Built, Integrating Cobertura with Maven, Integrating Cobertura with Maven, Checkstyle, PMD/CPD, FindBugs, CodeNarc, Managing Maven Releases with the M2Release Plugin, Managing Maven Releases with the M2Release Plugin, Automating Your Tests with Maven, Automating Your Tests with Maven
		automating tests, Automating Your Tests with Maven, Automating Your Tests with Maven
	build steps in freestyle build
 jobs, Your First Jenkins Build Job, Maven Build Steps, Maven Build Steps
	Cobertura with, Integrating Cobertura with Maven, Integrating Cobertura with Maven
	code quality metrics, Checkstyle, PMD/CPD, FindBugs, CodeNarc
		with Checkstyle, Checkstyle
	with CodeNarc, CodeNarc
	with FindBugs, FindBugs
	with PMD and CPD, PMD/CPD

	configuring, Configuring Your Maven Setup, Configuring Your Maven Setup, Maven, Maven
	environment variables in, Using Jenkins Environment Variables in Your Builds
	Hudson support for, Should I Use Jenkins or Hudson?
	installing, Configuring Your Maven Setup, Configuring Your Maven Setup, Maven
	SNAPSHOT dependencies, Maven Build Steps, Building Whenever a SNAPSHOT Dependency Is Built, Building Whenever a SNAPSHOT Dependency Is Built
	SNAPSHOT versions, Working with Subversion
	version numbers for, Managing Maven Releases with the M2Release Plugin, Managing Maven Releases with the M2Release Plugin

	Maven build jobs, Your First Jenkins Build Job, Jenkins Build Jobs, Working with Maven Build Jobs, Extra Build Steps in Your Maven Build Jobs, Working with Maven Build Jobs, Configuring the Maven Build, Configuring the Maven Build, Configuring the Maven Build, Configuring the Maven Build, Configuring the Maven Build, Post-Build Actions, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers, Managing Modules, Extra Build Steps in Your Maven Build Jobs, Configuring Test Reports in Jenkins, Displaying Test Results, Working with Maven Build Jobs, Working with Maven Build Jobs, Generating Your Maven Build Jobs Automatically, Freestyle Jobs, Configuring a Job, Configuring a Job, Reusing Job Configuration with Inheritance, Reusing Job Configuration with Inheritance, Plugin Support, Plugin Support, Disk Usage and the Jenkins Maven Project Type, Disk Usage and the Jenkins Maven Project Type
		archiving binary artifacts, disabling, Configuring the Maven Build
	build steps in, Configuring the Maven Build, Extra Build Steps in Your Maven Build Jobs
	code quality metrics in, with Violations, Working with Maven Build Jobs, Working with Maven Build Jobs
	creating, Working with Maven Build Jobs
	deploying artifacts to Enterprise Repository
 Manager, Deploying to an Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers
	disk usage of, Disk Usage and the Jenkins Maven Project Type, Disk Usage and the Jenkins Maven Project Type
	generating automatically, Generating Your Maven Build Jobs Automatically, Freestyle Jobs, Configuring a Job, Configuring a Job, Reusing Job Configuration with Inheritance, Reusing Job Configuration with Inheritance, Plugin Support, Plugin Support
		Artifactory plugin with, Plugin Support
	configuring, Configuring a Job, Configuring a Job
	inheritance of configuration, Reusing Job Configuration with Inheritance, Reusing Job Configuration with Inheritance
	Parameterized Trigger plugin with, Plugin Support

	incremental builds, Configuring the Maven Build
	modules for, managing, Managing Modules
	Post-build Actions, Post-Build Actions
	private repository for, Configuring the Maven Build
	reporting on test results, Configuring Test Reports in Jenkins
	running modules in parallel, Configuring the Maven Build
	test results of, Displaying Test Results

	Maven Jenkins plugin, Generating Your Maven Build Jobs Automatically, Freestyle Jobs
	Maven Release plugin, Managing Maven Releases with the M2Release Plugin
	MAVEN_OPTS environment variable, Memory Considerations
	McCullough, Matthew (contributor), Contributors
	memory, requirements for, Preparing a Build Server for Jenkins, Memory Considerations, Memory Considerations
	metrics, Phase 4—Enter the Metrics (see reporting)
	Microsoft Active Directory, as security realm, Using Microsoft Active Directory, Using Microsoft Active Directory
	migrating build jobs, Migrating Build Jobs, Migrating Build Jobs
	mobile devices, notifications to, Mobile Notification
	MSBuild plugin, Building Projects with Visual Studio MSBuild
	MSTest plugin, Building Projects with Visual Studio MSBuild
	multiconfiguration build jobs, Jenkins Build Jobs, Multiconfiguration Build Jobs, Running a Multiconfiguration Build, Setting Up a Multiconfiguration Build, Setting Up a Multiconfiguration Build, Configuring a Slave Axis, Configuring a Slave Axis, Configuring a JDK Axis, Custom Axis, Running a Multiconfiguration Build, Running a Multiconfiguration Build, Running a Multiconfiguration Build, Running a Multiconfiguration Build
		combination filter for, Running a Multiconfiguration Build
	configuration matrix for, Running a Multiconfiguration Build
	creating, Setting Up a Multiconfiguration Build, Setting Up a Multiconfiguration Build
	custom axis for, Custom Axis
	JDK axis for, Configuring a JDK Axis
	running, Running a Multiconfiguration Build, Running a Multiconfiguration Build
	slave axis for, Configuring a Slave Axis, Configuring a Slave Axis

N
	Nabaztag plugin, Extreme Feedback Devices
	NAnt build scripts, Building Projects with NAnt
	NAnt plugin, Building Projects with NAnt
	.NET projects, Building Projects with Visual Studio MSBuild, Building Projects with Visual Studio MSBuild
	Nexus, Should I Use Jenkins or Hudson?, Deploying to Commercial Enterprise Repository Managers, Managing Maven Releases with the M2Release Plugin
		Enterprise Repository Manager, Deploying to Commercial Enterprise Repository Managers, Managing Maven Releases with the M2Release Plugin
	Hudson support for, Should I Use Jenkins or Hudson?

	nightly builds, Phase 2—Nightly Builds (see automated nightly builds)
	NODE_LABELS environment variable, Using Jenkins Environment Variables in Your Builds
	NODE_NAME environment variable, Using Jenkins Environment Variables in Your Builds
	notifications, Notification, Notifications, Notifications, Using Jenkins’s Built-in User Database, Introduction, Introduction, Introduction, Email Notification, More Advanced Email Notification, RSS Feeds, RSS Feeds, Build Radiators, Build Radiators, Instant Messaging, IM Notification using IRC, Desktop Notifiers, Notification via Notifo, Notification via Notifo, Mobile Notification, Mobile Notification, SMS Notification, SMS Notification, Making Noise, Making Noise, Extreme Feedback Devices
		active (push) notifications, Introduction
	build radiators, Build Radiators, Build Radiators
	configuring, Notification
	desktop notifiers, Desktop Notifiers, Notification via Notifo
	email, Using Jenkins’s Built-in User Database, Email Notification, More Advanced Email Notification
	from freestyle build job, Notifications, Notifications
	instant messaging, Instant Messaging, IM Notification using IRC
	to mobile devices, Mobile Notification
	using Nabaztag, Extreme Feedback Devices
	passive (pull), Introduction
	RSS feeds, RSS Feeds, RSS Feeds
	to smartphones, Notification via Notifo, Mobile Notification
	SMS messages, SMS Notification, SMS Notification
	sounds in, Making Noise
	spoken, Making Noise

	Notifo, Notification via Notifo, Notification via Notifo
	NTLM proxy authentication, Configuring a Proxy
	NUnit, Automating Your Unit and Integration Tests

O
	Odd-e (sponsor), Odd-e
	open tasks, reporting on, Reporting on Open Tasks, Reporting on Open Tasks

P
	P environment variable, Integrating with Other Systems
	parameterized build jobs, Parameterized Build Jobs, Parameterized Build Job History, Creating a Parameterized Build Job, Creating a Parameterized Build Job, Adapting Your Builds to Work with Parameterized Build
 Scripts, Adapting Your Builds to Work with Parameterized Build
 Scripts, More Advanced Parameter Types, More Advanced Parameter Types, Building from a Subversion Tag, Building from a Subversion Tag, Building from a Git Tag, Building from a Git Tag, Starting a Parameterized Build Job Remotely, Starting a Parameterized Build Job Remotely, Parameterized Build Job History, Multiconfiguration Build Jobs
		(see also multiconfiguration build jobs)
	build scripts for, Adapting Your Builds to Work with Parameterized Build
 Scripts, Adapting Your Builds to Work with Parameterized Build
 Scripts
	creating, Creating a Parameterized Build Job
	history of, Parameterized Build Job History
	run against a Git tag, Building from a Git Tag, Building from a Git Tag
	run against a Subversion tag, Building from a Subversion Tag, Building from a Subversion Tag
	starting remotely, Starting a Parameterized Build Job Remotely, Starting a Parameterized Build Job Remotely
	types of parameters, Creating a Parameterized Build Job, More Advanced Parameter Types, More Advanced Parameter Types

	Parameterized Build plugin, Parameterized Build Jobs
	Parameterized Trigger plugin, Parameterized Triggers, Plugin Support, Deploying a version from a previous Jenkins build
	parameterized triggers, Parameterized Triggers, Parameterized Triggers
	passive (pull) notifications, Introduction
	Password parameters, More Advanced Parameter Types
	performance, Displaying Test Results, Displaying Test Results, Code Coverage, Automated Performance Tests with JMeter, Automated Performance Tests with JMeter, Help! My Tests Are Too Slow!, Run Your Tests in Parallel
		of code coverage
 analysis, Code Coverage
	of application, Automated Performance Tests with JMeter, Automated Performance Tests with JMeter
	of tests, Displaying Test Results, Displaying Test Results, Help! My Tests Are Too Slow!, Run Your Tests in Parallel

	permissions, Matrix-based Security (see authorization)
	PHP applications, deploying to application server, Deploying Scripting-based Applications Like Ruby and PHP, Deploying Scripting-based Applications Like Ruby and PHP
	PHPUnit, Automating Your Unit and Integration Tests
	pipelines, Build Pipelines and Promotions (see build pipelines)
	plugins, Should I Use Jenkins or Hudson?, Setting Up Git, Setting Up Git, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics, Upgrading Your Jenkins Installation, The Configuration Dashboard—The Manage Jenkins Screen, Installing the plugin, SSH key setup, Gerrit Trigger, GitHub plugin, Deploying to an Enterprise Repository Manager, Extra Build Steps in Your Maven Build Jobs, Building Projects with Visual Studio MSBuild, Building Projects with Visual Studio MSBuild, Building Projects with NAnt, Configuring Test Reports in Jenkins, Installing the Cobertura code coverage plugin, Measuring Code Coverage with Clover, Automated Acceptance Tests, Automated Acceptance Tests, Automated Acceptance Tests, Using Microsoft Active Directory, Using Atlassian Crowd, Integrating with Other Systems, Integrating with Other Systems, Integrating with Other Systems, Integrating with Other Systems, Project-based Security, Role-based Security, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions, More Advanced Email Notification, More Advanced Email Notification, Instant Messaging, IM Notification with Jabber, IM Notification using IRC, IRC Notification, Desktop Notifiers, Desktop Notifiers, Desktop Notifiers, Making Noise, Making Noise, Extreme Feedback Devices, Reporting on Code Quality Issues with the Violations Plugin, Working with Maven Build Jobs, Using the Checkstyle, PMD, and FindBugs Reports, Using the Checkstyle, PMD, and FindBugs Reports, Using the Checkstyle, PMD, and FindBugs Reports, Reporting on Code Complexity, Reporting on Open Tasks, Parameterized Build Jobs, Parameterized Triggers, Generating Your Maven Build Jobs Automatically, Plugin Support, Plugin Support, Freestyle Jobs, Dependency Graphs, Locks and Latches, Managing Maven Releases with the M2Release Plugin, Copying Artifacts, Build Promotions, Build Pipelines, Using dynamic instances, Deploying to an Application Server, Deploying to an Application Server, Deploying a Java Application, Deploying a Java Application, Using the Deploy plugin, Using the Deploy plugin, Using the Deploy plugin, Deploying a version from a previous Jenkins build, Deploying a version from a previous Jenkins build, Deploying a version from a previous Jenkins build, Deploying Scripting-based Applications Like Ruby and PHP, Using the Disk Usage Plugin, Using the Disk Usage Plugin, Using the Backup Plugin, More Lightweight Automated Backups
		Active Directory, Using Microsoft Active Directory
	Amazon EC2, Using dynamic instances
	architecture of, Jenkins compared to Hudson, Should I Use Jenkins or Hudson?
	Artifactory, Deploying to an Enterprise Repository Manager, Plugin Support
	Audit Trail, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions
	Backup, Using the Backup Plugin
	Build Pipeline, Build Pipelines
	Build Promotion, Deploying a Java Application
	CAS, Integrating with Other Systems
	Checkstyle, Using the Checkstyle, PMD, and FindBugs Reports
	Clover, Measuring Code Coverage with Clover
	Cobertura, Installing the Cobertura code coverage plugin
	Copy Artifact, Copying Artifacts, Deploying a Java Application, Deploying a version from a previous Jenkins build
	Coverage Complexity Scatter Plot, Reporting on Code Complexity
	Crowd, for Atlassian Crowd, Using Atlassian Crowd
	Dependency Graph View, Dependency Graphs
	Deploy, Deploying to an Application Server, Using the Deploy plugin, Using the Deploy plugin, Deploying a version from a previous Jenkins build
	Deploy Websphere, Deploying to an Application Server, Using the Deploy plugin
	Disk Usage, Using the Disk Usage Plugin, Using the Disk Usage Plugin
	DocLinks, Automated Acceptance Tests
	Eclipse, Desktop Notifiers
	Email-ext, More Advanced Email Notification, More Advanced Email Notification
	Extended Read Permission, Project-based Security
	FindBugs, Using the Checkstyle, PMD, and FindBugs Reports
	Gerrit Trigger, Gerrit Trigger
	Git, Setting Up Git, Setting Up Git, Installing the plugin, SSH key setup
	GitHub, GitHub plugin
	HTML Publisher, Automated Acceptance Tests, Automated Acceptance Tests
	installing, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics
	Instant Messaging, Instant Messaging
	IRC, IM Notification using IRC, IRC Notification
	Jabber Notifier, IM Notification with Jabber
	Jenkins M2 Extra Steps, Extra Build Steps in Your Maven Build Jobs
	JobConfigHistory, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions
	Locks and Latches, Locks and Latches
	managing, The Configuration Dashboard—The Manage Jenkins Screen
	Maven Jenkins, Generating Your Maven Build Jobs Automatically, Freestyle Jobs
	Maven Release, Managing Maven Releases with the M2Release Plugin
	MSBuild, Building Projects with Visual Studio MSBuild
	MSTest, Building Projects with Visual Studio MSBuild
	Nabaztag, Extreme Feedback Devices
	NAnt, Building Projects with NAnt
	Parameterized Build, Parameterized Build Jobs
	Parameterized Trigger, Parameterized Triggers, Plugin Support, Deploying a version from a previous Jenkins build
	PMD, Using the Checkstyle, PMD, and FindBugs Reports
	Promoted Builds, Build Promotions
	Publish Over, Deploying Scripting-based Applications Like Ruby and PHP
	Role Strategy, Role-based Security
	Script Security Realm, Integrating with Other Systems, Integrating with Other Systems
	SFEE, Integrating with Other Systems
	Sounds, Making Noise
	Speaks, Making Noise
	Task Scanners, Reporting on Open Tasks
	Thin Backup, More Lightweight Automated Backups
	Tray Application plugin, Desktop Notifiers, Desktop Notifiers
	upgrading, Upgrading Your Jenkins Installation
	Violations, Reporting on Code Quality Issues with the Violations Plugin, Working with Maven Build Jobs
	xUnit, Configuring Test Reports in Jenkins

	plugins directory, What’s in the Jenkins Home Directory
	PMD, PMD/CPD, PMD/CPD, Using the Checkstyle, PMD, and FindBugs Reports
	PMD plugin, Using the Checkstyle, PMD, and FindBugs Reports
	Prepare for Shutdown screen, The Configuration Dashboard—The Manage Jenkins Screen
	processors, build server requirements for, Preparing a Build Server for Jenkins
	project-based security, Project-based Security, Project-based Security
	project-level permissions, in role-based security, Role-based Security
	Promoted Builds plugin, Build Promotions
	promotions, Build Pipelines and Promotions, Build Promotions, Build Promotions
	properties, Configuring Global Properties, Configuring Global Properties, Adapting Your Builds to Work with Parameterized Build
 Scripts
		build parameters as, Adapting Your Builds to Work with Parameterized Build
 Scripts
	global, Configuring Global Properties, Configuring Global Properties

	proxy, configuring, Configuring a Proxy, Configuring a Proxy
	Publish Over plugins, Deploying Scripting-based Applications Like Ruby and PHP

Q
	quiet period before build starts, Configuring the System Environment, Advanced Project Options

R
	radiators, information, Build Radiators, Build Radiators
	regression tests, Introduction (see functional (regression) tests)
	Reload Configuration from Disk screen, The Configuration Dashboard—The Manage Jenkins Screen
	remote service, starting slave nodes as, Starting a Windows Slave as a Remote Service
	reporting, Phase 4—Enter the Metrics, Phase 4—Enter the Metrics, Your First Jenkins Build Job, Your First Build Job in Action, Your First Build Job in Action, More Reporting—Displaying Javadocs, More Reporting—Displaying Javadocs, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics, Reporting on Test Results, Reporting on Test Results, Configuring Test Reports in Jenkins, Configuring Test Reports in Jenkins, Displaying Test Results, Displaying Test Results, Interpreting code coverage metrics, Interpreting code coverage metrics, Measuring Code Coverage with Clover, Automated Acceptance Tests, Automated Acceptance Tests, Automated Performance Tests with JMeter, Automated Performance Tests with JMeter, RSS Feeds, RSS Feeds, Reporting on Code Quality Issues with the Violations Plugin, Working with Maven Build Jobs, Using the Checkstyle, PMD, and FindBugs Reports, Using the Checkstyle, PMD, and FindBugs Reports, Using the Checkstyle, PMD, and FindBugs Reports, Reporting on Open Tasks, Reporting on Open Tasks, Aggregating Test Results, Aggregating Test Results
		acceptance test results, Automated Acceptance Tests, Automated Acceptance Tests
	code coverage metrics, Phase 4—Enter the Metrics, Adding Code Coverage and Other Metrics, Adding Code Coverage and Other Metrics, Interpreting code coverage metrics, Interpreting code coverage metrics, Measuring Code Coverage with Clover
		from Clover, Measuring Code Coverage with Clover
	from Cobertura, Interpreting code coverage metrics, Interpreting code coverage metrics

	code quality metrics, Phase 4—Enter the Metrics, Reporting on Code Quality Issues with the Violations Plugin, Working with Maven Build Jobs, Using the Checkstyle, PMD, and FindBugs Reports, Using the Checkstyle, PMD, and FindBugs Reports, Using the Checkstyle, PMD, and FindBugs Reports, Reporting on Open Tasks, Reporting on Open Tasks
		with Checkstyle, Using the Checkstyle, PMD, and FindBugs Reports
	with FindBugs, Using the Checkstyle, PMD, and FindBugs Reports
	open tasks, Reporting on Open Tasks, Reporting on Open Tasks
	with PMD, Using the Checkstyle, PMD, and FindBugs Reports
	Violations plugin for, Reporting on Code Quality Issues with the Violations Plugin, Working with Maven Build Jobs

	Javadocs API documentation, More Reporting—Displaying Javadocs, More Reporting—Displaying Javadocs
	performance test results, Automated Performance Tests with JMeter, Automated Performance Tests with JMeter
	test results, Your First Jenkins Build Job, Your First Build Job in Action, Your First Build Job in Action, Reporting on Test Results, Reporting on Test Results, Configuring Test Reports in Jenkins, Configuring Test Reports in Jenkins, Displaying Test Results, Displaying Test Results, RSS Feeds, RSS Feeds, Aggregating Test Results, Aggregating Test Results
		aggregating, Aggregating Test Results, Aggregating Test Results
	configuring, Configuring Test Reports in Jenkins, Configuring Test Reports in Jenkins
	displaying, Displaying Test Results, Displaying Test Results
	JUnit reports, Your First Jenkins Build Job, Reporting on Test Results, Reporting on Test Results
	in RSS feeds, RSS Feeds, RSS Feeds

	Role Strategy plugin, Role-based Security
	role-based security, Role-based Security, Role-based Security
	RSS feeds, of build results, RSS Feeds, RSS Feeds
	Ruby applications, Building Projects with Ruby and Ruby on Rails, Building Projects with Ruby and Ruby on Rails, Deploying Scripting-based Applications Like Ruby and PHP, Deploying Scripting-based Applications Like Ruby and PHP
	Ruby on Rails projects, Building Projects with Ruby and Ruby on Rails, Building Projects with Ruby and Ruby on Rails, Database Updates
	Run parameters, More Advanced Parameter Types

S
	SCM (Source Code Management), Your First Jenkins Build Job, Configuring Source Code Management, GitHub plugin
		(see also version control systems)

	Script Console screen, The Configuration Dashboard—The Manage Jenkins Screen
	Script Security Realm plugin, Integrating with Other Systems, Integrating with Other Systems
	scripting-based applications, deploying to application
 server, Deploying Scripting-based Applications Like Ruby and PHP, Deploying Scripting-based Applications Like Ruby and PHP
	scripts, Shell-Scripting Language, Shell-Scripting Language, Ant Build Steps, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command, Running Groovy Scripts, Running Groovy Scripts, Building Projects in Other Languages, Integrating with Other Systems, Adapting Your Builds to Work with Parameterized Build
 Scripts, Adapting Your Builds to Work with Parameterized Build
 Scripts, The Deployment Script
		(see also Ant; Maven)
	batch scripts, Shell-Scripting Language, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command
	custom authentication scripts, Integrating with Other Systems
	deployment script, The Deployment Script
	Groovy scripts, Running Groovy Scripts, Running Groovy Scripts
	languages supported, Building Projects in Other Languages
	parameterized, Adapting Your Builds to Work with Parameterized Build
 Scripts, Adapting Your Builds to Work with Parameterized Build
 Scripts
	shell scripts, Shell-Scripting Language, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command

	security, Introduction, Simple Security in Jenkins, Activating Security in Jenkins, Activating Security in Jenkins, Activating Security in Jenkins, Simple Security in Jenkins, Simple Security in Jenkins, Simple Security in Jenkins, Simple Security in Jenkins, Using Jenkins’s Built-in User Database, Using Jenkins’s Built-in User Database, Using Jenkins’s Built-in User Database, Using an LDAP Repository, Using an LDAP Repository, Using Microsoft Active Directory, Using Microsoft Active Directory, Using Unix Users and Groups, Delegating to the Servlet Container, Using Atlassian Crowd, Using Atlassian Crowd, Integrating with Other Systems, Integrating with Other Systems, Integrating with Other Systems, Integrating with Other Systems, Matrix-based Security, Help! I’ve locked myself out!, Project-based Security, Project-based Security, Role-based Security, Role-based Security
		authorization, Activating Security in Jenkins, Simple Security in Jenkins, Simple Security in Jenkins, Matrix-based Security, Help! I’ve locked myself out!, Project-based Security, Project-based Security, Role-based Security, Role-based Security
		matrix-based security, Matrix-based Security, Help! I’ve locked myself out!
	no restrictions on, Simple Security in Jenkins, Simple Security in Jenkins
	project-based security, Project-based Security, Project-based Security
	role-based security, Role-based Security, Role-based Security

	enabling, Activating Security in Jenkins
	security realms, Activating Security in Jenkins, Simple Security in Jenkins, Simple Security in Jenkins, Using Jenkins’s Built-in User Database, Using Jenkins’s Built-in User Database, Using Jenkins’s Built-in User Database, Using an LDAP Repository, Using an LDAP Repository, Using Microsoft Active Directory, Using Microsoft Active Directory, Using Unix Users and Groups, Delegating to the Servlet Container, Using Atlassian Crowd, Using Atlassian Crowd, Integrating with Other Systems, Integrating with Other Systems, Integrating with Other Systems, Integrating with Other Systems
		Atlassian Crowd, Using Atlassian Crowd, Using Atlassian Crowd
	CAS, Integrating with Other Systems
	customizing, Integrating with Other Systems, Integrating with Other Systems
	enabling sign-ups, Simple Security in Jenkins
	enabling user sign-ups, Using Jenkins’s Built-in User Database
	Jenkins internal user database, Simple Security in Jenkins, Using Jenkins’s Built-in User Database, Using Jenkins’s Built-in User Database
	LDAP repository, Using an LDAP Repository, Using an LDAP Repository
	Microsoft Active Directory, Using Microsoft Active Directory, Using Microsoft Active Directory
	Servlet container, Delegating to the Servlet Container
	SFEE, Integrating with Other Systems
	Unix users and groups, Using Unix Users and Groups

	Servlet container, Running Jenkins as a Stand-Alone Application, Delegating to the Servlet Container
		as security realm, Delegating to the Servlet Container
	running Jenkins stand-alone using, Running Jenkins as a Stand-Alone Application

	SFEE (Source Forge Enterprise Edition), Integrating with Other Systems
	shell scripts, Shell-Scripting Language, Executing a Shell or Windows Batch Command, Executing a Shell or Windows Batch Command
	slave machines, Preparing a Build Server for Jenkins, Configuring a Slave Axis, Configuring a Slave Axis, The Jenkins Distributed Build Architecture, Starting a Windows Slave as a Remote Service
		for distributed
 builds, Preparing a Build Server for Jenkins, The Jenkins Distributed Build Architecture, Starting a Windows Slave as a Remote Service
	for multiconfiguration build
 jobs, Configuring a Slave Axis, Configuring a Slave Axis

	smartphones, notifications to, Notification via Notifo, Notification via Notifo
	smoke tests, Smoke Tests
	SMS messages, notifications using, SMS Notification, SMS Notification
	SNAPSHOT dependencies, Maven Build Steps, Building Whenever a SNAPSHOT Dependency Is Built, Building Whenever a SNAPSHOT Dependency Is Built
	SNAPSHOT versions, Working with Subversion
	Sonar, Scheduled Build Jobs, Introduction, Integrating with Sonar, Integrating with Sonar
		code quality metrics with, Introduction, Integrating with Sonar, Integrating with Sonar
	frequency of builds, Scheduled Build Jobs

	Sonatype tools, From Hudson to Jenkins—A Short History, Should I Use Jenkins or Hudson?
	Sounds plugin, Making Noise
	sounds, in notifications, Making Noise
	source code browsers, Working with Subversion, Repository browser
		with Git, Repository browser
	with Subversion, Working with Subversion

	Source Code Management, Your First Jenkins Build Job (see SCM; version control systems)
	Source Forge Enterprise Edition, Integrating with Other Systems (see SFEE)
	Speaks plugin, Making Noise
	sponsors for this book, Book Sponsors
	SSH keys, Configuring SSH Keys, SSH key setup
	SSH, starting slave node using, The Master Starts the Slave Agent Using SSH, The Master Starts the Slave Agent Using SSH
	stand-alone application, Running Jenkins as a Stand-Alone Application, Running Jenkins as a Stand-Alone Application, Upgrading Your Jenkins Installation
		running Jenkins as, Running Jenkins as a Stand-Alone Application, Running Jenkins as a Stand-Alone Application
	upgrading Jenkins as, Upgrading Your Jenkins Installation

	start page, Starting Up Jenkins (see home page)
	String parameters, Creating a Parameterized Build Job
	Subversion, Setting Up Git, Configuring Subversion, Working with Subversion, Working with Subversion, Working with Subversion, Working with Subversion, Working with Subversion, Working with Subversion, Building from a Subversion Tag, Building from a Subversion Tag
		configuring, Configuring Subversion
	excluding commit messages from triggering
 builds, Working with Subversion
	excluding regions from triggering builds, Working with Subversion
	excluding users from triggering builds, Working with Subversion
	with freestyle build jobs, Working with Subversion, Working with Subversion
	Jenkins supporting, Setting Up Git
	source code browsers for, Working with Subversion
	tags, building against, Building from a Subversion Tag, Building from a Subversion Tag

	SVN_REVISION environment variable, Using Jenkins Environment Variables in Your Builds
	System Information screen, The Configuration Dashboard—The Manage Jenkins Screen
	System Log screen, The Configuration Dashboard—The Manage Jenkins Screen

T
	Task Scanners plugin, Reporting on Open Tasks
	TDD (Test Driven Development), Introduction
	Test Result Trend graph, Your First Build Job in Action
	Test-Driven development, Phase 5—Getting More Serious About Testing
	Test::Unit, Automating Your Unit and Integration Tests
	TestNG, Automating Your Unit and Integration Tests, Configuring Test Reports in Jenkins, Ignoring Tests
	tests, Phase 3—Nightly Builds and Basic Automated Tests, Phase 5—Getting More Serious About Testing, Phase 6—Automated Acceptance Tests and More Automated Deployment, Phase 6—Automated Acceptance Tests and More Automated Deployment, Your First Jenkins Build Job, Your First Build Job in Action, Your First Build Job in Action, Reporting on Test Results, Reporting on Test Results, Introduction, Automating Your Unit and Integration Tests, Introduction, Introduction, Introduction, Introduction, Introduction, Automating Your Unit and Integration Tests, Automating Your Unit and Integration Tests, Automating Your Unit and Integration Tests, Automating Your Unit and Integration Tests, Configuring Test Reports in Jenkins, Configuring Test Reports in Jenkins, Configuring Test Reports in Jenkins, Configuring Test Reports in Jenkins, Displaying Test Results, Displaying Test Results, Displaying Test Results, Displaying Test Results, Ignoring Tests, Ignoring Tests, Automated Acceptance Tests, Automated Acceptance Tests, Automated Performance Tests with JMeter, Automated Performance Tests with JMeter, Help! My Tests Are Too Slow!, Run Your Tests in Parallel, Aggregating Test Results, Aggregating Test Results, Smoke Tests, Automating Your Tests with Maven, Automating Your Tests with Maven, Automating Your Tests with Ant, Automating Your Tests with Ant
		acceptance tests, Phase 6—Automated Acceptance Tests and More Automated Deployment, Introduction, Automated Acceptance Tests, Automated Acceptance Tests
	automating, Phase 3—Nightly Builds and Basic Automated Tests, Phase 6—Automated Acceptance Tests and More Automated Deployment, Introduction, Automating Your Unit and Integration Tests, Automating Your Tests with Maven, Automating Your Tests with Maven, Automating Your Tests with Ant, Automating Your Tests with Ant
		with Ant, Automating Your Tests with Ant, Automating Your Tests with Ant
	with Maven, Automating Your Tests with Maven, Automating Your Tests with Maven

	in freestyle build jobs, Configuring Test Reports in Jenkins
	functional (regression) tests, Introduction, Automating Your Unit and Integration Tests
	ignoring, Ignoring Tests, Ignoring Tests
	integration tests, Introduction, Automating Your Unit and Integration Tests
	in Maven build jobs, Configuring Test Reports in Jenkins
	performance of, Displaying Test Results, Displaying Test Results, Help! My Tests Are Too Slow!, Run Your Tests in Parallel
	performance tests, Automated Performance Tests with JMeter, Automated Performance Tests with JMeter
	reports from, Your First Jenkins Build Job, Your First Build Job in Action, Your First Build Job in Action, Reporting on Test Results, Reporting on Test Results, Configuring Test Reports in Jenkins, Configuring Test Reports in Jenkins, Displaying Test Results, Displaying Test Results, Aggregating Test Results, Aggregating Test Results
		aggregating, Aggregating Test Results, Aggregating Test Results
	configuring, Configuring Test Reports in Jenkins, Configuring Test Reports in Jenkins
	displaying, Displaying Test Results, Displaying Test Results
	JUnit reports, Your First Jenkins Build Job, Reporting on Test Results, Reporting on Test Results

	smoke tests, Smoke Tests
	Test-Driven development, Phase 5—Getting More Serious About Testing
	unit tests, Introduction, Automating Your Unit and Integration Tests
	web tests, Introduction, Automating Your Unit and Integration Tests

	Thin Backup plugin, More Lightweight Automated Backups
	Tomcat application server, Starting Up Jenkins, Deploying a Java Application, Deploying a version from a Maven repository
		deploying Java applications to, Deploying a Java Application, Deploying a version from a Maven repository
	deploying Jenkins using, Starting Up Jenkins

	Tomcat Servlet container, Delegating to the Servlet Container
	Tray Application plugin, Desktop Notifiers, Desktop Notifiers

U
	U environment variable, Integrating with Other Systems
	Ubuntu Enterprise Cloud, Using dynamic instances
	unit tests, Introduction, Automating Your Unit and Integration Tests
	Unix, Downloading and Installing Jenkins, Using Unix Users and Groups
		(see also specific Unix platforms)
	users and groups, as security realm, Using Unix Users and Groups

	unstable builds, Adding Code Coverage and Other Metrics, Triggering a Build Job Once Another Build Job Has
 Finished, Archiving Build Results, Notifications, Building Other Projects, Displaying Test Results, Reporting on code coverage in your build, Email Notification, More Advanced Email Notification, Working with Freestyle Build Jobs, Using the Checkstyle, PMD, and FindBugs Reports
		criteria for, Archiving Build Results, Reporting on code coverage in your build, Working with Freestyle Build Jobs, Using the Checkstyle, PMD, and FindBugs Reports
	indicator for, Adding Code Coverage and Other Metrics
	notifications for, Notifications, Email Notification, More Advanced Email Notification
	triggering another build job after, Triggering a Build Job Once Another Build Job Has
 Finished, Building Other Projects

	updates directory, What’s in the Jenkins Home Directory
	upgrades, Upgrading Your Jenkins Installation, Upgrading Your Jenkins Installation
	user database, Simple Security in Jenkins, Simple Security in Jenkins, Using Jenkins’s Built-in User Database, Using Jenkins’s Built-in User Database
		(see also security, security realms)

	userContent directory, What’s in the Jenkins Home Directory
	users, Preparing a Build Server for Jenkins, Working with Subversion, Excluded users, Simple Security in Jenkins, Using Jenkins’s Built-in User Database, Setting up matrix-based security, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions, Claiming Builds
		administrator, Using Jenkins’s Built-in User Database, Setting up matrix-based security
		for Jenkins internal user
 database, Using Jenkins’s Built-in User Database
	for matrix-based security, Setting up matrix-based security

	auditing actions of, Auditing—Keeping Track of User Actions, Auditing—Keeping Track of User Actions
	authorization for, Simple Security in Jenkins (see authorization)
	claiming failed builds, Claiming Builds
	excluding from triggering builds, Working with Subversion, Excluded users
	for Jenkins, on build server, Preparing a Build Server for Jenkins

	users directory, What’s in the Jenkins Home Directory

V
	version control systems, Preparing Your Environment, Your First Jenkins Build Job, Configuring Your Version Control Tools, Configuring CVS, Configuring Your Version Control Tools, Configuring CVS, Configuring Your Version Control Tools, Configuring Source Code Management, Polling the SCM, Triggering Builds Remotely, Triggering Builds Remotely
		(see also CVS; Git; Subversion)
	configuring, Your First Jenkins Build Job, Configuring Your Version Control Tools, Configuring CVS
	polling for changes to trigger build, Polling the SCM
	remotely triggering builds from, Triggering Builds Remotely, Triggering Builds Remotely
	supported by Jenkins, Configuring Your Version Control Tools, Configuring CVS, Configuring Source Code Management

	version numbers, Maven, Managing Maven Releases with the M2Release Plugin, Managing Maven Releases with the M2Release Plugin
	Violations plugin, Reporting on Code Quality Issues with the Violations Plugin, Working with Maven Build Jobs
	virtual machine, for build server, Preparing a Build Server for Jenkins, Add More Hardware
	Visual Studio MSBuild, Building Projects with Visual Studio MSBuild, Building Projects with Visual Studio MSBuild

W
	Wakaleo Consulting (sponsor), Wakaleo Consulting
	war directory, What’s in the Jenkins Home Directory
	WAR file, installing Jenkins from, Starting Up Jenkins
	web tests, Introduction, Automating Your Unit and Integration Tests
	WebSphere Application Server, Deploying to an Application Server, Using the Deploy plugin
	Windows, Downloading and Installing Jenkins
		installation package for Jenkins, Downloading and Installing Jenkins

	Windows services, Installing Jenkins as a Windows Service, Installing Jenkins as a Windows Service, Installing a Jenkins Slave as a Windows Service, Installing a Jenkins Slave as a Windows Service, Starting a Windows Slave as a Remote Service
		installing Jenkins as, Installing Jenkins as a Windows Service, Installing Jenkins as a Windows Service
	installing slave node as, Installing a Jenkins Slave as a Windows Service, Installing a Jenkins Slave as a Windows Service
	starting slave nodes as, Starting a Windows Slave as a Remote Service

	WMI (Windows Management Instrumentation), Starting a Windows Slave as a Remote Service
	workspace directory, What’s in the Jenkins Home Directory
	WORKSPACE environment variable, Using Jenkins Environment Variables in Your Builds

X
	XML format for test reports, Your First Jenkins Build Job (see JUnit reports)
	Xu, Juven (contributor), Contributors
	xUnit, Automating Your Unit and Integration Tests, Configuring Test Reports in Jenkins
	xUnit plugin, Configuring Test Reports in Jenkins

About the Author
John Ferguson Smart, director of Wakaleo Consulting, helps organizations optimize their Java development practices and infrastructure. He provides training and mentoring in agile development and testing practices such as Continuous Integration, Test Driven Development, Build Automation, and Continuous Deployment.

Colophon
The animal on the cover of Jenkins: The Definitive
 Guide is an ornate chorus frog (Pseudacris
 ornata). These small amphibians, only 1–1.5 inches long, can be
 found on the coastal plains of North America from North Carolina to central
 Florida and eastern Louisiana. They prefer areas of shallow water without
 dense vegetation, such as ponds, roadside ditches, and flooded
 meadows.
The coloration of ornate chorus frogs varies depending on locale, and
 individuals can be predominantly black, white, brown, red, green, or some
 variation thereof. All specimens, though, display a dark stripe or
 collection of spots running from the nostril to the shoulder through the
 eye, and most have various other spots or stripes as well. The species
 breeds from November to March, and the calls of males can be heard from in
 or near areas of shallow water.
Ornate chorus frogs also owe their name to the sound of their mating
 call: Pseudacris comes from the ancient Greek for
 “false locust.” The name was assigned in 1836 by American naturalist John
 Edwards Holbrook after he observed that the rapid shrill sound resembled
 that made by the infamous insect.
The cover image is from Cassell’s Natural
 History. The cover font is Adobe ITC Garamond. The text font is
 Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
 font is LucasFont’s TheSansMonoCondensed.

OEBPS/httpatomoreillycomsourceoreillyimages864893.png
Duild

Invoke top-level Maven targets

Maven Version [Maven 2.2.1

Goals erity

B}

Post-build Actions

()

O Publish Javadoc
O Archive the artifacts.

0 Aggregate downstream test results

4 Publish JUnit test result report

Test report XMLS < targat/surefire-reports/* xeml

Fleset ncludes'sectin that specifies the generated raw XML report les,such as
myprojectarge/test-reports/ . Basedir of th fleset s the woriszace roet.

Build other projects

o
0 Record fingerprints of files to track usage
O E-mail Notification

d

®® ®

®® ®

OEBPS/httpatomoreillycomsourceoreillyimages865289.png
Jenking » game-of-lfe-redeploy-to-test

A Back o Dashboard Project game-of-life-redeploy-to-test
O, stots This build requires parameters:
o ‘GAME_OF_LIFE_REL ' Latest successful build
B worksoace Cotest saved build (marked ‘keep forever’)
Upstream build that rggered this job
() nuid tow Specified b permalink
Specifc build
© pelete protect Copy fom WORKSPACE oflatest completd buld

Confiauta

&

OEBPS/httpatomoreillycomsourceoreillyimages865307.png
Project name [gameofiife-default

Description

 Discard Old Builds

Days to keep builds.

8ot empty, buid records are ony ket up t this number of days.

Max # of buids to keep. 5

£t ematy, only up tothis number of bk records are kept

Days to keep artifacts

£t empty, artfacts from bulds oder than this numise of days wil e deleted, but the log, history, reports, etc for the
i il ¢ kept

Max # of builds to keep with artifacts.

ek amrty. ool up bo this mumber of bulkds heve thelr srtilacts retained

OEBPS/httpatomoreillycomsourceoreillyimages864729.png
(4)2)= (@) () () (& nupiocatnost:8080;50/gameotfe-defautt/c) 75 v) (B

Invoke top-level Maven targets

Go2ls [clean test

Invoke top-level Maven targets

L e —

OEBPS/httpatomoreillycomsourceoreillyimages864969.png
Authors

on

O Legacy mode

O Project-based Matrix Authorization Strategy
O Logged-in users can do anything

© Anyone can do anything

© Matrix-based security

Overall Siave Job Run
‘AdministerReadConfigureDeleteCreateDelete ConfigureReadExtendedReadBuildWorkspaceReleaseDeleteUpdateCreat
ROLE_HUDSONADMIN &

ROLE_HUDSONREADER

user/group

O& &
0®&
O®&
oo
oo
o0&
oo
oo
0o

oo
oo
o0&
oo
oo

=]
Anonymous o

N

OEBPS/httpatomoreillycomsourceoreillyimages865003.png
‘ Assign Roles

Global roles

User/group admin read-only
& admiistrotor
& authenticated
& johnsmart

Or0®&
oo®rO
EEEE

Anonymous

User/group to add

Project roles

User/group deployment-developer
& bob.
& joe
& rate
& rob
Anonymous

ooo®mO

me-of-life-developer game-of-|

orO®O

-run-build production-deployment uat-deployment

oorm0OO
0000 ®
0000 ®

[<< < 4]

User/group to add

OEBPS/httpatomoreillycomsourceoreillyimages865129.png
Project parameterized-build

This build requires parameters:

VERSION 133

PASSWORD

coLor ="

((Choose File) No file chosen
RUN_FULL TESTS &

GAME_OF_LIFE_J0B (‘game-of-ife #157 14)

OEBPS/httpatomoreillycomsourceoreillyimages865177.png
Post-bul

'd Actions

[Scan workspace for open tasks
O Scan for compiler warnings

() Publish JUnit test result report
O Publish Javadoc

@ Build other projects

Projects t0 build |pfoenix-performance-tests, phoenix-compatiblty-tests, phoenix-load-tests

7] Trigger even if the build is unstable

® ®®®

OEBPS/httpatomoreillycomsourceoreillyimages864687.png
enkins
st o erness
[%2dd deseription

Jening
& Newn

Welcame to Jenkinst Please reate new fob to get started.
. Manage Jenkins
& peosie
(= euatiatery

Executor Status
Status

1 1dle
2 1de

Jenkins ver. 1.410

Page generated: May 5, 2011 7:21:04 AM

OEBPS/httpatomoreillycomsourceoreillyimages864691.png.jpg
enking
& e Home directory userssohnsmarBrojects/Demos/hucdson-demofjeing-data

®e

J Manage Jenking
', Manage Jenk System Message

Build Queue. —
No builds in the queve. # of executors B }

Quietperiod s

SCM checkout retry count

O Enable security

() Prevent Cross Site Request Forgery exploits

=B]
CX X NN

@ Help make Jenkins better by sending anonymous usage statistics and crash reports to the Jenkins project.

Global properties

O Environment variables

30K
DK installations T
st o 10€ Instatations on ths system
ant
Ant installations e
Ust of ant nsafations an i system.
Maven
Maven installations e

Maven Project Configuration

Globat aven_oes ®e

OEBPS/httpatomoreillycomsourceoreillyimages864895.png
o This plugin provides an eXtreme Feedback Panel that can be used to expose the status of a | 1.0.8
selected number of Jobs.
@ | xunitplsn oot

“This plugin allows you to publish testing tools test result report.

Buid Toolke

OEBPS/httpatomoreillycomsourceoreillyimages865295.png
Snapshat

Snapshot deployments

updhates

Maven enterprise
repository

Developers

Source
code changes

Automated
updates and builds

SCM server

OEBPS/httpatomoreillycomsourceoreillyimages864721.png.jpg
© pte s

stes Test Result (no

=
5

Permalinks

Q #3 Eeb7.201072658am
@ #2 feb6 20010212708
© #1 Fab620100:59:270m

© Last bui (2), 45 zec 300
i (431, 45 sec 200

2}

1
1
2
1

el ula (43,45 sec a0
Last faleg buid (42),9 e 6 min 290

ST T

Test Result Trend

ust show fsures) enarae

OEBPS/httpatomoreillycomsourceoreillyimages865109.png
Home I8 gameofife Configuration Login

e r——

et Version 0.0.64-SNAPSHOT - Sun, 05 Dec 2010 08:42 - profle Wakaleo

Components B

ana::m don ;;-‘; of code Classes Rules compliance Violations

Time machine i ;’ 86.7% 16

Clouds 419 lines & packages Usa /i) Blocker 0

. 142 statements & 47 methods & e, 2 Ciitcal 5 —

o 7fles +1accessors .

Hotspots . aMajor 47

Libraries @ Minor 7

N Comments. Duplications por. " Vi 0
pos ~N 1.2% 0.0%
nar 4lines Olines
5.9% docu. API ¥ 0blocks Package tangle index
32 undocu. API Ofiles 0.0%
0 commented LOCs B
c it o Lcoms RFC
1.9 /method 1.6 /class 17 A fciass
0 28.6% fles having LCOMd>1
12.4 Ajdass ., . "
124 A5 M mma
Total: 87 4 : : :
© Methods O Classes
Code coverage Test success TR 5w Yo swmwnw
90.3% £ 100.0%
90.6% line coverage * 0 failures Total Quali
Oermors ality

89.5% branch coverage * .
Btusto & 91.3% 100.0% Architecture
22 skipped 93.1% Design ¥
222ms & 92.2% Test *

79.9% Code

OEBPS/httpatomoreillycomsourceoreillyimages864717.png.jpg
Hudson ET—

Hudson » gameofifecefaut » £2 » Tes Result

-~ Test Resull
‘est Result
O, sttus
= coonaes e
120 tests (£0)
BB Consle vt 0 (40
Bt =1
T tis bt
u All Failed Tests
7] zest nesue
@ provous e TestName Durston Age
= . e T o0 1
w1
w1
w1
w1
2> comcinhudson camealfe o UnvereTet eI TnoNeghbour WL velsTheesGenersion | 000101
2> comcinhudsoncameaifc doman UnverselestaLeCEIWIATveehgabbnsWiLvei T w1
222 comcinibutson oot domain T atseCalFour o 8 w1
2> com.cinh s, oo o, UiveeTet eI b WDl TheNes Genrsion w1
> comcintshudson ameaic domain I Thceteiatbours et v w1
2 comcinthugion ot domain et aiverzeContpusanSuccssisGenccton oo 1
All Tests
Package Duration Fai (@ skip (@) Total (am).

o o o 2ms 1| m o 2

OEBPS/httpatomoreillycomsourceoreillyimages864837.png
Post-n

O pubish Javadoc

O Avchive the artfacts

([Aggregate downstream test results
 Pubish JUnit test result report

Test report XMLs

== target/surefire-reports/* xml

Ellset incluses' seting that specifiesthe ganerated raw XML repor flles, such 2 myproject/targettest repats/ X'
Bcedr o the flase s the noricpsce ot

[Retain long standard output/error

®® ®

OEBPS/httpatomoreillycomsourceoreillyimages865169.png
enkins

Jenking » parameterized-builds » acceptance-test-suite

£ Backto Dashboard

O status Project acceptance-test-suite

= Changes

@ Build Now Configuration Matrix
© oobtesrons fexplorer rfox evome|

% outue =6 oo
I ependency Graon [me [@ (@] @]
- Buitd istory (eena)| [uinsons| @ [@ [@

@ #15 Feb12,20113:05:12PM

OEBPS/httpatomoreillycomsourceoreillyimages864685.png
13/03/2010 9:40:38 PM hudson.model.Hudson$4 onAttainel |
INFO: Loaded all jobs

13/03/2010 9:40:39 PM hudson.model.Hudson$4 onAttaine
INFO: Complete zation

13/03/2010 9:40:39 PM hudson.TcpSlaveAgentListener <inif
INFO: INLP slave agent listener started on TCP port 58573

OEBPS/httpatomoreillycomsourceoreillyimages864701.png
ALILLES
Jenkins » All

& New Job

. Manege Jenkins
& peosle

= Buid istory

Build Queue
No builds in the queue.

ick to go back, hold to see history|

30 n2me [game-of-ife-dsfault

O Build a free-style software project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build
System, and this can be even used for something other than software build.

O Build a maven2/3 project
Build a maven2 project. Jenkins takes advantage of your POM files and drastically reduces the

configuration.
O Monitor an external job

“This type of job allows you to record the execution of a process run outside Jenkins, even on a remote
machine. This is designed so that you can use Jenkins as a dashboard of your existing automation

system. See the documentation for more details
O Build multi-configuration project

Suitable for projects that need a large number of different configurations, such s testing on multiple

environments, platform-specific builds, etc.

ok

OEBPS/httpatomoreillycomsourceoreillyimages865237.png
EXTEN) ohn | iog out

Node name yiavart
© bumb Slave

'Adds 2 plain, dumb slave to Jenkins. This is called *dumb* because Jenkins doesn't provide higher level of integration with
these slaves, such as dynamic provi Select this type if no other slave types apply — for example such a5 when you
are adding 3 physical computer, virtual machines managed outside Jenkins, etc.

No builds in the queve.

OEBPS/httpatomoreillycomsourceoreillyimages864919.png
Code Coverage
Classes 71% Conditionals 85% Files 71% Lines 81% Methods 76%
Packages 50%

100
B
[
n [—Classes
& |— Conditionals
® 5 | Files
o | Lines
;: |—Methods
» |—Packages
Ly g

¥
#
#
a1
s
16|
o)
2
25
s29)
-
1
s
7]
”
3

OEBPS/httpatomoreillycomsourceoreillyimages865279.png
Copy artifacts from another project

Project name [gamaofife-default/com wakaleo.gameoflfes gameofife-web

Which build [Latest successful build

O stable build only

Artifacts to copy 5/ war

Target directory

 Flatten directories () Optional

OEBPS/httpatomoreillycomsourceoreillyimages865291.png
Project game-of-life-redeploy-to-test
This build requires parameters:
‘GAME_OF_LIFE_RELEASE specified by permalink)
ermain)
Las stable bui

Versiontodey Last successful build

it e bt
Gt b buld

Last unsuccessful build

OEBPS/httpatomoreillycomsourceoreillyimages864967.png
Security Realm

O Delegate to serviet container
© Loap

Server localnost:1389.

root DN

User search base

Group search base

Manager DN

Manager Password

© Unix user/group database

O Hudson's own user database

®® ® ® ® ® ® ® ® @®

OEBPS/httpatomoreillycomsourceoreillyimages865179.png
Jenkins » phoenix-web-tests » Dependency Graph
A Back to Dashboard
O s Dependency Graph

= Changes

riapace
e phoenix-default
i Now ()

© DettoPries

¥, Confiaure

[Dependency Graph phoenix-integration-tests

istory (trend)

[for all [} for failures

(phoenix'deployr(o—(es() (phoenix—web—(es(s)

(phoenix—compmibli(y—(es(s) (phoenix—load—(es(s) (phoenix—performance—(es(s)

OEBPS/httpatomoreillycomsourceoreillyimages864819.png
Build Triggers

) Build after other projects are built

& Poll scm

Schedule

(] Build periodically

®® ®

OEBPS/httpatomoreillycomsourceoreillyimages865085.png
Hudson)

Hudson » game-of-ife-freestyle-metrics DISABLE AUTO REFRESH

A Violations Report for build 45

Type Violations. Files in violation
checkstyle £ 6

2d 16 3

findbuas 2 2

omd 130 3
checkstyle

(trend)
200k8

#44 Dec6,20105:38:37PM 200KB

#43 Dec6,20105:26:39PM 175KB low
o Medium

m High

#42 Dec6,20104:26:20PM 157KB
#41 Dec5,20103:35:22 AM 273KB
#40 DecS, 2010 3:05:05AM 132K8
#39 Dec4,201010:13:49PM 13248
Dec4,2010 10:11:18PM 133K

#37 Dec4,201010:00:320M 2508 Iom b number 1

#36 Dec4, 2010 10:08:10 pM 250Kp || Qemeofife-core/src/mainfiave/com/wakeleo/qameofife/domain/Grid java 03 [0 30

435 Decs, 2010 1010631 o 156k || Semesfifewebysre/mai walcleo/qameott controlers/GameControllriava 027 0 2
‘asmeofife-core/sre/mainfiava/com/wakaleo/qameofife/domain/Universe.iava 018 0 18

#34 Deca :05:50 BM 156KB]

fife-c s m ife/domain/Cell fav o o

#33 Dec4,20109:52:56PM 156KB |
emeofife-core/sre/main/iava/com/wakeleo/aameoflfe/domain/GridReader ava [o

#32 Dec 2010Si56.26AM 1588 [o) oopife-core/sre/mainfiava/com/wakaleo/cameofife/domain/GridWrteriava o [

POOCOOCOOOOCOOOOCOO
.
8

P

OEBPS/httpatomoreillycomsourceoreillyimages865147.png
Jenians = parametenzed-bullds » unit-tests-bulld

2 Backto Dashboard
Q status

= Cranges

& orsnace

[Deoendency Graon

“ Build History (trend)
#7 Feb 7, 2011 10:00:15 PM 2K

#6 Feb 7, 2011 10:00:07 PM 2KE

#5 Feb7,2011 0:56:55PM 2Kg

#3 2K

#2 Feb7.2011 2K

o
o
o
@ #4 Feb7.2011 0:18:a20m 28
o
o
@ #1 Febz.2011 2xg

[for all [} for failures

Project name | ynit_tests-build

Description

O Discard Old Builds
 This build is parameterized

Choice

Name [paTaBASE

Choices

Description [Database to be used for the tests

® 0 ®

OEBPS/httpatomoreillycomsourceoreillyimages864839.png
Post-bul

Achons

O Publish Javadoc
 Archive the artifacts

Files to archive

gameoflife-web/target/ war, **/target/~.jar

Excludes

@ 0iscard all but the last successful/stable artifact to save disk space

® ® ®®

OEBPS/httpatomoreillycomsourceoreillyimages864933.png.jpg
Hudson

3 chances

B orksnace

[p Gt
7} perform Maven Rel

@ #65 13.20100:28:176M
@ #64 w3, 20053117 6m
463 2013,2010 5112017 P4
62 13,2010 4:08:17 oM
61 13,2010 3:51:17 0w
#60 2013, 2010 10:27:17 A
#59 03,2010 10:25:17 M
58 30132010 10:18:17 am
#57 20132010 10:08:17 AM.
#56 013,200 0:56:17 aM.
55 013, 2010 0:46:17 A
#54 013,200 9:36:17 AM.

©eccoe000eC

5 Build History (trend)

| Back to gameofiife-default |casyb-report |

Easyb Report

Morkspace

Last Successful Ad
© qomeoife

Recent Changes

test Test Resutl|
failures)

Downstream Projec P sections
Quameoife-metrics 4% Summary
Permalinks

-~ bdd in java can't get any easier

| stories | scenarios |
S
Specifications Summary

o o o

0 rind: ([

(G tishigna) Cwaehoase

OEBPS/httpatomoreillycomsourceoreillyimages864733.png
Hudson

Hudson » gameoflfe-default EurBLE AUTO neFRESH

2 Bock o Dashboars

0, status Project gameoflife-default

= Changes
= Test Result Trend

& orsnace w
. H
(D s o u
e i
© bektc roiea L
&, Confiaure Y
:
© e [:
s :
5 Coverage Report :
P = i

I !
. Build History (iust show failures) enlarge
@ #14 Feb13,20108:17:13AM Latest Test Result (no failures) Code Coverage
= pacases o0
-_—
@ oo/t | permalinks 1
@ #5 Feb7,2010 12:10:02pm Files 100%
B L
@ #4 Eeb7,201012:06:55 PM ® Lost stable build (#13), 5 days 7 hr.
c~ = — o
O S e bmestwGmsdslh
o mihgafm|
o I b 1216 e | retnoss
@ #1 Feb6,20109:50:27 pM Method: 97%
B e et ——————
-

OEBPS/httpatomoreillycomsourceoreillyimages865313.png
isk usage

Maven Project Configuration

& Show disk usage trend graph on the project page

Global MAVEN_OPTS

[(sae |

OEBPS/httpatomoreillycomsourceoreillyimages864935.png
™ Publish documents

Documents. Title

he Definitive Guide (PDF)

Description

Directory to archive [l gsonbook-pdf/target

O archive recursively

Directory relstive o the root o the such a5 myp Ararchive Checked, the enticedirectory
Stracture i arenved

Index file ontinuous-integration-with-hudson.pdf
‘Speciy the il to dsplay.If o value s se, then Tndex i s used.

Title Jenkins: The Definitive Guide (HTML)

Description

Directory to archive [l gzonbook-htmi/target/htm!
© archive recursively
Directory relstive o the root o the such a5 myp Ararchive Checked, the enticedirectory
Stracture i arenved

Index file index.html

‘Speciy the il to dsplay.If o value s se, then Tndex i s used.

OEBPS/httpatomoreillycomsourceoreillyimages864829.png
Execute shell

‘See the st of valisbe environment varises

OEBPS/httpatomoreillycomsourceoreillyimages865331.png
Restore Configuration

Restore options

restore backup from | 2011-03-20 21:00 B‘

OEBPS/httpatomoreillycomsourceoreillyimages865103.png
Coverage / Complexity Scatter Plot
2 method(s) in the range of coverage (90%~100%) and complexity (5~9)
Method Complexity Coverage(%) Total

createNextGeneration() : void 7 100 19
cellisOutsideBorders(int int)

boolean B 100 3

Covered
19

OEBPS/httpatomoreillycomsourceoreillyimages864821.png
@ Build other projects.

Projects to buld | gameofife-metrics

@ Trigger even if the build is unstable

OEBPS/httpatomoreillycomsourceoreillyimages865273.png
Ec2

vec

Elastic Beanstalk 3

CloudWatch | Elastic MapReduce | CloudFront CloudFormation | RDS

% Launch instance | Instance Actons
= AsiaPaciic (S0630) ¥ ||| \euying: (Al nstancel Instance Management B —
> EC2 Dashboard Name © Ing Connect Device Type
Get System Log (Devieo | Tvee
INSTANCES O | empty | @| _Get indows Admin Password m1.small
» Instances O empy | | | Create Image (35 AMI) it smal
ags b
>s) ests
s O | empty | @] chenge Security Group hestore | mi.small
netances '@ | ampy | @] Chenoe Source/Dest. Chec e
MAGES Bundie Instance (53 AMI) | mismal

OEBPS/httpatomoreillycomsourceoreillyimages864715.png.jpg
\ scorch ©
e uro nssmesn

A Backto Dashbonrg

Project gameoflife-default

\ status
= chames odd desription
e Test Result Trend
& orksoace 20
Workspsce »
(D sudnow
%
Delste prgest e 1
4, Confiqure) S
[5] subuessionsoing 1og e Tetmsat *
(11 failures / +11) o
2 suildvistory (trend) :

© 2 Eebs0101021270m Permalinks o
@ #1 Feb6 20100:5927 o

) for all) for filures

just show failures) enlarge

OEBPS/httpatomoreillycomsourceoreillyimages864737.png
Code Coverage

Cobertura Coverage Report

Trend

100

80 fr

&

n [—Classes

& |— Conditionals
® 50 | Files

@ | Lines

;: — Methods

» Packages

0

3
15!

OEBPS/httpatomoreillycomsourceoreillyimages865311.png
enkins

Jenking Euteie auro neraesn
A Back to Dashboard "
Disk usage
Builds: 167MB Workspace: 1G8
Project name ‘Workspace
udson-boolcd 168
ides-code-quali M8
thucydides-sonar e
thucydides-default e

Total 167MB 168

OEBPS/httpatomoreillycomsourceoreillyimages864983.png
©

© Matrix-based security.
user/group OVl Siave 3ol Run View scm
=2 ‘AdministerRead Configure Delete Create Delete Configure Read Build Workspace Release Delete Update Create Delete Configure Promote Tag
mowmus | O @ O 0/ 0/ 0 0O 00 O 0O 0 0 008 0 oo
¥ ¥ ¥ ¥ 98 ¥ ¥y ¥ ¥ ¥ ¥ ¥ ¥ ¥4
(2

badmnstatr @ @ @

N rrr— Y

User/group to ad

OEBPS/httpatomoreillycomsourceoreillyimages865127.png
__L.
Invoke top-level Maven targets

(2)
)

ttp://uat.acme.com/manager (V)

Maven Version [aven 2.2.1

Goals, cargo:redeploy -Diarget.version=${VERSION} -Dtomcat.manager.url

OEBPS/httpatomoreillycomsourceoreillyimages864777.png
Hudson

Hudson » game-of-lfe-default

A Back to Dashboard Project name [game-of-ife-default

Description [The iniial CI build o this project, which runs unit and integration tests every time a now change is committed. @
Note: this build should not take more than 2 minutes to run.

O Discard Old Builds.

) This build is parameterized
O Promote builds when...

O pisable.
() Execute concurrent builds if necessary (beta)

j1d (No new builds will be executed until the project is re-enabled.)

[CXCNCNCNCNC]

) Restrict where this project can be run

OEBPS/httpatomoreillycomsourceoreillyimages864779.png
Jenkins
Jenking » gameofife-default » £2 [Eeep—

A oack o et O Build #2 (Apr 27, 2011 8:08:25 PM)

= chonces

— Started 28 days ago

B console output Build Artifacts Took 1 min 4 sec
T . ot

"> Edit Build Information

OEBPS/httpatomoreillycomsourceoreillyimages865195.png
Copy artifacts from another project
Projectname Tgor e @

4 Artifacts will be copied from all modules of thi
selecting a particular module.

Which buld Latetsuccessful bud 50

Maven project;

ick the help icon to learn about

(O stable build only

Artfacs to copy (557 mar ®
Target directory ®
Fitten directories JOptional ®

OEBPS/httpatomoreillycomsourceoreillyimages865271.png
Cloud.

Amazon EC2
Region

Access Key ID

Seeret Access Key

EC2 RSA Private Key

Ams

(Asia Paciic Singapore 5O
TAKIATRI ()
SEGIN REA PRIVATE KV

MILEpAIBAAKCAQEAY VIéVTExyRev/9raYDidtLy7Mlcmue +90++ 2Fg +GQhHBWzV7Ajnls6VXyZi

a0 e
Creck
fnstance Type [GeEAULT 20
Description [upun ®
Remote FS 100t [1yar/jenkins. (2]
Remote user @
Labels ®
It Seript @

[P ———

|l

OEBPS/httpatomoreillycomsourceoreillyimages864703.png
Jenkins » gameofife-default
£ Back to Dashboerd
Q status

(= changes

[workspace

) Buitd Now

© oette roies

4, Confiqure

Build History [

[E)RSS for all) RSS for failures

e s gameofiife-default

Description

N

O Discard 0ld Builds.

O This buid is parameterized

O Disable Build (No new builds will be executed unti the project is re-enabled.)

[CNCNCNC)

O Execute concurrent builds if necessary (beta)

Advanced Project Options

Source Code Management
O None

O cvs

O subversion

® cit

Repositories. URL of repository.

Git@github.com:john-smart/game-of-life.git

Branches to build Branch Specifer (blank for default):

Repository browser ((ata)

OEBPS/httpatomoreillycomsourceoreillyimages864865.png
v Browse

Tree Browser

Simple Browser

Search Results

Builds.
v Search
Quick Search
Class Search
GAVC Search
Property Search

POMIXML Search

@ libs-releases-local
+ @ libs-snapshots-ocal

v B3 com
+ 02 wakaleo
~ £ gameofife
» £2 gameofife
» £ gameofife-cii

» 2 gameofife-web
» (22 gameofife-webse
© plugins-releases-local
© plugins-snapshots-focal
@ extreleases-ocal
@ extsnapshots-local
» & repot-cache
& java.netm2-cache
& imvanetmicache
frog-libs-cache
© ifrog-plugins-cache
& lboss-cache

Produced By

r |Build Name |Build Number Build Started | Module 1D

& coTouia

[showin ci server

[srow suia tem

Used By

[Buik Name

idNumber | Moduie D | Scope

OEBPS/httpatomoreillycomsourceoreillyimages865029.png
Hudson instent-messaqina plugin

113
“This plugin provides abstract support for build notification via instant-messaging.

Hudson Jabber notifier pluain
Sends build notifications to jabber contacts and/or chatrooms. Also allows control of builds via a jabber
o 113

Note that the instant-messaging plugin 1.11 is a requirement for this plugi
s installed, tool

Please make sure that it

OEBPS/httpatomoreillycomsourceoreillyimages864999.png
1 g out

D _johns

@ Manage Roles

Global roles

o overall siave Job
'* Aaminister|Read Configure Delete Create Delte | Configure| Read ExtendedRead Build Workspace Release Delete Update Create Delete Configure Promote Tag

@ wn @ ¥ 8 8 8 ¥ 8 ¢ @ € @ © 8 & & 8 8 © g
=]

read-only o o

Run View scm

8 0o o olo/fo|eg] @ ol o [o/oolo/el o olcE

Role to 3¢ [reag-only

(Caa]

Build Queue Project roles
P P - Ay

OEBPS/httpatomoreillycomsourceoreillyimages864859.png
@ Deploy artifacts to Artifactory

Artifactory Configuration

Artifactory server (_nitp://wvew.wakaleo-labs. com/artifactory 5]
Target relesses repository (Ibsrelesseslocsl 9@
Target snapshots repository s anspshorsoeal T5)@

Deployer username admin @

Deployer password

@

™ Deploy maven artifacts

OEBPS/httpatomoreillycomsourceoreillyimages865235.png
Jenkins 3ohn | log out

Jenking » nodes

4 Back to Dashboard s
o ! master o568 e pT— oy ams e \

o cotas Gt)

Name Free Disk Space Free Temp Space Architecture Clock Difference Response Time Free Swap Space

Build Queue
No builds in the queue.
Build Executor Status
Status
1 1de
2/1dle

OEBPS/httpatomoreillycomsourceoreillyimages865219.png
Copy artifacts from another project

Project name phoenix-default

Which buld (‘Specifed by permaiink

® @

Permalink [Latest promotion:promote-to-test

Artifacts to copy 5/ war

Target directory

@ Fiatten directories [Optional

® e o &

OEBPS/httpatomoreillycomsourceoreillyimages864799.png
Wips Out workspace n
* Default
Choosing strategy

‘Gerrit Hudson Trigger

OEBPS/httpatomoreillycomsourceoreillyimages865215.png
Copy artifacts from another project
Project name [e

phoenix-integratior

Which build [Latest successful build

B[2)

(O stable build only

Artifacts to copy 5/ war

Target directory

@ Fiatten directories [Optional

OEBPS/httpatomoreillycomsourceoreillyimages865193.png
Parform Maven Relesse

Versioning mode.

O Maven will decide the version

O Specify version(s)

© Specify one version for all modules
Release Version

0.0.66

Development version

0.0.67-SNAPSHOT

Append Hudson Build Number ()

‘Specify SCM login/password

@

‘Specify custom SCM comment prefix

OEBPS/httpatomoreillycomsourceoreillyimages865275.png
& Bk to Dashboars s Name i FreeDiskSpace Free Temp Space i
7, Mansae Jenking " ... 18668 278 Linux (amda)

New Node
= [P - e
3 contaure

| [qeem—"—" 1668 1668 Windows Server 2008 (x86)

T ——
No buids i the queve. ooz~ |

| ubuntu (ami-7cor762e) |

OEBPS/httpatomoreillycomsourceoreillyimages864741.png.jpg
(I L » jeniins-L403

Organize v Extract all files

X Favorites
B Desktop
& Downloads
Recent Places

4 Libraries
3 Documents
Music

i Pictures

E‘ Jenkins-1.403 Corr

8 jenkins 1403

setup

) Jenkins 1403 Setup

S

Welcome to the Jenkins 1.403 Setup
Wizard

The Setup Wizard wilinstall Jerkins 1,403 on your computer,
Click Next to continue or Cancel to exit the Setup Wizard

Next Cancel

OEBPS/httpatomoreillycomsourceoreillyimages865327.png
@ Backup config files

Backup configuration

Hudson root directory /Users/johnsmart/Projects/Demos/hudson-demo/jenkins-data

Backup directory [/yar/data/backup

File name template paciup_@date@.@extension®

Custom exclusions.

O verbose mode
O Configuration files (.xm) only

O No shutdown

®

®®® ® &

Backup content
O Backup job workspace
 Backup builds history
 Backup maven artifacts archives
@ Backup fingerprints.

[save |

OEBPS/httpatomoreillycomsourceoreillyimages864827.png
Tnvoke Ant

Ant Version [Ant 1.8.1

Targets [jmeter

‘Add build step +

OEBPS/httpatomoreillycomsourceoreillyimages865149.png
™ Trigger parameterized build on other projects

Build Triggers projects to buld Tinicgration-tests

Trigger when build i (‘Siabie

[Parameters from properties file |
Preefined parameters

O sonar

Add trigger

OEBPS/httpatomoreillycomsourceoreillyimages865125.png
Execute shell

Command

pr—

See the st of susisble environment varisbes

OEBPS/httpatomoreillycomsourceoreillyimages865123.png
Back o Dashbosrd

0, status

= Changes

(6 Workspace

Build Now

© pelse projess

5 confiaure

Project parameterized-build

“This build requires parameters:

version 133

OEBPS/httpatomoreillycomsourceoreillyimages865081.png
@ Report Violations

findbugs
fxcop
gendarme
jereport
jslint

pmd

pylint
stylecop
per file limit

Source Path
Pattern

Faux Project
Path

Source encoding

® ®

@O XMLfiename pattern
10 200 500 **/target/checkstyle-result.xm|
10 |lees o
o 10 15 **/target/cpd.xml
o 50 50 **/target/findbugs.xml
10 |lees o
10 |lees o
10 |lees o
10 |lees o
o 100 200 **/target/pmd.xml
10 |lees o
10 |lees o
10 |lees o
100 @
@
@
(Qefaute B2

OEBPS/httpatomoreillycomsourceoreillyimages865107.png
Hudson)

Hudson » game:of-ife-cose-quaity i a0 druets
A Back to Dashboarg .
o, Project game-of-life-code-quality
o Stotue
= cronaes 1 description
1 vorksosce E oDisk Usage: Werkspace 116MB, Builds SMB
kspace
[Open Tasks Trend
s
Delete Project =
Q - Recent Changes N
#, Confiqure = 7
6
[E) toduies Latest Test Rasul(no foiures) g5
) ceentesks ta
3
A\ vistions Permalinks 2
1
@ Build History (trend) Last buid (#14), 3 min 12 sec ago N
® Last stable build (#14), 3 min 12 sec ago -] Fl E] =
@ #14 Dec9,20109:41:10 AM. ® Last successful build (£14), 3 min 12 sec N * - s
P © Last failed build (#3), 1 day 22 hr ad0 Enlarge Configure

OEBPS/httpatomoreillycomsourceoreillyimages864789.png.jpg
Gtinsatatons 3

Name oot

Path to Git exceutable g

N <3

aaact

OEBPS/httpatomoreillycomsourceoreillyimages865181.png
Post-build Acti

[Scan workspace for open tasks
() Publish JUnit test result report
O Publish Javadoc.

 Build other projects

Projects to build

O Trigger even if the build is unstable
O Archive the artifacts
) Aggregate downstream test results
O Record fingerprints of files to track usage
() Publish Clover Coverage Report
() Publish Cobertura Coverage Report
() Set build description
O Publish documents.
 Join Trigger

([Trigger even if some downstream projects are unstable

Projects to build once, after all downstream projects have finished | poenix-deploy-to-uat

[Run post-build actions at join @)

® ®

®® ®

® ®® @

OEBPS/httpatomoreillycomsourceoreillyimages865339.png
L pom.xm!
MRS
> [main
v test
> [easyb
v java
¥ @ com
v wakaleo
v 3 gameofiife
v @ web
v @ pages
(5] EnterGridPage.java
5] Homepage java
(5] ShowGridPage.java
(5] WebPage.java
[5] WhenTheUserEntersAninitialGrid.java
(5] WhenTheUserGoesToTheHomePage.java
(5] WhenTheUserSpawnsTheNextGenerationOfCells.java

OEBPS/httpatomoreillycomsourceoreillyimages865329.png
Backup Configuration

Backup settings

Backup directory. Jvar/data/backup/thin

Backup schedule for full backups. 00" 15

Backup schedule for differential backups [g = = = 1.5

Max number of stored full backups |49

 Clean up differential backups

® ® ® ® ®

OEBPS/httpatomoreillycomsourceoreillyimages864995.png
Authorization

O Legacy mode

O Project-based Matrix Authorization Strategy
© Loggedin users can do anything

O Anyone can do anything

O Matrix-based security

® Role-Based Strategy

®®®®®®

OEBPS/httpatomoreillycomsourceoreillyimages865293.png
Project game-of-life-redeploy-to-test

This build requires parameters:

‘GAME_OF_LIFE_RELEASE specific build

B2

Build number (3

Version todesloy

OEBPS/httpatomoreillycomsourceoreillyimages865305.png
¥ Send build artifacts over SSH

SSHpublishers 1 SSH Server
Name [Manuka e
Verbose output (J @
in console
Transters Transfer Set

Source files target/site/ "~

Remove prefix Tarocucia

Remote directory [op

® 000

Exec command

Ao thetransfe fiokds (except for Exec timeout) support substittion of
Jenking envemmment varbee

Exclude files

Flatten files. s]

Remote directory ()
is'3 date format

® 0 ©

Exec timeout (ms) 135000

‘Add Transfer set

OEBPS/httpatomoreillycomsourceoreillyimages864883.png
Build a Visual Studio project or solution

MsBuild Version (msBuild 3.5

MsBuild Build File gameofiite.sin

Command Line Arguments (/p:Configuration=Release

OEBPS/httpatomoreillycomsourceoreillyimages864835.png
Execute Groovy script

Groovy Version

((Defaut)

© Groovy script file.

scripts/run-fitness-tests.groovy

O Groovy command

Groovy parameters g

Script parameters.

Properties

sutel suite2 suite3

fouild_job=$BUILD_TAG

OEBPS/httpatomoreillycomsourceoreillyimages864711.png.jpg
(= Chanass
1 Morssace
) o

© petteproes

, Confiaure

Build Mistory (trend)
@ #1 Mor3.2011 2:30:25 M
== 1]

) for il) for faires

Project game-of-life-default

Permalinks

(add description

OEBPS/httpatomoreillycomsourceoreillyimages864713.png
4 Manage Jenkins

& reonc

(= o vitory

No builds in the queue.

Executor Statu:
Status

+ e T

2 1de i

‘ENABLE AUTO REFRESH

(2dd description

Last Duration

Job & Last Success
‘game-of-lfe-default 1 sec (£1) WA 13 sec)

Leqend [F)forall [} for failures [for ust latest builds

OEBPS/httpatomoreillycomsourceoreillyimages864817.png
Hudson » A-Gittub-Sample

& Beck to Dashboard Changes
O, status
— #4 (Nov 12, 2010 11:18:28 PM)

= Changes
= 1. Adding relative path example — Matthew McCullough / githubweb

1 worksosce 2. Adding relative path example — Matthew MeCullouah / athubuet

() suid Now #3 (Nov 10, 2010 2:01:37 PM)

© Delete proect 1. Updating version to trigger auto-build — Matthew McCullouh / githubweb
2. Updating version to trigger auto-build — Matthew McCullough / githubweb

&, Confiaure 5. Updating version to trigger suto-buld — atthow: HcCullough / athouet

Modules

OEBPS/httpatomoreillycomsourceoreillyimages865285.png
™ This build is parameterized

Build selector for Copy Artifact

Name ‘GAME_OF_LIFE_RELEASE

Default Selector ("Latest successful build

O stable build only

Deseription [version to deploy

® ®® &

OEBPS/httpatomoreillycomsourceoreillyimages865015.png
@ Editable Email Notification

Giobal Recipient Listochicad@acme.com

Content Type
Default Subject

Default Content

(Comma:separated lis of emall address that should receive noicatons.

(Defeult Content Type

$DEFAULT_SUBJECT

[$DEFAULT_CONTENT

Content Token Reference

OEBPS/httpatomoreillycomsourceoreillyimages865001.png
game-of-lfe-developer game-of-ife.*
game-of-lfe-run-build game-of-ife.”
production-deployment prod-deploy.
uat-deployment wat-deploy.
deployment-developer .*-deployment

Job

Delete | Configure Read ExtendedRead Build Workspace Release

aO000®@

aO000®@

]
]
]

]
“
=]

RO0O®&

oooo0oa@

neaoa}

(N

Role to 2dd | deployment-developer

Pattern [« geployment

OEBPS/httpatomoreillycomsourceoreillyimages865043.png
¥ IRC Notification

Noliy on buid starts

Nolity SCM commiters

Notiy SCM cupris

Noliy upsiream commiters.

Noliy SCM fxers.

Namelpasstiord pas of IRC chamels (Password = cptions)

When 0 see nosfcation (= ays, faure = o any fakee, faure and e = on fakre and fos, change =ony o state charge)
Wiheter 0 s noficatons o channels vhen s tans
Wihether 1 s noficatons 1 th users tha are suspected of haveg broken th s
Al semd otcations to e’ rom previos ursabefaed s
=]

Whether 10 s notficaions o psiream commtes nocommiters wersfoeefor bcken bud

Whethr t0 e notficatons 0 the wsers tht have fxed boken b

Channel Message ry + SCM changes. v

OEBPS/httpatomoreillycomsourceoreillyimages865145.png
Jenkins » gameofiife-deploy-to-uat » £3 EurBLE AUTO neFRESH

2 Becktobroect —
0, stous @ Build #3 (Sep 19, 2010 2:40:27 AM)
St 4 ma 28 v 500

"= Changes Took 4.1 sec on master
. Deployed version 0.0.24 to UAT
B censole Output [edit description

£

| Parameters

Confiqure
Revision: 48
; No changes.

o s
TR ' S

o previovs puid

id

» text

OEBPS/httpatomoreillycomsourceoreillyimages865025.png
Hudson

New Job

34, Manage b
& peonie

= Buid History

O Profect Relationship
421 Check e Fingerorint
12 taconn

& o views

& Launeh Tav e

52 1o Cont st

View name g

O My View

This view automatically displays all the jobs that the current user has an access to.
O List View
‘Shows jobs in a simple list format. You can choose which jobs are to be displayed in which

O Nested View
Group job views into multiple levels instead of one big lst of tabs.

© Radiator

Shows status with high visibility, suitable for display in an extreme feedback system. You can
choose which jobs are to be displayed in which view, in the same way as the list view.

[oc]

OEBPS/httpatomoreillycomsourceoreillyimages864965.png
Users

These users can log into Hudson. This is a sub set of this lit, which also contains auto-created users who really just made some
commits on some projects and have no direct Hudson access.

‘ Bob Brown
&=
A
‘ John Smart

& ote the veveioper

& wosmn

85 SE (8 (8P (88N

@ Q0 @

OEBPS/httpatomoreillycomsourceoreillyimages864881.png
MSBuild installation name MSBuild 3.5

Path To msbuild.exe |C:\Windows\Microsoft. NET\Framework\v3.5\msbuild.exe @®

st of MSBulla nsalstions o ths system

Nant Builder

Nant installation name NAnt 0.90 @

NANT_HOME [C:\program Files\NAn @®

OEBPS/httpatomoreillycomsourceoreillyimages864867.png
Hudson

Hudson » game-of-life EurBLe AUTO neFResH

2 Bock o Dashboars

0 st Modules
(= crances s W ob. Lost Success Last Failure Last Duration
@ worispace [+] qemeofife 21 hr (£73) 1mo13days (£41) 17 sec [3)
© st row

[+] gameofife-core 2Ahe (23 2daysi2hr(268) 11sec [3)
(© pelete proiect
X conire [+] qameofife-web 21 hr (£73) 2days 12 hr (£68) 21 sec [3)
[E] todutes Qo smeofife-webservice 21hr (£73) 2days 12hr (468) 0,61 sec %)
7 promstion stats
[2] st o o [+] ameofife-ci 2Ahr(23) 2daysi2hr(£68) 032sec [3)

OEBPS/httpatomoreillycomsourceoreillyimages865321.png
2 Update - PDF

Used menory - 1 week

00m |
o

on Wed Fri
Biiean Wainm ean 62
Haxinun e

© Online help

Statistics of JavaMelody monitoring taken at 6/5/10 11:22 AM from §/31/10 10:56 AM on

% CPU - 1 week

EE

Choice of period : (5] Day (7 Week (7] Month

(Hudson)

Al

Active threads - 1 week

1

Year | Customized

10

Ton o Ned
Biien Wl tean: 215
Waxinum: 82433 m

00 M
Ton

Yed
e Whaxioun Hean 1n
Macinun 1000 m

Http hits per minute - 1 week
100

Ll aw il

Fon Wed Fri
Brean Wi Hean 5
Vaxinm £

HEtp mean tines (ns) - 1 week

% of http errors - 1 week
EY

1ok o |
0.0 abl 1 0
on e P Won ved P
e Whaxinm Hean 7 Hiean Whaxinm Hean 14w
Vaxinun 1408 Madinm: 10236

% Garbage CoTlector tine - 1 week

Threads count - 1 week

Loaded classes count - 1 week

0 0%
° Ton e i on ved fri ° Won Ved
Biean Wiacima bean 3n B Witacinn bean 35 Bhean Whacinn bean 9k
Vainm: 45330 Vexinun: i Waxinun: H
Used non heap menory - 1 week Used physical memory - 1 week Used swap space - 1 week
00
i 206
200
o 0.0 o
on ded i o ved Fri Won Ned Fri
Bhean Miacina bean su Bhean Witacinun bean 26 Bhean Whacinn Hean 2u
Hainn 65 M Hecinm: 20 Waxinun: A

Systen Toad - 1 week

2.0 H
0.0

Won

Briean Waxinm Hean:

Ved Fri o Ved Fri
182 Hiean Whaxinm Hean 193
Vaxinm: 3273 e 209

Nb of opened files - 1 week

OEBPS/httpatomoreillycomsourceoreillyimages864749.png
v ﬁ Jjobs

+ (2] gameofiife-default

(] tastSuccessful

7| nextBuildNumber
= scm-polling.log
B svnexternals.txt

» (L] workspace

» [7] tweeter-default

OEBPS/httpatomoreillycomsourceoreillyimages865325.png
enkins

Jenking » Backup manager

& tewion

57 Manacs senins ﬁ’ Backup manager

& reosle
&

O, proict Reatonsh

Backup Hudson confiquration
Check File Fingerprint

13 adooo

@ Lo T

ﬁw oo contauration

OEBPS/httpatomoreillycomsourceoreillyimages864727.png
'y soa Upctes | Avatable instaled| Advanced

Py [tostn & Nme Verien
Atk tlonders
ttciossnes i
e “This plugin makes it possible to copy artifacts to remote locations. ot
Atactnsshsin oo
i oo alowsdeloingMaven 2, Maven 3, Iy and Gl artfats and bl ot the Afactary rfacts manger, |
Rt pblaher e
o This plugin allows records from one Hudson to be published on another Hudson. e
CIFS-Publisher Plugin
o This plugin uploads build artifacts to repository sites using CIFS (SMB) protocol. hald
Conflvence Publisher Plugin
o 101
“This plugin allows you to publish build artifacts as attachments to an Atlassian Confluence wiki page.
CoovArchiver Plugin.
o ‘The objective is to aggregate archived artifacts from several jobs into a shared directory. For each job, only archived artifacts of |0.5.1
ittt ooty
O |DeelovPlugin 17
il akes 8 varea e an dlvata o 8 uning remot pplatio servr ot th end f b
Deploy WebSphere Plugin
o ‘This plugin is an extension of the [Deploy Plugin]. It takes a war/ear file and deploys that to running remote WebSphere 1.0
o Some Wi and o o ot
s
ons
i i mearots odson wih Bimssions, e erens SO sl
ETP-Pyblisher Plugin.
10

“This plugin can be used to upload project artifacts and whole directories to an ftp server.

OEBPS/httpatomoreillycomsourceoreillyimages864753.png
DISABLE AUTO REFRESH

Jenking
& Newloh Manage Jenkins
A Manage Jenkins
A New version of Jenkins. (1.414) is il for ¢). lLOrUpgrade Automatically

& reooie

Project Relationship Confiqure System
N Configure global settings and paths.

Check File Fingerprint

/7 Reload Confiauration from Disk
Discard al the laaded data in memory and reload everything from file system. Useful when you modified

(3 (0 b o €

config files directly on disk.

No builds in the queue.

Manage Plugins

Build Executor Status. Add, remove, disable or enable plugins that can extend the functionality of Jenkins.
Status
1]1dle [System Information
2 1de i B 2 onmental informatio to assst rouble-shootin.

Svstem Log
System log captures output from java.util.logging output related to Jenkins.

Load Statistics
Check your resource utilization and see if you need more computers for your builds.

Jenkins CLL
Access/manage Jenkins from your shell, or from your script.

OEBPS/httpatomoreillycomsourceoreillyimages865045.png
Xchat: juven @ Freenode / #ci-book (+ns)

v freenode 10ps, 2 total
i~ #ci-book ci-bot|Project demo build #9: SUCCESS in 4.7 sec: @ ci-bot
B http://Localhost 8080/ job/demo/9/ X
#jenkins ci-bot|juven: feature x added Juven

ci-bot |Project demo build #10: FAILURE in 3.2 sec:
http://Localhost:8080/job/demo/ 10/

ci-bot

ci-bot

ci-bot

ci-bot|john: complation error fixed

juven) e—

OEBPS/httpatomoreillycomsourceoreillyimages864861.png
O status Project game-of-life

= coumes
B st ﬁ/ Promotion Status
©) s 7 omoten s
© Delete et o

Atfactory

OEBPS/httpatomoreillycomsourceoreillyimages864833.png
Execute Groovy script

Groovy Version [(Default) L

O Groovy script file.
@ Groovy command

“Hello, this is Hudson calling. This build is running with the following system properties:”

OEBPS/httpatomoreillycomsourceoreillyimages864857.png
Hudson

Hudson » game-of-life » 76 » Redeploy Artifacts Bl aUTO ReFRESH

2 Becktoroes

0 status

= Changes

B Console output
[Tt e
7 promstion stats

P Redeploy Artifacts

[C] etz it i

(P Redeploy Artifacts

“This page allows you to redeploy the build artifacts to a repository after the fact.

Repository URL ttps//www. - nexus/content/repositories/snapshots

Repository 10 [napshots

(D Assign unique versions to snapshots

[ox]

OEBPS/httpatomoreillycomsourceoreillyimages865031.png
User Summary

Total Users: 7 — Sorted by Username — Users per page: (15 18)

Online Username Name Created Last Logout
1 8 admin Administrator Jan 13, 2011
2 8 bl Bill Smith Jan 14,2011
3 8 hudson hudson Jan 13,2011 31 minutes
4 8 e Joe Black Jan 13, 2011
5 & iohnsmar John Smart Jan 13, 2011
6 & kate Kate Brown Jan 14,2011
7 8 pete Pete Best Jan 14, 2011

OEBPS/httpatomoreillycomsourceoreillyimages865067.png
Hhudson Sounds

‘Sound archive location file:/Us /i ‘plugins/sour .2ip. (2
Test sound A You must save any changes to the sound archive location above before trying to test sounds.
(_EXPLODE (WAVE) B}

Hudson made sound EXPLODE'successfuly.

OEBPS/httpatomoreillycomsourceoreillyimages864989.png
Hudson

Hudson » game-of-iife

4 Back to Dashboard Project name [game-of-iife]
O, stos Description)
> Changes
& worksoace /
Buid Now

5] O Discard Old Builds. @
© peete proect Enable project based securty
/ Configure "

-y a/Sour De\emgmfgmueadxm\dlgum@mmeauwmugam
|| Modules Anonymous | O 0 0O 0 0 O

i eromsin ss R —— ®

FOYN

OEBPS/httpatomoreillycomsourceoreillyimages864961.png
i Notification

SMTP server

Default user e-mail suffix | @acme.com.

System Admin E-mail Address [sadmin@acme.com

Hudson URL

® ® ® ®

hitp://hudson.acme.com

e

OEBPS/httpatomoreillycomsourceoreillyimages865309.png
™ Discard Old Builds

Days to keep builds.

8ot empty, buid records are ony ket up t this number of days.

Max # of buids to keep.

£t ematy, only up tothis number of bk records are kept

Days to keep artifacts g

1 not ematy, rtfacts from buids dder than this number of days wil be
eleted, bu the logs, istory, reports, e for the bu wil e kept

Max # of builds to keep with artifacts.

ek amrty. ool up bo this mumber of bulkds heve thelr srtilacts retained

OEBPS/httpatomoreillycomsourceoreillyimages865079.png
Maven Version

Root POM,

Goals and options.

(aven 221)

pom.xml @

{clean checkstyle:chackstyle pmd:pmd findbugs:findbugs cobertura:cobertura javadoc:javadod | @

OEBPS/httpatomoreillycomsourceoreillyimages865099.png
Hudson

‘Hudson » game-of-lfe-freestyle-metrics DISABLE AUTO ReFRESH

& BacktoDasrbon

Project game-of-life-freestyle-metrics

O, status

= changes (2dd description

@ workspace #Disk Usage: Workspace 115MB, Builds 7MB
Buid Now ; Haven fepert Checkstyle Trend

© ptete poiest
&’ Senfiqure

Workspace

& checkstyle Warnings |=#® Recent Chana s
-J— = necent Changes E
toven Reoer =
Viclations Upstream Projects
@ Build History (trend) Qaame-of-fe-freestyle-

@ #46 Dec 15, 2010 6:20:24 AM

OEBPS/httpatomoreillycomsourceoreillyimages865083.png
[— checkstyle

|—cpd

|—findbugs
| pmd

&
3

e

6
sev
v
e
sz
Tes
oz
61¢
21s
s
e
2
T
ors
o+

t

"

5%

s

300
250
200
B
100

[\ Dcheckstyle91(-204) R cpd 16 5 findbugs 2 (+3) &3 pmd 130

wno>

OEBPS/httpatomoreillycomsourceoreillyimages865101.png
complexity

Coverage/Complexity Scatter Plot &

T & 3 4 s 6 70 8 s 10
coverage(s)
* Red marks indicate points out of the plot.

OEBPS/httpatomoreillycomsourceoreillyimages865165.png
Jenking » acceptance-test-suite

£ Backto Dashboard

O, status

= Changes

© oelee projet
X conire
I ependency Graon

< Build History (trend)
@ #3 Feb12,2011 1m520M

@ #2 Feb 10,2011 11
@ #1 Feb 10,2011 11:34:54 pm 25K8

) forall [for failures

BM 50KB|

Project acceptance-test-suite

Configuration Matrix

ool e
™ @[] 0
ool
™ @[] 0
el e
" hes@l0] 0
ool e

fee@lo] 0

OEBPS/httpatomoreillycomsourceoreillyimages864877.png
Burld

Invoke Gradle script @
Gradie Version (Gradie-09RC2 .
Build step description ©
Suiches ©e
Tasks test uploadArchives @0
Root Build script ©
Build File @

‘Specy Gradlebukd e torun. Ao, 0me anironmentuaribles e sl o the buld scrigt

Post-build Actions

O publish Javadoc
O Archive the artifacts

0 Aggregate downstream test resuts

 Publish JUnit test result report

Test report XMLS [<</uig/test-resuls/xmi
© '**/build/test-results/ *.xmi" doesn't match anything: ‘¥ exists but not "** /build/test-results/*xml’
e nches'setingtht species the geneated ra XL report s, sh a myprlectargel st repnts/ .S ofthe st e s ot
B Retain lond standard oulbutienor

OEBPS/httpatomoreillycomsourceoreillyimages864981.png
Authorization

O Legacy mode

O Project-based Matrix Authorization Strategy

O Logged-in users can do anything

© Anyone can do anything
© Matrix-based security

User/group | Overal

Anonymous [

User/group to add:

=]

=]

=]

=]

=]

Job

oo

=]

=]

=]

Run

=]

=]

=]

=]

=]

AdminserReadConfgureDeleteCreateDeleteConfigureRead uidWorkspace eleaseDeletelpdateCreoteDeloeCanfgureromote Tog

=]

®®®®®

@

OEBPS/httpatomoreillycomsourceoreillyimages865027.png
game-of-life a game-of-life-acceptance-tests o

Climed by John Smart: Some sortof problem with a thermal exhaust pot. 'm anto il

Not Clsimed.
Possile clprit: John Smart Laststable: 15 days (37 s0c)

Laststabl: 2 he 47 min (1 min 3 sec)

game-of-life-functional-tests &
Lot stable: 16 dos (37 e

game-of-life-freestyle-metrics &

ot Clsimed.

Possile culprit: pete, il Kata the Developer Joe Black, Rob Srith, John Smart
Laststabl: 1 mo 9 days (30 sec)

game-of-life-performance-test: ;

rests: 00

game-of-life-metrics

Test: 100% 54/50

Not Clsimes, N Claimes,

Possile clprit: pete, il Joe Biack, Rob Smith, John Smart Last stable: 1 mo 17 doys (16 min)

Last stabl: 1.mo 24 days (1 min 33 sec)

OEBPS/httpatomoreillycomsourceoreillyimages865287.png
Copy artifacts from another project
Project name

‘gameofiife-default (2)
A Artifacts will be copied from all modules of this Maven project; click the help icon to learn about selecting a particular
module.
Which buld | Specifed by a buid parameter)]

Parameter Name [GAWE OF LIFE_RELEASE

Artifacts to copy 5/ war

Target directory

®® e ® o

 Flatten directories () Optional

OEBPS/httpatomoreillycomsourceoreillyimages865047.png.jpg
BHOO Java EE - gameoflife-core/src/main/java/com/wakaleo/gameofiife/domain/Cell.java - Eclipse - /Users/johnsmart/ Documents/workspaces/javaone-demo. =’
£3- BB 30 BG6 ec s o2 5§ $5Debug [Sima eE
& Project Explorer 22 = 0| cetjava 52 =i
S %[©| packege com.nakaleo. gaseofiife. dosaini
> Eguaneotie aneatie il |5 pusite enm colt {
» Soameotfe-coe (gameafifertunk (B ™0 LIVE CELLGr+"3, DEAD.CELLC"."3;
» Fgameofifedeplo (gameof 1
> Eoameoife-veb lameonife/runk/|[§ private String Sybol:
B e private Cell(String sysbol(
‘i Sysbol = sysbol;
X
Ao public string tostringO) {
return Symbol;
¥
R stetic Gl fromsymbol(String sysbol) {
Cell cel RepresentedsySymbot - null;
for Cell <ol : Cen. valiesO) {
$F Geell. Syabol . cauataaymbol)) (I
cellieprescntedtysympal - cell; .

(2 Markers | T propertes | # Servers I Data Source Explorer £ Snippets | & Console | Ju junt | 4 Search =0
7]
Fojct b Do and Tie o~ i
depioy 11 502020010
e o222 26,2009 0 B
oame-1#119 a0 13, 20111 @
ez Nov28,2000:0 @
game-cs27. Nov27,20101©
game-1512 Nov27,20101©
game-1s65 Jan 26, 20111 @
game-1220 Jan 13,2011 @
game-co1. Nov2,2010 10©)
same-cs1. Nov 17,2010 ©
game-1598 Dec 28, 2010 - - s
=== o [mmess n2e20m7 5 .

o o 2 T

PPN

OEBPS/httpatomoreillycomsourceoreillyimages865301.png
Jenkins SSH Key

Passphrase . -

Path to key [Ivar/3enkinef ssh/id_rsa.pub

Key

Disable exec o

SsH Servers SsH Server
Name Manuka
Hostname 192.168.1.200
Username o

Remote directory [Jome/john/jenking

O Use password authentication, or use a different key

port 8922

Timeout (ms) 305000

Disable exec (I

® 000 900

OEBPS/httpatomoreillycomsourceoreillyimages864997.png.jpg
Dle &

Manage Users
Create/delete/modify users that can log in to this Hudson

Disk usage
Displays per-project disk usage

Manage Roles
Handle permissions by creating roles and assigning them to users/groups

OEBPS/httpatomoreillycomsourceoreillyimages864979.png
Security Realm

O Delegate to serviet container

O Loar
O unix user/group database

O Hudson's own user database
O Active Directory

O crowd
© Authenticate via custom script

Login Command [groovy /opt/hudson/tools/scripts/login.groovy

Groups Command | groovy /opt/hudson/tools/scripts/groups.groovy

Groups Delimiter

Authorization

O Legacy mode

O Project-based Matrix Authorization Strategy
O Logged-in users can do anything

O Anyone can do anything

© Matrix-based security

User/oroup | Overal Siave Job Run View
=2 AdministerRead Configure DeleteCreateDeleteConfigure Read ExtendedRead Build Workspace Release DeleteUpdate Create Delete Configure

& admin ¥ ¥]]

Qametcated 0 @ O 0O 0O 0O O 8 @ ©O O 0O 0O/ 0 0 0 O

Anonymous o o o ocolo ol @ g oo oo oo o

OEBPS/httpatomoreillycomsourceoreillyimages864815.png
Repository browser

URL

OEBPS/httpatomoreillycomsourceoreillyimages865189.png
Environment

Maven release build

Release goals and options.

[retense prepare reten

Preselect versioning mode

Preselect custom SCM comment prefix []

Preselect append Hudson username

Im}

® &

OEBPS/httpatomoreillycomsourceoreillyimages865167.png
Configuration Metrix

User-defined Axis

Name pronser

Values fjexplorer firefox chrome.

Name [og

Node/Label [abels

M 05X (iMac Slave)

Finux (Ubuntu Slave)

@ windows (Windows Slave)
-+ Individual nodes

O Run each configuration sequentially

& Combination Filter

Filter (browser=="firefox") || (browser=="iexplorer" & os=="windows") || (browser=

] Execute touchstone builds first

OEBPS/httpatomoreillycomsourceoreillyimages864847.png
Hudson)

Hudson » All

B New b 30b nome gameofite

/. Manaqe Hudson free-style software project
& oonic This i the central feature of Hudson. Hudson wil build your project, combining any SCM with any build system, and this can
peosle be even used for something other than software buid.

= Buid History

maven2 project
Build a maven? project. Hudson takes of your POM files and ly reduces the configuration.

(O, proiect Reltionshiy

r an external job.
“This type of job allows you to record the execution of a process run outside Hudson, even on a remote machine. This s

Check File Fingerprint

& Launch T 2 e 5t Youca v Ragion o dmboan of Yoo S oo e, S5 o Gocuéotan o e
ek
SuidQuene multi-configuration project
Ho b I the avee, sl o rfect tht e arge number o iferent cofiurations,sich o tstng on mlipleenviranmerts
o spea s, i
O copy existi b

Copy from

OEBPS/oreilly_large.gif
O’REILLY

OEBPS/httpatomoreillycomsourceoreillyimages865303.png
Add build step v

‘Copy arifacts from another project

Execute Python script

Execute Windows batch command

Execute shell

Invoke Ant

| invoke top-level Maven targets |
‘Send files o execute commands over SSH

|~ Trigger/eall bulcs on other projects |

OEBPS/httpatomoreillycomsourceoreillyimages865319.png
Jenking

& e \ Load statistics: Jenkins

4, Manage Jenking

& seone Timespan: Short edium lona
2

= Build History

O, project Reltionshi
Check Fil Fingerprint
[Dependency Graoh

Queue
No builds in the queue.

B e R e L e)
it ey aiitis i fadisrtind %

Total executors — Busy executors — Queue length

OEBPS/httpatomoreillycomsourceoreillyimages865259.png
Stop the senice
Retotthe senvice

Descrption:
Tz senice s slave forJenkin
continuous integration yztem.

Name
% HomeGroup Provider
% Human Itefsce Dev
4 KE and AU PrecK..
Clnteractiv Sevices De..
% Intemet Connectionss...

% LinkLayer Togelogy
4 ek Steadvisor Se..
% Media Cente Bende..
4 Microsoft NET Frame...
£ Microsoft NET Frame...
% MicrosoftiSCSl ..

Descrption Status
Performs networking asks associated with configuration nd maine..

Enables geneic nput acce to Human nteface Desices (HID), whic..

The IKEEXT seice hststhe Intemet Key Exchange (KE) and Authent... Started
Enables uses notficationof user input fo interactive seices, which
Providesnetwork addres transition, addessing, name reslution an...
Providestunnel connectiviy using P tanstion technologies (104 Stared
Intemet Protocol securiy (Psec) supports network evel peer authen.

Crestes a Network Map,consistng of PC and device topology (conn...

Allows Media Center xenders tolocate and connectto the computer.
Microsot NET Framework NGEN
Mictosot NET Framework NGEN
Manages ntemet SCS (SCSD sessions rom tis computer to remate...

OEBPS/httpatomoreillycomsourceoreillyimages864855.png
Log In

Sonatype T ——

Sonatype™ Servers « Search g
Nexus Keyword Search | gameoltfe 2
Artifact Search < oow Antact Version Download
=) comwaialeogameotite gametife 0055 SNAPSHOT pom
S ‘com wataleo gameofite gamefifoci 0055 SNAPSHOT pom, jar
com wakeleo gameofite gametife-coro 0055 SNAPSHOT pomjar
Views/Repositories +| | comwakaleogameotite gameofife-web 0055 SNAPSHOT pom, war.
Repositories. ‘com waaleo gameofite ‘gamefife-websenvice 0.0.55-SNAPSHOT pom, ar
Help 5
Displaying Top § records. X Clar Resuits
% Refresh | Viewing Repostory | Snapshots Maven Information | Atfact Information | Artfact Metadata
SE3napshots
1 com.wakaleo,gameafife.
Sggom Group: leo.gar
S vakaleo Atifact: gameofiie
3 g@gameofite \Version: 0.0.55-SNAPSHOT
o g@gomeotife
5680055 SNAPSHOT } Exension: pom

3 gameofife0.0.55. SNAPSHOTpom | sy - dopend

<groupld>com.wakaleo.gameofiile</groupld>
<artifactld>gameofife</artifactid>
<version>0.0.55-SNAPSHOT</version>
<type>pom</type> .
</dependency> 0

OEBPS/httpatomoreillycomsourceoreillyimages865175.png
ld Actions

[T suild other projects

[Archive the artifacts

[Aggregate downstream test results
[Tl Deploy artifacts to Maven repository.

Deploy artifacts to Artifactory

Artifactory Configuration

Artifactory server http://evgeny-goldin.org/artifactory
Target releases repository | jps-releases-local

Target snapshots repository [jibs-snapshots-local

[l override default deployer credentials

Deploy even if the build is unstable

Deploy maven artifacts

Check if you wish to publish produced build artifacts to Artifactory.

Include Patterns

Exclude Patterns

Capture and publish build info

Include All Environment Variablec

OEBPS/httpatomoreillycomsourceoreillyimages865159.png
Configuration Jatrs

Node/Label

Operating System

= Labeis
@ 05X (iMac Slave)
@ linux (Ubuntu Slave)
@ windows (Windows Slave)
+ Individual nodes

OEBPS/httpatomoreillycomsourceoreillyimages865217.png
Con use widcards e modul/dis/*#/* 2’ Seathe @includes o Ant lese for the exct

Files to fingerprint
format. The base drectoy s the workspsee.
O Fingerprint all archived artifacts

™ Record fingerprints of files to track usage

) Keep the build logs of dependencies

OEBPS/httpatomoreillycomsourceoreillyimages865213.png
™ Build other projects

Projects to buld phoenix-web-tests

O Trigger even if the build is unstable

 Archive the artifacts

Flles to archive [o

® ®

OEBPS/httpatomoreillycomsourceoreillyimages864841.png
Hudson

Hudson » game-otlfe-reestle » £7
2 Becktoroes

0, stous Q Build #7 (Oct 31, 2010 6:44:04 PM)

= comnass

B consoteoutor

[T s b o

ameofife-cl-0.0.55-SNAPSHOT.ja
[matsear © gemeoife-core-0.0.55-SNAPSHOT.ior
[penrsicam bt v © oo

© gameofife-webservice-0.0.55-SNAPSHOT.jar

o previous Buid ® gameofife-0.0,55-SNAPSHOT-sources i

OEBPS/httpatomoreillycomsourceoreillyimages864739.png
€ Jenkins

A Jenkins communty resource.

BLOG CONNECT DOWNLOAD BUGTRACKER WII CI TUTORALS ARCHVES ABOUT
Download Jenkins
Release Long-Term Support Release
Meet Jenkins p
Find out what Jenkins s and get started. Java Web Archive (.war)
Latest and greatest

changelog | past releases | RC

upgrading from Hudson?

Use Jenkins
See how to get more out of your Jenkins.

Extend Jenkins

Learn how to build Jenkins or extend Jenkins by writing plugins.

OEBPS/httpatomoreillycomsourceoreillyimages864725.png
Hudson

Hudson » gameoflfe-default EurBLE AUTO neFRESH

£ Backto Dashboard

O, status Project gameoflife-default

= Cranges [#add description

Test Result Trend
[w
o i
D o

© oelee projet 2
Workspace e
&, Confiure E
© madoc s
| =" Recent Changes B
[] subersion poting Lo — 4
Lotest Test Resutt 2

(no failures) 2] 2 T v

just show failures) enlarae

Permalinks

® Lost build (#5), 5 hr 2 min 2q0
® Last stable build (5), 5 hr 2 min 2q0

® Last successful build (#5), 5 hr 2 min 2a0
® Lot failed build (#2), 18 hr age

[for all [for failures

OEBPS/httpatomoreillycomsourceoreillyimages865023.png
Al

Dashboard | build-radiator | parameterized-bui

Job +

deployment

intearation-tests

s |+

Last Success

38 min (£3)

38 min (£4)

38 min (£7)

Last Failure Last Duration

WA 0.1 sec)
WA 0.1 sec)
WA 66 ms)
Leqend E)forall [E)for failures [for iust latest builds

OEBPS/httpatomoreillycomsourceoreillyimages865323.png
¥ [jobs
¥ [gameofiife-default
v @ builds

» [2010-03-12_20-42-05
» [2010-03-24_07-09-39
v @ 2010-03-24 07-12-28

v @ archive

v arger

‘gameoflife-core-0.0.1-SNAPSHOT.jar
build.xml
changelog.xml
checkstyle-warnings.xml
compiler-warnings.xml
coverage.xml
dry-warnings.xmi
" findbugs-warnings xmi
» [javadoc
JunitResult.xmi
log
open-tasks.xml
pmd-warnings.xml

revision.ot
» [workspace-files

OEBPS/httpatomoreillycomsourceoreillyimages864831.png
Groovy

Groovy installation

name Groovy 1.7.4

GROOVY_HOME/Library/Groovy/groovy-1.7.4]

List of Groowy installations on this system.

OEBPS/httpatomoreillycomsourceoreillyimages865041.png
& Enavle IRC Notiication

Hostname: [ir.freenode net
J———
port &=
J—
or = oo | ©
[ro T,
h*'-m [erbot
Jo—
Prssvera (
J——
e ——
S —
Command e i
[erve—
Hudson Userame =
Hudson Password =
Use otcecommant

st noos command instead of sy (defauttin rcbot e 20)

OEBPS/httpatomoreillycomsourceoreillyimages865249.png
ile £t View History Bookmarks —Tools —Help.

€ - C D (2 wemmetscoisbscomjeninscompuevindons sove 2] [0 Googte »
£ Most Visited |_| Getting Started 3, Latest Headlines
& windows-slave-1 Jenkins]] [~
e &, search o og o
A ssiiols
O, status E Slave windows-slave-1

© oelete siave
Connect slave to Jenkins one of these ways:

o [oureh soent fom bromser onsive

¥, Confiaure

[suild Higtory
B Losd smisics Run from slave command line:
Savaus heep:/ /. uakeleo-labs.com/jenkins/computes/windows-slave-1/slave-agent jnlp

Seript Console

a + Orithe ve i headless:

[Sava =305 slave. taz -SnIpUE Nevp://ion.vakelao-1abs. com/ ankine/compuses/vindova-sLave-1/slave-

g Svstem Information Sgezs-jalp

Labels: windows

Executor Status .

Status Projects tied to windows-slave-1

None

Page generated: 07-Apr-2011 09:42:09 Jenkins ver. 1.405

OEBPS/httpatomoreillycomsourceoreillyimages864891.png
(4]~ () (%) () (& uepiocaihost:s080/jo

5]

RPN oom ©

Gools and options [y IC)

Build Settings

[E-mail Notification

Post-build Actions

O Archive the artifacts.

@
@
(0 Agoregate downstream test results ®
O Build other projects @®

@

) Deploy artifacts to Maven repository

\azzzgl

OEBPS/httpatomoreillycomsourceoreillyimages864863.png
Logged In as admin | Log Out

Build Browser
Al Builds » game-of-ife

v Browse
History for Build ‘game-of-life"

Time Built |

Showin Cl Server
75 021110 10:19:41 UTC |

[petete

OEBPS/httpatomoreillycomsourceoreillyimages864963.png.jpg
LAl

o b el ir i il i o e At T b R s e T el i i

Manage Nodes
‘Add, remove, control and monitor the various nodes that Hudson runs jobs on.

Manage Users
Create/delete/modify users that can log in to this Hudson

OEBPS/httpatomoreillycomsourceoreillyimages864993.png
V! Enable project-based security.

Job. Run

User/grou
/97U oleteConfigure ReadxtendedReaduild WorkspaceReleaseDelete Update

& authenticated

Anonymous

=

0 &
0&

oo
oo
oo
oo
oo
oo
oo

OEBPS/httpatomoreillycomsourceoreillyimages864775.png
Jenkins » All

& NewJob

', Manage Jenkins
& pecoe

= build History.

O, Project Relationshi

Check File Fingerprint

Build Queue
No builds in the queue.
Build Executor Status
Status
1 1dle
2/ 1dle

206 namej)

o

free-style software project

This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any build system, and
this can be even used for something other than software build.

maven2/3 project
Build a maven2 project. Jenkins takes advantage of your POM files and drastically reduces the configuration.

multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on multiple environments,
platform-specific builds, etc.

r an external job
This type of job allows you to record the execution of a process run outside Jenkins, even on a remote machine.
This is designed so that you can use Jenkins as a dashboard of your existing automation system. See the.
documentation for more details.

ok

OEBPS/httpatomoreillycomsourceoreillyimages865255.png
™ Enable security

TCP port for INLP slave agents @ pived: (7777] ORandom O
B ndom O Disable

OEBPS/httpatomoreillycomsourceoreillyimages864853.png
@ Deploy artifacts to Maven repository.

Repository URL hitp://veww. com/artifactory/libs-snapshots-local

Repository ID manaka

() Assign unigue versions to snapshots.

1 Deploy even if the build is unstable

® ® ® ® @

OEBPS/httpatomoreillycomsourceoreillyimages864843.png
Invoke top-level Maven targets.

Maven Version [Maven 3.0

Goals

clean install -B -U -Dsurefire.useFile=false

Invoke top-level Maven targets.

Maven Version [Maven 3.0

Goals

source:aggregate

Invoke top-level Maven targets.

Maven Version [Maven 3.0

Goals

cargo:redeploy.

Add build step ~

O Publish Javadoc
 Archive the artifacts

Files to archive

/% war, **/*-sources.jer ©

OEBPS/httpatomoreillycomsourceoreillyimages865143.png
Execute shell

Command [/ sz /1ocal/git /bin/git checkout SRELEASE

‘See the st of susisble environment varisbes

Invoke top-level Maven targets

Maven Version ((pefauit

Goals, install

OEBPS/httpatomoreillycomsourceoreillyimages865207.png
Jenkins

) john | log out

Jenkins » Phosnix » phoenix-default » £34 » Promotion Status oisaeLE To nermesis
A Backto Project Promotions
0, stows

ﬁ promote-to-test

= Changes

B console Ouout Promotion History
3 contaure @ phoenixdefault » promotion » promote-to-test #21

[= R Qualfication (promoted 2 min 25 sec ag0 — 41 s sfter bu
7 Promotion Status | pownstream builds succeeded

[] Test Resur @ ohoenix-web-tests #34

[] Aoreaated Test Resut status
See Fngerorints @ Successfuly promoted (1oa)
[] Dounstream buid view
ﬁ promote-to-uat

This promotion has not happened.

Met Qualification

4 Previous Buid

Manual Approval

Approvers jopn

Listof users o groups that can approve this promation

OEBPS/httpatomoreillycomsourceoreillyimages865209.png
™ Build other projects

Projects to build Tphoenix-integration-tests

O Trigger even if the build is unstable

 Archive the artifacts

Files to archive "/ war

) Aggregate downstream test results.

¥ Record fingerprints o files to track usage

Files to fingerprint

Con use widcards e 'module/dist/*+/* 2. Seethe Sincludes ofAnt lese fo the exact format, Tne base directory i the werlspace.
) Fingerprint all archived artfacts.

) Keep the build logs of dependencies

® ®

® ®

OEBPS/httpatomoreillycomsourceoreillyimages865121.png
™ This build is parameterized

String Parameter

Neme VERSION

Default Value [RE(EASE

® ® 0 @

Description

OEBPS/httpatomoreillycomsourceoreillyimages865221.png
Jenking » Phoenix » phoenix-default

Aim Project phoenix-default
O status

= comnaes

(& workspace N
©) nutdnow > eromoten swus

© ette roies

Workspace
¥, Confiaure

=
T bramton sias =
=

Last Successful Artifacts

 gameofife.war

[Deoendency Graon

B

#18 Mar 4, 2011 8:50:26 AM

History

Recent Changes

#17 Mar 4, 2011 7:51:31 AM

*
*
16 Mar 4,201 70830 AN Ty
*
*

Downstream Projects

@ohoenixcintearation-tests
Permalinks

Last build (#18), 2 min 20 sec ago
Last stable build (#18), 2 min 20 sec aqo

Last successful buld (418), 2 min 20 sec 2q0

Lost failed build (#11), 2 hr 47 min ag0

Last unsuccessful bulld (#11). 2 hr 47 min 2q0

Latest promotion:promote-to-test (#18), 2 min 20 sec 2q0

#15 Mar 4, 2011 7:38:06 AM

#14 Mar 4, 2011 7:36:18 AM

13 Mar 42011 7:28:20 A
#12 Mar s, 2011 G130 AN 3
11

Mard, 2011 itasaaM 3B
#10 Mar3, 2011 1011233 P 3B

eoCoOoCOCOCOCOCEO

OEBPS/httpatomoreillycomsourceoreillyimages864929.png
A plug-in that enables you to perform releases using the maven-release-pluain from Hudson.

15
s This plugin allows you to deploy a war to a container after a successful build.
@ | Hudson description setter puain w6
HTML Publisher plugin
] 04
This plugin publishes HTHL reports.
M2 Release Pluain
] 040

OEBPS/httpatomoreillycomsourceoreillyimages864697.png
enkins

Jenkins » Plugin Manager

4 Back to Dashboard Updates | Available | Instelled Advanced
', Manage Jenking Install Name 1

O |cvseudn
“This bundied plugin integrates Jenkins with CVS version control system.

O |sstisiaves oluain
“This plugin allows you to manage slaves running on *nix machines over SSH.

‘This page lists updates to the plugins you currently use.

OEBPS/httpatomoreillycomsourceoreillyimages864909.png
Hudson

Hudson » gameofife-default » #16 » Test Result

2 Backtoproect
0, status

= Cranges

B console outout
=

b Redeoloy Aracts

] st mesutt
1B Peceotane s domain e
[Aoceotince Tess - weh oalcation

See Fingerprints

o previous Buid

Test Result

0 failures (£0) , 2 skipped (+2)

"DISABLE AUTO REFRESH

56 tests (£0)
Module @ Total (diff)
‘com.ciwithhudson.aemeofiife:aameofiife-core: a1
‘com.ciwithhudson.qameofiife:qameofiife-web 15

OEBPS/httpatomoreillycomsourceoreillyimages865337.png
Manage Old Data

When there are changes in how data i stored on isk, Hudson uses the falowing srategy: data is migrated o the new siructure when it i loaded, bt thefle is not resaved in the now format. This alows for
Govenarading udson | needad. Howevor, & can 8150 1eove 4ot an disk in the o8 frmat indeintely. The tabi belaw 5 fes contoning sueh data, 30d the Hudson verson(s) where the data tructre wes changed.

Sometimes errors occur whi reading dota (I » lugin 34ds some data ond tha pluin i lter disabled, f miotion code s notwriten for structure changes, o if Hudson is downgraded sfter it has lready writien
Gt not resdssle by ine Oder versian). These errars 3 169964 Sut he unredable dsta 1+ the £ipped over, lowing Hodson to sariup and funcion properly.

Type Name Version

The form below may be used o resave these fles in the current format. Doing s means 2 downgrade Lo a Hudson release ader than the selected version will ot be abie o read the data stored i the new format.
Note that simply using udson to <reste and conioure obs 30 run bulds can s data (ot may not b readoblo by older HUdson releoses, sven whan (i form i Aot used. Also i any unraodobie deth errors are
reported n the rght 5ide of the tabl above, nats hat this 4ot will be lost when the il s resaved.

Evertusly the code supporting these data migrations may be removed. Compatiiity willbe retained fo ot lost 150 reesses since the structure change. Versions oder than this are in bald bove, and it s
Fecommended i rezave thece lss.

No old data was found.
Unreadable Data

s acceptoble o lesve unreadable dots in these fles, ¢ Hocdson will safly ignore i To avoid the log messages ot Hudson startup you can permanentl delete the unreadable data by resaving these fles using the
sution below.
Tvpe Name Emor.

NonExistentFeldExcepton: No such feld
Pudson matrix MatsConfiguration bockBuldWhenDownstreamBuing

NonExstentFeldExcepton: No such feld
hudsanplugine promated. busfromotinprocess.blockBLidWhenDownstresmBuiding

NonEstentFeldException: No such feld
Pudson matrx HotnConiguroion backBuldWhenomnstresmBuiding

NonExistentFeldExcepton: No such feld
udsonmatrix MotrxConfigurtion bock

NonExistentFeldExcepton: No such feld
udson.plugins. promoted. s, romotienProcess.lockBuildWhenDownstreamBuld

dson model Freestyleproject Jme-offe-freestyle-metics NonxistentFeldExcepton: No such fed
bt bbbt hudson mode FreestyleProject bockBuldWhenDownstreamBulding

NonExistentFeldExcepton: No such feld
hudsan matsix.MatsixConfiguration blockBuldWhenDownstreamBuiding

hudsonmatrix MatixConfiguration

14/APP_SERVER=resin,OATABASE=mysal

hudson,plugins. promoted.builds.PrometionPracess. phosrix-defaulpromotion/prome-to-test

hudson matrix MatrxConfiguration hoerixcmlti-config-buld/APP_SERVER =tomcat DATABASE b2

udsonmatrx MatrxConfiguration acceptance-test-uite/browserchrome,05=05X

i1gWhenDownsireamBuiding
hudson.plugins.promoted.builds.PromotienPracess. gameife-deploy-to-uai/promotion/Depioy t Production

hudson matrix MotsxConfiguration phoeri

mtconfic

I6/a%p_SERVER=resin,D=mysal

OEBPS/httpatomoreillycomsourceoreillyimages864767.png
Ant
Ant installations

name [ant1.7.1

& Install sutomatically

Install from Apache

Version [1.7.1 [8)

List of Ant installations on this system

OEBPS/httpatomoreillycomsourceoreillyimages865013.png
@ E-mail Notification @

Recipients teamlead@acme.com

Whitespace:separate list of recpient addresses. May refarence buld parameters e $eaRss. E-mail wil be sent when 2 buld als,
becomes unstaie o returns t sasl.

 Send e-mail for every unstable build

Send separate e-mails to individuals who broke the build

OEBPS/httpatomoreillycomsourceoreillyimages864751.png
¥ R jobs
¥ [gameofiife-default
v @ builds

*3
» [2010-03-12_20-42-05
» [2010-03-24_07-09-39
¥ [2010-03-24_07-12-28

¥ @ archive

v arger
‘gameoflife-core-0.0.1-SNAPSHOT.jar
build.xml
changelog.xml
checkstyle-warnings.xml
compiler-warnings.xml
coverage.xml
dry-warnings.xmi
" findbugs-warnings xmi
» [javadoc
JunitResult.xmi
log
open-tasks.xml
pmd-warnings.xml

revision.ot
» (] workspace-files

OEBPS/httpatomoreillycomsourceoreillyimages865021.png
@ Build #194 (Jan 13, 2011 12:11:46 PM)

Revision: 396
No changes.

Started by user John Smart

Test Result (9 failures / £0)
‘Show all failed tests >>>

This build was not claimed. Claim it

Reason [y

Sticky @ @®

@ gameofiite 0.76 sec
@ gemeoflifecbuild 1.5 sec
@ aameofifecci 1ms

@ gemeofiife-core 3sec

@ aameofifeweh 1ms

@ gameofiife-webservice 1 ms

OEBPS/httpatomoreillycomsourceoreillyimages864825.png
Invoke top-level Maven targets.

Maven Version [Maven 2.

1

Goals clean install -B -U -Dsurefire.useFile=false

Add build step +

Exccute shell

Invoke top-ievel Maven targets.
Execite Windows batch command
Invoke Ant

Invoke Gant seript

Invoke Gradie seript

Bulld With Gralls

Execute Groowy script

Execute system Groovy script

®® ®

OEBPS/httpatomoreillycomsourceoreillyimages864907.png
Hudson)

Hudson » gameofife-default » gameofiife-core » #15 » Test Results DIsBLE AUTO ReFRESH

2 Backioproect

History for Test Results
status

= Cranges
B console Outout
[History

7 Executed Moios

[st

P Redeploy Artifacts

seconds

See Fingerprints

G previovs puid

show count N N N
suiia Description DurationFail Skip Total
comeoffe-dsaut » samesife-core £15 sims| 0o @
comeoffe-dfaut » samesife-core £14 @m0 o
comeofife-defau » samsofifecore £13 O, thatwas my fak. | 72ms| 6 o 40
comeofife-ifaut » samesife-core £12 om0 o @
cameoflfe default » qameofife-core #11 2ums 0 o

OEBPS/httpatomoreillycomsourceoreillyimages864879.png
0 Console Output

Started by user anonymous
[SampleAppl] § /Users/Rene/.hudson/tools/Gradle-0.9RC2/gradle-0.9-re-2/bin/gradle test uploadhrchives

org/acme/Sanpleappl/1.0-SNARSHOT/Sampleappl-1.0-20101123.220032-2. Jaz to repository remote at
bttp://localhost:8081/arti actory/aradlerepo

Transforring 1K from remote

Uploaded 1K

BUILD SuCCESSPUL
Total time: 24.325 secs

Recording test results
piniihed: SUCCESS

OEBPS/httpatomoreillycomsourceoreillyimages865163.png
Configuration Metrix

User-defined Axi

Name |DATABASE

Values

OEBPS/httpatomoreillycomsourceoreillyimages865191.png
Jen S
Jenking » game-of-ife
2 Backto Dashboard
O, status

= Cranges

& orsnace

) Buid now

© bektc roiea

|| Modules

' sromotion satus
E Dependency Graph
5] subersion oting o

) sonar

7§ Perform Maven Release

OEBPS/httpatomoreillycomsourceoreillyimages865119.png
4 Back to Dashboard
O, status
= chonses

16 Worksoace

) suid ow

© belete proieat

4, Confiqure

Build History (trend)

) for all Y for failures

Project name

parameterized-build-job.

Description

O piscard Old Builds

© This build is

parameterized

Add Parameter

Github project

Passwiord Parameter

O Promote buil
Trac website

R Parameter
Boolean Value
Cholce

Flle Parameter
sting Parameter

®

®® ® ®®

OEBPS/httpatomoreillycomsourceoreillyimages864991.png
Hudson

) login | n up

Hudson ENABLE AUTo e
& reooe Continuous Integration With Hudson Baok - Demo Server
- " All | Dashboard | build-radiator

Buld History
= s W bt Last Last Failure Last Duration
O proiect Relatonsh

‘game-of-life 4 days 19 hr (#186) 1 mo 6 days (£168) 1 min 47 sec.

Check Fie Fingerprint
12 tadacs Legend F)forall) for folures [} for st laest buids
& Launen Ty Ao

Queue
No builds in the queue.
Build Executor Status
* Master

1/ 1dle

2/1de
sl

OEBPS/httpatomoreillycomsourceoreillyimages865063.png.jpg
«._Voda NZ 3G

4:03

Wedn_esday, January 26

I

Text from +49 511 4965180

gwt-calculator - Build # 3 -
Successful:

Check console output at
http://tuatara:8080/job/gwt-calcul...

OEBPS/httpatomoreillycomsourceoreillyimages864987.png
Authors

O Legacy mode.
© Project-based Matrix Authorization Strategy
Overall Slave Job Run View scm
User/group

AdministerReadConfigureDeleteCreateDelete ConfigureReadBuildWorkspaceRelease DeleteUpdateCreateDelete ConfigurePromote Tag
& administrator.

& bob
& joe

johnsmart.

00RO 0O®&
(TEEE&E®
00RO 0O®&
00RO 0O®&
O0R®E0&
O0R®E0&
O0R®E0&
CRE&O0®
O0RE&E&
O0RE&E&
O0RE&E&
O0R®E0&
O0R®E0&
O0RE&E&
O0RE&E&
O0RE&E&
O0RE&E&
O0RE&E&

User/group to add:

© Loggedin users can do anything
O Anyone can do anything
© Matrix-based security

EEEEE

® ®

®®® &

OEBPS/httpatomoreillycomsourceoreillyimages865011.png
Hudson

johnsmart | log out
Hudson » Job Config History ENABLE AUTO REFRESH
4 Back to Dashboard
config Configuration History
Date | Job/System configuration Operation User File(raw) iff |
FleA | Fies
2010-12-27_09-46-53 config (system) Changed johnsmart View a5 XML (RAW) e o
2010-12-2708-35-23 confia (system) Changed iohnsmart Vi e 300, (RAW ol e
2010-12-2709-28-16 confia (system) Changed ichnsmart View as XML (RAW) o] o

OEBPS/httpatomoreillycomsourceoreillyimages864773.png
2 Backto Dasnboars

Updates | Available Installed | Advanced

HTTP Proxy Configuration

Sever [prommakaleocom ®
o faed e
User oame ®
Password

Upload Plugin
You can upload a hp il o nstall 3 plugi from outside the centralplugin repository.

Update Site

URL nitp://updates.jenkins-ci.org/update-centerjson

=

Update nformation abtined: 2 mi 20 sec g0

OEBPS/httpatomoreillycomsourceoreillyimages864871.png
Grails installation

name Grails 1.3.4

GRAILS_HOME L ibrary/Grails/grails-1.3.4

List of Grais Installations on this system

OEBPS/httpatomoreillycomsourceoreillyimages865211.png
Copy artifacts from another project

Project name phoenix-default

Which build [Latest successful build

(O stable build only

Artifacts to copy 5/ war

Target directory

#Fiatten directories

O optional

OEBPS/httpatomoreillycomsourceoreillyimages864949.png
Hudson

Hudson » gameoflfe-performance » £10 » Performance DIsBLE AUTO ReFRESH

2 Backioproect

O status

Performance Breakdown by URI: jmeter-results.jtl

— URL | samples | Average (ms) | Min(ms) | Max (ms) Errors (%)

(S Chances AllURIs 55000 a1 701 2033 0.4490909090909004 %

B Console Output [raw] /home 10000 i o 116 0.0%
Jgame/start 10000 57 668 1087 0.43%

ol otz buae Jgame/next 25000 373 701 39 0.696 %

@ Redeploy Artifacts Vgame/new 10000 998 -296 2033 03%

[mst s

[p setommance Repot

See Fingerprints

8 previousuid

OEBPS/httpatomoreillycomsourceoreillyimages864679.png
[[) (3] rups 7gtnu comwasateosgame-of-ife - =B

@ johnsmant | Dashboard | Inbox © AccountSettings | Log Out

github

e
ExploroGitub Gt By Hob Search)
©® wakaleo / game-of-life owen | [1 40
Source Commits Network Pull Requests (0) Issues (0) Graphs Branch: master
Swich Branchos (1) SwichTags (0) BranchList
Demo application for the tenkins: The Definitive Guide' book .
hitp:www wakaleo combooksfenkins-the-defiitve-guide: acate
[BTR] Gt Read-Only | https://github. con/wakaleo/game-of -Life.git T URL has Read-Only access
First comit commit 7882d5cB48cOS8b6Sb6
tree £
. 5199ab02F103c3b3eb64
abouts hours ago
game-of-life /
nane age message history
5 gameoflife-build/ about 5 hours ago First comit [wakalec]
ganeoflife-cli/ about 5 hours ago First comit [wakaleo]
ganeoflife-core/ about 5 hours ago First comit [wakaleo]
ganeofLife-deploy/ about 5 hours ago First comnit [wakaleo]
gameoflife-web/ about 5 hours ago First commit [wakaleo]
5 gameoflife-webservice/ about 5 hours ago First comnit [wakaleo]
src/ about 5 hours ago First comit [wakalec]
gitignore about 5 hours ago First comit [wakaleo]
5] infinitest. filters about 5 hours ago First comit [wakaleo] |

OEBPS/httpatomoreillycomsourceoreillyimages864977.png
© Matrix-based security

z
g8

Vi
teDelete

JeteUpdate!

Overall

AdministerRead Configure Delete CreateDelete Configure}

User/group

249 3

o®

o®

o®

o®

o®

o®

o®

o®

o®

o®

o®

e

o®

o®

o®

o®

o®

e

o®

authenticated

hudson-

administrators.

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

read-only
Anonymous

hudson-

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

[n}

OEBPS/httpatomoreillycomsourceoreillyimages865065.png
¥ Hudson Seunds

Sounds On build result _ For previous build result

{ Failure NB: Ab: Fa: Un: Su:
(Five 13 R

On build result _ For previous build result

(Unstable [3) NB: Ab: Fa: Un: S
o ¥y ¥ ¥ ¥ ¥

On build result _ For previous build result

[Success E NB: Ab: Fa: Un: Su:
[= I =)

Play sound

(exeLoe (18)

Play sound

(houston (we1%)

Play sound

(jamesbrown 13)

OEBPS/httpatomoreillycomsourceoreillyimages865269.png
Launch method [Launch slave agents on Unix machines via SSH o

Host W W 8 ap-southeast-1.compute.amazonaws.com
vsernome T ®
Pasoword L)
Private Key File [/.2/lib/jenkins/.ec2/buildserverl.pem @
port =
Jovapath ®
um optons

Avaiabity (Take s save on-lne whe i dermand and fF-Tn when e 5@
In demand delay /5 ®

[P ®

OEBPS/httpatomoreillycomsourceoreillyimages864845.png
@ E-mail Notification

Recipients

ohn@mycompany.com jill@mycompany.com jack@mycompany.com
Whitespace:separated It of recpien addresses. May reference buld parameters ke $eaxax. £-mall wil be sent when a
oulld fals, becomes unstable or recurns o stable.

Send e-mail for every unstable build

™ Send separate e-mails to individuals who broke the build

OEBPS/httpatomoreillycomsourceoreillyimages865251.png.jpg
| Jenkins save agent - 1
=

OEBPS/httpatomoreillycomsourceoreillyimages864747.png
18 items, 38.85 GB available

| Name
config.xml

hudson.maven.MavenModuleSet.xml
hudson.model.UpdateCenter.xm!
hudson.scm.CVSSCM.xml
hudson.scm.SubversionSCM.xml

hudson.tasks.Ant.xml

hudson.tasks.Mailer.xml

hudson.tasks.Maven.xml

hudson.tasks.Shell.xml

hudson.triggers.SCMTrigger.xml

Jobs.

nodeMonitors.xml

> [plugins

5 secretkey

[tools

[updates

(1 userContent

[war

——————— I

=i Macintosh HD « (&] Users + @ Johnsmart » (1] hudson

(] 3 Joeloel el e o e

OEBPS/httpatomoreillycomsourceoreillyimages865205.png
Promotion procass*

Name promote-to-uat

Teon (Green star

Criteria

& When the following downstream projects build successfully

39 names [phoenix-deploy-to-test

[Trigger even if the build is unstable

 Only when manually approved

Approvers [jonn

Ai i roval Parameters

0 When the following upstream promotions are promoted

Actions

other projects

Projects to build [phoenix-deploy-to-uat

()

i anothr promotion prcess | Deee i promotion process |

OEBPS/httpatomoreillycomsourceoreillyimages864709.png
Post-buiid Actions
4 Publish JUnittest result report [

Test report XML <3 target/surcfie-reports/xmi

s s st 1t 5 vt o XHL 0, QA5 e o h et 5 szt
O Retain long standard output/error @

O publish Javadoc.
O Buid other projects

& Archive the artfacts.

st s (S ————

YY)

O Aggregate downstream test results.
O Record fingerprint of files to track usage
O Gt publisher

Y- X-X~)

O E-mail Notfcation

=

OEBPS/httpatomoreillycomsourceoreillyimages864913.png
Root POM

Goals and options

pom.xmi

clean coberturascobertura -Pmetrics

OEBPS/httpatomoreillycomsourceoreillyimages864927.png
Test Result : WhenTheUserEntersAnInitialGrid

0 failures

6 tests
Took 5.8 sec
(add description

All Tests

Test name. Duration Status
theGridbisplayPageShouldContainANextGenerationButton L2sec |Passed
theGridPageShouldHaveALinkBackToTheHomePage Llsec |Passed
userShouldBeAbleChooseToCreateANewGameOnTheHomePage L5sec |Passed

userShouldBeAbleToEnterLiveCellsInTheGrid 056sec | Passed

userShouldBeAbleToEnterOneLiveCellInTheGrid 095sec | Passed

userShouldBeAbleToSeedAnEmptyGridOnTheNewGamePage 039sec | Passed

OEBPS/httpatomoreillycomsourceoreillyimages864931.png
@ Publish HTML reports.

HTML directory Index page[s] Report title Keep past HTML.
to archive reports
gameofife-web| | easyb-report.ni [Easyb Report | & Delete

OEBPS/httpatomoreillycomsourceoreillyimages864765.png
Maven Project Conf

Global MAVEN_OPTS.

Xmx512m

OEBPS/httpatomoreillycomsourceoreillyimages865141.png
™ This build is parameterized

String Parameter

Neme [receasd

Default Value

Description [Git tag corresponding to the version to be deployed

®6

OEBPS/httpatomoreillycomsourceoreillyimages865069.png
Hudson Speaks!

Announcement template

<3:choose>

hen test="$ {build.resulti='SUCCESS'}">

Your attention please. Project §{build.project.name} has failed
'SUCCESS')"> again</jiif>

iwhens
erwise> <I-- Say nothing —-></j:otherwise>
ichoose>

Save with an empty value to revert to the olobal setting.

OEBPS/httpatomoreillycomsourceoreillyimages865171.png
Jenkins = google-quice-trunk
P —

0O status

= Chnges

[vorkspsce

© o

© el proess

confiawe
Modues
i Buildmistory (trend)

@ #2 Mar19, 2011 4:51:43 AN

@ #1 Mar1s, 2011 2:21:47 AM

[for all {) for failures

Project google-guice-trunk

Iob defimition is generated

ENABLE AUTO REFRESH

1 you < this project
Building Google Guice trunk
[Project Page [code. zoogle. con/p/google-guice
B [monte-quice-trunk
X
[Foven soals |- ctean amstarl

[Faven reposiory|[-cser_hosess mairepository”

[Maven options || smases mmasperasizerizom

[t recients | [pemcinséevgeny-goain-org

SUN update. H Revert - [false], update - [false], checkout - [true]
policy

[ode [master

[Triggers][timers o0 = = =

[Reposttories |+ nitasl/zoorle suice goorlecoie.conlsunstruns

E | bttosLs500s1c-sutce-soostccate.contsentrunsiom.

OEBPS/callouts/8.png

OEBPS/callouts/9.png

OEBPS/httpatomoreillycomsourceoreillyimages864699.png
=0 tuain
“This plugin integrates CMVC to Hudson.

03

Darcs Plugin

This plugin integrates Darcs version control system to Jenkins. The plugin requires the Darcs.
binary (darcs) to be installed on the target machine.

035

Dimensions Plugin
“This plugin integrates Hudson with Dimensions, the Serena SCM solution.

081

File System SCM
Use File System as SCM.

110

Git Plugin
“This plugin allows use of GIT s a build SCM. Git 1.3.3 or newer is required.

116

O & o0 0 O

Harvest Plugin
“This plugin allows you to use CA Harvest as a SCM.

0.4

OEBPS/httpatomoreillycomsourceoreillyimages864695.png
JOK

DK instalations name [iove 16,0

 Install automatically

Install from java.sun.com
Version (6 Update 18 1%)

@1 agree to the Java SE Development Kit License

Agreement

OEBPS/callouts/1.png

OEBPS/callouts/2.png

OEBPS/callouts/3.png

OEBPS/callouts/4.png

OEBPS/httpatomoreillycomsourceoreillyimages864681.png.jpg
Continuous Integration with Hudson - the book T—*

Q)

(2)2)- (@) GO () (DU v wwmewakaieo.com/books continuous-in 1 ¥

ith Huds... | F

Continuous Integration

Home » Books » Continuous Infegration with Hudson

Continuous Integration with Hudson - the bool =

You have chosen to open
12 hudson.jnip

INLP files
hudson.dev.java.net

which is

) Open with [Java Web Start (default) 2]

Hudson. It's intention is not only to de (O Save File

real-world tips enabling readers to get the;

(1] Do this automatically for files like this from now on.
Continuous Integration with Hudson|

atest changes will be automatically

available for purchase.

Coma) @O

Table of Contents

» Introduction Try out Hudson!

» First Steps with Hudson

* Installing Hudson Launch Hudson through Java Web Start

+ Configuring Hudson - for a test drive. Once it launches, visit .

+ Setting up buid jobs http://localhost:8080/ to get to the dashboard. Any =
C 2]

e —

OEBPS/callouts/5.png

OEBPS/callouts/6.png

OEBPS/httpatomoreillycomsourceoreillyimages864849.png
Goals and options

(Maven 2.2.1

pom.xmi

clean install -8 -U -Dsurefire.useFile=false

OEBPS/callouts/7.png

OEBPS/httpatomoreillycomsourceoreillyimages865139.png
Project gameoflife-release-build

This build requires parameters:

Release [gameoflife-00.1 |+

Seect Subversion tag

OEBPS/httpatomoreillycomsourceoreillyimages865229.png
Jenkins log in | sign up
Jenkins
New Job View name opoenix-build-pipeline.
34, Manase denkins © oy view
. People This view automatically displays all the jobs that the current user has an access to.
> Build History O vist View
o Shows jabs n » simple s format. You can choase wich jobs are to be dsployed in wich
O, broect Relationshi view.

@ Build Pipeline View

‘Shows the jobs in build pipeline view. The complete pipeline of jobs that a version
13 adooo propagates through are shown as a row in the view.

© Nested View
Group job views into multiple levels instead of one big list of tabs.

= Check File Finaerprint

@ Lo T

fp omensam ()

OEBPS/httpatomoreillycomsourceoreillyimages865253.png.jpg
[.£] Jenkins slave agent

‘Canniecting to wwi.wakaleo-abs. com: 38075 (retrying:6)

OEBPS/httpatomoreillycomsourceoreillyimages865233.png
Jenkins » phoenix-build-pipeline

View/Hide Build Pipeline Icon Legend
ot saus | (ot sty [muta stas)
Qo

Success % More than B0% |SUCCESS

ceoe

Unstable 5 60-79%
Failure 3 40-59%
Abort g 20-39%
Building &
phoenix-
default

[* Ee

phoeni-cefaut
31
Duration: 17 sec

phoenix-cefaut
30
Duration: 16 sec

phoenix-cefaut
%29
Duration: 17 sec

phoenix-cefaut
28
Duration: 15 sec

phoenie-cefaut
527
Duration: 16 sec

UNsTABLE

ABORT

Less than 20% BULLDING

phoenix-
integration-tests

@t

phoenix-integration-tests
%29
Duration: 29 sec

phoenix-integration-tests
28

Duration: 33 sec
phoenix-integration-tests
527

Duration: 31 sec
phoenix-integration-tests
26

Duration: 34 sec
phoenix-integration-tests

25
Duration: 32 sec

phoenix-
web-tests

0B

phoenix-veb-tests
31
Duration: 0.14 sec

phoeni-veb-tests
30
Duration: 0.15 sec

phoenix-test-
deploy

Qo

phoenix-test-deploy
26

Duration: 90 ms.
phoenix-test-deploy
25

Duration: 0.74 sec

phoenix-test-depioy
24

Duration: 0.12 sec

»

»

»

phoenix-uat-
deploy

@

phoeri-uat-deploy.
G
Duration: 0.1 sec

phoenix-uat-deploy.
%2
Duration: 0.34 sec

»

»

DISABLE AUTO REFRESH

phoenix-
production-

Manual Execution

phoenix-production-
ceploy #2
Duration: 97 ms

OEBPS/httpatomoreillycomsourceoreillyimages865161.png
Configuration Metrix

DK
Favats @ aats

) 1.

2

OEBPS/httpatomoreillycomsourceoreillyimages865035.png
Jabbar Notiication

 Enable Jabber Notification

Jabber ID hudson@tuatara

Password

Initial group chats game-of-lfe@conference. tuatara

Group chats to automaticallyJin on startup with a b (whitespace separated)

®

®

Server
Port
Default ID suffix [
i sl il b used o determinthe abber 10 from the ucsen 0, o Jaboer 0
& Spaciidn thesaerseinge
Enable SASL authentication]
Expose presence “

Acceptance mode for subscription requests (_accept_all

Bot command prefix f

Group chat nickname

Hudson Username Johnsmart

Hudson Password

OEBPS/httpatomoreillycomsourceoreillyimages865093.png
Hudson

O This build is parameterized (]
Github project)
O Promote builds whe... ®
Trac website @
Build Triggers
(trend) () Buid periodically @
Q@ #5 Dec7.2010 113341 AM ISIKB gy
@ #4 Dec7,2010 11:31:07 AM ISTKB g °
@ #2 Nov 28, 2010 5:45:55 PM 91KE
@ #1 Nov28,20101:41:23pmM 7k | Build Settings
) for sl §) for faiures| O E-mail Notification ®
O Publish documents.
 vilotions ®
@ @ O xMLfiename patter)
checkstie (10 |[os0 | [os | [auto 18)
codenare 10 [os9 |[ovs [awo %)
s 10 [os9 |[oss [awo %)
findbugs 10 |[o99 |[oo0 | [(auto 1%)

OEBPS/httpatomoreillycomsourceoreillyimages865267.png
Wi sweamozon.com AWS | Products | Developers | Community | Support | Account Welcome, John Smart Setings Sign Out

| nsicpesnsttk 53”2 VPG| Cloudwateh Eiatic MapReduce Cloudront Coudrormation RD5 5N |

Region: @ tawen e | i < 3 sontn | 2 v |G |
T g (M) M e8] 1 K < i > O
skcammbowd | Name® immce MM Rooibeics | Type | Stus | SeciyGrups KeyPakchams | Mooy | Viumlzaion | Pacementroup

o iSbcotace | ami5006808 | abs mismal @ ening defaut buddservert: basic paravitual

msTances
> Instances

> Spot Requests

> Reserved Tnstances

ces.
> Bundle Tasks

> Volumes.
> Snapshots:

NETWORKING 8 SECURITY

OEBPS/httpatomoreillycomsourceoreillyimages865173.png
Jenkins » jenxins-master ENAELEAUTO REFRESH
4 Backto Dashboard Project jenkins-master

2ob definition is generated by Maven

O, status
1you s project

= Chanees
1B worsoace

© o

© el proess

¥, Confiaure

Modules

< BuildHistory (trend)
@ #7 Mar 15,2011 4:54:00 AM
@ #6 Mar 19,2011 3:24:15 AM

Il timers o2 e
[Reposttoris | sits/lsitiub.contrenkinseilrenkins.ait - sater
) forall R orfaures | [[Pom [Ty ——

OEBPS/httpatomoreillycomsourceoreillyimages865247.png
John

tome indave davet

Descripton

* of executors 3

Remote S 100t T \eniina save

L)

suid Queue
o bt n e cue. Gl
st iz ths s s mch 5 sl B0
Lo b unch s g v P e
Availabilty Keep tis save on-iine as much as possible B0
Nod proparies
[Epy—
[Ep—
3 ot xun oxecuion o this e ®

[ome]

OEBPS/httpatomoreillycomsourceoreillyimages865245.png
Jenkin:

Jenking » nodes

5 ame i ReparseTime rrssusp Spee FreeDikspacs ProsTomp e Archiodire Clokiferocn
ime A sszen 26 wocos xas 50 o

" " " wa G

OEBPS/httpatomoreillycomsourceoreillyimages864763.png
Maven installations

name Maven 2.2.1

MAVEN_HOME | usr/local/maven

O Install automatically

name [Maven 3.0

 Install automatically
Install from Apache

Version | 3.0-alpha-6. B

List of Maven installations on this system

OEBPS/httpatomoreillycomsourceoreillyimages864787.png
Hudson » gameoflife-default » #4

o Changes

Summary

2 Backioproect

O status

(= chanes

B console outout
[e this buig 1. Changed calsymbol

P Redeploy Artifacts

[st st

Revision 53 by johnsmart:
Changed cell symbol

(# loameife/ e

"DISABLE AUTO ReRESH

8= Sce Fingerprints

i celiov(Eif))

o revious Buid

% textouid

[show recent changes]

Go to revision

sventon subversion web client -

Goto path

Heap 53

© Tigameaterrunisamestic-resrer| (g1]

Rev: 53 - svn:/ /I / 7 trunk /. / src / main / java / com / wakaleo / gameofiife / domain /.
cellova
[Show og | Show fite][Togale e wrap | [0iffto previous | [inine _~] [Urr-5 el
T iranic Timwa/com i java @ revision 13
/trunk/ 1/java/com, ell.java @ revision 53
I —
4 4
b —r
o Tivecauem,
o o |- omeceuem;
v s|+ oo cauc
o o

OEBPS/httpatomoreillycomsourceoreillyimages865183.png
Dependency Graph

N

phoenix—web—lesls)

|

(phoenix—compaliblily—lesls (phoenix—load—lesls) phoenix—performance—lesls)

(phoenix—deploy—lo—lesl)

OEBPS/httpatomoreillycomsourceoreillyimages865019.png
XeXo) Inbox (1 message)

) [RS 4 mERY
Get Mail Delete Junk Reply ReplyAll Forward NewMessage Note ToDo
RGeS © ® from Subject DateReceived
S John Smart Oh Nol The Game Of Life build failed againi Today
- sent
 Trash
REMINDERS

‘Subject: Oh Not The Game Of Lie build failed again!
RSs Date: 12 January 2011 1024:11 PM AEDT
To: john sman@me.com

MOBILEME

‘game-o-ife - Build # 191 - St Failing:

‘Check console output at http:/Auatara 8080ob/ame-ot-ife/191/t0 view the results.

Failing tests:

28 tesis failed.

FAILED: Kl fife.domain WhenYouCreate AbleToSeed)

Ertor Message:

null

‘Stack Trace:

Javalang.NullPointerException

MAIL ACTIVITY at el flife d conventTc JavaT)

at Kl flife domain, Grid. :44)
at Kl flife.domain WhenYouC AbleToSeed) (WhenYouC: 9)
at sun reflect NativeMethodAccessorimpl.invokeO(Native Method)
atsunceflect! nplinvoke(t 39)
atsun reflect D invoke(Ds)

nplinvoke(t
atjava.lang reflect Method.invoke(Method java:597)
at it model Fr 9

44)

all(Fr
at itinternal model. allable.unf allable java:1S)
e |l el oml at it. ‘model.Fre wokeExplosively(Frz :41)

OEBPS/httpatomoreillycomsourceoreillyimages865075.png
(& Project Explorer &2

» - lquibase-core
» Eltiquibase.maven-plugin
» 5 lquibase-oracie
> Giquibase-parent
¥ maven-schemaspy-plugin
» i src/main/java
» B src/main/resources
» Borcresiiava
» BB srcestiresources
» EAJRE System Ubrary 0255-1.5]
» B Maven Dependencies
[
» g
> Gresteb
14 catalog.xm!
[0 derby.og
B ucence
i pomoxmi
[pom.xmlreeaseBackup
(2 reease.propertes

Preferences
Checkstyle o)

) eYeYe) Checkstyle Configuration
»ane Project Relative Configuration "schemaspy-checkstyle" OC' pse ~CS|

e it checkstyle configuraton,
»CodePro Edit chec igu - | JECUPSECHEAGTYLE InTEGRATION]
> Data Management
»essyp Koown modsles Configured mdules for group ize Vioiatons”
»Groowy lopm et] [oo woaue Sewry Commen

nput iter text here
»Hep) Anonymous inner clsses inherit
e]

st - {romthinig N ExecuableStatement Sz nharit:
» st st v Maximum il Length inheit
rima i Member Names I} Maximum Line Length _inherit
»Java €€ i Method Names v Maximum Method Length inerit
[— Method Type arameter Name. o b T
Fascrt i Package Names @ Ouer Type Namer inhert
S Parameter Names
> Pug-in Development
»Remate Systems
»RunDetug
»sener
S
Fream

Terminal

> Usage Data Collector
Validstion

o

»web Serices

L

% nomymous inner dasses engths

Pttt
1, Maximum File Length
. \
—
e e C [ps e ~Cs)
» Siwhitespace Edit the module configuration. P Cibas it
e

(Goners | s)

sy (i 13)

B —

-
e —

& Transiate okens O Sorttokens (2) (_pefauk) [Sc)

4

¥ Open module editor(s) on add action

OEBPS/httpatomoreillycomsourceoreillyimages864889.png
Post-huild Acti

Archive the artifacts

Build other projects.

0ooo

Publish Flog report

Aggregate downstream test results.

 Publish Unit test result report

Test report XMLs

O Publish Javadoc
o

results/* xmi

Flesot ncludas’ setting that species the generated raw XML report fles, such as 'myprajectargetftest-

raparts/ i Basedi o the Meset i the werkspace ront.
0 Retain long standard output/error

Publish Rails Notes report

 Publish Rails stats report

Rake Version

 Publish Reov report
Reov report directory

Coverage metric targets.

(efauit

coverage/units.

raative pth to the coverage report directory

o, a5 o5
e s o5

‘Configure hekh reparting threshols.
Forthe -+ row, leave blank £ usa the defaut value (i, 80).

Forthe @3 and () rows,leave blank o use the defeult values (2. 0).

® ®®®

®

® ®

OEBPS/httpatomoreillycomsourceoreillyimages865117.png
¢ Triggers

4 Build whenever a SNAPSHOT dependency is built
O Build after other projects are built

™ Build periodically

Schedule

 poll sc
Schedule

 Run nighty for the Sonar buid
@midnigh

[# Run every minute for the CI buid

®®® ®

® ®

OEBPS/httpatomoreillycomsourceoreillyimages865231.png
(4)2)= (&) G0 () (& (o ocatnost 080 viewsshoenin-buld-pipeine configure £ 72 +) (S Coose Q)
)
Jenkins ETTT N) o i~ | sion up

Jenking » phoenix-build-pipeline

|

New Job Name phoenix-buld-pipeline]
. Manage Jenkins Descrption [Hudson Devey Demo Server ()
& peovle
= s ity
© belee view
O, Project Relationshi Fiter build queve [()
Check Fle Fngeraist pier bld exectors ®
{3 tasoon Buld Ppline View T |]

@ Lo T 0
[Dependency Graph

Select Initial Job phosnixcdefault 5o

No OF Displayed Builds (1 D]

.|
et

OEBPS/httpatomoreillycomsourceoreillyimages865265.png
Jenkins John | log out

Jenking » nodes
4 Back to Dashboarg Preventive Node Monitoring
g New Node @ Response Time ®
X contiurs Free Disk Space @
Free Space Threshold [7G5)
Build Queue
No builds in the queue. @ Architecture (2]
Build Executor Status © Free Temp Space ©
Status
free Space Threshald
1 1l [168 1@
2lidle Free Swap Space (2]
& Clock Difference ®

[ox]

OEBPS/httpatomoreillycomsourceoreillyimages865203.png
™ Promote builds when..

[~Promotion process

Name (o romote-to-test

Tcon (Gold star

Criteria

& When the following downstream projects build successfully

29 names [phoenix-web-tests.

[Trigger even if the build is unstable
Only when manually approved

o
0 When the following upstream promotions are promoted

Actions

®e

other projects

Projects to build [phoenix-geploy-to-test

OEBPS/httpatomoreillycomsourceoreillyimages865057.png.jpg
7.:1“ voda AU 2 = Ol

3:200

Monday, January 17

o
[Wakaleo Labs Hudson Server] —
Build Status
game-of-life: FAILURE
Possible Culprit: John Smart

OEBPS/httpatomoreillycomsourceoreillyimages864811.png
Git Publisher

Push Only If Build Succeeds @

Merge Results

Tags.

Branches

4

1fpre-buld merging s configured, push th result back to the arigin

Tag to push

[HuDSON_BUILD

Createnewtag ()

Target remote name

mylocalorigin

~

Tags ta push ta remote reposiaries

Branch to push

master

Target remote name

mylocalorigin

A anen \

Braschen b s 5o renstbs rsealorite.

OEBPS/httpatomoreillycomsourceoreillyimages864869.png
id Environmant

O Locks.

 Configure M2 Extra Build Steps

Steps to run before mvn build

Add pre-bulld step ~.

Steps to run after mvn buil

Exccute Groovy script)

Groovy Version [(Default) L

@® Groovy script file.

[orzon]

O Groovy command

Add post-build step v

Post-Build Run Criteria

© Run only if build succeeds) Run only if build succeeds or is unstable @ Run regardless of build result
‘Should the post-buld steps run only fo successtl buls, et

OEBPS/httpatomoreillycomsourceoreillyimages864911.png
Build Reports

Analysis Collector Plugin

“This plug-in is an add-on for the plug-ins Checkstyle, Dry, FindBugs, PMD, Task Scanner, and
=] Wamnings: the plug-in collects the different analysis results and shows the results in a combined 16
trend graph. Additionally, the plug-in provides health reporting and build stability based on these
combined resuta.
Sttic Code Anaysis Plugine
=] 1.10
This plug-in provides utilities for the static code analysis plug-ins.
o esccoum -
“This plugin generates the trend report for CCCC (C and C+\+ Code Counter). -
Checkstyle Plugin
=] 3.8
“This plugin generates the trend report for Chy an open source static code analysis program.
Cobertura Plucin
@ st

“This plugin allows you to capture code coverage report from Cobertura. Hudson will generate the.
trend report of coverage.

OEBPS/httpatomoreillycomsourceoreillyimages865039.png
Instant Messaging Piugin
“This plugi provides generi support for buid noffications and a bot via instant messaging protocols.

IRC Plugin
“This phugin installs Hudson IRC bot on yofehoice of IR channels. You can get noffications via IR and inferact with Hudson via IRC. Note that you also need to
install the instant-messaging plugin

OEBPS/httpatomoreillycomsourceoreillyimages864915.png
@ Publish Cobertura Coverage Report

Cobertura xml report pattern [xxtarget/site/cobertura/coverage xml

Consider only stable builds

Coverage Metric Tergets

s » file name patter tha can be used to locte the cobertura xml repar i (for example it Maven2
use *=/target/site/ cobertura/ coverage.xmi). The pah 5 raatve t the madule 10t Unless you have
configured your SCH with mple moduies, n which cas s reatve o the workspace rot. Nt that the
mcdule oot is SCH-speciic, and may not 5. the ame 2 the workspace 100t

‘Cabertura must b canfiured t genérate XML repartsfo tis plugi t funcion.

=]

Inciuse oty sable s, .. excuse unstatle and falled ones.

(Conditionais %) B @5 ol
(tines) oo | ¢ [o8 @5 ol
(Methods 18 [oelere | <+ (100 @ [0 B
(Packages 18 [oelere | <+ (100 @55 O fes

‘Configure neati repercing hresholes.
Forthe - row,leave lank to use the default vale (L. 80).

For the @ and () rows, leave biank to use the defaut values (L. 0).

OEBPS/httpatomoreillycomsourceoreillyimages864875.png
Cradle

Gradie installations Gradie
name [Gragie-0.9RC2

© Install automatically.

Extract *.zip/* tar.gz

()
Label)
(]
(]

‘Subdirectory of extracted archive [gradie-0.5-rc-2

Preyrr e

OEBPS/httpatomoreillycomsourceoreillyimages865089.png
Il Setting:

) E-mail Notification

O Publish documents

 violations

checkstyle
codenarc
cpd
findbugs
fxcop
gendarme
jereport
jslint

pmd

plint
stylecop
Per file limit

Source encoding

® ®

Ee) @ XML filename pattern
10 999 [Lauto
OIS e @
OIS
OIS
OIS
10 999 [Lauto
10 999 [Lauto
10 999 [Lauto
OIS
OIS
10 999 [Lauto
I3

(default

OEBPS/httpatomoreillycomsourceoreillyimages865335.png
Manage Hudson
A\ New version of Hudson (1.401) is avalable for download (
A\ You have data stored in an older format and/or unreadable data. | Manage || Dismiss |

L Confiqure System
\) Configure global settings and paths.

OEBPS/httpatomoreillycomsourceoreillyimages864757.png
Invoke top-level Maven targets

Goals [rnvn verify -Didap.server=${Idapserver}

‘Add build step v

il

OEBPS/httpatomoreillycomsourceoreillyimages865009.png
Hudson

Hudson » Job Config History SNARLE A0 RefRESH

Backto Dashboard

All Configuration History

| Date . Job/System configuration Operation

2010-12-27_09-56-29 game-of-ie Changed

201012-27_09-46-53 confia (system) Changed johnsmart | view as XML (Raw)
2010-12-27_09-45-03 hudson.plugins.aroov.Groovy (system) Changed johnsmart | view as XL (RAW)
2010-12-27_09-45-03 hudson.scm.SubversionSCM (system) Changed johnsmart _’Mw
2010-12:27_09-42-44 game-of-ife Changed johnsmart | view as XL (RAW)
2010-12-27.09-35-23 audit-trai (system) Changed johnsmart | yiew as XL (RAW)
2010-12-27_09-35-23 com.2one.hudson.arais.GraisBuilder (system) Changed johnsmart | view as XML (Raw)

2010-12-27_09-35-23 confia (system) Changed johnsmart || view as XML (RAW)

OEBPS/httpatomoreillycomsourceoreillyimages865187.png
Bulid Environmaent

0 Maven3-Artifactory Integration (deprecated)

O Gradle-Artifactory Integration
 Locks

O Set environment variables.

) [oelete

OEBPS/httpatomoreillycomsourceoreillyimages864947.png
ms

Performance Trend

Responding time

2000

1500

10 [=average

500 _/_/-— [==max
|==min

.
s;0 \/

@ % 2 ¥ % % 8 g &

Percentage of errors
100

B
0
a

»

o
xz
s
s
#
s
#
10

"2

OEBPS/httpatomoreillycomsourceoreillyimages865053.png
Hey there, wakaleo! Log out?

Notifications ~ Settings Services Learn More Mobile Apps

notifo’

Create Service

Creating a Notifo service provides you with separate API credentials in addition to a service icon and URL shown
throughout Notifo and our mobile applications

Services My Services

All fields required.

Service Username wakaleo_labs_hudson_serve

Service Name

Wakaleo Labs Hudson Serve

john.smart@wakaleo.com

Email Address

Site URL http:/ /www.y
Default Notification URL http://www.wakaleo-labs.c

Notifo service pricing is not yet final but
10,000 notifications per month are free. Tinker
away!

eate Service

OEBPS/httpatomoreillycomsourceoreillyimages865257.png.jpg
m

File

Install as Windows Service

Comnected

OEBPS/httpatomoreillycomsourceoreillyimages864723.png
Invoke top-level Maven targets

Goals.

Clean install -0

Invoke top-level Maven targets

Goals.

Javadoc:javadoc -o

illd il

‘Add build step +.

Post-build Actions

4 Publish JUnit test result report

Test report XMLs

**/target/surefire-reports/*.xml

Flesot ncludas' settng that specie the generated raw XML report fles, such as 'myprajectarget/test.reports/* . Basedic of the feset is

the workspsce
0 Retain long standard output/error

|

™ publish Javadoc
Javadoc directory

‘gameofiife-core/target/site/apidocs.

Directory relative to the rot of the werkspace, such as myproject/ouid/javadoc’
O Retain Javadoc for each successful build

OEBPS/httpatomoreillycomsourceoreillyimages864683.png
8,00 Java Web Start

Downloading application.

Name: Jenkins
Publisher: Jenkins project

From: http:/ /mirrors jenkins~ci.org

—_— (cancel)

OEBPS/httpatomoreillycomsourceoreillyimages864899.png
Hudson » gameofife-default

£ Backto Dashboarg

), status

[Changes

() euiid now

© Delee proiec
4, Confiaure

Modules

[£] suerson i o

5 Build History (trend)
Q3 May21,2010 7:4935 M

Project gameoflife-default

E Workspace
[y

[necent chances »
e

15

st et 5 e/ 55) §
£

@ #2 May 21,2010 8:03:57 AM 65KS)
@ #1 May 21,2010 8:03:26 AM 71KB)

for all [for failures

Permalinks 5
® Last build (43), 3 min 24 sec aqo ‘
3

© Lot stable build (#2), 11 hr 2q0
@ Last successful build (£3), 3 min 24 sec
200

o

(Badd description

=Disk Usage: Workspace 105K, Builds 139KB

Test Result Trend

»”

just show failures) enlarge

OEBPS/httpatomoreillycomsourceoreillyimages864905.png
Build Time Trend

Build 1 Duration 20
© #3928 min 55 sec

@ #3898 minadsec 0

@ #3687 7min23sec -

© #38 6 min6sec

© #4385 8 minBsec 100

@ #3837 mina1sec o

@ #3825 min 56 sec

@ #3806 min 9 sec 120 |
@ #3775 min 38 sec £

@ #3767 mina2sec 100

@ #3757 min32sec w nim
@ #3772 6min12sec

@ #3559 min10sec @ .

@ #3575 mins2sec

@ #3568 min 37 sec | I

@ #3556 mins2sec "

@ #3567 min22sec

@ #3517 min 46 sec
B
@ #350 7 min 44 sec PO

OEBPS/httpatomoreillycomsourceoreillyimages864851.png
Root POM pom.xmi
Goals and options [ciean deploy -B -U -Dsurefire. useFil
MAVEN_OPTS

Alternate settings file

O tncremental build - only build changed modules
¥ Disable automatic artifact archiving
O Build modules in parallel

Use private Maven repository

=]
[Resolve Dependencies during Pom parsing
(0 Process Plugins during Pom parsing

Maven Validation Level { perauLT

®®®® ® ® ® ®

OEBPS/httpatomoreillycomsourceoreillyimages864887.png
Rake Version [(Default) B
Tasks

Tmigrate crsetup testunt testunts esbfunclionals CI_REPORTS =reauls RAILS EnV=te] (V)

‘Speciy Rake tasks) torun.

‘Add build step +.

Post-build Actions

()

Aggregate downstream test results.
Archive the artifacts

Build other projects.

0oo0ooo

Publish Flog report
4 Publish JUnit test result report

Test report XMLS e ite/ i

Flesot ncludas'seting that species the generated raw XML raport fles, such 25 'myproject/targetftst-reports/* x.
Bsedr of the fecet & the workepce 105

O Retain long standard output/error

® ®®®

OEBPS/httpatomoreillycomsourceoreillyimages864791.png.jpg
Hudson

A Back to Dashboard Project name. =T
0, suns Descrpton
= cuacass

O iscard 014 Buids
O This buildis parameterized
Github project

Google code website

) Use Subversion Release Manager

23 isable Build (No new buids will be executed unti the project i re-enabled.)

00 Execute concurrent buids f necessary (beta)

@ #1 Nov 10,2010 11:01:06 AM

() for iues Advanced Project Options

‘Source Code Management
O None.
0O cvs

—p ©

Repositories

URL of repositor [5i gt com/mathewmecullough/maven-training ot

> (o]
— (]

OEBPS/httpatomoreillycomsourceoreillyimages865061.png
@ Editable Email Notification

Global Recipient List

Comma-separate It of emal address that should receive noifcatons.

® ®

Content Type (_Default Content Type.

Default Subject

$DEFAULT_SUBJECT

Defeult Content [§DEFAULT_CONTENT

Content Token Reference

Trigger ‘Send To Recipient List Send To Committers.

fave @) o

Include Culprits

More Configuration

= Leollapse)

Recipient List (6421032 @email.sms. . .com

Subject

Content [§PROJECT_DEFAULT_CONTENT

OEBPS/httpatomoreillycomsourceoreillyimages865059.png
.__voda AU & 10:02 AM B =

Alljobs Fandroid-quote-of-...

@ android-quote-of-the-day >

46.2 seconds ago

m Build stability: 4 out of the last 5 builds failed.

i+ Test Result: 0 tests failing out of a total of 8
tests.

Trends

count
mins

Build Time

Build Now Stop Build

OEBPS/httpatomoreillycomsourceoreillyimages864745.png
jenkins Properties (Local Computer)

Generl | Log On [Recovery | Dependencies

Logonas:

Local Sytem acoount
] Alow service tonteract with desktop

This account: fenkins.

Password
Confim password

Helo me corfiaure user account log on options.

e = O

OEBPS/httpatomoreillycomsourceoreillyimages864785.png
© subversion
Modules

Repository URL

svni/flocalhost/gameofiife/trunk @

Local module directory (optional) |

Check-out Strategy [Use 'svn update' as much as possible 2]
a5 much as possible

Use 'svn pdate’ as much as possible, with 'svn revert” before update

Repository browser | Emulate clean checkout by frst deleting unversioned/ignore files, then 'svn update'
Always check out a fresh copy.
TRL

@
Thite//localnost: 5888/svny @
()

Repository Instance [gameofife

OEBPS/httpatomoreillycomsourceoreillyimages864943.png
Root POM

Goals and options

MAVEN_OPTS

pom.xmi

clean verify -Pperformance

Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512m

OEBPS/httpatomoreillycomsourceoreillyimages864677.png
github Pricingand Signup | Explore GitHub | Features | Blog | Login
S0GALCOONG

Sign up for GitHub e)

) You are signing up for the free plan
‘The cost for this plan is $0 per month. You can cancel, downgrade, or upgrade at any time.

Create your free personal account

facebook HOO! 37signals i+
| facebook I EMI IR ignals 3
john-smart M You're joining the smartest companies in the world
Email Address

mr_john_smart@yahoo.com.au M ~/ Email support

We promise we wont share your emai with anyone.
! o +/ Upgrade, downgrade or cancel at any time
Password

 Secure,

v

Must contain one lowercase leter, one number, and be at least 7 charactors long

Confirm Password

By clicking on *Create an account" below, you are agreeing to the
Terms of Service and the Privacy Policy.

Create an account

OEBPS/httpatomoreillycomsourceoreillyimages864955.png
‘ People

Name Last Active ¢ on

Kate the Developer 7 hromin ‘game-of-life-freestyle-metrics
John Smart 7 hromin ‘game-of-life-freestyle-metrics

pete 4 days 20 hr game-of-iife-freestyle-metrics

Rob Smith 4 days 20 hr game-of-iife-freestyle-metrics

Joe Black 4 days 20 hr game-of-iife-freestyle-metrics

&
&
&
‘ iill 4 days 20 hr game-of-life-freestyle-metrics
&
&
&

NA

OEBPS/httpatomoreillycomsourceoreillyimages864973.png
X CROWD

e v—
Searcn Applications Add Application

Add Applcation
1.Detalls || 2. Connection | 3. Directories || 4. Authorisation || 5. Confirmation

Applcation Type: .
e you connecing JRA 1 Grows,orpemaps Confluence o Bamboo?

Name: * [hudson
“The unique name that he appication wil use to authenticate aganst the Crow

Description:
Ashort descrptin of the applicaton. Ofien a URL is helpful

Password:

e - —

OEBPS/httpatomoreillycomsourceoreillyimages865201.png
phoenix-default
phoenix-integration-tests
phoenix-web-tests
phoenix-test-deploy
phoenix-uat-deploy

OEBPS/httpatomoreillycomsourceoreillyimages864971.png
Securiy Neetm

@ Delegate to serviet container

O Loar
O unix user/group database

O Hudson's own user database
O Active Directory
O crowd

O Authenticate via custom script

® ®®® @

OEBPS/httpatomoreillycomsourceoreillyimages864759.png
JDK

IDK installations name ava 1.6.0
AVA_HOME [/usr/javalidki.6.0_17

O Install automatially @

name Java 1.5.0
AVA_HOME [/use/javalidki.5.0

0 Install automatically

et of 10K installations on this system

OEBPS/httpatomoreillycomsourceoreillyimages865283.png
™ This build is parameterized

‘Add Parameter

Promote builds wh Run Parameter
Sting Parameter

Disable Build (No 1 Cholce

Flle Parameter

Boolean Value

Password Parameter

List Subversion tags

000

Execute concurren)

Advanced Pt

Bulg selector for Copy Artifact

i

project is re-enabled.)

OEBPS/httpatomoreillycomsourceoreillyimages865317.png
Root POM pom.xmi
Goals and options [ciean deploy -B -U -Dsurefire. useFil
MAVEN_OPTS

Alternate settings file

O tncremental build - only build changed modules
¥ Disable automatic artifact archiving
O Build modules in parallel

Use private Maven repository

=]
[Resolve Dependencies during Pom parsing
(0 Process Plugins during Pom parsing

Maven Validation Level { perauLT

®®®® ® ® ® ®

OEBPS/httpatomoreillycomsourceoreillyimages864925.png
Methods 95.7% Cone

Code Coverage - 93.9% (215/229 elements)
jonals 93.8% Statements 93.3%

100
EY
Y
n

&
« 0 [— conditional
w0 — method
0 | statement

»
1
g

e

vat
a7
v
b4

OEBPS/httpatomoreillycomsourceoreillyimages864813.png.jpg
& Git Publisher
Push Only 1f Buld Succeeds [

Merge Resuls @
PR —
Tags
Tog to ush saratn
S
Torget remote nome e adermame-focaly
Branches

Brancntopush omaer

Target remote name [ghe foldername-locally

Ad Branen

o O

OEBPS/httpatomoreillycomsourceoreillyimages865095.png
Build Reports

‘Analysis Collector Plugin

] “This plug-in is an add-on for the plug-ins Checkstyle, Dry, FindBuas, PMD, Task Scanner, and Wamninas: the plug-in | 1.g
collects the different analysis results and shows the results in a combined frend graph. Additonally, the plug-in
provides health reporting and build stabilit based on these combined resuts.
| s Code AnlisPuorns 1
“This plug-in provides utiites for the static code analysis plug-ins. §
o |ccccpuan 05
“This plugin generates the trend report for CCCC (C and C+\+ Code Counter).)
oo Plugin
o 11
“This plug-in generates reports on cyclomatic complexty for .NET code.
Checlatyle Plugin
] 310

‘This plugin generates the trend report for Checkstyle, an open source static code analysis program.

OEBPS/httpatomoreillycomsourceoreillyimages865017.png
Trigger Send To Recipient List

Include Culprits More Configuration Remove
Unstable @) c] c] £ 4 _(expand) (Delete)
Faure © o] @ 4 (oxpand) (odeie)
stil Failing @] o] = (collapse) (Deete)
Recipient List john.smart@wakaleo.com
Subject

Oh Not The Game Of Life build failed agai

Content [§PROSECT DEFAULT CONTENT ©
Failing tests:
${FAILED_TESTS}

(Change history:
${CHANGES_SINCE_LAST_SUCCESS}

Stil Unstable @)

]] &) & (expand) (Delete)
Fixed @]] @ 4 Lexpand) (oue)
Add a Trigger: (select 3]

(Delete)

OEBPS/httpatomoreillycomsourceoreillyimages865037.png
(- Tere e

Jabber IM with Hudson Server <hudson@tualara> 1301/11
515 PM

Coudganectite) ()

“johnsmart: job game-of-fife build
e
@ |

T
SIS
Q)

OEBPS/httpatomoreillycomsourceoreillyimages865153.png
@ Trigger parameterized build on other projects

Build Triggers projects to build

deployment

Trigger when build is [Stable

Current build parameters

Predefined parameters

Parameters

[TARGET_PLATFORM=test

OEBPS/httpatomoreillycomsourceoreillyimages865243.png
Yode Properties

 Tool Locations.
List of tool locations

Name | (Maven) Maven 3.0

Home [Jopmaven/apache-maven-2.2.1

Neme [4Di) java 1.6

Home [Jopmaven/apache-maven-3.0-beta-2

Neme (4Di) java 1.5

Home [7sr/lib/jvm/java-6-sun

Neme (4pi) 1.4.2

Home [7sr/lib/jvm/java-6-sun

Neme (4pi) 1.4.2

Home [7sr/lib/jvm/java-6-sun

O Environment variables

G T

®

OEBPS/httpatomoreillycomsourceoreillyimages864761.png
J0K

DK installations name (v 15,0

 Install automatically

Install from java.sun.com
Version (6 Update 17 1#)

1 agree to the Java SE Development Kit License

‘Agreement
Lot |

‘Instail rom java.sun.com Delete JDK
‘Run Command
Extract .2ip/.tar.gz

List of JDK instaliations on this svstem.

OEBPS/httpatomoreillycomsourceoreillyimages864959.png
Jenkins

Jenking » John Smart

4 People

O, status

= Builds

My Views

=
/" Configure

Your name

Description

Password

) john | log out

John Smart

Password:

Confirm Password: T,

E-mail address

My Views

John.smart@wakaleo.com

Your o-mailaddress, ke jos chintsun.con

Default View

[]

Al

The view slectd by defaukt whan navigating to the users private views.

OEBPS/httpatomoreillycomsourceoreillyimages864783.png
’ ‘ game-of-life-core

version 1.0.0

game-of-life-core
‘version 1.0.0-SNAPSHOT
¥

‘version 1.0.0-SNAPSHOT

version 1.0.0

game-of-life-web ’

revision 100 revision 101

Subversion revisions

OEBPS/httpatomoreillycomsourceoreillyimages865263.png
Jenking » phoenix-default

2 Bock to Dashiboard
O, status

= Changes

& worksoace

) Buitd Now

© bekete proect
Confiqure

5 promation stats

I shene proeat

[Dependency Graph

< Build History (trend)
@ #34 Mars, 2011 Y3
@ #33 Mars, 2011 Yyamg
@ #32 Mars, 2011 Yyamg
@ #31 Mar 4, 2011 7: Feame|
@ #30 Mar 4, 2011 6 Feame|

e s phoenix-default

Description

O piscard Old Builds

) This build is parameterized

Github project

0 Promote builds when...

Trac website

O Disable Build (No new builds will be executed until the project is re-enabled.)

O Execute concurrent builds if necessary (beta)

£ (et

5]

20K to e used for this project

 Restrict where this project can be run

@0 ©® ©00

Label Expr master|

®e

OEBPS/httpatomoreillycomsourceoreillyimages865281.png
™ Deploy war/ear to a container

WAR/EAR files [x/m ar

Container (Tomcar6x

Manager user name ;5

Manager password [,

Tomcat URL hitp://localhost:8888

OEBPS/httpatomoreillycomsourceoreillyimages865333.png
New Job

Manage Hudson
& reonc

= Buid History

Build Queue

No builds in the queue.

ENABLE AUTO REFRESH

P 23

Confiaure System
Configure global settings and paths.

Reload Confiauration from Disk
Discard all the loaded data in memory and reload everything from file system. Useful
when you modified config files directly on disk.

OEBPS/httpatomoreillycomsourceoreillyimages864670.jpg
The Definitive Guide

Jobn Ferguson Smart

] Y® Foreword by Kobsuke Kawaguchi
o RE I LL creator of Jenkins/Hudson

OEBPS/httpatomoreillycomsourceoreillyimages864797.png
® cit
Reposiories URL of repasiory STt comimathewmecatony|

Name of repository (blank to create default) .

T
Refspec (blank to create default) TSrefs/heads/*:refs/remotes/the-folde
(]

Branches to build Specifer (blank for defaut

Delee gancn

()

Excluded

bt
Excluded sers Ty

Checkar o loca! branh (option

Local subdirectory for repo (optional)

Merge options) Merge before build

Prune remote branches before buld ()

Clean after checkout a

OEBPS/httpatomoreillycomsourceoreillyimages865073.png.jpg
e kL]

Serial Number

Nabaztag API Token

Report On Build Start
Report On Success.

Nabaztag APL URL

Nabaztag Voice

Nabaztag Text for Starting Build
Nabaztag Text for Failure.
Nabaztag Text for Success

Nabaztag Text for Recover

001474859435

®

O Report On Build Start

O Report On Success

®

http://api.nabaztag.com/vI/FR/api.jsp

Uk-Penelope

Build "${buildNumber}" of project *$ {projectName)" has started.

Failure of build *${buildNumber}" in project "${projectName}".

‘Success of build "${buildNumber)* in project *$ {projectName}".

Project " {projectName}" recovered at build “${buildNumber}".

® ® ® ® ® O O

OEBPS/httpatomoreillycomsourceoreillyimages864693.png
Maven
Maven instalations

name Maven 2.2.1

 Install automatically

Install from Apache

Version [2. 5]

Liet of Maven instaliations on this system.

OEBPS/httpatomoreillycomsourceoreillyimages865007.png
Root history folder config-history

Max number of history entries to keep 100

Save system configuration changes.]

System configuration exclude file pattern |queue|nodeMonitors| UpdateCenter

Do ot save duplicate history. o

® ® ® ® ®

OEBPS/httpatomoreillycomsourceoreillyimages864873.png
Build With G

Grails Installation | Grails 1.3.4

Setct s Grais nstalation touse
Force Upgrade]

Run gralls upgrade -non-nceracive’ frst

Targets. clean “test-app -unit -non-interactive"

Speciy target(s) to run separated by spaces (eptional).

serverport

‘Specty vaue fo the serverpor system property (cptional)

grails.workdir

Speciy 3 value fo the rals.work.di system property (optonal)

grails.project.work.dir

Speciy 3 valu fo the rals project work.d system propersy optiona)

Project Base Directory.

Speciy path o th raskof the Grais proect optonsl)

Properties

Additional system properties to set (optional)

OEBPS/httpatomoreillycomsourceoreillyimages865091.png
Hudson

Hudson » game-of-life-code-quality DIsBLE AUTO ReFRESH

2 Bock o Dashboars

0, status

(= chanaes f LastSuccess Last Failure
1 workspace gameofiife Ldayahe(#5) A 11sec)

Build Now
o qameofife-buid tdayahr(zs) NA 16sec)
© bektc roiea
7 contiauee @b gameflife-core Ldayahe(#5) A 33sec)
[E] todulle &b qameofife-web tdayahr(zs) NA 19sec)
A volations

‘qameofife-webservice tdayahr(zs) NA 15sec)

5, Build History
@ #5 Dec7. 20101 ‘qameofi Ldayahe(#5) A 175ec)

@ #4 Dec7,20101:

OEBPS/httpatomoreillycomsourceoreillyimages865155.png
enkins)

Jenkins » parameterized-builds

& Newdob 205 name | pcceptance-test sute

free-style software project
= B Histor This s the central feature of Jenkins. Jenkins willbuld your project, combining any SCM with any build system, and this can
i Build bistory be even used for something other than software build.

#, Manage Jenkins

Edit View

3 maven2 project
Q olete view Build a maven2 project. Hudson takes advantage of your POM files and drastically reduces the configuration.

multi-configuration project
Suitable for projects that need a large number of different configurations, such as testing on multiple environments,

(O, proiect Reltionshiy

Check File Fingerprint pltform-specic buids, etc.
. Hadoop O Monitor an external job
“This type of job allows you to record the exccution of a process run outside Jenkins, even on a remote machine. This is
& Lounch Tiav aop designed so that you can use Jenkins as a dashboard of your existing automation system. See the documentation for more
deals.

[Desendenc Graoh
O copy existing job.

Build Queue Copy from
No buids in the queue.
Build Executor Status Lo
Maste
1] 1dle
2 1dle

Slave 1 (offline)

OEBPS/httpatomoreillycomsourceoreillyimages865033.png
Jabbar Notiication

 Enable Jabber Notification

Jabber ID
Password

Initial group chats

hudson@tuatara

game-of-life@conference.tuatara

Group chats o autamaticallyfoin on sartup wh a bo (whitespace separated)

OEBPS/httpatomoreillycomsourceoreillyimages865049.png.jpg
Hudson

Hudson

& Newlob

Manage Hudson
& peone

= Build History

O, Proiect Relationshi

Check File Fingerprint
{2 tadoon

& My views
4 Claim Report
Launch Tray App
o Config History

[§ Dependency Graph

OEBPS/httpatomoreillycomsourceoreillyimages865185.png
Locks

name joag-test-server

OEBPS/httpatomoreillycomsourceoreillyimages865239.png
A Backtoist Name Save @
Q s Description Upunty Siave @
Delete Slave
o # ot executors 73)
 confiure o
[puid bistory Remote FS 100t /homeyjenkins/jenkins-slaves/slave-1
€5 Load statistics Labels Tinux (2}
Script Console Usage ((Utiize this slave as much as possible 2]
Lo
Q= L s (G e BT 9o
g ‘Svstem Informatio
© Discomnest st souicn
= Username ianking ®
Build Executor Status
* Status Password ®
1 10
2/1de private Key File ®
Port
VM Options.
Availabilty [Keep this slave on-line as much as possible O

Node Properties

O Tool Locations
O Environment variables.

save

OEBPS/httpatomoreillycomsourceoreillyimages864793.png.jpg
Source Cods Management
O tone

Oas

@t

Repositories

URL of repository Tgiti/fgithub.com/matthewmccullough/maven-training

) Nome of repository (blank to create defoul) e Toigermame Tocally

Refspec (blank to create defout) Trefs/heads/~ refs/remotes/the-foldername-iocally,

Branches to build Branch Specifer (blank for default): vz

Repository browser =

OEBPS/httpatomoreillycomsourceoreillyimages864923.png
@ Publish Clover Coverage Report

Clover report directory.

Jtarget/site/clover

Speciy the patn to the directory that contains the cloveraiml repor i, reiatve o the workspsce rot.
Cover muat be conigured o generate XML repors or 18 plugi 5o funcion fl
Clover report file name | cloverml

‘Specity the name of the Clover xmi fle generated elativ to the Clove repor diractry specifie above. I ot specfied - doverx’Is asumed.
Coverage Metric Targets

% Methods % Conditionals % Statements
@ 100 100 100

@ @ 0)

Q s 75 7

Configure et repering thesnocs.
Forthe - row, leave blan to use the defaut values (.. 70, B0, and 80 for methods, conditanals and statements respectvely).
For the @B and () rows, leave blank to use the default values (i.e. 0).

OEBPS/httpatomoreillycomsourceoreillyimages865197.png
Copy artifacts from another project
Projectname [game-of-lfe (2)

4 Artifacts will be copied from all modules of thi
selecting a particular module.

Maven project; click the help icon to learn about

Which build [Latest successful build

@
@

(O stable build only

Artfacs to copy (557 mar ®
Target directory ®
Fitten directories JOptional ®

Invoke top-level Maven targets

Maven Version ((pefauly

Goals.

Invoke top-level Maven targets

Maven Version ((pefauly

B}
Goals Clean verity (C2)

OEBPS/httpatomoreillycomsourceoreillyimages864707.png
__L.

Invoke top-level Maven targets

G015 Gican packegel

EE@

OEBPS/httpatomoreillycomsourceoreillyimages864719.png
Hudson

Hudson » gameoflife-default » £2 » Test Results » Test Results » com.ciwithhudson.qameofiife.domain » CellTest » EussLe auTo
alivinaCellShouldPrintAsAPlus RerResH

meroc Regression
O, status (from CellTest)
\# Changes Failing for the past 1 build (Since @#2)

Took 4 m:
(2dd description

ithhudson. . domain.CellTest.

B Console Output
B tistory

[Teai ia
[resesus

4 Previous Buid

Next Buid

ors-hamorest satsheracsert. assertihat (iatoherhssert Java:21)
-t Java:8)

4 Somciwitnhudeon. ganeotlite. domain. CollTast.alivingéallshorldprinthsaPLus (CollTest 3

at sun. reflect.NativeMethodAccassorImol .invoked(Native Method)

avar13)

OEBPS/httpatomoreillycomsourceoreillyimages864897.png
) Publish testing tools result report

Boost Test Library Pattern

boost/*.xmi

Fail the build if test results were not updated this run @
Delete temporary JUnit files

il

‘Custom Tool

Nunit

MsTest container

Boost Test Library.

UnitTest

[~ Free Pasal URE |
PHPUNIE

d build on other projects

OEBPS/httpatomoreillycomsourceoreillyimages864901.png
Hudson

Hudson » gameoflfe-default » Game of Life business loaic module » #3 » Test Results

2 Becktoroes

0, status

= Changes

B consoteoutor
[History

1 Excouted Mojos

[rost nesut

"DISABLE AUTO REFRESH

Test Result

5 filures (+5)
e
2 tests (+2)
Took 31 ms.
(dd description

All Failed Tests

@ Redeploy Artifacts Test Name
o - [shhuc fife. domain.Uny LiveCelwit it ivelnTh sion oo0s0| 1
NS hhug fife. domain.uny LiveCellwithrou WilDielnTheNextGeneration | 0.0010 1
<A previous Bulg > thhuc fife. domain.uny LiveCellWithFou iDielnTheNextGeneration | 0.0010 1
B NextBuild 35> ithhud: fife.domain.U aDeadCellWithThi ilLiveInThe 0.0010 1
> hhuc fife. domain.u UniverseC 00020 1

All Tests
[Prcimas Dustion Fal @M sdp @M Tow @m |

| fife doman sims. 5 ws| o | 2 w2

OEBPS/httpatomoreillycomsourceoreillyimages865097.png
Post-inaid Acti

@ Publish Checkstyle analysis results.

Checkstyle results

Run always

Health thresholds.

Health priorities

Status thresholds

Use delta for new warnings

Default Encoding

“Trend graph

*/target/checkstyle-result xm!

Eleset incuges setting that secifes the generated raw CheckStyle XML report.fles, such 3s */checkstyl-resutxm. Basedir
e fleset s tne worksosce cot. 1 1o Vaue 15 Sk hen ine CETRU) CAGCKSRYE resu] & Geea. Be S ot o ncude
ny non-reportfles o i pater

o

By defaut, tis plug-n runs onlyfor sable or unstable bullds, but no for faled ullds. I tis lug-i should run even for falles
DUice hen achiate s check box,

£ 100% 10 @ 0% 200

Confiure the thresnolc forthe bl heskh. 1 the actual number o warmings s between the provided Ereshalcs, then the
bl neatn i nteraaiates

O Only priority high O Priorities high and normal @ All priorities
Determines which warning arioies shoud be cansderes when evaluating he bl heslt

Al priorities Priority high Priority normal Priority low
200

Total

] 50

New
500

Total

o 100

New

11 the specified number of warnings exceeds one of these thresolds then a bl s consicered as unstabe o flled,
respecively

=]

11 set then the number of new warmings i calulated by sustracting th ttal number of warmings of the current buld from the
reference bule. Tis may lead t rong resus f you have Doth ixed and new warnings in 3 buld. I the checkbx s ot set,
then the number of new warrings s alcuated by an asymmeric se Gfference of the warnings in the current and

reference
DU This il i ll new Warminge even f She number of otl Warmings 1 ecressing. However, somes e fase pos ves il
be reported ue to mior changes n 3 warming (refacoring of variable of method names, etc.)

Default encocing when parsing or showing i, Leave i fld emy to use the Cefaut encoding of e pltior,
You can define the default values for the trend graph in 2 separate view,

OEBPS/httpatomoreillycomsourceoreillyimages865113.png
Sonar

Sonar installations

Disable

Server URL.

Server Public URL

Database URL

Database login

Database password

Database driver

‘Additional properties

Triggers

sonar-enterprise
o

Chck to quicky dsable Sonar on il ob.

hitp://www.acme.com/sonar

Defaut is i/ focalncsti 9000

1 ne speciied, then Server URL il be used.

b

sal://localhost:3306/sonar7useUnicods

Do ot set f cefault mbecced catabase,

uetiamp;charactert:| @

Detaut s sonar

secret

Detaut s sonar

com.mysal.jdbe.Driver

Do ot st ifyou use the defaul: embedded database on locahost.

Adatsonal propertis tobe passed to the mvn executable (example
Dsome propery-some.value)

et of Somar Installations.

ol scm
@ Build periodically

@ Manually started by user

() Build whenever a SNAPSHOT dependency is bult

() Skip analysis on build failure

® e e 66

OEBPS/httpatomoreillycomsourceoreillyimages864805.png.jpg
Hudson

Hudaon » A-Gitub-Sample » Gt Poling Log ey
Py — Git Polling Log

Q suts startes on Nov 10, 2010 1108130 B

= Gaing sesategy: Decanlt

B cumes (oot Tast Budze s 42

B v Foit] FL B Redasons nevaion SanE0enTOAEIEI D0 nETORIO Tatens (1 osdusnane

s £rom the remote Git reposstories
ges from gits//giihub. con/matthennccsllough/maven-t

ining.git

© bpelste proect [lotiapica] 3 51t aieh - 9101/ /aLthub.con/outhevmsiut Lo maer 514 Srata/hentess srata/zemotent
icarhama teciiiy/
conire I I g £ thetondernam-tocaby / thetoldetoae-tocaty - coud b snnaiiave. Contios

Polling o changes in
Seen bianch in repository the-foldernsne-locally!integration

@ build Mistory (trend)
@ #2 tov 10,201012:01:20 bty
@ #1 Nov 10,2010 11:01:06 AM

OEBPS/httpatomoreillycomsourceoreillyimages865227.png
™ Build Pipeline Plugin -> Specify Downstream Project.

Downstream Project Name (phoenix-uat-deploy

Reauire manual build execution @

OEBPS/httpatomoreillycomsourceoreillyimages865223.png
™ Aggregate downstream test results.

™ Automatically aggregate all downstream tests

OEBPS/httpatomoreillycomsourceoreillyimages865277.png
Build Pipeline View:

4 Configure View
f2) start Build of Pipeline for gameofife-default

{©) ViewHide Build Pipeline Icon Legend

== B

OEBPS/httpatomoreillycomsourceoreillyimages865297.png
Jenkins » gameofife-deploy
A Back to Dashbosrg
O stats
(= changes
& vorksoace
Build Now

© oette roies
4 Configure

[Dependency Grapn

@ Build History (trend)

@ #1 May 28,2011 3:55:15 M

()RS for all) RSS for failures

Project name [gomasfife-depioy

Description

O Discard 0ld Builds.
© This build is parameterized

String Parameter

Neme liargtversion

Defoult Value [ReiEASE

Description

® ® 09 0 6

OEBPS/httpatomoreillycomsourceoreillyimages864939.png
Archive and publish .NET code coverage HTML reports from NCover.

NUnit Plugin

010
“This plugin allows you to publish NUnit test results.

Performance Pluain
“This plugin allows you to capture reports from JMeter and Unit . Hudson will generate
graphic charts with the trend report of performance and robustness. It includes the | 1.2
feature of setting the final build status as good, unstable or failed, based on the
reported error percentage.

Perfeublisher Plugin
“This plugin generates global and trend reports for tests results analysis. Based on an |7,g7

‘open XML tests results format, the plugin parses the generated files and publish
statisics, reports and analysis on the current health of the project.

OEBPS/httpatomoreillycomsourceoreillyimages864769.png
localhost

Default user e-mail suffix

System Admin E-mail Address [dson@acme.com

® ® ® ®

Hudson URL. hitp://hudson.acme.com

et onturaion b sening el o psem Admi s

OEBPS/httpatomoreillycomsourceoreillyimages864823.png
Build Triggers

O Build after other projects are built

@ Trigger builds remotely (e.g., from scripts)

Authenticaion Token| o]

O Build periodically
@ poll scM
Schedule

Use the following URL to trigger buld remotely: HUDSON_URL/job/game-of-lfe-default/build?token=TOKEN NANE or
/buildWithParametersZtoken=TOKEN_NAME

Optionally append scause=Cause+Text to provide text that will be included in the recorded build cause.

®® ®

OEBPS/httpatomoreillycomsourceoreillyimages864903.png
Hudson

 Excated waos
[] mestresut
& Bedesloy attace

o preious g

TN

Regression

com.wakaleo.gameofife.domain. GameOfLifeTest.aDeadCellWithNoNeighboursShouldRemainDeadInTheNextGeneration (from GameOfLfefest)

Faling forthe past 1 build (Since @:£13)
Took 1 ms.
(a4 description

ot et

at oxghacrest Matcheshasoxt .assertThat (Hakcherhssext. Javas2l)

ot e e e e g

T e TG hmOri Fatont aoendel LAt oot shboss o dRematnbeadInheNxt Gonerat fon(GameOfLifotont Jova:29)

e R ot hodenomsor npt oot et ive Hothod)

A R Eocect Nat venethodacoersoriapl voke(hat vanethodrctesorinpl. sav

A e el hathodace

& Savalang oflost Nothod: iovoe Nathod: Sivar5a)

o it Eotemnai Sonsers cadel hef oot bveceliable. omhaESent oot sabiasJover sy

e v aiaip o oty (bremmoribiothod Saverii)

A ot Lo Tonnars.caterenta. rvokabethod. vaoste ivokeNsthod va i)
Rumner. vonchi (b 160k i C]aeaRunnar. va

e canchi1a{BlookTUnisAC1 asaunnar. Java:50)

Paranthunnecs):cunRazanthumner: Jovar133)

TacentRunnecs . schedsle (Pasenthiner. avais2)

org.unit.
a org. Junie
e vt
A S TR

OEBPS/httpatomoreillycomsourceoreillyimages865087.png
1 hr 13 min (£41) 6t

Deseription % |
Number of checkstyle violations is 295 [
Build stability: 2 out of the last 5 builds failed. 60y,
Test Result: 0 tests failing out of a total of 71 tests. 100

s 17 days (£1) i

OEBPS/httpatomoreillycomsourceoreillyimages864803.png.jpg
T e

Local subdirectory for repo (optional)
Merge aptions

Prunc remote branches before bud
Clean afer checkout

Recursively update submodues

Use commit author in changelog
Wine out workspace

Choosing strategy

Git executable

Repository browser

01 Merge before build

=]

000

[a]

i
H
2}

(e)
o]

OEBPS/httpatomoreillycomsourceoreillyimages864885.png
Execute NAnt build

NAnt Version | NAnt 0.90

Nant Build File | gameofie.build

Tergets build

il | i

OEBPS/httpatomoreillycomsourceoreillyimages865299.png
Invoke top-level Maven targets

Maven Version ((pefauly

Goals. package

EE@[

OEBPS/httpatomoreillycomsourceoreillyimages864957.png
johns | log out

Hudson » pete [ENABLE AUTO REFRESH.

2 peosie

O, sats ‘ Builds for pete

(= puiae

= 1y Views Build Date 1 Status

&, Confiaure Q@ wmeotite s17s Gdas2the st I~}
() camecotife recstyie-metries #50 ddays2the Otestsstoredtofal [
() comecotifermetrics #94 Gdays2the Otestsstoredtofal [
Q@ comecctifemetics » qameoie 200 Goavs2ihr siable =]
Q@ cmectite cometive £175 Goavs2ihr siable =]
Teon: SHL

cqend [)forall [for failures [for just latest builds

OEBPS/httpatomoreillycomsourceoreillyimages864975.png
Security Realm

O Delegate to serviet container

O Loap
O unix user/group database

O Hudson's own user database
© crowd

Crowd URL http://tuatara:8095/crowd/services

Aoplication Name [ugson

Application Password

® ® ® ®® ®

OEBPS/httpatomoreillycomsourceoreillyimages864771.png
smtp.gmail.com

Default user e-mail suffix

System Admin E-mail Address nn@myorg.com

Hudson URL. hitp://hudson.my-organization.com

® ® ® ® ®

 Use SMTP Authentication

ser Name o amart@my-orgaizton.com
J—

tse st @ @
SMTP Port 465 @

[Tt coniguraton by sening -t ysam g Adress |

OEBPS/httpatomoreillycomsourceoreillyimages865199.png
Project phoenix-multi-config-build

Configuration Matrix

OEBPS/httpatomoreillycomsourceoreillyimages864937.png
0/0

v & sameofife
A ——, HTTP Request
HTTP Request Defauts Name: [/game/start
» /7 home
>/ 1game/new Comments:
v /| Web server “Timeouts (milliseconds)
N /,Ea::ix‘ Server Name or IP: Port Number: chnnmv Response:
» 7 Jqamefnext HTTP Request
» 72 sgamemest S
b/ home Protocol (default http): hitp. Method: Content encoding:
> 7 Jsamernen
» 72 rgamerstan Path: [Jgame/start
» 7 Ioamefnext
Y ey e S pp—
» 7 rgamernew Send Parameters With the Request:
» 72 rgamerstat N Value Ercoder | Include Equals?
» /2 rgamernest rows 5 &) @
» /7 gamernest <olumns 3 g 2
> 72 Jsameinext | o0 o g I
» /2 hame ceil11 - & H
v cell 12 on a =]
Joame/new cell 2.1 on a =]
» /7 rgamefstarc el2z on =] 2}
» 77 gamernest
» 7 rgameinext
> £ tomenen
Graph Resuls
5] Worksench Send Files With the Request:
il Pah: Parameter. .| MMEType:
Gorowse=) (Delee)
Optional Tasks
L Retrieve All Embedded Resources from HTML Files] Use as Monitor [Save response as MDS hash?
Embedded URLs must match:

OEBPS/httpatomoreillycomsourceoreillyimages865151.png
Jenians = parametenzed-bullds » stegration-tests

2 Backto Dashboard
Q status

[chenges

1 vorkspace

) suid ow

© bektc roiea

Configure

I ependency Graon

“+ Build History (trend)
@ #4 Feb7,2011 10:00:21 PM 3KE
@ #3 Feb7,2011 10:00:13 PM 3KE
@ #2 Feb7,2011 0:57:00PM 3KE
@ #1 Feb7,2011 011447 PM 2KE

[for all [} for failures

Project name

Description

integration-tests

O Discard Old Builds

 This build is parameterized

String Parameter

Name DATABASE

Default Value | mysql

Description

® ® 908 @

OEBPS/httpatomoreillycomsourceoreillyimages865137.png
™ This build is parameterized

ist Subversion tags

Neme Release

Repository URL [gyn//localhost/gameofife/tags

OEBPS/httpatomoreillycomsourceoreillyimages864705.png
Build Triggers

) Build after other projects are built

& Poll scm

Schedule

(] Build periodically

®® ®

OEBPS/httpatomoreillycomsourceoreillyimages864807.png.jpg
Hudson & scarch

Hudson » Sample0-FromGitHub s e

A Backto Daoard Changes
O, swus

= changes
™ WWWE\

© tu o

© pelete Project

OEBPS/httpatomoreillycomsourceoreillyimages864809.png
™ Gerrit event.

Gerrit Trigger

Silent Mode

o

Gerrit Project

EDiE

Pattern

Branches

Add Branch

OEBPS/httpatomoreillycomsourceoreillyimages864689.png
enkins

Jenking oisaeLe ATo nermesis
T Newdob Manage Jenkins
"; Manage Jenkins
Confiaure System
& reoe Eonfatre sobal etings and paths.
= ouid Hisory

Reload Confiauration from Disk
Discard all the loaded data in memory and reload everything from file system. Useful when you modified config
files directly on disk.

(L - 2 ¢

No builds in the queue.

Build Executor Status

Manage Plugins
Add, remove, disable or enable plugins that can extend the functionality of Jenkins.

Status
1]1de [System Information
2 e i By various environmental information to assist rouble-shooting.

Svstem Log
System log captures output from java.util.logging output related to Jenkins.

Load Statistics
Check your resource utilization and see if you need more computers for your builds.

=

Jenkins CLL
Access/manage Jenkins from your shell, or from your script.

Script Console
Executes arbitrary script for administration/trouble-shooting/diagnostics.

Manage Nodes
Add, remove, control and monitor the various nodes that Jenkins runs jobs on.

About Jenking
See the version and license information

Prepare for Shutdown
Stops executing new buids, so that the system can be eventually shut down safely.

Page generated: May 5, 2011 7:24:07 AM Jenkins ver. 1.410

OEBPS/httpatomoreillycomsourceoreillyimages865055.png
¥ Notifo

Service User Name

wakaleo_labs_hudson_server
API Token

Usernames to receive notifications (comma separated) | wakaleo

Send notifications for successful builds

OEBPS/httpatomoreillycomsourceoreillyimages864953.png
Jenking

Y ra—

= Build History

O Project Relationshi

Check File Fingerprint

No builds in the queue.

Sign up

i S —

Password: £

Confirm password: ...

Full name: I ——
Emolladdress:
Enter text as shown: ’—‘

tE AT KeS

OEBPS/httpatomoreillycomsourceoreillyimages864795.png.jpg
Source Cods Management
O tone

Oas

@t

Repositories

WKL ofrepostory ST i maven o]

Nome of repository (blank to create defoul) e Toigermame Tocally

Refspec (blank to create defout) Trefs/heads/~ refs/remotes/the-foldername-iocally,

Branches to build Branch Specifer (blank for default): 57

Repository browser =

OEBPS/httpatomoreillycomsourceoreillyimages864921.png
Code Coverage
Cobertura Coverage Report >

com.wakaleo.gameoflife.domain

Trend
100
0
w0
o
& |— Classes
% s |~ Conditionals
w0 |—Files
s | Lines
20 | — Methods
0
Y v e S m € 2R % T2 8 2§ E3
FRTEIEIIEEFEETEGE
Package Coverage summary
Name Classes Conditionals Files Lines Methods

‘com.wakaleo.gameafife.domain | 100% [T 5/5] 98% [53/sa] 100% [8/5 | 100% [[7308/308] 100% [36/36 1
Coverage Breakdown by File

Name Classes Conditionals Lines Methods

Grid.java 100% [TATT 100% (507300 100% [ao/a0 100% [qe/AE
Celliava 100% [TATT L —7 — 100% [qapa 100% [ge
Gridwriterjava 100% [TATT 100% [aja 100% g7 100% R
Universe.java 100% [TATT 100% a2 100% [5a/3a 100% [gjar

GridReaderiava 100% [TATT 100% [Taa] 100% [T33A 100% [Taa 0

OEBPS/httpatomoreillycomsourceoreillyimages865005.png
var/log/hudson-audit-trail.log @
1 @
0 @

*/(7:configSubmit]doDelete postBuldResult|cancelQueuel stopl toggleLogkeep|doWipeoutw| @

Log File Size MB

Log File Count

URL Patterns to Log

Log how each build is triggered @

OEBPS/httpatomoreillycomsourceoreillyimages865071.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages865135.png
File Parameter

File location [Gepioy /app.war

Description

®®

OEBPS/httpatomoreillycomsourceoreillyimages865131.png
Choice

Neme

Choices

Description

COLOR

red
areen
blue

OEBPS/httpatomoreillycomsourceoreillyimages865157.png
Configuration Metrix

Saves sequentially
oK.
ser-defined Ao

] Execute touchstone builds first

®® ®

OEBPS/httpatomoreillycomsourceoreillyimages864675.png.jpg
Java SE Downloads - Sun Developer Network (SDN).

(£ [http:/ Jjava.sun.com/javase/downloads/index.jsp

ORACLE’" sun Developer Network (SDN)

Sunv Javav Solarisv Communitos~ My SDN Accountv

APIs Downloa

Products Support Training Participate » search tps

'SDN Home > Java Technology > Java SE >

Java SE Downloads =R RS

Download the complete platform and runtime environment

Download the Java SE~JavaFX bundle, and use your creative talents to design a winning
applcation. » Get the bundle

Overview Technologies Documentation Community Support [LECGT Y Froaliava Dosmioad

Latest Release | Next Release (Eary Access) | Embedded Use | RealTime | Previous Releases » Check downloads for
all operating systems
» Read more about

DEVELOPER COM 2008 ‘Supported System
Configurations

Java for Business
» Access 1o critical fixes

» Long-term support
Download Download Download + » Enterprise features

» JRE or JOK 6, 5.0, or

Java Platform (JDK) JDK + JavaFX Bundle JK + NetBeans Bundle JDK + Java EE Bundle S
»JDK » JRE

I —— |

OEBPS/httpatomoreillycomsourceoreillyimages865241.png
f-line when idle
Availability { Take this slave on-line when in demand and off-lir

In demand delay 5

Idle delay 30

OEBPS/httpatomoreillycomsourceoreillyimages864985.png
© Matrix-based security. ©

— Overall Slave Job Run View seM
97UP pgministerReadConfigureDeleteCreate Delete ConfigureRead BuildWorkspace Release Delete UpdateCreateDeleteConfiguraPromote Tag

& administrator.

& bob

& joe

0000 ®
0000 ®
0000 ®
00r0®&
00r0®&
00r0®&
EEEO0&
Ol E&E&
00 ®E&
00 ®E&
00r0®&
00r0®&
00 ®E&
00 ®E&
00 ®E&
00 ®E&
00 ®E&

EEEE

A EEEE

®

User/group to ad

OEBPS/httpatomoreillycomsourceoreillyimages865315.png
disk usage (MB)

isk Usage: Workspace 442M8, Builds 25MB

Disk Usage Trend
s00
00
300

[=buila
B |==workspace
1m0

OEBPS/httpatomoreillycomsourceoreillyimages864917.png
‘gameofife-default 51 min (£42) 9 days 5 hr (£42) 27 sec)

9days 0 hr (47) 9 days 3 hr (£6) 8.3 5ec)
1min 55 sec (£43) 50 min (£41) I3 sec)
w %
Y G o [alures () for fust Iatest builds
5 Build stability: 1 out of the last 5 builds faled. w0
£t Test Result: O tests foiling out of total of 114 tests. 100

OEBPS/httpatomoreillycomsourceoreillyimages864731.png
@ Publish Cobertura Coverage Report

Cobertura xml report pattern [xxtarget/site/cobertura/coverage xml

Consider only stable builds

Coverage Metric Tergets

s » file name patter tha can be used to locte the cobertura xml repar i (for example it Maven2
use *=/target/site/ cobertura/ coverage.xmi). The pah 5 raatve t the madule 10t Unless you have
configured your SCH with mple moduies, n which cas s reatve o the workspace rot. Nt that the
mcdule oot is SCH-speciic, and may not 5. the ame 2 the workspace 100t

‘Cabertura must b canfiured t genérate XML repartsfo tis plugi t funcion.

=]

Inciuse oty sable s, .. excuse unstatle and falled ones.

(Conditionais %) B @5 ol
(tines) oo | ¢ [o8 @5 ol
(Methods 18 [oelere | <+ (100 @ [0 B
(Packages 18 [oelere | <+ (100 @55 O fes

‘Configure neati repercing hresholes.
Forthe - row,leave lank to use the default vale (L. 80).

For the @ and () rows, leave biank to use the defaut values (L. 0).

OEBPS/httpatomoreillycomsourceoreillyimages864951.png
™ Enable security

TCP port for INLP slave agents

Markup Formatter

Access Control

OFixed ©Random O Disable

®®

((Raw HTML

@
®

Tres the text a5 HTML and use & 52 i without sny transhstion

Security Realm

O Delegate to servet container

© Jenkins's own user database
 Allow users to sign up

O woar

O unix user/group database

Authorization

© Anyane can do anything

O Legacy mode

© Logged-in users can do anything
O Matrx-based security

) Project-based Matrix Authorization Strategy

0000 © ©600

OEBPS/httpatomoreillycomsourceoreillyimages865077.png
000 Preferences k
ype flertext Rules Configuration G
» General
jSvonit PMD RuleSet Configuration Options. |
» A Rules
il Rule setname Rule name ooty Dsserpton]

» Data Management T2kt Rules LocaimerfaceSessionNamingCea.0 Warning The Local Inerface of a Session 58 should be suffced ¢
»asyo J2¢€ Rules MDBAndsessionBeanNamingCo 40 Warning The £ Specifcaton state that any MessageDrivenean
» Groow J26E Rules RemoteinterfaceNamingConven 4.0 Warning Remote Interiace of Session £8 should NOT be suffixc
»Help €€ Rules RemoteSessioninterfaceNaming 4.0 Warning Remoe Home interface of a Session 8 should be suffs
Infintest J25€ Rules StatcElBFieldshouldSerinal 4.1 Warning high According to the J2EE specification p.494), an EJB shou
» nstall/Update J26€ Rules UseProperClassLoader 37 Warning high InJ2EE getClasstoader(might not work as expected. U
»iava Jakarta Commons LcProperLogger 33 Warning high Alogger should normally be defined private static fral
»java €€ Jakarta Commons LcUseCorrectExceptiontogging 3.2 Warning high To make sure the full stackirace i printed out, use the
»Java ersistence Java Loging Rules AvoidPrinttacikTrace 32 Warning high Avoid printStackTrace0; use a logger call instead.
»javascript Java Logging Rules AvoidPrintStackTrace 32 Warning high Avoid printStackTrace; use a logger call nstead.
» Maven Java Logging Rules LoggerlsNotSaticFinal 70 lgorne i moc cacac_the Logger can be declred statc and fin
> Plug-in Development Java Logging Rules LoggerisNotste @ ()) PMD Plugir Logger can be declared static and fin
veno Java Logging Rules. MoreThanOnel e loggeris used in each class.
PO preferences Java Logging Rules MoreThanone 71718 5et o seect 3 defauiton e loggeris used in each class. 0
Rules Configuration Java Logging Rules Systemprindn [o) (Browse..) bprintis used, consider using aloger.
» Remote Systems, Java Logging Rules SystemPrintn g Lprint i used, consider using a logger.
» Run/Debug Javaean Rules BeanMembe oy Copy an, or i referenced by a bean dirctly o
»Server JavaBean Rules MissingSerial | C1one Implemenation Rules [serializable should provie a serialVers
»Tasks Junit Rules JunitAssertions | Code Size Rules should include a message - .c. use the
»Team ritRides Nnispeling || Convroversal Rules {evork metnods v esey t mispel.
Terminal it Rales JuritStatieSuitt| Coupling Rules Jod in 2 Junt test needs to be both publ
» Usage Data Collector it Rules Junictestsshoul o2 12 L include at least one assertion. Thisn |_
Validation it Roles SimlifyBoolean ‘Avod negatin in an ssertTrue or ssserfalse test. 4 (i Dusigner)
»¥ed it Roles TestClasswitno| Fnalzer Rules Testclasses end with the sufix Tes. Having a non-test «
Wb senvces Import Statement Rules
» XML Role properties J2EE Rules
property Valve Jakarta Commons Logging Rules oY
xpath Java Logging Rules. Asspreopeny.
minimumNumberc3 Javaean Roles
o Rules
Erims Migration Rules
e Naming Rules

(Add Exclude Pattern)
(Add include Pattern)

L G) (oo) |

Optimization Rules
Security Code Guidelines
Strice Exception Rules.

String and String8uffer Rules
Type Resolution Rules
Unused Code Rules

@ Com) Co D

y

OEBPS/httpatomoreillycomsourceoreillyimages865105.png
¥ Scan workspace for open tasks.

Files to scan

Files to exclude

Tasks tags

Run always.

Health thresholds

Health priorities

Eteset ncuses setting that specie the workspace fles o scanfo tasks, such as **/* ava.
Basedi of the leset 1 the workspace rot. 1 no valug i set, then the Gefat +/53va 1 sed.

lset excudes setting that specifies the workspace flesto excude scaning fo tasks, such 35
orary source fes. Basedi of th fleset Is the worispace roc.

High priority Normal priority Low priority Ignore case
FIXME Topo @deprecated | &

Configure th tags dentfies that shaul be looked for Inthe workspace s, For each ariorty 3
comma separated st oftags could be defned, &.g. TODO, FIXVE, cte. Case of the the centiers
can be ignore, cptonaly.

o

By defaut,this plug-in runs onlyfor staie or nstable bulds, ut ot for aled bulds. I s
plugin should un even fo flled b then activate this check box.

< 100% 0 @o% 20

Configure th threshoi fo th buld heaitn, I the sctusl number of warnings s bcwesn the
Drovices threshac, then the buld neslt 4 merpoiated
O only priority high O Priorities high and normal @ Al pricrities

Determines which warning prierities should be considered when evalusting the build health.

OEBPS/httpatomoreillycomsourceoreillyimages865051.png
<+ jboss-cache-pojo-jdk1.5
% jboss-cache-core-jdk1 5
<+ jboss-cache-core-jdk1.6
< MobicentsSipServiets

<+ Mobicents

Open Applcation
Fetch Update
Exit

OEBPS/httpatomoreillycomsourceoreillyimages864801.png
Git installations ait

Neme Default

Path to Git executable [gic

O Install automatically

ait

Neme OlderL.6.5

Path to Git executable (ot /bin/ait-1.6.5/

O Install automatically

Lisk of Gt Inutuliokiontn ors Kl moetons

OEBPS/callouts/14.png

OEBPS/httpatomoreillycomsourceoreillyimages864941.png
ild Triggers

[Build whenever a SNAPSHOT dependency is built

O Build after other projects are built

™ Build periodically
Schedule

] Poll SCM

@midnight

®®® ®

OEBPS/callouts/13.png

OEBPS/callouts/12.png

OEBPS/httpatomoreillycomsourceoreillyimages865111.png
Sonar database

OEBPS/callouts/11.png

OEBPS/httpatomoreillycomsourceoreillyimages865225.png
Jenking » Phoenix » phoenix-default » £22

) Build #22 (Mar 4, 2011

& Backtoroject

O, status

= Changes

B cConsole outout

¥, Confiaure

[E] Aossegasd est nes

See Fingerprints

[sovnstsenm b view

4 Previous Buid

=

-
=
¢

Build Artfacts

 gameofifewar &=

Revision: 394
No changes.

Started by user anonymous

Test Result (no failures)

Aqareqated Test Result (no failures)

OEBPS/httpatomoreillycomsourceoreillyimages864743.png
Jenking > Install 2 Windows Service EnsBLE AUTO RerRESH
& Newlob
', Mansae Jenkins 5, Install as Windows Service

& essle
instaling Jenkin 25 Windows sevice llos you o start Jenkin s soon as the machine

= Build istory Starts, and regardiess of who is interactively using Jenkins.
o Installation Directory C:\Users\lohn\, jenkins

No builds in the queue.

Executor Status
Status.

1 1die
2|1dle

OEBPS/callouts/15.png

OEBPS/httpatomoreillycomsourceoreillyimages864735.png
File Coverage Summary

Neme | Classes Methods Lines Conditionals.

Celljava | 1009, @A | 670, 2B | 730, TS| 50y [S/e]

Source

comciwithhudson/gameoife/domain/Cell java

1 |package com.ciwitnhudson.ganeoflife.domain;
2

3 e

4| A single cell, which can be alive or dead.

s e

6819 abstract public class Call {

7

e public abstract Boolean ishlive();

H

10, public Boolean isDead() {

n o 5

12 b

13

14 public abstract Call nextGeneration(int neighbousCount);
15,

16 public static Cell fromChar(char cellValue) {

1 %2 if (cellValue == LivingCell.SYMBOL) {

18 35 eturn new LivingCell();

19 57 } else if (cellValue == DeadCell.SYMBOL) {

20 57 eturn new DeadCall();

21 3

2 o throw new I1legalArgumentException("Illegal cell value character: * + cellValue);
23 b

2

OEBPS/httpatomoreillycomsourceoreillyimages865261.png
Jenkins John | log out

Jenking » nodes

A Back to Dashboard Name [l . compute.amazonaws.com 1@
7, Maneae Jenkins Descrpton | 1@
B new voce
of executors T3 1@
'/, Confiure
T N e
- °
Executor Statu
Bulld Excautor Status usage (Dtiizs s iave 2s much as possibie Bl
e } Lounch method (Lot eris cntrol s Windows save s Windows sevice B0
amazon-slave Adi ¥ USer Name [administrator ‘@
t1de
2 1dle }]

Availabilty (Kasp this siave an-iime 23 much as possibe B0

OEBPS/httpatomoreillycomsourceoreillyimages864945.png
@ Publish Performance test result report

Performance report [«x/target/jmeter-results™ !
Specity the path to the Performance report fles, rlatve t the workspace roct
1 o It tnis feld blan tne augi il ook fr flcs makching tne pattern: *+/* 1 n the workspace.

'you can enclose the search speciying a Istof fes nd foders separated by semicolon.

~0r lse an Ant Fleset patter.

Performance threshold O Unstable @ Failed
Thresholds: |10 %25 %

Specy the rrar percentage thresnold that st te buld unstable o falled (value of 0 means: dant vse

e e

OEBPS/httpatomoreillycomsourceoreillyimages864781.png
Afvences Fvoject Options

O Quiet period
J Retry Count
[Block build when upstream project is building

[Use custom workspace

®®® ®

OEBPS/httpatomoreillycomsourceoreillyimages864755.png
Slobe’ properties

 Environment variables

List of key-value pairs name igapserver

value [yanaka

OEBPS/callouts/10.png

OEBPS/httpatomoreillycomsourceoreillyimages865133.png
Run Parameter

Neme

Project

Description

RELEASE_BUILD

® ® ®®

OEBPS/httpatomoreillycomsourceoreillyimages865115.png
™ sonar

MAVEN_OPTS

Additional properties

Optons! sonsraranch propery.

[4

MAVEN_OPTS env var tprovide, ifno se the plugin willuse he MAVEN_OPTS defined by the maven bulder confis

[4

@660 ® & ® ® @&

‘Adaiiona properties to be passed o the mun exccutable (example: -Dsome.property some.value).
@ Dont use global triggers configuration
Triggers
Oroll scM

@ Build periodically
@ Manually started by user
(J8uild whenever a SNAPSHOT dependency s built

[Skip analysis on build failure

