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The French humorist Alphonse Allais (1854–1905), once dedicated one of his short
stories as follows:

To the only woman I love and who knows it well.

. . . with the following footnote:

This is a very convenient dedication that I cannot recommend too warmly to my fellow

writers. It costs nothing, and can, all at once, please five or six persons.

I can take a piece of wise advice when I meet one.

STÉPHANE FAROULT
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C H A P T E R

P R E F A C E

There used to be a time when what is known today as “Information Technology” or IT

was less glamorously known as “Electronic Data Processing.” And the truth is that for all

the buzz about trendy techniques, the processing of data is still at the core of our sys-

tems—and all the more as the volume of data under management seems to be increasing

even faster than the speed of processors. The most vital corporate data is today stored in

databases and accessed through the imperfect, but widely known, SQL language—a com-

bination that had begun to gain acceptance in the pinstriped circles at the beginning of

the 1980s and has since wiped out the competition.

You can hardly interview a young developer today who doesn’t claim a good working

knowledge of SQL, the lingua franca of database access, a standard part of any basic IT

course. This claim is usually reasonably true, if you define knowledge as the ability to

obtain, after some effort, functionally correct results. However, enterprises all over the

world are today confronted with exploding volumes of data. As a result, “functionally

correct” results are no longer enough: they also have to be fast. Database performance

has become a major headache in many companies. Interestingly, although everyone

agrees that the source of performance issues lies in the code, it seems accepted

everywhere that the first concern of developers should be to provide code that works—

which seems to be a reasonable expectation. The thought seems to be that the database
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access part of their code should be as simple as possible, for maintenance reasons, and

that “bad SQL” should be given to senior database administrators (DBAs) to tweak and

make run faster, with the help of a few magic database parameters. And if such tweaking

isn’t enough, then it seems that upgrading the hardware is the proper course to take.

It is quite often that what appears to be the common-sense and safe approach ends up

being extremely harmful. Writing inefficient code and relying on experts for tuning the

“bad SQL” is actually sweeping the dirt under the carpet. In my view, the first ones to be

concerned with performance should be developers, and I see SQL issues as something

encompassing much more than the proper writing of a few queries. Performance seen

from a developer’s perspective is something profoundly different from “tuning,” as

practiced by DBAs. A database administrator tries to get the most out of a system—a

given hardware, processors and storage subsystem, or a given version of the database. A

database administrator may have some SQL skills and be able to tune an especially poorly

performing statement. But developers are writing code that may well run for 5 to 10

years, surviving several major releases (Internet-enabled, ready-for-the-grid, you name

it) of the Database Management System (DBMS) it was written for—and on several

generations of hardware. Your code must be fast and sound from the start. It is a sorry

assessment to make but if many developers “know” SQL, very few have a sound

understanding of this language and of the relational theory.

Why Another SQL Book?
There are three main types of SQL books: books that teach the logic and the syntax of a

particular SQL dialect, books that teach advanced techniques and take a problem-solving

approach, and performance and tuning books that target experts and senior DBAs. On

one hand, books show how to write SQL code. On the other hand, they show how to

diagnose and fix SQL code that has been badly written. I have tried, in this book, to teach

people who are no longer novices how to write good SQL code from the start and, most

importantly, to have a view of SQL code that goes beyond individual SQL statements.

Teaching how to use a language is difficult enough; but how can one teach how to

efficiently use a language? SQL is a language that can look deceivingly simple once you

have been initiated. And yet it allows for an almost infinite number of cases and

combinations. The first comparison that occurred to me was the game of chess, but it

suddenly dawned on me that chess was invented to teach war. I have a natural tendency

to consider every new performance challenge as a battle to be fought against an army of

rows, and I realized that the problem of teaching developers how to use databases

efficiently was similar to the problem of teaching officers how to conduct a war. You need

knowledge, you need skills, and you need talent. Talent cannot be taught, but it can be

nurtured. This is what most strategists, from Sun Tzu, who wrote his Art of War 25
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centuries ago, to modern-day generals, have believed—so they tried to pass on the

experience acquired on the field through simple maxims and rules that they hoped

would serve as guiding stars among the sound and fury of battles. I have tried to apply

this method to more peaceful aims, and I have mostly followed the same plan as Sun

Tzu—and I’ve borrowed his title. Many respected IT specialists claim the status of

scientists; “Art” seems to me more appropriate than “Science” when it comes to defining

an activity that requires flair, experience, and creativity, as much as rigor and

understanding.* It is quite likely that my fondness for Art will be frowned upon by some

partisans of Science, who claim that for each SQL problem, there is one optimal solution,

which can be attained by rigorous analysis and a good knowledge of data. However, I

don’t see the two positions at odds. Rigor and a scientific approach will help you out of

one problem at one given moment. In SQL development, if you don’t have the uncertainties

linked to the next move of the adversary, the big uncertainties lie in future evolutions.

What if, rather unexpectedly, the volume of this or that table increases? What if,

following a merger, the number of users doubles? What if we want to keep several years

of data online? How will a program behave on hardware totally different from what we

have now? Some architectural choices are gambles on the future. You will certainly need

rigor and a very sound theoretical knowledge—but those qualities are prerequisites of

any art. Ferdinand Foch, the future Supreme Commander of the Allied armies of WWI,

remarked at a lecture at the French Ecole Supérieure de Guerre in 1900 that:

The art of war, like all other arts, has its theory, its principles—otherwise, it

wouldn’t be an art.

This book is not a cookbook, listing problems and giving “recipes.” The aim is much more

to help developers—and their managers—to raise good questions. You may well still

write awful, costly queries after having read and digested this book. One sometimes has

to. But, hopefully, it will be knowingly and with good reason.

Audience
This book is targeted at:

• Developers with significant (one year or, preferably, more) experience of develop-

ment with an SQL database

• Their managers

• Software architects who design programs with significant database components

* One of my favorite computer books happens to be D.E. Knuth’s classic Art of Computer Programming
(Addison Wesley).



xii P R E F A C E

Although I hope that some DBAs, and particularly those that support development

databases, will enjoy reading this book, I am sorry to tell them I had somebody else in

mind while writing.

Assumptions This Book Makes
I assume in this book that you have already mastered the SQL language. By mastering I

don’t mean that you took SQL 101 at the university and got an A+, nor, at the other end

of the spectrum, that you are an internationally acknowledged SQL guru. I mean that

you have already developed database applications using the SQL language, that you have

had to think about indexing, and that you don’t consider a 5,000-row table to be a big

table. It is not the purpose of this book to tell you what a “join” is—not even an outer

one—nor what indexes are meant to be used for. Although you don’t need to feel totally

comfortable with arcane SQL constructs, if, when given a set of tables and a question to

answer, you are unable to come up with a functionally correct piece of code, there are

probably a couple of books you had better read before this one. I also assume that you are

at least familiar with one computer language and with the principles of computer

programming. I assume that you have already been down in the trenches and that you

have already heard users complain about slow and poorly performing systems.

Contents of This Book
I found the parallel between war and SQL so strong that I mostly followed Sun Tzu’s

outline—and kept most of his titles.* This book is divided into twelve chapters, each

containing a number of principles or maxims. I have tried to explain and illustrate these

principles through examples, preferably from real-life cases.

Chapter 1, Laying Plans

Examines how to design databases for performance

Chapter 2, Waging War

Explains how programs must be designed to access databases efficiently

Chapter 3, Tactical Dispositions

Tells why and how to index

Chapter 4, Maneuvering

Explains how to envision SQL statements

Chapter 5, Terrain

Shows how physical implementation impacts performance

* A few titles were borrowed from Clausewitz’s On War.
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Chapter 6, The Nine Situations

Covers classic SQL patterns and how to approach them

Chapter 7, Variations in Tactics

Explains how to deal with hierarchical data

Chapter 8, Weaknesses and Strengths

Provides indications about how to recognize and handle some difficult cases

Chapter 9, Multiple Fronts

Describes how to face concurrency

Chapter 10, Assembly of Forces

Addresses how to cope with large volumes of data

Chapter 11, Stratagems

Offers a few tricks that will help you survive rotten database designs

Chapter 12, Employment of Spies

Concludes the book by explaining how to define and monitor performance

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates emphasis and new terms, as well as book titles.

Constant width

Indicates SQL and, generally speaking, programming languages’ keywords; table,

index and column names; functions; code; or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user. This

style is used only in code examples that mix both input and output.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a maxim and summarizes an important

principle in SQL.

N O T E
This is a tip, suggestion, or general note. It contains useful supplementary

information about the topic at hand.
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Using Code Examples
This book is here to help you get your job done. In general, you may use the code in this

book in your programs and documentation. You do not need to contact O’Reilly for

permission unless you’re reproducing a significant portion of the code. For example,

writing a program that uses several chunks of code from this book does not require

permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

require permission. Answering a question by citing this book and quoting example code

does not require permission. Incorporating a significant amount of example code from

this book into your product’s documentation does require permission.

O’Reilly, Media Inc. appreciates, but does not require, attribution. An attribution usually

includes the title, author, publisher, and ISBN. For example: “The Art of SQL by Stéphane

Faroult with Peter Robson. Copyright © 2006 O’Reilly Media, 0-596-00894-5.”

If you feel your use of code examples falls outside fair use or the permission given above,

feel free to contact the publisher at permissions@oreilly.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

The publisher has a web page for this book, where we list errata, examples, and any

additional information. You can access this page at:

http://www.oreilly.com/catalog/artofsql

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly

Network, see O’Reilly’s web site at:

http://www.oreilly.com

You can also visit the author’s company web site at:

http://www.roughsea.com
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Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite

technology book, that means the book is available online through the

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily

search thousands of top tech books, cut and paste code samples, download chapters, and

find quick answers when you need the most accurate, current information. Try it for free

at http://safari.oreilly.com.
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Chapter 1. C H A P T E R O N E

Laying Plans
Designing Databases for Performance

C’est le premier pas qui, dans toutes les guerres, décèle le génie.

It is the first step that reveals genius in all wars.

—Joseph de Maistre (1754–1821)

Lettre du 27 Juillet 1812
 à Monsieur le Comte de Front
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The great nineteenth century German strategist, Clausewitz, famously remarked that

war is the continuation of politics by other means. Likewise, any computer program is, in

one way or another, the continuation of the general activity within an organization,

allowing it to do more, faster, better, or cheaper. The main purpose of a computer

program is not simply to extract data from a database and then to process it, but to extract

and process data for some particular goal. The means are not the end.

A reminder that the goal of a given computer program is first of all to meet some business

requirement* may come across as a platitude. In practice, the excitement of technological

challenges often slowly causes attention to drift from the end to the means, from

upholding the quality of the data that records business activity to writing programs that

perform as intended and in an acceptable amount of time. Like a general in command of

his army at the beginning of a campaign, we must know clearly what our objectives are—

and we must stick to them, even if unexpected difficulties or opportunities make us alter

the original plan. Whenever the SQL language is involved, we are fighting to keep a

faithful and consistent record of business activity over time. Both faithfulness and

consistency are primarily associated with the quality of the database model. The database

model that SQL was initially designed to support is the relational model. One cannot

overemphasize the importance of having a good model and a proper database design,

because this is the very foundation of any information system.

The Relational View of Data
A database is nothing but a model of a small part of a real-life situation. As any

representation, a database is always an imperfect model, and a very narrow depiction of a

rich and complex reality. There is rarely a single way to represent some business activity,

but rather several variants that in a technical sense will be semantically correct. However,

for a given set of processes to apply, there is usually one representation that best meets

the business requirement.

The relational model is thus named, not because you can relate tables to one another (a

popular misconception), but as a reference to the relationships between the columns in a

table. These are the relationships that give the model its name; in other words, relational

means that if several values belong to the same row in a table, they are related. The way

columns are related to each other defines a relation, and a relation is a table (more

exactly, a table represents one relation).

The business requirements determine the scope of the real-world situation that is to be

modeled. Once you have defined the scope, you can proceed to identify the data that you

* The expression business requirement is meant to encompass non-commercial as well as commercial
activities.
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need to properly record business activity. If we say that you are a used car dealer and

want to model the cars you have for sale (for instance to advertise them on a web site),

items such as make, model, version, style (sedan, coupe, convertible...), year, mileage,

and price may be the very first pieces of information that come to mind. But potential

buyers may want to learn about many more characteristics to be able to make an

informed choice before settling for one particular car. For instance:

• General state of the vehicle (even if we don’t expect anything but “excellent”)

• Safety equipment

• Manual or automatic transmission

• Color (body and interiors), metallic paintwork or not, upholstery, hard or soft top,

perhaps a picture of the car

• Seating capacity, trunk capacity, number of doors

• Power steering, air conditioning, audio equipment

• Engine capacity, cylinders, horsepower and top speed, brakes (everyone isn’t a car

enthusiast who would know technical specifications from the car description)

• Fuel, consumption, tank capacity

• Current location of the car (may matter to buyers if the site lists cars available from a

number of physical places)

• And so on...

If we decide to model the available cars into a database, then each row in a table

summarizes a particular statement of fact—for instance, that there is for sale a 1964 pink

Cadillac Coupe DeVille that has already been driven twenty times around the Earth.

Through relational operations, such as joins, and also by filtering, selection of particular

attributes, or computations applied to attributes (say computing from consumption and

tank capacity how many miles we can drive without refueling), we can derive new

factual statements. If the original statements are true, the derived statements will be true.

Whenever we are dealing with knowledge, we start with facts that we accept as truths

that need no proof (in mathematics these are known as axioms, but this argument is by

no means restricted to mathematics and you could call those unproved true facts

principles in other disciplines). It is possible to build upon these true facts (proving theorems

in mathematics) to derive new truths. These truths themselves may form the foundations

from which further new truths emerge.

Relational databases work in exactly the same way. It is absolutely no accident that the

relational model is mathematically based. The relations we define (which once again

means, for an SQL database, the tables we create) represent facts that we accept, a priori,

as true. The views we define, and the queries we write, are new truths that we prove.



4 C H A P T E R O N E

N O T E
The coherence of the relational model is a critically important concept to grasp.

Because of the inherent mathematical stability of the principles that underlie

relational data modeling, we can be totally confident that the result of any query of

our original database will indeed generate equally valid facts—if we respect the

relational principles. Some of the key principles of the relational theory are that a

relation, by definition, contains no duplicate, and that row ordering isn’t significant.

As you shall see in Chapter 4, SQL allows developers to take a number of liberties

with the relational theory, liberties that may be the reasons for either surprising

results or the failure of a database optimizer to perform efficiently.

There is, however, considerable freedom in the choice of our basic truths. Sometimes the

exercise of this freedom can be done very badly. For example, wouldn’t it be a little

tedious if every time someone went to buy some apples, the grocer felt compelled to

prove all Newtonian physics before weighing them? What must be thought of a program

where the most basic operation requires a 25-way join?

We may use much data in common with our suppliers and customers. However, it is

likely that, if we are not direct competitors, our view of the same data will be different,

reflecting our particular perspective on our real-life situation. For example, our business

requirements will differ from those of our suppliers and customers, even though we are

all using the same data. One size doesn’t fit all. A good design is a design that doesn’t

require crazy queries.

Modeling is the projection of business requirements.

The Importance of Being Normal
Normalization, and especially that which progresses to the third normal form (3NF), is a

part of relational theory that most students in computer science have been told about. It

is like so many things learned at school (classical literature springs to mind), often

remembered as dusty, boring, and totally disconnected from today’s reality. Many years

later, it is rediscovered with fresh eyes and in light of experience, with an understanding

that the essence of both principles and classicism is timelessness.

The principle of normalization is the application of logical rigor to the assemblage of items

of data—which may then become structured information. This rigor is expressed in the

definition of various normal forms, most typically three, although purists argue that one
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should analyze data beyond 3NF to what is known in the trade as Boyce-Codd normal form

(BCNF), or even to fifth normal form (5NF). Don’t panic. We will discuss only the first

three forms. In the vast majority of cases, a database modeled in 3NF will also be in

BCNF* and 5NF.

You may wonder why normalization matters. Normalization is applying order to chaos.

After the battle, mistakes may appear obvious, and successful moves sometimes look like

nothing other than common sense. Likewise, after normalization the structures of the

various tables in the database may look natural, and the normalization rules are

sometimes dismissively considered as glorified common sense. We all want to believe we

have an ample supply of common sense; but it’s easy to get confused when dealing with

complex data. The three first normal forms are based on the application of strict logic and

are a useful sanity checklist.

The odds that our creating un-normalized tables will increase our risk of being struck by

divine lightning and reduced to a little mound of ashes are indeed very low (or so I believe;

it’s an untested theory). Data inconsistency, the difficulty of coding data-entry controls, and

error management in what become bloated application programs are real risks, as well as

poor performance and the inability to make the model evolve. These risks have a very high

probability of occurring if we don’t adhere to normal form, and I will soon show why.

How is data moved from a heterogeneous collection of unstructured bits of information

into a usable data model? The method itself isn’t complicated. We must follow a few

steps, which are illustrated with examples in the following subsections.

Step 1: Ensure Atomicity

First of all, we must ensure that the characteristics, or attributes, we are dealing with are

atomic. The whole idea of atomicity is rather elusive, in spite of its apparent simplicity.

The word atom comes from ideas first advanced by Leucippus, a Greek philosopher who

lived in the fifth century B.C., and means “that cannot be split.” (Atomic fission is a

contradiction in terms.) Deciding whether data can be considered atomic or not is chiefly

a question of scale. For example, a regiment may be an atomic fighting unit to a general-

in-chief, but it will be very far from atomic to the colonel in command of that regiment,

who deals at the more granular level of battalions or squadrons. In the same way, a car

may be an atomic item of information to a car dealer, but to a garage mechanic, it is very

far from atomic and consists of a whole host of further components that form the

mechanic’s perception of atomic data items.

* You can have 3NF but not BCNF if your table contains several sets of columns that are unique (can-
didate keys, which are possible unique identifiers of a row) and share one column. Such situations
are not very common.
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From a purely practical point of view, we shall define an atomic attribute as an attribute

that, in a where clause, can always be referred to in full. You can split and chop an

attribute as much as you want in the select list (where it is returned); but if you need to

refer to parts of the attribute inside the where clause, the attribute lacks the level of

atomicity you need. Let me give an example. In the previous list of attributes for used

cars, you’ll find “safety equipment,” which is a generic name for several pieces of

information, such as the presence of an antilock braking system (ABS), or airbags

(passenger-only, passenger and driver, frontal, lateral, and so on), or possibly other

features, such as the centralized locking of doors. We can, of course, define a column

named safety_equipment that is just a description of available safety features. But we must

be aware that by using a description we forfeit at least two major benefits:

The ability to perform an efficient search

If some users consider ABS critical because they often drive on wet, slippery

roads, a search that specifies “ABS” as the main criterion will be very slow if we

must search column safety_equipment in every row for the “ABS” substring. As

I’ll show in Chapter 3, regular indexes require atomic (in the sense just defined)

values as keys. One can sometimes use query accelerators other than regular

indexes (full-text indexing, for instance), but such accelerators usually have

drawbacks, such as not being maintained in real time. Also take note that full-

text search may produce awkward results at times. Let’s take the example of a

color column that contains a description of both body and interior colors. If you

search for “blue” because you’d prefer to buy a blue car, gray cars with a blue

interior will also be returned. We have all experienced irrelevant full-text search

results through web searches.

Database-guaranteed data correctness

Data-entry is prone to error. More importantly than dissuasive search times, if

“ASB” is entered instead of “ABS” into a descriptive string, the database man-

agement system will have no way to check whether the string “ASB” is mean-

ingful. As a result, the row will never be returned when a user specifies “ABS”

in a search, whether as the main or as a secondary criterion. In other words,

some of our queries will return wrong results (either incomplete, or even plain

wrong if we want to count how many cars feature ABS). If we want to ensure

data correctness, our only means (other than double-checking what we have

typed) is to write some complicated function to parse and analyze the safety

equipment string when it is entered or updated. It is hard to decide what will be

worse: the hell that the maintenance of such a function would be, or the perfor-

mance penalty that it will inflict on loads. By contrast, a mandatory Y/N has_ABS

column would not guarantee that the information is correct, but at least declara-

tive check constraints can make the DBMS reject any value other than Y or N.

Partially updating a complex string of data requires first-rate mastery of string functions.

Thus, you want to avoid cramming multiple values into a single string.
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Defining data atoms isn’t always a simple exercise. For example, the handling of addresses

frequently raises difficult questions about atomicity. Must we consider the address as

some big, opaque string? Or must we break it into its components? And if we decompose

the address, to what level should we split it up? Remember the points made earlier about

atomicity and business requirements. How we represent an address actually depends on

what we want to do with the address. For example, if we want to compute statistics or

search by postal code and town, then it is desirable to break the address up into sufficient

attribute components to uniquely identify those important data items. The question then

arises as to how far this decomposition of the address should be taken.

The guiding principle in determining the extent to which an address should be broken

into components is to test each component against the business requirements, and from

those requirements derive the atomic address attributes. What these various address

attributes will be cannot be predicted (although the variation is not great), but we must

be aware of the danger of adopting an address format just because some other

organization may have chosen it, before we have tested it critically against our own

business needs.

Note that sometimes, the devil is in the details. By trying to be too precise, we may open

the door to many distracting and potentially irrelevant issues. If we settle for a level of

detail that includes building number and street as atomic items, what of ACME Corp, the

address of which is simply “ACME Building”? We should not create design problems for

information we don’t need to process. Properly defining the level of information that is

needed can be particularly important when transferring data from an operational to a

decision-support system.

Once all atomic data items have been identified, and their mutual interrelationships

resolved, distinct relations emerge. The next step is to identify what uniquely characterizes

a row—the primary key. At this stage, it is very likely that this key will be a compound one,

consisting of two or more individual attributes. To go on with our used car example, for a

customer it’s the combination of make, model, version, style, year, and mileage that will

identify a particular vehicle—not the current registration number. It isn’t always easy to

correctly define a key. A good, classic example of attribute analysis is the business definition

of “customer.” A customer may be identified by a name. However, a name may not be the

best identifier. If our customers are companies, the way we identify them may be the

source of ambiguities—is it “RSI,” “Relational Software,” “Relational Software Inc” (with or

without a dot following “Inc,” with or without a comma after “Relational Software”) that

identifies this given company? Uppercase? Lowercase? Capitalized initials? We have here

all the conditions for storing information inside a database and never seeing it again. The

choice of the customer name as identifier is a challenging one, because it demands the strict

application of naming standards to avoid possible ambiguities. It may be preferable to

identify a customer on the basis of either a standard short name, or possibly by use of a
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unique code. And one should always keep in mind the impact on related data of Relational

Software Inc. changing its name to, say, Oracle Corporation. If we need to keep a history of

our relationship, then we must be able to identify both names as representing the same

company at different points in time.

As a general rule, you should, whenever possible, use a unique identifier that has

meaning rather than some obscure sequential integer. I must stress that the primary key

is what characterizes the data—which is not the case with some sequential identifier

associated with each new row. You may choose to add such an identifier later, for

instance because you find your own company_id easier to handle than the place of

incorporation and registration number that truly identify a company. You can even

promote the sequential identifier to the envied status of primary key, as a technical

substitute (or shorthand) for the true key, in exactly the same way that you’d use table

aliases in a query in order to be able to write:

where a.id =  b.id

instead of:

where table_with_a_long_name.id = table_even_worse_than_the_other.id

But a technical, numerical identifier doesn’t constitute a real primary key by the mere

virtue of its existence and mustn’t be mistaken for the real thing. Once all the attributes

are atomic and keys are identified, our data is in first normal form (1NF).

Step 2: Check Dependence on the Whole Key

I have pointed out that some of the information that we should store to help used car

buyers make an informed choice would already be known by a car enthusiast. In fact,

many used car characteristics are not specific to one particular car. For example, all the cars

sharing make, model, version, and style will have the same seating and cargo capacity,

regardless of year and mileage. In other words, we have attributes that depend on only a

part of the key. What are the implications of keeping them inside a used_cars table?

Data redundancy

If we happen to have for sale many cars of the same make, model, version, and

style (a set of characteristics that we can generically call the car model), all the

attributes that are not specific to one particular car will be stored as many times

as we have cars of the same model. There are two issues with the storage of

redundant data. First, redundant data increases the odds of encountering contra-

dictory information because of input errors (and it makes correction more time-

consuming). Second, redundant data is an obvious storage waste. It is custom-

ary to hear that nowadays storage is so cheap that one no longer needs to be

obsessed with space. True enough, except that such an argument overlooks the

fact that there is also more and more data to store in today’s world. It also over-

looks the fact that data is often mirrored, possibly backed up to other disks on a
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disaster recovery site where it is mirrored again, and that many development

databases are mere copies of production databases. As a result, every wasted

byte isn’t wasted once, but four or five times in the very best of cases. When you

add up all the wasted bytes, you sometimes get surprisingly high figures. Besides

the mere cost of storage, sometimes—more importantly—there is also the issue

of recovery. There are cases when one experiences “unplanned downtime,” a

very severe crash for which the only solution is to restore the database from a

backup. All other things being equal, a database that is twice as big as necessary

will take twice the time to restore than would otherwise be needed. There are

environments in which a long time to restore can cost a lot of money. In a hos-

pital, it can even cost lives.

Query performance

A table that contains a lot of information (with a large number of columns)

takes much longer to scan than a table with a reduced set of columns. As we

shall see in other chapters, a full table scan is not necessarily the scary situation

that many beginners believe it to be; there are many cases where it is by far the

best solution. However, the more bytes in the average row, the more pages will

be required to store the table, and the longer it takes to scan the table. If you

want to display a selectable list of the available car models, an un-normalized

table will require a select distinct applied to all the available cars. Running a

select distinct doesn’t mean only scanning many more rows than we would

with a separate car_model table, but it also means having to sort those rows to

eliminate duplicates. If the data is split in such a way that the DBMS engine can

operate against only a subset of the data to resolve the query, performance will

be significantly better than when it operates against the whole.

To remove dependencies on a part of the key, we must create tables (such as car_model).

The keys of those new tables will each be a part of the key for our original table (in our

example, make, model, version, and style). Then we must move all the attributes that

depend on those new keys to the new tables, and retain only make, model, version, and

style in the original table. We may have to repeat this process, since the engine and its

characteristics will not depend on the style. Once we have completed the removal of

attributes that depend on only a part of the key, our tables are in second normal form (2NF).

Step 3: Check Attribute Independence

When all data has been correctly moved into 2NF, we can commence the process of

identifying the third normal form (3NF). Very often, a data set in 2NF will already be in

3NF, but nevertheless, we should check the 2NF set. We now know that each attribute in

the current set is fully dependent on the unique key. 3NF is reached when we cannot

infer the value of an attribute from any attribute other than those in the unique key. For

example, the question must be asked: “Given the value of attribute A, can the value of

attribute B be determined?”
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International contact information provides an excellent example of when you can have

an attribute dependent on another non-key attribute: if you know the country, you need

not record the international dialing code with the phone number (the reverse is not true,

since the United States and Canada share the same code). If you need both bits of

information, you ought to associate each contact with, say, an ISO country code (for

instance IT for Italy), and have a separate country_info table that uses the country code as

primary key and that holds useful country information that your business requires. For

instance, a country_info table may record that the international dialing code for Italy is 39,

but also that the Italian currency is the euro, and so on. Every pair of attributes in our

2NF data set should be examined in turn to check whether one depends on the other.

Such checking is a slow process, but essential if the data is to be truly modeled in 3NF.

What are the risks associated with not having the data modeled in 3NF? Basically you

have the same risks as from not respecting 2NF.

There are various reasons that modeling to the third normal form is important. (Note that

there are cases in which designers deliberately choose not to model in third normal form;

dimensional modeling, which will be briefly introduced in Chapter 10, is such a case. But

before you stray from the rule, you must know the rule and weigh the risks involved.)

Here are some reasons:

A properly normalized model protects against the evolution of requirements.

As Chapter 10 will show, a non-normalized model such as the dimensional one

finds its justification in assumptions about how the data is maintained and que-

ried (the same can be said of the physical data structures that you’ll see in

Chapter 5; but a physical implementation change will not jeopardize the logic of

programs, even if it can seriously impact their performance). If the assumptions

prove wrong one day, all you can do is throw everything away and rebuild from

scratch. By contrast, a 3NF model may require some query adjustments, but it

will be flexible enough to accommodate changes.

Normalization minimizes data duplication.

As I have already pointed out, duplicate data is costly, both in terms of disk space

and processing power, but it also introduces a much-increased possibility of data

becoming corrupt. Corruption happens when one instance of a data value is

modified, but the same data held in another part of the database fails to be simul-

taneously (and identically) modified. Losing information doesn’t only mean data

erasure: if one part of the database says “white” while another part says “black,”

you have lost information. Data inconsistency can be prevented by the DBMS if

the modeling allows it—if your atomic attributes let you define column con-

straints, or if you can declare referential integrity constraints. Otherwise, it has to

be prevented by additional programming traps. You then have the choice

between using triggers and stored procedures that can grow very complex and

add significant overhead, or making programs unnecessarily complicated and
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therefore costlier to maintain. Triggers and stored procedures must be extremely

well documented. Data consistency ensured in programs moves the protection of

data integrity out of the database and into the application layer. Any other pro-

gram that needs to access the same data has the choice between duplicating the

data integrity protection effort, or happily corrupting the data painfully main-

tained in a consistent state by other programs.

The normalization process is fundamentally based on the

application of atomicity to the world you are modeling.

To Be or Not to Be, or to Be Null
A very common modeling mistake is to associate large numbers of possible characteristics

within a relation, which may result in a table with a large number of columns. Some

scientific disciplines may require a very detailed characterization of objects under study, and

thus require a large number of attributes, but this is rarely the case in business applications.

In any case, a sure sign that a database design is flawed is when columns of some

prominent tables mostly contain null values, and especially when two columns cannot

possibly contain a value at the same time; if one is defined, the other must be null, and vice

versa. This condition would undoubtedly indicate a violation of either 2NF or 3NF.

If we admit that a row in a table represents a statement about the characteristics of a given

“thing,” indicating that “we don’t know” for most characteristics seriously downgrades the

table as a source of reliable information. This may be a minor inconvenience if the data is

stored for informative purpose only. It becomes a major issue if the unknown values are

supposed to help us define a result set, and this state of affairs is indicative of a flawed

model. All columns in a row should ultimately contain a value, even if business processes

are such that various pieces of information are entered from more than one source and/or

at different points in time. A stamp collector might likewise keep some room in an album

for a series temporarily absent from the collection. But even so, there is a risk of wasting

storage if it is actually reserved because one always tailors for the maximum size. There is

also a risk of very serious performance problems if only placeholders are used and data goes

to some remote overflow area when it is entered at last.

The existence of null values also raises an important point with regard to relational

modeling, which is the main foundation for the query optimizer. The completeness of a

relational model is founded on the application of two-valued logic; in which things are or

they aren’t. Any in-between case, a null value, is indeterminate; but in a where clause,

conditions cannot be indeterminate. They are true or they are false, because you return a

row or you don’t; you cannot return a row with a “maybe this one answers the question
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but I’m not really sure” qualifier. The transition from the three-valued logic implied by nulls

(true, false, or indeterminate) to the two-valued logic of the result set is perilous. This is

why all SQL practitioners can recall cases when what looked like a good SQL query failed

to return the proper result set because of an encounter with null values. For instance, if a

column named color contains the values RED, GREEN, and BLACK, this condition:

where color not in ('BLUE', 'BLACK', null)

will result in no row being returned, because we don’t know what null is and the SQL

engine will consider that there is a possibility that it might be RED or GREEN, whereas:

where color in ('BLUE', 'BLACK', null)

will return all rows for which color is BLACK, and nothing else (remember, we have no

BLUE in our table), since there is a possibility that null would be neither RED nor GREEN. As

you can see, an SQL engine is even more risk-averse than a banker. Finding an explicit

null inside an in ( ) list is, of course, unusual; but such a situation may occur if, instead of

an explicit list, we have a subquery and fail to ensure that no null value is returned by

that subquery.

A representation of customers can provide a very good example of the difficulties

inherent to dealing with missing information. Each customer has an address, which is

normally the address that will appear on an invoice to that customer. But what if the

address to which we must ship our goods is different? Must we consider the shipping

address to be a characteristic of the order? It can make sense if we sell once, only to never

see customers again. If we are not a funeral parlor, however, and especially if we

repeatedly ship goods to the same address, it makes no sense at all from a business point

of view. Entering the same data over and over again, besides being a waste of time, also

increases the risk of a mistake—hence goods get sent to the wrong address, creating a

dissatisfied customer or perhaps an ex-customer. The shipping address is, obviously, a

characteristic of the customer, not of the order. This situation ought to have been

resolved in the analysis of dependencies during the original design of the model.

It is also possible to have the accounting department at a location different from the

official, customer delivery address if the customer is a company. So, for one customer, we

may have one “official” address, a billing address, and also a shipping address. It is quite

common to see customer tables with three sets of columns (each set describing one

address) for this purpose.

However, if we can have all these addresses, what is likely to be the most common case?

Well, it is quite possible that in 90% of the cases we shall have only one useful address,

the official address. So, what must we do with all our other columns? Two possibilities

come to mind:
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Set billing and shipping addresses to null.

This is not a very sound strategy, because this will require our programs to use

implicit rules, such as “if the billing address is undefined, then send the invoice

to the corporate address.” The logic of such programs will become much more

complicated, with an increased risk of bugs entering the code.

Replicate the information, copying the corporate address to the billing address columns where there is

no special billing address.

This approach will require special processing during data entry, by a trigger per-

haps. In such a case the overhead may not matter much, but in another case the

overhead might matter a lot. Moreover, we must also take care of replicating

changes—each update of the corporate address must be replicated to those of the

other addresses that are identical, for fear of inconsistency.

Both of these scenarios betray a critical lack of understanding on the part of the original

modelers. Using null values and implicit rules is a classic fudge to accommodate three-

valued logic. The use of nulls inevitably introduces three-valued logic, which immediately

introduces semantic inconsistency; no amount of clever programming can remove

semantic issues. Replicating data illustrates what happens when dependencies have not

been properly analyzed.

One solution to our address conundrum might be to get the address information out of

the customer table. One design we may contemplate is to store each address in an address

table, together with a customer identifier and some column (a bit mask, perhaps)

indicating the role of the address. But this is not necessarily the best solution, because

issues such as the true meaning of addresses often appear after programs have been

rushed into production and an attempt to remodel the original data as part of a later

release can introduce insuperable problems.

We have so far assumed that we have one shipping address for each customer, which may

or may not be identical to the corporate, registered address. What if we send our invoices

to a single place but must ship our goods to many different branches, with several distinct

shipments belonging to the same invoice? This is not necessarily unusual! It is no longer

workable for our design to have a single (mostly null) “shipping address” (represented by

several columns) in the customer table. We are, ironically, back to the “shipping address is

a characteristic of the order” situation. This means that if we want to refer (especially

repeatedly) to addresses in orders, we must associate some kind of purpose-built

identifier to our addresses, which will spare us repeating the whole shipping address in

each order (normalization in action). Or perhaps we should begin to contemplate the

introduction of a shipments table.

There is no such thing as the totally perfect design for the customers/addresses

conundrum. I have just wandered through likely problems and tried to sketch some of
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the possible solutions. But there will be one solution that works best in your case, and

many other solutions that will lead to the risks of inconsistencies. With an inappropriate

solution, code will be at best more complicated than necessary with very high odds of

being underperforming as well.

The question of null values is probably the thorniest issue of the relational theory. Dr. E.F.

Codd, the father of the relational model, introduced null values early, and explicitly asked

in the 3rd of the 12 rules that he published in 1985 for a systematic treatment of null

values. (The 12 rules were a concise definition of the required properties of a relational

database.) However, the battle is still raging among theorists. The problem is that “not

known” may encompass quite a number of different cases. Let’s consider a list of famous

writers, each with a birth date and a death date. A null birth date would unambiguously

mean “unknown.” But what does a null death date mean? Alive? We don’t know when

this author died? We don’t know whether this author is alive or not?

I cannot resist the pleasure of quoting the immortal words of the then–U.S. Secretary of

Defense, Mr. Donald Rumsfeld, at a February 2002 news briefing of his department:

As we know, there are known knowns. There are things we know we know. We

also know there are known unknowns. That is to say we know there are some

things we do not know. But there are also unknown unknowns, the ones we don’t

know we don’t know.

I don’t find it unusual to have null values for, to put it in Rumsfeldese, “known

unknowns,” attributes that are known to exist and have some value we don’t know at

one point in time, for various reasons. For the rest, speculating leads nowhere. Strangely,

some of the most interesting usages of null values may perfectly involve nothing but

tables where all columns of all rows contain values: null values can be generated through

outer joins. Some efficient techniques for checking the absence of particular values that I

discuss in Chapter 6 are precisely based on outer joins and tests on null values.

Nulls can be hazardous to your logic; if you must use them, be

very sure you understand the consequences of doing so in your

particular situation.

Qualifying Boolean Columns
Even though the Boolean type doesn’t exist in SQL, many people feel a need to

implement flags to indicate a Boolean true/false status (for instance order_completed). You

should aim for increasing the density of your data—order_completed may be useful

information to know, but then perhaps other information would be nice to store too:
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when was it completed? Who completed it? So that means that instead of having a single

“Y/N” column, we can have a completion_date column, and perhaps a completed_by

column, both of which will tell us more (although we may not necessarily want to see a

null value as long as the order isn’t completed; a solution may be to use a distinct table to

track the various stages of every order from creation to completion). As before, examine

the dependencies in the context of your business requirements, and only include those

additional columns where the successful operation of the business requires it.

Alternatively, a series of essentially Boolean attributes can sometimes be advantageously

combined into a unique status attribute. For instance, if you have four attributes that can

be either true or false, you can assign a numerical value between 0 and 15 to each of the

possible combinations and define the “status” as being represented by this value. But

beware—this technique may offend the basic rule of atomicity, so if you must use this

approach, do so with considerable caution.

Data for data’s sake is a path to disaster.

Understanding Subtypes
Another reason for the appearance of unnecessarily wide tables (as in having too many

attributes) is a lack of understanding of the true relationship between data items.

Consider the example of subtypes. A company may have a mix of employees, some of

whom are permanent, others who are contractors. They all have several properties in

common (name, year of birth, department, room, phone number, and so forth), but

there are also properties that are unique to each type of employee (for instance, hire date

and salary for permanent employees, rate and contract reference for contractors). The

manner in which the common attributes can be shared, while ensuring that the

distinctive features are kept separate, introduces the topic of subtypes.

We can model this situation by defining three tables. First, the employee table contains all

information that is common to every employee, regardless of their status. However, an

attribute tells the status of each employee. It has as many distinct values as there are

distinct employee types, for example “P” (for permanent employee), and “C” (for contract

employee). This table uses an employee number as the primary key.

Next, we create additional tables, one for each employee type. In this case, there are two

tables. Tables permanent and contract represent subtypes of the table employee, for example.

Each permanent or contract employee inherits certain characteristics from the employee

table, in addition to possessing unique characteristics, as defined in their own tables.
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Now let’s examine the creation of the primary keys between these two types of tables, as

it’s the primary key construct that implements the subtype relationships. The unique key

for all tables is the unique identifier for each member of staff—the employee number.

The set of primary keys of employee is the union of the primary keys of the various

subtype tables, and the intersection of the primary keys of all subtype tables is by

construction empty, because each employee belongs to just one, in this case, of the two

categories. The primary keys of subtype tables are also foreign keys, referencing the

primary key of employee.

Please note that assigning totally independent primary keys to the subtype tables would,

of course, be a disastrous mistake. In the real world however, you will certainly find

examples in which this disastrous mistake has been perpetrated. Note also that entity

sub-types are not the same as master-detail relationships. They can quickly be

distinguished on examination of their respective primary keys. For those who would

think that this type of discussion is a bit academic (associating with the word “academic”

some vague, slightly pejorative connotation), I’ll just say that whenever different

subtypes use a primary key that is not a subset of the primary key of the parent table, the

result is almost invariably pathetic performance, from many points of view.

One of the main principles to follow in order to achieve efficient database access is a

principle attributed to Philip II of Macedonia, father of Alexander the Great, and that

principle is: Divide and Rule. It is quite likely that the vast majority of the queries executed

by the HR department will belong to either of two categories: they will be either generic

queries about all the people working in an organization or specific queries about one

category of person. In both cases, by using subtypes correctly,* we will only need to

examine that data which is most likely to provide the result that we require, and no time

will be wasted examining irrelevant information. If we were to put everything into a

single table, the most modest query would have to plow through a much greater quantity

of data, most of which is useless in the context of that query.

Tables in which specific columns appear as null indicate the need

for subtypes.

* You can use subtypes incorrectly. As one of the reviewers remarked, having a kind of super-generic
parent table that is referred to several times in the most innocuous query isn’t a model for efficiency.
Such a super-generic parent table is hammered by all queries if it stores vital information. Subtypes
must be born of logical distinction, not of an ill-conceived desire to implement with tables a strong
inheritance scheme inspired from object-oriented techniques.



L A Y I N G  P L A N S 17

Stating the Obvious
It is always an unsound situation in which there are implicit constraints on your data—

for instance “if the business line is such, then the identifier is numeric (although defined

as a string of characters to accommodate other business lines),” or “if the model is T, then

the color is necessarily black.” Sometimes, such general knowledge information can

prove extremely efficient when filtering data. However, if it remains human knowledge,

the DBMS engine, unaware of it, will be unable to take advantage of it, and the optimizer

will not possess the necessary information to affect the most efficient database access. In

the worst case, implicit constraints can even lead to a runtime failure. For instance, you

might inadvertently require the database engine to apply an arithmetic process to a

character string. This can happen when a character-defined column is used only for

storing numeric data, and a non-numeric character slips in.

As an aside, the example of a string identifier that sometimes contains character data and

sometimes numerical data illustrates a confusion over domain definitions in the initial

database design. It is quite clear that the nature of such a field varies according to

circumstances—which is totally unacceptable in a properly designed database. If we need

to store, for instance, configuration parameters of various natures (numerical, Boolean,

character, and so on), we should not store them in a single table configuration(parameter_

name, parameter_value), but rather use a generic table configuration(parameter_id,

parameter_name, parameter_type) and have as many subtypes as we have parameter types.

If we use, for instance, configuration_numeric(parameter_id, parameter_value), where

parameter_value is a numeric column, any mistyping of the letter “O” instead of zero will

be detected by the DBMS when the configuration is changed, instead of resulting in a

runtime error when the parameter is used.

Define all the constraints you can. Primary keys are, of course, a sine qua non in a

relational database. Use alternate key, when they characterize the data and any type of

unique constraints. Foreign keys, which ensure that your data is consistent by mapping

to master tables, are vital as part of the comprehensive expression of the meaning of the

data model. Constraints that control the range of values that can be entered are also

valuable. Constraints have two major impacts:

• They contribute to ensuring the integrity of your data, guaranteeing that everything,

as far as defined rules are concerned, is consistent with those rules.

• They provide valuable information about your data to the DBMS kernel, and more

specifically to the optimizer. Even if today the optimizer does not make full use of all

available constraint data, it is likely that in future releases of the database system, that

constraint data will become used for more sophisticated processing by the kernel.

The earlier example of the confusion over multiple shipping and billing addresses is a

further example of the way semantic information is lost to the database by a
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fundamentally weak design. This essential information must therefore be placed into an

unpredictable number of application programs. “If the billing address is null, then the

headquarters address applies” is a rule that is unknown to the database and must

therefore be handled in the programs—note the use of the plural programs here! Once

again, everything that is defined in the database is defined only once, thus guaranteeing

that no program will use the data inconsistently. Implicit rules about, for example,

address precedence must be coded into every program accessing the data. Because these

implicit rules are totally arbitrary, it is not impossible at all that in some cases the billing

address will be the shipping address, and not the headquarters address.

Data semantics belong in the DBMS, not in the application

programs.

The Dangers of Excess Flexibility
As always, pushing a line of reasoning to the limits (and often past them) can result in a

monument to human madness. A great favorite with third-party software editors is the

“more-flexible-than-thou” construct, in which most data of interest is stored in some

general purpose table, with equally general purpose attributes such as: entity_id,

attribute_id, attribute_value. In this “design,” everything is stored as a character string

into attribute_value. The design certainly avoids the risk of having null values. However,

the proponents of this type of design usually store the mandatory attributes in attribute_

value as well. Their mantra, by the way, is usually that this design approach makes it easy

to add new attributes whenever they are needed. Without commenting on the quality of

a design that makes it necessary to anticipate the necessarily haphazard addition of

attributes, let’s just remark that it’s all very nice to store data, but usually, somehow, one

day you will have to retrieve and process that same data (if data retrieval is not being

planned, there is something seriously wrong somewhere). Adding a column to a table

really pales into insignificance when compared to writing a program to do something

useful with the new bits of information that you are given to manage (as enthusiasts that

praise the flexibility of the Extensible Markup Language [XML] are bound to

understand).

The database cost of such pseudoflexibility rockets sky-high. Your database integrity is

totally sacrificed, because you can hardly have a weaker way of typing your data. You

cannot have any referential integrity. You cannot, in fact, have any type of declarative

constraints. The simplest query becomes a monstrous join, in which the “value table” is

joined 10, 15, or 20 times to the very same entity, depending on the number of attributes

one wants to select. Needless to say, even the cleverest optimizer is at a loss on such a
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query, and performance is what one should expect—dismal. (You can try to improve the

performance of such a query as described in Chapter 11, but the SQL code is not a pretty

sight.) By comparison, the most inept campaign of military history looks like a

masterpiece of strategic planning.

True design flexibility is born of sound data-modeling practices.

The Difficulties of Historical Data
Working with historical data is an extremely common condition—the process of

valuation, or specifying the price of goods or a service at a particular point in time, is based

on historical data—but one of the really difficult issues of relational design is the handling

of data that is associated with some period (as opposed to point) of time.

There are several ways to model historical data. Let’s assume that we want to record the

successive prices of goods identified by some article_id. An obvious way to do so is to

store the following items:

(article_id, effective_from_date, price)

where effective_from_date is the date when the new price takes effect, and the primary

key of the historical table is (article_id, effective_from_date).

Logically correct, this type of model is rather clumsy to use when working with current

data, which in many cases will be our main concern. How are we going to identify the

current value? It’s the one associated with the highest effective_from_date, and it will be

retrieved by running a query looking like:

select a.article_name, h.price
from articles a,
     price_history h
where a.article_name = some_name
  and h.article_id = a.article_id
  and h.effective_from_date =
     (select max(b.effective_from_date)
      from price_history b
      where b.article_id = h.article_id)

Executing this query requires two passes over the same data: one in the inner query to

identify which is the most recent date we have for a given article, and one in the outer

query to return the price from a row that we have necessarily hit in the inner query

(Chapter 6 talks about special functions implemented by some DBMS systems that can

avoid, to some extent, multiple passes). Executing repeated queries following this pattern

can prove very costly.
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However, the choice of how to register the validity period for a price is arbitrary. Instead of

storing the effective date from which the price applies, why not store the “end date” (e.g.,

the last date on which the current price prevails), identifying the time intervals by their

upper bound instead of by their lower bound?

This new approach may look like an attractive solution. You have two ways to define

current values—either that the end date is undefined, which looks neat but isn’t

necessarily a good idea, or that the end date is something like December 31, 3000.

It’s quite obvious that looking for the price of an article as of December 31, 3000 will take

you directly to the row you want, in a single pass. Definitely attractive. Is this the perfect

solution? Not quite. There may be some practical worries with the optimizer, which I

discuss in Chapter 6, but there is also a major logical issue: prices, as any consumer

knows, rarely stay constant, and price increases are not usually decided instantly

(financial environments may be something different). What happens when, for example,

in October, new prices are decided for the next year and duly recorded in the database?

What we get in our valuation table are two records for each item: one stating the current

price, valid until December 31, and one giving the price that will be applied from January

1. If we store the first date when the price applies we will have one row with an

effective_from_date in the past (for instance January 1 of the current year) and another

one in the future (say, the next January 1). In effect, what will define the current price is

not the highest date, but the highest date before today (returned in Oracle by the system

function sysdate). The preceding query needs to be modified only slightly:

select a.article_name, h.price
from articles a,
     price_history h
where a.article_name = some_name
  and h.article_id = a.article_id
  and h.effective_from_date =
     (select max(b.effective_from_date)
      from price_history b
      where b.article_id = h.article_id
        and b.effective_from_date <= sysdate)

If we store the last day when the price applies, we will have one row with an end_date set

to December 31 and another with end_date set either to null or doomsday. Expressing that

we want the price for which the end_date is the smallest date after the current date is no

obvious improvement on the query just shown.

Denormalization is of course a possible solution—one can imagine storing both the date

when a price becomes effective and the date when it ceases to be, or one could also argue

for storing the effective_from_date and the number of days for which the effective_from_

date price applies. This could allow using either the start or the end of the period, as best

suits the query.
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Denormalization always implies taking a risk with data integrity—a minor date entry

error can leave black holes when no price is defined. You can of course minimize the risk

by adding more checks when data is inserted or updated, but there is always a

performance penalty associated with such checks.

Another possible solution is to have a current table and a historical table and plan a migration

of rows from current to historical when prices change. This approach can suit some kinds of

applications, but may be complicated to maintain. Moreover, the “pre-recording” of future

prices fits rather badly into the picture.

In practice, particular storage techniques such as partitioning, which I discuss in Chapter 5,

will come to the rescue, making constructs such as the one using the effective_from_date

less painful than they might otherwise have been, especially for mass processing.

But before settling for one solution, we must acknowledge that valuation tables come in

all shapes and sizes. For instance, those of telecom companies, which handle tremendous

amounts of data, have a relatively short price list that doesn’t change very often. By

contrast, an investment bank stores new prices for all the securities, derivatives, and any

type of financial product it may be dealing with almost continuously. A good solution in

one case will not necessarily be a good solution in another.

Handling data that both accumulates and changes requires very

careful design and tactics that vary according to the rate of change.

Design and Performance
It is flattering (and a bit frightening too) to performance specialists to see the faith in their

talents devotedly manifested by some developers. But, at the risk of repeating myself, I

must once again stress what I said in the introduction to this book: tuning is about getting

the best possible performance, now. When we develop, we must have a different mindset

and not think “let’s code it, and then have a specialist tune it later in production.” The

impact of tuning on the structure of programs is usually nil, and on queries, often

minimal once the big mistakes have been corrected. There are indeed two aspects to this

matter:

• One aspect of tuning is the improvement of the overall condition of the system, by set-

ting some parameters in accordance with the current resources in terms of CPU

power, memory available, and I/O subsystems, and sometimes taking advantage of the

physical implementation of the DBMS. This is a highly technical task, which may

indeed improve the performance of some processes by a significant factor, but rarely

by more than 20 or 30 percent unless big mistakes were made.
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• The other aspect of tuning is the modification of specific queries, a practice that may,

unfortunately, expose the limitations of the query optimizer and changes of behavior

between successive DBMS releases.

That is all there is to it.

In my view, adding indexes doesn’t really belong to the tuning of production databases

(even if some tuning engagements are sometimes a matter of reviewing and correcting

the indexing scheme for a database). Most indexes can and must be correctly defined

from the outset as part of the designing process, and performance tests should resolve any

ambiguous cases.

Performance is no more a question of making a couple of queries faster than war is a

question of winning a couple of battles. You can win a battle and lose the war. You can

tune your queries and nevertheless have an application with dismal performance that

nobody will want to use, except at gunpoint. Your database and programs, as well as your

SQL queries, must all be properly designed.

A functionally correct design is not enough. Performance must be incorporated into the

design—and down-stream tuning provides for that little surplus of power that can

provide peace of mind.

The single largest contributory factor to poor performance is a

design that is wrong.

Processing Flow
Besides all the questions addressed earlier in this chapter, the operating mode is also a

matter that may have significant impact on the working system. What I mean by operating

mode is whether data should be processed asynchronously (as is the case with batch

programs) or synchronously (as in a typical transactional program).

Batch programs are the historical ancestors of all data processing and are still very much in

use today even if no longer very fashionable; synchronous processing is rarely as necessary

as one might think. However, the improvement of networks and the increase in bandwidth

has led to the “global reach” of an increasing number of applications. As a result, shutting

down your online transaction processing (OLTP) application running in the American

Midwest may become difficult because of East Asian users connected during one part of the

Midwestern night and European users connected during the other part. Batch programs

can no longer assume that they are running on empty machines. Moreover, ever-

increasing volumes of data may require that incoming data is processed immediately rather
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than being allowed to accumulate into unmanageably large data sets. Processing streams of

data may simply be the most efficient way to manage such quantities.

The way you process data is not without influence on the way you “think” of your

system, especially in terms of physical structures—which I talk about more in Chapter 5.

When you have massive batch programs, you are mostly interested in throughput—raw

efficiency, using as much of the hardware resources as possible. In terms of data

processing, a batch program is in the realm of brute force. When you are processing data

on the fly, most activity will be small queries that are going to be repeatedly executed a

tremendous number of times. For such queries, performing moderately well is not good

enough—they have to perform at the maximum possible efficiency. With an

asynchronous program, it is easy to notice that something is wrong (if not always easy to

fix): it just takes too long to complete. With synchronous processing, the situation is

much more subtle, because performance problems usually show up at the worst moment,

when there are surges of activity. If you are not able to spot weaknesses early enough,

your system is likely to let you down when your business reaches maximum demand

levels—the very worst time to fail.

A data model is not complete until consideration has also been

taken of data flow.

Centralizing Your Data
For all the talk about grids, clustered servers, and the like, spreading data across many

servers means adding a considerable amount of complexity to a system. The more

complicated a structure—any type of structure—the less robust it is. Technological

advance does indeed slowly push up the threshold of acceptability. In the eighteenth

century, clocks indicating the minutes were considered much less reliable than those

indicating only the hour, and much more reliable than those showing the day in the

month or the phases of the moon. But nevertheless, try to keep the theater of operations

limited to that which is strictly required.

Transparent references to remote data are performance killers, for two reasons. First,

however “transparent” it may look, crossing more software layers and a network has a

heavy cost. To convince yourself, just run a procedure that inserts a few thousands rows

into a local table, and another one doing the very same thing across—for instance, an

Oracle database link, even on the same database—you can expect performance to be in the

neighborhood of five times slower, if not worse, as you see demonstrated in Chapter 8.

Second, combining data from several sources is extremely difficult. When comparing data

from source A to data from source B, you have no choice other than literally copying the
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data from A to B or the reverse. Transfer is one significant overhead. Data drawn from its

own carefully constructed environment no longer benefits from the planning which went

into establishing that environment (carefully thought-out physical layout, indexes, and

so forth). Instead, that data lands in some temporary storage—in memory if the amount

of data transferred is modest, otherwise on disk. The management of temporary storage is

another major overhead. In a case where nested loops would be, in theory, the most

efficient way to proceed when querying local data, an optimizer is left with two

unattractive possibilities when some of the data is remotely located:

• Using nested loops and incurring high overhead with each iteration

• Sucking the remote data in, and then operating against the local copy, which has left

all indexes behind

Optimizers can be forgiven for not performing at their best under these circumstances.

When it comes to the placement of major data repositories, some of the art is simply

keeping a balance. If your company operates worldwide, keeping all the data at one

location is unlikely to be a popular solution with people who live and work at the

antipodes. Hitting a remote server is certainly no problem when surfing the Internet—it is

quite another matter when using an application intensely. It’s not a question of

bandwidth, it’s a question of light speed, for which, unfortunately, not much

improvement can be expected from technological progress. Whatever you do, issuing a

query against a server located on another continent adds another quarter or half second

to response times, depending on the continent—and this at the best of times. If you need

everyone to have the global picture, replication solutions and products (as opposed to

remote access) should be contemplated. For each group of players, keep their own

chessboard right at hand—don’t make players reach.

The nearer you are to your data, the faster you can get at it!

System Complexity
Other points to keep in mind when designing are what will happen if some piece of

hardware breaks (for example, a disk controller) or if some mistake is made (for instance,

the same batch program is applied twice). Even if your administrators are wizards who

are doing night shifts to bring everything back on course by dawn, transfer rates are

limited; the recovery of a huge database always takes a lot of time. “Spare” backup

databases maintained in synch (or with some slight delay) may help. But backup

databases will not be of any use in the case of a program inadvertently run twice,



especially if the synchronization delay is shorter than the execution time of the program.

What is already complicated with one database becomes a nightmare with several related

databases, because you must be perfectly certain that all the databases are correctly

synchronized after any recovery, to avoid any risk of data corruption.

This particular point of recovery is often a bone of contention between developers and

database administrators, because developers tend to consider, not unreasonably, that

backups and recoveries belong to administrators, while administrators point out, logically,

that if they can guarantee that the container is in working order, they have no idea about

the status of the contents. Indeed, any functional check in case of recovery should not be

forgotten by developers. The more complicated the overall design, the more important it

is for developers to keep in mind the constraints of operations.

Database systems are joint ventures; they need the active and

cooperative participation of users, administrators, and developers.

The Completed Plans
We have reviewed the basic foundations for laying plans in constructing a database

system. We have reviewed the fundamentals of data modeling, and in particular the

broad steps involved in normalizing data to third normal form. We have then proceeded

to review a number of scenarios, in which a faulty design can be identified as the road to

disaster.

Most examples in this chapter come directly from or are inspired by cases I have

encountered in some big companies. And it is always striking to consider how much

energy and intelligence can be wasted trying to solve performance problems that are born

from the ignorance of elementary design principles. Such performance issues need not be

present, yet they are quite common and often made worse by further denormalization of

what is already a questionable design, on the unassailable grounds of “performance

improvement.” One query may, in fact, run much faster, but unfortunately, the nightly

batch program now takes twice as long. In this way, and almost without being noticed, a

full information system is built on a foundation of sand.

Successful data modeling is the disciplined application of what

are, fundamentally, simple design principles.





Chapter 2. C H A P T E R T W O

Waging War
Accessing Databases Efficiently

Il existe un petit nombre de principes fondamentaux de la guerre, dont on ne

saurait s’écarter sans danger, et dont l’application au contraire a été presque en

tous temps couronnée par le succès.

There exist a small number of fundamental principles of war, which it is dangerous to
ignore: indeed, following these principles has almost invariably led to success.

—Général Antoine-Henri de Jomini (1779–1869)

Précis de l’Art de la Guerre
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A nybody who has ever been involved in the switch from development to production of

a critical system knows how much it can feel like the noise and tumult of battle. Very

often, a few weeks before D-Day, performance tests will show that the new system is

going to fall short of expectations. Experts are brought in, SQL statements are fine-tuned,

and database and system administrators are called to contribute to a succession of crisis

meetings. Finally, performance vaguely comparable to the previous system is obtained on

hardware that is now twice as expensive as the original installation.

Tactics are often used as a substitute for a strategic approach. The latter demands the

adoption of a sound overall architecture and design. As in war, the basic principles here

are also few, but too often ignored. Architectural mistakes can prove extremely costly,

and the SQL programmer must enter the battle fully prepared, knowing where to go and

how to get there. In this chapter, we are going to review the key goals that will increase

our chances of success in writing programs that access databases efficiently.

Query Identification
For centuries, the only means that a general had to check the progress of his troops

during the heat of battle was to observe the position of his units as indicated by the color

of the soldiers’ uniforms and the flags they were carrying. When some process in the

database environment is consuming an inordinate amount of CPU, it is often possible to

identify which piece of SQL code is actually running. But it is very often much more

difficult, especially in a large and complicated system that includes dynamically built

queries, to identify which precise part of a given application issued that statement and

needs reviewing. Despite the fact that many products have good monitoring facilities, it is

sometimes surprisingly difficult to relate an SQL statement to its broader environment.

Therefore, you should adopt the habit of identifying your programs and critical modules

whenever possible by inserting comments into your SQL to help identify where in the

programs a given query is used. For instance:

/* CUSTOMER REGISTRATION */ select blah ...

These identifying comments can be important and helpful in subsequently tracking down

any erroneous code. They can also be helpful when trying to determine how much load

is put on a server by a single application, especially when some localized increase in

activity is expected and when you are trying to assess whether the current hardware can

absorb the surge.

Some products have special registration facilities that can spare you the admittedly tedious

step of commenting each and every statement. Oracle’s dbms_application_info package

allows you to register a program using a 48-character module name, a 32-character action
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name, and a 64-character client information field. The content of those fields is left to

your discretion. In an Oracle environment, you can use this package to keep track not

only of which application is running, but also what that application is doing at any given

time. This is because you can easily query the information that your application passes to

the package through the Oracle V$ dynamic views that show what is currently happening

in memory.

Identifiable statements make the identification of performance

issues easier.

Stable Database Connections
A new database connection can be created quickly and easily, but this ease can disguise

the high cost of making repeated connections. You must manage the use of database

connections with great care. The consequences of allowing multiple connections to occur,

perhaps hidden within an application, can be substantial, as the next example illustrates.

Some time ago I came across an application in which numerous small files of up to an

arbitrary maximum of 100 lines were being processed. Each line in these small text files

contained both data and the identification of the database instance into which that data

had to be loaded. In this particular case, there was a single server, but the principle being

illustrated is exactly the same as if there were a hundred database instances.

The process for each file was coded as follows:

Open the file
Until the end of file is reached
      Read a row
      Connect to the server specified by the row
      Insert the data
      Disconnect
Close the file

This process worked quite satisfactorily, except for the occasional circumstance in which a

large number of small files would arrive in a very short space of time, and at a rate

greater than the ability of the application to process them. This resulted in a substantial

backlog, which took considerable time to clear.

I explained the problem of performance degradation as a consequence of frequent

connection and disconnection to the customer with the help of a simple program (written

in C) emulating the current application. Table 2-1 gives the results from that

demonstration.
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N O T E
The program generating the results in Table 2-1 used a conventional insert

statement. I mentioned in passing to the customer the existence of direct-loading

techniques that are even faster.

The demonstration showed the importance of trying to minimize the number of separate

database connections that had to be made. Thus, there was an obvious and enormous

advantage in applying a simple check to determine whether the “next” insert was into

the same database as the previous one. The rationalization could go further, as the

number of database instances was of course finite. You could likely achieve further

performance gain by setting up an array of handlers, one for each specific database

connection, opening a new connection each time a new database is referenced, and thus

connecting at most once to each database. As Table 2-1 shows, the simple technique of

connecting only once (or a very few times) improved performance by a factor of more

than 200 with very little additional effort.

Of course, this was an excellent opportunity to show that minimizing the number of

round-trips between a program and the database kernel, using arrays and populating

them with incoming data, can also lead to spectacular improvements in performance. By

inserting several rows at once, the throughput could be radically improved—by another

factor of five. The results in Table 2-1 demonstrate that improvements in the process

could reach a modest factor of 1,200.

Why such dramatic improvement?

The reason for the first and biggest improvement is that a database connection is fundamentally a

“heavy,” or high-resource operation.

In the familiar client/server environment (which is still very widely used), the

simple connection routine hides the fact that the client program first has to

establish contact with a listener program on a remote machine; and then,

depending on whether shared servers are being used on this machine, the lis-

tener must either spawn another process or thread and make it run some data-

base kernel program, or hand the request, directly or indirectly, to an existing

server process.

Whatever the number of system operations (process spawning or thread creation and

the start of executions) your database system will need to create a new environment

Test Results

Connect/disconnect for each line in turn 7.4 lines loaded per second

Connect once, all candidate lines individually inserted 1,681 lines loaded per second

Connect once, all candidate lines inserted in arrays of 10 lines 5,914 lines loaded per second

Connect once, all candidate lines inserted in arrays of 100 lines 9,190 lines loaded per second

T A B L E 2 - 1 . Result of connect/disconnect performance tests
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for each session, to keep track of what it does. Your DBMS will need to check the

password provided against the encrypted password of the account for which a new

session is to be created. Your DBMS may also have to execute the code for some

logon trigger. It may have to execute some initialization code for stored procedures

or packages the first time they are called. This does not include the base machine

handshaking protocols between client and server processes. This is the reason tech-

niques that allow the upkeep of permanent connections to the database, such as

connection pooling, are so important to performance.

The reason for the second improvement is that a round-trip between your program (and even a

stored procedure) and the database also has its costs.

Even when you are connected and maintain a connection, context switches

between your program and the DBMS kernel take their toll. Therefore if your

DBMS allows you to communicate through an array interface of some kind, you

should not hesitate to use it. If, as sometimes happens, the array interface is

implicit (the application program interface [API] uses arrays when you use only

scalar values), it is wise to check the default array size that is used and perhaps

tailor it to your particular needs. And of course, any row-by-row logic suffers

the same context-switch mechanisms and is a cardinal sin—as you shall have

several opportunities to see throughout this chapter.

Database connections and round-trips are like Chinese Walls—

the more you have, the longer it takes to receive the correct

message.

Strategy Before Tactics
Strategy defines the tactics, not the other way round. A skillful developer doesn’t think of

a process in terms of little steps, but in terms of the final result. The most efficient way to

obtain that result may not be to proceed in the order specified in the business rules, but

rather to follow a less obvious approach. The following example will show how paying

too much attention to the procedural processes within a business can distract ones’

attention from the most efficient solution.

Some years ago I was given a stored procedure to try to optimize; “try” is the operative

word here. Two attempts at optimization had already been made, once by the original

authors, and secondly by a self-styled Oracle expert. Despite these efforts, this procedure

was still taking 20 minutes to run, which was unacceptable to the users.

The purpose of the procedure was to compute quantities of raw materials to be ordered

by a central factory unit, based on existing stocks and on orders that were coming from a

number of different sources. Basically, the data from several identical tables for each data

source had to be aggregated inside one master table. The procedure consisted of a
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succession of similar statements simplified as follows. First, all data from each distinct

source table were inserted into the single master table. Second, an aggregate/update was

applied to each instance of raw material in that master table. Finally, the spurious data

not relevant to the aggregate result was deleted from the table. These stages were

repeated in sequence inside the procedure for every distinct source table. None of the

SQL statements were particularly complex, and none of them could be described as being

particularly inefficient.

It took the better half of a day to understand the process, which eventually prompted the

question: why was this process being done in multiple steps? A subquery in a from clause

with a union operator would allow the aggregation of all the various sources. A single

select statement could provide in one step the result set that had to be inserted into the

target table. The difference in performance was so impressive—from 20 minutes down to

20 seconds—that it took some time to verify that the final result was indeed identical to

that previously obtained.

Extraordinary skills were not required to achieve the tremendous performance

improvement just described, but merely an ability to think outside the box. Previous

attempts to improve this process had really been hindered by the participants allowing

themselves to get too close to the problem. One needed to take a fresh look, to stand

back, and try to see the bigger picture. The key questions to ask were “What do we have

when we enter this procedure?” and “Which result do we want when we return from

it?” Together with some fresh thinking, the answers to those questions led to a

dramatically improved process.

Stand back from your problem to get the wider picture before

plunging into the details of the solution.

Problem Definition Before Solution
A little knowledge can be a dangerous thing. Frequently, people may have read or heard

about new or unusual techniques—which in some cases can indeed be quite interesting—

and then they will try to fit their problem to one of these new solutions. Ordinary

developers and architects often jump quickly on to such “solutions,” which often turn out

to be at the root of many subsequent problems.

At the top of the list of ready-made solutions, we usually meet denormalization. Blissfully

unaware of the update nightmare that it turns out to be in practice, denormalization

advocates often suggest it at an early stage in the hunt for “performance”—and in fact

often at a point in the development cycle when better design (or learning how to use
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joins) is still an option. A particular type of denormalization, the materialized view, is also

often seen as being something of a panacea. (Materialized views are sometimes referred

to as snapshots, a less impressive term, but one that is closer to the sad reality: copies of

data at one point in time.) This is not to say that sometimes, as a last resort option,

theoretically questionable techniques cannot be used. To quote Franz Kafka: “Logic is

doubtless unshakable, but it cannot withstand a man who wants to go on living.”

But the immense majority of problems can be solved using fairly traditional techniques in

an intelligent manner. Learn first how to get the best of simple, traditional techniques.

It’s only when you can fully master them that you will be able to appreciate their

limitations, and then to truly be able to judge the potential advantage (if any) of new

technical solutions.

All technological solutions are merely means to an end; the great danger for the

inexperienced developer is that the attractions of the latest technology become an end in

themselves. And the danger is all the greater for enthusiastic, curious, and technically

minded individuals!

Foundations before Fashion: learn your craft before playing with

the latest tools.

Stable Database Schema
The use of data definition language (DDL) to create, alter, or drop database objects inside

an application is a very bad practice that in most cases should be banned. There is no

reason to dynamically create, alter, or drop objects, with the possible exception of

partitions—which I describe in Chapter 5—and temporary tables that are known to the

DBMS to be temporary tables. (We shall also meet another major exception to this rule in

Chapter 10.)

The use of DDL is fundamentally based on the core database data dictionary. Since this

dictionary is also central to all database operations, any activity on it introduces global

locks that can have massive performance consequences. The only acceptable DDL

operation is truncate table, which is a very fast way of emptying a table of all rows

(without the protection of rollback recovery, remember!).

Creating, altering, or dropping database objects belong to

application design, not to regular operations.
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Operations Against Actual Data
Many developers like to create temporary work tables into which they extract lists of data

for subsequent processing, before they begin with the serious stuff. This approach is often

questionable and may reflect an inability to think beyond the details of the business

processes. You must remember that temporary tables cannot offer storage options of the

same degree of sophistication as permanent tables (you see some of these options in

Chapter 5). Their indexing, if they are indexed, may be less than optimal. As a result,

queries that use temporary tables may perform less efficiently than well-written

statements against permanent tables, with the additional overhead of having to fill

temporary tables as a prerequisite to any query.

Even when the use of temporary tables is justified, they should never be implemented as

permanent tables masquerading as work tables if the number of rows to be stored in

them is or can be large. One of the problems lies in the automated collection of statistics:

when statistics are not collected in real time, they are typically gathered by the DBMS at

a time of zero or low activity. The nature of work tables is that they will probably be

empty at such slack times, thus giving a wholly erroneous indicator to the optimizer. The

result of this incorrect, and biased, statistical data can be totally inappropriate execution

plans that not surprisingly lead to dismal performance. If you really have to use

temporary storage, use tables that the database can recognize as being temporary.

Temporary work tables mean more byte-pushing to less suitable

storage.

Set Processing in SQL
SQL processes data in complete sets. For most update or delete operations against a

database—and assuming one is not operating against the entire table contents—one has

to define precisely the set of rows in that table that will be affected by the process. This

defines the granularity of the impending process, which may be described as coarse if a

large number of rows will be affected or as fine if only few rows will be involved.

Any attempt to process a large amount of data in small chunks is usually a very bad idea

and can be massively inefficient. This approach can be defended only where very

extensive changes will be made to the database which can, first, consume an enormous

amount of space for storing prior values in case of a transaction rollback, and second,

take a very long time to rollback if any attempted change should fail. Many people would

argue that where very considerable changes are to be made, regular commit statements

should be scattered throughout the data manipulation language (DML) code. However,
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regular commit statements may not help when resuming a file upload that has failed. From

a strictly practical standpoint, it is often much easier, simpler, and faster to resume a

process from the start rather than try to locate where and when the failure occurred and

then to skip over what has already been committed.

Concerning the size of the log required to rollback transactions in case of failure, it can

also be argued that the physical database layout has to accommodate processes, and not

that processes have to make do with a given physical implementation. If the amount of

undo storage that is required is really enormous, perhaps the question should be raised as

to the frequency with which changes are applied. It may be that switching from massive

monthly updates to not-so-massive weekly ones or even smaller daily ones may provide

an effective solution.

Thousands of statements in a cursor loop for endless batch

processing, multiple statements applied to the same data for users

doomed to wait, one swoop statement to outperform them all.

Action-Packed SQL Statements
SQL is not a procedural language. Although procedural logic can be applied to SQL, such

approaches should be used with caution. The confusion between procedural and

declarative processing is most frequently seen when data is required to be extracted from

the database, processed, and then re-inserted back into the database. When a program—

or a function within a program—is provided with some input value, it is all too common

to see that input value used to retrieve one or several other values from the database,

followed by a loop or some conditional logic (usually if . . . then...else) being applied to yet

other statements applied to the database. In most cases, this behavior is the result of

deeply ingrained bad habits or a poor knowledge of SQL, combined with a slavish

obsession with functional specifications. Many relatively complex operations can be

accomplished in a single SQL statement. If the user provides some value, try to get the

result set that is of interest without decomposing the process into multiple statements

fetching intermediate results of only minimal relevance to the final output.

There are two main reasons for shunning procedural logic in SQL:

Any access to the database means crossing quite a number of software layers, some of which may

include network accesses.

Even when no network is involved, there will be interprocess communications;

more accesses mean more function calls, more bandwidth, and more time wait-

ing for the answer. As soon as those calls are repeated a fair number of times,

the impact on process performance can become distinctly perceptible.
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Procedural means that performance and future maintenance burdens fall to your program.

Most database systems incorporate sophisticated algorithms for executing opera-

tions such as joins, and for transforming queries so as to execute them in a more

efficient way. Cost-based optimizers (CBOs) are complex pieces of software that

have sometimes grown from being totally unusable when originally introduced

to becoming mature products, capable of giving excellent results in most cases. A

good CBO can be extremely efficient in choosing the most suitable execution

plan. However, the scope of operation of the CBO is the SQL statement, noth-

ing more. By doing as much as possible in a single statement, you shift the bur-

den of achieving the best possible performance from your program to the DBMS

kernel. You enable your program to take advantage of any improvement to the

DBMS code, and therefore you are indirectly shifting a large part of the future

maintenance of your program to the DBMS vendor.

As ever, there will be exceptions to the general rule that you should shun procedural

logic, where in some cases procedural logic may indeed help make things faster. The

monstrous all-singing-and-dancing SQL statement is not always a model for efficiency.

However, the procedural logic that glues together successive statements that work on the

same data and hit the same rows can often be pushed into one SQL statement. The CBO

can consider a single statement that stays close to the sound rules of the relational model

as a whole and can execute it in the most efficient way.

Leave as much as you possibly can to the database optimizer to

sort out.

Profitable Database Accesses
When you plan a visit to several shops, the first step is to decide what purchases have to

be made at each shop. From this point, a trip is planned that will ensure minimum

repetitive walking backward and forward between different shops. The first shop is then

visited, the purchase completed, and then the next closest shop is visited. This is only

common sense, and yet the principle underlying this obvious approach is not seen in the

practical implementation of many database programs.

When several pieces of information are required from a single table—even if it appears as if

they are “unrelated” (which in fact is unlikely to be the case)—it is highly inefficient to

retrieve this data in several separate visits to the database. For example, do not fetch row

values column by column if multiple columns are required: do the work in one operation.
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Unfortunately, good object-oriented (OO) practice makes a virtue out of defining one

method for returning each attribute. But do not confuse OO methods with relational

database processing. It is a fatal mistake to mix relational and object-oriented concepts

and to consider tables to be classes with columns as the attributes.

Maximize each visit to the database to complete as much work as

can reasonably be achieved for every visit.

Closeness to the DBMS Kernel
The nearer to the DBMS kernel your code can execute, the faster it will run. This is where

the true strength of the database lies. For example, several database management products

allow you to extend them by adding new functions, which can sometimes be written in

comparatively low-level languages such as C. The snag with a low-level language that

manipulates pointers is that if you mishandle a pointer, you can end up corrupting

memory. It would be bad enough if you were the only user affected. But the trouble with a

database server is that, as the name implies, it can serve a large number of users: if you

corrupt the server memory, you can corrupt the data handled by another, totally innocent

program. As a consequence, responsible DBMS kernels run code in a kind of sandbox,

where it can crash without taking everything with it in its downfall. For instance, Oracle

implements a complicated communication mechanism between external functions and

itself. In some ways, this process is similar to that which controls database links, by which

communication between two (or more) database instances on separate servers is managed.

If the overall gain achieved by running tightly tailored C functions rather than stored

PL/SQL procedures is greater than the costs of setting up an external environment and

context-switching, use external functions. But do not use them if you intend to call a

function for every row of a very large table. It is a question of balance, of knowing the full

implications of the alternative strategies available to solve any given problem.

If functions are to be used, try to always use those that are provided by the DBMS. It is

not merely a matter of not reinventing the wheel: built-in functions always execute

much closer to the database kernel than any code a third-party programmer can

construct, and are accordingly far more efficient.

Here is a simple example using Oracle’s SQL that will demonstrate the efficiencies to be

gained by using Oracle functions. Let’s assume we have some text data that has been

manually input and that contains multiple instances of adjacent “space” characters. We

require a function that will replace any sequence of two or more spaces by a single space.
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Ignoring the regular expressions available since Oracle Database 10g, our function might

be written as follows:

create or replace function squeeze1(p_string in varchar2)
return varchar2
is
  v_string varchar2(512) := '';
  c_char   char(1);
  n_len    number := length(p_string);
  i        binary_integer := 1;
  j        binary_integer;
begin
  while (i <= n_len)
  loop
    c_char := substr(p_string, i, 1);
    v_string := v_string || c_char;
    if (c_char = ' ')
    then
      j := i + 1;
      while (substr(p_string || 'X', j, 1) = ' ')
      loop
        j := j + 1;
      end loop;
      i := j;
    else
      i := i + 1;
    end if;
  end loop;
  return v_string;
end;
/

As a side note, 'X' is concatenated to the string in the inner loop to avoid testing j against

the length of the string.

There are alternate ways of writing a function to eliminate multiple spaces, which can

make use of some of the string functions provided by Oracle. Here’s one alternative:

create or replace function squeeze2(p_string in varchar2)
return varchar2
is
  v_string varchar2(512) := p_string;
  i        binary_integer := 1;
begin
  i := instr(v_string, '  ');
  while (i > 0)
  loop
    v_string := substr(v_string, 1, i)
                || ltrim(substr(v_string, i + 1));
    i := instr(v_string, '  ');
  end loop;
  return v_string;
end;
/
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And here’s a third way to do it:

create or replace function squeeze3(p_string in varchar2)
return varchar2
is
  v_string varchar2(512) := p_string;
  len1     number;
  len2     number;
begin
  len1 := length(p_string);
  v_string := replace(p_string, '  ', ' ');
  len2 :=  length(v_string);
  while (len2 < len1)
  loop
    len1 := len2;
    v_string := replace(v_string, '  ', ' ');
    len2 :=  length(v_string);
  end loop;
  return v_string;
end;
/

When these three alternative methods are tested on a simple example, each behaves

exactly as specified, and there is no visible performance difference:

SQL> select squeeze1('azeryt  hgfrdt   r')
  2 from dual
  3 /
azeryt hgfrdt r

Elapsed: 00:00:00.00
SQL> select squeeze2('azeryt  hgfrdt   r')
  2 from dual
  3 /
azeryt hgfrdt r

Elapsed: 00:00:00.01
SQL> select squeeze3('azeryt  hgfrdt   r')
  2 from dual
  3 /
azeryt hgfrdt r

Elapsed: 00:00:00.00

Assume now that this operation of stripping out multiple spaces is to be called many

thousands of times each day. You can use the following code to create and populate a test

table with random data, by which you can examine whether there are differences in

performance among these three space-stripping functions under a more realistic load:

create table squeezable(random_text  varchar2(50))
/

declare
    i         binary_integer;
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    j         binary_integer;
    k         binary_integer;
    v_string  varchar2(50);
begin
  for i in 1 .. 10000
  loop
    j := dbms_random.value(1, 100);
    v_string := dbms_random.string('U', 50);
    while (j < length(v_string))
    loop
      k := dbms_random.value(1, 3);
      v_string := substr(substr(v_string, 1, j) || rpad(' ', k)
                  || substr(v_string, j + 1), 1, 50);
      j := dbms_random.value(1, 100);
    end loop;
    insert into squeezable
    values(v_string);
  end loop;
  commit;
end;
/

This script creates a total of 10,000 rows in the test table (a fairly modest total when it is

considered how many times some SQL statements are executed). The test can now be

run as follows:

select squeeze_func(random_text)
from squeezable;

When I ran this test, headers and screen display were all switched off. Getting rid of

output operations ensured that the results reflected the space-reduction algorithm and

not the time needed to display the results. The statements were executed several times to

ensure that there was no caching effect.

Table 2-2 shows the results on the test machine.

Even though all functions can be called 10,000 times in under one second, squeeze3 is 1.

8 times as fast as squeeze1, and squeeze2 almost 2.2 times as fast. Why? Simply because

PL/SQL is not “as close to the kernel” as is a SQL function. The performance difference

may look like a tiny thing when functions are executed once in a while, but it can make

quite a difference in a batch program—or on a heavily loaded OLTP server.

Function Mechanism Time

squeeze1 PL/SQL loop on chars 0.86 seconds

squeeze2 instr() + ltrim( ) 0.48 seconds

squeeze3 replace( ) called in a loop 0.39 seconds

T A B L E 2 - 2 . Time to trim spaces from 10,000 rows
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Code loves the SQL kernel—the closer they get, the hotter the

code.

Doing Only What Is Required
Developers often use count(*) for no purpose other than to implement an existence test.

This usually happens as a result of a specification such as:

If there are rows meeting a certain condition
Then do something to them

which immediately becomes:

select count(*)
into counter
from table_name
where <certain_condition>

if (counter > 0) then

Of course in 90% of the cases the count(*) is totally unnecessary and superfluous, as in

the above example. If an action is required to operate on a number of rows, just do it. If

no row is affected, so what? No harm is done. Moreover, if the process to be applied to

those hypothetical rows is complex, the very first operation will tell you how many of

them were affected, either in a system variable (@@ROWCOUNT with Transact-SQL,

SQL%ROWCOUNT with PL/SQL, and so forth), in a special field of the SQL Communication

Area (SQLCA) when using embedded SQL, or through special APIs such as mysql_

affected_rows( ) in PHP. The number of processed rows is also sometimes directly

returned by the function, which interacts with the database, such as the JDBC

executeUpdate( ) method. Counting rows very often achieves nothing other than doubling

your total search effort, because it applies a process twice to the same data.

Further, do not forget that if your purpose is to update or insert rows (a frequent case

when rows are counted first to check whether the key already exists), some database

systems provide dedicated statements (for instance, Oracle 9i Database’s MERGE

statement) that operate far more efficiently than you can ever achieve by executing

redundant counts.

There is no need to code explicitly what the database performs

implicitly.
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SQL Statements Mirror Business Logic
Most database systems provide monitoring facilities that allow you to check statements

currently being executed, as well as to monitor how many times they are executed. At the

same time, you should have an idea of how many “business units” are being processed—

activities such as orders or claims to be processed, customers to be billed, or anything else

that makes sense to the business managers. You should review whether there is a

reasonable (not absolutely precise) correlation between the two classes of activities. In

other words, for a given number of customers, is the same number of activities being

initiated against the database? If a query against the customers table is executed 20 times

more than the number of customers being processed at the same time, it is a certainty that

there is a problem somewhere. This situation would suggest that instead of going once to

the table to find required information, repeated (and superfluous) visits are being made to

the same rows in the same table.

Check that your database activity is reasonably consistent with the

business requirements currently being addressed.

Program Logic into Queries
There are several ways to achieve procedural logic in a database application. It’s possible to

put some degree of procedurality inside an SQL statement (even if a statement should say

what, and not how). Even when using a well-integrated host language within which SQL

statements are embedded, it is still preferable to embed as much procedural logic as possible

within an actual SQL statement, rather than in the host language. Of the two alternatives,

embedding logic in the SQL statement will yield higher performance than embedding it in

the application. Procedural languages are characterized by the ability to iterate (loops) and

to perform conditional logic (if...then...else constructs). SQL doesn’t need looping, since by

essence it operates on sets; all it requires is the ability to test logically for some conditions.

Obtaining conditional logic breaks down into two components—IF and ELSE. Achieving IF

is easy enough—the where condition provides the capability. What is difficult is to obtain the

ELSE logic. For example, we may need to retrieve a set of rows, and then apply different

transformations to different subsets. The case expression (Oracle has also long provided a

functionally equivalent operator in decode()*) makes it easy to simulate some logic: it allows

us to change on the fly the values that are returned to the result set by testing on row

values. In pseudocode, the case construct operates like this:†

* decode( ) is a bit more rudimentary than case and may require the use of additional functions such
as sign( ) to obtain the same results.

† There are two variants of the case construct; the example shown is the most sophisticated variant.
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CASE
WHEN condition THEN <return something to the result set>
   WHEN condition THEN <return something else>
...
   WHEN condition THEN <return still something else>
   ELSE <fall back on this value>
END

Comparing numerical values or dates is straightforward. With strings, functions such as

Oracle’s greatest( ) or least( ) or MySQL’s strcmp( ) can be useful. It is also sometimes

possible to add some logic to insert statements, through multiple table inserts and

conditional inserts,* and by using the merge statement. Don’t hesitate to use such

statements if they are available with your DBMS. In other words, a lot of logic can be

pushed into SQL statements; although the benefit may be small when executing only one

of several statements, the gain can be much greater if you can manage to use case or

merge or similar functionality to combine several statements into one.

Wherever possible, try to embed your conditional logic within

your SQL statements rather than in an associated host language.

Multiple Updates at Once
My basic assertion here is that successive updates to a single table are acceptable if they

affect disjoint sets of rows; otherwise they should be combined. For example, here is

some code from an actual application:†

update tbo_invoice_extractor
set pga_status = 0
where pga_status in (1,3)
  and inv_type = 0;
update tbo_invoice_extractor
   set rd_status = 0
 where rd_status in (1,3)
   and inv_type = 0;

Two successive updates are being applied to the same table. Will the same rows be hit

twice? There is no way to tell. The question is, how efficient are the search criteria? Any

attribute with a name like type or status is typically a column with a totally skewed

distribution. It is quite possible that both updates may result in two successive full scans

of the same table. One update may use an index efficiently, and the second update may

result in an unavoidable full table scan. Or, fortuitously, both may be able to make

* Available, for instance, in Oracle since release 9.2.

† Table names have been changed.
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efficient use of an index. In any case, there is almost nothing to lose and everything to

win by trying to combine both updates into a single statement:

update tbo_invoice_extractor
set pga_status = (case pga_status
                    when 1 then 0
                    when 3 then 0
                    else pga_status
                  end),
     rd_status = (case rd_status
                    when 1 then 0
                    when 3 then 0
                    else rd_status
                   end)
where (pga_status in (1,3)
       or rd_status in (1, 3))
  and inv_type = 0;

There is indeed the possibility of some slight overhead due to the update of some

columns with exactly the same contents they already have. But in most cases, one update

is a lot faster than several separate ones. Notice that in regard to the previous section on

logic, how we have used implicit conditional logic, by virtue of the case statement, to

process only those rows that meet the update criteria, irrespective of how many different

update criteria there may be.

Apply updates in one fell swoop if possible; try to minimize

repeated visits to the same table.

Careful Use of User-Written Functions
When a user-written function is embedded in a statement, the function may be called a

large number of times. If the function appears within the select list, it is called for each

returned row. If it appears within the where clause, it is called for each and every row that

has successfully passed the filtering criteria previously evaluated. This may be a

considerable number of times if the other criteria are not very selective.

Consider what happens if that same function executes a query. The query is executed

each time the function is called; in practice, the result is exactly the same as a correlated

subquery, except that the function is an excellent way to prevent the cost-based

optimizer from executing the main query more intelligently! Precisely because the

subquery is hidden within the function, the database optimizer cannot take any account

of this query. Moreover, the stored procedure is not as close to the SQL execution engine

as is a correlated subquery, and it will consequently be even less efficient.
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Now I shall present an example demonstrating the dangers of hiding SQL code away

inside a user-written function. Consider a table flights that describes commercial flights,

with columns for flight number, departure time, arrival time, and the usual three-letter

IATA* codes for airports. The translation of those codes (over 9,000 of them) is stored in a

reference table that contains the name of the city (or of the particular airport when there

are several located in one city), and of course the name of the country, and so on. Quite

obviously any display of flight information should include the name of the destination

city airport rather than the rather austere IATA code.

Here we come to one of the contradictions in modern software engineering. What is

often regarded as “good practice” in programming is modularity, with many insulated

software layers. That principle is fine in the general case, but in the context of database

programming, in which code is a shared activity between the developer and the database

engine itself, the desirability of code modularity is less clear. For example, we can follow

the principle of modularity by building a small function to look up IATA codes and

present the full airport name whenever the function is cited in a query:

create or replace function airport_city(iata_code in char)
return varchar2
is
  city_name  varchar2(50);
begin
  select city
  into city_name
  from iata_airport_codes
  where code = iata_code;
  return(city_name);
end;
/

For readers unfamiliar with Oracle syntax, trunc(sysdate) in the following query refers to

today at 00:00 a.m., and date arithmetic is based on days; the condition on departure

times therefore refers to times between 8:30 a.m. and 4:00 p.m. today. Queries using the

airport_city function might be very simple. For example:

select flight_number,
       to_char(departure_time, 'HH24:MI') DEPARTURE,
       airport_city(arrival) "TO"
from flights
where departure_time between trunc(sysdate) + 17/48
                         and trunc(sysdate) + 16/24
order by departure_time
/

This query executes with satisfactory speed; on a random sample on my machine, 77

rows were returned in 0.18 seconds (the average of several runs), the kind of time that

* International Air Transport Association.
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leaves users happy (statistics indicate that 303 database blocks were accessed, 53 read

from disk—and there is one recursive call per row).

As an alternative to using a look-up function we could simply write a join, which of

course looks slightly more complicated:

select f.flight_number,
       to_char(f.departure_time, 'HH24:MI') DEPARTURE,
       a.city "TO"
from flights f,
     iata_airport_codes a
where a.code = f.arrival
  and departure_time between trunc(sysdate) + 17/48
                         and trunc(sysdate) + 16/24
order by departure_time
/

This query runs in only 0.05 seconds (the same statistics, but there are no recursive calls).

It may seem petty and futile to be more than three times as fast for a query that runs for

less than a fifth of a second. However, it is quite common in large systems (particularly in

the airline world) to have extremely fast queries running several hundred thousand times

in one day. Let’s say that a query such as the one above runs only 50,000 times per day.

Using the query with the lookup function, the query time will amount to a total of 2:30

hours. Without the lookup function, it will be under 42 minutes. This maintains an

improvement ratio of well over 300%, which in a high traffic environment represents

real and tangible savings that may ultimately translate into a financial saving. Very often,

the use of lookup functions makes the performance of batch programs dreadful.

Moreover, they increase the “service time” of queries for no benefit—which means that

fewer concurrent users can use the same box, as you shall see in Chapter 9.

The code of user-written functions is beyond the examination of

the optimizer.

Succinct SQL
The skillful developer will attempt to do as much as possible with as few SQL statements

as possible. By contrast, the ordinary developer tends to closely follow the different

functional stages that have been specified; here is an actual example:

-- Get the start of the accounting period
select closure_date
into dtPerSta
from tperrslt
where fiscal_year=to_char(Param_dtAcc,'YYYY')
  and rslt_period='1' || to_char(Param_dtAcc,'MM');



W A G I N G  W A R 47

-- Get the end of the period out of closure
select closure_date
into dtPerClosure
from tperrslt
where fiscal_year=to_char(Param_dtAcc,'YYYY')
  and rslt_period='9' || to_char(Param_dtAcc,'MM');

This is an example of very poor code, even if in terms of raw speed it is probably acceptable.

Unfortunately, this quality of code is typical of much of the coding that performance

specialists encounter. Two values are being collected from the very same table. Why are

they being collected through two different, successive statements? This particular example

uses Oracle, and a bulk collect of the two values into an array can easily be implemented.

The key to doing that is to add an order by clause on rslt_period, as follows:

select closure_date
bulk collect into dtPerStaArray
from tperrslt
where fiscal_year=to_char(Param_dtAcc,'YYYY')
  and rslt_period in ('1' || to_char(Param_dtAcc,'MM'),
                      '9' || to_char(Param_dtAcc,'MM'))
order by rslt_period;

The two dates are stored respectively into the first and second positions of the array. bulk

collect is specific to the PL/SQL language but the same reasoning applies to any language

allowing an explicit or implicit array fetch.

Note that an array is not even required, and the two values can be retrieved into two

distinct scalar variables using the following little trick:*

select max(decode(substr(rslt_period, 1, 1), -- Check the first character
                   '1', closure_date,
                        -- If it's '1' return the date we want
                       to_date('14/10/1066', 'DD/MM/YYYY'))),
                        -- Otherwise something old
       max(decode(substr(rslt_period, 1, 1),
                   '9', closure_date, -- The date we want
                       to_date('14/10/1066', 'DD/MM/YYYY'))),
into dtPerSta, dtPerClosure
from tperrslt
where fiscal_year=to_char(Param_dtAcc,'YYYY')
  and rslt_period in ('1' || to_char(Param_dtAcc,'MM'),
                      '9' || to_char(Param_dtAcc,'MM'));

In this example, since we expect two rows to be returned, the problem is to retrieve in one

row and two columns what would naturally arrive as two rows of a single column each (as

in the array fetch example). We do that by checking each time the column that allows

* The Oracle function decode( ) works like case. What is compared is the first argument. If it is equal
to the second argument, then the third one is returned; if there is no fifth parameter, then the
fourth one corresponds to else; otherwise, if the first argument is equal to the fourth one, the fifth
one is returned and so on as long as we have pairs of values.
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distinction between the two rows, rslt_period. If the row is the required one, the date of

interest is returned. Otherwise, we return a date (here the arbitrary date is that of the battle

of Hastings), which we know to be in all cases much older (smaller in terms of date

comparison) than the one we want. By taking the maximum each time, we can be ensured

that the correct date is obtained. This is a very practical trick that can be applied equally

well to character or numerical data; we shall study it in more detail in Chapter 11.

SQL is a declarative language, so try to distance your code from

the procedurality of business specifications.

Offensive Coding with SQL
Programmers are often advised to code defensively, checking the validity of all

parameters before proceeding. In reality, when accessing a database, there is a real

advantage in coding offensively, trying to do several things simultaneously.

A good example is a succession of various checks, designed to flag up an exception

whenever the criterion required by any of these checks fails to be met. Let’s assume that

some kind of payment by a credit card has to be processed. There are a number of steps

involved. It may be necessary to check that the customer id and card number that have

been submitted are valid, and that they are correctly associated one with the other. The

card expiration date must also be validated. Finally, the current purchase must not exceed

the credit limit for the card. If everything is correct, the debit operation may proceed.

An unskilled developer may write as follows:

select count(*)
from customers
where customer_id = provided_id

and will check the result.

Then the next stage will be something like this:

select card_num, expiry_date, credit_limit
from accounts
where customer_id = provided_id

These returns will be checked against appropriate error codes.

The financial transaction will then proceed.
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A skillful developer will do something more like the following (assuming that today( ) is

the function that returns the current date):

update accounts
set balance = balance - purchased_amount
where balance >= purchased_amount
  and credit_limit >= purchased_amount
  and expiry_date > today( )
  and customer_id = provided_id
  and card_num = provided_cardnum

Then the number of rows updated will be checked. If the result is 0, the reason can be

determined in a single operation, by executing:

select c.customer_id, a.card_num, a.expiry_date,
       a.credit_limit, a.balance
from customers c
     left outer join accounts a
          on a.customer_id = c.customer_id
          and a.card_num = provided_cardnum
where c.customer_id = provided_id

If the query returns no row, the inference is that the value of customer_id is wrong, if

card_num is null the card number is wrong, and so on. But in most cases this query will

not even be executed.

N O T E
Did you notice the use of count(*) in the first piece of novice code? This is a perfect

illustration of the misuse of count(*) to perform an existence test.

The essential characteristic of “aggressive coding” is to proceed on the basis of reasonable

probabilities. For example, there is little point in checking whether the customer exists—

if they don’t, they won’t be in the database in the first place! Assume nothing will fail,

and if it does, have mechanisms in place that will address the problem at that point and

only that point. Interestingly, this approach is analogous to the “optimistic concurrency

control” method adopted in some database systems. Here update conflicts are assumed

not to occur, and it is only when they do that control strictures are brought into play. The

result is much higher throughput than for systems using pessimistic methods.

Code on a probabilistic basis. Assume the most likely outcome

and fall back on exception traps only when strictly necessary.
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Discerning Use of Exceptions
There is a thin line between courage and rashness; when I recommend coding aggressively,

my model is not the charge of the Light Brigade at Balaclava.* Programming by exception

can also be the consequence of an almost foolhardy bravado, in which our proud

developers determine to “go for it.” They have an overriding confidence that testing and the

ability to handle exceptions will see them through. Ah, the brave die young!

As their name implies, exceptions should be exceptional occurrences. In the particular

case of database programming, all exceptions do not require the same computer

resources—and this is probably the key point to understand if they are to be used

intelligently. There are good exceptions, conditions that are raised before anything has

been done, and bad exceptions, which are raised only when the full extent of the disaster

has actually happened.

For instance, a query against a primary key that finds no row will take minimal

resources—the situation is detected while searching the index. However, if the query

cannot use an index, then you have to carry out a full table scan before being able to tell

positively that no data has been found. For a very large table, a total sequential read can

represent a disaster on a machine near maximum capacity.

Some exceptions are extremely costly, even in the best-case scenario; take the detection

of duplicate keys. How is uniqueness enforced? Almost always by creating a unique

index, and it is when a key is submitted for entry into that index that any constraint

violation of that unique index will be revealed. However, when an index entry is created,

the physical address of the row must be provided, which means that the insertion into

the table takes place prior to the insertion into the index. The constraint violation

requires that the partial insert must be undone, together with the identification of the

exact constraint violated being returned as an error message. All of these activities carry

some significant processing cost. But the greatest sin is trying to fight at the individual

exception level. Here, one is forced to think about individual rows rather than data sets—

the very antithesis of relational database processing. The consequence of repeated

constraint violations can be a serious deterioration in performance.

Let’s look at an Oracle example of the previous points. Assume that following the merger

of two companies, email addresses are standardized on the <Initial><Name> pattern, on

12 characters at most, with all spaces or quotes replaced by an underscore character.

* During the Crimean War of 1854 that saw England, France, and Turkey fight against Russia, a
poorly specified order and personal enmity between some of the commanders led more than 600
British cavalry men to charge down a valley in full line of fire of the Russian guns. Around 120 men
and half the horses were killed, for no result. The bravery of the men, celebrated in a poem by Ten-
nyson and (later) several Hollywood movies, helped turn a stupid military action into a myth.
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Let’s assume that a new employee table is created with the new email addresses obtained

from a 3,000-row employee_old table. We want each employee to have a unique email

address. We must therefore assign, for instance, flopez to Fernando Lopez, and flopez2 to

Francisco Lopez (no relation). In fact, in our test data, a total of 33 potential duplicate

entries exist, which is the reason for the following result:

SQL> insert into employees(emp_num, emp_name,
                           emp_firstname, emp_email)
  2  select emp_num,
  3         emp_name,
  4         emp_firstname,
  5         substr(substr(EMP_FIRSTNAME, 1, 1)
  6               ||translate(EMP_NAME, ' ''', '_ _'), 1, 12)
  7  from employees_old;

insert into employees(emp_num, emp_name, emp_firstname, emp_email)
*
ERROR at line 1:
ORA-00001: unique constraint (EMP_EMAIL_UQ) violated

Elapsed: 00:00:00.85

Thirty-three duplicates out of 3,000 is about 1%, so perhaps it would be possible to

quietly process the conformant 99% and handle the rest through exceptions? After all, it

would seem that a 1% load could be accommodated with some additional exception

processing which should not be too significant. Following is the code for this optimistic

approach:

SQL> declare
  2     v_counter    varchar2(12);
  3     b_ok         boolean;
  4     n_counter    number;
  5     cursor c is  select emp_num,
  6                         emp_name,
  7                         emp_firstname
  8                  from employees_old;
  9  begin
 10    for rec in c
 11    loop
 12      begin
 13        insert into employees(emp_num, emp_name,
 14                              emp_firstname, emp_email)
 15        values (rec.emp_num,
 16                rec.emp_name,
 17                rec.emp_firstname,
 18                substr(substr(rec.emp_firstname, 1, 1)
 19                ||translate(rec.emp_name, ' ''', '_ _'), 1, 12));
 20      exception
 21       when dup_val_on_index then
 22         b_ok := FALSE;
 23         n_counter := 1;
 24         begin
 25           v_counter := ltrim(to_char(n_counter));
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 26           insert into employees(emp_num, emp_name,
 27                                 emp_firstname, emp_email)
 28           values (rec.emp_num,
 29                   rec.emp_name,
 30                   rec.emp_firstname,
 31                   substr(substr(rec.emp_firstname, 1, 1)
 32                     ||translate(rec.emp_name, ' ''', '_ _'), 1,
 33                     12 - length(v_counter)) || v_counter);
 34           b_ok := TRUE;
 35         exception
 36          when dup_val_on_index then
 37            n_counter := n_counter + 1;
 38         end;
 39       end;
 40    end loop;
 41  end;
 40  /

PL/SQL procedure successfully completed.

Elapsed: 00:00:18.41

But what exactly is the cost of this exception handling? If the same exercise is attempted

after removing the “problem” rows, the comparison between the loop with duplicates

and the loop without duplicates shows that the cost of processing exceptions in the loop

is fairly negligible—with duplicates the procedure also takes about 18 seconds to run.

However, when we run the insert...select of our first attempt without duplicates it is

considerably faster than the loop: we discover that the switch to the one-row-at-a-time

logic adds close to 50% to processing time. But in such a case, is it possible to avoid the

row-at-a-time process? Yes, but only by avoiding exceptions. It’s the decision of dealing

with problem rows through exception handling that forced our adoption of sequential

row processing.

Alternatively, there might be value in attempting to identify those rows that contain

email addresses subject to contention, and assigning those addresses some arbitrary

number to achieve uniqueness.

It is easy to determine how many rows are involved in this contention by adding a group

by clause to the SQL statement. However, assigning numbers might be a difficult thing to

do without using the analytical functions available in the major database systems. (Oracle

calls them analytical functions, DB2 knows them as online analytical processing, or OLAP,

functions, SQL Server as ranking functions.) It is worthwhile to explore the solution to

this problem in terms of pure SQL.

Each email address can be assigned a unique number: 1 for the oldest employee whose first

name initial and surname result in the given email address, 2 to the second oldest and so

on. By pushing this result into a subquery, it is possible to check and concatenate nothing

to the first email address in each group, and the sequence numbers (not in the Oracle sense

of the word) to the following ones. The following code shows how our logic can be applied:
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SQL> insert into employees(emp_num, emp_firstname,
  2                        emp_name, emp_email)
  3  select emp_num,
  4         emp_firstname,
  5         emp_name,
  6         decode(rn, 1, emp_email,
  7                       substr(emp_email,
  8                       1, 12 - length(ltrim(to_char(rn))))
  9                        || ltrim(to_char(rn)))
 10  from (select emp_num,
 11               emp_firstname,
 12               emp_name,
 13               substr(substr(emp_firstname, 1, 1)
 14                 ||translate(emp_name, ' ''', '_ _'), 1, 12)
 15                          emp_email,
 16               row_number( )
 17                  over (partition by
 18                        substr(substr(emp_firstname, 1, 1)
 19                         ||translate(emp_name,' ''','_ _'),1,12)
 20                        order by emp_num) rn
 21        from employees_old)
 22  /

3000 rows created.

Elapsed: 00:00:11.68

We avoid the costs of row-at-a-time processing, and this solution requires only 60% of

the original time.

Exception handling forces the adoption of procedural logic.

Always try to anticipate possible exceptions by remaining within

declarative SQL.





Chapter 3. C H A P T E R T H R E E

Tactical Dispositions
Indexing

Chi vuole fare tutte queste cose, conviene che tenga lo stile e modo romano: il

quale fu in prima di fare le guerre, come dicano i Franciosi, corte e grosse.

Whoever wants to do all these things must hold to the Roman conduct and method,
which was first to make the war, as the French say, short and sharp.

—Niccolò Machiavelli (1469–1527)

Discorsi sopra la prima Deca di
Tito Livio, II, 6
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Once the layout of the battlefield is determined, the general should be able to

precisely identify which are the key parts of the enemy possessions that must be captured.

It is exactly the same with information systems. The crucial data to be retrieved will

determine the most efficient access paths into the data system. Here, the fundamental

tactic is indexing. It is a complex area, and one in which competing priorities must be

resolved. In this chapter, we discuss various aspects of indexes and indexing strategy,

which, taken together, provide general guidelines for database access strategies.

The Identification of “Entry Points”
Even before starting to write the very first SQL statement in a program, you should

have an idea about the search criteria that will be of importance to users. Values that

are fed into a program and the size of the data subset defined lay the foundations for

indexing. Indexes are, above all, a technique for achieving the fastest possible access to

specific data. Note that I say “specific data,” as indexes must be carefully deployed.

They are not a panacea: they will not enable fast access to all data. In fact, sometimes

the very opposite is the result, if there is a serious mismatch between the original index

strategy and the new data-retrieval requirements.

Indexes can be considered to be shortcuts to data, but they are not shortcuts in the

same sense as a shortcut in a graphical desktop environment. Indexes come with some

heavy costs, both in terms of disk space and, possibly more importantly, in terms of

processing costs. For example, it is not uncommon to encounter tables in which the

volume of index data is much larger than the volume of the actual data being indexed.

I can say the same of index data as I said of redundant table data in Chapter 1: indexes

are usually mirrored, backed up to other disks, and so on, and the very large volumes

involved cost a lot, not only in terms of storage, but also in terms of downtime when

you have to restore from a backup.

Figure 3-1 shows a real-life case, the main accounting table of a major bank; out of 33

GB total for all indexes and the table, indexes take more than 75%.

Let’s forget about storage for a moment and consider processing. Whenever we insert or

delete a row, all the indexes on the table have to be adjusted to reflect the new data. This

adjustment, or “maintenance,” also applies whenever we update an indexed column; for

example, if we change the value of an attribute in a column that is either itself indexed,

or is part of a compound index in which more than one column is indexed together. In

practice this maintenance activity means a lot of CPU resources are used to scan data

blocks in memory, I/O activity is needed to record the changes to logfiles, together with

possibly more I/O work against the database files. Finally, recursive operations may be

required on the database system to maintain storage allocations.
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Tests have quantified the real cost of maintaining indexes on a table. For example, if the

unit time required to insert data into a non-indexed table is 100 (seconds, minutes, or

hours—it does not really matter for this illustration), each additional index on that table

will add an additional unit time of anything from 100 to 250.

Maintenance costs for one index may exceed those for one table.

Although index implementation varies from DBMS to DBMS, the high cost of index

maintenance is true for all products, as Figures 3-2 and 3-3 show with Oracle and

MySQL.

F I G U R E  3 - 1 . A real-life case: Data versus Index out of a 33 GB total

F I G U R E  3 - 2 . The impact of indexes on insertion with Oracle
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Interestingly, this index maintenance overhead is of the same magnitude as a simple

trigger. I have created a simple trigger to record into a log table the key of each row

inserted together with the name of the user and a timestamp—a typical audit trail. As

one might expect, performance suffers—but in the same order of magnitude as the

addition of two indexes, as shown in Figure 3-4. Recall how often one is urged to avoid

triggers for performance reasons! People are usually more reluctant to use triggers than

they are to use indexes, yet the impact may well be very similar.

Generating more work isn’t the only way for indexes to hinder performance. In an

environment with heavy concurrent accesses, more indexes will mean aggrieved

contention and locking. By nature, an index is usually a more compact structure than a

table—just compare the number of index pages in this book to the number of pages in

the book itself. Remember that updating an indexed table requires two data activities:

updating the data itself and updating the index data. As a result, concurrent updates,

which may affect relatively scattered areas of a huge table, and therefore not suffer from

F I G U R E  3 - 3 . The impact of indexes on insertion with MySQL

F I G U R E  3 - 4 . Comparing the performance impact of indexes and triggers
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any serialization during the changes to the actual data, may easily find themselves with

much less elbow room when updating the indexes. As explained above, these indexes are

by definition much “tighter” data assemblages.

It must be stressed that, whatever the cost in terms of storage and processing power,

indexes are vital components of databases. Their importance is nowhere greater, as I

discuss in Chapter 6, than in transactional databases where most SQL statements must

either return or operate on few rows in large tables. Chapter 10 shows that decision

support systems are also heavily dependent for performance on indexing. However, if the

data tables we are dealing with have been properly normalized (and once again I make

no apologies for referring to the importance of design), those columns deserving some a

priori indexing will be very few in a transactional database. They will of course include

the primary key (the tuple, or row, identifier). This column (or columns in the case of a

compound key) will be automatically indexed simply by virtue of its declaration as the

primary key. Unique columns are similar and will, in all probability, be indexed simply as

a by-product of the implementation of integrity constraints. Consideration should also be

given to indexing columns that, although not unique, approach uniqueness—in other

words, columns with a high variability of values.

As a general rule, experience would suggest that very few indexes are required for most

tables in a general purpose or transactional database, because many tables are searched

with a very limited set of criteria. The rationale may be very different in decision support

systems, as you shall see in Chapter 10. I tend to grow suspicious of tables with many

indexes, especially when these tables are very large and much updated. A high number of

indexes may exceptionally be justified, but one should revisit the original design to

validate the case for heavily indexed tables.

In a transactional database, “too many indexes” is often the mark

of an uncertain design.

Indexes and Content Lists
The book metaphor can be helpful in another respect—as a means of better understanding

the role of the index in the DBMS. It is important to recognize the distinction between the

two mechanisms of the table of contents and the book index. Both provide a means of fast

access into the data, but at two very different levels of granularity. The table of contents

provides a structured overview of the whole book. As such, it is regarded as complementary

to the index device in books, which is often compared to the index of a database.
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When you look for a very precise bit of information in a book, you turn to the index. You

are ready to check 2 or 3 entries, but not 20—flipping pages between the index and the

book itself to check so many entries would be both tedious and inefficient. Like a book

index, a database index will direct you to specific values in one or more records (I

overlook the use of indexes in range searching for the moment).

If you look for substantial information in a book, you either turn to the index, get the

first index entry about the topic you want to study, and then read on, or you turn to the

table of contents and identify the chapter that is most relevant to your topic. The

distinction between the table of contents and the index is crucial: an entry in a table of

contents directs the reader to a block of text, perhaps a chapter, or a section. Similarly,

Chapter 5 shows mechanisms by which you can organize a table and enable data retrieval

in a manner similar to a table of contents’ access.

An index must primarily be regarded as a means of accessing data at an atomic level of

granularity, as defined by the original data design, and not as a means of retrieving large

quantities of undifferentiated data. When an indexing strategy is used to pull in large

quantities of data, the role of indexes is being seriously misunderstood. Indexing is being

used as a desperate measure to recover from an already untenable situation. The

commander is beginning to panic and is sending off sorties in all directions, hoping that

sheer numbers will compensate for the lack of a coherent strategy. It never does, of course.

Be very sure you understand what you are indexing, and why you

are indexing it.

Making Indexes Work
To justify the use of an index, it must provide benefit. Just as in our metaphor of the

book, you may use an index if you simply require very particular information on one

item of data. But if you want to review an entire subject area, you will turn not to the

index, but to the table of contents of the book.

There will always be times when the decision between using an index or a broader

categorization is a difficult one. This is an area where the use of retrieval ratios makes its

persuasive appearance. Such ratios have a hypnotic attraction to many IT and data

practitioners because they are so neat, so easy, so very scientific!

The applicability of an index has long been judged on the percentage of the total data

retrieved by a query that uses a key value as only search criterion, and conventionally

that percentage has often been set at 10% (the percentage of rows that match, on
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average, an index key defines the selectivity of the index; the lower the percentage, the

more selective the index). You will often find this kind of rule in the literature. This ratio,

and others like it, is based on old assumptions regarding such things as the relative

performance of disk access and memory access. Even if we forget that these performance

ratios, which have been around since at least the mid-1980s, were based on what is today

outdated technology (ideal percentages are grossly simplistic views), far more factors

need to be taken into account.

When magical ratios such as our 10% ratio were designed, a 500,000–row table was

considered a very big table; 10% of such a table usually meant a few tens of thousand

rows. When you have tables with hundreds of millions or even billions of rows, the

number of rows returned by using an index with a similar selectivity of about 10% may

easily be greater than the number of rows in those mega-tables of yore against which the

original ratios were estimated.

Consider the part played by modern hard disk systems, equipped as they are with large

cache storage. What the DBMS sees as “physical I/O” may well be memory access;

moreover, since the kernel usually shifts different amounts of data into memory

depending on the type of access (table or index), you may be in for a surprise when

comparing the relative performance of retrievals with and without using an index. But

these are not the only factors to consider. You also need to watch the number of

operations, which can truly be performed in parallel. Take note of whether the rows

associated with an index key value are likely to be physically close. For instance, when

you have an index on the insertion date, barring any quirk such as the special storage

options I describe in Chapter 5, any query on a range of insertion dates will probably find

the corresponding rows grouped together by construction. Any block or page pointed to

by the very first key in the range will probably contain as well the rows pointed to by the

immediately following key values. Therefore, any chunk of table we return through use

of the index will be rich in data of interest to our query, and any data block found

through the index will be of considerable value to the query’s performance.

When the indexed rows associated with an index key are spread all over the table (for

example, the references to an article in a table of orders), it is quite another matter. Even

though the number of relevant rows is small as a proportion of the whole, because they

are scattered all over the disk, the value of the index diminishes. This is illustrated by

Figure 3-5: we can have two unique indexes that are strictly equivalent for fetching a

single row, and yet one will perform significantly better than the other if we look for a

range of values, a frequent occurrence when working with dates.

Factors such as these blur the picture, and make it difficult to give a prescriptive

statement on the use of indexes.
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Rows ordered as index keys lead to a faster range scan.

Indexes with Functions and Conversions
Indexes are usually implemented as tree structures—mostly complex trees—to avoid a

fast decay of indexes on heavily inserted, updated, and deleted tables. To find the physical

location of a row, the address of which is stored in the index, one must compare the key

value to the value stored in the current node of the tree to be able to determine which

sub-tree must be recursively searched. Let’s now suppose that the value that drives our

search doesn’t exactly match an actual column value but can be compared to the result of

a function f( ) applied to the column value. In that case we may be tempted to express a

condition as follows:

  where f(indexed_column) = 'some value'

This kind of condition will typically torpedo the index, making it useless. The problem is

that nothing guarantees that the function f( ) will keep the same order as the index data;

in fact, in most cases it will not. For instance, let’s suppose that our tree-index looks like

Figure 3-6.

F I G U R E  3 - 5 . When two highly selective indexes may perform differently
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(If the names look familiar, it is because they are those of some of Napoleon’s marshals.)

Figure 3-6 is of course an outrageously simplified representation, just for the purpose of

explaining a particular point; the actual indexes do not look exactly like the binary tree

shown in Figure 3-6. If we look for the MASSENA key, with this search condition:

  where name = 'MASSENA'

then the index search is simple enough. We hit LANNES at the root of the tree and compare

MASSENA to LANNES. We find MASSENA to be greater, based on the alphabetical order. We

therefore recursively search the right-hand sub-tree, the root of which is MORTIER. Our

search key is smaller than MORTIER, so we search the left-hand sub-tree and immediately

hit MASSENA. Bingo—success.

Now, let’s say that we have a condition such as:

  where substr(name, 3, 1) = 'R'

The third letter is an uppercase R—which should return BERNADOTTE, MORTIER, and MURAT.

When we make the first visit to the index, we hit LANNES, which doesn’t satisfy the

condition. Not only that, the value that is associated with the current tree node gives us

no indication whatsoever as to which branch we should continue our search into. We are

at a loss : the fact that the third letter isR is of no help in deciding whether we should

search the left sub-tree or the right sub-tree (in fact, we find elements belonging to our

result set in both sub-trees), and we are unable to descend the tree in the usual way, by

selecting a branch thanks to the comparison of the search key to the value stored in the

current node.

Given the index represented in Figure 3-6, selecting names with an R in the third

position is going to require a sequential data scan, but here another question arises. If the

optimizer is sufficiently sophisticated, it may be able to judge whether the most efficient

execution path is a scan of the actual data table or inspecting, in turn, each and every

node in the index on the column in question. In the latter case, the search would lead to

an index-based retrieval, but not as envisaged in the original model design since we

would be using the index in a rather inefficient way.

F I G U R E  3 - 6 . A simplistic representation of how names might be stored in an index
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Recall the discussion on atomicity in Chapter 1. Our performance issue stems from a very

simple fact: if we need to apply a function to a column, it means that the atomicity of

data in the table isn’t suitable for our business requirements. We are not in 1NF!

Atomicity, though, isn’t a simple notion. The ultra-classic example is a search condition

on dates. Oracle, for instance, uses the date type to store not only the date information,

but also the time information, down to the second (this type is actually known as

datetime to most other database systems). However, to test the unwary, the default date

format doesn’t display the time information. If you enter something such as:

  where date_entered = to_date('18-JUN-1815',
                               'DD-MON-YYYY')

then only the rows for which the date (and time!) happens to be exactly the 18th of June

1815 at 00:00 (i.e., at midnight) are returned. Everyone gets caught out by this issue the

very first time that they query datetime data. Quite naturally, the first impulse is to

suppress the time information from date_entered, which the junior practitioners usually

do in the following way:

  where trunc(date_entered) = to_date('18-JUN-1815',
                                       'DD-MON-YYYY')

Despite the joy of seeing the query “work,” many people fail to realize (before the first

performance issues begin to arise) that by writing their query in such a way they have

waved goodbye to using the index on date_entered, assuming there was one. Does all this

mean that you cannot be in 1NF if you are using datetime columns? Fortunately, no. In

Chapter 1, I defined an atomic attribute as an attribute in which a where clause can always

be referred to in full. You can refer in full to a date if you are using a range condition. An

index on date_entered is usable if the preceding condition is written as:

  where date_entered >= to_date('18-JUN-1815',
                                'DD-MON-YYYY')
    and date_entered < to_date('19-JUN-1815',
                               'DD-MON-YYYY')

Finding rows with a given date in this way makes an index on date_entered usable,

because the very first condition allows us to descend the tree and reach a sorted list of all

keys at the bottom of the index hierarchy (we may envision the index as a sorted list of

keys and associated addresses, above which is plugged a tree allowing us to get direct

access to every item in the list). Therefore, once the first condition has taken us to the

bottom layer of the index and to the very first item of interest in the list, all we have to

do is scan the list as long as the second condition is true. This type of access is known as

an index range scan.

The trap of functions preventing the use of indexes is often even worse if the DBMS

engine is able to perform implicit conversions when a column of a given type is equated or



T A C T I C A L  D I S P O S I T I O N S 65

compared to a constant of another type in a where condition—a logical error and yet one

that is allowed by SQL. Once again Oracle provides an excellent example of such

behavior. For instance, dangers arise when a character column is compared to a number.

Instead of immediately generating a run-time error, Oracle implicitly converts the

column to a number to enable the comparison to take place. The conversion may indeed

generate a run-time error if there is an alpha character in that numerical string, but in

many cases when a string of digits without any true numerical meaning is stored as

characters (social security numbers or a date of birth shown as mmddyy, or ddmmyy, both

meaning the same, but having very different numerical values), the conversion and

subsequent comparison will “work”—except that the conversion will have rendered any

index on the character column almost useless.

In the light of the neutralization of indexes by functions, Oracle’s design choice to apply

the conversion to the column rather than to the constant may at first look surprising.

However, that decision does make some sense. First of all, comparing potatoes to carrots

is a logical error. By applying the conversion to the column, the DBMS is more likely

(depending on the execution path) to encounter a value to which the conversion does

not apply, and therefore the DBMS is more likely to generate a runtime error. An error at

this stage of the process will prove a healthy reminder to the developer, doubtless

prompting for a correction in the actual data field and raising agonizing questions about

the quality of the data. Second, assuming that no error is generated, the very last thing

we want is to return incorrect information. If we encounter:

  where account_number = 12345

it is quite possible, and in fact most likely, that the person who wrote the query was

expecting the account 0000012345 to be returned—which will be the case if account_number

(the alpha string) is converted to number, but not if the query 12345 is converted to a

string without any special format specification.

One may think that implicit conversions are a rare occurrence, akin to bugs. There is

much truth in the latter point, but implicit conversions are in fact pretty common,

especially when such things come into play as a parameters table holding in a column

named parameter_value string representations of numbers and dates, as well as filenames

or any other regular character string. Always make conversions explicit by using

conversion functions.

It is sometimes possible to index the result of a function applied to one or more columns.

This facility is available with most products under various names (functional index,

function-based index, index extension, and so on, or, more simply, index on a computed column).

In my view, one should be careful with this type of feature and use it only as a standby

for those cases in which the code cannot be modified.
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I have already mentioned the heavy overhead added to data modifications as a result of

the presence of indexes. Calling a function in addition to the normal index load each time

an index needs to be modified cannot improve the situation: indeed it only adds to the

total index maintenance cost. As the date_entered example given earlier demonstrates,

creating a function-based index may be the lazy solution to something that can easily be

remedied by writing the query in a different way. Furthermore, nothing guarantees that

a function applied to a column retains the same degree of precision that a query against

the raw column will achieve. Suppose that we store five years of sales online and that the

sales_date column is indexed. On the face of it, such an index looks like an efficient one.

But indexing with a function that is the month part of the date is not necessarily very

selective, especially if every year the bulk of sales occurs in the run up to Christmas.

Evaluating whether the resulting functional index will really bring any benefit is not

necessarily easy without very careful study.

From a purely design point of view, one can argue that a function is an implicit

recognition that the column in question may be storing two or more discrete items of

data. Use of a functional index is, in most cases, a way to extract some part of the data

from a column. As pointed out earlier, we are violating the famous first normal form,

which requires data to be “atomic.” Not using strictly “atomic” data in the select list is a

forgivable sin. Repeatedly using “subatomic” search criteria is a deadly one.

There are some cases, though, when a function-based index may be justified. Case-

insensitive searches are probably the best example; indexing a column converted to

upper- or lowercase will allow us to perform case-insensitive searches on that column

efficiently. That said, forcing the case during inserts and updates is not a bad solution

either. In any event, if data is stored in lowercase, then required in uppercase, one has to

question the thoroughness with which the original data design was carried out.

Another tricky conundrum is the matter of duration in the absence of a dedicated

interval data type. Given three time fields, a start date, a completion date, and a duration,

one value can be determined from any existing two—but only by either building a

functional index or by storing redundant data. Whichever solution is followed,

redundancy will be the inevitable consequence: in the final analysis, you must weigh the

benefits and disadvantages of the issues surrounding function-based indexes so that you

can make informed decisions about using them.

Use of functional indexes is often implicit recognition that your

data analysis has not even resolved basic data item atomicity.
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Indexes and Foreign Keys
It is quite customary to systematically index the foreign keys of a table; and it is widely

acknowledged to be common wisdom to do so. In fact, some design tools automatically

generate indexes on these keys, and so do some DBMS. However, I urge caution in this

respect. Given the overall cost of indexes, unnecessarily indexing foreign keys may prove

a mistake, especially for a table that has many foreign keys.

N O T E
Of course, if your DBMS automatically indexes foreign keys, then you have no

choice in the matter. You will have to resign yourself to potentially incurring

unnecessary index overhead.

The rule of indexing the foreign keys comes from what happens when (for example) a

foreign key in table A references the primary key in table B, and then both tables are

concurrently modified. The simple model in Figure 3-7 illustrates this point.

Imagine that table A is very large. If user U1 wants to remove a row from table B, since

the primary key for B is referenced by a foreign key in A, the DBMS must check that

removal of the row will not lead to inconsistencies in the intertable dependencies, and

must therefore see whether there is any child row in A referencing the row about to be

deleted from B. If there does happen to be a row in A that references our row in B, then

the deletion must fail, because otherwise we would end up with an orphaned row and

inconsistent data. If the foreign key in A is indexed, it can be checked very quickly. If it is

not indexed, it will take a significant period of time since the session of user U1 will have

to scan all of table A.

Another problem is that we are not supposed to be alone on this database, and lots of

things can happen while we scan A. For instance, just after user U1 has started the hunt

in table A for an hypothetical child row, somebody else, say user U2, may want to insert a

new row into table A which references that very same row we want to delete from table B.

F I G U R E  3 - 7 . The simple, Master-Detail example
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This situation is described in Figure 3-8, with user U1 first accessing table B to check the

identifier of the row it wants to delete (1), and then searching for a child in table A (2).

Meanwhile, U2 will have to check that the parent row exists in table B. But we have a

primary key index on B, which means that unlike user U1, who is condemned to a slow

sequential scan of the foreign key values of table A, user U2 will get the answer

immediately from table B. If U2 quietly inserts the new row in table A (3), U2 may commit

the change at such a point that user U1 finishes checking and wrongly concludes, having

found no row, that the path is clear for the delete.

Locking is required to prevent such a case, which would otherwise irremediably lead to

inconsistent data. Data integrity is, as it should be, one of the prime concerns of an

enterprise-grade DBMS. It will take no chance. Whenever we want to delete a row from

table B, we must prevent insertion into any table that references B of a row referencing

that particular one while we look for child rows. We have two ways to prevent insertions

into referencing tables (there may be several ones) such as table A:

• We lock all referencing tables (the heavy-handed approach).

• We apply a lock to table B and make another process, such as U2, wait for this lock to

be released before inserting a new row into a referencing table (the approach taken by

most DBMS). The lock will apply to the table, a page, or the row, depending on the

granularity allowed by the DBMS.

In any case, if foreign keys are not indexed, checking for child rows will be slow, and we

will hold locks for a very long time, potentially blocking many changes. In the worst case

of the heavy-handed approach we can even encounter deadlocks, with two processes

holding locks and stubbornly refusing to release them as long as the other process doesn’t

release its lock first. In such a case, the DBMS usually solves the dispute by killing one of

the processes (hasta la vista, baby...) to let the other one proceed.

F I G U R E  3 - 8 . Fight for the primary key
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The case of concurrent updates therefore truly requires indexing foreign keys to prevent

sessions from locking objects much longer than necessary. Hence the oft heard rule that

“foreign keys should always be indexed.” The benefit of indexing the foreign key is that

the elapsed time for each process can be drastically reduced, and in turn locking is

reduced to the minimum level required for ensuring data integrity.

What people often forget is that “always index foreign keys” is a rule associated with a

special case. Interestingly, that special case often arises from design quirks, such as the

maintenance of summary or aggregate denormalized columns in the master table of a

master/detail relationship. There may be excellent reasons for updating concurrently two

tables linked by referential integrity constraints. But there are also many cases with

transactional databases where the referenced table is a “true” reference table (e.g., a

dictionary, or “look-up” table that is very rarely updated, or it’s updated in the middle of

the night when there is no other activity). In such a case, the only justification for the

creation of an index on the foreign key columns should be whether such an index would

be of any benefit from a strictly performance standpoint. We mustn’t forget the heavy

penalty performance imposed by index maintenance. There are many cases when an

index on a foreign key is not required.

There must be a reason behind indexing; this is as true of foreign

keys as of other columns.

Multiple Indexing of the Same Columns
The systematic indexing of foreign keys can often lead to situations in which columns

belong to several indexes. Let’s consider once again a classic example. This consists of an

ordering system in which some order_details table contains, for each order (identified by

an order_id, a foreign key referencing the orders table) articles (identified by article_id, a

foreign key referencing the articles table) that have been purchased, and in what

quantity. What we have here is an associative table (order_details) resolving a many-to-

many relationship between the tables orders and articles. Figure 3-9 illustrates the

relationships among the three tables.

F I G U R E  3 - 9 . The Orders/Articles example
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Typically, the primary key of order_details will be a composite key, made of the two

foreign keys. Order entry is the very case when the referenced table and the referencing

table are likely to be concurrently modified, and therefore we must index the order_id

foreign key. However, the column that is defined here as a foreign key is already indexed

as part of the composite primary key, and (this is the important point) as the very first

column in the primary key. Since this column is the first column of the composite

primary key, it can for all intents and purposes provide all the benefits as if it were an

indexed foreign key. A composite index is perfectly usable even if not all columns in the

key are specified, as long as those at the beginning of the key are.

When descending an index tree such as the one described earlier in this chapter, it is

quite sufficient to be able to compare the leading characters of the key to the index nodes

to determine which branch of the index the search should continue down. There is

therefore no reason to index order_id alone, since the DBMS will be able to use the index

on (order_id, article_id) to check for child rows when somebody is working on the orders

table. Locks will therefore not be required for both tables. Note, once again, that this

reasoning applies only because order_id happens to be the very first column in the

composite primary key. Had the primary key been defined as (article_id, order_id), then

we would have had to create an index on order_id alone, while not building an index on

the other foreign key, article_id.

Indexing every foreign key may result in redundant indexing.

System-Generated Keys
System-generated keys (whether through a special number column defined as self-

incrementing or through the use of system-generated counters such as Oracle’s

sequences) require special care. Some inexperienced designers just love system-generated

keys even when they have perfectly valid natural identifiers at their disposal. System-

generated sequential numbers are certainly a far better solution than looking for the

greatest current value and incrementing it by one (a certain recipe for generating

duplicates in an environment with some degree of concurrency), or storing a “next

value” that has to be locked and updated into a dedicated table (a mechanism that

serializes and dramatically slows down accesses). Nevertheless, when many concurrent

insertions are running against the same table in which these automatic keys are being

generated, some very serious contention can occur at the creation point of the primary

key index level. The purpose of the primary key index is primarily to ensure the

uniqueness of the primary key columns.
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The problem is usually that if there is one unique generator (as opposed to as many

generators as there are concurrent processes, hitting totally disjoint ranges of values) we

are going to rapidly generate numbers that are in close proximity to each other. As a

result, when trying to insert key values into the primary key index, all processes are

going to converge on the same index page, and the DBMS engine will have to serialize—

through locks, latches, semaphores, or whichever locking mechanism is at its disposal—

the various processes so that each one does not try to overwrite the bytes that another

one is writing to. This is a typical example of contention that leads to some severe

underuse of the hardware. Processes that could and should work in parallel have to wait

in order, one behind the other. This bottleneck can be particularly severe on multi-

processor machines, the very environment in which parallelism should be operating.

Some database systems provide some means to reduce the impact of system-generated

keys; for instance, Oracle allows you to define reverse indexes, indexes in which the

sequence of bits making up the key is inversed before being stored into the index. To

indicate a very approximate idea of what such an index looks like, let’s simply take the

same names of marshals as we did in Figure 3-5 and reverse the letters instead of bits. We

get something looking like Figure 3-10.

It is easy to understand that even when we insert names that are alphabetically very close

to one another, they are spread all over the various branches of the index tree: look for

instance at the respective positions of MASSENA (a.k.a. ANESSAM), MORTIER (REITROM) and MURAT

(TARUM). Therefore, we hit different places in the index and have much less contention

than with a normally organized index. Close grouping of the index values would lead to a

very high write activity that is very localized within the index. Before searching, Oracle

simply applies the same reversing to the value we want to search against, and then

proceeds as usual to traverse the index tree.

Of course, every silver lining has its cloud: when our search condition attempts to use a

leading string search like this:

   where name like 'M%'

which is a typical range search, the reverse index is no help at all. By contrast, a regular

index can be used to quickly identify the range of values beginning with a certain string

that we are interested in. The inability of reverse indexes to be used for range searches is,

F I G U R E  3 - 1 0 . A simplified representation of reverse indexing
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of course, a very minor inconvenience with system-generated keys, which are often

unknown to end users and therefore unlikely to be the object of range scans. But it

becomes a major hindrance when rows contain timestamps. Timestamped rows might

arrive in close succession, making the timestamp column a potentially good candidate for

reverse indexing, but then a timestamp is also the type of column against which we are

quite likely to be looking for ranges of values.

The hash index used in some database systems represents a different way to avoid

bottlenecking index updates all on one index page. With hash indexing, the actual key is

transformed into a meaningless, randomly distributed numeric key generated by the

system, which is based on the column value being indexed. Although it is not impossible

for two values to be transformed into similar, meaningless keys, two originally “close”

keys will normally hash into two totally disconnected values. Once again, hash indexes

represent a trick to avoid having a hot spot inside an index tree, but that benefit too,

comes with certain restrictions. The use of a hash index is on an “equality or nothing”

basis; in other words, range searching, or indeed any query against a part of the index

key, is out of the question. Nevertheless, direct access based on one particular value of

the key can be very fast.

Even when there are solutions to alleviate contention risks, you should not create too

many system-generated identifiers. I have sometimes found system-generated keys in

each and every table (for instance a special, single detail_id for the type of order_details

table mentioned above, instead of the more natural combination of order_id and some

sequential number within the order). This blunderbuss approach is something that, by

any standard, simply cannot be justified—especially for tables that are referenced by no

other table.

System-generated keys can provide benefit in the right

circumstances, but beware of their indiscriminate use!

Variability of Index Accesses
It is very common to believe that if indexes are used in a query, then everything is fine.

This is a gross misconception: there are many different characteristics of index access.

Obviously, the most efficient type of index access is through a unique index, in which, at

most, one row matches a given search value. Typically, such a search operation might be

based on the primary key. However, as you saw in Chapter 2, accessing a table through

its primary key may be very bad—if you are looping on all key values. Such an approach

would be like using a teaspoon to move a big heap of sand instead of the big shovel of a

full scan. So, at the tactical level, the most efficient index access is through a unique

index, but the wider picture may reveal that this could be a costly mistake.
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When several rows may match a single key value in a non-unique index (or when we

search on a range of distinct values against a unique index), then we enter the world of

range scanning. In this situation, we may retrieve a series of row addresses from the

index, all containing the key values we are looking for. It may be a near-unique index, in

which all key values match one row with the exception of a handful of values that match

very few rows. Or it may be the other extreme of the non-unique indexed column for

which all rows contain the same value. Indexed columns in which all rows contain the

same value are in fact something you occasionally find with off-the-shelf software

packages in which most columns are indexed, just in case. Never forget that finding the

row in the index is all the work that is required only if:

1. You need no other information than data that is part of the index key.

2. The index is not compressed; otherwise, finding a match in the index is nothing more

than a presumption that must be corroborated by the actual value found in the table.

In all other cases, we are only halfway to meeting the query requirement, and we must

now access each data block (or page) by the address that is provided by the search of the

index. Once again, all other things being equal, we may have widely different performance,

depending on whether we shall find the rows matching our search value lumped together

in the same area of the disk, or scattered all over the place.

The preceding description applies to the “regular” index accesses. However, a clever query

optimizer may decide to use indexes in another way. It could operate on several indexes,

combining them and doing some kind of pre-filtering before fetching the rows. It may

decide to execute a full scan of a particular index, a strategy based on the judgment that

this is the most efficient of all available methods for this particular query (we won’t go into

the subtleties of what “most efficient” means here). The query optimizer may decide to

systematically collect row addresses from an index, without taking the trouble to descend

the index tree.

So, any reference to an index in an execution plan is far from meaning that “all’s well that

runs well.” Some index accesses may indeed be very fast—and some desperately slow. Even

a fast access in a query is no guarantee that by combining the query with another one, we

could have got the result even faster. In addition, if the optimizer is indeed smart enough to

ignore a useless index in queries, that same useless index will nevertheless require to be

maintained whenever the table contents are modified. This index maintenance is

something that may be especially significant in the massive uploads or purges routinely

performed by a batch program. Useful or useless, an index has to be maintained.

Indexing is not a panacea: effective deployment rests on your

complete understanding of the data you are dealing with and

making the appropriate judgments.





Chapter 4. C H A P T E R F O U R

Maneuvering
Thinking SQL Statements

There is only one principle of war, and that’s this. Hit the other fellow, as quickly as
you can, as hard as you can, where it hurts him most, when he ain’t lookin’.

—Field Marshal Sir William Slim (1891–1970)

quoting an anonymous Sergeant-Major
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In this chapter, we are going to take a close look at the SQL query and examine how its

construct can vary according to the tactical demands of particular situations. This will

involve examining complex queries and reviewing how they can be decomposed into a

succession of smaller components, all interdependent, and all contributing to a final,

complete query.

The Nature of SQL
Before we begin examining query constructs in detail, we need to review some of the

general characteristics of SQL itself: how it relates to the database engine and the

associated optimizer, and what may limit the efficiency of the optimizer.

SQL and Databases

Relational databases owe their existence to pioneering work by E.F. Codd on the

relational theory. From the outset, Codd’s work provided a very strong mathematical basis

to what had so far been a mostly empirical discipline. To make an analogy, for thousands

of years mankind has built bridges to span rivers, but frequently these structures were

grossly overengineered simply because the master builders of the time didn’t fully

understand the true relationships between the materials they used to build their bridges,

and the consequent strengths of these bridges. Once the science of civil engineering

developed a solid theoretical knowledge of material strengths, bridges of a far greater

sophistication and safety began to emerge, demonstrating the full exploitation of the

various construction materials being used. Indeed, the extraordinary dimensions of some

modern bridges reflect the similarly huge increase in the data volumes that modern DBMS

software is able to address. Relational theory has done for databases what civil engineering

has done for bridges.

It is very common to find confusion between the SQL language, databases, and the

relational model. The function of a database is primarily to store data according to a model

of the part of the real world from which that data has been obtained. Accordingly, a

database must provide a solid infrastructure that will allow multiple users to make use of

that same data, without, at any time, prejudicing the integrity of that data when they

change it. This will require the database to handle contention between users and, in the

extreme case, to keep the data consistent if the machine were to fail in mid-transaction.

The database must also perform many other functions outside the scope of this book.

As its name says, Structured Query Language, or SQL for short, is nothing other than a

language, though admittedly with a very tight coupling to databases. Equating the SQL

language with relational databases—or even worse with the relational theory—is as

misguided as assuming that familiarity with a spreadsheet program or a word processor is
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indicative of having mastered “information technology.” In fact, some products that are

not databases support SQL,* and before becoming a standard SQL had to compete against

other languages such as RDO or QUEL, which were considered by many theorists to be

superior to SQL.

Whenever you have to solve what I shall generically call an SQL problem, you must realize

that there are two components in action: the SQL expression of the query and the

database optimizer. These two components interact within three distinct zones, as shown

in Figure 4-1. At the center lies the relational theory, where mathematicians freely roam.

If we simplify excessively, we can say that (amongst other useful things) the theory

informs us that we can retrieve data that satisfies some criteria by using a handful of

relational operators, and that these operators will allow us to answer basically any

question. Most importantly, because the relational theory is so firmly grounded in

mathematics, we can be totally confident that relational expressions can be written in

different ways and yet return the same result. In exactly the same way, arithmetic

teaches us that 246/369 is exactly the same as 2/3.

However, despite the crucial theoretical importance of relational theory, there are aspects

of great practical relevance that the relational theory has nothing to say about. These fall

into an area I call “reporting requirements.” The most obvious example in this area is the

ordering of result sets. Relational theory is concerned only with the retrieval of a correct

data set, as defined by a query. As we are practitioners and not theorists, for us the

relational phase consists in correctly identifying the rows that will belong to our final

result set. The matter of how some attributes (columns) of one row relate to similar

attributes in another row doesn’t belong to this phase, and yet this is what ordering is all

about. Further, relational theory has nothing to say about the numerous statistical

functions (such as percentiles and the like) that often appear in various dialects of the

* A good example would be sqlite, a remarkable storage engine that allows the management of data
inside a file using SQL, but that is not a database server.

F I G U R E  4 - 1 . DBMS Protagonists
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SQL language. The relational theory operates on set, and knows nothing of the

imposition of ordering on these sets. Despite the fact that there are many mathematical

theories built around ordering, none have any relevance to the relational theory.

At this stage I must point out that what distinguishes relational operations from what I

have called reporting requirements is that relational operations apply to mathematical sets

of theoretically infinite extent. Irrespective of whether we are operating on tables of 10,

one million, or one billion rows, we can apply any filtering criterion in an identical

fashion. Once again, we are concerned only with identifying and returning the data that

matches our criteria. Here, we are in the environment where the relational theory is fully

applicable. Now, when we want to order rows (or perform an operation such as group by

that most people would consider a relational operation) we are no longer working on a

potentially infinite data set, but on a necessarily finite set. The consequent data set thus

ceases to be a relation in the mathematical sense of the word. We are outside the bounds

of the relational theory. Of course, this doesn’t mean that we cannot still do clever and

useful things against this data using SQL.

So we may, as a first approximation, represent an SQL query as a double-layered

operation as shown in Figure 4-2; first, a relational core identifying the set of data we are

going to operate on, second, a non-relational layer which works on this now finite set to

give the polishing touch and produce the final result that the user expects.

Despite Figure 4-2’s appealingly simple representation of the place of SQL within the

data environment, an SQL query will in most cases be considerably more complex than

Figure 4-2 may suggest; Figure 4-2 only represents the overall pattern. The relational

filter may be a generic name for several independent filters combined, for instance,

through a union construct or by the means of subqueries, and the complexity of some

SQL constructs can be considerable. I shall come back to the topic of SQL code a little

later. But first I must talk about the relationship between the physical implementation of

data and the database optimizer.

F I G U R E  4 - 2 . The various layers of an SQL query
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Do not confuse the true relational functionality of the SQL query

execution with the additional presentation layer.

SQL and the Optimizer

An SQL engine that receives a query to process will have to use the optimizer to find out

how to execute that query in the most efficient way possible. Here the relational theory

strikes again, because that theory informs the optimizer of transformations that are valid

equivalents of the semantically correct query initially provided by the developer—even if

that original query was clumsily written.

Optimization is when the physical implementation of data comes into play. Depending on

the existence of indexes and their usability in relation to a query, some transformations

may result in much faster execution than other semantically equivalent transformations.

Various storage models that I introduce in Chapter 5 may also make one particular way

to execute a query irresistibly attractive. The optimizer examines the disposition of the

indexes that are available, the physical layout of data, how much memory is available,

and how many processors are available to be applied to the task of executing the query.

The optimizer will also take into account information concerning the volume of the

various tables and indexes that may be involved, directly or indirectly, through views

used by the query. By weighing the alternatives that theory says are valid equivalents

against the possibilities allowed by the implementation of the database, the optimizer will

generate what is, hopefully, the best execution plan for the query.

However, the key point to remember is that, although the optimizer may not always be

totally weaponless in the non-relational layer of an SQL query, it is mainly in the

relational core that it will be able to deploy its full power—precisely because of the

mathematical underpinnings of the relational theory. The transformation from one SQL

query to another raises an important point: it reminds us that SQL is supposed to be a

declarative language. In other words, one should use SQL to express what is required,

rather than how that requirement is to be met. Going from what to how, should, in

theory, be the work of the optimizer.

You saw in Chapters 1 and 2 that SQL queries are only some of the variables in the

equation; but even at the tactical query level, a poorly written query may prevent the

optimizer from working efficiently. Remember, the mathematical basis of the relational

theory provides an unassailable logic to the proceedings. Therefore, part of the art of SQL

is to minimize the thickness, so to speak, of the non-relational layer—outside this layer,

there is not much that the optimizer can safely do that guarantees returning exactly the

same rows as the original query.
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Another part of the art of SQL is that when performing non-relational operations—

loosely defined as operations for which the whole (at least at this stage) resulting dataset

is known—we must be extremely careful to operate on only the data that is strictly

required to answer the original question, and nothing more. Somehow, a finite data set,

as opposed to the current row, has to be stored somewhere, and storing anything in

temporary storage (memory or disk) requires significant overhead due to byte-pushing.

This overhead may dramatically increase as the result set data volumes themselves

increase, particularly if main memory becomes unavailable. A shortage of main memory

would initiate the high-resource activity of swapping to disk, with all its attendant

overheads. Moreover, always remember that indexes refer to disk addresses, not

temporary storage—as soon as the data is in temporary storage, we must wave farewell to

most fast access methods (with the possible exception of hashing).

Some SQL dialects mislead users into believing that they are still in the relational world

when they have long since left it. Take as a simple example the query “Who are the five

top earners among employees who are not executives?”—a reasonable real-life question,

although one that includes a distinctly non-relational twist. Identifying employees who

are not executives is the relational part of the query, from which we obtain a finite set of

employees that we can order. Several SQL dialects allow one to limit the number of rows

returned by adding a special clause to the select statement. It is then fairly obvious that

both the ordering and the limitation criteria are outside the relational layer. However,

other dialects, the Oracle version figuring prominently here, use other mechanisms. What

Oracle has is a dummy column named rownum that applies a sequential numbering to the

rows in the order in which they are returned—which means the numbering is applied

during the relational phase. If we write something such as:

select empname, salary
from employees
where status != 'EXECUTIVE'
  and rownum <= 5
order by salary desc

we get an incorrect result, at least in the sense that we are not getting the top five most

highly paid nonexecutives, as the query might suggest at first glance. Instead, we get back

the first five nonexecutives found—they could be the five lowest paid!—ordered in

descending order of salary. (This query illustrates a well-known trap among Oracle

practitioners, who have all been burnt at least once.)

Let’s just be very clear about what is happening with the preceding query. The relational

component of the query simply retrieves the first five rows (attributes empname and salary

only) from the table employees where the employee is not an executive in a totally

unpredictable order. Remember that relational theory tells us that a relation (and

therefore the table that represents it) is not defined in any way by the order in which
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tuples (and therefore the rows in that table) are either stored or retrieved. As a

consequence the nonexecutive employee with the highest salary may or may not be

included in this result set—and there is no way we will ever know whether this result

set actually meets our search criteria correctly.

What we really want is to get all nonexecutives, order them by decreasing salary, and

only then get the top five in the set. We can achieve this objective as follows:

select *
from (select empname, salary
      from employees
      where status != 'EXECUTIVE'
      order by salary desc)
where rownum <= 5

So, how is our query layered in this case? Many would be tempted to say that by applying

a filtering condition to an ordered result, we end up with something looking more or less

like Figure 4-3.

The truth, however, is more like Figure 4-4.

Using constructs that look relational doesn’t take us back to the relational world, because

to be in the relational world we must apply relational operators to relations. Our subquery

uses an order by to sort the results. Once we’ve imposed ordering, we no longer have,

strictly speaking, a relation (a relation is a set, and a set has no order). We end up with an

outer select that looks relational on the surface but is applied to the output of an inline

view in which a significant component (the order by clause) is not a relational process.

F I G U R E  4 - 3 . A misleading view of what the "top five nonexecutives" query looks like
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My example of the top five nonexecutives is, of course, a simple example, but do

understand that once we have left the relational sphere in the execution of a query, we

can no longer return to it. The best we can possibly do is to use the output of such a

query to feed into the relational phase of an outer query. For instance, “in which

departments are our five top nonexecutive earners working?” What is extremely

important to understand, though, is that at this stage no matter how clever the optimizer

is, it will be absolutely unable to combine the queries, and will more or less have to

execute them in a given sequence. Further, any resulting set from an intermediate query

is likely to be held in temporary storage, whether in memory or on disk, where the

choice of access methods may be reduced. Once outside the pure relational layer, the way

we write a query is of paramount importance for performance because it will inevitably

impose onto the query some execution path from which the SQL engine will not be able

to stray.

To summarize, we can say that the safest approach we can adopt is to try to do as much

of the job as possible inside the relational layer, where the optimizer can operate to

maximum efficiency. When the situation is such that a given SQL task is no longer a

purely relational problem, then we must be particularly careful about the construct, or

the writing of the query itself. Understanding that SQL has, like Dr. Jekyll, a double

nature is the key to mastering the language. If you see SQL as a single-edged sword, then

you are condemned to remain in the world of tips and tricks for dummies, smarties, and

mere mortals, possibly useful for impressing the opposite sex—although in my experience

it doesn’t work much—but an approach that will never provide you with a deep

understanding of how to cope with a difficult SQL problem.

F I G U R E  4 - 4 . What the "top five nonexecutives" query is really like
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The optimizer rewards those who do the most work in the

relational layer.

Limits of the Optimizer

Any decent SQL engine relies heavily on its query optimizer, which very often performs

an excellent job. However, there are many aspects of the way optimizers work that you

must keep in mind:

Optimizers rely on the information they find in the database.

This information is of two types: general statistical data (which must be verified

as being fitting), and the essential declarative information held in the data defi-

nitions. Where important semantic information relating to the data relations is

embedded in triggers or, worse, in application program code, that vital informa-

tion will be totally unavailable to the optimizer. Such circumstances will inevita-

bly impact the potential performance of the optimizer.

Optimizers can perform to their best advantage where they can apply transformations that are

mathematically proven to be equivalent.

When they are required to assess components of a query that are non-relational

in character, they are on less certain grounds and the execution path will stick

more closely to what was voluntarily or involuntarily suggested by the original

writing.

The work of the optimizer contributes to the overall response time.

Comparing a large number of alternative execution paths may take time. The

end user sees only the total elapsed time and is unaware of how much was spent

on optimization and how much on execution. A clever optimizer might allow

itself more time to try to improve a query that it expects to take a lot of time to

run, but there is always a self-imposed limit on its work. The trouble is that

when you have a 20-way join (which is by no means unusual in some applica-

tions), the number of combinations the optimizer could examine can become

unmanageably large even when adequate indexing make some links obvious.

Compound this with the inclusion of a combination of complex views and sub-

queries, and at some point, the optimizer will have to give in. It is quite possible

to find a situation in which a query running in isolation of any others may be

very well optimized, while the same query deeply nested inside a much more

complex outer query may take a completely wrong path.

The optimizer improves individual queries.

It is unable to relate independent queries one to another, however. Whatever its

efforts, if the bulk of your program is fetching data inside procedural code just to

feed into subsequent queries, the optimizer will not be able to do anything for you.
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Feed the optimizer with little chunks, and it will optimize little

pieces. Feed it with a big chunk, and it will optimize a task.

Five Factors Governing the Art of SQL
You have seen in the first part of this chapter exactly how SQL includes both relational

and non-relational characteristics. You have also seen how this affects the efficient (and

not-so-efficient) workings of the database optimizer. From this point forward, and

bearing in mind the lessons of the first part of this chapter, we can concentrate on the

key factors that must be considered when using SQL. In my view, there are five main

factors:

• The total quantity of data from which a result set has to be obtained

• The criteria required to define the result set

• The size of the result set

• The number of tables to be processed in order to obtain the desired result set

• The number of other users also modifying this same data

Total Quantity of Data

The volume of data we need to read is probably the most important factor to take into

account; an execution plan that is perfectly suitable for a fourteen-row emp table and a

four-row dept table may be entirely inappropriate for dealing with a 15 million–row

financial_flows table against which we have to join a 5 million–row products table. Note

that even a 15 million–row table will not be considered particularly large by the standards

of many companies. As a matter of consequence, it is hard to pronounce on the efficiency

of a query before having run it against the target volume of data.

Criteria Defining the Result Set

When we write an SQL statement, in most cases it will involve filtering conditions located

in where clauses, and we may have several where clauses—a major one as well as minor

ones—in subqueries or views (regular views or in-line views). A filtering condition may

be efficient or inefficient. However, the significance of efficient or inefficient is strongly

affected by other factors, such as physical implementation (as discussed in Chapter 5) and

once again, by how much data we have to wade through.

We need to approach the subject of defining the result in several parts, by considering

filtering, the central SQL statements, and the impact of large data volumes on our

queries. But this is a particularly complex area that needs to be treated in some depth, so

I’ll reserve this discussion until later in this chapter, in the major section entitled

“Filtering.”
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Size of the Result Set

An important and often overlooked factor is how much data a query returns (or how

much data a statement changes). This is often dependent on the size of the tables and the

details of the filtering, but not in every case. Typically, the combination of several

selection criteria which of themselves are of little value in selecting data may result in

highly efficient filtering when used in combination with one another. For example, one

could cite that retrieving students’ names based on whether they received a science or an

arts degree will give a large result set, but if both criteria are used (e.g., students who

studied under both disciplines) the consequent result set will collapse to a tiny number.

In the case of queries in particular, the size of the result set matters not so much from a

technical standpoint, but mostly because of the end user’s perception. To a very large

extent, end users adjust their patience to the number of rows they expect: when they ask

for one needle, they pay little attention to the size of the haystack. The extreme case is a

query that returns nothing, and a good developer should always try to write queries that

return few or no rows as fast as possible. There are few experiences more frustrating than

waiting for several minutes before finally seeing a “no data found” message. This is

especially annoying if you have mistyped something, realized your error just after hitting

Enter, and then have been unable to abort the query. End users are willing to wait to get

a lot of data, but not to get an empty result. If we consider that each of our filtering

criteria defines a particular result set and the final result set is either the intersection

(when conditions are anded) or the union (when conditions are ored together) of all the

intermediate result sets, a zero result is most likely to result from the intersection of

small, intermediate result sets. In other words, the (relatively) most precise criteria are

usually the primary reason for a zero result set. Whenever there is the slightest possibility

that a query might return no data, the most likely condition that would result in a null

return should be checked first—especially if it can be done quickly. Needless to say, the

order of evaluation of criteria is extremely context-sensitive as you shall see later under

“Filtering.”

A skillful developer should aim for response times proportional

to the number of rows returned.

Number of Tables

The number of tables involved in a query will naturally have some influence on

performance. This is not because a DBMS engine performs joins badly—on the contrary,

modern systems are able to join large numbers of tables very efficiently.



86 C H A P T E R F O U R

Joins

The perception of poor join performance is another enduring myth associated with

relational databases. Folklore has it that one should not join too many tables, with five

often suggested as the limit. In fact, you can quite easily have 15 table joins perform

extremely well. But there are additional problems associated with joining a large number

of tables, of which the following are examples:

• When you routinely need to join, say, 15 tables, you can legitimately question the cor-

rectness of the design; keep in mind what I said in Chapter 1—that a row in a table

states some kind of truth and can be compared to a mathematical axiom. By joining

tables, we derive other truths. But there is a point at which we must decide whether

something is an obvious truth that we can call an axiom, or whether it is a less obvi-

ous truth that we must derive. If we spend much of our time deriving our truths, per-

haps our axioms are poorly chosen in the first place.

• For the optimizer, the complexity increases exponentially as the number of tables

increases. Once again, the excellent work usually performed by a statistical optimizer

may comprise a significant part of the total response time for a query, particularly

when the query is run for the first time. With large numbers of tables, it is quite

impractical for the optimizer to explore all possible query paths. Unless a query is writ-

ten in a way that eases the work of the optimizer, the more complex the query, the

greater the chance that the optimizer will bet on the wrong horse.

• When we write a complex query involving many tables, and when joins can be written

in several fairly distinct ways, the odds are high that we’ll pick the wrong construct. If

we join tables A to B to C to D, the optimizer may not have all the information present

to know that A can be very efficiently joined directly to D, particularly if that join hap-

pens to be a special case. A sloppy developer trying to fix duplicate rows with a distinct

can also easily overlook a missing join condition.

Complex queries and complex views

Be aware that the apparent number of tables involved in a query can be deceptive; some

of the tables may actually be views, and sometimes pretty complex ones, too. Just as with

queries, views can also have varying degrees of complexity. They can be used to mask

columns, rows, or even a combination of rows and columns to all but a few privileged

users. They can also be used as an alternate perspective on the data, building relations

that are derived from the existing relations stored as tables. In cases such as these, a view

can be considered shorthand for a query, and this is probably one of the most common

usages of views. With increasingly complex queries, there is a temptation to break a

query down into a succession of individual views, each representing a component of the

greater query.
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The simplicity of a given query may hide the complexity of

participating views.

Like most extreme positions, it would be absurd to banish views altogether. Many of

them are rather harmless animals. However, when a view is itself used in a rather

complex query, in most cases we are only interested in a small fraction of the data

returned by the view—possibly in a couple of columns, out of a score or more. The

optimizer may attempt to recombine a simple view into a larger query statement.

However, once a query reaches a relatively modest level of complexity, this approach

may become too complex in itself to enable efficient processing.

In some cases a view may be written in a way that effectively prevents the optimizer from

combining it into the larger statement. I have already mentioned rownums, those virtual

columns used in Oracle to indicate the order in which rows are initially found. When

rownums are used inside a view, a further level of complexity is introduced. Any attempt to

combine a view that references a rownum into a larger statement would be almost

guaranteed to change the subsequent rownum order, and therefore the optimizer doesn’t

permit a query rewrite in those circumstances. In a complicated query, such a view will

necessarily be executed in isolation. In quite a number of cases then, the DBMS optimizer

will push a view as is into a statement,* running it as a step in the statement execution,

and using only those elements that are required from the result of the view execution.

Frequently, many of the operations executed in a view (typically joins to return a

description associated with codes) will be irrelevant in the context of a larger query, or a

query may have special search criteria that would have been particularly selective when

applied to the tables underlying the view. For instance, a subsequent union may prove to

be totally unnecessary because the view is the union of several tables representing

subtypes, and the larger query filters on only one of the subtypes. There is also the

danger of joining a view with a table that itself appears in the same view, thus forcing

multiple passes over this table and probably hitting the same rows several times when

one pass would have been quite sufficient.

When a view returns much more data than required in the context of a query that

references that view, dramatic performance gains can often be obtained by eliminating

the view (or using a simpler version of the view). Begin by replacing the view reference

in the main query with the underlying SQL query used to define the view. With the

components of the view in full sight, it becomes easy to remove everything that is not

* The optimizer may also sometimes push criteria down into the view.
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strictly necessary. More often than not, it’s precisely what isn’t necessary that prevents

the view from being merged by the optimizer, and a simpler, cut-down view may give

excellent results. When the query is correctly reduced to its most basic components, it

runs much faster.

Many developers may hesitate to push the code for a very complex view into an already

complex query, not least because it can make a complex situation even more

complicated. The exercise of developing and factoring a complex SQL expression may

indeed appear to be daunting. It is, however, an exercise quite similar to the development

of mathematical expressions, as practiced in high school. It is, in my view, a very

formative exercise and well worth the effort of mastering. It is a discipline that provides a

very sound understanding of the inner workings of a query for developers anxious to

improve their skills, and in most cases the results can be highly rewarding.

Rather than embedding a view inside a query when that view

returns unnecessary elements, try to decompose the view

components into the main query body.

Number of Other Users

Finally, concurrency is a factor that you must carefully take into account when designing

your SQL code. Concurrency is usually a concern while writing to the database where

block-access contention, locking, latching (which means locking of internal DBMS

resources), and others are the more obvious problem areas; even read consistency can in

some cases lead to some degree of contention. Any server, no matter how impressive its

specification, will always have a finite capacity. The ideal plan for a query running on a

machine with little to no concurrency is not necessarily the same as the ideal plan for the

same query running on the same machine with a high level of concurrency. Sorts may

no longer find the memory they need and may instead resort to writing to disk, thus

creating a new source of contention. Some CPU-intensive operations—for example, the

computation of complicated functions, repetitive scanning of index blocks, and so forth—

may cause the computer to overload. I have seen cases in which more physical I/Os

resulted in a significantly better time to perform a given task. In those cases, there was a

high level of concurrency for CPU-intensive operations, and when some processes had to

wait for I/Os, the overworked CPUs were relieved and could run other processes, thus

ensuring a better overlap. We must often think in terms of global throughput of one

particular business task, rather than in terms of individual user response-time.

N O T E
Chapter 9 examines concurrency in greater detail.
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Filtering
How you restrict your result set is one of the most critical factors that helps you

determine which tactics to apply when writing an SQL statement. The collective criteria

that filters the data are often seen as a motley assortment of conditions associated in the

where clause. However, you should very closely examine the various where-clause (and

having-clause, too) conditions when writing SQL code.

Meaning of Filtering Conditions

Given the syntax of the SQL language, it is quite natural to consider that all filtering

conditions, as expressed in the where clause, are similar in nature. This is absolutely not

the case. Some filtering conditions apply directly to the select operator of relational

theory, where checking that a column in a row (purists would say an attribute in a relation

variable) matches (or doesn’t match) a given condition. However, historically the where

clause also contains conditions that implement another operator—the join operator.

There is, since the advent of the SQL92 join syntax, an attempt to differentiate join

filtering conditions, located between the (main) from clause and the where clause, from the

select filtering conditions listed in the where clause. Joining two (or more) tables logically

creates a new relation.

Consider this general example of a join:

select .....
from t1
   inner join t2
      on t1.join1 = t2.joind2
where ...

Should a condition on column c2 belonging to t2 come as an additional condition on the

inner join, expressing that in fact you join on a subset of t2? Or should a condition inside

the where clause, along with conditions on columns of t1, express that the filtering applies

to the result of joining t1 to t2? Wherever you choose to place your join condition ought

not to make much of a difference; however, it has been known to lead to variations in

performance with some optimizers.

We may also have conditions other than joins and the simple filtering of values. For

instance, we may have conditions restricting the returned set of rows to some subtype;

we may also have conditions that are just required to check the existence of something

inside another table. All these conditions are not necessarily semantically identical,

although the SQL syntax makes all of them look equivalent. In some cases, the order of

evaluation of the conditions is of no consequence; in other cases, it is significant.

Here’s an example that you can actually find in more than one commercial software

package to illustrate the importance of the order of the evaluation of conditions. Suppose

that we have a parameters table, which holds: parameter_name, parameter_type, and



90 C H A P T E R F O U R

parameter_value, with parameter_value being the string representation of whatever type of

parameter we have, as defined by the attribute parameter_type. (To the logical mind this is

indeed a story of more woe than that of Juliet and her Romeo, since the domain type of

attribute parameter_value is a variable feast and thus offends a primary rule of relational

theory.) Say that we issue a query such as:

select * from parameters
where parameter_name like '%size'
  and parameter_type = 'NUMBER'

With this query, it does not matter whether the first condition is evaluated before or after

the second one. However, if we add the following condition, where int( ) is a function to

convert from char to integer value, then the order of evaluation becomes very significant:

and int(parameter_value) > 1000

Now, the condition on parameter_type must be evaluated before the condition on the

value, because otherwise we risk a run-time error consequent upon attempting to

convert a character string (if for example parameter_type for that row is defined as char) to

an integer. The optimizer may not be able to figure out that the poor design demands

that one condition should have higher priority—and you may have trouble specifying it

to the database.

All search criteria are not equal; some are more equal than others.

Evaluation of Filtering Conditions

The very first questions to consider when writing a SQL statement are:

• What data is required, and from which tables?

• What input values will we pass to the DBMS engine?

• What are the filtering conditions that allow us to discard unwanted rows?

Be aware, however, that some data (principally data used for joining tables) may be

stored redundantly in several tables. A requirement to return values known to be held in

the primary key of a given table doesn’t necessarily mean that this table must appear in

the from clause, since this primary key may well appear as the foreign key of another

table from which we also need the data.

Even before writing a query, we should rank the filtering conditions. The really efficient

ones (of which there may be several, and which may apply to different tables) will drive

the query, and the inefficient ones will come as icing on the cake. What is the criterion

that defines an efficient filter? Primarily, one that allows us to cut down the volume of
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the data we have to deal with as fast as possible. And here we must pay a lot of attention

to the way we write; the following subsections work through a simple example to

illustrate my point.

Buyers of Batmobiles

Assume that we have four tables, namely customers, orders, orderdetail, and a table of

articles, as shown in Figure 4-5. Please note that in the figure the sizes of the boxes

representing each table are more or less proportional to the volume of data in each table,

not simply to the number of columns. Primary key columns are underlined.

Let’s now suppose that our SQL problem is to find the names of all the customers living

in the city named “Gotham” who have ordered the article called “Batmobile” during the

last six months. We have, of course, several ways to formulate this query; the following is

probably what an ANSI SQL fan would write:

select distinct c.custname
from customers c
     join orders o
       on o.custid = c.custid
     join orderdetail od
       on od.ordid = o.ordid
     join articles a
       on a.artid = od.artid
where c.city = 'GOTHAM'
  and a.artname = 'BATMOBILE'
  and o.ordered >= somefunc

somefunc is supposed to be a function that returns the date six months prior to the current

date. Notice too, the presence of distinct, which may be required if one of our customers

is an especially heavy consumer of Batmobiles and has recently ordered several of them.

Let’s forget for a while that the optimizer may rewrite the query, and look at the

execution plan such a statement suggests. First, we walk the customers table, keeping only

rows for which the city happens to be Gotham. Then we search the orders table, which

means that the custid column there had better be indexed, because otherwise the only

hope the SQL engine has of executing the query reasonably fast is to perform some

F I G U R E  4 - 5 . A classical order schema
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sorting and merging or to scan the orders table to build a hash table and then operate

against that. We are going to apply another filter at this level, against the order date. A

clever optimizer will not mind finding the filtering condition in the where clause and will

understand that in order to minimize the amount of data to join it must filter on the date

before performing the join. A not so clever optimizer might be tempted to join first, and

then filter, and may therefore be grateful to you for specifying the filtering condition with

the join condition, as follows:

  join orders o
    on o.custid = c.custid
    and a.ordered >= somefunc

Even if the filtering condition really has nothing to do with the join, it is sometimes

difficult for the optimizer to understand when that is the case. If the primary key of

orderdetail is defined as (ordid, artid) then, because ordid is the first attribute of the

index, we can make use of that index to find the rows associated with an order as in

Chapter 3. But if the primary key happens to be (artid, ordid) (and note, either version is

exactly the same as far as relational theory is concerned), then tough luck. Some

products may be able to make some use of the index* in that case, but it will not provide

the efficient access that (ordid, artid) would have allowed. Other products will be totally

unable to use the index. The only circumstance that may save us is the existence of a

separate index on ordid.

Once we have linked orderdetails to orders, we can proceed to articles—without any

problem this time since we found artid, the primary key, in orderdetail. Finally, we can

check whether the value in articles is or is not a Batmobile. Is this the end of the story?

Not quite. As instructed by distinct, we must now sort the resulting set of customer

names that have passed across all the filtering layers so as to eliminate duplicates.

It turns out that there are several alternative ways of expressing the query that I’ve just

described. One example is to use the older join syntax, as follows:

select distinct c.custname
from customers c,
     orders o,
     orderdetail od,
     articles a
where c.city = 'GOTHAM'
  and c.custid = o.custid
  and o.ordid = od.ordid
  and od.artid = a.artid
  and a.artname = 'BATMOBILE'
  and o.ordered >= somefunc

* A feature known as skip-scan may allow for searching the index.



M A N E U V E R I N G 93

It may just be old habits dying hard, but I prefer this older way, if only for one simple

reason: it makes it slightly more obvious that from a logical point of view the order in

which we process data is arbitrary, because the same data will be returned irrespective of

the order in which we inspect tables. Certainly the customers table is particularly

important, since that is the source from which we obtain the data that is ultimately

required, while in this very specific context, all the other tables are used purely to

support the remaining selection processes. One really has to understand that there is no

one recipe that works for all cases. The pattern of table joins will vary for each situation

you encounter. The deciding factor is the nature of the data you are dealing with.

A given approach in SQL may solve one problem, but make another situation worse. The

way queries are written is a bit like a drug that may heal one patient but kill another.

More Batmobile purchases

Let’s explore alternative ways to list our buyers of Batmobiles. In my view, as a general

rule, distinct at the top level should be avoided whenever possible. The reason is that if

we have overlooked a join condition, a distinct will hide the problem. Admittedly this is a

greater risk when building queries with the older syntax, but nevertheless still a risk when

using the ANSI/SQL92 syntax if tables are joined through several columns. It is usually

much easier to spot duplicate rows than it is to identify incorrect data.

It’s easy to give a proof of the assertion that incorrect results may be difficult to spot: the

two previous queries that use distinct to return the names of the customers may actually

return a wrong result. If we happen to have several customers named “Wayne,” we won’t

get that information because distinct will not only remove duplicates resulting from

multiple orders by the same customer, but also remove duplicates resulting from

homonyms. In fact, we should return both the unique customer id and the customer

name to be certain that we have the full list of Batmobile buyers. We can only guess at

how long it might take to identify such an issue in production.

How can we get rid of distinct then? By acknowledging that we are looking for customers

in Gotham that satisfy an existence test, namely a purchase order for a Batmobile in the

past six months. Note that most, but not all, SQL dialects support the following syntax:

select c.custname
from customers c
where c.city = 'GOTHAM'
  and exists (select null
              from orders o,
                   orderdetail od,
                   articles a
              where a.artname = 'BATMOBILE'
                and a.artid = od.artid
                and od.ordid = o.ordid
                and o.custid = c.custid
                and o.ordered >= somefunc)
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If we use an existence test such as this query uses, a name may appear more than once if

it is common to several customers, but each individual customer will appear only once,

irrespective of the number of orders they placed. You might think that my criticism of the

ANSI SQL syntax was a little harsh, since customers figure as prominently, if not more

prominently than before. However, it now features as the source for the data we want

the query to return. And another query, nested this time, appears as a major phase in the

identification of the subset of customers.

The inner query in the preceding example is strongly linked to the outer select. As you

can see on line 11 (in bold), the inner query refers to the current row of the outer query.

Thus, the inner query is what is called a correlated subquery. The snag with this type of

subquery is that we cannot execute it before we know the current customer. Once again,

we are assuming that the optimizer doesn’t rewrite the query. Therefore we must first

find each customer and then check for each one whether the existence test is satisfied.

Our query as a whole may perform excellently if we have very few customers in Gotham.

It may be dreadful if Gotham is the place where most of our customers are located (a case

in which a sophisticated optimizer might well try to execute the query in a different

way).

We have still another way to write our query, which is as follows:

select custname
from customers
where city = 'GOTHAM'
  and custid in
             (select o.custid
              from orders o,
                   orderdetail od,
                   articles a
              where a.artname = 'BATMOBILE'
                and a.artid = od.artid
                and od.ordid = o.ordid
                and o.ordered >= somefunc)

In this case, the inner query no longer depends on the outer query: it has become an

uncorrelated subquery. It needs to be executed only once. It should be obvious that we

have now reverted the flow of execution. In the previous case, we had to search first for

customers in the right location (e.g., where city is Gotham), and then check each order in

turn. In this latest version of the query, the identifiers of customers who have ordered

what we are looking for are obtained via a join that takes place in the inner query.

If you have a closer look, however, there are more subtle differences as well between the

current and preceding examples. In the case of the correlated subquery, it is of

paramount importance to have the orders table indexed on custid; in the second case, it

no longer matters, since then the index (if any) that will be used is the index associated

with the primary key of customers.
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You might notice that the most recent version of the query performs an implicit distinct.

Indeed, the subquery, because of its join, might return many rows for a single customer.

That duplication doesn’t matter, because the in condition checks only to see whether a

value is in the list returned by the subquery, and in doesn’t care whether a given value is in

that list one time or a hundred times. Perhaps though, for the sake of consistency we

should apply the same rules to the subquery that we have applied to the query as a whole,

namely to acknowledge that we have an existence test within the subquery as well:

select custname
from customers
where city = 'GOTHAM'
  and custid in
             (select o.custid
              from orders o
              where o.ordered >= somefunc
                and exists (select null
                            from orderdetail od,
                                 articles a
                            where a.artname = 'BATMOBILE'
                              and a.artid = od.artid
                              and od.ordid = o.ordid))

 or:

select custname
from customers
where city = 'GOTHAM'
  and custid in
             (select custid
              from orders
              where ordered >= somefunc
                and ordid in (select od.ordid
                              from orderdetail od,
                                   articles a
                              where a.artname = 'BATMOBILE'
                                and a.artid = od.artid)

Irrespective of the fact that our nesting is getting deeper and becoming less legible,

choosing which query is the best between the exists and the in follows the very same

rule inside the subquery as before: the choice depends on the effectiveness of the

condition on the date versus the condition on the article. Unless business has been very,

very slow for the past six months, one might reasonably expect that the most efficient

condition on which to filter the data will be the one on the article name. Therefore, in

the particular case of the subquery, in is better than exists because it will be faster to find

all the order lines that refer to a Batmobile and then to check whether the sale occurred

in the last six months rather than the other way round. This approach will be faster

assuming that the table orderdetail is indexed on artid; otherwise, our bright, tactical

move will fail dismally.
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N O T E
It may be a good idea to check in against exists whenever an existence test is

applied to a significant number of rows.

Most SQL dialects allow you to rewrite uncorrelated subqueries as inline views in the

from clause. However, you must always remember that an in performs an implicit

removal of duplicate values, which must become explicit when the subquery is moved to

become an in-line view in the from clause. For example:

select custname
from customers
where city = 'GOTHAM'
  and custid in
             (select o.custid
              from orders o,
                   (select distinct od.ordid
                    from orderdetail od,
                         articles a
                    where a.artname = 'BATMOBILE'
                      and a.artid = od.artid) x
              where o.ordered >= somefunc
                and x.ordid = o.ordid)

The different ways you have to write functionally equivalent queries (and variants other

than those given in this section are possible) are comparable to words that are synonyms.

In written and spoken language, synonyms have roughly the same meaning, but each

one introduces a subtle difference that makes one particular word more suitable to a

particular situation or expression (and in some cases another synonym is totally

inappropriate). In the same way, both data and implementation details may dictate the

choice of one query variant over others.

Lessons to be learned from the Batmobile trade

The various examples of SQL that you saw in the preceding section may look like an idle

exercise in programming dexterity, but they are more than that. The key point is that

there are many different ways in which we can attack the data, and that we don’t

necessarily have to go first through customers, then orders, then orderdetail, and then

articles as some of the ways of writing the query might suggest.

If we represent the strength of our search criteria with arrows—the more discriminant

the criterion, the larger the arrow—we can assume that we have very few customers in

Gotham, but that we sell quite a number of Batmobiles and business has been brisk for

the past six months, in which case our battle map may look like Figure 4-6. Although we

have a condition on the article name, the medium arrow points to orderdetail because

that is what truly matters. We may have very few articles for sale, which may represent

similar percentages of our revenue, or we may have a huge number of articles, of which

one of the best sellers is the Batmobile.
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Alternatively, we can assume that most of our customers are indeed based in Gotham,

but that very few actually buy Batmobiles, in which case our battle plan will look more

like Figure 4-7. It is quite obvious then, that we really have to cut to pieces the

orderdetail table, which is the largest one. The faster we slash this table, the faster our

query will run.

Note also—and this is a very important point—that the criterion “during the last six

months” is not a very precise one. But what if we change the criterion to specify the last

two months and happen to have 10 years of sales history online? In that case, it may be

more efficient to get to those recent orders first—which, thanks to some techniques

described in Chapter 5, may be clustered together—and then start from there, selecting

customers from Gotham, on the one hand, and orders for Batmobiles on the other. To

put it another way, the best execution plan does not only depend on the data values, it

may also evolve over time.

F I G U R E  4 - 6 . When query discrimination is based on location

F I G U R E  4 - 7 . When query discrimination is based on purchase
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What then can we conclude from all this? First, that there is more than one way to skin a

cat...and that an expression of a query is usually associated with implicit assumptions

about the data. With each different expression of a query we will obtain the same result set,

but it may be at significantly different speeds. The way we write the query may influence

the execution path, especially when we have to apply criteria that cannot be expressed

within the truly relational part of the environment. If the optimizer is to be allowed to

function at its best, we must try to maximize the amount of true relational processing and

ensure the non-relational component has minimum impact on the final result.

We have assumed all along in this chapter that statements will be run as suggested by the

way they are written. Be aware though, that an optimizer may rewrite queries—

sometimes pretty aggressively. You could argue that rewrites by the optimizer don’t

matter, because SQL is supposed to be a declarative language in which you state what

you want and let the DBMS provide it. However, you have seen that each time we have

rewritten a query in a different way, we have had to change assumptions about the

distribution of data and about existing indexes. It is highly important, therefore, to

anticipate the work of the optimizer to be certain that it will find what it needs, whether

in terms of indexes or in terms of detailed-enough statistical information about the data.

The correct result from an SQL statement is only the first step in

building the best SQL.

Querying Large Quantities of Data

It may sound obvious, but the sooner we get rid of unwanted data, the less we have to

process at later stages of a query—and the more efficiently the query will run. An

excellent application of this principle can be found with set operators, of which union is

probably the most widely used. It is quite common to find in a moderately complex union

a number of tables appearing in several of the queries “glued” together with the union

operator. One often sees the union of fairly complex joins, with most of the joined tables

occurring in both select statements of the union—for example, on both sides of the union,

something like the following:

select ...
from A,
     B,
     C,
     D,
     E1
where (condition on E1)
  and (joins and other conditions)
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union
select ...
from A,
     B,
     C,
     D,
     E2
where (condition on E2)
  and (joins and other conditions)

This type of query is typical of the cut-and-paste school of programming. In many cases it

may be more efficient to use a union of those tables that are not common, complete with

the screening conditions, and to then push that union into an inline view and join the

result, writing something similar to:

select ...
from A,
     B,
     C,
     D,
     (select ...
      from E1
      where (condition on E1)
      union
      select ...
      from E2
      where (condition on E2)) E
where (joins and other conditions)

Another classic example of conditions applied at the wrong place is a danger associated

with filtering when a statement contains a group by clause. You can filter on the columns

that define the grouping, or the result of the aggregate (for instance when you want to

check whether the result of a count( ) is smaller than a threshold) or both. SQL allows

you to specify all such conditions inside the having clause that filters after the group by (in

practice, a sort followed by an aggregation) has been completed. Any condition bearing

on the result of an aggregate function must be inside the having clause, since the result of

such a function is unknown before the group by. Any condition that is independent on

the aggregate should go to the where clause and contribute to decrease the number of

rows that we shall have to sort to perform the group by.

Let’s return to our customers and orders example, admitting that the way we process

orders is rather complicated. Before an order is considered complete, we have to go

through several phases that are recorded in the table orderstatus, of which the main

columns are ordid, the identifier of the order; status; and statusdate, which is a

timestamp. The primary key is compound, consisting of ordid, and statusdate. Our

requirement is to list, for all orders for which the status is not flagged as complete
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(assumed to be final), the identifier of the order, the customer name, the last known order

status, and when this status was set. To that end, we might build the following query,

filtering out completed orders and identifying the current status as the latest status assigned:

select c.custname, o.ordid, os.status, os.statusdate
from customers c,
     orders o,
     orderstatus os
where o.ordid = os.ordid
  and not exists (select null
                  from orderstatus os2
                  where os2.status = 'COMPLETE'
                    and os2.ordid = o.ordid)
  and os.statusdate = (select max(statusdate)
                       from orderstatus os3
                       where os3.ordid = o.ordid)
  and o.custid = c.custid

At first sight this query looks reasonable, but in fact it contains a number of deeply

disturbing features. First, notice that we have two subqueries, and notice too that they

are not nested as in the previous examples, but are only indirectly related to each other.

Most worrying of all, both subqueries hit the very same table, already referenced at the

outer level. What kind of filtering condition are we providing? Not a very precise one, as

it only checks for the fact that orders are not yet complete.

How can such a query be executed? An obvious approach is to scan the orders table, for

each row checking whether each order is or is not complete. (Note that we might have

been happy to find this information in the orders table itself, but this is not the case.)

Then, and only then, can we check the date of the most recent status, executing the

subqueries in the order in which they are written.

The unpleasant fact is that both subqueries are correlated. Since we have to scan the

orders table, it means that for every row from orders we shall have to check whether we

encounter the status set to COMPLETE for that order. The subquery to check for that status

will be fast to execute, but not so fast when repeated a large number of times. When

there is no COMPLETE status to be found, then a second subquery must be executed. What

about trying to un-correlate queries?

The easiest query to un-correlate happens to be the second one. In fact, we can write, at

least with some SQL dialects:

  and (o.ordid, os.statusdate) = (select ordid, max(statusdate)
                                  from orderstatus
                                  group by ordid)
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The subquery that we have now will require a full scan of orderstatus; but that’s not

necessarily bad, and we’ll discuss our reasoning in a moment.

There is something quite awkward in the condition of the pair of columns on the left-

hand side of the rewritten subquery condition. These columns come from different tables,

and they need not do so. In fact, we want the order identifier to be the same in orders

and orderstatus; will the optimizer understand the subtlety of this situation? That is

rather uncertain. If the optimizer doesn’t understand, then it will be able to execute the

subquery first, but will have to join the two other tables together before being able to

exploit the result of the subquery. If the query were written slightly differently, the

optimizer would have greater freedom to decide whether it actually wants to do what

I’ve just described or exploit the result of the subquery and then join orders to

orderstatus:

and (os.ordid, os.statusdate) = (select ordid, max(statusdate)
                                  from orderstatus
                                  group by ordid)

The reference on the left side to two columns from the same table removes the

dependence of identification of the most recent status for the order on a preliminary join

between orderstatus and orders. A very clever optimizer might have performed the

modification for us, but it is wiser to take no risk and specify both columns from the same

table to begin with. It is always much better to leave the optimizer with as much freedom

as we can.

You have seen previously that an uncorrelated subquery can become a join in an inline

view without much effort. We can indeed rewrite the entire query to list pending orders

as follows:

select c.custname, o.ordid, os.status, os.statusdate
from customers c,
     orders o,
     orderstatus os,
     (select ordid, max(statusdate) laststatusdate
      from orderstatus
      group by ordid) x
where o.ordid = os.ordid
  and not exists (select null
                  from orderstatus os2
                  where os2.status = 'COMPLETE'
                    and os2.ordid = o.ordid)
  and os.statusdate = x.laststatusdate
  and os.ordid = x.ordid
  and o.custid = c.custid
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But then, if COMPLETE is indeed the final status, do we need the subquery to check the

nonexistence of the last stage? The inline view helps us to identify which is the last

status, whether it is COMPLETE or anything else. We can apply a perfectly satisfactory filter

by checking the latest known status:

select c.custname, o.ordid, os.status, os.statusdate
from customers c,
     orders o,
     orderstatus os,
     (select ordid, max(statusdate) laststatusdate
      from orderstatus
      group by ordid) x
where o.ordid = os.ordid
  and os.statusdate = x.laststatusdate
  and os.ordid = x.ordid
  and os.status != 'COMPLETE'
  and o.custid = c.custid

The duplicate reference to orderstatus can be further avoided by using OLAP or analytical

functions available with some SQL engines. But let’s pause here and consider how we

have modified the query and, more importantly, the execution path. Basically, our

natural path was initially to scan the orders table, and then access through what may

reasonably be expected to be an efficient index on the table orderstatus. In the last

version of our query, we will attack through a full scan of orderstatus, to perform a group

by. In terms of the number of rows, orderstatus will necessarily be several times bigger

than orders. However, in terms of mere volume of data to scan, we can expect it to be

smaller, possibly significantly smaller, depending on how much information is stored for

each order.

We cannot say with certainty which approach will be better, it depends on the data. Let

me add that seeing a full scan on a table that is expected to grow is not a good idea

(restricting the search to the last month’s, or last few months’ worth of data can help).

But there are significant chances that this last version of our query will perform better

than the first attempt with the subquery in the where clause.

We cannot leave the subject of large data volumes without mentioning a slightly special

case. When a query returns a very large amount of data, you have reasonable grounds for

suspecting that it’s not an individual sitting at a terminal that executed the query. The

likelihood is that such a query is part of a batch process. Even if there is a longish

“preparatory phase,” nobody will complain so long as the whole process performs to a

satisfactory standard. Do not, of course, forget that a phase, preparatory or not, requires

resources—CPU, memory, and possibly temporary disk space. It helps to understand that

the optimizer, when returning a lot of data, may choose a path which has nothing in

common with the path it would adopt when returning few rows, even if the fundamental

query is identical.
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Filter out unneeded data as early as possible.

The Proportions of Retrieved Data

A typical and frequently quoted saying is the famous “don’t use indexes when your

query returns more than 10% of the rows of a table.” This states implicitly that (regular)

indexes are efficient when an index key points to 10% or less of the rows in a table. As I

have already pointed out in Chapter 3, this rule of thumb dates back to a time when

relational databases were still regarded with suspicion in many companies. In those days,

their use was mostly confined to that of departmental databases. This was a time when a

100,000–row table was considered a really big one. Compared to 10% of a 500 million–

row table, 10% of 100,000 rows is a trifle. Can we seriously hope that the best execution

plan in one case will still be the best execution plan in the other case? Such is wishful

thinking.

Independently from the evolution of table sizes since the time when the “10% of rows”

rule of thumb was first coined, be aware that the number of rows returned means

nothing in itself, except in terms of response time expectations by end users. If you

compute an average value over 1 billion rows, you return a single row, and yet the

DBMS performs a lot of work. Even without any aggregation, what matters is the

number of data pages that the DBMS is going to hit when performing the query. Data

page hits don’t only depend on the existence of indexes: as you saw in Chapter 3, the

relation of indexes to the physical order of rows in the table can make a significant

difference in the number of pages to visit. Other implementation issues that I am going to

discuss in Chapter 5 play an important part, too: depending on how data is physically

stored, the same number of rows returned may mean that you have to visit massively

different numbers of data pages. Furthermore, operations that would execute

sequentially with one access path may be massively parallelized with another one. Don’t

fall into the row percentage trap.

When we want a lot of data, we don’t necessarily want an index.
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Terrain
Understanding Physical Implementation

 [...] haben Gegend und Boden eine sehr nahe [...] Beziehung zur kriegerischen

Tätigkeit, nämlich einen sehr entscheidenden Einfluß auf das Gefecht.

[. . .] Country and ground bear a most intimate [. . .] relation to the business of war,
which is their decisive influence on the battle.

—Carl von Clausewitz (1780–1831)

Vom Kriege, V, 17
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What a program sees as a table is not always the plain table it may look like.

Sometimes it’s a view, and sometimes it really is a table, but with storage parameters that

have been very carefully established to optimize certain types of operations. In this chapter, I

explore different ways to arrange the data in a table and the operations that those

arrangements facilitate.

I should emphasize from the start that the topic of this chapter is not disk layout, nor

even the relative placement of journal and data files. These are the kinds of subjects

that usually send system engineers and database administrators into mouth-watering

paroxysms of delight—but no one else. There is much more to database organization

than the physical dispersion of bytes on permanent storage. It is the actual nature of

the data that dictates the most important choices.

Both system engineers and database administrators know how much storage is used,

and they know the various possibilities available in terms of data containers, whether

very low-level data containers such as disk stripes or high-level data containers such as

tables. But frequently, even database administrators have only a scant knowledge of

what lies inside those containers. It can sometimes be helpful to choose the terrain on

which to fight. Just as a general may discuss tactics with the engineering corps, so the

architect of an application can study with the database administrators how best to

structure data at the physical level. Nevertheless, you may be required to fight your

battle on terrain over which you have no control or, worse, to use structures that were

optimized for totally different purposes.

Structural Types
Even though matters of physical database structure are not directly related to the SQL

language, the underlying structures of your database will certainly influence your

tactical use of SQL. The chances are that any well-established and working database

will fall into one of the following structural types:

The fixed, inflexible model

There are times when you will have absolutely no choice in the matter. You

will have to work with the existing database structures, no matter how obvi-

ous it may be to you that they are contributing to the performance difficul-

ties, if they are not their actual cause. Whether you are developing new

applications, or simply trying to improve existing ones, the underlying struc-

tures are going to control the choices you can make in the deployment of your

SQL armory. You must try to understand the reasoning behind the system and

work with it.
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The evolutionary model

Everything is not always cast in stone, and altering the physical layout of data

(without modifying the logical model) is sometimes an option. Be very aware

that there are dangers here and that the reluctance of database administrators to

make such modifications doesn’t stem from laziness. In spite of the risks and

potential for service interruption attached to such operations, many people cling

to database reorganization as their last hope when facing performance issues.

Physical reorganization is not in itself the panacea for correcting poor perfor-

mance. It may be quite helpful in some cases, irrelevant elsewhere, and even

harmful in other cases. It is important to know both what you can and cannot

expect from such drastic action.

In a sense, if you have to work with a flawed design, neither scenario is a particularly

attractive option. “Abandon hope, all ye that have an incorrect design” might just

possibly be overstating the situation, but nevertheless I am stressing once again the

crucial importance of getting the design right at the earliest opportunity.

In more than one way, implementation choices are comparable to the choice of tires in

Formula One motor racing: you have to take a bet on the race conditions that you are

expecting. The wrong tire choice may prove costly, the right one may help you win, but

even the best choice will not, of itself, assure you of victory.

I won’t discuss SQL constructs in this chapter, nor will I delve into the intricacies of

specific implementations, which in any case are all very much product dependent.

However, it is difficult in practice to design a reliable architecture without an

understanding of all the various conditions, good and bad, with or against which the

design will have to function. Understanding also means sensing how much a particular

physical implementation can impact performance, for better or for worse. This is why I

shall try to give you an idea, first of some of the practical problems DBMS implementers

have had to face to help improve the speed of queries and changes to the database (of

which more will be said in Chapter 9), and second of some of the answers they have

found. From a practical point of view, though, be aware that some of the features

presented in this chapter are not available with all database systems. Or, if they are

available, they may require separate licensing.

One last word before we begin. I have tried to establish some points of comparison

between various commercial products. To that end, this chapter presents a number of

actual test results. However, it is by no means the purpose of this book to organize a

beauty contest between various database products, especially as the balance may change

between versions. Similarly, absolute values have no meaning, since they depend very

strongly on your hardware and the design of the database. This is why I have chosen to

present only relative values, and why I have also chosen (with one exception) to

compare variations for only one particular DBMS.
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The Conflicting Goals
There are often two conflicting goals when trying to optimize the physical layout of data

for a system that expects a large number of active users, some of them reading and others

writing data. One goal is to try to store the data in as compact a way as possible and to

help queries find it as quickly as possible. The other goal is to try to spread the data, so

that several processes writing concurrently do not impede one another and cause

contention and competition for resources that cannot be shared.

Even when there is no concurrency involved, there is always some tension when

designing the physical aspect of a database, between trying to make both queries and

updates (in the general sense of “changes to the data”) as fast as possible. Indexing is an

obvious case in point: people often index in anticipation of queries using the indexed

columns as selection criteria. However, as seen in Chapter 3, the cost of maintaining

indexes is extremely high and inserting into an index is often much more expensive than

inserting into the underlying table alone.

Contention issues affect any data that has to be stored, especially in change-heavy

transactional applications (I am using the generic term change to mean any insert, delete,

and update operation). Various storage units and some very low layers of the operating

system can take care of some contention issues. The files that contain the database data

may be sliced, mirrored, and spread all over the place to ensure data integrity in case of

hardware failure, as well as to limit contention.

Unfortunately, relying on the operating system alone to deal with contention is not

enough. The base units of data that a DBMS handles (known as pages or blocks

depending on the product) are usually, even at the lowest layers, atomic from a database

perspective, especially as they are ultimately all scanned in memory. Even when

everything is perfect for the systems engineer, there may be pure DBMS performance

issues.

To get the best possible response time, we must try to keep the number of data pages that

have to be accessed by the database engine as low as possible. We have two principal means

of decreasing the number of pages that will have to be accessed in the course of a query:

• Trying to ensure a high data density per page

• Grouping together those pieces of data most likely to be required during one retrieval

process

However, trying to squeeze the data into as few pages as possible may not be the

optimum approach where the same page is being written by several concurrent processes

and perhaps also being read at the same time. Where that single data page is the subject

of multiple read or write attempts, conflict resolution takes on an altogether more

complex and serious dimension.
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Many believe that the structure of a database is the exclusive responsibility of the

database administrator. In reality, it is predominantly but not exclusively the responsibility

of that very important person. The way in which you physically structure your data is

extremely dependent on the nature of the data and its intended use. For example,

partitioning can be a valuable aid in optimizing a physical design, but it should never be

applied in a haphazard way. Because there is such an intimate relationship between

process requirements and physical design, we often encounter profound conflicts

between alternative designs for the same data when that data is shared between two or

more business processes. This is just like the dilemma faced by the general on the

battlefield, where the benefits of using alternative parts of his forces (infantry, cavalry, or

artillery) have to be balanced against the suitability of the terrain across which he has to

deploy them. The physical design of tables and indexes is one of those areas where

database administrators and developers must work together, trying to match the available

DBMS features in the best possible way against business requirements.

The sections to follow introduce some different strategies and show their impact on

queries and updates from a single-process perspective, which, in practice, is usually the

batch program perspective.

Reads and writes don’t live in harmony: readers want data

clustered; and concurrent writers want data scattered.

Considering Indexes as Data Repositories
Indexes allow us to find quickly the addresses (references to some particular storage in

persistent memory, typically file identifiers and offsets within the files) of the rows that

contain a key we are looking for. Once we have an address, then it can be translated into

a low-level, operating system reference which, if we are lucky, will direct us to the true

memory address where the data is located. Alternatively, the index search will result in

some input/output operation taking place before we have the data at our disposal in

memory.

As discussed previously in Chapter 3, when the value of a key we are looking for refers to

a very large number of rows, it is often more efficient simply to scan the table from the

beginning to the end and ignore the indexes. This is why, at least in a transactional

database, it is useless to index columns with a low number of distinct values (i.e., a low

cardinality) unless one value is highly selective and appears frequently in where clauses.

Other indexes that we can dispose of are single-column indexes on columns that already

participate in composite indexes as the leading column: there is no need whatsoever to
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index the same column twice in these circumstances. The very common tree-structured,

or hierarchical, index can be efficiently searched even if we do not have the full key

value, just as long as we have a sufficient number of leading bytes to ensure

discrimination.

The use of leading bytes rather than the full index key for querying an index introduces

an interesting type of optimization. If there is an index on (c1, c2, c3), this index is

usable even if we only specify the value of c1. Furthermore, if the key values are not

compressed, then the index contains all the data held in the (c1, c2, c3) triplets that are

present in the table. If we specify c1 to get the corresponding values of c2, or of c2 to find

the corresponding c3, we find within the index itself all the data we need, without

requiring further access to the actual table. For example, to take a very simple analogy,

it’s exactly as though you were looking for William Shakespeare’s year of birth.

Submitting the string William Shakespeare to any web search engine will return

information such as you see in Figure 5-1.

There is no need to visit any of these sites (which may be a pity): we have found our

answer in the data returned from the search engine index itself. The fourth entry tells us

that Shakespeare was born in 1564.

When an index is sufficiently loaded with information, going to the place it points to

becomes unnecessary. This very same reasoning is at the root of an often used

optimization tactic. We can improve the speed of a frequently run query by stuffing into

an index additional columns (one or more) which of themselves have no part to play in

the actual search criteria, but which crucially hold the data we need to answer our query.

F I G U R E  5 - 1 . Searching the Web for "William Shakespeare"
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Thus the data that we require can be retrieved entirely from the index, cutting out

completely the need to access the original source data. Some products such as DB2 are

clever enough to let us specify that a unique index includes some other columns and

check uniqueness of only a part of the composite key. The same result can be achieved

with Oracle, in a somewhat more indirect fashion, by using a non-unique index to

enforce a uniqueness or primary key constraint.

Conversely, there have been cases of batch programs suddenly taking much more time to

run to completion than previously, following what appears to be the most insignificant

modification to the query. This minor change was the addition of another column to the

list of columns returned by a select statement. Unfortunately, prior to the modification,

the entire query could be satisfied by reference to the data returned from an index. The

addition of the new column forced the database to go back to the table, resulting in a

hugely significant increase in processor activity.

Let’s look in more detail at the contrast between “index only” and “index plus table”

retrieval performance. Figure 5-2 illustrates the performance impact of fetching one

additional column absent from the index that is used to answer the query for three of the

major database systems. The table used for the test was the same in all cases, having 12

columns populated with 250,000 rows. The primary key was defined as a three-column

composite key, consisting of first an integer column with random values uniformly spread

between 1 and 5,000, then a string of 8 to 10 characters, and then finally a datetime

column. There is no other index on the table other than the unique index that implements

the primary key. The reference query is fetching the second and third columns in the

primary key on the basis of a random value of between 1 and 5,000 in the first column. The

test measures the performance impact of fetching one more column—numeric and

therefore relatively small—that doesn’t belong to the index. The results in Figure 5-2 are

normalized such that the case of fetching two columns that are found in the index is always

pegged at 100%. The case of having to go to the table and fetch an additional column

absent from the index is then expressed as some percentage less than 100%.

F I G U R E  5 - 2 . Performance impact of fetching a third column that has to be retrieved from the table



112 C H A P T E R F I V E

Figure 5-2 shows that the performance impact of having to go to the table as well as to the

index isn’t enormous (around 5 or 10%) but nevertheless it is noticeable, and it is much

more so with some database products than with others. As always, the exact numbers may

vary with circumstances, and the impact can be much more severe if the table access

requires additional physical I/O operations, which isn’t the case here.

Pushing to the extreme the principle of storing as much data as possible in the indexes,

some database management systems, such as Oracle, allow you to store all of a table’s data

into an index built on the primary key, thus getting rid of the table structure altogether.

This approach saves storage and may save time. The table is the index, and is known as an

index-organized table (I0T) as opposed to the regular heap structure.

After the discussion in Chapter 3 about the cost penalty of index insertion, you might

expect insertions into an index-organized table to be less costly than applying insertions to

a table with no other index than the primary key enforcement index. In fact, in some

circumstances the opposite is true, as you can see from Figure 5-3. It compares insertion

rates for a regular table against those for an IOT. The tests used a total of four tables. Two

table patterns with the same column definitions were created, once as a regular heap

table, and once as an IOT. The first table pattern was a small table consisting of the

primary key columns plus one additional column, and the second pattern a table

consisting of the primary key columns plus nine other columns, all numeric. The

(compound) primary key in every table was defined as a number column, a 10-character

string, and a timestamp. For each case, two tests were performed. In the first test, the

primary key was subjected to the insertion of randomly ordered primary key values. The

second test involved the insertion into the leading primary key column of an increasing,

ordered sequence of numbers.

Where the table holds few columns other than the ones that define the primary key, it is

indeed faster to insert into an IOT. However, if the table has even a moderate number of

columns, all those columns that don’t pertain to the primary key also have to be stored in

the index structure (sometimes to an overflow area). Since the table is the index, much

more information is stored there than would otherwise be the case. Chapter 3 has also

shown that inserting into an index is intrinsically more costly than inserting into a regular

table. The byte-shuffling cost associated with inserting more data into a more complicated

structure can lead to a severe performance penalty, unless the rows are inserted in the

same or near-the-same order as the primary key index. The penalty is even worse with

long character strings. In many cases the additional cost of insertion outweighs the benefit

of not having to go to the table when fetching data through the primary key index.*

* A reviewer remarked that implementation reasons that are beyond the scope of this book also make
other indexes than the primary key index less efficient on an IOT than they would be on a regular
table.
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There are, however, some other potential benefits linked to the strong internal ordering of

indexes, as you shall see next.

Some queries can be answered by retrieving only the index data.

Forcing Row Ordering
There is another aspect to an index-organized table than just finding all required data in

the index itself without requiring an additional access to the table. Because IOTs, being

indexes, are, first and foremost, strongly ordered structures, their rows are internally

ordered. Although the notion of order is totally foreign to the relational theory, from a

practical point of view whenever a query refers to a range of values, it helps to find them

together instead of having to gather data scattered all over the table. The most common

example of this sort of application is range searching on time series data, when you are

looking for events that occurred between two particular dates.

F I G U R E  5 - 3 . Relative cost of inserting into an Oracle index-organized table compared to a regular (heap-

organized) table
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Most database systems manage to force such an ordering of rows by assigning to an index

the role of defining the order of rows in the table. SQL Server and Sybase call such an

index a clustered index. DB2 calls it a clustering index, and it has much the same effect in

practice as an Oracle IOT. Some queries benefit greatly from this type of organization. But

similar to index organized tables, updates to columns pertaining to the index that defines

the order are obviously more costly because they entail a physical movement of the data

to a new position corresponding to the “rank” of the new values. The ordering of rows

inevitably favors one type of range-scan query at the expense of range scans on

alternative criteria.

As with IOTs that are defined by the primary key, it is safer to use the primary key index as

the clustering index, since primary keys are never updated (and if your application needs to

update your primary key, there is something very seriously wrong indeed with your design,

and it won’t take long before there is something seriously wrong with the integrity of your

data). In contrast to IOTs, an index other than the one that enforces the primary key

constraint can be chosen as the clustering index. But remember that any ordering unduly

favors some processes at the expense of others. The primary key, if it is a natural key, has a

logical significance; the associated index is more equal than all the other indexes that may

be defined on the table, even unique ones. If some columns must be given some particular

prominence through the physical implementation, these are the ones.

Figure 5-4 illustrates the kind of differences you may expect between clustered and non-

clustered index performance in practice. If we take the same table as was used for the

index-organized table in Figure 5-3’s example (a three-column primary key plus nine

numeric columns), and if we insert rows in a totally random way, the cost of insertion

into a table where the primary key index is clustered is quite high, since tests show that

our insertion rate is about half the insertion rate obtained with a non-clustered primary

key. But when we run a range scan test on about 50,000 rows, this clustered index

provides really excellent performance. In this particular case, the clustered index allows

us to outperform the non-clustered approach by a factor of 20. We should, of course, see

no difference when fetching a single row.

A structural optimization, such as a clustered index or an IOT, necessarily has some

drawbacks. For one thing, such structures apply some strong, tree-based, and therefore

hierarchical ordering to tables. This approach resurrects many of the flaws that saw

hierarchical databases replaced by relational databases in the corporate world. Any

hierarchical structure favors one vision of the data and one access path over all the

others. One particular access path will be better than anything you could get with a non-

clustered table, but most other access paths are likely to be significantly worse. Updates

may prove more costly. The initial tidy disposition of the data inside the database files

may deteriorate faster at the physical level, due to chaining, overflow pages, and similar

constructs, which take a heavy toll on performance. Clustered structures are excellent in
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some cases, boosting performance by an impressive factor. But they always need to be

carefully tested, because there is a high probability that they will make many other

processes run slower. One must judge their suitability while looking at the global

picture—and not on the basis of one particular query.

Range scanning on clustered data can give impressive

performance, but other queries will suffer as a consequence.

Automatically Grouping Data
You have seen that finding all the rows together when doing a range scan can be highly

beneficial to performance. There are, actually, other means to achieve a grouping of data

than the somewhat constraining use of clustering indexes or index-organized tables. All

database management systems let us partition tables and indexes—an application of the

old principle of divide and rule. A large table may be split into more manageable chunks.

Moreover, in terms of process architecture, partitioning allows an increased concurrency

and parallelism, thus leading to more scalable architectures, as you shall see in Chapters 9

and 10.

First of all, beware that this very word, partition, has a different meaning depending on

the DBMS under discussion, sometimes even depending on the version of the DBMS.

There was a time, long ago, when what is now known as an Oracle tablespace used to be

referred to as a partition.

F I G U R E  5 - 4 . How clustered indexes perform



116 C H A P T E R F I V E

Round-Robin Partitioning

In some cases, partitioning is a totally internal, non-data-driven mechanism. We

arbitrarily define a number of partitions as distinct areas of disk storage, usually closely

linked to the number of devices on which we want the data to be stored. One table may

have one or more partitions assigned to it. When data is inserted, it is loaded to each

partition according to some arbitrary method, in a round-robin fashion, so as to balance

the load on disk I/O induced by the insertions.

Incidentally, the scattering of data across several partitions may very well assist subsequent

random searches. This mechanism is quite comparable to file striping over disk arrays. In

fact, if your files are striped, the benefit of such a partitioning becomes slight and sometimes

quite negligible. Round-robin scattering can be thought of as a mechanism designed only to

arbitrarily spread data irrespective of logical data associations, rather than to regroup data

on the basis of those natural associations. However, with some products, Sybase being one

of them, one transaction will always write to the same partition, thus achieving some

business-process-related grouping of data.

Data-Driven Partitioning

There is, however, a much more interesting type of partitioning known as data-driven

partitioning. With data-driven partitioning, it is the values, found in one or several

columns, that defines the partition into which each row is inserted. As always, the more

the DBMS knows about the data and how it is stored, the better.

Most really large tables are large because they contain historical data. However, our

interest in a particular news event quickly wanes as new and fresher events crowd in to

demand our attention, so it is a safe assumption to make that the most-often-queried

subset of historical data is the most recent one. It is therefore quite natural to try to

partition data by date, separating the wheat from the chaff, the active data from the

dormant data.

For instance, a manual way to partition by date is to split a large figures table (containing

data for the last twelve months) into twelve separate tables, one for each month, namely

jan_figures, feb_figures...all the way to dec_figures. To ensure that a global vision of the

year is still available for any queries that require it, we just have to define figures as the

union of those twelve tables. Such a union is often given some kind of official endorsement

at the database level as a partitioned view, or (in MySQL) a merge table. During the month

of March, we’ll insert into the table mar_figures. Then we’ll switch to apr_figures for the

following month. The use of a view as a blanket object over a set of similarly structured

tables may appear an attractive idea, but it has drawbacks:
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• The capital sin is that such a view builds in a fundamental design flaw. We know that

the underlying tables are logically related, but we have no way to inform the DBMS of

their relationships except, in some cases, via the rather weak definition of the parti-

tioned view. Such a multi-table design prevents us from correctly defining integrity

constraints. We have no easy way to enforce uniqueness properly across all the under-

lying tables, and as a matter of consequence, we would have to build multiple foreign

keys referencing this “set” of tables, a situation that becomes utterly difficult and

unnatural. All we can do in terms of integrity is to add a check constraint on the col-

umn that determines partitioning. For example, we could add a check constraint to

sales_date, to ensure that sales_date in the jun_sales table cannot fall outside the June

1 to June 30 range.

• Without specific support for partitioned views in your DBMS, it is rather inconvenient

to code around such a set of tables, because every month we must insert into a differ-

ent underlying table. This means that insert statements must be dynamically built to

accommodate varying table names. The effect of dynamic statements is usually to sig-

nificantly increase the complexity of programs. In our case, for instance, a program

would have to get the date, either the current one or some input value, check it,

determine the name of the table corresponding to that date, and build up a suitable

SQL statement. However, the situation is much better with partitioned views, because

insertions can then usually be performed directly through the view, and the DBMS

takes care of where to insert the rows.

In all cases, however, as a direct consequence of our flawed design, it is quite likely

that after some unfortunate and incoherent insertions we shall be asked to code refer-

ential integrity checks, thus further compounding a poor design with an increased

development load—both for the developers and for the machine that runs the code.

This will move the burden of integrity checking from the DBMS kernel to, in the best

of cases, code in triggers and stored procedures and, in the worst of cases, to the appli-

cation program.

• There is a performance impact on queries when using blanket views. If we are inter-

ested in the figures for a given month, we can query a single table. If we are inter-

ested in the figures from the past 30 days, we will most often need to query two

tables. For queries, then, the simplest and more maintainable way to code is to query

the view rather than the underlying tables. If we have a partitioned view and if the

column that rules the placement of rows belongs to our set of criteria, the DBMS opti-

mizer will be able to limit the scope of our query to the proper subset of tables. If not,

our query will necessarily be more complicated than it would be against a regular

table, especially if it is a complex query involving subqueries or aggregates. The com-

plexity of the query will continue to increase as more tables become involved in the

union. The overhead of querying a large union view over directly querying a single table

will quickly show in repeatedly executed statements.
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Historically, the first step taken by most database management systems towards

partitioning has been the support of partitioned views. The next logical step has been

support for true data-driven partitioning. With true partitioning, we have a single table at

the logical level, with a true primary key able to be referenced by other tables. In

addition, we have one or several columns that are defined as the partition key; their values

are used to determine into which partition a row is inserted. We have all the advantages

of partitioned views, transparency when operating on the table, and we can push back to

the DBMS engine the task of protecting the integrity of the data, which is one of the

primary functions of the DBMS. The kernel knows about partitioning, and the optimizer

will know how to exploit such a physical structure, by either limiting operations to a

small number of partitions (something known as partition pruning), or by operating on

several partitions in parallel.

The exact way partitioning is implemented and the number of available options is

product-dependent. There are several different ways to partition data, which may be

more or less appropriate to particular situations:

Hash-partitioning

Spreads data by determining the partition as the result of a computation on the

partition key. It’s a totally arbitrary placement based entirely on an arithmetic

computation, and it takes no account at all of the distribution of data values.

Hash-partitioning does, however, ensure very fast access to rows for any specific

value of the partition key. It is useless for range searching, because the hash

function transforms consecutive key values into non-consecutive hash values,

and it’s these hash values that translate to physical address.

N O T E
DB2 provides an additional mechanism called range-clustering, which, although not

the same as partitioning, nevertheless uses the data from the key to determine

physical location. It does this through a mechanism that, in contrast to hashing,

preserves the order of data items. We then gain on both counts, with efficient

specific accesses as well as efficient range scans.

Range-partitioning

Seeks to gather data into discrete groups according to continuous data ranges.

It’s ideally suited for dealing with historical data. Range-partitioning is closest to

the concept of partitioned views that we discussed earlier: a partition is defined

as being dedicated to the storage of values falling within a certain range. An else

partition is set up for catching everything that might slip through the net.

Although the most common use of range partitioning is to partition by range of

temporal values, whether it is hours or years or anything between, this type of

partitioning is in no way restricted to a particular type of data. A multivolume
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encyclopedia in which the articles in each volume would indeed be within the

alphabetical boundaries of the volume but otherwise in no particular order pro-

vides a good example of range partitioning.

List-partitioning

Is the most manual type of partitioning and may be suitable for tailor-made

solutions. Its name says it all: you explicitly specify that rows containing a list of

the possible values for the partition key (usually just one column) will be

assigned to a particular partition. List-partitioning can be useful when the distri-

bution of values is anything but uniform.

The partitioning process can sometimes be repeated with the creation of subpartitions. A

subpartition is merely a partition within a partition, giving you the ability to partition against

a second dimension by creating, for instance, hash-partitions within a range-partition.

Data partitioning is most valuable when it is based on the data

values themselves.

The Double-Edged Sword of Partitioning
Despite the fact that partitioning spreads data from a table over multiple, somewhat

independent partitions, data-driven partitioning is not a panacea for resolving

concurrency problems. For example, we might partition a table by date, having one

partition per week of activity. Doing so is an efficient way to spread data for one year

over 52 logically distinct areas. The problem is that during any given week everybody will

rush to the same partition to insert new rows. Worse, if our partitioning key is the

current system date and time, all concurrent sessions will be directed towards the very

same data block (unless some structural implementation tricks have been introduced,

such as maintaining several lists of pages or blocks where we can insert). As a result, we

may have some very awkward memory contention. Our large table will become a

predominantly cold area, with a very hot spot corresponding to most current data. Such

partitioning is obviously less than ideal when many processes are inserting concurrently.

N O T E
If all data is inserted through a single process, which is sometimes the case in data-

warehousing environments, then we won’t have a hot spot to contend with, and our

52-week partitioning scheme won’t lead to concurrency problems.

On the other hand, let’s assume that we choose to partition according to the geographical

origin of a purchase order (we may have to carefully organize our partitioning if our

products are more popular in some areas and suffer from heavier competition elsewhere).
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At any given moment, since sales are likely to come from nowhere in particular, our

inserts will be more or less randomly spread over all our partitions. The performance

impact from our partitioning will be quite noticeable when we are running geographical

reports. Of course, because we have partitioned on spatial criteria, time-based reports will

be less efficiently generated than if we had partitioned on time. Nevertheless, even time-

based queries may, to some extent, benefit from partitioning since it is quite likely that

on a multiprocessor box the various partitions will be searched in parallel and the

subsequent results merged.

There are therefore two sides to partitioning. On the one hand, it is an excellent way to

cluster data according to the partitioning key so as to achieve faster data retrieval. On the

other hand, it is a no-less-excellent way to spread data during concurrent inserts so as to

avoid hot spots in the table. These two objectives can work in opposition to one another,

so the very first thing to consider when partitioning is to identify the major problem, and

partition against that. But it is important to check that the gain on one side is not offset

by the loss on the other. The ideal case is when the clustering of data for selects goes

hand in hand with suitably spread inserts, but this is unfortunately not the most

common situation.

Data partitioning can be used to scatter or cluster your data: it all

depends on your requirements.

Partitioning and Data Distribution
You may be tempted to believe that if we have a very large table and want to avoid

contention when many sessions are simultaneously writing to the database, then we are

necessarily better off partitioning the data in one way or another. This is not always true.

Suppose that we have a large table storing the details of orders passed by our customers.

If, as sometimes happens, a single customer represents the bulk of our activity,

partitioning on the customer identifier is not going to help us very much. We can very

roughly divide our queries into two families: queries relating to our big customer and

queries relating to the other, smaller customers. When we query the data relating to one

small customer, an index on the customer identifier will be very selective and therefore

efficient, without any compelling need for partitioning. A clever optimizer fed with

suitable statistics about the distribution of keys will be able to detect the skewness and

use the index. There will be little benefit to having those small customers stored into

smallish partitions next to the big partition holding our main customer.
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Conversely, when querying the data attached to our major customer, the very same

clever optimizer will understand that scanning the table is by far the most efficient way of

proceeding. In that case, fully scanning a partition that comprises, for example, 80% of

the total volume will not be much faster than doing a full table scan. The end users will

hardly notice the performance advantage, whereas the purchasing department will most

certainly notice the extra cost of the separately priced partitioning option.

The biggest benefits to queries of table partitioning are obtained

when data is uniformly spread in respect to the partitioning key.

The Best Way to Partition Data
Never forget that what dictates the choice of a nonstandard storage option such as

partitioning is the global improvement of business operations. It may mean improving a

business process that is perceived as being of paramount importance to the detriment of

some other processes. For instance, it makes sense to optimize transactional processing

that takes place during business hours at the expense of a nightly batch job that has

ample time to complete. The opposite may also be true, and we may decide that we can

afford to have very slightly less responsive transactions if it allows us to minimize a

critical upload time during which data is unavailable to users. It’s a matter of balance.

In general, you should avoid unduly favoring one process over another that needs to be

run under similar conditions. In this regard, any type of storage that positions data at

different locations based on the data value (for example both clustering indexes as well as

partitioning) are very costly when that value is updated. What would have previously

been an in situ update in a regular table, requiring hardly more than perhaps changing

and shifting a few bytes in the table at an invariant physical address, becomes a delete on

one part of the disk, followed by an insert somewhere else, with all the maintenance

operations usually associated with indexes for this type of operation.

Having to move data when we update partition keys seems, on the surface, to be a

situation best avoided. Strangely, however, partitioning on a key that is updated may

sometimes be preferable to partitioning on a key that is immutable once it has been

inserted. For example, suppose that we have a table being used as a service queue. Some

process inserts service requests into this table that are of different types (say type T1 to

type Tn). New service requests are initially set to status W, meaning “waiting to be

processed.” Server processes S1 to Sp regularly poll the table for requests with the W

status, change the status of those requests to P (meaning “being processed”), and then, as

each request is completed its status is set to D for “done.”
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Let’s further suppose that we have as many server processes as we have request types,

and that each server process is dedicated to handling a particular type of request. Figure

5-5 shows the service queue as well as the processes. Of course, since we cannot let the

table fill with “done” requests, there must be some garbage-collecting process, not shown,

that removes processed requests after a suitable delay.

Each server process regularly executes a select (actually, a select ... for update) query

with two criteria, the type, which depends on the server, and a condition:

and status = 'W'

Let’s consider alternative ways of partitioning the service queue table. One way to

partition the table, and possibly the most obvious, is to partition by request type. There is

a big advantage here should any server process crash or fall behind in one way or

another. The queue will lengthen for that process until it finally catches up, but the

interruption to the processing of that queue will have no influence on the other

processes.

Another advantage of partitioning by request type is that we avoid having requests of any

one type swamp the system. Without partitioning, the polling processes scan a queue that

under normal circumstances contains very few rows of interest. If we have a common

waiting line and all of a sudden we have a large number of requests of one type and

status, all the processes will have more requests to inspect and therefore each will be

slowed down. If we partition by type, we establish a watertight wall between the

processing of different types.

But there is another possible way to partition our service queue table, and that is by

status. The downside is obvious: any status change will make a request migrate from one

partition to the next. Can there be any advantage to such migration? Actually, there may

F I G U R E  5 - 5 . A service queue
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indeed be benefit in this approach. Everything in partition W is ready and waiting to be

processed. So there is no need to scan over requests being processed by another server or

requests that have already been processed. Therefore, the cost of polling may be

significantly reduced. Another advantage is that garbage collection will operate on a

separate partition, and will not disturb the servers.

We cannot say definitively that “partitioning must be by type” or “partitioning must be by

status.” It depends on how many servers we have, their polling frequency, the relative

rate at which data arrives, the processing time for each type of request, and how often we

remove processed requests, and so on. We must carefully test various hypotheses and

consider the overall picture. But it is sometimes more efficient for the overall system to

sacrifice outright performance for one particular operation, if by doing so other, more

frequently running processes are able to obtain a net advantage, thus benefiting the

global business operations.

There may be several ways to partition tables, and the most

obvious is not always the most efficient. Always consider the

global picture.

Pre-Joining Tables
We have seen that physically grouping rows together is of most benefit when performing

range scans, where we are obviously interested in a succession of logically adjacent rows.

But our discussion so far has been with regard to retrieving data from only one table.

Unless the database design is very, very, very bad, most queries will involve far more

than one table. It may therefore seem somewhat questionable if we group all the data

from one table into one physical location, only to have to complete the retrieval by

visiting several randomly scattered locations for data from a second and subsequent

tables. We need some method to group data from at least two tables into the same

physical location on disk.

The answer lies in pre-joined tables, a technique that is supported by some database

systems. Pre-joining is not the same as summary tables or materialized views, which are

themselves nothing other than redundant data, pre-digested results that are updated

more or less automatically.

Pre-joined tables are tables that are physically stored together, based on some criterion

that will usually be the join condition. (Oracle calls such a set of pre-joined tables a

cluster, which has nothing to do with either index clustering, as defined earlier in this

chapter, nor with the MySQL clusters of databases, which are multiple servers accessing

the same set of tables.)
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When tables are pre-joined, the basic unit of storage (a page or a block), normally

devoted to the data from a single table, holds data from two or more tables, brought

together on the basis of a common join key. This arrangement may be very efficient for

one specific join. But it often proves to be a disaster for everything else. Here’s a review of

some of the disadvantages of pre-joining tables:

• Once the data from two or more tables starts to be shared within one page (or block),

the amount of data from one table that can be held in one database page obviously

falls, as the page is now sharing its fixed space between two or more tables. Conse-

quently, there is a net increase in the number of pages needed to hold all the data

from that one table. More I/O is required than previously if a full table scan has to be

performed.

• Not only is data being shared across additional pages, but the effective size of those

pages has been reduced from what was obviously judged to be the optimum at data-

base creation time, and so overflow and chaining start to become significant problems.

When this happens, the number of successive accesses required to reach the actual

data also increases.

• Moreover, as anybody who has ever shared an apartment will know, one person often

expands space occupancy at the expense of the other. Database tables are just the

same! If you want to address this problem by allocating strictly identical storage to

each table per page in the cluster, the result is frequently storage waste and the use of

even more pages.

This particular type of storage should be used extremely sparingly to solve very specific

issues, and then only by database administrators. Developers should forget about this

technique.

Pre-joining tables is a very specialized tactic to facilitate queries,

but is often done to the detriment of just about every other

database activity.

Holy Simplicity
It is reasonable and safe to assume that any storage option that is not the default one,

however attractive it may look, can introduce a degree of complexity out of all proportion

to the possible gains that may (or may not) be achieved. In the worst case, a poorly

chosen storage option can dramatically degrade performance. Military history is full of

impregnable fortresses built in completely the wrong places that failed to fill any useful

purpose, and of many a Great Wall that never prevented any invasion because the
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enemy, a bad sport, failed to behave as planned. All organizations undergo changes, such

as divisions and mergers. Business plans and processes may change, too. Careful plans

may have to be scrapped and rebuilt from scratch.

The trouble with structuring data in a particular way is that it is often done with a

particular type of process in mind. One of the beauties of the relational model is its

flexibility. By strongly structuring your data at the physical level, you may sacrifice, in a

somewhat hidden way, some of this flexibility. Of course, some structures are less

constraining than others, and data partitioning is almost unavoidable with enormous

databases. But always test very carefully and keep in mind that changing the physical

structure of a big database because it was poorly done initially can take days, if not

weeks, to complete.

The physical storage organization that works for us today may

work against us tomorrow.





Chapter 6. C H A P T E R S I X

The Nine Situations
Recognizing Classic SQL Patterns

Je pense que pour conserver la clarté dans le récit d’une action de guerre, il faut

se borner à...ne raconter que les faits principaux et décisifs du combat.

To preserve clarity in relating a military action, I think one ought to be content with.. .
reporting only the facts that affected the decision.

—Général Baron de Marbot (1782–1854)

Mémoires, Book I, xxvi
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A ny SQL statement that we execute has to examine some amount of data before

identifying a result set that must be either returned or changed. The way that we have to

attack that data depends on the circumstances and conditions under which we have to

fight the battle. As I discuss in Chapter 4, our attack will depend on the amount of data

from which we retrieve our result set and on our forces (the filtering criteria), together

with the volume of data to be retrieved.

Any large, complicated query can be divided into a succession of simpler steps, some of

which can be executed in parallel, rather like a complex battle is often the combination of

multiple engagements between various distinct enemy units. The outcome of these

different fights may be quite variable. But what matters is the final, overall result.

When we come down to the simpler steps, even when we do not reach a level of detail as

small as the individual steps in the execution plan of a query, the number of possibilities

is not much greater than the individual moves of pieces in a chess game. But as in a chess

game, combinations can indeed be very complicated.

This chapter examines common situations encountered when accessing data in a properly

normalized database. Although I refer to queries in this chapter, these example situations

apply to updates or deletes as well, as soon as a where clause is specified; data must be

retrieved before being changed. When filtering data, whether it is for a simple query or to

update or delete some rows, the following are the most typical situations—I call them the

nine situations—that you will encounter:

• Small result set from a few tables with specific criteria applied to those tables

• Small result set based on criteria applied to tables other than the data source tables

• Small result set based on the intersection of several broad criteria

• Small result set from one table, determined by broad selection criteria applied to two

or more additional tables

• Large result set

• Result set obtained by self-joining on one table

• Result set obtained on the basis of aggregate function(s)

• Result set obtained by simple searching or by range searching on dates

• Result set predicated on the absence of other data

This chapter deals with each of these situations in turn and illustrates them with either

simple, specific examples or with more complex real-life examples collected from

different programs. Real-life examples are not always basic, textbook, one- or two-table

affairs. But the overall pattern is usually fairly recognizable.
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As a general rule, what we require when executing a query is the filtering out of any data

that does not belong in our final result set as soon as possible; this means that we must

apply the most efficient of our search criteria as soon as possible. Deciding which criterion

to apply first is normally the job of the optimizer. But, as I discuss in Chapter 4, the

optimizer must take into account a number of variable conditions, from the physical

implementation of tables to the manner in which we have written a query. Optimizers do

not always “get it right,” and there are things we can do to facilitate performance in each

of our nine situations.

Small Result Set, Direct Specific Criteria
The typical online transaction-processing query is a query returning a small result set

from a few tables and with very specific criteria applied to those tables. When we are

looking for a few rows that match a selective combination of conditions, our first priority

is to pay attention to indexes.

The trivial case of a single table or even a join between two tables that returns few rows

presents no more difficulty than ensuring that the query uses the proper index. However,

when many tables are joined together, and we have input criteria referring to, for

instance, two distinct tables TA and TB, then we can either work our way from TA to TB or

from TB to TA. The choice depends on how fast we can get rid of the rows we do not want.

If statistics reflect the contents of tables with enough accuracy, the optimizer should,

hopefully, be able to make the proper decision as to the join order.

When writing a query to return few rows, and with direct, specific criteria, we must

identify the criteria that are most efficient at filtering the rows; if some criteria are highly

critical, before anything else, we must make sure that the columns corresponding to

those criteria are indexed and that the indexes can be used by the query.

Index Usability

You’ve already seen in Chapter 3 that whenever a function is applied to an indexed

column, a regular index cannot be used. Instead, you would have to create a functional

index, which means that you index the result of the function applied to the column

instead of indexing the column.

Remember too that you don’t have to explicitly invoke a function to see a function

applied; if you compare a column of a given type to a column or literal value of a

different type, the DBMS may perform an implicit type conversion (an implicit call to a

conversion function), with the performance hit that one can expect.

Once we are certain that there are indexes on our critical search criteria and that our

query is written in such a way that it can take full advantage of them, we must

distinguish between unique index fetches of a single row, and other fetches—non-unique

index or a range scan of a unique index.
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Query Efficiency and Index Usage

Unique indexes are excellent when joining tables. However, when the input to a query is

a primary key and the value of the primary key is not a primitive input to the program,

then you may have a poorly designed program on your hands.

What I call primitive input is data that has been fed into the program, either typed in by a

user or read from a file. If the primary key value has been derived from some primitive

input and is itself the result of a query, the odds are very high that there is a massive

design flaw in the program. Because this situation often means that the output of one

query is used as the input to another one, you should check whether the two queries can

be combined.

Excellent queries don’t necessarily come from excellent programs.

Data Dispersion

When indexes are not unique, or when a condition on a unique index is expressed as a

range, for instance:

where customer_id between ... and ...

or:

where supplier_name like 'SOMENAME%'

the DBMS must perform a range scan. Rows associated with a given key may be spread

all over the table being queried, and this is something that a cost-based optimizer often

understands. There are therefore cases when an index range scan would require the

DBMS kernel to fetch, one by one, a large number of table data pages, each with very

few rows of relevance to the query, and when the optimizer decides that the DBMS

kernel is better off scanning the table and ignoring the index.

You saw in Chapter 5 that many database systems offer facilities such as table partitions

or clustered indexes to direct the storage of data that we would like to retrieve together.

But the mere nature of data insertion processes may well lead to clumping of data. When

we associate a timestamp with each row and do mostly inserts into a table, the chances

are that most rows will be inserted next to one another (unless we have taken special

measures to limit contention, as I discuss in Chapter 9). The physical proximity of the

inserted rows is not an absolute necessity and, in fact, the notion of order as such is

totally foreign to relational algebra. But, in practice, it is what may happen. Therefore,
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when we perform a range scan on the index on the timestamp column to look for index

entries close together in time, the chances are that the rows in question will be close

together too. Of course, this will be even truer if we have tweaked the storage so as to get

such a result.

Now, if the value of a key bears no relation to any peculiar circumstance of insertion nor

to any hidden storage trick, the various rows associated with a key value or with a range

of key values can be physically placed anywhere on disk. The keys in the index are

always, by construction, held in sorted order. But the associated rows will be randomly

located in the table. In practice, we shall have to visit many more blocks to answer a

query involving such an index than would be the case were the table partitioned or the

index clustered. We can have, therefore, two indexes on the same table, with strictly

identical degrees of selectivity, one of which gives excellent results, and the other one,

significantly worse results, a situation that was mentioned in Chapter 3 and that it is now

time to prove.

To illustrate this case I have created a 1,000,000–row table with three columns c1, c2, and

c3, c1 being filled with a sequence number (1 to 1,000,000), c2 with all different random

numbers in the range 1 to 2,000,000, and c3 with random values that can be, and usually

are, duplicated. On face value, and from a logical point of view, c1 and c2 are both unique

and therefore have identical selectivity. In the case of the index on column c1, the order

of the rows in the table matches the order in the index. In a real case, some activity

against the table might lead to “holes” left by deletions and subsequently filled with out-

of-order records due to new insertions. By contrast, the order of the rows in the table

bears no relation to the ordering of the keys in the index on c2.

When we fetch c3, based on a range condition of the type:

where column_name between some_value and some_value + 10

it makes a significant difference whether we use c1 and its associated index (the ordered

index, where keys are ordered as the rows in the table) or c2 and its associated index (the

random index), as you can see in Figure 6-1. Don’t forget that we have such a difference

because additional accesses to the table are required in order to fetch the value of c3;

there would be no difference if we had two composite indexes, on (c1, c3) and (c2, c3),

because then we could return everything from an index in which the keys are ordered.

The type of difference illustrated in Figure 6-1 also explains why sometimes performance

can degrade over time, especially when a new system is put into production with a

considerable amount of data coming from a legacy system. It may happen that the initial

data loading imposes some physical ordering that favors particular queries. If a few

months of regular activity subsequently destroys this order, we may suffer over this

period a mysterious 30–40% degradation of performance.
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It should be clear by now that the solution “can’t the DBAs reorganize the database from

time to time?” is indeed a fudge, not a solution. Database reorganizations were once quite

in vogue. Ever-increasing volumes, 99.9999% uptime requirements and the like have

made them, for the most part, an administrative task of the past. If the physical

implementation of rows really is crucial for a critical process, then consider one of the

self-organizing structures discussed Chapter 5, such as clustered indexes or index-

organized tables. But keep in mind that what favors one type of query sometimes

disadvantages another type of query and that we cannot win on all fronts.

Performance variation between comparable indexes may be due

to physical data dispersion.

Criterion Indexability

Understand that the proper indexing of specific criteria is an essential component of the

“small set, direct specific criteria” situation. We can have cases when the result set is

small and some criteria may indeed be quite selective, but are of a nature that isn’t

suitable for indexing: the following real-life example of a search for differences among

different amounts in an accounting program is particularly illustrative of a very selective

criterion, yet unfit for indexing.

In the example to follow, a table named glreport contains a column named amount_diff

that ought to contain zeroes. The purpose of the query is to track accounting errors, and

identify where amount_diff isn’t zero. Directly mapping ledgers to tables and applying a

logic that dates back to a time when these ledgers where inked with a quill is rather

questionable when using a modern DBMS, but unfortunately one encounters

F I G U R E  6 - 1 . Difference of performance when the order in the index matches the order of the rows in the

table
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questionable databases on a routine basis. Irrespective of the quality of the design, a

column such as amount_diff is typical of a column that should not be indexed: ideally

amount_diff should contain nothing but zeroes, and furthermore, it is obviously the result

of a denormalization and the object of numerous computations. Maintaining an index on

a column that is subjected to computations is even costlier than maintaining an index on

a static column, since a modified key will “move” inside the index, causing the index to

undergo far more updates than from the simple insertion or deletion of nodes.

All specific criteria are not equally suitable for indexing. In

particular, columns that are frequently updated increase

maintenance costs.

Returning to the example, a developer came to me one day saying that he had to

optimize the following Oracle query, and he asked for some expert advice about the

execution plan:

select
    total.deptnum,
    total.accounting_period,
    total.ledger,
    total.cnt,
    error.err_cnt,
    cpt_error.bad_acct_count
from
 -– First in-line view
 (select
      deptnum,
      accounting_period,
      ledger,
      count(account) cnt
 from
      glreport
 group by
      deptnum,
      ledger,
      accounting_period) total,
 -– Second in-line view
 (select
     deptnum,
     accounting_period,
     ledger,
     count(account) err_cnt
 from
     glreport
 where
     amount_diff <> 0
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 group by
     deptnum,
     ledger,
     accounting_period) error,
 -– Third in-line view
 (select
     deptnum,
     accounting_period,
     ledger,
     count(distinct account) bad_acct_count
 from
     glreport
 where
     amount_diff <> 0
 group by
     deptnum,
     ledger,
     accounting_period
 ) cpt_error
where
   total.deptnum = error.deptnum(+) and
   total.accounting_period = error.accounting_period(+) and
   total.ledger = error.ledger(+) and
   total.deptnum = cpt_error.deptnum(+) and
   total.accounting_period = cpt_error.accounting_period(+) and
   total.ledger = cpt_error.ledger(+)
order by
   total.deptnum,
   total.accounting_period,
   total.ledger

For readers unfamiliar with Oracle-specific syntax, the several occurrences of (+) in the

outer query’s where clause indicate outer joins. In other words:

select whatever
from ta,
     tb
where ta.id = tb.id (+)

is equivalent to:

select whatever
from ta
     outer join tb
             on tb.id = ta.id

The following SQL*Plus output shows the execution plan for the query:

10:16:57 SQL> set autotrace traceonly
10:17:02 SQL> /

37 rows selected.

Elapsed: 00:30:00.06



T H E  N I N E  S I T U A T I O N S 135

Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT Optimizer=CHOOSE
                    (Cost=1779554 Card=154 Bytes=16170)
   1    0   MERGE JOIN (OUTER) (Cost=1779554 Card=154 Bytes=16170)
   2    1     MERGE JOIN (OUTER) (Cost=1185645 Card=154 Bytes=10780)
   3    2       VIEW (Cost=591736 Card=154 Bytes=5390)
   4    3         SORT (GROUP BY) (Cost=591736 Card=154 Bytes=3388)
   5    4           TABLE ACCESS (FULL) OF 'GLREPORT'
                            (Cost=582346 Card=4370894 Bytes=96159668)
   6    2       SORT (JOIN) (Cost=593910 Card=154 Bytes=5390)
   7    6         VIEW (Cost=593908 Card=154 Bytes=5390)
   8    7           SORT (GROUP BY) (Cost=593908 Card=154 Bytes=4004)
   9    8             TABLE ACCESS (FULL) OF 'GLREPORT'
                              (Cost=584519 Card=4370885 Bytes=113643010)
  10    1     SORT (JOIN) (Cost=593910 Card=154 Bytes=5390)
  11   10       VIEW (Cost=593908 Card=154 Bytes=5390)
  12   11         SORT (GROUP BY) (Cost=593908 Card=154 Bytes=5698)
  13   12           TABLE ACCESS (FULL) OF 'GLREPORT'
                            (Cost=584519 Card=4370885 Bytes=161722745)

Statistics
----------------------------------------------------------
        193  recursive calls
          0  db block gets
    3803355  consistent gets
    3794172  physical reads
       1620  redo size
       2219  bytes sent via SQL*Net to client
        677  bytes received via SQL*Net from client
          4  SQL*Net roundtrips to/from client
         17  sorts (memory)
          0  sorts (disk)
         37  rows processed

I must confess that I didn’t waste too much time on the execution plan, since its most

striking feature was fairly apparent from the text of the query itself: it shows that the

table glreport, a tiny 4 to 5 million–row table, is accessed three times, once per subquery,

and each time through a full scan.

Nested queries are often useful when writing complex queries, especially when you

mentally divide each step, and try to match a subquery to every step. But nested queries

are not silver bullets, and the preceding example provides a striking illustration of how

easily they may be abused.

The very first inline view in the query computes the number of accounts for each

department, accounting period, and ledger, and represents a full table scan that we

cannot avoid. We need to face realities; we have to fully scan the table, because we are

including all rows when we check how many accounts we have. We need to scan the

table once, but do we absolutely need to access it a second or third time?



136 C H A P T E R S I X

If a full table scan is required, indexes on the table become

irrelevant.

What matters is to be able to not only have a very analytic view of processing, but also to

be able to stand back and consider what we are doing in its entirety. The second inline

view counts exactly the same things as the first one—except that there is a condition on

the value of amount_diff. Instead of counting with the count( ) function, we can, at the

same time as we compute the total count, add 1 if amount_diff is not 0, and 0 otherwise.

This is very easy to write with the Oracle-specific decode(u, v, w, x) function or using the

more standard case when u = v then w else x end construct.

The third inline view filters the same rows as the second one; however, here we want to

count distinct account numbers. This counting is a little trickier to merge into the first

subquery; the idea is to replace the account numbers (which, by the way, are defined as

varchar2* in the table) by a value which is totally unlikely to occur when amount_diff is 0;

chr(1) (Oracle-speak to mean the character corresponding to the ASCII value 1) seems to be an

excellent choice (I always feel a slight unease at using chr(0) with something written in C

like Oracle, since C terminates all character strings with a chr(0)). We can then count

how many distinct accounts we have and, of course, subtract one to avoid counting the

dummy chr(1) account.

So this is the suggestion that I returned to the developer:

select  deptnum,
        accounting_period,
        ledger,
        count(account) nb,
        sum(decode(amount_diff, 0, 0, 1)) err_cnt,
        count(distinct decode(amount_diff, 0, chr(1), account)) – 1
                                     bad_acct_count
 from
      glreport
 group by
       deptnum,
       ledger,
       accounting_period

My suggestion was reported to be four times as fast as the initial query, which came as no

real surprise since the three full scans had been replaced by a single one.

Note that there is no longer any where clause in the query: we could say that the

condition on amount_diff has “migrated” to both the logic performed by the decode( )

function inside the select list and the aggregation performed by the group by clause. The

* To non-Oracle users, the varchar2 type is, for all practical purposes, the same as the varchar type.
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replacement of a filtering condition that looked specific with an aggregate demonstrates

that we are here in another situation, namely a result set obtained on the basis of an

aggregate function.

In-line queries can simplify a query, but can result in excessive

and duplicated processing if used without care.

Small Result Set, Indirect Criteria
A situation that is superficially similar to the previous one is when you have a small result

set that is based on criteria applied to tables other than the data source tables. We want data

from one table, and yet our conditions apply to other, related tables from which we don’t

want any data to be returned. A typical example is the question of “which customers have

ordered a particular item” that we amply discussed earlier in Chapter 4. As you saw in

Chapter 4, this type of query can be expressed in either of two ways:

• As a regular join with a distinct to remove duplicate rows that are the result, for

instance, of customers having ordered the same item several times

• By way of either a correlated or uncorrelated subquery

If there is some particularly selective criterion to apply to the table (or tables) from which

we obtain the result set, there is no need to say much more than what has been said in

the previous situation “Small Result Set, Direct Specific Criteria”: the query will be driven

by the selective criterion. and the same reasoning applies. But if there is no such

criterion, then we have to be much more careful.

To take a simplified version of the example in Chapter 4, identifying the customers who

have ordered a Batmobile, our typical case will be something like the following:

select distinct orders.custid
from orders
     join orderdetail
        on (orderdetail.ordid = orders.ordid)
     join articles
        on (articles.artid = orderdetail.artid)
where articles.artname = 'BATMOBILE'

In my view it is much better, because it is more understandable, to make explicit the test

on the presence of the article in a customer’s orders by using a subquery. But should that

subquery be correlated or uncorrelated? Since we have no other criterion, the answer

should be clear: uncorrelated. If not, one would have to scan the orders table and fire the

subquery for each row—the type of big mistake that passes unnoticed when we start with

a small orders table but becomes increasingly painful as the business gathers momentum.
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The uncorrelated subquery can either be written in the classic style as:

select distinct orders.custid
from orders
where ordid in (select orderdetails.ordid
                from orderdetail
                     join articles
                       on (articles.artid = orderdetail.artid)
                where articles.artname = 'BATMOBILE')

or as a subquery in the from clause:

select distinct orders.custid
from orders,
     (select orderdetails.ordid
      from orderdetail
           join articles
             on (articles.artid = orderdetail.artid)
      where articles.artname = 'BATMOBILE') as sub_q
where sub_q.ordid = orders.ordid

I find the first query more legible, but it is really a matter of personal taste. Don’t forget

that an in( ) condition on the result of the subquery implies a distinct and therefore a

sort, which takes us to the fringe of the relational model.

Where using subqueries, think carefully before choosing either a

correlated or uncorrelated subquery.

Small Intersection of Broad Criteria
The situation we talk about in this section is that of a small result set based on the

intersection of several broad criteria. Each criterion individually would produce a large

result set, yet the intersection of those individual, large sets is a very small, final result set

returned by the query.

Continuing on with our query example from the preceding section, if the existence test

on the article that was ordered is not selective, we must necessarily apply some other

criteria elsewhere (otherwise the result set would no longer be a small result set). In this

case, the question of whether to use a regular join, a correlated subquery, or an

uncorrelated subquery usually receives a different answer depending on both the relative

“strength” of the different criteria and the existing indexes.

Let’s suppose that instead of checking people who have ordered a Batmobile, admittedly

not our best-selling article, we look for customers who have ordered something that I

hope is much less unusual, in this case some soap, but purchased last Saturday. Our

query then becomes something like this:
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select distinct orders.custid
from orders
     join orderdetail
        on (orderdetail.ordid = orders.ordid)
     join articles
        on (articles.artid = orderdetail.artid)
where articles.artname = 'SOAP'
  and <selective criterion on the date in the orders table>

Quite logically, the processing flow will be the reverse of what we had with a selective

article: get the article, then the order lines that contained the article, and finally the orders.

In the case we’re currently discussing, that of orders for soap, we should first get the small

number of orders placed during the relatively short interval of time, and then check which

ones refer to the article soap. From a practical point of view, we are going to use a totally

different set of indexes. In the first case, ideally, we would like to see one index on the

article name and one on the article identifier in the orderdetail table, and then we would

have used the index on the primary key ordid in the orders table. In the case of orders for

soap, what we want to find is an index on the date in orders and then one on orderid in

orderdetail, from which we can use the index on the primary key of articles—assuming,

of course, that in both cases using the indexes is the best course to take.

The obvious natural choice to get customers who bought soap last Saturday would appear

to be a correlated subquery:

select distinct orders.custid
from orders
where <selective criterion on the date in the orders table>
  and exists (select 1
              from orderdetail
                  join articles
                    on (articles.artid = orderdetail.artid)
                where articles.artname = 'SOAP'
                  and orderdetails.ordid = orders.ordid)

In this approach, we take for granted that the correlated subquery executes very quickly.

Our assumption will prove true only if orderdetail is indexed on ordid (we shall then get

the article through its primary key artid; therefore, there is no other issue).

You’ve seen in Chapter 3 that indexes are something of a luxury in transactional

databases, due to their high cost of maintenance in an environment of frequent inserts,

updates, and deletes. This cost may lead us to opt for a “second-best” solution. The

absence of the vital index on orderdetail and good reason for not creating further indexes

might prompt us to consider the following:

select distinct orders.custid
from orders,
     (select orderdetails.ordid
      from orderdetail,
           articles
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      where articles.artid = orderdetail.artid
        and articles.artname = 'SOAP') as sub_q
where sub_q.ordid = orders.ordid
  and <selective criterion on the date in the orders table>

In this second approach, the index requirements are different: if we don’t sell millions of

articles, it is likely that the condition on the article name will perform quite satisfactorily

even in the absence of any index on artname. We shall probably not need any index on

the column artid of orderdetail either: if the article is popular and appears in many

orders, the join between orderdetail and articles is probably performed in a more

efficient manner by hash or merge join, rather than by a nested loop that would need

such an index on artid. Compared to the first approach, we have here a solution that we

could call a low index solution. Because we cannot afford to create indexes on each and

every column in a table, and because we usually have in every application a set of

“secondary” queries that are not absolutely critical but only require a decent response

time, the low index approach may perform in a perfectly acceptable manner.

Adding one extra search criterion to an existing query can

completely change a previous construct: a modified query is a new

query.

Small Intersection, Indirect Broad Criteria
An indirect criterion is one that applies to a column in a table that you are joining only for

the purpose of evaluating the criterion. The retrieval of a small result set through the

intersection of two or more broad criteria, as in the previous situation “Small Intersection

of Broad Criteria,” is often a formidable assignment. Obtaining the intersection of the

large intermediary result sets by joining from a central table, or even through a chain of

joins, makes a difficult situation even more daunting. This situation is particularly typical

of the “star schema” that I discuss in some detail in Chapter 10, but you’ll also encounter

it fairly frequently in operational databases. When you are looking for that rare

combination of multiple nonselective conditions on the columns of the row, you must

expect to perform full scans at some point. The case becomes particularly interesting

when several tables are involved.

The DBMS engine needs to start from somewhere. Even if it can process data in parallel,

at some point it has to start with one table, index, or partition. Even if the resulting set

defined by the intersection of several huge sets of data is very small, a boot-strapping full

table scan, and possibly two scans, will be required—with a nested loop, hash join, or

merge join performed on the result. The difficulty will then be to identify which
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combination of tables (not necessarily the smallest ones) will result in the least number of

rows from which the final result set will be extracted. In other words, we must find the

weakest point in the line of defense, and once we have eliminated it, we must

concentrate on obtaining the final result set.

Let me illustrate such a case with a real-life Oracle example. The original query is a pretty

complicated query, with two tables each appearing twice in the from clause. Although

none of the tables is really enormous (the biggest one contains about 700,000 rows), the

problem is that none of the nine parameters that are passed to the query is really

selective:

select (data from ttex_a,
                  ttex_b,
                  ttraoma,
                  topeoma,
                  ttypobj,
                  ttrcap_a,
                  ttrcap_b,
                  trgppdt,
                  tstg_a)
from ttrcapp ttrcap_a,
     ttrcapp ttrcap_b,
     tstg tstg_a,
     topeoma,
     ttraoma,
     ttex ttex_a,
     ttex ttex_b,
     tbooks,
     tpdt,
     trgppdt,
     ttypobj
where ( ttraoma.txnum = topeoma.txnum )
  and ( ttraoma.bkcod = tbooks.trscod )
  and ( ttex_b.trscod = tbooks.permor )
  and ( ttraoma.trscod = ttrcap_a.valnumcod )
  and ( ttex_a.nttcod = ttrcap_b.valnumcod )
  and ( ttypobj.objtyp = ttraoma.objtyp )
  and ( ttraoma.trscod = ttex_a.trscod )
  and ( ttrcap_a.colcod = :0 ) -- not selective
  and ( ttrcap_b.colcod = :1 ) -- not selective
  and ( ttraoma.pdtcod = tpdt.pdtcod )
  and ( tpdt.risktyp = trgppdt.risktyp )
  and ( tpdt.riskflg = trgppdt.riskflg )
  and ( tpdt.pdtcod = trgppdt.pdtcod )
  and ( trgppdt.risktyp = :2 ) -- not selective
  and ( trgppdt.riskflg = :3 ) -- not selective
  and ( ttraoma.txnum = tstg_a.txnum )
  and ( ttrcap_a.refcod = :5 ) -- not selective
  and ( ttrcap_b.refcod = :6 ) -- not selective
  and ( tstg_a.risktyp = :4 ) -- not selective
  and ( tstg_a.chncod = :7) -- not selective
  and ( tstg_a.stgnum = :8 ) -- not selective
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When run with suitable parameters (here indicated as :0 to :8), the query takes more than

25 seconds to return fewer than 20 rows, doing about 3,000 physical I/Os and hitting

data blocks 3,000,000 times. Statistics correctly represent the actual contents of tables

(one of the very first things to check), and a query against the data dictionary gives the

number of rows of the tables involved:

TABLE_NAME                    NUM_ROWS
--------------------------- ----------
ttypobj                           186
trgppdt                           366
tpdt                             5370
topeoma                         12118
ttraoma                         12118
tbooks                          12268
ttex                           102554
ttrcapp                        187759
tstg                           702403

A careful study of the tables and of their relationships allows us to draw the enemy position

of Figure 6-2, showing our weak criteria represented as small arrows, and tables as boxes

the size of which approximately indicates the number of rows. One thing is especially

remarkable: the central position of the ttraoma table that is linked to almost every other

table. Unfortunately, all of our criteria apply elsewhere. By the way, an interesting fact to

notice is that we are providing two values to match columns risktyp and riskflg of

trgppdt—which is joined to tpdt on those very two columns, plus pdtcod. In such a case, it

can be worth contemplating reversing the flow—for example, comparing the columns of

tpdt to the constants provided, and only then pulling the data from trgppdt.

Most DBMS allow you to check the execution plan chosen by the optimizer, either

through the explain command or sometimes by directly checking in memory how

something has been executed. When this query took 25 seconds, the plan, although not

especially atrocious, was mostly a full scan of ttraoma followed by a series of nested loops,

F I G U R E  6 - 2 . The enemy position
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using the various indexes available rather efficiently (it would be tedious to detail the

numerous indexes, but suffice to say that all columns we are joining on are correctly

indexed). Is this full scan the reason for slowness? Definitely not. A simple test, fetching

all the rows of ttraoma (without displaying them to avoid the time associated with

displaying characters on a screen) proves that it takes just a tiny fraction, hardly

measurable, of the elapsed time for the overall query.

When we consider the weak criteria we have, our forces are too feeble for a frontal attack

against tstg, the bulk of the enemy troops, and even ttrcap won’t lead us very far,

because we have poor criteria against each instance of this table, which intervenes twice

in the query. However, it should be obvious that the key position of ttraoma, which is

relatively small, makes an attack against it, as a first step, quite sensible—precisely the

decision that the optimizer makes without any prompting.

If the full scan is not to blame, then where did the optimizer go wrong? Have a look at

Figure 6-3, which represents the query as it was executed.

When we check the order of operations, it all becomes obvious: our criteria are so bad, on

face value, that the optimizer chose to ignore them altogether. Starting with a pretty

reasonable full scan of ttraoma, it then chose to visit all the smallish tables gravitating

around ttraoma before ending with the tables to which our filtering criteria apply. This

approach is the mistake. It is likely that the indexes of the tables we first visit look much

more efficient to the optimizer, perhaps because of a lower average number of table rows

per key or because the indexes more closely match the order of the rows in the tables.

But postponing the application of our criteria is not how we cut down on the number of

rows we have to process and check.

F I G U R E  6 - 3 . What the optimizer chose to do
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Once we have taken ttraoma and hold the key position, why not go on with the tables

against which we have criteria instead? The join between those tables and ttraoma will

help us eliminate unwanted rows from ttraoma before proceeding to apply joins with the

other tables. This is a tactic that is likely to pay dividends since—and this is information

we have but that is unknown to the optimizer—we know we should have, in all cases,

very few resulting rows, which means that our combined criteria should, through the

joins, inflict heavy casualties among the rows of ttraoma. Even when the number of rows

to be returned is larger, the execution path I suggest should still remain relatively

efficient.

How then can we force the DBMS to execute the query as we want it to? It depends on the

SQL dialect. As you’ll see in Chapter 11, most SQL dialects allow directives, or hints, to the

optimizer, although each dialect uses different syntax for such hints—telling the optimizer,

for instance, to take on the tables in the same order as they are listed in the from clause. The

trouble with hints is that they are more imperative than their name suggests, and every

hint is a gamble on the future—a bet that circumstances, volumes, database algorithms,

hardware, and the rest will evolve in such a way that our forced execution path will forever

remain, if not absolutely the best, at least acceptable. In the particular case of our example,

since nested loops using indexes are the most efficient choice, and because nested loops

don’t really benefit from parallelism, we are taking a rather small risk concerning the future

evolution of our tables by ordering tables as we want them processed and instructing the

optimizer to obey. Explicitly forcing the order followed to visit tables was the approach

actually taken in this real-life case, which resulted in a query running in a little less than

one second, with hardly fewer physical I/Os than before (2,340 versus 3,000—not too

surprising since we start with a full scan of the very same table) but since we “suggested” a

more efficient path, logical I/Os fell dramatically—to 16,500, down from over 3,000,000—

with a noticeable result on the response time.

Remember that you should heavily document anything that forces

the hand of the DBMS.

Explicitly forcing the order in which to visit tables by using optimizer directives is a

heavy-handed approach. A more gentle way to obtain the same result from the

optimizer, provided that it doesn’t savagely edit our SQL clauses, may be to nest queries

in the from clause, thus suggesting associations like parentheses would in a numerical

expression:



T H E  N I N E  S I T U A T I O N S 145

select (select list)

from (select ttraoma.txnum,
             ttraoma.bkcod,
             ttraoma.trscod,
             ttraoma.pdtcod,
             ttraoma.objtyp,
             ...
      from ttraoma,
           tstg tstg_a,
           ttrcapp ttrcap_a
     where tstg_a.chncod = :7
       and tstg_a.stgnum = :8
       and tstg_a.risktyp = :4
       and ttraoma.txnum = tstg_a.txnum
       and ttrcap_a.colcod = :0
       and ttrcap_a.refcod = :5
       and ttraoma.trscod = ttrcap_a.valnumcod) a,
     ttex ttex_a,
     ttrcapp ttrcap_b,
     tbooks,
     topeoma,
     ttex ttex_b,
     ttypobj,
     tpdt,
     trgppdt
where ( a.txnum = topeoma.txnum )
 and ( a.bkcod = tbooks.trscod )
 and ( ttex_b.trscod = tbooks.permor )
 and ( ttex_a.nttcod = ttrcap_b.valnumcod )
 and ( ttypobj.objtyp = a.objtyp )
 and ( a.trscod = ttex_a.trscod )
 and ( ttrcap_b.colcod = :1 )
 and ( a.pdtcod = tpdt.pdtcod )
 and ( tpdt.risktyp = trgppdt.risktyp )
 and ( tpdt.riskflg = trgppdt.riskflg )
 and ( tpdt.pdtcod = trgppdt.pdtcod )
 and ( tpdt.risktyp = :2 )
 and ( tpdt.riskflg = :3 )
 and ( ttrcap_b.refcod = :6 )

It is often unnecessary to be very specific about the way we want a query to be executed

and to multiply esoteric hints; the right initial guidance is usually enough to put an

optimizer on the right track. Nested queries making explicit some table associations have

the further advantage of being quite understandable to a qualified human reader.

A confused query can make the optimizer confused. Clarity and

suggested joins are often enough to help the optimizer provide

good performance.
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Large Result Set
The situation of a large result set includes any result, irrespective of how it is obtained

(with the exception of the explicit cases discussed here) that might be described as “large”

or, in other words, a result set which it would be sensible to generate in a batch

environment. When you are looking for a very large number of rows, even if this

number looks like a fraction of the total number of rows stored in the tables involved in

the query, conditions are probably not very selective and the DBMS engine must perform

full scans, except perhaps in some very special cases of data warehousing, which are

discussed in Chapter 10.

When a query returns tens of thousand of rows, whether as the final result or an

intermediate step in a complex query, it is usually fairly pointless to look for a subtle use

of indexes and fast jumps from an index to the table rows of interest. Rather, it’s time to

hammer the data remorselessly through full scans, usually associated with hash or merge

joins. There must, however, be intelligence behind the brute force. We always must try to

scan the objects, whether they are tables, indexes, or partitions of either tables or

indexes, for which the ratio of data returned to data scanned is highest. We must scan

objects for which filtering is the most coarse, because the best justification for the “effort”

of scanning is to make it pay by a rich data harvest. A situation when a scan is

unavoidable is the major exception to the rule of trying to get rid of unnecessary data as

soon as possible; but we must fall back to the usual rule as soon as we are done with the

unavoidable scans.

As ever, if we consider scanning rows of no interest to us as useless work, we must

minimize the number of blocks we access. An approach often taken is to minimize

accesses by hitting indexes rather than tables—even if the total volume of indexes is often

bigger than the volume of data, each individual index is usually much smaller than its

underlying table. Assuming that an index contains all the required information, scanning

the index rather than the table makes a lot of sense. Implementation techniques such as

adding columns to an index to avoid visiting the table can also show their worth.

Processing very large numbers of rows, whether you need to return them or simply have

to check them, requires being very careful about what you do when you process each

row. Calling a suboptimal, user-defined function, for instance, is not extremely important

when you do it in the select list of a query that returns a small result set or when it comes

as an additional criterion in a very selective where clause. But when you call such a

function hundreds of thousands of times, the DBMS is no longer forgiving, and a slight

awkwardness in the code can bring your server to its knees. This is a time for lean and

mean code.
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One key point to watch is the use of subqueries. Correlated subqueries are the death toll

of performance when we are processing massive amounts of rows. When we can identify

several subqueries within a query, we must let each of them operate on a distinct and

“self-sufficient” subset, removing any dependence of one subquery on the result set of

another. Dependencies between the various datasets separately obtained must be solved

at the latest stage of query execution through hash joins or set operators.

Relying on parallelism may also be a good idea, but only when there are very few

concurrently active sessions—typically in a batch job. Parallelism as it is implemented by

a DBMS consists in splitting, when possible, one query into multiple subtasks, which are

run in parallel and coordinated by a dedicated task. With a very high number of users,

parallelism comes naturally with many similar tasks being executed concurrently, and

adding DBMS parallelism to de facto parallelism often makes throughput worse rather

than better. Generally speaking, processing very large volumes of information with a very

high number of concurrent sessions qualifies as a situation in which the best you can aim

for is an honorable fight and in which the solution is often to throw more hardware into

the ring.

Response times are, lest we forget about the various waits for the availability of a

resource in the course of processing, mostly dependent on the amount of data we have to

browse through. But don’t forget that, as you saw in Chapter 4, the subjective vision of

an end user may be utterly different from a cold analysis of the size of the haystack: the

only interest to the end user is the needle.

Self-Joins on One Table
In a correctly designed relational database (third normal form or above), all non-key

columns are about the key, the whole key, and nothing but the key, to use an excellent

and frequently quoted formula.* Each row is both logically consistent and distinct from all

other rows in the same table. It is this design characteristic that enables join relationships

to be established within the same table. You can therefore select in the same query

different (not necessarily disjoint) sets of rows from the same table and join them as if

those rows came from several different tables. In this section, I’ll discuss the simple self-

join and exclude the more complex examples of nested hierarchies that I discuss later in

Chapter 7.

Self-joins—tables joined to themselves—are much more common than hierarchies. In

some cases, it is simply because the data is seen in an identical way, but from two

* I have seen this elegant formula credited only once—to a 1983 paper by William Kent, available at
http://www.bkent.net.
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different angles; for instance, we can imagine that a query listing air flights would refer to

the airports table twice, once to find the name of the departure airport, and once to find

the name of the arrival airport. For example:

select f.flight_number,
       a.airport_name departure_airport,
       b.airport_name arrival_airport
from flights f,
     airports a,
     airports b
where f.dep_iata_code = a.iata_code
  and f.arr_iata_code = b.iata_code

In such a case, the usual rules apply: what matters is to ensure that highly efficient index

access takes place. But what if the criteria are such that efficient access is not possible?

The last thing we want is to do a first pass on the table, then a second one to pick up rows

that were discarded during the first pass. In that case, what we should do is a single pass,

collect all the rows of interest, and then use a construct such as the case statement to

display separately rows from the two sets; I show examples of this “single-pass” approach

in Chapter 11.

There are subtle cases that only superficially look like the airport case. Imagine that we

store in some table cumulative values taken at regular intervals* and we want to display

by how much the counter increased between two successive snapshots. In such a case,

we have a relationship between two different rows in the same table, but instead of

having a strong relationship coming from another table, such as the flights table that

links the two instances of airports together, we have a weak, internal relationship: we

define that two rows are related not because their keys are associated in another table,

but because the timestamp of one row happens to be the timestamp which immediately

follows the timestamp of another row.

For instance, if we assume that snapshots are taken every five minutes, with a timestamp

expressed in seconds elapsed since a reference date, we might issue the following query:

select a.timestamp,
       a.statistic_id,
      (b.counter – a.counter)/5 hits_per_minute
from hit_counter a,
     hit_counter b
where b.timestamp = a.timestamp + 300
  and b.statistic_id = a.statistic_id
order by a.timestamp, a.statistic_id

* This is exactly what happens when you collect values from the V$ views in Oracle, which contain
monitoring information.
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There is a significant flaw in this script: if the second snapshot has not been taken exactly

five minutes after the first one, down to the second, we may be unable to join the two

rows. We may therefore choose to express the join condition as a range condition. For

example:

select a.timestamp,
        a.statistic_id,
       (b.counter – a.counter) * 60 /
           (b.timestamp – a.timestamp) hits_per_minute
from  hit_counter a,
      hit_counter b
where b.timestamp between a.timestamp + 200
                      and a.timestamp + 400
  and b.statistic_id = a.statistic_id
order by a.timestamp, a.statistic_id

One side effect of this approach is the risk of having bigger data gaps than needed when,

for one reason or another (such as a change in the sampling frequency), two successive

records are no longer collected between 200 and 400 seconds of each other.

We may play it even safer and use an OLAP function that operates on windows of rows.

It is indeed difficult to imagine something less relational in nature, but such a function

can come in handy as the final shine on a query, and it can even make a noticeable

difference in performance. Basically, OLAP functions allow the consideration of different

subsets of the final result set, through the use of the partition clause. Sorts, sums, and

other similar functions can be applied separately to these individual result subsets. We

can use the row_number( ) OLAP function to create one subset by statistic_id, and then

assign to each different statistic successive integer numbers that increase as timestamps

do. When these numbers are generated by the OLAP function, we can join on both

statistic_id and two sequential numbers, as in the following example:

select a.timestamp,
       a.statistic_id,
       (b.counter - a.counter) * 60 /
              (b.timestamp - a.timestamp)
from (select timestamp,
             statistic_id,
             counter,
             row_number( ) over (partition by statistic_id
                                order by timestamp) rn
      from hit_counter) a,
      (select timestamp,
              statistic_id,
              counter,
              row_number( ) over (partition by statistic_id
                                order by timestamp) rn
      from hit_counter) b
where b.rn = a.rn + 1
  and a.statistic_id = b.statistic_id
order by a.timestamp, a.statistic_id
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We may even do better—about 25% faster than the previous query—if our DBMS

implements, as Oracle does, a lag(column_name, n) OLAP function that returns the nth

previous value for column_name, on the basis of the specified partitioning and ordering:

 select timestamp,
        statistic_id,
        (counter - prev_counter) * 60 /
        (timestamp - prev_timestamp)
 from (select timestamp,
              statistic_id,
              counter,
              lag(counter, 1) over (partition by statistic_id
                                    order by timestamp) prev_counter,
              lag(timestamp, 1) over (partition by statistic_id
                                      order by timestamp) prev_timestamp
      from hit_counter) a
order by a.timestamp, a.statistic_id

In many cases we don’t have such symmetry in our data, as is shown by the flight

example. Typically, a query looking for all the data associated with the smallest, or the

largest, or the oldest, or the most recent value of a specific column, first needs to find the

actual smallest, largest, oldest, or most recent value in the column used for filtering (this

is the first pass, which compares rows), and then search the table again in a second pass,

using as a search criterion the value identified in the first pass. The two passes can be

made (at least superficially) into one through the use of OLAP functions that operate on

sliding windows. Queries applied to data values associated to timestamps or dates are a

special case of sufficient importance to deserve further discussion later in this chapter as

the situation “Simple or Range Searching on Dates.”

When multiple selection criteria are applied to different rows in

the same table, functions that operate on sliding windows may be

of assistance.

Result Set Obtained by Aggregation
An extremely common situation is the case in which the result set is a dynamically

computed summary of the detailed data from one or more main tables. In other words,

we are facing an aggregation of data. When data is aggregated, the size of the result set

isn’t dependent on the precision of the criteria that are provided, but merely on the

cardinality of the columns that we group by. As in the first situation of the small result set

obtained through precise criteria (and as you’ll see again in Chapter 11), aggregate

functions (or aggregates) are also often quite useful for obtaining in a single pass on the

table results that are not truly aggregated but that would otherwise require self-joins and
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multiple passes. In fact, the most interesting SQL uses of aggregates are not the cases in

which sums or averages are an obvious part of the requirements, but situations in which

a clever use of aggregates provides a pure SQL alternative to a procedural processing.

I stress in Chapter 2 that one of the keys to efficient SQL coding is a swashbuckling

approach to code execution, testing for success after the deed rather than executing

preliminary queries to check if, by chance, the really useful query we want to execute

may fail: you cannot win a swimming race by tiptoeing carefully into the water. The

other key point is to try to pack as much “action” as possible into an SQL query, and it is

in respect to this second key point that aggregate functions can be particularly useful.

Much of the difficulty of good SQL programming lies in seeing how a problem can

translate, not into a succession of queries to a database, but into very few queries. When,

in a program, you need a lot of intermediate variables to hold values you get from the

database before reinjecting them into the database as input to other queries, and if you

perform against those variables nothing but very simple tests, you can bet that you have

the algorithm wrong. And it is a striking feature of poorly written SQL programs to see

the high number of lines of code outside of SQL queries that are simply devoted to

summing up, multiplying, dividing, and subtracting inside loops what is painfully

returned from the database. This is a totally useless and utterly inefficient job: we have

SQL aggregate functions for that sort of work.

N O T E
Aggregate functions are very useful tools for solving SQL problems (and we will

revisit them in Chapter 11, when I talk about stratagems); however, it often appears

to me that developers use only the least interesting aggregate function of all, namely

count( ), the real usefulness of which is often, at best, dubious in most programs.

Chapter 2 shows that using count(*) to decide whether to update an existing row or insert

a new one is wasteful. You can misuse count(*) in reports as well. A test for existence is

sometimes implemented as a mock-Boolean value such as:

case count(*)
when 0 then 'N'
else 'Y'
end

Such an implementation gets, when rows are found, all the rows that match the condition

in order to obtain a precise count, whereas finding only one is enough to decide whether Y

or N must be displayed. You can usually write a much more effective statement by using a

construct that either limits the number of rows returned or tests for existence, effectively

stopping processing as soon as a row that matches the condition is found.



152 C H A P T E R S I X

But when the question at hand is about the most, the least, the greatest, or even the first

or the last, it is likely that aggregate functions (possibly used as OLAP functions) will

provide the best answer. If you believe that aggregate functions should be used only

when counts, sums, maxima, minima, or averages are explicitly required, then you risk

seriously underusing them.

Interestingly, aggregate functions are extremely narrow in scope. If you exclude the

computation of maximum and minimum values, the only thing they can really do is

simple arithmetic; a count( ) is nothing more than adding 1s for each row encountered.

Similarly, the computation of avg( ) is just, on one hand, adding up the values in the

column it is applied to and, on the other hand, adding 1s, and then dividing.

But it is sometimes wonderful what you can do with simple sums. If you’re

mathematically inclined, you’ll remember how easily you can switch between sums and

products by the magic of logarithms and power functions. And if you’re logically inclined,

you know well how much OR owes to sums and AND to products.

I’ll show the power of aggregation with a simple example. Assume that we have a

number of shipments to make and that each shipment is made of a number of different

orders, each of which has to be separately prepared; it is only when each order in a

shipment is complete that the shipment itself is ready. The problem is how to detect

when all the orders comprising a shipment are complete.

As is so often the case, there are several ways to determine the shipments that are

complete. The worst approach would probably be to loop on all shipments, inside a

second loop on each shipment count how many orders have N as value for the order_

complete column, and return shipment IDs for which the count is 0. A much better

solution would be to recognize the test on the nonexistence of an N value for what it is,

and use a subquery, correlated or uncorrelated; for instance:

select shipment_id
from shipments
where not exists (select null from orders
                  where order_complete = 'N'
                    and orders.shipment_id = shipments.shipment_id)

This approach is pretty bad if we have no other condition on the shipments table.

Following is a query that may be much more efficient if we have a large shipments table

and few uncompleted orders:

select shipment_id
from shipments
where shipment_id not in (select shipment_id
                          from orders
                          where order_complete = 'N')
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This query can also be expressed as follows, as a variant that an optimizer may like better

but that wants an index on the column shipment_id of the table orders:

select shipments.shipment_id
from shipments
    left outer join orders
          on orders.shipment_id = shipments.shipment_id
          and orders.order_complete = 'N'
where orders.shipment_id is null

Another alternative is a massive set operation that will operate on the primary key index

of shipments on one hand, and that will perform a full table scan of orders on the other

hand:

select shipment_id
from shipments
except
select shipment_id
from orders
where order_complete = 'N'

Be aware that not all DBMS implement the except operator, sometimes known as minus.

But there is still another way to express our query. What we are doing, basically, is to

return the identifiers of all shipments for which a logical AND operation on all orders

which have been completed returns TRUE. This kind of operation happens to be quite

common in the real world. As hinted previously, there is a very strong link between AND

and multiplication, and between OR and addition. The key is to convert flags such as Y and

N to 0s and 1s. This conversion is a trivial operation with the case construct. To get just

order_complete as a 0 or 1 value, we can write:

select shipment_id,
       case when order_complete = 'Y' then 1
                                      else 0
       end flag
from orders

So far, so good. If we always had a fixed number of orders per shipment, it would be easy to

sum the calculated column and check if the result is the number of orders we expect.

However, what we want here is to multiply the flag values per shipment and check whether

the result is 0 or 1. That approach works, because even one incomplete order, represented by

a 0, will cause the final result of all the multiplication to also be 0. The multiplication can be

done with the help of logarithms (although 0s are not the easiest values to handle with

logarithms). But in this particular case, our task is even easier.
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What we want are the shipments for which the first order is completed and the second

order is completed and...the nth order is completed. Logic and the laws of de Morgan* tell

us that this is exactly the same as stating that we do not have (first order not completed or

second order not completed...or nth order not completed). Since their kinship to sums

makes ORs much easier to process with aggregates than ANDs, checking that a list of

conditions linked by OR is false is much easier than checking that a list of conditions linked

by AND is true. What we must consider as our true predicate is “the order is not completed”

rather than the reverse, and convert the order_complete flag to 1 if it is N, and 0 if it is Y. In

that way, we can easily check that we have 0s (or yeses) everywhere by summing up

values—if the sum is 0, then all orders are completed; otherwise, we are at various stages of

incompletion.

Therefore we can also express our query as:

select shipment_id
from (select shipment_id,
             case when order_complete = 'N' then 1
                                            else 0
             end flag
      from orders) s
group by shipment_id
having sum(flag) =0

And it can be expressed in an even more concise way as:

select shipment_id
from orders
group by shipment_id
having sum(case when order_complete = 'N' then 1
                                          else 0
           end) =0

There is another way to write this query that is even simpler, using another aggregate

function, and without any need to convert flag values. Noticing that Y is, from an

alphabetical point of view, greater than N, it is not too difficult to infer that if all values

are Y then the minimum will necessarily be Y too. Hence:

select shipment_id
from orders
group by shipment_id
having min(order_complete) = 'Y'

* The India-born Augustus de Morgan (1806–1871) was a British mathematician who contributed to
many areas of mathematics, but most significantly to the field of logic. The de Morgan laws state
that the complement of the intersection of any number of sets equals the union of their comple-
ments and that the complement of the union of any number of sets equals the intersection of their
complements. If you remember that SQL is about sets, and that negating a condition returns the
complement of the result set returned by the initial condition (if you have no null values), you’ll
understand why these laws are particularly useful to the SQL practitioner.
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This approach of depending on Y to be greater than N may not be as well grounded

mathematically as the flag-to-number conversion, but it is just as efficient.

Of course we must see how the query that uses a group by and a condition on the

minimum value for order_complete compares to the other versions that use subqueries or

except instead of an aggregate function. What we can say is that it has to fully sort the

orders table to aggregate the values and check whether the sum is or is not 0. As I’ve

specified the problem, this solution involving a non-trivial use of an aggregate function is

likely to be faster than the other queries, which hit two tables (shipments and orders), and

usually less efficiently.

I have made an extensive use of the having clause in the previous examples. As already

mentioned in Chapter 4, a common example of careless SQL statements involves the use

of the having clause in aggregate statements. Such an example is illustrated in the

following (Oracle) query, which attempts to obtain the sales per product per week during

the past month:

select product_id,
       trunc(sale_date, 'WEEK'),
       sum(sold_qty)
from sales_history
group by product_id, trunc(sale_date, 'WEEK')
having trunc(sale_date, 'WEEK') >= add_month(sysdate, -1)

The mistake here is that the condition expressed in the having clause doesn’t depend on

the aggregate. As a result, the DBMS has to process all of the data in sales_history,

sorting it and aggregating against each row, before filtering out ancient figures as the last

step before returning the required rows. This is the kind of mistake that can go unnoticed

until sales_history grows really big. The proper approach is, of course, to put the

condition in a where clause, ensuring that the filtering occurs at an early stage and that we

are working afterwards on a much reduced set of data.

I should note that when we apply criteria to views, which are aggregated results, we may

encounter exactly the same problem if the optimizer is not smart enough to reinject our

filter before aggregation.

You can have slightly more subtle variants of a filter applied later than it should be. For

instance:

select customer_id
from orders
where order_date < add_months(sysdate, -1)
group by customer_id
having sum(amount) > 0

In this query, the following condition looks at first glance like a reasonable use of having:

having sum(amount) > 0
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However, this use of having does not really make sense if amount is always a positive

quantity or zero. In that event, we might be better using the following condition:

where amount > 0

We have two possibilities here. Either we keep the group by:

select customer_id
from orders
where order_date < add_months(sysdate, -1)
  and amount > 0
group by customer_id

or we notice that group by is no longer required to compute any aggregate and replace it

with a distinct that in this case performs the same task of sorting and eliminating

duplicates:

select distinct customer_id
from orders
where order_date < add_months(sysdate, -1)
  and amount > 0

Placing the condition in the where clause allows unwanted rows to be filtered at an earlier

stage, and therefore more effectively.

Aggregate as little data as you can.

Simple or Range Searching on Dates
Among search criteria, dates (and times) hold a particular place that is all their own.

Dates are extremely common, and more likely than other types of data to be subjected to

range conditions, whether they are bounded (“between this date and that date”) or only

partially bounded (“before this date”). Very often, and what this situation describes, the

result set is derived from searches against date values referenced to the current date (e.g.,

“six months earlier than the current date,” etc.).

The example in the previous section, “Result Set Obtained by Aggregation,” refers to a

sales_history table; our condition was on an amount, but it is much more common with

this type of table to have conditions on date, especially to get a snapshot of the data

either at a given date or between two dates. When you are looking for a value on a given

date in a table containing historical data, you must pay particular attention to the way

you identify current data. The way you handle current data may happen to be a special

case of data predicated on an aggregate condition.
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I have already pointed out in Chapter 1 that the design of a table destined to store historical

data is a tricky affair and that there is no easy, ready-made solution. Much depends on

what you plan to do with your data, whether you are primarily interested in current values

or in values as of a particular date. The best solution also depends on how fast data becomes

outdated. If you are a retailer and wish to keep track of the wares you sell, it is likely that,

unless your country suffers severe hyper-inflation, the rate of change of your prices will be

pretty slow. The rate of change will be higher, possibly much higher, if you are recording

the price of financial instruments or monitoring network traffic.

To a large extent, what matters most with history tables is how much historical data you

keep on average per item: you may store a lot of historical information for very few

items, or have few historical records for a very large number of items, or anything in

between. The point here is that the selectivity of any item depends on the number of

items being tracked, the frequency of sampling (e.g., either once per day or every change

during the day), and the total time period over which the tracking takes place (infinite,

purely annual, etc.). We shall therefore first consider the case when we have many items

with few historical values, then the opposite case of few items with a rich history, and

then, finally, the problem of how to represent the current value.

Many Items, Few Historical Values

If we don’t keep an enormous amount of historical data per item, the identification of an

item is quite selective by itself. Specifying the item under study restricts our “working set”

to just a few historical rows, and it then becomes fairly easy to identify the value at a given

reference date (the current or a previous date) as the value recorded at the closest date

prior to the reference date. In this case, we are dealing once again with aggregate values.

Unless some artificial, surrogate key has been created (and this is a case where there is no

real need for a surrogate key), the primary key will generally be a composite key on the

identifier of items (item_id) and the date associated with the historical value (record_date).

We mostly have two ways of identifying the rows that store values that were current as

of a given reference date: subqueries and OLAP functions.

Using subqueries

If we are looking for the value of one particular item as of a given date, then the situation

is relatively simple. In fact, the situation is deceptively simple, and you’ll often encounter

a reference to the value that was current for a given item at a given date coded as:

 select whatever
 from hist_data as outer
 where outer.item_id = somevalue
   and outer.record_date = (select max(inner.record_date)
                            from hist_data as inner
                            where inner.item_id = outer.item_id
                              and inner.record_date <= reference_date)
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It is interesting to see what the consequences of this type of construct suggest in terms of

the execution path. First of all, the inner query is correlated to the outer one, since the

inner query references the item_id of the current row returned by the outer query. Our

starting point is therefore the outer query.

Logically, from a theoretical point of view, the order of the columns in a composite

primary key shouldn’t matter much. In practice, it is critical. If we have made the mistake

of defining the primary key as (record_date, item_id) instead of (item_id, record_date),

we desperately need an additional index on item_id for the inner query; otherwise, we

will be unable to efficiently descend the tree-structured index. And we know how costly

each additional index can be.

Starting with our outer query and finding the various rows that store the history of item_

id, we will then use the current value of item_id to execute the subquery each time. Wait!

This inner query depends only on item_id, which is, by definition, the same for all the

rows we check! The logical conclusion: we are going to execute exactly the same query,

returning exactly the same result for each historical row for item_id. Will the optimizer

notice that the query always returns the same value? The answer may vary. It is better

not to take the chance.

There is no point in using a correlated subquery if it always returns the same value for all

the rows for which it is evaluated. We can easily uncorrelate it:

select whatever
from hist_data as outer
where outer.item_id = somevalue
  and outer.record_date = (select max(inner.record_date)
                           from hist_data as inner
                           where inner.item_id = somevalue
                             and inner.record_date <= reference_date)

Now the subquery can be executed without accessing the table: it finds everything it

requires inside the primary key index.

It may be a matter of personal taste, but a construct that emphasizes the primary key is

arguably preferable to the preceding approach, if the DBMS allows comparing several

columns to the output of a subquery (a feature that isn’t supported by all products):

select whatever
from hist_data as outer
where (outer.item_id, outer.record_date) in
                          (select inner.item_id, max(inner.record_date)
                           from hist_data as inner
                           where inner.item_id = somevalue
                             and inner.record_date <= reference_date
                           group by inner.item_id)

The choice of a subquery that precisely returns the columns matching a composite

primary key is not totally gratuitous. If we now need to return values for a list of items,
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possibly the result of another subquery, this version of the query naturally suggests a

good execution path. Replace somevalue in the inner query by an in( ) list or a subquery,

and the overall query will go on performing efficiently under the very same assumptions

that each item has a relatively short history. We have also replaced the equality condition

by an in clause: in most cases the behavior will be exactly the same. As usual, it is at the

fringes that you encounter differences. What happens if, for instance, the user mistyped

the identification of the item? The in( ) will return that no data was found, while the

equality may return a different error.

Using OLAP functions

With databases, OLAP functions such as row_number( ) that we have already used in the

self-joins situation can provide a satisfactory and sometimes even a more efficient way to

answer the same question “what was the current value for one particular item at a given

date?” (remember that OLAP functionality does, however, introduce a distinctly non-

relational aspect to the proceedings*).

N O T E
OLAP functions belong to the non-relational layer of SQL. They represent the final,

or almost final, step in query execution, since they have to operate on the post-

retrieval result set after the filtering has completed.

With a function such as row_number( ) we can assign a degree of freshness (one meaning

most recent) to the data by ranking on date:

select row_number( ) over (partition by item_id
                          order by record_date desc) as freshness,

whatever
from hist_data
where item_id = somevalue
  and record_date <= reference_date

Selecting the freshest data is then simply a matter of only retaining the rows with a value

of one for freshness:

select x.<suitable_columns>
from (select row_number( ) over (partition by item_id
                                order by record_date desc) as freshness,

whatever
      from hist_data
      where item_id = somevalue
        and record_date <= reference_date) as x
where x.freshness = 1

* ...even if the term OLAP was coined by Dr. E.F. Codd himself in a 1993 paper.
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In theory, there should be hardly any difference between the OLAP function approach

and the use of subqueries. In practice, an OLAP function hits the table only once, even if

the usual sorting happens behind the scene. There is no need for additional access to the

table, even a fast one that uses the primary key. The OLAP function approach may

therefore be faster (albeit only slightly so).

Many Historical Values Per Item

The picture may be different when we have a very large number of historical values—for

instance, a monitoring system in which metrics are collected at a rather high frequency.

The difficulty here lies in the fact that all the intermediate sorting required for identifying

the value at or nearest a given date may have to operate on a really large amount of data.

Sorting is a costly operation. If we apply the principles of Chapter 4, the only way we

have to reduce the thickness of the non-relational layer is by doing a bit more work at

the relational level—by increasing the amount of filtering. In such a case, it is very

important to narrow our scope by bracketing the date (or time) more precisely for which

we want the data. If we only provide an upper boundary, then we shall have to scan and

sort the full history since the beginning of ages. If data is collected at a high frequency, it

is then reasonable to give a lower limit. If we succeed in restraining the “working set” of

rows to a manageable size, we are back to the case in which we have relatively few

historical values per item. If specifying both an upper boundary (such as the current date)

and a lower boundary isn’t an option, our only hope is in partitioning per item; operating

on a single partition will take us closer to the “large result set” situation.

Current Values

When we are predominantly interested in the most recent or current values, it is very

tempting to design a way to avoid either the nested subquery or the OLAP function

(which both entail a sort), and hit the proper values directly. We mentioned in Chapter 1

that one solution to this problem is to associate each value with some “end date”—the

kind of “best before” you find on your cereal boxes—and to say that for current values

that end date is far, far away into the future (let’s say December 31, 2999). We also

mentioned that there were some practical issues associated with such a design and the

time has now come to explore these issues.

With a fixed date, it certainly becomes extremely easy to find the current value. Our

query simply becomes:

select whatever
from hist_data
where item_id = somevalue
  and record_date = fixed_date_in_the future
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We then hit the right row, spot on, through the primary key. And of course, nothing

prevents us from using either subqueries or OLAP functions whenever we need to refer

to a date other than the current one. There are, however, two main drawbacks to this

approach—an obvious one and a more subtle one:

• The obvious drawback is that each insertion of a new historical value will first require

updating what used to be the current value with, for example, today’s date, to mean

that it used to be the current value until today. Then the new value can be inserted

with the later date, to mean that it is now the current value until further notice. This

process leads to double the amount of work, which is bad enough. Moreover, since in

the relational theory the primary key is what identifies a row, the combination (item_

id, record_date) can be unique but cannot be the primary key since we have to par-

tially update it. We therefore need a surrogate key to be referenced by foreign keys

(identity column or sequence), which further complicates programs. The trouble with

big historical tables is that usually, to grow that big, they also undergo a high rate of

insertion. Does the benefit of faster querying offset the disadvantage of inserting more

slowly? It’s difficult to say, but definitely a question worth asking.

• The subtle drawback has to do with the optimizer. The optimizer relies on statistics

that may be of variable detail, with the result that it is not unusual for it to check the

lowest and highest value in a column to try to assess the spread of values. Let us say

that our historical table contains values since January 1, 2000. Our data will therefore

consist of perhaps 99.9% historical data, spread over several, but relatively few, years,

and 0.1% of current data, officially as of December 31, 2999. The view of the opti-

mizer will be of data spread over one millennium. This skewness on the part of the

optimizer view of the data range is because it is being misled by the upper boundary

date in the query ("and record_date = fixed_date_in_the future"). The problem is then

that when you search for something other than current values (for instance if you

want to collect variations over time for statistical purposes), the optimizer may well

incorrectly decide that since you are accessing such a tiny fraction of the millennium,

then using indexes is the thing to do, but what you really need is to scan the data.

Skewness can lead to totally wrong execution plans, which are not easy to correct.

You must understand your data and your data distributions if you

are to understand how the optimizer views your system.

Result Set Predicated on Absence of Data
It is a common occurrence to look for rows in one table for which there is no matching

data in another table—usually for identifying exceptions. There are two solutions people

most often think of when having to deal with this type of problem: using either not in ( )
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with an uncorrelated subquery or not exists ( ) with a correlated subquery. Popular

wisdom says that you should use not exists. Since a correlated subquery is efficient when

used to mop up after the bulk of irrelevant data has been cleared out by efficient filtering,

popular wisdom has it right when the subquery comes after the strong forces of efficient

search criteria, and totally wrong when the subquery happens to be the only criterion.

One sometimes encounters more exotic solutions to the problem of finding rows in one

table for which there is no matching data in another. The following example is a real-life

case that monitoring revealed to be one of the costliest queries performed against a

database (note that question marks are placeholders, or bind variables, for constant values

that are passed to the query on successive executions):

insert into ttmpout(custcode,
                    suistrcod,
                    cempdtcod,
                    bkgareacod,
                    mgtareacod,
                    risktyp,
                    riskflg,
                    usr,
                    seq,
                    country,
                    rating,
                    sigsecsui)
select distinct custcode,
                ?,
                ?,
                ?,
                mgtareacod,
                ?,
                ?,
                usr,
                seq,
               country,
               rating,
               sigsecsui
from ttmpout a
where a.seq = ?
  and 0 = (select count(*)
           from ttmpout b
           where b.suistrcod = ?
             and b.cempdtcod = ?
             and b.bkgareacod = ?
             and b.risktyp = ?
             and b.riskflg = ?
             and b.seq = ?)

This example must not be understood as an implicit unconditional endorsement of

temporary tables! As a passing remark, I suspect that the insert statement was part of a

loop. Proper performance improvement would probably be achieved by removing the loop.
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An insertion into a table based on a select on the very same table as in the current

example is a particular and yet not uncommon case of self-reference, an insertion derived

from existing rows and conditional on the absence of the row to be created.

Using count(*) to test whether something exists or doesn’t exist is a bad idea: to count,

the DBMS must search and find all rows that match. We should use exists in such a case,

which stops as soon as the first match is encountered. Arguably, it does not make much

difference if the filtering criterion happens to be the primary key. But it may make a very

significant difference in other cases—and anyway from a semantic point of view there is

no reason to say this:

and 0 = (select count(*) ...)

when we mean this:

and not exists (select 1 ...)

If we use count(*) as a test for existence, we may be lucky enough to benefit from the

“invisible hand” of a smart optimizer, which will turn our query into something more

suitable. But this will not necessarily be the case, and it will never be the case if the rows

are counted into some variable as an independent step, because then even the smartest of

optimizers cannot guess for which purpose we are counting: the result of the count( )

could be a critical value that absolutely has to be displayed to the end user!

In such a case when we want to create new, unique rows derived from rows already

present in the table, however, the right construct to use is probably a set operator such as

except (sometimes known as minus).

insert into ttmpout(custcode,
                     suistrcod,
                     cempdtcod,
                     bkgareacod,
                     mgtareacod,
                     risktyp,
                     riskflg,
                     usr,
                     seq,
                     country,
                     rating,
                     sigsecsui)
(select custcode,
        ?,
        ?,
        ?,
        mgtareacod,
        ?,
        ?,
        usr,
        seq,
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        country,
        rating,
        sigsecsui
 from ttmpout
 where seq = ?
 except
 select custcode,
        ?,
        ?,
        ?,
        mgtareacod,
        ?,
        ?,
        usr,
        seq,
        country,
        rating,
        sigsecsui
 from ttmpout
 where suistrcod = ?
   and cempdtcod = ?
   and bkgareacod = ?
   and risktyp = ?
   and riskflg = ?
   and seq = ?)

The big advantage of set operators is that they totally break the time frame imposed by

subqueries, whether they are correlated or uncorrelated. What does breaking the time

frame mean? When you have correlated subqueries, you must run the outer query, and

then you must execute the inner query for each row that passes through all other

filtering criteria. Both queries are extremely dependent on each other, since the outer

query feeds the inner one.

The picture is slightly brighter with uncorrelated subqueries, but not yet totally rosy: the

inner query must be executed, and in fact completed, before the outer query can step in

and gather steam (something similar occurs even if the optimizer chooses to execute the

global query as a hash join, which is the smart thing for it to do, because to execute a hash

join, the SQL engine first has to scan one of the tables involved to build a hash array).

With set operators, on the contrary, whether they are union, intersect or except, none of

the components in the query depends on any other. As a result, the different parts of the

query can run in parallel. Of course, parallelism is of hardly any benefit if one of the steps

is very slow while all the others are very fast; and it will be of no benefit at all if much of

the work in one part is strictly identical to the work in another part, because then you are

duplicating, rather than sharing, the work between processes. But in a favorable case, it is

much more efficient to have all parts run in parallel before the final step, which combines

the partial result sets—divide and rule.
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There is an additional snag with using set operators: they require each part of the query

to return compatible columns—an identical number of columns of identical types. A case

such as the following (another real-life case, coming from a billing program) is typically

unsuited to set operators:

select whatever, sum(d.tax)
from invoice_detail d,
     invoice_extractor e
where (e.pga_status = 0
       or e.rd_status = 0)
 and suitable_join_condition
 and (d.type_code in (3, 7, 2)
      or (d.type_code = 4
          and d.subtype_code not in
               (select trans_code
                from trans_description
                where trans_category in (6, 7))))
group by what_is_required
having sum(d.tax) != 0

I am always fascinated by the final condition:

sum(d.tax) != 0

and the way it evokes yellow brick roads and fantasy worlds where taxes are negative. A

condition such as:

and d.tax > 0

might have been more appropriate in the where clause, as already demonstrated.

In such a case a set operator would be rather awkward, since we would have to hit the

invoice_detail table—as we can guess, not a lightweight table—several times. However,

depending on the selectivity of the various criteria provided, typically if type_code=4 is a

rare and therefore selective attribute condition, an exists might be more appropriate than

a not in ( ). If, however, trans_description happens to be, at least relatively, a small table,

then there is no doubt that trying to improve the query by playing on the existence test

alone is a dead end.

Another interesting way to express nonexistence—and often quite an efficient one—is to

use outer joins. The purpose of outer joins is basically to return, in a join, all information

from one table, including rows for which no match is found in the joined table. As it

happens, when we are looking for data that has no match in another table, it is precisely

these rows that are of interest to us. How can we identify them? By checking the joined

table columns: when there is no match, they are replaced with null values.

Something such as:

select whatever
from invoice_detail
where type_code = 4
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  and subtype_code not in
                (select trans_code
                 from trans_description
                 where trans_category in (6, 7))

can therefore be rewritten:

select whatever
from invoice_detail
     outer join trans_description
             on trans_description.trans_category in (6, 7)
            and trans_description.trans_code = invoice_detail.subtype_code
where trans_description.trans_code is null

I have purposely included the condition on trans_category in the join clause. Whether it

should rightly appear in this clause or in the where clause is debatable but, in fact, filtering

before the join or after the join is result-neutral (of course, from a performance point of

view, it can make a difference, depending on the relative selectivity of this condition and

of the join condition itself). However, we have no such latitude with the condition on the

null value, since this is something that can only be checked after the join.

Apart from the fact that the outer join may in some cases require a distinct, in practice

there should be very little difference between checking the absence of data through an

outer join or a not in ( ) uncorrelated subquery, since the column which is used for the

join happens to be the very same column that is compared to the result set of the

subquery. But SQL is famous for being a language in which the manner of the query

expression often has a very real effect on the pattern of execution, even if the theory says

otherwise. It all depends on the degree of sophistication of the optimizer, and whether it

processes both types of queries in a similar way or not. In other words, SQL is not a truly

declarative language, even if the enhancement of optimizers with each new version

slowly improves its reliability.

Before closing this topic, watch out for the perennial SQL party-poopers—null values.

Although in an in ( ) subquery a null value joining the flow of non-null values does not

bother the outer query, with a not in ( ) subquery, any null value returned by the inner

query causes the not in ( ) condition to be evaluated as false. It does not cost much to

ensure that a subquery returns no null value—and doing so will save you a lot of grief.

Data sets can be compared using various techniques, but outer

joins and set operators are likely to be efficient.



Chapter 7. C H A P T E R S E V E N

Variations in Tactics
Dealing with Hierarchical Data

The golden rule is that there are no golden rules.

—George Bernard Shaw (1856–1950)

Man and Superman/Maxims for
Revolutionists
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You have seen in the previous chapter that queries sometimes refer to the same table

several times and that results can be obtained by joining a row from one table to another

row in the same table. But there is a very important case in which a row is not only

related to another row, but is dependent upon it. That latter row is itself dependent on

another one—and so forth. I am talking here of the representation of hierarchies.

Tree Structures
Relational theory struck the final blow to hierarchical databases as the main repositories

for structured data. Hierarchical databases were historically the first attempt at structuring

data that had so far been stored as records in files. Instead of having linear sequences of

identical records, various records were logically nested. Hierarchical databases were

excellent for some queries, but their strong structure made one feel as if in a straitjacket,

and navigating them was painful. They first bore the brunt of the assault by network, or

CODASYL, databases, in which navigation was still difficult but that were more flexible,

until the relational theory proved that database design was a science and not a craft.

However, hierarchies, or at least hierarchical representations, are extremely common—

which probably accounts for the resilience of the hierarchical model, still alive today

under various names such as Lightweight Directory Access Protocol (LDAP) and XML.

The handling of hierarchical data, also widely known as the Bill of Materials (BOM)

problem, is not the simplest of problems to understand. Hierarchies are complicated not

so much because of the representation of relationships between different components,

but mostly because of the way you walk a tree. Walking a tree simply means visiting all

or some of the nodes and usually returning them in a given order. Walking a tree is often

implemented, when implemented at all, by DBMS engines in a procedural way—and that

procedurality is a cardinal relational sin.

Tree Structures Versus Master/Detail Relationships

Many designers tend, not unnaturally, to consider that a parent/child link is in itself not

very different from a master/detail relationship—the classical orders/order_detail

relationship, in which the order_detail table stores (as part of its own key) the reference

of the order it relates to. There are, however, at least four major differences between the

parent/child link and the master/detail relationship:

Single table

The first difference is that when we have a tree representing a hierarchy, all the

nodes are of the very same nature. The leaf nodes, in other words the nodes that

have no child node, are sometimes different, as happens in file management sys-

tems with folders—regular nodes and files—leaf nodes, but I’ll set that case apart
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for the time being. Since all nodes are of the same nature, we describe them in

the same way, and they will be represented by rows in the same table. Putting it

another way, we have a kind of master/detail relationship, not between two dif-

ferent tables holding rows of different nature, but between a table and itself.

Depth

The second difference is that in the case of a hierarchy, how far you are from the

top is often significant information. In a master/detail relationship, you are

always either the master or the detail.

Ownership

The third difference is that in a master/detail relationship you can have a clean

foreign key integrity constraint; for instance, every order identifier in the order_

detail table must correspond to an existing identifier in the orders table, plain

and simple. Such is not the case with hierarchical data. You can decide to say

that, for instance, the manager number must refer to an existing employee

number. Except that you then have a problem with the top manager, who in

truth reports to the representatives of shareholders—the board, not an

employee. This leaves us with that endless source of difficulties, a null value.

And you may have several such “special case” rows, since we may need to

describe in the same table several independent trees, each with its own root—

something that is called a forest.

Multiple parents

Associating a “child” with the identifier of a “parent” assumes that a child can

have only one parent. In fact, there are many real-life situations when this is not

the case, whether it is investments, ingredients in formulae, or screws in

mechanical parts. A case when a child has multiple parents is arguably not a tree

in the mathematical sense; unfortunately, many real-life trees, including genea-

logical trees, are more complex than simple parent-child relationships, and may

even require the handling of special cases (outside the scope of this book) such

as cycles in a line of links.

In his excellent book, Practical Issues in Database Management (Addison Wesley), Fabian

Pascal explains that the proper relational view of a tree is to understand that we have two

distinct entity types, the nodes (for which we may have a special subtype of leaf nodes,

bearing more information) and the links between the nodes. I should point out that this

design approach solves the question of integrity constraints, since one only describes links

that actually exist. Pascal’s approach also solves the case of the “child” that appears in the

descent of numerous “parents.” This case is quite common in the industry and yet so rare

in textbooks, which usually stick to the employee/manager example.

Pascal, following ideas of Chris Date, suggests that there should be an explode( ) operator

to flatten, on the fly, a hierarchy, by providing a view which would make explicit the

implicit links between nodes. The only snag is that this operator has never been
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implemented. DBMS vendors have quite often implemented specialized processes such as

the handling of spatial data or full-text indexing, but the proper implementation of

hierarchical data has oscillated between the nonexistent and the feeble, thus leaving most

of the burden of implementation just where it doesn’t belong: with the developer.

As I have already hinted, the main difficulty when dealing with hierarchical data lies in

walking the tree. Of course, if your aim is just to display a tree structure in a graphical

user interface, each time the user clicks on a node to expand it, you have no particular

problem: issuing a query that returns all the children of the node for which you pass the

identifier as argument is a straightforward task.

Practical Examples of Hierarchies

In real life, you meet hierarchies very often, but the tasks applied to them are rarely

simple. Here are just three examples of real-life problems involving hierarchies, from

different industries:

Risk exposure

When you attempt to compute your exposure to risk in a financial structure

such as a hedge fund, the matter becomes hierarchically complex. These finan-

cial structures invest in funds that themselves may hold shares in other funds.

Archive location

If you are a big retail bank, you are likely to face a nontrivial task if you want to

retrieve from your archives the file of a loan signed by John Doe seven years

ago, because files are stored in folders, which are in boxes, which are on shelves,

which are in cabinets in an alley in some room of some floor of some building.

The nested “containers” (folders, boxes, shelves, etc.) form a hierarchy.

Use of ingredients

If you work for the pharmaceutical industry, identifying all of the drugs you

manufacture that contain an ingredient for which a much cheaper equivalent

has just been approved and can now be used presents the very same type of SQL

challenge in a totally unrelated area.

It is important to understand that these hierarchical problems are indeed quite distinct in

their fundamental characteristics. A task such as finding the location of a file in an archive

means walking a tree from the bottom to the top (that is, from a position of high granularity

to one of increasing aggregation), because you start from some single file reference, that will

point you to the folder in which it is stored, where you will find the identification of a box,

and so forth on up to the room in a building, and so on, thus determining the exact location

of the file. Finding all the products that contain a given ingredient also happens to be a

bottom-up walk, although in that case our number of starting points may be very high—

and we have to repeat the walk each time. By contrast, risk exposure analysis means, first, a

top-down walk to find all investments, followed by computations on the way back up to the

top. It is a kind of aggregation, only more complicated.



V A R I A T I O N S  I N  T A C T I C S 171

In general, the number of levels in trees tends to be rather small. This is, in fact, the main

beauty of trees and the reason why they can be efficiently searched. If the number of

levels is fixed, the only thing we have to do is to join the table containing a tree with itself

as many times as we have levels. Let’s take the case of archives and say that the inventory

table shows us in which folder our loan file is located. This folder identifier will take us to

a location table, that points us the identifier of the box which contains the folder, the

shelf upon which the box is laid, the cabinet to which the shelf belongs, the alley where

we can find this cabinet, the room which contains the alley, the floor on which the room

is located, and, finally, the building. If the location table treats folders, boxes, shelves, and

the like as generic “locations,” a query returning all the components in the physical

location of a file might look like this:

select building.name building,
       floor.name floor,
       room.name room,
       alley.name alley,
       cabinet.name cabinet,
       shelf.name shelf,
       box.name box,
       folder.name folder
from inventory,
     location folder,
     location box,
     location shelf,
     location cabinet,
     location alley,
     location room,
     location floor,
     location building
where inventory.id = 'AZE087564609'
  and inventory.folder = folder.id
  and folder.located_in = box.id
  and box.located_in = shelf.id
  and shelf.located_in = cabinet.id
  and cabinet.located_in = alley.id
  and alley.located_in = room.id
  and room.located_in = floor.id
  and floor.located_in = building.id

This type of query, in spite of an impressive number of joins, should run fast since each

successive join will use the unique index on location (that is, the index on id),

presumably the primary key. But yes, there is a catch: the number of levels in a hierarchy

is rarely constant. Even in the rather sedate world of archives, the contents of boxes are

often moved after the passage of time to new containers (which may be more compact

and, therefore, provide cheaper storage). Such activity may well replace two levels in a

hierarchy with just one, as containers will replace both boxes and shelves. What should

we do when we don’t know the number of levels? How best do we query such a

hierarchy? Do we use a union? An outer-join?
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Links between objects of the same nature should be modeled as

trees as soon as the number of levels between two objects is no

longer a constant.

Representing Trees in an SQL Database
Trees are generally represented in the SQL world by one of three models:

Adjacency model

The adjacency model is thus called because the identifier of the closest ancestor

up in the hierarchy (the parent row) is given as an attribute of the child row.

Two adjacent nodes in the tree are therefore clearly associated. The adjacency

model is often illustrated by the employee number of the manager being speci-

fied as an attribute of each employee managed. (The direct association of the

manager to the employee is in truth a poor design, because the manager identi-

fication should be an attribute of the structure that is managed. There is no rea-

son that, when the head of a department is changed, one should update the

records of all the people who work in the department to indicate the new man-

ager). Some products implement special operators for dealing with this type of

model, such as Oracle’s connect by (introduced as early as Oracle version 4

around the mid 1980s) or the more recent recursive with statement of DB2 and

SQL Server. Without any such operator, the adjacency model is very hard to

manage.

Materialized path model

The idea here is to associate with each node in the tree a representation of its

position within the tree. This representation takes the form of a concatenated list

of the identifiers of all the node’s ancestors, from the root of the tree down to its

immediate parent, or as a list of numbers indicating the rank within siblings of a

given ancestor at one generation (a method frequently used by genealogists).

These lists are usually stored as delimited strings. For instance, '1.2.3.2' means

(right to left) that the node is the second child of its parent (the path of which is

'1.2.3'), which itself is the third child of the grandparent ('1.2'), and so forth.

Nested set model

In this model, devised by Joe Celko,* a pair of numbers (defined as a left number

and a right number) is associated to each node in such a fashion that they define

an interval which always contains the interval associated with any of the descen-

dents. The upcoming subsection “Nested Sets Model (After Celko)” under “Practi-

cal Implementation of Trees” gives a practical example of this intricate scheme.

* First introduced in articles in DBMS Magazine (circa 1996), and much later developed in Trees and
Hierarchies in SQL for Smarties (Morgan-Kauffman).
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There is a fourth, less well-known model, presented by its author, Vadim Tropashko, who

calls it the nested interval model, in a very interesting series of papers.* The idea behind this

model is, to put it very simply, to encode the path of a given node with two numbers,

which are interpreted as the numerator and the denominator of a rational number (a

fraction to those uncomfortable with the vocabulary of mathematics) instead of an

interval. Unfortunately, this model is heavy on computations and stored procedures and,

while it looks promising for a future implementation of good tree-handling functions

(perhaps the explode( ) operator) in a DBMS, it is in practice somewhat difficult to

implement and not the fastest you can do, which is why I shall focus on the three

aforementioned models.

To keep in tone with our general theme, and to generate a reasonable amount of data, I

have created a test database of the organizations of the various armies that were opposed

in 1815 at the famous battle of Waterloo in Belgium, near Brussels† (known as orders of

battle), which describe the structure of the Anglo-Dutch, Prussian, and French armies

involved—corps, divisions, and brigades down to the level of the regiments. I use this

data, and mostly the descriptions of the various units and the names of their

commanders, as the basis for many of the examples that you’ll see in this chapter.

I must hasten to say that the point of what follows in this chapter is to demonstrate

various ways to walk hierarchies and that the design of my tables is, to say the least,

pretty slack. Typically, a proper primary key for a fighting unit should be an

understandable and standardized code, not a description that may suffer from data entry

errors. Please understand that any reference to a surrogate id is indeed shorthand for an

implicit, sound primary key.

The main difficulty with hierarchies is that there is no “best representation.” When our

interest is mostly confined to the ancestors of a few elements (a bottom-up walk), either

connect by or the recursive with is, at least functionally and in terms of performance,

sufficiently satisfactory. However, if we scratch the surface, connect by in particular is of

course a somewhat ugly, non-relational, procedural implementation, in the sense that we

can only move gradually from one row to the next one. It is much less satisfactory when

we want to return either a bottom-up hierarchy for a very large number of items, or

when we need to return a very large number of descendants in a top-down walk. As is so

often the case with SQL, the ugliness that you can hide with a 14–row table becomes

painfully obvious when you are dealing with millions, not to say billions, of rows, and

that nice little SQL trick now shows its limits in terms of performance.

* Initially published on http://www.dbazine.com.

† Using, with his permission, the data compiled by Peter Kessler, at http://www.kessler-web.co.uk.
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My example table, which contains a little more than 800 rows, is a bit larger than the

usual examples, although it is in no way comparable to what you can regularly find in

the industry. However, it is big enough to point out the strengths and weaknesses of the

various models.

The SQL implementation of trees is DBMS dependent; use what

your DBMS has to offer.

Practical Implementation of Trees
The following subsections provide examples of each of the three hierarchy models. In

each case, rows have been inserted into the example tables in the same order (ordered by

commander) in an attempt to divorce the physical order of the rows from the expected

result. Remember that the design is questionable, and that the purpose is to show in as

simple a way as possible how to handle trees according to the model under discussion.

Adjacency Model

The following table describes the hierarchical organization of an army using the

adjacency model. The table name I’ve chosen to use is, appropriately enough, ADJACENCY_

MODEL. Each row in the table describes a military unit. The parent_id points upward in the

tree to the enclosing unit:

 Name                            Null?    Type
 ------------------------------- -------- --------------
 ID                              NOT NULL NUMBER
 PARENT_ID                                NUMBER
 DESCRIPTION                     NOT NULL VARCHAR2(120)
 COMMANDER                                VARCHAR2(120)

Table ADJACENCY_MODEL has three indexes: a unique index on id (the primary key), an

index on parent_id, and an index on commander. Here are a few sample lines from

ADJACENCY_MODEL:

ID  PARENT_ID DESCRIPTION                  COMMANDER
--- --------- ---------------------------- -----------------------------
435         0 French Armée du Nord of 1815 Emperor Napoleon Bonaparte
619       435 III Corps                    Général de Division Dominique
                                           Vandamme
620       619 8th Infantry Division        Général de Division Baron
                                           Etienne-Nicolas Lefol
621       620 1st Brigade                  Général de Brigade Billard
                                           (d.15th)
622       621 15th Rgmt Léger              Colonel Brice
623       621 23rd Rgmt de Ligne           Colonel Baron Vernier
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624       620 2nd Brigade                  Général de Brigade Baron
                                           Corsin
625       624 37th Rgmt de Ligne           Colonel Cornebise
626       620 Division Artillery
627       626 7/6th Foot Artillery         Captain Chauveau

Materialized Path Model

Table MATERIALIZED_PATH_MODEL stores the same hierarchy as ADJACENCY_MODEL but with a

different representation. The (id, parent_id) pair of columns associating adjacent nodes is

replaced with a single materialized_path column that records the full “ancestry” of the

current row:

 Name                                Null?    Type
 ----------------------------------- -------- ----------------
 MATERIALIZED_PATH                   NOT NULL VARCHAR2(25)
 DESCRIPTION                         NOT NULL VARCHAR2(120)
 COMMANDER                                    VARCHAR2(120)

Table MATERIALIZED_PATH_MODEL has two indexes, a unique index on materialized_path (the

primary key), and an index on commander. In a real case, the choice of the path as the

primary key is, of course, a very poor one, since people or objects rarely have as a

defining characteristic their position in a hierarchy. In a proper design, there should be at

least some kind of id, as in table ADJACENCY_MODEL. I have suppressed it simply because I

had no use for it in my limited tests.

However, my questionable choice of materialized_path as the key was also made with the

idea of checking in that particular case the benefit of the special implementations

discussed in Chapter 5, in particular, what happens when the table that describes a tree

happens to map the tree structure of an index? In fact, in this particular example such

mapping makes no difference.

Here are the same sample lines as in the adjacency model, but with the materialized path:

MATERIALIZED_PATH DESCRIPTION                  COMMANDER
----------------- ---------------------------- --------------------------
F                 French Armée du Nord of 1815 Emperor Napoleon Bonaparte
F.3               III Corps                    Général de Division
                                               Dominique Vandamme
F.3.1             8th Infantry Division        Général de Division Baron
                                               Etienne-Nicolas Lefol
F.3.1.1           1st Brigade                  Général de Brigade Billard
                                               (d.15th)
F.3.1.1.1         15th Rgmt Léger              Colonel Brice
F.3.1.1.2         23rd Rgmt de Ligne           Colonel Baron Vernier
F.3.1.2           2nd Brigade                  Général de Brigade Baron
                                               Corsin
F.3.1.2.1         37th Rgmt de Ligne           Colonel Cornebise
F.3.1.3           Division Artillery
F.3.1.3.1         7/6th Foot Artillery         Captain Chauveau
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Nested Sets Model (After Celko)

With the nested set model, we have two columns, left_num and right_num, which describe

how each row relates to other rows in the hierarchy. I’ll show shortly how those two

numbers are used to specify a hierarchical position:

 Name                                Null?    Type
 ----------------------------------- -------- -------------
 DESCRIPTION                                  VARCHAR2(120)
 COMMANDER                                    VARCHAR2(120)
 LEFT_NUM                            NOT NULL NUMBER
 RIGHT_NUM                           NOT NULL NUMBER

Table NESTED_SETS_MODEL has a composite primary key, (left_num, right_num) plus an index

on commander. As with the materialized path model, this is a poor choice but it is adequate

for our present tests.

It is probably time now to explain how the mysterious numbers, left_num and right_num,

are obtained. Basically, one starts from the root of the tree, assigning 1 to left_num for the

root node. Then all child nodes are recursively visited, as shown in Figure 7-1, and a

counter increases at each call. You can see the counter on the line in the figure. It begins

with 1 for the root node and increases by one as each node is visited.

Say that we visit a node for the very first time. For instance, in the example of Figure 7-1,

after having assigned the integer 1 to the left_num value of the 1st Corps node, we

encounter (for the first time) the node 1st British Guards Division. We increase our counter

and assign 2 to left_num. Then we visit the node’s children, encountering for the first time

1st Guards Brigade and assigning the value of our counter, 3 at this stage, to left_num. But

this node, on this example, has no child. Because there is no child, we increment our

counter and assign its value to right_num, which in this case takes the value 4. Then we

move on to the node’s sibling, 2nd Guards Brigade. It is the same story with this sibling.

Finally, we return—our second visit—to the parent node 1st British Guards Division and

can assign the new value of our counter, which has now reached 7, to its right_num. We

then proceed to the next sibling, 3rd Anglo-German Division, and so on.

As mentioned earlier, you can see that the [left_num, right_num] pair of any node is

enclosed within the [left_num, right_num] pair of any of its ascendants—hence the name

F I G U R E  7 - 1 . How nested sets numbers are assigned



V A R I A T I O N S  I N  T A C T I C S 177

of nested sets. Since, however, we have three independent trees (the Anglo-Dutch,

Prussian, and French armies), which is called in technical terms a forest, I have had to

create an artificial top level that I have called Armies of 1815. Such an artificial top level is

not required by the other models.

Here is what we get from our example after having computed all numbers:

DESCRIPTION                  COMMANDER                  LEFT_NUM RIGHT_NUM
---------------------------- -------------------------- -------- ----------
Armies of 1815                                                 1       1622
French Armée du Nord of 1815 Emperor Napoleon Bonaparte      870       1621
III Corps                    Général de Division            1237       1316
                             Dominique Vandamme
8th Infantry Division        Général de Division Baron      1238       1253
                             Etienne-Nicolas Lefol
1st Brigade                  Général de Brigade Billard     1239       1244
                             (d.15th)
15th Rgmt Léger              Colonel Brice                  1240       1241
23rd Rgmt de Ligne           Colonel Baron Vernier          1242       1243
2nd Brigade                  Général de Brigade Baron       1245       1248
                             Corsin
37th Rgmt de Ligne           Colonel Cornebise              1246       1247
Division Artillery                                          1249       1252
7/6th Foot Artillery         Captain Chauveau               1250       1251

The rows in our sample that are at the bottom level in the hierarchy can be spotted by

noticing that right_num is equal to left_num + 1.

The author of this clever method claims that it is much better than the adjacency model

because it operates on sets and that is what SQL is all about. This is perfectly true, except

that SQL is all about unbounded sets, whereas his method relies on finite sets, in that you

must count all nodes before being able to assign the right_num value of the root. And of

course, whenever you insert a node somewhere, you must renumber both the left_num

and right_num values of all the nodes that should be visited after the new node, as well as

the right_num value of all its ascendants. The necessity to modify many other items when

you insert a new item is exactly what happens when you store an ordered list into an

array: as soon as you insert a new value, you have to shift, on average, half the array.

The nested set model is imaginative, no doubt, but a relational nightmare, and it is

difficult to imagine worse in terms of denormalization. In fact, the nested sets model is a

pointer-based solution, the very quagmire from which the relational approach was

designed to escape.

Walking a Tree with SQL
In order to check efficiency and performance, I have compared how each model

performed with respect to the following two problems:

1. To find all the units under the command of the French general Dominique Vandamme

(a top-down query), if possible as an indented report (which requires keeping track of
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the depth within the tree) or as a simple list. Note that in all cases we have an index

on the commander’s name. I refer to this problem as the Vandamme query.

2. To find, for all regiments of Scottish Highlanders, the various units they belong to,

once again with and without proper indentation (a bottom-up query). We have no

index on the names of units (column description in the tables), and our only way to

spot Scottish Highlanders is to look for the Highland string in the name of the unit,

which of course means a full scan in the absence of any full-text indexing. I refer to

this problem as the Highlanders query.

To ensure that the only variation from test to test was in the model used, my

comparisons are all done using the same DBMS, namely Oracle.

Top-Down Walk: The Vandamme Query

In the Vandamme query, we start with the commander of the French Third Corps,

General Vandamme, and want to display in an orderly fashion all units under his

command. We don’t want a simple list: the structure of the army corps must be clear, as

the corps is made of divisions that are themselves made of brigades that are themselves

usually composed of two regiments.

Adjacency model

Writing the Vandamme query with the adjacency model is fairly easy when using

Oracle’s connect by operator. All you have to specify is the node you wish to start from

(start with) and how each two successive rows returned relate to each other (connect by

<a column of the current row> = prior <a column of the previous row>, or connect by <a column

of the previous row> = prior <a column of the current row>, depending on whether you are

walking down or up the tree). For indentation, Oracle maintains a pseudo-column

named level that tells you how many levels away from the starting point you are. I am

using this pseudo-column and left-padding the description with as many spaces as the

current value of level. My query is:

select lpad(description, length(description) + level) description,
       commander
from adjacency_model
connect by parent_id = prior id
start with commander = 'Général de Division Dominique Vandamme'

And the results are:

DESCRIPTION                     COMMANDER
------------------------------- -----------------------------------------------
 III Corps                      Général de Division Dominique Vandamme
  8th Infantry Division         Général de Division Baron Etienne-Nicolas Lefol
   2nd Brigade                  Général de Brigade Baron Corsin
    37th Rgmt de Ligne          Colonel Cornebise
   1st Brigade                  Général de Brigade Billard (d.15th)
    23rd Rgmt de Ligne          Colonel Baron Vernier
    15th Rgmt Léger             Colonel Brice
       ...
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  10th Infantry Division        Général de Division Baron Pierre-Joseph Habert
   2nd Brigade                  Général de Brigade Baron Dupeyroux
    70th Rgmt de Ligne          Colonel Baron Maury
    22nd Rgmt de Ligne          Colonel Fantin des Odoards
    2nd (Swiss) Infantry Rgmt   Colonel Stoffel
   1st Brigade                  Général de Brigade Baron Gengoult
    88th Rgmt de Ligne          Colonel Baillon
    34th Rgmt de Ligne          Colonel Mouton
   Division Artillery
    18/2nd Foot Artillery       Captain Guérin

40 rows selected.

Now, what about the other member in the adjacency family, the recursive with

statement?* With this model, a recursive-factorized statement is defined, which is made

of the union (the union all, to be precise) of two select statements:

• The select that defines our starting point, which in this particular case is:

select 1 level,
       id,
       description,
       commander
from adjacency_model
where commander = 'Général de Division Dominique Vandamme'

What is this solitary 1 for? It represents, as the alias indicates, the depth in the tree. In

contrast to the Oracle connect by implementation, this DB2 implementation has no sys-

tem pseudo-variable to tell us where we are in the tree. We can compute our level,

however, and I’ll explain more about that in just a moment.

• The select which defines how each child row relates to its parent row, as it is returned

by this very same query that we can call, with a touch of originality, recursive_query:

select parent.level + 1,
       child.id,
       child.description,
       child.comander
from recursive_query parent,
     adjacency_model child
where parent.id = child.parent_id

Notice in this query that we add 1 to parent.level. Each execution of this query repre-

sents a step down the tree. For each step down the tree, we increment our level, thus

keeping track of our depth.

All that’s left is to fool around with functions to nicely indent the description, and here is

our final query:

with recursive_query(level, id, description, commander)
as (select 1 level,
           id,
           description,

* Using this time the first product that implemented it, namely DB2.
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           commander
    from adjacency_model
    where commander = 'Général de Division Dominique Vandamme'
    union all
    select parent.level + 1,
           child.id,
           child.description,
           child.commander
    from recursive_query parent,
         adjacency_model child
    where parent.id = child.parent_id)
select char(concat(repeat(' ', level), description), 60) description,
       commander
from recursive_query

Of course, you have to be a real fan of the recursive with to be able to state without

blushing that the syntax here is natural and obvious. However, it is not too difficult to

understand once written; and it’s even rather satisfactory, except that the query first

returns General Vandamme as expected, but then all the officers directly reporting to

him, and then all the officers reporting to the first one at the previous level, followed by

all officers reporting to the second one at the previous level, and so on. The result is not

quite the nice top-to-bottom walk of the connect by, showing exactly who reports to

whom. I’ll hasten to say that since ordering doesn’t belong to the relational theory, there

is nothing wrong with the ordering that you get from with, but that ordering does raise an

important question: in practice, how can we order the rows from a hierarchical query?

Ordering the rows from a hierarchical query using recursive with is indeed possible if, for

instance, we make the not unreasonable assumption that one parent node never has

more than 99 children and that the tree is not monstrously deep. Given these caveats,

what we can do is associate with each node a number that indicates where it is located in

the hierarchy—say 1.030801—to mean the first child (the two rightmost digits) of the

eighth child (next two digits, from right to left) of the third child of the root node. This

assumes, of course, that we are able to order siblings, and we may not always be able to

assign any natural ordering to them. Sometimes it is necessary to arbitrarily assign an

order to each sibling using, possibly, an OLAP function such as row_number( ).

We can therefore slightly modify our previous query to arbitrarily assign an order to

siblings and to use the just-described technique for ordering the result rows:

with recursive_query(level, id, rank, description, commander)
as (select 1,
           id,

cast(1 as double),
           description,
           commander
    from adjacency_model
    where commander = 'Général de Division Dominique Vandamme'
    union all
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    select parent.level + 1,
           child.id,

parent.rank + ranking.sn / power(100.0, parent.level),
           child.description,
           child.commander
    from recursive_query parent,
         (select id,
                 row_number( ) over (partition by parent_id
                                    order by description) sn
          from adjacency_model) ranking,
         adjacency_model child
    where parent.id =child.parent_id

and child.id = ranking.id)
select char(concat(repeat(' ', level), description), 60) description,
       commander
from recursive_query
order by rank

We might fear that the ranking query that appears as a recursive component of the query

would be executed for each node in the tree that we visit, returning the same result set

each time. This isn’t the case. Fortunately, the optimizer is smart enough not to execute

the ranking query more than is necessary, and we get:

DESCRIPTION                    COMMANDER
-----------------------------  ----------------------------------------------
 III Corps                     Général de Division Dominique Vandamme
  10th Infantry Division       Général de Division Baron Pierre-Joseph Habert
   1st Brigade                 Général de Brigade Baron Gengoult
    34th Rgmt de Ligne         Colonel Mouton
    88th Rgmt de Ligne         Colonel Baillon
   2nd Brigade                 Général de Brigade Baron Dupeyroux
    22nd Rgmt de Ligne         Colonel Fantin des Odoards
    2nd (Swiss) Infantry Rgmt  Colonel Stoffel
    70th Rgmt de Ligne         Colonel Baron Maury
   Division Artillery
    18/2nd Foot Artillery      Captain Guérin
  11th Infantry Division       Général de Division Baron Pierre Berthézène
   ...
    23rd Rgmt de Ligne         Colonel Baron Vernier
   2nd Brigade                 Général de Brigade Baron Corsin
    37th Rgmt de Ligne         Colonel Cornebise
   Division Artillery
    7/6th Foot Artillery       Captain Chauveau
  Reserve Artillery            Général de Division Baron Jérôme Doguereau
   1/2nd Foot Artillery        Captain Vollée
   2/2nd Rgmt du Génie

The result is not strictly identical to the connect by case, simply because we have ordered

siblings by alphabetical order on the description column, while we didn’t order siblings at

all with connect by (we could have ordered them by adding a special clause). But

otherwise, the very same hierarchy is displayed.
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While the result of the with query is logically equivalent to that of the connect by query,

the with query is a splendid example of nightmarish, obfuscated SQL, which in

comparison makes the five-line connect by query look like a model of elegant simplicity.

And even if on this particular example performance is more than acceptable, one can but

wonder with some anguish at what it might be on very large tables. Must we disregard

the recursive with as a poor, substandard implementation of the superior connect by? Let’s

postpone conclusions until the end of this chapter.

The ranking number we built in the recursive query is nothing more than a numerical

representation of the materialized path. It is therefore time to check how we can display

the troops under the command of General Vandamme using a simple materialized path

implementation.

Materialized path model

Our query is hardly more difficult to write under the materialized path model—but for

the level, which is derived from the path itself. Let’s assume just for an instant that we

have at hand a function named mp_depth( ) that returns the number of hierarchical levels

between the current node and the top of the tree. We can write a query as:

select lpad(a.description, length(a.description)
        + mp_depth(...)) description,
       a.commander
from materialized_path_model a,
     materialized_path_model b
where a.materialized_path like b.materialized_path || '%'
  and b.commander = 'Général de Division Dominique Vandamme')
order by a.materialized_path

Before dealing with the mp_depth( ) function, I’ll note a few traps. In my example, I have

chosen to start the materialized path with A for the Anglo-Dutch army, P for the Prussian

one, and F for the French one. That first letter is then followed by dot-separated digits.

Thus, the 12th Dutch line battalion, under the command of Colonel Bagelaar, is A.1.4.2.3,

while the 11th Régiment of Cuirassiers of Colonel Courtier is F.9.1.2.2. Ordering by

materialized path can lead to the usual problems of alphabetical sorts of strings of digits,

namely that 10.2 will be returned before 2.3; however, I should stress that, since the

separator has a lower code (in ASCII at least) than 0, then the order of levels will be

respected. The sort may not, however respect the order of siblings implied by the path.

Does that matter? I don’t believe that it does because sibling order is usually information

that can be derived from something other than the materialized path itself (for instance,

brothers and sisters can be ordered by their birth dates, rather than by the path). Be careful

with the approach to sorting that I’ve used here. The character encoding used by your

database might throw off the results.
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What about our mysterious mp_depth( ) function now? The hierarchical difference between

any commander under General Vandamme and General Vandamme himself can be defined

as the difference between the absolute levels (i.e., counting down from the root of the tree)

of the unit commanded by General Vandamme and any of the underlying units. How then

can we determine the absolute level? Well, by counting the dots.

To count the dots, the easiest thing to do is probably to start with suppressing them, with

the help of the replace( ) function that you find in the SQL dialect of all major products.

All you have to do next is subtract the length of the string without the dots from the

length of the string with the dots, and you get exactly what you want, the dot-count:

length((materialized_path) – length(replace(materialized_path, '.', ''))

If we check the result of our dot-counting algorithm for the author of the epigraph that

adorns Chapter 6 (a cavalry colonel at the time), here is what we get:

SQL> select materialized_path,
  2        length(materialized_path) len_w_dots,
  3        length(replace(materialized_path, '.', '')) len_wo_dots,
  4        length(materialized_path) -
  5             length(replace(materialized_path, '.', '')) depth,
  6        commander
  7  from materialized_path_model
  8  where commander = 'Colonel de Marbot'
  9  /

MATERIALIZED_PATH LEN_W_DOTS LEN_WO_DOTS      DEPTH COMMANDER
----------------- ---------- ----------- ---------- ------------------
F.1.5.1.1                  9           5          4 Colonel de Marbot

Et voilà.

Nested sets model

Finding all the units under the command of General Vandamme is very easy under the

nested sets model, since the model requires us to have numbered our nodes in such a

way that the left_num and right_num of a node bracket are the left_num and right_num of all

descendants. All we have to write is:

select a.description,
       a.commander
from nested_sets_model a,
     nested_sets_model b
where a.left_num between b.left_num and b.right_num
  and b.commander = 'Général de Division Dominique Vandamme'

All? Not quite. We have no indentation here. How do we get the level? Unfortunately,

the only way we have to get the depth of a node (from which indentation is derived) is

by counting how many nodes we have between that node and the root. There is no way

to derive depth from left_num and right_num (in contrast to the materialized path model).
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If we want to display an indented list under the nested sets model, then we must join a

third time with our nested_sets_model table, for the sole purpose of computing the depth:

select lpad(description, length(description) + depth) description,
       commander
from (select count(c.left_num) depth,
             a.description,
             a.commander,
             a.left_num
      from nested_sets_model a,
           nested_sets_model b,

nested_sets_model c
      where a.left_num between c.left_num and c.right_num

and c.left_num between b.left_num and b.right_num
        and b.commander = 'Général de Division Dominique Vandamme'
      group by a.description,
               a.commander,
               a.left_num)
order by left_num

The simple addition of the indentation requirement makes the query, as with (sic) the

recursive with( ), somewhat illegible.

Comparing the Vandamme query under the various models

After having checked that all queries were returning the same 40 rows properly indented,

I then ran each of the queries 5,000 times in a loop (thus returning a total of 200,000

rows). I have compared the number of rows returned per second, taking the adjacency

model as our 100-mark reference. You see the results in Figure 7-2.

As Figure 7-2 shows, for the Vandamme query, the adjacency model, in which the tree

is walked using connect by, outperforms the competition despite the procedural nature of

connect by. The materialized path makes a decent show, but probably suffers from the

function calls to compute the depth and therefore the indentation. The cost of a nicely

indented output is even more apparent with the nested sets model, where the obvious

F I G U R E  7 - 2 . Performance comparison for the Vandamme query
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performance killer is the computation of the depth through an additional join and a

group by. One might cynically suggest that, since this model is totally hard-wired, static,

and non-relational, we might as well go whole hog in ignoring relational design tenets

and store the depth of each node relative to the root. Doing so would certainly improve

our query’s performance, but at a horrendous cost in terms of maintenance.

Bottom-Up Walk: The Highlanders Query

As I said earlier, looking for the Highland string within the description attributes will

necessarily lead to a full scan of the table. But let’s write our query with each of the

models in turn, and then we’ll consider the resulting performance implications.

Adjacency model

The Highlanders query is very straightforward to write using connect by, and once again we

use the dynamically computed level pseudo-column to indent our result properly. Note

that level was previously giving the depth, and now it returns the height since it is always

computed from our starting point, and that we now return the parent after the child:

select lpad(description, length(description) + level) description,
       commander
from adjacency_model
connect by id = prior parent_id
start with description like '%Highland%'

And here is the result that we get:

DESCRIPTION                        COMMANDER
---------------------------------- ----------------------------------------
 2/73rd (Highland) Rgmt of Foot    Lt-Colonel William George Harris
  5th British Brigade              Major-General Sir Colin Halkett
   3rd Anglo-German Division       Lt-General Count Charles von Alten
    I Corps                        Prince William of Orange
     The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                   Wellington
 1/71st (Highland) Rgmt of Foot    Lt-Colonel Thomas Reynell
  British Light Brigade            Major-General Frederick Adam
   2nd Anglo-German Division       Lt-General Sir Henry Clinton
    II Corps                       Lieutenant-General Lord Rowland Hill
     The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                   Wellington
 1/79th (Highland) Rgmt of Foot    Lt-Colonel Neil Douglas
  8th British Brigade              Lt-General Sir James Kempt
   5th Anglo-German Division       Lt-General Sir Thomas Picton (d.18th)
    General Reserve                Duke of Wellington
     The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                   Wellington
 1/42nd (Highland) Rgmt of Foot    Colonel Sir Robert Macara (d.16th)
  9th British Brigade              Major-General Sir Denis Pack
   5th Anglo-German Division       Lt-General Sir Thomas Picton (d.18th)
    General Reserve                Duke of Wellington
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     The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                   Wellington
 1/92nd (Highland) Rgmt of Foot    Lt-Colonel John Cameron
  9th British Brigade              Major-General Sir Denis Pack
   5th Anglo-German Division       Lt-General Sir Thomas Picton (d.18th)
    General Reserve                Duke of Wellington
     The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                   Wellington

25 rows selected.

The non-relational nature of connect by appears plainly enough: our result is not a

relation, since we have duplicates. The name of the Duke of Wellington appears eight

times, but in two different capacities, five times (as many times as we have Highland

regiments) as commander-in-chief, and three as commander of the General Reserve.

Twice—once as commander of the General Reserve and once as commander-in-chief—

would have been amply sufficient. Can we easily remove the duplicates? No we cannot,

at least not easily. If we apply a distinct, the DBMS will sort our result to get rid of the

duplicate rows and will break the hierarchical order. We get a result that somehow

answers the question. But you can take it or leave it according to the details of your

requirements.

Materialized path model

The Highlanders query is slightly more difficult to write under the materialized path

model. Identifying the proper rows and indenting them correctly is easy:

select lpad(a.description, length(a.description)
                       + mp_depth(b.materialized_path)
                         - mp_depth(a.materialized_path)) description,
       a.commander
from materialized_path_model a,
     materialized_path_model b
where b.materialized_path like a.materialized_path || '%'
  and b.description like '%Highland%')

However, we have two issues to solve:

• We have duplicates, as with the adjacency model.

• The order of rows is not the one we want.

Paradoxically, the second issue is the reason why we can solve the first one easily; since

we shall have to find a means of correctly ordering anyway, adding a distinct will break

nothing in this case. How can we order correctly? As usual, by using the materialized

path as our sort key. By adding these two elements and pushing the query into the from

clause so as to be able to sort by materialized_path without displaying the column, we get:
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select description, commander
from (select distinct lpad(a.description, length(a.description)
                       + mp_depth(b.materialized_path)
                         - mp_depth(a.materialized_path)) description,
                       a.commander,
                       a.materialized_path
      from materialized_path_model a,
           materialized_path_model b
      where b.materialized_path like a.materialized_path || '%'
        and b.description like '%Highland%')
order by materialized_path desc

which displays:

DESCRIPTION                         COMMANDER
---------------------------------- ----------------------------------------
1/92nd (Highland) Rgmt of Foot      Lt-Colonel John Cameron
1/42nd (Highland) Rgmt of Foot      Colonel Sir Robert Macara (d.16th)
 9th British Brigade                Major-General Sir Denis Pack
1/79th (Highland) Rgmt of Foot      Lt-Colonel Neil Douglas
 8th British Brigade                Lt-General Sir James Kempt
  5th Anglo-German Division         Lt-General Sir Thomas Picton (d.18th)
   General Reserve                  Duke of Wellington
1/71st (Highland) Rgmt of Foot      Lt-Colonel Thomas Reynell
 British Light Brigade              Major-General Frederick Adam
  2nd Anglo-German Division         Lt-General Sir Henry Clinton
   II Corps                         Lieutenant-General Lord Rowland Hill
2/73rd (Highland) Rgmt of Foot      Lt-Colonel William George Harris
 5th British Brigade                Major-General Sir Colin Halkett
  3rd Anglo-German Division         Lt-General Count Charles von Alten
   I Corps                          Prince William of Orange
    The Anglo-Allied Army of 1815   Field Marshal Arthur Wellesley, Duke of
                                    Wellington

16 rows selected.

This is a much nicer and more compact result than is achieved with the adjacency model.

However, I should point out that a condition such as:

where b.materialized_path like a.materialized_path || '%'

where we are looking for a row in the table aliased by a, knowing the rows in the table

aliased by b, is something that, generally speaking, may be slow because we can’t make

efficient use of the index on the column. What we would like to do, to make efficient use

of the index, is the opposite, looking for b.materialized_path knowing a.materialized_path.

There are ways to decompose a materialized path into the list of the materialized paths of

the ancestors of the node (see Chapter 11), but that operation is not without cost. On our

sample data, the query we have here was giving far better results than decomposing the

material path so as to perform a more efficient join with the materialized path of each

ancestor. However, this might not be true against several million rows.
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Nested sets model

Once again, what hurts this model is that the depth must be dynamically computed, and

that computation is a rather heavy operation. Since the Highlanders query is a bottom-up

query, we must take care not to display the artificial root node (easily identified by left_

num = 1) that we have had to introduce. Moreover, I have had to hard-code the maximum

depth (6) to be able to indent properly. In our display, top levels are more indented than

bottom levels, which means that padding is inversely proportional to depth. Since the

depth is difficult to get, defining the indentation as 6 – depth was the simplest way to

achieve the required result.

As with the materialized path model, we have to reorder anyway, so we have no scruple

about applying a distinct to get rid of duplicate rows. Here’s the query:

select lpad(description, length(description) + 6 - depth) description,
       commander
from (select distinct b.description,
                      b.commander,
                      b.left_num,
                      (select count(c.left_num)
                       from nested_sets_model c
                       where b.left_num between c.left_num
                                            and c.right_num) depth
      from nested_sets_model a,
           nested_sets_model b
      where a.description like '%Highland%'
        and a.left_num between b.left_num and b.right_num
        and b.left_num > 1)
order by left_num desc

This query displays exactly the same result as does the materialized path query in the

preceding section.

Comparing the various models for the Highlanders query

I have applied the same test to the Highlanders query as to the Vandamme query earlier,

running each of the queries 5,000 times, with a minor twist: the adjacency model, as we

have seen, returns duplicate rows that we cannot get rid of. My test returns 5,000 times

25 rows for the adjacency model, and 5,000 times 16 rows with the other models,

because they are the only rows of interest. If we measure performance as a simple

number of rows returned by unit of time, with the adjacency model we are also counting

many rows that we are not interested in. I have therefore added an adjusted adjacency

model, for which performance is measured as the number of rows of interest—the rows

returned by the other two models—per unit of time. The result is given in Figure 7-3.

It is quite obvious from Figure 7-3 that the adjacency model outperforms the two other

models by a very wide margin before adjustment, and still by a very comfortable margin

after adjustment. Also notice that the materialized path model is still faster than the

nested sets model, but only marginally so.
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We therefore see that, in spite of its procedural nature, the implementation of the connect

by works rather well, both for top-down and bottom-up queries, provided of course that

columns are suitably indexed. However, the return of duplicate rows in bottom-up

queries when there are several starting points can prove to be a practical nuisance.

When connect by or a recursive with is not available, the materialized path model makes a

good substitute. It is interesting to see that it performs better than the totally hard-wired

nested sets model.

When designing tables to store hierarchical data, there are a number of mistakes to avoid,

some of which are made in our example:

The materialized path should in no way be the key, even if it is unique.

It is true that strong hierarchies are not usually associated with dynamic envi-

ronments, but you are not defined by your place in a hierarchy.

The materialized path should not imply any ordering of siblings.

Ordering does not belong to a relational model; it is simply concerned with the

presentation of data. You must not have to change anything in other rows when

you insert a new node or delete an existing one (which is probably the biggest

practical reason, forgetting about all theoretical reasons, for not using the nested

sets model). It is always easy to insert a node as the parents’ last child. You can

order everything first by sorting on the materialized path of the parent, and then

on whichever attribute looks suitable for ordering the siblings.

The choice of the encoding is not totally neutral.

The choice is not neutral because whether you must sort by the materialized

path or by the parent’s materialized path, you must use that path as a sort key.

The safest approach is probably to use numbers left padded with zeroes, for

instance 001.003.004.005 (note that if we always use three positions for each

number, the separator can go). You might be afraid of the materialized path’s

length; but if we assume that each parent never has more than 100 children

numbered from 0 to 99, 20 characters allow us to store a materialized path for up

to 10 levels, or trees containing up to 10010 nodes—probably more than needed.

F I G U R E  7 - 3 . Performance comparison for the Highlanders query
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Walking trees, whether down from the root or up from a leaf

node, is by nature a sequential and therefore slow operation.

Aggregating Values from Trees
Now that you know how to deal with trees, let’s look at how you can aggregate values

held in tree structures. Most cases for the aggregation of values held in hierarchical

structures fall into two categories: aggregation of values stored in leaf nodes and

propagation of percentages across various levels in the tree.

Aggregation of Values Stored in Leaf Nodes

In a more realistic example than the one used to illustrate the Vandamme and

Highlanders queries, nodes carry information—especially the leaf nodes. For instance,

regiments should hold the number of their soldiers, from which we can derive the

strength of every fighting unit.

Modeling head counts

If we take the same example we used previously, restricting it to a subset of the French

Third Corps of General Vandamme and only descending to the level of brigades, a

reasonably correct representation (as far as we can be correct) would be the tables

described in the following subsections.

UNITS. Each row in the units table describes the various levels of aggregation (army

corps, division, brigade) as in tables adjacency_model, materialized_path_models, or nested_

sets_model, but without any attribute to specify how each unit relates to a larger unit:

ID NAME                       COMMANDER
-- -------------------------- -----------------------------------------------
 1 III Corps                  Général de Division Dominique Vandamme
 2 8th Infantry Division      Général de Division Baron Etienne-Nicolas Lefol
 3 1st Brigade                Général de Brigade Billard
 4 2nd Brigade                Général de Brigade Baron Corsin
 5 10th Infantry Division     Général de Division Baron Pierre-Joseph Habert
 6 1st Brigade                Général de Brigade Baron Gengoult
 7 2nd Brigade                Général de Brigade Baron Dupeyroux
 8 11th Infantry Division     Général de Division Baron Pierre Berthézène
 9 1st Brigade                Général de Brigade Baron Dufour
10 2nd Brigade                Général de Brigade Baron Logarde
11 3rd Light Cavalry Division Général de Division Baron Jean-Simon Domont
12 1st Brigade                Général de Brigade Baron Dommanget
13 2nd Brigade                Général de Brigade Baron Vinot
14 Reserve Artillery          Général de Division Baron Jérôme Doguereau

Since the link between units is no longer stored in this table, we need an additional table

to describe how the different nodes in the hierarchy relate to each other.
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UNIT_LINKS_ADJACENCY. We may use the adjacency model once more, but this time

links between the various units are stored separately from other attributes, in an adjacency

list, in other words a list that associates to the (technical) identifier of each row, id, the

identifier of the parent row. Such a list isolates the structural information. Our unit_

links_adjacency table looks like this:

        ID  PARENT_ID
---------- ----------
         2          1
         3          2
         4          2
         5          1
         6          5
         7          5
         8          1
         9          8
        10          8
        11          1
        12         11
        13         11
        14          1

UNIT_LINKS_PATH. But you have seen that an adjacency list wasn’t the only way to

describe the links between the various nodes in a tree. Alternatively, we may as well

store the materialized path, and we can put that into the unit_links_path table:

        ID PATH
---------- -----------------
         1 1
         2 1.1
         3 1.1.1
         4 1.1.2
         5 1.2
         6 1.2.1
         7 1.2.2
         8 1.3
         9 1.3.1
        10 1.3.2
        11 1.4
        12 1.4.1
        13 1.4.2
        14 1.5

UNIT_STRENGTH. Finally, our historical source has provided us with the number of

men in each of the brigades—the lowest unit level in our sample. We’ll put that

information into our unit_strength table:

        ID        MEN
---------- ----------
         3       2952
         4       2107
         6       2761
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         7       2823
         9       2488
        10       2050
        12        699
        13        318
        14        152

Computing head counts at every level

With the adjacency model, it is typically quite easy to retrieve the number of men we

have recorded for the third corps; all we have to write is a simple query such as:

select sum(men)
from unit_strength
where id in (select id
             from unit_links_adjacency
             connect by prior id = parent_id
             start with parent_id = 1)

Can we, however, easily get the head count at each level, for example, for each division

(the battle unit composed of two brigades) as well? Certainly, in the very same way, just

by changing the starting point—using the identifier of each division each time instead of

the identifier of the French Third Corps.

We are now facing a choice: either we have to code procedurally in our application,

looping on all fighting units and summing up what needs to be summed up, or we have

to go for the full SQL solution, calling the query that computes the head count for each

and every row returned. We need to slightly modify the query so as to return the actual

head count each time the value is directly known, for example, for our lowest level, the

brigade. For instance:

select u.name,
       u.commander,
       (select sum(men)
        from unit_strength
        where id in (select id
                     from unit_links_adjacency
                     connect by parent_id = prior id
                     start with parent_id = u.id)
           or id = u.id) men
from units u

It is not very difficult to realize that we shall be hitting again and again the very same

rows, descending the very same tree from different places. Understandably, on large

volumes, this approach will kill performance. This is where the procedural nature of

connect by, which leaves us without a key to operate on (something I pointed out when I

could not get rid of duplicates without destroying the order I wanted), leaves us no other

choice than to adopt procedural processing when performance becomes a critical issue;

“for all they that take the procedure shall perish with the procedure.”
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We are in a slightly better position with the materialized path here, if we are ready to

allow a touch of black magic that I shall explain in Chapter 11. I have already referred to

the explosion of links; it is actually possible, even if it is not a pretty sight, to write a query

that explodes unit_links_path. I have called this view exploded_links_path and here is what

it displays when it is queried:

SQL> select * from exploded_links_path;

        ID   ANCESTOR      DEPTH
---------- ---------- ----------
        14          1          1
        13          1          2
        12          1          2
        11          1          1
        10          1          2
         9          1          2
         8          1          1
         7          1          2
         6          1          2
         5          1          1
         4          1          2
         3          1          2
         2          1          1
         4          2          1
         3          2          1
         7          5          1
         6          5          1
        10          8          1
         9          8          1
        13         11          1
        12         11          1

depth gives the generation gap between id and ancestor.

When you have this view, it becomes a trivial matter to sum up over all levels (bar the

bottom one in this case) in the hierarchy:

select u.name, u.commander, sum(s.men) men
from units u,
     exploded_links_path el,
     unit_strength s
where u.id = el.ancestor
  and el.id = s.id
group by u.name, u.commander

which returns:

NAME                       COMMANDER                              MEN
-------------------------- -------------------------------------- -----
III Corps                  Général de Division Dominique Vandamme 16350
8th Infantry Division      Général de Division Baron Etienne-      5059
                           Nicolas Lefol
10th Infantry Division     Général de Division Baron Pierre        5584
                           Joseph Habert
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11th Infantry Division     Général de Division Baron Pierre        4538
                           Berthézène
3rd Light Cavalry Division Général de Division Baron Jean-Simon    1017
                           Domont

(We can add, through a union, a join between units and unit_strength to see units

displayed for which nothing needs to be computed.)

I ran the query 5,000 times to determine the numerical strength for all units, and then I

compared the number of rows returned per unit time. As might be expected, the result

shows that the adjacency model, which had so far performed rather well, bites the dust,

as is illustrated in Figure 7-4.

Simpler tree implementation sometimes performs quite well

when computing aggregates.

Propagation of Percentages Across Different Levels

Must we conclude that with a materialized path and a pinch of adjacency where available

we can solve anything more or less elegantly and efficiently? Unfortunately not, and our

last example will really demonstrate the limits of some SQL implementations when it

comes to handling trees.

For this case, let’s take a totally different example, and we will assume that we are in the

business of potions, philters, and charms. Each of them is composed of a number of

ingredients—and our recipes just list the ingredients and their percentage composition.

Where is the hierarchy? Some of our recipes share a kind of “base philter” that appears as

a kind of compound ingredient, as in Figure 7-5.

F I G U R E  7 - 4 . Performance comparison when computing the head count of each unit
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Our aim is, in order to satisfy current regulations, to display on the package of Philter #5

the names and proportions of all the basic ingredients. First, let’s consider how we can

model such a hierarchy. In such a case, a materialized path would be rather

inappropriate. Contrarily to fighting units that have a single, well-defined place in the

army hierarchy, any ingredient, including compound ones such as Potion #9, can

contribute to many preparations. A path cannot be an attribute of an ingredient. If we

decide to “flatten” compositions and create a new table to associate a materialized path to

each basic ingredient in a composition, any change brought to Potion #9 would have to

ripple through potentially hundreds of formulae, with the unacceptable risk in this line of

business of one change going wrong.

The most natural way to represent such a structure is therefore to say that our philter

contains so much of powdered unicorn horn, so much of asphodel, and so much of

Potion #9 and so forth, and to include the composition of Potion #9.

Figure 7-6 illustrates one way we can model our database. We have a generic components

table with two subtypes, recipes and basic_ingredients, and a composition table storing the

quantity of a component (a recipe or a basic ingredient) that appears in each recipe.

F I G U R E  7 - 5 . Don’t try this at home

F I G U R E  7 - 6 . The model for recipes
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However, Figure 7-6’s design is precisely where an approach such as connect by becomes

especially clunky. Because of the procedural nature of the connect by operator, we can

include only two levels, which could be enough for the case of Figure 7-5, but not in a

general case. What do I mean by including two levels? With connect by we have the

visibility of two levels at once, the current level and the parent level, with the possible

exception of the root level. For instance:

SQL> select connect_by_root recipe_id root_recipe,
  2        recipe_id,
  3        prior pct,
  4        pct
  5        component_id
  6 from composition
  7 connect by recipe_id = prior component_id
  8 /

ROOT_RECIPE  RECIPE_ID   PRIORPCT          PCT COMPONENT_ID
----------- ---------- ---------- ------------ ------------
         14         14                       5            3
         14         14                      20            7
         14         14                      15            8
         14         14                      30            9
         14         14                      20           10
         14         14                      10            2
         15         15                      30           14
         15         14         30            5            3
         15         14         30           20            7
         15         14         30           15            8
         15         14         30           30            9
 ...

In this example, root_recipe refers to the root of the tree. We can handle simultaneously

the percentage of the current row and the percentage of the prior row, in tree-walking

order, but we have no easy way to sum up, or in this precise case, to multiply values

across a hierarchy, from top to bottom.

The requirement for propagating percentages across levels is, however, a case where a

recursive with statement is particularly useful. Why? Remember that when we tried to

display the underlings of General Vandamme we had to compute the level to know how

deep we were in the tree, carrying the result from level to level across our walk. That

approach might have seemed cumbersome then. But that same approach is what will

now allow us to pull off an important trick. The great weakness of connect by is that at

one given point in time you can only know two generations: the current row (the child)

and its parent. If we have only two levels, if Potion #9 contains 15% of Mandragore and

Philter #5 contains 30% of Potion #9, by accessing simultaneously the child (Potion #9)

and the parent (Philter #5) we can easily say that we actually have 15% of 30%—in

other words, 4.5% of Mandragore in Philter #5. But what if we have more than two
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levels? We may find a way to compute how much of each individual ingredient is

contained in the final products with procedures, either in the program that accesses the

database, or by invoking user-defined functions to store temporary results. But we have

no way to make such a computation through plain SQL.

“What percentage of each ingredient does a formula contain?” is a complicated question.

The recursive with makes answering it a breeze. Instead of computing the current level as

being the parent level plus 1, all we have to do is compute the actual percentage as being

the current percentage (how much Mandragore we have in Potion #9) multiplied by the

parent percentage (how much Potion #9 we have in Philter #5). If we assume that the

names of the components are held in the components table, we can write our recursive

query as follows:

with recursive_composition(actual_pct, component_id)
as (select a.pct,
           a.component_id
    from composition a,
         components b
    where b.component_id = a.recipe_id
      and b.component_name = 'Philter #5'
    union all
    select parent.pct * child.pct,
           child.component_id
    from recursive_composition parent,
         composition child
    where child.recipe_id = parent.component_id)

Let’s say that the components table has a component_type column that contains I for a basic

ingredient and R for a recipe. All we have to do in our final query is filter (with an f)

recipes out, and, since the same basic ingredient can appear at various different levels in

the hierarchy, aggregate per ingredient:

select x.component_name, sum(y.actual_pct)
from recursive_composition y,
       components x
where x.component_id = y.component_id
    and x.component_type = 'I'
group by x.component_name

As it happens, even if the adjacency model looks like a fairly natural way to represent

hierarchies, its two implementations are in no way equivalent, but rather

complementary. While connect by may superficially look easier (once you have

understood where prior goes) and is convenient for displaying nicely indented

hierarchies, the somewhat tougher recursive with allows you to process much more

complex questions relatively easily—and those complex questions are the type more

likely to be encountered in real life. You only have to check the small print on a cereal

box or a toothpaste tube to notice some similarities with the previous example of

composition analysis.
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In all other cases, including that of a DBMS that implements a connect by, our only hope

of generating the result from a “single SQL statement” is by writing a user-defined

function, which has to be recursive if the DBMS cannot walk the tree.

A more complex tree walking syntax may make a more complex

question easier to answer in pure SQL.

While the methods described in this chapter can give reasonably satisfactory results

against very small amounts of data, queries using the same techniques against very large

volumes of data may execute “as slow as molasses.” In such a case, you might consider a

denormalization of the model and a trigger-based “flattening” of the data. Many,

including myself, frown upon denormalization. However, I am not recommending that

you consider denormalizing for the oft-cited inherent slowness of the relational model, so

convenient for covering up incompetent programming, but because SQL still lacks a truly

adequate, scaleable processing of tree structures.



Chapter 8. C H A P T E R E I G H T

Weaknesses and Strengths
Recognizing and Handling Difficult Cases

No one can guarantee success in war, but only deserve it.

—Sir Winston Churchill (1874–1965)
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There are a number of cases when one has either to fight on unfavorable ground, or to

attack a formidable amount of data with feeble weapons. In this chapter, I am going to

try to describe a number of these difficult cases; first to try to sketch some tactics to

disentangle oneself with honor from a perilous situation, and, perhaps more importantly,

to be able to recognize as soon as possible those options that may just lead us into a trap.

In mechanics, the larger the number of moving parts, the greater the odds that something

will break. This is an observation that applies to complex architectures as well.

Unfortunately, snappy, exciting new techniques—or indeed revamped, dull old ones—

often make us forget this important principle: keep things simple. Simpler often means

faster and always means more robust. But simpler for the database doesn’t always mean

simpler for the developer, and simplicity often requires more skills than complexity.

In this chapter, we shall first consider a case when a criterion that looks efficient proves

rather weak but can be reinvigorated, and then we shall consider the dangers of abstract

“persistency” layers and distributed systems. We shall finally look in some detail at a

PHP/MySQL example showing the subtleties of combining flexibility with efficiency

when a degree of freedom is left to the program user for the choice of search criteria.

Deceiving Criteria
I already mentioned in Chapter 6 that in some queries we have a very selective

combination of criteria that individually are not very selective. I noted that this was a

rather difficult situation from which to achieve good performance.

Another interesting case, but one in which we are not totally helpless, is a criterion that

at first sight looks efficient, that has the potential for becoming an efficient criterion, but

that requires some attention to fulfill its potential. Credit card validation procedures

provide a good example of such a criterion. As you may know, a credit card number

encodes several pieces of information, including credit card type, issuer, and so on. By

way of example, let’s look at the problem of achieving a first level of control for payments

made at a toll road in one of the most visited Western European countries. This means

checking a very large number of credit cards, supplied by a large number of international

issuers, each with its own unique method of encoding.

Credit card numbers can have a maximum of 19 digits, with some exceptions, such as the

cards issued by MasterCard (16 digits), Visa (16 or 13), and American Express (15 digits),

to mention just three well-known issuers. The first six digits in all cases indicate who the

issuer is, and the last digit is a kind of checksum to spot any mistyping. A first, coarse

level of control could be to check that the issuer is known, and that the checksum is

correct. However the checksum algorithm is public knowledge (it can be found on the
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Internet) and can easily be faked. A more refined level of control also checks that the

prefix of the card number belongs, for one given issuer, to a valid range of values for this

issuer, together with an additional control on the number of digits in the card. In our

case, we are provided with a list of about 200,000 valid prefixes of varying lengths.

How do we write the query to test a given card number against the valid ranges of values

for the card’s issuer? The following is easy enough:

select count(*)
from credit_card_check
where ? like prefix + '%'

The where ? indicates the card number to check and here + denotes string concatenation,

often done via || or concat( ). We just have to index the prefix column, and we will get a

full table scan each time.

Why is a full table scan happening? Haven’t we seen that an index was usable when we

were addressing only the leftmost part of the key? True enough, but saying that the value

we want to check is the leftmost part of the full key is not the same as saying, as here,

that the full key is the leftmost part of the value we want to check. The difference may

seem subtle, but the two cases are mirror images of each other.

Suppose that the credit card number to verify is 4000 0012 3456 7899*. Now imagine

that our credit_card_checks table holds values such as 312345, 3456 and 40001. We can see

those three values as prefixes and, more or less implicitly, we see them as being in sorted

order. First of all, they are in ascending order if they are stored as strings of characters,

but not if they are stored as numbers. But there is yet more to worry about.

When we descend a tree (our index), we have a value to compare to the keys stored in

the tree. If the value is equal to the key stored into the current node, we are done.

Otherwise, we have to search a subtree that depends on whether our value is smaller or

greater than that key. If we had a prefix of fixed length, we would have no difficulty: we

should only take the suitable number of digits from our card number (the current prefix),

and compare it to the prefixes stored in the index. But when the length of the prefix

varies, which is our case, we must compare a different number of characters each time.

This is not a task that a regular SQL index search knows how to perform.

Is there any way out? Fortunately, there is one. An operator such as like actually selects

a range of values. If we want to check, say, that a 16-digit Visa card number is like 4000%,

it actually means that we expect to find it between 4000000000000000 and

400099999999999. If we had a composite index on these lower and upper boundary

* An invalid card number, in case you were wondering....
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numbers, then we could very easily check the card number by checking the index. That

is, if all card numbers had 16 digits. But a varying number of digits is a problem that is

easy to solve. All cards have a maximum number of 19 digits. If we right-pad our Visa

card number with three more 0s, thus bringing its total number of digits to 19, we can as

validly check whether 4000001234567899000 is between 4000000000000000000 and

400099999999999999.

Instead of storing prefixes, we need to have two columns: lower_bound and upper_bound.

The first one, the lower_bound, is obtained by right-padding our prefix to the maximum

length of 19 with 0s, and upper_bound is obtained by right-padding with 9s. Granted, this is

denormalization of a sort. However, this is a real read-only reference table, which makes

our sin slightly more forgivable. We just have to index (lower_bound, upper_bound) and

write our condition as the following to see our query fly:

where substring(? + '0000000000000000000', 1, 19) between lower_bound
                                                      and upper_bound

Many products directly implement an rpad( ) function for right-padding. When we have a

variable-length prefix to check, the solution is to get back to a common access case—the

index range scan.

Try to express unusual conditions such as comparisons on a prefix

or a part of a key in known terms of range condition; whenever

possible, try to ensure that there is a lower and an upper bound.

Abstract Layers
It is a common practice to create a succession of abstract layers over a suite of software

primitives, ostensibly for maintenance reasons and software reuse. This is a worthy

practice and provides superb material for exciting management presentations.

Unfortunately, this approach can very easily be abused, especially when the software

primitives consist of database accesses. Of course, such an industrial aspect of software

engineering is usually associated with modern, object-oriented languages.

I am going to illustrate how not to encapsulate database accesses with some lines from a

real-life program. Interestingly for a book entitled The Art of SQL, the following fragment

of C# code (of questionable sharpness...) contains only bits of an SQL statement. It is

nevertheless extremely relevant to our topic, for deplorable reasons.

1     public string Info_ReturnValueUS(DataTable dt,
2                                      string    codeForm,
3                                      string    infoTxt)
4     {
5       string returnValue = String.Empty ;
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6       try
7       {
8         infoTxt = infoTxt.Replace("'","''");
9         string expression = ComparisonDataSet.FRM_CD
10                                   + " = '" + codeForm
11                                   + "' and " + ComparisonDataSet.TXT_US
12                                   + " = '" + infoTxt + "'" ;
13         DataRow[] drsAttr = dt.Select(expression);
14
15         foreach (DataRow dr in drsAttr)
16         {
17          if (dr[ComparisonDataSet.VALUE_US].ToString().ToUpper().Trim( )
18                                    != String.Empty)
19             {
20              returnValue = dr[ComparisonDataSet.VALUE_US].ToString( ) ;
21              break;
22             }
23         }
24       }
25       catch (MyException myex)
26       {
27         throw myex ;
28       }
29       catch (Exception ex)
30       {
31         throw new MyException("Info_ReturnValueUS " + ex.Message) ;
32       }
33       return returnValue ;
34     }

There is no need to be a C# expert to grasp the purpose of the above method, at least in

general terms. The objective is to return the text associated with a message code. That

text is to be returned in a given language (in this case American English, as US suggests).

This code is from a multilingual system, and there is a second, identical function, in

which two other letters replace the letters U and S. No doubt when other languages will

be required, the same lines of code will be copied as many times as we have different

languages, and the suitable ISO code substituted for US each time. Will it ease

maintenance, when each change to the program has to be replicated to umpteen identical

functions (...but for the ISO code)? I may be forgiven for doubting it, in spite of my

legendary faith in what exciting management presentations promise modern languages to

deliver.

But let’s study the program a little more closely. The string expression in lines 9–12 is an

example of shameless hardcoding, before being passed in line 13 to a Select( ) method

that can reasonably be expected to perform a query. In fact, it would seem that two

different types of elements are hardcoded: column names (stored in attributes

ComparisonDataSet.FRM_CD and ComparisonDataSet.TXT_US—and here, apparently, there is one

column per supported language, which is a somewhat dubious design) and actual values

passed to the query (codeForm and infoTxt). Column names can only be hardcoded, but
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there should not be a very great number of different combinations of column names, so

that the number of different queries that can be generated will necessarily be small and

we will have no reason to worry about this. The same cannot be said of actual values: we

may query as many different values as we have rows in the table; in fact we may even

query more, generating queries that may return nothing. The mistake of hard-coding

values from codeForm and infoTxt into the SQL statement is serious because this type of

“give me the associated label” query is likely to be called a very high number of times. As

it is written, each call will trigger the full mechanism of parsing, determining the best

execution plan, and so on—for no advantage. The values should be passed to the query

as bind variables—just like arguments are passed to a function.

The loop of lines 15–23 is no less interesting. The program is looking for the first value

that is not empty in the dataset just returned—dare we say the first value that is not null?

Why code into an external application something that the SQL language can do perfectly

well? Why return from the server possibly many more rows than are required, just to

discard them afterwards? This is too much work. The database server will do more work,

because even if we exit the loop at the first iteration, it is quite common to pre-fetch rows

in order to optimize network traffic. The server may well have already returned tens or

hundreds of rows before our application program begins its first loop. The application

server does more work too, because it has to filter out most of what the database server

painstakingly returned. Needless to say, the developer has written more code than is

required. It is perfectly easy to add a suitable condition to expression, so that unneeded

rows are not returned. As the C# code generates the query, the server has no idea that

we are interested only in the first non-null value and will simply do as instructed. If we

were to try and check on the database side for a clue indicating wrongly written code, the

only thing that may possibly hint at a problem in the code will be the multitude of nearly

identical hardcoded statements. This anomaly is, however, only a part of the larger

problem.

One can write very poor code in any language, from plain old COBOL down to the

coolest object-oriented language. But the greater the degree of independence between

each layer of software, the better written those layers must each be. The problem here is

that a succession of software layers may be called. No matter how skilled the developer

who assembles these layers into the overall module, the final performance will be

constrained by the weakest layer.

The problem of the weakest layer is all the more perverse when you inherit bad

libraries—as with inheriting bad genes, there is not much you can do about it. Rewriting

inefficient low-level layers is rarely allowed by schedules or budgets. I once learned about

a case in which a basic operator in a programming language had been “overloaded”

(redefined) and was performing a database access each time it was used by unsuspecting

developers! It is all the more complicated to correct such a situation, because it is quite
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likely that individual queries, as seen from the database server, will look like

conspicuously plain queries, not like the bad sort of SQL query that scans millions of rows

and attracts immediate attention.

Cool database access libraries are not necessarily efficient

libraries.

Distributed Systems
Whether you refer to federated systems, a linked server, or a database link, the principle

is the same: in distributed queries, you are querying data that is not physically managed

inside the server (or database to the Oracle crowd) you are connected to. Distributed

queries are executed through complex mechanisms, especially for remote updates, in

which transaction integrity has to be preserved. Such complexity comes at a very heavy

cost, of which many people are not fully aware.

By way of example, I have run a series of tests against an Oracle database, performing

massive inserts and selects against a very simple local table, and then creating database

links and timing the very same operations with each database link. I have created three

different database links:

Inter-process

A link made by connecting through inter-process communications—typically

what one might do to query data located in another database* on the same host.

No network was involved.

Loop-back

A link connecting through TCP, but specifying the loop-back address (127.0.0.1)

to limit our foray into the network layers.

IP address

A link specifying the actual IP address of the machine—but once again without

really using a network, so there is no network latency involved.

The result of my tests, as it appears in Figure 8-1, is revealing. In my case, there is indeed

a small difference linked to my using inter-process communications or TCP in loop-back

or regular mode. But the big performance penalty comes from using a database link in

the very first place. With inserts, the database link divides the number of rows inserted

per second by five, and with selects it divides the number of rows returned per second by

a factor of 2.5 (operating in each case on a row-by-row basis).

* Remember that what Oracle calls a database is what is known in most other database systems as a
server.
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When we have to execute transactions across heterogeneous systems, we have no other

choice than to use database links or their equivalent. If we want data integrity, then we

need to use mechanisms that preserve data integrity, whatever the cost. There are,

however, many cases when having a dedicated server is an architectural choice, typically

for some reference data. The performance penalty is quite acceptable for the odd remote

reference. It is quite likely that if at connection time some particular credentials are

checked against a remote server, nobody will really notice, as long as the remote server is

up. If, however, we are massively loading data into a local database and performing some

validation check against a remote server for each row loaded locally, then you can be

sure to experience extremely slow performance. Validating rows one by one is in itself a

bad idea (in a properly designed database, all validation should be performed through

integrity constraints): remote checks will be perhaps two or three times slower than the

same checks being carried out on the same local server.

Distributed queries, involving data from several distinct servers, are also usually painful.

First of all, when you send a query to a DBMS kernel, whatever that query is, the master

of the game is the optimizer on that kernel. The optimizer will decide how to split the

query, to distribute the various parts, to coordinate remote and local activity, and finally

to put all the different pieces together. Finding the appropriate path is already a

complicated-enough business when everything happens on the local server. We should

take note that the notion of “distribution” is more logical than physical: part of the

performance penalty comes from the unavailability of remote dictionary information in

the local cache. The cost penalty will be considerably higher with two unrelated databases

hosted by the same machine than with two databases hosted by two different servers but

participating in a common federated database and sharing data dictionary information.

F I G U R E  8 - 1 . The cost of faking being far away
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There is much in common between distributed and parallelized queries (when a query is

split into a number of independent chunks that can be run in parallel) with, as you have

seen, the additional difficulties of the network layers slowing down significantly some of

the operations, and of the unavailability at one place of all dictionary information making

the splitting slightly more hazardous. There is also an additional twist here: when sources

are heterogeneous—for example when a query involves data coming from an Oracle

database as well as data queried from an SQL Server database, all the information the

optimizer usually relies on may not be available. Certainly, most products gather the

same type of information in order to optimize queries. But for several reasons, they don’t

work in a mutually cooperative fashion. First, the precise way each vendor’s optimizer

works is a jealously guarded secret. Second, each optimizer evolves from version to

version. Finally, the Oracle optimizer will never be able to take full advantage of SQL

Server specifics and vice versa. Ultimately, only the greatest common denominator can be

meaningfully shared between different product optimizers.

Even with homogeneous data sources, the course of action is narrowly limited. As we

have seen, fetching one row across a network costs considerably more than when all

processes are done locally. The logical inference for the optimizer is that it should not

take a path which involves some kind of to and fro switching between two servers, but

rather move as much filtering as close to the data as it can. The SQL engine should then

either pull or push the resulting data set for the next step of processing. You have already

seen in Chapters 4 and 6 that a correlated subquery was a dreadfully bad way to test for

existence when there is no other search criterion, as in for instance, the following

example:

select customer_name
from customers
where exists (select null
              from orders,
                   orderdetails
              where orders.customer_id = customers.customer_id
                and orderdetails.order_id = orders.order_id
                and orderdetails.article_id = 'ANVIL023')

Every row we scan from customers fires a subquery against orders and orderdetails.

It is of course even worse when customers happens to be hosted by one machine and

orders and orderdetails by another. In such a case, given the high cost of fetching a single

row, the reasonable solution looks like a transformation (in the ideal case, by the

optimizer) of the above correlated subquery into an uncorrelated one, to produce the

following instead:

select customer_name
from customers
where customer_id in (select orders.customer_id
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                      from orders,
                           orderdetails
                      where orderdetails.article_id = 'ANVIL023'
                        and orderdetails.order_id = orders.order_id)

Furthermore, the subquery should be run at the remote site. Note that this is also what

should be performed even if you write the query as like this:

select distinct customer_name
from customers,
     orders,
     orderdetails
where orders.customer_id = customers.customer_id
  and orderdetails.article_id = 'ANVIL023'
  and orders.order_id = orderdetails.order_id

Now will the optimizer choose to do it properly? This is another question, and it is better

not to take the chance. But obviously the introduction of remote data sources narrows

the options we have in trying to find the most efficient query. Also, remember that the

subquery must be fully executed and all the data returned before the outer query can

kick in. Execution times will, so to speak, add up, since no operation can be executed

concurrently with another one.

The safest way to ensure that joins of two remote tables actually take place at the remote

site is probably to create, at this remote site, a view defined as this join and to query the

view. For instance, in the previous case, it would be a good idea to define a view vorders

as:

select orders.customer_id, orderdetails.article_id
from orders,
     orderdetails
where orderdetails.order_id = orders.order_id

By querying vorders we limit the risks of seeing the DBMS separately fetching data from

all the remote tables involved in the query, and then joining everything locally. Needless

to say, if in the previous case, customers and orderdetails were located on the same server

and orders were located elsewhere, we would indeed be in a very perilous position.

The optimizer works well with what it knows well: local data.

Extensive interaction with remote data sinks performance.

Dynamically Defined Search Criteria
One of the most common causes for awful visible performance (as opposed to the

common dismal performance of batch programs, which can often be hidden for a while)

is the use of dynamically defined search criteria. In practice, such criteria are a
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consequence of the dreaded requirement to “let the user enter the search criteria as well

as the sort order via a screen interface.”

The usual symptoms displayed by this type of application is that many queries perform

reasonably well, but that unfortunately from time to time a query that seems to be almost

the same as a well-performing query happens to be very, very slow. And of course the

problem is difficult to fix, since everything is so dynamic.

Dynamic-search applications are often designed as a two-step drill-down query, as in

Figure 8-2. Basically, a first screen is displayed to the user with a large choice of criteria

and an array of possible conditions such as exclude or date between ... and .... These

criteria are used to dynamically build a query that returns a list with some identifier and

description, from which you can view all the associated details by selecting one particular

item in the list.

When the same columns from the same tables are queried with varying search criteria,

the key to success usually lays in a clever generation of SQL queries by the program that

accesses the database. I am going to illustrate my point in detail with a very simple

example, a movie database, and we shall only be concerned with returning a list of movie

titles that satisfy a number of criteria. The environment used in this example is a widely

popular combination, namely PHP and MySQL. Needless to say, the techniques shown in

this chapter are in no way specific to PHP or to MySQL—or to movie databases.

Designing a Simple Movie Database and the Main Query

Our central table will be something such as the following:

Table MOVIES
   movie_id       int(10) (auto-increment)
   movie_title    varchar(50)
   movie_country  char(2)
   movie_year     year(4)
   movie_category int(10)
   movie_summary  varchar(250)

F I G U R E  8 - 2 . A typical multi-criteria search
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We certainly need a categories table (referenced by a foreign key on movie_category) to

hold the different genres, such as Action, Drama, Comedy, Musical, and so forth. It can be

argued that some movies sometimes span several categories, and a better design would

involve an additional table representing a many-to-many relationship (meaning that one

genre can be associated with several movies and that each movie can be associated with

several genres as well), but for the sake of simplicity we shall admit that a single, main

genre is enough for our needs in this example.

Do we need one table for actors and another for directors? Creating two tables would be

a design mistake, because it is quite common to see actors-turned-directors, and there is

no need to duplicate personal information. From time to time one even finds a movie

directed by one of the lead actors.

We therefore need three more tables: people to store information such as name, first

name, sex, year of birth, and so on; roles to define how people may contribute to a movie

(actor, director, but also composer, director of photography, and the like); and movie_

credits to state who was doing what in which movie. Figure 8-3 shows our complete

movie schema.

Let’s suppose now that we want to let people search movies in our database by specifying

either: words from the title, the name of the director, or up to three names of any of the

actors. Following is the source of our prototype page, which I have built in HTML to act

as our screen display:

<html>
<head>
  <title>Movie Database</title>

F I G U R E  8 - 3 . The movie database schema
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</head>
<body>
<CENTER>
    <HR>
    <BR>
    Please fill the form to query our database and click on <b>Search</b> when you
are done...
    <BR>
    <HR>
    <BR>
<form action="display_query.php" method="post">
    <TABLE WIDTH="75%">
    <TR>
      <TD>Movie Title :</TD>
      <TD><input type="text" name="title"></TD>
    </TR>
    <TR>
      <TD>Director    :</TD>
      <TD><input type="text" name="director"></TD>
    </TR>
    <TR>
      <TD>Actor       :</TD>
      <TD><input type="text" name="actor1"></TD>
    </TR>
    <TR>
      <TD>Actor       :</TD>
      <TD><input type="text" name="actor2"></TD>
    </TR>
    <TR>
      <TD>Actor       :</TD>
      <TD><input type="text" name="actor3"></TD>
    </TR>
    <TR>
      <TD COLSPAN="2" ALIGN="CENTER">
      <HR>
      <input type="Submit" value="Search">
      <HR>
      </TD>
    </TR>
    </TABLE>
</form>
</CENTER>
</body>
</html>

This prototype page shows on screen as in Figure 8-4.

First, let me make a few remarks:

• Although we want to store the first and last names separately in our database (defi-

nitely more convenient if we want to generate a listing ordered by last name), we

don’t want our entry form to look like a passport renewal form: we just want a single

entry field for each individual.

• We want our query input values to be case-insensitive.
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Certainly the thing not to do is to generate a query containing a criterion such as:

and upper(<value entered for actor1>) =
          concat(upper(people_firstname), ' ', upper(people_name))

As shown in Chapter 3, the right part of the equality in such a criterion would prevent us

from using any regular index we might have logically created on the name. Several

products allow the creation of functional indexes and index the result of expressions, but

the simplest and therefore best solution is probably as follows:

1. Systematically store in uppercase any character column that is likely to be queried (we

can always write a function to beautify it before output).

2. Split the entry field into first name and (last) name before passing it to the query.

The first point simply means inserting upper(string) instead of string, which is easy enough.

Keep the second point in mind for the time being: I’ll come back to it in just a bit.

If users were to fill all entry fields, all the time, then our resulting main query could be

something such as:

select movie_title, movie_year
from movies
     inner join movie_credits mc1
       on mc1.movie_id = movies.movie_id
     inner join people actor1
       on  mc1.people_id = actor1.people_id
     inner join roles actor_role
       on  mc1.role_id = actor_role.role_id
       and mc2.role_id = actor_role.role_id
       and mc3.role_id = actor_role.role_id

F I G U R E  8 - 4 . The movie database search screen
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     inner join movie_credits mc2
       on mc2.movie_id = movies.movie_id
     inner join people actor2
       on  mc2.people_id = actor2.people_id
     inner join movie_credits mc3
       on mc3.movie_id = movies.movie_id
     inner join people actor3
       on  mc3.people_id = actor3.people_id
     inner join movie_credits mc4
       on mc4.movie_id = movies.movie_id
     inner join people director
       on  mc4.people_id = director.people_id
     inner join roles director_role
       on mc4.role_id = director_role.role_id
where actor_role.role_name = 'ACTOR'
  and director_role.role_name = 'DIRECTOR'
  and movies.movie_title like 'CHARULATA%'
  and actor1.people_firstname = 'SOUMITRA'
  and actor1.people_name = 'CHATTERJEE'
  and actor2.people_firstname = 'MADHABI'
  and actor2.people_name = 'MUKHERJEE'
  and actor3.people_firstname = 'SAILEN'
  and actor3.people_name = 'MUKHERJEE'
  and director.people_name = 'RAY'
  and director.people_firstname = 'SATYAJIT'

Unfortunately, will somebody who can name the title, director and the three main actors

of a film (most typically a movie buff) really need to use our database? This is very

unlikely. The most likely search will probably be when a single field or possibly two, at

most, will be populated. We must therefore anticipate blank fields, asking the question:

what will we do when no value is passed?

A common way of coding one’s way out of a problematic situation like this is to keep the

select list unchanged; then to join together all the tables that may intervene in one way

or another, using suitable join conditions; and then to replace the straightforward

conditions from the preceding example with a long series of:

 and column_name = coalesce(?, column_name)

where ? will be associated with the value from an entry field, and coalesce( ) is the

function that returns the first one of its arguments that is non null. If a value is provided,

then a filter is applied; otherwise, all values in the column pass the test.

All values? Not really; if a column contains a NULL, the condition for that column will

evaluate to false. We cannot say that something we don’t know is equal to something we

don’t know, even if it is the same something (nothing?). If one condition in our long

series of conditions linked by and evaluates to false, the query will return nothing, which

is certainly not what we want. There is a solution though, which is to write:

and coalesce(column_name, constant) = coalesce(?, column_name, constant)
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This solution would be absolutely perfect if only it did not mean forfeiting the use of any

index on column_name when a parameter is specified. Must we sacrifice the correctness of

results to performance, or performance to the correctness of results? The latter solution is

probably preferable, but unfortunately both of them might also mean sacrificing our job,

a rather unpleasant prospect.

A query that works in all cases, whatever happens, is quite difficult to write. The

commonly adopted solution is to build such a query dynamically. What we can do in this

example scenario is to store in a string everything up to the where and the fixed conditions

on role names, and then to concatenate to this string the conditions which have been

input by our program user—and only those conditions.

A variable number of search criteria calls for dynamically built

queries.

Assuming that a user searched our database for movies starring Amitabh Bachchan, the

resulting, dynamically written query might be something like the following:

select distinct movie_title, movie_year
from movies
     inner join movie_credits mc1
       on mc1.movie_id = movies.movie_id
     inner join people actor1
       on  mc1.people_id = actor1.people_id
     inner join roles actor_role
       on  mc1.role_id = actor_role.role_id
       and mc2.role_id = actor_role.role_id
       and mc3.role_id = actor_role.role_id
     inner join movie_credits mc2
       on mc2.movie_id = movies.movie_id
     inner join people actor2
       on  mc2.people_id = actor2.people_id
     inner join movie_credits mc3
       on mc3.movie_id = movies.movie_id
     inner join people actor3
       on  mc3.people_id = actor3.people_id
     inner join movie_credits mc4
       on mc4.movie_id = movies.movie_id
     inner join people director
       on  mc4.people_id = director.people_id
     inner join roles director_role
       on mc4.role_id = director_role.role_id
where actor_role.role_name = 'ACTOR'
  and director_role.role_name = 'DIRECTOR'
  and actor1.people_firstname = 'AMITABH'
  and actor1.people_name = 'BACHCHAN'
order by movie_title, movie_year
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First, let me make two remarks:

• We have to make our select a select distinct. We do this because we keep the joins

without any additional condition. Otherwise, as many rows would be returned for

each movie as we have actors and directors recorded for the movie.

• It is very tempting when building the query to concatenate the values that we receive to

the SQL text under construction proper, thus obtaining a query exactly as above. This is

not, in fact, what we should do. I have already mentioned the subject of bind variables;

it is now time to explain how they work. The proper course is indeed to build the query

with placeholders such as ? (it depends on the language), and then to call a special func-

tion to bind the actual values to the placeholders. It may seem more work for the devel-

oper, but in fact it will mean less work for the DBMS engine. Even if we rebuild the

query each time, the DBMS usually caches the statements it executes as a part of its

standard optimization routines. If the SQL engine is given a query to process that it finds

in its cache, the DBMS has already parsed the SQL text and the optimizer has already

determined the best execution path. If we use placeholders, all queries that are built on

the same pattern (such as searches for movies starring one particular actor) will use the

same SQL text, irrespective of the actor’s name. All the setup is done, the query can be

run immediately, and the end user gets the response faster.

Besides performance, there is also a very serious concern associated with dynamically

built hardcoded queries, a security concern: such queries present a wide-open door to the

technique known as SQL injection. What is SQL injection? Let’s say that we run a

commercial operation, and that only subscribers are allowed to query the full database

while access to movies older than 1960 is free to everybody. Suppose that a malicious

non-subscriber enters into the movie_title field something such as:

X' or 1=1 or 'X' like 'X

When we simply concatenate entry fields to our query text we shall end up with a

condition such as:

where movie_title like 'X' or 1=1 or 'X' like 'X%'
  and movie_year < 1960

which is always true and will obviously filter nothing at all! Concatenating the entry field

to the SQL statement means that in practice anybody will be able to download our full

database without any subscription. And of course some information is more sensitive

than movie databases. Binding variables protects from SQL injection. SQL injection is a

very real security matter for anyone running an on-line database, and great care should

be taken to protect against its malicious use.

When using dynamically built queries, use parameter markers

and pass values as bind variables, for both performance and

security (SQL injection) reasons.
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A query with prepared joins and dynamically concatenated filtering conditions executes very

quickly when the tables are properly indexed. But there is nevertheless something that is

worrisome. The preceding example query is a very complicated query, particularly when we

consider the simplicity of both the output result and of what we provided as input.

Right-Sizing Queries

In fact, the complexity of the query is just one part of the issue. What happens, in the

case of the final query in the preceding section, if we have not recorded the name of the

director in our database, or if we know only the names of the two lead actors? The query

will return no rows. All right, can we not use outer joins then, which return matching

values when there is one and NULL when there is none?

Using outer joins might be a solution, except that we don’t know what exactly will be

queried. What if we only have the name of the director in our database? In fact, we

would need outer joins everywhere—and putting them everywhere is often, logically,

impossible. We therefore have an interesting case, in which we are annoyed by missing

information even if all of our attributes are defined as mandatory and we have absolutely

no NULL values in the database, simply because our query so far assumes joins that may be

impossible to satisfy.

In fact, in the particular case when only one actor name is provided, we need a query no

more complicated than the following:

select movie_title, movie_year
from movies
     inner join movie_credits mc1
       on mc1.movie_id = movies.movie_id
     inner join people actor1
       on  mc1.people_id = actor1.people_id
     inner join roles actor_role
       on  mc1.role_id = actor_role.role_id
where actor_role.role_name = 'ACTOR'
  and actor1.people_firstname = 'AMITABH'
  and actor1.people_name = 'BACHCHAN'
order by movie_title, movie_year

This “tight-fit” query assumes nothing about our also knowing the name of the director,

nor of a sufficient number of other actors, and hence there is no need for outer joins.

Since we have already begun building our query dynamically, why not try to inject a

little more intelligence in our building exercise, so as to obtain a query really built to

order, exactly tailored to our needs? Our code will no doubt be more complicated. Is the

complication worth it? The simple fact that we are now certain to return all the

information available when given an actor’s name, even when we don’t know who

directed a film, should be reason enough for an unqualified “yes.” But performance

reasons also justify taking this step.
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Nothing is as convincing as running a query in a loop a sufficient number of times to

show the difference between two approaches: our “tight-fit” query is five times faster

than the “one-size-fits-all” query. All other things aside, does it matter if our query

executes in 0.001 second instead of 0.005 second? Not much, if our database is only

queried now and then. But there may be a day when queries arrive at a rate higher than

we can service and keep up with, and then we’ll have a problem. Queries will have to be

queued, and the queue length will increase very quickly—as fast as the number of

complaints about poor database performance. Simply put, going five times faster enables

five times as many queries to be processed on the same hardware. (We will consider

these issues in more detail in Chapter 9.)

Matching criteria with dynamically built queries improves

performance by minimizing joins, and eliminates the issue of

missing values.

Wrapping SQL in PHP

Let’s first start our PHP page with a smattering of regular HTML before the real PHP code:

<html>
  <head>
     <title>Query result</title>
</head>
<body>
<CENTER>
  <table width="80%">
    <TR><TH>Title</TH><TH>Year</TH><TR>

<?php
 ...

(Our page would probably be nicer with a stylesheet....)

Once we have our handle that represents the connection to the database, the very first

thing to do is to get the values that were submitted to the entry screen. Since everything

is stored in uppercase in our database we can convert the user-entered values directly to

uppercase too. This is of course something that can be done in the SQL code, but it costs

nothing to do it in the PHP code:

  $title=strtoupper($_POST['title']);
  $director=strtoupper($_POST['director']);
  $actor1=strtoupper($_POST['actor1']);
  $actor2=strtoupper($_POST['actor2']);
  $actor3=strtoupper($_POST['actor3']);



218 C H A P T E R E I G H T

We now have a technical problem linked to the implementation of PHP binding.

Following is the process for binding variables in PHP:

1. We first write ? in the place of every parameter we want to pass to the query.

2. Then we call the bind_param( ) method that takes as its first argument a string

containing as many characters as we have values to bind, each character telling the

type of the parameter we pass (in this case it will always be s for string), then a

variable number of parameters—one per each value we want to bind.

All parameters are identified by position (the same is true with JDBC, but not with all

database systems and languages; for instance, you will refer to bind variables by name in

an SQLJ program). But our main problem is the single call to bind_param( ), which is very

convenient when we know exactly how many parameters we have to bind, but is not so

in our case here, in which we do not know in advance how many values a user will

enter. It would be much more convenient in our case to have a method allowing us to

loop and bind values one by one.

One way to bind a variable number of values, which is not necessarily the most elegant, is

to loop on all the variables we have received from the form, check which ones actually

contain something, and store each value in the subsequent positions of an array. We have

no problem doing this with our example since all the values we may get are character

strings. If we were expecting something else—for instance the year when a movie was first

shown—the most sensible approach would probably be to treat such a value as a string

inside the PHP code and to convert it to a number or date in the SQL code.

We can use a $paramcnt variable to count how many parameters were provided by the

user of the form, and store the values into a $params array:

  $paramcnt=0;

  if ($title != "") {
     $params[$paramcnt] = $title;
     $paramcnt++;
    }

Things get a little more complicated with people names. Remember that we have decided

that having a single field to enter a name was more user-friendly than having to enter

the first and last names into two separate fields. However, comparing the string entered

by the user to the concatenation of first name and last name in our people table would

prevent the query from using the index on the last name and might, moreover, yield

wrong results: if the user has mistakenly typed two spaces instead of one between first

name and last name, for instance, we shall not find the person.

What we are therefore going to do is to split the entry field into first name and last name,

assuming that the last name is the last word, and that the first name, which may be
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composed of 0, 1, or several words, is what precedes the last name. In PHP, we can easily

write such a function which sets two parameters that are passed by reference:

  function split_name($string, &$firstname, &$lastname)
  {
  /*
   *   We assume that the last name is the last element of the string,
   *   and that we may have several first names
   */
   $pieces = explode(" ", $string);
   $parts = count($pieces);
   $firstnames = array_slice($pieces, 0, $parts - 1);
   $firstname = implode(" ", $firstnames);
   $lastname = $pieces[$parts - 1];
  }

This function will allow us to split $director into $dfn and $dn, $actor1 into $a1fn and $a1n

and so on, everything being coded on the same model:

  if ($director != "") {
     /* Split firstname / name */
         split_name($director, $dfn, $dln);
     if ($dfn != "")
        {
         $params[$paramcnt] = $dfn;
         $paramcnt++;
        }
     $params[$paramcnt] = $dln;
     $paramcnt++;
    }

Once we have inspected our parameters, all we have to do is to build our query, being

very careful to insert the parameter markers for the bind variables in exactly the same

order as they will appear in the $params array:

  $query = "select movie_title, movie_year "
           . "from movies";
  /* Director was specified ? */
  if ($director != "")
     {
      $query = $query . " inner join movie_credits mcd"
                      . "  on mcd.movie_id = movies.movie_id"
                      . " inner join people director"
                      . "  on  mcd.people_id = director.people_id"
                      . " inner join roles director_role"
                      . "  on mcd.role_id = director_role.role_id";
     }
  /* Any actor was specified ? */
  if ($actor1 . $actor2 . $actor3 != "")
     {
     /*
      *   First the join on the ROLES table
      */
      $query = $query . " inner join roles actor_role";
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     /*
      *  Even if only one actor was specified, we may
      *  not necessarily find the name in $actor1 so careful
      */
      $actcnt = 0;
      if ($actor1 != "")
         {
          if ($actcnt == 0)
             {
              $query = $query . "  on";
             }
           else
             {
              $query = $query . "  and";
             }
          $query = $query . " mc1.role_id = actor_role.role_id";
         }
      if ($actor2 != "")
         {
          ...
         }
      if ($actor3 != "")
         {
          ...
         }
     /*
      *   Then join on MOVIE_CREDITS and PEOPLE
      */
      if ($actor1 != "")
         {
          $query = $query . " inner join movie_credits mc1"
                          . "  on mc1.movie_id = movies.movie_id"
                          . " inner join people actor1"
                          . "  on actor1.people_id = mc1.people_id";
         }
      if ($actor2 != "")
         {
          ...
         }
      if ($actor3 != "")
         {
          ...
         }
     }
  /*
   *   We are done with the FROM clause; we are using the old 1=1
   *   trick to avoid checking each time whether it is the very
   *   first condition or not - the latter case requires an 'and'.
   */
  $query = $query . " where 1=1";
  /*
   * Be VERY careful to add parameters in the same order they were
   * stored into the $params array
   */
  if ($title != "")
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     {
      $query = $query . " and movies.movie_title like concat(?, '%')";
     }
  /* Director was specified ? */
  if ($director != "")
     {
      $query = $query . "  and director_role.role_name = 'DIRECTOR'";
      if ($dfn != "")
         {
         /*
          * Use like instead of regular equality for the first name, it will
          * work with some abbreviations or initials.
          */
          $query = $query
                  . " and director.people_firstname like concat(?, '%')";
         }
      $query = $query . " and director.people_name = ?";
     }
  if ($actor1 . $actor2 . $actor3 != "")
     {
      $query = $query . "  and actor_role.role_name = 'ACTOR'";
      if ($actor1 != "")
         {
          ...
         }
      if ($actor2 != "")
         {
          ...
         }
      if ($actor3 != "")
         {
          ...
         }
     }

Once our query is ready, we call the prepare( ) method, then bind our variables; this is

where our code is not very pretty, since we can have between 1 and 9 variables to bind

and handle, and each variable must be handled separately:

  /* create a prepared statement */
  if ($stmt = $mysqli->prepare($query)) {
     /*
      *  Bind parameters for markers
      *
      *  This is the messiest part.
      *  We can have anything between 1 and 9 parameters in all (all strings)
      */
      switch ($paramcnt)
         {
          case 1 :
               $stmt->bind_param("s", $params[0]);
               break;
          case ...
               ...
               break;
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          case 9 :
               $stmt->bind_param("sssssssss", $params[0],
                                              $params[1],
                                              $params[2],
                                              $params[3],
                                              $params[4],
                                              $params[5],
                                              $params[6],
                                              $params[7],
                                              $params[8]);
               break;
          default :
               break;
         }

Et voilà! We are done and just have to execute the query and display the result:

     /* execute query */
     $stmt->execute( );
     /* fetch values */
     $stmt->bind_result($mt, $my);
     while ($row = $stmt->fetch( ))
        {
          printf ("<tr><TD>%s</TD><TD>%d</TD></TR>\n", $mt, $my);
        }
     /* close statement */
     $stmt->close( );
    }
  else
    {
     printf("Error: %s\n", $mysqli->sqlstate);
    }
?>
</TABLE>
</CENTER>

Obviously, the code here is significantly more complicated than if we had tried to have

one single query.

It may seem surprising, after I have advocated pushing as much work as possible onto the

DBMS side, to now find me defending the use of complicated code to build as simple a SQL

statement as possible. Doing as much work on the SQL side as possible makes sense when it

is work that has to be performed. But joining three times as many tables as are needed in

the average query, with some of these useless joins not necessarily being very efficient

(especially when they happen to be against complex views) makes no sense at all.

By intelligently building the query, we tightly control what is executed in terms of

security, correctness of the result, and performance. Any simpler solution bears risks of

sacrificing at least one of these aspects.



To summarize, there are at least three mistakes that are very commonly made in queries

that take a variable number of search criteria:

• First of all, it is quite common to see the values against which the columns of the tables

are compared being concatenated with the statement-in-making, thus resulting in a

magnificent, totally hardcoded statement. Even where queries are supposed to be

absolutely unpredictable, you usually find a few queries that are issued again and

again by the users, with only the constants varying. Some constants are susceptible to

a high degree of variability (such as entity identifiers, as opposed to date formats or

even status codes). It isn’t much work to replace these constants by a parameter

marker, the syntax of which depends on the language (for instance '?') and then to

bind the actual value to this parameter marker. This will result in much less work for

the server, which will not need to re-analyze the statement each time it is issued, and

in particular will not need to determine each time a best execution plan, that will always

be the same. And no user will be able to bypass any additional restriction you may

want to add to the query, which means that by binding variables you will plug a seri-

ous security issue at the same time.

• A second mistake is usually to try to include in the query everything that may matter.

It is not because a search criterion may refer to data stored in one table that this table

must appear in the from clause. I have already alluded to this issue in the previous

chapters, but the from clause should only contain the tables from which we return

data, as well as the tables enabling us to join them together. As we have seen in

Chapter 6, existence tests should be solved by subqueries—which are no more diffi-

cult to generate dynamically than a regular condition in a where clause.

• The most important mistake is the one-size-fits-all philosophy. Behind every generic

query are usually hidden three or four families of queries. Typically, input data is

made up of identifiers, status values, or some ranges of dates. The input values may be

strong, efficient criteria, or weak ones, or indeed anything in between (sometimes an

additional criterion may reinforce a weak one by narrowing the scope). From here,

trying to build several alternate queries in an intelligent fashion, as in the various

cases of Chapter 6, is the only sound way out, even if it looks more complicated.

More intelligence in the dynamic construction of an SQL

statement makes for a more efficient SQL statement.
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Multiple Fronts
Tackling Concurrency

Yet to their General’s Voice they soon obey’d
Innumerable.

—John Milton (1608–1674)

Paradise Lost, Book I
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When we have a lot of sessions running concurrently, all accessing one database, we

may encounter difficulties that can remain hidden when running single-user tests.

Contention occurs, and locks may be held for unpredictable periods of time. This chapter

discusses how to face the situation when users advance in overwhelming numbers.

There are several different issues associated with a large number of concurrent users. One

of the most obvious is contention when updating (sometimes reading) data and the

consequent requirement for locks at one level or another. But users are not only fighting

for the right to modify bytes at one place in the system without any interference from

others; they are also competing for processing power, access to disks, workspace in

memory, and network bandwidth. Very often difficulties that are latent with a few users

become blatant with many. Increases in the number of users are not always as smooth as

one might expect them to be. Sudden increases can come through the meteoritic success

of your company, but fast-paced increases more often happen through the gradual

deployment of applications—or sometimes as a result of mergers or buyouts.

The Database Engine as a Service Provider
You might be tempted to consider the DBMS as an intelligent and dedicated servant that

rushes to forestall your slightest desire and bring data at the exact time when you need it.

Reality is slightly less exalted than the intelligent servant model, and at times a DBMS

looks closer to a waiter in a very busy restaurant. If you take your time to choose from

the menu, chances are that the waiter will tell you “I’ll let you choose, and I’ll come back

later to take your order” before disappearing for a long time. A DBMS is a service

provider or, perhaps more precisely, a collection of service providers. The service is simply

to execute some operation against the data, fetching it or updating it—and the service

may be requested by many concurrent sessions at the same time. It is only when each

session queries efficiently that the DBMS can perform efficiently.

The Virtues of Indexes

Let’s execute some fairly basic tests against a very simple table with three columns. The

first two are integer columns (each populated with distinct values from 1 to 50,000), one

being declared as the primary key and the second without an index. The third column

(named label) is a text column consisting of random strings thirty to fifty characters long.

If we generate random numbers between 1 and 50,000 and use these random numbers as

query identifiers to return the label column, you might be surprised to discover that on

any reasonably powerful machine, the following query:

select label
from test_table
where indexed_column = random value
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as well as this one:

select label
from test_table
where unindexed_column = random value

provide virtually instant results. How is this possible? A query using an unindexed

column should be much slower, surely? Actually, a 50,000–row table is rather small, and

if it has as few columns as is the case in our example, the number of bytes to scan is not

that enormous, and a modern machine can perform the full scan very rapidly. We indeed

have, on one hand, a primary key index search, and on the other hand, a full-table scan.

What’s happening is that the difference between indexed and unindexed access is too

small for a human to perceive.

To really test the benefit of an index, I have run our queries continuously for one minute,

and then I have checked on how many queries I was able to process by unit of time. The

result is reassuringly familiar: on the machine on which I ran the test, the query using the

indexed column can be performed 5,000 times per second, while the query using the

unindexed column can only be performed 25 times per second. A developer running single

user tests may not really notice a difference, but there is one, and it is truly massive.

Even sub-second response times sometimes hide major

performance issues. Don’t trust unitary tests.

A Just-So Story

Continuing with the example from the preceding section, let’s have a look at what may

very well happen in practice. Suppose that instead of being a number, the key of our

table happens to be a string of characters. During development, somebody notices that a

query has unexpectedly returned the wrong result. A quick investigation shows that the

key column contains both uppercase and lowercase characters. Under pressure to make a

quick fix, a developer modifies the where clause in the query and applies an upper( )

function to the key column—thus forfeiting the index. The developer runs the query, the

correct result set is returned, and anyone other than a native of the planet Krypton

cannot possibly notice any significant difference in response time. All appears to be for

the best, and we can ship the code to production.

Now we have hordes of users, all running our query again, again and again. Chapter 2

makes the point that in our programs we should not execute queries inside loops,

whether they are cursor loops or the more traditional for or while constructs. Sadly, we

very often find queries nested inside loops on the result set of other queries, and as a

result, our query can be run at a pretty high rate, even without having tens of thousands
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of concurrent users. Let’s see now what happens to our test table when we run the query

at a high rate, with a set number of executions per unit of time, occurring at random

intervals. When we execute our query at the relatively low rate of 500 per minute,

everything appears normal whether we use the index or not, as you can see in Figure

9-1. All our queries complete in under 0.2 seconds, and nobody will complain.

We actually have to increase our execution rate 10 times, to a relatively high rate of

5,000 executions per minute, to notice in Figure 9-2 that we may occasionally have a

slow response when we use the unindexed column as key. This, however, affects only a

very low percentage of our queries. In fact, 97% of them perform in 0.3 seconds or less.

But at 5,000 queries per minute, we are unaware that we are tottering on the brink of

catastrophe. If we push the rate up to a very high 10,000 executions per minute, you can

see in Figure 9-3 that a very significant proportion of the queries will execute noticeably

more slowly, some taking as long as 4 seconds to complete. If in another test we run the

queries that use the index at the same high rate, all queries execute imperturbably in 0.1

seconds or less.

Of course, when some queries that used to run fast start to take much longer, users are

going to complain; and other users who, unprompted, would otherwise have noticed

nothing will probably grumble as well, out of sympathy. The database is slow—can’t it be

tuned? Database administrators and system engineers will tweak parameters, gaining a

few weeks of relief, until the evidence will finally impose itself, in all its glorious

simplicity: we need a more powerful server.

F I G U R E  9 - 1 . Response time of a simple query against a 50,000–row table, low query rate
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F I G U R E  9 - 2 . Response time of a simple query against a 50,000–row table, high query rate

F I G U R E  9 - 3 . Response time of a simple query against a 50,000–row table, very high query rate
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An increasing load may not cause performance problems, but may

actually reveal them, suggesting program improvements as an

alternative to upgrading the hardware.

Get in Line

One can take a fairly realistic view of a DBMS engine by imagining it to be like a post

office staffed by a number of clerks serving customers with a wide array of requests—our

queries. Obviously, a very big post office will have many counters open at the same time

and will be able to serve several customers all at the same time. We may also imagine

that young hypercaffeinated clerks will work faster than older, sedate, herbal-tea types.

But we all know that what will make the biggest difference, especially at peak hours, is

the requests actually presented by each customer. These will vary between the individual

who has prepared the exact change to buy a stamp book and the one who inquires at

length about the various rates at which to send a parcel to a remote country, involving

the completion of customs forms, and so on. What is most irritating is of course when

someone with a mildly complicated request spends several minutes looking for a purse

when the moment for payment arrives. But fortunately, in post offices, you never

encounter the case that is so frequent in real database applications: the man with 20

letters who joins the queue on 20 separate successive occasions, buying only one stamp

in each visit to the counter. It is important to understand that there are two components

that determine how quickly one is served at the counter:

• The performance of, in our example, the clerk. In the case of a database application,

this equates to a combination of database engine, hardware, and I/O subsystems.

• The degree of complexity of the request itself, and to a large extent how the request is

presented, its lucidity and clarity, such that the clerk can easily understand the

request, and accordingly make a quick and complete answer.

In the database world, the first component is the domain of system engineers and

database administrators. The second component belongs squarely within the business

requirements and development arena. The more complicated the overall system, the

more important becomes the collaboration between the different parties involved when

you want to get the best out of your hardware and software investment.

With the post-office image in mind, we can understand what happened in our query test.

What matters is the ratio of the number of customers arriving (e.g., the rate of execution

of queries), to the average time required to answer the query. As long as the rate of

arrival is low enough to enable everyone to find a free counter, nobody will complain.

However, as soon as customers arrive faster than they can be serviced, queues will start

to lengthen, just as much for the fast queries as for the slow ones.
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There is a threshold effect, very similar to what one of Charles Dickens’s characters says

in David Copperfield:

Annual income twenty pounds, annual expenditure nineteen six, result happiness.

Annual income twenty pounds, annual expenditure twenty pounds ought and six,

result misery.

This can easily be demonstrated by running our two queries simultaneously, the one

using the indexed column and the other using the unindexed column, at a rate of 5,000

times per second. The compound result of Figure 9-4 is noticeably different from Figure

9-2, in which results were shown for the two queries running separately, not

concurrently. As appears clearly from Figure 9-4, the performance of the fast query has

deteriorated because of the simultaneous presence of slow queries.

System performance crashes when statements arrive faster than

they can be serviced; all queries are affected, not only slow ones.

Concurrent Data Changes
When you change data, the task of maintaining a good level of performance becomes

even more difficult as the level of activity increases. For one thing, any change is by

essence a more costly operation than a mere query, since it involves both getting the data

and then writing it back to the database. In the case of inserts, only the latter operation

F I G U R E  9 - 4 . Fast and slower queries running together, both at a high query rate
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applies. Therefore, data modification, whether updates, deletes, or inserts, intrinsically

requires a longer service time than the equivalent query-only task. This longer service

time is made worse by one mechanism and one situation that are often confused. The

mechanism is locking, and the situation is contention.

Locking

When several users want to modify the same data at once—for instance to book the very

last seat on a flight—the only solution available to the DBMS is to block all but one user,

who is usually the first person to present the request. The necessity of sequentializing

access to critical resources is a problem that is as old as multiuser systems themselves. It

existed with files and records long before database systems began to be adopted. One user

acquires a lock over a resource, and the other users who also want to lock the same

resource either have to queue up, waiting patiently for the lock to be released, or handle

the error code that they will receive. In many ways, the situation is entirely analogous to

our fictitious post office when several customers require the use of a single photocopier—

people must wait patiently for their turn (or turn away and come back later).

Locking granularity

One of the most important practical questions to address when attempting to change the

contents of the database will be to determine exactly where the locks will be applied.

Locks can impact any or all of the following:

• The entire database

• The physical subset of the database where the table is stored

• The table identified for modification

• The particular block or page (unit of storage) containing the target data

• The table row containing the affected data

• The column(s) in the row

As you can see, how much users interfere with each other is a question that relates to the

granularity of the locking procedures. The type of locking that can be applied varies with

the DBMS. Locking granularity is an area where “big products,” designed for large

information systems, are significantly different from “small products” that have more

limited ambitions.

When locks apply to a restricted amount of data, several concurrent processes can happily

change data in the very same table at the same time without much affecting each other.

Instead of having to wait until another process has finished with its transaction to get

ahold of a lock, there can be some overlap between the various processes—which means

that from a hardware point of view you can have more processors working, thus making
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better use of your hardware resources. The benefit of a finer granularity can be seen quite

clearly in Figure 9-5, which shows the contrast in the total throughput of a number of

concurrent sessions updating a table, first in table-locking mode and then second in row-

locking mode. In each case the DBMS server is the same one.

In the table-locking case, throughput increases slightly with two sessions, because the

server, in the sense of service provider, is not saturated. But two sessions generate the

maximum number of updates we can sequentially execute per unit of time, and from

then on the curve is flat—actually, very slowly decreasing because system resources are

required to handle more sessions, and this is detrimental to the system resources required

to perform the updates. The situation of table locking can be contrasted with the situation

of row locking, where changes applied to the same table can occur simultaneously as long

as they do not affect identical rows. As in the case of table locking we will eventually

reach a point where we saturate the server, but this point is reached both later and for a

much higher number of concurrent updates.

If your DBMS is rather heavy-handed when locking resources, your only hope to cope with

a sudden increase of activity, optimistically assuming that everything else has been tried, is

to buy better hardware. “Better hardware” must of course be qualified. If locking is the

bottleneck, more processors will not help, because the critical resource is access to the data.

However, faster processors may speed up execution, reduce the time locks are actually

held, and therefore allow the processing of more changes per unit of time. Processing still

remains strictly sequential, of course, and the same number of locks is still applied.

F I G U R E  9 - 5 . Update performance for table versus row locking
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Lock handling

Locking mechanisms are an integral part of the implementation of a DBMS and there is

not much that we can do about them. We are limited to just two directions in dealing

with locks:

Try not to lock tables in a haphazard way.

It goes without saying that we should not run a program that massively updates

rows in a table by the million at the same time as many users are trying to exe-

cute very short update transactions against the same table.

Try to hold locks for as short a time as possible.

When we are in a situation where several users are concurrently attempting to

access a resource that cannot be shared, speed matters not to one, but to all

transactions. There is little benefit in running a fast update that has to wait for a

slow one to release a lock before it can do its work. Everything must be fast, or

else everything will be slow: “A chain is only as strong as its weakest link.”

The overwhelming majority of update and delete statements contain a where clause, and so

any rewrite of the where clause that speeds up a select statement will have the same effect

on a data manipulation statement with the very same where clause. If a delete statement

has no where clause (in other words the entire table is being deleted!), then it is likely that

we would be better off using a truncate statement, which empties a table (or a partition)

much more efficiently.

We mustn’t forget, though, that indexes also have to be maintained, and that updating

an indexed column is costly; we may have to arbitrate between the speed of fetches and

the speed of changes. The index that might be helpful in the where clause may prove to be

a nuisance when rows are changed. Concerning insert statements, a number of them

may actually be insert...select constructs in which the link between select performance

and insert performance is naturally obvious.

You’ve seen in Chapter 2 that impeccable statement performance doesn’t necessarily

rhyme with good program performance. When changing data, we have a particular

scope to consider: the transaction or, in other words, the duration of a logical unit of

work. We shall have to retain locks on a particular part of the database for most if not

all of the transaction. Everything that need not be done within the transaction,

especially if it is a slow activity, should be excluded from that transaction. The start of a

transaction may sometimes be implicit with the first data manipulation language (DML)

statement issued. The end of a transaction is always obvious, as it is marked by a commit

or rollback statement. With this background, some practices are just common sense.

Inside a transaction:
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• Avoid looping on SQL statements as much as possible.

• Keep round-trips between the program and the database, whether running as an

application server or as a mere client, to a minimum, since these add network latency

to the overall elapsed time.

• Exploit to the full whatever mechanisms the DBMS offers to minimize the number of

round-trips (e.g., take advantage of stored procedures or array fetching).

• Keep any nonessential SQL statements that are not strictly necessary within the logi-

cal unit of work outside of it. For instance, it is quite common to fetch error messages

from a table, especially in localized applications. If we encounter an error, we should

end our transaction with a rollback first, and then query the error message table, not

the reverse: doing so will release locks earlier, and therefore help to maximize

throughput.

As simple a transaction as one that inserts a new row in both a master table and a slave

table provides ample ground for mistakes. An example for this type of transaction is

typically the creation of a new customer order (in the master table) and of the first item

in our shopping basket (held in an order_detail table). The difficulty usually comes as a

result of using system-generated identifiers for the orders.

The primary mistake to avoid is to store into a table the “next value to use.” Such a table

is mercilessly locked by all concurrent processes updating it, thus becoming the major

bottleneck in the whole application. Depending on the DBMS you are using, a system-

generated identifier is either the value of an auto-incremented column, which will take

for each new row inserted the value of the previous row plus one, or the next value of a

database object such as a sequence, which is in essence very similar to an auto-

incremented column but without the explicit reference to a column in an existing table.

We have nothing to do to generate a new identifier for each new order other than to grab

the value generated by the system. The snag is that we must know this value to be able to

link the items in the basket to a particular order. In other words, we have to insert this

value into table order_detail as well as the master table.

Some DBMS products that use auto-incremented columns provide either a system

variable (as @@IDENTITY with Transact-SQL), or a function (such as MySQL’s last_insert_

id( )) to retrieve the value that was last generated by the session. Fail to use facilities

provided by your DBMS, and you are condemned to run useless queries to perform the

same task in the middle of a transaction, thus wasting resources and slowing down your

transaction. Using functions or variables referring implicitly to the last generated value

requires a little discipline in executing statements in the proper order, particularly if one

is juggling several auto-incremented columns simultaneously.
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For some unknown reason, there is a marked tendency among developers who are using

sequences to first issue a <sequence name>.nextval call to the database to get a new value,

and then to store it in a program variable for future reference. There is actually a

<sequence name>.currval call (or previous value for <sequence name> with DB2), and as its

name implies its purpose is to return the last value that was generated for the given

sequence. In most cases, there is no need to use a program variable to store the current

value, and even less to precede true action with a special get a new sequence value call. In

the worst case, some DBMS extensions can prove useful. For instance, Oracle (and PL/SQL)

users can use the returning ... into ... clause of insert and update statements to return

system-generated values without requiring a new round-trip to the server. Running one

special statement to get the next sequence value and adding one more round-trip to the

database generates overhead that can globally amount to a very significant percentage for

simple and often executed transactions.

Where transactional activity is high, it is vital that locks are never

held for operations that don’t require them.

Locking and committing

If we try and hold locks for the minimum possible time, we are bound to have to make

frequent commits. Committing is a very costly process, since it means writing to

persistent memory (journal files), and therefore initiating physical I/O operations. If we

commit changes after absolutely every logical unit of work, we add a lot of overhead as

can be seen in Figure 9-6. The figure shows the performance impact of committing every

1, 2, 3...12 rows in the case of a very fast update executed by a single user process

running on an empty test machine. Depending on the statement and the number of rows

affected, figures may of course vary but the trend is always the same. If a batch update

program commits every transaction, it can easily take two to three times as long to

complete as when it commits less frequently.

In the case of batch programs in which concurrency control is not an issue, it is advisable

to avoid committing changes too often. The snag with not committing zillions of changes,

besides the impact of holding the inevitable locks, is that the system has to record the

pre-change data image for a hypothetical undo operation, which will put some serious

strain on resources. If the process fails for any reason, rolling back the changes may take

a considerable amount of time. There are two schools of thought on this topic. One favors

committing changes at regular intervals so as to moderate demands on the system in

terms of resources, as well as reduce the amount of work which might have to be done in

case of a database change failure. The other school is frankly more gung ho and argues,
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not without some reason, that system resources are here to sustain business processes,

not the other way around. For the disciples of this school, if higher throughput can be

achieved by less frequent commits—and if they can afford the occasional failure and still

have processes completed properly and faster—then there is benefit in less frequent

commits. Their case is further strengthened if the DBMS features some “pass or break”

mode that shuns the generation of undo data. The commit-once-when-we’re-done

approach implicitly assumes that redoing everything from scratch when something has

totally failed is often simpler than trying to fix something that only partially worked.

Both schemes have advantages and disadvantages, and the final choice may often be

linked to operational constraints—or perhaps even to politics.

In any case, a batch program committing once in a while may block interactive users.

Likewise, it is possible for interactive users to block batch programs. Even when the

locking granularity is at the row level, a mechanism such as lock escalation that is applied

by some database systems (in which many fine-grain locks are automatically replaced by

a coarser-grain lock) may lead to a hung system. Even without lock escalation, a single

uncommitted change may block a massive update. One thing is clear: concurrency and

batch programs are not a happy match, and we must think about our transactions in a

different way according to whether they are interactive or batch.

The greater the number of concurrent users, the shorter should be

the commit intervals.

F I G U R E  9 - 6 . Impact of committing on performance
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Locking and scalability

When comparing table and row locking, you have seen that the latter facilitates a much

better throughput. However, just as with table locking, the performance curve quickly

reaches its ceiling (the point at which performance refuses to improve), and from then on

the curve is rather flat. Do all products behave in the same way? As a matter of fact, they

don’t, as Figure 9-7 shows.

To really compare how the various systems were behaving under increased concurrency,

irrespective of speed on a particular example, I performed two series of updates against a

large table: first, fast updates with a condition on the primary key, and second, slow

updates with a condition on an unindexed column. These updates were repeated with a

varying number of sessions, and the total number of updates performed was recorded

each time.

None of the products displays a strong dependency of throughput on the number of

sessions with fast updates, probably because of a saturation of hardware resources. What

is interesting, though, is checking whether there is a benefit attached to running a larger

number of sessions in parallel. Can increased concurrency somewhat compensate for

speed? This is exactly the same type of question as asking “is it better to have a server

machine with few fast processors or a higher number of slower processors?”

F I G U R E  9 - 7 . Row locking and concurrency with three database systems
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Figure 9-7 shows how the ratio of the number of slow updates to the number of fast

updates evolves as we increase the number of sessions. The DBMS1 product stands out

for two reasons:

• Slow updates are not that slow relatively to fast ones (hence a higher ratio than the

other products).

• As the steep decrease between 1 and 3 concurrent sessions shows, slow updates also

suffer relatively more of increased concurrency.

The product to watch, though, is not DBMS1. Even if row locking were in use in all

systems, we see that one of the products, DBMS3 on the figure, will scale much better

than the others, because the ratio slowly but significantly improves as more and more

concurrent sessions enter the fray. This observation may have a significant impact on

hardware choices and architectures; products such as DBMS1 and DBMS2 would

probably get the most benefit from faster processors, not more numerous ones. From a

software point of view, they would also benefit from query pooling on a small number of

sessions. On the other hand, a product such as DBMS3 would better profit from

additional processors at the same speed and, to some extent, from a higher number of

concurrent sessions.

How can I explain such differences between DBMS3 and the other products? Mostly by

two factors:

Saturation of hardware resources

This probably partly explains what occurs in the case of DBMS1, which achieves

excellent overall results in terms of global throughput, but that simply cannot do

better on this particular hardware.

Contention

Remember that we have the same locking granularity in all three cases (row-

level locks). Exactly the same statements where executed and committed. There

is in fact more than data locking that limits the amount of work that several ses-

sions can perform in parallel. To take a mechanical analogy, we could say that

there is more friction in the case of DBMS1 and DBMS2 than in the case of

DBMS3. This friction can also be called contention.

Concurrency depends on integrity protection mechanisms that

include locking as well as other controls that vary from product to

product.
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Contention

Rows in tables are not the only resources that cannot be shared. For instance, when one

updates a value, the prior or original value (undo data) must be saved somewhere in case

the user decides to roll back the change. On a loaded system, there may actually be some

kind of competition between two or more processes trying to write undo data into the

same physical location, even if these processes are operating on totally unrelated rows in

different tables. Such a situation requires some kind of serialization to control events.

Likewise, when changes are committed and written to transaction logfiles or in-memory

buffers before being flushed to a file, there must be some means of preventing processes

from overwriting each other’s bytes.

The examples I’ve just given are examples of contention. More than contention, locking

is a mechanism that tends to be a defining characteristic of particular DBMS architectures,

leaving us little choice other than to try and keep to an absolute minimum the time that

the lock is held. Contention, however, is linked to low-level implementation, and there

are several actions that can be undertaken to tune contention. Some of these actions can

be performed by systems engineers, for example by carefully locating transaction log files

on disks. Database administrators can also help to improve the situation by playing with

database parameters and storage options. Finally we can, as developers, address these

problems in the way we build our applications. To show how we can try to code so as to

limit contention, I shall walk you through a case in which contention is usually at its

most visible: during multiple, concurrent inserts.

Insertion and contention

Let’s take as an example a 14–column table with two unique indexes. The primary key

constraint is defined on a system-generated number (a surrogate key), and a unique

constraint (enforced by a unique index of course) is applied to a “natural” compound

key, the combination of some short string of characters and a datetime value. We can

now proceed to run a series of insert operations for an increasing number of

simultaneous sessions.

As Figure 9-8 shows, although we are operating in row-locking mode, adding more

processes inserting in parallel doesn’t do much to improve the number of rows inserted

by unit time. The figure displays the median and the minimum and maximum values for

10 one-minute runs for each of the different numbers of concurrent processes. As you

can see, there is much variability in the results—but the best result is obtained for four

concurrent processes (which, by some happy coincidence, is not totally unrelated to the

number of processors on the machine).

Must we conclude that we are saturating the hardware resources? The answer of course

is yes, but the real question is “can’t we make better use of these resources?” There is, in a
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case like this, not much we can do about locking, because we never have two processes

trying to access the same row. However, we do have contention when trying to access

the data containers. In this situation contention can occur at two places within the

database: in the table and in the index. There may be other contention issues at the

system level, but these often derive from choices made at the database level. Contention

consumes CPU, because there is the execution of code that is required for handling that

very same contention issue, with possibly some active waits involved or idle loops while

waiting for a resource held by a process running on another processor to be released. Can

we try to lower contention and divert some of the CPU cycles to our inserts proper?

I have run my example to generate Figure 9-8 on Oracle, one of the database systems

that provides the widest range of possible options to try to limit contention. Basically,

database-centric solutions to a contention issue will fall into one or more of the following

three categories:

• DBA solutions

• Architectural solutions

• Development solutions

The following sections review each of these categories.

DBA solutions

A database administrator often has scant knowledge of business processes. What we call

DBA solutions are changes that are applied to the containers themselves. They are

application-neutral (as it is near impossible to be absolutely application-neutral, it would

probably be more exact to say that the impact is minimal on processes other than the

insertion process we are trying to improve).

F I G U R E  9 - 8 . Concurrent sessions inserting into a regular table
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There are two main zones in which Oracle DBAs can try and improve a contention issue

with a minimum of fuss:

Transaction space

The first weapon is playing with the number of transaction entry slots reserved

in the blocks that constitute the actual physical storage of tables and indexes. A

transaction entry slot can be understood as the embodiment of a low-level lock.

Without going into arcane detail, let me say that competition for these slots usu-

ally figures prominently among the reasons for contention when several ses-

sions are competing for write access to the same block. A DBA can try to

improve the situation by allocating more space for transaction management. The

only impact on the rest of the application is that less space will be available for

data in table or index blocks; the direct consequence of such a situation is that

more blocks will be required to store the same amount of data, and operations

such as full scans and, to a much lesser degree, index searches will have to

access more blocks.

Free lists

The second weapon is trying to force insertions to be directed to different blocks,

something that can be done if some degree of control is retained on storage

management. For each table, Oracle maintains one or several lists of blocks

where new rows can be inserted. By default, there is only one list, but if there

are several such lists, then insertions are assigned in a round-robin fashion to

blocks coming from the various lists. This solution is not as neutral as allocating

more space to transaction management; remember that the clustering of data

has a significant impact on the performance of queries, and therefore while we

may improve insertion performance, we may degrade some other queries.

Architectural solutions

Architectural solutions are those based on a modification of the physical disposition of data

using the facilities of the DBMS. They may have a much more profound impact, to the

disadvantage of our other processes. The three most obvious architectural solutions are:

Partitioning

Range partitioning will of course defeat our purpose if our goal is to spread

update activity over the table—unless, for instance, each process is inserting data

for one particular month, and we could assign one process to one partition, but

this is not the situation in our current example. Hash partitioning, however,

might help. If we compute a hash value from our system-generated (sequence)

value, successive values will be arbitrarily assigned to different partitions. Unfor-

tunately, there are limitations to what we can do to an index used to enforce a

constraint, and therefore it’s only contention at the table level that we can hope

to improve. Moreover, this is a solution that unclusters data, which may impact

on the performance of other queries.
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Reverse index

Chapter 3 shows that reversing the bytes in index keys can disperse the entries

of keys that would otherwise have been in close proximity to one another, into

unrelated leaves of the index, and that is a good way to minimize index conten-

tion (although it will do nothing for table contention). The disadvantage is that

using a reverse index will prevent us from performing range scans on the index,

which can be a very serious hindrance.

Index organized table

Organizing our table as an index will allow us to get rid of one of the sources of

contention. It will do nothing for the second one by itself, but instead of stum-

bling from one point of contention—the table block—to a second point of con-

tention—the index block—we will have everybody fighting in one place.

Development solutions

Development solutions are in the sole hands of the developer and require no change to

the physical structure of the database. Here are two examples where the developer can

influence matters:

Adjusting parallelization

The attempt at varying the number of concurrent processes shows clearly that

there is a peak at 4 concurrent sessions and that adding more sessions doesn’t

help. There is no benefit in assigning 10 people to a task that 4 people can han-

dle perfectly well; it makes coordination more complicated, and some simple

subtasks are sooner performed than assigned. Figure 9-8 showed that the effect

of adding extra sessions beyond a hardware-dependent number is, in the best of

cases, worthless. Removing them would put less strain on the system.

Not using system-generated values

Do we really need sequential values for a surrogate key? This is not always the

case. Sequential values are of interest if we want to process ranges of values,

because they allow us to use operators such as > or between. But if all we need is

a unique identifier that can be used as a foreign key value in some other tables,

why should it belong to a particular range? Let’s consider a possible alterna-

tive—namely to simply use a random number—and regenerate a new one if we

hit a value we have already used.

Results

Figure 9-9 shows the insertion rates we obtained with 10 concurrent sessions, using each

of the methods just described.

Once again there is a significant variability of results (each test was run 10 times, as

before). We cannot conclude that a technique that works well in this case will behave as

well in any other one, nor, conversely, that a technique which gives disappointing results

here will not one day surpass all expectations. But the result is nevertheless interesting.
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First, the DBA techniques gave results that were positive, but not particularly remarkable.

Architectural choices are, in this example, rather inefficient. It is worth mentioning that

our two indexes are enforcing constraints, a situation that limits the number of options

applicable to them. Therefore, some of the techniques may improve contention at the

table level when most of the contention occurs within indexes. This is typically the case

with the index organized table, in which table contention is eliminated by the simple

expedient of removing the table; unfortunately, because we now have more data to store

inside the index, index contention increases and offsets the benefit of no longer having

the table. This is also a situation in which we find that the system resource most in

demand happens to be the CPU. This situation puts at a disadvantage all the techniques

that use extra CPU—such as computing hash values or reversing index keys.

Finally, random values provided both the worst and the best results. In the worst case,

the (integer) random value was generated between 1 and a number equal to about twice

the number of rows we were expecting to insert during the test. As a result, a significant

number of values were generated more than once, causing primary key constraint

violation and the necessity to generate a new random number. This was of course a waste

of time, resulting in excessive consumption of resources—plus, since violation is detected

when inserting the primary key index, and since this index stores the physical address,

violation is detected after the row has been inserted into the table, so an operation must

then be undone, again at additional cost.

In the best case, the random number was generated out of an interval 100 times greater

than in the worst case. The improvement is striking. But since having 10 concurrent

sessions is no more efficient than having 4 concurrent sessions, what would have been

the result with only 4 sessions? Figure 9-10 provides the answer.

F I G U R E  9 - 9 . Tactics for limiting insert contention
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Very interestingly, all techniques give significantly better results, even if they rank

identically in terms of improved throughput (e.g., their relative performances remain

largely similar). The comparison of the results between Figures 9-9 and 9-10 teaches

some interesting lessons:

• In our case study, the bottleneck is the primary key index. Techniques that should

strongly limit contention at the table level (hash partitioning, IOT) bring no benefit;

actually, the IOT provides worse performance on this example than does the combina-

tion of a regular table and a primary key index. On the contrary, techniques that

reduce contention on both table and index (such as allowing more room for transac-

tion management) or only improve the situation at the index level (reverse index,

random surrogate key) all bring benefits.

• The comparison of 10 sessions with 4 sessions shows that some of the techniques

require additional (and scarce) CPU resources from a machine already running flat out

and consequentially show no improvement.

• The best way to avoid contention is not to use a sequentially generated surrogate key!

Instead of considering how much performance we can gain by adopting various mea-

sures, let’s consider how much performance loss is (inadvertently?) introduced by the

use of a sequential key with the resulting contention on the primary key index. Solely

because of contention on the primary key index, our insertion rate drops from a rate

of 180 to 100 insertions per unit of time; in other words, it is divided by a factor of

almost 2! The lesson is clear: we are better off without auto-incremented columns

where they are not required, such as for tables that are not referenced by other tables

or that do not have a very long natural primary key.

F I G U R E  9 - 1 0 . The impact of contention limiting techniques with fewer sessions
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Can we recommend randomly generated surrogate keys? The difference in performance

between a key generated out of a very large interval of values and a key generated out of

too narrow a range of values shows that it can be dangerous and not really efficient if we

expect a final number of rows greater than perhaps one hundredth of the total possible

number of values. Generating random integer values between 1 and 2 billion (a common

range for integer values) can prove hazardous for a large table; unfortunately, tables that

are subject to heavy insertion traffic have a tendency to grow big rather quickly.

However, if your system supports “long long integers,” they can be a good solution—if

you really need a surrogate key.

In contrast to locking, database contention can be improved upon.

Architects, developers, and administrators can all design so as to

limit contention.
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Assembly of Forces
Coping with Large Volumes of Data

Thenne entryd in to the bataylle Iubance a geaunt
and fought and slewe doune ryght and distressyd many of our knyghtes.

—Sir Thomas Malory (d.1471)

Le Morte D’Arthur, V, 11
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This chapter deals with the particular challenges that are facing us when data volumes

swell. Those challenges include searching gigantic tables effectively, but also avoiding the

sometimes distressing performance impact of even a moderate volume increase. We’ll

first look at the impact of data growth and a very large number of rows on SQL queries in

the general case. Then we’ll examine what happens in the particular environments of

data warehousing and decision-support systems.

Increasing Volumes
Some applications see the volume of data they handle increase in considerable proportion

over time. In particular, any application that requires keeping online, for regulatory or

business analysis purposes, several months or even years of mostly inactive data, often

passes through phases of crisis when (mostly) batch programs tend to overshoot the time

allocated to them and interfere with regular, human activity.

When you start a new project, the volume of data usually changes, as shown in Figure

10-1. Initially, hardly anything other than a relatively small amount of reference data is

loaded into the database. As a new system replaces an older one, data inherited from the

legacy system is painfully loaded into the new one. First, because of the radical rethink of

the application, conversion from the old system to the new system is fraught with

difficulties. When deadlines have to be met and some noncritical tasks have to be

postponed, the recovery of legacy data is a prime candidate for slipping behind schedule.

As a result, this recovery goes on for some time after the system has become operational

and teething problems have been solved. Second, the old system is usually much poorer

from a functional perspective than the new one (otherwise, the cost of the new project

would have made for difficult acceptance up the food chain). All this means that the

volume of prehistoric data will be rather small compared to the data handled by the new

system, and several months’ worth of old data will probably be equivalent to a few weeks

of new data at most.

Meanwhile, operational data accumulates.

Usually, one encounters the first serious performance issues about midway before the

volume that the database is expected to hold at cruising speed. Bad queries and bad

algorithms are almost invisible, from an end-user perspective, when volumes are low or

moderate. The raw power of hardware often hides gigantic mistakes and may give

comfortable sub-second response times for full scans of tables that contain several

hundreds of thousands of rows. You may be seriously misusing the hardware, balancing

gross programming mistakes with power—but nobody will see that until your volume

becomes respectable.

At the first crisis point of the project, “expert tuning” is usually required to add a couple

of indexes that should have been there from the start. The system then wobbles until it



A S S E M B L Y  O F  F O R C E S 249

reaches the target volume. There are usually two target volumes: a nominal one (which

has been grossly overestimated and which is the volume the system has officially been

designed to manage) and the real target volume (which the system just manages to

handle and which is often exceeded at some point because archiving of older data has

been relegated to the very last lot in the project). The second and more serious crisis often

comes in the wake of reaching that point. When archival has finally been put into

production, architectural weaknesses reviewed, and some critical processes vigorously

rewritten, the system finally reaches cruising speed, with an increase of data related to

the natural growth of business—a growth that can lie anywhere between flatness and

exponential exuberance.

This presentation of the early months in the life of a new database application is partly

caricature; but it probably bears more resemblance to reality than it often should, because

the simple mistakes that lead to this caricature are not often avoided. However rigorously

one tries to work, errors are made, because of pressure, lack of time for adequate testing,

and ambiguous specifications. The only errors that can bring irredeemable failure are

those linked to the design of the database and to the choice of the global architecture—

two topics that are closely related and that are the foundation of a system. If the

foundation is not sturdy enough, you need to pull the whole building down before

reconstructing. Other mistakes may require a more or less deep overhaul of what is in

place. Most crises, however, need not happen. You must anticipate volume increases

when coding. And you must quickly identify and rewrite a query that deteriorates in

performance too quickly in the face of increasing data volumes.

F I G U R E  1 0 - 1 . The evolution of data in a new application
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Sensitivity of Operations to Volume Increases

All SQL operations are not equally susceptible to variations in performance when the

number of rows to be processed increases. Some SQL operations are insensitive to

volume increases, some see performance decrease linearly with volume, and some

perform very badly with large volumes of data.

Insensitivity to volume increase

Typically, there will be no noticeable difference in a search on the primary key, whether

you are looking for one particular key among 1,000 or one among 1,000,000. The

common B-tree indexes are rather flat and efficient structures, and the size of the

underlying table doesn’t matter for a single-row, primary-key search.

But insensitivity to volume increase doesn’t mean that single primary-key searches are

the ultimate SQL search method. When you are looking for a large number of rows, the

“transactional” single-row operation can be significantly inefficient. Just consider the

following, somewhat artificial, Oracle examples, each showing a range scan on a

sequence-generated primary key:

SQL> declare
 2  n_id         number;
 3 cursor c is select customer_id
 4 from orders
 5 where order_id between 10000 and 20000;
 6 begin
 7 open c;
 8 loop
 9 fetch c into n_id;
 10 exit when c%notfound;
 11 end loop;
 12 close c;
 13 end;
 14 /

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.27

SQL> declare
 2  n_id     number;
 3 begin
 4 for i in 10000 .. 20000
 5 loop
 6 select customer_id
 7 into n_id
 8 from orders
 9 where order_id = i;
 10  end loop;
 11 end;
 12 /
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PL/SQL procedure successfully completed.

Elapsed: 00:00:00.63

The cursor in the first example, which does an explicit range scan, runs twice as fast as

the iteration on a single row. Why? There are multiple technical reasons (“soft parsing,” a

fast acknowledgement at each iteration that the DBMS engine has already met this

statement and knows how to execute it, is one of them), but the single most important

one is that in the first example the B-tree is descended once, and then the ordered list of

keys is scanned and row addresses found and used to access the table; while in the second

example, the B-tree is descended for each searched value in the order_id column. The

most efficient way to process a large number of rows is not to iterate and apply the single-

row process.

Linear sensitivity to volume increases

End users usually understand well that if twice as many rows are returned, a query will

take more time to run; but many SQL operations double in time when operating on

double the number of rows without the underlying work being as obvious to the end

user, as in the case of a full table scan returning rows one after the other. Consider the

case of aggregate functions; if you compute a max( ), that aggregation will always return a

single row, but the number of rows the DBMS will have to operate on may vary wildly

over the life of the application. Perfectly understandable, but end users will always see a

single-row returned, so they may complain of performance degradation over time. The

only way to ensure that the situation will not go from bad to worse is to put an upper

bound on the number of rows processed by using another criterion such as a date range.

Placing an upper bound keeps data volumes under control. In the case of max( ), the idea

might be to look for the maximum since a given date, and not necessarily since the

beginning of time. Adding a criterion to a query is not a simple technical issue and

definitely depends on business requirements, but limiting the scope of queries is an

option that certainly deserves to be pointed out to, and debated with, the people who

draft specifications.

Non-linear sensitivity to volume increases

Operations that perform sorts suffer more from volume increases than operations that

just perform a scan, because sorts are complex and require on average a little more than a

single pass. Sorting 100 randomly ordered rows is not 10 times costlier than sorting 10

rows, but about 20 times costlier—and sorting 1,000 rows is, on average, something like

300 times costlier than sorting 10 rows.
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In real life, however, rows are rarely randomly stored, even when techniques such as

clustering indexes (Chapter 5) are not used. A DBMS can sometimes use sorted indexes

for retrieving rows in the expected order instead of sorting rows after having fetched

them, and performance degradation resulting from retrieving a larger sorted set, although

real, is rarely shocking. Be careful though. Performance degradation from sorts often

proceeds by fits and starts, because smaller sorts will be fully executed in memory, while

larger sorts will result from the merge of several sorted subsets that have each been

processed in memory before being written to temporary storage. There are, therefore,

some “dangerous surroundings” where one switches from a relatively fast full-memory

mode to a much slower memory-plus-temporary-storage mode. Adjusting the amount of

memory allocated to sorts is a frequent and efficient tuning technique to improve sort-

heavy operations when flirting with the dangerous limit.

By way of example, Figure 10-2 shows how the fetch rate (number of rows fetched per

unit of time) of a number of queries evolves as a table grows. The table used in the test is

a very simple orders table defined as follows:

order_id         bigint(20) (primary key)
customer_id      bigint(20)
order_date       datetime
order_shipping   char(1)
order_comment    varchar(50)

The queries are first a simple primary key–based search:

select order_date
from orders
where order_id = ?

then a simple sort:

select customer_id
from orders
order by order_date

then a grouping:

select customer_id, count(*)
from orders
group by customer_id
having count(*) > 3

then the selection of the maximum value in a nonindexed column:

select max(order_date)
from orders

and finally, the selection of the “top 5” customers by number of orders:

select customer_id
from (select customer_id, count(*)
      from orders
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      group by customer_id
      order by 2 desc) as sorted_customers
limit 5

(SQL Server would replace the closing limit 5 with an opening select top 5, and Oracle

would replace limit 5 with where rownum <= 5.)

The number of rows in the table has varied between 8,000 and around 1,000,000, while

the number of distinct customer_id values remained constant at about 3,000. As you can

see in Figure 10-2, the primary key search performs almost as well with one million rows

as with 8,000. There seems to be some very slight degradation at the higher number, but

the query is so fast that the degradation is hardly noticeable. By contrast, the sort suffers.

The performance (measured by rows returned by unit of time, and therefore independent

of the actual number of rows fetched) of the sorting query decreases by 40% when the

number of rows goes from 8,000 to over one million.

The degradation of performance, though, is even more noticeable for all the queries that,

while returning the very same number of aggregated rows, have a great deal more rows

to visit to get the relatively few rows to be returned. These queries are typically the type

of queries that are going to draw the most complaints from end users. Note that the

DBMS doesn’t perform that badly: the performance decrease is very close to proportional

to the number of rows, even for the two queries that require a sort (the queries labeled

“Group by” and “Top” in Figure 10-2). But end users simply see the same amount of

data—just returned much more slowly.

F I G U R E  1 0 - 2 . How some simple queries behave when the queried table grows
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All database operations are not equally sensitive to volume

increases. Anticipate how queries will perform on target volumes.

Putting it all together

The main difficulty in estimating how a query will behave when data volumes increase is

that high sensitivity to volume may be hidden deep inside the query. Typically, a query

that finds the “current value” of an item by running a subquery that looks for the last

time the price was changed, and then performs a max( ) over the price history, is highly

sensitive. If we accumulate a large number of price changes, we shall probably suffer a

slow performance degradation of the subquery, and by extension of the outer query as

well. The degradation will be much less sensitive with an uncorrelated subquery,

executed only once, than with a correlated subquery that will compound the effect by its

being fired each time it is evaluated. Such degradation may be barely perceptible in a

single-item operation, but will be much more so in batch programs.

N O T E
The situation will be totally different if we are tracking, for instance, the current

status of orders in a merchant system, because max( ) will apply to a narrow number

of possible states. Even if the number of orders doubles, max( ) will in that case

always operate on about the same number of rows for one order.

Another issue is sorts. We have seen that an increase in the number of rows sorted leads to

a quite perceptible degradation of performance. Actually, what matters is not so much the

number of rows proper as the number of bytes—in other words, the total amount of data to

be sorted. This is why joins with what is mostly informational data, such as user-friendly

labels associated with an obscure code (as opposed to the data involved in the filtering

conditions driving the query), should be postponed to the very last stage of a query.

Let’s take a simple example showing why some joins should be delayed until the end of a

query. Getting the names and addresses of our 10 biggest customers for the past year will

require joining the orders and order_detail tables to get the amount ordered by each

customer, and joining to a customers table to get each customer’s details. If we only want

to get our 10 biggest customers, we must get everybody who has bought something from

us in the past year, sort them by decreasing amount, and then limit the output to the first

ten resulting rows. If we join all the information from the start, we will have to sort the

names and addresses of all our customers from the past year. We don’t need to operate

on such a large amount of data. What we must do is keep the amount of data to be sorted

to the strict minimum—the customer identifier and the amount. Once everything is
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sorted, we can join the 10 customer_ids we are left with to the customers table to return all

the information that is required. In other words, we mustn’t write something like:

select *
from (select c.customer_name,
             c.customer_address,
             c.customer_postal_code,
             c.customer_state,
             c.customer_country
             sum(d.amount)
      from customers c,
           orders_o,
           order_detail d
      where c.customer_id = o.customer_id
        and o.order_date >= some date expression
        and o.order_id = d.order_id
      group by c.customer_name,
               c.customer_address,
               c.customer_postal_code,
               c.customer_state,
               c.customer_country
       order by 6 desc) as A
limit 10

but rather something like:

select c.customer_name,
       c.customer_address,
       c.customer_postal_code,
       c.customer_state,
       c.customer_country
       b.amount
from (select a.customer_id,
             a.amount
      from (select o.customer_id,
                   sum(d.amount) as amount
            from orders_o,
                  order_detail d
            where o.order_date >= some date expression
              and o.order_id = d.order_id
            group by o.customer_id
            order by 2 desc) as a
      limit 10) as b,
      customers c
where c.customer_id = b.customer_id
order by b.amount desc

The second sort is a safeguard in case the join modifies the order of the rows resulting

from the inner subquery (remember that relational theory knows nothing about sorts

and that the DBMS engine is perfectly entitled to process the join as the optimizer finds

most efficient). We have two sorts instead of one, but the inner sort operates on

“narrower” rows, while the outer one operates on only 10 rows.
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Remember what was said in Chapter 4: we must limit the “thickness” of the non-

relational layer of SQL queries. The thickness depends on the number and complexity of

operations, but also on the amount of data involved. Since sorts and limits of all kinds are

non-relational operations, the optimizer will probably not rewrite a query to execute a

join after having cut the number of customer identifiers to the bare minimum. Although

an attentive reading of two queries may make it obvious that they will return the same

result, mathematically proving that they always return the same result borders on mission

impossible. An optimizer always plays it safe; a DBMS cannot afford to return wrong

results by attempting daring rewrites, especially since it knows hardly anything about

semantics. Our example is therefore a case in which the optimizer will limit its action to

perform the join in inner queries as efficiently as possible. But ordering and aggregates

put a stop to mingling inner and outer queries, and therefore the query will for the most

part run as it is written. The query that performs the sort of amounts before the joins is,

no doubt, very ugly. But this ugly SQL code is the way to write it, because it is the way

the SQL engine should execute it if we want resilience to a strong increase in the number

of customers and orders.

To reduce the sensitivity of your queries to increases in the

volume of data, operate only on the data that is strictly necessary

at the deeper levels of a query. Keep ancillary joins for the outer

level.

Disentangling subqueries

As I have said more than once, correlated subqueries must be fired for each row that

requires their evaluation. They are often a major issue when volume increases transform

a few shots into sustained rounds of fire. In this section, a real-life example will illustrate

both how ill-used correlated subqueries can bog a process down and how one can

attempt to save such a situation.

The issue at hand, in an Oracle context, is a query that belongs to an hourly batch to

update a security management table. Note that this mechanism is already in itself a fudge

to speed up security clearance checks on the system in question. Over time, the process

takes more and more time, until reaching, on the production server, 15 minutes—which

for an hourly process that suspends application availability is a bit too much. The

situation sends all bells ringing and all whistles blowing. Red alert!

The slowness of the process has been narrowed down to the following statement:

insert /*+ append */ into fast_scrty
 ( emplid,
   rowsecclass,
   access_cd,
   empl_rcd,
   name,
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   last_name_srch,
   setid_dept,
   deptid,
   name_ac,
   per_status,
   scrty_ovrd_type)
select distinct
       emplid,
       rowsecclass,
       access_cd,
       empl_rcd,
       name,
       last_name_srch,
       setid_dept,
       deptid,
       name_ac,
       per_status,
      'N'
from pers_search_fast

Statistics are up to date, so we must focus our attack on the query. As it happens, the ill-

named pers_search_fast is a view defined by the following query:

1 select a.emplid,
2        sec.rowsecclass,
3        sec.access_cd,
4        job.empl_rcd,
5        b.name,
6        b.last_name_srch,
7        job.setid_dept,
8        job.deptid,
9        b.name_ac,
10        a.per_status
11 from person a,
12      person_name b,
13      job,
14      scrty_tbl_dept sec
15 where a.emplid = b.emplid
16   and b.emplid = job.emplid
17   and (job.effdt=
18          ( select max(job2.effdt)
19            from job job2
20            where job.emplid = job2.emplid
21              and job.empl-rcd = job2.empl_rcd
22              and job2.effdt <= to_date(to_char(sysdate,
23                                               'YYYY-MM-DD'),'YYYY-MM-DD'))
24        and job.effseq =
25              ( select max(job3.effseq)
26                from job job3
27                where job.emplid = job3.emplid
28                  and job.empl_rcd = job3.empl_rcd
29                  and job.effdt = job3.effdt ) )
30   and sec.access_cd = 'Y'
31   and exists
32           ( select 'X'
33             from treenode tn
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34             where tn.setid = sec.setid
35               and tn.setid = job.setid_dept
36               and tn.tree_name = 'DEPT_SECURITY'
37               and tn.effdt = sec.tree_effdt
38               and tn.tree_node = job.deptid
39               and tn.tree_node_num between sec.tree_node_num
40                                        and sec.tree_node_num_end
41               and not exists
42                    ( select 'X'
43                      from scrty_tbl_dept sec2
44                      where sec.rowsecclass = sec2.rowsecclass
45                        and sec.setid = sec2.setid
46                        and sec.tree_node_num <> sec2.tree_node_num
47                        and tn.tree_node_num between sec2.tree_node_num
48                                                 and sec2.tree_node_num_end
49                        and sec2.tree_node_num between sec.tree_node_num
50                                                   and sec.tree_node_num_end ))

This type of “query of death” is, of course, too complicated for us to understand at a

glance! As an exercise, though, it would be interesting for you to pause at this point,

consider carefully the query, try to broadly define its characteristics, and try to identify

possible performance stumbling blocks.

If you are done pondering the query, let’s compare notes. There are a number of

interesting patterns that you may have noticed:

• A high number of subqueries. One subquery is even nested, and all are correlated.

• No criterion likely to be very selective. The only constant expressions are an

unbounded comparison with the current date at line 22, which is likely to filter hardly

anything at all; a comparison to a Y/N field at line 30; and a condition on tree_name at

line 36 that looks like a broad categorization. And since the insert statement that has

been brought to our attention contains no where clause, we can expect a good many

rows to be processed by the query.

• Expressions such as between sec.tree_node_num and sec.tree_node_num_end ring a familiar

bell. This looks like our old acquaintance from Chapter 7, Celko’s nested sets! Finding

them in an Oracle context is rather unusual, but commercial off-the-shelf (COTS)

packages often make admirable, if not always totally successful, attempts at being por-

table and therefore often shun the useful features of a particular DBMS.

• More subtly perhaps, when we consider the four tables (actually, one of them, person_

name, is a view) in the outer from clause, only three of them, person, person_name, and

job, are cleanly joined. There is a condition on scrty_tbl_dept, but the join proper is

indirect and hidden inside one of the subqueries, lines 34 to 38. This is not a recipe for

efficiency.

One of the very first things to do is to try to get an idea about the volumes involved;

person_name is a view, but querying it indicates no performance issue. The data dictionary

tells us how many rows we have:
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TABLE_NAME                     NUM_ROWS
------------------------------ ----------
TREENODE                         107831
JOB                               67660
PERSON                            13884
SCRTY_TBL_DEPT                      568

None of these tables is really large; it is interesting to notice that one need not deal with

hundreds of millions of rows to perceive a significant degradation of performance as

tables grow. The killing factor is how we are visiting tables. Finding out on the

development server (obviously not as fast as the server used in production) how many

rows are returned by the view is not very difficult but requires steel nerves:

SQL> select count(*) from PERS_SEARCH_FAST;

 COUNT(*)
----------
 264185

Elapsed: 01:35:36.88

A quick look at indexes shows that both treenode and job are over-indexed, a common

flaw of COTS packages. We do not have here a case of the “obviously missing index.”

Where must we look to find the reason that the query is so slow? We should look mostly

at the lethal combination of a reasonably large number of rows and of correlated

subqueries. The cascading exists/not exists in particular, is probably what does us in.

N O T E
In real life, all this analysis took me far more time than it is taking you now to read

about it. Please understand that the paragraphs that follow summarize several hours

of work and that inspiration didn’t come as a flashing illumination!

Take a closer look at the exists/not exists expression. The first level subquery introduces

table treenode. The second level subquery again hits table scrty_tbl_dept, already present

in the outer query, and compares it both to the current row of the first level subquery

(lines 47 and 48) and to the current row of the outer subquery (lines 44, 45, 46, 49, and

50)! If we want to get tolerable performance, we absolutely must disentangle these

queries.

Can we understand what the query is about? As it happens, treenode, in spite of its

misleading name, doesn’t seem to be the table that stores the “nested sets.” The

references to a range of numbers are all related to scrty_tbl_dept; treenode looks more like

a denormalized flat list (sad words to use in a supposedly relational context) of the

“nodes” described in scrty_tbl_dept. Remember that in the nested set implementation of

tree structures, two values are associated with each node and computed in such a way

that the values associated with a child node are always between the values associated
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with the parent node. If the two values immediately follow each other, then we

necessarily have a leaf node (the reverse is not true, because a subtree may have been

pruned and value recomputation skipped, for obvious performance reasons). If we try to

translate the meaning of lines 31 to 50 in English (sort of), we can say something like:

There is in treenode a row with a particular tree_name that matches job on both

setid_dept and deptid, as well as matching scrty_tbl_dept on setid and tree_effdt,

and that points to either the current “node” in scrty_tbl_dept or to one of its

descendents. There is no other node (or descendent) in scrty_tbl_dept that the cur-

rent treenode row points to, that matches the current one on setid and rowsecclass,

and that is a descendent of that node.

Dreadful jargon, especially when one has not the slightest idea of what the data is about.

Can we try to express the same thing in a more intelligible way, in the hope that it will

lead us to more intelligible and efficient SQL? The key point is probably in the there is no

other node part. If there is no descendent node, then we are at the bottom of the tree for

the node identified by the value of tree_node_num in treenode. The subqueries in the initial

view text are hopelessly mingled with the outer queries. But we can write a single

contained query that “forgets” for the time being about the link between treenode and job

and computes, for every node of interest in scrty_tbl_dept (a small table, under 600

rows), the number of children that match it on setid and rowsecclass:

select s1.rowsecclass,
       s1.setid,
       s1.tree_node_num,
       tn.tree_node,
       count(*) – 1 children
from scrty_tbl_dept s1,
     scrty_tbl_dept s2,
     treenode tn
where s1.rowsecclass = s2.rowsecclass
  and s1.setid = s2.setid
  and s1.access_cd = 'Y'
  and tn.tree_name = 'DEPT_SECURITY'
  and tn.setid = s1.setid
  and tn.effdt = s1.tree_effdt
  and s2.tree_node_num between s1.tree_node_num
                           and s1.tree_node_num_end
  and tn.tree_node_num between s2.tree_node_num
                           and s2.tree_node_num_end
group by s1.rowsecclass,
         s1.setid,
         s1.tree_node_num,
         tn.tree_node

(The count(*) – 1 is for not counting the current row.) The resulting set will be, of course,

small, at most a few hundred rows. We shall filter out nodes that are not leaf nodes (in

our context) by using the preceding query as an inline view, and applying a filter:

and children = 0
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From here, and only from here, we can join to job and properly determine the final set.

Giving the final text of the view would not be extremely interesting. Let’s just point out

that the first succession of exists:

 and (job.effdt=
         ( select max(job2.effdt)
           from job job2
           where job.emplid = job2.emplid
             and job.empl-rcd = job2.empl_rcd
             and job2.effdt <= to_date(to_char(sysdate,'YYYY-MM-DD'),
                                                       'YYYY-MM-DD'))
       and job.effseq =
             ( select max(job3.effseq)
               from job job3
               where job.emplid = job3.emplid
                 and job.empl_rcd = job3.empl_rcd
                 and job.effdt = job3.effdt ) )

is meant to find, for the most recent effdt for the current (emplid, empl_rcd) pair, the row

with the highest effseq value. This condition is not, particularly in comparison to the

other nested subquery, so terrible. Nevertheless, OLAP (or should we say analytical, since

we are in an Oracle context?) functions can handle, when they are available, this type of

“top of the top” case slightly more efficiently. A query such as:

select emplid,
       empl_rcd,
       effdt,
       effseq
from (select emplid,
             empl_rcd,
             effdt,
             effseq
             row_number() over (partition by emplid, empl_rcd
                                order by effdt desc, effseq desc) rn
      from job
      where effdt <= to_date(to_char(sysdate,'YYYY-MM-DD'),'YYYY-MM-DD'))
where rn = 1

will easily select the (emplid, empl_rcd) values that we are really interested in and will be

easily reinjected into the main query as an inline view that will be joined to the rest. In

real life, after rewriting this query, the hourly process that had been constantly

lengthening fell from 15 to under 2 minutes.

Minimize the dependencies of correlated subqueries on elements

from outer queries.



262 C H A P T E R T E N

Partitioning to the Rescue

When the number of rows to process is on the increase, index searches that work

wonders on relatively small volumes become progressively inefficient. A typical primary

key search requires the DBMS engine to visit 3 or 4 pages, descending the index, and

then the DBMS must visit the table page. A range scan will be rather efficient, especially

when applied to a clustering index that constrains the table rows to be stored in the same

order as the index keys. Nevertheless, there is a point at which the constant to-and-fro

between index page and table page becomes costlier than a plain linear search of the

table. Such a linear search can take advantage of parallelism and read-ahead facilities

made available by the underlying operating system and hardware. Index-searches that

rely on key comparisons are more sequential by nature. Large numbers of rows to inspect

exemplify the case when accesses should be thought of in terms of sweeping scans, not

isolated incursions, and joins performed through hashes or merges, not loops (all this was

discussed in Chapter 6).

Table scans are all the more efficient when the ratio of rows that belong to the result set

to rows inspected is high. If we can split our table, using the data-driven partitioning

introduced in Chapter 5, in such a way that our search criteria can operate on a well

defined physical subset of the table, we maximize scan efficiency. In such a context,

operations on a large range of values are much more efficient when applied brutishly to a

well-isolated part of a table than when the boundaries have to be checked with the help

of an index.

Of course, data-driven partitioning doesn’t miraculously solve all volume issues:

• For one thing, the repartition of the partitioning keys must be more or less uniform; if

we can find one single value of the partitioning key in 90% of rows, then scanning the

table rather than the partition will hardly make any difference for that key; and for

the others, they will probably be accessed more efficiently by index. The benefit of

using an index that operates against a partitioned table will be slight for selective val-

ues. Uniformity of distribution is the reason why dates are so well suited to partition-

ing, and why range partitioning by date is by far the most popular method of

partitioning.

• A second point, possibly less obvious but no less important, is that the boundaries of

ranges must be well defined, in both their lower value and upper values. This isn’t a

peculiarity of partitioned tables, because the same can be said of index range scans. A

half-bounded range, unless we are looking for values greater than a value close to the

maximum in the table or lesser than a value close to the minimum, will provide no help

in significantly reducing the rows we have to inspect. Similarly, a range defined as:

where date_column_1 >= some value
  and date_column_2 <= some other value
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will not enable us to use either partitioning or indexing any more efficiently than if

only one of the conditions was specified. It’s by specifying a between (or any semantic

equivalent) encompassing a small number of partitions that we shall make best usage

of partitioning.

Half-bounded conditions make a poor use of both indexes and

partitions.

Data Purges

Archival and data purges are too often considered ancillary matters, until they are seen as

the very last hope for retrieving those by-and-large satisfactory response times of six

months ago. Actually, they are extremely sensitive operations that, poorly handled, can

put much strain on a system and contribute to pushing a precarious situation closer to

implosion.

The ideal case is when tables are partitioned (true partitioning or partitioned view) and

when archival and purges operate on partitions. If partitions can be simply detached, in

one way or another, then an archival (or purge) operation is trivial: a partition is

archived and a new empty one possibly created. If not, we are still in a relatively strong

position: the query that selects rows for archival will be a simple one, and afterwards it

will be possible to truncate a partition—truncate being a way of emptying a table or

partition that bypasses most of the usual mechanisms and is therefore much faster than

regular deletes.

N O T E
Because truncate bypasses so much of the work that delete performs, you should use

caution. The use of truncate may impact your backups, and it may also have other

side effects, such as the invalidation of some indexes. Any use of truncate should

always be discussed with your DBAs.

The less-than-ideal, but oh-so-common case is when archival is triggered by age and other

conditions. Accountants, for instance, are often reluctant to archive unpaid invoices, even

when rather old. This makes the rather simple and elegant partition shuffling or truncation

look too crude. Must we fall back on the dull-but-trusted delete?

It is at this point interesting to try to rank data manipulation operations (inserts, updates,

and deletes) in terms of overall cost. We have seen that inserts are pretty costly, in large

part because when you insert a new row, all indexes on the table have to be maintained.

Updates require only maintenance of the indexes on the updated columns. Their weakness,

compared to inserts, is two-fold: first, they are associated with a search (a where clause) that
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can be as disastrous as with a select, with the aggravating circumstance that in the

meanwhile locks are held. Second, the previous value, inexistent in the case of an insert,

must be saved somewhere so as to be available in case of rollback. Deletes combine all the

shortcomings: they affect all indexes, are usually associated with a where clause that can be

slow, and need to save the values for a possible transaction rollback.

Of all operations that change data, deletes offer the greatest

potential for trouble.

If we can therefore save on deletes, even at the price of other operations, we are likely to

end up on the winning side. When a table is partitioned and archival and purge are

dependent mostly on a date condition with strings attached, we can consider a three

stage purge:

1. Insert into a temporary table those old rows that we want to keep.

2. Truncate partitions.

3. Insert back from the temporary table those rows that should be retained.

Without partitioning, the situation is much more difficult. In order to limit lock

duration—and assuming of course that once a row has attained the “ready for archival”

state, no operation whatsoever can put it back to the “no, wait, I have second thought”

state—we can consider a two-step operation. This two-step operation will be all the more

advantageous given that the query that identifies rows for archiving is a slow-running

one. What we may do in that case is:

1. Build a list of the identifiers of the rows to archive.

2. Join on this list for both archival and purge, rather than running the same slow where

clause twice, once in a select statement and once in a delete statement.

A major justification for temporary tables is to enable massive,

table-oriented operations that would outperform row-wise

operations.

Data Warehousing
The purpose of this book is not to devote half a chapter to covering the complex issues

linked to data warehousing. Many books on the topic of data warehousing have been

written, some of them generic (Ralph Kimball’s The Data Warehouse Toolkit and Bill

Inmon’s Building the Data Warehouse, both published by John Wiley & Sons, are probably
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the two best-known titles), some of them specific to a DBMS engine. There has been

something of a religious war between the followers of Inmon, who advocates a clean 3NF

design of enormous data repositories used by decision-support systems, and the

supporters of Kimball, who believes that data warehouses are a different world with

different needs, and that therefore the 3NF model, in spite of its qualities in the

operational world, is better replaced with dimensional modeling, in which reference data is

happily denormalized.

As most of this book advocates and assumes a clean 3NF design, I will deal hereafter

more specifically with dimensional models, to study their strengths and the reason for

their popularity, but also their weaknesses. I will, in particular, examine the interactions

between operational data stores (“production databases” to the less enlightened) and

decision-support systems, since data doesn’t fall from heaven, unless you are working for

NASA or a satellite operating company, and what you load into dimensional models has

to come from somewhere. Understand that it is not because one is using the SQL

language against “tables” that one is operating in the relational world.

Facts and Dimensions: the Star Schema

The principle of dimensional modeling is to store measurement values, whether they are

quantities, amounts, or whatever you can imagine into big fact tables. Reference data is

stored into dimension tables that mostly contain self-explanatory labels and that are

heavily denormalized. There are typically 5 to 15 dimensions, each with a system-

generated primary key, and the fact table contains all the foreign keys. Typically, the date

associated with a series of measures (a row) in the fact table will not be stored as a date

column in the fact table, but as a system-generated number that will reference a row in

the date_dimension table in which the date will be declined under all possible forms. If we

take, for instance, the traditional starting date of the Unix world, January 1, 1970, it

would typically be stored in date_dimension as:

Every row that refers to something having occurred on January 1, 1970 in the fact table

would simply store the 12345 key. The rationale behind such an obviously non-normalized

way of storing data is that, although normalization is highly important in environments

where data is changed, because it is the only way to ensure data integrity, the overhead of

storing redundant information in a data warehouse is relatively negligible since dimension

tables contain very few rows compared to the normalized fact table. For instance, a one-

century date dimension would only hold 36,525 rows. Moreover, argues Dr. Kimball,

having only a fact table surrounded by dimension tables as in Figure 10-3 (hence the “star

schema” name) makes querying that data extremely simple. Queries against the data tend

to require very few joins, and therefore are very fast to execute.

date_key date_value date_description day month year quarter holiday

12345 01/01/1970 January 1, 1970 Thursday January 1970 Q1 1970 Holiday
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Anybody with a little knowledge of SQL will probably be startled by the implication that

the fewer the joins, the faster a query runs. Jumping to the defense of joins is not, of

course, to recommend joining indiscriminately dozens of tables, but unless you have had

a traumatic early childhood experience with nested loops on big, unindexed tables, it is

hard to assert seriously that joins are the reason queries are slow. The slowness comes

from the way queries are written; in this light, dimensional modeling can make a lot of

sense, and you’ll see why as you progress through this chapter.

The design constraints of dimensional modeling are deliberately

read-oriented, and consequently they frequently ignore the

precepts of relational design.

Query Tools

The problem with decision-support systems is that their primary users have not the slightest

idea how to write an SQL query, not even a terrible one. They therefore have to use query

tools for that purpose, query tools that present them with a friendly interface and build

queries for them. You saw in Chapter 8 that dynamically generating an efficient query from

a fixed set of criteria is a difficult task, requiring careful thought and even more careful

coding. It is easy to understand that when the query can actually be anything, a tool can

only generate a decent query when complexity is low.

The following piece of code is one that I saw actually generated by a query tool (it shows

some of the columns returned by a subquery in a from clause):

...
FROM (SELECT ((((((((((((t2."FOREIGN_CURRENCY"
                         || CASE
                              WHEN 'tfp' = 'div' THEN t2."CODDIV"
                              WHEN 'tfp' = 'ac' THEN t2."CODACT"
                              WHEN 'tfp' = 'gsd' THEN t2."GSD_MNE"
                              WHEN 'tfp' = 'tfp' THEN t2."TFP_MNE"
                              ELSE NULL

F I G U R E  1 0 - 3 . A simple star schema, showing primary keys (PK) and foreign keys (FK)
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                            END
                            )
                         || CASE
                              WHEN 'Y' = 'Y' THEN TO_CHAR (
                                      TRUNC (
                                             t2."ACC_PCI"
                                            )
                                     )
                              ELSE NULL
                            END
                           )
                        || CASE
                             WHEN 'N' = 'Y' THEN t2."ACC_E2K"
                             ELSE NULL
                           END
                          )
                       || CASE
                            WHEN 'N' = 'Y' THEN t2."ACC_EXT"
                            ELSE NULL
                           END
                          )
                       || CASE ...

It seems obvious from this sample’s select list that at least some “business intelligence”

tools invest so much intelligence on the business side that they have nothing left for

generating SQL queries. And when the where clause ceases to be trivial—forget about it!

Declaring that it is better to avoid joins for performance reasons is quite sensible in this

context. Actually, the nearer you are to the “text search in a file” (a.k.a. grep) model, the

better. And one understands why having a “date dimension” makes sense, because

having a date column in the fact table and expecting that the query tool will transform

references to “Q1” into “between January 1 and March 31” to perform an index range

scan requires the kind of faith you usually lose when you stop believing in the Tooth

Fairy. By explicitly laying out all format variations that end users are likely to use, and by

indexing all of them, risks are limited. Denormalized dimensions, simple joins, and all-

round indexing increase the odds that most queries will execute in a tolerable amount of

time, which is usually the case.

Weakly designed queries may perform acceptably against

dimensional models because the design complexity is much

lower than in a typical transactional model.

Extraction, Transformation, and Loading

In order for business users to be able to proactively leverage strategic cost-generating

opportunities (if data warehousing literature is to be believed), it falls on some poor souls

to ensure the mundane task of feeding the decision-support system. And even if tools are

available, this feeding is rarely an easy task.



268 C H A P T E R T E N

Data extraction

Data extraction is not usually handled through SQL queries. In the general case, purpose-

built tools are used: either utilities or special features provided by the DBMS, or dedicated

third-party products. In the unlikely event that you would want to run your own SQL

queries to extract information to load into a data warehouse, you typically fall into the

case of having large volumes of information, where full table scans are the safest tactic.

You must do your best in such a case to operate on arrays (if your DBMS supports an

array interface—that is fetching into arrays or passing multiple values as a single array),

so as to limit round-trips between the DBMS kernel and the downloading program.

Transformation

Depending on your SQL skills, the source of the data, the impact on production systems,

and the degree of transformation required, you can use the SQL language to perform a

complex select that will return ready-to-load data, use SQL to modify the data in a

staging area, or use SQL to perform the transformation at the same time as the data is

uploaded into the data warehouse.

Transformations often include aggregates, because the granularity required by decision

support systems is usually coarser than the level of detail provided by production

databases. Typically, values may be aggregated by day. If transformation is not more

complicated than aggregation, there is no reason for performing it as a separate

operation. Writing to the database is much costlier than reading from it, and updating the

staging area before updating the data warehouse proper may be adding an unwanted

costly step.

Such an extra step may be unavoidable, though, when data has to be compounded from

several distinct operational systems; I can list several possible reasons for having to get

data from different unrelated sources:

• Acute warlordism within the corporation

• A recently absorbed division still using its pre-acquisition information system

• A migration spread over time, meaning that at some point you have, for instance,

domestic operations still running on an old information system while international

ones are already using a new system that will later be used everywhere

The assemblage of data from several sources should be done, as much as possible, in a

single step, using a combination of set operators such as union and of in-line views—

subqueries in the from clause. Multiple passes carry a number of risks and should not be

directly applied to the target data warehouse. The several-step update of tables, with null

columns being suddenly assigned values is an excellent recipe for wreaking havoc at the

physical level. When data is stored in variable length, as is often the case with character
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information and sometimes with numeric information as well (Oracle is an example of

such a storage strategy), it will invariably lead to some of the data being relegated to

overflow pages, thus compromising the efficiency of both full scans and indexed accesses,

since indexes usually point to the head part of a row. Any pointer to an overflow area

will mean visiting more pages than would otherwise be necessary to answer a given

question, and will be costly. If the prepared data is very simply inserted into the target

data warehouse tables, data will be properly reorganized in the process.

It is also quite common to see several updates applied to different columns of the same

table in turn. Whenever possible, perhaps with help from the case construct, always

update as many columns in one statement as possible.

Multiple massive updates applied to a table often wreak havoc at

the physical level.

Loading

If you build your data warehouse (or data mart, as others prefer to say) according to the

rules of dimensional modeling, all dimensions will use artificial, system-generated keys

for the purpose of keeping a logical track over time of items that may be technically

different but logically identical. For instance, if you manufacture consumer electronics, a

new model with a new reference may have been designed to replace an older model,

now discontinued. By using the same artificial key for both, you can consider them as a

single logical entity for analysis.

The snag is that the primary keys in your operational database will usually have different

values from the dimension identifiers used in the decision support system, which

becomes an issue not with dimension tables but with fact tables. You have no reason to

use surrogate keys for dates in your operational system. In the same way, the operational

system doesn’t necessarily need to record which electronic device model is the successor

to another. Dimension tables are, for the most part, loaded once and rarely updated.

Dimensional modeling rests partly on the assumption that the fast-changing values are

the ones stored in fact tables. As a result, for every row you need to insert into the fact

table, you must retrieve (from the operational database primary key) the value of the

corresponding surrogate, system-generated key for each of the dimensions—which

necessarily means as many joins as there are different dimensions. Queries against the

decision support system may require fewer joins, but loading into the decision support

system will require many more joins because of the mapping between operational and

dimensional keys.
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The advantage of simpler queries against dimensional models is

paid for by the disadvantage of complex preparation and loading

of the data.

Integrity constraints and indexes

When a DBMS implements referential integrity checking, it is sensible to disable that

checking during data load operations. If the DBMS engine needs to check for each row

that the foreign keys exist, the engine does double the amount of work, because any

statement that uploads the fact table has to look for the parent surrogate key anyway.

You might also significantly speed up loading by dropping most indexes and rebuilding

them after the load, unless the rows loaded represent a small percentage of the size of the

table that you are loading, as rebuilding indexes on very large tables can be prohibitively

expensive in terms of resources and time. It would however be a potentially lethal

mistake to disable all constraints, and particularly primary keys. Even if the data being

loaded has been cleaned and is above all reproach, it is very easy to make a mistake and

load the same data twice—much easier than trying to remove duplicates afterwards.

The massive upload of decision-support systems is one of the rare

cases when temporarily altering a schema may be tolerated.

Querying Dimensions and Facts: Ad Hoc Reports

If query tools are seriously helped by removing anything that can get in their way, such

as evil joins and sophisticated subqueries, there usually comes a day when business users

require answers that a simplistic schema cannot provide. The dimensional model is then

therefore duly “embellished” with mini-dimensions, outriggers, bridge tables, and all kinds of

bells and whistles until it begins to resemble a clean 3NF schema, at which point query

tools are beginning to suffer. One day, a high-ranking user tries something daring—and

the next day the problem is on the desk of a developer, while the tool-generated query is

still running. Time for ad hoc queries and shock SQL!

It is when you have to write ad hoc queries that it is time to get back to dimensional

modeling and see the SQL implications. Basically, dimensions represent the breaks in a

report. If an end user often wants to see sales by product, by store, and by month, then

we have three dimensions involved: the date dimension that has been previously

introduced, the product dimension, and the store dimension. Product and store can be

denormalized to include information such as product line, brand, and category in one

case, and region, surface, or whatever criterion is deemed to be relevant in the other case.

Sales amounts are, obviously, facts.
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A key characteristic of the star schema is that we are supposed to attack the fact table

through the dimensions such as in Figure 10-4; in the previous example, we might for

instance want to see sales by product, store, and month for dairy products in the stores

located in the Southwest and for the third quarter. Contrarily to the generally

recommended practice in normalized operational databases, dimension tables are not

only denormalized, but are also strongly indexed. Indexing all columns means that,

whatever the degree of detail required (the various columns in a location dimension,

such as city, state, region, country, area, can be seen as various levels of detail, and the

same is true of a date dimension), an end user who is executing a query will hit an index.

Remember that dimensions are reference tables that are rarely if ever updated, and

therefore there is no frightful maintenance cost associated with heavy indexing. If all of

your criteria refer to data stored in dimension tables, and if they are indexed so as to

make any type of search fast, you should logically hit dimension tables first and then

locate the relevant values in the fact table.

Hitting dimensions first has very strong SQL implications that we must well understand.

Normally, one accesses particular rows in a table through search criteria, finds some

foreign keys in those rows, and uses those foreign keys to pull information from the

tables those keys reference. To take a simple example, if we want to find the phone

number of the assistant in the department where Owens works, we shall query the table

of employees basing our search on the “Owens” name, find the department number, and

use the primary key on the table of departments to find the phone number. This is a

classic, nested-loop join case.

With dimensional modeling, the picture totally changes. Instead of going from the

referencing table (the employees) to the referenced table (the departments), naturally

F I G U R E  1 0 - 4 . The usual way of querying tables in the dimensional model
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following foreign keys, we start from the reference tables—the dimensions. To go where?

There is no foreign key linking a dimension to the fact table: the opposite is true. It is like

looking for the names of all the employees in a department when all you know is the

phone number of the assistant. When joining the fact table to the dimension, the DBMS

engine will have to go through a mechanism other than the usual nested loop—perhaps

something such as a hash join.

Another peculiarity of queries on dimensional models is that they often are perfect

examples of the association of criteria that’s not too specific, with a relatively narrow

intersection to obtain a result set that is not, usually, enormous. The optimizer can use a

couple of tactics for handling such queries. For instance:

Determining which is the most selective of all these not-very-selective criteria, joining the associated

dimension to the fact table, and then checking each of the other dimensions

Such a tactic is fraught with difficulties. First of all, the way dimensions are built

may give the optimizer wrong ideas about selectivity. Suppose we have a date

dimension that is used as the reference for many different dates: the sales date,

but also, for instance, the date on which each store was first opened, a fact that

may be useful to compare how each store is doing after a given number of

months of activity. Since the date dimension will never be a giant table, we may

have decided to fill it from the start with seventy years’ worth of dates. Seventy

years give us, on one hand, enough “historical” dates to be able to refer to even

the opening of the humble store of the present chairman’s grandfather and, on

the other hand, enough future dates so as to be able to forget about maintaining

this dimension for quite a while. Inevitably, a reference to the sales of last year’s

third quarter will make the criterion look much more selective than it really is.

The problem is that if we truly had a “sales date” inside the fact table, it would

be straightforward to determine the useful range of dates. If we just have a “date

reference” pointing to the date dimension, the starting point for evaluation is

the dimension, not the fact table.

Scanning the fact table and discarding any row that doesn’t satisfy any of the various criteria

Since fact tables contain all the measurement or metrics, they are very large. If

they are partitioned, it will necessarily be against a single dimension (two if you

use subpartitioning). Any query involving three or more dimensions will require

a full scan of a table that can contain millions of rows. Scanning the fact table

isn’t the most attractive of options.

In such a case, visiting the fact table at an early stage, which also means after a first

dimension, may be a mistake. Some products such as Oracle implement an interesting

algorithm, known in Oracle’s case as the “star transformation.” We are going to look next

at this transformation in some detail, including characteristics that are peculiar to Oracle,

before discussing how such an algorithm may be emulated in non-Oracle environments.
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Dimensional modeling is built on the premise that dimensions

are the entry points. Facts must be accessed last.

The star transformation

The principle behind the star transformation is, as a very first step, to separately join the

fact table to each of the dimensions for which we have a filtering condition. The

transformation makes it appear that we are joining several times to the fact table, but

appearances are deceiving. What we really want is to get the addresses of rows from the

fact table that match the condition on each dimension. Such an address, also known as a

rowid (accessible as a pseudo-column with Oracle; Postgres has a functionally equivalent

oid) is stored in indexes. All we need to join, therefore, are three objects:

• The index on the column from the dimension table that we use as a filtering condi-

tion—for instance, the quarters column in date_dimension

• The date_dimension itself, in which we find the system-generated artificial primary key

date_key

• The index on the column in the fact table that is defined as a foreign key referencing

date_key (star transformations work best when the foreign keys in the fact table are

indexed)

Even though the fact table appears several times in a star query, we will not hit the same

data or index pages repeatedly. All the separate joins will involve different indexes, and

all storing rowids referring to the same table—but otherwise those indexes are perfectly

distinct objects.

As soon as we have the result of two joins, we can combine the two resulting sets of

rowids, discarding everything that doesn’t belong to the intersection of the two sets for an

and condition or retaining everything for an or condition. This step is further simplified if

we are using bitmap indexes, for which simple bit-wise operations are all that is required to

select our final set of rowids that refer to rows satisfying our conditions. Once we have

our final, relatively small set of resulting rowids, then we can fetch the corresponding

rows from the fact table that we are actually visiting for the very first time.

Bitmap indexes, as their name says, index values by keeping bitmaps telling which rows

contain a particular value and which do not. Bitmap indexes are particularly appropriate

to index low-cardinality columns; in other words, columns in which there are few

distinct values, even if the distribution of those values is not particularly skewed. Bitmap

indexes were not mentioned in previous chapters for an excellent reason: they are totally

inappropriate for general database operations. There is a major reason for avoiding them

in a database that incurs normal update activity: when you update a bitmap, you have to
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lock it. Since this type of index is designed for columns with few distinct values, you end

up preventing changes to many, many rows, and you get a behavior that lies somewhere

between page locking and table locking, but much closer to table locking. For read-only

databases, however, bitmap indexes may prove useful. Bitmap indexes are quickly built

during bulk loads and take much less storage than regular indexes.

Emulating the star transformation

Although automated star transformation is a feature that enables even poorly generated

queries to perform efficiently, it is quite possible to write a query in a way that will

induce the DBMS kernel to execute it in a similar, if not exactly identical, fashion. I must

plead guilty to writing SQL statements that are geared at one particular result. From a

relational point of view, I would deserve to be hanged high. On the other hand,

dimensional modeling has nothing to do with the relational theory. I am therefore using

SQL in a shamelessly unrelational way.

Let’s suppose that we have a number of dimension tables named dim1, dim2, ... dimn.

These dimension tables surround our fact table that we shall imaginatively call facts.

Each row in facts is composed of key1, key2, ... keyn, foreign keys respectively pointing to

one dimension table, plus a number of values (the facts) val1, val2, ... valp. The primary

key of facts is defined as a composite key, and is simply made of key1 to keyn.

Let’s further imagine that we need to execute a query that satisfies conditions on some

columns from dim1, dim2, and dim3 (they may, for instance, represent a class of products, a

store location, and a time period). For simplicity, say that we have a series of and

conditions, involving col1 in dim1, col2 in dim2 and col3 in dim3. We shall ignore any

transformation, aggregate or whatever, and limit our creative exercise to returning the

appropriate set of rows in as effective a way as possible.

The star transformation mostly aims to obtain in an efficient way the identifiers of the

rows from the fact table that will belong to our result set, which may be the final result

set or an intermediate result set vowed to further ordeals. If we start with joining dim2 to

facts, for instance:

select ...
from dim2,
     facts
where dim2.key2 = facts.key2
  and dim2.col2 = some value

then we have a major issue if we have no Oracle rowid, because the identifiers of the

appropriate rows from facts are precisely what we want to see returned. Must we return

the primary key from facts to properly identify the rows? If we do, we hit not only the

index on facts(key2), but also table facts itself, which defeats our initial purpose.

Remember that the frequently used technique to avoid an additional visit to the table is
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to store the information we need in the index by adding to the index the columns we

want to return. So, must we turn our index on facts(key2) into an index on facts(key2,

key3 ... keyn)? If we do that, then we must apply the same recipe to all foreign keys! We

will end up with n indexes that will each be of a size in the same order of magnitude as

the facts table itself, something that is not acceptable and that forces us to read large

amounts of data while scanning those indexes, thus jeopardizing performance.

What we need for our facts table is a relatively small row identifier—a surrogate key that

we may call fact_id. Although our facts table has a perfectly good primary key, and

although it is not referenced by any other table, we still need a compact technical

identifier—not to use in other tables, but to use in indexes.

With our system-generated fact_id column, we can have indexes on (key1, fact_id),

(key2, fact_id) ... (keyn, fact_id) instead of on the foreign keys alone. We can now fully

write our previous query as:

select facts.fact_id
from dim2,
     facts
where dim2.key2 = facts.key2
  and dim2.col2 = some value

This version of the query no longer needs the DBMS engine to visit anything but the

index on col2, the dimension table dim2, and the facts index on (key2, fact_id). Note that

by applying the same trick to dim2 (and of course the other dimension tables),

systematically appending the key to indexes on every column, the query can be executed

by only visiting indexes.

Repeating the query for dim1 and dim3 provides us with identifiers of facts that satisfy the

conditions associated with these dimensions. The final set of identifiers satisfying all

conditions can easily be obtained by joining all the queries:

select facts1.fact_id
from (select facts.fact_id
      from dim1,
           facts
      where dim1.key1 = facts.key1
        and dim1.col1 = some value) facts1,
      (select facts.fact_id
       from dim2,
            facts
       where dim2.key2 = facts.key2
         and dim2.col2 = some other value) facts2,
       (select facts.fact_id
        from dim3,
             facts
        where dim3.key3 = facts.key3
          and dim3.col3 = still another value) facts3
where facts1.fact_id = facts2.fact_id
   and facts2.fact_id = facts3.fact_id
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Afterwards, we only have to collect from facts the rows, the identifiers of which are

returned by the previous query.

The technique just described is, of course, not specific to decision-support systems. But I

must point out that we have assumed some very heavy indexing, a standard fixture of

data marts and, generally speaking, read-only databases. In such a context, putting more

information into indexes and adding a surrogate key column can be considered as “no

impact” changes. You should be most reluctant in normal (including in the relational

sense!) circumstances to modify a schema so significantly to accommodate queries. But if

most of the required elements are already in place, as in a data warehousing

environment, you can certainly take advantage of them.

Querying a star schema the way it is not intended to be queried

As you have seen, the dimensional model is designed to be queried through dimensions.

But what happens when, as in Figure 10-5, our input criteria refer to some facts (for

instance, that the sales amount is greater than a given value) as well as to dimensions?

We can compare such a case to the use of a group by. If the condition on the fact table

applies to an aggregate (typically a sum or average), we are in the same situation as with

a having clause: we cannot provide a result before processing all the data, and the

condition on the fact table is nothing more than an additional step over what we might

call regular dimensional model processing. The situation looks different, but it isn’t.

If, on the contrary, the condition applies to individual rows from the fact table, we should

consider whether it would be more efficient to discard unwanted facts rows earlier in the

process, in the same way that it is advisable to filter out unwanted rows in the where

F I G U R E  1 0 - 5 . A maverick usage of the dimension model
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clause of a query, before the group by, rather than in the having clause that is evaluated

after the group by. In such a case, we should carefully study how to proceed. Unless the

fact column that is subjected to a condition is indexed—a condition that is both unlikely

and unadvisable—our entry point will still be through one of the dimensions. The choice

of the proper dimension to use depends on several factors; selectivity is one of them, but

not necessarily the most important one. Remember the clustering factor of indexes, and

how much an index that corresponds to the actual, physical order of rows in the table

outperforms other indexes (whether the correspondence is just a happy accident of the

data input process, or whether the index has been defined as constraining the storage of

rows in the table). The same phenomenon happens between the fact table and the

dimensions. The order of fact rows may happen to match a particular date, simply

because new fact rows are appended on a daily basis, and therefore those rows have a

strong affinity to the date dimension. Or the order of rows may be strongly correlated to

the “location dimension” because data is provided by numerous sites and processed and

loaded on a site-by-site basis. The star schema may look symmetrical, just as the

relational model knows nothing of order. But implementation hazards and operational

processes often result in a break-up of the star schema’s theoretical symmetry. It’s

important to be able to take advantage of this hidden dissymmetry whenever possible.

If there is a particular affinity between one of the dimensions to which a search filter

must be applied and to the fact table, the best way to proceed is probably to join that

dimension to the fact table, especially if the criterion that is applied to the fact table is

reasonably selective. Note that in this particular case we must join to the actual fact table,

obviously through the foreign key index, but not limit our access to the index. This will

allow us to directly get a superset of our target collection of rows from the fact table at a

minimum cost in terms of visited pages, and check the condition that directly applies to

fact rows early. The other criteria will come later.

The way data is loaded to a star schema can favor one dimension

over all others.

A (Strong) Word of Caution

Dimensional modeling is a technique, not a theory, and it is popular because it is well-

suited to the less-than-perfect (from an SQL* perspective) tools that are commonly used

in decision support systems, and because the carpet-indexing (as in “carpet-bombing”) it

requires is tolerable in a read-only system—read-only after the loading phase, that is. The

* Some will say—with some reason—that SQL itself is not above reproach.
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problem is that when you have 10 to 15 dimensions, then you have 10 to 15 foreign keys

in your fact table, and you must index all those keys if you want queries to perform

tolerably well. You have seen that dimensions are mostly static and not enormous, so

indexing all columns in all dimensions is no real issue. But indexing all columns may be

much more worrisome with a fact table, which can grow very big: just imagine a large

chain of grocery stores recording one fact each time they sell one article. New rows have

to be inserted into the fact table very regularly. You saw in Chapter 3 that indexes are

extremely costly when inserting; 15 indexes, then, will very significantly slow down

loading. A common technique to load faster is to drop indexes and then recreate them (if

possible in parallel) once the data is loaded. That technique may work for a while, but re-

indexing will inexorably take more time as the base table grows. Indexing requires

sorting, and (as you might remember from the beginning of this chapter) sorts belong to

the category of operations that significantly suffer when the number of rows increases.

Sooner or later, you will discover that the re-creation of indexes takes way too much

time, and you may well also be told that you have users who live far, far away who

would like to access the data warehouse in the middle of the night.

Users that want the database to be accessible during a part of the night mean a smaller

maintenance window for loading the decision support system. Meanwhile, because

recreating indexes takes longer as data accumulates into the decision support database,

loading times have a tendency to increase. Instead of loading once every night, wouldn’t

it be possible to have a continuous flow of data from operational systems to the data

warehouse? But then, denormalization can become an issue, because the closer we get to

a continuous flow, the closer we are to a transactional model, with all the integrity issues

that only proper normalization can protect against. Compromising on normalization is

acceptable in a carefully controlled environment, an ivory tower. When the headquarters

are too close to the battlefield, they are submitted to the same rules.
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Stratagems
Trying to Salvage Response Times

But my doctrines and I begin to part company.

—Thomas Hardy (1840–1928)

Jude The Obscure, IV, ii
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Ihope to have convinced you in Chapters 1 and 2 about the extent to which

performance depends, first and foremost, on a sound database design, and second, on a

clear strategy and well-designed programs. The sad truth is that when you are beginning

to be acknowledged as a skilled SQL tuner, people will not seek your advice until they

discover that they have performance problems. This happens—at best—during the final

stages of acceptance testing, after man-months of haphazard development. You are then

expected to work wonders on queries when table designs, program architectures, or

sometimes even the requirements themselves may all be grossly inappropriate. Some of

the most sensitive areas are related to interfacing legacy systems—in other words loading

the database or downloading data to files.

If there is one chapter in this book that should leave a small imprint on your memory, it

should probably be this one. If you really want to remember something, I hope it will not

be the recipes (those tricky and sometimes entertaining SQL queries of death) in this

chapter, but the reasoning behind each recipe, which I have tried my best to make as

explicit as possible. Nothing is better than getting things right from the very start; but

there is some virtue in trying to get the best out of a rotten situation.

You will also find some possible answers to common problems that, sometimes

surprisingly, seem to induce developers to resort to contorted procedures. These

procedures are not only far less efficient, but also commonly far more obscure and harder

to maintain than SQL statements, even complex ones.

I shall end this chapter with a number of remarks about a commonly used stratagem

indirectly linked to SQL proper, that of optimizer directives.

Welcome to the heart of darkness.

Turning Data Around
The most common difficulty that you may encounter when trying to solve SQL problems

is when you have to program against what might charitably be called an

“unconventional” design. Writing a query that performs well is often the most visible

challenge. However, I must underline that the complex SQL queries that are forced upon

developers by a poor design only mirror the complication of programs (including triggers

and stored procedures) that the same poor design requires in order to perform basic

operations such as integrity checking. By contrast, a sound design allows you to declare

constraints and let the DBMS check them for you, removing much of the risk associated

with complexity. After all, ensuring data integrity is exactly what a DBMS, a rather fine

piece of software, has been engineered to achieve. Unfortunately, haphazard designs will

force you to spend days coding application controls. As a bonus, you get very high odds

of letting software bugs creep in. Unlike popular software systems that are in daily use by
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millions of users, where bugs are rapidly exposed and fixed, your home-grown software

can hide bugs for weeks or months before they are discovered.

Rows That Should Have Been Columns

Rows that should have been originally specified as columns are most often encountered

with that appalling “design” having the magical four attributes—entity_id, attribute_name,

attribute_type, attribute_value—that are supposed to solve all schema evolution issues.

Frighteningly, many supporters of this model seem to genuinely believe that it represents

the ultimate sophistication in terms of normalization. You will find it under various, usually

flattering, names—such as meta-design, or fact dimension with data warehouse designers.

Proponents of the magical four attributes praise the “flexibility” of this model. There is an

obvious confusion of flexibility with flabbiness. Being able to add “attributes” on the fly is

not flexibility; those attributes need to be retrieved and processed meaningfully. The

dubious benefit of inserting rows instead of painstakingly designing the database in the first

place is absolutely negligible compared to the major coding effort that is required, first, to

process those new rows, and second, to insure some minimal degree of integrity and data

consistency. The proper way to deal with varying numbers of attributes is to define subtypes,

as explained in Chapter 1. Subtypes let you define clean referential integrity constraints—

checks that you will not need to code and maintain. A database should not be a mere

repository where data is dumped without any thought to its semantic integrity.

The predominant characteristic of queries against meta-design tables, as tables designed

around our magical four attributes are sometimes called, is that you find the same table

invoked a very high number of times in the from clause. Typically, queries will resemble

something like:

select emp_last_name.entity_id        employee_id,
       emp_last_name.attribute_value  last_name,
       emp_first_name.attribute_value first_name,
       emp_job.attribute_value        job_description,
       emp_dept.attribute_value       department,
       emp_sal.attribute_value        salary
from employee_attributes emp_last_name,
     employee_attributes emp_first_name,
     employee_attributes emp_job,
     employee_attributes emp_dept,
     employee_attributes emp_sal
where emp_last_name.entity_id = emp_first_name.entity_id
  and emp_last_name.entity_id = emp_job.entity_id
  and emp_last_name.entity_id = emp_dept.entity_id
  and emp_last_name.entity_id = emp_sal.entity_id
  and emp_last_name.attribute_name = 'LASTNAME'
  and emp_first_name.attribute_name = 'FIRSTNAME'
  and emp_job.attribute_name = 'JOB'
  and emp_dept.attribute_name = 'DEPARTMENT'
  and emp_sal.attribute_sal = 'SALARY'
order by emp_last_name.attribute_value
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Note how the same table is referenced five times in the from clause. The number of self-

joins is usually much higher than in this simple example. Furthermore, such queries are

frequently spiced up with outer joins as well.

A query with a high number of self-joins performs extremely badly on large volumes; it is

clear that the only reason for the numerous conditions in the where clause is to patch all

the various “attributes” together. Had the table been defined as the more logical

employees(employee_id, last_name, first_name, job_description, department, salary), our

query would have been as simple as:

select *
from employees
order by last_name

And the best course for executing this query is obviously a plain table scan. The multiple

joins and associated index accesses of the query against employee_attributes are

performance killers.

We can never succeed in making a query run as fast against a rotten design as it will run

against a clean design. Any clever rewriting of a SQL query against badly designed tables

will be nothing more than a wooden leg, returning only some degree of agility to a

crippled query. However, we can often obtain spectacular results in comparison to the

multiple joins approach by trying to achieve a single pass on the attribute table.

We basically want one row with several attributes (reflecting what the table design

should have been in the first place) instead of multiple rows, each with only one attribute

of interest per row. Consolidating a multi-row result into a single row is a feat we know

how to perform: aggregate functions do precisely this. The idea is therefore to proceed in

two steps, as shown in Figure 11-1:

1. Complete each row that contains only one value of interest, with as many dummy

values as required to obtain the total number of attributes that we ultimately want.

2. Aggregate the different rows so as to keep only the single value of interest from each

(the single value in each column). A function such as max( ), that has the advantage of

being applicable to most data types, is perfect for this kind of operation.

To be certain that max( ) will only retain meaningful values, we must use dummy values

that will necessarily be smaller than any legitimate value we may have in a given

column. It is probably better to use an explicit value rather than null as a dummy value,

even though max( ) ignores null values according to the standard.

If we apply the “recipe” illustrated in Figure 11-1 to our previous example, we can get rid

of the numerous joins by writing:

select employee_id,
       max(last_name)        last_name,
       max(first_name)       first_name,
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       max(job_description)  job_desription,
       max(department)       department,
       max(salary)           salary
from  –- select all the rows of interest, returning
      -- as many columns as we have rows, one column
      -- of interest per row and values smaller
      -- than any value of interest everywhere else
     (select entity_id                   employee_id,
             case attribute_name
               when 'LASTNAME' then attribute_value
               else ''
             end                         last_name,
             case attribute_name
               when 'FIRSTNAME' then attribute_value
               else ''
             end                         first_name,
             case attribute_name
               when 'JOB' then attribute_value
               else ''
             end                         job_description,
             case attribute_name
               when 'DEPARTMENT' then attribute_value
               else -1
             end                         department,
             case attribute_name
               when 'SALARY' then attribute_value
               else -1
             end                         salary
      from employee_attributes
      where attribute_name in ('LASTNAME',
                               'FIRSTNAME',
                               'JOB',
                               'DEPARTMENT',
                               'SALARY')) as inner
group by inner.employee_id
order by 2

F I G U R E  1 1 - 1 . Transmogrification of several rows into one row
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The inner query is not strictly required—we could have used a series of max(case when ...

end)—but the query as written makes the two steps appear more clearly.

An aggregate is not, as you might expect, the best option in terms of performance. But in

the kingdom of the blind, the one-eyed man is king, and this type of query just shown

usually has no trouble outperforming one having a monstrous number of self-joins. A

word of caution, though: in order to accommodate any unexpectedly lengthy attribute,

the attribute_value column is usually a fairly large variable-length string. As a result, the

aggregation process may require a significant amount of memory, and in some extreme

cases you may run into difficulties if the number of attributes exceeds a few dozen.

Multiple self-joins can often be avoided by retrieving all rows in

a single pass, spreading the values across separate columns, and

using an aggregate function to collapse the many rows into one.

Columns That Should Have Been Rows

In contrast to the previous design in which rows have been defined for each attribute,

another example of poor design occurs where columns are created instead of individual

rows. The classic design mistake made by many beginners is to predefine a fixed number

of columns for a number of variables, with some of the columns set to null when values

are missing. A typical example is illustrated in Figure 11-2, with a very poorly designed

movie database (compare this design to the correct design of Figure 8-3 in Chapter 8).

Instead of using a movie_credits table as we did in Chapter 8 to link the movies table to the

people table and record the nature of each individual’s involvement, the poor design shown

in Figure 11-2 assumes that we will never need to record more than a fixed number of lead

actors and one director. The first assumption is blatantly wrong and so is the second one

since many sketch comedies have had multiple directors. As a representation of reality, this

model is plainly flawed, which should already be sufficient reason to discard it. To make

F I G U R E  1 1 - 2 . A badly designed movie database
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matters worse, a poor design, in which data is stored as columns and yet reporting output

obviously requires data to be presented as rows, often results in rather confusing queries.

Unfortunately, writing queries against poor database designs seems to be as unavoidable as

taxes and death in the world of SQL development.

When you want different columns to be displayed as rows, you need a pivot table. Pivot

tables are used to pivot, or turn sideways, tables where we want to see columns as rows. A

pivot table is, in the context of SQL databases, a utility table that contains only one

column, filled with incrementing values from 1 to whatever is needed. It can be a true

table or a view—or even a query embedded in the from clause of a query. Using such a

utility table is a favorite old trick of experienced SQL developers, and the next few

subsections show how to create and use them.

Creating a pivot table

The constructs you have seen in Chapter 7 for walking trees are usually quite convenient

for generating pivot table values; for instance, we can use a recursive with action with

those database systems that support it. Here is a DB2 example to generate numbers from

1 to 50:

with pivot(row_num)
   -- Generate 50 values
   -- 1 to 50, one value per row
   as (select 1 row_num
      from sysibm.sysdummy1
      union all
      select row_num + 1
      from pivot
      where row_num < 50)
select row_num
from pivot;

Similar tricks are of course possible with Oracle’s connect by; for instance:*

select level
from dual
connect by level <= 50

Using one of these constructs inside the from clause of a query can make that query

particularly illegible, and it is therefore often advisable to use a regular table as pivot. But

a recursive query can be useful to fill the pivot table (an alternate solution to fill a pivot

table is to use Cartesian joins between existing tables). Typically, a pivot table would hold

something like 1,000 rows.

* Beware that such a construct may not work with some older versions of Oracle.
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Multiplying rows with a pivot table

Now that we have a pivot table, what can we do with it? One way to look at a pivot table

is to view it as a row-multiplying device. By combining a pivot to a table we want to see

pivoted, we repeat each of the rows of the table to be transformed as many times as we

wish. Specifying the number of times we want to see one row repeated is simply a matter

of adding to the join a limiting condition on the pivot table, for instance:

where pivot.row_num <= multiplying value

We can thus multiply the three rows in a test employees table in a very simple way. First,

here are the three rows:

SQL> select name, job
  2 from employees;

NAME       JOB
---------- ------------------------------
Tom        Manager
Dick       Software engineer
Harry      Software engineer

And now, here is the multiplication, by three, of those rows:

SQL> select e.name, e.job, p.row_num
  2 from employees e,
  3      pivot     p
  4 where p.row_num <= 3;

NAME       JOB                               ROW_NUM
---------- ------------------------------ ----------
Tom        Manager                                 1
Dick       Software engineer                       1
Harry      Software engineer                       1
Tom        Manager                                 2
Dick       Software engineer                       2
Harry      Software engineer                       2
Tom        Manager                                 3
Dick       Software engineer                       3
Harry      Software engineer                       3

9 rows selected.

It’s best to index the only column in the pivot table so as not to fully scan this table when

you need to use very few rows from it (as in the preceding example).

Using pivot table values

Besides the mere multiplying effect, the Cartesian join also allows us to associate a unique

number in the range 1 to multiplying value for every copy of a row of the table we want to

pivot. This value is simply the row_num column contributed by the pivot table, and it will

enable us in turn to pick from each copy of a row only partial data. The full process of
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multiplication of the source rows and selection is illustrated, with a single row, in Figure

11-3. If we want the initial row to finally appear as a single column (which by the way

implicitly requires the data types of col1 ... coln to be consistent), we must pick just one

column into each of the rows generated by the Cartesian product. By checking the number

coming from the pivot table, we can specify with a case for each resulting row which

column is to be displayed to the exclusion of all the others. For instance, we can decide to

display col1 if the value coming from the pivot table is 1, col2 if it is 2, and so on.

Needless to say, multiplying rows and discarding most of the columns we are dealing

with is not the most efficient way of processing data; keep in mind that we are rowing

upstream. An ideal database design would avoid the need for such multiplication and

discarding.

Interestingly, and still in the hypothetical situation of a poor (to put it mildly) database

design, a pivot table can in some circumstances bring direct performance benefits. Let’s

suppose that, in our badly designed movie database, we want to count how many

different actors are recorded (note that none of the actor_... columns are indexed, and

that we therefore have to fetch the values from the table). One way to write this query is

to use a union:

select count(*)
from (select actor_1
      from movies
      union
      select actor_2
      from movies
      union
      select actor_3
      from movies) as m

F I G U R E  1 1 - 3 . Pivoting a row
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But we can also pivot the table to obtain something that looks more like a select on the

movie_credits table of the properly designed database:

select count(distinct actor_id)
from –-  Use a 3-row pivot to multiply
     --  the number of rows by 3
     --  and return actor_1 the first row in each
     --  set of 3, actor_2 for the second one
     --  and actor_3 for the third one
     (select case pv.row_num
                when 1 then actor_1
                when 2 then actor_2
                else actor_3
             end actor_id
      from movies as m,
           pivot as pv
      where pv.row_num <= 3) as m

The second version runs about twice as fast as the first one—significantly faster.

The pivot and unpivot operators

As a possibly sad acknowledgment of the generally poor quality of database designs, SQL

Server 2005 has introduced two operators called pivot and unpivot to perform the

toppling of rows into columns and vice-versa, respectively. The previous employee_

attributes example can be written as follows using the pivot operator:

select entity_id as employee_id,
       [lastname],
       [firstname],
       [job],
       [department],
       [salary]
from employee_attributes as employees
     pivot (max(attribute_value)
            for attribute_name in ([lastname],
                                   [firstname],
                                   [job],
                                   [department],
                                   [salary])
                 as pivoted_employees
order by 2

The specific values in the attribute_name column that we want to appear as columns are

listed in the for ... in clause, using a particular syntax that transforms the character data

into column identifiers. There is an implicit group by applied to all the columns from

employee_attributes that are not referenced in the pivot clause; we must be careful if we

have other columns (for instance, an attribute_type column) than entity_id, as they may

require an additional aggregation layer.

The unpivot operator performs the reverse operation, and allows us to see the link between

movie and actor as a more logical collection of (movie_id, actor_id) pairs by writing:
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select movie_id, actor_type, actor_id
from movies
     unpivot (actor_id for actor_type in ([actor_1],
                                          [actor_2],
                                          [actor_3])) as movie_actors

Note that this query doesn’t exactly produce the result we want, since it introduces the

name of the original column as a virtual actor_type column. There is no need to qualify

actors as actor_1, actor_2, or actor_3, and once again the query may need to be wrapped

into another query that only returns movie_id and actor_id.

The use of a pivot table, or of the pivot and unpivot operators, is a very interesting

technique that can help extricate us from more than one quagmire. The support for

pivoting operators by major database systems is not, of course, to be interpreted as an

endorsement of bad design, but as an example of realpolitik.

Pivot tables and operators can be a useful technique in their own

right, but they should never be used as a means of glossing over

the inadequacies of a bad design.

Single Columns That Should Have Been Something Else

Some designers of our movie database may well have been sensitive to the limitation on

the number of actors we may associate with one movie. Trying to solve design issues with

a creative use of irrelevant techniques, someone may have come up with a “bright idea”:

what about storing the actor identifiers as a comma-separated string in one wide actors

column? For instance:

first actor id, second actor id, ...

And so much for the first normal form.... The big design mistake here is to store several

pieces of data that we need to handle one by one into one column. There would be no

issue if a complex string—for instance a lengthy XML message—were considered as an

opaque object by the DBMS and handled as if it were an atomic item. But that’s not the

case here. Here we have several values in one column, and we do want to treat and

manipulate each value individually. We are in trouble.

There are only two workable solutions with a creative design of this sort:

• Scrapping it and rewriting everything. This is, of course, by far the best solution.

• When delays, costs, and politics require a fast solution, the only way out may be to

apply a creative SQL solution; once again, let me state that “solution” is probably not

the best choice of words in this case, “fix” would be a better description.
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I’ll also point out that a more elaborate version of the same mistake could use an “XML

type” column; I am going to use simple character-string manipulation functions in my

example, but they could as well be XML-extracting functions.

N O T E
Be warned: “creative SQL” is often a euphemism for ugly SQL!

First normal form on the fly

Our problem is to extract various individual components from a string of characters and

return them one by one on separate rows. This is easier with some database systems (for

instance, Oracle has a very rich set of string functions that noticeably eases the work)

than with others. Conventions such as systematically starting or ending the string with a

comma may further help us. We are not wimps, but real SQL developers, and we are

therefore going to take the north face route and assume the worst:

1. First, let’s assume that our lists of identifiers are in the following form:

id1,id2,id3, ..., idn

2. Second, we shall also assume that the only sets of functions at our disposal are those

common to the major database systems. We shall use Transact-SQL for our example

and only use built-in functions. As you will see, a well-designed user function might

ease both the writing and the performance of the resulting query.

Let’s start with a (very small) movies table in which a list of actor identifiers is (wrongly)

stored as an attribute of the movie:

1> select movie_id, actors
2> from movies
3> go
 movie_id              actors
 --------------------- ----------------------------------------
                     1 123,456,78,96
                     2 23,67,97
                     3 67,456

(3 rows affected)

The first step is to use as many rows from our pivot table as we may have characters in

the actors string—arbitrarily set to a maximum length of 50 characters. We are going to

multiply the number of rows in the movies table by this number, 50. We would naturally

be rather reluctant to do something similar on millions of rows (as an aside, a function

allowing us to return the position of the nth separator or the nth item in the string would

make it necessary to multiply only by the maximum number of identifiers we can

encounter, instead of by the maximum string length).
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Our next move is to use the substring( ) function to successively get subsets (that can be

null) of actors, starting at the first character, then moving to the second, and so forth, up

to the last character (at most, the 50th character). We just have to use the row_num value

from the pivot table to find the starting character of each substring. If we take for instance

the string from the actors column that is associated to the movie identified by the value 1

for movie_id, we shall get something like:

123,456,78,96  associated to the row_num value 1
23,456,78,96   associated to the row_num value 2
3,456,78,96    associated to the row_num value 3
,456,78,96      ....
456,78,96
56,78,96
6,78,96
,78,96
78,96
....

We’ll compute these subsets in a column that we’ll call substring1. Having these

successive substrings, we can now check the position of the first comma in them. Our

next move is to return as a column called substring2 the content of substring1 shifted by

one position. We also locate the position of the first comma in substring2. These

operations are illustrated in Figure 11-4. Among the various resulting rows, the only ones

to be of interest are those marking the beginning of a new identifier in the string: the first

row in the series that is associated with the row_num value of 1, and all the rows for which

we find a comma in first position of substring1. For all these rows, the position of the

comma in substring2 tells us the length of the identifier that we are trying to isolate.

F I G U R E  1 1 - 4 . Splitting-up a comma separated list
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Translated into SQL code, here is what we get:

1> select row_num,
2>        movie_id,
3>        actors,
4>        first_sep,
5>        next_sep
6> from (select row_num,
7>              movie_id,
8>              actors,
9>              charindex(',', substring(actors, row_num,
10>                                      char_length(actors))) first_sep,
11>             charindex(',', substring(actors, row_num + 1,
12>                                  char_length(actors))) + 1 next_sep
13>      from movies,
14>           pivot
15>     where row_num <= 50) as q
16> where row_num = 1
17>    or first_sep = 1
18> go
 row_num     movie_id       actors             first_sep   next_sep
 ----------- -------------- ------------------ ----------- -----------
           1              1 123,456,78,96                4           4
           4              1 123,456,78,96                1           5
           8              1 123,456,78,96                1           4
          11              1 123,456,78,96                1           1
           1              2 23,67,97                     3           3
           3              2 23,67,97                     1           4
           6              2 23,67,97                     1           1
           1              3 67,456                       3           3
           3              3 67,456                       1           1

(9 rows affected)

If we accept that we must take some care to remove commas, and the particular cases of

both the first and last identifiers in a list, getting the various identifiers is then reasonably

straightforward, even if the resulting code is not for the faint-hearted:

1> select movie_id,
2>        actors,
3>        substring(actors,
4>                  case row_num
5>                    when 1 then 1
6>                    else row_num + 1
7>                  end,
8>                  case next_sep
9>                    when 1 then char_length(actors)
10>                   else
11>                     case row_num
12>                       when 1 then next_sep - 1
13>                       else next_sep - 2
14>                     end
15>                 end) as id
16> from (select row_num,
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17>              movie_id,
18>              actors,
19>              first_sep,
20>              next_sep
21>       from (select row_num,
22>                    movie_id,
23>                    actors,
24>                    charindex(',', substring(actors, row_num,
25>                              char_length(actors))) first_sep,
26>                    charindex(',', substring(actors, row_num + 1,
27>                              char_length(actors))) + 1 next_sep
28>             from movies,
29>                  pivot
30>             where row_num <= 50) as q
31>       where row_num = 1
32>          or first_sep = 1) as q2
33> go
 movie_id         actors                         id
 ---------------- ------------------------------ -----------------
                1 123,456,78,96                  123
                1 123,456,78,96                  456
                1 123,456,78,96                  78
                1 123,456,78,96                  96
                2 23,67,97                       23
                2 23,67,97                       67
                2 23,67,97                       97
                3 67,456                         67
                3 67,456                         456

(9 rows affected)

We could have made the code slightly simpler by prepending and appending a comma to

the actors column. I leave doing that as an exercise for the undaunted reader. Note that

as the left alignment shows, the resulting id column is a string and should be explicitly

converted to numeric before joining to the table that stores the actors’ names.

The preceding case, besides being an interesting example of solving a SQL problem by

successively wrapping queries, also comes as a healthy warning of what awaits us on the

SQL side of things when tables are poorly designed.

Lifting the veil on the Chapter 7 mystery path explosion

You may remember that in Chapter 7 I described the materialized path model for tree

representations. In that chapter I noted that it would be extremely convenient if we

could “explode” a materialized path into the different materialized paths of all its

ancestors. The advantage of this method is that when we want to walk a hierarchy from

the bottom up, we can make efficient use of the index that should hopefully exist on the

materialized path. If we don’t “explode” the materialized path, the only way we have to

find the ancestors of a given row is to specify a condition such as:

and offspring.materialized_path
    like concat(ancestor.materialized_path, '%')
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Sadly, this is a construct that cannot use the index (for reasons that are quite similar to

those in the credit card prefix problem of Chapter 8).

How can we “explode” the materialized path? The time has come to explain how we can

pull that rabbit out of the hat. Since our node will have, in the general case, several

ancestors, the very first thing we have to do is to multiply the rows by the number of

preceding generations. In this way we’ll be able to extract from the materialized path of

our initial row (for example the row that represents the Hussar regiment under the

command of Colonel de Marbot) the paths of the various ancestors. As always, the

solution for multiplying rows is to use a pivot table. If we do it this time with MySQL,

there is a function called substring_index( ) that very conveniently returns the substring

of its first argument from the beginning up to the third argument occurrence of the

second argument (hopefully, the example is easier to understand). To know how many

rows we need from the pivot table, we just compute how many elements we have in the

path in exactly the same way that we computed the depth in Chapter 7, namely by

comparing the length of the path to the length of the same when separators have been

stripped off. Here is the query, and the results:

mysql>  select mp.materialized_path,
    ->         substring_index( mp.materialized_path, '.', p.row_num )
    ->                                     as ancestor_path
    -> from materialized_path_model as mp,
    ->      pivot as p
    -> where mp.commander = 'Colonel de Marbot'
    ->   and p.row_num <= 1 + length( mp.materialized_path )
    ->                      - length(replace(mp.materialized_path, '.', ''));
+-------------------+---------------+
| materialized_path | ancestor_path |
+-------------------+---------------+
| F.1.5.1.1         | F             |
| F.1.5.1.1         | F.1           |
| F.1.5.1.1         | F.1.5         |
| F.1.5.1.1         | F.1.5.1       |
| F.1.5.1.1         | F.1.5.1.1     |
+-------------------+---------------+
5 rows in set (0.00 sec)

Querying with a Variable in List
There is another, and rather important, use of pivot tables that I must now mention. In

previous chapters I have underlined the importance of binding variables, in other words of

passing parameters to SQL queries. Variable binding allows the DBMS kernel to skip the

parsing phase (in other words, the compilation of the statement) after it has done it once.

Keep in mind that parsing includes steps as potentially costly as the search for the best

execution path. Even when SQL statements are dynamically constructed, it is quite

possible, as you have seen in Chapter 8, to pass variables to them. There is, however, one
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difficult case: when the end user can make multiple choices out of a combo box and pass

a variable number of parameters for use in an in list. The selection of multiple values

raises several issues:

• Dynamically binding a variable number of parameters may not be possible with all

languages (often you must bind all variables at once, not one by one) and will, in any

case, be rather difficult to code.

• If the number of parameters is different for almost every call, two statements that only

differ by the number of bind variables will be considered to be different statements by

the DBMS, and we shall lose the benefit of variable binding.

The ability provided by pivot tables to split a string allows us to pass a list of values as a

single string to the statement, irrespective of the actual number of values. This is what I

am going to demonstrate with Oracle in this section.

The following example shows how most developers would approach the problem of

passing a list of values to an in list when that list of values is contained within a single

string. In our case the string is v_list, and most developers would concatenate several

strings together, including v_list, to produce a complete select statement:

v_statement := 'select count(order_id)'
                   || ' from order_detail'
                   || ' where article_id in ('
                   || v_list || ')';
execute immediate v_statement into n_count;

This example looks dynamic, but for the DBMS it’s in fact all hardcoded. Two successive

executions will each be different statements, both of which will have to be parsed before

execution. Can we pass v_list as a parameter to the statement, instead of concatenating it

into the statement? We can, by applying exactly the same techniques to the comma-

separated value stored in variable v_list as we have applied to the comma-separated

value stored in column actors in the example of on-the-fly normalization. A pivot table

allows us to write the following somewhat wilder SQL statement:

select count(od.order_id)
into n_count
from order_detail od,
     (  -- Return at many rows as we have items in the list
        -- and use character functions to return the nth item
        -- on the nth row
      select to_number(substr(v_list,
                              case row_num
                                when 1 then 1
                                else 1 + instr(v_list, ',', 1, row_num - 1)
                               end,
                               case instr(v_list, ',', 1, row_num)
                                 when 0 then length(v_list)
                                 else
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                                   case row_num
                                     when 1  then instr(v_list, ',',
                                                        1, row_num) - 1
                                     else instr(v_list, ',', 1, row_num) - 1
                                          - instr(v_list, ',',
                                                  1, row_num - 1)
                                   end
                                 end)) article_id
      from pivot
      where instr(v_list||',', ',', 1, row_num) > 0
        and row_num <= 250) x
where od.article_id = x.article_id;

You may need, if you are really motivated, to study this query a bit to figure out how it

all works. The mechanism is all based on repeated use of the Oracle function instr( ). Let

me just say that this function instr(haystack, needle, from_pos, count) returns the countth

occurrence of needle in haystack starting at position from_pos (0 is returned when nothing

is found), but the logic is exactly the same as with the previous examples.

I have run the pivot and hardcoded versions of the query successively 1, 10, 100, 1,000,

10,000, and 100,000 times. Each time, I randomly generated a list of from 1 to 250 v_list

values. The results are shown in Figure 11-5, and they are telling: the “pivoted” list is

30% faster as soon as the query is repeatedly executed.

Remember that the execution of a hardcoded query requires parsing and then execution,

while a query that takes parameters (bind variables) can be re-executed subsequently for

only a marginal cost of the first execution. Even if this later query is noticeably more

complicated, as long as the execution is faster than execution plus parsing for the

hardcoded query, the later query wins hands-down in terms of performance.

F I G U R E  1 1 - 5 . Performance of a hardcoded list versus a list transformed with a pivot table
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There are actually two other benefits that don’t show up in Figure 11-5:

• Parsing is a very CPU-intensive operation. If CPU happens to be the bottleneck, hard-

coded queries can be extremely detrimental to other queries.

• SQL statements are cached whether they contain parameters or whether they are totally

hardcoded, because you can imagine having hardcoded statements that are repeatedly

executed by different users, and it makes sense for the SQL engine to anticipate such a

situation. To take, once again, the movie database example, even if the names of actors

are hardcoded, a query referring to a very popular actor or actress could be executed a

large number of times.* The SQL engine will therefore cache hardcoded statements like

the others. Unfortunately, a repeatedly executed hardcoded statement is the exception

rather than the rule. As a result, a succession of dynamically built hardcoded statements

that may each be executed only once or a very few times will all accumulate in the cache

before being overwritten as a result of the normal cache management activity. This cache

management will require more work and is therefore an additional price to pay.

Aggregating by Range (Bands)
Some people have trouble writing SQL queries that return aggregates for bands. Such

queries are actually quite easy to write using the case construct. By way of example, look at

the problem of reporting on the distribution of tables by their total row counts. For instance,

how many tables contain fewer than 100 rows, how many contain 100 to 10,000 rows, how

many 10,000 to 1,000,000 rows, and how many tables store more than 1,000,000 rows?

Information about tables is usually accessible through data dictionary views: for instance,

INFORMATION_SCHEMA.TABLES, pg_statistic, and pg_tables, dba_tables, syscat.tables,

sysobjects and systabstats, and so on. In my explanation here, I’ll assume the general

case of a view named table_info, containing, among other things, the columns table_name

and row_count. Using this table, a simple use of case and the suitable group by can give us

the distribution by row_count that we are after:

select case
         when row_count < 100
              then 'Under 100 rows'
          when row_count >= 100 and row_count < 10000
               then '100 to 10000'
          when row_count >= 10000 and row_count < 1000000
               then '10000 to 1000000'
          else
               'Over 1000000 rows'
        end as range,
        count(*) as table_count
from table_info

* Actually, the best optimization tactic in this particular case would be to cache the result of the query
rather than the query.
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where row_count is not null
group by case
           when row_count < 100
                then 'Under 100 rows'
           when row_count >= 100 and row_count < 10000
                then '100 to 10000'
           when row_count >= 10000 and row_count < 1000000
                then '10000 to 1000000'
           else
                'Over 1000000 rows'
         end

There is only one snag here: group by performs a sort before aggregating data. Since we

are associating a label with each of our aggregates, the result is, by default, alphabetically

sorted on that label:

RANGE             TABLE_COUNT
----------------- ------------
100 to 10000                18
10000 to 1000000            15
Over 1000000 rows            6
Under 100 rows              24

The ordering that would be logical to a human eye in such a case is to see Under 100 rows

appear first, and then each band by increasing number of rows, with Over 1,000,000 rows

coming last. Rather than trying to be creative with labels, the stratagem to solve this

problem consists of two steps:

1. Performing the group by on two, instead of one, columns, associating with each label a

dummy column, the only purpose of which is to serve as a sort key

2. Wrapping up the query as a query within the from clause, so as to mask the sort key

thus created and ensure that only the data of interest is returned

Here is the query that results from applying the preceding two steps:

select row_range, table_count
from ( -- Build a sort key to have bands suitably ordered
       -- and hide it inside a subquery
       select case
               when row_count < 100
                 then 1
               when row_count >= 100 and row_count < 10000
                 then 2
               when row_count >= 10000 and row_count < 1000000
                 then 3
               else
                 4
             end as sortkey,
             case
               when row_count < 100
                 then 'Under 100 rows'
               when row_count >= 100 and row_count < 10000
                 then '100 to 10000'
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               when row_count >= 10000 and row_count < 1000000
                 then '10000 to 1000000'
               else
                 'Over 1000000 rows'
             end  as row_range,
             count(*) as table_count
      from table_info
      where row_count is not null
      group by case
                 when row_count < 100
                   then 'Under 100 rows'
                 when row_count >= 100 and row_count < 10000
                   then '100 to 10000'
                 when row_count >= 10000 and row_count < 1000000
                   then '10000 to 1000000'
                 else
                   'Over 1000000 rows'
               end,
               case
                 when row_count < 100
                   then 1
                 when row_count >= 100 and row_count < 10000
                   then 2
                 when row_count >= 10000 and row_count < 1000000
                   then 3
                 else
                   4
               end) dummy
order by sortkey;

And following are the results from executing that query:

ROW_RANGE         TABLE_COUNT
----------------- -----------
Under 100 rows             24
100 to 10000               18
10000 to 1000000           15
Over 1000000 rows           6

Aggregating by range (bands) requires building an artificial sort

key to display results in desired order.

Superseding a General Case
The technique of hiding a sort key within a query in the from clause, which I used in the

previous section to display bands, can also be helpful in other situations. A particularly

important case is when a table contains the definition of a general rule that happens to

be superseded from time to time by a particular case defined in another table. I’ll

illustrate by example.
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I mentioned in Chapter 1 that the handling of various addresses is a difficult issue. Let’s

take the case of an online retailer, one that knows at most two addresses for each

customer: a billing address and a shipping address. In most cases, the two addresses are

the same. The retailer has decided to store the mandatory billing address in the customers

table and to associate the customer_id identifier with the various components of the

address (line_1, line_2, city, state, postal_code, country) in a different shipping_

addresses table for those few customers for whom the two addresses differ.

The wrong way to get the shipping address when you know the customer identifier is to

execute two queries:

1. Look for a row in shipping_addresses.

2. If nothing is found, then query customers.

An alternate way to approach this problem is to apply an outer join on shipping_addresses

and customers. You will then get two addresses, one of which will in most cases be a suite

of null values. Either you check programmatically if you indeed have a valid shipping

address, which is a bad solution, or you might imagine using the coalesce( ) function that

returns its first non-null argument:

select ... coalesce(shipping_address.line_1, customers.line_1), ...

Such a use of coalesce( ) would be a very dangerous idea, because it implicitly assumes

that all addresses have exactly the same number of non-null components. If you suppose

that you do indeed have a different shipping address, but that its line_2 component is

null while the line_2 component of the billing address is not, you may end up with a

resulting invalid address that borrows components from both the shipping and billing

addresses. A correct approach is to use case to check for a mandatory component from

the address—which admittedly can result in a somewhat difficult to read query. An even

better solution is probably to use the “hidden sort key” technique, combined with a limit

on the number of rows returned (select top 1 ..., limit 1, where rownum = 1 or similar,

depending on the DBMS) and write the query as follows:

select *
from (select 1 as sortkey,
             line_1,
             line_2,
             city,
             state,
             postal_code,
             country
      from shipping_addresses
      where customer_id = ?
      union
      select 2 as sortkey,
             line_1,
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             line_2,
             city,
             state,
             postal_code,
             country
      from customers
      where customer_id = ?
      order by 1) actual_shipping_address
limit 1

The basic idea is to use the sort key as a preference indicator. The limit set on the number

of rows returned will therefore ensure that we’ll always get the “best match” (note that

similar ideas can be applied to several rows when a row_number( ) OLAP function is

available). This approach greatly simplifies processing on the application program side,

since what is retrieved from the DBMS is “certified correct” data.

The technique I’ve just described can also be used in multilanguage applications where

not everything has been translated into all languages. When you need to fetch a message,

you can define a default language and be assured that you will always get at least some

message, thus removing the need for additional coding on the application side.

Selecting Rows That Match Several Items in a List
An interesting problem is that of how to write queries based on some criteria referring to

a varying list of values. This case is best illustrated by looking for employees who have

certain skills, using the three tables shown in Figure 11-6. The skillset table links

employees to skills, associating a 1 to 3 skill_level value to distinguish between honest

competency, strong experience, and outright wizardry.

Finding employees that have a level 2 or 3 SQL skill is easy enough:

select e.employee_name
from employees e
where e.employee_id in
     (select ss.employee_id
      from skillset ss,
           skills s
      where s.skill_id = ss.skill_id
        and s.skill_name = 'SQL'
        and ss.skill_level >= 2)
order by e.employee_name

F I G U R E  1 1 - 6 . Tables used for querying employee skills
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(We can also write the preceding query with a simple join.) If we want to retrieve the

employees who are competent with Oracle or DB2, all we need to do is write:

select e.employee_name, s.skill_name, ss.skill_level
from employees e,
     skillset ss,
     skills s
where e.employee_id = ss.employee_id
  and s.skill_id = ss.skill_id
  and s.skill_name in ('ORACLE', 'DB2')
order by e.employee_name

No need to test for the skill level, since we will accept any level. However, we do need to

display the skill name; otherwise, we won’t be able to tell why a particular employee was

returned by the query. We also encounter a first difficulty, namely that people who are

competent in both Oracle and DB2 will appear twice. What we can try to do is to

aggregate skills by employee. Unfortunately, not all SQL dialects provide an aggregate

function for concatenating strings (you can sometimes write it as a user-defined aggregate

function, though). We can nevertheless perform a skill aggregate by using the simple

stratagem of a double conversion. First we convert our value from string to number, then

from number back to string once we have aggregated numbers.

Skill levels are in the 1 through 3 range. We can therefore confidently represent any

combination of Oracle and DB2 skills by a two-digit number, assigning for instance the

first digit to DB2 and the second one to Oracle. This is easily done as follows:

select e.employee_name,
       (case s.skill_name
          when 'DB2' then 10
          else 1
        end) * ss.skill_level as computed_skill_level
from employees e,
     skillset ss,
     skills s
where e.employee_id = ss.employee_id
  and s.skill_id = ss.skill_id
  and s.skill_name in ('ORACLE', 'DB2')

computed_skill_level will result in 10, 20, or 30 for DB2 skill levels, while Oracle skill

levels will remain 1, 2, and 3. We then can very easily aggregate our skill levels, and

convert them back to a more friendly description:

select employee_name,
       --  Decode the numerically encoded skill + skill level combination
       --  Tens are DB2 skill levels, and units Oracle skill levels
      case
        when aggr_skill_level >= 10
          then 'DB2:' + str(round(aggr_skill_level/10,0)) + ' '
      end
      + case
          when aggr_skill_level % 10 > 0
           then 'Oracle:' + str(aggr_skill_level % 10)
       end as skills
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from (select e.employee_name,
             -- Numerically encode skill + skill level
             -- so that we can aggregate them
             sum((case s.skill_name
                    when 'DB2' then 10
                    else 1
                  end) * ss.skill_level)  as aggr_skill_level
      from employees e,
           skillset ss,
           skills s
      where e.employee_id = ss.employee_id
        and s.skill_id = ss.skill_id
        and s.skill_name in ('ORACLE', 'DB2')
     group by e.employee_name) as encoded_skills
order by employee_name

But now let’s try to answer a more difficult question. Suppose that the project we want to

staff happens to be a migration from one DBMS to another one. Instead of finding people

who know Oracle or DB2, we want people who know both Oracle and DB2.

We have several ways to answer such a question. If the SQL dialect we are using supports

it, the intersect operator is one solution: we find people who are skilled on Oracle on one

hand, people who are skilled on DB2 on the other hand, and keep the happy few that

belong to both sets. We certainly can also write the very same query with an in( ):

select e.employee_name
from employees e,
     skillset ss,
     skills s
where s.skill_name = 'ORACLE'
  and s.skill_id = ss.skill_id
  and ss.employee_id = e.employee_id
  and e.employee_id in (select ss2.employee_id
                        from skillset ss2,
                             skills s2
                        where s2.skill_name = 'DB2'
                          and s2.skill_id = ss2.skill_id)

We can also use the double conversion solution and filter on the numerical aggregate by

using the same expressions as we have been using for decoding the encoded_skills

computed column. The double conversion stratagem has other advantages:

• It hits tables only once.

• It makes it easier to handle more complicated questions such as “people who know

Oracle and Java, or MySQL and PHP.”

• As we are only using a list of skills, we can use a pivot table and bind the list, thus

improving performance of oft-repeated queries. The row_num pivot table column can

help us encode since, if the list is reasonably short, we can multiply the skill_level

value by 10 raised to the (row_num –1)th power. If we don’t care about the exact value

of the skill level, and our DBMS implements bit-wise aggregate functions, we can even

try to dynamically build a bit-map.
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Finding the Best Match
Let’s conclude our adventures in the SQL wilderness by combining several of the

techniques shown in this chapter and try to select employees on the basis of some rather

complex and fuzzy conditions. We want to find, from among our employees, that one

member of staff who happens to be the best candidate for a project that requires a range

of skills across several different environments (for example, Java, .NET, PHP, and SQL

Server). The ideal candidate is a guru in all environments; but if we issue a query asking

for the highest skill level everywhere it shall probably return no row. In the absence of

the ideal candidate, we are usually left with imperfect candidates, and we must identify

someone who has the best competency in as many of our environments as possible and is

therefore the best suited for the project. For instance, if our Java guru is a world expert,

but knows nothing of PHP, that person is unlikely to be selected.

“Best suited” implies a comparison between the various employees, or, in other words, a

sort, from which the winner will emerge. Since we want only one winner, we shall have

to limit the output of our list of candidates to the first row. You should already be

beginning to see the query as a select ... from (select ... order by) limit 1 or whatever

your SQL dialect permits.

The big question is, of course, how we are going to order the employees. Who is going to get

the preference between one who has a decent knowledge of three of the specified topics,

and one who is an acknowledged guru of two subjects? It is likely, in a case such as we are

discussing, that the width of knowledge is what matters more to us than the depth of

knowledge. We can use a major sort key on the number of skills from the requirement list

that are mastered, and a minor sort key on the sum of the various skill_level values by

employee for the skills in the requirement list. Our inner query comes quite naturally:

select e.employee_name,
       count(ss.skill_id) as major_key,
       sum(ss.skill_level) as minor_key
from employees e,
     skillset ss,
     skills s
where s.skill_name in ('JAVA', '.NET', 'PHP', 'SQL SERVER')
  and s.skill_id = ss.skill_id
  and ss.employee_id = e.employee_id
group by e.employee_name
order by 2, 3

This query, however, doesn’t tell us anything about the actual skill level of our best

candidate. We should therefore combine this query with a double conversion to get an

encoding of skills. I leave doing that as an exercise, assuming that you have not yet

reached a semi-comatose state.
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You should also note, from a performance standpoint, that we need not refer to the

employees table in the inner query. The employee name is information that we need only

when we display the final result. We should therefore handle only employee_id values,

and do the bulk of the processing using the tables skills and skillset. You should also

think about the rare situation in which two candidates have exactly the same skills—do

you really want to restrict output to one row?

N O T E
To paraphrase General Robert E. Lee, “It is well that SQL is so terrible, or we should

grow too fond of it.”

Optimizer Directives
I shall conclude this chapter with a cautionary note about optimizer directives. An SQL

optimizer can be compared to the program that computes shutter speed and exposure in

an automated camera. There are conditions when the “auto” mode is no longer

appropriate—for instance, when the subject of the picture is backlit or for the shooting of

night scenes. Similarly, all database systems provide one way or another to override or at

least direct decisions taken by the query optimizer in its quest for the Dream Execution

Path. There are basically two techniques to constrain the optimizer:

• Special settings in the session environment that are applied to all queries executed in

the session until further notice.

• Local directives explicitly written into individual statements.

In the latter case the syntax between products varies, since you may have these directives

written as an inherent part of the SQL statement (for instance force index(...) with

MySQL or option loop join with Transact-SQL), or written as a special syntax comment

(such as /*+ all_rows */ with Oracle).

Optimizer directives have so far been mostly absent from this book, and for good reasons.

Repeatedly executing queries against living data is, to some degree, similar to repeatedly

photographing the same subject at various times of day: what is backlit in the morning

may be in full light in the afternoon. Directives are destined to override particular quirks

in the behavior of the optimizer and are better left alone. The most admissible directives

are those directives specifying either the expected outcome, such as sql_small_result or

sql_big_result with MySQL, or whether we are more interested in a fast answer, as is

generally the case in transactional processing, with directives such as option fast 100 with

SQL Server or /*+ first_rows(100) */ with Oracle. These directives, which we could

compare to the “landscape” or “sports” mode of a camera, provide the optimizer with

information that it would not otherwise be able to gather. They are directives that don’t
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depend on the volume or distribution of data; they are therefore stable in time, and they

do add value. In any case, even directives that add value should not be employed unless

they are required. The optimizer is able to determine a great deal about the best way to

proceed when it is given a properly written query in the first place. The best and most

simple example of implicit guidance of the optimizer is possibly the use of correlated

versus uncorrelated subqueries. They are to be used under dissimilar circumstances to

achieve functionally identical results.

One of the nicest features of database optimizers is their ability to adapt to changing

circumstances. Freezing their behavior by using constraining directives is indicative of a

very short-term view that can be potentially damaging to performance in the future.

Some directives are real time-bombs, such as those specifying indexes by name. If, for

one reason or another a DBA renames an index used in a directive, the result can be

disastrous. We can get a similarly catastrophic effect when a directive specifies a

composite index, and this index is rebuilt one day with a different column order.

N O T E
Optimizer directives must be considered the private territory of database

administrators. The DBA should use them to cope with the shortcomings of a

particular DBMS release and then remove them if at all possible after the next

upgrade.

Let me add that it is common to see inexperienced developers trying to derive a query

from an existing one. When the original query contains directives, beginners rarely

bother to question whether these directives are appropriate to their new case. Beginners

simply apply what they see as minor changes to the select list and the search criteria. As a

result, you end up with queries that look like they have been fine-tuned, but that often

follow a totally irrelevant execution path.

The good plan that is forced upon a query today may be

disastrous tomorrow.



Chapter 12. C H A P T E R  T W E L V E

Employment of Spies
Monitoring Performance

And he that walketh in darkness knoweth not whither he goeth.

Gospel according to St. John, 12:35
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Intelligence gathering has always been an essential part of war. All database systems

include monitoring facilities, each with varying degrees of sophistication. Third-party

offerings are also available in some cases. All these monitoring facilities are primarily

aimed at database administrators. However, when they allow you to really see what is

going on inside the SQL engine, they can become formidable spies in the service of the

performance-conscious developer. I should note that when monitoring facilities lack the

level of detail we require, it is usually possible to obtain additional information by turning

on logging or tracing. Logging or tracing necessarily entails a significant overhead, which

may not be a very desirable extra load on a busy production server that is already

painfully clunking along. But during performance testing, logging can provide us with a

wealth of information on what to expect in production.

Detailing all or even some of the various monitoring facilities available would be both

tedious and product-specific. Furthermore, such an inventory would be rapidly outdated.

I shall concentrate instead on what we should monitor and why. This will provide you

with an excellent opportunity for a final review of some of the key concepts introduced

in previous chapters.

The Database Is Slow
Let’s first try to define the major categories of performance issues that we are likely to

encounter in production—since our goal, as developers, is to anticipate and, if possible,

avoid these situations. The very first manifestation of a performance issue on a

production database is often a call to the database administrators’ desk to say that “the

database is slow” (a useful piece of information for database administrators who may

have hundreds of database servers in their care...). In a well-organized shop, the DBA

will be able to check whether a monitoring tool does indeed report something unusual,

and if that is the case, will be able to answer confidently “I know. We are working on the

case.” In a poorly organized shop, the DBA may well give the same answer, lying

diplomatically.

In all cases, the end of the call will mean the beginning of a frantic scramble for clues.

Such communications stating that “the database is slow” will usually have been

motivated by one of the five following reasons:

It’s not the database

The network is stuttering or the host is totally overloaded by something else.

Thanks for calling.

Sudden global sluggishness

All tasks slow down, suddenly, for all users. There are two cases to consider here:
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• Either the performance degradation is really sudden, in which case it can often

be traced to some system or DBMS change (software upgrade, parameter

adjustment, or hardware configuration modification).

• Or it results from a sudden inflow of queries.

The first case is not a development issue, just one of those hazards that make the

life of a systems engineer or DBA so exciting. The second case is a development or

specifications issue. Remember the post office of Chapter 9: when customers arrive

faster than they can be serviced, queues lengthen and performance tumbles down

all of a sudden. Either the original specifications were tailored too tightly and the

system is facing a load it wasn’t designed for, or the application has been insuffi-

ciently stress-tested. In many cases, improving some key queries will massively

decrease the average service time and may improve the situation for a negligible

fraction of the cost of a hardware upgrade. Sudden global sluggishness is usually

characterized by the first phone call being followed by many others.

Sudden localized slowness

If one particular task slows down all of a sudden, locking issues should be con-

sidered. Database administrators can monitor locks and confirm that several

tasks are competing for the same resources. This situation is a development and

task-scheduling issue that can be improved by trying to release locks faster.

A slow degradation of performance reaching a threshold

The threshold may first be felt by one hypersensitive user. If the load has been

steadily increasing over time, the crossing of the threshold may be a warning

sign of an impending catastrophe and may relate to the lengthening service

queues of a sudden global sluggishness. The crossing of a threshold may also be

linked to the size increase of badly indexed tables or to a degradation of physical

storage after heavy delete/update operations (hanging high-water mark of a

table that has inflated then deflated, a Swiss cheese–like effect resulting in much

too many pages or blocks to store the data, or chaining to overflow areas). If the

problem is with indexes or physical storage (or outdated statistics taking the

optimizer down a wrong path), a DBA may be able to help, but the necessity for

a rescue operation on a regular basis is usually the sign of poorly designed

processes.

One particularly slow query

If the application was properly tested, then the case to watch for is a dynami-

cally built query provided with a highly unusual set of criteria. This is most

likely to be a pure development issue.

Many of these events can be foreseen and prevented. If you are able to identify what

loads your server, and if you are able to relate database activity to business activity, you

have all the required elements to identify the weakest spots in an application. You can

then focus on those weak spots during performance testing and improve them.
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To anticipate live application performance, you must monitor

activity very closely during stress tests and user acceptance trials.

The Components of Server Load
Load, in information technology, ultimately boils down to a combination of excessive

CPU consumption, too many input/output operations and insufficient network speed or

bandwidth. It’s quite similar to the “critical tasks” of project management, where one

bottleneck can result in the whole system grinding not to a halt, but to an unnaceptable

level of slowness. If processes that are ready to run must wait for some other processes to

release the CPU, the system is overloaded. If the CPU is idle, waiting for data to be sent

across the network or to be fetched from persistent storage, the system is overloaded too.

“Overloaded,” though, mustn’t be understood as an absolute notion. Systems may be

compared to human beings in respect of the fact that load is not always directly

proportional to the work accomplished. As C. Northcote Parkinson remarked in

Parkinson’s Law, his famous satire of bureaucratic institutions:

Thus, an elderly lady of leisure can spend the entire day in writing and dispatching

a postcard [...]. The total effort that would occupy a busy man for three minutes all

told may in this fashion leave another person prostrate after a day of doubt, anxi-

ety, and toil.

Poorly developed SQL applications can very easily bring a server to its knees and yet not

achieve very much. Here are a few examples (there are many others) illustrating different

ways to increase the load without providing any useful work:

Hardcoding all queries

This will force the DBMS to run parser and optimizer code for every execution,

before actually performing any data access. This technique is remarkably effi-

cient for swamping the CPU.

Running useless queries

This is a situation more common than one would believe. It includes queries

that are absolutely useless, such as a dummy query to check that the DBMS is

up and running before every statement (true story), or issuing a count(*) to

check whether a row should be updated or inserted. Other useless queries also

include repeatedly fetching information that is stable for the entire duration of a

session, or issuing 400,000 times a day a query to fetch a currency exchange rate

that is updated once every night.

Multiplying round-trips

Operating row-by-row, extensively using cursor loops, and banishing stored pro-

cedures are all excellent ways to increase the level of “chatting” between the
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application side and the SQL engine, wasting time on protocol issues, multiply-

ing packets on the network and of course, as a side benefit, preventing the data-

base optimizer from doing its work efficiently by keeping most of the mysteries

of data navigation firmly hidden in the application.

Let me underline that these examples of bad use of the DBMS don’t specifically include

the “bad SQL query” that represents the typical SQL performance issue for many people.

The queries described in the preceding list often run fast. But even when they run at

lightning speed, useless queries are always too slow: they waste resources that may be in

short supply during peak activity.

There are two components that affect the load on a database server. The visible

component is made up of the slow “bad SQL queries” that people are desperate to have

tuned. The invisible component is the background noise of a number of queries each of

acceptable speed, perhaps even including some very fast ones, that are executed over and

over again. The cumulative cost of the load generated by all this background noise

routinely dwarfs the individual load of most of the big bad queries. As Sir Arthur Conan

Doyle put in the mouth of Sherlock Holmes:

It has long been an axiom of mine that the little things are infinitely the most

important.

As the background noise is spread over time, instead of happening all of a sudden, it

passes unnoticed. It may nevertheless contribute significantly to reducing the “power

reserve” that may be needed during occasional bursts of activity.

Repetitive short-duration mediocre statements often load a server

more than the big bad SQL queries that take a long time to run.

Defining Good Performance
Load is one thing, performance another. Good performance proves an elusive notion to

define. Using CPU or performing a large number of I/O operations is not wrong in itself;

your company, presumably, didn’t buy powerful hardware with the idea of keeping it idle.

When the time comes to assess performance, there is a striking similarity between the

world of databases and the world of corporate finance. You find in both worlds some

longing for “key performance indicators” and magical ratio—and in both worlds, global

indicators and ratios can be extremely misleading. A good average can hide distressing

results during the peaks, and a significant part of the load may perhaps be traced back to

a batch program that is far from optimal but that runs at a time of night when no one

cares what the load is. To get a true appreciation of the real state of affairs, you must drill

down to a lower level of detail.
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To a large extent, getting down to the details is an exercise similar to that which is known

in managerial circles as “activity-based costing.” In a company, knowing in some detail

how much you spend is relatively easy. However, relating costs to benefits is an exercise

fraught with difficulties, notoriously for transverse operations such as information

technology. Determining if you spend the right amount on hardware, software, and staff,

as well as the rubber bands and duct tape required to hold everything together is

extremely difficult, particularly when the people who actually earn money are

“customers” of the IT department.

Assessing whether you do indeed spend what you should has three prerequisites:

• Knowing what you spend

• Knowing what you get for the money

• Knowing how your return on investment compares with acknowledged standards

In the following subsections, I shall consider each of these points in turn in the context of

database systems.

Knowing What You Spend

In the case of database performance, what we spend means, first and foremost, how

many data pages we are hitting. The physical I/Os that some people tend to focus on are

an ancillary matter. If you hit a very large number of different data pages, this will

necessarily entail sustained I/O activity unless your database entirely fits in memory. But

CPU load is also often a direct consequence of hitting the same data pages in memory

again and again. Reducing the number of data pages accessed is not a panacea, as there

are cases when the global throughput is higher when some queries hit a few more pages

than is strictly necessary. But as far as single indicators go, the number of data pages hit is

probably the most significant one. The other cost to watch is excessive SQL statement

parsing, an activity that can consume an inordinate amount of CPU (massive hardcoded

insertions can easily take 75% of the CPU available for parsing alone).

The two most significant indicators of database load are the

amount of CPU spent on statement parsing and the number of

data pages visited when executing queries.

Knowing What You Get

There is a quote that is famous among advertisers, a quip attributed to John Wanamaker,

a 19th-century American retailer:

Half the money I spend on advertising is wasted; the trouble is I don’t know

which half.
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The situation is slightly better with database applications, but only superficially. You

define what you get in terms of the number of rows (or bytes) returned by select

statements; and similarly the number of rows affected by change operations. But such an

apparently factual assessment is far from providing a true measure of the work performed

on your behalf by the SQL engine, for a number of reasons:

• First, from a practical point of view, all products don’t provide you with such statistics.

• Second, the effort required to obtain a result set may not be in proportion to the size

of the result set. As a general rule you can be suspicious of a very large number of data

page hits when only a few rows are returned. However such a proportion may be per-

fectly legitimate when data is aggregated. It is impossible to give a hard-and-fast rule

in this area.

• Third, should data returned from the database for the sole purpose of using it as input

to other queries be counted as useful work? What about systematically updating to N a

column in a table without using a where clause when N already happens to be the value

stored in most rows? In both cases, the DBMS engine performs work that can be mea-

sured in terms of bytes returned or changed. Unfortunately, most of the work per-

formed can be avoided.

There are times when scanning large tables or executing a long-running query may be

perfectly justified (or indeed inescapable). For instance, when you run summary reports

on very large volumes of data, you cannot expect an immediate answer. If an immediate

answer is required, then it is likely that the data model (the database representation of

reality) is inappropriate to the questions you want to see answered. This is a typical case

when a decision support database that doesn’t necessarily require the level of detail of the

main operational database may be suitable. Remember what you saw in Chapter 1:

correct modeling depends both on the data and what you want to do with the data. You

may share data with your suppliers or customers and yet have a totally different database

model than they do. Naturally, feeding a decision support system will require long and

costly operations both on the source operational database and the target decision support

database.

Because what you do with the data matters so much, you cannot judge performance if

you don’t relate the load to the execution of particular SQL statements. The global picture

that may be available through monitoring utilities (that most often provide cumulative

counters) is not of much interest if you cannot assign to each statement its fair share of

the load.

As a first stage in the process of load analysis, you must therefore capture and collect SQL

statements, and try to determine how much each one contributes to the overall cost. It

may not be important to capture absolutely every statement. Database activity is one of

those areas where the 80/20 rule, the empirical assessment that 80% of the consequences

result from 20% of the causes, often describes the situation rather well. Usually, much of
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the load comes from a small number of SQL statements. We must be careful not to

overlook the fact that hardcoded SQL statements may distort the picture. With hardcoded

statements, the DBMS may record thousands of distinct statements where a properly

coded query would be referenced only once, even though it might be called thousands of

times, each time with differing parameters. Such a situation can usually be spotted quite

easily by the great number of SQL statements, and sometimes by global statistics. For

instance, a procedure such as sp_trace_setevent in Transact-SQL lets you obtain a precise

count of executed cursors, reexecutions of prepared cursors, and so on.

If nothing else is available and if you can access the SQL engine cache, a snapshot taken

at a relatively low frequency of once every few minutes may in many cases prove quite

useful. Big bad queries are usually hard to miss, as also are queries that are being

executed dozens of times a minute. Global costs should in any case be checked in order to

validate the hypothesis that what has been missed contributes only marginally to the

global load. It’s when SQL statements are hardcoded that taking snapshots will probably

give less satisfactory results; you should then try to get a more complete picture, either

through logging (as already mentioned a high-overhead solution), or by use of less

intrusive “sniffer” utilities. I should note that even if you catch all hardcoded statements,

then they have to be “reverse soft-coded” by taking constant values out of the SQL text

before being able to estimate the relative load, not of a single SQL statement, but of one

particular SQL statement pattern.

Identifying the statements that keep the DBMS busy, though, is only part of the story.

You will miss much if you don’t then relate SQL activity to the essential business activity

of the organization that is supported by the database. Having an idea of how many SQL

statements are issued on average each time you are processing a customer order is more

important to SQL performance than knowing the disk transfer rate or the CPU speed

under standard conditions of temperature and pressure. For one thing, it helps you

anticipate the effect of the next advertising campaign; and if the said number of SQL

statements is in the hundreds, you can raise interesting questions about the program

(could there be, by chance, SQL statements executed inside loops that fetch the results of

other statements? Could there be a statement that is repeatedly executed when it needs

to be executed only once?). Similarly, costly massive updates of one column in a table

accompanied by near identical numbers of equally massive updates of other columns

from the same table with similar where clauses immediately raises the question of whether

a single pass over the table wouldn’t have been enough.

Load figures must be related to SQL statements. SQL statements

must be related to business activity. Business activity must be

related to business requirements.
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Checking Against Acknowledged Standards

Collecting SQL statements, evaluating their cost and roughly relating them to what

makes a company or agency tick is an exercise that usually points you directly to the

parts of the code that require in-depth review. The questionable code may be SQL

statements, algorithms, or both. But knowing what you can expect in terms of

improvement or how far you could or should go is a very difficult part of the SQL

expert’s craft; experience helps, but even the seasoned practitioner can be left with a

degree of uncertainty.

It can be useful to establish a baseline, for instance by carrying out simple insertion tests

and having an idea about the rate of insertion that is sustainable on your hardware.

Similarly, you should check the fetch rate that can be obtained when performing those

dreaded full scans on some of the biggest tables. Comparing bare-bones rates to what

some applications manage to accomplish is often illuminating: there may be an order of

magnitude or more between the fetch or insert speed that the SQL engine can attain and

what is achieved by application programs.

Know the limits of your environment. Measure how many rows

you can insert, fetch, update, or delete per unit of time on your

machines.

Once you have defined a few landmarks, you can identify where you will obtain the best

“return on improvement,” in terms of both relevance to business activities and technical

feasibility. You can then focus on those parts of your programs and get results where it

matters.

Some practitioners tend to think that as long as end users don’t complain about

performance, there is no issue and therefore no time to waste on trying to make

operations go faster. There is some wisdom in this attitude; but there is also some short-

sightedness as well, for two reasons:

• First, end users often have a surprisingly high level of tolerance for poor performance;

or perhaps it would be more appropriate to say that their perception of slowness dif-

fers widely from that of someone who has a better understanding of what happens

behind the scenes. End users may complain loudly about the performance of those

processes of death that cannot possibly do better, and express a mild dissatisfaction

about other processes when I would have long gone ballistic. A low level of complaint

doesn’t necessarily mean that everything is fine, nor does vocal dissatisfaction neces-

sarily mean that there is anything wrong with an application except perhaps trying to

do too much.
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• Second, a slight increase in the load on a server may mean that performance will dete-

riorate from acceptable to unacceptable very quickly. If the environment is perfectly

stable, there is indeed nothing to fear from a slight increase in load. But if your activ-

ity records a very high peak during one particular month of the year, the same pro-

gram that looks satisfactory for 11 months can suddenly be the reason for riots. Here

the background noise matters a lot. An already overloaded machine cannot keep on

providing the same level of service when activity increases. There is always a thresh-

old that sees mediocre performance tumbling down all of a sudden. It is therefore

important to study an entire system before a burst of activity is encountered to see

whether the load can be reduced by improving the code. If improving the code isn’t

enough to warrant acceptable performance, it may be time to switch to bigger iron and

upgrade the hardware.

Do not forget that “return on improvement” is not simply a technical matter. The

perception of end users should be given the highest priority, even if it is biased and

sometimes disconnected from the most severe technical issues. They have to work with the

program, and ergonomics have to be taken into account. It is not unusual to meet well-

meaning individuals concentrating on improving statistics rather than program

throughput, let alone end-user satisfaction. These well-intentioned engineers can feel

somewhat frustrated and misunderstood when end users, who only see a very local

improvement, welcome the result of mighty technical efforts with lukewarm enthusiasm.

An eighteenth-century author reports that somebody once said to a physician, “Well, Mr.

X has died, in spite of the promise you had made to cure him.” The splendid answer from

the physician was, “You were away, and didn’t check the progress of the treatment: he

died cured.”

A database with excellent statistics and yet unsatisfactory performance from an end-user

point of view is like a patient cured of one ailment, but who died of another. Improving

performance usually means both delivering a highly visible improvement to end users,

even if it affects a query that is run only once a month but that is business-critical, and the

more humble, longer-term work of streamlining programs, lowering the background noise,

and ensuring that the server will be able to deliver that power boost when it is needed.

Performance improvement as perceived by end users is what

matters most, but never forget the narrow margin between

acceptable and unacceptable performance in a loaded

environment.

Defining Performance Goals

Performance goals are often defined in terms of elapsed time, for example, “this program

must run in under 2 hours.” It is better though to define them primarily in terms of

business items processed by unit of time, such as “50,000 invoices per hour” or “100

loans per minute,” for several reasons:
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• It gives a better idea of the service actually provided by a given program.

• It makes a decrease in performance more understandable to end users when it can be

linked to an increase in activity. This makes meetings less stormy.

• Psychologically speaking, it is slightly more exciting when trying to improve a process

to boost throughput rather than diminish the elapsed time. An upward curve makes a

better chart in management presentations than a downward one.

More than anything else, improved performance means first,

doing more work in the same time, and second, doing it in even

less time.

Thinking in Business Tasks
Before focusing on one particular query, don’t forget its context. Queries executed in

loops are a very bad indicator of the quality of code, as are program variables with no

other purpose than storing information returned from the database before passing it to

another query. Database accesses are costly, and should be kept to a minimum. When

you consider the way some programs are written, you are left with the impression that

when their authors go shopping, they jump into their car, drive to a supermarket, park

their car, walk up and down the aisles, pick a few bottles of milk, head for the checkout,

get in line, pay, put the milk in the car, drive home, store the milk into the fridge, then

check the next item on the shopping list before returning to the supermarket. And when

a spouse complains about the time spent on shopping, the excuses given are usually the

dense traffic on the road, the poor signposting of the food department, and the

insufficient number of cashiers. All are valid reasons in their own right that may indeed

contribute to some extent to shopping time, but possibly they are not the first issues to

fix.

I have met developers who were genuinely persuaded that from a performance

standpoint, multiplying simple queries was the proper thing to do; showing them that the

opposite is true was extremely easy. I have also heard that very simple SQL statements

that avoid joins make maintenance easier. The truth is that simplistic SQL makes it easier

to use totally inexperienced (read cheaper) developers for maintenance, but that’s the

only thing that can be said in defense of very elementary SQL statements. By making the

most basic usage of SQL, you end up with programs full of statements that, taken one by

one, look efficient, except perhaps for a handful of particularly poor performers, hastily

pointed to as “the SQL statements that require tuning.” Very often, some of the

statements identified as “slow” (and which may indeed be slow) are responsible for only

a fraction of performance issues.
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Brilliantly tuned statements in a bad program operating against a

badly designed database are no more effective than brilliant

tactics at the service of a feeble strategy; all they can do is

postpone the day of reckoning.

You cannot design efficient programs if you don’t understand that the SQL language

applies to a whole subsystem of data management, and isn’t simply a set of primitives to

move data between long-term and short-term memory. Database accesses are often the

most performance-critical components of a program, and must be incorporated to the

overall design.

In trying to make programs simpler by multiplying SQL statements, you succumb to a

dangerous illusion. Complexity doesn’t originate in languages, but in business

requirements. With the exclusive use of simple SQL statements, complexity doesn’t

vanish, it just migrates from the SQL side to the application side, with a much increased

risk of data inconsistency when the logic that should belong to the DBMS side is

imbedded into the application. Moreover, it puts a significant part of processing out of

reach of the DBMS optimizer.

I am not advocating the indiscriminate use of long, complex SQL statements, or a “single

statement” policy. For example, the following is a case where there should have been

several distinct statements, and not a single one:

insert into custdet (custcode, custcodedet, usr, seq, inddet)
select case ?
         when 'GRP' then b.codgrp
         when 'GSR' then b.codgsr
         when 'NIT' then b.codnit
         when 'GLB' then 'GLOBAL'
         else b.codetb
       end,
       b.custcode,
       ?,
       ?,
       'O'
from edic00 a,
     clidet bT
where ((b.codgrp = a.custcode
        and ? = 'GRP')
       or (b.codgsr = a.custcode
           and ? = 'GSR')
       or (b.codnit = a.custcode
           and ? = 'NIT')
       or (a.custcode = 'GLOBAL'
           and ? = 'GLB'))
   and a.seq = ?
   and b.custlvl = ?
   and b.histdat = ?
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A statement where a run-time parameter is compared to a constant is usually a statement

that should have been split into several simpler statements. In the preceding example, the

value that intervenes in the case construct is the same one that is successively compared

to GRP, GSR, NIT, and GLB in the where clause. It makes no sense to force the SQL engine into

making numerous mutually exclusive tests and sort out a situation that could have been

cleared on the application side. In such a case, an if ... elsif ... elsif structure

(preferably in order of decreasing probability of occurrence) and four distinct insert ...

select statements would have been much better.

When a complex SQL statement allows you to obtain more quickly the data you

ultimately need, with a small number of accesses, the situation is completely different

from the preceding case. Long, complex queries are not necessarily slow; it all depends on

how they are written. A developer should obviously not exceed their personal SQL skill

level, and not necessarily write 300-line statements head on; but packing as much action

as possible into each SQL statement should be a prerequisite to improving individual

statements.

Tuning SQL statements before improving programs and

minimizing database accesses means that you are ignoring some

of the major means of tuning improvements.

Execution Plans
When our spies (whether they are users or monitoring facilities) have directed our

attention to a number of SQL statements, we need to inspect these statements more

closely. Scrutinizing execution plans is one of the favorite activities of many SQL tuners,

if we are to believe the high number of posts in forums or mailing lists in the form of “I

have a SQL query that is particularly slow; here is the execution plan....”

Execution plans are usually displayed either as an indented list of the various steps

involved in the processing of a (usually complex) SQL statements, or under a graphical

form, as in Figure 12-1. This figure displays the execution plan for one of the queries

from Chapter 7. Text execution plans are far less sexy but are easier to post on forums,

which must account for the enduring popularity of such plans. Knowing how to correctly

read and interpret an execution plan, whether it is represented graphically or as text, is in

itself a valued skill.

So far in this book, I have had very little to say on the topic of execution plans, except for

a couple of examples presented here and there without any particular comment.

Execution plans are tools, and different individuals have different preferences for various
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tools; you are perfectly allowed to have a different opinion, but I usually attach a

secondary importance to execution plans. Some developers consider execution plans as

the ultimate key to the understanding of performance issues. Two real-life examples will

show that one may have some reasons to be less than sanguine about using execution

plans as the tool of choice for improving a query.

Identifying the Fastest Execution Plan

In this section, I am going to test your skills as an interpreter of execution plans. I’m

going to show three execution plans and ask you to choose which is the fastest. Ready?

Go, and good luck!

Our contestants

The following execution plans show how three variants of the same query are executed:

Plan 1

Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT
   1    0   SORT (ORDER BY)
   2    1     CONCATENATION
   3    2       NESTED LOOPS

F I G U R E  1 2 - 1 . A DB2 execution plan
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   4    3         HASH JOIN
   5    4           HASH JOIN
   6    5             TABLE ACCESS (FULL) OF 'TCTRP'
   7    5             TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
   8    7               INDEX (RANGE SCAN) OF 'TTRANTRADE_DATE' (NON-UNIQUE)
   9    4           TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
  10    9             INDEX (RANGE SCAN) OF 'TMMKTCCY_NAME' (NON-UNIQUE) ...
  11    3         TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  12   11           INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)
  13    2       NESTED LOOPS
  14   13         HASH JOIN
  15   14           HASH JOIN
  16   15             TABLE ACCESS (FULL) OF 'TCTRP'
  17   15             TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
  18   17               INDEX (RANGE SCAN) OF 'TTRANLAST_UPDATED' (NON-UNIQUE)
  19   14           TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
  20   19             INDEX (RANGE SCAN) OF 'TMMKTCCY_NAME' (NON-UNIQUE)
  21   13         TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  22   21           INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)

Plan 2

Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT
   1    0   SORT (ORDER BY)
   2    1     CONCATENATION
   3    2       NESTED LOOPS
   4    3         NESTED LOOPS
   5    4           NESTED LOOPS
   6    5             TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
   7    6               INDEX (RANGE SCAN) OF 'TTRANTRADE_DATE' (NON-UNIQUE)
   8    5             TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
   9    8               INDEX (UNIQUE SCAN) OF 'TMMKTMAIN' (UNIQUE)
  10    4           TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  11   10             INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)
  12    3         TABLE ACCESS (BY INDEX ROWID) OF 'TCTRP'
  13   12           INDEX (UNIQUE SCAN) OF 'TCTRPMAIN' (UNIQUE)
  14    2       NESTED LOOPS
  15   14         NESTED LOOPS
  16   15           NESTED LOOPS
  17   16             TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
  18   17               INDEX (RANGE SCAN) OF 'TTRANLAST_UPDATED' (NON-UNIQUE)
  19   16             TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
  20   19               INDEX (UNIQUE SCAN) OF 'TMMKTMAIN' (UNIQUE)
  21   15           TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  22   21             INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)
  23   14         TABLE ACCESS (BY INDEX ROWID) OF 'TCTRP'
  24   23           INDEX (UNIQUE SCAN) OF 'TCTRPMAIN' (UNIQUE)

Plan 3

Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT
   1    0   SORT (ORDER BY)
   2    1     NESTED LOOPS
   3    2       NESTED LOOPS
   4    3         NESTED LOOPS
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   5    4           TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
   6    5             INDEX (RANGE SCAN) OF 'TMMKTCCY_NAME' (NON-UNIQUE)
   7    4           TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
   8    7             INDEX (UNIQUE SCAN) OF 'TTRANMAIN' (UNIQUE)
   9    3         TABLE ACCESS (BY INDEX ROWID) OF 'TCTRP'
  10    9           INDEX (UNIQUE SCAN) OF 'TCTRPMAIN' (UNIQUE)
  11    2       TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  12   11         INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)

Our battle field

The result set of the query consists of 860 rows, and the four following tables are

involved:

All tables are heavily indexed, no index was created, dropped or rebuilt, and no change

was applied to the data structures. Only the text of the query changed between plans,

and optimizer directives were sometimes applied.

Consider the three execution plans, try to rank them in order of likely speed, and if you

feel like it you may even venture an opinion about the improvement factor.

And the winner is. . .

The answer is that Plan 1 took 27 seconds, Plan 2 one second, and Plan 3 (the initial

execution plan of the query) one minute and 12 seconds. You will be forgiven for

choosing the wrong plan. In fact, with the information that I provided, it would be sheer

luck for you to have correctly guessed at the fastest plan (or the result of a well-founded

suspicion that there must be a catch somewhere). You can take note that the slowest

execution plan is by far the shortest, and that it contains no reference to anything other

than indexed accesses. By contrast, Plan 1 demonstrates that you can have two full scans

of the same table and yet execute the query almost three times faster than a shorter,

index-only plan such as Plan 3.

The point of this exercise was to demonstrate that the length of an execution plan is not

very meaningful, and that exclusive access to tables through indexes doesn’t guarantee

that performance is the best you can achieve. True, if you have a 300-line plan for a

query that returns 19 rows, then you might have a problem, but you mustn’t assume that

shorter is better.

Table name Row count (rounded)

tctrp 18,000

ttran 1,500,000

tmmkt 1,400,000

tflow 5,400,000
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Forcing the Right Execution Plan

The second example is the weird behavior exhibited by one query issued by a commercial

off-the-shelf software package. When run against one database, the query takes 4

minutes, returning 40,000 rows. Against another database, running the same version of

the same DBMS, the very same query responds in 11 minutes on comparable hardware

although all tables involved are much smaller. The comparison of execution plans shows

that they are wildly different. Statistics are up-to-date on both databases, and the

optimizer is instructed to use them everywhere. The question immediately becomes one

of how to force the query to take the right execution path on the smaller database. DBAs

are asked to do whatever is in their power to get the same execution plan on both

databases. The vendor’s technical team works closely with the customer’s team to try to

solve the problem.

A stubborn query

Following is the text of the query,* followed by the plan associated to the fastest

execution. Take note that the good plan only accesses indexes, not tables:

select o.id_outstanding,
       ap.cde_portfolio,
       ap.cde_expense,
       ap.branch_code,
       to_char(sum(ap.amt_book_round
          + ap.amt_book_acr_ad – ap.amt_acr_nt_pst)),
       to_char(sum(ap.amt_mnl_bk_adj)),
       o.cde_outstd_typ
from accrual_port ap,
     accrual_cycle ac,
     outstanding o,
     deal d,
     facility f,
     branch b
where ac.id_owner = o.id_outstandng
  and ac.id_acr_cycle = ap.id_owner
  and o.cde_outstd_typ in ('LOAN', 'DCTLN', 'ITRLN',
                           'DEPOS', 'SLOAN', 'REPOL')
  and d.id_deal = o.id_deal
  and d.acct_enabl_ind = 'Y'
  and (o.cde_ob_st_ctg = 'ACTUA'
       or o.id_outstanding in (select id_owner
                               from subledger))
  and o.id_facility = f.id_facility
  and f.branch_code = b.branch_code
  and b.cde_tme_region = 'ZONE2'
group by o.id_outstanding,

* Object names have been slightly changed to protect both the innocent and the culprit.
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         ap.cde_portfolio,
         ap.cde_expense,
         ap.branch_code,
         o.cde_outstd_typ
having sum(ap.amt_book_round
            + ap.amt_book_acr_ad – ap.amt_acr_nt_pst) <> 0
    or (sum(ap.amt_mnl_bk_adj) is not null
        and sum(ap.amt_mnl_bk_adj) <> 0)

Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT Optimizer=CHOOSE
   1    0   FILTER
   2    1     SORT (GROUP BY)
   3    2       FILTER
   4    3         HASH JOIN
   5    4           HASH JOIN
   6    5             HASH JOIN
   7    6               INDEX (FAST FULL SCAN) OF 'XDEAUN08' (UNIQUE)
   8    6               HASH JOIN
   9    8                 NESTED LOOPS
  10    9                   INDEX (FAST FULL SCAN) OF 'XBRNNN02' (NON-UNIQUE)
  11    9                   INDEX (RANGE SCAN) OF 'XFACNN05' (NON-UNIQUE)
  12    8                 INDEX (FAST FULL SCAN) OF 'XOSTNN06' (NON-UNIQUE)
  13    5             INDEX (FAST FULL SCAN) OF 'XACCNN05' (NON-UNIQUE)
  14    4           INDEX (FAST FULL SCAN) OF 'XAPONN05' (NON-UNIQUE)
  15    3         INDEX (SKIP SCAN) OF 'XBSGNN03' (NON-UNIQUE)

The addition of indexes to the smaller database leads nowhere. Existing indexes were

initially identical on both databases, and creating different indexes on the smaller

database brings no change to the execution plan. Three weeks after the problem was

first spotted, attention is now turning to disk striping, without much hope. Constraining

optimizer directives are beginning to look unpleasantly like the only escape route.

Before using directives, it is wise to have a fair idea of the right angle of attack. Finding

the proper angle, as you have seen in Chapters 4 and 6, requires an assessment of the

relative precision of the various input criteria, even though in this case the reasonably

large result set (of some 40,000 rows on the larger database and a little over 3,000 on

the smaller database) gives us little hope of seeing one criterion coming forward as the

key criterion.

Study of search criteria

When we use as the only criterion the condition on what looks like a time zone, the

query returns 17% more rows than with all filtering conditions put together, but it does

it blazingly fast:

SQL> select count(*) "FAC"
  2 from outstanding
  3 where id_facility in (select f.id_facility
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  4  from facility f,
  5 branch b
  6 where f.branch_code = b.branch_code
  7 and b.cde_tme_region = 'ZONE2');

       FAC
----------
     55797

Elapsed: 00:00:00.66

The flag condition alone filters three times our number of rows, but it does it very fast,

too:

SQL> select count(*) "DEA"
  2  from outstanding
  3 where id_deal in (select id_deal
  4 from deal
  5 where acct_enabl_ind = 'Y');

       DEA
----------
    123970

Elapsed: 00:00:00.63

What about our or condition on the outstanding table? Following are the results from that

condition:

SQL> select count(*) "ACTUA/SUBLEDGER"
  2 from outstanding
  3 where (cde_ob_st_ctg = 'ACTUA'
  4 or id_outstanding in (select id_owner
  5 from subledger));

ACTUA/SUBLEDGER
---------------
          32757

Elapsed: 00:15:00.64

Looking at these results, it is clear that we have pinpointed the problem. This or condition

causes a huge increase in the query’s execution time.

The execution plan for the preceding query shows only index accesses:

Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT Optimizer=CHOOSE
   1    0   SORT (AGGREGATE)
   2    1     FILTER
   3    2       INDEX (FAST FULL SCAN) OF 'XOSTNN06' (NON-UNIQUE)
   4    2       INDEX (SKIP SCAN) OF 'XBSGNN03' (NON-UNIQUE)
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Notice that both index accesses are not exactly the usual type of index descent; there is

no need to get into arcane details here, but a FAST FULL SCAN is in fact the choice of using

the smaller index rather than the larger associated table to perform a scan, and the choice

of a SKIP SCAN comes from a similar evaluation by the optimizer. In other words, the

choice of the access method is not exactly driven by the evidence of an excellent path,

but proceeds from a kind of “by and large, it should be better” optimizer assessment. If

the execution time is to be believed, a SKIP SCAN is not the best of choices.

Let’s have a look at the indexes on outstanding (the numbers of distinct index keys and

distinct column values are estimates, which accounts for the slightly inconsistent figures).

Indexes in bold are the indexes that appear in the execution plan:

INDEX_NAME             DIST KEYS COLUMN_NAME        DIST VAL
--------------------- ---------- ------------------ --------
XOSTNC03                   25378 ID_DEAL                1253
                                 ID_FACILITY            1507
XOSTNN05                  134875 ID_OUTSTANDING       126657
                                 ID_DEAL                1253
                                 IND_AUTO_EXTND            2
                                 CDE_OUTSTD_TYP            5
                                 ID_FACILITY            1507
                                 UID_REC_CREATE          161
                                 NME_ALIAS            126657
XOSTNN06                         ID_OUTSTANDING       126657
                                 CDE_OUTSTD_TYP            5
                                 ID_DEAL                1253
                                 CDE_OB_ST_CTG             3
                                 ID_FACILITY            1507
XOSTUN01 (U)              121939 ID_OUTSTANDING       126657
XOSTUN02 (U)              111055 NME_ALIAS            126657

The other index (xbsgnn03) is associated with subledger:

INDEX_NAME             DIST KEYS COLUMN_NAME        DIST VAL
--------------------- ---------- ------------------ --------
XBSGNN03                  101298 BRANCH_CODE               8
                                 CDE_PORTFOLIO             5
                                 CDE_EXPENSE              56
                                 ID_OWNER              52664
                                 CID_CUSTOMER            171
XBSGNN04                   59542 ID_DEAL                4205
                                 ID_FACILITY            4608
                                 ID_OWNER              52664
XBSGNN05                   49694 BRANCH_CODE               8
                                 ID_FACILITY            4608
                                 ID_OWNER              52664
XBSGUC02 (U)              147034 CDE_GL_ACCOUNT            9
                                 CDE_GL_SHTNAME            9
                                 BRANCH_CODE               8
                                 CDE_PORTFOLIO             5
                                 CDE_EXPENSE              56
                                 ID_OWNER              52664
                                 CID_CUSTOMER            171
XBSGUN01 (U)              134581 ID_SUBLEDGER         154362
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As is too often the case with COTS packages, we have here an excellent example of

carpet-indexing.

The indexes on outstanding raise a couple of questions.

• Why does id_outstanding, the primary key of the outstanding table, also appears as the

lead column of two other indexes? This requires some justification, and very persua-

sive justification too. Even if those indexes were built with the purpose of fetching all

values from them and avoiding table access, one might arguably have relegated id_

oustanding to a less prominent position; on the other hand, since few columns seem to

have a high number of distinct values, the very existence of some of the indexes

would need to be reassessed.

• All is not quiet on the subledger front either. One of the most selective values happens

to be id_owner. Why does id_owner appear in 4 of the 5 indexes, but nowhere as the

lead column? Such a situation is surprising for an often referenced selective column.

Incidentally, finding id_owner as the lead column of an index would have been helpful

with our problem query.

Modifying indexes is a delicate business that requires a careful study of all the possible

side-effects. We have here a number of questionable indexes, but we also have an urgent

problem to solve. Let’s therefore refrain from making any changes to the existing indexes

and concentrate on the SQL code.

As the numbers of distinct keys of our unique indexes show, we are not dealing here

with large tables; and in fact the two other criteria we have tried to apply to outstanding

both gave excellent response times, in spite of being rather weak criteria. The pathetic

result we have with the or construct results from an attempt to merge data which was

painfully extracted from the two indexes. Let’s try something else:

SQL> select count(*) "ACTUA/SUBLEDGER"
  2 from (select id_outstanding
  3 from outstanding
  4  where cde_ob_st_ctg = 'ACTUA'
  5 union
  6 select o.id_outstanding
  7 from outstanding o,
  8 subledger sl
  9 where o.id_outstanding = sl.id_owner)
 10  /

ACTUA/SUBLEDGER
---------------
          32757

Elapsed: 00:00:01.82

No change to the indexes, and yet the optimizer suddenly sees the light even if we hit the

table outstanding twice. Execution is much, much faster now.
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Replacing the “problem condition” and slightly reshuffling some of the other remaining

conditions, cause the query to run in 13 seconds where it used to take 4 minutes

(reputedly the “good case”); and only 3.4 seconds on the other database, where it used to

take 11 minutes to return 3,200 rows.

A moral to the story

It is likely that a more careful study and some work at the index level would allow the

query to run considerably faster than 13 seconds. On the other hand, since everybody

appeared to be quite happy with 4 minutes, 13 seconds is probably a good enough

improvement.

What is fascinating in this true story (and many examples in this book are taken from

real life), is how the people involved focused (for several weeks) on the wrong issue.

There was indeed a glaring problem on the smaller database. The comparison of the two

different execution plans led to the immediate conclusion that the execution plan

corresponding to the slower execution was wrong (true) and therefore, implicitly, that

the execution plan corresponding to the faster execution was right (false). This was a

major logical mistake, and it misled several people into concentrating on trying to

reproduce a bad execution plan instead of improving the query.

I must add a final note as a conclusion to the story. Once the query has been rewritten,

the execution plan is still different on the two databases—a situation that, given the

discrepancy of volumes, only proves that the optimizer is doing its job.

The only yardstick of query performance is how long one takes to

run, not whether the execution plan conforms to prejudices.

Using Execution Plans Properly
Execution plans are useful, but mostly to check that the DBMS engine is indeed

proceeding as intended. The report from the field that an execution plan represents is a

great tool to compare what has been realized to the tactics that were planned, and can

reveal tactical flaws or overlooked details.

How Not to Execute a Query

Execution plans can be useful even when one has not the slightest idea about what a proper

execution plan should be. The reason is that, by definition, the execution plan of a problem

query is a bad one, even if it may not look so terrible. Knowing that the plan is bad allows

us to discover ways to improve the query, through the use of one of the most sophisticated

tools of formal logic, the syllogism, an argument with two premises and one conclusion.
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This reasoning is as follows:

(Premise 1) The query is dreadfully slow.

(Premise 2) The execution plan displays mostly one type of action—for example: full

table scans, hash joins, indexed accesses, nested loops, and so forth.

(Conclusion) We should rewrite the query and/or possibly change indexes so as to

suggest something else to the optimizer.

Coaxing the optimizer into taking a totally different course can be achieved through a

number of means:

• When we have few rows returned, it may be a matter of adding one index, or rebuild-

ing a composite index and reversing the order of some of the columns; transforming

uncorrelated subqueries into correlated ones can also be helpful.

• When we have a large number of rows returned we can do the opposite, and use

parentheses and subqueries in the from clause to suggest a different order when joining

tables together.

• In doubt, we have quite a number of options besides transforming correlated sub que-

ries into uncorrelated subqueries and vice versa. We can consider operations such as

factorizing queries with either a union or a with clause. The union of two complex que-

ries can sometimes be transformed into a simpler union inside the from clause. Disentan-

gling conditions (trying to make each condition dependent on as few other conditions

as possible) is often helpful. Generally speaking, trying to remove as much as possible

of whatever imposes a processing order on the query and trying to give as much free-

dom as possible to the optimizer is the very first thing to do before trying to constrain it.

The optimizer must be constrained only when everything else goes wrong.

• As a last resort, we may remember the existence of optimizer directives and use them

very carefully.

Hidden Complexity

Execution plans can also prove to be valuable spies in revealing hidden complexity.

Queries are not always exactly what a superficial inspection shows. The participation of

some database objects in a query can induce additional work that execution plans will

bring to light. These database objects are chiefly:

Views

Queries may look deceivingly simple. But sometimes what appears to be a sim-

ple table may turn out to be a view defined as a very complex query involving

several other views. The names of views may not always be distinctive, and even

when they are, the name by itself cannot give any indication of the complexity

of the view. The execution plan will show what a casual inspection of the SQL

code may have missed, and most importantly, it will also tell you if the same

table is being hit repeatedly.
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Triggers

Changes to the database may take an anomalous time simply because of the

execution of triggers. These may be running very slow code or may even be the

true reason for some locking issues. Triggers are easy to miss, execution plans

will reveal them.

The essential value of execution plans is to provide a starting

point for performance investigations and to reveal the hidden

database operations caused by complex views and triggers.

What Really Matters?
What really matters when trying to improve a query has been discussed in the previous

chapters, namely:

• The number of rows in the tables involved

• The existing indexes on these tables

• Storage peculiarities, such as partitioning, that can have as strong an impact as indexes

on performance

• The quality of the various criteria that were provided

• The size of the resulting set

This information provides us with a solid foundation from which to investigate query

performance, and is far more valuable than an execution plan on its own. Once we know

were we stand, and what we have to fight against, then we can move, and attack tables,

always trying to get rid of unwanted data as quickly as we can. We must always try to

leave as much freedom to the optimizer as we can by avoiding any type of intra-

statement dependencies that would constrain the order in which tables must be visited.

In conclusion, I would like to remind you that optimizers, which usually prove quite

efficient at their job, are unable to work efficiently under the following circumstances:

• If you retrieve data piecemeal through multiple statements. It is one thing for an appli-

cation to issue a series of related SQL statements. However, the SQL engine can never

“know” that such statements are related, and cannot optimize across statement

boundaries. The SQL engine can optimize each individual statement, but it cannot

optimize the overall process.

• If you use, without any care, the numerous non-relational (and sometimes quite use-

ful) features provided by the various SQL dialects.
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Remember that you should apply non-relational features last, when the bulk of data

retrieval is done (in the wider acceptance of retrieval; data must be retrieved before being

updated or deleted). Non-relational features operate on finite sets (in other words,

arrays), not on theoretically infinite relations.

There was a time when you could make a reputation as an SQL expert by identifying

missing indexes and rewriting statements so as to remove functions that were applied to

indexed columns. This time is, for the most part, gone. Most databases are over-indexed,

although sometimes inadequately indexed. Functions applied to indexed columns are still

encountered, but functional indexes provide a “quick fix” to that particular problem.

However, rewriting a poorly performing query usually means more nowadays than

shuffling conditions or merely making cosmetic changes.

The real challenge is more and more to be able to think globally, and to acknowledge that

data handling is critical in a world where the amount of stored data increases even faster

than the performance of the hardware. For better or for worse, data handling spells S-Q-

L. Like all languages, SQL has its idiosyncrasies, its qualities, and numerous flaws. Like all

languages, mastering SQL requires time, experience—and personal talent. I hope that on

that long road this book will prove helpful to you.

Building optimally performing SQL can be a source of great

satisfaction—enjoy!
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All images were scanned from Mémorial de Sainte-Hélène by Comte Emmanuel de Las

Cases, illustrated by Charlet (Ernest Bourdin Editeur, Paris, 1842, two volumes), with the

following exceptions:

• The illustration for Chapter 6 was made out of a map of the battle of Fredericksburg,

found on http://www.sonofthesouth.net, and used with the permission of Paul

McWhorter who runs that very rich site on the American Civil War.

• The illustration for Chapter 9 comes from Notre Armée by de Lonlay, illustrated by the

author (Garnier Frères, Paris, 1890, p. 931).

• The illustration for Chapter 12 comes from Les Guerres de la Révolution by Camille Pel-

letan, Paris, Société d’Éditions d’Art (Collection L.-Henry May, G. Mantoux), no date

[end 19th–beginning 20th century; first published, Paris, Colas, 1884], p.95 (10th

series), coll. Durelle-Marc, and is published courtesy of the Centre d’Histoire du Droit

de l’Université Rennes 1 (http://www.chd.univ-rennes1.fr/Icono/Pelletan/Pelletan.htm).
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Symbols
@@IDENTITY system variable (Transact-

SQL), 235
10% of rows rule of thumb, 103
1NF (first normal form), 8
2NF (second normal form), 9
3NF (third normal form), 4, 9

data warehousing and, 265
5NF (fifth normal form), 5

A
absence of data, result sets predicated

on, 161–166
abstract layers, 202–205
accesses to the database (see database

accesses)
ad hoc queries, 270
addresses, 109, 300–301

atomicity and, 7
adjacency model (SQL trees), 172, 174, 197

aggregating values stored in leaf
nodes, 191

computing head counts at every
level, 192

bottom-up tree walk, 185
top-down walk, 178–182

aggregation
consolidating multiple rows into

one, 282–284
double conversion, using, 302
on dates, 156
by range (bands), 297–299
result sets obtained from, 150–156
in transformations, 268
values from trees, 190–198

propagating percentages across
levels, 194–198

values stored in leaf nodes, 190–194
aggressive coding, 49
analytical functions (Oracle), 52
ANSI SQL query (example), 91
architectural solutions for contention, 242
architecture (global), choice of, 249
archival data

purging, 263
putting into production, 249

archives, location of, 170, 171
array interface, communicating between

program and DBMS kernel, 31
art of SQL, governing factors, 84–88

number of tables, 85
number of users, 88
result set criteria, 84
result set size, 85
total quantity of data, 84

art, science vs., xi
associative table, resolving many-to-many

relationship between tables, 69
asynchronous processing, 22
atomic attributes, 6, 64
atomicity, 5

business requirements and, 7
function applied to a column, 64

attributes
atomic, 6, 64
dealing with varying numbers of, 281
excessive flexibility in, 18
independence of, 9

auto-incremented columns, 235
not using in order to limit

contention, 245
axioms, 3
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B
backup databases, 24
bad SQL queries, 311
bands, aggregating by, 297–299
batch programs, 22

queries returning large amounts of
data, 102

queries satisfied by data from an
index, 111

BCNF (Boyce-Codd normal form), 5
Bill of Materials (BOM) problem, 168
bind variables, 162
bind_param( ) method, 218
binding variables, 294, 296

PHP, 218–222
bitmap indexes, 273
blanket views, performance impact on

queries, 117
blocks, 108

contention for access, 88
locking, 232
minimizing accesses to, 146
pre-joined tables and, 124

BOM (Bill of Materials) problem, 168
book indexes, table of contents vs., 59
Boolean columns, qualifying, 14
bottom-up tree walk, 178, 185–189

adjacency model, 185
materialized path model, 186
nested set model, 188
performance, comparing for various

models, 188
boundaries of ranges, defining well, 262
Boyce-Codd normal form (BCNF), 5
bridge tables, 270
Building the Data Warehouse, 264
business logic, mirrored by SQL

statements, 42
business processes, physical design and, 109
business requirements, 2

atomicity and, 7
database modeling and, 2

business tasks, focusing on, 317–319

C
C# code, 202
cache, SQL engine, 314
cardinality (low), 109
Cartesian joins, 285, 286
case expression, 42
case-insensitive searches with function-

based index, 66

CBOs (cost-based optimizers), 36
Celko, Joe, 172, 176
centralizing data, 23
changing data, concurrency and, 231–246

contention, 240–246
architectural solutions, 242
DBA solutions for, 241
developmental solutions, 243
insertion and, 240
results from measures limiting,

243–246
locking, 232–239

committing and, 236
granularity of, 232
lock handling, 234–236
scalability and, 238

child with multiple parents, 169
classic SQL patterns, 128–166

large result set, 146
nine common situations, listed, 128
result set obtained by aggregation,

150–156
result set predicated on absence of

data, 161–166
self-joins on one table, 147–150
simple or range searching on

dates, 156–161
small intersection of broad criteria,

138–140
small intersection, indirect broad

criteria, 140–145
small result set, direct specific

criteria, 129–137
criterion indexability, 132–137
data dispersion, 130–132
index usability, 129
query efficiency and index

usage, 130
small result set, indirect criteria, 137

client/server environment, database
connections, 30

clustered indexes, 114, 130
drawbacks of, 114

clustering data with partitioning, 120
clustering index, 114
coalesce( ) function, 300
coarse (granularity), 34
Codd, E.F., 76
coding offensively with SQL, 48
columns, 2

auto-incremented, 235
effects on contention, 245

Boolean, qualifying, 14
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locking, 232
rows that should have been, 281–284
single, that should have been something

else, 289–294
that should have been rows, 284–289

comments, identifying programs and critical
modules, 28

commercial off-the-shelf (COTS) software
package, 323

commit statements, 34
committing, locking and, 236
comparisons, 43
complexity

degree for the request, performance
and, 230

introduced by storage options other
than the default, 124

sources of hidden complexity, 329
composite primary keys, 70

order of columns in, 158
concurrency, 226–246

considering in SQL code design, 88
data modifications, 231–246

contention, 240–246
locking, 232–239

database engine as service
provider, 226–231

increasing load revealing
performance problems, 227

indexes, virtues of, 226
data-driven partitioning and, 119
increased, with partitioning, 115

concurrent updates, foreign key indexing
for, 69

conditional logic, 42
conditions

applied at the wrong place, 98
order of evaluation, 89
(see also criteria; filtering conditions)

connect by operator (Oracle), 172, 178, 181
propagating percentages across different

tree levels, 196
substituting materialized path model

for, 189
constraints

implicit, unsoundness of, 17
major impact of, 17
violation of, 50

containers, contention when trying to
access, 241

content lists, indexes and, 59
contention, 88, 240–246

architectural solutions, 242
DBA solutions for, 241
developmental solutions, 243

indexing system-generated primary
keys, 71

insertion and, 240
physical layout of data and, 108
results from measures limiting,

243–246
correctness of data, 6
correlated subqueries, 94, 100

determining when to use, 137
looking for rows with no matching

data, 162
performance effects when processing

huge numbers of rows, 147
testing for existence without other

search criteria, 207
un-correlating, 100, 158
volume increases and, 256–261

corruption of data, 10
(see also data corruption)

cost-based optimizers (CBOs), 36
COTS (commercial off-the-shelf) software

package, 323
counts

redundant, 41, 49, 310
using as test for existence, 163

CPU, excessive use of, 312
CPU-intensive operations, high level of

concurrency for, 88
credit card validation procedures, 200–202
criteria

defining result sets, 84
dynamic search criteria, 208–223
quality of, 330
(see also classic SQL patterns;

conditions; filtering
conditions), 223

current table and historical table, using, 21
(see also tables)

current values, 160
cursor loops, 310
customer, defining, 7

D
data containers, contention when trying to

access, 241
data corruption, 10
data definition language (DDL), 33
data duplication

detection of duplicate primary keys, 50
minimizing with normalization, 10

data entry errors, 6
data flow, 22
data manipulation language (DML), commit

statements, 34
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data manipulation operations, ranking in
terms of overall cost, 263

data modeling, 4, 25
historical data, 19

data pages
accessed by database engine, keeping as

low as possible, 108
number visited by DBMS during a

query, 103
number you are hitting, 312

data purges, 263
data redundancy, 8
data volumes (large), coping with,

248–278
data warehousing, 264–278
increasing volumes, 248–264

partitioning as solution, 262
sensitivity of operations to,

250–261
sudden increase in volume, 309

Data Warehouse Toolkit, The, 264
data warehousing, 264–278

cautions about, 277
data extraction, 268
integrity constraints and indexes, 270
loading data, 269
querying dimensions and facts, 270–273
star transformation, 273

emulating, 274–276
transformation, 268

database access libraries, 202–205
database accesses

maximizing usefulness of, 36
minimizing, 317–319
multiplying, 310

database connections, managing use of, 29
database links, 205

performance and, 205
database optimizers (see optimizers)
databases

conflicting goals in optimizing physical
layout of data, 108

locking entire database, 232
reorganizations of, 132
SQL and, 76–79
structural types, 106–107

data-driven partitioning, 116, 262
concurrency problems and, 119
true partitioning, 118

date arithmetic, 45
date type, 64
dates and times, 64

comparing dates, 43
partitioning, 262

partitioning historical data tables by
date, 116

simple or range searching on
dates, 156–161

datetime type, 64
DB2

call to get new sequence value, 236
clustering index, 114
range-clustering, 118
recursive with statement, 172, 179

DBA (database administrator), solutions to
contention, 241, 244

DBMS
closeness to kernel, 37–40
partition, different meanings of, 115

dbms_application_info package (Oracle), 28
DDL (data definition language), 33
decision support systems (DSS)

interaction with production
databases, 265

query tools, 266
(see also data warehousing)

declarative language, 79
declarative processing, procedural vs., 35
decode( ) function, 42
delete operations, 263

against a database, 34
ranking in terms of overall cost, 263

denormalization, 20
caused by ready-made solutions, 32

dependencies, analyzing, 8–11
Boolean columns, 14
checking attribute independence, 9
checking dependence on whole key, 8
data replications and, 13

depth, hierarchical data, 169, 179, 294
design

irredeemable failure caused by, 249
performance and, 21

developmental solutions to contention, 243
dimension tables, 265

joining dimensions to fact tables, 273
querying, 270

dimensional modeling, 265
caution with, 277
facts and dimensions, 265
querying dimensions and facts, 270–273
SQL implications, 270
(see also data warehousing)

directives to the optimizer, 144–145, 305, 329
disk addresses, indexes referring to, 80
distinct, 91

avoiding at the top level, 93
implicit, 95
regular join with, 137
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distributed systems, 205–208
DML (data manipulation language), commit

statements, 34
double conversion, 302, 303
DSS (see decision support systems)
duplicate data

detection of duplicate primary keys, 50
minimizing with normalization, 10

duration, determining without dedicated
interval data type, 66

dynamic queries, 117, 309
dynamic search criteria, 208–223

defining movie database and main
query, 209–216

mistakes common in queries with, 223
redesigning main query to fit criteria

tightly, 216
wrapping SQL in PHP, 217–222

E
efficiency

of filtering conditions, 84, 90
of searches, descriptions and, 6
use of SQL, x
(see also performance)

ELSE logic, obtaining, 42
encapsulation of database accesses, how not

to, 202–205
entry points, identifying, 56–59
errors, data entry, 6
evaluating filtering conditions, 90–98
evolutionary database model, 107
except operator, 163, 164
exception handling

cost of, 52
forcing use of procedural logic, 53

exceptions, judicious use of, 50–53
excessive flexibility, dangers of, 18
execution plans, 319–330

forcing the right plan, 323–328
identifying the fastest, 320–322
using properly, 328–330

existence test, 93
correlated subquery without other

search criteria, 207
within subquery, 95

explain command, 142
explode( ) operator, 169
exploding a materialized path, 293
explosion of links, 193
expressions, complex SQL expressions, 88
extending DBMS products, 37
extraction of data, 268

F
fact dimension, 281
fact tables, 265

joining to dimensions, 273
querying, 270
querying star schema through, 276

federated systems, 205
fifth normal form (5NF), 5
filtering conditions, 84, 89–103

dynamically concatenated, 216
evaluation of, 90–98
large quantities of data, 98–102
meaning of, 89
proportions of retrieved data, 103
queries returning a few rows from

direct, specific criteria, 129
financial structures, risk exposure

calculations, 170
fine (granularity), 34
first normal form (1NF), 8
fixed, inflexible database model, 106
flexibility (excessive), dangers of, 18
foreign keys, 17

indexes and, 67–69
integrity constraint in master/detail

relationship, 169
multiple indexing of the same

columns, 69
referencing underlying tables in

partitioned view, 117
(see also primary keys)

free lists, 242
from clauses

nested queries in, 144
uncorrelated subqueries rewritten as

inline views, 96
uncorrelated subquery in, 138

full table scans, 135, 146
indexes vs., 109
on tables expected to grow, 102

functions
added to DBMS products, 37
aggregate, 150–156
built-in, advantages over external

functions, 37
indexes with, 62–66, 129

appropriate use of, 66
implicit conversions and, 64

OLAP, operating on sliding
windows, 149–150

user-defined, 44, 146
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G
global architecture, choice of, 249
good performance, defining, 311–317

checking against standards, 315–316
knowing what you get, 312–314
knowing what you spend, 312
performance goals, 316

granularity, 34
of locking, 232, 239
required by decision support

systems, 268
table of contents vs. index, 59

greatest( ) function, 43
group by clauses

filtering and, 99
use in aggregate statements, 156

H
hardcoding, 203, 310
hardware

balancing programming mistakes with
power, 248

failures of, 24
hash indexes, 72
hash joins, 140, 147, 164, 262, 272
hash-partitioning, 118
having clause

filtering after group by clause, 99
use in aggregate statements, 155

head counts, modeling, 190
computing head counts at every

level, 192–194
heap-organized table, index-organized table

vs., 112
hierarchical data

depth (see depth, hierarchical data)
practical example of hierarchies, 170
suggested explode( ) operator, 169
walking a tree in SQL, 177–189

aggregating values from trees,
190–198

bottom-up walk, 185–189
top-down walk, 178–185

walking hierarchies, 173
hierarchical databases, 168
hierarchical ordering of tables with IOTs and

clustered indexes, 114
hints to the optimizer, 144–145
historical data, 156–161

current values, obtaining, 160
design of tables storing, 157

difficulties of working with, 19–21
many historical values per item, 160
many items with few historical

values, 157
partitioning tables by date, 116

historical table, using, 21
(see also tables)

host language, SQL statements embedded
in, 42

hot spot in an index tree, 72

I
I/Os (increased), relieving over-worked

CPUs, 88
implicit constraints on data, 17
implicit rules, 13
implicit type conversions, 129

indexes and, 64
inconsistency of data, 10, 13
incorrect results, difficulty of spotting, 93
increasing data volumes (see large data

volumes, coping with)
indeterminate condition, 11
index range scan, 64
indexes, 330

adding to DMBS to tune it, 248
bitmap, 273
clustered vs. non-clustered index

performance, 114
completing queries with data returned

from, 146
content lists and, 59
contention within, improving, 244
correlated subqueries and, 94
costs of, 56
costs of maintaining, 108
as data repositories, 109–113

full table scans vs., 109
storing maximum data possible, 110

data access at atomic level of
granularity, 60

data loading and, 270
data warehousing, 276
defining row order in tables, 114
dimension tables, 271
dimensional model, 277
finding physical location of a row, 62
foreign keys and, 67–69
with functions, 62–66, 129

appropriate situations for use, 66
implicit conversions and, 64

maintenance costs, 57
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making them work, 60
location of rows associated with

index key, 61
multiple indexing of a column, 69
necessity of using, despite costs, 59
optimizer and, 79
partitioning, 115
performance and, 309
physical design of, 109
production database tuning and, 22
proportions of retrieved data, 103
queries returning small result set from

very specific criteria, 129–137
criterion indexability, 132–137
data dispersion, 130–132
index usability, 129
query efficiency and index

usage, 130
reference to disk addresses, 80
reverse, 71

solving contention problems, 243
searching, 92
system-generated keys, 70
temporary tables, 34
transactional databases, 59
variability of accesses, 72
virtues of, 226

index-organized tables (IOTs), 112
drawbacks of, 114
forcing row ordering, 113
solving contention problems with, 243

indirect criterion, 140
ingredients, identifying, 170

names and proportions in various
products, 195–198

inline views, 135
rewriting uncorrelated subqueries

as, 96
rewriting uncorrelated subqueries as

joins in, 101
Inmon, Bill, 264
inner queries, 94
input, primitive, 130
insensitivity to volume increases, 250
insert statements

dynamic, built for varying table
names, 117

returning ... into ... clause, 236
insertion rates

obtained with contention-limiting
measures, 243

regular table vs. index-organized
table, 112

insertions
contention and, 240
into referencing tables, preventing, 68
ranking in terms of overall cost, 263

integrity checking, taken out of DBMS
kernel, 117

integrity constraints
data loading and, 270
foreign key constraint in master/detail

relationship, 169
partitioned view and, 117
validation performed through, 206

inter-process communications, caused by use
of procedural logic, 35

inter-process database link, 205
intersect operator, 164
intersection of result sets

final result set, small intersection of
broad criteria, 138–140

intermediate result sets, 85
interval data type, 66
IOTs (see index-organized tables)
IP address database link, 205

J
joins

Cartesian, 285, 286
delaying till query end, 254–256
filtering conditions, 89, 92
older join syntax, 92
overlooked join condition, hidden by

distinct, 93
pattern of, deciding factor, 93
performance and, 266
pre-joining tables, 123
problems with, 86
regular join with a distinct, 137
rewriting uncorrelated subqueries as

joins in inline views, 101
self-joins on one table, 147–150
of two remote tables, 208
unions of complex joins, 98
(see also hash joins; nested loops)

K
Kent, William, 147
key values (index), querying indexes

without full key, 110
Kimball, Ralph, 264
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L
lag( ) OLAP function, 150
large data volumes, coping with, 248–278

data warehousing, 264–278
increasing volumes, 248–264

partitioning as solution, 262
sensitivity of operations to,

250–261
sudden increase in volume, 309

last_insert_id( ) (MySQL), 235
latching, 88

(see also locking)
LDAP (Lightweight Directory Access

Protocol), 168
leading bytes, using for index queries, 110
leaf nodes, 168

aggregation of values stored in, 190–194
computing head counts at all

levels, 192–194
modeling head counts, 190

least( ) function, 43
legacy system data, 248

putting into production, 249
levels in trees, 171
Lightweight Directory Access Protocol

(LDAP), 168
like operator, 201
limitation criteria, 80
linear sensitivity to data volume

increases, 251
linked server, 205
listener program, contacting in database

connections, 30
list-partitioning, 119
lists

content lists, indexes and, 59
querying a list variable, 294–297
selecting rows matching several

items, 301–303
load, 310

database load, main indicators of, 312
increase in server load, 316
relating to execution of SQL

statements, 313
loading data, 269
locking, 88, 232–239

causing sudden localized slowness, 309
committing and, 236
granularity of, 232
lock handling, 234–236
scalability and, 238

logic, programming into queries, 42

loop-back database link, 205
loops, 42

not executing queries in, 227
SQL statements executed in, 314

low cardinality, 109

M
many-to-many relationship resolving

between two tables, 69
master/detail relationships, 168
matching, finding the best match, 304
materialized path model (SQL trees), 172,

175
aggregating values stored in leaf

nodes, 191
computing head counts at every

level, 193
bottom-up tree walk, 186
path explosion, 293
substituting for connect by or recursive

with, 189
top-down walk, 182–183

materialized views, 33
pre-joining vs., 123

measurement values, storage of, 265
memory

addresses for data storage, 109
corrupting by mishandling pointers, 37

merge statement, Oracle 9i, 41
merge table (MySQL), 116
meta-design, 281
mini-dimensions, 270
modeling, 4

head counts, 190
computing at every level, 192–194

(see also data modeling; dimensional
model; relational model)

modifying data (see changing data,
concurrency and)

modularity, database programming and, 45
monitoring performance, 308–331

defining good performance, 311–317
checking against standards,

315–316
defining performance goals, 316
knowing what you get, 312–314
knowing what you spend, 312

execution plans, 319–330
forcing the right plan, 323–328
identifying the fastest, 320–322
using properly, 328–330

server load, 310
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slow database, 308–310
statements currently being executed, 42
thinking in business tasks, 317–319
what really matters in improving

queries, 330
“more-flexible-than-thou” construct, 18
movie database, 209–223

designing database and main search
query, 209–216

redesigning main search query for tight
fit, 216

wrapping SQL in PHP, 217–222
MySQL

last_insert_id( ), 235
merge table, 116
PHP, using with, 209

N
nested “containers”, 170
nested interval model (SQL trees), 173
nested loops, 24, 140, 142, 144
nested queries, 135

in from clause, 144
nested set model (SQL trees), 172, 176–177

aggregating values stored in leaf
nodes, 190

bottom-up tree walk, 188
top-down walk, 183

network problems, 308
insufficient speed or bandwidth, 310

“next value to use” table, 235
nine situations, 128

(see also classic SQL patterns)
nodes

relational view of a tree, 169
tree representing a hierarchy, 168
(see also leaf nodes)

non-linear sensitivity to data volume
increases, 251–254

non-relational layer of SQL
applying last, 331
limiting thickness of, 256
OLAP functions, 159

normalization, 4–11
atomicity, 5
checking attribute independence, 9
checking dependence on the whole

key, 8
data warehousing and 3NF design, 265
ensuring atomicity, 5

not exists ( ), using with a correlated
subquery, 162

not in ( ), using with uncorrelated
subquery, 161, 165, 166

null returns, 85
null values, 11–14, 166

indicating need for subtypes, 16
numerical values, comparing, 43

O
object-oriented (OO) practice, relational

database processing vs., 37
offensive coding with SQL, 48
OLAP functions

current value for an item at a given
date, 159

operating on sliding windows, 149–150
row_number( ), 180

“one size fits all” philosophy, 223
online analytical processing (OLAP),

DB2, 52
online transaction processing (OLTP), 22
operating mode, 22
operating systems, contention issues

and, 108
operational data stores, 265
operations (data manipulation), ranking in

terms of overall cost, 263
operations, sensitivity to data volume

increases, 250–261
disentangling subqueries, 256–261
insensitivity to, 250
linear sensitivity to, 251
non-linear sensitivity to, 251–254

optimistic concurrency control method, 49
optimizers, 77, 79

causing to take a different course, 329
checking execution plan, 142
circumstances not allowing efficient

working of, 330
data distributions and, 161
directives, 305
directives or hints to, 144–145
heterogeneous, on distributed

systems, 207
join filtering conditions and, 89
joins and filtering conditions, 92
limits of, 83
queries and, 79
rewriting of queries, 98
views and, 87
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Oracle
connect by operator, 172, 178, 181

propagating percentages across tree
levels, 196

substituting materialized path
model for, 189

dbms_application_info package, 28
rownums, 80, 87
tablespace referred to as a partition, 115

Oracle 9i Database, merge statement, 41
order of evaluation, filtering conditions, 89
ordering criteria, 80
ordering information, relations vs., 81

(see also sorts)
orders/order_detail relationship, 168
outer joins

expressing nonexistence with, 165
using in dynamically defined search

query, 216
outer queries, 94
outriggers, 270

P
pages, 108

locking, 232
pre-joined tables and, 124

parallelism
adjusting to solve contention

problems, 243
increased, with partitioning, 115
processing very large volumes of

information, 147
parallelized queries, 207
parent/child link, master/detail relationship

vs., 168
parents, multiple, 169
Parkinson’s Law, 310
partition clause, 149
partition key, 118
partition pruning, 118
partitioned view, 116
partitioning, 115–123, 330

archival and data purges, 263
data distribution and, 120
data-driven, 116
determining best way to partition

data, 121–123
methods of, 118
round-robin, 116
scattering or clustering data, 119
solution for contention, 242
solving data volume problems, 262

partitions, 130
varying meanings among DBMS

systems, 115
Pascal, Fabian, 169
patterns (see classic SQL patterns)
percentages, propagating across different tree

levels, 194–198
performance

bottom-up tree walk, comparing for
various models, 188

clustered vs. non-clustered indexes, 114
committing and, 237
computing head counts from

aggregation of information in
leaf nodes, 194

costs of excess flexibility, 18
database connections, minimizing, 29
database engine, hardware, and I/O

subsystems, 230
database links, costs of, 205
design and, 21
improving queries, what really

matters, 330
joins and, 266
monitoring (see monitoring

performance)
non-relational layer of queries, 82
procedural logic and, 36
request complexity and, 230
results from contention-limiting

measures, 243–246
solving problems with, 280–306

aggregating by range (bands),
297–299

columns that should have been
rows, 284–289

columns that should have been
something else, 289–294

finding the best match, 304
optimizer directives, 305
querying a list variable, 294–297
rows that should have been

columns, 281–284
selecting rows matching several list

items, 301–303
superseding a general case, 299–301

statements arriving faster than they are
serviced, 231

top-down query, comparing various
models, 184

transparent references to remote
data, 23

tuning vs., x
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persistency layers, abstract, 202–205
PHP, 209

wrapping SQL in, 217–222
physical layout of data

conflicting goals in optimization
attempts, 108

forcing row ordering, 113
index performance and, 130–132
indexes as data repositories, 109–113
partitioning, 115–123

best way to partition,
determining, 121–123

data distribution and, 120
scattering or clustering data, 119

pre-joining tables, 123
process requirements and physical

design, 109
sacrificing simplicity with strong

structuring, 124
pivot operator, 288
pivot tables

binding a list, 303
creating, 285
multiplying rows, 286
passing list of values as single string to a

statement, 294–297
using values, 286

place-holders (bind variables), 162
pointers, manipulation of, 37
Practical Issues in Database Management, 169
primary key index

clustering index, using as, 114
insertion rate for IOT vs. regular

table, 112
limiting contention within, 245

primary keys
composite, 70

order of columns, 158
defining, 7
detection of duplicates, 50
indexing of, 59
subtype relationships, 16
system-generated, indexing of, 70
values in operational database vs.

dimension identifiers, 269
whole key dependence and, 8
(see also foreign keys)

primitive input, 130
principles, 3
probabilistic basis, coding on, 48
problems, defining before solution, 32
procedural logic

achieving in database applications, 42
exception handling and, 53
in SQL, reasons for shunning, 35

procedural processes within a business,
paying too much attention to, 31

procedural processing, declarative vs., 35
processes

contention between (see contention)
physical database layout and, 35
spawned by listener in database

connections, 30
processing flow, 22
production databases, 265
program variable for sequence value, 236
purging data, 263

Q
queries, 3, 76–103

answered by returning index data, 110
blanket views, performance impact

of, 117
complex, and complex views, 86
distributed, 206
distributed and parallelized, 207
dynamic, 309

for variable number of search
criteria, 214–216

mistakes commonly made in, 223
estimating behavior with increased data

volumes, 254
expression of, association with implicit

assumptions about data, 98
functionally equivalent, comparison to

synonyms, 96
identifying, 28
improving, what really matters, 330
limits of the optimizer, 83
making as fast as possible, 108
nested, 135
non-relational aspects of, 81
number of data page hits by DBMS

during performance of, 103
order of evaluation of conditions, 90
performance, whole key dependence

and, 9
programming logic into, 42
relational component, 80
relational layer, doing maximum work

in, 82
returning a very large amount of

data, 102
rewriting by the optimizer, 98
size of result set, 85
SQL expression of, 77
tuning, 22
various layers of, 78

query tools, 266
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R
random numbers, using instead of system-

generated values, 243, 244
range scans, 130

on clustered data, 113
converting variable-length comparison

to common case, 200–202
reverse indexes and, 71
simple or range searching on

dates, 156–161
range-clustering (DB2), 118
range-partitioning, 118
ranges

aggregating by range (bands), 297–299
importance of well-defined

boundaries, 262
ranking functions (SQL Server), 52
recovering databases, 24
recursive with statement, 172, 179

adjacency model, top-down tree
walk, 180

propagating percentages across different
tree levels, 196

substituting materialized path model
for, 189

redundant data, 8
reference data in dimension tables, 265
referencing tables, preventing insertions

into, 68
relational databases, 76

hierarchical databases vs., 114
processing, confusing with object-

oriented methods, 37
SQL and, 76

relational model, 2
coherence of, 3
flexibility of, sacrificing by strongly

structured data, 125
two-valued logic, 11
view of a tree, 169

relational operations, reporting requirements
vs., 78

relational theory, 77
relations, 3

associating large numbers of possible
characteristics in, 11

ordering information vs., 81
remote data

querying, 24
transparent references to, 23

remote data sources, 205–208
remote validation checks, 206
reorganizations of databases, 132

reporting requirements, 77
request type, partitioning by, 122
requirements, evolution of, 10
response times, 147

(see also performance)
result sets

criteria defining, 84
difficulty of spotting incorrect data, 93
filtering conditions, 89–103

evaluation of, 90–98
large quantities of data, 98–102
meaning of, 89
proportions of retrieved data, 103

large, 146
obtained by aggregation, 150–156
predicated on absence of data,

161–166
size of, 85, 330
small intersection of broad criteria,

138–140
small intersection, indirect broad

criteria, 140–145
small result set, indirect criteria, 137
small, from direct, specific criteria,

129–137
retrieval ratios, 60
returning ... into ... clause, 236
reverse indexes, 71

solving contention problems, 243
right-padding function (rpad( )), 202
risk exposure in a financial structure, 170
round-robin partitioning, 116
row_number( ) OLAP function, 149, 159,

180
rownums (Oracle), 80, 87
rows, 330

associated with index key, physical
closeness of, 61

columns that should have been
rows, 284–289

emptying a table of all rows, 33
locking, 232, 238
matching several list items,

selecting, 301–303
ordering of, forcing, 113
physical location, finding with an

index, 62
primary key, defining, 7
proportions of retrieved data, 103
that should have been columns,

281–284
updating and inserting, dedicated

statements for, 41
rpad( ) function (right-padding), 202



I N D E X 347

S
scalability, locking and, 238
scattering data with partitioning, 120
schemas

classical order schema, 91
movie database (example), 210
(see also star schema)

science, art vs., xi
searches

dynamically defined criteria, 208–223
designing movie database and main

query, 209–216
mistakes common in queries, 223
redesigning query for tight fit with

criteria, 216
wrapping SQL in PHP, 217–222

efficiency, descriptions and, 6
second normal form (2NF), 9
select distinct queries, 9
select operator, filtering conditions, 89
selectivity of an index, 61
self-joins, 147, 282

performance and, 282, 284
semantic inconsistency, 13
sensitivity of operations to volume

increases, 250–261
disentangling subqueries, 256–261
insensitivity to, 250
linear sensitivity to, 251
non-linear sensitivity to, 251–254

sequences
call to database for new value, 236
not using in order to limit

contention, 245
server load, 310

increase in, 316
servers, 205
set operators, 163–165

assembling data from several
sources, 268

getting rid of unwanted data quickly, 98
sets

nested set model, SQL trees, 172,
176–177

bottom-up walk, 188
top-down walk, 183

processing in SQL, 34
relational theory and, 78

slow database, 308–310
it’s not the database, 308
particularly slow query, 309
slow performance degradation reaching

a threshold, 309

sudden global sluggishness, 308
sudden localized slowness, 309

snapshots, 33, 314
solutions (ready-made), problems caused

by, 32
sorts, 80

volume increases and, 251–253
delaying joins to end of query,

254–256
spreading data across many servers, 23
SQL

art of, governing factors, 84–88
number of tables, 85
number of users, 88
result set criteria, 84
result set size, 85
total quantity of data, 84

classic patterns (see classic SQL
patterns)

efficient use of, x
general characteristics of, 76–83

relational and non-relational
aspects, 80

SQL and databases, 76–79
SQL and the optimizer, 79

wrapping in PHP, 217–222
SQL Communication Area (SQLCA), 41
SQL engine cache, 314
SQL Server

clustered index, 114
pivot and unpivot operators, 288
recursive with statement, 172

star schema, 265
querying tables, 271
querying through facts and

dimensions, 276
star transformation, 273

emulating, 274–276
statements

action-packed, 35
first questions to consider when

writing, 90
mirroring business logic, 42
relating load to execution of, 313
succinct, 46

statistical functions, 77
statistics, automated collection of, 34
status, partitioning by, 122
storage

options other than default, introducing
complexity with, 124

peculiarities in, 330
temporary, 82

stored procedures, 10, 310
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strategy, defining tactics with, 31
strings

comparing, 43
extracting individual characters and

returning them on separate
rows, 290–293

structural types, databases, 106–107
subqueries

correlated or uncorrelated, deciding
between, 137

sensitivity of operations to data volume
increases, 254

use in processing massive numbers of
rows, 147

value of an item on a given date, 157
where clauses, 84
(see also correlated subqueries;

uncorrelated subqueries)
subtypes, 15

defining to deal with varying numbers
of attributes, 281

succinct statements, 46
summary tables, pre-joining vs., 123
Sybase, clustered index, 114
syllogisms, 328
synchronization of databases after

recovery, 25
synchronous processing, 22
synonyms, comparison to functionally

equivalent queries, 96
system

changes in, causing sudden global
slowness, 309

complexity of, 24
database connections, 30
distributed, 205–208
tuning, 21

system-generated keys, 70
system-generated values, 235

not using in order to prevent
contention, 243, 244

T
table of contents, index vs., 59
tables, 2

current table and historical table, using,
21

enabling data retrieval as with table of
contents, 60

forcing row ordering, 113
improving contention within

indexes, 244
index-organized table (IOT), 112

locking, 232, 238
number involved in a query, 85
partitioning, 115
physical design of, 109
pre-joining, 123
remote, joins, 208
single table in hierarchical tree

structure, 168
tables that are views, 106
valuation, 19–21

tablespace (Oracle), referred to as a
partition, 115

tactics, defined by strategy, 31
target volumes for database systems, 249
temporary storage, 82
temporary tables, 264

disadvantages of using, 34
third normal form (3NF), 4, 9

data warehousing and, 265
threads spawned by listener in database

connections, 30
three-valued logic (implied by nulls), 12
“tight-fit” query, 216
time information, 64
timestamps, 148

reverse indexing and, 72
top-down tree walk, 178–185

adjacency model, 178–182
aggregating values stored in leaf

nodes, 190
materialized path model, 182–183
nested set model, 183
performance for various models, 184

transaction space, 242
transactional databases

indexes, 109
indexing requirements, 59

transactions
good practices in, 234
across heterogeneous systems, 206
locking and committing, 236

Transact-SQL, @@IDENTITY system
variable, 235

transformations, 268
mathematical equivalence of, 83
star transformation, 273

emulating, 274–276
transparent references to remote data, 23
tree structures, 168–171

aggregating values from trees, 190–198
propagating percentages across

levels, 194–198
values stored in leaf nodes,

190–194
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hierarchies, practical examples of, 170
of indexes, 62
master/detail relationships vs., 168
materialized path model,

exploding, 293
practical implementation of trees,

174–177
adjacency model, 174
materialized path model, 175
nested set model, 176–177

representing trees in SQL
database, 172–174

walking a tree in SQL, 177–189
bottom-up walk, 185–189
top-down walk, 178–185

triggers, 10, 330
index maintenance costs vs., 58

Tropashko, Vadim, 173
truncate operations, 33

delete vs., 263
truths, 3

freedom in the choice of, 4
tuning, 21

adding indexes, 248
performance vs., x

two-valued logic, 11
types

implicit conversions, 129
partitioning by, 122

U
uncorrelated subqueries, 94, 158

in classic style or in from clause, 138
not in ( ), using with, 162
rewriting as a join in an inline

view, 101
rewriting as inline views in from

clause, 96
sensitivity of operations to data volume

increase, 254
testing for existence without other

search criteria, 207
union operator, 164

querying large quantities of data, 98
unions

of complex joins, 98
of intermediate result sets, 85
overhead of querying large union

view, 117
partitioned tables, 116

uniqueness, enforcement of, 50, 117
unnecessary coding, avoiding, 41
unpivot operator, 288

update statement, returning ... into ...
clause, 236

updates
against a database, 34
combining multiple into one, 43
concurrent

foreign key indexing, 69
costly massive updates, 314
locking and scalability, 238
making as fast as possible, 108
multiple massive updates to a table, 268
optimistic concurrency control, 49
ranking in terms of overall cost, 263
(see changing data, concurrency and)

useless queries, 310
user-defined functions, 44, 146
users

not complaining about
performance, 315

number of, concurrency and, 88
perception of performance

improvement, 316

V
valuation, 19
valuation tables, 19–21
variable number of search criteria, mistakes

in queries containing, 223
variables, binding, 294, 296

PHP, 218–222
views, 3, 329

complex, 86
partitioned view, 116
tables as, 106
where clauses, 84

volume of data (see large data volumes,
coping with)

W
warehousing data (see data warehousing)
where clauses

in aggregate statements, 156
atomic attributes, 6, 64
filtering conditions, 84, 89
filtering conditions independent of the

aggregate, 99
join operator, 89
two-valued logic, 11

with statement, recursive (see recursive with
statement)

X
XML, 168, 290
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