[image: The Art of SQL]
The Art of SQL

Stephane Faroult

Peter Robson

[image: image with no caption]

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Dedication

The French humorist Alphonse Allais (1854–1905), once dedicated one
 of his short stories as follows:
To the only woman I love and who knows it well.

... with the following footnote:
This is a very convenient dedication that I cannot recommend too
 warmly to my fellow writers. It costs nothing, and can, all at once,
 please five or six persons.
I can take a piece of wise advice when I meet one.
—STÉPHANE FAROULT

Special Upgrade Offer

If you purchased this ebook directly from oreilly.com, you have the following benefits:
	DRM-free ebooks—use your ebooks across devices without restrictions or limitations

	Multiple formats—use on your laptop, tablet, or phone

	Lifetime access, with free updates

	Dropbox syncing—your files, anywhere

If you purchased this ebook from another retailer, you can upgrade your ebook to take advantage of all these benefits for just $4.99. Click here to access your ebook upgrade.
Please note that upgrade offers are not available from sample content.
Preface

There used to be a time when what is known today as
 “Information Technology” or IT was less glamorously known as
 “Electronic Data Processing.” And the truth is that for all the buzz about
 trendy techniques, the processing of data is still at the core of our
 systems—and all the more as the volume of data under management seems to
 be increasing even faster than the speed of processors. The most vital
 corporate data is today stored in databases and accessed through the
 imperfect, but widely known, SQL language—a combination that had begun to
 gain acceptance in the pinstriped circles at the beginning of the 1980s
 and has since wiped out the competition.
You can hardly interview a young developer today who doesn’t claim a
 good working knowledge of SQL, the lingua franca of database access, a
 standard part of any basic IT course. This claim is usually reasonably
 true, if you define knowledge as the ability to obtain, after some effort,
 functionally correct results. However, enterprises all over the world are
 today confronted with exploding volumes of data. As a result,
 “functionally correct” results are no longer enough: they also have to be
 fast. Database performance has become a major headache in many companies.
 Interestingly, although everyone agrees that the source of performance
 issues lies in the code, it seems accepted everywhere that the first
 concern of developers should be to provide code that works—which seems to
 be a reasonable expectation. The thought seems to be that the database
 access part of their code should be as simple as possible, for maintenance
 reasons, and that “bad SQL” should be given to senior database
 administrators (DBAs) to tweak and make run faster, with the help of a few
 magic database parameters. And if such tweaking isn’t enough, then it
 seems that upgrading the hardware is the proper course to take.
It is quite often that what appears to be the common-sense and safe
 approach ends up being extremely harmful. Writing inefficient code and
 relying on experts for tuning the “bad SQL” is actually sweeping the dirt
 under the carpet. In my view, the first ones to be concerned with
 performance should be developers, and I see SQL issues as something
 encompassing much more than the proper writing of a few queries.
 Performance seen from a developer’s perspective is something profoundly
 different from “tuning,” as practiced by DBAs. A database administrator
 tries to get the most out of a system—a given hardware, processors and
 storage subsystem, or a given version of the database. A database
 administrator may have some SQL skills and be able to tune an especially
 poorly performing statement. But developers are writing code that may well
 run for 5 to 10 years, surviving several major releases (Internet-enabled,
 ready-for-the-grid, you name it) of the Database Management System (DBMS)
 it was written for—and on several generations of hardware. Your code must
 be fast and sound from the start. It is a sorry assessment to make but if
 many developers “know” SQL, very few have a sound understanding of this
 language and of the relational theory.
Why Another SQL Book?

There are three main types of SQL books: books that teach the
 logic and the syntax of a particular SQL dialect, books that teach
 advanced techniques and take a problem-solving approach, and performance
 and tuning books that target experts and senior DBAs. On one hand, books
 show how to write SQL code. On the other hand, they show how to diagnose
 and fix SQL code that has been badly written. I have tried, in this
 book, to teach people who are no longer novices how to write
 good SQL code from the start and, most importantly,
 to have a view of SQL code that goes beyond individual SQL
 statements.
Teaching how to use a language is difficult enough; but how can
 one teach how to efficiently use a language? SQL is a language that can
 look deceivingly simple once you have been initiated. And yet it allows
 for an almost infinite number of cases and combinations. The first
 comparison that occurred to me was the game of chess, but it suddenly
 dawned on me that chess was invented to teach war. I have a natural
 tendency to consider every new performance challenge as a battle to be
 fought against an army of rows, and I realized that the problem of
 teaching developers how to use databases efficiently was similar to the
 problem of teaching officers how to conduct a war. You need knowledge,
 you need skills, and you need talent. Talent cannot be taught, but it
 can be nurtured. This is what most strategists, from Sun Tzu, who wrote
 his Art of War 25 centuries ago, to modern-day
 generals, have believed—so they tried to pass on the experience acquired
 on the field through simple maxims and rules that they hoped would serve
 as guiding stars among the sound and fury of battles. I have tried to
 apply this method to more peaceful aims, and I have mostly followed the
 same plan as Sun Tzu—and I’ve borrowed his title. Many respected IT
 specialists claim the status of scientists; “Art” seems to me more
 appropriate than “Science” when it comes to defining an activity that
 requires flair, experience, and creativity, as much as rigor and
 understanding.[*] It is quite likely that my fondness for Art will be
 frowned upon by some partisans of Science, who claim that for each SQL
 problem, there is one optimal solution, which can be attained by
 rigorous analysis and a good knowledge of data. However, I don’t see the
 two positions at odds. Rigor and a scientific approach will help you out
 of one problem at one given
 moment. In SQL development, if you don’t have the
 uncertainties linked to the next move of the adversary, the big
 uncertainties lie in future evolutions. What if, rather unexpectedly,
 the volume of this or that table increases? What if, following a merger,
 the number of users doubles? What if we want to keep several years of
 data online? How will a program behave on hardware totally different
 from what we have now? Some architectural choices are gambles on the
 future. You will certainly need rigor and a very sound theoretical
 knowledge—but those qualities are prerequisites of any art. Ferdinand
 Foch, the future Supreme Commander of the Allied armies of WWI, remarked
 at a lecture at the French Ecole Supérieure de Guerre in 1900
 that:
The art of war, like all other arts, has its theory, its
 principles—otherwise, it wouldn’t be an art.

This book is not a cookbook, listing problems and giving
 “recipes.” The aim is much more to help developers—and their managers—to
 raise good questions. You may well still write awful, costly queries
 after having read and digested this book. One sometimes has to. But,
 hopefully, it will be knowingly and with good reason.

Audience

This book is targeted at:
	Developers with significant (one year or, preferably, more)
 experience of development with an SQL database

	Their managers

	Software architects who design programs with significant
 database components

Although I hope that some DBAs, and particularly those that
 support development databases, will enjoy reading this book, I am sorry
 to tell them I had somebody else in mind while writing.

Assumptions This Book Makes

I assume in this book that you have already mastered the SQL
 language. By mastering I don’t mean that you took
 SQL 101 at the university and got an A+, nor, at the other end of the
 spectrum, that you are an internationally acknowledged SQL guru. I mean
 that you have already developed database applications using the SQL
 language, that you have had to think about indexing, and that you don’t
 consider a 5,000-row table to be a big table. It is not the purpose of
 this book to tell you what a “join” is—not even an outer one—nor what
 indexes are meant to be used for. Although you don’t need to feel
 totally comfortable with arcane SQL constructs, if, when given a set of
 tables and a question to answer, you are unable to come up with a
 functionally correct piece of code, there are probably a couple of books
 you had better read before this one. I also assume that you are at least
 familiar with one computer language and with the principles of computer
 programming. I assume that you have already been down in the trenches
 and that you have already heard users complain about slow and poorly
 performing systems.

Contents of This Book

I found the parallel between war and SQL so strong that I mostly
 followed Sun Tzu’s outline—and kept most of his titles.[*] This book is divided into twelve chapters, each containing
 a number of principles or maxims. I have tried to explain and illustrate
 these principles through examples, preferably from real-life
 cases.
	Chapter 1,
 Laying Plans
	Examines how to design databases for performance

	Chapter 2,
 Waging War
	Explains how programs must be designed to access databases
 efficiently

	Chapter 3,
 Tactical Dispositions
	Tells why and how to index

	Chapter 4,
 Maneuvering
	Explains how to envision SQL statements

	Chapter 5,
 Terrain
	Shows how physical implementation impacts performance

	Chapter 6, The
 Nine Situations
	Covers classic SQL patterns and how to approach them

	Chapter 7,
 Variations in Tactics
	Explains how to deal with hierarchical data

	Chapter 8,
 Weaknesses and Strengths
	Provides indications about how to recognize and handle some
 difficult cases

	Chapter 9,
 Multiple Fronts
	Describes how to face concurrency

	Chapter 10,
 Assembly of Forces
	Addresses how to cope with large volumes of data

	Chapter 11,
 Stratagems
	Offers a few tricks that will help you survive rotten
 database designs

	Chapter 12,
 Employment of Spies
	Concludes the book by explaining how to define and monitor
 performance

Conventions Used in This Book

The following typographical conventions are used in this
 book:
	Italic
	Indicates emphasis and new terms, as well as book
 titles.

	Constant width
	Indicates SQL and, generally speaking, programming
 languages’ keywords; table, index and column names; functions;
 code; or the output from commands.

	Constant width
 bold
	Shows commands or other text that should be typed literally
 by the user. This style is used only in code examples that mix
 both input and output.

	Constant width italic
	Shows text that should be replaced with user-supplied
 values.

Important
This icon signifies a maxim and summarizes
 an important principle in SQL.

Note
This is a tip, suggestion, or general note. It contains useful
 supplementary information about the topic at hand.

Using Code Examples

This book is here to help you get your job done. In general, you
 may use the code in this book in your programs and documentation. You do
 not need to contact O’Reilly for permission unless you’re reproducing a
 significant portion of the code. For example, writing a program that
 uses several chunks of code from this book does not require permission.
 Selling or distributing a CD-ROM of examples from O’Reilly books
 does require permission. Answering a question by
 citing this book and quoting example code does not require permission.
 Incorporating a significant amount of example code from this book into
 your product’s documentation does require
 permission.
O’Reilly, Media Inc. appreciates, but does not require,
 attribution. An attribution usually includes the title, author,
 publisher, and ISBN. For example: "The Art of SQL
 by Stéphane Faroult with Peter Robson. Copyright © 2006 O’Reilly Media,
 0-596-00894-5.”
If you feel your use of code examples falls outside fair use or
 the permission given above, feel free to contact the publisher at
 permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the
 publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the U.S. or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

The publisher has a web page for this book, where we list errata,
 examples, and any additional information. You can access this page
 at:
	http://www.oreilly.com/catalog/artofsql

To comment or ask technical questions about this book, send email
 to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
 Centers, and the O’Reilly Network, see O’Reilly’s web site at:
	http://www.oreilly.com

You can also visit the author’s company web site at:
	http://www.roughsea.com

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite
 technology book, that means the book is available online through the
 O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-books. It’s a
 virtual library that lets you easily search thousands of top tech books,
 cut and paste code samples, download chapters, and find quick answers
 when you need the most accurate, current information. Try it for free at
 http://safari.oreilly.com.

Acknowledgments

Writing a book in a language that is neither your native language
 nor the language of the country where you live requires an optimism that
 (in retrospect) borders on insanity. Fortunately, Peter Robson, whom I
 had met at several conferences as a fellow speaker, brought to this book
 not only his knowledge of the SQL language and database design issues,
 but an unabated enthusiasm for mercilessly chopping my long sentences,
 placing adverbs where they belong, or suggesting an alternative to
 replace a word that was last heard in Merry England under the
 Plantagenets.[*]
Being edited by Jonathan Gennick, the best-selling author of the
 O’Reilly SQL Pocket Guide and several other noted
 books, was a slightly scary honor. I discovered in Jonathan an editor
 extremely respectful of authors. His professionalism, attention to
 detail, and challenging views made this book a much better book than
 Peter and I would have written on our own. Jonathan also contributed to
 give a more mid-Atlantic flavor to this book (as Peter and I discovered,
 setting the spelling checker to “English (US)” is a prerequisite, but
 not quite enough).
I would like to express my gratitude to the various people, from
 three continents, who took the time to read parts or the whole of the
 drafts of this book and to give me frank opinions: Philippe Bertolino,
 Rachel Carmichael, Sunil CS, Larry Elkins, Tim Gorman, Jean-Paul Martin,
 Sanjay Mishra, Anthony Molinaro, and Tiong Soo Hua. I feel a particular
 debt towards Larry, because the concept of this book probably finds its
 origin in some of our email discussions.
I would also like to thank the numerous people at O’Reilly who
 made this book a reality. These include Marcia Friedman, Rob Romano,
 Jamie Peppard, Mike Kohnke, Ron Bilodeau, Jessamyn Read, and Andrew
 Savikas. Thanks, too, to Nancy Reinhardt for her most excellent copyedit
 of the manuscript.
Special thanks to Yann-Arzel Durelle-Marc for kindly providing a
 suitable scan of the picture used to illustrate Chapter 12. Thanks too, to Paul
 McWhorter for permission to use his battle map as the basis for the
 Chapter 6 figure.
Finally, I would like to thank Roger Manser and the staff at Steel
 Business Briefing for supplying Peter and me with an office and
 much-needed coffee for work sessions in London, halfway between our
 respective bases, and Qian Lena (Ashley) for providing me with the
 Chinese text of the Sun Tzu quote at the beginning of this book.

[*] One of my favorite computer books happens to be D.E. Knuth’s
 classic Art of Computer Programming (Addison
 Wesley).

[*] A few titles were borrowed from Clausewitz’s On
 War.

[*] For readers unfamiliar with British history, the Plantagenet
 dynasty ruled England between 1154 and 1485.

Chapter 1. Laying Plans

Designing Databases for Performance

C’est le premier pas qui, dans toutes les
 guerres, décèle le génie.
It is the first step that reveals genius in all wars.
—Joseph de Maistre (1754-1821) Lettre du 27 Juillet
 1812 à Monsieur le Comte de Front

The great nineteenth century German
 strategist, Clausewitz, famously remarked that war is the
 continuation of politics by other means. Likewise, any computer program
 is, in one way or another, the continuation of the general activity within
 an organization, allowing it to do more, faster, better, or cheaper. The
 main purpose of a computer program is not simply to
 extract data from a database and then to process it, but to extract and
 process data for some particular goal. The means are
 not the end.
A reminder that the goal of a given computer program is first of all
 to meet some business requirement [*] may come across as a platitude. In practice, the excitement
 of technological challenges often slowly causes attention to drift from
 the end to the means, from upholding the quality of the data that records
 business activity to writing programs that perform as intended and in an
 acceptable amount of time. Like a general in command of his army at the
 beginning of a campaign, we must know clearly what our objectives are—and
 we must stick to them, even if unexpected difficulties or opportunities
 make us alter the original plan. Whenever the SQL language is involved, we
 are fighting to keep a faithful and consistent record of business activity
 over time. Both faithfulness and consistency are primarily associated with
 the quality of the database model. The database model that SQL was
 initially designed to support is the relational model . One cannot overemphasize the importance of having a good
 model and a proper database design, because this is the very foundation of
 any information system.
The Relational View of Data

 A database is nothing but a model of a small part of a
 real-life situation. As any representation, a database is always an
 imperfect model, and a very narrow depiction of a rich and complex
 reality. There is rarely a single way to represent some business
 activity, but rather several variants that in a technical sense will be
 semantically correct. However, for a given set of processes to apply,
 there is usually one representation that best meets the business
 requirement.
The relational model is thus named, not because you can relate
 tables to one another (a popular misconception), but as a
 reference to the relationships between the columns in a table. These are the
 relationships that give the model its name; in other words,
 relational means that if several values belong to
 the same row in a table, they are related. The way
 columns are related to each other defines a relation, and a relation
 is a table (more exactly, a table represents one
 relation).
The business requirements determine the scope of the real-world situation that is
 to be modeled. Once you have defined the scope, you can proceed to
 identify the data that you need to properly record business activity. If
 we say that you are a used car dealer and want to model the cars you
 have for sale (for instance to advertise them on a web site), items such
 as make, model, version, style (sedan, coupe, convertible...), year,
 mileage, and price may be the very first pieces of information that come
 to mind. But potential buyers may want to learn about many more
 characteristics to be able to make an informed choice before settling
 for one particular car. For instance:
	General state of the vehicle (even if we don’t expect anything
 but “excellent”)

	Safety equipment

	Manual or automatic transmission

	Color (body and interiors), metallic paintwork or not,
 upholstery, hard or soft top, perhaps a picture of the car

	Seating capacity, trunk capacity, number of doors

	Power steering, air conditioning, audio equipment

	Engine capacity, cylinders, horsepower and top speed, brakes
 (everyone isn’t a car enthusiast who would know technical
 specifications from the car description)

	Fuel, consumption, tank capacity

	Current location of the car (may matter to buyers if the site
 lists cars available from a number of physical places)

	And so on.. .

If we decide to model the available cars into a database, then
 each row in a table summarizes a particular statement of fact—for
 instance, that there is for sale a 1964 pink Cadillac Coupe DeVille that
 has already been driven twenty times around the Earth.
Through relational operations, such as joins, and also by
 filtering, selection of particular attributes, or computations applied
 to attributes (say computing from consumption and tank capacity how many
 miles we can drive without refueling), we can derive new factual
 statements. If the original statements are true, the derived statements
 will be true.
Whenever we are dealing with knowledge, we start with facts that
 we accept as truths that need no proof (in mathematics these are known as
 axioms , but this argument is by no means restricted to
 mathematics and you could call those unproved true facts
 principles in other disciplines). It is possible to build upon these
 true facts (proving theorems in mathematics) to
 derive new truths. These truths themselves may form the foundations from
 which further new truths emerge.
Relational databases work in exactly the same way. It is
 absolutely no accident that the relational model is mathematically
 based. The relations we define (which once again means, for an SQL database,
 the tables we create) represent facts that we accept, a
 priori, as true. The views we define, and the queries we write, are new truths that we prove.
Note
The coherence of the relational model is a critically important
 concept to grasp. Because of the inherent mathematical stability of
 the principles that underlie relational data modeling , we can be totally confident that the result of any
 query of our original database will indeed generate equally valid
 facts—if we respect the relational principles. Some of the key
 principles of the relational theory are that a relation, by
 definition, contains no duplicate, and that row ordering isn’t
 significant. As you shall see in Chapter 4, SQL allows developers to
 take a number of liberties with the relational theory, liberties that
 may be the reasons for either surprising results or the failure of a
 database optimizer to perform efficiently.

There is, however, considerable freedom in the choice of our basic truths. Sometimes the exercise of this freedom
 can be done very badly. For example, wouldn’t it be a little tedious if
 every time someone went to buy some apples, the grocer felt compelled to
 prove all Newtonian physics before weighing them? What must be thought
 of a program where the most basic operation requires a 25-way
 join?
We may use much data in common with our suppliers and customers.
 However, it is likely that, if we are not direct competitors, our view
 of the same data will be different, reflecting our particular
 perspective on our real-life situation. For example, our business
 requirements will differ from those of our suppliers and customers, even
 though we are all using the same data. One size doesn’t fit all. A good
 design is a design that doesn’t require crazy queries.
Important
Modeling is the projection of business requirements.

The Importance of Being Normal

 Normalization, and especially that which progresses to the
 third normal form (3NF), is a part of relational
 theory that most students in computer science have been told about. It
 is like so many things learned at school (classical literature springs
 to mind), often remembered as dusty, boring, and totally disconnected
 from today’s reality. Many years later, it is rediscovered with fresh
 eyes and in light of experience, with an understanding that the essence
 of both principles and classicism is
 timelessness.
The principle of normalization is the application of logical rigor to the assemblage of
 items of data—which may then become structured information. This rigor
 is expressed in the definition of various normal forms, most typically
 three, although purists argue that one should analyze data beyond 3NF to
 what is known in the trade as Boyce-Codd normal
 form (BCNF), or even to fifth normal
 form (5NF). Don’t panic. We will discuss only the first
 three forms. In the vast majority of cases, a database modeled in 3NF
 will also be in BCNF[*] and 5NF.
You may wonder why normalization matters. Normalization is
 applying order to chaos. After the battle, mistakes may appear obvious,
 and successful moves sometimes look like nothing other than common
 sense. Likewise, after normalization the structures of the various
 tables in the database may look natural, and the normalization rules are
 sometimes dismissively considered as glorified common sense. We all want
 to believe we have an ample supply of common sense; but it’s easy to get
 confused when dealing with complex data. The three first normal forms
 are based on the application of strict logic and are a useful sanity
 checklist.
The odds that our creating un-normalized tables will increase our
 risk of being struck by divine lightning and reduced to a little mound
 of ashes are indeed very low (or so I believe; it’s an untested theory).
 Data inconsistency, the difficulty of coding data-entry controls, and
 error management in what become bloated application programs are real
 risks, as well as poor performance and the inability to make the model
 evolve. These risks have a very high probability of occurring if we
 don’t adhere to normal form, and I will soon show why.
How is data moved from a heterogeneous collection of unstructured
 bits of information into a usable data model? The method itself isn’t
 complicated. We must follow a few steps, which are illustrated with
 examples in the following subsections.
Step 1: Ensure Atomicity

First of all, we must ensure that the characteristics,
 or attributes, we are dealing with are atomic.
 The whole idea of atomicity is rather elusive, in spite of its apparent simplicity.
 The word atom comes from ideas first advanced by
 Leucippus, a Greek philosopher who lived in the fifth century B.C.,
 and means “that cannot be split.” (Atomic fission is a contradiction
 in terms.) Deciding whether data can be considered atomic or not is
 chiefly a question of scale. For example, a regiment may be an atomic
 fighting unit to a general-in-chief, but it will be very far from
 atomic to the colonel in command of that regiment, who deals at the
 more granular level of battalions or squadrons. In the same way, a car
 may be an atomic item of information to a car dealer, but to a garage
 mechanic, it is very far from atomic and consists of a whole host of
 further components that form the mechanic’s perception of atomic data
 items.
From a purely practical point of view, we shall define an
 atomic attribute as an attribute that, in a
 where clause, can always be
 referred to in full. You can split and chop an attribute as much as
 you want in the select list (where it is returned); but if you need to
 refer to parts of the attribute inside the where clause, the attribute lacks the level
 of atomicity you need. Let me give an example. In the previous list of
 attributes for used cars, you’ll find “safety equipment,” which is a
 generic name for several pieces of information, such as the presence
 of an antilock braking system (ABS), or airbags (passenger-only,
 passenger and driver, frontal, lateral, and so on), or possibly other
 features, such as the centralized locking of doors. We can, of course,
 define a column named safety_equipment that is just a description
 of available safety features. But we must be aware that by using a
 description we forfeit at least two major benefits:
	The ability to perform an efficient
 search
	If some users consider ABS critical because they often
 drive on wet, slippery roads, a search that specifies “ABS” as
 the main criterion will be very slow if we must search column
 safety_equipment in every row
 for the “ABS” substring. As I’ll show in Chapter 3, regular indexes
 require atomic (in the sense just defined) values as keys. One
 can sometimes use query accelerators other than regular indexes
 (full-text indexing, for instance), but such accelerators
 usually have drawbacks, such as not being maintained in real
 time. Also take note that full-text search may produce awkward
 results at times. Let’s take the example of a color column that contains a
 description of both body and interior colors. If you search for
 “blue” because you’d prefer to buy a blue car, gray cars with a
 blue interior will also be returned. We have all experienced
 irrelevant full-text search results through web searches.

	Database-guaranteed data
 correctness
	Data-entry is prone to error. More importantly than
 dissuasive search times, if “ASB” is entered instead of “ABS”
 into a descriptive string, the database management system will
 have no way to check whether the string “ASB” is meaningful. As
 a result, the row will never be returned when a user specifies
 “ABS” in a search, whether as the main or as a secondary
 criterion. In other words, some of our queries will return wrong
 results (either incomplete, or even plain wrong if we want to
 count how many cars feature ABS). If we want to ensure data
 correctness, our only means (other than double-checking what we
 have typed) is to write some complicated function to parse and
 analyze the safety equipment string when it is entered or
 updated. It is hard to decide what will be worse: the hell that
 the maintenance of such a function would be, or the performance
 penalty that it will inflict on loads. By contrast, a mandatory
 Y/N has_ABS column would not
 guarantee that the information is correct, but at least
 declarative check constraints can make the DBMS reject any value
 other than Y or N.

Partially updating a complex string of data requires first-rate
 mastery of string functions. Thus, you want to avoid cramming multiple
 values into a single string.
Defining data atoms isn’t always a simple
 exercise. For example, the handling of addresses frequently raises
 difficult questions about atomicity. Must we consider the address as
 some big, opaque string? Or must we break it into its components? And
 if we decompose the address, to what level should we split it up?
 Remember the points made earlier about atomicity and business requirements. How we represent an address
 actually depends on what we want to do with the address. For example,
 if we want to compute statistics or search by postal code and town,
 then it is desirable to break the address up into sufficient attribute
 components to uniquely identify those important data items. The
 question then arises as to how far this decomposition of the address
 should be taken.
The guiding principle in determining the extent to which an
 address should be broken into components is to test each component
 against the business requirements, and from those requirements derive
 the atomic address attributes. What these various address attributes
 will be cannot be predicted (although the variation is not great), but
 we must be aware of the danger of adopting an address format just
 because some other organization may have chosen it, before we have
 tested it critically against our own business needs.
Note that sometimes, the devil is in the details. By trying to
 be too precise, we may open the door to many distracting and
 potentially irrelevant issues. If we settle for a level of detail that
 includes building number and street as atomic items, what of ACME
 Corp, the address of which is simply “ACME Building”? We should not
 create design problems for information we don’t need to process.
 Properly defining the level of information that is needed can be
 particularly important when transferring data from an operational to a
 decision-support system.
Once all atomic data items have been identified, and their
 mutual interrelationships resolved, distinct relations emerge. The
 next step is to identify what uniquely characterizes a row—the primary
 key. At this stage, it is very likely that this key will be a compound
 one, consisting of two or more individual attributes. To go on with
 our used car example, for a customer it’s the combination of make,
 model, version, style, year, and mileage that will identify a
 particular vehicle—not the current registration number. It isn’t
 always easy to correctly define a key. A good, classic example of
 attribute analysis is the business definition of “customer.” A
 customer may be identified by a name. However, a name may not be the
 best identifier. If our customers are companies, the way we identify
 them may be the source of ambiguities—is it “RSI,” “Relational
 Software,” “Relational Software Inc” (with or without a dot following
 “Inc,” with or without a comma after “Relational Software”) that
 identifies this given company? Uppercase? Lowercase? Capitalized
 initials? We have here all the conditions for storing information
 inside a database and never seeing it again. The choice of the
 customer name as identifier is a challenging one, because it demands
 the strict application of naming standards to avoid possible
 ambiguities. It may be preferable to identify a customer on the basis
 of either a standard short name, or possibly by use of a unique code.
 And one should always keep in mind the impact on related data of
 Relational Software Inc. changing its name to, say, Oracle
 Corporation. If we need to keep a history of our relationship, then we
 must be able to identify both names as representing the same company
 at different points in time.
As a general rule, you should, whenever possible, use a unique
 identifier that has meaning rather than some obscure sequential
 integer. I must stress that the primary key is what characterizes the
 data—which is not the case with some sequential identifier associated
 with each new row. You may choose to add such an identifier later, for
 instance because you find your own company_id easier to handle than the place
 of incorporation and registration number that truly identify a
 company. You can even promote the sequential identifier to the envied
 status of primary key, as a technical substitute (or shorthand) for
 the true key, in exactly the same way that you’d use table aliases in
 a query in order to be able to write:
 where a.id = b.id
instead of:
 where table_with_a_long_name.id = table_even_worse_than_the_other.id
But a technical, numerical identifier doesn’t constitute a real
 primary key by the mere virtue of its existence and mustn’t be
 mistaken for the real thing. Once all the attributes are atomic and
 keys are identified, our data is in first normal
 form (1NF).

Step 2: Check Dependence on the Whole Key

I have pointed out that some of the information that we
 should store to help used car buyers make an informed choice would
 already be known by a car enthusiast. In fact, many used car
 characteristics are not specific to one particular car. For example,
 all the cars sharing make, model, version, and style will have the
 same seating and cargo capacity, regardless of year and mileage. In
 other words, we have attributes that depend on only a part of the key.
 What are the implications of keeping them inside a used_cars table?
	Data redundancy
	If we happen to have for sale many cars of the same make,
 model, version, and style (a set of characteristics that we can
 generically call the car model), all the
 attributes that are not specific to one particular car will be
 stored as many times as we have cars of the same model. There
 are two issues with the storage of redundant data . First, redundant data increases the odds of
 encountering contradictory information because of input errors
 (and it makes correction more time-consuming). Second, redundant
 data is an obvious storage waste. It is customary to hear that
 nowadays storage is so cheap that one no longer needs to be
 obsessed with space. True enough, except that such an argument
 overlooks the fact that there is also more and more data to
 store in today’s world. It also overlooks the fact that data is
 often mirrored, possibly backed up to other disks on a disaster
 recovery site where it is mirrored again, and that many
 development databases are mere copies of production databases.
 As a result, every wasted byte isn’t wasted once, but four or
 five times in the very best of cases. When you add up all the
 wasted bytes, you sometimes get surprisingly high figures.
 Besides the mere cost of storage, sometimes—more
 importantly—there is also the issue of recovery. There are cases
 when one experiences “unplanned downtime,” a very severe crash
 for which the only solution is to restore the database from a
 backup. All other things being equal, a database that is twice
 as big as necessary will take twice the time to restore than
 would otherwise be needed. There are environments in which a
 long time to restore can cost a lot of money. In a hospital, it
 can even cost lives.

	Query performance
	A table that contains a lot of information (with a large
 number of columns) takes much longer to scan than a table with a
 reduced set of columns. As we shall see in other chapters, a
 full table scan is not necessarily the scary situation that many
 beginners believe it to be; there are many cases where it is by
 far the best solution. However, the more bytes in the average
 row, the more pages will be required to store the table, and the
 longer it takes to scan the table. If you want to display a
 selectable list of the available car models, an un-normalized
 table will require a select
 distinct applied to all the available cars. Running a
 select distinct doesn’t mean
 only scanning many more rows than we would with a separate
 car_model table, but it also
 means having to sort those rows to eliminate duplicates. If the
 data is split in such a way that the DBMS engine can operate
 against only a subset of the data to resolve the query,
 performance will be significantly better than when it operates
 against the whole.

To remove dependencies on a part of the key, we must create
 tables (such as car_model). The
 keys of those new tables will each be a part of the key for our
 original table (in our example, make, model, version, and style). Then
 we must move all the attributes that depend on those new keys to the
 new tables, and retain only make, model, version, and style in the
 original table. We may have to repeat this process, since the engine
 and its characteristics will not depend on the style. Once we have
 completed the removal of attributes that depend on only a part of the
 key, our tables are in second normal form
 (2NF).

Step 3: Check Attribute Independence

When all data has been correctly moved into 2NF, we can
 commence the process of identifying the third normal
 form (3NF). Very often, a data set in 2NF will already be
 in 3NF, but nevertheless, we should check the 2NF set. We now know
 that each attribute in the current set is fully dependent on the
 unique key. 3NF is reached when we cannot infer the value of an
 attribute from any attribute other than those in the unique key. For
 example, the question must be asked: “Given the value of attribute A,
 can the value of attribute B be determined?”
International contact information provides an excellent example
 of when you can have an attribute dependent on another non-key
 attribute: if you know the country, you need not record the
 international dialing code with the phone number (the reverse is not
 true, since the United States and Canada share the same code). If you
 need both bits of information, you ought to associate each contact
 with, say, an ISO country code (for instance IT for Italy), and have a
 separate country_info table that
 uses the country code as primary key and that holds useful country
 information that your business requires. For instance, a country_info table may record that the
 international dialing code for Italy is 39, but also that the Italian
 currency is the euro, and so on. Every pair of attributes in our 2NF
 data set should be examined in turn to check whether one depends on
 the other. Such checking is a slow process, but essential if the data
 is to be truly modeled in 3NF. What are the risks associated with not
 having the data modeled in 3NF? Basically you have the same risks as
 from not respecting 2NF.
There are various reasons that modeling to the third normal form
 is important. (Note that there are cases in which designers
 deliberately choose not to model in third normal form;
 dimensional modeling, which will be briefly
 introduced in Chapter 10, is
 such a case. But before you stray from the rule, you must know the
 rule and weigh the risks involved.) Here are some reasons:
	A properly normalized model protects against the
 evolution of requirements.
	As Chapter 10 will
 show, a non-normalized model such as the dimensional one finds
 its justification in assumptions about how the data is
 maintained and queried (the same can be said of the physical
 data structures that you’ll see in Chapter 5; but a physical
 implementation change will not jeopardize the logic of programs,
 even if it can seriously impact their performance). If the
 assumptions prove wrong one day, all you can do is throw
 everything away and rebuild from scratch. By contrast, a 3NF
 model may require some query adjustments, but it will be
 flexible enough to accommodate changes.

	Normalization minimizes data
 duplication.
	As I have already pointed out, duplicate data is costly,
 both in terms of disk space and processing power, but it also
 introduces a much-increased possibility of data becoming
 corrupt. Corruption happens when one instance of a data value is
 modified, but the same data held in another part of the database
 fails to be simultaneously (and identically) modified. Losing
 information doesn’t only mean data erasure: if one part of the
 database says “white” while another part says “black,” you have
 lost information. Data inconsistency can be prevented by the
 DBMS if the modeling allows it—if your atomic attributes let you
 define column constraints, or if you can declare referential
 integrity constraints. Otherwise, it has to be prevented by
 additional programming traps. You then have the choice between
 using triggers and stored procedures that can grow very complex and add significant
 overhead, or making programs unnecessarily complicated and
 therefore costlier to maintain. Triggers and stored procedures
 must be extremely well documented. Data consistency ensured in
 programs moves the protection of data integrity out of the
 database and into the application layer. Any other program that
 needs to access the same data has the choice between duplicating
 the data integrity protection effort, or happily corrupting the
 data painfully maintained in a consistent state by other
 programs.

Important
The normalization process is fundamentally based on the
 application of atomicity to the world you are modeling.

To Be or Not to Be, or to Be Null

 A very common modeling mistake is to associate large
 numbers of possible characteristics within a
 relation, which may result in a table with a large number of columns.
 Some scientific disciplines may require a very detailed characterization
 of objects under study, and thus require a large number of attributes,
 but this is rarely the case in business applications. In any case, a
 sure sign that a database design is flawed is when columns of some
 prominent tables mostly contain null values , and especially when two columns cannot possibly contain
 a value at the same time; if one is defined, the other must be null, and
 vice versa. This condition would undoubtedly indicate a violation of
 either 2NF or 3NF.
If we admit that a row in a table represents a statement about the
 characteristics of a given “thing,” indicating that “we don’t know” for
 most characteristics seriously downgrades the table as a source of
 reliable information. This may be a minor inconvenience if the data is
 stored for informative purpose only. It becomes a major issue if the
 unknown values are supposed to help us define a result set, and this
 state of affairs is indicative of a flawed model. All columns in a row
 should ultimately contain a value, even if business processes are such
 that various pieces of information are entered from more than one source
 and/or at different points in time. A stamp collector might likewise
 keep some room in an album for a series temporarily absent from the
 collection. But even so, there is a risk of wasting storage if it is
 actually reserved because one always tailors for the maximum size. There
 is also a risk of very serious performance problems if only placeholders
 are used and data goes to some remote overflow area when it is entered
 at last.
The existence of null values also raises an important point with
 regard to relational modeling, which is the main foundation for the
 query optimizer. The completeness of a relational model is founded on
 the application of two-valued logic ; in which things are or they
 aren’t. Any in-between case, a null value, is
 indeterminate; but in a where clause,
 conditions cannot be indeterminate. They are true or they are false,
 because you return a row or you don’t; you cannot return a row with a
 “maybe this one answers the question but I’m not really sure” qualifier.
 The transition from the three-valued logic implied
 by nulls (true, false, or indeterminate) to the two-valued logic of the
 result set is perilous. This is why all SQL practitioners can recall
 cases when what looked like a good SQL query failed to return the proper
 result set because of an encounter with null values. For instance, if a
 column named color contains the
 values RED, GREEN, and BLACK, this condition:
 where color not in ('BLUE', 'BLACK', null)
will result in no row being returned, because we don’t know what
 null is and the SQL engine will
 consider that there is a possibility that it might be RED or GREEN, whereas:
 where color in ('BLUE', 'BLACK', null)
will return all rows for which color is BLACK, and nothing else (remember, we have no
 BLUE in our table), since there is a
 possibility that null would be
 neither RED nor GREEN. As you can see, an SQL engine is even
 more risk-averse than a banker. Finding an explicit null inside an in (
) list is, of course, unusual; but such a situation may occur
 if, instead of an explicit list, we have a subquery and fail to ensure
 that no null value is returned by that subquery.
A representation of customers can provide a very good example of
 the difficulties inherent to dealing with missing information. Each
 customer has an address, which is normally the address that will appear
 on an invoice to that customer. But what if the address to which we must
 ship our goods is different? Must we consider the shipping address to be
 a characteristic of the order? It can make sense if we sell once, only
 to never see customers again. If we are not a funeral parlor, however,
 and especially if we repeatedly ship goods to the same address, it makes
 no sense at all from a business point of view. Entering the same data
 over and over again, besides being a waste of time, also increases the
 risk of a mistake—hence goods get sent to the wrong address, creating a
 dissatisfied customer or perhaps an ex-customer. The shipping address
 is, obviously, a characteristic of the customer, not of the order. This
 situation ought to have been resolved in the analysis of dependencies
 during the original design of the model.
It is also possible to have the accounting department at a
 location different from the official, customer delivery address if the
 customer is a company. So, for one customer, we may have one “official”
 address, a billing address, and also a shipping address. It is quite
 common to see customer tables with
 three sets of columns (each set describing one address) for this
 purpose.
However, if we can have all these addresses,
 what is likely to be the most common case? Well, it is quite possible
 that in 90% of the cases we shall have only one useful address, the
 official address. So, what must we do with all our other columns? Two
 possibilities come to mind:
	Set billing and shipping addresses to
 null.
	This is not a very sound strategy, because this will require
 our programs to use implicit rules , such as “if the billing address is undefined,
 then send the invoice to the corporate address.” The logic of such
 programs will become much more complicated, with an increased risk
 of bugs entering the code.

	Replicate the information, copying the corporate
 address to the billing address columns where there is no special
 billing address.
	This approach will require special processing during data
 entry, by a trigger perhaps. In such a case the overhead may not
 matter much, but in another case the overhead might matter a lot.
 Moreover, we must also take care of replicating
 changes--each update of the corporate address
 must be replicated to those of the other addresses that are
 identical, for fear of inconsistency.

Both of these scenarios betray a critical lack of understanding on
 the part of the original modelers. Using null values and implicit rules
 is a classic fudge to accommodate three-valued logic. The use of nulls
 inevitably introduces three-valued logic, which immediately introduces
 semantic inconsistency ; no amount of clever programming can remove semantic
 issues. Replicating data illustrates what happens when dependencies have
 not been properly analyzed.
One solution to our address conundrum might be to get the address
 information out of the customer
 table. One design we may contemplate is to store each address in an
 address table, together with a
 customer identifier and some column (a bit mask, perhaps) indicating the
 role of the address. But this is not necessarily
 the best solution, because issues such as the true meaning of addresses
 often appear after programs have been rushed into production and an
 attempt to remodel the original data as part of a later release can
 introduce insuperable problems.
We have so far assumed that we have one
 shipping address for each customer, which may or may not be identical to
 the corporate, registered address. What if we send our invoices to a
 single place but must ship our goods to many different branches, with
 several distinct shipments belonging to the same invoice? This is not
 necessarily unusual! It is no longer workable for our design to have a
 single (mostly null) “shipping address” (represented by several columns)
 in the customer table. We are,
 ironically, back to the “shipping address is a characteristic of the
 order” situation. This means that if we want to refer (especially
 repeatedly) to addresses in orders, we must associate some kind of
 purpose-built identifier to our addresses, which will spare us repeating
 the whole shipping address in each order (normalization in action). Or
 perhaps we should begin to contemplate the introduction of a shipments table.
There is no such thing as the totally perfect design for the
 customers/addresses conundrum. I have just wandered through likely
 problems and tried to sketch some of the possible solutions. But there
 will be one solution that works best in your case, and many other
 solutions that will lead to the risks of inconsistencies. With an
 inappropriate solution, code will be at best more complicated than
 necessary with very high odds of being underperforming as well.
The question of null values is probably the thorniest issue of the
 relational theory. Dr. E.F. Codd, the father of the relational model,
 introduced null values early, and explicitly asked in the 3rd of the 12
 rules that he published in 1985 for a systematic treatment of null
 values. (The 12 rules were a concise definition of the required
 properties of a relational database.) However, the battle is still
 raging among theorists. The problem is that “not known” may encompass
 quite a number of different cases. Let’s consider a list of famous
 writers, each with a birth date and a death date. A null birth date
 would unambiguously mean “unknown.” But what does a null death date
 mean? Alive? We don’t know when this author died? We don’t know whether
 this author is alive or not?
I cannot resist the pleasure of quoting the immortal words of the
 then-U.S. Secretary of Defense, Mr. Donald Rumsfeld, at a February 2002
 news briefing of his department:
As we know, there are known knowns. There are things we know we
 know. We also know there are known unknowns. That is to say we know
 there are some things we do not know. But there are also unknown
 unknowns, the ones we don’t know we don’t know.

I don’t find it unusual to have null values for, to put it in
 Rumsfeldese, “known unknowns,” attributes that are known to exist and
 have some value we don’t know at one point in time, for various reasons.
 For the rest, speculating leads nowhere. Strangely, some of the most
 interesting usages of null values may perfectly involve nothing but
 tables where all columns of all rows contain values: null values can be
 generated through outer joins. Some efficient techniques for checking
 the absence of particular values that I discuss in Chapter 6 are precisely based on outer
 joins and tests on null values.
Important
Nulls can be hazardous to your logic; if you must use them, be
 very sure you understand the consequences of doing so in your
 particular situation.

Qualifying Boolean Columns

 Even though the Boolean type doesn’t exist in SQL, many
 people feel a need to implement flags to indicate a Boolean true/false
 status (for instance order_completed). You should aim for
 increasing the density of your data--order_completed may be useful information to
 know, but then perhaps other information would be nice to store too:
 when was it completed? Who completed it? So that means that instead of
 having a single “Y/N” column, we can have a completion_date column, and perhaps a completed_by column, both of which will tell
 us more (although we may not necessarily want to see a null value as
 long as the order isn’t completed; a solution may be to use a distinct
 table to track the various stages of every order from creation to
 completion). As before, examine the dependencies in the context of your
 business requirements, and only include those additional columns where
 the successful operation of the business requires it.
Alternatively, a series of essentially Boolean attributes can
 sometimes be advantageously combined into a unique status attribute. For instance, if you have
 four attributes that can be either true or false, you can assign a
 numerical value between 0 and 15 to each of the possible combinations
 and define the “status” as being represented by this value. But
 beware—this technique may offend the basic rule of atomicity, so if you
 must use this approach, do so with considerable caution.
Important
Data for data’s sake is a path to disaster.

Understanding Subtypes

Another reason for the appearance of unnecessarily wide tables (as
 in having too many attributes) is a lack of understanding of the true
 relationship between data items. Consider the example of
 subtypes . A company may have a mix of employees, some of whom are
 permanent, others who are contractors. They all have several properties
 in common (name, year of birth, department, room, phone number, and so
 forth), but there are also properties that are unique to each type of
 employee (for instance, hire date and salary for permanent employees,
 rate and contract reference for contractors). The manner in which the
 common attributes can be shared, while ensuring that the distinctive
 features are kept separate, introduces the topic of subtypes.
We can model this situation by defining three tables. First, the
 employee table contains all
 information that is common to every employee, regardless of their
 status. However, an attribute tells the status of each employee. It has
 as many distinct values as there are distinct employee types, for
 example “P” (for permanent employee), and “C” (for contract employee).
 This table uses an employee number as the primary key.
Next, we create additional tables, one for each employee type. In
 this case, there are two tables. Tables permanent and contract represent subtypes of the table
 employee, for example. Each permanent
 or contract employee inherits certain characteristics from the employee table, in addition to possessing
 unique characteristics, as defined in their own tables.
Now let’s examine the creation of the primary keys between these
 two types of tables, as it’s the primary key construct that implements
 the subtype relationships . The unique key for all tables is the unique identifier
 for each member of staff—the employee number. The set of primary keys of
 employee is the union of the primary
 keys of the various subtype tables, and the intersection of the primary
 keys of all subtype tables is by construction empty, because each
 employee belongs to just one, in this case, of the two categories. The
 primary keys of subtype tables are also foreign keys, referencing the
 primary key of employee.
Please note that assigning totally independent primary keys to the
 subtype tables would, of course, be a disastrous mistake. In the real
 world however, you will certainly find examples in which this disastrous
 mistake has been perpetrated. Note also that entity sub-types are
 not the same as master-detail relationships. They
 can quickly be distinguished on examination of their respective primary
 keys. For those who would think that this type of discussion is a bit
 academic (associating with the word “academic” some vague, slightly
 pejorative connotation), I’ll just say that whenever different subtypes
 use a primary key that is not a subset of the primary key of the parent
 table, the result is almost invariably pathetic performance, from many
 points of view.
One of the main principles to follow in order to achieve efficient
 database access is a principle attributed to Philip II of Macedonia,
 father of Alexander the Great, and that principle is: Divide
 and Rule. It is quite likely that the vast majority of the
 queries executed by the HR department will belong to either of two
 categories: they will be either generic queries about all the people
 working in an organization or specific queries about one category of
 person. In both cases, by using subtypes correctly,[*] we will only need to examine that data which is most
 likely to provide the result that we require, and no time will be wasted
 examining irrelevant information. If we were to put everything into a
 single table, the most modest query would have to plow through a much
 greater quantity of data, most of which is useless in the context of
 that query.
Important
Tables in which specific columns appear as null indicate the
 need for subtypes.

Stating the Obvious

 It is always an unsound situation in which there are
 implicit constraints on your data—for instance “if the business line is
 such, then the identifier is numeric (although defined as a string of
 characters to accommodate other business lines),” or “if the model is T,
 then the color is necessarily black.” Sometimes, such general knowledge
 information can prove extremely efficient when filtering data. However,
 if it remains human knowledge, the DBMS engine, unaware of it, will be
 unable to take advantage of it, and the optimizer will not possess the
 necessary information to affect the most efficient database access. In
 the worst case, implicit constraints can even lead to a runtime failure.
 For instance, you might inadvertently require the database engine to
 apply an arithmetic process to a character string. This can happen when
 a character-defined column is used only for storing numeric data, and a
 non-numeric character slips in.
As an aside, the example of a string identifier that sometimes
 contains character data and sometimes numerical data illustrates a
 confusion over domain definitions in the initial database design. It is
 quite clear that the nature of such a field varies according to
 circumstances—which is totally unacceptable in a properly designed
 database. If we need to store, for instance, configuration parameters of
 various natures (numerical, Boolean, character, and so on), we should
 not store them in a single table configuration(parameter_name,
 parameter_value), but rather use a generic table configuration(parameter_id, parameter_name,
 parameter_type) and have as many subtypes as we have parameter
 types. If we use, for instance, configuration_numeric(parameter_id,
 parameter_value), where parameter_value is a numeric column, any
 mistyping of the letter “O” instead of zero will be detected by the DBMS
 when the configuration is changed, instead of resulting in a runtime
 error when the parameter is used.
Define all the constraints you can. Primary keys are, of course, a
 sine qua non in a relational database. Use
 alternate key, when they characterize the data and any type of unique
 constraints. Foreign keys, which ensure that your data is consistent by
 mapping to master tables, are vital as part of the comprehensive
 expression of the meaning of the data model. Constraints that control
 the range of values that can be entered are also valuable. Constraints
 have two major impacts:
	They contribute to ensuring the integrity of your data,
 guaranteeing that everything, as far as defined rules are concerned,
 is consistent with those rules.

	They provide valuable information about your data to the DBMS
 kernel, and more specifically to the optimizer. Even if today the
 optimizer does not make full use of all available constraint data,
 it is likely that in future releases of the database system, that
 constraint data will become used for more sophisticated processing
 by the kernel.

The earlier example of the confusion over multiple shipping and
 billing addresses is a further example of the way semantic information
 is lost to the database by a fundamentally weak design. This essential
 information must therefore be placed into an unpredictable number of
 application programs. “If the billing address is null, then the
 headquarters address applies” is a rule that is unknown to the database
 and must therefore be handled in the programs—note the use of the plural
 programs here! Once again, everything that is
 defined in the database is defined only once, thus guaranteeing that no
 program will use the data inconsistently. Implicit rules about, for
 example, address precedence must be coded into every program accessing
 the data. Because these implicit rules are totally arbitrary, it is not
 impossible at all that in some cases the billing address will be the
 shipping address, and not the headquarters address.
Important
Data semantics belong in the DBMS, not in the application
 programs.

The Dangers of Excess Flexibility

 As always, pushing a line of reasoning to the limits (and
 often past them) can result in a monument to human madness. A great
 favorite with third-party software editors is the
 “more-flexible-than-thou” construct, in which most data of interest is
 stored in some general purpose table, with equally general purpose
 attributes such as: entity_id,
 attribute_id, attribute_value. In this “design,” everything
 is stored as a character string into attribute_value. The design certainly avoids
 the risk of having null values. However, the proponents of this type of
 design usually store the mandatory attributes in attribute_value as well. Their mantra, by the
 way, is usually that this design approach makes it easy to add new
 attributes whenever they are needed. Without commenting on the quality
 of a design that makes it necessary to anticipate the necessarily
 haphazard addition of attributes, let’s just remark that it’s all very
 nice to store data, but usually, somehow, one day you will have to
 retrieve and process that same data (if data retrieval is not being
 planned, there is something seriously wrong somewhere). Adding a column
 to a table really pales into insignificance when compared to writing a
 program to do something useful with the new bits of information that you
 are given to manage (as enthusiasts that praise the flexibility of the
 Extensible Markup Language [XML] are bound to understand).
The database cost of such pseudoflexibility rockets sky-high. Your
 database integrity is totally sacrificed, because you can hardly have a
 weaker way of typing your data. You cannot have any referential
 integrity. You cannot, in fact, have any type of declarative
 constraints. The simplest query becomes a monstrous join, in which the
 “value table” is joined 10, 15, or 20 times to the very same entity,
 depending on the number of attributes one wants to select. Needless to
 say, even the cleverest optimizer is at a loss on such a query, and
 performance is what one should expect—dismal. (You can try to improve
 the performance of such a query as described in Chapter 11, but the SQL code is not a
 pretty sight.) By comparison, the most inept campaign of military
 history looks like a masterpiece of strategic planning.
Important
True design flexibility is born of sound data-modeling
 practices.

The Difficulties of Historical Data

 Working with historical data is an extremely common condition—the process of
 valuation , or specifying the price of goods or a service at a
 particular point in time, is based on historical data—but one of the
 really difficult issues of relational design is the handling of data
 that is associated with some period (as opposed to
 point) of time.
There are several ways to model historical data. Let’s assume that
 we want to record the successive prices of goods identified by some
 article_id. An obvious way to do so
 is to store the following items:
 (article_id, effective_from_date, price)
where effective_from_date is
 the date when the new price takes effect, and the primary key of the
 historical table is (article_id,
 effective_from_date).
Logically correct, this type of model is rather clumsy to use when
 working with current data, which in many cases will
 be our main concern. How are we going to identify the current value?
 It’s the one associated with the highest effective_from_date, and it will be retrieved
 by running a query looking like:
 select a.article_name, h.price
 from articles a,
 price_history h
 where a.article_name = some_name
 and h.article_id = a.article_id
 and h.effective_from_date =
 (select max(b.effective_from_date)
 from price_history b
 where b.article_id = h.article_id)
Executing this query requires two passes over the same data: one
 in the inner query to identify which is the most recent date we have for
 a given article, and one in the outer query to return the price from a
 row that we have necessarily hit in the inner query (Chapter 6 talks about special functions
 implemented by some DBMS systems that can avoid, to some extent,
 multiple passes). Executing repeated queries following this pattern can
 prove very costly.
However, the choice of how to register the validity period for a
 price is arbitrary. Instead of storing the effective date from which the
 price applies, why not store the “end date” (e.g., the last date on
 which the current price prevails), identifying the time intervals by
 their upper bound instead of by their lower bound?
This new approach may look like an attractive solution. You have
 two ways to define current values—either that the end date is undefined,
 which looks neat but isn’t necessarily a good idea, or that the end date
 is something like December 31, 3000.
It’s quite obvious that looking for the price of an article as of
 December 31, 3000 will take you directly to the row you want, in a
 single pass. Definitely attractive. Is this the perfect solution? Not
 quite. There may be some practical worries with the optimizer, which I
 discuss in Chapter 6, but there is
 also a major logical issue: prices, as any consumer knows, rarely stay
 constant, and price increases are not usually decided instantly
 (financial environments may be something different). What happens when,
 for example, in October, new prices are decided for the next year and
 duly recorded in the database?
What we get in our valuation table are two records for each item:
 one stating the current price, valid until December 31, and one giving
 the price that will be applied from January 1. If we store the first
 date when the price applies we will have one row with an effective_from_date in the past (for instance
 January 1 of the current year) and another one in the future (say, the
 next January 1). In effect, what will define the current price is not
 the highest date, but the highest date before today (returned in Oracle
 by the system function sysdate). The
 preceding query needs to be modified only slightly:
 select a.article_name, h.price
 from articles a,
 price_history h
 where a.article_name = some_name
 and h.article_id = a.article_id
 and h.effective_from_date =
 (select max(b.effective_from_date)
 from price_history b
 where b.article_id = h.article_id
 and b.effective_from_date <= sysdate)

If we store the last day when the price applies, we will have one
 row with an end_date set to December
 31 and another with end_date set
 either to null or doomsday. Expressing that we want the price for which
 the end_date is the smallest date
 after the current date is no obvious improvement on the query just
 shown.
Denormalization is of course a possible solution—one can imagine
 storing both the date when a price becomes effective and the date when
 it ceases to be, or one could also argue for storing the effective_from_date and the number of days for
 which the effective_from_date price
 applies. This could allow using either the start or the end of the
 period, as best suits the query.
Denormalization always implies taking a risk with data integrity—a
 minor date entry error can leave black holes when no price is defined.
 You can of course minimize the risk by adding more checks when data is
 inserted or updated, but there is always a performance penalty
 associated with such checks.
Another possible solution is to have a
 current table and a historical
 table and plan a migration of rows from current to historical when
 prices change. This approach can suit some kinds of applications, but
 may be complicated to maintain. Moreover, the “pre-recording” of future
 prices fits rather badly into the picture.
In practice, particular storage techniques such as partitioning,
 which I discuss in Chapter 5, will
 come to the rescue, making constructs such as the one using the effective_from_date less painful than they
 might otherwise have been, especially for mass processing.
But before settling for one solution, we must acknowledge that
 valuation tables come in all shapes and sizes. For instance, those of
 telecom companies, which handle tremendous amounts of data, have a
 relatively short price list that doesn’t change very often. By contrast,
 an investment bank stores new prices for all the securities,
 derivatives, and any type of financial product it may be dealing with
 almost continuously. A good solution in one case will not necessarily be
 a good solution in another.
Important
Handling data that both accumulates and changes requires very
 careful design and tactics that vary according to the rate of
 change.

Design and Performance

 It is flattering (and a bit frightening too) to
 performance specialists to see the faith in their talents devotedly
 manifested by some developers. But, at the risk of repeating myself, I
 must once again stress what I said in the introduction to this book:
 tuning is about getting the best possible performance, now. When
 we develop, we must have a different mindset and
 not think “let’s code it, and then have a specialist tune it later in
 production.” The impact of tuning on the structure of programs is
 usually nil, and on queries, often minimal once the big mistakes have
 been corrected. There are indeed two aspects to this matter:
	One aspect of tuning is the improvement of the overall
 condition of the system, by setting some parameters in accordance
 with the current resources in terms of CPU power, memory available,
 and I/O subsystems, and sometimes taking advantage of the physical
 implementation of the DBMS. This is a highly technical task, which
 may indeed improve the performance of some processes by a
 significant factor, but rarely by more than 20 or 30 percent unless
 big mistakes were made.

	The other aspect of tuning is the modification of specific queries, a practice
 that may, unfortunately, expose the limitations of the query
 optimizer and changes of behavior between successive DBMS
 releases.

That is all there is to it.
In my view, adding indexes doesn’t really belong to the tuning of
 production databases (even if some tuning engagements are sometimes a
 matter of reviewing and correcting the indexing scheme for a database).
 Most indexes can and must be correctly defined from the outset as part
 of the designing process, and performance tests should resolve any
 ambiguous cases.
Performance is no more a question of making a couple of queries
 faster than war is a question of winning a couple of battles. You can
 win a battle and lose the war. You can tune your queries and
 nevertheless have an application with dismal performance that nobody
 will want to use, except at gunpoint. Your database and programs, as
 well as your SQL queries, must all be properly designed.
A functionally correct design is not enough. Performance must be
 incorporated into the design—and down-stream tuning provides for that
 little surplus of power that can provide peace of mind.
Important
The single largest contributory factor to poor performance is a
 design that is wrong.

Processing Flow

 Besides all the questions addressed earlier in this
 chapter, the operating mode is also a matter that may have significant impact on the
 working system. What I mean by operating mode is
 whether data should be processed asynchronously (as is the case with
 batch programs) or synchronously (as in a typical transactional
 program).
Batch programs are the historical ancestors of all data processing
 and are still very much in use today even if no longer very fashionable;
 synchronous processing is rarely as necessary as one might think. However, the
 improvement of networks and the increase in bandwidth has led to the
 “global reach” of an increasing number of applications. As a result,
 shutting down your online transaction processing (OLTP) application running in the American Midwest may become
 difficult because of East Asian users connected during one part of the
 Midwestern night and European users connected during the other part.
 Batch programs can no longer assume that they are running on empty
 machines. Moreover, ever-increasing volumes of data may require that
 incoming data is processed immediately rather than being allowed to
 accumulate into unmanageably large data sets. Processing streams of data
 may simply be the most efficient way to manage such quantities.
The way you process data is not without influence on the way you
 “think” of your system, especially in terms of physical structures—which
 I talk about more in Chapter 5.
 When you have massive batch programs, you are mostly interested in
 throughput—raw efficiency, using as much of the hardware resources as
 possible. In terms of data processing, a batch program is in the realm
 of brute force. When you are processing data on the fly, most activity
 will be small queries that are going to be repeatedly executed a
 tremendous number of times. For such queries, performing moderately well
 is not good enough—they have to perform at the maximum possible
 efficiency. With an asynchronous program, it is easy to notice that
 something is wrong (if not always easy to fix): it just takes too long
 to complete. With synchronous processing, the situation is much more
 subtle, because performance problems usually show up at the worst
 moment, when there are surges of activity. If you are not able to spot
 weaknesses early enough, your system is likely to let you down when your
 business reaches maximum demand levels—the very worst time to
 fail.
Important
A data model is not complete until consideration has also been
 taken of data flow.

Centralizing Your Data

 For all the talk about grids, clustered servers, and the
 like, spreading data across many servers means adding a considerable amount of complexity to a
 system. The more complicated a structure—any type of structure—the less
 robust it is. Technological advance does indeed slowly push up the
 threshold of acceptability. In the eighteenth century, clocks indicating
 the minutes were considered much less reliable than those indicating
 only the hour, and much more reliable than those showing the day in the
 month or the phases of the moon. But nevertheless, try to keep the
 theater of operations limited to that which is strictly required.
Transparent references to remote data are performance killers, for
 two reasons. First, however “transparent” it may look, crossing more
 software layers and a network has a heavy cost. To convince yourself,
 just run a procedure that inserts a few thousands rows into a local
 table, and another one doing the very same thing across—for instance, an
 Oracle database link, even on the same database—you can expect
 performance to be in the neighborhood of five times slower, if not
 worse, as you see demonstrated in Chapter
 8.
Second, combining data from several sources is extremely
 difficult. When comparing data from source A to data from source B, you
 have no choice other than literally copying the data from A to B or the
 reverse. Transfer is one significant overhead. Data drawn from its own
 carefully constructed environment no longer benefits from the planning
 which went into establishing that environment (carefully thought-out
 physical layout, indexes, and so forth). Instead, that data lands in
 some temporary storage—in memory if the amount of data transferred is
 modest, otherwise on disk. The management of temporary storage is
 another major overhead. In a case where nested loops would be, in theory, the most efficient way to proceed
 when querying local data, an optimizer is left with two unattractive
 possibilities when some of the data is remotely located:
	Using nested loops and incurring high overhead with each
 iteration

	Sucking the remote data in, and then operating against the
 local copy, which has left all indexes behind

Optimizers can be forgiven for not performing at their best under
 these circumstances.
When it comes to the placement of major data repositories, some of
 the art is simply keeping a balance. If your company operates worldwide,
 keeping all the data at one location is unlikely to be a popular
 solution with people who live and work at the antipodes. Hitting a
 remote server is certainly no problem when surfing the Internet—it is
 quite another matter when using an application intensely. It’s not a
 question of bandwidth, it’s a question of light speed, for which,
 unfortunately, not much improvement can be expected from technological
 progress. Whatever you do, issuing a query against a server located on
 another continent adds another quarter or half second to response times,
 depending on the continent—and this at the best of times. If you need
 everyone to have the global picture, replication solutions and products
 (as opposed to remote access) should be contemplated. For each group of
 players, keep their own chessboard right at hand—don’t make players
 reach.
Important
The nearer you are to your data, the faster you can get at
 it!

System Complexity

 Other points to keep in mind when designing are what will
 happen if some piece of hardware breaks (for example, a disk controller)
 or if some mistake is made (for instance, the same batch program is
 applied twice). Even if your administrators are wizards who are doing
 night shifts to bring everything back on course by dawn, transfer rates
 are limited; the recovery of a huge database always takes a lot of time.
 “Spare” backup databases maintained in synch (or with some slight delay) may help.
 But backup databases will not be of any use in the case of a program
 inadvertently run twice, especially if the synchronization delay is
 shorter than the execution time of the program. What is already
 complicated with one database becomes a nightmare with several related
 databases, because you must be perfectly certain that all the databases
 are correctly synchronized after any recovery, to avoid any risk of data
 corruption.
This particular point of recovery is often a bone of contention
 between developers and database administrators, because developers tend
 to consider, not unreasonably, that backups and recoveries belong to
 administrators, while administrators point out, logically, that if they
 can guarantee that the container is in working order, they have no idea
 about the status of the contents. Indeed, any functional check in case
 of recovery should not be forgotten by developers. The more complicated
 the overall design, the more important it is for developers to keep in
 mind the constraints of operations.
Important
Database systems are joint ventures; they need the active and
 cooperative participation of users, administrators, and
 developers.

The Completed Plans

We have reviewed the basic foundations for laying plans in
 constructing a database system. We have reviewed the fundamentals of
 data modeling , and in particular the broad steps involved in
 normalizing data to third normal form. We have then proceeded to review
 a number of scenarios, in which a faulty design can be identified as the
 road to disaster.
Most examples in this chapter come directly from or are inspired
 by cases I have encountered in some big companies. And it is always
 striking to consider how much energy and intelligence can be wasted
 trying to solve performance problems that are born from the ignorance of
 elementary design principles. Such performance issues need not be
 present, yet they are quite common and often made worse by further
 denormalization of what is already a questionable design, on the
 unassailable grounds of “performance improvement.” One query may, in
 fact, run much faster, but unfortunately, the nightly batch program now
 takes twice as long. In this way, and almost without being noticed, a
 full information system is built on a foundation of sand.
Important
Successful data modeling is the disciplined application of what
 are, fundamentally, simple design principles.

[*] The expression business requirement is
 meant to encompass non-commercial as well as commercial
 activities.

[*] You can have 3NF but not BCNF if your
 table contains several sets of columns that are unique (candidate
 keys, which are possible unique identifiers of a row) and share one
 column. Such situations are not very common.

[*] You can use subtypes incorrectly. As one of the reviewers
 remarked, having a kind of super-generic parent table that is
 referred to several times in the most innocuous query isn’t a model
 for efficiency. Such a super-generic parent table is hammered by all
 queries if it stores vital information. Subtypes must be born of
 logical distinction, not of an ill-conceived desire to implement
 with tables a strong inheritance scheme inspired from
 object-oriented techniques.

Chapter 2. Waging War

Accessing Databases Efficiently

Il existe un petit nombre de principes
 fondamentaux de la guerre, dont on ne saurait s'écarter sans danger, et
 dont l’application au contraire a été presque en tous temps couronnée
 par le succès.
There exist a small number of fundamental principles of war, which
 it is dangerous to ignore: indeed, following these principles has almost
 invariably led to success.
—Général Antoine-Henri de Jomini (1779-1869) Précis
 de l’Art de la Guerre

Anybody who has ever been involved in the
 switch from development to production of a critical system
 knows how much it can feel like the noise and tumult of battle. Very
 often, a few weeks before D-Day, performance tests will show that the new
 system is going to fall short of expectations. Experts are brought in, SQL
 statements are fine-tuned, and database and system administrators are
 called to contribute to a succession of crisis meetings. Finally,
 performance vaguely comparable to the previous system is obtained on
 hardware that is now twice as expensive as the original
 installation.
Tactics are often used as a substitute for a strategic approach. The
 latter demands the adoption of a sound overall architecture and design. As
 in war, the basic principles here are also few, but too often ignored.
 Architectural mistakes can prove extremely costly, and the SQL programmer
 must enter the battle fully prepared, knowing where to go and how to get
 there. In this chapter, we are going to review the key goals that will
 increase our chances of success in writing programs that access databases
 efficiently.
Query Identification

 For centuries, the only means that a general had to check
 the progress of his troops during the heat of battle was to observe the
 position of his units as indicated by the color of the soldiers’
 uniforms and the flags they were carrying. When some process in the
 database environment is consuming an inordinate amount of CPU, it is
 often possible to identify which piece of SQL code is actually running.
 But it is very often much more difficult, especially in a large and
 complicated system that includes dynamically built queries, to identify
 which precise part of a given application issued that statement and
 needs reviewing. Despite the fact that many products have good
 monitoring facilities, it is sometimes surprisingly difficult to relate
 an SQL statement to its broader environment. Therefore, you should adopt
 the habit of identifying your programs and critical modules whenever possible by
 inserting comments into your SQL to help identify where in the programs
 a given query is used. For instance:
 /* CUSTOMER REGISTRATION */ select blah ...
These identifying comments can be important and helpful in
 subsequently tracking down any erroneous code. They can also be helpful
 when trying to determine how much load is put on a server by a single
 application, especially when some localized increase in activity is
 expected and when you are trying to assess whether the current hardware
 can absorb the surge.
Some products have special registration facilities that can spare
 you the admittedly tedious step of commenting each and every statement.
 Oracle’s dbms_application_info
 package allows you to register a program using a 48-character module
 name, a 32-character action name, and a 64-character client information
 field. The content of those fields is left to your discretion. In an
 Oracle environment, you can use this package to keep track not only of
 which application is running, but also what that application is doing at
 any given time. This is because you can easily query the information
 that your application passes to the package through the Oracle V$
 dynamic views that show what is currently happening in memory.
Important
Identifiable statements make the identification of performance
 issues easier.

Stable Database Connections

 A new database connection can be created quickly and
 easily, but this ease can disguise the high cost of making repeated
 connections. You must manage the use of database connections with great
 care. The consequences of allowing multiple connections to occur,
 perhaps hidden within an application, can be substantial, as the next
 example illustrates.
Some time ago I came across an application in which numerous small
 files of up to an arbitrary maximum of 100 lines were being processed.
 Each line in these small text files contained both data and the
 identification of the database instance into which that data had to be
 loaded. In this particular case, there was a single server, but the
 principle being illustrated is exactly the same as if there were a
 hundred database instances.
The process for each file was coded as follows:
 Open the file
 Until the end of file is reached
 Read a row
 Connect to the server specified by the row
 Insert the data
 Disconnect
 Close the file
This process worked quite satisfactorily, except for the
 occasional circumstance in which a large number of small files would
 arrive in a very short space of time, and at a rate greater than the
 ability of the application to process them. This resulted in a
 substantial backlog, which took considerable time to clear.
I explained the problem of performance degradation as a
 consequence of frequent connection and disconnection to the customer
 with the help of a simple program (written in C) emulating the current
 application. Table 2-1
 gives the results from that demonstration.
Note
The program generating the results in Table 2-1 used a conventional
 insert statement. I mentioned in
 passing to the customer the existence of direct-loading techniques
 that are even faster.

Table 2-1. Result of connect/disconnect performance tests
	Test
	Results

	Connect/disconnect for each line in
 turn
	7.4 lines loaded per
 second

	Connect once, all candidate lines
 individually inserted
	1,681 lines loaded per
 second

	Connect once, all candidate lines
 inserted in arrays of 10 lines
	5,914 lines loaded per
 second

	Connect once, all candidate lines
 inserted in arrays of 100 lines
	9,190 lines loaded per
 second

The demonstration showed the importance of trying to minimize the
 number of separate database connections that had to be made. Thus, there was an obvious and
 enormous advantage in applying a simple check to determine whether the
 “next” insert was into the same database as the previous one. The
 rationalization could go further, as the number of database instances
 was of course finite. You could likely achieve further performance gain
 by setting up an array of handlers, one for each specific database
 connection, opening a new connection each time a new database is
 referenced, and thus connecting at most once to each database. As Table 2-1 shows, the simple
 technique of connecting only once (or a very few times) improved
 performance by a factor of more than 200 with very little additional
 effort.
Of course, this was an excellent opportunity to show that
 minimizing the number of round-trips between a program and the database
 kernel, using arrays and populating them with incoming data, can also
 lead to spectacular improvements in performance. By inserting several
 rows at once, the throughput could be radically improved—by another
 factor of five. The results in Table 2-1 demonstrate that
 improvements in the process could reach a modest factor of 1,200.
Why such dramatic improvement?
	The reason for the first and biggest improvement is
 that a database connection is fundamentally a “heavy,” or
 high-resource operation.
	In the familiar client/server environment (which is still
 very widely used), the simple connection routine hides the fact
 that the client program first has to establish contact with a
 listener program on a remote machine; and then, depending on
 whether shared servers are being used on this machine, the
 listener must either spawn another process or thread and make it
 run some database kernel program, or hand the request, directly or
 indirectly, to an existing server process.
Whatever the number of system operations (process spawning
 or thread creation and the start of executions) your database
 system will need to create a new environment for each session, to
 keep track of what it does. Your DBMS will need to check the
 password provided against the encrypted password of the account
 for which a new session is to be created. Your DBMS may also have
 to execute the code for some logon trigger. It may have to execute
 some initialization code for stored procedures or packages the
 first time they are called. This does not include the base machine
 handshaking protocols between client and server processes. This is
 the reason techniques that allow the upkeep of permanent
 connections to the database, such as connection pooling, are so
 important to performance.

	The reason for the second improvement is that a
 round-trip between your program (and even a stored procedure) and
 the database also has its costs.
	Even when you are connected and maintain a connection,
 context switches between your program and the DBMS kernel take
 their toll. Therefore if your DBMS allows you to communicate
 through an array interface of some kind, you
 should not hesitate to use it. If, as sometimes happens, the array
 interface is implicit (the application program interface [API]
 uses arrays when you use only scalar values), it is wise to check
 the default array size that is used and perhaps tailor it to your
 particular needs. And of course, any row-by-row logic suffers the
 same context-switch mechanisms and is a cardinal sin—as you shall
 have several opportunities to see throughout this chapter.

Important
Database connections and round-trips are like Chinese Walls—the
 more you have, the longer it takes to receive the correct
 message.

Strategy Before Tactics

 Strategy defines the tactics, not the other way round. A
 skillful developer doesn’t think of a process in terms of little steps,
 but in terms of the final result. The most efficient way to obtain that
 result may not be to proceed in the order specified in the business
 rules, but rather to follow a less obvious approach. The following
 example will show how paying too much attention to the procedural
 processes within a business can distract ones’ attention from the most
 efficient solution.
Some years ago I was given a stored procedure to try to optimize;
 “try” is the operative word here. Two attempts at optimization had
 already been made, once by the original authors, and secondly by a
 self-styled Oracle expert. Despite these efforts, this procedure was
 still taking 20 minutes to run, which was unacceptable to the
 users.
The purpose of the procedure was to compute quantities of raw
 materials to be ordered by a central factory unit, based on existing
 stocks and on orders that were coming from a number of different
 sources. Basically, the data from several identical tables for each data
 source had to be aggregated inside one master table. The procedure
 consisted of a succession of similar statements simplified as follows.
 First, all data from each distinct source table were inserted into the
 single master table. Second, an aggregate/update was applied to each
 instance of raw material in that master table. Finally, the spurious
 data not relevant to the aggregate result was deleted from the table.
 These stages were repeated in sequence inside the procedure for every
 distinct source table. None of the SQL statements were particularly
 complex, and none of them could be described as being particularly
 inefficient.
It took the better half of a day to understand the process, which
 eventually prompted the question: why was this process being done in
 multiple steps? A subquery in a from
 clause with a union operator would
 allow the aggregation of all the various sources. A single select statement could provide in one step the
 result set that had to be inserted into the target table. The difference
 in performance was so impressive—from 20 minutes down to 20 seconds—that
 it took some time to verify that the final result was indeed identical
 to that previously obtained.
Extraordinary skills were not required to achieve the tremendous
 performance improvement just described, but merely an ability to think
 outside the box. Previous attempts to improve this process had really
 been hindered by the participants allowing themselves to get too close
 to the problem. One needed to take a fresh look, to stand back, and try
 to see the bigger picture. The key questions to ask were “What do we
 have when we enter this procedure?” and “Which result do we want when we
 return from it?” Together with some fresh thinking, the answers to those
 questions led to a dramatically improved process.
Important
Stand back from your problem to get the wider picture before
 plunging into the details of the solution.

Problem Definition Before Solution

 A little knowledge can be a dangerous thing. Frequently,
 people may have read or heard about new or unusual techniques—which in
 some cases can indeed be quite interesting—and then they will try to fit
 their problem to one of these new solutions. Ordinary developers and
 architects often jump quickly on to such “solutions,” which often turn
 out to be at the root of many subsequent problems.
At the top of the list of ready-made solutions, we usually meet
 denormalization. Blissfully unaware of the update nightmare that it
 turns out to be in practice, denormalization advocates often suggest it
 at an early stage in the hunt for “performance"--and in fact often at a
 point in the development cycle when better design (or learning how to
 use joins) is still an option. A particular type of denormalization, the
 materialized view, is also often seen as being something of a panacea.
 (Materialized views are sometimes referred to as
 snapshots , a less impressive term, but one that is closer to the
 sad reality: copies of data at one point in time.) This is not to say
 that sometimes, as a last resort option, theoretically questionable
 techniques cannot be used. To quote Franz Kafka: “Logic is doubtless
 unshakable, but it cannot withstand a man who wants to go on
 living.”
But the immense majority of problems can be solved using fairly
 traditional techniques in an intelligent manner. Learn first how to get
 the best of simple, traditional techniques. It’s only when you can fully
 master them that you will be able to appreciate their limitations, and
 then to truly be able to judge the potential advantage (if any) of new
 technical solutions.
All technological solutions are merely means to an end; the great
 danger for the inexperienced developer is that the attractions of the
 latest technology become an end in themselves. And the danger is all the
 greater for enthusiastic, curious, and technically minded
 individuals!
Important
Foundations before Fashion: learn your craft before playing with
 the latest tools.

Stable Database Schema

 The use of data definition language (DDL) to create, alter, or drop database objects inside an
 application is a very bad practice that in most cases should be banned.
 There is no reason to dynamically create, alter, or drop objects, with
 the possible exception of partitions—which I describe in Chapter 5--and temporary tables
 that are known to the DBMS to be temporary tables.
 (We shall also meet another major exception to this rule in Chapter 10.)
The use of DDL is fundamentally based on the core database data
 dictionary. Since this dictionary is also central to all database
 operations, any activity on it introduces global locks that can have
 massive performance consequences. The only acceptable DDL operation is
 truncate table, which is a very fast
 way of emptying a table of all rows (without the protection of rollback recovery,
 remember!).
Important
Creating, altering, or dropping database objects belong to
 application design, not to regular operations.

Operations Against Actual Data

Many developers like to create temporary work tables into which
 they extract lists of data for subsequent processing, before they begin
 with the serious stuff. This approach is often questionable and may
 reflect an inability to think beyond the details of the business
 processes. You must remember that temporary tables cannot offer storage options of the same degree of
 sophistication as permanent tables (you see some of these options in
 Chapter 5). Their indexing, if
 they are indexed, may be less than optimal. As a result, queries that
 use temporary tables may perform less efficiently than well-written
 statements against permanent tables, with the additional overhead of
 having to fill temporary tables as a prerequisite to any query.
Even when the use of temporary tables is justified, they should
 never be implemented as permanent tables masquerading as work tables if
 the number of rows to be stored in them is or can be large. One of the
 problems lies in the automated collection of statistics: when statistics
 are not collected in real time, they are typically gathered by the DBMS
 at a time of zero or low activity. The nature of work tables is that
 they will probably be empty at such slack times, thus giving a wholly
 erroneous indicator to the optimizer. The result of this incorrect, and
 biased, statistical data can be totally inappropriate execution plans
 that not surprisingly lead to dismal performance. If you
 really have to use temporary storage, use tables
 that the database can recognize as being temporary.
Important
Temporary work tables mean more byte-pushing to less suitable
 storage.

Set Processing in SQL

 SQL processes data in complete sets. For most update or delete operations against a database —and assuming one is not operating against the entire
 table contents—one has to define precisely the set of rows in that table
 that will be affected by the process. This defines the
 granularity of the impending process, which may be described as
 coarse if a large number of rows will be affected
 or as fine if only few rows will be
 involved.
Any attempt to process a large amount of data in small chunks is
 usually a very bad idea and can be massively inefficient. This approach
 can be defended only where very extensive changes will be made to the
 database which can, first, consume an enormous amount of space for
 storing prior values in case of a transaction rollback, and second, take a very long time to
 rollback if any attempted change should fail. Many people would argue
 that where very considerable changes are to be made, regular commit statements should be scattered
 throughout the data manipulation language (DML) code. However, regular
 commit statements may not help when
 resuming a file upload that has failed. From a strictly practical
 standpoint, it is often much easier, simpler, and faster to resume a
 process from the start rather than try to locate where and when the
 failure occurred and then to skip over what has already been
 committed.
Concerning the size of the log required to rollback transactions
 in case of failure, it can also be argued that the physical database
 layout has to accommodate processes, and not that processes have to make
 do with a given physical implementation. If the amount of undo storage
 that is required is really enormous, perhaps the question should be
 raised as to the frequency with which changes are applied. It may be
 that switching from massive monthly updates to not-so-massive weekly
 ones or even smaller daily ones may provide an effective
 solution.
Important
Thousands of statements in a cursor loop for endless batch
 processing, multiple statements applied to the same data for users
 doomed to wait, one swoop statement to outperform them all.

Action-Packed SQL Statements

 SQL is not a procedural language. Although procedural
 logic can be applied to SQL, such approaches should be used with
 caution. The confusion between procedural and declarative processing is
 most frequently seen when data is required to be extracted from the
 database, processed, and then re-inserted back into the database. When a
 program—or a function within a program—is provided with some input
 value, it is all too common to see that input value used to retrieve one
 or several other values from the database, followed by a loop or some
 conditional logic (usually if...then...else) being
 applied to yet other statements applied to the database. In most cases,
 this behavior is the result of deeply ingrained bad habits or a poor
 knowledge of SQL, combined with a slavish obsession with functional
 specifications. Many relatively complex operations can be accomplished
 in a single SQL statement. If the user provides some value, try to get
 the result set that is of interest without decomposing the process into
 multiple statements fetching intermediate results of only minimal
 relevance to the final output.
There are two main reasons for shunning procedural logic in
 SQL:
	Any access to the database means crossing quite a
 number of software layers, some of which may include network
 accesses.
	Even when no network is involved, there will be interprocess
 communications; more accesses mean more function calls, more
 bandwidth, and more time waiting for the answer. As soon as those
 calls are repeated a fair number of times, the impact on process
 performance can become distinctly perceptible.

	Procedural means that performance and future
 maintenance burdens fall to your program.
	Most database systems incorporate sophisticated algorithms
 for executing operations such as joins, and for transforming
 queries so as to execute them in a more efficient way. Cost-based
 optimizers (CBOs) are complex pieces of software that have
 sometimes grown from being totally unusable when originally
 introduced to becoming mature products, capable of giving
 excellent results in most cases. A good CBO can be extremely
 efficient in choosing the most suitable execution plan. However,
 the scope of operation of the CBO is the SQL statement, nothing
 more. By doing as much as possible in a single statement, you
 shift the burden of achieving the best possible performance from
 your program to the DBMS kernel. You enable your program to take
 advantage of any improvement to the DBMS code, and therefore you
 are indirectly shifting a large part of the future maintenance of
 your program to the DBMS vendor.

As ever, there will be exceptions to the general rule that you
 should shun procedural logic, where in some cases procedural logic may
 indeed help make things faster. The monstrous all-singing-and-dancing
 SQL statement is not always a model for efficiency. However, the
 procedural logic that glues together successive statements that work on
 the same data and hit the same rows can often be pushed into one SQL
 statement. The CBO can consider a single statement that stays close to
 the sound rules of the relational model as a whole and can execute it in
 the most efficient way.
Important
Leave as much as you possibly can to the database optimizer to
 sort out.

Profitable Database Accesses

 When you plan a visit to several shops, the first step is
 to decide what purchases have to be made at each shop. From this point,
 a trip is planned that will ensure minimum repetitive walking backward
 and forward between different shops. The first shop is then visited, the
 purchase completed, and then the next closest shop is visited. This is
 only common sense, and yet the principle underlying this obvious
 approach is not seen in the practical implementation of many database
 programs.
When several pieces of information are required from a single
 table—even if it appears as if they are “unrelated” (which in fact is
 unlikely to be the case)--it is highly inefficient to retrieve this data
 in several separate visits to the database. For example, do not fetch
 row values column by column if multiple columns are required: do the
 work in one operation.
Unfortunately, good object-oriented (OO) practice makes a virtue
 out of defining one method for returning each attribute. But do not
 confuse OO methods with relational database processing. It is a fatal
 mistake to mix relational and object-oriented concepts and to consider
 tables to be classes with columns as the
 attributes.
Important
Maximize each visit to the database to complete as much work as
 can reasonably be achieved for every visit.

Closeness to the DBMS Kernel

 The nearer to the DBMS kernel your code can execute, the
 faster it will run. This is where the true strength of the database
 lies. For example, several database management products allow you to
 extend them by adding new functions, which can sometimes be written in
 comparatively low-level languages such as C. The snag with a low-level
 language that manipulates pointers is that if you mishandle a pointer,
 you can end up corrupting memory. It would be bad enough if you were the
 only user affected. But the trouble with a database server is that, as
 the name implies, it can serve a large number of users: if you corrupt
 the server memory, you can corrupt the data handled by another, totally
 innocent program. As a consequence, responsible DBMS kernels run code in
 a kind of sandbox, where it can crash without taking everything with it
 in its downfall. For instance, Oracle implements a complicated
 communication mechanism between external functions and itself. In some
 ways, this process is similar to that which controls database links, by
 which communication between two (or more) database instances on separate
 servers is managed. If the overall gain achieved by running tightly
 tailored C functions rather than stored PL/SQL procedures is greater
 than the costs of setting up an external environment and
 context-switching, use external functions. But do not use them if you
 intend to call a function for every row of a very large table. It is a
 question of balance, of knowing the full implications of the alternative
 strategies available to solve any given problem.
If functions are to be used, try to always use those that are
 provided by the DBMS. It is not merely a matter of not reinventing the
 wheel: built-in functions always execute much closer to the database
 kernel than any code a third-party programmer can construct, and are
 accordingly far more efficient.
Here is a simple example using Oracle’s SQL that will demonstrate
 the efficiencies to be gained by using Oracle functions. Let’s assume we
 have some text data that has been manually input and that contains
 multiple instances of adjacent “space” characters. We require a function
 that will replace any sequence of two or more spaces by a single space.
 Ignoring the regular expressions available since Oracle Database
 10g, our function might be written as
 follows:
 create or replace function squeeze1(p_string in varchar2)
 return varchar2
 is
 v_string varchar2(512) := '';
 c_char char(1);
 n_len number := length(p_string);
 i binary_integer := 1;
 j binary_integer;
 begin
 while (i <= n_len)
 loop
 c_char := substr(p_string, i, 1);
 v_string := v_string || c_char;
 if (c_char = ' ')
 then
 j := i + 1;
 while (substr(p_string || 'X', j, 1) = ' ')
 loop
 j := j + 1;
 end loop;
 i := j;
 else
 i := i + 1;
 end if;
 end loop;
 return v_string;
 end;
 /
As a side note, 'X' is
 concatenated to the string in the inner loop to avoid testing j against the length of the string.
There are alternate ways of writing a function to eliminate
 multiple spaces, which can make use of some of the string functions
 provided by Oracle. Here’s one alternative:
 create or replace function squeeze2(p_string in varchar2)
 return varchar2
 is
 v_string varchar2(512) := p_string;
 i binary_integer := 1;
 begin
 i := instr(v_string, ' ');
 while (i > 0)
 loop
 v_string := substr(v_string, 1, i)
 || ltrim(substr(v_string, i + 1));
 i := instr(v_string, ' ');
 end loop;
 return v_string;
 end;
 /
And here’s a third way to do it:
 create or replace function squeeze3(p_string in varchar2)
 return varchar2
 is
 v_string varchar2(512) := p_string;
 len1 number;
 len2 number;
 begin
 len1 := length(p_string);
 v_string := replace(p_string, ' ', ' ');
 len2 := length(v_string);
 while (len2 < len1)
 loop
 len1 := len2;
 v_string := replace(v_string, ' ', ' ');
 len2 := length(v_string);
 end loop;
 return v_string;
 end;
 /
When these three alternative methods are tested on a simple
 example, each behaves exactly as specified, and there is no visible
 performance difference:
 SQL> select squeeze1('azeryt hgfrdt r')
 2 from dual
 3 /
 azeryt hgfrdt r

 Elapsed: 00:00:00.00
 SQL> select squeeze2('azeryt hgfrdt r')
 2 from dual
 3 /
 azeryt hgfrdt r

 Elapsed: 00:00:00.01
 SQL> select squeeze3('azeryt hgfrdt r')
 2 from dual
 3 /
 azeryt hgfrdt r

 Elapsed: 00:00:00.00
Assume now that this operation of stripping out multiple spaces is
 to be called many thousands of times each day. You can use the following
 code to create and populate a test table with random data, by which you
 can examine whether there are differences in performance among these
 three space-stripping functions under a more realistic load:
 create table squeezable(random_text varchar2(50))
 /

 declare
 i binary_integer;
 j binary_integer;
 k binary_integer;
 v_string varchar2(50);
 begin
 for i in 1 .. 10000
 loop
 j := dbms_random.value(1, 100);
 v_string := dbms_random.string('U', 50);
 while (j < length(v_string))
 loop
 k := dbms_random.value(1, 3);
 v_string := substr(substr(v_string, 1, j) || rpad(' ', k)
 || substr(v_string, j + 1), 1, 50);
 j := dbms_random.value(1, 100);
 end loop;
 insert into squeezable
 values(v_string);
 end loop;
 commit;
 end;
 /
This script creates a total of 10,000 rows in the test table (a
 fairly modest total when it is considered how many times some SQL
 statements are executed). The test can now be run as follows:
 select squeeze_func(random_text)
 from squeezable;
When I ran this test, headers and screen display were all switched
 off. Getting rid of output operations ensured that the results reflected
 the space-reduction algorithm and not the time needed to display the
 results. The statements were executed several times to ensure that there
 was no caching effect.
Table 2-2 shows the
 results on the test machine.
Table 2-2. Time to trim spaces from 10,000 rows
	Function
	Mechanism
	Time

	 squeeze1
	 PL/SQL loop on
 chars
	0.86 seconds

	 squeeze2
	instr() + ltrim()
	0.39 seconds

	 squeeze3
	replace() called in a
 loop
	0.48 seconds

Even though all functions can be called 10,000 times in under one
 second, squeeze3 is 1.8 times as fast
 as squeeze1, and squeeze2 almost 2.2 times as fast. Why? Simply
 because PL/SQL is not “as close to the kernel” as is a SQL function. The
 performance difference may look like a tiny thing when functions are
 executed once in a while, but it can make quite a difference in a batch
 program—or on a heavily loaded OLTP server.
Important
Code loves the SQL kernel—the closer they get, the hotter the
 code.

Doing Only What Is Required

 Developers often use count(*) for no purpose other than to
 implement an existence test. This usually happens as a result of a
 specification such as:
 If there are rows meeting a certain condition
 Then do something to them
which immediately becomes:
 select count(*)
 into counter
 from table_name
 where <certain_condition>

 if (counter > 0) then
Of course in 90% of the cases the count(*) is totally unnecessary and
 superfluous, as in the above example. If an action is required to
 operate on a number of rows, just do it. If no row is affected, so what?
 No harm is done. Moreover, if the process to be applied to those
 hypothetical rows is complex, the very first operation will tell you how
 many of them were affected, either in a system variable (@@ROWCOUNT with Transact-SQL, SQL%ROWCOUNT with PL/SQL, and so forth), in a
 special field of the SQL Communication Area (SQLCA) when using embedded SQL, or through special APIs such as
 mysql_affected_rows() in PHP. The
 number of processed rows is also sometimes directly returned by the
 function, which interacts with the database, such as the JDBC executeUpdate() method. Counting rows very
 often achieves nothing other than doubling your total search effort,
 because it applies a process twice to the same data.
Further, do not forget that if your purpose is to update or insert
 rows (a frequent case when rows are counted first to check whether the
 key already exists), some database systems provide dedicated statements
 (for instance, Oracle 9i Database’s MERGE
 statement) that operate far more efficiently than you can ever achieve
 by executing redundant counts.
Important
There is no need to code explicitly what the database performs
 implicitly.

SQL Statements Mirror Business Logic

Most database systems provide monitoring facilities that allow you
 to check statements currently being executed , as well as to monitor how many times they are executed.
 At the same time, you should have an idea of how many “business units”
 are being processed—activities such as orders or claims to be processed,
 customers to be billed, or anything else that makes sense to the
 business managers. You should review whether there is a reasonable (not
 absolutely precise) correlation between the two classes of activities.
 In other words, for a given number of customers, is the same number of
 activities being initiated against the database? If a query against the
 customers table is executed 20 times
 more than the number of customers being processed at the same time, it
 is a certainty that there is a problem somewhere. This situation would
 suggest that instead of going once to the table to find required
 information, repeated (and superfluous) visits are being made to the
 same rows in the same table.
Important
Check that your database activity is reasonably consistent with
 the business requirements currently being addressed.

Program Logic into Queries

 There are several ways to achieve procedural logic in a
 database application. It’s possible to put some degree of procedurality
 inside an SQL statement (even if a statement should
 say what, and not how). Even
 when using a well-integrated host language within which SQL statements
 are embedded, it is still preferable to embed as much procedural logic
 as possible within an actual SQL statement, rather than in the host
 language. Of the two alternatives, embedding logic in the SQL statement
 will yield higher performance than embedding it in the application.
 Procedural languages are characterized by the ability to iterate
 (loops) and to perform conditional logic (if...then...else constructs). SQL
 doesn’t need looping, since by essence it operates on sets; all it
 requires is the ability to test logically for some conditions.
Obtaining conditional logic breaks down into two components—IF and
 ELSE. Achieving IF is easy enough—the where condition provides the capability. What
 is difficult is to obtain the ELSE logic. For example, we may need to
 retrieve a set of rows, and then apply different transformations to
 different subsets. The case
 expression (Oracle has also long provided a functionally equivalent
 operator in decode() [*]) makes it easy to simulate some logic: it allows us to
 change on the fly the values that are returned to the result set by
 testing on row values. In pseudocode, the case construct operates like this:[†]
 CASE
 WHEN condition THEN <return something to the result set>
 WHEN condition THEN <return something else>
 ...
 WHEN condition THEN <return still something else>
 ELSE <fall back on this value>
 END
Comparing numerical values or dates is straightforward. With
 strings, functions such as Oracle’s greatest(
) or least() or MySQL’s
 strcmp() can be useful. It is also
 sometimes possible to add some logic to insert statements, through multiple table
 inserts and conditional inserts,[*] and by using the merge
 statement. Don’t hesitate to use such statements if they are available
 with your DBMS. In other words, a lot of logic can be pushed into SQL
 statements; although the benefit may be small when executing only one of
 several statements, the gain can be much greater if you can manage to
 use case or merge or similar functionality to combine
 several statements into one.
Important
Wherever possible, try to embed your conditional logic within
 your SQL statements rather than in an associated host language.

Multiple Updates at Once

 My basic assertion here is that successive updates to a
 single table are acceptable if they affect disjoint sets of rows;
 otherwise they should be combined. For example, here is some code from
 an actual application:[†]
 update tbo_invoice_extractor
 set pga_status = 0
 where pga_status in (1,3)
 and inv_type = 0;
 update tbo_invoice_extractor
 set rd_status = 0
 where rd_status in (1,3)
 and inv_type = 0;
Two successive updates are being applied to the same table. Will
 the same rows be hit twice? There is no way to tell. The question is,
 how efficient are the search criteria? Any attribute with a name like
 type or status is typically a column with a totally
 skewed distribution. It is quite possible that both updates may result
 in two successive full scans of the same table. One update may use an
 index efficiently, and the second update may result in an unavoidable
 full table scan. Or, fortuitously, both may be able to make efficient
 use of an index. In any case, there is almost nothing to lose and
 everything to win by trying to combine both updates into a single
 statement:
 update tbo_invoice_extractor
 set pga_status = (case pga_status
 when 1 then 0
 when 3 then 0
 else pga_status
 end),
 rd_status = (case rd_status
 when 1 then 0
 when 3 then 0
 else rd_status
 end)
 where (pga_status in (1,3)
 or rd_status in (1, 3))
 and inv_type = 0;
There is indeed the possibility of some slight overhead due to the
 update of some columns with exactly the same contents they already have.
 But in most cases, one update is a lot faster than several separate
 ones. Notice that in regard to the previous section on logic, how we
 have used implicit conditional logic, by virtue of the case statement, to process only those rows
 that meet the update criteria, irrespective of how many different update
 criteria there may be.
Important
Apply updates in one fell swoop if possible; try to minimize
 repeated visits to the same table.

Careful Use of User-Written Functions

 When a user-written function is embedded in a statement,
 the function may be called a large number of times. If the function
 appears within the select list, it is
 called for each returned row. If it appears within the where clause, it is called for each and every
 row that has successfully passed the filtering criteria previously
 evaluated. This may be a considerable number of times if the other
 criteria are not very selective.
Consider what happens if that same function executes a query. The
 query is executed each time the function is called; in practice, the
 result is exactly the same as a correlated subquery, except that the
 function is an excellent way to prevent the cost-based optimizer from
 executing the main query more intelligently! Precisely because the
 subquery is hidden within the function, the database optimizer cannot
 take any account of this query. Moreover, the stored procedure is not as
 close to the SQL execution engine as is a correlated subquery, and it
 will consequently be even less efficient.
Now I shall present an example demonstrating the dangers of hiding
 SQL code away inside a user-written function. Consider a table flights that describes commercial flights,
 with columns for flight number, departure time, arrival time, and the
 usual three-letter IATA[*] codes for airports. The translation of those codes (over
 9,000 of them) is stored in a reference table that contains the name of
 the city (or of the particular airport when there are several located in
 one city), and of course the name of the country, and so on. Quite
 obviously any display of flight information should include the name of
 the destination city airport rather than the rather austere IATA
 code.
Here we come to one of the contradictions in modern software
 engineering. What is often regarded as “good practice” in programming is
 modularity, with many insulated software layers. That principle is fine
 in the general case, but in the context of database programming, in
 which code is a shared activity between the developer and the database
 engine itself, the desirability of code modularity is less clear. For
 example, we can follow the principle of modularity by building a small
 function to look up IATA codes and present the full airport name
 whenever the function is cited in a query:
 create or replace function airport_city(iata_code in char)
 return varchar2
 is
 city_name varchar2(50);
 begin
 select city
 into city_name
 from iata_airport_codes
 where code = iata_code;
 return(city_name);
 end;
 /
For readers unfamiliar with Oracle syntax, trunc(sysdate) in the following query refers
 to today at 00:00 a.m., and date arithmetic is based on days; the condition on departure times
 therefore refers to times between 8:30 a.m. and 4:00 p.m. today. Queries
 using the airport_city function might
 be very simple. For example:
 select flight_number,
 to_char(departure_time, 'HH24:MI') DEPARTURE,
 airport_city(arrival) "TO"
 from flights
 where departure_time between trunc(sysdate) + 17/48
 and trunc(sysdate) + 16/24
 order by departure_time
 /
This query executes with satisfactory speed; on a random sample on
 my machine, 77 rows were returned in 0.18 seconds (the average of
 several runs), the kind of time that leaves users happy (statistics
 indicate that 303 database blocks were accessed, 53 read from disk—and
 there is one recursive call per row).
As an alternative to using a look-up function we could simply
 write a join, which of course looks slightly more complicated:
 select f.flight_number,
 to_char(f.departure_time, 'HH24:MI') DEPARTURE,
 a.city "TO"
 from flights f,
 iata_airport_codes a
 where a.code = f.arrival
 and departure_time between trunc(sysdate) + 17/48
 and trunc(sysdate) + 16/24
 order by departure_time
 /
This query runs in only 0.05 seconds (the same statistics, but
 there are no recursive calls). It may seem petty and futile to be more
 than three times as fast for a query that runs for less than a fifth of
 a second. However, it is quite common in large systems (particularly in
 the airline world) to have extremely fast queries running several
 hundred thousand times in one day. Let’s say that a query such as the
 one above runs only 50,000 times per day. Using the
 query with the lookup function, the query time will amount to a total of
 2:30 hours. Without the lookup function, it will be under 42 minutes.
 This maintains an improvement ratio of well over 300%, which in a high
 traffic environment represents real and tangible savings that may
 ultimately translate into a financial saving. Very often, the use of
 lookup functions makes the performance of batch programs dreadful.
 Moreover, they increase the “service time” of queries for no
 benefit—which means that fewer concurrent users can use the same box, as
 you shall see in Chapter 9.
Important
The code of user-written functions is beyond the examination of
 the optimizer.

Succinct SQL

 The skillful developer will attempt to do as much as
 possible with as few SQL statements as possible. By contrast, the
 ordinary developer tends to closely follow the different functional
 stages that have been specified; here is an actual example:
 -- Get the start of the accounting period
 select closure_date
 into dtPerSta
 from tperrslt
 where fiscal_year=to_char(Param_dtAcc,'YYYY')
 and rslt_period='1' || to_char(Param_dtAcc,'MM');

 -- Get the end of the period out of closure
 select closure_date
 into dtPerClosure
 from tperrslt
 where fiscal_year=to_char(Param_dtAcc,'YYYY')
 and rslt_period='9' || to_char(Param_dtAcc,'MM');
This is an example of very poor code, even if in terms of raw
 speed it is probably acceptable. Unfortunately, this quality of code is
 typical of much of the coding that performance specialists encounter.
 Two values are being collected from the very same table. Why are they
 being collected through two different, successive statements? This
 particular example uses Oracle, and a bulk
 collect of the two values into an array can easily be
 implemented. The key to doing that is to add an order by clause on rslt_period, as follows:
 select closure_date
 bulk collect into dtPerStaArray
 from tperrslt
 where fiscal_year=to_char(Param_dtAcc,'YYYY')
 and rslt_period in ('1' || to_char(Param_dtAcc,'MM'),
 '9' || to_char(Param_dtAcc,'MM'))
 order by rslt_period;
The two dates are stored respectively into the first and second
 positions of the array. bulk collect
 is specific to the PL/SQL language but the same reasoning applies to any
 language allowing an explicit or implicit array fetch.
Note that an array is not even required, and the two values can be
 retrieved into two distinct scalar variables using the following little
 trick:[*]
 select max(decode(substr(rslt_period, 1, 1), -- Check the first character
 '1', closure_date,
 -- If it's '1' return the date we want
 to_date('14/10/1066', 'DD/MM/YYYY'))),
 -- Otherwise something old
 max(decode(substr(rslt_period, 1, 1),
 '9', closure_date, -- The date we want
 to_date('14/10/1066', 'DD/MM/YYYY'))),
 into dtPerSta, dtPerClosure
 from tperrslt
 where fiscal_year=to_char(Param_dtAcc,'YYYY')
 and rslt_period in ('1' || to_char(Param_dtAcc,'MM'),
 '9' || to_char(Param_dtAcc,'MM'));
In this example, since we expect two rows to be returned, the
 problem is to retrieve in one row and two columns what would naturally
 arrive as two rows of a single column each (as in the array fetch
 example). We do that by checking each time the column that allows
 distinction between the two rows, rslt_period. If the row is the required one,
 the date of interest is returned. Otherwise, we return a date (here the
 arbitrary date is that of the battle of Hastings), which we know to be
 in all cases much older (smaller in terms of date
 comparison) than the one we want. By taking the maximum each time, we
 can be ensured that the correct date is obtained. This is a very
 practical trick that can be applied equally well to character or
 numerical data; we shall study it in more detail in Chapter 11.
Important
SQL is a declarative language, so try to distance your code from
 the procedurality of business specifications.

Offensive Coding with SQL

 Programmers are often advised to code defensively,
 checking the validity of all parameters before proceeding. In reality,
 when accessing a database, there is a real advantage in coding
 offensively, trying to do several things simultaneously.
A good example is a succession of various checks, designed to flag
 up an exception whenever the criterion required by any of these checks
 fails to be met. Let’s assume that some kind of payment by a credit card
 has to be processed. There are a number of steps involved. It may be
 necessary to check that the customer id and card number that have been
 submitted are valid, and that they are correctly associated one with the
 other. The card expiration date must also be validated. Finally, the
 current purchase must not exceed the credit limit for the card. If
 everything is correct, the debit operation may proceed.
An unskilled developer may write as follows:
 select count(*)
 from customers
 where customer_id = provided_id
and will check the result.
Then the next stage will be something like this:
 select card_num, expiry_date, credit_limit
 from accounts
 where customer_id = provided_id
These returns will be checked against appropriate error
 codes.
The financial transaction will then proceed.
A skillful developer will do something more like the following
 (assuming that today() is the
 function that returns the current date):
 update accounts
 set balance = balance - purchased_amount
 where balance >= purchased_amount
 and credit_limit >= purchased_amount
 and expiry_date > today()
 and customer_id = provided_id
 and card_num = provided_cardnum
Then the number of rows updated will be checked. If the result is
 0, the reason can be determined in a single operation, by
 executing:
 select c.customer_id, a.card_num, a.expiry_date,
 a.credit_limit, a.balance
 from customers c
 left outer join accounts a
 on a.customer_id = c.customer_id
 and a.card_num = provided_cardnum
 where c.customer_id = provided_id
If the query returns no row, the inference is that the value of
 customer_id is wrong, if card_num is null the card number is wrong, and
 so on. But in most cases this query will not even be executed.
Note
Did you notice the use of count(*) in the first piece of novice code?
 This is a perfect illustration of the misuse of count(*) to perform an existence
 test.

The essential characteristic of “aggressive coding " is to proceed on the basis of reasonable probabilities.
 For example, there is little point in checking whether the customer
 exists—if they don’t, they won’t be in the database in the first place!
 Assume nothing will fail, and if it does, have mechanisms in place that
 will address the problem at that point and only that point.
 Interestingly, this approach is analogous to the “optimistic concurrency
 control " method adopted in some database systems. Here update
 conflicts are assumed not to occur, and it is only when they do that
 control strictures are brought into play. The result is much higher
 throughput than for systems using pessimistic methods.
Important
Code on a probabilistic basis. Assume the most likely outcome
 and fall back on exception traps only when strictly necessary.

Discerning Use of Exceptions

 There is a thin line between courage and rashness; when I
 recommend coding aggressively, my model is not the charge of the Light
 Brigade at Balaclava.[*] Programming by exception can also be the consequence of an
 almost foolhardy bravado, in which our proud developers determine to “go
 for it.” They have an overriding confidence that testing and the ability
 to handle exceptions will see them through. Ah, the brave die
 young!
As their name implies, exceptions should be exceptional
 occurrences. In the particular case of database programming, all
 exceptions do not require the same computer resources—and this is
 probably the key point to understand if they are to be used
 intelligently. There are good exceptions, conditions that are raised
 before anything has been done, and bad exceptions, which are raised only
 when the full extent of the disaster has actually happened.
For instance, a query against a primary key that finds no row will
 take minimal resources—the situation is detected while searching the
 index. However, if the query cannot use an index, then you have to carry
 out a full table scan before being able to tell positively that no data
 has been found. For a very large table, a total sequential read can
 represent a disaster on a machine near maximum capacity.
Some exceptions are extremely costly, even in the best-case
 scenario; take the detection of duplicate keys. How is uniqueness
 enforced? Almost always by creating a unique index, and it is when a key
 is submitted for entry into that index that any constraint violation
 of that unique index will be revealed. However, when an
 index entry is created, the physical address of the row must be
 provided, which means that the insertion into the table takes place
 prior to the insertion into the index. The constraint violation requires
 that the partial insert must be undone, together with the identification
 of the exact constraint violated being returned as an error message. All
 of these activities carry some significant processing cost. But the
 greatest sin is trying to fight at the individual exception level. Here,
 one is forced to think about individual rows rather than data sets—the
 very antithesis of relational database processing. The consequence of
 repeated constraint violations can be a serious deterioration in
 performance.
Let’s look at an Oracle example of the previous points. Assume
 that following the merger of two companies, email addresses are
 standardized on the <Initial><Name>
 pattern, on 12 characters at most, with all spaces or quotes replaced by
 an underscore character.
Let’s assume that a new employee table is created with the new email
 addresses obtained from a 3,000-row employee_old table. We want each employee to
 have a unique email address. We must therefore assign, for instance,
 flopez to Fernando Lopez, and
 flopez2 to Francisco Lopez (no relation). In fact,
 in our test data, a total of 33 potential duplicate entries exist, which
 is the reason for the following result:
 SQL> insert into employees(emp_num, emp_name,
 emp_firstname, emp_email)
 2 select emp_num,
 3 emp_name,
 4 emp_firstname,
 5 substr(substr(EMP_FIRSTNAME, 1, 1)
 6 ||translate(EMP_NAME, ' ''', '_ _'), 1, 12)
 7 from employees_old;

 insert into employees(emp_num, emp_name, emp_firstname, emp_email)
 *
 ERROR at line 1:
 ORA-00001: unique constraint (EMP_EMAIL_UQ) violated

 Elapsed: 00:00:00.85
Thirty-three duplicates out of 3,000 is about 1%, so perhaps it
 would be possible to quietly process the conformant 99% and handle the
 rest through exceptions? After all, it would seem that a 1% load could
 be accommodated with some additional exception processing which should
 not be too significant. Following is the code for this optimistic
 approach:
 SQL> declare
 2 v_counter varchar2(12);
 3 b_ok boolean;
 4 n_counter number;
 5 cursor c is select emp_num,
 6 emp_name,
 7 emp_firstname
 8 from employees_old;
 9 begin
 10 for rec in c
 11 loop
 12 begin
 13 insert into employees(emp_num, emp_name,
 14 emp_firstname, emp_email)
 15 values (rec.emp_num,
 16 rec.emp_name,
 17 rec.emp_firstname,
 18 substr(substr(rec.emp_firstname, 1, 1)
 19 ||translate(rec.emp_name, ' ''', '_ _'), 1, 12));
 20 exception
 21 when dup_val_on_index then
 22 b_ok := FALSE;
 23 n_counter := 1;
 24 begin
 25 v_counter := ltrim(to_char(n_counter));
 26 insert into employees(emp_num, emp_name,
 27 emp_firstname, emp_email)
 28 values (rec.emp_num,
 29 rec.emp_name,
 30 rec.emp_firstname,
 31 substr(substr(rec.emp_firstname, 1, 1)
 32 ||translate(rec.emp_name, ' ''', '_ _'), 1,
 33 12 - length(v_counter)) || v_counter);
 34 b_ok := TRUE;
 35 exception
 36 when dup_val_on_index then
 37 n_counter := n_counter + 1;
 38 end;
 39 end;
 40 end loop;
 41 end;
 40 /

 PL/SQL procedure successfully completed.

 Elapsed: 00:00:18.41
But what exactly is the cost of this exception handling? If the same exercise is
 attempted after removing the “problem” rows, the comparison between the
 loop with duplicates and the loop without duplicates shows that the cost
 of processing exceptions in the loop is fairly negligible—with
 duplicates the procedure also takes about 18 seconds to run. However,
 when we run the insert...select of
 our first attempt without duplicates it is considerably faster than the
 loop: we discover that the switch to the one-row-at-a-time logic adds
 close to 50% to processing time. But in such a case, is it possible to
 avoid the row-at-a-time process? Yes, but only by avoiding exceptions.
 It’s the decision of dealing with problem rows through exception
 handling that forced our adoption of sequential row processing.
Alternatively, there might be value in attempting to identify
 those rows that contain email addresses subject to contention, and
 assigning those addresses some arbitrary number to achieve
 uniqueness.
It is easy to determine how many rows are involved in this
 contention by adding a group by
 clause to the SQL statement. However, assigning numbers might be a
 difficult thing to do without using the analytical functions available
 in the major database systems. (Oracle calls them
 analytical functions, DB2 knows them as
 online analytical processing, or OLAP, functions,
 SQL Server as ranking functions.) It is worthwhile
 to explore the solution to this problem in terms of pure SQL.
Each email address can be assigned a unique number:
 1 for the oldest employee whose first name initial
 and surname result in the given email address, 2 to
 the second oldest and so on. By pushing this result into a subquery, it
 is possible to check and concatenate nothing to the first email address
 in each group, and the sequence numbers (not in the Oracle sense of the
 word) to the following ones. The following code shows how our logic can
 be applied:
 SQL> insert into employees(emp_num, emp_firstname,
 2 emp_name, emp_email)
 3 select emp_num,
 4 emp_firstname,
 5 emp_name,
 6 decode(rn, 1, emp_email,
 7 substr(emp_email,
 8 1, 12 - length(ltrim(to_char(rn))))
 9 || ltrim(to_char(rn)))
 10 from (select emp_num,
 11 emp_firstname,
 12 emp_name,
 13 substr(substr(emp_firstname, 1, 1)
 14 ||translate(emp_name, ' ''', '_ _'), 1, 12)
 15 emp_email,
 16 row_number()
 17 over (partition by
 18 substr(substr(emp_firstname, 1, 1)
 19 ||translate(emp_name,' ''','_ _'),1,12)
 20 order by emp_num) rn
 21 from employees_old)
 22 /

 3000 rows created.

 Elapsed: 00:00:11.68
We avoid the costs of row-at-a-time processing, and this solution
 requires only 60% of the original time.
Important
Exception handling forces the adoption of procedural logic.
 Always try to anticipate possible exceptions by remaining within
 declarative SQL.

[*] decode() is a bit more
 rudimentary than case and may
 require the use of additional functions such as sign() to obtain the same results.

[†] There are two variants of the case construct; the example
 shown is the most sophisticated variant.

[*] Available, for instance, in Oracle since release 9.2.

[†] Table names have been changed.

[*] International Air Transport Association.

[*] The Oracle function decode(
) works like case. What
 is compared is the first argument. If it is equal to the second
 argument, then the third one is returned; if there is no fifth
 parameter, then the fourth one corresponds to else; otherwise, if the first argument is
 equal to the fourth one, the fifth one is returned and so on as long
 as we have pairs of values.

[*] During the Crimean War of 1854 that saw England, France, and
 Turkey fight against Russia, a poorly specified order and personal
 enmity between some of the commanders led more than 600 British
 cavalry men to charge down a valley in full line of fire of the
 Russian guns. Around 120 men and half the horses were killed, for no
 result. The bravery of the men, celebrated in a poem by Tennyson and
 (later) several Hollywood movies, helped turn a stupid military
 action into a myth.

Chapter 3. Tactical Dispositions

Indexing

Chi vuole fare tutte queste cose, conviene
 che tenga lo stile e modo romano: il quale fu in prima di fare le
 guerre, come dicano i Franciosi, corte e grosse.
Whoever wants to do all these things must hold to the Roman
 conduct and method, which was first to make the war, as the French say,
 short and sharp.
—Niccolò Machiavelli (1469–1527) Discorsi sopra la
 prima Deca di Tito Livio, II, 6

Once the layout of the battlefield is
 determined, the general should be able to precisely identify
 which are the key parts of the enemy possessions that must be captured. It
 is exactly the same with information systems. The crucial data to be
 retrieved will determine the most efficient access paths into the data
 system. Here, the fundamental tactic is indexing. It is a complex area,
 and one in which competing priorities must be resolved. In this chapter,
 we discuss various aspects of indexes and indexing strategy, which, taken
 together, provide general guidelines for database access
 strategies.
The Identification of “Entry Points”

 Even before starting to write the very first SQL statement
 in a program, you should have an idea about the search criteria that
 will be of importance to users. Values that are fed into a program and
 the size of the data subset defined lay the foundations for indexing.
 Indexes are, above all, a technique for achieving the fastest possible
 access to specific data. Note that I say “specific data,” as indexes
 must be carefully deployed. They are not a panacea: they will not enable
 fast access to all data. In fact, sometimes the very opposite is the
 result, if there is a serious mismatch between the original index
 strategy and the new data-retrieval requirements.
Indexes can be considered to be shortcuts to data, but they are
 not shortcuts in the same sense as a shortcut in a graphical desktop
 environment. Indexes come with some heavy costs, both in terms of disk
 space and, possibly more importantly, in terms of processing costs. For
 example, it is not uncommon to encounter tables in which the volume of
 index data is much larger than the volume of the actual data being
 indexed. I can say the same of index data as I said of redundant table
 data in Chapter 1: indexes are
 usually mirrored, backed up to other disks, and so on, and the very
 large volumes involved cost a lot, not only in terms of storage, but
 also in terms of downtime when you have to restore from a backup.
Figure 3-1 shows a
 real-life case, the main accounting table of a major bank; out of 33 GB
 total for all indexes and the table, indexes take more than 75%.
Let’s forget about storage for a moment and consider processing.
 Whenever we insert or delete a row, all the indexes on the table have to
 be adjusted to reflect the new data. This adjustment, or “maintenance,”
 also applies whenever we update an indexed column; for example, if we
 change the value of an attribute in a column that is either itself
 indexed, or is part of a compound index in which more than one column is
 indexed together. In practice this maintenance activity means a lot of
 CPU resources are used to scan data blocks in memory, I/O activity is
 needed to record the changes to logfiles, together with possibly more
 I/O work against the database files. Finally, recursive operations may
 be required on the database system to maintain storage
 allocations.
[image: A real-life case: Data versus Index out of a 33 GB total]

Figure 3-1. A real-life case: Data versus Index out of a 33 GB
 total

Tests have quantified the real cost of maintaining indexes on a
 table. For example, if the unit time required to insert data into a
 non-indexed table is 100 (seconds, minutes, or hours—it does not really
 matter for this illustration), each additional index on that table will
 add an additional unit time of anything from 100 to 250.
Important
Maintenance costs for one index may exceed those for one
 table.

Although index implementation varies from DBMS to DBMS, the high
 cost of index maintenance is true for all products, as Figures 3-2 and 3-3 show with Oracle and
 MySQL.
[image: The impact of indexes on insertion with Oracle]

Figure 3-2. The impact of indexes on insertion with Oracle

[image: The impact of indexes on insertion with MySQL]

Figure 3-3. The impact of indexes on insertion with MySQL

Interestingly, this index maintenance overhead is of the same
 magnitude as a simple trigger. I have created a simple trigger to record
 into a log table the key of each row inserted
 together with the name of the user and a timestamp—a typical audit
 trail. As one might expect, performance suffers—but in the same order of
 magnitude as the addition of two indexes, as shown in Figure 3-4. Recall how often one
 is urged to avoid triggers for performance reasons! People are usually
 more reluctant to use triggers than they are to use indexes, yet the
 impact may well be very similar.
[image: Comparing the performance impact of indexes and triggers]

Figure 3-4. Comparing the performance impact of indexes and
 triggers

Generating more work isn’t the only way for indexes to hinder
 performance. In an environment with heavy concurrent accesses, more
 indexes will mean aggrieved contention and locking. By nature, an index
 is usually a more compact structure than a table—just compare the number
 of index pages in this book to the number of pages in the book itself.
 Remember that updating an indexed table requires two data activities:
 updating the data itself and updating the index data. As a result,
 concurrent updates, which may affect relatively scattered areas of a
 huge table, and therefore not suffer from any serialization during the
 changes to the actual data, may easily find themselves with much less
 elbow room when updating the indexes. As explained above, these indexes
 are by definition much “tighter” data assemblages.
It must be stressed that, whatever the cost in terms of storage
 and processing power, indexes are vital components of databases. Their
 importance is nowhere greater, as I discuss in Chapter 6, than in transactional
 databases where most SQL statements must either return or operate
 on few rows in large tables. Chapter
 10 shows that decision support systems are also heavily dependent
 for performance on indexing. However, if the data tables we are dealing
 with have been properly normalized (and once again I make no apologies
 for referring to the importance of design), those columns deserving some
 a priori indexing will be very few in a
 transactional database. They will of course include the primary key (the
 tuple, or row, identifier). This column (or columns in the case of a
 compound key) will be automatically indexed simply by virtue of its
 declaration as the primary key. Unique columns are similar and will, in
 all probability, be indexed simply as a by-product of the implementation
 of integrity constraints. Consideration should also be given to indexing
 columns that, although not unique, approach uniqueness—in other words,
 columns with a high variability of values.
As a general rule, experience would suggest that very few indexes
 are required for most tables in a general purpose or transactional
 database, because many tables are searched with a very limited set of
 criteria. The rationale may be very different in decision support
 systems, as you shall see in Chapter
 10. I tend to grow suspicious of tables with many indexes,
 especially when these tables are very large and much updated. A high
 number of indexes may exceptionally be justified, but one should revisit
 the original design to validate the case for heavily indexed
 tables.
Important
In a transactional database, “too many indexes” is often the
 mark of an uncertain design.

Indexes and Content Lists

 The book metaphor can be helpful in another respect—as a
 means of better understanding the role of the index in the DBMS. It is
 important to recognize the distinction between the two mechanisms of the
 table of contents and the book index. Both provide a means of fast
 access into the data, but at two very different levels of granularity.
 The table of contents provides a structured
 overview of the whole book. As such, it is regarded as complementary to
 the index device in books, which is often compared to the index of a
 database.
When you look for a very precise bit of information in a book, you
 turn to the index. You are ready to check 2 or 3 entries, but not
 20--flipping pages between the index and the book itself to check so
 many entries would be both tedious and inefficient. Like a book index, a
 database index will direct you to specific values in one or more records
 (I overlook the use of indexes in range searching for the
 moment).
If you look for substantial information in a book, you either turn
 to the index, get the first index entry about the topic you want to
 study, and then read on, or you turn to the table of contents and
 identify the chapter that is most relevant to your topic. The
 distinction between the table of contents and the index is crucial: an
 entry in a table of contents directs the reader to a block of text,
 perhaps a chapter, or a section. Similarly, Chapter 5 shows mechanisms by which you
 can organize a table and enable data retrieval in a manner similar to a
 table of contents’ access.
An index must primarily be regarded as a means of accessing data
 at an atomic level of granularity, as defined by the original data
 design, and not as a means of retrieving large quantities of
 undifferentiated data. When an indexing strategy is used to pull in
 large quantities of data, the role of indexes is being seriously
 misunderstood. Indexing is being used as a desperate measure to recover
 from an already untenable situation. The commander is beginning to panic
 and is sending off sorties in all directions, hoping that sheer numbers
 will compensate for the lack of a coherent strategy. It never does, of
 course.
Important
Be very sure you understand what you are indexing, and why you
 are indexing it.

Making Indexes Work

 To justify the use of an index, it must provide benefit.
 Just as in our metaphor of the book, you may use an index if you simply
 require very particular information on one item of data. But if you want
 to review an entire subject area, you will turn not to the index, but to
 the table of contents of the book.
There will always be times when the decision between using an
 index or a broader categorization is a difficult one. This is an area
 where the use of retrieval ratios makes its persuasive appearance. Such ratios have a
 hypnotic attraction to many IT and data practitioners because they are
 so neat, so easy, so very scientific!
The applicability of an index has long been judged on the
 percentage of the total data retrieved by a query that uses a key value
 as only search criterion, and conventionally that percentage has often
 been set at 10% (the percentage of rows that match, on average, an index
 key defines the selectivity of the index; the lower
 the percentage, the more selective the index). You will often find this
 kind of rule in the literature. This ratio, and others like it, is based
 on old assumptions regarding such things as the relative performance of
 disk access and memory access. Even if we forget that these performance
 ratios, which have been around since at least the mid-1980s, were based
 on what is today outdated technology (ideal percentages are grossly
 simplistic views), far more factors need to be taken into
 account.
When magical ratios such as our 10% ratio were designed, a
 500,000-row table was considered a very big table; 10% of such a table
 usually meant a few tens of thousand rows. When you have tables with
 hundreds of millions or even billions of rows, the number of rows
 returned by using an index with a similar selectivity of about 10% may
 easily be greater than the number of rows in those mega-tables of yore
 against which the original ratios were estimated.
Consider the part played by modern hard disk systems, equipped as
 they are with large cache storage. What the DBMS sees as “physical I/O”
 may well be memory access; moreover, since the kernel usually shifts
 different amounts of data into memory depending on the type of access
 (table or index), you may be in for a surprise when comparing the
 relative performance of retrievals with and without using an index. But
 these are not the only factors to consider. You also need to watch the
 number of operations, which can truly be performed in parallel. Take
 note of whether the rows associated with an index key value are likely
 to be physically close. For instance, when you have an index on the
 insertion date, barring any quirk such as the special storage options I
 describe in Chapter 5, any query
 on a range of insertion dates will probably find the corresponding rows
 grouped together by construction. Any block or page pointed to by the
 very first key in the range will probably contain as well the rows
 pointed to by the immediately following key values. Therefore, any chunk
 of table we return through use of the index will be rich in data of
 interest to our query, and any data block found through the index will
 be of considerable value to the query’s performance.
When the indexed rows associated with an index key are spread all
 over the table (for example, the references to an article in a table of
 orders), it is quite another matter. Even though the number of relevant
 rows is small as a proportion of the whole, because they are scattered
 all over the disk, the value of the index diminishes. This is
 illustrated by Figure 3-5:
 we can have two unique indexes that are strictly equivalent for fetching
 a single row, and yet one will perform significantly better than the
 other if we look for a range of values, a frequent occurrence when
 working with dates.
Factors such as these blur the picture, and make it difficult to
 give a prescriptive statement on the use of indexes.
[image: When two highly selective indexes may perform differently]

Figure 3-5. When two highly selective indexes may perform
 differently

Important
Rows ordered as index keys lead to a faster range scan.

Indexes with Functions and Conversions

 Indexes are usually implemented as tree structures—mostly
 complex trees—to avoid a fast decay of indexes on heavily inserted, updated, and deleted tables. To find
 the physical location of a row, the address of which is stored in the
 index, one must compare the key value to the value
 stored in the current node of the tree to be able to determine which
 sub-tree must be recursively searched. Let’s now suppose that the value
 that drives our search doesn’t exactly match an actual column value but
 can be compared to the result of a function f(
) applied to the column value. In that case we may be tempted
 to express a condition as follows:
 where f(indexed_column) = 'some value'
This kind of condition will typically torpedo the index, making it
 useless. The problem is that nothing guarantees that the function
 f() will keep the same order as the
 index data; in fact, in most cases it will not. For instance, let’s
 suppose that our tree-index looks like Figure 3-6.
[image: A simplistic representation of how names might be stored in an index]

Figure 3-6. A simplistic representation of how names might be stored in an
 index

(If the names look familiar, it is because they are those of some
 of Napoleon’s marshals.) Figure
 3-6 is of course an outrageously simplified representation, just
 for the purpose of explaining a particular point; the actual indexes do
 not look exactly like the binary tree shown in Figure 3-6. If we look for the
 MASSENA key, with this search
 condition:
 where name = 'MASSENA'
then the index search is simple enough. We hit LANNES at the root of the tree and compare
 MASSENA to LANNES. We find MASSENA to be greater, based on the
 alphabetical order. We therefore recursively search the right-hand
 sub-tree, the root of which is MORTIER. Our search key is smaller than
 MORTIER, so we search the left-hand
 sub-tree and immediately hit MASSENA.
 Bingo—success.
Now, let’s say that we have a condition such as:
 where substr(name, 3, 1) = 'R'
The third letter is an uppercase R--which
 should return BERNADOTTE, MORTIER, and MURAT. When we make the first visit to the
 index, we hit LANNES, which doesn’t
 satisfy the condition. Not only that, the value that is associated with
 the current tree node gives us no indication whatsoever as to which
 branch we should continue our search into. We are at a loss: the fact
 that the third letter is R is of no help in
 deciding whether we should search the left sub-tree or the right
 sub-tree (in fact, we find elements belonging to our result set in both
 sub-trees), and we are unable to descend the tree in the usual way, by
 selecting a branch thanks to the comparison of the search key to the
 value stored in the current node.
Given the index represented in Figure 3-6, selecting names with
 an R in the third position is going to require a
 sequential data scan, but here another question arises. If the optimizer
 is sufficiently sophisticated, it may be able to judge whether the most
 efficient execution path is a scan of the actual data table or
 inspecting, in turn, each and every node in the index on the column in
 question. In the latter case, the search would lead to an index-based
 retrieval, but not as envisaged in the original model design since we
 would be using the index in a rather inefficient way.
Recall the discussion on atomicity in Chapter 1. Our performance issue stems
 from a very simple fact: if we need to apply a function to a column, it
 means that the atomicity of data in the table isn’t suitable for our
 business requirements. We are not in 1NF!
Atomicity, though, isn’t a simple notion. The ultra-classic
 example is a search condition on dates. Oracle, for instance, uses the
 date type to store not only the date
 information, but also the time information , down to the second (this type is actually known as
 datetime to most other database
 systems). However, to test the unwary, the default date format doesn’t
 display the time information. If you enter something such as:
 where date_entered = to_date('18-JUN-1815',
 'DD-MON-YYYY')
then only the rows for which the date (and time!) happens to be
 exactly the 18th of June 1815 at 00:00 (i.e., at
 midnight) are returned. Everyone gets caught out by this issue the very
 first time that they query datetime data. Quite naturally, the first
 impulse is to suppress the time information from date_entered, which the junior practitioners
 usually do in the following way:
 where trunc(date_entered) = to_date('18-JUN-1815',
 'DD-MON-YYYY')
Despite the joy of seeing the query “work,” many people fail to
 realize (before the first performance issues begin to arise) that by
 writing their query in such a way they have waved goodbye to using the
 index on date_entered, assuming there
 was one. Does all this mean that you cannot be in 1NF if you are using
 datetime columns? Fortunately, no. In
 Chapter 1, I defined an
 atomic attribute as an attribute in which a where clause can always be referred to in
 full. You can refer in full to a date if you are using a range
 condition. An index on date_entered
 is usable if the preceding condition is written as:
 where date_entered >= to_date('18-JUN-1815',
 'DD-MON-YYYY')
 and date_entered < to_date('19-JUN-1815',
 'DD-MON-YYYY')
Finding rows with a given date in this way makes an index on
 date_entered usable, because the very
 first condition allows us to descend the tree and reach a sorted list of
 all keys at the bottom of the index hierarchy (we may envision the index
 as a sorted list of keys and associated addresses, above which is
 plugged a tree allowing us to get direct access to every item in the
 list). Therefore, once the first condition has taken us to the bottom
 layer of the index and to the very first item of interest in the list,
 all we have to do is scan the list as long as the second condition is
 true. This type of access is known as an index range
 scan .
The trap of functions preventing the use of indexes is often even
 worse if the DBMS engine is able to perform
 implicit conversions when a column of a given type
 is equated or compared to a constant of another type in a where condition—a logical error and yet one
 that is allowed by SQL. Once again Oracle provides an excellent example
 of such behavior. For instance, dangers arise when a character column is
 compared to a number. Instead of immediately generating a run-time
 error, Oracle implicitly converts the column to a number to enable the
 comparison to take place. The conversion may indeed generate a run-time
 error if there is an alpha character in that numerical string, but in
 many cases when a string of digits without any true numerical meaning is
 stored as characters (social security numbers or a date of birth shown
 as mmddyy, or ddmmyy, both
 meaning the same, but having very different numerical values), the
 conversion and subsequent comparison will “work"--except that the
 conversion will have rendered any index on the character column almost
 useless.
In the light of the neutralization of indexes by functions,
 Oracle’s design choice to apply the conversion to the column rather than
 to the constant may at first look surprising. However, that decision
 does make some sense. First of all, comparing potatoes to carrots is a
 logical error. By applying the conversion to the column, the DBMS is
 more likely (depending on the execution path) to encounter a value to
 which the conversion does not apply, and therefore the DBMS is more
 likely to generate a runtime error. An error at this stage of the
 process will prove a healthy reminder to the developer, doubtless
 prompting for a correction in the actual data field and raising
 agonizing questions about the quality of the data. Second, assuming that
 no error is generated, the very last thing we want is to return
 incorrect information. If we encounter:
 where account_number = 12345
it is quite possible, and in fact most likely, that the person who
 wrote the query was expecting the account 0000012345 to be returned—which will be the
 case if account_number (the alpha
 string) is converted to number, but not if the query 12345 is converted to a string without any
 special format specification.
One may think that implicit conversions are a rare occurrence,
 akin to bugs. There is much truth in the latter point, but implicit
 conversions are in fact pretty common, especially when such things come
 into play as a parameters table
 holding in a column named parameter_value string representations of
 numbers and dates, as well as filenames or any other regular character
 string. Always make conversions explicit by using conversion
 functions.
It is sometimes possible to index the result
 of a function applied to one or more columns. This facility is available
 with most products under various names (functional
 index, function-based index,
 index extension, and so on, or, more simply,
 index on a computed column). In my view, one should
 be careful with this type of feature and use it only as a standby for
 those cases in which the code cannot be modified.
I have already mentioned the heavy overhead added to data
 modifications as a result of the presence of indexes. Calling a function
 in addition to the normal index load each time an index needs to be
 modified cannot improve the situation: indeed it only adds to the total
 index maintenance cost. As the date_entered example given earlier
 demonstrates, creating a function-based index may be the lazy solution
 to something that can easily be remedied by writing the query in a
 different way. Furthermore, nothing guarantees that a function applied
 to a column retains the same degree of precision that a query against
 the raw column will achieve. Suppose that we store five years of sales
 online and that the sales_date column
 is indexed. On the face of it, such an index looks like an efficient
 one. But indexing with a function that is the month part of the date is
 not necessarily very selective, especially if every year the bulk of
 sales occurs in the run up to Christmas. Evaluating whether the
 resulting functional index will really bring any benefit is not
 necessarily easy without very careful study.
From a purely design point of view, one can argue that a function
 is an implicit recognition that the column in question may be storing
 two or more discrete items of data. Use of a functional index is, in
 most cases, a way to extract some part of the data from a column. As
 pointed out earlier, we are violating the famous first normal form,
 which requires data to be “atomic.” Not using strictly “atomic” data in
 the select list is a forgivable sin. Repeatedly
 using “subatomic” search criteria is a deadly one.
There are some cases, though, when a function-based index may be
 justified. Case-insensitive searches are probably the best example;
 indexing a column converted to upper- or lowercase will allow us to
 perform case-insensitive searches on that column efficiently. That said,
 forcing the case during inserts and
 updates is not a bad solution either.
 In any event, if data is stored in lowercase, then required in
 uppercase, one has to question the thoroughness with which the original
 data design was carried out.
Another tricky conundrum is the matter of duration in the absence
 of a dedicated interval data type.
 Given three time fields, a start date, a completion date, and a
 duration, one value can be determined from any existing two—but only by
 either building a functional index or by storing redundant data.
 Whichever solution is followed, redundancy will be the inevitable
 consequence: in the final analysis, you must weigh the benefits and
 disadvantages of the issues surrounding function-based indexes so that
 you can make informed decisions about using them.
Important
Use of functional indexes is often implicit recognition that
 your data analysis has not even resolved basic data item
 atomicity.

Indexes and Foreign Keys

 It is quite customary to systematically index the foreign
 keys of a table; and it is widely acknowledged to be common wisdom to do
 so. In fact, some design tools automatically generate indexes on these
 keys, and so do some DBMS. However, I urge caution in this respect.
 Given the overall cost of indexes, unnecessarily indexing foreign keys
 may prove a mistake, especially for a table that has many foreign
 keys.
Note
Of course, if your DBMS automatically indexes foreign keys, then
 you have no choice in the matter. You will have to resign yourself to
 potentially incurring unnecessary index overhead.

The rule of indexing the foreign keys comes from what happens when
 (for example) a foreign key in table A references the primary key in table B, and then both tables are concurrently
 modified. The simple model in Figure 3-7 illustrates this
 point.
[image: The simple, Master-Detail example]

Figure 3-7. The simple, Master-Detail example

Imagine that table A is very
 large. If user U1 wants to remove a row from table B, since the primary key for B is referenced by a foreign key in A, the DBMS must check that removal of the row
 will not lead to inconsistencies in the intertable dependencies, and
 must therefore see whether there is any child row in A referencing the row about to be deleted from
 B. If there does happen to be a row
 in A that references our row in
 B, then the deletion must fail,
 because otherwise we would end up with an orphaned row and inconsistent
 data. If the foreign key in A is
 indexed, it can be checked very quickly. If it is not indexed, it will
 take a significant period of time since the session of user U1 will have
 to scan all of table A.
Another problem is that we are not supposed to be alone on this
 database, and lots of things can happen while we scan A. For instance, just after user U1 has
 started the hunt in table A for an
 hypothetical child row, somebody else, say user U2, may want to insert a
 new row into table A which references
 that very same row we want to delete from table B. This situation is described in Figure 3-8, with user U1 first
 accessing table B to check the
 identifier of the row it wants to delete (1), and then searching for a child in table
 A (2). Meanwhile, U2 will have to check that
 the parent row exists in table B. But
 we have a primary key index on B,
 which means that unlike user U1, who is condemned to a slow sequential
 scan of the foreign key values of table A, user U2 will get the answer immediately
 from table B. If U2 quietly inserts
 the new row in table A (3), U2 may commit the change at such a point
 that user U1 finishes checking and wrongly concludes, having found no
 row, that the path is clear for the delete.
[image: Fight for the primary key]

Figure 3-8. Fight for the primary key

Locking is required to prevent such a case, which would otherwise
 irremediably lead to inconsistent data. Data integrity is, as it should
 be, one of the prime concerns of an enterprise-grade DBMS. It will take
 no chance. Whenever we want to delete a row from table B, we must prevent insertion into any table
 that references B of a row
 referencing that particular one while we look for child rows. We have
 two ways to prevent insertions into referencing tables (there may be
 several ones) such as table A:
	We lock all referencing tables (the heavy-handed
 approach).

	We apply a lock to table B
 and make another process, such as U2, wait for this lock to be
 released before inserting a new row into a referencing table (the
 approach taken by most DBMS). The lock will apply to the table, a
 page, or the row, depending on the granularity allowed by the
 DBMS.

In any case, if foreign keys are not indexed, checking for child
 rows will be slow, and we will hold locks for a very long time,
 potentially blocking many changes. In the worst case of the heavy-handed
 approach we can even encounter deadlocks, with two processes holding
 locks and stubbornly refusing to release them as long as the other
 process doesn’t release its lock first. In such a case, the DBMS usually
 solves the dispute by killing one of the processes (hasta la vista,
 baby...) to let the other one proceed.
The case of concurrent updates therefore truly requires indexing
 foreign keys to prevent sessions from locking objects much longer than
 necessary. Hence the oft heard rule that “foreign keys should always be
 indexed.” The benefit of indexing the foreign key is that the elapsed
 time for each process can be drastically reduced, and in turn locking is
 reduced to the minimum level required for ensuring data
 integrity.
What people often forget is that “always index foreign keys” is a
 rule associated with a special case. Interestingly, that special case
 often arises from design quirks, such as the maintenance of summary or
 aggregate denormalized columns in the master table of a master/detail
 relationship. There may be excellent reasons for updating concurrently
 two tables linked by referential integrity constraints. But there are
 also many cases with transactional databases where the referenced table
 is a “true” reference table (e.g., a dictionary, or “look-up” table that
 is very rarely updated, or it’s updated in the middle of the night when
 there is no other activity). In such a case, the only justification for
 the creation of an index on the foreign key columns should be whether
 such an index would be of any benefit from a strictly performance
 standpoint. We mustn’t forget the heavy penalty performance imposed by
 index maintenance. There are many cases when an index on a foreign key
 is not required.
Important
There must be a reason behind indexing; this is as true of
 foreign keys as of other columns.

Multiple Indexing of the Same Columns

 The systematic indexing of foreign keys can often lead to
 situations in which columns belong to several indexes. Let’s consider
 once again a classic example. This consists of an ordering system in
 which some order_details table
 contains, for each order (identified by an order_id, a foreign key referencing the
 orders table) articles (identified by
 article_id, a foreign key referencing
 the articles table) that have been
 purchased, and in what quantity. What we have here is an associative
 table (order_details) resolving a
 many-to-many relationship between the tables orders and articles. Figure 3-9 illustrates the
 relationships among the three tables.
[image: The Orders/Articles example]

Figure 3-9. The Orders/Articles example

Typically, the primary key of order_details will be a composite key, made of the two foreign keys. Order entry is the
 very case when the referenced table and the referencing table are likely
 to be concurrently modified, and therefore we must
 index the order_id foreign key.
 However, the column that is defined here as a foreign key is
 already indexed as part of the composite primary
 key, and (this is the important point) as the very first column in the
 primary key. Since this column is the first column of the composite
 primary key, it can for all intents and purposes provide all the
 benefits as if it were an indexed foreign key. A composite index is
 perfectly usable even if not all columns in the key are specified, as
 long as those at the beginning of the key
 are.
When descending an index tree such as the one described earlier in
 this chapter, it is quite sufficient to be able to compare the leading
 characters of the key to the index nodes to determine which branch of
 the index the search should continue down. There is therefore no reason
 to index order_id alone, since the
 DBMS will be able to use the index on (order_id, article_id) to check for child rows when
 somebody is working on the orders
 table. Locks will therefore not be required for both tables. Note, once
 again, that this reasoning applies only because order_id happens to be the very first column
 in the composite primary key. Had the primary key been defined as
 (article_id, order_id), then we would have had to create an
 index on order_id alone, while not
 building an index on the other foreign key, article_id.
Important
Indexing every foreign key may result in redundant
 indexing.

System-Generated Keys

 System-generated keys (whether through a special number
 column defined as self-incrementing or through the use of
 system-generated counters such as Oracle’s sequences) require special
 care. Some inexperienced designers just love system-generated
 keys even when they have perfectly valid natural identifiers
 at their disposal. System-generated sequential numbers are certainly a
 far better solution than looking for the greatest current value and
 incrementing it by one (a certain recipe for generating duplicates in an
 environment with some degree of concurrency), or storing a “next value”
 that has to be locked and updated into a dedicated table (a mechanism
 that serializes and dramatically slows down accesses). Nevertheless,
 when many concurrent insertions are running against the same table in
 which these automatic keys are being generated, some very serious
 contention can occur at the creation point of the primary key index
 level. The purpose of the primary key index is primarily to ensure the
 uniqueness of the primary key columns.
The problem is usually that if there is one unique generator (as
 opposed to as many generators as there are concurrent processes, hitting
 totally disjoint ranges of values) we are going to rapidly generate
 numbers that are in close proximity to each other. As a result, when
 trying to insert key values into the primary key index, all processes
 are going to converge on the same index page, and the DBMS engine will
 have to serialize—through locks, latches, semaphores, or whichever
 locking mechanism is at its disposal—the various processes so that each
 one does not try to overwrite the bytes that another one is writing to.
 This is a typical example of contention that leads to some severe
 underuse of the hardware. Processes that could and should work in
 parallel have to wait in order, one behind the other. This bottleneck
 can be particularly severe on multi-processor machines, the very
 environment in which parallelism should be operating.
Some database systems provide some means to reduce the impact of
 system-generated keys; for instance, Oracle allows you to define
 reverse indexes, indexes in which the sequence of bits
 making up the key is inversed before being stored into the index. To
 indicate a very approximate idea of what such an index looks like, let’s
 simply take the same names of marshals as we did in Figure 3-5 and reverse the letters
 instead of bits. We get something looking like Figure 3-10.
[image: A simplified representation of reverse indexing]

Figure 3-10. A simplified representation of reverse indexing

It is easy to understand that even when we insert names that are
 alphabetically very close to one another, they are spread all over the
 various branches of the index tree: look for instance at the respective
 positions of MASSENA (a.k.a. ANESSAM), MORTIER (REITROM) and MURAT (TARUM). Therefore, we hit different places in
 the index and have much less contention than with a normally organized
 index. Close grouping of the index values would lead to a very high
 write activity that is very localized within the index. Before
 searching, Oracle simply applies the same reversing to the value we want
 to search against, and then proceeds as usual to traverse the index
 tree.
Of course, every silver lining has its cloud: when our search
 condition attempts to use a leading string search like this:
 where name like 'M%'
which is a typical range search, the reverse index is no help at
 all. By contrast, a regular index can be used to quickly identify the
 range of values beginning with a certain string that we are interested
 in. The inability of reverse indexes to be used for range searches is, of course, a very minor
 inconvenience with system-generated keys, which are often unknown to end
 users and therefore unlikely to be the object of range scans. But it
 becomes a major hindrance when rows contain timestamps. Timestamped rows
 might arrive in close succession, making the timestamp column a
 potentially good candidate for reverse indexing, but then a timestamp is
 also the type of column against which we are quite likely to be looking
 for ranges of values.
The hash index used in some database systems represents a
 different way to avoid bottlenecking index updates all on one index
 page. With hash indexing, the actual key is transformed into a
 meaningless, randomly distributed numeric key generated by the system,
 which is based on the column value being indexed. Although it is not
 impossible for two values to be transformed into similar, meaningless
 keys, two originally “close” keys will normally hash into two totally
 disconnected values. Once again, hash indexes represent a trick to avoid having a hot
 spot inside an index tree, but that benefit too, comes with
 certain restrictions. The use of a hash index is on an “equality or
 nothing” basis; in other words, range searching, or indeed any query
 against a part of the index key, is out of the question. Nevertheless,
 direct access based on one particular value of the key can be very
 fast.
Even when there are solutions to alleviate contention risks, you
 should not create too many system-generated identifiers. I have
 sometimes found system-generated keys in each and every table (for
 instance a special, single detail_id
 for the type of order_details table
 mentioned above, instead of the more natural combination of order_id and some sequential number within the
 order). This blunderbuss approach is something that, by any standard,
 simply cannot be justified—especially for tables that are referenced by
 no other table.
Important
System-generated keys can provide benefit in the right
 circumstances, but beware of their indiscriminate use!

Variability of Index Accesses

 It is very common to believe that if indexes are used in a
 query, then everything is fine. This is a gross misconception: there are
 many different characteristics of index access. Obviously, the most
 efficient type of index access is through a unique index, in which, at
 most, one row matches a given search value. Typically, such a search
 operation might be based on the primary key. However, as you saw in
 Chapter 2, accessing a table
 through its primary key may be very bad—if you are looping on all key
 values. Such an approach would be like using a teaspoon to move a big
 heap of sand instead of the big shovel of a full scan. So, at the
 tactical level, the most efficient index access is through a unique
 index, but the wider picture may reveal that this could be a costly
 mistake.
When several rows may match a single key value in a non-unique
 index (or when we search on a range of distinct values against a unique
 index), then we enter the world of range scanning. In this situation, we
 may retrieve a series of row addresses from the index, all containing
 the key values we are looking for. It may be a near-unique index, in
 which all key values match one row with the exception of a handful of
 values that match very few rows. Or it may be the other extreme of the
 non-unique indexed column for which all rows contain the same value.
 Indexed columns in which all rows contain the same value are in fact
 something you occasionally find with off-the-shelf software packages in
 which most columns are indexed, just in case. Never forget that finding
 the row in the index is all the work that is required only if:
	You need no other information than data that is part of the
 index key.

	The index is not compressed; otherwise, finding a match in the
 index is nothing more than a presumption that must be corroborated
 by the actual value found in the table.

In all other cases, we are only halfway to meeting the query
 requirement, and we must now access each data block (or page) by the
 address that is provided by the search of the index. Once again, all
 other things being equal, we may have widely different performance,
 depending on whether we shall find the rows matching our search value
 lumped together in the same area of the disk, or scattered all over the
 place.
The preceding description applies to the “regular” index accesses.
 However, a clever query optimizer may decide to use indexes in another
 way. It could operate on several indexes, combining them and doing some
 kind of pre-filtering before fetching the rows. It may decide to execute
 a full scan of a particular index, a strategy based on the judgment that
 this is the most efficient of all available methods for this particular
 query (we won’t go into the subtleties of what “most efficient” means
 here). The query optimizer may decide to systematically collect row
 addresses from an index, without taking the trouble to descend the index
 tree.
So, any reference to an index in an execution plan is far from
 meaning that “all’s well that runs well.” Some index accesses may indeed
 be very fast—and some desperately slow. Even a fast access in a query is
 no guarantee that by combining the query with another one, we could have
 got the result even faster. In addition, if the optimizer is indeed
 smart enough to ignore a useless index in queries, that same useless
 index will nevertheless require to be maintained whenever the table
 contents are modified. This index maintenance is something that may be
 especially significant in the massive uploads or purges routinely
 performed by a batch program. Useful or useless, an index
 has to be maintained.
Important
Indexing is not a panacea: effective deployment rests on your
 complete understanding of the data you are dealing with and making the
 appropriate judgments.

Chapter 4. Maneuvering

Thinking SQL Statements

There is only one principle of war, and that’s this. Hit the other
 fellow, as quickly as you can, as hard as you can, where it hurts him
 most, when he ain’t lookin’.
—Field Marshal Sir William Slim
 (1891-1970) quoting an anonymous
 Sergeant-Major

In this chapter, we are going to take a
 close look at the SQL query and examine how its construct can
 vary according to the tactical demands of particular situations. This will
 involve examining complex queries and reviewing how they can be decomposed into a succession
 of smaller components, all interdependent, and all contributing to a
 final, complete query.
The Nature of SQL

 Before we begin examining query constructs in detail, we
 need to review some of the general characteristics of SQL itself: how it relates to the database engine and the
 associated optimizer, and what may limit the efficiency of the
 optimizer.
SQL and Databases

Relational databases owe their existence to pioneering
 work by E.F. Codd on the relational theory. From the outset, Codd’s
 work provided a very strong mathematical basis to what had so far been
 a mostly empirical discipline. To make an analogy, for thousands of
 years mankind has built bridges to span rivers, but frequently these
 structures were grossly overengineered simply because the master
 builders of the time didn’t fully understand the true relationships
 between the materials they used to build their bridges, and the
 consequent strengths of these bridges. Once the science of civil
 engineering developed a solid theoretical knowledge of material
 strengths, bridges of a far greater sophistication and safety began to
 emerge, demonstrating the full exploitation of the various
 construction materials being used. Indeed, the extraordinary
 dimensions of some modern bridges reflect the similarly huge increase
 in the data volumes that modern DBMS software is able to address.
 Relational theory has done for databases what civil engineering has
 done for bridges.
It is very common to find confusion between the SQL language,
 databases, and the relational model. The function of a database is
 primarily to store data according to a model of the part of the real
 world from which that data has been obtained. Accordingly, a database
 must provide a solid infrastructure that will allow multiple users to
 make use of that same data, without, at any time, prejudicing the
 integrity of that data when they change it. This will require the
 database to handle contention between users and, in the extreme case,
 to keep the data consistent if the machine were to fail in
 mid-transaction. The database must also perform many other functions
 outside the scope of this book.
As its name says, Structured Query Language, or SQL for short,
 is nothing other than a language, though admittedly with a very tight
 coupling to databases. Equating the SQL language with relational
 databases —or even worse with the relational theory—is as
 misguided as assuming that familiarity with a spreadsheet program or a
 word processor is indicative of having mastered “information
 technology.” In fact, some products that are not databases support
 SQL,[*] and before becoming a standard SQL had to compete
 against other languages such as RDO or QUEL, which were considered by
 many theorists to be superior to SQL.
Whenever you have to solve what I shall generically call an
 SQL problem, you must realize that there are two
 components in action: the SQL expression of the query and the database optimizer. These two
 components interact within three distinct zones, as shown in Figure 4-1. At the center lies
 the relational theory , where mathematicians freely roam. If we simplify
 excessively, we can say that (amongst other useful things) the theory
 informs us that we can retrieve data that satisfies some criteria by
 using a handful of relational operators, and that these operators will
 allow us to answer basically any question. Most importantly, because
 the relational theory is so firmly grounded in mathematics, we can be
 totally confident that relational expressions can be written in
 different ways and yet return the same result. In exactly the same
 way, arithmetic teaches us that 246/369 is exactly the same as
 2/3.
[image: DBMS Protagonists]

Figure 4-1. DBMS Protagonists

However, despite the crucial theoretical importance of
 relational theory, there are aspects of great practical relevance that
 the relational theory has nothing to say about. These fall into an
 area I call “reporting requirements .” The most obvious example in this area is the
 ordering of result sets. Relational theory is concerned only with the
 retrieval of a correct data set, as defined by a query. As we are
 practitioners and not theorists, for us the relational phase consists
 in correctly identifying the rows that will belong to our final result
 set. The matter of how some attributes (columns) of one row relate to
 similar attributes in another row doesn’t belong to this phase, and
 yet this is what ordering is all about. Further, relational theory has
 nothing to say about the numerous statistical functions (such as percentiles and the like) that often appear in
 various dialects of the SQL language. The relational theory operates
 on set, and knows nothing of the imposition of ordering on these sets.
 Despite the fact that there are many mathematical theories built
 around ordering, none have any relevance to the relational
 theory.
At this stage I must point out that what distinguishes
 relational operations from what I have called reporting
 requirements is that relational operations apply to
 mathematical sets of theoretically infinite extent. Irrespective of
 whether we are operating on tables of 10, one million, or one billion
 rows, we can apply any filtering criterion in an identical fashion.
 Once again, we are concerned only with identifying and returning the
 data that matches our criteria. Here, we are in the environment where
 the relational theory is fully applicable. Now, when we want to order
 rows (or perform an operation such as group
 by that most people would consider a relational operation)
 we are no longer working on a potentially infinite data set, but on a
 necessarily finite set. The consequent data set thus ceases to be a
 relation in the mathematical sense of the word. We are outside the
 bounds of the relational theory. Of course, this doesn’t mean that we
 cannot still do clever and useful things against this data using
 SQL.
So we may, as a first approximation, represent an SQL query as a
 double-layered operation as shown in Figure 4-2; first, a relational
 core identifying the set of data we are going to operate on, second, a
 non-relational layer which works on this now finite set to give the
 polishing touch and produce the final result that the user
 expects.
[image: The various layers of an SQL query]

Figure 4-2. The various layers of an SQL query

Despite Figure 4-2’s
 appealingly simple representation of the place of SQL within the data
 environment, an SQL query will in most cases be considerably more
 complex than Figure 4-2
 may suggest; Figure 4-2
 only represents the overall pattern. The relational filter may be a
 generic name for several independent filters combined, for instance,
 through a union construct or by the
 means of subqueries, and the complexity of some SQL constructs can be
 considerable. I shall come back to the topic of SQL code a little
 later. But first I must talk about the relationship between the
 physical implementation of data and the database optimizer.
Important
Do not confuse the true relational functionality of the SQL
 query execution with the additional presentation layer.

SQL and the Optimizer

An SQL engine that receives a query to process will have
 to use the optimizer to find out how to execute that query in the most
 efficient way possible. Here the relational theory strikes again,
 because that theory informs the optimizer of transformations that are
 valid equivalents of the semantically correct query initially provided
 by the developer—even if that original query was clumsily
 written.
Optimization is when the physical implementation of data comes
 into play. Depending on the existence of indexes and their usability
 in relation to a query, some transformations may result in much faster
 execution than other semantically equivalent transformations. Various
 storage models that I introduce in Chapter 5 may also make one particular
 way to execute a query irresistibly attractive. The optimizer examines
 the disposition of the indexes that are available, the physical layout
 of data, how much memory is available, and how many processors are
 available to be applied to the task of executing the query. The
 optimizer will also take into account information concerning the
 volume of the various tables and indexes that may be involved,
 directly or indirectly, through views used by the query. By weighing
 the alternatives that theory says are valid equivalents against the
 possibilities allowed by the implementation of the database, the
 optimizer will generate what is, hopefully, the best execution plan
 for the query.
However, the key point to remember is that, although the
 optimizer may not always be totally weaponless in the non-relational
 layer of an SQL query, it is mainly in the relational core that it
 will be able to deploy its full power—precisely because of the
 mathematical underpinnings of the relational theory. The
 transformation from one SQL query to another raises an important
 point: it reminds us that SQL is supposed to be a declarative
 language . In other words, one should use SQL to express what is
 required, rather than how that requirement is to be met. Going from
 what to how, should, in
 theory, be the work of the optimizer.
You saw in Chapters 1 and
 2 that SQL queries are only some
 of the variables in the equation; but even at the tactical query
 level, a poorly written query may prevent the optimizer from working
 efficiently. Remember, the mathematical basis of the relational theory
 provides an unassailable logic to the proceedings. Therefore, part of
 the art of SQL is to minimize the thickness, so to speak, of the
 non-relational layer—outside this layer, there is not much that the
 optimizer can safely do that guarantees returning exactly the same
 rows as the original query.
Another part of the art of SQL is that when performing
 non-relational operations—loosely defined as operations for which the
 whole (at least at this stage) resulting dataset is known—we must be
 extremely careful to operate on only the data that is strictly
 required to answer the original question, and nothing more. Somehow, a
 finite data set, as opposed to the current row,
 has to be stored somewhere, and storing anything in temporary storage
 (memory or disk) requires significant overhead due to byte-pushing.
 This overhead may dramatically increase as the result set data volumes
 themselves increase, particularly if main memory becomes unavailable.
 A shortage of main memory would initiate the high-resource activity of
 swapping to disk, with all its attendant overheads. Moreover, always
 remember that indexes refer to disk addresses, not temporary
 storage—as soon as the data is in temporary storage, we must wave
 farewell to most fast access methods (with the possible exception of
 hashing).
Some SQL dialects mislead users into believing that they are
 still in the relational world when they have long since left it. Take
 as a simple example the query “Who are the five top earners among
 employees who are not executives?”—a reasonable real-life question,
 although one that includes a distinctly non-relational twist.
 Identifying employees who are not executives is the relational part of
 the query, from which we obtain a finite set of employees that we can
 order. Several SQL dialects allow one to limit the number of rows
 returned by adding a special clause to the select statement. It is
 then fairly obvious that both the ordering and
 the limitation criteria are outside the
 relational layer. However, other dialects, the Oracle version figuring
 prominently here, use other mechanisms. What Oracle has is a dummy
 column named rownum that applies a
 sequential numbering to the rows in the order in which they are
 returned—which means the numbering is applied during the relational
 phase. If we write something such as:
 select empname, salary
 from employees
 where status != 'EXECUTIVE'
 and rownum <= 5
 order by salary desc
we get an incorrect result, at least in the sense that we are
 not getting the top five most highly paid nonexecutives, as the query
 might suggest at first glance. Instead, we get back the first five
 nonexecutives found—they could be the five lowest paid!—ordered in
 descending order of salary. (This query illustrates a well-known trap
 among Oracle practitioners, who have all been burnt at least
 once.)
Let’s just be very clear about what is happening with the
 preceding query. The relational component of the query simply retrieves the first five rows
 (attributes empname and salary only) from the table employees where the employee is not an
 executive in a totally unpredictable order.
 Remember that relational theory tells us that a relation (and
 therefore the table that represents it) is not defined in any way by
 the order in which tuples (and therefore the rows in that table) are
 either stored or retrieved. As a consequence the nonexecutive employee
 with the highest salary may or may not be included in this result
 set—and there is no way we will ever know whether this result set
 actually meets our search criteria correctly.
What we really want is to get all nonexecutives, order them by
 decreasing salary, and only then get the top five in the set. We can
 achieve this objective as follows:
 select *
 from (select empname, salary
 from employees
 where status != 'EXECUTIVE'
 order by salary desc)
 where rownum <= 5
So, how is our query layered in this case?
 Many would be tempted to say that by applying a filtering condition to
 an ordered result, we end up with something looking more or less like
 Figure 4-3.
[image: A misleading view of what the “top five nonexecutives” query looks like]

Figure 4-3. A misleading view of what the “top five nonexecutives” query
 looks like

The truth, however, is more like Figure 4-4.
Using constructs that look relational doesn’t take us back to
 the relational world, because to be in the relational world we must
 apply relational operators to relations. Our subquery uses an order by to sort the results. Once we’ve
 imposed ordering, we no longer have, strictly speaking, a relation (a
 relation is a set, and a set has no order). We end up with an outer
 select that looks relational on the
 surface but is applied to the output of an inline view in which a
 significant component (the order by
 clause) is not a relational process.
[image: What the “top five nonexecutives” query is really like]

Figure 4-4. What the “top five nonexecutives” query is really
 like

My example of the top five nonexecutives is, of course, a simple
 example, but do understand that once we have left the relational
 sphere in the execution of a query, we can no longer return to it. The
 best we can possibly do is to use the output of such a query to feed
 into the relational phase of an outer query. For instance, “in which
 departments are our five top nonexecutive earners working?” What is
 extremely important to understand, though, is that at this stage no
 matter how clever the optimizer is, it will be absolutely unable to
 combine the queries, and will more or less have to execute them in a
 given sequence. Further, any resulting set from an intermediate query
 is likely to be held in temporary storage, whether in memory or on disk, where the choice
 of access methods may be reduced. Once outside the pure relational
 layer, the way we write a query is of paramount importance for
 performance because it will inevitably impose onto the query some
 execution path from which the SQL engine will not be able to
 stray.
To summarize, we can say that the safest approach we can adopt
 is to try to do as much of the job as possible inside the relational
 layer, where the optimizer can operate to maximum efficiency. When the
 situation is such that a given SQL task is no longer a purely
 relational problem, then we must be particularly careful about the
 construct, or the writing of the query itself. Understanding that SQL
 has, like Dr. Jekyll, a double nature is the key to mastering the
 language. If you see SQL as a single-edged sword, then you are
 condemned to remain in the world of tips and tricks for dummies,
 smarties, and mere mortals, possibly useful for impressing the
 opposite sex—although in my experience it doesn’t work much—but an
 approach that will never provide you with a deep understanding of how
 to cope with a difficult SQL problem.
Important
The optimizer rewards those who do the most work in the
 relational layer.

Limits of the Optimizer

Any decent SQL engine relies heavily on its query
 optimizer, which very often performs an excellent job. However, there
 are many aspects of the way optimizers work that you must keep in
 mind:
	Optimizers rely on the information they find in
 the database.
	This information is of two types: general statistical data
 (which must be verified as being fitting), and the essential
 declarative information held in the data definitions. Where
 important semantic information relating to the data relations is
 embedded in triggers or, worse, in application program code,
 that vital information will be totally unavailable to the
 optimizer. Such circumstances will inevitably impact the
 potential performance of the optimizer.

	Optimizers can perform to their best advantage
 where they can apply transformations that are mathematically
 proven to be equivalent.
	When they are required to assess components of a query
 that are non-relational in character, they are on less certain
 grounds and the execution path will stick more closely to what
 was voluntarily or involuntarily suggested by the original
 writing.

	The work of the optimizer contributes to the
 overall response time.
	Comparing a large number of alternative execution paths
 may take time. The end user sees only the total elapsed time and
 is unaware of how much was spent on optimization and how much on
 execution. A clever optimizer might allow itself more time to
 try to improve a query that it expects to take a lot of time to
 run, but there is always a self-imposed limit on its work. The
 trouble is that when you have a 20-way join (which is by no
 means unusual in some applications), the number of combinations
 the optimizer could examine can become unmanageably large even
 when adequate indexing make some links obvious. Compound this
 with the inclusion of a combination of complex views and
 subqueries, and at some point, the optimizer will have to give
 in. It is quite possible to find a situation in which a query
 running in isolation of any others may be very well optimized,
 while the same query deeply nested inside a much more complex
 outer query may take a completely wrong path.

	The optimizer improves individual
 queries.
	It is unable to relate independent queries one to another,
 however. Whatever its efforts, if the bulk of your program is
 fetching data inside procedural code just to feed into
 subsequent queries, the optimizer will not be able to do
 anything for you.

Important
Feed the optimizer with little chunks, and it will optimize
 little pieces. Feed it with a big chunk, and it will optimize a
 task.

Five Factors Governing the Art of SQL

 You have seen in the first part of this chapter exactly
 how SQL includes both relational and non-relational characteristics. You
 have also seen how this affects the efficient (and not-so-efficient)
 workings of the database optimizer. From this point forward, and bearing
 in mind the lessons of the first part of this chapter, we can
 concentrate on the key factors that must be considered when using SQL.
 In my view, there are five main factors:
	The total quantity of data from which a result set has to be obtained

	The criteria required to define the result set

	The size of the result set

	The number of tables to be processed in order to obtain the
 desired result set

	The number of other users also modifying this same data

Total Quantity of Data

The volume of data we need to read is probably the most
 important factor to take into account; an execution plan that is
 perfectly suitable for a fourteen-row emp table and a four-row dept table may be entirely inappropriate for
 dealing with a 15 million-row financial_flows table against which we have
 to join a 5 million-row products
 table. Note that even a 15 million-row table will not be considered
 particularly large by the standards of many companies. As a matter of
 consequence, it is hard to pronounce on the efficiency of a query
 before having run it against the target volume of data.

Criteria Defining the Result Set

When we write an SQL statement, in most cases it will involve
 filtering conditions located in where
 clauses, and we may have several where clauses—a major one as well as minor
 ones—in subqueries or views (regular views or in-line views). A
 filtering condition may be efficient or inefficient. However, the
 significance of efficient or
 inefficient is strongly affected by other
 factors, such as physical implementation (as discussed in Chapter 5) and once again, by how much
 data we have to wade through.
We need to approach the subject of defining the result in
 several parts, by considering filtering, the central SQL statements,
 and the impact of large data volumes on our queries. But this is a
 particularly complex area that needs to be treated in some depth, so
 I’ll reserve this discussion until later in this chapter, in the major
 section entitled "Filtering.”

Size of the Result Set

An important and often overlooked factor is how much data a
 query returns (or how much data a statement changes). This is often
 dependent on the size of the tables and the details of the filtering, but not in
 every case. Typically, the combination of several selection criteria
 which of themselves are of little value in selecting data may result
 in highly efficient filtering when used in combination with one
 another. For example, one could cite that retrieving students’ names
 based on whether they received a science or an arts degree will give a
 large result set, but if both criteria are used (e.g., students who
 studied under both disciplines) the consequent result set will
 collapse to a tiny number.
In the case of queries in particular, the size of the result set
 matters not so much from a technical standpoint, but mostly because of
 the end user’s perception. To a very large extent, end users adjust
 their patience to the number of rows they expect: when they ask for
 one needle, they pay little attention to the size of the haystack. The
 extreme case is a query that returns nothing, and a good developer
 should always try to write queries that return few or no rows as fast
 as possible. There are few experiences more frustrating than waiting
 for several minutes before finally seeing a “no data found” message.
 This is especially annoying if you have mistyped something, realized
 your error just after hitting Enter, and then have been unable to
 abort the query. End users are willing to wait to get a lot of data,
 but not to get an empty result. If we consider that each of our
 filtering criteria defines a particular result set and the final
 result set is either the intersection (when conditions are anded) or the union (when conditions are
 ored together) of all the
 intermediate result sets , a zero result is most likely to result from the
 intersection of small, intermediate result sets. In other words, the
 (relatively) most precise criteria are usually the primary reason for
 a zero result set. Whenever there is the slightest possibility that a
 query might return no data, the most likely condition that would
 result in a null return should be checked first—especially if it can
 be done quickly. Needless to say, the order of evaluation of criteria
 is extremely context-sensitive as you shall see later under "Filtering.”
Important
A skillful developer should aim for response times
 proportional to the number of rows returned.

Number of Tables

The number of tables involved in a query will naturally have some influence
 on performance. This is not because a DBMS engine performs joins
 badly—on the contrary, modern systems are able to join large numbers
 of tables very efficiently.
Joins

The perception of poor join performance is another enduring
 myth associated with relational databases. Folklore has it that one
 should not join too many tables, with five often suggested as the
 limit. In fact, you can quite easily have 15 table joins perform
 extremely well. But there are additional problems associated with
 joining a large number of tables, of which the following are
 examples:
	When you routinely need to join, say, 15 tables, you can
 legitimately question the correctness of the design; keep in
 mind what I said in Chapter
 1—that a row in a table states some kind of truth and can
 be compared to a mathematical axiom. By joining tables, we
 derive other truths. But there is a point at which we must
 decide whether something is an obvious truth that we can call an
 axiom, or whether it is a less obvious truth that we must
 derive. If we spend much of our time deriving our truths,
 perhaps our axioms are poorly chosen in the first place.

	For the optimizer, the complexity increases exponentially
 as the number of tables increases. Once again, the excellent
 work usually performed by a statistical optimizer may comprise a
 significant part of the total response time for a query,
 particularly when the query is run for the first time. With
 large numbers of tables, it is quite impractical for the
 optimizer to explore all possible query paths. Unless a query is
 written in a way that eases the work of the optimizer, the more
 complex the query, the greater the chance that the
 optimizer will bet on the wrong horse.

	When we write a complex query involving many tables, and
 when joins can be written in several fairly distinct ways, the
 odds are high that we’ll pick the wrong construct. If we join
 tables A to B to C to D, the optimizer may not have all the
 information present to know that A can be very efficiently
 joined directly to D, particularly if that join happens to be a
 special case. A sloppy developer trying to fix duplicate rows
 with a distinct can also
 easily overlook a missing join condition.

Complex queries and complex views

Be aware that the apparent number of tables involved
 in a query can be deceptive; some of the tables may actually be
 views, and sometimes pretty complex ones, too. Just as with queries,
 views can also have varying degrees of complexity. They can be used
 to mask columns, rows, or even a combination of rows and columns to
 all but a few privileged users. They can also be used as an
 alternate perspective on the data, building relations that are
 derived from the existing relations stored as tables. In cases such
 as these, a view can be considered shorthand for a query, and this
 is probably one of the most common usages of views. With
 increasingly complex queries, there is a temptation to break a query
 down into a succession of individual views, each representing a
 component of the greater query.
Important
The simplicity of a given query may hide the complexity of
 participating views.

Like most extreme positions, it would be absurd to banish
 views altogether. Many of them are rather harmless animals. However,
 when a view is itself used in a rather complex query, in most cases
 we are only interested in a small fraction of the data returned by
 the view—possibly in a couple of columns, out of a score or more.
 The optimizer may attempt to recombine a simple view into a larger
 query statement. However, once a query reaches a relatively modest
 level of complexity, this approach may become too complex in itself
 to enable efficient processing.
In some cases a view may be written in a way that effectively
 prevents the optimizer from combining it into the larger statement.
 I have already mentioned rownums,
 those virtual columns used in Oracle to indicate the order in which
 rows are initially found. When rownums are used inside a view, a further
 level of complexity is introduced. Any attempt to combine a view
 that references a rownum into a
 larger statement would be almost guaranteed to change the subsequent
 rownum order, and therefore the
 optimizer doesn’t permit a query rewrite in those circumstances. In
 a complicated query, such a view will necessarily be executed in
 isolation. In quite a number of cases then, the DBMS optimizer will
 push a view as is into a statement,[*] running it as a step in the statement execution, and
 using only those elements that are required from the result of the
 view execution.
Frequently, many of the operations executed in a view
 (typically joins to return a description associated with codes) will
 be irrelevant in the context of a larger query, or a query may have
 special search criteria that would have been particularly selective
 when applied to the tables underlying the view. For instance, a
 subsequent union may prove to be
 totally unnecessary because the view is the union of several tables representing
 subtypes, and the larger query filters on only one of the subtypes.
 There is also the danger of joining a view with a table that itself
 appears in the same view, thus forcing multiple passes over this
 table and probably hitting the same rows several times when one pass
 would have been quite sufficient.
When a view returns much more data than required in the
 context of a query that references that view, dramatic performance
 gains can often be obtained by eliminating the view (or using a
 simpler version of the view). Begin by replacing the view reference
 in the main query with the underlying SQL query used to define the
 view. With the components of the view in full sight, it becomes easy
 to remove everything that is not strictly necessary. More often than
 not, it’s precisely what isn’t necessary that prevents the view from
 being merged by the optimizer, and a simpler, cut-down view may give
 excellent results. When the query is correctly reduced to its most
 basic components, it runs much faster.
Many developers may hesitate to push the code for a very
 complex view into an already complex query, not least because it can
 make a complex situation even more complicated. The exercise of
 developing and factoring a complex SQL expression may indeed appear
 to be daunting. It is, however, an exercise quite similar to the
 development of mathematical expressions, as practiced in high
 school. It is, in my view, a very formative exercise and well worth
 the effort of mastering. It is a discipline that provides a very
 sound understanding of the inner workings of a query for developers
 anxious to improve their skills, and in most cases the results can
 be highly rewarding.
Important
Rather than embedding a view inside a query when that view
 returns unnecessary elements, try to decompose the view components
 into the main query body.

Number of Other Users

Finally, concurrency is a factor that you must carefully
 take into account when designing your SQL code. Concurrency is usually
 a concern while writing to the database where block-access
 contention , locking , latching (which means locking of internal DBMS resources), and
 others are the more obvious problem areas; even read consistency can
 in some cases lead to some degree of contention. Any server, no matter
 how impressive its specification, will always have a finite capacity.
 The ideal plan for a query running on a machine with little to no
 concurrency is not necessarily the same as the ideal plan for the same
 query running on the same machine with a high level of concurrency.
 Sorts may no longer find the memory they need and may instead resort
 to writing to disk, thus creating a new source of contention. Some
 CPU-intensive operations—for example, the computation of complicated
 functions, repetitive scanning of index blocks, and so forth—may cause
 the computer to overload. I have seen cases in which more physical
 I/Os resulted in a significantly better time to perform a given task.
 In those cases, there was a high level of concurrency for
 CPU-intensive operations, and when some processes had to wait for
 I/Os, the overworked CPUs were relieved and could run other processes,
 thus ensuring a better overlap. We must often think in terms of global
 throughput of one particular business task, rather than in terms of
 individual user response-time.
Note
Chapter 9 examines
 concurrency in greater detail.

Filtering

How you restrict your result set is one of the most critical
 factors that helps you determine which tactics to apply when writing an
 SQL statement. The collective criteria that filters the data are often
 seen as a motley assortment of conditions associated in the where clause. However, you should very closely
 examine the various where-clause (and
 having-clause, too) conditions when
 writing SQL code.
Meaning of Filtering Conditions

Given the syntax of the SQL language, it is quite
 natural to consider that all filtering conditions , as expressed in the where clause, are similar in nature. This is
 absolutely not the case. Some filtering conditions apply directly to
 the select operator of relational
 theory, where checking that a
 column in a row (purists would say an attribute in a relation
 variable) matches (or doesn’t match) a given condition. However,
 historically the where clause also
 contains conditions that implement another operator—the join operator. There is, since the advent of
 the SQL92 join syntax, an attempt to differentiate join filtering conditions, located between
 the (main) from clause and the
 where clause, from the select filtering conditions listed in the
 where clause. Joining two (or more)
 tables logically creates a new relation.
Consider this general example of a join:
 select
 from t1
 inner join t2
 on t1.join1 = t2.joind2
 where ...
Should a condition on column c2 belonging to t2 come as an additional condition on the
 inner join, expressing that in fact
 you join on a subset of t2? Or
 should a condition inside the where
 clause, along with conditions on columns of t1, express that the filtering applies to
 the result of joining t1 to
 t2? Wherever you choose to place
 your join condition ought not to
 make much of a difference; however, it has been known to lead to
 variations in performance with some optimizers.
We may also have conditions other than joins and the simple
 filtering of values. For instance, we may have conditions restricting
 the returned set of rows to some subtype; we may also have conditions
 that are just required to check the existence of something inside
 another table. All these conditions are not necessarily semantically
 identical, although the SQL syntax makes all of them look equivalent.
 In some cases, the order of evaluation of the conditions is of no consequence; in other cases,
 it is significant.
Here’s an example that you can actually find in more than one
 commercial software package to illustrate the importance of the order
 of the evaluation of conditions. Suppose that we have a parameters table, which holds: parameter_name, parameter_type, and parameter_value, with parameter_value being the string
 representation of whatever type of parameter we have, as defined by
 the attribute parameter_type. (To
 the logical mind this is indeed a story of more woe than that of
 Juliet and her Romeo, since the domain type of attribute parameter_value is a variable feast and thus
 offends a primary rule of relational theory.) Say that we issue a
 query such as:
 select * from parameters
 where parameter_name like '%size'
 and parameter_type = 'NUMBER'
With this query, it does not matter whether the first condition
 is evaluated before or after the second one. However, if we add the
 following condition, where int()
 is a function to convert from char
 to integer value, then the order of
 evaluation becomes very significant:
 and int(parameter_value) > 1000
Now, the condition on parameter_type must be
 evaluated before the condition on the value, because otherwise we risk
 a run-time error consequent upon attempting to convert a character
 string (if for example parameter_type for that row is defined as
 char) to an integer. The optimizer may not be able to
 figure out that the poor design demands that one condition should have
 higher priority—and you may have trouble specifying it to the
 database.
Important
All search criteria are not equal; some are more equal than
 others.

Evaluation of Filtering Conditions

The very first questions to consider when
 writing a SQL statement are:
	What data is required, and from which tables?

	What input values will we pass to the DBMS engine?

	What are the filtering conditions that allow us to discard
 unwanted rows?

Be aware, however, that some data (principally data used for
 joining tables) may be stored redundantly in several tables. A
 requirement to return values known to be held in the primary key of a
 given table doesn’t necessarily mean that this table must appear in
 the from clause, since this primary
 key may well appear as the foreign key of another table from which we
 also need the data.
Even before writing a query, we should rank the filtering
 conditions. The really efficient ones (of which there may be several,
 and which may apply to different tables) will drive the query, and the
 inefficient ones will come as icing on the cake. What is the criterion
 that defines an efficient filter? Primarily, one that allows us to cut
 down the volume of the data we have to deal with as fast as possible.
 And here we must pay a lot of attention to the way we write; the
 following subsections work through a simple example to illustrate my
 point.
Buyers of Batmobiles

Assume that we have four tables, namely customers, orders, orderdetail, and a table of articles, as shown in Figure 4-5. Please note that
 in the figure the sizes of the boxes representing each table are
 more or less proportional to the volume of data in each table, not
 simply to the number of columns. Primary key columns are
 underlined.
[image: A classical order schema]

Figure 4-5. A classical order schema

Let’s now suppose that our SQL problem is to find the names of
 all the customers living in the city named “Gotham” who have ordered
 the article called “Batmobile” during the last six months. We have,
 of course, several ways to formulate this query; the following is
 probably what an ANSI SQL fan would write:
 select distinct
 c.custname
 from customers c
 join orders o
 on o.custid = c.custid
 join orderdetail od
 on od.ordid = o.ordid
 join articles a
 on a.artid = od.artid
 where c.city = 'GOTHAM'
 and a.artname = 'BATMOBILE'
 and o.ordered >= somefunc
somefunc is supposed to be a
 function that returns the date six months prior to the current date.
 Notice too, the presence of distinct, which may be required if one of
 our customers is an especially heavy consumer of Batmobiles and has
 recently ordered several of them.
Let’s forget for a while that the optimizer may rewrite the
 query, and look at the execution plan such a statement suggests.
 First, we walk the customers
 table, keeping only rows for which the city happens to be Gotham.
 Then we search the orders table,
 which means that the custid
 column there had better be indexed, because otherwise the only hope
 the SQL engine has of executing the query reasonably fast is to
 perform some sorting and merging or to scan the orders table to build a hash table and
 then operate against that. We are going to apply another filter at
 this level, against the order date. A clever optimizer will not mind
 finding the filtering condition in the where clause and will understand that in
 order to minimize the amount of data to join it must filter on the
 date before performing the join. A not so clever optimizer might be
 tempted to join first, and then filter, and may therefore be
 grateful to you for specifying the filtering condition with the join
 condition, as follows:
 join orders o
 on o.custid = c.custid
 and o.ordered >= somefunc
Even if the filtering condition really has nothing to do with
 the join, it is sometimes difficult for the optimizer to understand
 when that is the case. If the primary key of orderdetail is defined as (ordid, artid) then, because ordid is the first attribute of the index,
 we can make use of that index to find the rows associated with an
 order as in Chapter 3. But if
 the primary key happens to be (artid,
 ordid) (and note, either version is exactly the same as
 far as relational theory is concerned), then tough luck. Some
 products may be able to make some use of the index[*] in that case, but it will not provide the efficient
 access that (ordid, artid) would
 have allowed. Other products will be totally unable to use the
 index. The only circumstance that may save us is the existence of a
 separate index on ordid.
Once we have linked orderdetails to orders, we can proceed to articles—without any problem this time
 since we found artid, the primary
 key, in orderdetail. Finally, we
 can check whether the value in articles is or is not a Batmobile. Is this
 the end of the story? Not quite. As instructed by distinct, we must now sort the resulting
 set of customer names that have passed across all the filtering
 layers so as to eliminate duplicates.
It turns out that there are several alternative ways of
 expressing the query that I’ve just described. One example is to use
 the older join syntax , as follows:
 select distinct c.custname
 from customers c,
 orders o,
 orderdetail od,
 articles a
 where c.city = 'GOTHAM'
 and c.custid = o.custid
 and o.ordid = od.ordid
 and od.artid = a.artid
 and a.artname = 'BATMOBILE'
 and o.ordered >= somefunc
It may just be old habits dying hard, but I prefer this older
 way, if only for one simple reason: it makes it slightly more
 obvious that from a logical point of view the order in which we
 process data is arbitrary, because the same data will be returned
 irrespective of the order in which we inspect tables. Certainly the
 customers table is particularly
 important, since that is the source from which we obtain the data
 that is ultimately required, while in this very specific context,
 all the other tables are used purely to support the remaining
 selection processes. One really has to understand that there is no
 one recipe that works for all cases. The pattern of table joins will
 vary for each situation you encounter. The deciding factor is the
 nature of the data you are dealing with.
A given approach in SQL may solve one problem, but make
 another situation worse. The way queries are written is a bit like a
 drug that may heal one patient but kill another.

More Batmobile purchases

Let’s explore alternative ways to list our buyers of
 Batmobiles. In my view, as a general rule, distinct at the top level should be
 avoided whenever possible. The reason is that if we have overlooked
 a join condition, a distinct will
 hide the problem. Admittedly this is a greater risk when building
 queries with the older syntax, but nevertheless still a risk when
 using the ANSI/SQL92 syntax if tables are joined through several
 columns. It is usually much easier to spot duplicate rows than it is
 to identify incorrect data.
It’s easy to give a proof of the assertion that incorrect
 results may be difficult to spot: the two previous queries that use
 distinct to return the names of
 the customers may actually return a wrong result. If we happen to
 have several customers named “Wayne,” we won’t get that information
 because distinct will not only
 remove duplicates resulting from multiple orders by the same
 customer, but also remove duplicates resulting from homonyms. In
 fact, we should return both the unique customer id and the customer
 name to be certain that we have the full list of Batmobile buyers.
 We can only guess at how long it might take to identify such an
 issue in production.
How can we get rid of distinct then? By acknowledging that we
 are looking for customers in Gotham that satisfy an existence
 test , namely a purchase order for a Batmobile in the past
 six months. Note that most, but not all, SQL dialects support the
 following syntax:
 select c.custname
 from customers c
 where c.city = 'GOTHAM'
 and exists (select null
 from orders o,
 orderdetail od,
 articles a
 where a.artname = 'BATMOBILE'
 and a.artid = od.artid
 and od.ordid = o.ordid
 and o.custid = c.custid
 and o.ordered >= somefunc)
If we use an existence test such as this query uses, a name
 may appear more than once if it is common to several customers, but
 each individual customer will appear only once, irrespective of the
 number of orders they placed. You might think that my criticism of
 the ANSI SQL syntax was a little harsh, since customers figure as prominently, if not
 more prominently than before. However, it now features as the source
 for the data we want the query to return. And another query, nested
 this time, appears as a major phase in the identification of the
 subset of customers.
The inner query in the preceding example is strongly linked to
 the outer select. As you can see
 on line 11 (in bold), the inner query refers to the current row of
 the outer query. Thus, the inner query is what is called a
 correlated subquery. The snag with this type of
 subquery is that we cannot execute it before we know the current
 customer. Once again, we are assuming that the optimizer doesn’t
 rewrite the query. Therefore we must first find each customer and
 then check for each one whether the existence test is satisfied. Our
 query as a whole may perform excellently if we have very few
 customers in Gotham. It may be dreadful if Gotham is the place where
 most of our customers are located (a case in which a sophisticated
 optimizer might well try to execute the query in a different
 way).
We have still another way to write our query, which is as
 follows:
 select custname
 from customers
 where city = 'GOTHAM'
 and custid in
 (select o.custid
 from orders o,
 orderdetail od,
 articles a
 where a.artname = 'BATMOBILE'
 and a.artid = od.artid
 and od.ordid = o.ordid
 and o.ordered >= somefunc)
In this case, the inner query no longer depends on the outer
 query: it has become an uncorrelated subquery.
 It needs to be executed only once. It should be obvious that we have
 now reverted the flow of execution. In the previous case, we had to
 search first for customers in the right location (e.g.,
 where city is Gotham), and then check each
 order in turn. In this latest version of the query, the identifiers
 of customers who have ordered what we are looking for are obtained
 via a join that takes place in the inner query.
If you have a closer look, however, there are more subtle
 differences as well between the current and preceding examples. In
 the case of the correlated subquery, it is of paramount importance
 to have the orders table indexed
 on custid; in the second case, it
 no longer matters, since then the index (if any) that will be used
 is the index associated with the primary key of customers.
You might notice that the most recent version of the query
 performs an implicit distinct. Indeed,
 the subquery, because of its join, might return many rows for a
 single customer. That duplication doesn’t matter, because the
 in condition checks only to see
 whether a value is in the list returned by the subquery, and
 in doesn’t care whether a given
 value is in that list one time or a hundred times. Perhaps though,
 for the sake of consistency we should apply the same rules to the
 subquery that we have applied to the query as a whole, namely to
 acknowledge that we have an existence test within the subquery as
 well:
 select custname
 from customers
 where city = 'GOTHAM'
 and custid in
 (select o.custid
 from orders o
 where o.ordered >= somefunc
 and exists (select null
 from orderdetail od,
 articles a
 where a.artname = 'BATMOBILE'
 and a.artid = od.artid
 and od.ordid = o.ordid))
or:
 select custname
 from customers
 where city = 'GOTHAM'
 and custid in
 (select custid
 from orders
 where ordered >= somefunc
 and ordid in (select od.ordid
 from orderdetail od,
 articles a
 where a.artname = 'BATMOBILE'
 and a.artid = od.artid)
Irrespective of the fact that our nesting is getting deeper
 and becoming less legible, choosing which query is the best between
 the exists and the in follows the very same rule inside the
 subquery as before: the choice depends on the effectiveness of the
 condition on the date versus the condition on the article. Unless
 business has been very, very slow for the past six months, one might
 reasonably expect that the most efficient condition on which to
 filter the data will be the one on the article name. Therefore, in
 the particular case of the subquery, in is better than exists because it will be faster to find
 all the order lines that refer to a Batmobile and then to check
 whether the sale occurred in the last six months rather than the
 other way round. This approach will be faster assuming that the
 table orderdetail is indexed on
 artid; otherwise, our bright,
 tactical move will fail dismally.
Note
It may be a good idea to check in against exists whenever an existence test is
 applied to a significant number of rows.

Most SQL dialects allow you to rewrite uncorrelated subqueries
 as inline views in the from
 clause. However, you must always remember that an in performs an implicit removal of
 duplicate values, which must become explicit when the subquery is
 moved to become an in-line view in the from clause. For example:
 select custname
 from customers
 where city = 'GOTHAM'
 and custid in
 (select o.custid
 from orders o,
 (select distinct od.ordid
 from orderdetail od,
 articles a
 where a.artname = 'BATMOBILE'
 and a.artid = od.artid) x
 where o.ordered >= somefunc
 and x.ordid = o.ordid)
The different ways you have to write functionally equivalent
 queries (and variants other than those given in this section are
 possible) are comparable to words that are synonyms. In written and
 spoken language, synonyms have roughly the same meaning, but each
 one introduces a subtle difference that makes one particular word
 more suitable to a particular situation or expression (and in some
 cases another synonym is totally inappropriate). In the same way,
 both data and implementation details may dictate the choice of one
 query variant over others.

Lessons to be learned from the Batmobile trade

The various examples of SQL that you saw in the
 preceding section may look like an idle exercise in programming
 dexterity, but they are more than that. The key point is that there
 are many different ways in which we can attack the data, and that we
 don’t necessarily have to go first through customers, then orders, then orderdetail, and then articles as some of the ways of writing
 the query might suggest.
If we represent the strength of our search criteria with
 arrows—the more discriminant the criterion, the larger the arrow—we
 can assume that we have very few customers in Gotham, but that we
 sell quite a number of Batmobiles and business has been brisk for
 the past six months, in which case our battle map may look like
 Figure 4-6. Although we
 have a condition on the article name, the medium arrow points to
 orderdetail because that is what
 truly matters. We may have very few articles for sale, which may
 represent similar percentages of our revenue, or we may have a huge
 number of articles, of which one of the best sellers is the
 Batmobile.
[image: When query discrimination is based on location]

Figure 4-6. When query discrimination is based on location

Alternatively, we can assume that most of our customers are
 indeed based in Gotham, but that very few actually buy Batmobiles,
 in which case our battle plan will look more like Figure 4-7. It is quite
 obvious then, that we really have to cut to pieces the orderdetail table, which is the largest
 one. The faster we slash this table, the faster our query will
 run.
[image: When query discrimination is based on purchase]

Figure 4-7. When query discrimination is based on purchase

Note also—and this is a very important point—that the
 criterion “during the last six months” is not a very precise one.
 But what if we change the criterion to specify the last two months
 and happen to have 10 years of sales history online? In that case,
 it may be more efficient to get to those recent orders first—which,
 thanks to some techniques described in Chapter 5, may be clustered
 together—and then start from there, selecting customers from Gotham,
 on the one hand, and orders for Batmobiles on the other. To put it
 another way, the best execution plan does not only depend on the
 data values, it may also evolve over time.
What then can we conclude from all this? First, that there is
 more than one way to skin a cat...and that an expression of a query
 is usually associated with implicit assumptions about the data. With
 each different expression of a query we will obtain the same result
 set, but it may be at significantly different speeds. The way we
 write the query may influence the execution path, especially when we
 have to apply criteria that cannot be expressed within the truly
 relational part of the environment. If the optimizer is to be
 allowed to function at its best, we must try to maximize the amount
 of true relational processing and ensure the non-relational
 component has minimum impact on the final result.
We have assumed all along in this chapter that statements will
 be run as suggested by the way they are written. Be aware though,
 that an optimizer may rewrite queries—sometimes pretty aggressively.
 You could argue that rewrites by the optimizer don’t matter, because
 SQL is supposed to be a declarative language in which you state what
 you want and let the DBMS provide it. However, you have seen that
 each time we have rewritten a query in a different way, we have had
 to change assumptions about the distribution of data and about
 existing indexes. It is highly important, therefore, to anticipate
 the work of the optimizer to be certain that it will find what it
 needs, whether in terms of indexes or in terms of detailed-enough
 statistical information about the data.
Important
The correct result from an SQL statement is only the first
 step in building the best SQL.

Querying Large Quantities of Data

It may sound obvious, but the sooner we get rid of
 unwanted data, the less we have to process at later stages of a
 query—and the more efficiently the query will run. An excellent
 application of this principle can be found with set operators, of
 which union is probably the most
 widely used. It is quite common to find in a moderately complex
 union a number of tables appearing
 in several of the queries “glued” together with the union operator. One often sees the union of fairly complex joins, with most of
 the joined tables occurring in both select statements of the union—for example, on both sides of the
 union, something like the
 following:
 select ...
 from A,
 B,
 C,
 D,
 E1
 where (condition on E1)
 and (joins and other conditions)
 union
 select ...
 from A,
 B,
 C,
 D,
 E2
 where (condition on E2)
 and (joins and other conditions)
This type of query is typical of the cut-and-paste school of
 programming. In many cases it may be more efficient to use a union of those tables that are not common,
 complete with the screening conditions, and to then push that union into an inline view and join the
 result, writing something similar to:
 select ...
 from A,
 B,
 C,
 D,
 (select ...
 from E1
 where (condition on E1)
 union
 select ...
 from E2
 where (condition on E2)) E
 where (joins and other conditions)
Another classic example of conditions applied at the wrong place
 is a danger associated with filtering when a statement contains a
 group by clause. You can filter on
 the columns that define the grouping, or the result of the aggregate
 (for instance when you want to check whether the result of a count() is smaller than a threshold) or
 both. SQL allows you to specify all such conditions inside the
 having clause that filters after
 the group by (in practice, a sort
 followed by an aggregation) has been completed. Any condition bearing
 on the result of an aggregate function must be inside the having clause, since the result of such a
 function is unknown before the group
 by. Any condition that is independent on the aggregate
 should go to the where clause and
 contribute to decrease the number of rows that we shall have to sort
 to perform the group by.
Let’s return to our customers and orders example, admitting that
 the way we process orders is rather complicated. Before an order is
 considered complete, we have to go through several phases that are
 recorded in the table orderstatus,
 of which the main columns are ordid, the identifier of the order; status; and statusdate, which is a timestamp. The
 primary key is compound, consisting of ordid, and statusdate. Our requirement is to list, for
 all orders for which the status is not flagged as complete (assumed to
 be final), the identifier of the order, the customer name, the last
 known order status, and when this status was set. To that end, we
 might build the following query, filtering out completed orders and
 identifying the current status as the latest status assigned:
 select c.custname, o.ordid, os.status, os.statusdate
 from customers c,
 orders o,
 orderstatus os
 where o.ordid = os.ordid
 and not exists (select null
 from orderstatus os2
 where os2.status = 'COMPLETE'
 and os2.ordid = o.ordid)
 and os.statusdate = (select max(statusdate)
 from orderstatus os3
 where os3.ordid = o.ordid)
 and o.custid = c.custid
At first sight this query looks reasonable, but in fact it
 contains a number of deeply disturbing features. First, notice that we
 have two subqueries, and notice too that they are not nested as in the
 previous examples, but are only indirectly related to each other. Most
 worrying of all, both subqueries hit the very same table, already
 referenced at the outer level. What kind of filtering condition are we
 providing? Not a very precise one, as it only checks for the fact that
 orders are not yet complete.
How can such a query be executed? An obvious approach is to scan
 the orders table, for each row
 checking whether each order is or is not complete. (Note that we might
 have been happy to find this information in the orders table itself,
 but this is not the case.) Then, and only then, can we check the date
 of the most recent status, executing the subqueries in the order in
 which they are written.
The unpleasant fact is that both subqueries are correlated.
 Since we have to scan the orders
 table, it means that for every row from orders we shall have to check whether we
 encounter the status set to COMPLETE for that order. The subquery to
 check for that status will be fast to execute, but not so fast when
 repeated a large number of times. When there is no COMPLETE status to be found, then a second
 subquery must be executed. What about trying to un-correlate
 queries?
The easiest query to un-correlate happens to be the second one.
 In fact, we can write, at least with some SQL dialects:
 and (o.ordid, os.statusdate) = (select ordid, max(statusdate)
 from orderstatus
 group by ordid)
The subquery that we have now will require a full scan of
 orderstatus; but that’s not
 necessarily bad, and we’ll discuss our reasoning in a moment.
There is something quite awkward in the condition of the pair of
 columns on the left-hand side of the rewritten subquery condition.
 These columns come from different tables, and they need not do so. In
 fact, we want the order identifier to be the same in orders and orderstatus; will the optimizer understand
 the subtlety of this situation? That is rather uncertain. If the
 optimizer doesn’t understand, then it will be able to execute the
 subquery first, but will have to join the two other tables together
 before being able to exploit the result of the subquery. If the query
 were written slightly differently, the optimizer would have greater
 freedom to decide whether it actually wants to do what I’ve just
 described or exploit the result of the subquery and then join orders to orderstatus:
 and (os.ordid, os.statusdate) = (select ordid, max(statusdate)
 from orderstatus
 group by ordid)
The reference on the left side to two columns from the same
 table removes the dependence of identification of the most recent
 status for the order on a preliminary join between orderstatus and orders. A very clever optimizer might have
 performed the modification for us, but it is wiser to take no risk and
 specify both columns from the same table to begin with. It is always
 much better to leave the optimizer with as much freedom as we
 can.
You have seen previously that an uncorrelated subquery can
 become a join in an inline view without much effort. We can indeed
 rewrite the entire query to list pending orders as follows:
 select c.custname, o.ordid, os.status, os.statusdate
 from customers c,
 orders o,
 orderstatus os,
 (select ordid, max(statusdate) laststatusdate
 from orderstatus
 group by ordid) x
 where o.ordid = os.ordid
 and not exists (select null
 from orderstatus os2
 where os2.status = 'COMPLETE'
 and os2.ordid = o.ordid)
 and os.statusdate = x.laststatusdate
 and os.ordid = x.ordid
 and o.custid = c.custid
But then, if COMPLETE is
 indeed the final status, do we need the subquery to check the
 nonexistence of the last stage? The inline view helps us to identify
 which is the last status, whether it is COMPLETE or anything else. We can apply a
 perfectly satisfactory filter by checking the latest known
 status:
 select c.custname, o.ordid, os.status, os.statusdate
 from customers c,
 orders o,
 orderstatus os,
 (select ordid, max(statusdate) laststatusdate
 from orderstatus
 group by ordid) x
 where o.ordid = os.ordid
 and os.statusdate = x.laststatusdate
 and os.ordid = x.ordid
 and os.status != 'COMPLETE'
 and o.custid = c.custid
The duplicate reference to orderstatus can be further avoided by using
 OLAP or analytical functions available with some SQL engines. But
 let’s pause here and consider how we have modified the query and, more
 importantly, the execution path. Basically, our natural path was
 initially to scan the orders table,
 and then access through what may reasonably be expected to be an
 efficient index on the table orderstatus. In the last version of our
 query, we will attack through a full scan of orderstatus, to perform a group by. In terms of the number of rows,
 orderstatus will necessarily be
 several times bigger than orders.
 However, in terms of mere volume of data to scan, we can expect it to
 be smaller, possibly significantly smaller, depending on how much
 information is stored for each order.
We cannot say with certainty which approach will be better, it
 depends on the data. Let me add that seeing a full scan on a table
 that is expected to grow is not a good idea (restricting the search to
 the last month’s, or last few months’ worth of data can help). But
 there are significant chances that this last version of our query will
 perform better than the first attempt with the subquery in the
 where clause.
We cannot leave the subject of large data volumes without
 mentioning a slightly special case. When a query returns a very large
 amount of data, you have reasonable grounds for suspecting that it’s
 not an individual sitting at a terminal that executed the query. The
 likelihood is that such a query is part of a batch process. Even if
 there is a longish “preparatory phase,” nobody will complain so long
 as the whole process performs to a satisfactory standard. Do not, of
 course, forget that a phase, preparatory or not, requires
 resources—CPU, memory, and possibly temporary disk space. It helps to
 understand that the optimizer, when returning a lot of data, may
 choose a path which has nothing in common with the path it would adopt
 when returning few rows, even if the fundamental query is
 identical.
Important
Filter out unneeded data as early as possible.

The Proportions of Retrieved Data

A typical and frequently quoted saying is the famous
 “don’t use indexes when your query returns more than 10% of the rows
 of a table.” This states implicitly that (regular) indexes are
 efficient when an index key points to 10% or less of the rows in a
 table. As I have already pointed out in Chapter 3, this rule of thumb dates
 back to a time when relational databases were still regarded with
 suspicion in many companies. In those days, their use was mostly
 confined to that of departmental databases. This was a time when a
 100,000-row table was considered a really big one. Compared to 10% of
 a 500 million-row table, 10% of 100,000 rows is a trifle. Can we
 seriously hope that the best execution plan in one case will still be
 the best execution plan in the other case? Such is wishful
 thinking.
Independently from the evolution of table sizes since the time
 when the “10% of rows” rule of thumb was first coined, be aware that
 the number of rows returned means nothing in itself, except in terms
 of response time expectations by end users. If you compute an average
 value over 1 billion rows, you return a single row, and yet the DBMS
 performs a lot of work. Even without any aggregation, what matters is
 the number of data pages that the DBMS is going to hit when performing
 the query. Data page hits don’t only depend on the existence of
 indexes: as you saw in Chapter
 3, the relation of indexes to the physical order of rows in the
 table can make a significant difference in the number of pages to
 visit. Other implementation issues that I am going to discuss in Chapter 5 play an important part, too:
 depending on how data is physically stored, the same number of rows
 returned may mean that you have to visit massively different numbers
 of data pages. Furthermore, operations that would execute sequentially
 with one access path may be massively parallelized with another one.
 Don’t fall into the row percentage trap.
Important
When we want a lot of data, we don’t necessarily want an
 index.

[*] A good example would be sqlite, a remarkable storage engine
 that allows the management of data inside a file using SQL, but
 that is not a database server.

[*] The optimizer may also sometimes push criteria down into
 the view.

[*] A feature known as skip-scan may
 allow for searching the index.

Chapter 5. Terrain

Understanding Physical Implementation

[...] haben Gegend und Boden eine sehr
 nahe [...] Beziehung zur kriegerischen Tätigkeit, nämlich einen sehr
 entscheidenden Einfluß auf das Gefecht.
[...] Country and ground bear a most intimate [...] relation to
 the business of war, which is their decisive influence on the
 battle.
—Carl von Clausewitz (1780-1831) Vom Kriege, V,
 17

What a program sees as a table is not always
 the plain table it may look like. Sometimes it’s a view, and
 sometimes it really is a table, but with storage parameters that have been
 very carefully established to optimize certain types of operations. In
 this chapter, I explore different ways to arrange the data in a table and
 the operations that those arrangements facilitate.
I should emphasize from the start that the topic of this chapter is
 not disk layout, nor even the relative placement of journal and data
 files. These are the kinds of subjects that usually send system engineers
 and database administrators into mouth-watering paroxysms of delight—but
 no one else. There is much more to database organization than the physical
 dispersion of bytes on permanent storage. It is the actual nature of the
 data that dictates the most important choices.
Both system engineers and database administrators know how much
 storage is used, and they know the various possibilities available in
 terms of data containers, whether very low-level data containers such as
 disk stripes or high-level data containers such as tables. But frequently,
 even database administrators have only a scant knowledge of what lies
 inside those containers. It can sometimes be helpful to choose the terrain
 on which to fight. Just as a general may discuss tactics with the
 engineering corps, so the architect of an application can study with the
 database administrators how best to structure data at the physical level.
 Nevertheless, you may be required to fight your battle on terrain over
 which you have no control or, worse, to use structures that were optimized
 for totally different purposes.
Structural Types

 Even though matters of physical database structure are not
 directly related to the SQL language, the underlying structures of your
 database will certainly influence your tactical use of SQL. The chances
 are that any well-established and working database will fall into one of
 the following structural types :
	The fixed, inflexible model
	There are times when you will have absolutely no choice in
 the matter. You will have to work with the existing database
 structures, no matter how obvious it may be to you that they are
 contributing to the performance difficulties, if they are not
 their actual cause. Whether you are developing new applications,
 or simply trying to improve existing ones, the underlying
 structures are going to control the choices you can make in the
 deployment of your SQL armory. You must try to understand the
 reasoning behind the system and work with it.

	The evolutionary model
	Everything is not always cast in stone, and altering the
 physical layout of data (without modifying the logical model) is
 sometimes an option. Be very aware that there are dangers here and
 that the reluctance of database administrators to make such
 modifications doesn’t stem from laziness. In spite of the risks
 and potential for service interruption attached to such
 operations, many people cling to database reorganization as their
 last hope when facing performance issues. Physical reorganization
 is not in itself the panacea for correcting poor performance. It
 may be quite helpful in some cases, irrelevant elsewhere, and even
 harmful in other cases. It is important to know both what you can
 and cannot expect from such drastic action.

In a sense, if you have to work with a flawed design, neither
 scenario is a particularly attractive option. “Abandon hope, all ye that
 have an incorrect design” might just possibly be overstating the
 situation, but nevertheless I am stressing once again the crucial
 importance of getting the design right at the earliest
 opportunity.
In more than one way, implementation choices are comparable to the
 choice of tires in Formula One motor racing: you have to take a bet on
 the race conditions that you are expecting. The wrong tire choice may
 prove costly, the right one may help you win, but even the best choice
 will not, of itself, assure you of victory.
I won’t discuss SQL constructs in this chapter, nor will I delve
 into the intricacies of specific implementations, which in any case are
 all very much product dependent. However, it is difficult in practice to
 design a reliable architecture without an understanding of all the
 various conditions, good and bad, with or against which the design will
 have to function. Understanding also means sensing how much a particular
 physical implementation can impact performance, for better or for worse.
 This is why I shall try to give you an idea, first of some of the
 practical problems DBMS implementers have had to face to help improve
 the speed of queries and changes to the database (of which more will be
 said in Chapter 9), and second of
 some of the answers they have found. From a practical point of view,
 though, be aware that some of the features presented in this chapter are
 not available with all database systems. Or, if
 they are available, they may require separate licensing.
One last word before we begin. I have tried to establish some
 points of comparison between various commercial products. To that end,
 this chapter presents a number of actual test results. However, it is by
 no means the purpose of this book to organize a beauty contest between
 various database products, especially as the balance may change between
 versions. Similarly, absolute values have no meaning, since they depend
 very strongly on your hardware and the design of the database. This is
 why I have chosen to present only relative values, and why I have also
 chosen (with one exception) to compare variations for only one
 particular DBMS.

The Conflicting Goals

 There are often two conflicting goals when trying to
 optimize the physical layout of data for a system that expects a large
 number of active users, some of them reading and others writing data.
 One goal is to try to store the data in as compact a way as possible and
 to help queries find it as quickly as possible. The other goal is to try
 to spread the data, so that several processes writing concurrently do
 not impede one another and cause contention and competition for
 resources that cannot be shared.
Even when there is no concurrency involved, there is always some
 tension when designing the physical aspect of a database, between trying
 to make both queries and updates (in the general sense of “changes to
 the data”) as fast as possible. Indexing is an obvious case in point:
 people often index in anticipation of queries using the indexed columns
 as selection criteria. However, as seen in Chapter 3, the cost of maintaining
 indexes is extremely high and inserting into an index is often much more
 expensive than inserting into the underlying table alone.
Contention issues affect any data that has to be stored,
 especially in change-heavy transactional applications (I am using the
 generic term change to mean any insert, delete, and
 update operation). Various storage units and some very low layers of the
 operating system can take care of some contention issues. The files that
 contain the database data may be sliced, mirrored, and spread all over
 the place to ensure data integrity in case of hardware failure, as well
 as to limit contention.
Unfortunately, relying on the operating system alone to deal with
 contention is not enough. The base units of data that a DBMS handles
 (known as pages or blocks depending on the product) are usually, even at the lowest
 layers, atomic from a database perspective, especially as they are
 ultimately all scanned in memory. Even when everything is perfect for
 the systems engineer, there may be pure DBMS performance issues.
To get the best possible response time, we must try to keep the
 number of data pages that have to be accessed by the database engine as
 low as possible. We have two principal means of decreasing the number of
 pages that will have to be accessed in the course of a query:
	Trying to ensure a high data density per page

	Grouping together those pieces of data most likely to be
 required during one retrieval process

However, trying to squeeze the data into as few pages as possible
 may not be the optimum approach where the same page is being written by
 several concurrent processes and perhaps also being read at the same
 time. Where that single data page is the subject of multiple read or
 write attempts, conflict resolution takes on an altogether more complex
 and serious dimension.
Many believe that the structure of a database is the exclusive
 responsibility of the database administrator. In reality, it is
 predominantly but not exclusively the
 responsibility of that very important person. The way in which you
 physically structure your data is extremely dependent on the nature of
 the data and its intended use. For example, partitioning can be a
 valuable aid in optimizing a physical design, but it should never be
 applied in a haphazard way. Because there is such an intimate
 relationship between process requirements and physical design , we often encounter profound conflicts between
 alternative designs for the same data when that data is shared between
 two or more business processes. This is just like the dilemma faced by
 the general on the battlefield, where the benefits of using alternative
 parts of his forces (infantry, cavalry, or artillery) have to be
 balanced against the suitability of the terrain across which he has to
 deploy them. The physical design of tables and indexes is one of those areas where database administrators and
 developers must work together, trying to match the available DBMS
 features in the best possible way against business requirements.
The sections to follow introduce some different strategies and
 show their impact on queries and updates from a single-process
 perspective, which, in practice, is usually the batch program
 perspective.
Important
Reads and writes don’t live in harmony: readers want data
 clustered; and concurrent writers want data scattered.

Considering Indexes as Data Repositories

 Indexes allow us to find quickly the addresses (references to some particular storage in persistent
 memory, typically file identifiers and offsets within the files) of the
 rows that contain a key we are looking for. Once we have an address,
 then it can be translated into a low-level, operating system reference
 which, if we are lucky, will direct us to the true memory address where
 the data is located. Alternatively, the index search will result in some
 input/output operation taking place before we have the data at our
 disposal in memory.
As discussed previously in Chapter
 3, when the value of a key we are looking for refers to a very
 large number of rows, it is often more efficient simply to scan the
 table from the beginning to the end and ignore the indexes. This is why,
 at least in a transactional database, it is useless to index columns
 with a low number of distinct values (i.e., a low
 cardinality) unless one value is highly selective
 and appears frequently in where
 clauses. Other indexes that we can dispose of are single-column indexes
 on columns that already participate in composite indexes as the leading
 column: there is no need whatsoever to index the same column twice in
 these circumstances. The very common tree-structured, or hierarchical,
 index can be efficiently searched even if we do not have the full key
 value, just as long as we have a sufficient number of leading bytes to
 ensure discrimination.
The use of leading bytes rather than the full index key for
 querying an index introduces an interesting type of optimization. If
 there is an index on (c1, c2, c3),
 this index is usable even if we only specify the value of c1. Furthermore, if the key values are not
 compressed, then the index contains all the data held in the (c1, c2, c3) triplets that are present in the
 table. If we specify c1 to get the
 corresponding values of c2, or of
 c2 to find the corresponding c3, we find within the index itself all the
 data we need, without requiring further access to the actual table. For
 example, to take a very simple analogy, it’s exactly as though you were
 looking for William Shakespeare’s year of birth. Submitting the string
 William Shakespeare to any web search engine will
 return information such as you see in Figure 5-1.
[image: Searching the Web for “William Shakespeare”]

Figure 5-1. Searching the Web for “William Shakespeare”

There is no need to visit any of these sites (which may be a
 pity): we have found our answer in the data returned from the search
 engine index itself. The fourth entry tells us that Shakespeare was born
 in 1564.
When an index is sufficiently loaded with information, going to
 the place it points to becomes unnecessary. This very same reasoning is
 at the root of an often used optimization tactic. We can improve the
 speed of a frequently run query by stuffing into an index additional
 columns (one or more) which of themselves have no part to play in the
 actual search criteria, but which crucially hold the data we need to
 answer our query. Thus the data that we require can be retrieved
 entirely from the index, cutting out completely the need to access the
 original source data. Some products such as DB2 are clever enough to let
 us specify that a unique index includes some other
 columns and check uniqueness of only a part of the composite key. The
 same result can be achieved with Oracle, in a somewhat more indirect
 fashion, by using a non-unique index to enforce a uniqueness or primary
 key constraint.
Conversely, there have been cases of batch programs suddenly
 taking much more time to run to completion than previously, following
 what appears to be the most insignificant modification to the query.
 This minor change was the addition of another column to the list of
 columns returned by a select
 statement. Unfortunately, prior to the modification, the entire query
 could be satisfied by reference to the data returned from an index. The
 addition of the new column forced the database to go back to the table,
 resulting in a hugely significant increase in processor activity.
Let’s look in more detail at the contrast between “index only” and
 “index plus table” retrieval performance. Figure 5-2 illustrates the
 performance impact of fetching one additional column absent from the
 index that is used to answer the query for three of the major database
 systems. The table used for the test was the same in all cases, having
 12 columns populated with 250,000 rows. The primary key was defined as a
 three-column composite key, consisting of first an integer column with
 random values uniformly spread between 1 and 5,000, then a string of 8
 to 10 characters, and then finally a datetime column. There is no other index on
 the table other than the unique index that implements the primary key.
 The reference query is fetching the second and third columns in the
 primary key on the basis of a random value of between 1 and 5,000 in the
 first column. The test measures the performance impact of fetching one
 more column—numeric and therefore relatively small—that doesn’t belong
 to the index. The results in Figure
 5-2 are normalized such that the case of fetching two columns
 that are found in the index is always pegged at 100%. The case of having
 to go to the table and fetch an additional column absent from the index
 is then expressed as some percentage less than 100%.
[image: Performance impact of fetching a third column that has to be retrieved from the table]

Figure 5-2. Performance impact of fetching a third column that has to be
 retrieved from the table

Figure 5-2 shows that
 the performance impact of having to go to the table as well as to the
 index isn’t enormous (around 5 or 10%) but nevertheless it is
 noticeable, and it is much more so with some database products than with
 others. As always, the exact numbers may vary with circumstances, and
 the impact can be much more severe if the table access requires
 additional physical I/O operations, which isn’t the case here.
Pushing to the extreme the principle of storing as much data as
 possible in the indexes, some database management systems, such as
 Oracle, allow you to store all of a table’s data into an index built on
 the primary key, thus getting rid of the table structure altogether.
 This approach saves storage and may save time. The table
 is the index, and is known as an
 index-organized table (I0T) as opposed to the
 regular heap structure.
After the discussion in Chapter
 3 about the cost penalty of index insertion, you might expect
 insertions into an index-organized table to be less costly than applying
 insertions to a table with no other index than the primary key
 enforcement index. In fact, in some circumstances the opposite is true,
 as you can see from Figure
 5-3. It compares insertion rates for a regular table against
 those for an IOT. The tests used a total of four tables. Two table
 patterns with the same column definitions were created, once as a
 regular heap table, and once as an IOT. The first table pattern was a
 small table consisting of the primary key columns plus one additional
 column, and the second pattern a table consisting of the primary key
 columns plus nine other columns, all numeric. The (compound) primary key
 in every table was defined as a number column, a 10-character string,
 and a timestamp. For each case, two tests were performed. In the first
 test, the primary key was subjected to the insertion of randomly ordered
 primary key values. The second test involved the insertion into the
 leading primary key column of an increasing, ordered sequence of
 numbers.
Where the table holds few columns other than the ones that define
 the primary key, it is indeed faster to insert into an IOT. However, if
 the table has even a moderate number of columns, all those columns that
 don’t pertain to the primary key also have to be stored in the index
 structure (sometimes to an overflow area). Since the table is the index,
 much more information is stored there than would otherwise be the case.
 Chapter 3 has also shown that
 inserting into an index is intrinsically more costly than inserting into
 a regular table. The byte-shuffling cost associated with inserting more
 data into a more complicated structure can lead to a severe performance
 penalty, unless the rows are inserted in the same or near-the-same order
 as the primary key index. The penalty is even worse with long character
 strings. In many cases the additional cost of insertion outweighs the
 benefit of not having to go to the table when fetching data through the
 primary key index.[*]
[image: Relative cost of inserting into an Oracle index-organized table compared to a regular (heap-organized) table]

Figure 5-3. Relative cost of inserting into an Oracle index-organized table
 compared to a regular (heap-organized) table

There are, however, some other potential benefits linked to the
 strong internal ordering of indexes, as you shall see next.
Important
Some queries can be answered by retrieving only the index
 data.

Forcing Row Ordering

 There is another aspect to an index-organized table than
 just finding all required data in the index itself without requiring an
 additional access to the table. Because IOTs, being indexes, are, first
 and foremost, strongly ordered structures, their rows are internally
 ordered. Although the notion of order is totally foreign to the
 relational theory, from a practical point of view whenever a query
 refers to a range of values, it helps to find them together instead of
 having to gather data scattered all over the table. The most common
 example of this sort of application is range searching on time series
 data, when you are looking for events that occurred between two
 particular dates.
Most database systems manage to force such an ordering of rows by
 assigning to an index the role of defining the order of rows in the
 table. SQL Server and Sybase call such an index a clustered
 index . DB2 calls it a clustering index , and it has much the same effect in practice as an
 Oracle IOT. Some queries benefit greatly from this type of organization.
 But similar to index organized tables, updates to columns pertaining to
 the index that defines the order are obviously more costly because they
 entail a physical movement of the data to a new position corresponding
 to the “rank” of the new values. The ordering of rows inevitably favors
 one type of range-scan query at the expense of range scans on
 alternative criteria.
As with IOTs that are defined by the primary key, it is safer to
 use the primary key index as the clustering index, since primary keys
 are never updated (and if your application needs to update your primary
 key, there is something very seriously wrong indeed with your design,
 and it won’t take long before there is something seriously wrong with
 the integrity of your data). In contrast to IOTs, an index other than
 the one that enforces the primary key constraint can be chosen as the
 clustering index. But remember that any ordering unduly favors some
 processes at the expense of others. The primary key, if it is a natural
 key, has a logical significance; the associated index is more equal than
 all the other indexes that may be defined on the table, even unique
 ones. If some columns must be given some particular prominence through
 the physical implementation, these are the ones.
Figure 5-4 illustrates
 the kind of differences you may expect between clustered and
 non-clustered index performance in practice. If we take the same table
 as was used for the index-organized table in Figure 5-3’s example (a
 three-column primary key plus nine numeric columns), and if we insert
 rows in a totally random way, the cost of insertion into a table where
 the primary key index is clustered is quite high, since tests show that
 our insertion rate is about half the insertion rate obtained with a
 non-clustered primary key. But when we run a range scan test on about
 50,000 rows, this clustered index provides really excellent performance.
 In this particular case, the clustered index allows us to outperform the
 non-clustered approach by a factor of 20. We should, of course, see no
 difference when fetching a single row.
A structural optimization, such as a clustered index or an IOT,
 necessarily has some drawbacks. For one thing, such structures apply
 some strong, tree-based, and therefore hierarchical ordering to tables.
 This approach resurrects many of the flaws that saw hierarchical
 databases replaced by relational databases in the corporate world. Any
 hierarchical structure favors one vision of the data and one access path
 over all the others. One particular access path will be better than
 anything you could get with a non-clustered table, but most other access
 paths are likely to be significantly worse. Updates may prove more
 costly. The initial tidy disposition of the data inside the database
 files may deteriorate faster at the physical level, due to chaining,
 overflow pages, and similar constructs, which take a heavy toll on
 performance. Clustered structures are excellent in
[image: How clustered indexes perform]

Figure 5-4. How clustered indexes perform

some cases, boosting performance by an impressive factor. But they
 always need to be carefully tested, because there is a high probability
 that they will make many other processes run slower. One must judge
 their suitability while looking at the global picture—and not on the
 basis of one particular query.
Important
Range scanning on clustered data can give impressive
 performance, but other queries will suffer as a consequence.

Automatically Grouping Data

 You have seen that finding all the rows together when
 doing a range scan can be highly beneficial to performance. There are,
 actually, other means to achieve a grouping of data than the somewhat
 constraining use of clustering indexes or index-organized tables. All
 database management systems let us partition tables
 and indexes—an application of the old principle of divide and
 rule. A large table may be split into more manageable chunks.
 Moreover, in terms of process architecture, partitioning allows an increased concurrency and parallelism, thus
 leading to more scalable architectures, as you
 shall see in Chapters 9 and 10.
First of all, beware that this very word,
 partition, has a different meaning depending on the
 DBMS under discussion, sometimes even depending on the version of the
 DBMS. There was a time, long ago, when what is now known as an Oracle
 tablespace used to be referred to as a
 partition.
Round-Robin Partitioning

In some cases, partitioning is a totally internal,
 non-data-driven mechanism. We arbitrarily define a number of partitions
 as distinct areas of disk storage, usually closely linked to the
 number of devices on which we want the data to be stored. One table
 may have one or more partitions assigned to it. When data is inserted,
 it is loaded to each partition according to some arbitrary method, in
 a round-robin fashion, so as to balance the load on disk I/O induced
 by the insertions.
Incidentally, the scattering of data across several partitions
 may very well assist subsequent random searches. This mechanism is
 quite comparable to file striping over disk arrays. In fact, if your
 files are striped, the benefit of such a partitioning becomes slight
 and sometimes quite negligible. Round-robin scattering can be thought
 of as a mechanism designed only to arbitrarily spread data
 irrespective of logical data associations, rather than to regroup data
 on the basis of those natural associations. However, with some
 products, Sybase being one of them, one transaction will always write
 to the same partition, thus achieving some business-process-related
 grouping of data.

Data-Driven Partitioning

There is, however, a much more interesting type of
 partitioning known as data-driven partitioning
 . With data-driven partitioning, it is the values,
 found in one or several columns, that defines the partition into which
 each row is inserted. As always, the more the DBMS knows about the
 data and how it is stored, the better.
Most really large tables are large because they contain
 historical data. However, our interest in a particular news event
 quickly wanes as new and fresher events crowd in to demand our
 attention, so it is a safe assumption to make that the
 most-often-queried subset of historical data is the most recent one.
 It is therefore quite natural to try to partition data by date,
 separating the wheat from the chaff, the active data from the dormant
 data.
For instance, a manual way to partition by date is to split a
 large figures table (containing
 data for the last twelve months) into twelve separate tables, one for
 each month, namely jan_figures,
 feb_figures...all the way to
 dec_figures. To ensure that a
 global vision of the year is still available for any queries that
 require it, we just have to define figures as the union of those twelve tables. Such a
 union is often given some kind of
 official endorsement at the database level as a partitioned
 view , or (in MySQL) a merge table
 . During the month of March, we’ll insert into the
 table mar_figures. Then we’ll
 switch to apr_figures for the
 following month. The use of a view as a blanket object over a set of
 similarly structured tables may appear an attractive idea, but it has
 drawbacks:
	The capital sin is that such a view builds in a fundamental
 design flaw. We know that the underlying tables are logically
 related, but we have no way to inform the DBMS of their
 relationships except, in some cases, via the rather weak
 definition of the partitioned view. Such a multi-table design
 prevents us from correctly defining integrity constraints. We have
 no easy way to enforce uniqueness properly across all the
 underlying tables, and as a matter of consequence, we would have
 to build multiple foreign keys referencing this “set” of tables, a
 situation that becomes utterly difficult and unnatural. All we can
 do in terms of integrity is to add a check constraint on the column that
 determines partitioning. For example, we could add a check constraint to sales_date, to ensure that sales_date in the jun_sales table cannot fall outside the
 June 1 to June 30 range.

	Without specific support for partitioned views in your DBMS,
 it is rather inconvenient to code around such a set of tables,
 because every month we must insert into a different underlying
 table. This means that insert
 statements must be dynamically built to accommodate varying table
 names. The effect of dynamic statements is usually to
 significantly increase the complexity of programs. In our case,
 for instance, a program would have to get the date, either the
 current one or some input value, check it, determine the name of
 the table corresponding to that date, and build up a suitable SQL
 statement. However, the situation is much better with partitioned
 views, because insertions can then usually be performed directly
 through the view, and the DBMS takes care of where to insert the
 rows.
In all cases, however, as a direct consequence of our flawed
 design, it is quite likely that after some unfortunate and
 incoherent insertions we shall be asked to code referential
 integrity checks, thus further compounding a poor design with an
 increased development load—both for the developers and for the
 machine that runs the code. This will move the burden of integrity
 checking from the DBMS kernel to, in the best of cases, code in
 triggers and stored procedures and, in the worst of cases, to the
 application program.

	There is a performance impact on queries when using blanket
 views. If we are interested in the figures for a given month, we
 can query a single table. If we are interested in the figures from
 the past 30 days, we will most often need to query two tables. For
 queries, then, the simplest and more maintainable way to code is
 to query the view rather than the underlying tables. If we have a
 partitioned view and if the column that rules the placement of rows
 belongs to our set of criteria, the DBMS optimizer will be able to
 limit the scope of our query to the proper subset of tables. If
 not, our query will necessarily be more complicated than it would
 be against a regular table, especially if it is a complex query
 involving subqueries or aggregates. The complexity of the query
 will continue to increase as more tables become involved in the
 union. The overhead of querying
 a large union view over
 directly querying a single table will quickly show in repeatedly
 executed statements.

Historically, the first step taken by most database management
 systems towards partitioning has been the support of partitioned
 views. The next logical step has been support for true data-driven
 partitioning. With true partitioning , we have a single table at the logical level, with a
 true primary key able to be referenced by other tables. In addition,
 we have one or several columns that are defined as the
 partition key ; their values are used to determine into which
 partition a row is inserted. We have all the advantages of partitioned
 views, transparency when operating on the table,
 and we can push back to the DBMS engine the task
 of protecting the integrity of the data, which is one of the primary
 functions of the DBMS. The kernel knows about partitioning, and the
 optimizer will know how to exploit such a physical structure, by
 either limiting operations to a small number of partitions (something
 known as partition pruning), or by operating on several partitions in
 parallel.
The exact way partitioning is implemented and the number of
 available options is product-dependent. There are several different
 ways to partition data, which may be more or less appropriate to
 particular situations:
	Hash-partitioning
	Spreads data by determining the partition as the result of
 a computation on the partition key. It’s a totally arbitrary
 placement based entirely on an arithmetic computation, and it
 takes no account at all of the distribution of data values.
 Hash-partitioning does, however, ensure very fast access to rows
 for any specific value of the partition key. It is useless for
 range searching, because the hash function transforms
 consecutive key values into non-consecutive hash values, and
 it’s these hash values that translate to physical
 address.
Note
DB2 provides an additional mechanism called
 range-clustering , which, although not the same as partitioning,
 nevertheless uses the data from the key to determine physical
 location. It does this through a mechanism that, in contrast
 to hashing, preserves the order of data items. We then gain on
 both counts, with efficient specific accesses as well as
 efficient range scans.

	Range-partitioning
	Seeks to gather data into discrete groups according to
 continuous data ranges. It’s ideally suited for dealing with
 historical data. Range-partitioning is closest to the concept of
 partitioned views that we discussed earlier: a partition is
 defined as being dedicated to the storage of values falling
 within a certain range. An else partition is set up for catching
 everything that might slip through the net. Although the most
 common use of range partitioning is to partition by range of
 temporal values, whether it is hours or years or anything
 between, this type of partitioning is in no way restricted to a
 particular type of data. A multivolume encyclopedia in which the
 articles in each volume would indeed be within the alphabetical
 boundaries of the volume but otherwise in no particular order
 provides a good example of range partitioning.

	List-partitioning
	Is the most manual type of partitioning and may be
 suitable for tailor-made solutions. Its name says it all: you
 explicitly specify that rows containing a list of the possible
 values for the partition key (usually just one column) will be
 assigned to a particular partition. List-partitioning can be
 useful when the distribution of values is anything but
 uniform.

The partitioning process can sometimes be repeated with the
 creation of subpartitions. A subpartition is merely a partition within
 a partition, giving you the ability to partition against a second
 dimension by creating, for instance, hash-partitions within a
 range-partition.
Important
Data partitioning is most valuable when it is based on the
 data values themselves.

The Double-Edged Sword of Partitioning

 Despite the fact that partitioning spreads data from a
 table over multiple, somewhat independent partitions, data-driven
 partitioning is not a panacea for resolving concurrency problems. For
 example, we might partition a table by date, having one partition per
 week of activity. Doing so is an efficient way to spread data for one
 year over 52 logically distinct areas. The problem is that during any
 given week everybody will rush to the same partition to insert new rows.
 Worse, if our partitioning key is the current system date and time, all
 concurrent sessions will be directed towards the very same data block
 (unless some structural implementation tricks have been introduced, such
 as maintaining several lists of pages or blocks where we can insert). As
 a result, we may have some very awkward memory contention. Our large
 table will become a predominantly cold area, with a very hot spot
 corresponding to most current data. Such partitioning is obviously less
 than ideal when many processes are inserting concurrently.
Note
If all data is inserted through a single process, which is
 sometimes the case in data-warehousing environments, then we won’t
 have a hot spot to contend with, and our 52-week partitioning scheme
 won’t lead to concurrency problems.

On the other hand, let’s assume that we choose to partition
 according to the geographical origin of a purchase order (we may have to
 carefully organize our partitioning if our products are more popular in
 some areas and suffer from heavier competition elsewhere). At any given
 moment, since sales are likely to come from nowhere in particular, our
 inserts will be more or less randomly spread over all our partitions.
 The performance impact from our partitioning will be quite noticeable
 when we are running geographical reports. Of course, because we have
 partitioned on spatial criteria, time-based reports will be less
 efficiently generated than if we had partitioned on time. Nevertheless,
 even time-based queries may, to some extent, benefit from partitioning
 since it is quite likely that on a multiprocessor box the various
 partitions will be searched in parallel and the subsequent results
 merged.
There are therefore two sides to partitioning. On the one hand, it
 is an excellent way to cluster data according to the partitioning key so
 as to achieve faster data retrieval. On the other hand, it is a
 no-less-excellent way to spread data during concurrent inserts so as to
 avoid hot spots in the table. These two objectives can work in
 opposition to one another, so the very first thing to consider when
 partitioning is to identify the major problem, and partition against
 that. But it is important to check that the gain on one side is not
 offset by the loss on the other. The ideal case is when the clustering
 of data for selects goes hand in hand
 with suitably spread inserts, but
 this is unfortunately not the most common situation.
Important
Data partitioning can be used to scatter or cluster your data:
 it all depends on your requirements.

Partitioning and Data Distribution

 You may be tempted to believe that if we have a very large
 table and want to avoid contention when many sessions are simultaneously
 writing to the database, then we are necessarily better off partitioning
 the data in one way or another. This is not always true.
Suppose that we have a large table storing the details of orders
 passed by our customers. If, as sometimes happens, a single customer
 represents the bulk of our activity, partitioning on the customer
 identifier is not going to help us very much. We can very roughly divide
 our queries into two families: queries relating to our big customer and
 queries relating to the other, smaller customers. When we query the data
 relating to one small customer, an index on the customer identifier will
 be very selective and therefore efficient, without any compelling need
 for partitioning. A clever optimizer fed with suitable statistics about
 the distribution of keys will be able to detect the skewness and use the
 index. There will be little benefit to having those small customers
 stored into smallish partitions next to the big partition holding our
 main customer.
Conversely, when querying the data attached to our major customer,
 the very same clever optimizer will understand that scanning the table
 is by far the most efficient way of proceeding. In that case, fully
 scanning a partition that comprises, for example, 80% of the total
 volume will not be much faster than doing a full table scan. The end
 users will hardly notice the performance advantage, whereas the
 purchasing department will most certainly notice the extra cost of the
 separately priced partitioning option.
Important
The biggest benefits to queries of table partitioning are
 obtained when data is uniformly spread in respect to the partitioning
 key.

The Best Way to Partition Data

 Never forget that what dictates the choice of a
 nonstandard storage option such as partitioning is the global
 improvement of business operations. It may mean improving a business
 process that is perceived as being of paramount importance to the
 detriment of some other processes. For instance, it makes sense to
 optimize transactional processing that takes place during business hours
 at the expense of a nightly batch job that has ample time to complete.
 The opposite may also be true, and we may decide that we can afford to
 have very slightly less responsive transactions if it allows us to
 minimize a critical upload time during which data is unavailable to
 users. It’s a matter of balance.
In general, you should avoid unduly favoring one process over
 another that needs to be run under similar conditions. In this regard,
 any type of storage that positions data at different locations based on
 the data value (for example both clustering indexes as well as
 partitioning) are very costly when that value is updated. What would
 have previously been an in situ update in a regular
 table, requiring hardly more than perhaps changing and shifting a few
 bytes in the table at an invariant physical address, becomes a delete on one part of the disk, followed by an
 insert somewhere else, with all the
 maintenance operations usually associated with indexes for this type of
 operation.
Having to move data when we update partition keys seems, on the
 surface, to be a situation best avoided. Strangely, however,
 partitioning on a key that is updated may sometimes be preferable to
 partitioning on a key that is immutable once it has been inserted. For
 example, suppose that we have a table being used as a service queue.
 Some process inserts service requests into this table that are of
 different types (say type T1 to type
 Tn). New service requests are initially set to
 status W, meaning “waiting to be processed.” Server
 processes S1 to Sp
 regularly poll the table for requests with the W
 status, change the status of those requests to P
 (meaning “being processed”), and then, as each request is completed its
 status is set to D for “done.”
Let’s further suppose that we have as many server processes as we
 have request types, and that each server process is dedicated to
 handling a particular type of request. Figure 5-5 shows the service queue
 as well as the processes. Of course, since we cannot let the table fill
 with “done” requests, there must be some garbage-collecting process, not
 shown, that removes processed requests after a suitable delay.
[image: A service queue]

Figure 5-5. A service queue

Each server process regularly executes a select (actually, a select ... for update) query with two
 criteria, the type, which depends on the server, and a condition:
 and status = 'W'
Let’s consider alternative ways of partitioning the service queue
 table. One way to partition the table, and possibly the most obvious, is
 to partition by request type. There is a big advantage here should any
 server process crash or fall behind in one way or another. The queue
 will lengthen for that process until it finally catches up, but the
 interruption to the processing of that queue will have no influence on
 the other processes.
Another advantage of partitioning by request type is that we avoid having requests of any one
 type swamp the system. Without partitioning, the polling processes scan
 a queue that under normal circumstances contains very few rows of
 interest. If we have a common waiting line and all of a sudden we have a
 large number of requests of one type and status,
 all the processes will have more requests to
 inspect and therefore each will be slowed down. If we partition by type,
 we establish a watertight wall between the processing of different
 types.
But there is another possible way to partition our service queue
 table, and that is by status. The downside is obvious: any status change
 will make a request migrate from one partition to the next. Can there be
 any advantage to such migration? Actually, there may indeed be benefit
 in this approach. Everything in partition W is
 ready and waiting to be processed. So there is no need to scan over
 requests being processed by another server or requests that have already
 been processed. Therefore, the cost of polling may be significantly
 reduced. Another advantage is that garbage collection will operate on a
 separate partition, and will not disturb the servers.
We cannot say definitively that “partitioning must be by type” or
 “partitioning must be by status.” It depends on how many servers we
 have, their polling frequency, the relative rate at which data arrives,
 the processing time for each type of request, and how often we remove
 processed requests, and so on. We must carefully test various hypotheses
 and consider the overall picture. But it is sometimes more efficient for
 the overall system to sacrifice outright performance for one particular
 operation, if by doing so other, more frequently running processes are
 able to obtain a net advantage, thus benefiting the global business
 operations.
Important
There may be several ways to partition tables, and the most
 obvious is not always the most efficient. Always consider the global
 picture.

Pre-Joining Tables

 We have seen that physically grouping rows together is of
 most benefit when performing range scans, where we are obviously
 interested in a succession of logically adjacent rows. But our
 discussion so far has been with regard to retrieving data from only one
 table. Unless the database design is very, very, very bad, most queries
 will involve far more than one table. It may therefore seem somewhat
 questionable if we group all the data from one table into one physical
 location, only to have to complete the retrieval by visiting several
 randomly scattered locations for data from a second and subsequent
 tables. We need some method to group data from at least two tables into
 the same physical location on disk.
The answer lies in pre-joined tables, a technique that is
 supported by some database systems. Pre-joining is not the same as
 summary tables or materialized
 views, which are themselves nothing other than redundant
 data, pre-digested results that are updated more or less
 automatically.
Pre-joined tables are tables that are physically stored together,
 based on some criterion that will usually be the join condition. (Oracle
 calls such a set of pre-joined tables a cluster,
 which has nothing to do with either index clustering, as defined earlier
 in this chapter, nor with the MySQL clusters of databases, which are
 multiple servers accessing the same set of tables.)
When tables are pre-joined, the basic unit of storage (a page or a
 block), normally devoted to the data from a single table, holds data
 from two or more tables, brought together on the basis of a common join
 key. This arrangement may be very efficient for one specific join. But
 it often proves to be a disaster for everything else. Here’s a review of
 some of the disadvantages of pre-joining tables:
	Once the data from two or more tables starts to be shared
 within one page (or block), the amount of data from one table that
 can be held in one database page obviously falls, as the page is now
 sharing its fixed space between two or more tables. Consequently,
 there is a net increase in the number of pages needed to hold all
 the data from that one table. More I/O is required than previously
 if a full table scan has to be performed.

	Not only is data being shared across additional pages, but the
 effective size of those pages has been reduced from what was
 obviously judged to be the optimum at database creation time, and so
 overflow and chaining start to become significant problems. When
 this happens, the number of successive accesses required to reach
 the actual data also increases.

	Moreover, as anybody who has ever shared an apartment will
 know, one person often expands space occupancy at the expense of the
 other. Database tables are just the same! If you want to address
 this problem by allocating strictly identical storage to each table
 per page in the cluster, the result is frequently storage waste and
 the use of even more pages.

This particular type of storage should be used extremely sparingly
 to solve very specific issues, and then only by database administrators.
 Developers should forget about this technique.
Important
Pre-joining tables is a very specialized tactic to facilitate
 queries, but is often done to the detriment of just about every other
 database activity.

Holy Simplicity

 It is reasonable and safe to assume that any storage
 option that is not the default one, however attractive it may look, can
 introduce a degree of complexity out of all proportion to the possible
 gains that may (or may not) be achieved. In the worst case, a poorly
 chosen storage option can dramatically degrade performance. Military
 history is full of impregnable fortresses built in completely the wrong
 places that failed to fill any useful purpose, and of many a Great Wall
 that never prevented any invasion because the enemy, a bad sport, failed
 to behave as planned. All organizations undergo changes, such as
 divisions and mergers. Business plans and processes may change, too.
 Careful plans may have to be scrapped and rebuilt from scratch.
The trouble with structuring data in a particular way is that it
 is often done with a particular type of process in mind. One of the
 beauties of the relational model is its flexibility. By strongly
 structuring your data at the physical level, you may sacrifice, in a
 somewhat hidden way, some of this flexibility. Of course, some
 structures are less constraining than others, and data partitioning is
 almost unavoidable with enormous databases. But always test very
 carefully and keep in mind that changing the physical structure of a big
 database because it was poorly done initially can take days, if not
 weeks, to complete.
Important
The physical storage organization that works for us today may
 work against us tomorrow.

[*] A reviewer remarked that implementation reasons that are
 beyond the scope of this book also make other
 indexes than the primary key index less efficient on an IOT than
 they would be on a regular table.

Chapter 6. The Nine Situations

Recognizing Classic SQL Patterns

Je pense que pour conserver la clarté dans
 le récit d’une action de guerre, il faut se borner à...ne raconter que
 les faits principaux et décisifs du combat.
To preserve clarity in relating a military action, I think one
 ought to be content with...reporting only the facts that affected the
 decision.
—Général Baron de Marbot (1782-1854) Mémoires, Book
 I, xxvi

Any SQL statement that we execute has to
 examine some amount of data before identifying a result set
 that must be either returned or changed. The way that we have to attack
 that data depends on the circumstances and conditions under which we have
 to fight the battle. As I discuss in Chapter 4, our attack will depend on the
 amount of data from which we retrieve our result set and on our forces
 (the filtering criteria), together with the volume of data to be
 retrieved.
Any large, complicated query can be divided into a succession of
 simpler steps, some of which can be executed in parallel, rather like a
 complex battle is often the combination of multiple engagements between
 various distinct enemy units. The outcome of these different fights may be
 quite variable. But what matters is the final, overall result.
When we come down to the simpler steps, even when we do not reach a
 level of detail as small as the individual steps in the execution plan of
 a query, the number of possibilities is not much greater than the
 individual moves of pieces in a chess game. But as in a chess game,
 combinations can indeed be very complicated.
This chapter examines common situations encountered when accessing
 data in a properly normalized database. Although I refer to queries in
 this chapter, these example situations apply to updates or deletes as
 well, as soon as a where clause is
 specified; data must be retrieved before being changed. When filtering
 data, whether it is for a simple query or to update or delete some rows,
 the following are the most typical situations—I call them the
 nine situations —that you will encounter:
	Small result set from a few tables with specific criteria
 applied to those tables

	Small result set based on criteria applied to tables other than
 the data source tables

	Small result set based on the intersection of several broad
 criteria

	Small result set from one table, determined by broad selection
 criteria applied to two or more additional tables

	Large result set

	Result set obtained by self-joining on one table

	Result set obtained on the basis of aggregate function(s)

	Result set obtained by simple searching or by range searching on
 dates

	Result set predicated on the absence of other data

This chapter deals with each of these situations in turn and
 illustrates them with either simple, specific examples or with more
 complex real-life examples collected from different programs. Real-life
 examples are not always basic, textbook, one- or two-table affairs. But
 the overall pattern is usually fairly recognizable.
As a general rule, what we require when executing a query is the
 filtering out of any data that does not belong in our final result set as
 soon as possible; this means that we must apply the most efficient of our
 search criteria as soon as possible. Deciding which criterion to apply
 first is normally the job of the optimizer. But, as I discuss in Chapter 4, the optimizer must take into
 account a number of variable conditions, from the physical implementation
 of tables to the manner in which we have written a query. Optimizers do
 not always “get it right,” and there are things we can do to facilitate
 performance in each of our nine situations.
Small Result Set, Direct Specific Criteria

 The typical online transaction-processing query is a query
 returning a small result set from a few tables and with very specific
 criteria applied to those tables. When we are looking for a few rows
 that match a selective combination of conditions, our first priority is
 to pay attention to indexes.
The trivial case of a single table or even a join between two
 tables that returns few rows presents no more difficulty than ensuring
 that the query uses the proper index. However, when many tables are
 joined together, and we have input criteria referring to, for instance,
 two distinct tables TA and TB, then we can either work our way from
 TA to TB or from TB to TA.
 The choice depends on how fast we can get rid of the rows we do not
 want. If statistics reflect the contents of tables with enough accuracy,
 the optimizer should, hopefully, be able to make the proper decision as
 to the join order.
When writing a query to return few rows, and with direct, specific
 criteria, we must identify the criteria that are most efficient at
 filtering the rows; if some criteria are highly critical, before
 anything else, we must make sure that the columns corresponding to those
 criteria are indexed and that the indexes can be used by the
 query.
Index Usability

You’ve already seen in Chapter
 3 that whenever a function is applied to an indexed column, a
 regular index cannot be used. Instead, you would have to create a
 functional index, which means that you index the result of the
 function applied to the column instead of indexing the column.
Remember too that you don’t have to explicitly invoke a function
 to see a function applied; if you compare a column of a given type to
 a column or literal value of a different type, the DBMS may perform an
 implicit type conversion (an implicit call to a conversion function),
 with the performance hit that one can expect.
Once we are certain that there are indexes on our critical
 search criteria and that our query is written in such a way that it
 can take full advantage of them, we must distinguish between unique
 index fetches of a single row, and other fetches—non-unique index or a
 range scan of a unique index.

Query Efficiency and Index Usage

Unique indexes are excellent when joining tables. However, when
 the input to a query is a primary key and the value of the primary key
 is not a primitive input to the program, then you may have a poorly designed
 program on your hands.
What I call primitive input is data that
 has been fed into the program, either typed in by a user or read from
 a file. If the primary key value has been derived from some primitive
 input and is itself the result of a query, the odds are very high that
 there is a massive design flaw in the program. Because this situation
 often means that the output of one query is used as the input to
 another one, you should check whether the two queries can be
 combined.
Important
Excellent queries don’t necessarily come from excellent
 programs.

Data Dispersion

When indexes are not unique, or when a condition on a
 unique index is expressed as a range, for instance:
 where customer_id between ... and ...
or:
 where supplier_name like 'SOMENAME%'
the DBMS must perform a range scan. Rows associated with a given
 key may be spread all over the table being queried, and this is
 something that a cost-based optimizer often understands. There are
 therefore cases when an index range scan would require the DBMS kernel
 to fetch, one by one, a large number of table data pages, each with
 very few rows of relevance to the query, and when the optimizer
 decides that the DBMS kernel is better off scanning the table and
 ignoring the index.
You saw in Chapter 5 that
 many database systems offer facilities such as table
 partitions or clustered indexes to direct the storage of data that we would like to
 retrieve together. But the mere nature of data insertion processes may
 well lead to clumping of data. When we associate a timestamp with each
 row and do mostly inserts into a table, the chances are that most rows
 will be inserted next to one another (unless we have taken special
 measures to limit contention, as I discuss in Chapter 9). The physical proximity of
 the inserted rows is not an absolute necessity and, in fact, the
 notion of order as such is totally foreign to relational algebra. But,
 in practice, it is what may happen. Therefore, when we perform a range
 scan on the index on the timestamp column to look for index entries
 close together in time, the chances are that the rows in question will
 be close together too. Of course, this will be even truer if we have
 tweaked the storage so as to get such a result.
Now, if the value of a key bears no relation to any peculiar
 circumstance of insertion nor to any hidden storage trick, the various
 rows associated with a key value or with a range of key values can be
 physically placed anywhere on disk. The keys in the index are always,
 by construction, held in sorted order. But the associated rows will be
 randomly located in the table. In practice, we shall have to visit
 many more blocks to answer a query involving such an index than would
 be the case were the table partitioned or the index clustered. We can
 have, therefore, two indexes on the same table, with strictly
 identical degrees of selectivity, one of which gives excellent
 results, and the other one, significantly worse results, a situation
 that was mentioned in Chapter 3
 and that it is now time to prove.
To illustrate this case I have created a 1,000,000-row table
 with three columns c1, c2, and c3, c1
 being filled with a sequence number (1 to 1,000,000), c2 with all different random numbers in the
 range 1 to 2,000,000, and c3 with
 random values that can be, and usually are, duplicated. On face value,
 and from a logical point of view, c1 and c2
 are both unique and therefore have identical selectivity. In the case
 of the index on column c1, the
 order of the rows in the table matches the order in the index. In a
 real case, some activity against the table might lead to “holes” left
 by deletions and subsequently filled with out-of-order records due to
 new insertions. By contrast, the order of the rows in the table bears
 no relation to the ordering of the keys in the index on c2.
When we fetch c3, based on a
 range condition of the type:
 where column_name between some_value and some_value + 10
it makes a significant difference whether we use c1 and its associated index (the
 ordered index, where keys are ordered as the rows
 in the table) or c2 and its
 associated index (the random index), as you can
 see in Figure 6-1. Don’t
 forget that we have such a difference because additional accesses to
 the table are required in order to fetch the value of c3; there would be no difference if we had
 two composite indexes, on (c1, c3)
 and (c2, c3), because then we could
 return everything from an index in which the keys are ordered.
The type of difference illustrated in Figure 6-1 also explains why
 sometimes performance can degrade over time, especially when a new
 system is put into production with a considerable amount of data
 coming from a legacy system. It may happen that the initial data
 loading imposes some physical ordering that favors particular queries.
 If a few months of regular activity subsequently destroys this order,
 we may suffer over this period a mysterious 30–40% degradation of
 performance.
[image: Difference of performance when the order in the index matches the order of the rows in the table]

Figure 6-1. Difference of performance when the order in the index matches
 the order of the rows in the table

It should be clear by now that the solution “can’t the DBAs
 reorganize the database from time to time?” is indeed a fudge, not a
 solution. Database reorganizations were once quite in vogue.
 Ever-increasing volumes, 99.9999% uptime requirements and the like
 have made them, for the most part, an administrative task of the past.
 If the physical implementation of rows really is crucial for a
 critical process, then consider one of the self-organizing structures
 discussed Chapter 5, such as
 clustered indexes or index-organized tables. But keep in mind that
 what favors one type of query sometimes disadvantages another type of
 query and that we cannot win on all fronts.
Important
Performance variation between comparable indexes may be due to
 physical data dispersion.

Criterion Indexability

Understand that the proper indexing of specific criteria
 is an essential component of the “small set, direct specific criteria”
 situation. We can have cases when the result set is small and some
 criteria may indeed be quite selective, but are of a nature that isn’t
 suitable for indexing: the following real-life example of a search for
 differences among different amounts in an accounting program is
 particularly illustrative of a very selective criterion, yet unfit for
 indexing.
In the example to follow, a table named glreport contains a column named amount_diff that ought to contain zeroes.
 The purpose of the query is to track accounting errors, and identify
 where amount_diff isn’t zero.
 Directly mapping ledgers to tables and applying a logic that dates
 back to a time when these ledgers where inked with a quill is rather
 questionable when using a modern DBMS, but unfortunately one
 encounters questionable databases on a routine basis. Irrespective of
 the quality of the design, a column such as amount_diff is typical of a column that
 should not be indexed: ideally amount_diff should contain nothing but
 zeroes, and furthermore, it is obviously the result of a
 denormalization and the object of numerous computations. Maintaining
 an index on a column that is subjected to computations is even
 costlier than maintaining an index on a static column, since a
 modified key will “move” inside the index, causing the index to
 undergo far more updates than from the simple insertion or deletion of
 nodes.
Important
All specific criteria are not equally suitable for indexing.
 In particular, columns that are frequently updated increase
 maintenance costs.

Returning to the example, a developer came to me one day saying
 that he had to optimize the following Oracle query, and he asked for
 some expert advice about the execution plan:
 select
 total.deptnum,
 total.accounting_period,
 total.ledger,
 total.cnt,
 error.err_cnt,
 cpt_error.bad_acct_count
 from
 -- First in-line view
 (select
 deptnum,
 accounting_period,
 ledger,
 count(account) cnt
 from
 glreport
 group by
 deptnum,
 ledger,
 accounting_period) total,
 -- Second in-line view
 (select
 deptnum,
 accounting_period,
 ledger,
 count(account) err_cnt
 from
 glreport
 where
 amount_diff <> 0
 group by
 deptnum,
 ledger,
 accounting_period) error,
 -- Third in-line view
 (select
 deptnum,
 accounting_period,
 ledger,
 count(distinct account) bad_acct_count
 from
 glreport
 where
 amount_diff <> 0
 group by
 deptnum,
 ledger,
 accounting_period
) cpt_error
 where
 total.deptnum = error.deptnum(+) and
 total.accounting_period = error.accounting_period(+) and
 total.ledger = error.ledger(+) and
 total.deptnum = cpt_error.deptnum(+) and
 total.accounting_period = cpt_error.accounting_period(+) and
 total.ledger = cpt_error.ledger(+)
 order by
 total.deptnum,
 total.accounting_period,
 total.ledger
For readers unfamiliar with Oracle-specific syntax, the several
 occurrences of (+) in the outer
 query’s where clause indicate outer
 joins. In other words:
 select whatever
 from ta,
 tb
 where ta.id = tb.id (+)

is equivalent to:
 select whatever
 from ta
 outer join tb
 on tb.id = ta.id

The following SQL*Plus output shows the execution plan for the
 query:
 10:16:57 SQL> set autotrace traceonly
 10:17:02 SQL> /

 37 rows selected.

 Elapsed: 00:30:00.06

 Execution Plan
 --
 0 SELECT STATEMENT Optimizer=CHOOSE
 (Cost=1779554 Card=154 Bytes=16170)
 1 0 MERGE JOIN (OUTER) (Cost=1779554 Card=154 Bytes=16170)
 2 1 MERGE JOIN (OUTER) (Cost=1185645 Card=154 Bytes=10780)
 3 2 VIEW (Cost=591736 Card=154 Bytes=5390)
 4 3 SORT (GROUP BY) (Cost=591736 Card=154 Bytes=3388)
 5 4 TABLE ACCESS (FULL) OF 'GLREPORT'
 (Cost=582346 Card=4370894 Bytes=96159668)
 6 2 SORT (JOIN) (Cost=593910 Card=154 Bytes=5390)
 7 6 VIEW (Cost=593908 Card=154 Bytes=5390)
 8 7 SORT (GROUP BY) (Cost=593908 Card=154 Bytes=4004)
 9 8 TABLE ACCESS (FULL) OF 'GLREPORT'
 (Cost=584519 Card=4370885 Bytes=113643010)
 10 1 SORT (JOIN) (Cost=593910 Card=154 Bytes=5390)
 11 10 VIEW (Cost=593908 Card=154 Bytes=5390)
 12 11 SORT (GROUP BY) (Cost=593908 Card=154 Bytes=5698)
 13 12 TABLE ACCESS (FULL) OF 'GLREPORT'
 (Cost=584519 Card=4370885 Bytes=161722745)

 Statistics
 --
 193 recursive calls
 0 db block gets
 3803355 consistent gets
 3794172 physical reads
 1620 redo size
 2219 bytes sent via SQL*Net to client
 677 bytes received via SQL*Net from client
 4 SQL*Net roundtrips to/from client
 17 sorts (memory)
 0 sorts (disk)
 37 rows processed

I must confess that I didn’t waste too much time on the
 execution plan, since its most striking feature was fairly apparent
 from the text of the query itself: it shows that the table glreport, a tiny 4 to 5 million-row table,
 is accessed three times, once per subquery, and each time through a
 full scan.
Nested queries are often useful when writing complex queries,
 especially when you mentally divide each step, and try to match a
 subquery to every step. But nested queries are not silver bullets, and the preceding example
 provides a striking illustration of how easily they may be
 abused.
The very first inline view in the query computes the number of
 accounts for each department, accounting period, and ledger, and
 represents a full table scan that we cannot avoid. We need to face
 realities; we have to fully scan the table, because we are including
 all rows when we check how many accounts we have. We need to scan the
 table once, but do we absolutely need to access it a second or third
 time?
Important
If a full table scan is required, indexes on the table become
 irrelevant.

What matters is to be able to not only have a very analytic view
 of processing, but also to be able to stand back and consider what we
 are doing in its entirety. The second inline view counts exactly the
 same things as the first one—except that there is a condition on the
 value of amount_diff. Instead of
 counting with the count()
 function, we can, at the same time as we compute the total count, add
 1 if amount_diff is not 0, and 0
 otherwise. This is very easy to write with the Oracle-specific
 decode(u, v, w, x) function or
 using the more standard case when u = v then
 w else x end construct.
The third inline view filters the same rows as the second one;
 however, here we want to count distinct account numbers. This counting
 is a little trickier to merge into the first subquery; the idea is to
 replace the account numbers (which, by the way, are defined as
 varchar2 [*] in the table) by a value which is totally unlikely to
 occur when amount_diff is 0;
 chr(1) (Oracle-speak to mean
 the character corresponding to the ASCII value 1)
 seems to be an excellent choice (I always feel a slight unease at
 using chr(0) with something written
 in C like Oracle, since C terminates all character strings with a
 chr(0)). We can then count how many
 distinct accounts we have and, of course, subtract one to avoid
 counting the dummy chr(1)
 account.
So this is the suggestion that I returned to the
 developer:
 select deptnum,
 accounting_period,
 ledger,
 count(account) nb,
 sum(decode(amount_diff, 0, 0, 1)) err_cnt,
 count(distinct decode(amount_diff, 0, chr(1), account)) - 1
 bad_acct_count
 from
 glreport
 group by
 deptnum,
 ledger,
 accounting_period

My suggestion was reported to be four times as fast as the
 initial query, which came as no real surprise since the three full
 scans had been replaced by a single one.
Note that there is no longer any where clause in the query: we could say that
 the condition on amount_diff has
 “migrated” to both the logic performed by the decode() function inside the select list
 and the aggregation performed by the group
 by clause. The replacement of a filtering condition that
 looked specific with an aggregate demonstrates
 that we are here in another situation, namely a result set obtained on
 the basis of an aggregate function.
Important
In-line queries can simplify a query, but can result in
 excessive and duplicated processing if used without care.

Small Result Set, Indirect Criteria

 A situation that is superficially similar to the previous
 one is when you have a small result set that is based on criteria
 applied to tables other than the data source
 tables. We want data from one table, and yet our conditions apply to
 other, related tables from which we don’t want any data to be returned.
 A typical example is the question of “which customers have ordered a
 particular item” that we amply discussed earlier in Chapter 4. As you saw in Chapter 4, this type of query can be
 expressed in either of two ways:
	As a regular join with a distinct to
 remove duplicate rows that are the result, for instance, of
 customers having ordered the same item several times

	By way of either a correlated or uncorrelated subquery

If there is some particularly selective criterion to apply to the
 table (or tables) from which we obtain the result set, there is no need
 to say much more than what has been said in the previous situation
 “Small Result Set, Direct Specific Criteria”: the query will be driven
 by the selective criterion. and the same reasoning applies. But if there
 is no such criterion, then we have to be much more careful.
To take a simplified version of the example in Chapter 4, identifying the customers who
 have ordered a Batmobile, our typical case will be something like the
 following:
 select distinct orders.custid
 from orders
 join orderdetail
 on (orderdetail.ordid = orders.ordid)
 join articles
 on (articles.artid = orderdetail.artid)
 where articles.artname = 'BATMOBILE'

In my view it is much better, because it is more understandable,
 to make explicit the test on the presence of the article in a customer’s
 orders by using a subquery. But should that subquery be correlated or
 uncorrelated? Since we have no other criterion, the answer should be
 clear: uncorrelated. If not, one would have to scan the orders table and fire the subquery for each
 row—the type of big mistake that passes unnoticed when we start with a
 small orders table but becomes
 increasingly painful as the business gathers momentum.
The uncorrelated subquery can either be written in the classic
 style as:
 select distinct orders.custid
 from orders
 where ordid in (select orderdetails.ordid
 from orderdetail
 join articles
 on (articles.artid = orderdetail.artid)
 where articles.artname = 'BATMOBILE')

or as a subquery in the from
 clause:
 select distinct orders.custid
 from orders,
 (select orderdetails.ordid
 from orderdetail
 join articles
 on (articles.artid = orderdetail.artid)
 where articles.artname = 'BATMOBILE') as sub_q
 where sub_q.ordid = orders.ordid

I find the first query more legible, but it is really a matter of
 personal taste. Don’t forget that an in(
) condition on the result of the subquery implies a distinct and therefore a sort, which takes us
 to the fringe of the relational model.
Important
Where using subqueries, think carefully before choosing either a
 correlated or uncorrelated subquery.

Small Intersection of Broad Criteria

The situation we talk about in this section is that of a small
 result set based on the intersection of several broad criteria. Each
 criterion individually would produce a large result set, yet the
 intersection of those individual, large sets is a very small, final
 result set returned by the query.
Continuing on with our query example from the preceding section,
 if the existence test on the article that was ordered is not selective,
 we must necessarily apply some other criteria elsewhere (otherwise the
 result set would no longer be a small result set). In this case, the
 question of whether to use a regular join, a correlated subquery, or an
 uncorrelated subquery usually receives a different answer depending on
 both the relative “strength” of the different criteria and the existing
 indexes.
Let’s suppose that instead of checking people who have ordered a
 Batmobile, admittedly not our best-selling article, we look for
 customers who have ordered something that I hope is much less unusual,
 in this case some soap, but purchased last Saturday. Our query then
 becomes something like this:
 select distinct orders.custid
 from orders
 join orderdetail
 on (orderdetail.ordid = orders.ordid)
 join articles
 on (articles.artid = orderdetail.artid)
 where articles.artname = 'SOAP'
 and <selective criterion on the date in the orders table>

Quite logically, the processing flow will be the reverse of what
 we had with a selective article: get the article, then the order lines
 that contained the article, and finally the orders. In the case we’re
 currently discussing, that of orders for soap, we should first get the
 small number of orders placed during the relatively short interval of
 time, and then check which ones refer to the article soap. From a practical point of view, we are
 going to use a totally different set of indexes. In the first case,
 ideally, we would like to see one index on the article name and one on
 the article identifier in the orderdetail table, and then we would have used
 the index on the primary key ordid in
 the orders table. In the case of
 orders for soap, what we want to find is an index on the date in
 orders and then one on orderid in orderdetail, from which we can use the index
 on the primary key of articles—assuming, of course, that in both
 cases using the indexes is the best course to take.
The obvious natural choice to get customers who bought soap last
 Saturday would appear to be a correlated subquery:
 select distinct orders.custid
 from orders
 where <selective criterion on the date in the orders table>
 and exists (select 1
 from orderdetail
 join articles
 on (articles.artid = orderdetail.artid)
 where articles.artname = 'SOAP'
 and orderdetails.ordid = orders.ordid)

In this approach, we take for granted that the correlated subquery
 executes very quickly. Our assumption will prove true only if orderdetail is indexed on ordid (we shall then get the article through
 its primary key artid; therefore,
 there is no other issue).
You’ve seen in Chapter 3
 that indexes are something of a luxury in transactional databases, due
 to their high cost of maintenance in an environment of frequent inserts,
 updates, and deletes. This cost may lead us to opt for a “second-best”
 solution. The absence of the vital index on orderdetail and good reason for not creating
 further indexes might prompt us to consider the following:
 select distinct orders.custid
 from orders,
 (select orderdetails.ordid
 from orderdetail,
 articles
 where articles.artid = orderdetail.artid
 and articles.artname = 'SOAP') as sub_q
 where sub_q.ordid = orders.ordid
 and <selective criterion on the date in the orders table>

In this second approach, the index requirements are different: if
 we don’t sell millions of articles, it is likely that the condition on
 the article name will perform quite satisfactorily even in the absence
 of any index on artname. We shall
 probably not need any index on the column artid of orderdetail either: if the article is popular
 and appears in many orders, the join between orderdetail and articles is probably performed in a more
 efficient manner by hash or merge join, rather than by a nested loop
 that would need such an index on artid. Compared to the first approach, we have
 here a solution that we could call a low index
 solution. Because we cannot afford to create indexes on each and every
 column in a table, and because we usually have in every application a
 set of “secondary” queries that are not absolutely critical but only
 require a decent response time, the low index
 approach may perform in a perfectly acceptable manner.
Important
Adding one extra search criterion to an existing query can
 completely change a previous construct: a modified query is
 a new query.

Small Intersection, Indirect Broad Criteria

 An indirect criterion is one that applies to a column in a table that you are
 joining only for the purpose of evaluating the criterion. The retrieval
 of a small result set through the intersection of two or more broad
 criteria, as in the previous situation “Small Intersection of Broad
 Criteria,” is often a formidable assignment. Obtaining the intersection
 of the large intermediary result sets by joining from a central table,
 or even through a chain of joins, makes a difficult situation even more
 daunting. This situation is particularly typical of the “star schema”
 that I discuss in some detail in Chapter
 10, but you’ll also encounter it fairly frequently in operational
 databases. When you are looking for that rare combination of multiple
 nonselective conditions on the columns of the row, you must expect to
 perform full scans at some point. The case becomes particularly
 interesting when several tables are involved.
The DBMS engine needs to start from somewhere. Even if it can
 process data in parallel, at some point it has to start with one table,
 index, or partition. Even if the resulting set defined by the
 intersection of several huge sets of data is very small, a
 boot-strapping full table scan, and possibly two scans, will be
 required—with a nested loop, hash join, or merge join performed on the
 result. The difficulty will then be to identify which combination of
 tables (not necessarily the smallest ones) will result in the least
 number of rows from which the final result set will be extracted. In
 other words, we must find the weakest point in the line of defense, and
 once we have eliminated it, we must concentrate on obtaining the final
 result set.
Let me illustrate such a case with a real-life Oracle example. The
 original query is a pretty complicated query, with two tables each
 appearing twice in the from clause.
 Although none of the tables is really enormous (the biggest one contains
 about 700,000 rows), the problem is that none of the nine parameters
 that are passed to the query is really selective:
 select (data from ttex_a,
 ttex_b,
 ttraoma,
 topeoma,
 ttypobj,
 ttrcap_a,
 ttrcap_b,
 trgppdt,
 tstg_a)
 from ttrcapp ttrcap_a,
 ttrcapp ttrcap_b,
 tstg tstg_a,
 topeoma,
 ttraoma,
 ttex ttex_a,
 ttex ttex_b,
 tbooks,
 tpdt,
 trgppdt,
 ttypobj
 where (ttraoma.txnum = topeoma.txnum)
 and (ttraoma.bkcod = tbooks.trscod)
 and (ttex_b.trscod = tbooks.permor)
 and (ttraoma.trscod = ttrcap_a.valnumcod)
 and (ttex_a.nttcod = ttrcap_b.valnumcod)
 and (ttypobj.objtyp = ttraoma.objtyp)
 and (ttraoma.trscod = ttex_a.trscod)
 and (ttrcap_a.colcod = :0) -- not selective
 and (ttrcap_b.colcod = :1) -- not selective
 and (ttraoma.pdtcod = tpdt.pdtcod)
 and (tpdt.risktyp = trgppdt.risktyp)
 and (tpdt.riskflg = trgppdt.riskflg)
 and (tpdt.pdtcod = trgppdt.pdtcod)
 and (trgppdt.risktyp = :2) -- not selective
 and (trgppdt.riskflg = :3) -- not selective
 and (ttraoma.txnum = tstg_a.txnum)
 and (ttrcap_a.refcod = :5) -- not selective
 and (ttrcap_b.refcod = :6) -- not selective
 and (tstg_a.risktyp = :4) -- not selective
 and (tstg_a.chncod = :7) -- not selective
 and (tstg_a.stgnum = :8) -- not selective

When run with suitable parameters (here indicated as :0 to :8),
 the query takes more than 25 seconds to return fewer than 20 rows, doing
 about 3,000 physical I/Os and hitting data blocks 3,000,000 times.
 Statistics correctly represent the actual contents of tables (one of the
 very first things to check), and a query against the data dictionary
 gives the number of rows of the tables involved:
 TABLE_NAME NUM_ROWS
 --------------------------- ----------
 ttypobj 186
 trgppdt 366
 tpdt 5370
 topeoma 12118
 ttraoma 12118
 tbooks 12268
 ttex 102554
 ttrcapp 187759
 tstg 702403

A careful study of the tables and of their relationships allows us
 to draw the enemy position of Figure 6-2, showing our weak
 criteria represented as small arrows, and tables as boxes the size of
 which approximately indicates the number of rows. One thing is
 especially remarkable: the central position of the ttraoma table that is linked to almost every
 other table. Unfortunately, all of our criteria apply elsewhere. By the
 way, an interesting fact to notice is that we are providing two values
 to match columns risktyp and riskflg of trgppdt—which is joined to tpdt on those very two columns, plus pdtcod. In such a case, it can be worth
 contemplating reversing the flow—for example, comparing the columns of
 tpdt to the constants provided, and
 only then pulling the data from trgppdt.
[image: The enemy position]

Figure 6-2. The enemy position

Most DBMS allow you to check the execution plan chosen by the
 optimizer, either through the explain
 command or sometimes by directly checking in memory how something has
 been executed. When this query took 25 seconds, the plan, although not
 especially atrocious, was mostly a full scan of ttraoma followed by a series of nested
 loops , using the various indexes available rather efficiently
 (it would be tedious to detail the numerous indexes, but suffice to say
 that all columns we are joining on are correctly indexed). Is this full
 scan the reason for slowness? Definitely not. A simple test, fetching
 all the rows of ttraoma (without
 displaying them to avoid the time associated with displaying characters
 on a screen) proves that it takes just a tiny fraction, hardly
 measurable, of the elapsed time for the overall query.
When we consider the weak criteria we have, our forces are too
 feeble for a frontal attack against tstg, the bulk of the enemy troops, and even
 ttrcap won’t lead us very far,
 because we have poor criteria against each instance of this table, which
 intervenes twice in the query. However, it should be obvious that the
 key position of ttraoma, which is
 relatively small, makes an attack against it, as a first step, quite
 sensible—precisely the decision that the optimizer makes without any
 prompting.
If the full scan is not to blame, then where did the optimizer go
 wrong? Have a look at Figure
 6-3, which represents the query as it was executed.
[image: What the optimizer chose to do]

Figure 6-3. What the optimizer chose to do

When we check the order of operations, it all becomes obvious: our
 criteria are so bad, on face value, that the optimizer chose to ignore
 them altogether. Starting with a pretty reasonable full scan of ttraoma, it then chose to visit all the
 smallish tables gravitating around ttraoma before ending with the tables to which
 our filtering criteria apply. This approach is the mistake. It is likely
 that the indexes of the tables we first visit look much more efficient
 to the optimizer, perhaps because of a lower average number of table
 rows per key or because the indexes more closely match the order of the
 rows in the tables. But postponing the application of our criteria is
 not how we cut down on the number of rows we have to process and
 check.
Once we have taken ttraoma and
 hold the key position, why not go on with the tables against which we
 have criteria instead? The join between those tables and ttraoma will help us eliminate unwanted rows
 from ttraoma before proceeding to
 apply joins with the other tables. This is a tactic that is likely to
 pay dividends since—and this is information we have but that is unknown
 to the optimizer—we know we should have, in all cases, very few
 resulting rows, which means that our combined criteria should, through
 the joins, inflict heavy casualties among the rows of ttraoma. Even when the number of rows to be
 returned is larger, the execution path I suggest should still remain
 relatively efficient.
How then can we force the DBMS to execute the query as we want it
 to? It depends on the SQL dialect. As you’ll see in Chapter 11, most SQL dialects allow
 directives, or hints, to the optimizer, although each dialect uses
 different syntax for such hints—telling the optimizer, for instance, to
 take on the tables in the same order as they are listed in the from clause. The trouble with hints is that
 they are more imperative than their name suggests, and every hint is a
 gamble on the future—a bet that circumstances, volumes, database
 algorithms, hardware, and the rest will evolve in such a way that our
 forced execution path will forever remain, if not absolutely the best,
 at least acceptable. In the particular case of our example, since nested
 loops using indexes are the most efficient choice, and because
 nested loops don’t really benefit from parallelism, we are taking a
 rather small risk concerning the future evolution of our tables by
 ordering tables as we want them processed and instructing the optimizer
 to obey. Explicitly forcing the order followed to visit tables was the
 approach actually taken in this real-life case, which resulted in a
 query running in a little less than one second, with hardly fewer
 physical I/Os than before (2,340 versus 3,000—not too surprising since
 we start with a full scan of the very same table) but since we
 “suggested” a more efficient path, logical I/Os fell dramatically—to
 16,500, down from over 3,000,000—with a noticeable result on the
 response time.
Important
Remember that you should heavily document anything that forces
 the hand of the DBMS.

Explicitly forcing the order in which to visit tables by using
 optimizer directives is a heavy-handed approach. A more gentle way to
 obtain the same result from the optimizer, provided that it doesn’t
 savagely edit our SQL clauses, may be to nest queries in the from clause, thus suggesting associations like
 parentheses would in a numerical expression:
 select (select list)
 from (select ttraoma.txnum,
 ttraoma.bkcod,
 ttraoma.trscod,
 ttraoma.pdtcod,
 ttraoma.objtyp,
 ...
 from ttraoma,
 tstg tstg_a,
 ttrcapp ttrcap_a
 where tstg_a.chncod = :7
 and tstg_a.stgnum = :8
 and tstg_a.risktyp = :4
 and ttraoma.txnum = tstg_a.txnum
 and ttrcap_a.colcod = :0
 and ttrcap_a.refcod = :5
 and ttraoma.trscod = ttrcap_a.valnumcod) a,
 ttex ttex_a,
 ttrcapp ttrcap_b,
 tbooks,
 topeoma,
 ttex ttex_b,
 ttypobj,
 tpdt,
 trgppdt
 where (a.txnum = topeoma.txnum)
 and (a.bkcod = tbooks.trscod)
 and (ttex_b.trscod = tbooks.permor)
 and (ttex_a.nttcod = ttrcap_b.valnumcod)
 and (ttypobj.objtyp = a.objtyp)
 and (a.trscod = ttex_a.trscod)
 and (ttrcap_b.colcod = :1)
 and (a.pdtcod = tpdt.pdtcod)
 and (tpdt.risktyp = trgppdt.risktyp)
 and (tpdt.riskflg = trgppdt.riskflg)
 and (tpdt.pdtcod = trgppdt.pdtcod)
 and (tpdt.risktyp = :2)
 and (tpdt.riskflg = :3)
 and (ttrcap_b.refcod = :6)

It is often unnecessary to be very specific about the way we want
 a query to be executed and to multiply esoteric hints; the right initial
 guidance is usually enough to put an optimizer on the right track.
 Nested queries making explicit some table associations have the further
 advantage of being quite understandable to a qualified human
 reader.
Important
A confused query can make the optimizer confused. Clarity and
 suggested joins are often enough to help the optimizer provide good
 performance.

Large Result Set

 The situation of a large result set includes any result, irrespective of how it is obtained
 (with the exception of the explicit cases discussed here) that might be
 described as “large” or, in other words, a result set which it would be
 sensible to generate in a batch environment. When you are looking for a
 very large number of rows, even if this number looks like a fraction of
 the total number of rows stored in the tables involved in the query,
 conditions are probably not very selective and the DBMS engine must
 perform full scans, except perhaps in some very special cases of data
 warehousing, which are discussed in Chapter 10.
When a query returns tens of thousand of rows, whether as the
 final result or an intermediate step in a complex query, it is usually
 fairly pointless to look for a subtle use of indexes and fast jumps from
 an index to the table rows of interest. Rather, it’s time to hammer the
 data remorselessly through full scans, usually associated with hash or
 merge joins. There must, however, be intelligence behind the brute
 force. We always must try to scan the objects, whether they are tables,
 indexes, or partitions of either tables or indexes, for which the ratio
 of data returned to data scanned is highest. We must scan objects for
 which filtering is the most coarse, because the best justification for
 the “effort” of scanning is to make it pay by a rich data harvest. A
 situation when a scan is unavoidable is the major exception to the rule
 of trying to get rid of unnecessary data as soon as possible; but we
 must fall back to the usual rule as soon as we are done with the
 unavoidable scans.
As ever, if we consider scanning rows of no interest to us as
 useless work, we must minimize the number of blocks we access. An
 approach often taken is to minimize accesses by hitting indexes rather
 than tables—even if the total volume of indexes is often bigger than the
 volume of data, each individual index is usually much smaller than its
 underlying table. Assuming that an index contains all the required
 information, scanning the index rather than the table makes a lot of
 sense. Implementation techniques such as adding columns to an index to
 avoid visiting the table can also show their worth.
Processing very large numbers of rows, whether you need to return
 them or simply have to check them, requires being very careful about
 what you do when you process each row. Calling a suboptimal,
 user-defined function, for instance, is not extremely important when
 you do it in the select list of a query that returns a small result set
 or when it comes as an additional criterion in a very selective where clause. But when you call such a
 function hundreds of thousands of times, the DBMS is no longer
 forgiving, and a slight awkwardness in the code can bring your server to
 its knees. This is a time for lean and mean code.
One key point to watch is the use of subqueries. Correlated
 subqueries are the death toll of performance when we are processing
 massive amounts of rows. When we can identify several subqueries within
 a query, we must let each of them operate on a distinct and
 “self-sufficient” subset, removing any dependence of one subquery on the
 result set of another. Dependencies between the various datasets
 separately obtained must be solved at the latest stage of query
 execution through hash joins or set operators.
Relying on parallelism may also be a good idea, but only when
 there are very few concurrently active sessions—typically in a batch
 job. Parallelism as it is implemented by a DBMS consists in splitting,
 when possible, one query into multiple subtasks, which are run in
 parallel and coordinated by a dedicated task. With a very high number of
 users, parallelism comes naturally with many similar tasks being
 executed concurrently, and adding DBMS parallelism to de facto
 parallelism often makes throughput worse rather than better. Generally
 speaking, processing very large volumes of information with a very high number of concurrent sessions qualifies
 as a situation in which the best you can aim for is an honorable fight
 and in which the solution is often to throw more hardware into the
 ring.
Response times are, lest we forget about the various waits for the
 availability of a resource in the course of processing, mostly dependent
 on the amount of data we have to browse through. But don’t forget that,
 as you saw in Chapter 4, the
 subjective vision of an end user may be utterly different from a cold
 analysis of the size of the haystack: the only interest to the end user
 is the needle.

Self-Joins on One Table

 In a correctly designed relational database (third normal
 form or above), all non-key columns are about the key, the whole key,
 and nothing but the key, to use an excellent and frequently quoted
 formula.[*] Each row is both logically consistent and distinct from
 all other rows in the same table. It is this design characteristic that
 enables join relationships to be established within the same table. You
 can therefore select in the same query different (not necessarily
 disjoint) sets of rows from the same table and join them as if those
 rows came from several different tables. In this section, I’ll discuss
 the simple self-join and exclude the more complex examples of nested
 hierarchies that I discuss later in Chapter 7.
Self-joins—tables joined to themselves—are much more common than
 hierarchies. In some cases, it is simply because the data is seen in an
 identical way, but from two different angles; for instance, we can
 imagine that a query listing air flights would refer to the airports table twice, once to find the name of
 the departure airport, and once to find the name of the arrival airport.
 For example:
 select f.flight_number,
 a.airport_name departure_airport,
 b.airport_name arrival_airport
 from flights f,
 airports a,
 airports b
 where f.dep_iata_code = a.iata_code
 and f.arr_iata_code = b.iata_code

In such a case, the usual rules apply: what matters is to ensure
 that highly efficient index access takes place. But what if the criteria
 are such that efficient access is not possible? The last thing we want
 is to do a first pass on the table, then a second one to pick up rows
 that were discarded during the first pass. In that case, what we should
 do is a single pass, collect all the rows of interest, and then use a
 construct such as the case statement
 to display separately rows from the two sets; I show examples of this
 “single-pass” approach in Chapter
 11.
There are subtle cases that only superficially look like the
 airport case. Imagine that we store
 in some table cumulative values taken at regular intervals[*] and we want to display by how much the counter increased
 between two successive snapshots. In such a case, we have a relationship
 between two different rows in the same table, but instead of having a
 strong relationship coming from another table, such as the flights table that links the two instances of
 airports together, we have a weak,
 internal relationship: we define that two rows are related not because
 their keys are associated in another table, but because the timestamp of
 one row happens to be the timestamp which immediately follows the
 timestamp of another row.
For instance, if we assume that snapshots are taken every five
 minutes, with a timestamp expressed in seconds elapsed since a reference
 date, we might issue the following query:
 select a.timestamp,
 a.statistic_id,
 (b.counter - a.counter)/5 hits_per_minute
 from hit_counter a,
 hit_counter b
 where b.timestamp = a.timestamp + 300
 and b.statistic_id = a.statistic_id
 order by a.timestamp, a.statistic_id

There is a significant flaw in this script: if the second snapshot
 has not been taken exactly five minutes after the
 first one, down to the second, we may be unable to join the two rows. We
 may therefore choose to express the join condition as a range condition.
 For example:
 select a.timestamp,
 a.statistic_id,
 (b.counter - a.counter) * 60 /
 (b.timestamp - a.timestamp) hits_per_minute
 from hit_counter a,
 hit_counter b
 where b.timestamp between a.timestamp + 200
 and a.timestamp + 400
 and b.statistic_id = a.statistic_id
 order by a.timestamp, a.statistic_id

One side effect of this approach is the risk of having bigger data
 gaps than needed when, for one reason or another (such as a change in
 the sampling frequency), two successive records are no longer collected
 between 200 and 400 seconds of each other.
We may play it even safer and use an OLAP function that operates
 on windows of rows. It is indeed difficult to imagine something less
 relational in nature, but such a function can come in handy as the final
 shine on a query, and it can even make a noticeable difference in
 performance. Basically, OLAP functions allow the consideration of
 different subsets of the final result set, through the use of the
 partition clause. Sorts, sums, and
 other similar functions can be applied separately to these individual
 result subsets. We can use the row_number(
) OLAP function to create one subset by statistic_id, and then assign to each
 different statistic successive integer numbers that increase as
 timestamps do. When these numbers are generated by the OLAP function, we
 can join on both statistic_id and two
 sequential numbers, as in the following example:
 select a.timestamp,
 a.statistic_id,
 (b.counter - a.counter) * 60 /
 (b.timestamp - a.timestamp)
 from (select timestamp,
 statistic_id,
 counter,
 row_number() over (partition by statistic_id
 order by timestamp) rn
 from hit_counter) a,
 (select timestamp,
 statistic_id,
 counter,
 row_number() over (partition by statistic_id
 order by timestamp) rn
 from hit_counter) b
 where b.rn = a.rn + 1
 and a.statistic_id = b.statistic_id
 order by a.timestamp, a.statistic_id

We may even do better—about 25% faster than the previous query—if
 our DBMS implements, as Oracle does, a lag(column_name
 , n
) OLAP function that returns the
 nth previous value for column_name, on the basis of the specified
 partitioning and ordering:
 select timestamp,
 statistic_id,
 (counter - prev_counter) * 60 /
 (timestamp - prev_timestamp)
 from (select timestamp,
 statistic_id,
 counter,
 lag(counter, 1) over (partition by statistic_id
 order by timestamp) prev_counter,
 lag(timestamp, 1) over (partition by statistic_id
 order by timestamp) prev_timestamp
 from hit_counter) a
 order by a.timestamp, a.statistic_id

In many cases we don’t have such symmetry in our data, as is shown
 by the flight example. Typically, a query looking for all the data
 associated with the smallest, or the largest, or the oldest, or the most
 recent value of a specific column, first needs to find the actual
 smallest, largest, oldest, or most recent value in the column used for
 filtering (this is the first pass, which compares rows), and then search
 the table again in a second pass, using as a search criterion the value
 identified in the first pass. The two passes can be made (at least
 superficially) into one through the use of OLAP functions that operate
 on sliding windows. Queries applied to data values associated to
 timestamps or dates are a special case of sufficient importance to
 deserve further discussion later in this chapter as the situation "Simple or Range Searching on
 Dates.”
Important
When multiple selection criteria are applied to different rows
 in the same table, functions that operate on sliding windows may be of
 assistance.

Result Set Obtained by Aggregation

 An extremely common situation is the case in which the
 result set is a dynamically computed summary of the detailed data from
 one or more main tables. In other words, we are facing an
 aggregation of data. When data is aggregated, the
 size of the result set isn’t dependent on the precision of the criteria
 that are provided, but merely on the cardinality of the columns that we
 group by. As in the first situation of the small result set obtained
 through precise criteria (and as you’ll see again in Chapter 11), aggregate functions (or aggregates) are also
 often quite useful for obtaining in a single pass on the table results
 that are not truly aggregated but that would otherwise require
 self-joins and multiple passes. In fact, the most interesting SQL uses
 of aggregates are not the cases in which sums or averages are an obvious
 part of the requirements, but situations in which a clever use of
 aggregates provides a pure SQL alternative to a procedural
 processing.
I stress in Chapter 2 that
 one of the keys to efficient SQL coding is a swashbuckling approach to
 code execution, testing for success after the deed rather than executing
 preliminary queries to check if, by chance, the really useful query we
 want to execute may fail: you cannot win a swimming race by tiptoeing
 carefully into the water. The other key point is to try to pack as much
 “action” as possible into an SQL query, and it is in respect to this
 second key point that aggregate functions can be particularly
 useful.
Much of the difficulty of good SQL programming lies in seeing how
 a problem can translate, not into a succession of queries to a database,
 but into very few queries. When, in a program, you need a lot of
 intermediate variables to hold values you get from the database before
 reinjecting them into the database as input to other queries, and if you
 perform against those variables nothing but very simple tests, you can
 bet that you have the algorithm wrong. And it is a striking feature of
 poorly written SQL programs to see the high number of lines of code
 outside of SQL queries that are simply devoted to summing up,
 multiplying, dividing, and subtracting inside loops what is painfully
 returned from the database. This is a totally useless and utterly
 inefficient job: we have SQL aggregate functions for that sort of
 work.
Note
Aggregate functions are very useful tools for solving SQL problems (and we will revisit them in
 Chapter 11, when I talk about
 stratagems); however, it often appears to me that developers use only
 the least interesting aggregate function of all, namely count(), the real usefulness of which is
 often, at best, dubious in most programs.

Chapter 2 shows that using
 count(*) to decide whether to update
 an existing row or insert a new one is wasteful. You can misuse count(*) in reports as well. A test for
 existence is sometimes implemented as a mock-Boolean value such
 as:
 case count(*)
 when 0 then 'N'
 else 'Y'
 end

Such an implementation gets, when rows are found, all the rows
 that match the condition in order to obtain a precise count, whereas
 finding only one is enough to decide whether Y or N must
 be displayed. You can usually write a much more effective statement by
 using a construct that either limits the number of rows returned or
 tests for existence, effectively stopping processing as soon as a row
 that matches the condition is found.
But when the question at hand is about the most, the least, the
 greatest, or even the first or the last, it is likely that aggregate
 functions (possibly used as OLAP functions) will provide the best
 answer. If you believe that aggregate functions should be used only when
 counts, sums, maxima, minima, or averages are explicitly required, then
 you risk seriously underusing them.
Interestingly, aggregate functions are extremely narrow in scope.
 If you exclude the computation of maximum and minimum values, the only
 thing they can really do is simple arithmetic; a count() is nothing more than adding 1s for
 each row encountered. Similarly, the computation of avg() is just, on one hand, adding up the
 values in the column it is applied to and, on the other hand, adding 1s,
 and then dividing.
But it is sometimes wonderful what you can do with simple sums. If
 you’re mathematically inclined, you’ll remember how easily you can
 switch between sums and products by the magic of logarithms and power
 functions. And if you’re logically inclined, you know well how much
 OR owes to sums and AND to products.
I’ll show the power of aggregation with a simple example. Assume
 that we have a number of shipments to make and that each shipment is
 made of a number of different orders, each of which has to be separately
 prepared; it is only when each order in a shipment is complete that the
 shipment itself is ready. The problem is how to detect when all the
 orders comprising a shipment are complete.
As is so often the case, there are several ways to determine the
 shipments that are complete. The worst approach would probably be to
 loop on all shipments, inside a second loop on each shipment count how
 many orders have N as value for the
 order_complete column, and return
 shipment IDs for which the count is 0. A much better solution would be to
 recognize the test on the nonexistence of an N value for what it is, and use a subquery,
 correlated or uncorrelated; for instance:
 select shipment_id
 from shipments
 where not exists (select null from orders
 where order_complete = 'N'
 and orders.shipment_id = shipments.shipment_id)

This approach is pretty bad if we have no other condition on the
 shipments table. Following is a query
 that may be much more efficient if we have a large shipments table and few uncompleted
 orders:
 select shipment_id
 from shipments
 where shipment_id not in (select shipment_id
 from orders
 where order_complete = 'N')

This query can also be expressed as follows, as a variant that an
 optimizer may like better but that wants an index on the column shipment_id of the table orders:
 select shipments.shipment_id
 from shipments
 left outer join orders
 on orders.shipment_id = shipments.shipment_id
 and orders.order_complete = 'N'
 where orders.shipment_id is null

Another alternative is a massive set operation that will operate
 on the primary key index of shipments
 on one hand, and that will perform a full table scan of orders on the other hand:
 select shipment_id
 from shipments
 except
 select shipment_id
 from orders
 where order_complete = 'N'

Be aware that not all DBMS implement the except operator, sometimes known as minus.
But there is still another way to express our query. What we are
 doing, basically, is to return the identifiers of all shipments for
 which a logical AND operation on all
 orders which have been completed returns TRUE. This kind of operation happens to be
 quite common in the real world. As hinted previously, there is a very
 strong link between AND and
 multiplication, and between OR and
 addition. The key is to convert flags such as Y and N to
 0s and 1s. This conversion is a trivial operation
 with the case construct. To get just
 order_complete as a 0 or 1
 value, we can write:
 select shipment_id,
 case when order_complete = 'Y' then 1
 else 0
 end flag
 from orders

So far, so good. If we always had a fixed number of orders per
 shipment, it would be easy to sum the calculated column and check if the
 result is the number of orders we expect. However, what we want here is
 to multiply the flag values per shipment and check whether the result is
 0 or 1. That approach works, because even one
 incomplete order, represented by a 0,
 will cause the final result of all the multiplication to also be
 0. The multiplication can be done
 with the help of logarithms (although 0s are not the easiest values to handle with
 logarithms). But in this particular case, our task is even
 easier.
What we want are the shipments for which the first order is
 completed and the second order is completed and...the
 nth order is completed. Logic and the laws of de
 Morgan[*] tell us that this is exactly the same as stating that we
 do not have (first order not completed or second
 order not completed...or nth order not completed).
 Since their kinship to sums makes ORs
 much easier to process with aggregates than ANDs, checking that a list of conditions
 linked by OR is false is much easier
 than checking that a list of conditions linked by AND is true. What we must consider as our true
 predicate is “the order is not completed” rather than the reverse, and
 convert the order_complete flag to
 1 if it is N, and 0 if
 it is Y. In that way, we can easily
 check that we have 0s (or yeses) everywhere by summing up values—if the
 sum is 0, then all orders are
 completed; otherwise, we are at various stages of incompletion.
Therefore we can also express our query as:
 select shipment_id
 from (select shipment_id,
 case when order_complete = 'N' then 1
 else 0
 end flag
 from orders) s
 group by shipment_id
 having sum(flag) =0

And it can be expressed in an even more concise way as:
 select shipment_id
 from orders
 group by shipment_id
 having sum(case when order_complete = 'N' then 1
 else 0
 end) =0

There is another way to write this query that is even simpler,
 using another aggregate function, and without any need to convert flag
 values. Noticing that Y is, from an
 alphabetical point of view, greater than N, it is not too difficult to infer that if
 all values are Y then the minimum
 will necessarily be Y too.
 Hence:
 select shipment_id
 from orders
 group by shipment_id
 having min(order_complete) = 'Y'

This approach of depending on Y
 to be greater than N may not be as
 well grounded mathematically as the flag-to-number conversion, but it is
 just as efficient.
Of course we must see how the query that uses a group by and a condition on the minimum value
 for order_complete compares to the
 other versions that use subqueries or except instead of an aggregate function. What
 we can say is that it has to fully sort the orders table to aggregate the values and check
 whether the sum is or is not 0. As I’ve specified the problem, this
 solution involving a non-trivial use of an aggregate function is likely
 to be faster than the other queries, which hit two tables (shipments and orders), and usually less efficiently.
I have made an extensive use of the having clause in the previous examples. As
 already mentioned in Chapter 4, a
 common example of careless SQL statements involves the use of the
 having clause in aggregate
 statements. Such an example is illustrated in the following (Oracle)
 query, which attempts to obtain the sales per product per week during
 the past month:
 select product_id,
 trunc(sale_date, 'WEEK'),
 sum(sold_qty)
 from sales_history
 group by product_id, trunc(sale_date, 'WEEK')
 having trunc(sale_date, 'WEEK') >= add_month(sysdate, -1)

The mistake here is that the condition expressed in the having clause doesn’t depend on the aggregate.
 As a result, the DBMS has to process all of the data in sales_history, sorting it and aggregating
 against each row, before filtering out ancient figures as the last step
 before returning the required rows. This is the kind of mistake that can
 go unnoticed until sales_history
 grows really big. The proper approach is, of course, to put the
 condition in a where clause, ensuring
 that the filtering occurs at an early stage and that we are working
 afterwards on a much reduced set of data.
I should note that when we apply criteria to views, which are
 aggregated results, we may encounter exactly the same problem if the
 optimizer is not smart enough to reinject our filter
 before aggregation.
You can have slightly more subtle variants of a filter applied
 later than it should be. For instance:
 select customer_id
 from orders
 where order_date < add_months(sysdate, -1)
 group by customer_id
 having sum(amount) > 0

In this query, the following condition looks at first glance like
 a reasonable use of having:
 having sum(amount) > 0

However, this use of having
 does not really make sense if amount
 is always a positive quantity or zero. In that event, we might be better
 using the following condition:
 where amount > 0

We have two possibilities here. Either we keep the group by:
 select customer_id
 from orders
 where order_date < add_months(sysdate, -1)
 and amount > 0
 group by customer_id

or we notice that group by is
 no longer required to compute any aggregate and replace it with a
 distinct that in this case performs
 the same task of sorting and eliminating duplicates:
 select distinct customer_id
 from orders
 where order_date < add_months(sysdate, -1)
 and amount > 0

Placing the condition in the where clause allows unwanted rows to be
 filtered at an earlier stage, and therefore more effectively.
Important
Aggregate as little data as you can.

Simple or Range Searching on Dates

 Among search criteria, dates (and times) hold a particular
 place that is all their own. Dates are extremely common, and more likely
 than other types of data to be subjected to range conditions, whether
 they are bounded (“between this date and that date”) or only partially
 bounded (“before this date”). Very often, and what this situation
 describes, the result set is derived from searches against date values
 referenced to the current date (e.g., “six months earlier than the
 current date,” etc.).
The example in the previous section, “Result Set Obtained by
 Aggregation,” refers to a sales_history table; our condition was on an
 amount, but it is much more common with this type of table to have
 conditions on date, especially to get a snapshot of the data either at a
 given date or between two dates. When you are looking for a value on a
 given date in a table containing historical data , you must pay particular attention to the way you
 identify current data. The way you handle current data may happen to be
 a special case of data predicated on an aggregate condition.
I have already pointed out in Chapter 1 that the design of a table
 destined to store historical data is a tricky affair and that there is
 no easy, ready-made solution. Much depends on what you plan to do with
 your data, whether you are primarily interested in current values or in
 values as of a particular date. The best solution also depends on how
 fast data becomes outdated. If you are a retailer and wish to keep track
 of the wares you sell, it is likely that, unless your country suffers
 severe hyper-inflation, the rate of change of your prices will be pretty
 slow. The rate of change will be higher, possibly much higher, if you
 are recording the price of financial instruments or monitoring network
 traffic.
To a large extent, what matters most with history tables is how
 much historical data you keep on average per item: you may store a lot
 of historical information for very few items, or have few historical
 records for a very large number of items, or anything in between. The
 point here is that the selectivity of any item depends on the number of
 items being tracked, the frequency of sampling (e.g., either once per
 day or every change during the day), and the total time period over
 which the tracking takes place (infinite, purely annual, etc.). We shall
 therefore first consider the case when we have many items with few
 historical values , then the opposite case of few items with a rich
 history, and then, finally, the problem of how to represent the current
 value.
Many Items, Few Historical Values

If we don’t keep an enormous amount of historical data
 per item, the identification of an item is quite selective by itself.
 Specifying the item under study restricts our “working set” to just a
 few historical rows, and it then becomes fairly easy to identify the
 value at a given reference date (the current or a previous date) as
 the value recorded at the closest date prior to the reference date. In
 this case, we are dealing once again with aggregate values.
Unless some artificial, surrogate key has been created (and this
 is a case where there is no real need for a surrogate key), the
 primary key will generally be a composite key on the identifier of
 items (item_id) and the date
 associated with the historical value (record_date). We mostly have two ways of
 identifying the rows that store values that were current as of a given
 reference date: subqueries and OLAP functions.
Using subqueries

If we are looking for the value of one particular item
 as of a given date, then the situation is relatively simple. In
 fact, the situation is deceptively simple, and you’ll often
 encounter a reference to the value that was current for a given item
 at a given date coded as:
 select whatever
 from hist_data as outer
 where outer.item_id = somevalue
 and outer.record_date = (select max(inner.record_date)
 from hist_data as inner
 where inner.item_id = outer.item_id
 and inner.record_date <= reference_date)

It is interesting to see what the consequences of this type of
 construct suggest in terms of the execution path. First of all, the
 inner query is correlated to the outer one, since the inner query
 references the item_id of the
 current row returned by the outer query. Our starting point is
 therefore the outer query.
Logically, from a theoretical point of view, the order of the
 columns in a composite primary key shouldn’t matter much. In
 practice, it is critical. If we have made the mistake of defining
 the primary key as (record_date,
 item_id) instead of (item_id,
 record_date), we desperately need an additional index on
 item_id for the inner query;
 otherwise, we will be unable to efficiently descend the
 tree-structured index. And we know how costly each additional index
 can be.
Starting with our outer query and finding the various rows
 that store the history of item_id, we will then use the current
 value of item_id to execute the
 subquery each time. Wait! This inner query depends only on item_id, which is, by definition, the same
 for all the rows we check! The logical conclusion: we are going to
 execute exactly the same query, returning exactly the same result
 for each historical row for item_id. Will the optimizer notice that
 the query always returns the same value? The answer may vary. It is
 better not to take the chance.
There is no point in using a correlated subquery if it always
 returns the same value for all the rows for which it is evaluated.
 We can easily uncorrelate it:
 select whatever
 from hist_data as outer
 where outer.item_id = somevalue
 and outer.record_date = (select max(inner.record_date)
 from hist_data as inner
 where inner.item_id = somevalue
 and inner.record_date <= reference_date)

Now the subquery can be executed without accessing the table:
 it finds everything it requires inside the primary key index.
It may be a matter of personal taste, but a construct that
 emphasizes the primary key is arguably preferable to the preceding
 approach, if the DBMS allows comparing several columns to the output
 of a subquery (a feature that isn’t supported by all
 products):
 select whatever
 from hist_data as outer
 where (outer.item_id, outer.record_date) in
 (select inner.item_id, max(inner.record_date)
 from hist_data as inner
 where inner.item_id = somevalue
 and inner.record_date <= reference_date
 group by inner.item_id)

The choice of a subquery that precisely returns the columns
 matching a composite primary key is not totally gratuitous. If we
 now need to return values for a list of items, possibly the result
 of another subquery, this version of the query naturally suggests a
 good execution path. Replace somevalue in the
 inner query by an in() list or a
 subquery, and the overall query will go on performing efficiently
 under the very same assumptions that each item has a relatively
 short history. We have also replaced the equality condition by an
 in clause: in most cases the
 behavior will be exactly the same. As usual, it is at the fringes
 that you encounter differences. What happens if, for instance, the
 user mistyped the identification of the item? The in() will return that no data was found,
 while the equality may return a different error.

Using OLAP functions

With databases, OLAP functions such as row_number() that we have already used in
 the self-joins situation can provide a
 satisfactory and sometimes even a more efficient way to answer the
 same question “what was the current value for one particular item at
 a given date?” (remember that OLAP functionality does, however,
 introduce a distinctly non-relational aspect to the
 proceedings[*]).
Note
OLAP functions belong to the non-relational layer of SQL.
 They represent the final, or almost final, step in query
 execution, since they have to operate on the post-retrieval result
 set after the filtering has completed.

With a function such as row_number(
) we can assign a degree of freshness (one meaning most
 recent) to the data by ranking on date:
 select row_number() over (partition by item_id
 order by record_date desc) as freshness,
 whatever
 from hist_data
 where item_id = somevalue
 and record_date <= reference_date

Selecting the freshest data is then simply a matter of only
 retaining the rows with a value of one for freshness:
 select x.<suitable_columns>
 from (select row_number() over (partition by item_id
 order by record_date desc) as freshness,
 whatever
 from hist_data
 where item_id = somevalue
 and record_date <= reference_date) as x
 where x.freshness = 1

In theory, there should be hardly any difference between the
 OLAP function approach and the use of subqueries. In practice, an
 OLAP function hits the table only once, even if the usual sorting
 happens behind the scene. There is no need for additional access to
 the table, even a fast one that uses the primary key. The OLAP
 function approach may therefore be faster (albeit only slightly
 so).

Many Historical Values Per Item

The picture may be different when we have a very large
 number of historical values—for instance, a monitoring system in which
 metrics are collected at a rather high frequency. The difficulty here
 lies in the fact that all the intermediate sorting required for
 identifying the value at or nearest a given date may have to operate
 on a really large amount of data.
Sorting is a costly operation. If we apply the principles of
 Chapter 4, the only way we have
 to reduce the thickness of the non-relational layer is by doing a bit
 more work at the relational level—by increasing the amount of
 filtering. In such a case, it is very important to
 narrow our scope by bracketing the date (or time)
 more precisely for which we want the data. If we only provide an upper
 boundary, then we shall have to scan and sort the full history since
 the beginning of ages. If data is collected at a high frequency, it is
 then reasonable to give a lower limit. If we succeed in restraining
 the “working set” of rows to a manageable size, we are back to the
 case in which we have relatively few historical values per item. If
 specifying both an upper boundary (such as the current date)
 and a lower boundary isn’t an option, our only
 hope is in partitioning per item; operating on a single partition will
 take us closer to the “large result set” situation.

Current Values

When we are predominantly interested in the most recent or
 current values , it is very tempting to design a way to avoid either
 the nested subquery or the OLAP function (which both entail a sort),
 and hit the proper values directly. We mentioned in Chapter 1 that one solution to this
 problem is to associate each value with some “end date”—the kind of
 “best before” you find on your cereal boxes—and to say that for
 current values that end date is far, far away into the future (let’s
 say December 31, 2999). We also mentioned that there were some
 practical issues associated with such a design and the time has now
 come to explore these issues.
With a fixed date, it certainly becomes extremely easy to find
 the current value. Our query simply becomes:
 select whatever
 from hist_data
 where item_id = somevalue
 and record_date = fixed_date_in_the future

We then hit the right row, spot on, through the primary key. And
 of course, nothing prevents us from using either subqueries or OLAP
 functions whenever we need to refer to a date other than the current
 one. There are, however, two main drawbacks to this approach—an
 obvious one and a more subtle one:
	The obvious drawback is that each insertion of a new
 historical value will first require updating what used to be the
 current value with, for example, today’s date, to mean that it
 used to be the current value until today. Then the new value can
 be inserted with the later date, to mean that it is now the
 current value until further notice. This process leads to double
 the amount of work, which is bad enough. Moreover, since in the
 relational theory the primary key is what identifies a row, the
 combination (item_id,
 record_date) can be unique but cannot be the primary key
 since we have to partially update it. We therefore need a
 surrogate key to be referenced by foreign keys (identity column or
 sequence), which further complicates programs. The trouble with
 big historical tables is that usually, to grow that big, they also
 undergo a high rate of insertion. Does the benefit of faster
 querying offset the disadvantage of inserting more slowly? It’s
 difficult to say, but definitely a question worth asking.

	The subtle drawback has to do with the optimizer. The
 optimizer relies on statistics that may be of variable detail,
 with the result that it is not unusual for it to check the lowest
 and highest value in a column to try to assess the spread of
 values. Let us say that our historical table contains values since
 January 1, 2000. Our data will therefore consist of perhaps 99.9%
 historical data, spread over several, but relatively few, years,
 and 0.1% of current data, officially as of December 31, 2999. The
 view of the optimizer will be of data spread over one millennium.
 This skewness on the part of the optimizer view of the data range
 is because it is being misled by the upper boundary date in the
 query (”and record_date =
 fixed_date_in_the future“). The problem
 is then that when you search for something other than current
 values (for instance if you want to collect variations over time
 for statistical purposes), the optimizer may well incorrectly
 decide that since you are accessing such a tiny fraction of the
 millennium, then using indexes is the thing to do, but what you
 really need is to scan the data. Skewness can lead to totally
 wrong execution plans, which are not easy to correct.

Important
You must understand your data and your data distributions if
 you are to understand how the optimizer views your system.

Result Set Predicated on Absence of Data

 It is a common occurrence to look for rows in one table
 for which there is no matching data in another table—usually for
 identifying exceptions. There are two solutions people most often think
 of when having to deal with this type of problem: using either not in () with an uncorrelated subquery or
 not exists () with a correlated
 subquery. Popular wisdom says that you should use not exists. Since a correlated subquery is
 efficient when used to mop up after the bulk of irrelevant data has been
 cleared out by efficient filtering, popular wisdom has it right when the
 subquery comes after the strong forces of efficient search criteria, and
 totally wrong when the subquery happens to be the only criterion.
One sometimes encounters more exotic solutions to the problem of
 finding rows in one table for which there is no matching data in
 another. The following example is a real-life case that monitoring
 revealed to be one of the costliest queries performed against a database
 (note that question marks are placeholders, or bind
 variables , for constant values that are passed to the query on
 successive executions):
 insert into ttmpout(custcode,
 suistrcod,
 cempdtcod,
 bkgareacod,
 mgtareacod,
 risktyp,
 riskflg,
 usr,
 seq,
 country,
 rating,
 sigsecsui)
 select distinct custcode,
 ?,
 ?,
 ?,
 mgtareacod,
 ?,
 ?,
 usr,
 seq,
 country,
 rating,
 sigsecsui
 from ttmpout a
 where a.seq = ?
 and 0 = (select count(*)
 from ttmpout b
 where b.suistrcod = ?
 and b.cempdtcod = ?
 and b.bkgareacod = ?
 and b.risktyp = ?
 and b.riskflg = ?
 and b.seq = ?)

This example must not be understood as an implicit unconditional
 endorsement of temporary tables! As a passing remark, I suspect that the
 insert statement was part of a loop.
 Proper performance improvement would probably be achieved by removing
 the loop.
An insertion into a table based on a select on the very same table as in the
 current example is a particular and yet not uncommon case of
 self-reference, an insertion derived from existing rows and conditional
 on the absence of the row to be created.
Using count(*) to test whether
 something exists or doesn’t exist is a bad idea: to count, the DBMS must
 search and find all rows that match. We should use exists in such a case, which stops as soon as
 the first match is encountered. Arguably, it does not make much
 difference if the filtering criterion happens to be the primary key. But
 it may make a very significant difference in other cases—and anyway from
 a semantic point of view there is no reason to say this:
 and 0 = (select count(*) ...)

when we mean this:
 and not exists (select 1 ...)

If we use count(*) as a test
 for existence, we may be lucky enough to benefit from the “invisible
 hand” of a smart optimizer, which will turn our query into something
 more suitable. But this will not necessarily be the case, and it will
 never be the case if the rows are counted into some variable as an
 independent step, because then even the smartest of optimizers cannot
 guess for which purpose we are counting: the result of the count() could be a critical value that
 absolutely has to be displayed to the end user!
In such a case when we want to create new, unique rows derived
 from rows already present in the table, however, the right construct to
 use is probably a set operator such as except (sometimes known as minus).
 insert into ttmpout(custcode,
 suistrcod,
 cempdtcod,
 bkgareacod,
 mgtareacod,
 risktyp,
 riskflg,
 usr,
 seq,
 country,
 rating,
 sigsecsui)
 (select custcode,
 ?,
 ?,
 ?,
 mgtareacod,
 ?,
 ?,
 usr,
 seq,
 country,
 rating,
 sigsecsui
 from ttmpout
 where seq = ?
 except
 select custcode,
 ?,
 ?,
 ?,
 mgtareacod,
 ?,
 ?,
 usr,
 seq,
 country,
 rating,
 sigsecsui
 from ttmpout
 where suistrcod = ?
 and cempdtcod = ?
 and bkgareacod = ?
 and risktyp = ?
 and riskflg = ?
 and seq = ?)

The big advantage of set operators is that they totally break the
 time frame imposed by subqueries, whether they are correlated or
 uncorrelated. What does breaking the time frame
 mean? When you have correlated subqueries, you must run the outer query,
 and then you must execute the inner query for each row that passes
 through all other filtering criteria. Both queries are extremely
 dependent on each other, since the outer query feeds the inner
 one.
The picture is slightly brighter with uncorrelated subqueries, but
 not yet totally rosy: the inner query must be executed, and in fact
 completed, before the outer query can step in and gather steam
 (something similar occurs even if the optimizer chooses to execute the
 global query as a hash join, which is the smart thing for it to do,
 because to execute a hash join, the SQL engine first has to scan one of
 the tables involved to build a hash array).
With set operators, on the contrary, whether they are union, intersect or except, none of the components in the query
 depends on any other. As a result, the different parts of the query can
 run in parallel. Of course, parallelism is of hardly any benefit if one
 of the steps is very slow while all the others are very fast; and it
 will be of no benefit at all if much of the work in one part is strictly
 identical to the work in another part, because then you are duplicating,
 rather than sharing, the work between processes. But in a favorable
 case, it is much more efficient to have all parts run in parallel before
 the final step, which combines the partial result sets—divide and
 rule.
There is an additional snag with using set operators: they require
 each part of the query to return compatible columns—an identical number
 of columns of identical types. A case such as the following (another
 real-life case, coming from a billing program) is typically unsuited to
 set operators:
 select whatever, sum(d.tax)
 from invoice_detail d,
 invoice_extractor e
 where (e.pga_status = 0
 or e.rd_status = 0)
 and suitable_join_condition
 and (d.type_code in (3, 7, 2)
 or (d.type_code = 4
 and d.subtype_code not in
 (select trans_code
 from trans_description
 where trans_category in (6, 7))))
 group by what_is_required
 having sum(d.tax) != 0

I am always fascinated by the final condition:
 sum(d.tax) != 0

and the way it evokes yellow brick roads and fantasy worlds where
 taxes are negative. A condition such as:
 and d.tax > 0

might have been more appropriate in the where clause, as already demonstrated.
In such a case a set operator would be rather awkward, since we
 would have to hit the invoice_detail
 table—as we can guess, not a lightweight table—several times. However,
 depending on the selectivity of the various criteria provided, typically
 if type_code=4 is a rare and
 therefore selective attribute condition, an exists might be more appropriate than a
 not in (). If, however, trans_description happens to be, at least
 relatively, a small table, then there is no doubt that trying to improve
 the query by playing on the existence test alone is a dead end.
Another interesting way to express nonexistence—and often quite an
 efficient one—is to use outer joins. The purpose of outer joins is
 basically to return, in a join, all information from one table,
 including rows for which no match is found in the joined table. As it
 happens, when we are looking for data that has no match in another
 table, it is precisely these rows that are of interest to us. How can we
 identify them? By checking the joined table columns: when there is no
 match, they are replaced with null values.
Something such as:
 select whatever
 from invoice_detail
 where type_code = 4
 and subtype_code not in
 (select trans_code
 from trans_description
 where trans_category in (6, 7))

can therefore be rewritten:
 select whatever
 from invoice_detail
 outer join trans_description
 on trans_description.trans_category in (6, 7)
 and trans_description.trans_code = invoice_detail.subtype_code
 where trans_description.trans_code is null

I have purposely included the condition on trans_category in the join clause. Whether it should rightly appear
 in this clause or in the where clause
 is debatable but, in fact, filtering before the join or after the join
 is result-neutral (of course, from a performance point of view, it can
 make a difference, depending on the relative selectivity of this
 condition and of the join condition itself). However, we have no such
 latitude with the condition on the null value, since this is something
 that can only be checked after the join.
Apart from the fact that the outer join may in some cases require
 a distinct, in practice there should
 be very little difference between checking the absence of data through
 an outer join or a not in () uncorrelated subquery, since the
 column which is used for the join happens to be the very same column
 that is compared to the result set of the subquery. But SQL is famous
 for being a language in which the manner of the query expression often
 has a very real effect on the pattern of execution, even if the theory
 says otherwise. It all depends on the degree of sophistication of the
 optimizer, and whether it processes both types of queries in a similar
 way or not. In other words, SQL is not a truly declarative language,
 even if the enhancement of optimizers with each new version slowly
 improves its reliability.
Before closing this topic, watch out for the perennial SQL
 party-poopers—null values . Although in an in (
) subquery a null value joining the flow of non-null values
 does not bother the outer query, with a not in
 () subquery, any null value returned by the inner query
 causes the not in () condition to be
 evaluated as false. It does not cost much to ensure that a subquery
 returns no null value—and doing so will save you a lot of grief.
Important
Data sets can be compared using various techniques, but outer
 joins and set operators are likely to be efficient.

[*] To non-Oracle users, the varchar2 type is, for all practical
 purposes, the same as the varchar type.

[*] I have seen this elegant formula credited only once—to a 1983
 paper by William Kent, available at http://www.bkent.net.

[*] This is exactly what happens when you collect values from the
 V$ views in Oracle, which contain monitoring information.

[*] The India-born Augustus de Morgan (1806–1871) was a British
 mathematician who contributed to many areas of mathematics, but most
 significantly to the field of logic. The de Morgan laws state that
 the complement of the intersection of any number of sets equals the
 union of their complements and that the complement of the union of
 any number of sets equals the intersection of their complements. If
 you remember that SQL is about sets, and that negating a condition
 returns the complement of the result set returned by the initial
 condition (if you have no null values), you’ll understand why these
 laws are particularly useful to the SQL practitioner.

[*] ...even if the term OLAP was coined by Dr. E.F. Codd
 himself in a 1993 paper.

Chapter 7. Variations in Tactics

Dealing with Hierarchical Data

The golden rule is that there are no golden rules.
—George Bernard Shaw (1856–1950) Man and
 Superman/Maxims for Revolutionists

You have seen in the previous chapter that
 queries sometimes refer to the same table several times and
 that results can be obtained by joining a row from one table to another
 row in the same table. But there is a very important case in which a row
 is not only related to another row, but is dependent upon it. That latter
 row is itself dependent on another one—and so forth. I am talking here of
 the representation of hierarchies.
Tree Structures

 Relational theory struck the final blow to hierarchical
 databases as the main repositories for structured data.
 Hierarchical databases were historically the first attempt at
 structuring data that had so far been stored as records in files.
 Instead of having linear sequences of identical records, various records
 were logically nested. Hierarchical databases were excellent for some
 queries, but their strong structure made one feel as if in a
 straitjacket, and navigating them was painful. They first bore the brunt
 of the assault by network, or CODASYL, databases, in which navigation
 was still difficult but that were more flexible, until the relational
 theory proved that database design was a science and not a craft.
 However, hierarchies, or at least hierarchical representations, are
 extremely common—which probably accounts for the resilience of the
 hierarchical model, still alive today under various names such as
 Lightweight Directory Access Protocol (LDAP) and XML .
The handling of hierarchical data, also widely known as the
 Bill of Materials (BOM) problem, is not the
 simplest of problems to understand. Hierarchies are complicated not so
 much because of the representation of relationships between different
 components, but mostly because of the way you walk
 a tree. Walking a tree simply means visiting all or some of the nodes
 and usually returning them in a given order. Walking a tree is often
 implemented, when implemented at all, by DBMS engines in a procedural
 way—and that procedurality is a cardinal relational sin.
Tree Structures Versus Master/Detail Relationships

Many designers tend, not unnaturally, to consider that a
 parent/child link is in itself not very different from a master/detail
 relationship—the classical orders/order_detail relationship, in which the
 order_detail table stores (as part
 of its own key) the reference of the order it relates to. There are,
 however, at least four major differences between the parent/child link
 and the master/detail relationship:
	Single table
	The first difference is that when we have a tree
 representing a hierarchy , all the nodes are of the very same nature. The
 leaf nodes , in other words the nodes that have no child
 node, are sometimes different, as happens in file management
 systems with folders—regular nodes and files—leaf nodes, but
 I’ll set that case apart for the time being. Since all nodes are
 of the same nature, we describe them in the same way, and they
 will be represented by rows in the same table. Putting it
 another way, we have a kind of master/detail relationship, not
 between two different tables holding rows of different nature,
 but between a table and itself.

	Depth
	The second difference is that in the case of a hierarchy,
 how far you are from the top is often significant information.
 In a master/detail relationship, you are always either the
 master or the detail.

	Ownership
	The third difference is that in a master/detail
 relationship you can have a clean foreign key integrity
 constraint; for instance, every order identifier in the order_detail table must correspond to
 an existing identifier in the orders table, plain and simple. Such
 is not the case with hierarchical data. You can decide to say
 that, for instance, the manager number must refer to an existing
 employee number. Except that you then have a problem with the
 top manager, who in truth reports to the representatives of
 shareholders—the board, not an employee. This leaves us with
 that endless source of difficulties, a null value. And you may
 have several such “special case” rows, since we may need to
 describe in the same table several independent trees, each with
 its own root—something that is called a
 forest.

	Multiple parents
	Associating a “child” with the identifier of a “parent”
 assumes that a child can have only one parent. In fact, there
 are many real-life situations when this is not the case, whether
 it is investments, ingredients in formulae, or screws in
 mechanical parts. A case when a child has multiple parents is
 arguably not a tree in the mathematical sense; unfortunately,
 many real-life trees, including genealogical trees, are more
 complex than simple parent-child relationships, and may even
 require the handling of special cases (outside the scope of this
 book) such as cycles in a line of links.

In his excellent book, Practical Issues in Database
 Management (Addison Wesley), Fabian Pascal explains that the
 proper relational view of a tree is to understand that we have two distinct entity
 types, the nodes (for which we may have a special subtype of leaf
 nodes, bearing more information) and the links between the nodes. I
 should point out that this design approach solves the question of
 integrity constraints, since one only describes links that actually
 exist. Pascal’s approach also solves the case of the “child” that
 appears in the descent of numerous “parents.” This case is quite
 common in the industry and yet so rare in textbooks, which usually
 stick to the employee/manager example.
Pascal, following ideas of Chris Date, suggests that there
 should be an explode() operator to
 flatten, on the fly, a hierarchy, by providing a view which would make
 explicit the implicit links between nodes. The only snag is that this
 operator has never been implemented. DBMS vendors have quite often
 implemented specialized processes such as the handling of spatial data
 or full-text indexing, but the proper implementation of hierarchical
 data has oscillated between the nonexistent and the feeble, thus
 leaving most of the burden of implementation just where it doesn’t
 belong: with the developer.
As I have already hinted, the main difficulty when dealing with
 hierarchical data lies in walking the tree. Of course, if your aim is
 just to display a tree structure in a graphical user interface, each
 time the user clicks on a node to expand it, you have no particular
 problem: issuing a query that returns all the children of the node for
 which you pass the identifier as argument is a straightforward
 task.

Practical Examples of Hierarchies

In real life, you meet hierarchies very often, but the
 tasks applied to them are rarely simple. Here are just three examples
 of real-life problems involving hierarchies, from different
 industries:
	Risk exposure
	When you attempt to compute your exposure to risk in a
 financial structure such as a hedge fund, the matter becomes
 hierarchically complex. These financial structures invest in
 funds that themselves may hold shares in other funds.

	Archive location
	If you are a big retail bank, you are likely to face a
 nontrivial task if you want to retrieve from your archives the
 file of a loan signed by John Doe seven years ago, because files
 are stored in folders, which are in boxes, which are on shelves,
 which are in cabinets in an alley in some room of some floor of
 some building. The nested “containers” (folders, boxes, shelves,
 etc.) form a hierarchy.

	Use of ingredients
	If you work for the pharmaceutical industry, identifying
 all of the drugs you manufacture that contain an ingredient for
 which a much cheaper equivalent has just been approved and can
 now be used presents the very same type of SQL challenge in a
 totally unrelated area.

It is important to understand that these hierarchical problems
 are indeed quite distinct in their fundamental characteristics. A task
 such as finding the location of a file in an archive means walking a
 tree from the bottom to the top (that is, from a position of high
 granularity to one of increasing aggregation), because you start from
 some single file reference, that will point you to the folder in which
 it is stored, where you will find the identification of a box, and so
 forth on up to the room in a building, and so on, thus determining the
 exact location of the file. Finding all the products that contain a
 given ingredient also happens to be a bottom-up walk, although in that
 case our number of starting points may be very high—and we have to
 repeat the walk each time. By contrast, risk exposure analysis means,
 first, a top-down walk to find all investments, followed by
 computations on the way back up to the top. It is a kind of
 aggregation, only more complicated.
In general, the number of levels in trees tends to be rather small. This is, in fact, the main
 beauty of trees and the reason why they can be efficiently searched.
 If the number of levels is fixed, the only thing
 we have to do is to join the table containing a tree with itself as
 many times as we have levels. Let’s take the case of archives and say
 that the inventory table shows us
 in which folder our loan file is located. This folder identifier will
 take us to a location table, that
 points us the identifier of the box which contains the folder, the
 shelf upon which the box is laid, the cabinet to which the shelf
 belongs, the alley where we can find this cabinet, the room which
 contains the alley, the floor on which the room is located, and,
 finally, the building. If the location table treats folders, boxes,
 shelves, and the like as generic “locations,” a query returning all
 the components in the physical location of a file might look like
 this:
 select building.name building,
 floor.name floor,
 room.name room,
 alley.name alley,
 cabinet.name cabinet,
 shelf.name shelf,
 box.name box,
 folder.name folder
 from inventory,
 location folder,
 location box,
 location shelf,
 location cabinet,
 location alley,
 location room,
 location floor,
 location building
 where inventory.id = 'AZE087564609'
 and inventory.folder = folder.id
 and folder.located_in = box.id
 and box.located_in = shelf.id
 and shelf.located_in = cabinet.id
 and cabinet.located_in = alley.id
 and alley.located_in = room.id
 and room.located_in = floor.id
 and floor.located_in = building.id

This type of query, in spite of an impressive number of joins,
 should run fast since each successive join will use the unique index
 on location (that is, the index on
 id), presumably the primary key.
 But yes, there is a catch: the number of levels in a hierarchy is
 rarely constant. Even in the rather sedate world of archives, the
 contents of boxes are often moved after the passage of time to new
 containers (which may be more compact and, therefore, provide cheaper
 storage). Such activity may well replace two levels in a hierarchy
 with just one, as containers will replace both boxes and shelves. What
 should we do when we don’t know the number of levels? How best do we
 query such a hierarchy? Do we use a union? An outer-join?
Important
Links between objects of the same nature should be modeled as
 trees as soon as the number of levels between two objects is no
 longer a constant.

Representing Trees in an SQL Database

 Trees are generally represented in the SQL world by one of
 three models:
	Adjacency model
	The adjacency model is thus called because the identifier of
 the closest ancestor up in the hierarchy (the parent row) is given
 as an attribute of the child row. Two adjacent nodes in the tree
 are therefore clearly associated. The adjacency model is often
 illustrated by the employee number of the manager being specified
 as an attribute of each employee managed. (The direct association
 of the manager to the employee is in truth a poor design, because
 the manager identification should be an attribute of the
 structure that is managed. There is no reason
 that, when the head of a department is changed, one should update
 the records of all the people who work in the department to
 indicate the new manager). Some products implement special
 operators for dealing with this type of model, such as Oracle’s
 connect by (introduced as early
 as Oracle version 4 around the mid 1980s) or the more recent
 recursive with statement of DB2
 and SQL Server. Without any such operator, the adjacency model is
 very hard to manage.

	Materialized path model
	The idea here is to associate with each node in the tree a
 representation of its position within the tree. This
 representation takes the form of a concatenated list of the
 identifiers of all the node’s ancestors, from the root of the tree
 down to its immediate parent, or as a list of numbers indicating
 the rank within siblings of a given ancestor at one generation (a
 method frequently used by genealogists). These lists are usually
 stored as delimited strings. For instance, '1.2.3.2' means (right to left) that the
 node is the second child of its parent (the path of which is
 '1.2.3'), which itself is the
 third child of the grandparent ('1.2'), and so forth.

	Nested set model
	In this model, devised by Joe Celko,[*] a pair of numbers (defined as a left
 number and a right number) is
 associated to each node in such a fashion that they define an
 interval which always contains the interval associated with any of
 the descendents. The upcoming subsection "Nested Sets Model (After
 Celko)" under "Practical Implementation of
 Trees" gives a practical example of this intricate
 scheme.

There is a fourth, less well-known model, presented by its author,
 Vadim Tropashko, who calls it the nested interval
 model, in a very interesting series of papers.[*] The idea behind this model is, to put it very simply, to
 encode the path of a given node with two numbers, which are interpreted
 as the numerator and the denominator of a rational number (a
 fraction to those uncomfortable with the vocabulary
 of mathematics) instead of an interval. Unfortunately, this model is
 heavy on computations and stored procedures and, while it looks
 promising for a future implementation of good tree-handling functions
 (perhaps the explode() operator) in
 a DBMS, it is in practice somewhat difficult to implement and not the
 fastest you can do, which is why I shall focus on the three
 aforementioned models.
To keep in tone with our general theme, and to generate a
 reasonable amount of data, I have created a test database of the
 organizations of the various armies that were opposed in 1815 at the
 famous battle of Waterloo in Belgium, near Brussels[†] (known as orders of battle), which
 describe the structure of the Anglo-Dutch, Prussian, and French armies
 involved—corps, divisions, and brigades down to the level of the
 regiments. I use this data, and mostly the descriptions of the various
 units and the names of their commanders, as the basis for many of the
 examples that you’ll see in this chapter.
I must hasten to say that the point of what follows in this
 chapter is to demonstrate various ways to walk hierarchies and that the
 design of my tables is, to say the least, pretty slack. Typically, a
 proper primary key for a fighting unit should be an understandable and
 standardized code, not a description that may suffer from data entry
 errors. Please understand that any reference to a surrogate id is indeed shorthand for an implicit, sound
 primary key.
The main difficulty with hierarchies is that there is no “best
 representation.” When our interest is mostly confined to the ancestors
 of a few elements (a bottom-up walk), either connect by or the recursive with is, at least functionally and in terms of
 performance, sufficiently satisfactory. However, if we scratch the
 surface, connect by in particular is
 of course a somewhat ugly, non-relational, procedural implementation, in
 the sense that we can only move gradually from one row to the next one.
 It is much less satisfactory when we want to return either a bottom-up
 hierarchy for a very large number of items, or when we need to return a
 very large number of descendants in a top-down walk. As is so often the
 case with SQL, the ugliness that you can hide with a 14-row table
 becomes painfully obvious when you are dealing with millions, not to say
 billions, of rows, and that nice little SQL trick now shows its limits
 in terms of performance.
My example table, which contains a little more than 800 rows, is a
 bit larger than the usual examples, although it is in no way comparable
 to what you can regularly find in the industry. However, it is big
 enough to point out the strengths and weaknesses of the various
 models.
Important
The SQL implementation of trees is DBMS dependent; use what your
 DBMS has to offer.

Practical Implementation of Trees

 The following subsections provide examples of each of the
 three hierarchy models. In each case, rows have been inserted into the
 example tables in the same order (ordered by commander) in an attempt to divorce the
 physical order of the rows from the expected result. Remember that the
 design is questionable, and that the purpose is to show in as simple a
 way as possible how to handle trees according to the model under
 discussion.
Adjacency Model

The following table describes the hierarchical organization of
 an army using the adjacency model . The table name I’ve chosen to use is, appropriately
 enough, ADJACENCY_MODEL. Each row
 in the table describes a military unit. The parent_id points upward in the tree to the
 enclosing unit:
 Name Null? Type
 ------------------------------- -------- --------------
 ID NOT NULL NUMBER
 PARENT_ID NUMBER
 DESCRIPTION NOT NULL VARCHAR2(120)
 COMMANDER VARCHAR2(120)

Table ADJACENCY_MODEL has
 three indexes: a unique index on id
 (the primary key), an index on parent_id, and an index on commander. Here are a few sample lines from
 ADJACENCY_MODEL:
 ID PARENT_ID DESCRIPTION COMMANDER
 --- --------- ---------------------------- -----------------------------
 435 0 French Armée du Nord of 1815 Emperor Napoleon Bonaparte
 619 435 III Corps Général de Division Dominique
 Vandamme
 620 619 8th Infantry Division Général de Division Baron
 Etienne-Nicolas Lefol
 621 620 1st Brigade Général de Brigade Billard
 (d.15th)
 622 621 15th Rgmt Léger Colonel Brice
 623 621 23rd Rgmt de Ligne Colonel Baron Vernier
 624 620 2nd Brigade Général de Brigade Baron
 Corsin
 625 624 37th Rgmt de Ligne Colonel Cornebise
 626 620 Division Artillery
 627 626 7/6th Foot Artillery Captain Chauveau

Materialized Path Model

Table MATERIALIZED_PATH_MODEL stores the same
 hierarchy as ADJACENCY_MODEL but
 with a different representation. The (id,
 parent_id) pair of columns associating adjacent nodes is
 replaced with a single materialized_path column that records the
 full “ancestry” of the current row:
 Name Null? Type
 ----------------------------------- -------- ----------------
 MATERIALIZED_PATH NOT NULL VARCHAR2(25)
 DESCRIPTION NOT NULL VARCHAR2(120)
 COMMANDER VARCHAR2(120)

Table MATERIALIZED_PATH_MODEL
 has two indexes, a unique index on materialized_path (the primary key), and an
 index on commander. In a real case,
 the choice of the path as the primary key is, of course, a very poor
 one, since people or objects rarely have as a defining characteristic
 their position in a hierarchy. In a proper design, there should be at
 least some kind of id, as in table
 ADJACENCY_MODEL. I have suppressed
 it simply because I had no use for it in my limited tests.
However, my questionable choice of materialized_path as the key was also made
 with the idea of checking in that particular case the benefit of the
 special implementations discussed in Chapter 5, in particular, what happens
 when the table that describes a tree happens to map the tree structure
 of an index? In fact, in this particular example such mapping makes no
 difference.
Here are the same sample lines as in the adjacency model, but
 with the materialized path:
 MATERIALIZED_PATH DESCRIPTION COMMANDER
 ----------------- ---------------------------- --------------------------
 F French Armée du Nord of 1815 Emperor Napoleon Bonaparte
 F.3 III Corps Général de Division
 Dominique Vandamme
 F.3.1 8th Infantry Division Général de Division Baron
 Etienne-Nicolas Lefol
 F.3.1.1 1st Brigade Général de Brigade Billard
 (d.15th)
 F.3.1.1.1 15th Rgmt Léger Colonel Brice
 F.3.1.1.2 23rd Rgmt de Ligne Colonel Baron Vernier
 F.3.1.2 2nd Brigade Général de Brigade Baron
 Corsin
 F.3.1.2.1 37th Rgmt de Ligne Colonel Cornebise
 F.3.1.3 Division Artillery
 F.3.1.3.1 7/6th Foot Artillery Captain Chauveau

Nested Sets Model (After Celko)

With the nested set model , we have two columns, left_num and right_num, which describe how each row
 relates to other rows in the hierarchy. I’ll show shortly how those
 two numbers are used to specify a hierarchical position:
 Name Null? Type
 ----------------------------------- -------- -------------
 DESCRIPTION VARCHAR2(120)
 COMMANDER VARCHAR2(120)
 LEFT_NUM NOT NULL NUMBER
 RIGHT_NUM NOT NULL NUMBER

Table NESTED_SETS_MODEL has a
 composite primary key, (left_num,
 right_num) plus an index on
 commander. As with the materialized
 path model, this is a poor choice but it is adequate for our present
 tests.
It is probably time now to explain how the mysterious numbers,
 left_num and right_num, are obtained. Basically, one
 starts from the root of the tree, assigning 1 to left_num for the root node. Then all child
 nodes are recursively visited, as shown in Figure 7-1, and a counter
 increases at each call. You can see the
 counter on the line in the figure. It begins with 1 for the root node and increases by one as
 each node is visited.
[image: How nested sets numbers are assigned]

Figure 7-1. How nested sets numbers are assigned

Say that we visit a node for the very first time. For instance,
 in the example of Figure
 7-1, after having assigned the integer 1 to the left_num value of the 1st
 Corps node, we encounter (for the first time) the node
 1st British Guards Division. We increase our
 counter and assign 2 to left_num. Then we visit the node’s children,
 encountering for the first time 1st Guards
 Brigade and assigning the value of our counter, 3 at this stage, to left_num. But this node, on this example,
 has no child. Because there is no child, we increment our counter and
 assign its value to right_num,
 which in this case takes the value 4. Then we move on to the node’s sibling,
 2nd Guards Brigade. It is the same story with
 this sibling. Finally, we return—our second visit—to the parent node
 1st British Guards Division and can assign the
 new value of our counter, which has now reached 7, to its right_num. We then proceed to the next
 sibling, 3rd Anglo-German Division, and so
 on.
As mentioned earlier, you can see that the [left_num, right_num] pair of any node is enclosed
 within the [left_num, right_num] pair of any of its
 ascendants—hence the name of nested sets. Since,
 however, we have three independent trees (the Anglo-Dutch, Prussian,
 and French armies), which is called in technical terms a
 forest, I have had to create an artificial top
 level that I have called Armies of
 1815. Such an artificial top level is not required by the
 other models.
Here is what we get from our example after having computed all
 numbers:
 DESCRIPTION COMMANDER LEFT_NUM RIGHT_NUM
 ---------------------------- -------------------------- -------- ----------
 Armies of 1815 1 1622
 French Armée du Nord of 1815 Emperor Napoleon Bonaparte 870 1621
 III Corps Général de Division 1237 1316
 Dominique Vandamme
 8th Infantry Division Général de Division Baron 1238 1253
 Etienne-Nicolas Lefol
 1st Brigade Général de Brigade Billard 1239 1244
 (d.15th)
 15th Rgmt Léger Colonel Brice 1240 1241
 23rd Rgmt de Ligne Colonel Baron Vernier 1242 1243
 2nd Brigade Général de Brigade Baron 1245 1248
 Corsin
 37th Rgmt de Ligne Colonel Cornebise 1246 1247
 Division Artillery 1249 1252
 7/6th Foot Artillery Captain Chauveau 1250 1251

The rows in our sample that are at the bottom level in the
 hierarchy can be spotted by noticing that right_num is equal to left_num + 1.
The author of this clever method claims that it is much better
 than the adjacency model because it operates on sets and that is what
 SQL is all about. This is perfectly true, except that SQL is all about
 unbounded sets, whereas his method relies on finite sets, in that you
 must count all nodes before being able to assign the right_num value of the root. And of course,
 whenever you insert a node somewhere, you must renumber both the
 left_num and right_num values of all the nodes that
 should be visited after the new node, as well as the right_num value of all its ascendants. The
 necessity to modify many other items when you insert a new item is
 exactly what happens when you store an ordered list into an array: as
 soon as you insert a new value, you have to shift, on average, half
 the array. The nested set model is imaginative, no doubt, but a
 relational nightmare, and it is difficult to imagine worse in terms of
 denormalization. In fact, the nested sets model is a pointer-based
 solution, the very quagmire from which the relational approach was
 designed to escape.

Walking a Tree with SQL

 In order to check efficiency and performance, I have
 compared how each model performed with respect to the following two
 problems:
	To find all the units under the command of the French general
 Dominique Vandamme (a top-down query), if possible as an indented
 report (which requires keeping track of the depth within the tree)
 or as a simple list. Note that in all cases we have an index on the
 commander’s name. I refer to this problem as the Vandamme
 query.

	To find, for all regiments of Scottish Highlanders, the
 various units they belong to, once again with and without proper
 indentation (a bottom-up query). We have no index on the names of
 units (column description in the
 tables), and our only way to spot Scottish Highlanders is to look
 for the Highland string in the
 name of the unit, which of course means a full scan in the absence
 of any full-text indexing. I refer to this problem as the
 Highlanders query.

To ensure that the only variation from test to test was in the
 model used, my comparisons are all done using the same DBMS, namely
 Oracle.
Top-Down Walk: The Vandamme Query

In the Vandamme query, we start with the commander of
 the French Third Corps, General Vandamme, and want to display in an
 orderly fashion all units under his command. We don’t want a simple
 list: the structure of the army corps must be clear, as the corps is
 made of divisions that are themselves made of brigades that are
 themselves usually composed of two regiments.
Adjacency model

Writing the Vandamme query with the adjacency
 model is fairly easy when using Oracle’s connect by operator. All you have to
 specify is the node you wish to start from (start with) and how each two successive
 rows returned relate to each other (connect
 by < a column of the current
 row > = prior
 < a column of the previous
 row >, or
 connect by < a
 column of the previous row > = prior < a column of
 the current row >, depending on whether you are walking
 down or up the tree). For indentation, Oracle maintains a
 pseudo-column named level that
 tells you how many levels away from the starting point you are. I am
 using this pseudo-column and left-padding the description with as many spaces as the
 current value of level. My query
 is:
 select lpad(description, length(description) + level) description,
 commander
 from adjacency_model
 connect by parent_id = prior id
 start with commander = 'Général de Division Dominique Vandamme'

And the results are:
 DESCRIPTION COMMANDER
 ------------------------------- ---
 III Corps Général de Division Dominique Vandamme
 8th Infantry Division Général de Division Baron Etienne-Nicolas Lefol
 2nd Brigade Général de Brigade Baron Corsin
 37th Rgmt de Ligne Colonel Cornebise
 1st Brigade Général de Brigade Billard (d.15th)
 23rd Rgmt de Ligne Colonel Baron Vernier
 15th Rgmt Léger Colonel Brice
 ...
 10th Infantry Division Général de Division Baron Pierre-Joseph Habert
 2nd Brigade Général de Brigade Baron Dupeyroux
 70th Rgmt de Ligne Colonel Baron Maury
 22nd Rgmt de Ligne Colonel Fantin des Odoards
 2nd (Swiss) Infantry Rgmt Colonel Stoffel
 1st Brigade Général de Brigade Baron Gengoult
 88th Rgmt de Ligne Colonel Baillon
 34th Rgmt de Ligne Colonel Mouton
 Division Artillery
 18/2nd Foot Artillery Captain Guérin

 40 rows selected.

Now, what about the other member in the adjacency family, the
 recursive with
 statement?[*] With this model, a recursive-factorized statement is
 defined, which is made of the union (the union
 all, to be precise) of two select statements:
	The select that defines
 our starting point, which in this particular case is:
 select 1 level,
 id,
 description,
 commander
 from adjacency_model
 where commander = 'Général de Division Dominique Vandamme'

What is this solitary 1
 for? It represents, as the alias indicates, the depth in the
 tree. In contrast to the Oracle connect
 by implementation, this DB2 implementation has no
 system pseudo-variable to tell us where we are in the tree. We
 can compute our level, however, and I’ll explain more about that
 in just a moment.

	The select which
 defines how each child row relates to its parent row, as it is
 returned by this very same query that we can call, with a touch
 of originality, recursive_query:
 select parent.level + 1,
 child.id,
 child.description,
 child.comander
 from recursive_query parent,
 adjacency_model child
 where parent.id = child.parent_id

Notice in this query that we add 1 to parent.level. Each execution of this
 query represents a step down the tree. For each step down the
 tree, we increment our level, thus keeping track of our
 depth.

All that’s left is to fool around with functions to nicely
 indent the description, and here is our final query:
 with recursive_query(level, id, description, commander)
 as (select 1 level,
 id,
 description,
 commander
 from adjacency_model
 where commander = 'Général de Division Dominique Vandamme'
 union all
 select parent.level + 1,
 child.id,
 child.description,
 child.commander
 from recursive_query parent,
 adjacency_model child
 where parent.id = child.parent_id)
 select char(concat(repeat(' ', level), description), 60) description,
 commander
 from recursive_query

Of course, you have to be a real fan of the recursive with to be able to state without blushing
 that the syntax here is natural and obvious. However, it is not too
 difficult to understand once written; and it’s even rather
 satisfactory, except that the query first returns General Vandamme
 as expected, but then all the officers directly reporting to him,
 and then all the officers reporting to the first one at the previous
 level, followed by all officers reporting to the second one at the
 previous level, and so on. The result is not quite the nice
 top-to-bottom walk of the connect
 by, showing exactly who reports to whom. I’ll hasten to
 say that since ordering doesn’t belong to the relational theory,
 there is nothing wrong with the ordering that you get from with, but that ordering does raise an
 important question: in practice, how can we order the rows from a
 hierarchical query?
Ordering the rows from a hierarchical query using recursive
 with is indeed possible if, for
 instance, we make the not unreasonable assumption that one parent
 node never has more than 99 children and that the tree is not
 monstrously deep. Given these caveats, what we can do is associate
 with each node a number that indicates where it is located in the
 hierarchy—say 1.030801--to mean
 the first child (the two rightmost digits) of the eighth child (next
 two digits, from right to left) of the third child of the root node.
 This assumes, of course, that we are able to order siblings, and we
 may not always be able to assign any natural ordering to them.
 Sometimes it is necessary to arbitrarily assign an order to each
 sibling using, possibly, an OLAP function such as row_number() .
We can therefore slightly modify our previous query to
 arbitrarily assign an order to siblings and to use the
 just-described technique for ordering the result rows:
 with recursive_query(level, id, rank, description, commander)
 as (select 1,
 id,
 cast(1 as double),
 description,
 commander
 from adjacency_model
 where commander = 'Général de Division Dominique Vandamme'
 union all
 select parent.level + 1,
 child.id,
 parent.rank + ranking.sn / power(100.0, parent.level),
 child.description,
 child.commander
 from recursive_query parent,
 (select id,
 row_number() over (partition by parent_id
 order by description) sn
 from adjacency_model) ranking,
 adjacency_model child
 where parent.id =child.parent_id
 and child.id = ranking.id)
 select char(concat(repeat(' ', level), description), 60) description,
 commander
 from recursive_query
 order by rank

We might fear that the ranking query that appears as a recursive
 component of the query would be executed for each node in the tree
 that we visit, returning the same result set each time. This isn’t
 the case. Fortunately, the optimizer is smart enough not to execute
 the ranking query more than is
 necessary, and we get:
 DESCRIPTION COMMANDER
 ----------------------------- --
 III Corps Général de Division Dominique Vandamme
 10th Infantry Division Général de Division Baron Pierre-Joseph Habert
 1st Brigade Général de Brigade Baron Gengoult
 34th Rgmt de Ligne Colonel Mouton
 88th Rgmt de Ligne Colonel Baillon
 2nd Brigade Général de Brigade Baron Dupeyroux
 22nd Rgmt de Ligne Colonel Fantin des Odoards
 2nd (Swiss) Infantry Rgmt Colonel Stoffel
 70th Rgmt de Ligne Colonel Baron Maury
 Division Artillery
 18/2nd Foot Artillery Captain Guérin
 11th Infantry Division Général de Division Baron Pierre Berthézène
 ...
 23rd Rgmt de Ligne Colonel Baron Vernier
 2nd Brigade Général de Brigade Baron Corsin
 37th Rgmt de Ligne Colonel Cornebise
 Division Artillery
 7/6th Foot Artillery Captain Chauveau
 Reserve Artillery Général de Division Baron Jérôme Doguereau
 1/2nd Foot Artillery Captain Vollée
 2/2nd Rgmt du Génie

The result is not strictly identical to the connect by case, simply because we have
 ordered siblings by alphabetical order on the description column, while we didn’t order
 siblings at all with connect by
 (we could have ordered them by adding a special clause). But
 otherwise, the very same hierarchy is displayed.
While the result of the with query is logically equivalent to that
 of the connect by query, the
 with query is a splendid example
 of nightmarish, obfuscated SQL, which in comparison makes the
 five-line connect by query look
 like a model of elegant simplicity. And even if on this particular
 example performance is more than acceptable, one can but wonder with
 some anguish at what it might be on very large tables. Must we
 disregard the recursive with as a
 poor, substandard implementation of the superior connect by? Let’s postpone conclusions
 until the end of this chapter.
The ranking number we built in the recursive query is nothing
 more than a numerical representation of the materialized path. It is
 therefore time to check how we can display the troops under the
 command of General Vandamme using a simple materialized path
 implementation.

Materialized path model

Our query is hardly more difficult to write under the
 materialized path model —but for the level, which is derived from the path
 itself. Let’s assume just for an instant that we have at hand a
 function named mp_depth() that
 returns the number of hierarchical levels between the current node
 and the top of the tree. We can write a query as:
 select lpad(a.description, length(a.description)
 + mp_depth(...)) description,
 a.commander
 from materialized_path_model a,
 materialized_path_model b
 where a.materialized_path like b.materialized_path || '%'
 and b.commander = 'Général de Division Dominique Vandamme')
 order by a.materialized_path

Before dealing with the mp_depth(
) function, I’ll note a few traps.
 In my example, I have chosen to start the materialized path with
 A for the Anglo-Dutch army,
 P for the Prussian one, and
 F for the French one. That first letter is then
 followed by dot-separated digits. Thus, the 12th Dutch line
 battalion, under the command of Colonel Bagelaar, is A.1.4.2.3, while the 11th Régiment of
 Cuirassiers of Colonel Courtier is F.9.1.2.2. Ordering by materialized path
 can lead to the usual problems of alphabetical sorts of strings of
 digits, namely that 10.2 will be
 returned before 2.3; however, I
 should stress that, since the separator has a lower code (in ASCII
 at least) than 0, then the order
 of levels will be respected. The sort may not, however respect the
 order of siblings implied by the path. Does that matter? I don’t
 believe that it does because sibling order is usually information
 that can be derived from something other than the materialized path
 itself (for instance, brothers and sisters can be ordered by their
 birth dates, rather than by the path). Be careful with the approach
 to sorting that I’ve used here. The character encoding used by your
 database might throw off the results.
What about our mysterious mp_depth(
) function now? The hierarchical
 difference between any commander under General Vandamme and General
 Vandamme himself can be defined as the difference between the
 absolute levels (i.e., counting down from the root of the tree) of
 the unit commanded by General Vandamme and any of the underlying
 units. How then can we determine the absolute level? Well, by
 counting the dots.
To count the dots, the easiest thing to do is probably to
 start with suppressing them, with the help of
 the replace() function that you
 find in the SQL dialect of all major products. All you have to do
 next is subtract the length of the string
 without the dots from the length of the string
 with the dots, and you get exactly what you
 want, the dot-count:
 length((materialized_path) - length(replace(materialized_path, '.', ''))

If we check the result of our dot-counting algorithm for the
 author of the epigraph that adorns Chapter 6 (a cavalry colonel at the
 time), here is what we get:
 SQL> select materialized_path,
 2 length(materialized_path) len_w_dots,
 3 length(replace(materialized_path, '.', '')) len_wo_dots,
 4 length(materialized_path) -
 5 length(replace(materialized_path, '.', '')) depth,
 6 commander
 7 from materialized_path_model
 8 where commander = 'Colonel de Marbot'
 9 /

 MATERIALIZED_PATH LEN_W_DOTS LEN_WO_DOTS DEPTH COMMANDER
 ----------------- ---------- ----------- ---------- ------------------
 F.1.5.1.1 9 5 4 Colonel de Marbot

Et voilà.

Nested sets model

Finding all the units under the command of General
 Vandamme is very easy under the nested sets model, since the model
 requires us to have numbered our nodes in such a way that the
 left_num and right_num of a node bracket are the
 left_num and right_num of all descendants. All we have
 to write is:
 select a.description,
 a.commander
 from nested_sets_model a,
 nested_sets_model b
 where a.left_num between b.left_num and b.right_num
 and b.commander = 'Général de Division Dominique Vandamme'

All? Not quite. We have no indentation here. How do we get the
 level? Unfortunately, the only way we have to get the depth of a
 node (from which indentation is derived) is by counting how many
 nodes we have between that node and the root. There is no way to
 derive depth from left_num and
 right_num (in contrast to the
 materialized path model).
If we want to display an indented list under the nested sets
 model, then we must join a third time with our nested_sets_model table, for the sole
 purpose of computing the depth:
 select lpad(description, length(description) + depth) description,
 commander
 from (select count(c.left_num) depth,
 a.description,
 a.commander,
 a.left_num
 from nested_sets_model a,
 nested_sets_model b,
 nested_sets_model c
 where a.left_num between c.left_num and c.right_num
 and c.left_num between b.left_num and b.right_num
 and b.commander = 'Général de Division Dominique Vandamme'
 group by a.description,
 a.commander,
 a.left_num)
 order by left_num

The simple addition of the indentation requirement makes the
 query, as with (sic) the recursive with(
), somewhat illegible.

Comparing the Vandamme query under the various models

After having checked that all queries were returning
 the same 40 rows properly indented, I then ran each of the queries
 5,000 times in a loop (thus returning a total of 200,000 rows). I
 have compared the number of rows returned per second, taking the
 adjacency model as our 100-mark reference. You see the results in
 Figure 7-2.
[image: Performance comparison for the Vandamme query]

Figure 7-2. Performance comparison for the Vandamme query

As Figure 7-2
 shows, for the Vandamme query, the adjacency model, in which the
 tree is walked using connect by,
 outperforms the competition despite the procedural nature of
 connect by. The materialized path
 makes a decent show, but probably suffers from the function calls to
 compute the depth and therefore the indentation. The cost of a
 nicely indented output is even more apparent with the nested sets
 model, where the obvious performance killer is the computation of
 the depth through an additional join and a group by. One might cynically suggest
 that, since this model is totally hard-wired, static, and
 non-relational, we might as well go whole hog in ignoring relational
 design tenets and store the depth of each node relative to the root.
 Doing so would certainly improve our query’s performance, but at a
 horrendous cost in terms of maintenance.

Bottom-Up Walk: The Highlanders Query

As I said earlier, looking for the Highland string
 within the description attributes will necessarily lead to a full scan
 of the table. But let’s write our query with each of the models in
 turn, and then we’ll consider the resulting performance
 implications.
Adjacency model

The Highlanders query is very straightforward to write using
 connect by, and once again we use
 the dynamically computed level
 pseudo-column to indent our result properly. Note that level was previously giving the depth, and
 now it returns the height since it is always computed from our
 starting point, and that we now return the parent after the
 child:
 select lpad(description, length(description) + level) description,
 commander
 from adjacency_model
 connect by id = prior parent_id
 start with description like '%Highland%'

And here is the result that we get:
 DESCRIPTION COMMANDER
 ---------------------------------- --
 2/73rd (Highland) Rgmt of Foot Lt-Colonel William George Harris
 5th British Brigade Major-General Sir Colin Halkett
 3rd Anglo-German Division Lt-General Count Charles von Alten
 I Corps Prince William of Orange
 The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
 Wellington
 1/71st (Highland) Rgmt of Foot Lt-Colonel Thomas Reynell
 British Light Brigade Major-General Frederick Adam
 2nd Anglo-German Division Lt-General Sir Henry Clinton
 II Corps Lieutenant-General Lord Rowland Hill
 The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
 Wellington
 1/79th (Highland) Rgmt of Foot Lt-Colonel Neil Douglas
 8th British Brigade Lt-General Sir James Kempt
 5th Anglo-German Division Lt-General Sir Thomas Picton (d.18th)
 General Reserve Duke of Wellington
 The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
 Wellington
 1/42nd (Highland) Rgmt of Foot Colonel Sir Robert Macara (d.16th)
 9th British Brigade Major-General Sir Denis Pack
 5th Anglo-German Division Lt-General Sir Thomas Picton (d.18th)
 General Reserve Duke of Wellington
 The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
 Wellington
 1/92nd (Highland) Rgmt of Foot Lt-Colonel John Cameron
 9th British Brigade Major-General Sir Denis Pack
 5th Anglo-German Division Lt-General Sir Thomas Picton (d.18th)
 General Reserve Duke of Wellington
 The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
 Wellington

 25 rows selected.

The non-relational nature of connect
 by appears plainly enough: our result is not a relation,
 since we have duplicates. The name of the Duke of Wellington appears
 eight times, but in two different capacities, five times (as many
 times as we have Highland regiments) as commander-in-chief, and
 three as commander of the General Reserve. Twice—once as commander
 of the General Reserve and once as commander-in-chief—would have
 been amply sufficient. Can we easily remove the duplicates? No we
 cannot, at least not easily. If we apply a distinct, the DBMS will sort our result to
 get rid of the duplicate rows and will break the hierarchical order.
 We get a result that somehow answers the question. But you can take
 it or leave it according to the details of your requirements.

Materialized path model

The Highlanders query is slightly more difficult to
 write under the materialized path model . Identifying the proper rows and indenting them
 correctly is easy:
 select lpad(a.description, length(a.description)
 + mp_depth(b.materialized_path)
 - mp_depth(a.materialized_path)) description,
 a.commander
 from materialized_path_model a,
 materialized_path_model b
 where b.materialized_path like a.materialized_path || '%'
 and b.description like '%Highland%')

However, we have two issues to solve:
	We have duplicates, as with the adjacency model.

	The order of rows is not the one we want.

Paradoxically, the second issue is the reason why we can solve
 the first one easily; since we shall have to find a means of
 correctly ordering anyway, adding a distinct will break nothing in this case.
 How can we order correctly? As usual, by using the materialized path
 as our sort key. By adding these two elements and pushing the query
 into the from clause so as to be
 able to sort by materialized_path
 without displaying the column, we get:
 select description, commander
 from (select distinct lpad(a.description, length(a.description)
 + mp_depth(b.materialized_path)
 - mp_depth(a.materialized_path)) description,
 a.commander,
 a.materialized_path
 from materialized_path_model a,
 materialized_path_model b
 where b.materialized_path like a.materialized_path || '%'
 and b.description like '%Highland%')
 order by materialized_path desc

which displays:
 DESCRIPTION COMMANDER
 ---------------------------------- --
 1/92nd (Highland) Rgmt of Foot Lt-Colonel John Cameron
 1/42nd (Highland) Rgmt of Foot Colonel Sir Robert Macara (d.16th)
 9th British Brigade Major-General Sir Denis Pack
 1/79th (Highland) Rgmt of Foot Lt-Colonel Neil Douglas
 8th British Brigade Lt-General Sir James Kempt
 5th Anglo-German Division Lt-General Sir Thomas Picton (d.18th)
 General Reserve Duke of Wellington
 1/71st (Highland) Rgmt of Foot Lt-Colonel Thomas Reynell
 British Light Brigade Major-General Frederick Adam
 2nd Anglo-German Division Lt-General Sir Henry Clinton
 II Corps Lieutenant-General Lord Rowland Hill
 2/73rd (Highland) Rgmt of Foot Lt-Colonel William George Harris
 5th British Brigade Major-General Sir Colin Halkett
 3rd Anglo-German Division Lt-General Count Charles von Alten
 I Corps Prince William of Orange
 The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
 Wellington

 16 rows selected.

This is a much nicer and more compact result than is achieved
 with the adjacency model. However, I should point out that a
 condition such as:
 where b.materialized_path like a.materialized_path || '%'

where we are looking for a row in the table aliased by
 a, knowing the rows in the table
 aliased by b, is something that,
 generally speaking, may be slow because we can’t make efficient use
 of the index on the column. What we would like to do, to make
 efficient use of the index, is the opposite, looking for b.materialized_path knowing a.materialized_path. There are ways to
 decompose a materialized path into the list of the materialized
 paths of the ancestors of the node (see Chapter 11), but that operation is
 not without cost. On our sample data, the query we have here was
 giving far better results than decomposing the material path so as
 to perform a more efficient join with the materialized path of each
 ancestor. However, this might not be true against several million
 rows.

Nested sets model

Once again, what hurts this model is that the depth must be
 dynamically computed, and that computation is a rather heavy
 operation. Since the Highlanders query is a bottom-up query, we must
 take care not to display the artificial root node (easily identified
 by left_num = 1) that we have had
 to introduce. Moreover, I have had to hard-code the maximum depth
 (6) to be able to indent properly. In our display, top levels are
 more indented than bottom levels, which means that padding is
 inversely proportional to depth. Since the depth is difficult to
 get, defining the indentation as 6 -
 depth was the simplest way to achieve the required
 result.
As with the materialized path model, we have to reorder
 anyway, so we have no scruple about applying a distinct to get rid of duplicate rows.
 Here’s the query:
 select lpad(description, length(description) + 6 - depth) description,
 commander
 from (select distinct b.description,
 b.commander,
 b.left_num,
 (select count(c.left_num)
 from nested_sets_model c
 where b.left_num between c.left_num
 and c.right_num) depth
 from nested_sets_model a,
 nested_sets_model b
 where a.description like '%Highland%'
 and a.left_num between b.left_num and b.right_num
 and b.left_num > 1)
 order by left_num desc

This query displays exactly the same result as does the
 materialized path query in the preceding section.

Comparing the various models for the Highlanders
 query

I have applied the same test to the Highlanders query
 as to the Vandamme query earlier, running each of the queries 5,000
 times, with a minor twist: the adjacency model, as we have seen,
 returns duplicate rows that we cannot get rid of. My test returns
 5,000 times 25 rows for the adjacency model, and 5,000 times 16 rows
 with the other models, because they are the only rows of interest.
 If we measure performance as a simple number of rows returned by
 unit of time, with the adjacency model we are also counting many
 rows that we are not interested in. I have therefore added an
 adjusted adjacency model, for which performance is measured as the
 number of rows of interest—the rows returned by the other two
 models—per unit of time. The result is given in Figure 7-3.
It is quite obvious from Figure 7-3 that the adjacency
 model outperforms the two other models by a very wide margin before
 adjustment, and still by a very comfortable margin after adjustment.
 Also notice that the materialized path model is still faster than
 the nested sets model, but only marginally so.
[image: Performance comparison for the Highlanders query]

Figure 7-3. Performance comparison for the Highlanders query

We therefore see that, in spite of its procedural nature, the
 implementation of the connect by
 works rather well, both for top-down and bottom-up queries, provided
 of course that columns are suitably indexed. However, the return of
 duplicate rows in bottom-up queries when there are several starting
 points can prove to be a practical nuisance.
When connect by or a
 recursive with is not available,
 the materialized path model makes a good substitute. It is
 interesting to see that it performs better than the totally
 hard-wired nested sets model.
When designing tables to store hierarchical data, there are a
 number of mistakes to avoid, some of which are made in our
 example:
	The materialized path should in no way be the
 key, even if it is unique.
	It is true that strong hierarchies are not usually
 associated with dynamic environments, but you are not defined
 by your place in a hierarchy.

	The materialized path should not imply any
 ordering of siblings.
	Ordering does not belong to a relational model; it is
 simply concerned with the presentation of data. You must not
 have to change anything in other rows when you insert a new
 node or delete an existing one (which is probably the biggest
 practical reason, forgetting about all theoretical reasons,
 for not using the nested sets model). It is always easy to
 insert a node as the parents’ last child. You can order
 everything first by sorting on the materialized path of the
 parent, and then on whichever attribute looks suitable for
 ordering the siblings.

	The choice of the encoding is not totally
 neutral.
	The choice is not neutral because whether you must sort
 by the materialized path or by the parent’s materialized path,
 you must use that path as a sort key. The safest approach is
 probably to use numbers left padded with zeroes, for instance
 001.003.004.005 (note that
 if we always use three positions for each number, the
 separator can go). You might be afraid of the materialized
 path’s length; but if we assume that each parent never has
 more than 100 children numbered from 0 to 99, 20 characters
 allow us to store a materialized path for up to 10 levels, or
 trees containing up to 10010
 nodes—probably more than needed.

Important
Walking trees, whether down from the root or up from a leaf
 node, is by nature a sequential and therefore slow
 operation.

Aggregating Values from Trees

 Now that you know how to deal with trees, let’s look at
 how you can aggregate values held in tree structures. Most cases for the
 aggregation of values held in hierarchical structures fall into two
 categories: aggregation of values stored in leaf nodes and propagation of percentages across various levels in
 the tree.
Aggregation of Values Stored in Leaf Nodes

In a more realistic example than the one used to illustrate the
 Vandamme and Highlanders queries, nodes carry information—especially
 the leaf nodes. For instance, regiments should hold the number of
 their soldiers, from which we can derive the strength of every
 fighting unit.
Modeling head counts

If we take the same example we used previously,
 restricting it to a subset of the French Third Corps of General
 Vandamme and only descending to the level of brigades, a reasonably
 correct representation (as far as we can be correct) would be the
 tables described in the following subsections.
UNITS. Each row in the
 units table describes the various
 levels of aggregation (army corps, division, brigade) as in tables
 adjacency_model, materialized_path_models, or nested_sets_model, but without any
 attribute to specify how each unit relates to a larger unit:
 ID NAME COMMANDER
 -- -------------------------- ---
 1 III Corps Général de Division Dominique Vandamme
 2 8th Infantry Division Général de Division Baron Etienne-Nicolas Lefol
 3 1st Brigade Général de Brigade Billard
 4 2nd Brigade Général de Brigade Baron Corsin
 5 10th Infantry Division Général de Division Baron Pierre-Joseph Habert
 6 1st Brigade Général de Brigade Baron Gengoult
 7 2nd Brigade Général de Brigade Baron Dupeyroux
 8 11th Infantry Division Général de Division Baron Pierre Berthézène
 9 1st Brigade Général de Brigade Baron Dufour
 10 2nd Brigade Général de Brigade Baron Logarde
 11 3rd Light Cavalry Division Général de Division Baron Jean-Simon Domont
 12 1st Brigade Général de Brigade Baron Dommanget
 13 2nd Brigade Général de Brigade Baron Vinot
 14 Reserve Artillery Général de Division Baron Jérôme Doguereau

Since the link between units is no longer stored in this
 table, we need an additional table to describe how the different
 nodes in the hierarchy relate to each other.
UNIT_LINKS_ADJACENCY. We
 may use the adjacency model once more, but this time links between
 the various units are stored separately from other attributes, in an
 adjacency list, in other words a list that
 associates to the (technical) identifier of each row, id, the identifier of the parent row. Such
 a list isolates the structural information. Our unit_links_adjacency table looks like
 this:
 ID PARENT_ID
 ---------- ----------
 2 1
 3 2
 4 2
 5 1
 6 5
 7 5
 8 1
 9 8
 10 8
 11 1
 12 11
 13 11
 14 1

UNIT_LINKS_PATH. But you
 have seen that an adjacency list wasn’t the only way to describe the
 links between the various nodes in a tree. Alternatively, we may as
 well store the materialized path, and we can put that into the
 unit_links_path table:
 ID PATH
 ---------- -----------------
 1 1
 2 1.1
 3 1.1.1
 4 1.1.2
 5 1.2
 6 1.2.1
 7 1.2.2
 8 1.3
 9 1.3.1
 10 1.3.2
 11 1.4
 12 1.4.1
 13 1.4.2
 14 1.5

UNIT_STRENGTH. Finally, our
 historical source has provided us with the number of men in each of
 the brigades—the lowest unit level in our sample. We’ll put that
 information into our unit_strength table:
 ID MEN
 ---------- ----------
 3 2952
 4 2107
 6 2761
 7 2823
 9 2488
 10 2050
 12 699
 13 318
 14 152

Computing head counts at every level

With the adjacency model, it is typically quite easy
 to retrieve the number of men we have recorded for the third corps;
 all we have to write is a simple query such as:
 select sum(men)
 from unit_strength
 where id in (select id
 from unit_links_adjacency
 connect by prior id = parent_id
 start with parent_id = 1)

Can we, however, easily get the head count at each level, for
 example, for each division (the battle unit composed of two
 brigades) as well? Certainly, in the very same way, just by changing
 the starting point—using the identifier of each division each time
 instead of the identifier of the French Third Corps.
We are now facing a choice: either we have to code
 procedurally in our application, looping on all fighting units and
 summing up what needs to be summed up, or we have to go for the full
 SQL solution, calling the query that computes the head count for
 each and every row returned. We need to slightly modify the query so
 as to return the actual head count each time the value is directly
 known, for example, for our lowest level, the brigade. For
 instance:
 select u.name,
 u.commander,
 (select sum(men)
 from unit_strength
 where id in (select id
 from unit_links_adjacency
 connect by parent_id = prior id
 start with parent_id = u.id)
 or id = u.id) men
 from units u

It is not very difficult to realize that we shall be hitting
 again and again the very same rows, descending the very same tree
 from different places. Understandably, on large volumes, this
 approach will kill performance. This is where the procedural nature
 of connect by, which leaves us
 without a key to operate on (something I pointed out when I could
 not get rid of duplicates without destroying the order I wanted),
 leaves us no other choice than to adopt procedural processing when
 performance becomes a critical issue; “for all they that take the
 procedure shall perish with the procedure.”
We are in a slightly better position with the materialized
 path here, if we are ready to allow a touch of black magic that I
 shall explain in Chapter 11.
 I have already referred to the explosion of
 links; it is actually possible, even if it is not a pretty sight, to
 write a query that explodes unit_links_path. I have called this view
 exploded_links_path and here is
 what it displays when it is queried:
 SQL> select * from exploded_links_path;

 ID ANCESTOR DEPTH
 ---------- ---------- ----------
 14 1 1
 13 1 2
 12 1 2
 11 1 1
 10 1 2
 9 1 2
 8 1 1
 7 1 2
 6 1 2
 5 1 1
 4 1 2
 3 1 2
 2 1 1
 4 2 1
 3 2 1
 7 5 1
 6 5 1
 10 8 1
 9 8 1
 13 11 1
 12 11 1

depth gives the generation
 gap between id and ancestor.
When you have this view, it becomes a trivial matter to sum up
 over all levels (bar the bottom one in this case) in the
 hierarchy:
 select u.name, u.commander, sum(s.men) men
 from units u,
 exploded_links_path el,
 unit_strength s
 where u.id = el.ancestor
 and el.id = s.id
 group by u.name, u.commander

which returns:
 NAME COMMANDER MEN
 -------------------------- -------------------------------------- -----
 III Corps Général de Division Dominique Vandamme 16350
 8th Infantry Division Général de Division Baron Etienne- 5059
 Nicolas Lefol
 10th Infantry Division Général de Division Baron Pierre 5584
 Joseph Habert
 11th Infantry Division Général de Division Baron Pierre 4538
 Berthézène
 3rd Light Cavalry Division Général de Division Baron Jean-Simon 1017
 Domont

(We can add, through a union, a join between units and unit_strength to see units displayed for
 which nothing needs to be computed.)
I ran the query 5,000 times to determine the numerical
 strength for all units, and then I compared the number of rows
 returned per unit time. As might be expected, the result shows that
 the adjacency model, which had so far performed rather well, bites
 the dust, as is illustrated in Figure 7-4.
[image: Performance comparison when computing the head count of each unit]

Figure 7-4. Performance comparison when computing the head count of
 each unit

Important
Simpler tree implementation sometimes performs quite well
 when computing aggregates.

Propagation of Percentages Across Different Levels

Must we conclude that with a materialized path and a
 pinch of adjacency where available we can solve anything more or less
 elegantly and efficiently? Unfortunately not, and our last example
 will really demonstrate the limits of some SQL implementations when it
 comes to handling trees.
For this case, let’s take a totally different example, and we
 will assume that we are in the business of potions, philters, and
 charms. Each of them is composed of a number of ingredients—and our
 recipes just list the ingredients and their percentage composition.
 Where is the hierarchy? Some of our recipes share a kind of “base
 philter” that appears as a kind of compound ingredient, as in Figure 7-5.
[image: Don’t try this at home]

Figure 7-5. Don’t try this at home

Our aim is, in order to satisfy current regulations, to display
 on the package of Philter #5 the names and proportions of all the
 basic ingredients. First, let’s consider how we can model such a
 hierarchy. In such a case, a materialized path would be rather
 inappropriate. Contrarily to fighting units that have a single,
 well-defined place in the army hierarchy, any ingredient, including
 compound ones such as Potion #9, can contribute to many preparations.
 A path cannot be an attribute of an ingredient. If we decide to
 “flatten” compositions and create a new table to associate a
 materialized path to each basic ingredient in a composition, any
 change brought to Potion #9 would have to ripple through potentially
 hundreds of formulae, with the unacceptable risk in this line of
 business of one change going wrong.
The most natural way to represent such a structure is therefore
 to say that our philter contains so much of powdered unicorn horn, so
 much of asphodel, and so much of Potion #9 and so forth, and to
 include the composition of Potion #9.
Figure 7-6
 illustrates one way we can model our database. We have a generic
 components table with two subtypes,
 recipes and basic_ingredients, and a composition table storing the quantity of a
 component (a recipe or a basic ingredient) that appears in each
 recipe.
[image: The model for recipes]

Figure 7-6. The model for recipes

However, Figure
 7-6’s design is precisely where an approach such as connect by becomes especially clunky.
 Because of the procedural nature of the connect by operator, we can include only two
 levels, which could be enough for the case of Figure 7-5, but not in a general
 case. What do I mean by including two levels? With connect by we have the visibility of two
 levels at once, the current level and the parent level, with the
 possible exception of the root level. For instance:
 SQL> select connect_by_root recipe_id root_recipe,
 2 recipe_id,
 3 prior pct,
 4 pct
 5 component_id
 6 from composition
 7 connect by recipe_id = prior component_id
 8 /

 ROOT_RECIPE RECIPE_ID PRIORPCT PCT COMPONENT_ID
 ----------- ---------- ---------- ------------ ------------
 14 14 5 3
 14 14 20 7
 14 14 15 8
 14 14 30 9
 14 14 20 10
 14 14 10 2
 15 15 30 14
 15 14 30 5 3
 15 14 30 20 7
 15 14 30 15 8
 15 14 30 30 9
 ...

In this example, root_recipe
 refers to the root of the tree. We can handle simultaneously the
 percentage of the current row and the percentage of the prior row, in
 tree-walking order, but we have no easy way to sum up, or in this
 precise case, to multiply values across a hierarchy, from top to
 bottom.
The requirement for propagating percentages across levels is,
 however, a case where a recursive with statement is particularly useful. Why?
 Remember that when we tried to display the underlings of General
 Vandamme we had to compute the level to know how deep we were in the
 tree, carrying the result from level to level across our walk. That
 approach might have seemed cumbersome then. But that same approach is
 what will now allow us to pull off an important trick. The great
 weakness of connect by is that at
 one given point in time you can only know two generations: the current
 row (the child) and its parent. If we have only two levels, if Potion
 #9 contains 15% of Mandragore and Philter #5 contains 30% of Potion
 #9, by accessing simultaneously the child (Potion #9) and the parent
 (Philter #5) we can easily say that we actually have 15% of 30%—in
 other words, 4.5% of Mandragore in Philter #5. But what if we have
 more than two levels? We may find a way to compute how much of each
 individual ingredient is contained in the final products with
 procedures, either in the program that accesses the database, or by
 invoking user-defined functions to store temporary results. But we
 have no way to make such a computation through plain SQL.
“What percentage of each ingredient does a formula contain?” is
 a complicated question. The recursive with makes answering it a breeze. Instead of
 computing the current level as being the parent level plus 1, all we
 have to do is compute the actual percentage as being the current
 percentage (how much Mandragore we have in Potion #9) multiplied by
 the parent percentage (how much Potion #9 we have in Philter #5). If
 we assume that the names of the components are held in the components table, we can write our recursive
 query as follows:
 with recursive_composition(actual_pct, component_id)
 as (select a.pct,
 a.component_id
 from composition a,
 components b
 where b.component_id = a.recipe_id
 and b.component_name = 'Philter #5'
 union all
 select parent.pct * child.pct,
 child.component_id
 from recursive_composition parent,
 composition child
 where child.recipe_id = parent.component_id)

Let’s say that the components
 table has a component_type column
 that contains I for a basic
 ingredient and R for a recipe. All
 we have to do in our final query is filter (with an
 f) recipes out, and, since the same basic
 ingredient can appear at various different levels in the hierarchy,
 aggregate per ingredient:
 select x.component_name, sum(y.actual_pct)
 from recursive_composition y,
 components x
 where x.component_id = y.component_id
 and x.component_type = 'I'
 group by x.component_name

As it happens, even if the adjacency model looks like a fairly
 natural way to represent hierarchies, its two implementations are in
 no way equivalent, but rather complementary. While connect by may superficially look easier
 (once you have understood where prior goes) and is convenient for displaying
 nicely indented hierarchies, the somewhat tougher recursive with allows you to process much more complex
 questions relatively easily—and those complex questions are the type
 more likely to be encountered in real life. You only have to check the
 small print on a cereal box or a toothpaste tube to notice some
 similarities with the previous example of composition analysis.
In all other cases, including that of a DBMS that implements a
 connect by, our only hope of
 generating the result from a “single SQL statement” is by writing a
 user-defined function, which has to be recursive if the DBMS cannot
 walk the tree.
Important
A more complex tree walking syntax may make a more complex
 question easier to answer in pure SQL.

While the methods described in this chapter can give reasonably
 satisfactory results against very small amounts of data, queries using
 the same techniques against very large volumes of data may execute “as
 slow as molasses.” In such a case, you might consider a
 denormalization of the model and a trigger-based “flattening” of the
 data. Many, including myself, frown upon denormalization. However, I
 am not recommending that you consider denormalizing for the oft-cited
 inherent slowness of the relational model, so convenient for covering
 up incompetent programming, but because SQL still lacks a truly
 adequate, scaleable processing of tree structures.

[*] First introduced in articles in DBMS
 Magazine (circa 1996), and much later developed in
 Trees and Hierarchies in SQL for Smarties
 (Morgan-Kauffman).

[*] Initially published on http://www.dbazine.com.

[†] Using, with his permission, the data compiled by Peter
 Kessler, at http://www.kessler-web.co.uk.

[*] Using this time the first product that implemented it,
 namely DB2.

Chapter 8. Weaknesses and Strengths

Recognizing and Handling Difficult Cases

No one can guarantee success in war, but only deserve it.
—Sir Winston Churchill (1874–1965)

There are a number of cases when one has
 either to fight on unfavorable ground, or to attack a
 formidable amount of data with feeble weapons. In this chapter, I am going
 to try to describe a number of these difficult cases; first to try to
 sketch some tactics to disentangle oneself with honor from a perilous
 situation, and, perhaps more importantly, to be able to recognize as soon
 as possible those options that may just lead us into a trap. In mechanics,
 the larger the number of moving parts, the greater the odds that something
 will break. This is an observation that applies to complex architectures
 as well. Unfortunately, snappy, exciting new techniques—or indeed
 revamped, dull old ones—often make us forget this important principle:
 keep things simple. Simpler often means faster and always means more
 robust. But simpler for the database doesn’t always mean simpler for the
 developer, and simplicity often requires more skills than
 complexity.
In this chapter, we shall first consider a case when a criterion
 that looks efficient proves rather weak but can be reinvigorated, and then
 we shall consider the dangers of abstract “persistency” layers and
 distributed systems. We shall finally look in some detail at a PHP/MySQL
 example showing the subtleties of combining flexibility with efficiency
 when a degree of freedom is left to the program user for the choice of
 search criteria.
Deceiving Criteria

 I already mentioned in Chapter 6 that in some queries we have a
 very selective combination of criteria that individually are not very
 selective. I noted that this was a rather difficult situation from which
 to achieve good performance.
Another interesting case, but one in which we are not totally
 helpless, is a criterion that at first sight looks efficient, that has
 the potential for becoming an efficient criterion, but that requires
 some attention to fulfill its potential. Credit card validation
 procedures provide a good example of such a criterion. As you may know,
 a credit card number encodes several pieces of information, including
 credit card type, issuer, and so on. By way of example, let’s look at
 the problem of achieving a first level of control for payments made at a
 toll road in one of the most visited Western European countries. This
 means checking a very large number of credit cards, supplied by a large
 number of international issuers, each with its own unique method of
 encoding.
Credit card numbers can have a maximum of 19 digits, with some
 exceptions, such as the cards issued by MasterCard (16 digits), Visa (16
 or 13), and American Express (15 digits), to mention just three
 well-known issuers. The first six digits in all cases indicate who the
 issuer is, and the last digit is a kind of checksum to spot any
 mistyping. A first, coarse level of control could be to check that the
 issuer is known, and that the checksum is correct. However the checksum
 algorithm is public knowledge (it can be found on the Internet) and can
 easily be faked. A more refined level of control also checks that the
 prefix of the card number belongs, for one given issuer, to a valid
 range of values for this issuer, together with an additional control on
 the number of digits in the card. In our case, we are provided with a
 list of about 200,000 valid prefixes of varying lengths.
How do we write the query to test a given card number against the
 valid ranges of values for the card’s issuer? The following is easy
 enough:
 select count(*)
 from credit_card_check
 where ? like prefix + '%'

The where ? indicates the card
 number to check and here + denotes
 string concatenation, often done via || or concat(
). We just have to index the prefix column, and we will get a full table
 scan each time.
Why is a full table scan happening? Haven’t we seen that an index
 was usable when we were addressing only the leftmost part of the key?
 True enough, but saying that the value we want to check is the leftmost
 part of the full key is not the same as saying, as here, that the
 full key is the leftmost part of the value we want
 to check. The difference may seem subtle, but the two cases are mirror
 images of each other.
Suppose that the credit card number to verify is 4000 0012 3456
 7899[*] Now imagine that our credit_card_checks table holds values such as
 312345, 3456 and 40001. We can see those three values as
 prefixes and, more or less implicitly, we see them as being in sorted
 order. First of all, they are in ascending order if they are stored as
 strings of characters, but not if they are stored as numbers. But there
 is yet more to worry about.
When we descend a tree (our index), we have a value to compare to
 the keys stored in the tree. If the value is equal to the key stored
 into the current node, we are done. Otherwise, we have to search a
 subtree that depends on whether our value is smaller or greater than
 that key. If we had a prefix of fixed length, we would have no
 difficulty: we should only take the suitable number of digits from our
 card number (the current prefix), and compare it to the prefixes stored
 in the index. But when the length of the prefix varies, which is our
 case, we must compare a different number of characters each time. This
 is not a task that a regular SQL index search knows how to
 perform.
Is there any way out? Fortunately, there is one. An operator such
 as like actually selects a range of
 values. If we want to check, say, that a 16-digit Visa card number is
 like 4000%, it
 actually means that we expect to find it between 4000000000000000 and 400099999999999. If we had a composite index on
 these lower and upper boundary numbers, then we could very easily check
 the card number by checking the index. That is, if all card numbers had
 16 digits. But a varying number of digits is a problem that is easy to
 solve. All cards have a maximum number of 19 digits. If we right-pad our
 Visa card number with three more 0s, thus bringing its total number of
 digits to 19, we can as validly check whether
 4000001234567899000 is between
 4000000000000000000 and
 400099999999999999.
Instead of storing prefixes, we need to have two columns: lower_bound and upper_bound. The first one, the lower_bound, is obtained by right-padding our
 prefix to the maximum length of 19 with 0s, and upper_bound is obtained by right-padding with
 9s. Granted, this is denormalization of a sort. However, this is a real
 read-only reference table, which makes our sin slightly more forgivable.
 We just have to index (lower_bound,
 upper_bound) and write our condition
 as the following to see our query fly:
 where substring(? + '0000000000000000000', 1, 19) between lower_bound
 and upper_bound

Many products directly implement an rpad(
) function for right-padding. When we have a variable-length
 prefix to check, the solution is to get back to a common access case—the
 index range scan.
Important
Try to express unusual conditions such as comparisons on a
 prefix or a part of a key in known terms of range condition; whenever
 possible, try to ensure that there is a lower and
 an upper bound.

Abstract Layers

 It is a common practice to create a succession of abstract
 layers over a suite of software primitives, ostensibly for
 maintenance reasons and software reuse. This is a worthy practice and
 provides superb material for exciting management presentations.
 Unfortunately, this approach can very easily be abused, especially when
 the software primitives consist of database accesses. Of course, such an
 industrial aspect of software engineering is usually associated with
 modern, object-oriented languages.
I am going to illustrate how not to
 encapsulate database accesses with some lines from a real-life program.
 Interestingly for a book entitled The Art of SQL,
 the following fragment of C# code (of questionable sharpness...) contains only bits of an
 SQL statement. It is nevertheless extremely relevant to our topic, for
 deplorable reasons.
1 public string Info_ReturnValueUS(DataTable dt,
2 string codeForm,
3 string infoTxt)
4 {
5 string returnValue = String.Empty ;
6 try
7 {
8 infoTxt = infoTxt.Replace("'","''");
9 string expression = ComparisonDataSet.FRM_CD
10 + " = '" + codeForm
11 + "' and " + ComparisonDataSet.TXT_US
12 + " = '" + infoTxt + "'" ;
13 DataRow[] drsAttr = dt.Select(expression);
14
15 foreach (DataRow dr in drsAttr)
16 {
17 if (dr[ComparisonDataSet.VALUE_US].ToString().ToUpper().Trim()
18 != String.Empty)
19 {
20 returnValue = dr[ComparisonDataSet.VALUE_US].ToString() ;
21 break;
22 }
23 }
24 }
25 catch (MyException myex)
26 {
27 throw myex ;
28 }
29 catch (Exception ex)
30 {
31 throw new MyException("Info_ReturnValueUS " + ex.Message) ;
32 }
33 return returnValue ;
34 }

There is no need to be a C# expert to grasp the purpose of the
 above method, at least in general terms. The objective is to return the
 text associated with a message code. That text is to be returned in a
 given language (in this case American English, as US suggests). This code is from a multilingual
 system, and there is a second, identical function, in which two other
 letters replace the letters U and
 S. No doubt when other languages will
 be required, the same lines of code will be copied as many times as we
 have different languages, and the suitable ISO code substituted for
 US each time. Will it ease
 maintenance, when each change to the program has to be replicated to
 umpteen identical functions (...but for the ISO code)? I may be forgiven
 for doubting it, in spite of my legendary faith in what exciting
 management presentations promise modern languages to deliver.
But let’s study the program a little more closely. The string expression in lines 9–12 is an example
 of shameless hardcoding , before being passed in line 13 to a Select() method that can reasonably be
 expected to perform a query. In fact, it would seem that two different
 types of elements are hardcoded: column names (stored in attributes
 ComparisonDataSet.FRM_CD and ComparisonDataSet.TXT_US--and here,
 apparently, there is one column per supported language, which is a
 somewhat dubious design) and actual values passed to the query (codeForm and infoTxt). Column names can only be hardcoded,
 but there should not be a very great number of different combinations of
 column names, so that the number of different queries that can be
 generated will necessarily be small and we will have no reason to worry
 about this. The same cannot be said of actual values: we may query as
 many different values as we have rows in the table; in fact we may even
 query more, generating queries that may return nothing. The mistake of
 hard-coding values from codeForm and
 infoTxt into the SQL statement is
 serious because this type of “give me the associated label” query is
 likely to be called a very high number of times. As it is written, each
 call will trigger the full mechanism of parsing, determining the best
 execution plan, and so on—for no advantage. The values should be passed
 to the query as bind variables--just like arguments
 are passed to a function.
The loop of lines 15–23 is no less interesting. The program is
 looking for the first value that is not empty in the dataset just
 returned—dare we say the first value that is not null? Why code into an external
 application something that the SQL language can do perfectly well? Why
 return from the server possibly many more rows than are required, just
 to discard them afterwards? This is too much work. The database server
 will do more work, because even if we exit the loop at the first
 iteration, it is quite common to pre-fetch rows in order to optimize
 network traffic. The server may well have already returned tens or
 hundreds of rows before our application program begins its first loop.
 The application server does more work too, because it has to filter out
 most of what the database server painstakingly returned. Needless to
 say, the developer has written more code than is required. It is
 perfectly easy to add a suitable condition to expression, so that unneeded rows are not
 returned. As the C# code generates the query, the server has no idea
 that we are interested only in the first non-null value and will simply
 do as instructed. If we were to try and check on the database side for a
 clue indicating wrongly written code, the only thing that may possibly
 hint at a problem in the code will be the multitude of nearly identical
 hardcoded statements. This anomaly is, however, only a part of the
 larger problem.
One can write very poor code in any language, from plain old COBOL
 down to the coolest object-oriented language. But the greater the degree
 of independence between each layer of software, the better written those
 layers must each be. The problem here is that a succession of software
 layers may be called. No matter how skilled the developer who assembles
 these layers into the overall module, the final performance will be
 constrained by the weakest layer.
The problem of the weakest layer is all the more perverse when you
 inherit bad libraries—as with inheriting bad genes, there is not much
 you can do about it. Rewriting inefficient low-level layers is rarely
 allowed by schedules or budgets. I once learned about a case in which a
 basic operator in a programming language had been “overloaded”
 (redefined) and was performing a database access each time it was used
 by unsuspecting developers! It is all the more complicated to correct
 such a situation, because it is quite likely that individual queries, as
 seen from the database server, will look like conspicuously plain
 queries, not like the bad sort of SQL query that scans millions of rows
 and attracts immediate attention.
Important
Cool database access libraries are not necessarily efficient
 libraries.

Distributed Systems

 Whether you refer to federated systems , a linked server , or a database link, the principle is the same: in
 distributed queries, you are querying data that is not physically
 managed inside the server (or database to the Oracle crowd) you are
 connected to. Distributed queries are executed through complex
 mechanisms, especially for remote updates, in which transaction
 integrity has to be preserved. Such complexity comes at a very heavy
 cost, of which many people are not fully aware.
By way of example, I have run a series of tests against an Oracle
 database, performing massive inserts and selects against a very simple
 local table, and then creating database links and timing the very same operations with each database
 link. I have created three different database links:
	Inter-process
	A link made by connecting through inter-process
 communications—typically what one might do to query data located
 in another database[*] on the same host. No network was involved.

	Loop-back
	A link connecting through TCP, but specifying the loop-back
 address (127.0.0.1) to limit our foray into the network
 layers.

	IP address
	A link specifying the actual IP address of the machine—but
 once again without really using a network, so there is no network
 latency involved.

The result of my tests, as it appears in Figure 8-1, is revealing. In my
 case, there is indeed a small difference linked to my using
 inter-process communications or TCP in loop-back or regular mode. But
 the big performance penalty comes from using a database link in the very
 first place. With inserts, the database link divides the number of rows
 inserted per second by five, and with selects it divides the number of
 rows returned per second by a factor of 2.5 (operating in each case on a
 row-by-row basis).
[image: The cost of faking being far away]

Figure 8-1. The cost of faking being far away

When we have to execute transactions across heterogeneous
 systems , we have no other choice than to use database links or
 their equivalent. If we want data integrity, then we need to use
 mechanisms that preserve data integrity, whatever the cost. There are,
 however, many cases when having a dedicated server is an architectural
 choice, typically for some reference data. The performance penalty is
 quite acceptable for the odd remote reference. It is quite likely that
 if at connection time some particular credentials are checked against a
 remote server, nobody will really notice, as long as the remote server
 is up. If, however, we are massively loading data into a local database
 and performing some validation check against a remote server for each
 row loaded locally, then you can be sure to experience extremely slow
 performance. Validating rows one by one is in itself a bad idea (in a
 properly designed database, all validation should be performed through
 integrity constraints): remote checks will be perhaps two or three times
 slower than the same checks being carried out on the same local
 server.
Distributed queries, involving data from several distinct servers,
 are also usually painful. First of all, when you send a query to a DBMS
 kernel, whatever that query is, the master of the game is the optimizer
 on that kernel. The optimizer will decide how to split the query, to
 distribute the various parts, to coordinate remote and local activity,
 and finally to put all the different pieces together. Finding the
 appropriate path is already a complicated-enough business when
 everything happens on the local server. We should take note that the
 notion of “distribution” is more logical than physical: part of the
 performance penalty comes from the unavailability of remote dictionary
 information in the local cache. The cost penalty will be considerably
 higher with two unrelated databases hosted by the same machine than with
 two databases hosted by two different servers but participating in a
 common federated database and sharing data dictionary
 information.
There is much in common between distributed and
 parallelized queries (when a query is split into a number of independent
 chunks that can be run in parallel) with, as you have seen, the
 additional difficulties of the network layers slowing down significantly
 some of the operations, and of the unavailability at one place of all
 dictionary information making the splitting slightly more hazardous.
 There is also an additional twist here: when sources are
 heterogeneous—for example when a query involves data coming from an
 Oracle database as well as data queried from an SQL Server database, all
 the information the optimizer usually relies on may not be available.
 Certainly, most products gather the same type of information in order to
 optimize queries. But for several reasons, they don’t work in a mutually
 cooperative fashion. First, the precise way each vendor’s optimizer
 works is a jealously guarded secret. Second, each optimizer evolves from
 version to version. Finally, the Oracle optimizer will never be able to
 take full advantage of SQL Server specifics and vice versa. Ultimately,
 only the greatest common denominator can be meaningfully shared between
 different product optimizers.
Even with homogeneous data sources, the course of action is
 narrowly limited. As we have seen, fetching one row across a network
 costs considerably more than when all processes are done locally. The
 logical inference for the optimizer is that it should not take a path
 which involves some kind of to and fro switching between two servers,
 but rather move as much filtering as close to the data as it can. The
 SQL engine should then either pull or push the resulting data set for
 the next step of processing. You have already seen in Chapters 4 and 6 that a correlated
 subquery was a dreadfully bad way to test for existence when there is no
 other search criterion, as in for instance, the following
 example:
 select customer_name
 from customers
 where exists (select null
 from orders,
 orderdetails
 where orders.customer_id = customers.customer_id
 and orderdetails.order_id = orders.order_id
 and orderdetails.article_id = 'ANVIL023')

Every row we scan from customers fires a subquery against orders and orderdetails.
It is of course even worse when customers happens to be hosted by one machine
 and orders and orderdetails by another. In such a case, given
 the high cost of fetching a single row, the reasonable solution looks
 like a transformation (in the ideal case, by the optimizer) of the above
 correlated subquery into an uncorrelated one, to produce the following
 instead:
 select customer_name
 from customers
 where customer_id in (select orders.customer_id
 from orders,
 orderdetails
 where orderdetails.article_id = 'ANVIL023'
 and orderdetails.order_id = orders.order_id)

Furthermore, the subquery should be run at the remote site. Note
 that this is also what should be performed even if you write the query
 as like this:
 select distinct customer_name
 from customers,
 orders,
 orderdetails
 where orders.customer_id = customers.customer_id
 and orderdetails.article_id = 'ANVIL023'
 and orders.order_id = orderdetails.order_id

Now will the optimizer choose to do it properly? This is another
 question, and it is better not to take the chance. But obviously the
 introduction of remote data sources narrows the options we have in
 trying to find the most efficient query. Also, remember that the
 subquery must be fully executed and all the data returned before the
 outer query can kick in. Execution times will, so to speak, add up,
 since no operation can be executed concurrently with another one.
The safest way to ensure that joins of two remote tables actually take place at the remote site is probably to
 create, at this remote site, a view defined as this join and to query
 the view. For instance, in the previous case, it would be a good idea to
 define a view vorders as:
 select orders.customer_id, orderdetails.article_id
 from orders,
 orderdetails
 where orderdetails.order_id = orders.order_id

By querying vorders we limit
 the risks of seeing the DBMS separately fetching data from all the
 remote tables involved in the query, and then joining everything
 locally. Needless to say, if in the previous case, customers and orderdetails were located on the same server
 and orders were located elsewhere, we would indeed be in a very perilous
 position.
Important
The optimizer works well with what it knows well: local data.
 Extensive interaction with remote data sinks performance.

Dynamically Defined Search Criteria

 One of the most common causes for awful visible
 performance (as opposed to the common dismal performance of batch
 programs, which can often be hidden for a while) is the use of
 dynamically defined search criteria. In practice, such criteria are a
 consequence of the dreaded requirement to “let the user enter the search
 criteria as well as the sort order via a screen interface.”
The usual symptoms displayed by this type of application is that
 many queries perform reasonably well, but that unfortunately from time
 to time a query that seems to be almost the same as a well-performing
 query happens to be very, very slow. And of course the problem is
 difficult to fix, since everything is so dynamic.
Dynamic-search applications are often designed as a two-step
 drill-down query, as in Figure
 8-2. Basically, a first screen is displayed to the user with a
 large choice of criteria and an array of possible conditions such as
 exclude or date between ... and These criteria are
 used to dynamically build a query that returns a list with some
 identifier and description, from which you can view all the associated
 details by selecting one particular item in the list.
[image: A typical multi-criteria search]

Figure 8-2. A typical multi-criteria search

When the same columns from the same tables are queried with
 varying search criteria, the key to success usually lays in a clever
 generation of SQL queries by the program that accesses the database. I
 am going to illustrate my point in detail with a very simple example, a
 movie database , and we shall only be concerned with returning a list of
 movie titles that satisfy a number of criteria. The environment used in
 this example is a widely popular combination, namely PHP and MySQL. Needless to say, the techniques shown in this
 chapter are in no way specific to PHP or to MySQL—or to movie
 databases.
Designing a Simple Movie Database and the Main Query

Our central table will be something such as the
 following:
 Table MOVIES
 movie_id int(10) (auto-increment)
 movie_title varchar(50)
 movie_country char(2)
 movie_year year(4)
 movie_category int(10)
 movie_summary varchar(250)

We certainly need a categories table (referenced by a foreign
 key on movie_category) to hold the
 different genres, such as Action,
 Drama, Comedy,
 Musical, and so forth. It can be argued that some
 movies sometimes span several categories, and a better design would
 involve an additional table representing a many-to-many relationship
 (meaning that one genre can be associated with several movies and that
 each movie can be associated with several genres as well), but for the
 sake of simplicity we shall admit that a single, main genre is enough
 for our needs in this example.
Do we need one table for actors and another for directors?
 Creating two tables would be a design mistake, because it is quite
 common to see actors-turned-directors, and there is no need to
 duplicate personal information. From time to time one even finds a
 movie directed by one of the lead actors.
We therefore need three more tables: people to store information such as name,
 first name, sex, year of birth, and so on; roles to define how people may contribute to
 a movie (actor, director, but also composer, director of photography,
 and the like); and movie_credits to
 state who was doing what in which movie. Figure 8-3 shows our complete
 movie schema.
[image: The movie database schema]

Figure 8-3. The movie database schema

Let’s suppose now that we want to let people search movies in
 our database by specifying either: words from the title, the name of
 the director, or up to three names of any of the actors. Following is
 the source of our prototype page, which I have built in HTML to act as
 our screen display:
 <html>
 <head>
 <title>Movie Database</title>
 </head>
 <body>
 <CENTER>
 <HR>

 Please fill the form to query our database and click on Search when you are done...

 <HR>

 <form action="display_query.php" method="post">
 <TABLE WIDTH="75%">
 <TR>
 <TD>Movie Title :</TD>
 <TD><input type="text" name="title"></TD>
 </TR>
 <TR>
 <TD>Director :</TD>
 <TD><input type="text" name="director"></TD>
 </TR>
 <TR>
 <TD>Actor :</TD>
 <TD><input type="text" name="actor1"></TD>
 </TR>
 <TR>
 <TD>Actor :</TD>
 <TD><input type="text" name="actor2"></TD>
 </TR>
 <TR>
 <TD>Actor :</TD>
 <TD><input type="text" name="actor3"></TD>
 </TR>
 <TR>
 <TD COLSPAN="2" ALIGN="CENTER">
 <HR>
 <input type="Submit" value="Search">
 <HR>
 </TD>
 </TR>
 </TABLE>
 </form>
 </CENTER>
 </body>
 </html>

This prototype page shows on screen as in Figure 8-4.
First, let me make a few remarks:
	Although we want to store the first and last names
 separately in our database (definitely more convenient if we want
 to generate a listing ordered by last name), we don’t want our
 entry form to look like a passport renewal form: we just want a
 single entry field for each individual.

	We want our query input values to be
 case-insensitive.

[image: The movie database search screen]

Figure 8-4. The movie database search screen

Certainly the thing not to do is to
 generate a query containing a criterion such as:
 and upper(<value entered for actor1>) =
 concat(upper(people_firstname), ' ', upper(people_name))

As shown in Chapter 3, the
 right part of the equality in such a criterion would prevent us from
 using any regular index we might have logically created on the name.
 Several products allow the creation of functional indexes and index
 the result of expressions, but the simplest and therefore best
 solution is probably as follows:
	Systematically store in uppercase any character column that
 is likely to be queried (we can always write a function to
 beautify it before output).

	Split the entry field into first name and (last) name before
 passing it to the query.

The first point simply means inserting upper(string) instead of string,
 which is easy enough. Keep the second point in mind for the time
 being: I’ll come back to it in just a bit.
If users were to fill all entry fields, all
 the time, then our resulting main query could be something such
 as:
 select movie_title, movie_year
 from movies
 inner join movie_credits mc1
 on mc1.movie_id = movies.movie_id
 inner join people actor1
 on mc1.people_id = actor1.people_id
 inner join roles actor_role
 on mc1.role_id = actor_role.role_id
 and mc2.role_id = actor_role.role_id
 and mc3.role_id = actor_role.role_id
 inner join movie_credits mc2
 on mc2.movie_id = movies.movie_id
 inner join people actor2
 on mc2.people_id = actor2.people_id
 inner join movie_credits mc3
 on mc3.movie_id = movies.movie_id
 inner join people actor3
 on mc3.people_id = actor3.people_id
 inner join movie_credits mc4
 on mc4.movie_id = movies.movie_id
 inner join people director
 on mc4.people_id = director.people_id
 inner join roles director_role
 on mc4.role_id = director_role.role_id
 where actor_role.role_name = 'ACTOR'
 and director_role.role_name = 'DIRECTOR'
 and movies.movie_title like 'CHARULATA%'
 and actor1.people_firstname = 'SOUMITRA'
 and actor1.people_name = 'CHATTERJEE'
 and actor2.people_firstname = 'MADHABI'
 and actor2.people_name = 'MUKHERJEE'
 and actor3.people_firstname = 'SAILEN'
 and actor3.people_name = 'MUKHERJEE'
 and director.people_name = 'RAY'
 and director.people_firstname = 'SATYAJIT'

Unfortunately, will somebody who can name the title, director
 and the three main actors of a film (most typically a movie buff)
 really need to use our database? This is very unlikely. The most
 likely search will probably be when a single field or possibly two, at
 most, will be populated. We must therefore anticipate blank fields,
 asking the question: what will we do when no value is passed?
A common way of coding one’s way out of a problematic situation
 like this is to keep the select list unchanged; then to join together
 all the tables that may intervene in one way or another, using
 suitable join conditions; and then to replace the straightforward
 conditions from the preceding example with a long series of:
 and column_name = coalesce(?, column_name)

where ? will be associated
 with the value from an entry field, and coalesce() is the function that returns the
 first one of its arguments that is non null. If a value is provided,
 then a filter is applied; otherwise, all values in the column pass the
 test.
All values? Not really; if a column contains a NULL, the condition for that column will
 evaluate to false. We cannot say that something we don’t know is equal
 to something we don’t know, even if it is the same something
 (nothing?). If one condition in our long series of conditions linked
 by and evaluates to false, the query will return nothing, which
 is certainly not what we want. There is a solution though, which is to
 write:
 and coalesce(column_name, constant) = coalesce(?, column_name, constant)

This solution would be absolutely perfect if only it did not
 mean forfeiting the use of any index on
 column_name when a parameter is specified.
 Must we sacrifice the correctness of results to performance, or
 performance to the correctness of results? The latter solution is
 probably preferable, but unfortunately both of them might also mean
 sacrificing our job, a rather unpleasant prospect.
A query that works in all cases, whatever happens, is quite
 difficult to write. The commonly adopted solution is to build such a
 query dynamically. What we can do in this example scenario is to store
 in a string everything up to the where and the fixed conditions on role
 names, and then to concatenate to this string the conditions which
 have been input by our program user—and only those conditions.
Important
A variable number of search criteria calls for dynamically
 built queries.

Assuming that a user searched our database for movies starring
 Amitabh Bachchan, the resulting, dynamically written query might be
 something like the following:
 select distinct movie_title, movie_year
 from movies
 inner join movie_credits mc1
 on mc1.movie_id = movies.movie_id
 inner join people actor1
 on mc1.people_id = actor1.people_id
 inner join roles actor_role
 on mc1.role_id = actor_role.role_id
 and mc2.role_id = actor_role.role_id
 and mc3.role_id = actor_role.role_id
 inner join movie_credits mc2
 on mc2.movie_id = movies.movie_id
 inner join people actor2
 on mc2.people_id = actor2.people_id
 inner join movie_credits mc3
 on mc3.movie_id = movies.movie_id
 inner join people actor3
 on mc3.people_id = actor3.people_id
 inner join movie_credits mc4
 on mc4.movie_id = movies.movie_id
 inner join people director
 on mc4.people_id = director.people_id
 inner join roles director_role
 on mc4.role_id = director_role.role_id
 where actor_role.role_name = 'ACTOR'
 and director_role.role_name = 'DIRECTOR'
 and actor1.people_firstname = 'AMITABH'
 and actor1.people_name = 'BACHCHAN'
 order by movie_title, movie_year

First, let me make two remarks:
	We have to make our select a select
 distinct. We do this because we keep the joins without
 any additional condition. Otherwise, as many rows would be
 returned for each movie as we have actors and directors recorded
 for the movie.

	It is very tempting when building the query to concatenate
 the values that we receive to the SQL text under construction
 proper, thus obtaining a query exactly as above. This is not, in
 fact, what we should do. I have already mentioned the subject of
 bind variables; it is now time to explain how they work. The
 proper course is indeed to build the query with placeholders such
 as ? (it depends on the
 language), and then to call a special function to
 bind the actual values to the placeholders.
 It may seem more work for the developer, but in fact it will mean
 less work for the DBMS engine. Even if we rebuild the query each
 time, the DBMS usually caches the statements it executes as a part
 of its standard optimization routines. If the SQL engine is given
 a query to process that it finds in its cache, the DBMS has
 already parsed the SQL text and the optimizer has already
 determined the best execution path. If we use placeholders, all
 queries that are built on the same pattern (such as searches for
 movies starring one particular actor) will use the same SQL text,
 irrespective of the actor’s name. All the setup is done, the query
 can be run immediately, and the end user gets the response
 faster.

Besides performance, there is also a very serious concern
 associated with dynamically built hardcoded queries, a security
 concern: such queries present a wide-open door to the technique known
 as SQL injection. What is SQL injection? Let’s
 say that we run a commercial operation, and that only subscribers are
 allowed to query the full database while access to movies older than
 1960 is free to everybody. Suppose that a malicious non-subscriber
 enters into the movie_title field
 something such as:
 X' or 1=1 or 'X' like 'X

When we simply concatenate entry fields to our query text we
 shall end up with a condition such as:
 where movie_title like 'X' or 1=1 or 'X' like 'X%'
 and movie_year < 1960

which is always true and will obviously filter nothing at all!
 Concatenating the entry field to the SQL statement means that in
 practice anybody will be able to download our full database without
 any subscription. And of course some information is more sensitive
 than movie databases. Binding variables protects from SQL injection.
 SQL injection is a very real security matter for anyone running an
 on-line database, and great care should be taken to protect against
 its malicious use.
Important
When using dynamically built queries, use parameter markers
 and pass values as bind variables, for both performance and security
 (SQL injection) reasons.

A query with prepared joins and dynamically
 concatenated filtering conditions executes very quickly when the
 tables are properly indexed. But there is nevertheless something that
 is worrisome. The preceding example query is a very complicated query,
 particularly when we consider the simplicity of both the output result
 and of what we provided as input.

Right-Sizing Queries

In fact, the complexity of the query is just one part of
 the issue. What happens, in the case of the final query in the
 preceding section, if we have not recorded the name of the director in
 our database, or if we know only the names of the two lead actors? The
 query will return no rows. All right, can we not use outer joins then,
 which return matching values when there is one and NULL when there is none?
Using outer joins might be a solution, except that we don’t know
 what exactly will be queried. What if we only have the name of the
 director in our database? In fact, we would need outer joins
 everywhere—and putting them everywhere is often, logically,
 impossible. We therefore have an interesting case, in which we are
 annoyed by missing information even if all of our attributes are
 defined as mandatory and we have absolutely no NULL values in the database, simply because
 our query so far assumes joins that may be impossible to
 satisfy.
In fact, in the particular case when only one actor name is
 provided, we need a query no more complicated than the
 following:
 select movie_title, movie_year
 from movies
 inner join movie_credits mc1
 on mc1.movie_id = movies.movie_id
 inner join people actor1
 on mc1.people_id = actor1.people_id
 inner join roles actor_role
 on mc1.role_id = actor_role.role_id
 where actor_role.role_name = 'ACTOR'
 and actor1.people_firstname = 'AMITABH'
 and actor1.people_name = 'BACHCHAN'
 order by movie_title, movie_year

This “tight-fit” query assumes nothing about our also knowing
 the name of the director, nor of a sufficient number of other actors,
 and hence there is no need for outer joins. Since we have already
 begun building our query dynamically, why not try to inject a little
 more intelligence in our building exercise, so as to obtain a query
 really built to order, exactly tailored to our needs? Our code will no
 doubt be more complicated. Is the complication worth it? The simple
 fact that we are now certain to return all the information available
 when given an actor’s name, even when we don’t know who directed a
 film, should be reason enough for an unqualified “yes.” But
 performance reasons also justify taking this step.
Nothing is as convincing as running a query in a loop a
 sufficient number of times to show the difference between two
 approaches: our “tight-fit” query is five times faster than the
 “one-size-fits-all” query. All other things aside, does it matter if
 our query executes in 0.001 second instead of 0.005 second? Not much,
 if our database is only queried now and then. But there may be a day
 when queries arrive at a rate higher than we can service and keep up
 with, and then we’ll have a problem. Queries will have to be queued,
 and the queue length will increase very quickly—as fast as the number
 of complaints about poor database performance. Simply put, going five
 times faster enables five times as many queries to be processed on the
 same hardware. (We will consider these issues in more detail in Chapter 9.)
Important
Matching criteria with dynamically built queries improves
 performance by minimizing joins, and eliminates the issue of missing
 values.

Wrapping SQL in PHP

Let’s first start our PHP page with a smattering of
 regular HTML before the real PHP code:
<html>
 <head>
 <title>Query result</title>
 </head>
 <body>
 <CENTER>
 <table width="80%">
 <TR><TH>Title</TH><TH>Year</TH><TR>

 <?php
 ...

(Our page would probably be nicer with a stylesheet....)
Once we have our handle that represents the connection to the
 database, the very first thing to do is to get the values that were
 submitted to the entry screen. Since everything is stored in uppercase
 in our database we can convert the user-entered values directly to
 uppercase too. This is of course something that can be done in the SQL
 code, but it costs nothing to do it in the PHP code:
 $title=strtoupper($_POST['title']);
 $director=strtoupper($_POST['director']);
 $actor1=strtoupper($_POST['actor1']);
 $actor2=strtoupper($_POST['actor2']);
 $actor3=strtoupper($_POST['actor3']);

We now have a technical problem linked to the implementation of
 PHP binding. Following is the process for binding variables
 in PHP:
	We first write ? in the
 place of every parameter we want to pass to the query.

	Then we call the bind_param(
) method that takes as its first argument a string
 containing as many characters as we have values to bind, each
 character telling the type of the parameter we pass (in this case
 it will always be s for
 string), then a variable number of parameters—one per each value
 we want to bind.

All parameters are identified by position (the same is true with
 JDBC, but not with all database systems and languages; for instance,
 you will refer to bind variables by name in an SQLJ program). But our
 main problem is the single call to bind_param(), which is very convenient when
 we know exactly how many parameters we have to bind, but is not so in
 our case here, in which we do not know in advance how many values a
 user will enter. It would be much more convenient in our case to have
 a method allowing us to loop and bind values one by one.
One way to bind a variable number of values, which is not
 necessarily the most elegant, is to loop on all the variables we have
 received from the form, check which ones actually contain something,
 and store each value in the subsequent positions of an array. We have
 no problem doing this with our example since all the values we may get
 are character strings. If we were expecting something else—for
 instance the year when a movie was first shown—the most sensible
 approach would probably be to treat such a value as a string inside
 the PHP code and to convert it to a number or date in the SQL
 code.
We can use a $paramcnt
 variable to count how many parameters were provided by the user of the
 form, and store the values into a $params array:
 $paramcnt=0;

 if ($title != "") {
 $params[$paramcnt] = $title;
 $paramcnt++;
 }

Things get a little more complicated with people names. Remember
 that we have decided that having a single field to enter a name was
 more user-friendly than having to enter the first and last names into
 two separate fields. However, comparing the string entered by the user
 to the concatenation of first name and last name in our people table would prevent the query from
 using the index on the last name and might, moreover, yield wrong
 results: if the user has mistakenly typed two spaces instead of one
 between first name and last name, for instance, we shall not find the
 person.
What we are therefore going to do is to split the entry field
 into first name and last name, assuming that the last name is the last
 word, and that the first name, which may be composed of 0, 1, or
 several words, is what precedes the last name. In PHP, we can easily
 write such a function which sets two parameters that are passed by
 reference:
 function split_name($string, &$firstname, &$lastname)
 {
 /*
 * We assume that the last name is the last element of the string,
 * and that we may have several first names
 */
 $pieces = explode(" ", $string);
 $parts = count($pieces);
 $firstnames = array_slice($pieces, 0, $parts - 1);
 $firstname = implode(" ", $firstnames);
 $lastname = $pieces[$parts - 1];
 }

This function will allow us to split $director into $dfn and $dn, $actor1 into $a1fn and $a1n and so on, everything being coded on
 the same model:
 if ($director != "") {
 /* Split firstname / name */
 split_name($director, $dfn, $dln);
 if ($dfn != "")
 {
 $params[$paramcnt] = $dfn;
 $paramcnt++;
 }
 $params[$paramcnt] = $dln;
 $paramcnt++;
 }

Once we have inspected our parameters, all we have to do is to
 build our query, being very careful to insert the parameter markers
 for the bind variables in exactly the same order as they will appear
 in the $params array:
 $query = "select movie_title, movie_year "
 ."from movies";
 /* Director was specified ? */
 if ($director != "")
 {
 $query = $query." inner join movie_credits mcd"
 ." on mcd.movie_id = movies.movie_id"
 ." inner join people director"
 ." on mcd.people_id = director.people_id"
 ." inner join roles director_role"
 ." on mcd.role_id = director_role.role_id";
 }
 /* Any actor was specified ? */
 if ($actor1.$actor2.$actor3 != "")
 {
 /*
 * First the join on the ROLES table
 */
 $query = $query." inner join roles actor_role";
 /*
 * Even if only one actor was specified, we may
 * not necessarily find the name in $actor1 so careful
 */
 $actcnt = 0;
 if ($actor1 != "")
 {
 if ($actcnt == 0)
 {
 $query = $query." on";
 }
 else
 {
 $query = $query." and";
 }
 $query = $query." mc1.role_id = actor_role.role_id";
 }
 if ($actor2 != "")
 {
 ...
 }
 if ($actor3 != "")
 {
 ...
 }
 /*
 * Then join on MOVIE_CREDITS and PEOPLE
 */
 if ($actor1 != "")
 {
 $query = $query." inner join movie_credits mc1"
 ." on mc1.movie_id = movies.movie_id"
 ." inner join people actor1"
 ." on actor1.people_id = mc1.people_id";
 }
 if ($actor2 != "")
 {
 ...
 }
 if ($actor3 != "")
 {
 ...
 }
 }
 /*
 * We are done with the FROM clause; we are using the old 1=1
 * trick to avoid checking each time whether it is the very
 * first condition or not - the latter case requires an 'and'.
 */
 $query = $query." where 1=1";
 /*
 * Be VERY careful to add parameters in the same order they were
 * stored into the $params array
 */
 if ($title != "")
 {
 $query = $query." and movies.movie_title like concat(?, '%')";
 }
 /* Director was specified ? */
 if ($director != "")
 {
 $query = $query." and director_role.role_name = 'DIRECTOR'";
 if ($dfn != "")
 {
 /*
 * Use like instead of regular equality for the first name, it will
 * work with some abbreviations or initials.
 */
 $query = $query
 ." and director.people_firstname like concat(?, '%')";
 }
 $query = $query." and director.people_name = ?";
 }
 if ($actor1.$actor2.$actor3 != "")
 {
 $query = $query." and actor_role.role_name = 'ACTOR'";
 if ($actor1 != "")
 {
 ...
 }
 if ($actor2 != "")
 {
 ...
 }
 if ($actor3 != "")
 {
 ...
 }
 }

Once our query is ready, we call the prepare() method, then bind our variables;
 this is where our code is not very pretty, since we can have between 1
 and 9 variables to bind and handle, and each variable must be handled
 separately:
 /* create a prepared statement */
 if ($stmt = $mysqli->prepare($query)) {
 /*
 * Bind parameters for markers
 *
 * This is the messiest part.
 * We can have anything between 1 and 9 parameters in all (all strings)
 */
 switch ($paramcnt)
 {
 case 1 :
 $stmt->bind_param("s", $params[0]);
 break;
 case ...
 ...
 break;
 case 9 :
 $stmt->bind_param("sssssssss", $params[0],
 $params[1],
 $params[2],
 $params[3],
 $params[4],
 $params[5],
 $params[6],
 $params[7],
 $params[8]);
 break;
 default :
 break;
 }

Et voilà! We are done and just have to execute the query and
 display the result:
 /* execute query */
 $stmt->execute();
 /* fetch values */
 $stmt->bind_result($mt, $my);
 while ($row = $stmt->fetch())
 {
 printf ("<tr><TD>%s</TD><TD>%d</TD></TR>\n", $mt, $my);
 }
 /* close statement */
 $stmt->close();
 }
 else
 {
 printf("Error: %s\n", $mysqli->sqlstate);
 }
 ?>
 </TABLE>
 </CENTER>

Obviously, the code here is significantly more complicated than
 if we had tried to have one single query.
It may seem surprising, after I have advocated pushing as much
 work as possible onto the DBMS side, to now find me defending the use
 of complicated code to build as simple a SQL statement as possible.
 Doing as much work on the SQL side as possible makes sense when it is
 work that has to be performed. But joining three
 times as many tables as are needed in the average query, with some of
 these useless joins not necessarily being very efficient (especially
 when they happen to be against complex views) makes no sense at
 all.
By intelligently building the query, we tightly control what is
 executed in terms of security, correctness of the result, and
 performance. Any simpler solution bears risks of sacrificing at least
 one of these aspects.
To summarize, there are at least three mistakes that are very
 commonly made in queries that take a variable number of search
 criteria:
	First of all, it is quite common to see the
 values against which the columns of the
 tables are compared being concatenated with the
 statement-in-making, thus resulting in a magnificent, totally
 hardcoded statement. Even where queries are supposed to be
 absolutely unpredictable, you usually find a few queries that are
 issued again and again by the users, with only the constants
 varying. Some constants are susceptible to a high degree of
 variability (such as entity identifiers, as opposed to date
 formats or even status codes). It isn’t much work to replace these
 constants by a parameter marker, the syntax of which depends on
 the language (for instance '?')
 and then to bind the actual value to this
 parameter marker. This will result in much less work for the
 server, which will not need to re-analyze the statement each time
 it is issued, and in particular will not need to determine each
 time a best execution plan, that will always
 be the same. And no user will be able to bypass any additional
 restriction you may want to add to the query, which means that by
 binding variables you will plug a serious security issue at the
 same time.

	A second mistake is usually to try to include in the query
 everything that may matter. It is not because
 a search criterion may refer to data stored
 in one table that this table must appear in
 the from clause. I have already
 alluded to this issue in the previous chapters, but the from clause should only contain the
 tables from which we return data, as well as the tables enabling
 us to join them together. As we have seen in Chapter 6, existence tests should
 be solved by subqueries—which are no more difficult to generate
 dynamically than a regular condition in a where clause.

	The most important mistake is the one-size-fits-all
 philosophy. Behind every generic query are usually hidden three or
 four families of queries. Typically, input data is made up of
 identifiers, status values, or some ranges of dates. The input
 values may be strong, efficient criteria, or weak ones, or indeed
 anything in between (sometimes an additional criterion may
 reinforce a weak one by narrowing the scope). From here, trying to
 build several alternate queries in an intelligent fashion, as in
 the various cases of Chapter
 6, is the only sound way out, even if it looks more
 complicated.

Important
More intelligence in the dynamic construction of an SQL
 statement makes for a more efficient SQL statement.

[*] An invalid card number, in case you were wondering... .

[*] Remember that what Oracle calls a
 database is what is known in most other
 database systems as a server.

Chapter 9. Multiple Fronts

Tackling Concurrency

Yet to their General’s Voice they soon obey’d Innumerable.
 Paradise Lost, Book I
—John Milton (1608–1674)

When we have a lot of sessions running
 concurrently, all accessing one database, we may encounter
 difficulties that can remain hidden when running single-user tests.
 Contention occurs, and locks may be held for unpredictable periods of
 time. This chapter discusses how to face the situation when users advance
 in overwhelming numbers.
There are several different issues associated with a large number of
 concurrent users. One of the most obvious is contention when updating
 (sometimes reading) data and the consequent requirement for locks at one
 level or another. But users are not only fighting for the right to modify
 bytes at one place in the system without any interference from others;
 they are also competing for processing power, access to disks, workspace
 in memory, and network bandwidth. Very often difficulties that are latent
 with a few users become blatant with many. Increases in the number of
 users are not always as smooth as one might expect them to be. Sudden
 increases can come through the meteoritic success of your company, but
 fast-paced increases more often happen through the gradual deployment of
 applications—or sometimes as a result of mergers or buyouts.
The Database Engine as a Service Provider

 You might be tempted to consider the DBMS as an
 intelligent and dedicated servant that rushes to forestall your
 slightest desire and bring data at the exact time when you need it.
 Reality is slightly less exalted than the intelligent servant model, and
 at times a DBMS looks closer to a waiter in a very busy restaurant. If
 you take your time to choose from the menu, chances are that the waiter
 will tell you “I’ll let you choose, and I’ll come back later to take
 your order” before disappearing for a long time. A DBMS is a service
 provider or, perhaps more precisely, a collection of service providers.
 The service is simply to execute some operation against the data,
 fetching it or updating it—and the service may be requested by many
 concurrent sessions at the same time. It is only when
 each session queries efficiently that the DBMS can
 perform efficiently.
The Virtues of Indexes

Let’s execute some fairly basic tests against a very simple
 table with three columns. The first two are integer columns (each
 populated with distinct values from 1 to 50,000), one being declared
 as the primary key and the second without an index. The third column
 (named label) is a text column
 consisting of random strings thirty to fifty characters long. If we
 generate random numbers between 1 and 50,000 and use these random
 numbers as query identifiers to return the label column, you might be
 surprised to discover that on any reasonably powerful machine, the
 following query:
 select label
 from test_table
 where indexed_column = random value

as well as this one:
 select label
 from test_table
 where unindexed_column = random value

provide virtually instant results. How is this possible? A query
 using an unindexed column should be much slower, surely? Actually, a
 50,000-row table is rather small, and if it has as few columns as is
 the case in our example, the number of bytes to scan is not that
 enormous, and a modern machine can perform the full scan very rapidly.
 We indeed have, on one hand, a primary key index search, and on the
 other hand, a full-table scan. What’s happening is that the difference
 between indexed and unindexed access is too small for a human to
 perceive.
To really test the benefit of an index, I have run our queries
 continuously for one minute, and then I have checked on how many
 queries I was able to process by unit of time. The result is
 reassuringly familiar: on the machine on which I ran the test, the
 query using the indexed column can be performed 5,000 times per
 second, while the query using the unindexed column can only be
 performed 25 times per second. A developer running single user tests
 may not really notice a difference, but there is one, and it is truly
 massive.
Important
Even sub-second response times sometimes hide major
 performance issues. Don’t trust unitary tests.

A Just-So Story

Continuing with the example from the preceding section,
 let’s have a look at what may very well happen in practice. Suppose
 that instead of being a number, the key of our table happens to be a
 string of characters. During development, somebody notices that a
 query has unexpectedly returned the wrong result. A quick
 investigation shows that the key column contains both uppercase and
 lowercase characters. Under pressure to make a quick fix, a developer
 modifies the where clause in the
 query and applies an upper()
 function to the key column—thus forfeiting the index. The developer
 runs the query, the correct result set is returned, and anyone other
 than a native of the planet Krypton cannot possibly notice any
 significant difference in response time. All appears to be for the
 best, and we can ship the code to production.
Now we have hordes of users, all running our query again, again
 and again. Chapter 2 makes the
 point that in our programs we should not execute queries inside loops,
 whether they are cursor loops or the more traditional
 for or while
 constructs. Sadly, we very often find queries nested inside loops on
 the result set of other queries, and as a result, our query can be run
 at a pretty high rate, even without having tens of thousands of
 concurrent users. Let’s see now what happens to our test table when we
 run the query at a high rate, with a set number of executions per unit
 of time, occurring at random intervals. When we execute our query at
 the relatively low rate of 500 per minute, everything appears normal
 whether we use the index or not, as you can see in Figure 9-1. All our queries
 complete in under 0.2 seconds, and nobody will complain.
[image: Response time of a simple query against a 50,000-row table, low query rate]

Figure 9-1. Response time of a simple query against a 50,000-row table,
 low query rate

We actually have to increase our execution rate 10 times, to a
 relatively high rate of 5,000 executions per minute, to notice in
 Figure 9-2 that we may
 occasionally have a slow response when we use the unindexed column as
 key. This, however, affects only a very low percentage of our queries.
 In fact, 97% of them perform in 0.3 seconds or less.
But at 5,000 queries per minute, we are unaware that we are
 tottering on the brink of catastrophe. If we push the rate up to a
 very high 10,000 executions per minute, you can see in Figure 9-3 that a very
 significant proportion of the queries will execute noticeably more
 slowly, some taking as long as 4 seconds to complete. If in another
 test we run the queries that use the index at the same high rate, all
 queries execute imperturbably in 0.1 seconds or less.
Of course, when some queries that used to run fast start to take
 much longer, users are going to complain; and other users who,
 unprompted, would otherwise have noticed nothing will probably grumble
 as well, out of sympathy. The database is slow—can’t it be tuned?
 Database administrators and system engineers will tweak parameters,
 gaining a few weeks of relief, until the evidence will finally impose
 itself, in all its glorious simplicity: we need a more powerful
 server.
[image: Response time of a simple query against a 50,000---row table, high query rate]

Figure 9-2. Response time of a simple query against a 50,000---row table,
 high query rate

[image: Response time of a simple query against a 50,000---row table, very high query rate]

Figure 9-3. Response time of a simple query against a 50,000---row table,
 very high query rate

Important
An increasing load may not cause performance problems, but may
 actually reveal them, suggesting program improvements as an
 alternative to upgrading the hardware.

Get in Line

One can take a fairly realistic view of a DBMS engine by
 imagining it to be like a post office staffed by a number of clerks
 serving customers with a wide array of requests—our queries.
 Obviously, a very big post office will have many counters open at the
 same time and will be able to serve several customers all at the same
 time. We may also imagine that young hypercaffeinated clerks will work
 faster than older, sedate, herbal-tea types. But we all know that what
 will make the biggest difference, especially at peak hours, is the
 requests actually presented by each customer. These will vary between
 the individual who has prepared the exact change to buy a stamp book
 and the one who inquires at length about the various rates at which to
 send a parcel to a remote country, involving the completion of customs
 forms, and so on. What is most irritating is of course when someone
 with a mildly complicated request spends several minutes looking for a
 purse when the moment for payment arrives. But fortunately, in post
 offices, you never encounter the case that is so frequent in real
 database applications: the man with 20 letters who joins the queue on
 20 separate successive occasions, buying only one stamp in each visit
 to the counter. It is important to understand that there are two
 components that determine how quickly one is served at the
 counter:
	The performance of, in our example, the clerk. In the case
 of a database application, this equates to a combination of
 database engine, hardware, and I/O subsystems .

	The degree of complexity of the request itself, and to a
 large extent how the request is presented, its lucidity and
 clarity, such that the clerk can easily understand the request,
 and accordingly make a quick and complete answer.

In the database world, the first component is the domain of
 system engineers and database administrators. The second component
 belongs squarely within the business requirements and development
 arena. The more complicated the overall system, the more important
 becomes the collaboration between the different parties involved when
 you want to get the best out of your hardware and software
 investment.
With the post-office image in mind, we can understand what
 happened in our query test. What matters is the ratio of the number of
 customers arriving (e.g., the rate of execution of queries), to the
 average time required to answer the query. As long as the rate of
 arrival is low enough to enable everyone to find a free counter,
 nobody will complain. However, as soon as customers arrive faster than
 they can be serviced, queues will start to lengthen, just as much for
 the fast queries as for the slow ones.
There is a threshold effect, very similar to what one of Charles
 Dickens’s characters says in David
 Copperfield:
Annual income twenty pounds, annual expenditure nineteen six,
 result happiness. Annual income twenty pounds, annual expenditure
 twenty pounds ought and six, result misery.

This can easily be demonstrated by running our two queries
 simultaneously, the one using the indexed column and the other using
 the unindexed column, at a rate of 5,000 times per second. The
 compound result of Figure
 9-4 is noticeably different from Figure 9-2, in which results
 were shown for the two queries running separately, not concurrently.
 As appears clearly from Figure
 9-4, the performance of the fast query has deteriorated because
 of the simultaneous presence of slow queries.
[image: Fast and slower queries running together, both at a high query rate]

Figure 9-4. Fast and slower queries running together, both at a high
 query rate

Important
System performance crashes when statements arrive faster than
 they can be serviced; all queries are affected, not only slow
 ones.

Concurrent Data Changes

 When you change data, the task of maintaining a good level
 of performance becomes even more difficult as the level of activity
 increases. For one thing, any change is by essence a more costly
 operation than a mere query, since it involves both getting the data and
 then writing it back to the database. In the case of inserts, only the
 latter operation applies. Therefore, data modification, whether updates,
 deletes, or inserts, intrinsically requires a longer service time than
 the equivalent query-only task. This longer service time is made worse
 by one mechanism and one situation that are often confused. The
 mechanism is locking , and the situation is contention.
Locking

When several users want to modify the same data at
 once—for instance to book the very last seat on a flight—the only
 solution available to the DBMS is to block all but one user, who is
 usually the first person to present the request. The necessity of
 sequentializing access to critical resources is a problem that is as
 old as multiuser systems themselves. It existed with files and records
 long before database systems began to be adopted. One user acquires a
 lock over a resource, and the other users who also want to lock the
 same resource either have to queue up, waiting patiently for the lock
 to be released, or handle the error code that they will receive. In
 many ways, the situation is entirely analogous to our fictitious post
 office when several customers require the use of a single
 photocopier—people must wait patiently for their turn (or turn away
 and come back later).
Locking granularity

One of the most important practical questions to address when
 attempting to change the contents of the database will be to
 determine exactly where the locks will be applied. Locks can impact
 any or all of the following:
	The entire database

	The physical subset of the database where the table is
 stored

	The table identified for modification

	The particular block or page (unit of storage) containing
 the target data

	The table row containing the affected data

	The column(s) in the row

As you can see, how much users interfere with each other is a
 question that relates to the granularity of the locking procedures. The type of locking that can be applied varies with the DBMS. Locking
 granularity is an area where “big products,” designed for large
 information systems, are significantly different from “small
 products” that have more limited ambitions.
When locks apply to a restricted amount of data, several
 concurrent processes can happily change data in the very same table
 at the same time without much affecting each other. Instead of
 having to wait until another process has finished with its
 transaction to get ahold of a lock, there can be some overlap
 between the various processes—which means that from a hardware point
 of view you can have more processors working, thus making better use
 of your hardware resources. The benefit of a finer granularity can
 be seen quite clearly in Figure
 9-5, which shows the contrast in the total throughput of a
 number of concurrent sessions updating a table, first in
 table-locking mode and then second in row-locking mode. In each case
 the DBMS server is the same one.
[image: Update performance for table versus row locking]

Figure 9-5. Update performance for table versus row locking

In the table-locking case, throughput increases slightly with
 two sessions, because the server, in the sense of service provider,
 is not saturated. But two sessions generate the maximum number of
 updates we can sequentially execute per unit of time, and from then
 on the curve is flat—actually, very slowly decreasing because system
 resources are required to handle more sessions, and this is
 detrimental to the system resources required to perform the updates.
 The situation of table locking can be contrasted with the situation
 of row locking, where changes applied to the same table can occur
 simultaneously as long as they do not affect identical rows. As in
 the case of table locking we will eventually reach a point where we
 saturate the server, but this point is reached both later and for a
 much higher number of concurrent updates.
If your DBMS is rather heavy-handed when locking resources,
 your only hope to cope with a sudden increase of activity,
 optimistically assuming that everything else has been tried, is to
 buy better hardware. “Better hardware” must of course be qualified.
 If locking is the bottleneck, more processors will not help, because
 the critical resource is access to the data. However, faster
 processors may speed up execution, reduce the time locks are
 actually held, and therefore allow the processing of more changes
 per unit of time. Processing still remains strictly sequential, of
 course, and the same number of locks is still applied.

Lock handling

Locking mechanisms are an integral part of the
 implementation of a DBMS and there is not much that we can do about
 them. We are limited to just two directions in dealing with
 locks:
	Try not to lock tables in a haphazard
 way.
	It goes without saying that we should not run a program
 that massively updates rows in a table by the million at the
 same time as many users are trying to execute very short
 update transactions against the same table.

	Try to hold locks for as short a time as
 possible.
	When we are in a situation where several users are
 concurrently attempting to access a resource that cannot be
 shared, speed matters not to one, but to all transactions.
 There is little benefit in running a fast update that has to
 wait for a slow one to release a lock before it can do its
 work. Everything must be fast, or else everything will be
 slow: “A chain is only as strong as its weakest link.”

The overwhelming majority of update and delete statements contain a where clause, and so any rewrite of the
 where clause that speeds up a
 select statement will have the
 same effect on a data manipulation statement with the very same
 where clause. If a delete statement has no where clause (in other words the entire
 table is being deleted!), then it is likely that we would be better
 off using a truncate statement,
 which empties a table (or a partition) much more efficiently.
We mustn’t forget, though, that indexes also have to be
 maintained, and that updating an indexed column is costly; we may
 have to arbitrate between the speed of fetches and the speed of
 changes. The index that might be helpful in the where clause may prove to be a nuisance
 when rows are changed. Concerning insert statements, a number of them may
 actually be insert...select
 constructs in which the link between select performance and insert performance is naturally
 obvious.
You’ve seen in Chapter 2
 that impeccable statement performance doesn’t necessarily rhyme with
 good program performance. When changing data, we have a particular
 scope to consider: the transaction or, in other
 words, the duration of a logical unit of work. We shall have to
 retain locks on a particular part of the database for most if not
 all of the transaction. Everything that need not be done within the
 transaction, especially if it is a slow activity, should be excluded
 from that transaction. The start of a transaction may sometimes be
 implicit with the first data manipulation language (DML) statement
 issued. The end of a transaction is always obvious, as it is marked
 by a commit or rollback statement. With this background,
 some practices are just common sense. Inside a transaction:
	Avoid looping on SQL statements as much as
 possible.

	Keep round-trips between the program and the database,
 whether running as an application server or as a mere client, to
 a minimum, since these add network latency to the overall
 elapsed time.

	Exploit to the full whatever mechanisms the DBMS offers to
 minimize the number of round-trips (e.g., take advantage of
 stored procedures or array fetching).

	Keep any nonessential SQL statements that are not strictly
 necessary within the logical unit of work outside of it. For
 instance, it is quite common to fetch error messages from a
 table, especially in localized applications. If we encounter an
 error, we should end our transaction with a rollback first, and then query the
 error message table, not the reverse: doing so will release
 locks earlier, and therefore help to maximize throughput.

As simple a transaction as one that inserts a new row in both
 a master table and a slave table provides ample ground for mistakes.
 An example for this type of transaction is typically the creation of
 a new customer order (in the master table) and of the first item in
 our shopping basket (held in an order_detail table). The difficulty
 usually comes as a result of using system-generated identifiers for
 the orders.
The primary mistake to avoid is to store into a table the
 “next value to use.” Such a table is mercilessly locked by all
 concurrent processes updating it, thus becoming the major bottleneck
 in the whole application. Depending on the DBMS you are using, a
 system-generated identifier is either the value of an
 auto-incremented column, which will take for each new row inserted the
 value of the previous row plus one, or the next value of a database
 object such as a sequence, which is in essence very similar to an
 auto-incremented column but without the explicit reference to a
 column in an existing table. We have nothing to do to generate a new
 identifier for each new order other than to grab the value generated
 by the system. The snag is that we must know this value to be able
 to link the items in the basket to a particular order. In other
 words, we have to insert this value into table order_detail as well as the master
 table.
Some DBMS products that use auto-incremented columns provide either a system variable (as @@IDENTITY with Transact-SQL), or a
 function (such as MySQL’s last_insert_id(
)) to retrieve the value that was last generated by the
 session. Fail to use facilities provided by your DBMS, and you are
 condemned to run useless queries to perform the same task in the
 middle of a transaction, thus wasting resources and slowing down
 your transaction. Using functions or variables referring implicitly
 to the last generated value requires a little discipline in
 executing statements in the proper order, particularly if one is
 juggling several auto-incremented columns simultaneously.
For some unknown reason, there is a marked tendency among
 developers who are using sequences to first issue a
 <sequence name> .nextval call to the database to get a new
 value, and then to store it in a program variable for future
 reference. There is actually a <sequence
 name> .currval
 call (or previous value for
 <sequence name> with DB2), and as
 its name implies its purpose is to return the last value that was
 generated for the given sequence. In most cases, there is no need to
 use a program variable to store the current value, and even less to
 precede true action with a special get a new sequence
 value call. In the worst case, some DBMS extensions can
 prove useful. For instance, Oracle (and PL/SQL) users can use the
 returning ... into ... clause of
 insert and update statements to return
 system-generated values without requiring a new round-trip to the
 server. Running one special statement to get the next sequence value
 and adding one more round-trip to the database generates overhead
 that can globally amount to a very significant percentage for simple
 and often executed transactions.
Important
Where transactional activity is high, it is vital that locks
 are never held for operations that don’t require them.

Locking and committing

If we try and hold locks for the minimum possible
 time, we are bound to have to make frequent commits. Committing is a
 very costly process, since it means writing to persistent memory
 (journal files), and therefore initiating physical I/O operations.
 If we commit changes after absolutely every logical unit of work, we
 add a lot of overhead as can be seen in Figure 9-6. The figure shows
 the performance impact of committing every 1, 2, 3...12 rows in the
 case of a very fast update executed by a single user process running
 on an empty test machine. Depending on the statement and the number
 of rows affected, figures may of course vary but the trend is always
 the same. If a batch update program commits every transaction, it
 can easily take two to three times as long to complete as when it
 commits less frequently.
In the case of batch programs in which concurrency control is
 not an issue, it is advisable to avoid committing changes too often.
 The snag with not committing zillions of changes, besides the impact
 of holding the inevitable locks, is that the system has to record
 the pre-change data image for a hypothetical undo operation, which
 will put some serious strain on resources. If the process fails for
 any reason, rolling back the changes may take a considerable amount
 of time. There are two schools of thought on this topic. One favors
 committing changes at regular intervals so as to moderate demands on
 the system in terms of resources, as well as reduce the amount of
 work which might have to be done in case of a database change
 failure. The other school is frankly more gung ho and argues,
[image: Impact of committing on performance]

Figure 9-6. Impact of committing on performance

not without some reason, that system resources are here to
 sustain business processes, not the other way around. For the
 disciples of this school, if higher throughput can be achieved by
 less frequent commits—and if they can afford the occasional failure
 and still have processes completed properly and faster—then there is
 benefit in less frequent commits. Their case is further strengthened
 if the DBMS features some “pass or break” mode that shuns the
 generation of undo data. The commit-once-when-we’re-done approach
 implicitly assumes that redoing everything from scratch when
 something has totally failed is often simpler than trying to fix
 something that only partially worked. Both schemes have advantages
 and disadvantages, and the final choice may often be linked to
 operational constraints—or perhaps even to politics.
In any case, a batch program committing once in a while may
 block interactive users. Likewise, it is possible for interactive
 users to block batch programs. Even when the locking granularity is
 at the row level, a mechanism such as lock
 escalation that is applied by some database systems (in
 which many fine-grain locks are automatically replaced by a
 coarser-grain lock) may lead to a hung system. Even without lock
 escalation, a single uncommitted change may block a massive update.
 One thing is clear: concurrency and batch programs are not a happy
 match, and we must think about our transactions in a different way
 according to whether they are interactive or batch.
Important
The greater the number of concurrent users, the shorter
 should be the commit intervals.

Locking and scalability

When comparing table and row locking , you have seen that the latter facilitates a much
 better throughput. However, just as with table locking, the
 performance curve quickly reaches its ceiling (the point at which
 performance refuses to improve), and from then on the curve is
 rather flat. Do all products behave in the same way? As a matter of
 fact, they don’t, as Figure
 9-7 shows.
[image: Row locking and concurrency with three database systems]

Figure 9-7. Row locking and concurrency with three database
 systems

To really compare how the various systems were behaving under
 increased concurrency, irrespective of speed on a particular
 example, I performed two series of updates against a large table:
 first, fast updates with a condition on the primary key, and second,
 slow updates with a condition on an unindexed column. These updates
 were repeated with a varying number of sessions, and the total
 number of updates performed was recorded each time.
None of the products displays a strong dependency of
 throughput on the number of sessions with fast updates, probably
 because of a saturation of hardware resources. What is interesting,
 though, is checking whether there is a benefit attached to running a
 larger number of sessions in parallel. Can increased concurrency
 somewhat compensate for speed? This is exactly the same type of
 question as asking “is it better to have a server machine with few
 fast processors or a higher number of slower processors?”
Figure 9-7 shows
 how the ratio of the number of slow updates to the number of fast
 updates evolves as we increase the number of sessions. The DBMS1
 product stands out for two reasons:
	Slow updates are not that slow relatively to fast ones
 (hence a higher ratio than the other products).

	As the steep decrease between 1 and 3 concurrent sessions
 shows, slow updates also suffer relatively more of increased
 concurrency.

The product to watch, though, is not DBMS1. Even if row
 locking were in use in all systems, we see that one of the products,
 DBMS3 on the figure, will scale much better
 than the others, because the ratio slowly but significantly improves
 as more and more concurrent sessions enter the fray. This
 observation may have a significant impact on hardware choices and
 architectures; products such as DBMS1 and DBMS2 would probably get
 the most benefit from faster processors, not more numerous ones.
 From a software point of view, they would also benefit from query
 pooling on a small number of sessions. On the other hand, a product
 such as DBMS3 would better profit from additional processors at the
 same speed and, to some extent, from a higher number of concurrent
 sessions.
How can I explain such differences between DBMS3 and the other
 products? Mostly by two factors:
	Saturation of hardware
 resources
	This probably partly explains what occurs in the case of
 DBMS1, which achieves excellent overall results in terms of
 global throughput, but that simply cannot do better on this
 particular hardware.

	Contention
	Remember that we have the same locking granularity in
 all three cases (row-level locks). Exactly the same statements
 where executed and committed. There is in fact more than data
 locking that limits the amount of work that several sessions
 can perform in parallel. To take a mechanical analogy, we
 could say that there is more friction in the case of DBMS1 and
 DBMS2 than in the case of DBMS3. This friction can also be
 called contention.

Important
Concurrency depends on integrity protection mechanisms that
 include locking as well as other controls that vary from product
 to product.

Contention

Rows in tables are not the only resources that cannot be shared.
 For instance, when one updates a value, the prior or original value
 (undo data) must be saved somewhere in case the user decides to roll
 back the change. On a loaded system, there may actually be some kind
 of competition between two or more processes trying to write undo data
 into the same physical location, even if these processes are operating
 on totally unrelated rows in different tables. Such a situation
 requires some kind of serialization to control events. Likewise, when
 changes are committed and written to transaction logfiles or in-memory
 buffers before being flushed to a file, there must be some means of
 preventing processes from overwriting each other’s bytes.
The examples I’ve just given are examples of
 contention . More than contention, locking is a mechanism that
 tends to be a defining characteristic of particular DBMS
 architectures, leaving us little choice other than to try and keep to
 an absolute minimum the time that the lock is held. Contention,
 however, is linked to low-level implementation, and there are several
 actions that can be undertaken to tune contention. Some of these
 actions can be performed by systems engineers, for example by
 carefully locating transaction log files on disks. Database
 administrators can also help to improve the situation by playing with
 database parameters and storage options. Finally we can, as
 developers, address these problems in the way we build our
 applications. To show how we can try to code so as to limit
 contention, I shall walk you through a case in which contention is
 usually at its most visible: during multiple, concurrent
 inserts.
Insertion and contention

Let’s take as an example a 14-column table with two
 unique indexes. The primary key constraint is defined on a
 system-generated number (a surrogate key), and a unique constraint
 (enforced by a unique index of course) is applied to a “natural”
 compound key, the combination of some short string of characters and
 a datetime value. We can now proceed to run a series of insert
 operations for an increasing number of simultaneous sessions.
As Figure 9-8
 shows, although we are operating in row-locking mode, adding more
 processes inserting in parallel doesn’t do much to improve the
 number of rows inserted by unit time. The figure displays the median
 and the minimum and maximum values for 10 one-minute runs for each
 of the different numbers of concurrent processes. As you can see,
 there is much variability in the results—but the best result is
 obtained for four concurrent processes (which, by some happy
 coincidence, is not totally unrelated to the number of processors on
 the machine).
Must we conclude that we are saturating the hardware
 resources? The answer of course is yes, but the real question is
 “can’t we make better use of these resources?”
 There is, in a
[image: Concurrent sessions inserting into a regular table]

Figure 9-8. Concurrent sessions inserting into a regular table

case like this, not much we can do about locking, because we
 never have two processes trying to access the same row. However, we
 do have contention when trying to access the data
 containers. In this situation contention can
 occur at two places within the database: in the table and in the
 index. There may be other contention issues at the system level, but
 these often derive from choices made at the database level.
 Contention consumes CPU, because there is the execution of code that
 is required for handling that very same contention issue, with
 possibly some active waits involved or idle loops while waiting for
 a resource held by a process running on another processor to be
 released. Can we try to lower contention and divert some of the CPU
 cycles to our inserts
 proper?
I have run my example to generate Figure 9-8 on Oracle, one of
 the database systems that provides the widest range of possible
 options to try to limit contention. Basically, database-centric
 solutions to a contention issue will fall into one or more of the
 following three categories:
	DBA solutions

	Architectural solutions

	Development solutions

The following sections review each of these categories.

DBA solutions

A database administrator often has scant knowledge of
 business processes. What we call DBA solutions
 are changes that are applied to the containers themselves. They are
 application-neutral (as it is near impossible to be absolutely
 application-neutral, it would probably be more exact to say that the
 impact is minimal on processes other than the insertion process we
 are trying to improve).
There are two main zones in which Oracle DBAs can try and
 improve a contention issue with a minimum of fuss:
	Transaction space
	The first weapon is playing with the number of
 transaction entry slots reserved in the blocks that constitute
 the actual physical storage of tables and indexes. A
 transaction entry slot can be understood as the embodiment of
 a low-level lock. Without going into arcane detail, let me say
 that competition for these slots usually figures prominently
 among the reasons for contention when several sessions are
 competing for write access to the same block. A DBA can try to
 improve the situation by allocating more space for transaction
 management. The only impact on the rest of the application is
 that less space will be available for data in table or index
 blocks; the direct consequence of such a situation is that
 more blocks will be required to store the same amount of data,
 and operations such as full scans and, to a much lesser
 degree, index searches will have to access more blocks.

	Free lists
	The second weapon is trying to force insertions to be
 directed to different blocks, something that can be done if
 some degree of control is retained on storage management. For
 each table, Oracle maintains one or several lists of blocks
 where new rows can be inserted. By default, there is only one
 list, but if there are several such lists, then insertions are
 assigned in a round-robin fashion to blocks coming from the
 various lists. This solution is not as neutral as allocating
 more space to transaction management; remember that the
 clustering of data has a significant impact on the performance
 of queries, and therefore while we may improve insertion
 performance, we may degrade some other queries.

Architectural solutions

Architectural solutions are those based on a
 modification of the physical disposition of data using the
 facilities of the DBMS. They may have a much more profound impact,
 to the disadvantage of our other processes. The three most obvious
 architectural solutions are:
	Partitioning
	Range partitioning will of course defeat our purpose if
 our goal is to spread update activity over the table—unless,
 for instance, each process is inserting data for one
 particular month, and we could assign one process to one
 partition, but this is not the situation in our current
 example. Hash partitioning, however, might help. If we compute
 a hash value from our system-generated (sequence) value,
 successive values will be arbitrarily assigned to different
 partitions. Unfortunately, there are limitations to what we
 can do to an index used to enforce a constraint, and therefore
 it’s only contention at the table level that we can hope to
 improve. Moreover, this is a solution that unclusters data,
 which may impact on the performance of other queries.

	Reverse index
	Chapter 3 shows
 that reversing the bytes in index keys can disperse the
 entries of keys that would otherwise have been in close
 proximity to one another, into unrelated leaves of the index,
 and that is a good way to minimize index contention (although
 it will do nothing for table contention). The disadvantage is
 that using a reverse index will prevent us from performing
 range scans on the index, which can be a very serious
 hindrance.

	Index organized table
	Organizing our table as an index will allow us to get
 rid of one of the sources of contention. It will do nothing
 for the second one by itself, but instead of stumbling from
 one point of contention—the table block—to a second point of
 contention—the index block—we will have everybody fighting in
 one place.

Development solutions

Development solutions are in the sole hands of the
 developer and require no change to the physical structure of the
 database. Here are two examples where the developer can influence
 matters:
	Adjusting parallelization
	The attempt at varying the number of concurrent
 processes shows clearly that there is a peak at 4 concurrent
 sessions and that adding more sessions doesn’t help. There is
 no benefit in assigning 10 people to a task that 4 people can
 handle perfectly well; it makes coordination more complicated,
 and some simple subtasks are sooner performed than assigned.
 Figure 9-8 showed
 that the effect of adding extra sessions beyond a
 hardware-dependent number is, in the best of cases, worthless.
 Removing them would put less strain on the system.

	Not using system-generated
 values
	Do we really need sequential values for a surrogate key?
 This is not always the case. Sequential values are of interest
 if we want to process ranges of values, because they allow us
 to use operators such as > or between. But if all we need is a
 unique identifier that can be used as a foreign key value in
 some other tables, why should it belong to a particular range?
 Let’s consider a possible alternative—namely to simply use a
 random number—and regenerate a new one if we hit a value we
 have already used.

Results

 Figure
 9-9 shows the insertion rates we obtained with 10 concurrent
 sessions, using each of the methods just described.
Once again there is a significant variability of results (each
 test was run 10 times, as before). We cannot conclude that a
 technique that works well in this case will behave as well in any
 other one, nor, conversely, that a technique which gives
 disappointing results here will not one day surpass all
 expectations. But the result is nevertheless interesting.
[image: Tactics for limiting insert contention]

Figure 9-9. Tactics for limiting insert contention

First, the DBA techniques gave results that were positive, but
 not particularly remarkable. Architectural choices are, in this
 example, rather inefficient. It is worth mentioning that our two
 indexes are enforcing constraints, a situation that limits the
 number of options applicable to them. Therefore, some of the
 techniques may improve contention at the table level when most of
 the contention occurs within indexes. This is typically the case
 with the index organized table, in which table contention is
 eliminated by the simple expedient of removing the table;
 unfortunately, because we now have more data to store inside the
 index, index contention increases and offsets the benefit of no
 longer having the table. This is also a situation in which we find
 that the system resource most in demand happens to be the CPU. This
 situation puts at a disadvantage all the techniques that use extra
 CPU—such as computing hash values or reversing index keys.
Finally, random values provided both the worst and the best
 results. In the worst case, the (integer) random value was generated
 between 1 and a number equal to about twice the number of rows we
 were expecting to insert during the test. As a result, a significant
 number of values were generated more than once, causing primary key
 constraint violation and the necessity to generate a new random
 number. This was of course a waste of time, resulting in excessive
 consumption of resources—plus, since violation is detected when
 inserting the primary key index, and since this index stores the
 physical address, violation is detected after
 the row has been inserted into the table, so an operation must then
 be undone, again at additional cost.
In the best case, the random number was generated out of an
 interval 100 times greater than in the worst case. The improvement
 is striking. But since having 10 concurrent sessions is no more
 efficient than having 4 concurrent sessions, what would have been
 the result with only 4 sessions? Figure 9-10 provides the
 answer.
[image: The impact of contention limiting techniques with fewer sessions]

Figure 9-10. The impact of contention limiting techniques with fewer
 sessions

Very interestingly, all techniques give significantly better
 results, even if they rank identically in terms of improved
 throughput (e.g., their relative performances remain largely
 similar). The comparison of the results between Figures 9-9 and 9-10 teaches some interesting
 lessons:
	In our case study, the bottleneck is the primary key
 index. Techniques that should strongly limit contention at the
 table level (hash partitioning, IOT) bring no benefit; actually,
 the IOT provides worse performance on this example than does the
 combination of a regular table and a primary key index. On the
 contrary, techniques that reduce contention on both table and
 index (such as allowing more room for transaction management) or
 only improve the situation at the index level (reverse index,
 random surrogate key) all bring benefits.

	The comparison of 10 sessions with 4 sessions shows that
 some of the techniques require additional (and scarce) CPU
 resources from a machine already running flat out and
 consequentially show no improvement.

	The best way to avoid contention is not to use a
 sequentially generated surrogate key! Instead of considering how
 much performance we can gain by adopting various measures, let’s
 consider how much performance loss is (inadvertently?)
 introduced by the use of a sequential key with the resulting
 contention on the primary key index. Solely because of
 contention on the primary key index, our insertion rate drops
 from a rate of 180 to 100 insertions per unit of time; in other
 words, it is divided by a factor of almost 2! The lesson is
 clear: we are better off without auto-incremented columns where
 they are not required, such as for tables that are not
 referenced by other tables or that do not have a very long
 natural primary key.

Can we recommend randomly generated surrogate keys? The
 difference in performance between a key generated out of a very
 large interval of values and a key generated out of too narrow a
 range of values shows that it can be dangerous and not really
 efficient if we expect a final number of rows greater than perhaps
 one hundredth of the total possible number of values. Generating
 random integer values between 1 and 2 billion (a common range for
 integer values) can prove hazardous for a large table;
 unfortunately, tables that are subject to heavy insertion traffic
 have a tendency to grow big rather quickly. However, if your system
 supports “long long integers,” they can be a good solution—if you
 really need a surrogate key.
Important
In contrast to locking, database contention can be improved
 upon. Architects, developers, and administrators can all design so
 as to limit contention.

Chapter 10. Assembly of Forces

Coping with Large Volumes of Data

Thenne entryd in to the bataylle Iubance a geaunt and fought and
 slewe doune ryght and distressyd many of our knyghtes.
—Sir Thomas Malory (d.1471) Le Morte D’Arthur, V,
 11

This chapter deals with the particular
 challenges that are facing us when data volumes swell. Those
 challenges include searching gigantic tables effectively, but also
 avoiding the sometimes distressing performance impact of even a moderate
 volume increase. We’ll first look at the impact of data growth and a very
 large number of rows on SQL queries in the general case. Then we’ll
 examine what happens in the particular environments of data warehousing
 and decision-support systems.
Increasing Volumes

 Some applications see the volume of data they handle
 increase in considerable proportion over time. In particular, any
 application that requires keeping online, for regulatory or business
 analysis purposes, several months or even years of mostly inactive data,
 often passes through phases of crisis when (mostly) batch programs tend
 to overshoot the time allocated to them and interfere with regular,
 human activity.
When you start a new project, the volume of data usually changes,
 as shown in Figure 10-1.
 Initially, hardly anything other than a relatively small amount of
 reference data is loaded into the database. As a new system replaces an
 older one, data inherited from the legacy system is painfully loaded
 into the new one. First, because of the radical rethink of the
 application, conversion from the old system to the new system is fraught
 with difficulties. When deadlines have to be met and some noncritical
 tasks have to be postponed, the recovery of legacy data is a prime
 candidate for slipping behind schedule. As a result, this recovery goes
 on for some time after the system has become operational and teething
 problems have been solved. Second, the old system is usually much poorer
 from a functional perspective than the new one (otherwise, the cost of
 the new project would have made for difficult acceptance up the food
 chain). All this means that the volume of prehistoric data will be
 rather small compared to the data handled by the new system, and several
 months’ worth of old data will probably be equivalent to a few weeks of
 new data at most.
Meanwhile, operational data accumulates.
Usually, one encounters the first serious performance issues about
 midway before the volume that the database is expected to hold at
 cruising speed. Bad queries and bad algorithms are almost invisible,
 from an end-user perspective, when volumes are low or moderate. The raw
 power of hardware often hides gigantic mistakes and may give comfortable
 sub-second response times for full scans of tables that contain several
 hundreds of thousands of rows. You may be seriously misusing the
 hardware, balancing gross programming mistakes with power—but nobody
 will see that until your volume becomes respectable.
At the first crisis point of the project, “expert tuning” is
 usually required to add a couple of indexes that should have been there
 from the start. The system then wobbles until it
[image: The evolution of data in a new application]

Figure 10-1. The evolution of data in a new application

reaches the target volume. There are usually two target volumes: a
 nominal one (which has been grossly overestimated and which is the
 volume the system has officially been designed to manage) and the real
 target volume (which the system just manages to handle and which is
 often exceeded at some point because archiving of older data has been
 relegated to the very last lot in the project). The second and more
 serious crisis often comes in the wake of reaching that point. When
 archival has finally been put into production, architectural weaknesses
 reviewed, and some critical processes vigorously rewritten, the system
 finally reaches cruising speed, with an increase of data related to the
 natural growth of business—a growth that can lie anywhere between
 flatness and exponential exuberance.
This presentation of the early months in the life of a new
 database application is partly caricature; but it probably bears more
 resemblance to reality than it often should, because the simple mistakes
 that lead to this caricature are not often avoided. However rigorously
 one tries to work, errors are made, because of pressure, lack of time
 for adequate testing, and ambiguous specifications. The only errors that
 can bring irredeemable failure are those linked to the design of the
 database and to the choice of the global architecture—two topics that
 are closely related and that are the foundation of a system. If the
 foundation is not sturdy enough, you need to pull the whole building
 down before reconstructing. Other mistakes may require a more or less
 deep overhaul of what is in place. Most crises, however, need not
 happen. You must anticipate volume increases when coding. And you must
 quickly identify and rewrite a query that deteriorates in performance
 too quickly in the face of increasing data volumes.
Sensitivity of Operations to Volume Increases

All SQL operations are not equally susceptible to variations in
 performance when the number of rows to be processed increases. Some
 SQL operations are insensitive to volume increases, some see
 performance decrease linearly with volume, and some perform very badly
 with large volumes of data.
Insensitivity to volume increase

Typically, there will be no noticeable difference in a
 search on the primary key, whether you are looking for one
 particular key among 1,000 or one among 1,000,000. The common B-tree
 indexes are rather flat and efficient structures, and the size of
 the underlying table doesn’t matter for a single-row, primary-key
 search.
But insensitivity to volume increase doesn’t mean that single primary-key
 searches are the ultimate SQL search method. When you are looking
 for a large number of rows, the “transactional” single-row operation
 can be significantly inefficient. Just consider the following,
 somewhat artificial, Oracle examples, each showing a range scan on a
 sequence-generated primary key:
 SQL> declare
 2 n_id number;
 3 cursor c is select customer_id
 4 from orders
 5 where order_id between 10000 and 20000;
 6 begin
 7 open c;
 8 loop
 9 fetch c into n_id;
 10 exit when c%notfound;
 11 end loop;
 12 close c;
 13 end;
 14 /

PL/SQL procedure successfully completed.
Elapsed: 00:00:00.27
 SQL> declare
 2 n_id number;
 3 begin
 4 for i in 10000 .. 20000
 5 loop
 6 select customer_id
 7 into n_id
 8 from orders
 9 where order_id = i;
 10 end loop;
 11 end;
 12 /
 PL/SQL procedure successfully completed. Elapsed: 00:00:00.63

The cursor in the first example, which does an explicit range
 scan, runs twice as fast as the iteration on a single row. Why?
 There are multiple technical reasons (“soft parsing,” a fast
 acknowledgement at each iteration that the DBMS engine has already
 met this statement and knows how to execute it, is one of them), but
 the single most important one is that in the first example the
 B-tree is descended once, and then the ordered list of keys is
 scanned and row addresses found and used to access the table; while
 in the second example, the B-tree is descended for each searched
 value in the order_id column. The
 most efficient way to process a large number of rows is
 not to iterate and apply the single-row
 process.

Linear sensitivity to volume increases

End users usually understand well that if twice as
 many rows are returned, a query will take more time to run; but many
 SQL operations double in time when operating on double the number of
 rows without the underlying work being as obvious to the end user,
 as in the case of a full table scan returning rows one after the
 other. Consider the case of aggregate functions; if you compute a
 max(), that aggregation will
 always return a single row, but the number of rows the DBMS will
 have to operate on may vary wildly over the life of the application.
 Perfectly understandable, but end users will always see a single-row
 returned, so they may complain of performance degradation over time.
 The only way to ensure that the situation will not go from bad to
 worse is to put an upper bound on the number of
 rows processed by using another criterion such as a date range.
 Placing an upper bound keeps data volumes under control. In the case
 of max(), the idea might be to
 look for the maximum since a given date, and not necessarily since
 the beginning of time. Adding a criterion to a query is not a simple
 technical issue and definitely depends on business requirements, but
 limiting the scope of queries is an option that certainly deserves
 to be pointed out to, and debated with, the people who draft
 specifications.

Non-linear sensitivity to volume increases

Operations that perform sorts suffer more from volume
 increases than operations that just perform a scan, because sorts
 are complex and require on average a little more than a single pass.
 Sorting 100 randomly ordered rows is not 10 times costlier than
 sorting 10 rows, but about 20 times costlier—and sorting 1,000 rows
 is, on average, something like 300 times costlier than sorting 10
 rows.
In real life, however, rows are rarely randomly stored, even
 when techniques such as clustering indexes (Chapter 5) are not used. A DBMS can
 sometimes use sorted indexes for retrieving rows in the expected
 order instead of sorting rows after having fetched them, and
 performance degradation resulting from retrieving a larger sorted
 set, although real, is rarely shocking. Be careful though.
 Performance degradation from sorts often proceeds by fits and
 starts, because smaller sorts will be fully executed in memory,
 while larger sorts will result from the merge of several sorted
 subsets that have each been processed in memory before being written
 to temporary storage. There are, therefore, some “dangerous
 surroundings” where one switches from a relatively fast full-memory
 mode to a much slower memory-plus-temporary-storage mode. Adjusting
 the amount of memory allocated to sorts is a frequent and efficient
 tuning technique to improve sort-heavy operations when flirting with
 the dangerous limit.
By way of example, Figure 10-2 shows how the
 fetch rate (number of rows fetched per unit of time) of a number of
 queries evolves as a table grows. The table used in the test is a
 very simple orders table defined as follows:
 order_id bigint(20) (primary key)
 customer_id bigint(20)
 order_date datetime
 order_shipping char(1)
 order_comment varchar(50)

The queries are first a simple primary key-based
 search:
 select order_date
 from orders
 where order_id = ?
then a simple sort:
 select customer_id
 from orders
 order by order_date

then a grouping:
 select customer_id, count(*)
 from orders
 group by customer_id
 having count(*) > 3

then the selection of the maximum value in a nonindexed
 column:
 select max(order_date)
 from orders

and finally, the selection of the “top 5” customers by number
 of orders:
 select customer_id
 from (select customer_id, count(*)
 from orders
 group by customer_id
 order by 2 desc) as sorted_customers
 limit 5

(SQL Server would replace the closing limit 5 with an opening select top 5, and Oracle would replace
 limit 5 with where rownum <= 5.)
The number of rows in the table has varied between 8,000 and
 around 1,000,000, while the number of distinct customer_id values remained constant at
 about 3,000. As you can see in Figure 10-2, the primary key
 search performs almost as well with one million rows as with 8,000.
 There seems to be some very slight degradation at the higher number,
 but the query is so fast that the degradation is hardly noticeable.
 By contrast, the sort suffers. The performance (measured by rows
 returned by unit of time, and therefore independent of the actual
 number of rows fetched) of the sorting query decreases by 40% when
 the number of rows goes from 8,000 to over one million.
The degradation of performance, though, is even more
 noticeable for all the queries that, while returning the very same
 number of aggregated rows, have a great deal more rows to visit to
 get the relatively few rows to be returned. These queries are
 typically the type of queries that are going to draw the most
 complaints from end users. Note that the DBMS doesn’t perform that
 badly: the performance decrease is very close to proportional to the
 number of rows, even for the two queries that require a sort (the
 queries labeled “Group by” and “Top” in Figure 10-2). But end users
 simply see the same amount of data—just returned much more
 slowly.
[image: How some simple queries behave when the queried table grows]

Figure 10-2. How some simple queries behave when the queried table
 grows

Important
All database operations are not equally sensitive to volume
 increases. Anticipate how queries will perform on target
 volumes.

Putting it all together

The main difficulty in estimating how a query will
 behave when data volumes increase is that high sensitivity to volume
 may be hidden deep inside the query. Typically, a query that finds
 the “current value” of an item by running a subquery that looks for
 the last time the price was changed, and then performs a max() over the price history, is highly
 sensitive. If we accumulate a large number of price changes, we
 shall probably suffer a slow performance degradation of the
 subquery, and by extension of the outer query as well. The
 degradation will be much less sensitive with an uncorrelated
 subquery, executed only once, than with a correlated subquery that
 will compound the effect by its being fired each time it is
 evaluated. Such degradation may be barely perceptible in a
 single-item operation, but will be much more so in batch
 programs.
Note
The situation will be totally different if we are tracking,
 for instance, the current status of orders in a merchant system,
 because max() will apply to a
 narrow number of possible states. Even if the number of orders
 doubles, max() will in that
 case always operate on about the same number of rows for one
 order.

Another issue is sorts. We have seen that an increase in the
 number of rows sorted leads to a quite perceptible degradation of
 performance. Actually, what matters is not so much the number of
 rows proper as the number of bytes—in other words, the total amount
 of data to be sorted. This is why joins with what is mostly
 informational data, such as user-friendly labels associated with an
 obscure code (as opposed to the data involved in the filtering
 conditions driving the query), should be postponed to the very last
 stage of a query.
Let’s take a simple example showing why some joins should be
 delayed until the end of a query. Getting the names and addresses of
 our 10 biggest customers for the past year will require joining the
 orders and order_detail tables to get the amount
 ordered by each customer, and joining to a customers table to get each customer’s
 details. If we only want to get our 10 biggest customers, we must
 get everybody who has bought something from us in the past year,
 sort them by decreasing amount, and then limit the output to the
 first ten resulting rows. If we join all the information from the
 start, we will have to sort the names and addresses of
 all our customers from the past year. We don’t
 need to operate on such a large amount of data. What we must do is
 keep the amount of data to be sorted to the strict minimum—the
 customer identifier and the amount. Once everything is sorted, we
 can join the 10 customer_ids we
 are left with to the customers
 table to return all the information that is required. In other
 words, we mustn’t write something like:
 select *
 from (select c.customer_name,
 c.customer_address,
 c.customer_postal_code,
 c.customer_state,
 c.customer_country
 sum(d.amount)
 from customers c,
 orders_o,
 order_detail d
 where c.customer_id = o.customer_id
 and o.order_date >= some date expression
 and o.order_id = d.order_id
 group by c.customer_name,
 c.customer_address,
 c.customer_postal_code,
 c.customer_state,
 c.customer_country
 order by 6 desc) as A
 limit 10

but rather something like:
 select c.customer_name,
 c.customer_address,
 c.customer_postal_code,
 c.customer_state,
 c.customer_country
 b.amount
 from (select a.customer_id,
 a.amount
 from (select o.customer_id,
 sum(d.amount) as amount
 from orders_o,
 order_detail d
 where o.order_date >= some date expression
 and o.order_id = d.order_id
 group by o.customer_id
 order by 2 desc) as a
 limit 10) as b,
 customers c
 where c.customer_id = b.customer_id
 order by b.amount desc

The second sort is a safeguard in case the join modifies the
 order of the rows resulting from the inner subquery (remember that
 relational theory knows nothing about sorts and that the DBMS engine
 is perfectly entitled to process the join as the optimizer finds
 most efficient). We have two sorts instead of one, but the inner
 sort operates on “narrower” rows, while the outer one operates on
 only 10 rows.
Remember what was said in Chapter 4: we must limit the
 “thickness” of the non-relational layer of SQL queries. The
 thickness depends on the number and complexity of operations, but
 also on the amount of data involved. Since sorts and limits of all
 kinds are non-relational operations, the optimizer will probably not
 rewrite a query to execute a join after having cut the number of
 customer identifiers to the bare minimum. Although an attentive
 reading of two queries may make it obvious that they will return the
 same result, mathematically proving that they
 always return the same result borders on mission impossible. An
 optimizer always plays it safe; a DBMS cannot afford to return wrong
 results by attempting daring rewrites, especially since it knows
 hardly anything about semantics. Our example is therefore a case in
 which the optimizer will limit its action to perform the join in
 inner queries as efficiently as possible. But ordering and
 aggregates put a stop to mingling inner and outer queries, and
 therefore the query will for the most part run as it is written. The
 query that performs the sort of amounts before the joins is, no
 doubt, very ugly. But this ugly SQL code is the way to write it,
 because it is the way the SQL engine should
 execute it if we want resilience to a strong increase in the number
 of customers and orders.
Important
To reduce the sensitivity of your queries to increases in
 the volume of data, operate only on the data that is strictly
 necessary at the deeper levels of a query. Keep ancillary joins
 for the outer level.

Disentangling subqueries

As I have said more than once, correlated subqueries
 must be fired for each row that requires their evaluation. They are
 often a major issue when volume increases transform a few shots into
 sustained rounds of fire. In this section, a real-life example will
 illustrate both how ill-used correlated subqueries can bog a process
 down and how one can attempt to save such a situation.
The issue at hand, in an Oracle context, is a query that
 belongs to an hourly batch to update a security management table.
 Note that this mechanism is already in itself a fudge to speed up
 security clearance checks on the system in question. Over time, the
 process takes more and more time, until reaching, on the production
 server, 15 minutes—which for an hourly process that suspends
 application availability is a bit too much. The situation sends all
 bells ringing and all whistles blowing. Red alert!
The slowness of the process has been narrowed down to the
 following statement:
 insert /*+ append */ into fast_scrty
 (emplid,
 rowsecclass,
 access_cd,
 empl_rcd,
 name,
 last_name_srch,
 setid_dept,
 deptid,
 name_ac,
 per_status,
 scrty_ovrd_type)
 select distinct
 emplid,
 rowsecclass,
 access_cd,
 empl_rcd,
 name,
 last_name_srch,
 setid_dept,
 deptid,
 name_ac,
 per_status,
 'N'
 from pers_search_fast

Statistics are up to date, so we must focus our attack on the
 query. As it happens, the ill-named pers_search_fast is a view defined by the
 following query:
 1 select a.emplid,
 2 sec.rowsecclass,
 3 sec.access_cd,
 4 job.empl_rcd,
 5 b.name,
 6 b.last_name_srch,
 7 job.setid_dept,
 8 job.deptid,
 9 b.name_ac,
 10 a.per_status
 11 from person a,
 12 person_name b,
 13 job,
 14 scrty_tbl_dept sec
 15 where a.emplid = b.emplid
 16 and b.emplid = job.emplid
 17 and (job.effdt=
 18 (select max(job2.effdt)
 19 from job job2
 20 where job.emplid = job2.emplid
 21 and job.empl-rcd = job2.empl_rcd
 22 and job2.effdt <= to_date(to_char(sysdate,
 23 'YYYY-MM-DD'),'YYYY-MM-DD'))
 24 and job.effseq =
 25 (select max(job3.effseq)
 26 from job job3
 27 where job.emplid = job3.emplid
 28 and job.empl_rcd = job3.empl_rcd
 29 and job.effdt = job3.effdt))
 30 and sec.access_cd = 'Y'
 31 and exists
 32 (select 'X'
 33 from treenode tn
 34 where tn.setid = sec.setid
 35 and tn.setid = job.setid_dept
 36 and tn.tree_name = 'DEPT_SECURITY'
 37 and tn.effdt = sec.tree_effdt
 38 and tn.tree_node = job.deptid
 39 and tn.tree_node_num between sec.tree_node_num
 40 and sec.tree_node_num_end
 41 and not exists
 42 (select 'X'
 43 from scrty_tbl_dept sec2
 44 where sec.rowsecclass = sec2.rowsecclass
 45 and sec.setid = sec2.setid
 46 and sec.tree_node_num <> sec2.tree_node_num
 47 and tn.tree_node_num between sec2.tree_node_num
 48 and sec2.tree_node_num_end
 49 and sec2.tree_node_num between sec.tree_node_num
 50 and sec.tree_node_num_end))

This type of “query of death” is, of course, too complicated
 for us to understand at a glance! As an exercise, though, it would
 be interesting for you to pause at this point, consider carefully
 the query, try to broadly define its characteristics, and try to
 identify possible performance stumbling blocks.
If you are done pondering the query, let’s compare notes.
 There are a number of interesting patterns that you may have
 noticed:
	A high number of subqueries. One subquery is even nested,
 and all are correlated.

	No criterion likely to be very selective. The only
 constant expressions are an unbounded comparison with the
 current date at line 22, which is likely to filter hardly
 anything at all; a comparison to a Y/N field at line 30; and a
 condition on tree_name at
 line 36 that looks like a broad categorization. And since the
 insert statement that has
 been brought to our attention contains no where clause, we can expect a good
 many rows to be processed by the query.

	Expressions such as between
 sec.tree_node_num and sec.tree_node_num_end ring a
 familiar bell. This looks like our old acquaintance from Chapter 7, Celko’s nested sets!
 Finding them in an Oracle context is rather unusual, but
 commercial off-the-shelf (COTS) packages often make admirable,
 if not always totally successful, attempts at being portable and
 therefore often shun the useful features of a particular
 DBMS.

	More subtly perhaps, when we consider the four tables
 (actually, one of them, person_name, is a view) in the outer
 from clause, only three of
 them, person, person_name, and job, are cleanly joined. There is a
 condition on scrty_tbl_dept,
 but the join proper is indirect and hidden inside one of the
 subqueries, lines 34 to 38. This is not a recipe for
 efficiency.

One of the very first things to do is to try to get an idea
 about the volumes involved; person_name is a view, but querying it
 indicates no performance issue. The data dictionary tells us how
 many rows we have:
 TABLE_NAME NUM_ROWS
 ------------------------------ ----------
 TREENODE 107831
 JOB 67660
 PERSON 13884
 SCRTY_TBL_DEPT 568

None of these tables is really large; it is interesting to
 notice that one need not deal with hundreds of millions of rows to
 perceive a significant degradation of performance as tables grow.
 The killing factor is how we are visiting tables. Finding out on the
 development server (obviously not as fast as the server used in
 production) how many rows are returned by the view is not very
 difficult but requires steel nerves:
 SQL> select count(*) from PERS_SEARCH_FAST;

 COUNT(*)

 264185

 Elapsed: 01:35:36.88

A quick look at indexes shows that both treenode and job are over-indexed, a common flaw of
 COTS packages. We do not have here a case of the “obviously missing
 index.”
Where must we look to find the reason that the query is so
 slow? We should look mostly at the lethal combination of a
 reasonably large number of rows and of correlated subqueries. The
 cascading exists/not exists in particular, is probably what
 does us in.
Note
In real life, all this analysis took me far more time than
 it is taking you now to read about it. Please understand that the
 paragraphs that follow summarize several hours of work and that
 inspiration didn’t come as a flashing illumination!

Take a closer look at the exists/not
 exists expression. The first level subquery introduces
 table treenode. The second level
 subquery again hits table scrty_tbl_dept, already present in the
 outer query, and compares it both to the current row of the first
 level subquery (lines 47 and 48) and to the current row of the outer
 subquery (lines 44, 45, 46, 49, and 50)! If we want to get tolerable
 performance, we absolutely must disentangle these queries.
	Can we understand what the query is about? As it happens,
 treenode, in spite of its
 misleading name, doesn’t seem to be the table that stores the
 “nested sets.” The references to a range of numbers are all
 related to scrty_tbl_dept;
 treenode looks more like a
 denormalized flat list (sad words to use in a supposedly
 relational context) of the “nodes” described in scrty_tbl_dept. Remember that in the
 nested set implementation of tree structures, two values are
 associated with each node and computed in such a way that the
 values associated with a child node are always between the
 values associated with the parent node. If the two values
 immediately follow each other, then we necessarily have a leaf
 node (the reverse is not true, because a subtree may have been
 pruned and value recomputation skipped, for obvious performance
 reasons). If we try to translate the meaning of lines 31 to 50
 in English (sort of), we can say something like:
	There is in treenode
 a row with a particular tree_name that matches job on both setid_dept and deptid, as well as matching scrty_tbl_dept on setid and tree_effdt, and that points to
 either the current “node” in scrty_tbl_dept or to one of its
 descendents. There is no other node (or descendent) in
 scrty_tbl_dept that the
 current treenode row points
 to, that matches the current one on setid and rowsecclass, and that is a
 descendent of that node.

Dreadful jargon, especially when one has not the slightest
 idea of what the data is about. Can we try to express the same thing
 in a more intelligible way, in the hope that it will lead us to more
 intelligible and efficient SQL? The key point is probably in the
 there is no other node part. If there is no
 descendent node, then we are at the bottom of the tree for the node
 identified by the value of tree_node_num in treenode. The subqueries in the initial
 view text are hopelessly mingled with the outer queries. But we can
 write a single contained query that “forgets” for the time being
 about the link between treenode
 and job and computes, for every
 node of interest in scrty_tbl_dept (a small table, under 600
 rows), the number of children that match it on setid and rowsecclass:
 select s1.rowsecclass,
 s1.setid,
 s1.tree_node_num,
 tn.tree_node,
 count(*) - 1 children
 from scrty_tbl_dept s1,
 scrty_tbl_dept s2,
 treenode tn
 where s1.rowsecclass = s2.rowsecclass
 and s1.setid = s2.setid
 and s1.access_cd = 'Y'
 and tn.tree_name = 'DEPT_SECURITY'
 and tn.setid = s1.setid
 and tn.effdt = s1.tree_effdt
 and s2.tree_node_num between s1.tree_node_num
 and s1.tree_node_num_end
 and tn.tree_node_num between s2.tree_node_num
 and s2.tree_node_num_end
 group by s1.rowsecclass,
 s1.setid,
 s1.tree_node_num,
 tn.tree_node

(The count(*) - 1 is for
 not counting the current row.) The resulting set will be, of course,
 small, at most a few hundred rows. We shall filter out nodes that
 are not leaf nodes (in our context) by using the preceding query as
 an inline view, and applying a filter:
 and children = 0

From here, and only from here, we can join to job and properly determine the final set.
 Giving the final text of the view would not be extremely
 interesting. Let’s just point out that the first succession of
 exists:
 and (job.effdt=
 (select max(job2.effdt)
 from job job2
 where job.emplid = job2.emplid
 and job.empl-rcd = job2.empl_rcd
 and job2.effdt <= to_date(to_char(sysdate,'YYYY-MM-DD'),
 'YYYY-MM-DD'))
 and job.effseq =
 (select max(job3.effseq)
 from job job3
 where job.emplid = job3.emplid
 and job.empl_rcd = job3.empl_rcd
 and job.effdt = job3.effdt))

is meant to find, for the most recent effdt for the current (emplid, empl_rcd) pair, the row with the highest
 effseq value. This condition is
 not, particularly in comparison to the other nested subquery, so
 terrible. Nevertheless, OLAP (or should we say
 analytical, since we are in an Oracle context?)
 functions can handle, when they are available, this type of “top of
 the top” case slightly more efficiently. A query such as:
 select emplid,
 empl_rcd,
 effdt,
 effseq
 from (select emplid,
 empl_rcd,
 effdt,
 effseq
 row_number() over (partition by emplid, empl_rcd
 order by effdt desc, effseq desc) rn
 from job
 where effdt <= to_date(to_char(sysdate,'YYYY-MM-DD'),'YYYY-MM-DD'))
 where rn = 1

will easily select the (emplid,
 empl_rcd) values that we are really interested in and will
 be easily reinjected into the main query as an inline view that will
 be joined to the rest. In real life, after rewriting this query, the
 hourly process that had been constantly lengthening fell from 15 to
 under 2 minutes.
Important
Minimize the dependencies of correlated subqueries on
 elements from outer queries.

Partitioning to the Rescue

When the number of rows to process is on the increase,
 index searches that work wonders on relatively small volumes become
 progressively inefficient. A typical primary key search requires the
 DBMS engine to visit 3 or 4 pages, descending the index, and then the
 DBMS must visit the table page. A range scan will be rather efficient,
 especially when applied to a clustering index that constrains the
 table rows to be stored in the same order as the index keys.
 Nevertheless, there is a point at which the constant to-and-fro
 between index page and table page becomes costlier than a plain linear
 search of the table. Such a linear search can take advantage of
 parallelism and read-ahead facilities made available by the underlying
 operating system and hardware. Index-searches that rely on key
 comparisons are more sequential by nature. Large numbers of rows to
 inspect exemplify the case when accesses should be thought of in terms
 of sweeping scans, not isolated incursions, and joins performed
 through hashes or merges, not loops (all this was discussed in Chapter 6).
Table scans are all the more efficient when the ratio of rows
 that belong to the result set to rows inspected is high. If we can
 split our table, using the data-driven partitioning introduced in Chapter
 5, in such a way that our search criteria can operate on a well
 defined physical subset of the table, we maximize
 scan efficiency. In such a context, operations on a large range of
 values are much more efficient when applied brutishly to a
 well-isolated part of a table than when the boundaries have to be
 checked with the help of an index.
Of course, data-driven partitioning doesn’t miraculously solve
 all volume issues:
	For one thing, the repartition of the partitioning keys must
 be more or less uniform; if we can find one single value of the
 partitioning key in 90% of rows, then scanning the table rather
 than the partition will hardly make any difference for that key;
 and for the others, they will probably be accessed more
 efficiently by index. The benefit of using an index that operates
 against a partitioned table will be slight for selective values.
 Uniformity of distribution is the reason why dates are so well
 suited to partitioning, and why range partitioning by date is by
 far the most popular method of partitioning.

	A second point, possibly less obvious but no less important,
 is that the boundaries of ranges must be well defined, in both
 their lower value and upper values. This
 isn’t a peculiarity of partitioned tables, because the same can be
 said of index range scans. A half-bounded range, unless we are
 looking for values greater than a value close to the maximum in
 the table or lesser than a value close to the minimum, will
 provide no help in significantly reducing the rows we have to
 inspect. Similarly, a range defined as:

 where date_column_1 >= some value
 and date_column_2 <= some other value

will not enable us to use either partitioning or indexing any
 more efficiently than if only one of the conditions was specified.
 It’s by specifying a between (or
 any semantic equivalent) encompassing a small number of partitions
 that we shall make best usage of partitioning.
Important
Half-bounded conditions make a poor use of both indexes and
 partitions.

Data Purges

Archival and data purges are too often considered ancillary matters, until they
 are seen as the very last hope for retrieving those by-and-large
 satisfactory response times of six months ago. Actually, they are
 extremely sensitive operations that, poorly handled, can put much
 strain on a system and contribute to pushing a precarious situation
 closer to implosion.
The ideal case is when tables are partitioned (true partitioning
 or partitioned view) and when archival and purges operate on
 partitions. If partitions can be simply detached, in one way or
 another, then an archival (or purge) operation is trivial: a partition
 is archived and a new empty one possibly created. If not, we are still
 in a relatively strong position: the query that selects rows for
 archival will be a simple one, and afterwards it will be possible to
 truncate a partition--truncate being a way of emptying a table or
 partition that bypasses most of the usual mechanisms and is therefore
 much faster than regular deletes.
Note
Because truncate bypasses
 so much of the work that delete
 performs, you should use caution. The use of truncate may impact your backups, and it
 may also have other side effects, such as the invalidation of some
 indexes. Any use of truncate
 should always be discussed with your DBAs.

The less-than-ideal, but oh-so-common case is when archival is
 triggered by age and other conditions.
 Accountants, for instance, are often reluctant to archive unpaid
 invoices, even when rather old. This makes the rather simple and
 elegant partition shuffling or truncation look too crude. Must we fall
 back on the dull-but-trusted delete?
It is at this point interesting to try to rank data manipulation
 operations (inserts, updates, and deletes) in terms of overall cost.
 We have seen that inserts are pretty costly, in large part because
 when you insert a new row, all indexes on the table have to be
 maintained. Updates require only maintenance of the indexes on the
 updated columns. Their weakness, compared to inserts, is two-fold:
 first, they are associated with a search (a where clause) that can be as disastrous as
 with a select, with the aggravating
 circumstance that in the meanwhile locks are held. Second, the
 previous value, inexistent in the case of an insert, must be saved
 somewhere so as to be available in case of rollback. Deletes combine
 all the shortcomings: they affect all indexes, are usually associated
 with a where clause that can be
 slow, and need to save the values for a possible transaction
 rollback.
Important
Of all operations that change data, deletes offer the greatest
 potential for trouble.

If we can therefore save on deletes, even at the price of other
 operations, we are likely to end up on the winning side. When a table
 is partitioned and archival and purge are dependent mostly on a date
 condition with strings attached, we can consider a three stage
 purge:
	Insert into a temporary table those old rows that we want to
 keep.

	Truncate partitions.

	Insert back from the temporary table those rows that should
 be retained.

Without partitioning, the situation is much more difficult. In
 order to limit lock duration—and assuming of course that once a row
 has attained the “ready for archival” state, no operation whatsoever
 can put it back to the “no, wait, I have second thought” state—we can
 consider a two-step operation. This two-step operation will be all the
 more advantageous given that the query that identifies rows for
 archiving is a slow-running one. What we may do in that case
 is:
	Build a list of the identifiers of the rows to
 archive.

	Join on this list for both archival and purge, rather than
 running the same slow where
 clause twice, once in a select
 statement and once in a delete
 statement.

Important
A major justification for temporary tables is to enable massive, table-oriented operations that
 would outperform row-wise operations.

Data Warehousing

 The purpose of this book is not to devote half a chapter
 to covering the complex issues linked to data warehousing . Many books on the topic of data warehousing have been
 written, some of them generic (Ralph Kimball’s The Data
 Warehouse Toolkit and Bill Inmon’s Building the
 Data Warehouse , both published by John Wiley & Sons, are probably
 the two best-known titles), some of them specific to a DBMS engine.
 There has been something of a religious war between the followers of
 Inmon, who advocates a clean 3NF design of enormous data repositories
 used by decision-support systems, and the supporters of Kimball, who
 believes that data warehouses are a different world with different
 needs, and that therefore the 3NF model, in spite of its qualities in
 the operational world, is better replaced with dimensional
 modeling , in which reference data is happily denormalized.
As most of this book advocates and assumes a clean 3NF design, I
 will deal hereafter more specifically with dimensional models, to study
 their strengths and the reason for their popularity, but also their
 weaknesses. I will, in particular, examine the interactions between
 operational data stores (“production databases " to the less enlightened) and decision-support systems,
 since data doesn’t fall from heaven, unless you are working for NASA or
 a satellite operating company, and what you load into dimensional models
 has to come from somewhere. Understand that it is
 not because one is using the SQL language against
 “tables” that one is operating in the relational world.
Facts and Dimensions: the Star Schema

The principle of dimensional modeling is to store
 measurement values, whether they are quantities, amounts, or whatever
 you can imagine into big fact tables . Reference data is stored into dimension
 tables that mostly contain self-explanatory labels and that
 are heavily denormalized. There are typically 5 to 15 dimensions, each
 with a system-generated primary key, and the fact table contains all
 the foreign keys. Typically, the date associated with a series of
 measures (a row) in the fact table will not be stored as a date column
 in the fact table, but as a system-generated number that will
 reference a row in the date_dimension table in which the date will
 be declined under all possible forms. If we take,
 for instance, the traditional starting date of the Unix world, January
 1, 1970, it would typically be stored in date_dimension as:
	 date_key
	 date_value
	 date_description
	 day
	 month
	 year
	 quarter
	 holiday

	12345
	01/01/1970
	January 1, 1970
	Thursday
	January
	1970
	Q1 1970
	Holiday

Every row that refers to something having occurred on January 1,
 1970 in the fact table would simply store the 12345 key. The rationale behind such an
 obviously non-normalized way of storing data is that, although
 normalization is highly important in environments where data is
 changed, because it is the only way to ensure data integrity, the
 overhead of storing redundant information in a data warehouse is
 relatively negligible since dimension tables contain very few rows
 compared to the normalized fact table. For instance, a one-century
 date dimension would only hold 36,525 rows. Moreover, argues Dr.
 Kimball, having only a fact table surrounded by dimension tables as in
 Figure 10-3 (hence the
 “star schema " name) makes querying that data extremely simple.
 Queries against the data tend to require very few joins, and therefore
 are very fast to execute.
[image: A simple star schema, showing primary keys (PK) and foreign keys (FK)]

Figure 10-3. A simple star schema, showing primary keys (PK) and foreign
 keys (FK)

Anybody with a little knowledge of SQL will probably be startled
 by the implication that the fewer the joins, the faster a query runs.
 Jumping to the defense of joins is not, of course, to recommend
 joining indiscriminately dozens of tables, but unless you have had a
 traumatic early childhood experience with nested loops on big,
 unindexed tables, it is hard to assert seriously that joins are the
 reason queries are slow. The slowness comes from the way queries are
 written; in this light, dimensional modeling can make a lot of sense,
 and you’ll see why as you progress through this chapter.
Important
The design constraints of dimensional modeling are
 deliberately read-oriented, and consequently they frequently ignore
 the precepts of relational design.

Query Tools

The problem with decision-support systems is that their
 primary users have not the slightest idea how to write an SQL query,
 not even a terrible one. They therefore have to use query
 tools for that purpose, query tools that present them with a
 friendly interface and build queries for them. You saw in Chapter 8 that dynamically generating
 an efficient query from a fixed set of criteria is a difficult task,
 requiring careful thought and even more careful coding. It is easy to
 understand that when the query can actually be anything, a tool can
 only generate a decent query when complexity is low.
The following piece of code is one that I saw actually generated
 by a query tool (it shows some of the columns returned by a subquery
 in a from clause):
 ...
 FROM (SELECT ((((((((((((t2."FOREIGN_CURRENCY"
 || CASE
 WHEN 'tfp' = 'div' THEN t2."CODDIV"
 WHEN 'tfp' = 'ac' THEN t2."CODACT"
 WHEN 'tfp' = 'gsd' THEN t2."GSD_MNE"
 WHEN 'tfp' = 'tfp' THEN t2."TFP_MNE"
 ELSE NULL
 END
)
 || CASE
 WHEN 'Y' = 'Y' THEN TO_CHAR (
 TRUNC (
 t2."ACC_PCI"
)
)
 ELSE NULL
 END
)
 || CASE
 WHEN 'N' = 'Y' THEN t2."ACC_E2K"
 ELSE NULL
 END
)
 || CASE
 WHEN 'N' = 'Y' THEN t2."ACC_EXT"
 ELSE NULL
 END
)
 || CASE ...
It seems obvious from this sample’s select list that at least some “business
 intelligence” tools invest so much intelligence on the business side
 that they have nothing left for generating SQL queries. And when the
 where clause ceases to be
 trivial—forget about it! Declaring that it is better to avoid joins
 for performance reasons is quite sensible in this context. Actually,
 the nearer you are to the “text search in a file” (a.k.a. grep) model, the better. And one
 understands why having a “date dimension” makes sense, because having
 a date column in the fact table and expecting that the query tool will
 transform references to “Q1” into “between January 1 and March 31” to
 perform an index range scan requires the kind of faith you usually
 lose when you stop believing in the Tooth Fairy. By explicitly laying
 out all format variations that end users are likely to use, and by
 indexing all of them, risks are limited. Denormalized dimensions,
 simple joins, and all-round indexing increase the odds that most
 queries will execute in a tolerable amount of time, which is usually
 the case.
Important
Weakly designed queries may perform acceptably against
 dimensional models because the design complexity is much lower than
 in a typical transactional model.

Extraction, Transformation, and Loading

In order for business users to be able to proactively leverage
 strategic cost-generating opportunities (if data warehousing
 literature is to be believed), it falls on some poor souls to ensure
 the mundane task of feeding the decision-support system. And even if
 tools are available, this feeding is rarely an easy task.
Data extraction

Data extraction is not usually handled through SQL queries. In
 the general case, purpose-built tools are used: either utilities or
 special features provided by the DBMS, or dedicated third-party
 products. In the unlikely event that you would want to run your own
 SQL queries to extract information to load into a data warehouse,
 you typically fall into the case of having large volumes of
 information, where full table scans are the safest tactic. You must
 do your best in such a case to operate on arrays (if your DBMS
 supports an array interface—that is fetching into arrays or passing
 multiple values as a single array), so as to limit round-trips
 between the DBMS kernel and the downloading program.

Transformation

Depending on your SQL skills, the source of the data,
 the impact on production systems, and the degree of
 transformation required, you can use the SQL language to perform a
 complex select that will return
 ready-to-load data, use SQL to modify the data in a staging area, or
 use SQL to perform the transformation at the same time as the data
 is uploaded into the data warehouse.
Transformations often include aggregates, because the
 granularity required by decision support systems is usually coarser than the level of detail provided
 by production databases. Typically, values may be aggregated by day.
 If transformation is not more complicated than aggregation, there is
 no reason for performing it as a separate operation. Writing to the
 database is much costlier than reading from it, and updating the
 staging area before updating the data warehouse proper may be adding
 an unwanted costly step.
Such an extra step may be unavoidable, though, when data has
 to be compounded from several distinct operational systems; I can
 list several possible reasons for having to get data from different
 unrelated sources:
	Acute warlordism within the corporation

	A recently absorbed division still using its
 pre-acquisition information system

	A migration spread over time, meaning that at some point
 you have, for instance, domestic operations still running on an
 old information system while international ones are already
 using a new system that will later be used everywhere

The assemblage of data from several sources should be done, as
 much as possible, in a single step, using a combination of set
 operators such as union and of
 in-line views—subqueries in the from clause. Multiple passes carry a
 number of risks and should not be directly applied to the target
 data warehouse. The several-step update of tables, with null columns being suddenly assigned
 values is an excellent recipe for wreaking havoc at the physical
 level. When data is stored in variable length, as is often the case
 with character information and sometimes with numeric information as
 well (Oracle is an example of such a storage strategy), it will
 invariably lead to some of the data being relegated to overflow
 pages, thus compromising the efficiency of both full scans and
 indexed accesses, since indexes usually point to the head part of a
 row. Any pointer to an overflow area will mean visiting more pages
 than would otherwise be necessary to answer a given question, and
 will be costly. If the prepared data is very simply inserted into
 the target data warehouse tables, data will be properly reorganized
 in the process.
It is also quite common to see several updates applied to
 different columns of the same table in turn. Whenever possible,
 perhaps with help from the case
 construct, always update as many columns in one statement as
 possible.
Important
Multiple massive updates applied to a table often wreak
 havoc at the physical level.

Loading

If you build your data warehouse (or data mart, as
 others prefer to say) according to the rules of dimensional
 modeling, all dimensions will use artificial, system-generated keys
 for the purpose of keeping a logical track over time of items that
 may be technically different but logically identical. For instance,
 if you manufacture consumer electronics, a new model with a new
 reference may have been designed to replace an older model, now
 discontinued. By using the same artificial key for both, you can
 consider them as a single logical entity for analysis.
The snag is that the primary keys in your operational database
 will usually have different values from the dimension identifiers
 used in the decision support system, which becomes an issue not with
 dimension tables but with fact tables. You have no reason to use
 surrogate keys for dates in your operational system. In the same
 way, the operational system doesn’t necessarily need to record which
 electronic device model is the successor to another. Dimension
 tables are, for the most part, loaded once and rarely updated.
 Dimensional modeling rests partly on the assumption that the
 fast-changing values are the ones stored in fact tables. As a
 result, for every row you need to insert into the fact table, you
 must retrieve (from the operational database primary key) the value
 of the corresponding surrogate, system-generated key for each of the
 dimensions—which necessarily means as many joins as there are
 different dimensions. Queries against the decision support system
 may require fewer joins, but loading into the decision support
 system will require many more joins because of the mapping between
 operational and dimensional keys.
Important
The advantage of simpler queries against dimensional models
 is paid for by the disadvantage of complex preparation and loading
 of the data.

Integrity constraints and indexes

When a DBMS implements referential integrity checking,
 it is sensible to disable that checking during data load operations.
 If the DBMS engine needs to check for each row that the foreign keys
 exist, the engine does double the amount of work, because any
 statement that uploads the fact table has to
 look for the parent surrogate key anyway. You might also
 significantly speed up loading by dropping most indexes and
 rebuilding them after the load, unless the rows loaded represent a
 small percentage of the size of the table that you are loading, as
 rebuilding indexes on very large tables can be prohibitively
 expensive in terms of resources and time. It would however be a
 potentially lethal mistake to disable all
 constraints, and particularly primary keys. Even if the data being
 loaded has been cleaned and is above all reproach, it is very easy
 to make a mistake and load the same data twice—much easier than
 trying to remove duplicates afterwards.
Important
The massive upload of decision-support systems is one of the
 rare cases when temporarily altering a schema may be
 tolerated.

Querying Dimensions and Facts: Ad Hoc Reports

If query tools are seriously helped by removing anything
 that can get in their way, such as evil joins and sophisticated
 subqueries, there usually comes a day when business users require
 answers that a simplistic schema cannot provide. The dimensional model
 is then therefore duly “embellished” with
 mini-dimensions , outriggers , bridge tables , and all kinds of bells and whistles until it begins
 to resemble a clean 3NF schema, at which point query tools are
 beginning to suffer. One day, a high-ranking user tries something
 daring—and the next day the problem is on the desk of a developer,
 while the tool-generated query is still running. Time for ad hoc
 queries and shock SQL!
It is when you have to write ad hoc queries that it is time to
 get back to dimensional modeling and see the SQL
 implications . Basically, dimensions represent the breaks in a
 report. If an end user often wants to see sales by product, by store,
 and by month, then we have three dimensions involved: the date
 dimension that has been previously introduced, the product dimension,
 and the store dimension. Product and store can be denormalized to
 include information such as product line, brand, and category in one
 case, and region, surface, or whatever criterion is deemed to be
 relevant in the other case. Sales amounts are, obviously,
 facts.
A key characteristic of the star schema is that we are supposed
 to attack the fact table through the dimensions such as in Figure 10-4; in the previous
 example, we might for instance want to see sales by product, store,
 and month for dairy products in the stores
 located in the Southwest and for the
 third quarter. Contrarily to the generally
 recommended practice in normalized operational databases, dimension
 tables are not only denormalized, but are also strongly
 indexed. Indexing all columns means that, whatever the degree of
 detail required (the various columns in a location dimension, such as
 city, state, region, country, area, can be seen as various levels of
 detail, and the same is true of a date dimension), an end user who is
 executing a query will hit an index. Remember that dimensions are
 reference tables that are rarely if ever updated, and therefore there
 is no frightful maintenance cost associated with heavy indexing. If
 all of your criteria refer to data stored in dimension tables, and if
 they are indexed so as to make any type of search fast, you should
 logically hit dimension tables first and then locate the relevant
 values in the fact table.
[image: The usual way of querying tables in the dimensional model]

Figure 10-4. The usual way of querying tables in the dimensional
 model

Hitting dimensions first has very strong SQL implications that
 we must well understand. Normally, one accesses particular rows in a
 table through search criteria, finds some foreign keys in those rows,
 and uses those foreign keys to pull information from the tables those
 keys reference. To take a simple example, if we want to find the phone
 number of the assistant in the department where Owens works, we shall
 query the table of employees basing our search on the “Owens” name,
 find the department number, and use the primary key on the table of
 departments to find the phone number. This is a classic, nested-loop
 join case.
With dimensional modeling, the picture totally changes. Instead
 of going from the referencing table (the employees) to the referenced
 table (the departments), naturally following foreign keys, we start
 from the reference tables—the dimensions. To go where? There is no
 foreign key linking a dimension to the fact table: the opposite is
 true. It is like looking for the names of all the employees in a
 department when all you know is the phone number of the assistant.
 When joining the fact table to the dimension, the DBMS engine will
 have to go through a mechanism other than the usual nested
 loop—perhaps something such as a hash join.
Another peculiarity of queries on dimensional models is that
 they often are perfect examples of the association of criteria that’s
 not too specific, with a relatively narrow intersection to obtain a
 result set that is not, usually, enormous. The optimizer can use a
 couple of tactics for handling such queries. For instance:
	Determining which is the most selective of all
 these not-very-selective criteria, joining the associated
 dimension to the fact table, and then checking each of the other
 dimensions
	Such a tactic is fraught with difficulties. First of all,
 the way dimensions are built may give the optimizer wrong ideas
 about selectivity. Suppose we have a date dimension that is used
 as the reference for many different dates: the sales date, but
 also, for instance, the date on which each store was first
 opened, a fact that may be useful to compare how each store is
 doing after a given number of months of activity. Since the date
 dimension will never be a giant table, we may have decided to
 fill it from the start with seventy years’ worth of dates.
 Seventy years give us, on one hand, enough “historical” dates to
 be able to refer to even the opening of the humble store of the
 present chairman’s grandfather and, on the other hand, enough
 future dates so as to be able to forget about maintaining this
 dimension for quite a while. Inevitably, a reference to the
 sales of last year’s third quarter will make the criterion look
 much more selective than it really is. The problem is that if we
 truly had a “sales date” inside the fact table, it would be
 straightforward to determine the useful range of dates. If we
 just have a “date reference” pointing to the date dimension, the
 starting point for evaluation is the dimension, not the fact
 table.

	Scanning the fact table and discarding any row
 that doesn’t satisfy any of the various criteria
	Since fact tables contain all the measurement or metrics,
 they are very large. If they are partitioned, it will
 necessarily be against a single dimension (two if you use
 subpartitioning). Any query involving three or more dimensions
 will require a full scan of a table that can contain millions of
 rows. Scanning the fact table isn’t the most attractive of
 options.

In such a case, visiting the fact table at an early stage, which
 also means after a first dimension, may be a mistake. Some products
 such as Oracle implement an interesting algorithm, known in Oracle’s
 case as the “star transformation.” We are going to look next at this
 transformation in some detail, including characteristics that are
 peculiar to Oracle, before discussing how such an algorithm may be
 emulated in non-Oracle environments.
Important
Dimensional modeling is built on the premise that dimensions
 are the entry points. Facts must be accessed last.

The star transformation

The principle behind the star transformation is, as a
 very first step, to separately join the fact table to each of the
 dimensions for which we have a filtering condition. The
 transformation makes it appear that we are joining several times to
 the fact table, but appearances are deceiving. What we really want
 is to get the addresses of rows from the fact
 table that match the condition on each dimension. Such an address,
 also known as a rowid (accessible as a
 pseudo-column with Oracle; Postgres has a functionally equivalent
 oid) is stored in indexes. All
 we need to join, therefore, are three objects:
	The index on the column from the dimension table that we
 use as a filtering condition—for instance, the quarters column in date_dimension

	The date_dimension
 itself, in which we find the system-generated artificial primary
 key date_key

	The index on the column in the fact table that is defined
 as a foreign key referencing date_key (star transformations work
 best when the foreign keys in the fact table are indexed)

Even though the fact table appears several times in a star
 query, we will not hit the same data or index pages repeatedly. All
 the separate joins will involve different indexes, and all storing
 rowids referring to the same table—but otherwise those indexes are
 perfectly distinct objects.
As soon as we have the result of two joins, we can combine the
 two resulting sets of rowids, discarding everything that doesn’t
 belong to the intersection of the two sets for an and condition or retaining everything for
 an or condition. This step is
 further simplified if we are using bitmap
 indexes , for which simple bit-wise operations are all that
 is required to select our final set of rowids that refer to rows
 satisfying our conditions. Once we have our final, relatively small
 set of resulting rowids, then we can fetch the corresponding rows
 from the fact table that we are actually visiting for the very first
 time.
Bitmap indexes, as their name says, index values by keeping
 bitmaps telling which rows contain a particular value and which do
 not. Bitmap indexes are particularly appropriate to index
 low-cardinality columns; in other words, columns in which there are
 few distinct values, even if the distribution of those values is not
 particularly skewed. Bitmap indexes were not mentioned in previous
 chapters for an excellent reason: they are totally inappropriate for
 general database operations. There is a major reason for avoiding
 them in a database that incurs normal update activity: when you
 update a bitmap, you have to lock it. Since this type of index is
 designed for columns with few distinct values, you end up preventing
 changes to many, many rows, and you get a behavior that lies
 somewhere between page locking and table locking, but much closer to
 table locking. For read-only databases, however, bitmap indexes may
 prove useful. Bitmap indexes are quickly built during bulk loads and
 take much less storage than regular indexes.

Emulating the star transformation

Although automated star transformation is a feature
 that enables even poorly generated queries to perform efficiently,
 it is quite possible to write a query in a way that will induce the
 DBMS kernel to execute it in a similar, if not exactly identical,
 fashion. I must plead guilty to writing SQL statements that are
 geared at one particular result. From a relational point of view, I
 would deserve to be hanged high. On the other hand, dimensional
 modeling has nothing to do with the relational theory. I am
 therefore using SQL in a shamelessly unrelational way.
Let’s suppose that we have a number of dimension tables named
 dim1, dim2, ...dim n. These
 dimension tables surround our fact table that we shall imaginatively
 call facts. Each row in facts is composed of key1, key2, ...key n, foreign
 keys respectively pointing to one dimension table, plus a number of
 values (the facts) val1, val2, ...val p. The
 primary key of facts is defined
 as a composite key, and is simply made of key1 to key n.
Let’s further imagine that we need to execute a query that
 satisfies conditions on some columns from dim1, dim2, and dim3 (they may, for instance, represent a
 class of products, a store location, and a time period). For
 simplicity, say that we have a series of and conditions, involving col1 in dim1, col2 in dim2 and col3 in dim3. We shall ignore any transformation,
 aggregate or whatever, and limit our creative exercise to returning
 the appropriate set of rows in as effective a way as
 possible.
The star transformation mostly aims to obtain in an efficient
 way the identifiers of the rows from the fact table that will belong
 to our result set, which may be the final result set or an
 intermediate result set vowed to further ordeals. If we start with
 joining dim2 to facts, for instance:
 select ...
 from dim2,
 facts
 where dim2.key2 = facts.key2
 and dim2.col2 = some value
then we have a major issue if we have no Oracle
 rowid, because the identifiers of the
 appropriate rows from facts are
 precisely what we want to see returned. Must we return the primary
 key from facts to properly
 identify the rows? If we do, we hit not only the index on facts(key2), but also table facts itself, which defeats our initial
 purpose. Remember that the frequently used technique to avoid an
 additional visit to the table is to store the information we need in
 the index by adding to the index the columns we want to return. So,
 must we turn our index on facts(key2) into an index on facts(key2, key3...keyn)? If we do that, then we must apply
 the same recipe to all foreign keys! We will end up with
 n indexes that will each be of a size in the
 same order of magnitude as the facts table itself, something that is not
 acceptable and that forces us to read large amounts of data while
 scanning those indexes, thus jeopardizing performance.
What we need for our facts
 table is a relatively small row identifier—a surrogate key that we
 may call fact_id. Although our
 facts table has a perfectly good
 primary key, and although it is not referenced by any other table,
 we still need a compact technical identifier—not to use in other
 tables, but to use in indexes.
With our system-generated fact_id column, we can have indexes on
 (key1, fact_id), (key2, fact_id)...(keyn, fact_id) instead of on the foreign
 keys alone. We can now fully write our previous query as:
 select facts.fact_id
 from dim2,
 facts
 where dim2.key2 = facts.key2
 and dim2.col2 = some value
This version of the query no longer needs the DBMS engine to
 visit anything but the index on col2, the dimension table dim2, and the facts index on (key2, fact_id). Note that by applying the
 same trick to dim2 (and of course
 the other dimension tables), systematically appending the key to
 indexes on every column, the query can be executed by only visiting
 indexes.
Repeating the query for dim1 and dim3 provides us with identifiers of facts
 that satisfy the conditions associated with these dimensions. The
 final set of identifiers satisfying all conditions can easily be
 obtained by joining all the queries:
 select facts1.fact_id
 from (select facts.fact_id
 from dim1,
 facts
 where dim1.key1 = facts.key1
 and dim1.col1 = some value) facts1,
 (select facts.fact_id
 from dim2,
 facts
 where dim2.key2 = facts.key2
 and dim2.col2 = some other value) facts2,
 (select facts.fact_id
 from dim3,
 facts
 where dim3.key3 = facts.key3
 and dim3.col3 = still another value) facts3
 where facts1.fact_id = facts2.fact_id
 and facts2.fact_id = facts3.fact_id
Afterwards, we only have to collect from facts the rows, the identifiers of which
 are returned by the previous query.
The technique just described is, of course, not specific to
 decision-support systems. But I must point out that we have assumed
 some very heavy indexing, a standard fixture of data marts and,
 generally speaking, read-only databases. In such a context, putting
 more information into indexes and adding a surrogate key column can
 be considered as “no impact” changes. You should be most reluctant
 in normal (including in the relational sense!) circumstances to
 modify a schema so significantly to accommodate queries. But if most
 of the required elements are already in place, as in a data
 warehousing environment, you can certainly take advantage of
 them.

Querying a star schema the way it is not intended to be
 queried

As you have seen, the dimensional model is designed to
 be queried through dimensions. But what happens when, as in Figure 10-5, our input
 criteria refer to some facts (for instance, that the sales amount is
 greater than a given value) as well as to dimensions?
[image: A maverick usage of the dimension model]

Figure 10-5. A maverick usage of the dimension model

We can compare such a case to the use of a group by. If the condition on the fact
 table applies to an aggregate (typically a sum or average), we are
 in the same situation as with a having clause: we cannot provide a result
 before processing all the data, and the condition on the fact table
 is nothing more than an additional step over what we might call
 regular dimensional model processing. The situation
 looks different, but it isn’t.
If, on the contrary, the condition applies to individual rows
 from the fact table, we should consider whether it would be more
 efficient to discard unwanted facts rows earlier in the process, in
 the same way that it is advisable to filter out unwanted rows in the
 where clause of a query, before
 the group by, rather than in the
 having clause that is evaluated
 after the group by. In such a
 case, we should carefully study how to proceed. Unless the fact
 column that is subjected to a condition is indexed—a condition that
 is both unlikely and unadvisable—our entry point will still be
 through one of the dimensions. The choice of the proper dimension to
 use depends on several factors; selectivity is one of them, but not
 necessarily the most important one. Remember the clustering factor
 of indexes, and how much an index that corresponds to the actual,
 physical order of rows in the table outperforms other indexes
 (whether the correspondence is just a happy accident of the data
 input process, or whether the index has been defined as constraining
 the storage of rows in the table). The same phenomenon happens
 between the fact table and the dimensions. The order of fact rows
 may happen to match a particular date, simply because new fact rows
 are appended on a daily basis, and therefore those rows have a
 strong affinity to the date dimension. Or the order of rows may be
 strongly correlated to the “location dimension” because data is
 provided by numerous sites and processed and loaded on a
 site-by-site basis. The star schema may look symmetrical, just as
 the relational model knows nothing of order. But implementation
 hazards and operational processes often result in a break-up of the
 star schema’s theoretical symmetry. It’s important to be able to
 take advantage of this hidden dissymmetry whenever possible.
If there is a particular affinity between one of the
 dimensions to which a search filter must be applied and to the fact
 table, the best way to proceed is probably to join that dimension to
 the fact table, especially if the criterion that is applied to the
 fact table is reasonably selective. Note that in this particular
 case we must join to the actual fact table, obviously through the
 foreign key index, but not limit our access to the index. This will
 allow us to directly get a superset of our target collection of rows
 from the fact table at a minimum cost in terms of visited pages, and
 check the condition that directly applies to fact rows early. The
 other criteria will come later.
Important
The way data is loaded to a star schema can favor one
 dimension over all others.

A (Strong) Word of Caution

Dimensional modeling is a technique, not a theory, and
 it is popular because it is well-suited to the less-than-perfect (from
 an SQL[*] perspective) tools that are commonly used in decision
 support systems, and because the carpet-indexing (as in
 “carpet-bombing”) it requires is tolerable in a read-only
 system—read-only after the loading phase, that is. The problem is that
 when you have 10 to 15 dimensions, then you have 10 to 15 foreign keys
 in your fact table, and you must index all those keys if you want
 queries to perform tolerably well. You have seen that dimensions are
 mostly static and not enormous, so indexing all columns in all
 dimensions is no real issue. But indexing all columns may be much more
 worrisome with a fact table, which can grow very big: just imagine a
 large chain of grocery stores recording one fact each time they sell
 one article. New rows have to be inserted into the fact table very
 regularly. You saw in Chapter 3
 that indexes are extremely costly when inserting; 15 indexes, then,
 will very significantly slow down loading. A common technique to load
 faster is to drop indexes and then recreate them (if possible in
 parallel) once the data is loaded. That technique may work for a
 while, but re-indexing will inexorably take more time as the base
 table grows. Indexing requires sorting, and (as you might remember
 from the beginning of this chapter) sorts belong to the category of
 operations that significantly suffer when the number of rows
 increases. Sooner or later, you will discover that the re-creation of
 indexes takes way too much time, and you may well also be told that
 you have users who live far, far away who would like to access the
 data warehouse in the middle of the night.
Users that want the database to be accessible during a part of
 the night mean a smaller maintenance window for loading the decision
 support system. Meanwhile, because recreating indexes takes longer as
 data accumulates into the decision support database, loading times
 have a tendency to increase. Instead of loading once every night,
 wouldn’t it be possible to have a continuous flow of data from
 operational systems to the data warehouse? But then, denormalization
 can become an issue, because the closer we get to a continuous flow,
 the closer we are to a transactional model, with all the integrity
 issues that only proper normalization can protect against.
 Compromising on normalization is acceptable in a carefully controlled
 environment, an ivory tower. When the headquarters are too close to
 the battlefield, they are submitted to the same rules.

[*] Some will say—with some reason—that SQL itself is not above
 reproach.

Chapter 11. Stratagems

Trying to Salvage Response Times

But my doctrines and I begin to part company. Jude The
 Obscure, IV, ii
—Thomas Hardy (1840–1928)

I hope to have convinced you in Chapters 1 and 2 about the extent to which
 performance depends, first and foremost, on a sound database design, and
 second, on a clear strategy and well-designed programs. The sad truth is
 that when you are beginning to be acknowledged as a skilled SQL tuner,
 people will not seek your advice until they discover that they have
 performance problems. This happens—at best—during the final stages of
 acceptance testing, after man-months of haphazard development. You are
 then expected to work wonders on queries when table designs, program
 architectures, or sometimes even the requirements themselves may all be
 grossly inappropriate. Some of the most sensitive areas are related to
 interfacing legacy systems—in other words loading the
 database or downloading data to files.
If there is one chapter in this book that should leave a small
 imprint on your memory, it should probably be this one. If you really want
 to remember something, I hope it will not be the
 recipes (those tricky and sometimes entertaining SQL
 queries of death) in this chapter, but the reasoning behind each recipe,
 which I have tried my best to make as explicit as possible. Nothing is
 better than getting things right from the very start; but there is some
 virtue in trying to get the best out of a rotten situation.
You will also find some possible answers to common problems that,
 sometimes surprisingly, seem to induce developers to resort to contorted
 procedures. These procedures are not only far less efficient, but also
 commonly far more obscure and harder to maintain than SQL statements, even
 complex ones.
I shall end this chapter with a number of remarks about a commonly
 used stratagem indirectly linked to SQL proper, that of optimizer
 directives.
Welcome to the heart of darkness.
Turning Data Around

The most common difficulty that you may encounter when
 trying to solve SQL problems is when you have to program against what
 might charitably be called an “unconventional” design. Writing a query
 that performs well is often the most visible challenge. However, I must
 underline that the complex SQL queries that are forced upon developers
 by a poor design only mirror the complication of programs (including
 triggers and stored procedures) that the same poor design requires in
 order to perform basic operations such as integrity checking. By
 contrast, a sound design allows you to declare
 constraints and let the DBMS check them for you, removing much of the
 risk associated with complexity. After all, ensuring data integrity is
 exactly what a DBMS, a rather fine piece of software, has been
 engineered to achieve. Unfortunately, haphazard designs will force you
 to spend days coding application controls. As a bonus, you get very high
 odds of letting software bugs creep in. Unlike popular software systems
 that are in daily use by millions of users, where bugs are rapidly
 exposed and fixed, your home-grown software can hide bugs for weeks or
 months before they are discovered.
Rows That Should Have Been Columns

Rows that should have been originally specified as
 columns are most often encountered with that appalling “design” having
 the magical four attributes--entity_id, attribute_name, attribute_type, attribute_value--that are
 supposed to solve all schema evolution issues. Frighteningly, many
 supporters of this model seem to genuinely believe that it represents
 the ultimate sophistication in terms of normalization. You will find
 it under various, usually flattering, names—such as
 meta-design , or fact dimension with data warehouse designers.
Proponents of the magical four attributes praise the
 “flexibility” of this model. There is an obvious confusion of
 flexibility with flabbiness. Being able to add “attributes” on the fly
 is not flexibility; those attributes need to be retrieved and
 processed meaningfully. The dubious benefit of inserting rows instead
 of painstakingly designing the database in the first place is
 absolutely negligible compared to the major coding effort that is
 required, first, to process those new rows, and second, to insure some
 minimal degree of integrity and data consistency. The proper way to
 deal with varying numbers of attributes is to define
 subtypes, as explained in Chapter 1. Subtypes let you define
 clean referential integrity constraints—checks that you will not need
 to code and maintain. A database should not be a mere repository where
 data is dumped without any thought to its semantic integrity.
The predominant characteristic of queries against
 meta-design tables, as tables designed around our
 magical four attributes are sometimes called, is that you find the
 same table invoked a very high number of times in the from clause. Typically, queries will
 resemble something like:
select emp_last_name.entity_id employee_id,
 emp_last_name.attribute_value last_name,
 emp_first_name.attribute_value first_name,
 emp_job.attribute_value job_description,
 emp_dept.attribute_value department,
 emp_sal.attribute_value salary
from employee_attributes emp_last_name,
 employee_attributes emp_first_name,
 employee_attributes emp_job,
 employee_attributes emp_dept,
 employee_attributes emp_sal
where emp_last_name.entity_id = emp_first_name.entity_id
 and emp_last_name.entity_id = emp_job.entity_id
 and emp_last_name.entity_id = emp_dept.entity_id
 and emp_last_name.entity_id = emp_sal.entity_id
 and emp_last_name.attribute_name = 'LASTNAME'
 and emp_first_name.attribute_name = 'FIRSTNAME'
 and emp_job.attribute_name = 'JOB'
 and emp_dept.attribute_name = 'DEPARTMENT'
 and emp_sal.attribute_sal = 'SALARY'
order by emp_last_name.attribute_value

Note how the same table is referenced five times in the from clause. The number of
 self-joins is usually much higher than in this simple example.
 Furthermore, such queries are frequently spiced up with outer joins as
 well.
A query with a high number of self-joins performs extremely
 badly on large volumes; it is clear that the only reason for the
 numerous conditions in the where
 clause is to patch all the various “attributes” together. Had the
 table been defined as the more logical employees(employee_id, last_name, first_name,
 job_description, department, salary), our query would have
 been as simple as:
select *
from employees
order by last_name

And the best course for executing this
 query is obviously a plain table scan. The multiple joins and
 associated index accesses of the query against employee_attributes are performance
 killers.
We can never succeed in making a query run as fast against a
 rotten design as it will run against a clean design. Any clever
 rewriting of a SQL query against badly designed tables will be nothing
 more than a wooden leg, returning only some degree of agility to a
 crippled query. However, we can often obtain spectacular results in
 comparison to the multiple joins approach by trying to achieve a
 single pass on the attribute table.
We basically want one row with several attributes (reflecting
 what the table design should have been in the first place) instead of
 multiple rows, each with only one attribute of interest per row.
 Consolidating a multi-row result into a single row is a feat we know
 how to perform: aggregate functions do precisely this. The idea is
 therefore to proceed in two steps, as shown in Figure 11-1:
	Complete each row that contains only one value of interest,
 with as many dummy values as required to obtain the total number
 of attributes that we ultimately want.

	Aggregate the different rows so as to keep only the single
 value of interest from each (the single value in each column). A
 function such as max(), that
 has the advantage of being applicable to most data types, is
 perfect for this kind of operation.

To be certain that max()
 will only retain meaningful values, we must use dummy values that will
 necessarily be smaller than any legitimate value we may have in a
 given column. It is probably better to use an explicit value rather
 than null as a dummy value, even
 though max() ignores null values
 according to the standard.
If we apply the “recipe” illustrated in Figure 11-1 to our previous
 example, we can get rid of the numerous joins by writing:
[image: Transmogrification of several rows into one row]

Figure 11-1. Transmogrification of several rows into one row

select employee_id,
 max(last_name) last_name,
 max(first_name) first_name,
 max(job_description) job_desription,
 max(department) department,
 max(salary) salary
from -- select all the rows of interest, returning
 -- as many columns as we have rows, one column
 -- of interest per row and values smaller
 -- than any value of interest everywhere else
 (select entity_id employee_id,
 case attribute_name
 when 'LASTNAME' then attribute_value
 else ''
 end last_name,
 case attribute_name
 when 'FIRSTNAME' then attribute_value
 else ''
 end first_name,
 case attribute_name
 when 'JOB' then attribute_value
 else ''
 end job_description,
 case attribute_name
 when 'DEPARTMENT' then attribute_value
 else -1
 end department,
 case attribute_name
 when 'SALARY' then attribute_value
 else -1
 end salary
 from employee_attributes
 where attribute_name in ('LASTNAME',
 'FIRSTNAME',
 'JOB',
 'DEPARTMENT',
 'SALARY')) as inner
group by inner.employee_id
order by 2

The inner query is not strictly required—we could have used a
 series of max(case when ...
 end)--but the query as written makes the two steps appear
 more clearly.
An aggregate is not, as you might expect, the best option in
 terms of performance. But in the kingdom of the blind, the one-eyed
 man is king, and this type of query just shown usually has no trouble
 outperforming one having a monstrous number of self-joins. A word of
 caution, though: in order to accommodate any unexpectedly lengthy
 attribute, the attribute_value
 column is usually a fairly large variable-length string. As a result,
 the aggregation process may require a significant amount of memory,
 and in some extreme cases you may run into difficulties if the number
 of attributes exceeds a few dozen.
Important
Multiple self-joins can often be avoided by retrieving all
 rows in a single pass, spreading the values across separate columns,
 and using an aggregate function to collapse the many rows into
 one.

Columns That Should Have Been Rows

In contrast to the previous design in which rows have
 been defined for each attribute, another example of poor design occurs
 where columns are created instead of individual rows. The classic
 design mistake made by many beginners is to predefine a fixed number
 of columns for a number of variables, with some of the columns set to
 null when values are missing. A typical example is illustrated in
 Figure 11-2, with a very
 poorly designed movie database (compare this design to the correct
 design of Figure 8-3 in
 Chapter 8).
[image: A badly designed movie database]

Figure 11-2. A badly designed movie database

Instead of using a movie_credits table as we did in Chapter 8 to link the movies table to the people table and record the nature of each
 individual’s involvement, the poor design shown in Figure 11-2 assumes that we
 will never need to record more than a fixed number of lead actors and
 one director. The first assumption is blatantly wrong and so is the
 second one since many sketch comedies have had multiple directors. As
 a representation of reality, this model is plainly flawed, which
 should already be sufficient reason to discard it. To make matters
 worse, a poor design, in which data is stored as columns and yet
 reporting output obviously requires data to be presented as rows,
 often results in rather confusing queries. Unfortunately, writing
 queries against poor database designs seems to be as unavoidable as
 taxes and death in the world of SQL development.
When you want different columns to be displayed as rows, you
 need a pivot table. Pivot tables are used to
 pivot, or turn sideways, tables where we want to
 see columns as rows. A pivot table is, in the context of SQL
 databases, a utility table that contains only one column, filled with
 incrementing values from 1 to
 whatever is needed. It can be a true table or a view—or even a query
 embedded in the from clause of a
 query. Using such a utility table is a favorite old trick of
 experienced SQL developers, and the next few subsections show how to
 create and use them.
Creating a pivot table

The constructs you have seen in Chapter 7 for walking trees are
 usually quite convenient for generating pivot table values; for
 instance, we can use a recursive withaction with those database systems
 that support it. Here is a DB2 example to generate numbers from 1 to
 50:
with pivot(row_num)
 -- Generate 50 values
 -- 1 to 50, one value per row
 as (select 1 row_num
 from sysibm.sysdummy1
 union all
 select row_num + 1
 from pivot
 where row_num < 50)
select row_num
from pivot;

Similar tricks are of course possible with Oracle’s connect by; for instance:[*]
select level
from dual
connect by level <= 50

Using one of these constructs inside the from clause of a query can make that query
 particularly illegible, and it is therefore often advisable to use a
 regular table as pivot. But a recursive query can be useful to fill
 the pivot table (an alternate solution to fill a pivot table is to
 use Cartesian joins between existing tables). Typically, a pivot table
 would hold something like 1,000 rows.

Multiplying rows with a pivot table

Now that we have a pivot table, what can we do with it? One
 way to look at a pivot table is to view it as a row-multiplying
 device. By combining a pivot to a table we want to see pivoted, we
 repeat each of the rows of the table to be transformed as many times
 as we wish. Specifying the number of times we want to see one row
 repeated is simply a matter of adding to the join a limiting
 condition on the pivot table, for instance:
where pivot.row_num <= multiplying value

We can thus multiply the three rows in a test employees table in a very simple way.
 First, here are the three rows:
SQL> select name, job
 2 from employees;
NAME JOB
---------- ------------------------------
Tom Manager
Dick Software engineer
Harry Software engineer

And now, here is the multiplication, by three, of those
 rows:
SQL> select e.name, e.job, p.row_num
 2 from employees e,
 3 pivot p
 4 where p.row_num <= 3;

NAME JOB ROW_NUM
---------- ------------------------------ ----------
Tom Manager 1
Dick Software engineer 1
Harry Software engineer 1
Tom Manager 2
Dick Software engineer 2
Harry Software engineer 2
Tom Manager 3
Dick Software engineer 3
Harry Software engineer 3

9 rows selected.

It’s best to index the only column in the pivot table so as
 not to fully scan this table when you need to use very few rows from
 it (as in the preceding example).

Using pivot table values

Besides the mere multiplying effect, the
 Cartesian join also allows us to associate a unique number in
 the range 1 to multiplying value for every copy
 of a row of the table we want to pivot. This value is simply the
 row_num column contributed by the
 pivot table, and it will enable
 us in turn to pick from each copy of a row only partial data. The
 full process of multiplication of the source rows and selection is
 illustrated, with a single row, in Figure 11-3. If we want the
 initial row to finally appear as a single column (which by the way
 implicitly requires the data types of col1 ... coln to be consistent), we must pick just
 one column into each of the rows generated by the Cartesian product.
 By checking the number coming from the pivot table, we can specify with a
 case for each resulting row which
 column is to be displayed to the exclusion of all the others. For
 instance, we can decide to display col1 if the value coming from the pivot
 table is 1, col2 if it is 2, and so on.
[image: Pivoting a row]

Figure 11-3. Pivoting a row

Needless to say, multiplying rows and discarding most of the
 columns we are dealing with is not the most efficient way of
 processing data; keep in mind that we are rowing upstream. An ideal
 database design would avoid the need for such multiplication and
 discarding.
Interestingly, and still in the hypothetical situation of a
 poor (to put it mildly) database design, a pivot table can in some
 circumstances bring direct performance benefits. Let’s suppose that,
 in our badly designed movie database, we want to count how many
 different actors are recorded (note that none of the actor_... columns are indexed, and that we
 therefore have to fetch the values from the table). One way to write
 this query is to use a union:
select count(*)
from (select actor_1
 from movies
 union
 select actor_2
 from movies
 union
 select actor_3
 from movies) as m

But we can also pivot the table to obtain something that looks
 more like a select on the
 movie_credits table of the
 properly designed database:
select count(distinct actor_id)
from -- Use a 3-row pivot to multiply
 -- the number of rows by 3
 -- and return actor_1 the first row in each
 -- set of 3, actor_2 for the second one
 -- and actor_3 for the third one
 (select case pv.row_num
 when 1 then actor_1
 when 2 then actor_2
 else actor_3
 end actor_id
 from movies as m,
 pivot as pv
 where pv.row_num <= 3) as m

The second version runs about twice as fast as the first
 one—significantly faster.

The pivot and unpivot operators

As a possibly sad acknowledgment of the generally poor
 quality of database designs, SQL Server 2005 has introduced two
 operators called pivot and
 unpivot to perform the toppling
 of rows into columns and vice-versa, respectively. The previous
 employee_attributes example can
 be written as follows using the pivot operator:
select entity_id as employee_id,
 [lastname],
 [firstname],
 [job],
 [department],
 [salary]
from employee_attributes as employees
 pivot (max(attribute_value)
 for attribute_name in ([lastname],
 [firstname],
 [job],
 [department],
 [salary])
 as pivoted_employees
order by 2

The specific values in the attribute_name column that we want to
 appear as columns are listed in the for ...
 in clause, using a particular syntax that transforms the
 character data into column identifiers. There is an implicit
 group by applied to all the
 columns from employee_attributes
 that are not referenced in the pivot clause; we must be careful if we
 have other columns (for instance, an attribute_type column) than entity_id, as they may require an
 additional aggregation layer.
The unpivot operator
 performs the reverse operation, and allows us to see the link
 between movie and actor as a more logical collection of (movie_id, actor_id) pairs by
 writing:
select movie_id, actor_type, actor_id
from movies
 unpivot (actor_id for actor_type in ([actor_1],
 [actor_2],
 [actor_3])) as movie_actors

Note that this query doesn’t exactly produce the result we
 want, since it introduces the name of the original column as a
 virtual actor_type column. There
 is no need to qualify actors as actor_1, actor_2, or actor_3, and once again the query may need
 to be wrapped into another query that only returns movie_id and actor_id.
The use of a pivot table, or of the pivot and unpivot operators, is a very interesting
 technique that can help extricate us from more than one quagmire.
 The support for pivoting operators by major database systems is not,
 of course, to be interpreted as an endorsement of bad design, but as
 an example of realpolitik.
Important
Pivot tables and operators can be a useful technique in
 their own right, but they should never be used as a means of
 glossing over the inadequacies of a bad design.

Single Columns That Should Have Been Something Else

Some designers of our movie database may well have been
 sensitive to the limitation on the number of actors we may associate
 with one movie. Trying to solve design issues with a creative use of
 irrelevant techniques, someone may have come up with a “bright idea”:
 what about storing the actor identifiers as a comma-separated string
 in one wide actors column? For
 instance:
first actor id, second actor id, ...

And so much for the first normal form.... The big design mistake
 here is to store several pieces of data that we need to handle one by
 one into one column. There would be no issue if a complex string—for
 instance a lengthy XML message—were considered as an opaque object by
 the DBMS and handled as if it were an atomic item. But that’s not the
 case here. Here we have several values in one column, and we
 do want to treat and manipulate each value
 individually. We are in trouble.
There are only two workable solutions with a creative design of
 this sort:
	Scrapping it and rewriting everything. This is, of course,
 by far the best solution.

	When delays, costs, and politics require a fast solution,
 the only way out may be to apply a creative SQL solution; once
 again, let me state that “solution” is probably not the best
 choice of words in this case, “fix” would be a better
 description.

I’ll also point out that a more elaborate version of the same
 mistake could use an “XML type” column; I am going to use simple character-string
 manipulation functions in my example, but they could as well be
 XML-extracting functions.
Note
Be warned: “creative SQL” is often a
 euphemism for ugly SQL!

First normal form on the fly

Our problem is to extract various individual
 components from a string of characters and return them one by one on
 separate rows. This is easier with some database systems (for
 instance, Oracle has a very rich set of string functions that
 noticeably eases the work) than with others. Conventions such as
 systematically starting or ending the string with a comma may
 further help us. We are not wimps, but real SQL developers, and we
 are therefore going to take the north face route and assume the
 worst:
	First, let’s assume that our lists of identifiers are in
 the following form:
id1, id2, id3, ..., idn

	Second, we shall also assume that the only sets of
 functions at our disposal are those common to the major database
 systems. We shall use Transact-SQL for our example and only use
 built-in functions. As you will see, a well-designed user
 function might ease both the writing and the performance of the
 resulting query.

Let’s start with a (very small) movies table in which a list of actor
 identifiers is (wrongly) stored as an attribute of the movie:
1> select movie_id, actors
2> from movies
3> go
 movie_id actors
 --------------------- --
 1 123,456,78,96
 2 23,67,97
 3 67,456

(3 rows affected)

The first step is to use as many rows from our pivot table as
 we may have characters in the actors string—arbitrarily set to a maximum
 length of 50 characters. We are going to multiply the number of rows
 in the movies table by this
 number, 50. We would naturally be rather reluctant to do something
 similar on millions of rows (as an aside, a function allowing us to
 return the position of the nth separator or the
 nth item in the string would make it necessary
 to multiply only by the maximum number of identifiers we can
 encounter, instead of by the maximum string length).
Our next move is to use the substring() function to successively get
 subsets (that can be null) of actors, starting at the first character,
 then moving to the second, and so forth, up to the last character
 (at most, the 50th character). We just have to use the row_num value from the pivot table to find the starting character
 of each substring. If we take for instance the string from the
 actors column that is associated
 to the movie identified by the value 1 for movie_id, we shall get something
 like:
123,456,78,96 associated to the row_num value 1
23,456,78,96 associated to the row_num value 2
3,456,78,96 associated to the row_num value 3
,456,78,96
456,78,96
56,78,96
6,78,96
,78,96
78,96
....

We’ll compute these subsets in a column that we’ll call
 substring1. Having these
 successive substrings, we can now check the position of the first
 comma in them. Our next move is to return as a column called
 substring2 the content of
 substring1 shifted by one
 position. We also locate the position of the first comma in substring2. These operations are
 illustrated in Figure
 11-4. Among the various resulting rows, the only ones to be
 of interest are those marking the beginning of a new identifier in
 the string: the first row in the series that is associated with the
 row_num value of 1, and all the
 rows for which we find a comma in first position of substring1. For all these rows, the
 position of the comma in substring2 tells us the length of the
 identifier that we are trying to isolate.
[image: Splitting-up a comma separated list]

Figure 11-4. Splitting-up a comma separated list

Translated into SQL code, here is what we get:
1> select row_num,
2> movie_id,
3> actors,
4> first_sep,
5> next_sep
6> from (select row_num,
7> movie_id,
8> actors,
9> charindex(',', substring(actors, row_num,
10> char_length(actors))) first_sep,
11> charindex(',', substring(actors, row_num + 1,
12> char_length(actors))) + 1 next_sep
13> from movies,
14> pivot
15> where row_num <= 50) as q
16> where row_num = 1
17> or first_sep = 1
18> go
 row_num movie_id actors first_sep next_sep
 ----------- -------------- ------------------ ----------- -----------
 1 1 123,456,78,96 4 4
 4 1 123,456,78,96 1 5
 8 1 123,456,78,96 1 4
 11 1 123,456,78,96 1 1
 1 2 23,67,97 3 3
 3 2 23,67,97 1 4
 6 2 23,67,97 1 1
 1 3 67,456 3 3
 3 3 67,456 1 1

(9 rows affected)

If we accept that we must take some care to remove commas, and
 the particular cases of both the first and last identifiers in a
 list, getting the various identifiers is then reasonably
 straightforward, even if the resulting code is not for the
 faint-hearted:
1> select movie_id,
2> actors,
3> substring(actors,
4> case row_num
5> when 1 then 1
6> else row_num + 1
7> end,
8> case next_sep
9> when 1 then char_length(actors)
10> else
11> case row_num
12> when 1 then next_sep - 1
13> else next_sep - 2
14> end
15> end) as id
16> from (select row_num,
17> movie_id,
18> actors,
19> first_sep,
20> next_sep
21> from (select row_num,
22> movie_id,
23> actors,
24> charindex(',', substring(actors, row_num,
25> char_length(actors))) first_sep,
26> charindex(',', substring(actors, row_num + 1,
27> char_length(actors))) + 1 next_sep
28> from movies,
29> pivot
30> where row_num <= 50) as q
31> where row_num = 1
32> or first_sep = 1) as q2
33> go
 movie_id actors id
 ---------------- ------------------------------ -----------------
 1 123,456,78,96 123
 1 123,456,78,96 456
 1 123,456,78,96 78
 1 123,456,78,96 96
 2 23,67,97 23
 2 23,67,97 67
 2 23,67,97 97
 3 67,456 67
 3 67,456 456

(9 rows affected)

We could have made the code slightly simpler by prepending and
 appending a comma to the actors
 column. I leave doing that as an exercise for the undaunted reader.
 Note that as the left alignment shows, the resulting id column is a string and should be
 explicitly converted to numeric before joining to the table that
 stores the actors’ names.
The preceding case, besides being an interesting example of
 solving a SQL problem by successively wrapping queries, also comes
 as a healthy warning of what awaits us on the SQL side of things
 when tables are poorly designed.

Lifting the veil on the Chapter 7 mystery path
 explosion

You may remember that in Chapter 7 I described the
 materialized path model for tree representations. In that chapter I
 noted that it would be extremely convenient if we could “explode” a
 materialized path into the different materialized paths of all its
 ancestors. The advantage of this method is that when we want to walk
 a hierarchy from the bottom up, we can make efficient use of the
 index that should hopefully exist on the materialized path. If we
 don’t “explode” the materialized path, the only way we have to find
 the ancestors of a given row is to specify a condition such
 as:
and offspring.materialized_path
 like concat(ancestor.materialized_path, '%')

Sadly, this is a construct that cannot use the index (for
 reasons that are quite similar to those in the credit card prefix
 problem of Chapter 8).
How can we “explode” the materialized path? The time has come
 to explain how we can pull that rabbit out of the hat. Since our
 node will have, in the general case, several ancestors, the very
 first thing we have to do is to multiply the rows by the number of
 preceding generations. In this way we’ll be able to extract from the
 materialized path of our initial row (for example the row that
 represents the Hussar regiment under the command of Colonel de
 Marbot) the paths of the various ancestors. As always, the solution
 for multiplying rows is to use a pivot table. If we do it this time
 with MySQL, there is a function called substring_index() that very conveniently
 returns the substring of its first argument from the beginning up to
 the third argument occurrence of the second argument (hopefully, the
 example is easier to understand). To know how many rows we need from
 the pivot table, we just compute
 how many elements we have in the path in exactly the same way that
 we computed the depth in Chapter
 7, namely by comparing the length of the path to the length
 of the same when separators have been stripped off. Here is the
 query, and the results:
mysql> select mp.materialized_path,
 -> substring_index(mp.materialized_path, '.', p.row_num)
 -> as ancestor_path
 -> from materialized_path_model as mp,
 -> pivot as p
 -> where mp.commander = 'Colonel de Marbot'
 -> and p.row_num <= 1 + length(mp.materialized_path)
 -> - length(replace(mp.materialized_path, '.', ''));
+-------------------+---------------+
| materialized_path | ancestor_path |
+-------------------+---------------+
F.1.5.1.1	F
F.1.5.1.1	F.1
F.1.5.1.1	F.1.5
F.1.5.1.1	F.1.5.1
F.1.5.1.1	F.1.5.1.1
+-------------------+---------------+
5 rows in set (0.00 sec)

Querying with a Variable in List

 There is another, and rather important, use of pivot
 tables that I must now mention. In previous chapters I have underlined
 the importance of binding variables , in other words of passing parameters to SQL queries.
 Variable binding allows the DBMS kernel to skip the parsing phase (in
 other words, the compilation of the statement) after it has done it
 once. Keep in mind that parsing includes steps as potentially costly as
 the search for the best execution path. Even when SQL statements are
 dynamically constructed, it is quite possible, as you have seen in Chapter 8, to pass variables to them.
 There is, however, one difficult case: when the end user can make
 multiple choices out of a combo box and pass a variable number of
 parameters for use in an in list. The
 selection of multiple values raises several issues:
	Dynamically binding a variable number of parameters may not be
 possible with all languages (often you must bind all variables at
 once, not one by one) and will, in any case, be rather difficult to
 code.

	If the number of parameters is different for almost every
 call, two statements that only differ by the number of bind
 variables will be considered to be different statements by the DBMS,
 and we shall lose the benefit of variable binding.

The ability provided by pivot tables to split a string allows us
 to pass a list of values as a single string to the statement,
 irrespective of the actual number of values. This is what I am going to
 demonstrate with Oracle in this section.
The following example shows how most developers would approach the
 problem of passing a list of values to an in list when that list of values is contained
 within a single string. In our case the string is v_list, and most developers would concatenate
 several strings together, including v_list, to produce a complete select statement:
v_statement := 'select count(order_id)'
 || ' from order_detail'
 || ' where article_id in ('
 || v_list || ')';
execute immediate v_statement into n_count;

This example looks dynamic, but for the DBMS it’s in fact all
 hardcoded. Two successive executions will each be different statements,
 both of which will have to be parsed before execution. Can we pass
 v_list as a parameter to the
 statement, instead of concatenating it into the statement? We can, by
 applying exactly the same techniques to the comma-separated value stored
 in variable v_list as we have applied
 to the comma-separated value stored in column actors in the example of on-the-fly
 normalization. A pivot table allows us to write the following somewhat
 wilder SQL statement:
select count(od.order_id)
into n_count
from order_detail od,
 (-- Return at many rows as we have items in the list
 -- and use character functions to return the nth item
 -- on the nth row
 select to_number(substr(v_list,
 case row_num
 when 1 then 1
 else 1 + instr(v_list, ',', 1, row_num - 1)
 end,
 case instr(v_list, ',', 1, row_num)
 when 0 then length(v_list)
 else
 case row_num
 when 1 then instr(v_list, ',',
 1, row_num) - 1
 else instr(v_list, ',', 1, row_num) - 1
 - instr(v_list, ',',
 1, row_num - 1)
 end
 end)) article_id
 from pivot
 where instr(v_list||',', ',', 1, row_num) > 0
 and row_num <= 250) x
where od.article_id = x.article_id;

You may need, if you are really motivated, to study this query a
 bit to figure out how it all works. The mechanism is all based on
 repeated use of the Oracle function instr(
). Let me just say that this function instr(haystack
 , needle
 , from_pos
 , count
) returns the
 countth occurrence of
 needle in haystack
 starting at position from_pos (0 is returned when nothing is found), but the
 logic is exactly the same as with the previous examples.
I have run the pivot and hardcoded versions of the query
 successively 1, 10, 100, 1,000, 10,000, and 100,000 times. Each time, I
 randomly generated a list of from 1 to 250 v_list values. The results are shown in Figure 11-5, and they are
 telling: the “pivoted” list is 30% faster as soon as the query is
 repeatedly executed.
[image: Performance of a hardcoded list versus a list transformed with a pivot table]

Figure 11-5. Performance of a hardcoded list versus a list transformed with
 a pivot table

Remember that the execution of a hardcoded query requires parsing
 and then execution, while a query that takes parameters (bind variables)
 can be re-executed subsequently for only a marginal cost of the first
 execution. Even if this later query is noticeably more complicated, as
 long as the execution is faster than execution plus
 parsing for the hardcoded query, the later query wins hands-down in
 terms of performance.
There are actually two other benefits that don’t show up in Figure 11-5:
	Parsing is a very CPU-intensive operation. If CPU happens to
 be the bottleneck, hardcoded queries can be extremely detrimental to
 other queries.

	SQL statements are cached whether they contain parameters or
 whether they are totally hardcoded, because you can imagine having
 hardcoded statements that are repeatedly executed by different
 users, and it makes sense for the SQL engine to anticipate such a
 situation. To take, once again, the movie database example, even if
 the names of actors are hardcoded, a query referring to a very
 popular actor or actress could be executed a large number of
 times.[*] The SQL engine will therefore cache hardcoded
 statements like the others. Unfortunately, a repeatedly executed
 hardcoded statement is the exception rather than the rule. As a
 result, a succession of dynamically built hardcoded statements that
 may each be executed only once or a very few times will all
 accumulate in the cache before being overwritten as a result of the
 normal cache management activity. This cache management will require
 more work and is therefore an additional price to pay.

Aggregating by Range (Bands)

 Some people have trouble writing SQL queries that return
 aggregates for bands. Such queries are actually quite easy to write
 using the case construct. By way of
 example, look at the problem of reporting on the distribution of tables
 by their total row counts. For instance, how many tables contain fewer
 than 100 rows, how many contain 100 to 10,000 rows, how many 10,000 to
 1,000,000 rows, and how many tables store more than 1,000,000
 rows?
Information about tables is usually accessible through data
 dictionary views: for instance, INFORMATION_SCHEMA.TABLES, pg_statistic, and pg_tables, dba_tables, syscat.tables, sysobjects and systabstats, and so on. In my explanation
 here, I’ll assume the general case of a view named table_info, containing, among other things,
 the columns table_name and row_count. Using this table, a simple use of
 case and the suitable group by can give us the distribution by
 row_count that we are after:
select case
 when row_count < 100
 then 'Under 100 rows'
 when row_count >= 100 and row_count < 10000
 then '100 to 10000'
 when row_count >= 10000 and row_count < 1000000
 then '10000 to 1000000'
 else
 'Over 1000000 rows'
 end as range,
 count(*) as table_count
from table_info
where row_count is not null
group by case
 when row_count < 100
 then 'Under 100 rows'
 when row_count >= 100 and row_count < 10000
 then '100 to 10000'
 when row_count >= 10000 and row_count < 1000000
 then '10000 to 1000000'
 else
 'Over 1000000 rows'
 end

There is only one snag here: group
 by performs a sort before aggregating data. Since we are
 associating a label with each of our aggregates, the result is, by
 default, alphabetically sorted on that label:
RANGE TABLE_COUNT
----------------- ------------
100 to 10000 18
10000 to 1000000 15
Over 1000000 rows 6
Under 100 rows 24

The ordering that would be logical to a human eye in such a case
 is to see Under 100 rows appear first, and then
 each band by increasing number of rows, with Over 1,000,000
 rows coming last. Rather than trying to be creative with
 labels, the stratagem to solve this problem consists of two
 steps:
	Performing the group by on
 two, instead of one, columns, associating with each label a dummy
 column, the only purpose of which is to serve as a sort key

	Wrapping up the query as a query within the from clause, so as to mask the sort key
 thus created and ensure that only the data of interest is
 returned

Here is the query that results from applying the preceding two
 steps:
select row_range, table_count
from (-- Build a sort key to have bands suitably ordered
 -- and hide it inside a subquery
 select case
 when row_count < 100
 then 1
 when row_count >= 100 and row_count < 10000
 then 2
 when row_count >= 10000 and row_count < 1000000
 then 3
 else
 4
 end as sortkey,
 case
 when row_count < 100
 then 'Under 100 rows'
 when row_count >= 100 and row_count < 10000
 then '100 to 10000'
 when row_count >= 10000 and row_count < 1000000
 then '10000 to 1000000'
 else
 'Over 1000000 rows'
 end as row_range,
 count(*) as table_count
 from table_info
 where row_count is not null
 group by case
 when row_count < 100
 then 'Under 100 rows'
 when row_count >= 100 and row_count < 10000
 then '100 to 10000'
 when row_count >= 10000 and row_count < 1000000
 then '10000 to 1000000'
 else
 'Over 1000000 rows'
 end,
 case
 when row_count < 100
 then 1
 when row_count >= 100 and row_count < 10000
 then 2
 when row_count >= 10000 and row_count < 1000000
 then 3
 else
 4
 end) dummy
order by sortkey;

And following are the results from executing that query:
ROW_RANGE TABLE_COUNT
----------------- -----------
Under 100 rows 24
100 to 10000 18
10000 to 1000000 15
Over 1000000 rows 6

Important
Aggregating by range (bands) requires building an artificial
 sort key to display results in desired order.

Superseding a General Case

 The technique of hiding a sort key within a query in the
 from clause, which I used in the
 previous section to display bands, can also be helpful in other
 situations. A particularly important case is when a table contains the
 definition of a general rule that happens to be superseded from time to
 time by a particular case defined in another table. I’ll illustrate by
 example.
I mentioned in Chapter 1
 that the handling of various addresses is a difficult issue. Let’s take the case of an online
 retailer, one that knows at most two addresses for each customer: a
 billing address and a shipping address. In most cases, the two addresses
 are the same. The retailer has decided to store the mandatory billing
 address in the customers table and to
 associate the customer_id identifier
 with the various components of the address (line_1, line_2, city, state, postal_code,
 country) in a different shipping_addresses table for those few
 customers for whom the two addresses differ.
The wrong way to get the shipping address when you know the
 customer identifier is to execute two queries:
	Look for a row in shipping_addresses.

	If nothing is found, then query customers.

An alternate way to approach this problem is to apply an outer
 join on shipping_addresses and
 customers. You will then get two
 addresses, one of which will in most cases be a suite of null values.
 Either you check programmatically if you indeed have a valid shipping
 address, which is a bad solution, or you might imagine using the
 coalesce() function that returns its
 first non-null argument:
select ... coalesce(shipping_address.line_1, customers.line_1), ...

Such a use of coalesce() would
 be a very dangerous idea, because it implicitly assumes that all
 addresses have exactly the same number of non-null components. If you
 suppose that you do indeed have a different shipping address, but that
 its line_2 component is null while
 the line_2 component of the billing
 address is not, you may end up with a resulting invalid address that
 borrows components from both the shipping and billing addresses. A
 correct approach is to use case to
 check for a mandatory component from the address—which admittedly can
 result in a somewhat difficult to read query. An even better solution is
 probably to use the “hidden sort key” technique, combined with a limit
 on the number of rows returned (select top
 1..., limit 1, where rownum = 1 or similar, depending on the
 DBMS) and write the query as follows:
select *
from (select 1 as sortkey,
 line_1,
 line_2,
 city,
 state,
 postal_code,
 country
 from shipping_addresses
 where customer_id = ?
 union
 select 2 as sortkey,
 line_1,
 line_2,
 city,
 state,
 postal_code,
 country
 from customers
 where customer_id = ?
 order by 1) actual_shipping_address
limit 1

The basic idea is to use the sort key as a preference indicator.
 The limit set on the number of rows returned will therefore ensure that
 we’ll always get the “best match” (note that similar ideas can be
 applied to several rows when a row_number(
) OLAP function is available). This approach greatly
 simplifies processing on the application program side, since what is
 retrieved from the DBMS is “certified correct” data.
The technique I’ve just described can also be used in
 multilanguage applications where not everything has been translated into
 all languages. When you need to fetch a message, you can define a
 default language and be assured that you will always get at least some
 message, thus removing the need for additional coding on the application
 side.

Selecting Rows That Match Several Items in a List

 An interesting problem is that of how to write queries
 based on some criteria referring to a varying list of values. This case
 is best illustrated by looking for employees who have certain skills,
 using the three tables shown in Figure 11-6. The skillset table links employees to skills, associating a 1 to 3 skill_level value to distinguish between
 honest competency, strong experience, and outright wizardry.
[image: Tables used for querying employee skills]

Figure 11-6. Tables used for querying employee skills

Finding employees that have a level 2 or 3 SQL skill is easy
 enough:
select e.employee_name
from employees e
where e.employee_id in
 (select ss.employee_id
 from skillset ss,
 skills s
 where s.skill_id = ss.skill_id
 and s.skill_name = 'SQL'
 and ss.skill_level >= 2)
order by e.employee_name

(We can also write the preceding query with a simple join.) If we
 want to retrieve the employees who are competent with Oracle or DB2, all
 we need to do is write:
select e.employee_name, s.skill_name, ss.skill_level
from employees e,
 skillset ss,
 skills s
where e.employee_id = ss.employee_id
 and s.skill_id = ss.skill_id
 and s.skill_name in ('ORACLE', 'DB2')
order by e.employee_name

No need to test for the skill level, since we will accept any
 level. However, we do need to display the skill name; otherwise, we
 won’t be able to tell why a particular employee was returned by the
 query. We also encounter a first difficulty, namely that people who are
 competent in both Oracle and DB2 will appear twice. What we can try to
 do is to aggregate skills by employee. Unfortunately, not all SQL
 dialects provide an aggregate function for concatenating strings (you
 can sometimes write it as a user-defined aggregate function, though). We
 can nevertheless perform a skill aggregate by using the simple stratagem
 of a double conversion . First we convert our value from string to number, then
 from number back to string once we have aggregated numbers.
Skill levels are in the 1 through 3 range. We can therefore
 confidently represent any combination of Oracle and DB2 skills by a
 two-digit number, assigning for instance the first digit to DB2 and the
 second one to Oracle. This is easily done as follows:
select e.employee_name,
 (case s.skill_name
 when 'DB2' then 10
 else 1
 end) * ss.skill_level as computed_skill_level
from employees e,
 skillset ss,
 skills s
where e.employee_id = ss.employee_id
 and s.skill_id = ss.skill_id
 and s.skill_name in ('ORACLE', 'DB2')

computed_skill_level will
 result in 10, 20, or 30 for DB2 skill levels, while Oracle skill levels
 will remain 1, 2, and 3. We then can very easily aggregate our skill
 levels, and convert them back to a more friendly description:
select employee_name,
 -- Decode the numerically encoded skill + skill level combination
 -- Tens are DB2 skill levels, and units Oracle skill levels
 case
 when aggr_skill_level >= 10
 then 'DB2:' + str(round(aggr_skill_level/10,0)) + ' '
 end
 + case
 when aggr_skill_level % 10 > 0
 then 'Oracle:' + str(aggr_skill_level % 10)
 end as skills
from (select e.employee_name,
 -- Numerically encode skill + skill level
 -- so that we can aggregate them
 sum((case s.skill_name
 when 'DB2' then 10
 else 1
 end) * ss.skill_level) as aggr_skill_level
 from employees e,
 skillset ss,
 skills s
 where e.employee_id = ss.employee_id
 and s.skill_id = ss.skill_id
 and s.skill_name in ('ORACLE', 'DB2')
 group by e.employee_name) as encoded_skills
order by employee_name

But now let’s try to answer a more difficult question. Suppose
 that the project we want to staff happens to be a migration from one
 DBMS to another one. Instead of finding people who know Oracle or DB2,
 we want people who know both Oracle and DB2.
We have several ways to answer such a question. If the SQL dialect
 we are using supports it, the intersect operator is one solution: we find
 people who are skilled on Oracle on one hand, people who are skilled on
 DB2 on the other hand, and keep the happy few that belong to both sets.
 We certainly can also write the very same query with an in():
select e.employee_name
from employees e,
 skillset ss,
 skills s
where s.skill_name = 'ORACLE'
 and s.skill_id = ss.skill_id
 and ss.employee_id = e.employee_id
 and e.employee_id in (select ss2.employee_id
 from skillset ss2,
 skills s2
 where s2.skill_name = 'DB2'
 and s2.skill_id = ss2.skill_id)

We can also use the double conversion
 solution and filter on the numerical aggregate by using
 the same expressions as we have been using for decoding the encoded_skills computed column. The double
 conversion stratagem has other advantages:
	It hits tables only once.

	It makes it easier to handle more complicated questions such
 as “people who know Oracle and Java, or MySQL and PHP.”

	As we are only using a list of skills, we can use a pivot
 table and bind the list, thus improving performance of oft-repeated
 queries. The row_num pivot table
 column can help us encode since, if the list is reasonably short, we
 can multiply the skill_level
 value by 10 raised to the (row_num -1)th power. If we don’t care
 about the exact value of the skill level, and our DBMS implements
 bit-wise aggregate functions, we can even try to dynamically build a
 bit-map.

Finding the Best Match

 Let’s conclude our adventures in the SQL wilderness by
 combining several of the techniques shown in this chapter and try to
 select employees on the basis of some rather complex and fuzzy
 conditions. We want to find, from among our employees, that one member
 of staff who happens to be the best candidate for a project that
 requires a range of skills across several different environments (for
 example, Java, .NET, PHP, and SQL Server). The ideal candidate is a guru
 in all environments; but if we issue a query asking for the highest
 skill level everywhere it shall probably return no row. In the absence
 of the ideal candidate, we are usually left with imperfect candidates,
 and we must identify someone who has the best competency in as many of
 our environments as possible and is therefore the best suited for the
 project. For instance, if our Java guru is a world expert, but knows
 nothing of PHP, that person is unlikely to be selected.
“Best suited” implies a comparison between the various employees,
 or, in other words, a sort, from which the winner will emerge. Since we
 want only one winner, we shall have to limit the output of our list of
 candidates to the first row. You should already be beginning to see the
 query as a select ... from (select ... order
 by) limit 1 or whatever your SQL dialect permits.
The big question is, of course, how we are going to order the
 employees. Who is going to get the preference between one who has a
 decent knowledge of three of the specified topics, and one who is an
 acknowledged guru of two subjects? It is likely, in a case such as we
 are discussing, that the width of knowledge is what matters more to us
 than the depth of knowledge. We can use a major sort key on the number
 of skills from the requirement list that are mastered, and a minor sort
 key on the sum of the various skill_level values by employee for the skills
 in the requirement list. Our inner query comes quite naturally:
select e.employee_name,
 count(ss.skill_id) as major_key,
 sum(ss.skill_level) as minor_key
from employees e,
 skillset ss,
 skills s
where s.skill_name in ('JAVA', '.NET', 'PHP', 'SQL SERVER')
 and s.skill_id = ss.skill_id
 and ss.employee_id = e.employee_id
group by e.employee_name
order by 2, 3

This query, however, doesn’t tell us anything about the actual
 skill level of our best candidate. We should therefore combine this
 query with a double conversion to get an encoding of skills. I leave
 doing that as an exercise, assuming that you have not yet reached a
 semi-comatose state.
You should also note, from a performance standpoint, that we need
 not refer to the employees table in
 the inner query. The employee name is information that we need only when
 we display the final result. We should therefore handle only employee_id values, and do the bulk of the
 processing using the tables skills
 and skillset. You should also think
 about the rare situation in which two candidates have exactly the same
 skills—do you really want to restrict output to one row?
Note
To paraphrase General Robert E. Lee, “It
 is well that SQL is so terrible, or we should grow too fond of
 it.”

Optimizer Directives

I shall conclude this chapter with a cautionary note about
 optimizer directives . An SQL optimizer can be compared to the program that
 computes shutter speed and exposure in an automated camera. There are
 conditions when the “auto” mode is no longer appropriate—for instance,
 when the subject of the picture is backlit or for the shooting of night
 scenes. Similarly, all database systems provide one way or another to
 override or at least direct decisions taken by the query optimizer in
 its quest for the Dream Execution Path. There are basically two
 techniques to constrain the optimizer:
	Special settings in the session environment that are applied
 to all queries executed in the session until further notice.

	Local directives explicitly written into individual
 statements.

In the latter case the syntax between products varies, since you
 may have these directives written as an inherent part of the SQL
 statement (for instance force
 index(...) with MySQL or option loop
 join with Transact-SQL), or written as a special syntax
 comment (such as /*+ all_rows */ with
 Oracle).
Optimizer directives have so far been mostly absent from this
 book, and for good reasons. Repeatedly executing queries against living
 data is, to some degree, similar to repeatedly photographing the same
 subject at various times of day: what is backlit in the morning may be
 in full light in the afternoon. Directives are destined to override
 particular quirks in the behavior of the optimizer and are better left
 alone. The most admissible directives are those directives specifying
 either the expected outcome, such as sql_small_result or sql_big_result with MySQL, or whether we are
 more interested in a fast answer, as is generally the case in
 transactional processing, with directives such as option fast 100 with SQL Server or /*+ first_rows(100) */ with Oracle. These
 directives, which we could compare to the “landscape” or “sports” mode
 of a camera, provide the optimizer with information that it would not
 otherwise be able to gather. They are directives that don’t depend on
 the volume or distribution of data; they are therefore stable in time,
 and they do add value. In any case, even directives that add value
 should not be employed unless they are required. The optimizer is able
 to determine a great deal about the best way to proceed when it is given
 a properly written query in the first place. The best and most simple
 example of implicit guidance of the optimizer is possibly the use of
 correlated versus uncorrelated subqueries. They are to be used under
 dissimilar circumstances to achieve functionally identical
 results.
One of the nicest features of database optimizers is their ability
 to adapt to changing circumstances. Freezing their behavior by using
 constraining directives is indicative of a very short-term view that can
 be potentially damaging to performance in the future. Some directives
 are real time-bombs, such as those specifying indexes by name. If, for
 one reason or another a DBA renames an index used in a directive, the
 result can be disastrous. We can get a similarly catastrophic effect
 when a directive specifies a composite index, and this index is rebuilt
 one day with a different column order.
Note
Optimizer directives must be considered the private territory of
 database administrators. The DBA should use them to cope with the
 shortcomings of a particular DBMS release and then remove them if at
 all possible after the next upgrade.

Let me add that it is common to see inexperienced developers
 trying to derive a query from an existing one. When the original query
 contains directives, beginners rarely bother to question whether these
 directives are appropriate to their new case. Beginners simply apply
 what they see as minor changes to the select list and the search
 criteria. As a result, you end up with queries that look like they have
 been fine-tuned, but that often follow a totally irrelevant execution
 path.
Important
The good plan that is forced upon a query today may be
 disastrous tomorrow.

[*] Beware that such a construct may not work with some older
 versions of Oracle.

[*] Actually, the best optimization tactic in this particular
 case would be to cache the result of the query rather than the
 query.

Chapter 12. Employment of Spies

Monitoring Performance

And he that walketh in darkness knoweth not whither he
 goeth..
Gospel according to St. John, 12:35

Intelligence gathering has always been an
 essential part of war. All database systems include monitoring
 facilities, each with varying degrees of sophistication. Third-party
 offerings are also available in some cases. All these monitoring
 facilities are primarily aimed at database administrators. However, when
 they allow you to really see what is going on inside the SQL engine, they
 can become formidable spies in the service of the performance-conscious
 developer. I should note that when monitoring facilities lack the level of
 detail we require, it is usually possible to obtain additional information
 by turning on logging or tracing. Logging or tracing necessarily entails a
 significant overhead, which may not be a very desirable extra load on a
 busy production server that is already painfully clunking along. But
 during performance testing, logging can provide us with a wealth of
 information on what to expect in production.
Detailing all or even some of the various monitoring facilities
 available would be both tedious and product-specific. Furthermore, such an
 inventory would be rapidly outdated. I shall concentrate instead on what
 we should monitor and why. This will provide you with an excellent
 opportunity for a final review of some of the key concepts introduced in
 previous chapters.
The Database Is Slow

 Let’s first try to define the major categories of
 performance issues that we are likely to encounter in production—since
 our goal, as developers, is to anticipate and, if possible, avoid these
 situations. The very first manifestation of a performance issue on a
 production database is often a call to the database administrators’ desk
 to say that “the database is slow” (a useful piece of information for
 database administrators who may have hundreds of database servers in
 their care...). In a well-organized shop, the DBA will be able to check
 whether a monitoring tool does indeed report something unusual, and if
 that is the case, will be able to answer confidently “I know. We are
 working on the case.” In a poorly organized shop, the DBA may well give
 the same answer, lying diplomatically.
In all cases, the end of the call will mean the beginning of a
 frantic scramble for clues.
Such communications stating that “the database is slow” will
 usually have been motivated by one of the five following reasons:
	It’s not the database
	The network is stuttering or the host is totally overloaded
 by something else.
Thanks for calling.

	Sudden global sluggishness
	All tasks slow down, suddenly, for all users. There are two
 cases to consider here:
	Either the performance degradation is really sudden, in
 which case it can often be traced to some system or DBMS
 change (software upgrade, parameter adjustment, or hardware
 configuration modification).

	Or it results from a sudden inflow of queries.

The first case is not a development issue, just one of those
 hazards that make the life of a systems engineer or DBA so exciting. The
 second case is a development or specifications
 issue. Remember the post office of Chapter 9: when customers arrive faster
 than they can be serviced, queues lengthen and performance tumbles down
 all of a sudden. Either the original specifications were tailored too
 tightly and the system is facing a load it wasn’t designed for, or the
 application has been insufficiently stress-tested. In many cases,
 improving some key queries will massively decrease the average service
 time and may improve the situation for a negligible fraction of the cost
 of a hardware upgrade. Sudden global sluggishness is usually
 characterized by the first phone call being followed by many
 others.
	Sudden localized slowness
	If one particular task slows down all of a sudden, locking
 issues should be considered. Database administrators can monitor
 locks and confirm that several tasks are competing for the same
 resources. This situation is a development and task-scheduling
 issue that can be improved by trying to release locks
 faster.

	A slow degradation of performance reaching a
 threshold
	The threshold may first be felt by one hypersensitive user.
 If the load has been steadily increasing over time, the crossing
 of the threshold may be a warning sign of an impending catastrophe
 and may relate to the lengthening service queues of a sudden
 global sluggishness. The crossing of a threshold may also be
 linked to the size increase of badly indexed tables or to a
 degradation of physical storage after heavy delete/update
 operations (hanging high-water mark of a table that has inflated
 then deflated, a Swiss cheese-like effect resulting in much too
 many pages or blocks to store the data, or chaining to overflow
 areas). If the problem is with indexes or physical storage (or
 outdated statistics taking the optimizer down a wrong path), a DBA
 may be able to help, but the necessity for a rescue operation on a
 regular basis is usually the sign of poorly designed
 processes.

	One particularly slow query
	If the application was properly tested, then the case to
 watch for is a dynamically built query provided with a highly
 unusual set of criteria. This is most likely to be a pure
 development issue.

Many of these events can be foreseen and prevented. If you are
 able to identify what loads your server, and if you are able to relate
 database activity to business activity, you have all the required
 elements to identify the weakest spots in an application. You can then
 focus on those weak spots during performance testing and improve
 them.
Important
To anticipate live application performance, you must monitor
 activity very closely during stress tests and user acceptance
 trials.

The Components of Server Load

 Load, in information technology,
 ultimately boils down to a combination of excessive CPU consumption, too
 many input/output operations and insufficient network speed or
 bandwidth. It’s quite similar to the “critical tasks” of project
 management, where one bottleneck can result in the whole system grinding
 not to a halt, but to an unnaceptable level of slowness. If processes
 that are ready to run must wait for some other processes to release the
 CPU, the system is overloaded. If the CPU is idle, waiting for data to
 be sent across the network or to be fetched from persistent storage, the
 system is overloaded too.
“Overloaded,” though, mustn’t be understood as an absolute notion.
 Systems may be compared to human beings in respect of the fact that
 load is not always directly proportional to the work
 accomplished. As C. Northcote Parkinson remarked in
 Parkinson’s Law , his famous satire of bureaucratic institutions:
Thus, an elderly lady of leisure can spend the entire day in
 writing and dispatching a postcard [...]. The total effort that would
 occupy a busy man for three minutes all told may in this fashion leave
 another person prostrate after a day of doubt, anxiety, and
 toil.

Poorly developed SQL applications can very easily bring a server
 to its knees and yet not achieve very much. Here are a few examples
 (there are many others) illustrating different ways to increase the load
 without providing any useful work:
	Hardcoding all queries
	This will force the DBMS to run parser and optimizer code
 for every execution, before actually performing any data access.
 This technique is remarkably efficient for swamping the
 CPU.

	Running useless queries
	This is a situation more common than one would believe. It
 includes queries that are absolutely useless, such as a dummy
 query to check that the DBMS is up and running before every
 statement (true story), or issuing a count(*) to check whether a row should
 be updated or inserted. Other useless queries also include
 repeatedly fetching information that is stable for the entire
 duration of a session, or issuing 400,000 times a day a query to
 fetch a currency exchange rate that is updated once every
 night.

	Multiplying round-trips
	Operating row-by-row, extensively using cursor
 loops , and banishing stored procedures are all excellent ways to increase the level of
 “chatting” between the application side and the SQL engine,
 wasting time on protocol issues, multiplying packets on the
 network and of course, as a side benefit, preventing the database
 optimizer from doing its work efficiently by keeping most of the
 mysteries of data navigation firmly hidden in the
 application.

Let me underline that these examples of bad use of the DBMS don’t
 specifically include the “bad SQL query” that represents the typical SQL
 performance issue for many people. The queries described in the
 preceding list often run fast. But even when they run at lightning
 speed, useless queries are always too slow: they waste resources that
 may be in short supply during peak activity.
There are two components that affect the load on a database
 server. The visible component is made up of the slow “bad SQL
 queries " that people are desperate to have tuned. The invisible
 component is the background noise of a number of queries each of
 acceptable speed, perhaps even including some very fast ones, that are
 executed over and over again. The cumulative cost of the load generated
 by all this background noise routinely dwarfs the individual load of
 most of the big bad queries. As Sir Arthur Conan Doyle put in the mouth
 of Sherlock Holmes:
It has long been an axiom of mine that the little things are
 infinitely the most important.

As the background noise is spread over time, instead of happening
 all of a sudden, it passes unnoticed. It may nevertheless contribute
 significantly to reducing the “power reserve” that may be needed during
 occasional bursts of activity.
Important
Repetitive short-duration mediocre statements often load a
 server more than the big bad SQL queries that take a long time to
 run.

Defining Good Performance

 Load is one thing, performance another. Good performance
 proves an elusive notion to define. Using CPU or performing a large
 number of I/O operations is not wrong in itself; your company,
 presumably, didn’t buy powerful hardware with the idea of keeping it
 idle.
When the time comes to assess performance, there is a striking
 similarity between the world of databases and the world of corporate
 finance. You find in both worlds some longing for “key performance
 indicators” and magical ratio—and in both worlds, global indicators and
 ratios can be extremely misleading. A good average can hide distressing
 results during the peaks, and a significant part of the load may perhaps
 be traced back to a batch program that is far from optimal but that runs
 at a time of night when no one cares what the load is. To get a true
 appreciation of the real state of affairs, you must drill down to a
 lower level of detail.
To a large extent, getting down to the details is an exercise
 similar to that which is known in managerial circles as “activity-based
 costing.” In a company, knowing in some detail how much you spend is
 relatively easy. However, relating costs to benefits is an exercise
 fraught with difficulties, notoriously for transverse operations such as
 information technology. Determining if you spend the right amount on
 hardware, software, and staff, as well as the rubber bands and duct tape
 required to hold everything together is extremely difficult,
 particularly when the people who actually earn money are “customers” of
 the IT department.
Assessing whether you do indeed spend what you should has three
 prerequisites:
	Knowing what you spend

	Knowing what you get for the money

	Knowing how your return on investment compares with
 acknowledged standards

In the following subsections, I shall consider each of these
 points in turn in the context of database systems.
Knowing What You Spend

In the case of database performance, what we spend
 means, first and foremost, how many data pages we are hitting. The
 physical I/Os that some people tend to focus on are an ancillary
 matter. If you hit a very large number of different data pages, this
 will necessarily entail sustained I/O activity unless your database
 entirely fits in memory. But CPU load is also often a direct
 consequence of hitting the same data pages in memory again and again.
 Reducing the number of data pages accessed is not a panacea, as there
 are cases when the global throughput is higher when some queries hit a
 few more pages than is strictly necessary. But as far as single
 indicators go, the number of data pages hit is probably the most
 significant one. The other cost to watch is excessive SQL statement
 parsing, an activity that can consume an inordinate amount of CPU
 (massive hardcoded insertions can easily take 75% of the CPU available
 for parsing alone).
Important
The two most significant indicators of database load are the
 amount of CPU spent on statement parsing and the number of data
 pages visited when executing queries.

Knowing What You Get

There is a quote that is famous among advertisers, a
 quip attributed to John Wanamaker, a 19th-century American
 retailer:
Half the money I spend on advertising is wasted; the trouble
 is I don’t know which half.

The situation is slightly better with database applications, but
 only superficially. You define what you get in terms of the number of
 rows (or bytes) returned by select statements; and similarly the
 number of rows affected by change operations. But such an apparently
 factual assessment is far from providing a true measure of the work
 performed on your behalf by the SQL engine, for a number of
 reasons:
	First, from a practical point of view, all products don’t
 provide you with such statistics.

	Second, the effort required to obtain a result set may not
 be in proportion to the size of the result set. As a general rule
 you can be suspicious of a very large number of data page hits
 when only a few rows are returned. However such a proportion may
 be perfectly legitimate when data is aggregated. It is impossible
 to give a hard-and-fast rule in this area.

	Third, should data returned from the database for the sole
 purpose of using it as input to other queries be counted as useful
 work? What about systematically updating to N a column in a table without using a
 where clause when N already happens to be the value stored
 in most rows? In both cases, the DBMS engine performs work that
 can be measured in terms of bytes returned or changed.
 Unfortunately, most of the work performed can be avoided.

There are times when scanning large tables or executing a
 long-running query may be perfectly justified (or indeed inescapable).
 For instance, when you run summary reports on very large volumes of
 data, you cannot expect an immediate answer. If an immediate answer is
 required, then it is likely that the data model (the database
 representation of reality) is inappropriate to the questions you want
 to see answered. This is a typical case when a decision support
 database that doesn’t necessarily require the level of detail of the
 main operational database may be suitable. Remember what you saw in
 Chapter 1: correct modeling
 depends both on the data and what you want to do with the data. You
 may share data with your suppliers or customers and yet have a totally
 different database model than they do. Naturally, feeding a decision
 support system will require long and costly operations both on the
 source operational database and the target decision support
 database.
Because what you do with the data matters so much, you cannot
 judge performance if you don’t relate the load to the execution of
 particular SQL statements. The global picture that may be available
 through monitoring utilities (that most often provide cumulative
 counters) is not of much interest if you cannot
 assign to each statement its fair share of the
 load.
As a first stage in the process of load analysis, you must
 therefore capture and collect SQL statements, and try to determine how
 much each one contributes to the overall cost. It may not be important
 to capture absolutely every statement. Database activity is one of
 those areas where the 80/20 rule, the empirical assessment that 80% of
 the consequences result from 20% of the causes, often describes the
 situation rather well. Usually, much of the load comes from a small
 number of SQL statements. We must be careful not to overlook the fact
 that hardcoded SQL statements may distort the picture. With hardcoded
 statements, the DBMS may record thousands of distinct statements where
 a properly coded query would be referenced only once, even though it
 might be called thousands of times, each time with differing
 parameters. Such a situation can usually be spotted quite easily by
 the great number of SQL statements, and sometimes by global
 statistics. For instance, a procedure such as sp_trace_setevent in Transact-SQL lets you
 obtain a precise count of executed cursors, reexecutions of prepared
 cursors, and so on.
If nothing else is available and if you can access the SQL
 engine cache , a snapshot taken at a relatively low frequency of
 once every few minutes may in many cases prove quite useful. Big bad
 queries are usually hard to miss, as also are queries that are being
 executed dozens of times a minute. Global costs should in any case be
 checked in order to validate the hypothesis that what has been missed
 contributes only marginally to the global load. It’s when SQL
 statements are hardcoded that taking snapshots will probably give less satisfactory results; you
 should then try to get a more complete picture, either through logging
 (as already mentioned a high-overhead solution), or by use of less
 intrusive “sniffer” utilities. I should note that even if you catch
 all hardcoded statements, then they have to be “reverse soft-coded” by
 taking constant values out of the SQL text before being able to
 estimate the relative load, not of a single SQL statement, but of one
 particular SQL statement pattern.
Identifying the statements that keep the DBMS busy, though, is
 only part of the story. You will miss much if you don’t then relate
 SQL activity to the essential business activity of the organization
 that is supported by the database. Having an idea of how many SQL
 statements are issued on average each time you are processing a
 customer order is more important to SQL performance than knowing the
 disk transfer rate or the CPU speed under standard conditions of
 temperature and pressure. For one thing, it helps you anticipate the
 effect of the next advertising campaign; and if the said number of SQL
 statements is in the hundreds, you can raise interesting questions
 about the program (could there be, by chance, SQL statements executed
 inside loops that fetch the results of other statements? Could there
 be a statement that is repeatedly executed when it needs to be
 executed only once?). Similarly, costly massive updates of one column in a table accompanied by near identical
 numbers of equally massive updates of other columns from the same
 table with similar where clauses
 immediately raises the question of whether a single pass over the
 table wouldn’t have been enough.
Important
Load figures must be related to SQL statements. SQL statements
 must be related to business activity. Business activity must be
 related to business requirements.

Checking Against Acknowledged Standards

Collecting SQL statements, evaluating their cost and
 roughly relating them to what makes a company or agency tick is an
 exercise that usually points you directly to the parts of the code
 that require in-depth review. The questionable code may be SQL
 statements, algorithms, or both. But knowing what you can expect in
 terms of improvement or how far you could or should go is a very
 difficult part of the SQL expert’s craft; experience helps, but even
 the seasoned practitioner can be left with a degree of
 uncertainty.
It can be useful to establish a baseline, for instance by
 carrying out simple insertion tests and having an idea about the rate
 of insertion that is sustainable on your hardware. Similarly, you
 should check the fetch rate that can be obtained when performing those
 dreaded full scans on some of the biggest tables. Comparing bare-bones
 rates to what some applications manage to accomplish is often
 illuminating: there may be an order of magnitude or more between the
 fetch or insert speed that the SQL engine can attain and what is
 achieved by application programs.
Important
Know the limits of your environment. Measure how many rows you
 can insert, fetch, update, or delete per unit of time on your
 machines.

Once you have defined a few landmarks, you can identify where
 you will obtain the best “return on improvement,” in terms of both
 relevance to business activities and technical feasibility. You can
 then focus on those parts of your programs and get results where it
 matters.
Some practitioners tend to think that as long as end users don’t
 complain about performance, there is no issue and therefore no time to
 waste on trying to make operations go faster. There is some wisdom in
 this attitude; but there is also some short-sightedness as well, for
 two reasons:
	First, end users often have a surprisingly high level of
 tolerance for poor performance; or perhaps it would be more
 appropriate to say that their perception of slowness differs
 widely from that of someone who has a better understanding of what
 happens behind the scenes. End users may complain loudly about the
 performance of those processes of death that cannot possibly do
 better, and express a mild dissatisfaction about other processes
 when I would have long gone ballistic. A low level of complaint
 doesn’t necessarily mean that everything is fine, nor does vocal
 dissatisfaction necessarily mean that there is anything wrong with
 an application except perhaps trying to do too much.

	Second, a slight increase in the load on a server may mean that performance will
 deteriorate from acceptable to unacceptable very quickly. If the
 environment is perfectly stable, there is indeed nothing to fear
 from a slight increase in load. But if your activity records a
 very high peak during one particular month of the year, the same
 program that looks satisfactory for 11 months can suddenly be the
 reason for riots. Here the background noise matters a lot. An
 already overloaded machine cannot keep on providing the same level
 of service when activity increases. There is always a threshold
 that sees mediocre performance tumbling down all of a sudden. It
 is therefore important to study an entire system before a burst of
 activity is encountered to see whether the load can be reduced by
 improving the code. If improving the code isn’t enough to warrant
 acceptable performance, it may be time to switch to bigger iron
 and upgrade the hardware.

Do not forget that “return on improvement” is not simply a
 technical matter. The perception of end users should be given the
 highest priority, even if it is biased and sometimes disconnected from
 the most severe technical issues. They have to work with the program,
 and ergonomics have to be taken into account. It is not unusual to
 meet well-meaning individuals concentrating on improving statistics
 rather than program throughput, let alone end-user satisfaction. These
 well-intentioned engineers can feel somewhat frustrated and
 misunderstood when end users, who only see a very local improvement,
 welcome the result of mighty technical efforts with lukewarm
 enthusiasm. An eighteenth-century author reports that somebody once
 said to a physician, “Well, Mr. X has died, in spite of the promise
 you had made to cure him.” The splendid answer from the physician was,
 “You were away, and didn’t check the progress of the treatment: he
 died cured.”
A database with excellent statistics and yet unsatisfactory
 performance from an end-user point of view is like a patient cured of
 one ailment, but who died of another. Improving performance usually
 means both delivering a highly visible
 improvement to end users, even if it affects a query that is run only
 once a month but that is business-critical, and the more humble,
 longer-term work of streamlining programs, lowering the background
 noise, and ensuring that the server will be able to deliver that power
 boost when it is needed.
Important
Performance improvement as perceived by end users is what
 matters most, but never forget the narrow margin between acceptable
 and unacceptable performance in a loaded environment.

Defining Performance Goals

Performance goals are often defined in terms of elapsed
 time, for example, “this program must run in under 2 hours.” It is
 better though to define them primarily in terms of business items
 processed by unit of time, such as “50,000 invoices per hour” or “100
 loans per minute,” for several reasons:
	It gives a better idea of the service actually provided by a
 given program.

	It makes a decrease in performance more understandable to
 end users when it can be linked to an increase in activity. This
 makes meetings less stormy.

	Psychologically speaking, it is slightly more exciting when
 trying to improve a process to boost throughput rather than
 diminish the elapsed time. An upward curve makes a better chart in
 management presentations than a downward one.

Important
More than anything else, improved performance means first,
 doing more work in the same time, and second, doing it in even less
 time.

Thinking in Business Tasks

 Before focusing on one particular query, don’t forget its
 context. Queries executed in loops are a very bad indicator of the
 quality of code, as are program variables with no other purpose than
 storing information returned from the database before passing it to
 another query. Database accesses are costly, and should be kept to a
 minimum. When you consider the way some programs are written, you are
 left with the impression that when their authors go shopping, they jump
 into their car, drive to a supermarket, park their car, walk up and down
 the aisles, pick a few bottles of milk, head for the checkout, get in
 line, pay, put the milk in the car, drive home, store the milk into the
 fridge, then check the next item on the shopping list before returning
 to the supermarket. And when a spouse complains about the time spent on
 shopping, the excuses given are usually the dense traffic on the road,
 the poor signposting of the food department, and the insufficient number
 of cashiers. All are valid reasons in their own right that may indeed
 contribute to some extent to shopping time, but possibly they are not
 the first issues to fix.
I have met developers who were genuinely persuaded that from a
 performance standpoint, multiplying simple queries was the proper thing
 to do; showing them that the opposite is true was extremely easy. I have
 also heard that very simple SQL statements that avoid joins make
 maintenance easier. The truth is that simplistic SQL makes it easier to
 use totally inexperienced (read cheaper) developers for maintenance, but
 that’s the only thing that can be said in defense of very elementary SQL
 statements. By making the most basic usage of SQL, you end up with
 programs full of statements that, taken one by one, look efficient,
 except perhaps for a handful of particularly poor performers, hastily
 pointed to as “the SQL statements that require tuning.” Very often, some
 of the statements identified as “slow” (and which may indeed be slow)
 are responsible for only a fraction of performance issues.
Important
Brilliantly tuned statements in a bad program operating against
 a badly designed database are no more effective than brilliant tactics
 at the service of a feeble strategy; all they can do is postpone the
 day of reckoning.

You cannot design efficient programs if you don’t understand that
 the SQL language applies to a whole subsystem of data management, and
 isn’t simply a set of primitives to move data between long-term and
 short-term memory. Database accesses are often the most
 performance-critical components of a program, and must be incorporated
 to the overall design.
In trying to make programs simpler by multiplying SQL statements,
 you succumb to a dangerous illusion. Complexity doesn’t originate in
 languages, but in business requirements. With the exclusive use of
 simple SQL statements, complexity doesn’t vanish, it just migrates from
 the SQL side to the application side, with a much increased risk of data
 inconsistency when the logic that should belong to the DBMS side is
 imbedded into the application. Moreover, it puts a significant part of
 processing out of reach of the DBMS optimizer.
I am not advocating the indiscriminate use of long, complex SQL
 statements, or a “single statement” policy. For example, the following
 is a case where there should have been several distinct statements, and
 not a single one:
insert into custdet (custcode, custcodedet, usr, seq, inddet)
select case ?
 when 'GRP' then b.codgrp
 when 'GSR' then b.codgsr
 when 'NIT' then b.codnit
 when 'GLB' then 'GLOBAL'
 else b.codetb
 end,
 b.custcode,
 ?,
 ?,
 'O'
from edic00 a,
 clidet bT
where ((b.codgrp = a.custcode
 and ? = 'GRP')
 or (b.codgsr = a.custcode
 and ? = 'GSR')
 or (b.codnit = a.custcode
 and ? = 'NIT')
 or (a.custcode = 'GLOBAL'
 and ? = 'GLB'))
 and a.seq = ?
 and b.custlvl = ?
 and b.histdat = ?

A statement where a run-time parameter is compared to a constant
 is usually a statement that should have been split into several simpler
 statements. In the preceding example, the value that intervenes in the
 case construct is the same one that
 is successively compared to GRP,
 GSR, NIT, and GLB in the where clause. It makes no sense to force the
 SQL engine into making numerous mutually exclusive tests and sort out a
 situation that could have been cleared on the application side. In such
 a case, an if ... elsif ... elsif
 structure (preferably in order of decreasing probability of occurrence)
 and four distinct insert ... select
 statements would have been much better.
When a complex SQL statement allows you to obtain more quickly the
 data you ultimately need, with a small number of accesses, the situation
 is completely different from the preceding case. Long, complex queries
 are not necessarily slow; it all depends on how they are written. A
 developer should obviously not exceed their personal SQL skill level,
 and not necessarily write 300-line statements head on; but packing as
 much action as possible into each SQL statement should be a prerequisite
 to improving individual statements.
Important
Tuning SQL statements before improving programs and minimizing
 database accesses means that you are ignoring some of the major means
 of tuning improvements.

Execution Plans

When our spies (whether they are users or monitoring facilities)
 have directed our attention to a number of SQL statements, we need to
 inspect these statements more closely. Scrutinizing execution
 plans is one of the favorite activities of many SQL tuners, if
 we are to believe the high number of posts in forums or mailing lists in
 the form of “I have a SQL query that is particularly slow; here is the
 execution plan....”
Execution plans are usually displayed either as an indented list
 of the various steps involved in the processing of a (usually complex)
 SQL statements, or under a graphical form, as in Figure 12-1. This figure displays
 the execution plan for one of the queries from Chapter 7. Text execution plans are far
 less sexy but are easier to post on forums, which must account for the
 enduring popularity of such plans. Knowing how to correctly read and
 interpret an execution plan, whether it is represented graphically or as
 text, is in itself a valued skill.
[image: A DB2 execution plan]

Figure 12-1. A DB2 execution plan

So far in this book, I have had very little to say on the topic of
 execution plans, except for a couple of examples presented here and
 there without any particular comment. Execution plans are tools, and
 different individuals have different preferences for various tools; you
 are perfectly allowed to have a different opinion, but I usually attach
 a secondary importance to execution plans. Some developers consider
 execution plans as the ultimate key to the understanding of performance
 issues. Two real-life examples will show that one may have some reasons
 to be less than sanguine about using execution plans as the tool of
 choice for improving a query.
Identifying the Fastest Execution Plan

In this section, I am going to test your skills as an
 interpreter of execution plans. I’m going to show three execution
 plans and ask you to choose which is the fastest. Ready? Go, and good
 luck!
Our contestants

The following execution plans show how three variants of the
 same query are executed:
	Plan 1
	Execution Plan
--
 0 SELECT STATEMENT
 1 0 SORT (ORDER BY)
 2 1 CONCATENATION
 3 2 NESTED LOOPS
 4 3 HASH JOIN
 5 4 HASH JOIN
 6 5 TABLE ACCESS (FULL) OF 'TCTRP'
 7 5 TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
 8 7 INDEX (RANGE SCAN) OF 'TTRANTRADE_DATE' (NON-UNIQUE)
 9 4 TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
 10 9 INDEX (RANGE SCAN) OF 'TMMKTCCY_NAME' (NON-UNIQUE) ...
 11 3 TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
 12 11 INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)
 13 2 NESTED LOOPS
 14 13 HASH JOIN
 15 14 HASH JOIN
 16 15 TABLE ACCESS (FULL) OF 'TCTRP'
 17 15 TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
 18 17 INDEX (RANGE SCAN) OF 'TTRANLAST_UPDATED' (NON-UNIQUE)
 19 14 TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
 20 19 INDEX (RANGE SCAN) OF 'TMMKTCCY_NAME' (NON-UNIQUE)
 21 13 TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
 22 21 INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)

	Plan 2
	Execution Plan
--
 0 SELECT STATEMENT
 1 0 SORT (ORDER BY)
 2 1 CONCATENATION
 3 2 NESTED LOOPS
 4 3 NESTED LOOPS
 5 4 NESTED LOOPS
 6 5 TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
 7 6 INDEX (RANGE SCAN) OF 'TTRANTRADE_DATE' (NON-UNIQUE)
 8 5 TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
 9 8 INDEX (UNIQUE SCAN) OF 'TMMKTMAIN' (UNIQUE)
 10 4 TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
 11 10 INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)
 12 3 TABLE ACCESS (BY INDEX ROWID) OF 'TCTRP'
 13 12 INDEX (UNIQUE SCAN) OF 'TCTRPMAIN' (UNIQUE)
 14 2 NESTED LOOPS
 15 14 NESTED LOOPS
 16 15 NESTED LOOPS
 17 16 TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
 18 17 INDEX (RANGE SCAN) OF 'TTRANLAST_UPDATED' (NON-UNIQUE)
 19 16 TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
 20 19 INDEX (UNIQUE SCAN) OF 'TMMKTMAIN' (UNIQUE)
 21 15 TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
 22 21 INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)
 23 14 TABLE ACCESS (BY INDEX ROWID) OF 'TCTRP'
 24 23 INDEX (UNIQUE SCAN) OF 'TCTRPMAIN' (UNIQUE)

	Plan 3
	Execution Plan
--
 0 SELECT STATEMENT
 1 0 SORT (ORDER BY)
 2 1 NESTED LOOPS
 3 2 NESTED LOOPS
 4 3 NESTED LOOPS
 5 4 TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
 6 5 INDEX (RANGE SCAN) OF 'TMMKTCCY_NAME' (NON-UNIQUE)
 7 4 TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
 8 7 INDEX (UNIQUE SCAN) OF 'TTRANMAIN' (UNIQUE)
 9 3 TABLE ACCESS (BY INDEX ROWID) OF 'TCTRP'
 10 9 INDEX (UNIQUE SCAN) OF 'TCTRPMAIN' (UNIQUE)
 11 2 TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
 12 11 INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)

Our battle field

The result set of the query consists of 860 rows, and the four
 following tables are involved:
	 Table
 name
	 Row count
 (rounded)

	tctrp
	18,000

	ttran
	1,500,000

	tmmkt
	1,400,000

	tflow
	5,400,000

All tables are heavily indexed, no index was created, dropped
 or rebuilt, and no change was applied to the data structures. Only
 the text of the query changed between plans, and optimizer
 directives were sometimes applied.
Consider the three execution plans, try to rank them in order
 of likely speed, and if you feel like it you may even venture an
 opinion about the improvement factor.

And the winner is.. .

The answer is that Plan 1 took 27 seconds, Plan 2 one second,
 and Plan 3 (the initial execution plan of the query) one minute and
 12 seconds. You will be forgiven for choosing the wrong plan. In
 fact, with the information that I provided, it would be sheer luck
 for you to have correctly guessed at the fastest plan (or the result
 of a well-founded suspicion that there must be a catch somewhere).
 You can take note that the slowest execution plan is by far the
 shortest, and that it contains no reference to anything other than
 indexed accesses. By contrast, Plan 1 demonstrates that you can have
 two full scans of the same table and yet execute the query almost
 three times faster than a shorter, index-only plan such as Plan
 3.
The point of this exercise was to demonstrate that the length
 of an execution plan is not very meaningful, and that exclusive
 access to tables through indexes doesn’t guarantee that performance
 is the best you can achieve. True, if you have a 300-line plan for a
 query that returns 19 rows, then you might have a problem, but you
 mustn’t assume that shorter is better.

Forcing the Right Execution Plan

The second example is the weird behavior exhibited by one query
 issued by a commercial off-the-shelf software package. When run
 against one database, the query takes 4 minutes, returning 40,000
 rows. Against another database, running the same version of the same
 DBMS, the very same query responds in 11 minutes on comparable
 hardware although all tables involved are much smaller. The comparison
 of execution plans shows that they are wildly different. Statistics
 are up-to-date on both databases, and the optimizer is instructed to
 use them everywhere. The question immediately becomes one of how to
 force the query to take the right execution path on the smaller
 database. DBAs are asked to do whatever is in their power to get the
 same execution plan on both databases. The vendor’s technical team
 works closely with the customer’s team to try to solve the
 problem.
A stubborn query

Following is the text of the query,[*] followed by the plan associated to the fastest
 execution. Take note that the good plan only accesses indexes, not
 tables:
select o.id_outstanding,
 ap.cde_portfolio,
 ap.cde_expense,
 ap.branch_code,
 to_char(sum(ap.amt_book_round
 + ap.amt_book_acr_ad - ap.amt_acr_nt_pst)),
 to_char(sum(ap.amt_mnl_bk_adj)),
 o.cde_outstd_typ
from accrual_port ap,
 accrual_cycle ac,
 outstanding o,
 deal d,
 facility f,
 branch b
where ac.id_owner = o.id_outstandng
 and ac.id_acr_cycle = ap.id_owner
 and o.cde_outstd_typ in ('LOAN', 'DCTLN', 'ITRLN',
 'DEPOS', 'SLOAN', 'REPOL')
 and d.id_deal = o.id_deal
 and d.acct_enabl_ind = 'Y'
 and (o.cde_ob_st_ctg = 'ACTUA'
 or o.id_outstanding in (select id_owner
 from subledger))
 and o.id_facility = f.id_facility
 and f.branch_code = b.branch_code
 and b.cde_tme_region = 'ZONE2'
group by o.id_outstanding,
 ap.cde_portfolio,
 ap.cde_expense,
 ap.branch_code,
 o.cde_outstd_typ
having sum(ap.amt_book_round
 + ap.amt_book_acr_ad - ap.amt_acr_nt_pst) <> 0
 or (sum(ap.amt_mnl_bk_adj) is not null
 and sum(ap.amt_mnl_bk_adj) <> 0)

Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE
 1 0 FILTER
 2 1 SORT (GROUP BY)
 3 2 FILTER
 4 3 HASH JOIN
 5 4 HASH JOIN
 6 5 HASH JOIN
 7 6 INDEX (FAST FULL SCAN) OF 'XDEAUN08' (UNIQUE)
 8 6 HASH JOIN
 9 8 NESTED LOOPS
 10 9 INDEX (FAST FULL SCAN) OF 'XBRNNN02' (NON-UNIQUE)
 11 9 INDEX (RANGE SCAN) OF 'XFACNN05' (NON-UNIQUE)
 12 8 INDEX (FAST FULL SCAN) OF 'XOSTNN06' (NON-UNIQUE)
 13 5 INDEX (FAST FULL SCAN) OF 'XACCNN05' (NON-UNIQUE)
 14 4 INDEX (FAST FULL SCAN) OF 'XAPONN05' (NON-UNIQUE)
 15 3 INDEX (SKIP SCAN) OF 'XBSGNN03' (NON-UNIQUE)

The addition of indexes to the smaller database leads nowhere.
 Existing indexes were initially identical on both databases, and
 creating different indexes on the smaller database brings no change
 to the execution plan. Three weeks after the problem was first
 spotted, attention is now turning to disk striping, without much
 hope. Constraining optimizer directives are beginning to look
 unpleasantly like the only escape route.
Before using directives, it is wise to have a fair idea of the
 right angle of attack. Finding the proper angle, as you have seen in
 Chapters 4 and 6, requires an assessment of the
 relative precision of the various input criteria, even though in
 this case the reasonably large result set (of some 40,000 rows on
 the larger database and a little over 3,000 on the smaller database)
 gives us little hope of seeing one criterion coming forward as
 the key criterion.

Study of search criteria

When we use as the only criterion the condition on what looks
 like a time zone, the query returns 17% more rows than with all
 filtering conditions put together, but it does it blazingly
 fast:
SQL> select count(*) "FAC"
 2 from outstanding
 3 where id_facility in (select f.id_facility
 4 from facility f,
 5 branch b
 6 where f.branch_code = b.branch_code
 7 and b.cde_tme_region = 'ZONE2');

 FAC

 55797
Elapsed: 00:00:00.66

The flag condition alone filters three times our number of
 rows, but it does it very fast, too:
SQL> select count(*) "DEA"
 2 from outstanding
 3 where id_deal in (select id_deal
 4 from deal
 5 where acct_enabl_ind = 'Y');

 DEA

 123970

Elapsed: 00:00:00.63

What about our or condition
 on the outstanding table?
 Following are the results from that condition:
SQL> select count(*) "ACTUA/SUBLEDGER"
 2 from outstanding
 3 where (cde_ob_st_ctg = 'ACTUA'
 4 or id_outstanding in (select id_owner
 5 from subledger));

ACTUA/SUBLEDGER

 32757

Elapsed: 00:15:00.64

Looking at these results, it is clear that we have pinpointed
 the problem. This or condition
 causes a huge increase in the query’s execution time.
The execution plan for the preceding query shows only index
 accesses:
Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE
 1 0 SORT (AGGREGATE)
 2 1 FILTER
 3 2 INDEX (FAST FULL SCAN) OF 'XOSTNN06' (NON-UNIQUE)
 4 2 INDEX (SKIP SCAN) OF 'XBSGNN03' (NON-UNIQUE)

Notice that both index accesses are not exactly the usual type
 of index descent; there is no need to get into arcane details here,
 but a FAST FULL SCAN is in fact
 the choice of using the smaller index rather than the larger
 associated table to perform a scan, and the choice of a SKIP SCAN comes from a similar evaluation
 by the optimizer. In other words, the choice of the access method is
 not exactly driven by the evidence of an excellent path, but
 proceeds from a kind of “by and large, it should be better”
 optimizer assessment. If the execution time is to be believed, a
 SKIP SCAN is not the best of
 choices.
Let’s have a look at the indexes on outstanding (the numbers of distinct index
 keys and distinct column values are estimates, which accounts for
 the slightly inconsistent figures). Indexes in bold are the indexes
 that appear in the execution plan:
INDEX_NAME DIST KEYS COLUMN_NAME DIST VAL
--------------------- ---------- ------------------ --------
XOSTNC03 25378 ID_DEAL 1253
 ID_FACILITY 1507
XOSTNN05 134875 ID_OUTSTANDING 126657
 ID_DEAL 1253
 IND_AUTO_EXTND 2
 CDE_OUTSTD_TYP 5
 ID_FACILITY 1507
 UID_REC_CREATE 161
 NME_ALIAS 126657

XOSTNN06 ID_OUTSTANDING 126657

 CDE_OUTSTD_TYP 5

 ID_DEAL 1253

 CDE_OB_ST_CTG 3

 ID_FACILITY 1507
XOSTUN01 (U) 121939 ID_OUTSTANDING 126657
XOSTUN02 (U) 111055 NME_ALIAS 126657

The other index (xbsgnn03)
 is associated with subledger:
INDEX_NAME DIST KEYS COLUMN_NAME DIST VAL
--------------------- ---------- ------------------ --------

XBSGNN03 101298 BRANCH_CODE 8

 CDE_PORTFOLIO 5

 CDE_EXPENSE 56

 ID_OWNER 52664

 CID_CUSTOMER 171
XBSGNN04 59542 ID_DEAL 4205
 ID_FACILITY 4608
 ID_OWNER 52664
XBSGNN05 49694 BRANCH_CODE 8
 ID_FACILITY 4608
 ID_OWNER 52664
XBSGUC02 (U) 147034 CDE_GL_ACCOUNT 9
 CDE_GL_SHTNAME 9
 BRANCH_CODE 8
 CDE_PORTFOLIO 5
 CDE_EXPENSE 56
 ID_OWNER 52664
 CID_CUSTOMER 171
XBSGUN01 (U) 134581 ID_SUBLEDGER 154362

As is too often the case with COTS packages, we have here an
 excellent example of carpet-indexing.
The indexes on outstanding
 raise a couple of questions.
	Why does id_outstanding, the primary key of the
 outstanding table, also appears as the lead column of two other
 indexes? This requires some justification, and very persuasive
 justification too. Even if those indexes were built with the
 purpose of fetching all values from them and avoiding table
 access, one might arguably have relegated id_oustanding to a less prominent
 position; on the other hand, since few columns seem to have a
 high number of distinct values, the very existence of some of
 the indexes would need to be reassessed.

	All is not quiet on the subledger front either. One of the
 most selective values happens to be id_owner. Why does id_owner appear in 4 of the 5 indexes,
 but nowhere as the lead column? Such a situation is surprising
 for an often referenced selective column. Incidentally, finding
 id_owner as the lead column
 of an index would have been helpful with our problem
 query.

Modifying indexes is a delicate business that requires a
 careful study of all the possible side-effects. We have here a
 number of questionable indexes, but we also have an urgent problem
 to solve. Let’s therefore refrain from making any changes to the
 existing indexes and concentrate on the SQL code.
As the numbers of distinct keys of our unique indexes show, we
 are not dealing here with large tables; and in fact the two other
 criteria we have tried to apply to outstanding both gave excellent response
 times, in spite of being rather weak criteria. The pathetic result
 we have with the or construct
 results from an attempt to merge data which was painfully extracted
 from the two indexes. Let’s try something else:
SQL> select count(*) "ACTUA/SUBLEDGER"
 2 from (select id_outstanding
 3 from outstanding
 4 where cde_ob_st_ctg = 'ACTUA'
 5 union
 6 select o.id_outstanding
 7 from outstanding o,
 8 subledger sl
 9 where o.id_outstanding = sl.id_owner)
 10 /

ACTUA/SUBLEDGER

 32757

Elapsed: 00:00:01.82

No change to the indexes, and yet the optimizer suddenly sees
 the light even if we hit the table outstanding twice. Execution is much, much
 faster now.
Replacing the “problem condition” and slightly reshuffling
 some of the other remaining conditions, cause the query to run in 13
 seconds where it used to take 4 minutes (reputedly the “good case”);
 and only 3.4 seconds on the other database, where it used to take 11
 minutes to return 3,200 rows.

A moral to the story

It is likely that a more careful study and some work
 at the index level would allow the query to run considerably faster
 than 13 seconds. On the other hand, since everybody appeared to be
 quite happy with 4 minutes, 13 seconds is probably a good enough
 improvement.
What is fascinating in this true story (and many examples in
 this book are taken from real life), is how the people involved
 focused (for several weeks) on the wrong issue. There was indeed a
 glaring problem on the smaller database. The comparison of the two
 different execution plans led to the immediate conclusion that the
 execution plan corresponding to the slower execution was wrong
 (true) and therefore, implicitly, that the execution plan
 corresponding to the faster execution was right (false). This was a
 major logical mistake, and it misled several people into
 concentrating on trying to reproduce a bad execution plan instead of
 improving the query.
I must add a final note as a conclusion to the story. Once the
 query has been rewritten, the execution plan is
 still different on the two databases—a
 situation that, given the discrepancy of volumes, only proves that
 the optimizer is doing its job.
Important
The only yardstick of query performance is how long one
 takes to run, not whether the execution plan conforms to
 prejudices.

Using Execution Plans Properly

Execution plans are useful, but mostly to
 check that the DBMS engine is indeed proceeding as intended. The report
 from the field that an execution plan represents is a great tool to
 compare what has been realized to the tactics that were planned, and can
 reveal tactical flaws or overlooked details.
How Not to Execute a Query

Execution plans can be useful even when one has not the
 slightest idea about what a proper execution plan should be. The
 reason is that, by definition, the execution plan of a problem query
 is a bad one, even if it may not look so terrible. Knowing that the
 plan is bad allows us to discover ways to improve the query, through
 the use of one of the most sophisticated tools of formal logic, the
 syllogism, an argument with two premises and one
 conclusion.
This reasoning is as follows:
(Premise 1) The query is dreadfully slow.
(Premise 2) The execution plan displays mostly one type of
 action—for example: full table scans, hash joins, indexed accesses,
 nested loops, and so forth.

(Conclusion) We should rewrite the query and/or possibly change
 indexes so as to suggest something else to the optimizer.
Coaxing the optimizer into taking a totally different course can
 be achieved through a number of means:
	When we have few rows returned, it may be a matter of adding
 one index, or rebuilding a composite index and reversing the order
 of some of the columns; transforming uncorrelated subqueries into
 correlated ones can also be helpful.

	When we have a large number of rows returned we can do the
 opposite, and use parentheses and subqueries in the from clause to suggest a different order
 when joining tables together.

	In doubt, we have quite a number of options besides
 transforming correlated sub queries into uncorrelated subqueries
 and vice versa. We can consider operations such as factorizing
 queries with either a union or
 a with clause. The union of two complex queries can
 sometimes be transformed into a simpler union inside the from clause. Disentangling conditions
 (trying to make each condition dependent on as few other
 conditions as possible) is often helpful. Generally speaking,
 trying to remove as much as possible of whatever imposes a
 processing order on the query and trying to give as much freedom
 as possible to the optimizer is the very first thing to do before
 trying to constrain it. The optimizer must be constrained only
 when everything else goes wrong.

	As a last resort, we may remember the existence of optimizer
 directives and use them very carefully.

Hidden Complexity

Execution plans can also prove to be valuable spies in
 revealing hidden complexity. Queries are not always exactly what a
 superficial inspection shows. The participation of some database
 objects in a query can induce additional work that execution plans
 will bring to light. These database objects are chiefly:
	Views
	Queries may look deceivingly simple. But sometimes what
 appears to be a simple table may turn out to be a view defined
 as a very complex query involving several other views . The names of views may not always be
 distinctive, and even when they are, the name by itself cannot
 give any indication of the complexity of the view. The execution
 plan will show what a casual inspection of the SQL code may have
 missed, and most importantly, it will also tell you if the same
 table is being hit repeatedly.

	Triggers
	Changes to the database may take an anomalous time simply
 because of the execution of triggers . These may be running very slow code or may even
 be the true reason for some locking issues. Triggers are easy to
 miss, execution plans will reveal them.

Important
The essential value of execution plans is to provide a
 starting point for performance investigations and to reveal the
 hidden database operations caused by complex views and
 triggers.

What Really Matters?

 What really matters when trying to improve a query has
 been discussed in the previous chapters, namely:
	The number of rows in the tables involved

	The existing indexes on these tables

	Storage peculiarities, such as partitioning , that can have as strong an impact as indexes on
 performance

	The quality of the various criteria that were provided

	The size of the resulting set

This information provides us with a solid foundation from which to
 investigate query performance, and is far more valuable than an
 execution plan on its own. Once we know were we stand, and what we have
 to fight against, then we can move, and attack tables, always trying to
 get rid of unwanted data as quickly as we can. We must always try to
 leave as much freedom to the optimizer as we can by avoiding any type of
 intra-statement dependencies that would constrain the order in which
 tables must be visited.
In conclusion, I would like to remind you that optimizers, which
 usually prove quite efficient at their job, are unable to work
 efficiently under the following circumstances:
	If you retrieve data piecemeal through multiple statements. It
 is one thing for an application to issue a series of related SQL
 statements. However, the SQL engine can never “know” that such
 statements are related, and cannot optimize across statement
 boundaries. The SQL engine can optimize each individual statement,
 but it cannot optimize the overall process.

	If you use, without any care, the numerous non-relational (and
 sometimes quite useful) features provided by the various SQL
 dialects.

Remember that you should apply non-relational features last, when
 the bulk of data retrieval is done (in the wider acceptance of
 retrieval; data must be retrieved before being updated or deleted).
 Non-relational features operate on finite sets (in other words, arrays),
 not on theoretically infinite relations.
There was a time when you could make a reputation as an SQL expert
 by identifying missing indexes and rewriting statements so as to remove
 functions that were applied to indexed columns. This time is, for the
 most part, gone. Most databases are over-indexed, although sometimes
 inadequately indexed. Functions applied to indexed columns are still
 encountered, but functional indexes provide a “quick fix” to that
 particular problem. However, rewriting a poorly performing query usually
 means more nowadays than shuffling conditions or merely making cosmetic
 changes.
The real challenge is more and more to be able to think globally,
 and to acknowledge that data handling is critical in a world where the
 amount of stored data increases even faster than the performance of the
 hardware. For better or for worse, data handling spells S-Q-L. Like all
 languages, SQL has its idiosyncrasies, its qualities, and numerous
 flaws. Like all languages, mastering SQL requires time, experience—and
 personal talent. I hope that on that long road this book will prove
 helpful to you.
Important
Building optimally performing SQL can be a source of great
 satisfaction—enjoy!

[*] Object names have been slightly changed to protect both
 the innocent and the culprit.

PHOTO CREDITS

All images were scanned from Mémorial de
 Sainte-Hélène by Comte Emmanuel de Las Cases, illustrated by
 Charlet (Ernest Bourdin Editeur, Paris, 1842, two volumes), with the
 following exceptions:
	The illustration for Chapter
 6 was made out of a map of the battle of Fredericksburg, found
 on http://www.sonofthesouth.net, and used with
 the permission of Paul McWhorter who runs that very rich site on the
 American Civil War.

	The illustration for Chapter
 9 comes from Notre Armée by de Lonlay,
 illustrated by the author (Garnier Frères, Paris, 1890, p.
 931).

	The illustration for Chapter
 12 comes from Les Guerres de la Révolution
 by Camille Pelletan, Paris, Société d'Éditions d’Art (Collection
 L.-Henry May, G. Mantoux), no date [end 19th-beginning 20th century;
 first published, Paris, Colas, 1884], p.95 (10th series), coll.
 Durelle-Marc, and is published courtesy of the Centre d’Histoire du
 Droit de l’Université Rennes 1 (http://www.chd.univ-rennes1.fr/Icono/Pelletan/Pelletan.htm).

About the Authors
Stephane Faroult first discovered relational databases and the SQL language back in 1983. He joined Oracle France in their early days (after a brief spell with IBM and a bout of teaching at the University of Ottawa) and soon developed an interest in performance and tuning topics. After leaving Oracle in 1988, he briefly tried to reform and did a bit of operational research, but after one year, he succumbed again to relational databases. He has been continuously performing database consultancy since then, and founded RoughSea Ltd in 1998.
Graduated in geology from Durham University (1968), then taught at Edinburgh University, obtaining an M.Phil in geology 1975. Worked in Greece as a geologist (1973,74), and then in University of Newcastle specialising in geological databases.Joined the British Geological Survey 1980, and has steered the organisations' use of database ever since, as data architect and database administrator. Has worked with databases since 1977, relational databases since 1981, and Oracle since 1985. He has lectured widely in the UK on geological aspects of database and has specialised on aspects of the SQL system as well as data modelling from the corporate architecture down to the departmental level. He has presented at various Oracle database conferences both in the UK, Europe and North America. Currently a director on the board of the UK Oracle Users Group.

About the Author
STÉPHANE FAROULT first discovered relational databases and the SQL
 language back in 1983. He joined Oracle France in their early days (after
 a brief spell with IBM and a bout of teaching at the University of Ottawa)
 and soon developed an interest in performance and tuning topics. After
 leaving Oracle in 1988, he briefly tried to reform and did a bit of
 operational research, but after one year, he succumbed again to relational
 databases. He has been continuously performing database consultancy since
 then, and founded RoughSea Ltd in 1998 (http://www.roughsea.com).
Stéphane Faroult has written (in French) Fortran Structuré
 et Méthodes Numériques (Dunod, 1986, with Didier Simon) and a
 number of articles in English, in magazines such as Oracle
 Scene (the UK Oracle user group magazine) and
 Select (the North American Oracle user group
 magazine), as well as on the Web (including the online edition of
 Oracle Magazine). He has also been a speaker at a
 number of user group conferences in the U.S., in the UK, and in
 Norway.
PETER ROBSON graduated in geology from Durham University (1968),
 then taught at Edinburgh University, obtaining an M.Phil in geology in
 1975. After working in Greece as a geologist, he specialized in both
 geological and medical databases at the University of Newcastle.
He has worked with databases since 1977, relational databases since
 1981, and Oracle since 1985, in roles which included developer, data
 architect, and database administrator. In 1980, Peter joined the British
 Geological Survey and was influential in guiding their adoption of
 relational DBMS. He has specialized in aspects of the SQL system as well
 as data modeling from corporate architecture down to the departmental
 level. Peter has presented at various Oracle database conferences in the
 UK, Europe, and North America, and he has published in various specialist
 database magazines. Currently, he is a Director on the Board of the UK
 Oracle User Group; he can be contacted via his own domain at
 peter.robson@justsql.com.

Special Upgrade Offer

If you purchased this ebook from a retailer other than O’Reilly, you can upgrade it for $4.99 at oreilly.com by clicking here.

The Art of SQL

Stephane Faroult

Peter Robson

Editor
Mary Treseler

Copyright © 2008 O’Reilly Media, Inc.

O’Reilly Media
1005 Gravenstein Highway North
Sebastopol, CA 95472

2013-03-31T12:19:40-07:00

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/httpatomoreillycomsourceoreillyimages34432.png
categories ™Movies

category~id id |

category.name Movietitle
Movie.year
movieLcategory
™o country
Movie summary
movie_id |
beople~id

roles roleid

role~id

role~name

people

beopleid
beoplefirsiname
beople~name
beoplesex
beople-birthoyear

™movie_credits

OEBPS/httpatomoreillycomsourceoreillyimages34374.png
Unigue Index Idx1 Unigue Index Idx2

Range scan on an index
where the order of keys
does not match the order
of rows in the table

Range scan on an index
In which keys are ordered
ke the rows In the table

Table Pages

OEBPS/bk01-toc.html
The Art of SQL

Table of Contents
		Dedication

		Special Upgrade Offer

		Preface		Why Another SQL Book?

		Audience

		Assumptions This Book Makes

		Contents of This Book

		Conventions Used in This Book

		Using Code Examples

		Comments and Questions

		Safari® Enabled

		Acknowledgments

		1. Laying Plans		1.1. The Relational View of Data

		1.2. The Importance of Being Normal		1.2.1. Step 1: Ensure Atomicity

		1.2.2. Step 2: Check Dependence on the Whole Key

		1.2.3. Step 3: Check Attribute Independence

		1.3. To Be or Not to Be, or to Be Null

		1.4. Qualifying Boolean Columns

		1.5. Understanding Subtypes

		1.6. Stating the Obvious

		1.7. The Dangers of Excess Flexibility

		1.8. The Difficulties of Historical Data

		1.9. Design and Performance

		1.10. Processing Flow

		1.11. Centralizing Your Data

		1.12. System Complexity

		1.13. The Completed Plans

		2. Waging War		2.1. Query Identification

		2.2. Stable Database Connections

		2.3. Strategy Before Tactics

		2.4. Problem Definition Before Solution

		2.5. Stable Database Schema

		2.6. Operations Against Actual Data

		2.7. Set Processing in SQL

		2.8. Action-Packed SQL Statements

		2.9. Profitable Database Accesses

		2.10. Closeness to the DBMS Kernel

		2.11. Doing Only What Is Required

		2.12. SQL Statements Mirror Business Logic

		2.13. Program Logic into Queries

		2.14. Multiple Updates at Once

		2.15. Careful Use of User-Written Functions

		2.16. Succinct SQL

		2.17. Offensive Coding with SQL

		2.18. Discerning Use of Exceptions

		3. Tactical Dispositions		3.1. The Identification of “Entry Points”

		3.2. Indexes and Content Lists

		3.3. Making Indexes Work

		3.4. Indexes with Functions and Conversions

		3.5. Indexes and Foreign Keys

		3.6. Multiple Indexing of the Same Columns

		3.7. System-Generated Keys

		3.8. Variability of Index Accesses

		4. Maneuvering		4.1. The Nature of SQL		4.1.1. SQL and Databases

		4.1.2. SQL and the Optimizer

		4.1.3. Limits of the Optimizer

		4.2. Five Factors Governing the Art of SQL		4.2.1. Total Quantity of Data

		4.2.2. Criteria Defining the Result Set

		4.2.3. Size of the Result Set

		4.2.4. Number of Tables		4.2.4.1. Joins

		4.2.4.2. Complex queries and complex views

		4.2.5. Number of Other Users

		4.3. Filtering		4.3.1. Meaning of Filtering Conditions

		4.3.2. Evaluation of Filtering Conditions		4.3.2.1. Buyers of Batmobiles

		4.3.2.2. More Batmobile purchases

		4.3.2.3. Lessons to be learned from the Batmobile trade

		4.3.3. Querying Large Quantities of Data

		4.3.4. The Proportions of Retrieved Data

		5. Terrain		5.1. Structural Types

		5.2. The Conflicting Goals

		5.3. Considering Indexes as Data Repositories

		5.4. Forcing Row Ordering

		5.5. Automatically Grouping Data		5.5.1. Round-Robin Partitioning

		5.5.2. Data-Driven Partitioning

		5.6. The Double-Edged Sword of Partitioning

		5.7. Partitioning and Data Distribution

		5.8. The Best Way to Partition Data

		5.9. Pre-Joining Tables

		5.10. Holy Simplicity

		6. The Nine Situations		6.1. Small Result Set, Direct Specific Criteria		6.1.1. Index Usability

		6.1.2. Query Efficiency and Index Usage

		6.1.3. Data Dispersion

		6.1.4. Criterion Indexability

		6.2. Small Result Set, Indirect Criteria

		6.3. Small Intersection of Broad Criteria

		6.4. Small Intersection, Indirect Broad Criteria

		6.5. Large Result Set

		6.6. Self-Joins on One Table

		6.7. Result Set Obtained by Aggregation

		6.8. Simple or Range Searching on Dates		6.8.1. Many Items, Few Historical Values		6.8.1.1. Using subqueries

		6.8.1.2. Using OLAP functions

		6.8.2. Many Historical Values Per Item

		6.8.3. Current Values

		6.9. Result Set Predicated on Absence of Data

		7. Variations in Tactics		7.1. Tree Structures		7.1.1. Tree Structures Versus Master/Detail Relationships

		7.1.2. Practical Examples of Hierarchies

		7.2. Representing Trees in an SQL Database

		7.3. Practical Implementation of Trees		7.3.1. Adjacency Model

		7.3.2. Materialized Path Model

		7.3.3. Nested Sets Model (After Celko)

		7.4. Walking a Tree with SQL		7.4.1. Top-Down Walk: The Vandamme Query		7.4.1.1. Adjacency model

		7.4.1.2. Materialized path model

		7.4.1.3. Nested sets model

		7.4.1.4. Comparing the Vandamme query under the various models

		7.4.2. Bottom-Up Walk: The Highlanders Query		7.4.2.1. Adjacency model

		7.4.2.2. Materialized path model

		7.4.2.3. Nested sets model

		7.4.2.4. Comparing the various models for the Highlanders
 query

		7.5. Aggregating Values from Trees		7.5.1. Aggregation of Values Stored in Leaf Nodes		7.5.1.1. Modeling head counts

		7.5.1.2. Computing head counts at every level

		7.5.2. Propagation of Percentages Across Different Levels

		8. Weaknesses and Strengths		8.1. Deceiving Criteria

		8.2. Abstract Layers

		8.3. Distributed Systems

		8.4. Dynamically Defined Search Criteria		8.4.1. Designing a Simple Movie Database and the Main Query

		8.4.2. Right-Sizing Queries

		8.4.3. Wrapping SQL in PHP

		9. Multiple Fronts		9.1. The Database Engine as a Service Provider		9.1.1. The Virtues of Indexes

		9.1.2. A Just-So Story

		9.1.3. Get in Line

		9.2. Concurrent Data Changes		9.2.1. Locking		9.2.1.1. Locking granularity

		9.2.1.2. Lock handling

		9.2.1.3. Locking and committing

		9.2.1.4. Locking and scalability

		9.2.2. Contention		9.2.2.1. Insertion and contention

		9.2.2.2. DBA solutions

		9.2.2.3. Architectural solutions

		9.2.2.4. Development solutions

		9.2.2.5. Results

		10. Assembly of Forces		10.1. Increasing Volumes		10.1.1. Sensitivity of Operations to Volume Increases		10.1.1.1. Insensitivity to volume increase

		10.1.1.2. Linear sensitivity to volume increases

		10.1.1.3. Non-linear sensitivity to volume increases

		10.1.1.4. Putting it all together

		10.1.1.5. Disentangling subqueries

		10.1.2. Partitioning to the Rescue

		10.1.3. Data Purges

		10.2. Data Warehousing		10.2.1. Facts and Dimensions: the Star Schema

		10.2.2. Query Tools

		10.2.3. Extraction, Transformation, and Loading		10.2.3.1. Data extraction

		10.2.3.2. Transformation

		10.2.3.3. Loading

		10.2.3.4. Integrity constraints and indexes

		10.2.4. Querying Dimensions and Facts: Ad Hoc Reports		10.2.4.1. The star transformation

		10.2.4.2. Emulating the star transformation

		10.2.4.3. Querying a star schema the way it is not intended to be
 queried

		10.2.5. A (Strong) Word of Caution

		11. Stratagems		11.1. Turning Data Around		11.1.1. Rows That Should Have Been Columns

		11.1.2. Columns That Should Have Been Rows		11.1.2.1. Creating a pivot table

		11.1.2.2. Multiplying rows with a pivot table

		11.1.2.3. Using pivot table values

		11.1.2.4. The pivot and unpivot operators

		11.1.3. Single Columns That Should Have Been Something Else		11.1.3.1. First normal form on the fly

		11.1.3.2. Lifting the veil on the Chapter 7 mystery path
 explosion

		11.2. Querying with a Variable in List

		11.3. Aggregating by Range (Bands)

		11.4. Superseding a General Case

		11.5. Selecting Rows That Match Several Items in a List

		11.6. Finding the Best Match

		11.7. Optimizer Directives

		12. Employment of Spies		12.1. The Database Is Slow

		12.2. The Components of Server Load

		12.3. Defining Good Performance		12.3.1. Knowing What You Spend

		12.3.2. Knowing What You Get

		12.3.3. Checking Against Acknowledged Standards

		12.3.4. Defining Performance Goals

		12.4. Thinking in Business Tasks

		12.5. Execution Plans		12.5.1. Identifying the Fastest Execution Plan		12.5.1.1. Our contestants

		12.5.1.2. Our battle field

		12.5.1.3. And the winner is.. .

		12.5.2. Forcing the Right Execution Plan		12.5.2.1. A stubborn query

		12.5.2.2. Study of search criteria

		12.5.2.3. A moral to the story

		12.6. Using Execution Plans Properly		12.6.1. How Not to Execute a Query

		12.6.2. Hidden Complexity

		12.7. What Really Matters?

		PHOTO CREDITS

		About the Authors

		About the Author

		Special Upgrade Offer

		Copyright

OEBPS/httpatomoreillycomsourceoreillyimages34456.png
Volume of data

140
120
100

80

60

Second {rin‘r

I

Firsy crisis

@ Time

T overastonat dara
B cesaey dara
W Reference dara

OEBPS/httpatomoreillycomsourceoreillyimages34452.png
©
9
S

b

-

180
v 160
[T
5 120 |
S]
g 100 T
g
£ 50
3 60
2
S o
20
o
More space

for x

¥

Free lists
+x

management management

n index

T
Hash
partitioning

Reverse
index

Index Random Random
organized | surrogate surrogate
table key/ kev/
narrow large
range range

OEBPS/httpatomoreillycomsourceoreillyimages34460.png
Dimension 1

1 (PR

Facts raple " Dimension 3
3 (PI)

1 (Fl)
D2 (Fi)
D3 (FK)
ID¥ (FI)
Valuet

Dimension 2 Dimension #

OEBPS/httpatomoreillycomsourceoreillyimages34454.png
©
9
S

180
o 10 i
T 140
S 120 f * 1
£ 100 | L |
N | *
£ g0
= 1 I
2 60
)
© 4o *
20
. T
More space Freelists | Hash Reverse Index | Random Random
For 1 +1x |partitioning index organized | surrogate surrogate
management management Yable | kev/ kev/
in index nartow large

range range

OEBPS/httpatomoreillycomsourceoreillyimages34382.png
I Orders

Order-Details

Articles '

OEBPS/httpatomoreillycomsourceoreillyimages34436.png
100%
90% x

80%

70% -
60%

50%
¥0%

30%
20%

10%
0%

T
<0.1s 0.1s

Response

W ndexed cotumn
B vnindexed cotumn

OEBPS/httpatomoreillycomsourceoreillyimages34366.png
Index LEDGER-IDX1
4.6 GB - 14%
Table LEDGER
79 6B - 24%

lndex LEDGERJDXT.
-16%

Index LEDGERIDX3

PIC index LEDGER-PIK 3.7 6B - 1%

7.8 6B - 247,

Index LEDGERIDXH
3.76B - 11%

OEBPS/httpatomoreillycomsourceoreillyimages34442.png
607%

50%

¥0%

30%

20%

10%

o%
<045 045 025 035 Ods 055 Obs
Response time
. Indexed column
T vnindexed cotumn

OEBPS/httpatomoreillycomsourceoreillyimages34372.png
Naked Table + index Table + Table + Table + Table +
table enforcing pk +one pk *two bk + bk + three
Dﬁ'ﬂlarl\(r)kev index indexes #rigger indexes
(|

OEBPS/httpatomoreillycomsourceoreillyimages34370.png
120
100

80 -

Naked
table

Table + index
enforcing
primary key
(pk)

Table +
bk + one
index

Table +
bk + wo
indexes

Table +
bk + three
indexes

OEBPS/httpatomoreillycomsourceoreillyimages34410.png
Fetch rate

120
100
80
60
4o

20

Indexed values
ordered

Indexed values
randomly distripbutred

OEBPS/httpatomoreillycomsourceoreillyimages34402.png
Performance when the two columns fetched are in the index

OEBPS/httpatomoreillycomsourceoreillyimages34388.png
Non Relational

Retational

Fitrer

Finishing Touches

OEBPS/httpatomoreillycomsourceoreillyimages34422.png
Fetch rate

250,00
200,00
150,00
100,00

50,00

Adjacency

Model

Materialized Path

OEBPS/httpatomoreillycomsourceoreillyimages34430.png
Entry Form

List

Irem 2- deseription
Irem 3- deseription

AT
J
P —

Irem 4= deseription

Irem 1- description

Detail

[ems
All the debaits

OEBPS/httpatomoreillycomsourceoreillyimages34466.png
71+ Complete each row with dummy values

2. Aggregate
across rows

OEBPS/orm_front_cover.jpg
/PRACTICE

/THEORY/IN

OEBPS/httpatomoreillycomsourceoreillyimages34426.png
Components

Composition

r—Ree»es " Basic_ingredients '

1 | L

component.id
| recipenid
per

OEBPS/httpatomoreillycomsourceoreillyimages34464.png

OEBPS/httpatomoreillycomsourceoreillyimages34446.png
ke

o ° o ° o °
in S in S in

o o - -

PUCIIS 424 5248pdN J0 AAJWNU ALY

11 12

10

Number of updates between commits

OEBPS/httpatomoreillycomsourceoreillyimages34472.png
Substring? Supstring2
— —_—

123,456,78,96 23,456,78,96
/\ #+h position A\ 3¢d position
23,456,78:96 3,456,78,96
/\ 3rd position /\ 2nd position
3:456,78,96 #56,78,96
A\ 2nd position A\ 15t posirion
#56,78,96 #56,78,96
A\ 15t position A\ #rh position
#56,78,96 56,7896

/\ #h position /\ 3rd position
56,78,96 6,78,96

/\ 3rd position /\ 2nd position

OEBPS/httpatomoreillycomsourceoreillyimages34416.png
1
1s+ Corps

/

15+ British GuardsT
Division

\\

3rd Anglo-German
Division 15

15+ Guards
Brigadey,

2nd Guards
gBrivadey

2nd British 5th Beitish 1t Hanoverian
gBrigadeqg o Prigadey, 1 Brisadey,

OEBPS/httpatomoreillycomsourceoreillyimages34396.png
orderdetail

orders
ordtid
‘“”“":’3‘/ cusiid
cust ordered
custname
city

f

OEBPS/httpatomoreillycomsourceoreillyimages34438.png
<015

015

oas

035

Wl /ndexed cotumn
B vnindexed cotumn

045 0.55
Response time

065

075

0.85.

15

OEBPS/httpatomoreillycomsourceoreillyimages34462.png
il

OEBPS/httpatomoreillycomsourceoreillyimages34474.png
Time elapsed

1200

1000

800

600

200

3

T T T T T T T

10,000 20,000 30,000 40,000 50,000 60,000 70,000 §0,000 90,000 100,000

Nuwber of executions

—— Pivoted list

- Hard-coded list

OEBPS/httpatomoreillycomsourceoreillyimages34378.png
Table A I Table B

«FiC. «PK.

< Fic.

OEBPS/httpatomoreillycomsourceoreillyimages34384.png
Sennal

Tuovad

Ervbefel Tarum Uaeregua

Anessam Errodanrep Sereissep Tluos Yen

OEBPS/httpatomoreillycomsourceoreillyimages34412.png

OEBPS/httpatomoreillycomsourceoreillyimages34420.png
Fetch rate

10
100
80
60
4o

20

Adjacency
model

Adjacency/
adjusted

Materialized
path model

Nested sets
model

OEBPS/httpatomoreillycomsourceoreillyimages34450.png
EESRERS

L]

o

1|

¢ s
: @

o
38

T
$ ¢

484 U0J4IISU) Jed0)D

80

o
&

°

10

Sessions

OEBPS/httpatomoreillycomsourceoreillyimages34386.png
Reporting
Reguirements

Relational Theory

Implementation

Datrapase Oprimizer

OEBPS/httpatomoreillycomsourceoreillyimages34470.png
Row o pivot

col1 col2 col3 col# w. coln

Cartesian join multiplies

coll
coll
coll

colt

col2
col2
col2

col2

col3 col¥ w. coln
col3 col¥ w. coln
col3 col¥ w. coln

col3 COl¥ we cOln

3

Pivot table
1

e

E]

K Use pivot taple
values to pick
columns

OEBPS/httpatomoreillycomsourceoreillyimages34380.png
b2

Table A

«Flc.

< Flc.

FR.

=>user vl
P yser U2

OEBPS/httpatomoreillycomsourceoreillyimages34406.png
Retative Insert Rate
or Fetch Rate

3

20

15

10

Insery

W Von-clusrered unique index

B Clusrered Primary Key

Range Select

OEBPS/httpatomoreillycomsourceoreillyimages34408.png
Feeding
Process

™| |32 T T
dlP|P|lwW W

N 7YY

s1 Se 53
handles T1 handles T2 handles T3

OEBPS/httpatomoreillycomsourceoreillyimages34468.png
categories ™movies people
caregory.id movie.id beoplenid
category_name movie_tite beoplefirsiname
movieyear people~name
Movie.category beoplesex
moviecountry peoplebirthoyear
MovieLsummary
director
acror.1
actor 2
actor 3

OEBPS/httpatomoreillycomsourceoreillyimages34418.png
Fetch rate

120
100
80
60
%o

20

Adjacency
model

Materialized
path model

Nestred sets
model

OEBPS/oreilly_large.png.jpg

OEBPS/httpatomoreillycomsourceoreillyimages34428.png
Performance

120
100
80
60
%o

20

Inser+ 500,000

tows
W ocat v

Tl oracte b8 tink, inver-process communi
W Oracte DB tink, TCP, tooppack
Tl oracte bB tink, TCP, IP address

=

Fetch 500,000
rows

Hions

OEBPS/httpatomoreillycomsourceoreillyimages34414.png

OEBPS/httpatomoreillycomsourceoreillyimages34390.png
Retational

Non Relational

Relational

Fitrer

Ordering

OEBPS/httpatomoreillycomsourceoreillyimages34394.png
orderdetail

orders /rwé ordid

customers ord#id o

— custid
custic ——u/é

ordered
custname
city

aryicles

ardid
artname

price

OEBPS/httpatomoreillycomsourceoreillyimages34398.png
orderdetail

orders
ordtid
f—"”""ﬁ/é custid
custd. ordered
cusiname
city

Poon

OEBPS/httpatomoreillycomsourceoreillyimages34404.png
Insertion Rate

1%0

120

100
8o
60
40
20
° T T T

Random first Sequential ~ Random first Sequential

eotumn in First column eolumn in First column
primary key in p‘:marv primary key in primary
ey key
C_) J
I LB
Primary key plus Primary key plus
one column nine columns

W Index organized
B Heap organized

OEBPS/httpatomoreillycomsourceoreillyimages34458.png
Fetch Rate

@
S

o
°

£

[l il 7 -

o
o o
Q ;}o

Number of Orders

W Privary ke search

B sor
Tl 6rovp by
Tl mex0)
Tl 7op

OEBPS/httpatomoreillycomsourceoreillyimages34424.png
Phitrer #5

Powdered unicorn horn
Asphodel
Ngoc mam
Mummy wax
Potion #9
ragon eggshells

Dragon eggshells
Mandragore
Tomato ketchup
Salamander skin
Mummy wax
Asphodel

OEBPS/httpatomoreillycomsourceoreillyimages34376.png
Lannes
Bessieres Mortier

Bernadotte Davout Massena Ney

Augereau Lefebvre Murat Soult

OEBPS/httpatomoreillycomsourceoreillyimages34444.png
o o o
in S in
1

100 -

o <

Pa4n2IX2 s248pdn F0 A29WNU Jeso)

sUolssds Sb
SUo)ssIs hb
suo)ssas)

suo)ssas T4

suoyssas 44

suolssas o)

SUolssas &

suossas g

suolssas L
suolssas 9

suossas §

SUolssIs

suoyssas €

Suolssas T

Uoyssas 4

o °
in

= Table locki

— Row (0Cking

OEBPS/httpatomoreillycomsourceoreillyimages34448.png
Relative number of updates per second

#.00
3.50
3.00
2.50
2.00
1.50
1.00
0.50

0.00

T T 1 T 1T T T T -T-°T
1 2 3 % 5 6 7 8 9 1011 12 13 1% 15

— DBMST
e DBMS2.

- DBMS3

Concurrent sessions

OEBPS/httpatomoreillycomsourceoreillyimages34440.png
<095 045 025 035 O

0.55

065

o7s

Response +ime

W Indexed cotumn
B vnindexed cotumn

0.85

095 15 o0 25 and
195 above

OEBPS/httpatomoreillycomsourceoreillyimages34434.png
) Movie Database - Mozllla Firefox

0&8®

Ele Edt View Go Bookmarks Tools Help

[

@ - - & O B [# nupumocanosyprpimove_query.ntmi) Gc G

Please fill the form to query our database and click on Search when you are done...

Movie Title :
Director :
Actor :
Actor :
Actor :

Search

Done

OEBPS/httpatomoreillycomsourceoreillyimages34478.png
RETURN(1) 613.13
TBSCAN(3) 611.19

OEBPS/httpatomoreillycomsourceoreillyimages34392.png
Non Relational

Relational

Fitrer

Ordering

Operation

OEBPS/httpatomoreillycomsourceoreillyimages34400.png
Fle Edt View Go Bookmarks Tools Help

CICI3)
kX

@ -9 - @ (O) [wnttpisearch.yahoo.comisearchtp=Willam+ Shakespeare&ism="Yahoo%21+< [¥] ® Go | 2, Willam Shakespear:

The Complete Works of William Shakespeare =

‘Gomplete works of Willlam Shakespeare online, offering easy access to the fulltext of all of the bard's plays and
poetry. From MIT.

Category: William Shakespeare > Works

www-tech.mit.ecu/Shakespeare/works.htmi - 5k - Cached - More from this site - Save - Block

Shakespeare Online

information on the fife and works of Willlam Shakespeare, the English Renaissance poet and playwright, including a
glossary, overview of major critcs, analysis, and essays.

Category: Playwrights > William Shakespeare

www.shakespeare-oniine.com - 23k - Gached - More from this site - Save - Block

Mr. William Shakespeare and the Internet =

‘annatated guide to scholarly Shakespeare resources available online, inclucing a Shakespeare timeline, geneology,
bioaraphv. a chart of canonical works. Rowe's 1709 bioaraphy of the Bard. and Lamb's Tales From Shakespeare.

Category: William Shakespeare > Web Directories
shakespeare. palomar.edu - 8k - Cached - More from this site - Save - Block

William Shakespeare - Wikipedia, the free encyclopedia ® - Translate this page
- Willlam Shakespeare. From Wikipecia, the free encyclopecia. William Shakespeare (National Portrai ... Willlam
Shakespeare (baptised April 26, 1564 — April 23, 1616) was an English ..
Category: Playwrights > William Shakespeare
en.wikipecia.org/wiki/Willlam_Shakespeare - Lore from this site - Save - Block

eNotes: Shakespeare =

study guides and resources for students of William Shakespeare, inclucing an A to Z encyclopedia, information on
Shakespeare's England, translations of cificult text, and criical essays.

Category: William Shakespeare > Stucy Guides

www.shakespeare.com - 16k - Cached - More from this site - Save - Block

 Done

OEBPS/httpatomoreillycomsourceoreillyimages34368.png
120
100

80 -

%0 |

20

Naked
table

Table + index
enforcing
primary key
(pk)

Table +
bk + one
index

Table +
bk + wo
indexes

Table +
bk + three
indexes

OEBPS/httpatomoreillycomsourceoreillyimages34476.png
B |
I employees skillset skills "
employee.id employee~id skill~id
employeename skitl~id skilluname
. skill-tevel .

j Eeiinaah N |

