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Dedication



The French humorist Alphonse Allais (1854–1905), once dedicated one
    of his short stories as follows:
To the only woman I love and who knows it well.


... with the following footnote:
This is a very convenient dedication that I cannot recommend too
      warmly to my fellow writers. It costs nothing, and can, all at once,
      please five or six persons.
I can take a piece of wise advice when I meet one.
—STÉPHANE FAROULT
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Preface



There used to be a time when what is known today as
    “Information Technology” or IT was less glamorously known as
    “Electronic Data Processing.” And the truth is that for all the buzz about
    trendy techniques, the processing of data is still at the core of our
    systems—and all the more as the volume of data under management seems to
    be increasing even faster than the speed of processors. The most vital
    corporate data is today stored in databases and accessed through the
    imperfect, but widely known, SQL language—a combination that had begun to
    gain acceptance in the pinstriped circles at the beginning of the 1980s
    and has since wiped out the competition.
You can hardly interview a young developer today who doesn’t claim a
    good working knowledge of SQL, the lingua franca of database access, a
    standard part of any basic IT course. This claim is usually reasonably
    true, if you define knowledge as the ability to obtain, after some effort,
    functionally correct results. However, enterprises all over the world are
    today confronted with exploding volumes of data. As a result,
    “functionally correct” results are no longer enough: they also have to be
    fast. Database performance has become a major headache in many companies.
    Interestingly, although everyone agrees that the source of performance
    issues lies in the code, it seems accepted everywhere that the first
    concern of developers should be to provide code that works—which seems to
    be a reasonable expectation. The thought seems to be that the database
    access part of their code should be as simple as possible, for maintenance
    reasons, and that “bad SQL” should be given to senior database
    administrators (DBAs) to tweak and make run faster, with the help of a few
    magic database parameters. And if such tweaking isn’t enough, then it
    seems that upgrading the hardware is the proper course to take.
It is quite often that what appears to be the common-sense and safe
    approach ends up being extremely harmful. Writing inefficient code and
    relying on experts for tuning the “bad SQL” is actually sweeping the dirt
    under the carpet. In my view, the first ones to be concerned with
    performance should be developers, and I see SQL issues as something
    encompassing much more than the proper writing of a few queries.
    Performance seen from a developer’s perspective is something profoundly
    different from “tuning,” as practiced by DBAs. A database administrator
    tries to get the most out of a system—a given hardware, processors and
    storage subsystem, or a given version of the database. A database
    administrator may have some SQL skills and be able to tune an especially
    poorly performing statement. But developers are writing code that may well
    run for 5 to 10 years, surviving several major releases (Internet-enabled,
    ready-for-the-grid, you name it) of the Database Management System (DBMS)
    it was written for—and on several generations of hardware. Your code must
    be fast and sound from the start. It is a sorry assessment to make but if
    many developers “know” SQL, very few have a sound understanding of this
    language and of the relational theory.
Why Another SQL Book?



There are three main types of SQL books: books that teach the
      logic and the syntax of a particular SQL dialect, books that teach
      advanced techniques and take a problem-solving approach, and performance
      and tuning books that target experts and senior DBAs. On one hand, books
      show how to write SQL code. On the other hand, they show how to diagnose
      and fix SQL code that has been badly written. I have tried, in this
      book, to teach people who are no longer novices how to write
      good SQL code from the start and, most importantly,
      to have a view of SQL code that goes beyond individual SQL
      statements.
Teaching how to use a language is difficult enough; but how can
      one teach how to efficiently use a language? SQL is a language that can
      look deceivingly simple once you have been initiated. And yet it allows
      for an almost infinite number of cases and combinations. The first
      comparison that occurred to me was the game of chess, but it suddenly
      dawned on me that chess was invented to teach war. I have a natural
      tendency to consider every new performance challenge as a battle to be
      fought against an army of rows, and I realized that the problem of
      teaching developers how to use databases efficiently was similar to the
      problem of teaching officers how to conduct a war. You need knowledge,
      you need skills, and you need talent. Talent cannot be taught, but it
      can be nurtured. This is what most strategists, from Sun Tzu, who wrote
      his Art of War 25 centuries ago, to modern-day
      generals, have believed—so they tried to pass on the experience acquired
      on the field through simple maxims and rules that they hoped would serve
      as guiding stars among the sound and fury of battles. I have tried to
      apply this method to more peaceful aims, and I have mostly followed the
      same plan as Sun Tzu—and I’ve borrowed his title. Many respected IT
      specialists claim the status of scientists; “Art” seems to me more
      appropriate than “Science” when it comes to defining an activity that
      requires flair, experience, and creativity, as much as rigor and
      understanding.[*] It is quite likely that my fondness for Art will be
      frowned upon by some partisans of Science, who claim that for each SQL
      problem, there is one optimal solution, which can be attained by
      rigorous analysis and a good knowledge of data. However, I don’t see the
      two positions at odds. Rigor and a scientific approach will help you out
      of one problem at one given
      moment. In SQL development, if you don’t have the
      uncertainties linked to the next move of the adversary, the big
      uncertainties lie in future evolutions. What if, rather unexpectedly,
      the volume of this or that table increases? What if, following a merger,
      the number of users doubles? What if we want to keep several years of
      data online? How will a program behave on hardware totally different
      from what we have now? Some architectural choices are gambles on the
      future. You will certainly need rigor and a very sound theoretical
      knowledge—but those qualities are prerequisites of any art. Ferdinand
      Foch, the future Supreme Commander of the Allied armies of WWI, remarked
      at a lecture at the French Ecole Supérieure de Guerre in 1900
      that:
The art of war, like all other arts, has its theory, its
        principles—otherwise, it wouldn’t be an art.


This book is not a cookbook, listing problems and giving
      “recipes.” The aim is much more to help developers—and their managers—to
      raise good questions. You may well still write awful, costly queries
      after having read and digested this book. One sometimes has to. But,
      hopefully, it will be knowingly and with good reason.

Audience



This book is targeted at:
	Developers with significant (one year or, preferably, more)
          experience of development with an SQL database

	Their managers

	Software architects who design programs with significant
          database components



Although I hope that some DBAs, and particularly those that
      support development databases, will enjoy reading this book, I am sorry
      to tell them I had somebody else in mind while writing.

Assumptions This Book Makes



I assume in this book that you have already mastered the SQL
      language. By mastering I don’t mean that you took
      SQL 101 at the university and got an A+, nor, at the other end of the
      spectrum, that you are an internationally acknowledged SQL guru. I mean
      that you have already developed database applications using the SQL
      language, that you have had to think about indexing, and that you don’t
      consider a 5,000-row table to be a big table. It is not the purpose of
      this book to tell you what a “join” is—not even an outer one—nor what
      indexes are meant to be used for. Although you don’t need to feel
      totally comfortable with arcane SQL constructs, if, when given a set of
      tables and a question to answer, you are unable to come up with a
      functionally correct piece of code, there are probably a couple of books
      you had better read before this one. I also assume that you are at least
      familiar with one computer language and with the principles of computer
      programming. I assume that you have already been down in the trenches
      and that you have already heard users complain about slow and poorly
      performing systems.

Contents of This Book



I found the parallel between war and SQL so strong that I mostly
      followed Sun Tzu’s outline—and kept most of his titles.[*] This book is divided into twelve chapters, each containing
      a number of principles or maxims. I have tried to explain and illustrate
      these principles through examples, preferably from real-life
      cases.
	Chapter 1,
          Laying Plans
	Examines how to design databases for performance

	Chapter 2,
          Waging War
	Explains how programs must be designed to access databases
            efficiently

	Chapter 3,
          Tactical Dispositions
	Tells why and how to index

	Chapter 4,
          Maneuvering
	Explains how to envision SQL statements

	Chapter 5,
          Terrain
	Shows how physical implementation impacts performance

	Chapter 6, The
          Nine Situations
	Covers classic SQL patterns and how to approach them

	Chapter 7,
          Variations in Tactics
	Explains how to deal with hierarchical data

	Chapter 8,
          Weaknesses and Strengths
	Provides indications about how to recognize and handle some
            difficult cases

	Chapter 9,
          Multiple Fronts
	Describes how to face concurrency

	Chapter 10,
          Assembly of Forces
	Addresses how to cope with large volumes of data

	Chapter 11,
          Stratagems
	Offers a few tricks that will help you survive rotten
            database designs

	Chapter 12,
          Employment of Spies
	Concludes the book by explaining how to define and monitor
            performance




Conventions Used in This Book



The following typographical conventions are used in this
      book:
	Italic
	Indicates emphasis and new terms, as well as book
            titles.

	Constant width
	Indicates SQL and, generally speaking, programming
            languages’ keywords; table, index and column names; functions;
            code; or the output from commands.

	Constant width
          bold
	Shows commands or other text that should be typed literally
            by the user. This style is used only in code examples that mix
            both input and output.

	Constant width italic
	Shows text that should be replaced with user-supplied
            values.



Important
This icon signifies a maxim and summarizes
        an important principle in SQL.

Note
This is a tip, suggestion, or general note. It contains useful
        supplementary information about the topic at hand.


Using Code Examples



This book is here to help you get your job done. In general, you
      may use the code in this book in your programs and documentation. You do
      not need to contact O’Reilly for permission unless you’re reproducing a
      significant portion of the code. For example, writing a program that
      uses several chunks of code from this book does not require permission.
      Selling or distributing a CD-ROM of examples from O’Reilly books
      does require permission. Answering a question by
      citing this book and quoting example code does not require permission.
      Incorporating a significant amount of example code from this book into
      your product’s documentation does require
      permission.
O’Reilly, Media Inc. appreciates, but does not require,
      attribution. An attribution usually includes the title, author,
      publisher, and ISBN. For example: "The Art of SQL
      by Stéphane Faroult with Peter Robson. Copyright © 2006 O’Reilly Media,
      0-596-00894-5.”
If you feel your use of code examples falls outside fair use or
      the permission given above, feel free to contact the publisher at
      permissions@oreilly.com.

Comments and Questions



Please address comments and questions concerning this book to the
      publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	(800) 998-9938 (in the U.S. or Canada)
	(707) 829-0515 (international or local)
	(707) 829-0104 (fax)

The publisher has a web page for this book, where we list errata,
      examples, and any additional information. You can access this page
      at:
	http://www.oreilly.com/catalog/artofsql

To comment or ask technical questions about this book, send email
      to:
	bookquestions@oreilly.com

For more information about our books, conferences, Resource
      Centers, and the O’Reilly Network, see O’Reilly’s web site at:
	http://www.oreilly.com

You can also visit the author’s company web site at:
	http://www.roughsea.com


Safari® Enabled



When you see a Safari® Enabled icon on the cover of your favorite
      technology book, that means the book is available online through the
      O’Reilly Network Safari Bookshelf.
Safari offers a solution that’s better than e-books. It’s a
      virtual library that lets you easily search thousands of top tech books,
      cut and paste code samples, download chapters, and find quick answers
      when you need the most accurate, current information. Try it for free at
      http://safari.oreilly.com.
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Chapter 1. Laying Plans

Designing Databases for Performance



C’est le premier pas qui, dans toutes les
      guerres, décèle le génie.
It is the first step that reveals genius in all wars.
—Joseph de Maistre (1754-1821) Lettre du 27 Juillet
      1812 à Monsieur le Comte de Front



The great nineteenth century German
    strategist, Clausewitz, famously remarked that war is the
    continuation of politics by other means. Likewise, any computer program
    is, in one way or another, the continuation of the general activity within
    an organization, allowing it to do more, faster, better, or cheaper. The
    main purpose of a computer program is not simply to
    extract data from a database and then to process it, but to extract and
    process data for some particular goal. The means are
    not the end.
A reminder that the goal of a given computer program is first of all
    to meet some business requirement [*] may come across as a platitude. In practice, the excitement
    of technological challenges often slowly causes attention to drift from
    the end to the means, from upholding the quality of the data that records
    business activity to writing programs that perform as intended and in an
    acceptable amount of time. Like a general in command of his army at the
    beginning of a campaign, we must know clearly what our objectives are—and
    we must stick to them, even if unexpected difficulties or opportunities
    make us alter the original plan. Whenever the SQL language is involved, we
    are fighting to keep a faithful and consistent record of business activity
    over time. Both faithfulness and consistency are primarily associated with
    the quality of the database model. The database model that SQL was
    initially designed to support is the relational model . One cannot overemphasize the importance of having a good
    model and a proper database design, because this is the very foundation of
    any information system.
The Relational View of Data



 A database is nothing but a model of a small part of a
      real-life situation. As any representation, a database is always an
      imperfect model, and a very narrow depiction of a rich and complex
      reality. There is rarely a single way to represent some business
      activity, but rather several variants that in a technical sense will be
      semantically correct. However, for a given set of processes to apply,
      there is usually one representation that best meets the business
      requirement.
The relational model is thus named, not because you can relate
      tables to one another (a popular misconception), but as a
      reference to the relationships between the columns in a table. These are the
      relationships that give the model its name; in other words,
      relational means that if several values belong to
      the same row in a table, they are related. The way
      columns are related to each other defines a relation, and a relation
      is a table (more exactly, a table represents one
      relation).
The business requirements determine the scope of the real-world situation that is
      to be modeled. Once you have defined the scope, you can proceed to
      identify the data that you need to properly record business activity. If
      we say that you are a used car dealer and want to model the cars you
      have for sale (for instance to advertise them on a web site), items such
      as make, model, version, style (sedan, coupe, convertible...), year,
      mileage, and price may be the very first pieces of information that come
      to mind. But potential buyers may want to learn about many more
      characteristics to be able to make an informed choice before settling
      for one particular car. For instance:
	General state of the vehicle (even if we don’t expect anything
          but “excellent”)

	Safety equipment

	Manual or automatic transmission

	Color (body and interiors), metallic paintwork or not,
          upholstery, hard or soft top, perhaps a picture of the car

	Seating capacity, trunk capacity, number of doors

	Power steering, air conditioning, audio equipment

	Engine capacity, cylinders, horsepower and top speed, brakes
          (everyone isn’t a car enthusiast who would know technical
          specifications from the car description)

	Fuel, consumption, tank capacity

	Current location of the car (may matter to buyers if the site
          lists cars available from a number of physical places)

	And so on.. .



If we decide to model the available cars into a database, then
      each row in a table summarizes a particular statement of fact—for
      instance, that there is for sale a 1964 pink Cadillac Coupe DeVille that
      has already been driven twenty times around the Earth.
Through relational operations, such as joins, and also by
      filtering, selection of particular attributes, or computations applied
      to attributes (say computing from consumption and tank capacity how many
      miles we can drive without refueling), we can derive new factual
      statements. If the original statements are true, the derived statements
      will be true.
Whenever we are dealing with knowledge, we start with facts that
      we accept as truths that need no proof (in mathematics these are known as
      axioms  , but this argument is by no means restricted to
      mathematics and you could call those unproved true facts
      principles  in other disciplines). It is possible to build upon these
      true facts (proving theorems in mathematics) to
      derive new truths. These truths themselves may form the foundations from
      which further new truths emerge.
Relational databases work in exactly the same way. It is
      absolutely no accident that the relational model is mathematically
      based. The relations we define (which once again means, for an SQL database,
      the tables we create) represent facts that we accept, a
      priori, as true. The views we define, and the queries we write, are new truths that we prove.
Note
The coherence of the relational model is a critically important
        concept to grasp. Because of the inherent mathematical stability of
        the principles that underlie relational data modeling  , we can be totally confident that the result of any
        query of our original database will indeed generate equally valid
        facts—if we respect the relational principles. Some of the key
        principles of the relational theory are that a relation, by
        definition, contains no duplicate, and that row ordering isn’t
        significant. As you shall see in Chapter 4, SQL allows developers to
        take a number of liberties with the relational theory, liberties that
        may be the reasons for either surprising results or the failure of a
        database optimizer to perform efficiently.

There is, however, considerable freedom in the choice of our basic truths. Sometimes the exercise of this freedom
      can be done very badly. For example, wouldn’t it be a little tedious if
      every time someone went to buy some apples, the grocer felt compelled to
      prove all Newtonian physics before weighing them? What must be thought
      of a program where the most basic operation requires a 25-way
      join?
We may use much data in common with our suppliers and customers.
      However, it is likely that, if we are not direct competitors, our view
      of the same data will be different, reflecting our particular
      perspective on our real-life situation. For example, our business
      requirements will differ from those of our suppliers and customers, even
      though we are all using the same data. One size doesn’t fit all. A good
      design is a design that doesn’t require crazy queries.
Important
Modeling is the projection of business requirements.


The Importance of Being Normal



 Normalization, and especially that which progresses to the
      third normal form (3NF), is a part of relational
      theory that most students in computer science have been told about. It
      is like so many things learned at school (classical literature springs
      to mind), often remembered as dusty, boring, and totally disconnected
      from today’s reality. Many years later, it is rediscovered with fresh
      eyes and in light of experience, with an understanding that the essence
      of both principles and classicism is
      timelessness.
The principle of normalization is the application of logical rigor to the assemblage of
      items of data—which may then become structured information. This rigor
      is expressed in the definition of various normal forms, most typically
      three, although purists argue that one should analyze data beyond 3NF to
      what is known in the trade as Boyce-Codd normal
      form (BCNF), or even to fifth normal
      form (5NF). Don’t panic. We will discuss only the first
      three forms. In the vast majority of cases, a database modeled in 3NF
      will also be in BCNF[*] and 5NF.
You may wonder why normalization matters. Normalization is
      applying order to chaos. After the battle, mistakes may appear obvious,
      and successful moves sometimes look like nothing other than common
      sense. Likewise, after normalization the structures of the various
      tables in the database may look natural, and the normalization rules are
      sometimes dismissively considered as glorified common sense. We all want
      to believe we have an ample supply of common sense; but it’s easy to get
      confused when dealing with complex data. The three first normal forms
      are based on the application of strict logic and are a useful sanity
      checklist.
The odds that our creating un-normalized tables will increase our
      risk of being struck by divine lightning and reduced to a little mound
      of ashes are indeed very low (or so I believe; it’s an untested theory).
      Data inconsistency, the difficulty of coding data-entry controls, and
      error management in what become bloated application programs are real
      risks, as well as poor performance and the inability to make the model
      evolve. These risks have a very high probability of occurring if we
      don’t adhere to normal form, and I will soon show why.
How is data moved from a heterogeneous collection of unstructured
      bits of information into a usable data model? The method itself isn’t
      complicated. We must follow a few steps, which are illustrated with
      examples in the following subsections.
Step 1: Ensure Atomicity



First of all, we must ensure that the characteristics,
        or attributes, we are dealing with are atomic.
        The whole idea of atomicity  is rather elusive, in spite of its apparent simplicity.
        The word atom comes from ideas first advanced by
        Leucippus, a Greek philosopher who lived in the fifth century B.C.,
        and means “that cannot be split.” (Atomic fission is a contradiction
        in terms.) Deciding whether data can be considered atomic or not is
        chiefly a question of scale. For example, a regiment may be an atomic
        fighting unit to a general-in-chief, but it will be very far from
        atomic to the colonel in command of that regiment, who deals at the
        more granular level of battalions or squadrons. In the same way, a car
        may be an atomic item of information to a car dealer, but to a garage
        mechanic, it is very far from atomic and consists of a whole host of
        further components that form the mechanic’s perception of atomic data
        items.
From a purely practical point of view, we shall define an
        atomic attribute as an attribute that, in a
        where clause, can always be
        referred to in full. You can split and chop an attribute as much as
        you want in the select list (where it is returned); but if you need to
        refer to parts of the attribute inside the where clause, the attribute lacks the level
        of atomicity you need. Let me give an example. In the previous list of
        attributes for used cars, you’ll find “safety equipment,” which is a
        generic name for several pieces of information, such as the presence
        of an antilock braking system (ABS), or airbags (passenger-only,
        passenger and driver, frontal, lateral, and so on), or possibly other
        features, such as the centralized locking of doors. We can, of course,
        define a column named safety_equipment that is just a description
        of available safety features. But we must be aware that by using a
        description we forfeit at least two major benefits:
	The ability to perform an efficient
            search
	If some users consider ABS critical because they often
              drive on wet, slippery roads, a search that specifies “ABS” as
              the main criterion will be very slow if we must search column
              safety_equipment in every row
              for the “ABS” substring. As I’ll show in Chapter 3, regular indexes
              require atomic (in the sense just defined) values as keys. One
              can sometimes use query accelerators other than regular indexes
              (full-text indexing, for instance), but such accelerators
              usually have drawbacks, such as not being maintained in real
              time. Also take note that full-text search may produce awkward
              results at times. Let’s take the example of a color column that contains a
              description of both body and interior colors. If you search for
              “blue” because you’d prefer to buy a blue car, gray cars with a
              blue interior will also be returned. We have all experienced
              irrelevant full-text search results through web searches.

	Database-guaranteed data
            correctness
	Data-entry is prone to error. More importantly than
              dissuasive search times, if “ASB” is entered instead of “ABS”
              into a descriptive string, the database management system will
              have no way to check whether the string “ASB” is meaningful. As
              a result, the row will never be returned when a user specifies
              “ABS” in a search, whether as the main or as a secondary
              criterion. In other words, some of our queries will return wrong
              results (either incomplete, or even plain wrong if we want to
              count how many cars feature ABS). If we want to ensure data
              correctness, our only means (other than double-checking what we
              have typed) is to write some complicated function to parse and
              analyze the safety equipment string when it is entered or
              updated. It is hard to decide what will be worse: the hell that
              the maintenance of such a function would be, or the performance
              penalty that it will inflict on loads. By contrast, a mandatory
              Y/N has_ABS column would not
              guarantee that the information is correct, but at least
              declarative check constraints can make the DBMS reject any value
              other than Y or N.



Partially updating a complex string of data requires first-rate
        mastery of string functions. Thus, you want to avoid cramming multiple
        values into a single string.
Defining data atoms isn’t always a simple
        exercise. For example, the handling of addresses frequently raises
        difficult questions about atomicity. Must we consider the address as
        some big, opaque string? Or must we break it into its components? And
        if we decompose the address, to what level should we split it up?
        Remember the points made earlier about atomicity and  business requirements. How we represent an address
        actually depends on what we want to do with the address. For example,
        if we want to compute statistics or search by postal code and town,
        then it is desirable to break the address up into sufficient attribute
        components to uniquely identify those important data items. The
        question then arises as to how far this decomposition of the address
        should be taken.
The guiding principle in determining the extent to which an
        address should be broken into components is to test each component
        against the business requirements, and from those requirements derive
        the atomic address attributes. What these various address attributes
        will be cannot be predicted (although the variation is not great), but
        we must be aware of the danger of adopting an address format just
        because some other organization may have chosen it, before we have
        tested it critically against our own business needs.
Note that sometimes, the devil is in the details. By trying to
        be too precise, we may open the door to many distracting and
        potentially irrelevant issues. If we settle for a level of detail that
        includes building number and street as atomic items, what of ACME
        Corp, the address of which is simply “ACME Building”? We should not
        create design problems for information we don’t need to process.
        Properly defining the level of information that is needed can be
        particularly important when transferring data from an operational to a
        decision-support system.
Once all atomic data items have been identified, and their
        mutual interrelationships resolved, distinct relations emerge. The
        next step is to identify what uniquely characterizes a row—the primary
        key. At this stage, it is very likely that this key will be a compound
        one, consisting of two or more individual attributes. To go on with
        our used car example, for a customer it’s the combination of make,
        model, version, style, year, and mileage that will identify a
        particular vehicle—not the current registration number. It isn’t
        always easy to correctly define a key. A good, classic example of
        attribute analysis is the business definition of “customer.” A
        customer may be identified by a name. However, a name may not be the
        best identifier. If our customers are companies, the way we identify
        them may be the source of ambiguities—is it “RSI,” “Relational
        Software,” “Relational Software Inc” (with or without a dot following
        “Inc,” with or without a comma after “Relational Software”) that
        identifies this given company? Uppercase? Lowercase? Capitalized
        initials? We have here all the conditions for storing information
        inside a database and never seeing it again. The choice of the
        customer name as identifier is a challenging one, because it demands
        the strict application of naming standards to avoid possible
        ambiguities. It may be preferable to identify a customer on the basis
        of either a standard short name, or possibly by use of a unique code.
        And one should always keep in mind the impact on related data of
        Relational Software Inc. changing its name to, say, Oracle
        Corporation. If we need to keep a history of our relationship, then we
        must be able to identify both names as representing the same company
        at different points in time.
As a general rule, you should, whenever possible, use a unique
        identifier that has meaning rather than some obscure sequential
        integer. I must stress that the primary key is what characterizes the
        data—which is not the case with some sequential identifier associated
        with each new row. You may choose to add such an identifier later, for
        instance because you find your own company_id easier to handle than the place
        of incorporation and registration number that truly identify a
        company. You can even promote the sequential identifier to the envied
        status of primary key, as a technical substitute (or shorthand) for
        the true key, in exactly the same way that you’d use table aliases in
        a query in order to be able to write:
    where a.id =  b.id
instead of:
    where table_with_a_long_name.id = table_even_worse_than_the_other.id
But a technical, numerical identifier doesn’t constitute a real
        primary key by the mere virtue of its existence and mustn’t be
        mistaken for the real thing. Once all the attributes are atomic and
        keys are identified, our data is in first normal
        form (1NF).

Step 2: Check Dependence on the Whole Key



I have pointed out that some of the information that we
        should store to help used car buyers make an informed choice would
        already be known by a car enthusiast. In fact, many used car
        characteristics are not specific to one particular car. For example,
        all the cars sharing make, model, version, and style will have the
        same seating and cargo capacity, regardless of year and mileage. In
        other words, we have attributes that depend on only a part of the key.
        What are the implications of keeping them inside a used_cars table?
	Data redundancy
	If we happen to have for sale many cars of the same make,
              model, version, and style (a set of characteristics that we can
              generically call the car model), all the
              attributes that are not specific to one particular car will be
              stored as many times as we have cars of the same model. There
              are two issues with the storage of redundant data . First, redundant data increases the odds of
              encountering contradictory information because of input errors
              (and it makes correction more time-consuming). Second, redundant
              data is an obvious storage waste. It is customary to hear that
              nowadays storage is so cheap that one no longer needs to be
              obsessed with space. True enough, except that such an argument
              overlooks the fact that there is also more and more data to
              store in today’s world. It also overlooks the fact that data is
              often mirrored, possibly backed up to other disks on a disaster
              recovery site where it is mirrored again, and that many
              development databases are mere copies of production databases.
              As a result, every wasted byte isn’t wasted once, but four or
              five times in the very best of cases. When you add up all the
              wasted bytes, you sometimes get surprisingly high figures.
              Besides the mere cost of storage, sometimes—more
              importantly—there is also the issue of recovery. There are cases
              when one experiences “unplanned downtime,” a very severe crash
              for which the only solution is to restore the database from a
              backup. All other things being equal, a database that is twice
              as big as necessary will take twice the time to restore than
              would otherwise be needed. There are environments in which a
              long time to restore can cost a lot of money. In a hospital, it
              can even cost lives.

	Query performance
	A table that contains a lot of information (with a large
              number of columns) takes much longer to scan than a table with a
              reduced set of columns. As we shall see in other chapters, a
              full table scan is not necessarily the scary situation that many
              beginners believe it to be; there are many cases where it is by
              far the best solution. However, the more bytes in the average
              row, the more pages will be required to store the table, and the
              longer it takes to scan the table. If you want to display a
              selectable list of the available car models, an un-normalized
              table will require a select
              distinct applied to all the available cars. Running a
              select distinct doesn’t mean
              only scanning many more rows than we would with a separate
              car_model table, but it also
              means having to sort those rows to eliminate duplicates. If the
              data is split in such a way that the DBMS engine can operate
              against only a subset of the data to resolve the query,
              performance will be significantly better than when it operates
              against the whole.



To remove dependencies on a part of the key, we must create
        tables (such as car_model). The
        keys of those new tables will each be a part of the key for our
        original table (in our example, make, model, version, and style). Then
        we must move all the attributes that depend on those new keys to the
        new tables, and retain only make, model, version, and style in the
        original table. We may have to repeat this process, since the engine
        and its characteristics will not depend on the style. Once we have
        completed the removal of attributes that depend on only a part of the
        key, our tables are in second normal form
        (2NF).

Step 3: Check Attribute Independence



When all data has been correctly moved into 2NF, we can
        commence the process of identifying the third normal
        form (3NF). Very often, a data set in 2NF will already be
        in 3NF, but nevertheless, we should check the 2NF set. We now know
        that each attribute in the current set is fully dependent on the
        unique key. 3NF is reached when we cannot infer the value of an
        attribute from any attribute other than those in the unique key. For
        example, the question must be asked: “Given the value of attribute A,
        can the value of attribute B be determined?”
International contact information provides an excellent example
        of when you can have an attribute dependent on another non-key
        attribute: if you know the country, you need not record the
        international dialing code with the phone number (the reverse is not
        true, since the United States and Canada share the same code). If you
        need both bits of information, you ought to associate each contact
        with, say, an ISO country code (for instance IT for Italy), and have a
        separate country_info table that
        uses the country code as primary key and that holds useful country
        information that your business requires. For instance, a country_info table may record that the
        international dialing code for Italy is 39, but also that the Italian
        currency is the euro, and so on. Every pair of attributes in our 2NF
        data set should be examined in turn to check whether one depends on
        the other. Such checking is a slow process, but essential if the data
        is to be truly modeled in 3NF. What are the risks associated with not
        having the data modeled in 3NF? Basically you have the same risks as
        from not respecting 2NF.
There are various reasons that modeling to the third normal form
        is important. (Note that there are cases in which designers
        deliberately choose not to model in third normal form;
        dimensional modeling, which will be briefly
        introduced in Chapter 10, is
        such a case. But before you stray from the rule, you must know the
        rule and weigh the risks involved.) Here are some reasons:
	A properly normalized model protects against the
            evolution of requirements.
	As Chapter 10 will
              show, a non-normalized model such as the dimensional one finds
              its justification in assumptions about how the data is
              maintained and queried (the same can be said of the physical
              data structures that you’ll see in Chapter 5; but a physical
              implementation change will not jeopardize the logic of programs,
              even if it can seriously impact their performance). If the
              assumptions prove wrong one day, all you can do is throw
              everything away and rebuild from scratch. By contrast, a 3NF
              model may require some query adjustments, but it will be
              flexible enough to accommodate changes.

	Normalization minimizes data
            duplication.
	As I have already pointed out, duplicate data is costly,
              both in terms of disk space and processing power, but it also
              introduces a much-increased possibility of data becoming
              corrupt. Corruption happens when one instance of a data value is
              modified, but the same data held in another part of the database
              fails to be simultaneously (and identically) modified. Losing
              information doesn’t only mean data erasure: if one part of the
              database says “white” while another part says “black,” you have
              lost information. Data inconsistency can be prevented by the
              DBMS if the modeling allows it—if your atomic attributes let you
              define column constraints, or if you can declare referential
              integrity constraints. Otherwise, it has to be prevented by
              additional programming traps. You then have the choice between
              using triggers and stored procedures that can grow very complex and add significant
              overhead, or making programs unnecessarily complicated and
              therefore costlier to maintain. Triggers and stored procedures
              must be extremely well documented. Data consistency ensured in
              programs moves the protection of data integrity out of the
              database and into the application layer. Any other program that
              needs to access the same data has the choice between duplicating
              the data integrity protection effort, or happily corrupting the
              data painfully maintained in a consistent state by other
              programs.



Important
The normalization process is fundamentally based on the
          application of atomicity to the world you are modeling.



To Be or Not to Be, or to Be Null



    A very common modeling mistake is to associate large
      numbers of possible characteristics within a
      relation, which may result in a table with a large number of columns.
      Some scientific disciplines may require a very detailed characterization
      of objects under study, and thus require a large number of attributes,
      but this is rarely the case in business applications. In any case, a
      sure sign that a database design is flawed is when columns of some
      prominent tables mostly contain null values , and especially when two columns cannot possibly contain
      a value at the same time; if one is defined, the other must be null, and
      vice versa. This condition would undoubtedly indicate a violation of
      either 2NF or 3NF.
If we admit that a row in a table represents a statement about the
      characteristics of a given “thing,” indicating that “we don’t know” for
      most characteristics seriously downgrades the table as a source of
      reliable information. This may be a minor inconvenience if the data is
      stored for informative purpose only. It becomes a major issue if the
      unknown values are supposed to help us define a result set, and this
      state of affairs is indicative of a flawed model. All columns in a row
      should ultimately contain a value, even if business processes are such
      that various pieces of information are entered from more than one source
      and/or at different points in time. A stamp collector might likewise
      keep some room in an album for a series temporarily absent from the
      collection. But even so, there is a risk of wasting storage if it is
      actually reserved because one always tailors for the maximum size. There
      is also a risk of very serious performance problems if only placeholders
      are used and data goes to some remote overflow area when it is entered
      at last.
The existence of null values also raises an important point with
      regard to relational modeling, which is the main foundation for the
      query optimizer. The completeness of a relational model is founded on
      the application of two-valued logic    ; in which things are or they
      aren’t. Any in-between case, a null value, is
      indeterminate; but in a where clause,
      conditions cannot be indeterminate. They are true or they are false,
      because you return a row or you don’t; you cannot return a row with a
      “maybe this one answers the question but I’m not really sure” qualifier.
      The transition from the three-valued logic implied
      by nulls (true, false, or indeterminate) to the two-valued logic of the
      result set is perilous. This is why all SQL practitioners can recall
      cases when what looked like a good SQL query failed to return the proper
      result set because of an encounter with null values. For instance, if a
      column named color contains the
      values RED, GREEN, and BLACK, this condition:
    where color not in ('BLUE', 'BLACK', null)
will result in no row being returned, because we don’t know what
      null is and the SQL engine will
      consider that there is a possibility that it might be RED or GREEN, whereas:
    where color in ('BLUE', 'BLACK', null)
will return all rows for which color is BLACK, and nothing else (remember, we have no
      BLUE in our table), since there is a
      possibility that null would be
      neither RED nor GREEN. As you can see, an SQL engine is even
      more risk-averse than a banker. Finding an explicit null inside an in (
      ) list is, of course, unusual; but such a situation may occur
      if, instead of an explicit list, we have a subquery and fail to ensure
      that no null value is returned by that subquery.
A representation of customers can provide a very good example of
      the difficulties inherent to dealing with missing information. Each
      customer has an address, which is normally the address that will appear
      on an invoice to that customer. But what if the address to which we must
      ship our goods is different? Must we consider the shipping address to be
      a characteristic of the order? It can make sense if we sell once, only
      to never see customers again. If we are not a funeral parlor, however,
      and especially if we repeatedly ship goods to the same address, it makes
      no sense at all from a business point of view. Entering the same data
      over and over again, besides being a waste of time, also increases the
      risk of a mistake—hence goods get sent to the wrong address, creating a
      dissatisfied customer or perhaps an ex-customer. The shipping address
      is, obviously, a characteristic of the customer, not of the order. This
      situation ought to have been resolved in the analysis of dependencies
      during the original design of the model.
It is also possible to have the accounting department at a
      location different from the official, customer delivery address if the
      customer is a company. So, for one customer, we may have one “official”
      address, a billing address, and also a shipping address. It is quite
      common to see customer tables with
      three sets of columns (each set describing one address) for this
      purpose.
However, if we can have all these addresses,
      what is likely to be the most common case? Well, it is quite possible
      that in 90% of the cases we shall have only one useful address, the
      official address. So, what must we do with all our other columns? Two
      possibilities come to mind:
	Set billing and shipping addresses to
          null.
	This is not a very sound strategy, because this will require
            our programs to use implicit rules , such as “if the billing address is undefined,
            then send the invoice to the corporate address.” The logic of such
            programs will become much more complicated, with an increased risk
            of bugs entering the code.

	Replicate the information, copying the corporate
          address to the billing address columns where there is no special
          billing address.
	This approach will require special processing during data
            entry, by a trigger perhaps. In such a case the overhead may not
            matter much, but in another case the overhead might matter a lot.
            Moreover, we must also take care of replicating
            changes--each update of the corporate address
            must be replicated to those of the other addresses that are
            identical, for fear of inconsistency.



Both of these scenarios betray a critical lack of understanding on
      the part of the original modelers. Using null values and implicit rules
      is a classic fudge to accommodate three-valued logic. The use of nulls
      inevitably introduces three-valued logic, which immediately introduces
      semantic inconsistency ; no amount of clever programming can remove semantic
      issues. Replicating data illustrates what happens when dependencies have
      not been properly analyzed.
One solution to our address conundrum might be to get the address
      information out of the customer
      table. One design we may contemplate is to store each address in an
      address table, together with a
      customer identifier and some column (a bit mask, perhaps) indicating the
      role of the address. But this is not necessarily
      the best solution, because issues such as the true meaning of addresses
      often appear after programs have been rushed into production and an
      attempt to remodel the original data as part of a later release can
      introduce insuperable problems.
We have so far assumed that we have one
      shipping address for each customer, which may or may not be identical to
      the corporate, registered address. What if we send our invoices to a
      single place but must ship our goods to many different branches, with
      several distinct shipments belonging to the same invoice? This is not
      necessarily unusual! It is no longer workable for our design to have a
      single (mostly null) “shipping address” (represented by several columns)
      in the customer table. We are,
      ironically, back to the “shipping address is a characteristic of the
      order” situation. This means that if we want to refer (especially
      repeatedly) to addresses in orders, we must associate some kind of
      purpose-built identifier to our addresses, which will spare us repeating
      the whole shipping address in each order (normalization in action). Or
      perhaps we should begin to contemplate the introduction of a shipments table.
There is no such thing as the totally perfect design for the
      customers/addresses conundrum. I have just wandered through likely
      problems and tried to sketch some of the possible solutions. But there
      will be one solution that works best in your case, and many other
      solutions that will lead to the risks of inconsistencies. With an
      inappropriate solution, code will be at best more complicated than
      necessary with very high odds of being underperforming as well.
The question of null values is probably the thorniest issue of the
      relational theory. Dr. E.F. Codd, the father of the relational model,
      introduced null values early, and explicitly asked in the 3rd of the 12
      rules that he published in 1985 for a systematic treatment of null
      values. (The 12 rules were a concise definition of the required
      properties of a relational database.) However, the battle is still
      raging among theorists. The problem is that “not known” may encompass
      quite a number of different cases. Let’s consider a list of famous
      writers, each with a birth date and a death date. A null birth date
      would unambiguously mean “unknown.” But what does a null death date
      mean? Alive? We don’t know when this author died? We don’t know whether
      this author is alive or not?
I cannot resist the pleasure of quoting the immortal words of the
      then-U.S. Secretary of Defense, Mr. Donald Rumsfeld, at a February 2002
      news briefing of his department:
As we know, there are known knowns. There are things we know we
        know. We also know there are known unknowns. That is to say we know
        there are some things we do not know. But there are also unknown
        unknowns, the ones we don’t know we don’t know.


I don’t find it unusual to have null values for, to put it in
      Rumsfeldese, “known unknowns,” attributes that are known to exist and
      have some value we don’t know at one point in time, for various reasons.
      For the rest, speculating leads nowhere. Strangely, some of the most
      interesting usages of null values may perfectly involve nothing but
      tables where all columns of all rows contain values: null values can be
      generated through outer joins. Some efficient techniques for checking
      the absence of particular values that I discuss in Chapter 6 are precisely based on outer
      joins and tests on null values.
Important
Nulls can be hazardous to your logic; if you must use them, be
        very sure you understand the consequences of doing so in your
        particular situation.


Qualifying Boolean Columns



  Even though the Boolean type doesn’t exist in SQL, many
      people feel a need to implement flags to indicate a Boolean true/false
      status (for instance order_completed). You should aim for
      increasing the density of your data--order_completed may be useful information to
      know, but then perhaps other information would be nice to store too:
      when was it completed? Who completed it? So that means that instead of
      having a single “Y/N” column, we can have a completion_date column, and perhaps a completed_by column, both of which will tell
      us more (although we may not necessarily want to see a null value as
      long as the order isn’t completed; a solution may be to use a distinct
      table to track the various stages of every order from creation to
      completion). As before, examine the dependencies in the context of your
      business requirements, and only include those additional columns where
      the successful operation of the business requires it.
Alternatively, a series of essentially Boolean attributes can
      sometimes be advantageously combined into a unique status attribute. For instance, if you have
      four attributes that can be either true or false, you can assign a
      numerical value between 0 and 15 to each of the possible combinations
      and define the “status” as being represented by this value. But
      beware—this technique may offend the basic rule of atomicity, so if you
      must use this approach, do so with considerable caution.
Important
Data for data’s sake is a path to disaster.


Understanding Subtypes



Another reason for the appearance of unnecessarily wide tables (as
      in having too many attributes) is a lack of understanding of the true
      relationship between data items. Consider the example of
      subtypes . A company may have a mix of employees, some of whom are
      permanent, others who are contractors. They all have several properties
      in common (name, year of birth, department, room, phone number, and so
      forth), but there are also properties that are unique to each type of
      employee (for instance, hire date and salary for permanent employees,
      rate and contract reference for contractors). The manner in which the
      common attributes can be shared, while ensuring that the distinctive
      features are kept separate, introduces the topic of subtypes.
We can model this situation by defining three tables. First, the
      employee table contains all
      information that is common to every employee, regardless of their
      status. However, an attribute tells the status of each employee. It has
      as many distinct values as there are distinct employee types, for
      example “P” (for permanent employee), and “C” (for contract employee).
      This table uses an employee number as the primary key.
Next, we create additional tables, one for each employee type. In
      this case, there are two tables. Tables permanent and contract represent subtypes of the table
      employee, for example. Each permanent
      or contract employee inherits certain characteristics from the employee table, in addition to possessing
      unique characteristics, as defined in their own tables.
Now let’s examine the creation of the primary keys between these
      two types of tables, as it’s the primary key construct that implements
      the subtype relationships . The unique key for all tables is the unique identifier
      for each member of staff—the employee number. The set of primary keys of
      employee is the union of the primary
      keys of the various subtype tables, and the intersection of the primary
      keys of all subtype tables is by construction empty, because each
      employee belongs to just one, in this case, of the two categories. The
      primary keys of subtype tables are also foreign keys, referencing the
      primary key of employee.
Please note that assigning totally independent primary keys to the
      subtype tables would, of course, be a disastrous mistake. In the real
      world however, you will certainly find examples in which this disastrous
      mistake has been perpetrated. Note also that entity sub-types are
      not the same as master-detail relationships. They
      can quickly be distinguished on examination of their respective primary
      keys. For those who would think that this type of discussion is a bit
      academic (associating with the word “academic” some vague, slightly
      pejorative connotation), I’ll just say that whenever different subtypes
      use a primary key that is not a subset of the primary key of the parent
      table, the result is almost invariably pathetic performance, from many
      points of view.
One of the main principles to follow in order to achieve efficient
      database access is a principle attributed to Philip II of Macedonia,
      father of Alexander the Great, and that principle is: Divide
      and Rule. It is quite likely that the vast majority of the
      queries executed by the HR department will belong to either of two
      categories: they will be either generic queries about all the people
      working in an organization or specific queries about one category of
      person. In both cases, by using subtypes correctly,[*] we will only need to examine that data which is most
      likely to provide the result that we require, and no time will be wasted
      examining irrelevant information. If we were to put everything into a
      single table, the most modest query would have to plow through a much
      greater quantity of data, most of which is useless in the context of
      that query.
Important
Tables in which specific columns appear as null indicate the
        need for subtypes.


Stating the Obvious



   It is always an unsound situation in which there are
      implicit constraints on your data—for instance “if the business line is
      such, then the identifier is numeric (although defined as a string of
      characters to accommodate other business lines),” or “if the model is T,
      then the color is necessarily black.” Sometimes, such general knowledge
      information can prove extremely efficient when filtering data. However,
      if it remains human knowledge, the DBMS engine, unaware of it, will be
      unable to take advantage of it, and the optimizer will not possess the
      necessary information to affect the most efficient database access. In
      the worst case, implicit constraints can even lead to a runtime failure.
      For instance, you might inadvertently require the database engine to
      apply an arithmetic process to a character string. This can happen when
      a character-defined column is used only for storing numeric data, and a
      non-numeric character slips in.
As an aside, the example of a string identifier that sometimes
      contains character data and sometimes numerical data illustrates a
      confusion over domain definitions in the initial database design. It is
      quite clear that the nature of such a field varies according to
      circumstances—which is totally unacceptable in a properly designed
      database. If we need to store, for instance, configuration parameters of
      various natures (numerical, Boolean, character, and so on), we should
      not store them in a single table configuration(parameter_name,
      parameter_value), but rather use a generic table configuration(parameter_id, parameter_name,
      parameter_type) and have as many subtypes as we have parameter
      types. If we use, for instance, configuration_numeric(parameter_id,
      parameter_value), where parameter_value is a numeric column, any
      mistyping of the letter “O” instead of zero will be detected by the DBMS
      when the configuration is changed, instead of resulting in a runtime
      error when the parameter is used.
Define all the constraints you can. Primary keys are, of course, a
      sine qua non in a relational database. Use
      alternate key, when they characterize the data and any type of unique
      constraints. Foreign keys, which ensure that your data is consistent by
      mapping to master tables, are vital as part of the comprehensive
      expression of the meaning of the data model. Constraints that control
      the range of values that can be entered are also valuable. Constraints
      have two major impacts:
	They contribute to ensuring the integrity of your data,
          guaranteeing that everything, as far as defined rules are concerned,
          is consistent with those rules.

	They provide valuable information about your data to the DBMS
          kernel, and more specifically to the optimizer. Even if today the
          optimizer does not make full use of all available constraint data,
          it is likely that in future releases of the database system, that
          constraint data will become used for more sophisticated processing
          by the kernel.



The earlier example of the confusion over multiple shipping and
      billing addresses is a further example of the way semantic information
      is lost to the database by a fundamentally weak design. This essential
      information must therefore be placed into an unpredictable number of
      application programs. “If the billing address is null, then the
      headquarters address applies” is a rule that is unknown to the database
      and must therefore be handled in the programs—note the use of the plural
      programs here! Once again, everything that is
      defined in the database is defined only once, thus guaranteeing that no
      program will use the data inconsistently. Implicit rules about, for
      example, address precedence must be coded into every program accessing
      the data. Because these implicit rules are totally arbitrary, it is not
      impossible at all that in some cases the billing address will be the
      shipping address, and not the headquarters address.
Important
Data semantics belong in the DBMS, not in the application
        programs.


The Dangers of Excess Flexibility



    As always, pushing a line of reasoning to the limits (and
      often past them) can result in a monument to human madness. A great
      favorite with third-party software editors is the
      “more-flexible-than-thou” construct, in which most data of interest is
      stored in some general purpose table, with equally general purpose
      attributes such as: entity_id,
      attribute_id, attribute_value. In this “design,” everything
      is stored as a character string into attribute_value. The design certainly avoids
      the risk of having null values. However, the proponents of this type of
      design usually store the mandatory attributes in attribute_value as well. Their mantra, by the
      way, is usually that this design approach makes it easy to add new
      attributes whenever they are needed. Without commenting on the quality
      of a design that makes it necessary to anticipate the necessarily
      haphazard addition of attributes, let’s just remark that it’s all very
      nice to store data, but usually, somehow, one day you will have to
      retrieve and process that same data (if data retrieval is not being
      planned, there is something seriously wrong somewhere). Adding a column
      to a table really pales into insignificance when compared to writing a
      program to do something useful with the new bits of information that you
      are given to manage (as enthusiasts that praise the flexibility of the
      Extensible Markup Language [XML] are bound to understand).
The database cost of such pseudoflexibility rockets sky-high. Your
      database integrity is totally sacrificed, because you can hardly have a
      weaker way of typing your data. You cannot have any referential
      integrity. You cannot, in fact, have any type of declarative
      constraints. The simplest query becomes a monstrous join, in which the
      “value table” is joined 10, 15, or 20 times to the very same entity,
      depending on the number of attributes one wants to select. Needless to
      say, even the cleverest optimizer is at a loss on such a query, and
      performance is what one should expect—dismal. (You can try to improve
      the performance of such a query as described in Chapter 11, but the SQL code is not a
      pretty sight.) By comparison, the most inept campaign of military
      history looks like a masterpiece of strategic planning.
Important
True design flexibility is born of sound data-modeling
        practices.


The Difficulties of Historical Data



  Working with historical data is an extremely common condition—the process of
      valuation   , or specifying the price of goods or a service at a
      particular point in time, is based on historical data—but one of the
      really difficult issues of relational design is the handling of data
      that is associated with some period (as opposed to
      point) of time.
There are several ways to model historical data. Let’s assume that
      we want to record the successive prices of goods identified by some
      article_id. An obvious way to do so
      is to store the following items:
    (article_id, effective_from_date, price)
where effective_from_date is
      the date when the new price takes effect, and the primary key of the
      historical table is (article_id,
      effective_from_date).
Logically correct, this type of model is rather clumsy to use when
      working with current data, which in many cases will
      be our main concern. How are we going to identify the current value?
      It’s the one associated with the highest effective_from_date, and it will be retrieved
      by running a query looking like:
    select a.article_name, h.price
    from articles a,
         price_history h
    where a.article_name = some_name
      and h.article_id = a.article_id
      and h.effective_from_date =
         (select max(b.effective_from_date)
          from price_history b
          where b.article_id = h.article_id)
Executing this query requires two passes over the same data: one
      in the inner query to identify which is the most recent date we have for
      a given article, and one in the outer query to return the price from a
      row that we have necessarily hit in the inner query (Chapter 6 talks about special functions
      implemented by some DBMS systems that can avoid, to some extent,
      multiple passes). Executing repeated queries following this pattern can
      prove very costly.
However, the choice of how to register the validity period for a
      price is arbitrary. Instead of storing the effective date from which the
      price applies, why not store the “end date” (e.g., the last date on
      which the current price prevails), identifying the time intervals by
      their upper bound instead of by their lower bound?
This new approach may look like an attractive solution. You have
      two ways to define current values—either that the end date is undefined,
      which looks neat but isn’t necessarily a good idea, or that the end date
      is something like December 31, 3000.
It’s quite obvious that looking for the price of an article as of
      December 31, 3000 will take you directly to the row you want, in a
      single pass. Definitely attractive. Is this the perfect solution? Not
      quite. There may be some practical worries with the optimizer, which I
      discuss in Chapter 6, but there is
      also a major logical issue: prices, as any consumer knows, rarely stay
      constant, and price increases are not usually decided instantly
      (financial environments may be something different). What happens when,
      for example, in October, new prices are decided for the next year and
      duly recorded in the database?
What we get in our valuation table are two records for each item:
      one stating the current price, valid until December 31, and one giving
      the price that will be applied from January 1. If we store the first
      date when the price applies we will have one row with an effective_from_date in the past (for instance
      January 1 of the current year) and another one in the future (say, the
      next January 1). In effect, what will define the current price is not
      the highest date, but the highest date before today (returned in Oracle
      by the system function sysdate). The
      preceding query needs to be modified only slightly:
    select a.article_name, h.price
    from articles a,
         price_history h
    where a.article_name = some_name
      and h.article_id = a.article_id
      and h.effective_from_date =
         (select max(b.effective_from_date)
          from price_history b
          where b.article_id = h.article_id
            and b.effective_from_date <= sysdate)

If we store the last day when the price applies, we will have one
      row with an end_date set to December
      31 and another with end_date set
      either to null or doomsday. Expressing that we want the price for which
      the end_date is the smallest date
      after the current date is no obvious improvement on the query just
      shown.
Denormalization is of course a possible solution—one can imagine
      storing both the date when a price becomes effective and the date when
      it ceases to be, or one could also argue for storing the effective_from_date and the number of days for
      which the effective_from_date price
      applies. This could allow using either the start or the end of the
      period, as best suits the query.
Denormalization always implies taking a risk with data integrity—a
      minor date entry error can leave black holes when no price is defined.
      You can of course minimize the risk by adding more checks when data is
      inserted or updated, but there is always a performance penalty
      associated with such checks.
Another possible solution is to have a
      current table and a historical
      table and plan a migration of rows from current to historical when
      prices change. This approach can suit some kinds of applications, but
      may be complicated to maintain. Moreover, the “pre-recording” of future
      prices fits rather badly into the picture.
In practice, particular storage techniques such as partitioning,
      which I discuss in Chapter 5, will
      come to the rescue, making constructs such as the one using the effective_from_date less painful than they
      might otherwise have been, especially for mass processing.
But before settling for one solution, we must acknowledge that
      valuation tables come in all shapes and sizes. For instance, those of
      telecom companies, which handle tremendous amounts of data, have a
      relatively short price list that doesn’t change very often. By contrast,
      an investment bank stores new prices for all the securities,
      derivatives, and any type of financial product it may be dealing with
      almost continuously. A good solution in one case will not necessarily be
      a good solution in another.
Important
Handling data that both accumulates and changes requires very
        careful design and tactics that vary according to the rate of
        change.


Design and Performance



   It is flattering (and a bit frightening too) to
      performance specialists to see the faith in their talents devotedly
      manifested by some developers. But, at the risk of repeating myself, I
      must once again stress what I said in the introduction to this book:
      tuning   is about getting the best possible performance, now. When
      we develop, we must have a different mindset and
      not think “let’s code it, and then have a specialist tune it later in
      production.” The impact of tuning on the structure of programs is
      usually nil, and on queries, often minimal once the big mistakes have
      been corrected. There are indeed two aspects to this matter:
	One aspect of tuning is the improvement of the overall
          condition of the system, by setting some parameters in accordance
          with the current resources in terms of CPU power, memory available,
          and I/O subsystems, and sometimes taking advantage of the physical
          implementation of the DBMS. This is a highly technical task, which
          may indeed improve the performance of some processes by a
          significant factor, but rarely by more than 20 or 30 percent unless
          big mistakes were made.

	The other aspect of tuning is the modification of specific queries, a practice
          that may, unfortunately, expose the limitations of the query
          optimizer and changes of behavior between successive DBMS
          releases.



That is all there is to it.
In my view, adding indexes doesn’t really belong to the tuning of
      production databases (even if some tuning engagements are sometimes a
      matter of reviewing and correcting the indexing scheme for a database).
      Most indexes can and must be correctly defined from the outset as part
      of the designing process, and performance tests should resolve any
      ambiguous cases.
Performance is no more a question of making a couple of queries
      faster than war is a question of winning a couple of battles. You can
      win a battle and lose the war. You can tune your queries and
      nevertheless have an application with dismal performance that nobody
      will want to use, except at gunpoint. Your database and programs, as
      well as your SQL queries, must all be properly designed.
A functionally correct design is not enough. Performance must be
      incorporated into the design—and down-stream tuning provides for that
      little surplus of power that can provide peace of mind.
Important
The single largest contributory factor to poor performance is a
        design that is wrong.


Processing Flow



   Besides all the questions addressed earlier in this
      chapter, the operating mode is also a matter that may have significant impact on the
      working system. What I mean by operating mode is
      whether data should be processed asynchronously (as is the case with
      batch programs ) or synchronously (as in a typical transactional
      program).
Batch programs are the historical ancestors of all data processing
      and are still very much in use today even if no longer very fashionable;
      synchronous processing is rarely as necessary as one might think. However, the
      improvement of networks and the increase in bandwidth has led to the
      “global reach” of an increasing number of applications. As a result,
      shutting down your online transaction processing (OLTP) application running in the American Midwest may become
      difficult because of East Asian users connected during one part of the
      Midwestern night and European users connected during the other part.
      Batch programs can no longer assume that they are running on empty
      machines. Moreover, ever-increasing volumes of data may require that
      incoming data is processed immediately rather than being allowed to
      accumulate into unmanageably large data sets. Processing streams of data
      may simply be the most efficient way to manage such quantities.
The way you process data is not without influence on the way you
      “think” of your system, especially in terms of physical structures—which
      I talk about more in Chapter 5.
      When you have massive batch programs, you are mostly interested in
      throughput—raw efficiency, using as much of the hardware resources as
      possible. In terms of data processing, a batch program is in the realm
      of brute force. When you are processing data on the fly, most activity
      will be small queries that are going to be repeatedly executed a
      tremendous number of times. For such queries, performing moderately well
      is not good enough—they have to perform at the maximum possible
      efficiency. With an asynchronous program, it is easy to notice that
      something is wrong (if not always easy to fix): it just takes too long
      to complete. With synchronous processing, the situation is much more
      subtle, because performance problems usually show up at the worst
      moment, when there are surges of activity. If you are not able to spot
      weaknesses early enough, your system is likely to let you down when your
      business reaches maximum demand levels—the very worst time to
      fail.
Important
A data model is not complete until consideration has also been
        taken of data flow.


Centralizing Your Data



   For all the talk about grids, clustered servers, and the
      like, spreading data across many servers means adding a considerable amount of complexity to a
      system. The more complicated a structure—any type of structure—the less
      robust it is. Technological advance does indeed slowly push up the
      threshold of acceptability. In the eighteenth century, clocks indicating
      the minutes were considered much less reliable than those indicating
      only the hour, and much more reliable than those showing the day in the
      month or the phases of the moon. But nevertheless, try to keep the
      theater of operations limited to that which is strictly required.
Transparent references to remote data are performance killers, for
      two reasons. First, however “transparent” it may look, crossing more
      software layers and a network has a heavy cost. To convince yourself,
      just run a procedure that inserts a few thousands rows into a local
      table, and another one doing the very same thing across—for instance, an
      Oracle database link, even on the same database—you can expect
      performance to be in the neighborhood of five times slower, if not
      worse, as you see demonstrated in Chapter
      8.
Second, combining data from several sources is extremely
      difficult. When comparing data from source A to data from source B, you
      have no choice other than literally copying the data from A to B or the
      reverse. Transfer is one significant overhead. Data drawn from its own
      carefully constructed environment no longer benefits from the planning
      which went into establishing that environment (carefully thought-out
      physical layout, indexes, and so forth). Instead, that data lands in
      some temporary storage—in memory if the amount of data transferred is
      modest, otherwise on disk. The management of temporary storage is
      another major overhead. In a case where nested loops would be, in theory, the most efficient way to proceed
      when querying local data, an optimizer is left with two unattractive
      possibilities when some of the data is remotely located:
	Using nested loops and incurring high overhead with each
          iteration

	Sucking the remote data in, and then operating against the
          local copy, which has left all indexes behind



Optimizers can be forgiven for not performing at their best under
      these circumstances.
When it comes to the placement of major data repositories, some of
      the art is simply keeping a balance. If your company operates worldwide,
      keeping all the data at one location is unlikely to be a popular
      solution with people who live and work at the antipodes. Hitting a
      remote server is certainly no problem when surfing the Internet—it is
      quite another matter when using an application intensely. It’s not a
      question of bandwidth, it’s a question of light speed, for which,
      unfortunately, not much improvement can be expected from technological
      progress. Whatever you do, issuing a query against a server located on
      another continent adds another quarter or half second to response times,
      depending on the continent—and this at the best of times. If you need
      everyone to have the global picture, replication solutions and products
      (as opposed to remote access) should be contemplated. For each group of
      players, keep their own chessboard right at hand—don’t make players
      reach.
Important
The nearer you are to your data, the faster you can get at
        it!


System Complexity



  Other points to keep in mind when designing are what will
      happen if some piece of hardware breaks (for example, a disk controller)
      or if some mistake is made (for instance, the same batch program is
      applied twice). Even if your administrators are wizards who are doing
      night shifts to bring everything back on course by dawn, transfer rates
      are limited; the recovery of a huge database always takes a lot of time.
      “Spare” backup databases maintained in synch (or with some slight delay) may help.
      But backup databases will not be of any use in the case of a program
      inadvertently run twice, especially if the synchronization delay is
      shorter than the execution time of the program. What is already
      complicated with one database becomes a nightmare with several related
      databases, because you must be perfectly certain that all the databases
      are correctly synchronized after any recovery, to avoid any risk of data
      corruption.
This particular point of recovery is often a bone of contention
      between developers and database administrators, because developers tend
      to consider, not unreasonably, that backups and recoveries belong to
      administrators, while administrators point out, logically, that if they
      can guarantee that the container is in working order, they have no idea
      about the status of the contents. Indeed, any functional check in case
      of recovery should not be forgotten by developers. The more complicated
      the overall design, the more important it is for developers to keep in
      mind the constraints of operations.
Important
Database systems are joint ventures; they need the active and
        cooperative participation of users, administrators, and
        developers.


The Completed Plans



We have reviewed the basic foundations for laying plans in
      constructing a database system. We have reviewed the fundamentals of
      data modeling , and in particular the broad steps involved in
      normalizing data to third normal form. We have then proceeded to review
      a number of scenarios, in which a faulty design can be identified as the
      road to disaster.
Most examples in this chapter come directly from or are inspired
      by cases I have encountered in some big companies. And it is always
      striking to consider how much energy and intelligence can be wasted
      trying to solve performance problems that are born from the ignorance of
      elementary design principles. Such performance issues need not be
      present, yet they are quite common and often made worse by further
      denormalization of what is already a questionable design, on the
      unassailable grounds of “performance improvement.” One query may, in
      fact, run much faster, but unfortunately, the nightly batch program now
      takes twice as long. In this way, and almost without being noticed, a
      full information system is built on a foundation of sand.
Important
Successful data modeling is the disciplined application of what
        are, fundamentally, simple design principles.




[*] The expression business requirement is
        meant to encompass non-commercial as well as commercial
        activities.

[*] You can have 3NF but not BCNF if your
          table contains several sets of columns that are unique (candidate
          keys, which are possible unique identifiers of a row) and share one
          column. Such situations are not very common.

[*] You can use subtypes incorrectly. As one of the reviewers
          remarked, having a kind of super-generic parent table that is
          referred to several times in the most innocuous query isn’t a model
          for efficiency. Such a super-generic parent table is hammered by all
          queries if it stores vital information. Subtypes must be born of
          logical distinction, not of an ill-conceived desire to implement
          with tables a strong inheritance scheme inspired from
          object-oriented techniques.


Chapter 2. Waging War

Accessing Databases Efficiently



Il existe un petit nombre de principes
      fondamentaux de la guerre, dont on ne saurait s'écarter sans danger, et
      dont l’application au contraire a été presque en tous temps couronnée
      par le succès.
There exist a small number of fundamental principles of war, which
      it is dangerous to ignore: indeed, following these principles has almost
      invariably led to success.
—Général Antoine-Henri de Jomini (1779-1869) Précis
      de l’Art de la Guerre



Anybody who has ever been involved in the
    switch from development to production of a critical system
    knows how much it can feel like the noise and tumult of battle. Very
    often, a few weeks before D-Day, performance tests will show that the new
    system is going to fall short of expectations. Experts are brought in, SQL
    statements are fine-tuned, and database and system administrators are
    called to contribute to a succession of crisis meetings. Finally,
    performance vaguely comparable to the previous system is obtained on
    hardware that is now twice as expensive as the original
    installation.
Tactics are often used as a substitute for a strategic approach. The
    latter demands the adoption of a sound overall architecture and design. As
    in war, the basic principles here are also few, but too often ignored.
    Architectural mistakes can prove extremely costly, and the SQL programmer
    must enter the battle fully prepared, knowing where to go and how to get
    there. In this chapter, we are going to review the key goals that will
    increase our chances of success in writing programs that access databases
    efficiently.
Query Identification



  For centuries, the only means that a general had to check
      the progress of his troops during the heat of battle was to observe the
      position of his units as indicated by the color of the soldiers’
      uniforms and the flags they were carrying. When some process in the
      database environment is consuming an inordinate amount of CPU, it is
      often possible to identify which piece of SQL code is actually running.
      But it is very often much more difficult, especially in a large and
      complicated system that includes dynamically built queries, to identify
      which precise part of a given application issued that statement and
      needs reviewing. Despite the fact that many products have good
      monitoring facilities, it is sometimes surprisingly difficult to relate
      an SQL statement to its broader environment. Therefore, you should adopt
      the habit of identifying your programs and critical modules whenever possible by
      inserting comments into your SQL to help identify where in the programs
      a given query is used. For instance:
    /* CUSTOMER REGISTRATION */ select blah ...
These identifying comments can be important and helpful in
      subsequently tracking down any erroneous code. They can also be helpful
      when trying to determine how much load is put on a server by a single
      application, especially when some localized increase in activity is
      expected and when you are trying to assess whether the current hardware
      can absorb the surge.
Some products have special registration facilities that can spare
      you the admittedly tedious step of commenting each and every statement.
      Oracle’s dbms_application_info
      package allows you to register a program using a 48-character module
      name, a 32-character action name, and a 64-character client information
      field. The content of those fields is left to your discretion. In an
      Oracle environment, you can use this package to keep track not only of
      which application is running, but also what that application is doing at
      any given time. This is because you can easily query the information
      that your application passes to the package through the Oracle V$
      dynamic views that show what is currently happening in memory.
Important
Identifiable statements make the identification of performance
        issues easier.


Stable Database Connections



     A new database connection can be created quickly and
      easily, but this ease can disguise the high cost of making repeated
      connections. You must manage the use of database connections with great
      care. The consequences of allowing multiple connections to occur,
      perhaps hidden within an application, can be substantial, as the next
      example illustrates.
Some time ago I came across an application in which numerous small
      files of up to an arbitrary maximum of 100 lines were being processed.
      Each line in these small text files contained both data and the
      identification of the database instance into which that data had to be
      loaded. In this particular case, there was a single server, but the
      principle being illustrated is exactly the same as if there were a
      hundred database instances.
The process for each file was coded as follows:
    Open the file
    Until the end of file is reached
          Read a row
          Connect to the server specified by the row
          Insert the data
          Disconnect
    Close the file
This process worked quite satisfactorily, except for the
      occasional circumstance in which a large number of small files would
      arrive in a very short space of time, and at a rate greater than the
      ability of the application to process them. This resulted in a
      substantial backlog, which took considerable time to clear.
I explained the problem of performance degradation as a
      consequence of frequent connection and disconnection to the customer
      with the help of a simple program (written in C) emulating the current
      application. Table 2-1
      gives the results from that demonstration.
Note
The program generating the results in Table 2-1 used a conventional
        insert statement. I mentioned in
        passing to the customer the existence of direct-loading techniques
        that are even faster.

Table 2-1. Result of connect/disconnect performance tests
	Test
	Results

	Connect/disconnect for each line in
              turn
	7.4 lines loaded per
              second

	Connect once, all candidate lines
              individually inserted
	1,681 lines loaded per
              second

	Connect once, all candidate lines
              inserted in arrays of 10 lines
	5,914 lines loaded per
              second

	Connect once, all candidate lines
              inserted in arrays of 100 lines
	9,190 lines loaded per
              second




The demonstration showed the importance of trying to minimize the
      number of separate database connections that had to be made. Thus, there was an obvious and
      enormous advantage in applying a simple check to determine whether the
      “next” insert was into the same database as the previous one. The
      rationalization could go further, as the number of database instances
      was of course finite. You could likely achieve further performance gain
      by setting up an array of handlers, one for each specific database
      connection, opening a new connection each time a new database is
      referenced, and thus connecting at most once to each database. As Table 2-1 shows, the simple
      technique of connecting only once (or a very few times) improved
      performance by a factor of more than 200 with very little additional
      effort.
Of course, this was an excellent opportunity to show that
      minimizing the number of round-trips between a program and the database
      kernel, using arrays and populating them with incoming data, can also
      lead to spectacular improvements in performance. By inserting several
      rows at once, the throughput could be radically improved—by another
      factor of five. The results in Table 2-1 demonstrate that
      improvements in the process could reach a modest factor of 1,200.
Why such dramatic improvement?
	The reason for the first and biggest improvement is
          that a database connection is fundamentally a “heavy,” or
          high-resource operation.
	In the familiar client/server environment (which is still
            very widely used), the simple connection routine hides the fact
            that the client program first has to establish contact with a
            listener program on a remote machine; and then, depending on
            whether shared servers are being used on this machine, the
            listener must either spawn another process or thread and make it
            run some database kernel program, or hand the request, directly or
            indirectly, to an existing server process.
Whatever the number of system operations (process spawning
            or thread creation and the start of executions) your database
            system will need to create a new environment for each session, to
            keep track of what it does. Your DBMS will need to check the
            password provided against the encrypted password of the account
            for which a new session is to be created. Your DBMS may also have
            to execute the code for some logon trigger. It may have to execute
            some initialization code for stored procedures or packages the
            first time they are called. This does not include the base machine
            handshaking protocols between client and server processes. This is
            the reason techniques that allow the upkeep of permanent
            connections to the database, such as connection pooling, are so
            important to performance.

	The reason for the second improvement is that a
          round-trip between your program (and even a stored procedure) and
          the database also has its costs.
	Even when you are connected and maintain a connection,
            context switches between your program and the DBMS kernel take
            their toll. Therefore if your DBMS allows you to communicate
            through an array interface of some kind, you
            should not hesitate to use it. If, as sometimes happens, the array
            interface is implicit (the application program interface [API]
            uses arrays when you use only scalar values), it is wise to check
            the default array size that is used and perhaps tailor it to your
            particular needs. And of course, any row-by-row logic suffers the
            same context-switch mechanisms and is a cardinal sin—as you shall
            have several opportunities to see throughout this chapter.



Important
Database connections and round-trips are like Chinese Walls—the
        more you have, the longer it takes to receive the correct
        message.


Strategy Before Tactics



   Strategy defines the tactics, not the other way round. A
      skillful developer doesn’t think of a process in terms of little steps,
      but in terms of the final result. The most efficient way to obtain that
      result may not be to proceed in the order specified in the business
      rules, but rather to follow a less obvious approach. The following
      example will show how paying too much attention to the procedural
      processes within a business can distract ones’ attention from the most
      efficient solution.
Some years ago I was given a stored procedure to try to optimize;
      “try” is the operative word here. Two attempts at optimization had
      already been made, once by the original authors, and secondly by a
      self-styled Oracle expert. Despite these efforts, this procedure was
      still taking 20 minutes to run, which was unacceptable to the
      users.
The purpose of the procedure was to compute quantities of raw
      materials to be ordered by a central factory unit, based on existing
      stocks and on orders that were coming from a number of different
      sources. Basically, the data from several identical tables for each data
      source had to be aggregated inside one master table. The procedure
      consisted of a succession of similar statements simplified as follows.
      First, all data from each distinct source table were inserted into the
      single master table. Second, an aggregate/update was applied to each
      instance of raw material in that master table. Finally, the spurious
      data not relevant to the aggregate result was deleted from the table.
      These stages were repeated in sequence inside the procedure for every
      distinct source table. None of the SQL statements were particularly
      complex, and none of them could be described as being particularly
      inefficient.
It took the better half of a day to understand the process, which
      eventually prompted the question: why was this process being done in
      multiple steps? A subquery in a from
      clause with a union operator would
      allow the aggregation of all the various sources. A single select statement could provide in one step the
      result set that had to be inserted into the target table. The difference
      in performance was so impressive—from 20 minutes down to 20 seconds—that
      it took some time to verify that the final result was indeed identical
      to that previously obtained.
Extraordinary skills were not required to achieve the tremendous
      performance improvement just described, but merely an ability to think
      outside the box. Previous attempts to improve this process had really
      been hindered by the participants allowing themselves to get too close
      to the problem. One needed to take a fresh look, to stand back, and try
      to see the bigger picture. The key questions to ask were “What do we
      have when we enter this procedure?” and “Which result do we want when we
      return from it?” Together with some fresh thinking, the answers to those
      questions led to a dramatically improved process.
Important
Stand back from your problem to get the wider picture before
        plunging into the details of the solution.


Problem Definition Before Solution



  A little knowledge can be a dangerous thing. Frequently,
      people may have read or heard about new or unusual techniques—which in
      some cases can indeed be quite interesting—and then they will try to fit
      their problem to one of these new solutions. Ordinary developers and
      architects often jump quickly on to such “solutions,” which often turn
      out to be at the root of many subsequent problems.
At the top of the list of ready-made solutions, we usually meet
      denormalization. Blissfully unaware of the update nightmare that it
      turns out to be in practice, denormalization advocates often suggest it
      at an early stage in the hunt for “performance"--and in fact often at a
      point in the development cycle when better design (or learning how to
      use joins) is still an option. A particular type of denormalization, the
      materialized view, is also often seen as being something of a panacea.
      (Materialized views are sometimes referred to as
      snapshots  , a less impressive term, but one that is closer to the
      sad reality: copies of data at one point in time.) This is not to say
      that sometimes, as a last resort option, theoretically questionable
      techniques cannot be used. To quote Franz Kafka: “Logic is doubtless
      unshakable, but it cannot withstand a man who wants to go on
      living.”
But the immense majority of problems can be solved using fairly
      traditional techniques in an intelligent manner. Learn first how to get
      the best of simple, traditional techniques. It’s only when you can fully
      master them that you will be able to appreciate their limitations, and
      then to truly be able to judge the potential advantage (if any) of new
      technical solutions.
All technological solutions are merely means to an end; the great
      danger for the inexperienced developer is that the attractions of the
      latest technology become an end in themselves. And the danger is all the
      greater for enthusiastic, curious, and technically minded
      individuals!
Important
Foundations before Fashion: learn your craft before playing with
        the latest tools.


Stable Database Schema



  The use of data definition language (DDL) to create, alter, or drop database objects inside an
      application is a very bad practice that in most cases should be banned.
      There is no reason to dynamically create, alter, or drop objects, with
      the possible exception of partitions—which I describe in Chapter 5--and temporary tables
      that are known to the DBMS to be temporary tables.
      (We shall also meet another major exception to this rule in Chapter 10.)
The use of DDL is fundamentally based on the core database data
      dictionary. Since this dictionary is also central to all database
      operations, any activity on it introduces global locks that can have
      massive performance consequences. The only acceptable DDL operation is
      truncate table, which is a very fast
      way of emptying a table of all rows (without the protection of rollback recovery,
      remember!).
Important
Creating, altering, or dropping database objects belong to
        application design, not to regular operations.


Operations Against Actual Data



Many developers like to create temporary work tables into which
      they extract lists of data for subsequent processing, before they begin
      with the serious stuff. This approach is often questionable and may
      reflect an inability to think beyond the details of the business
      processes. You must remember that temporary tables cannot offer storage options of the same degree of
      sophistication as permanent tables (you see some of these options in
      Chapter 5). Their indexing, if
      they are indexed, may be less than optimal. As a result, queries that
      use temporary tables may perform less efficiently than well-written
      statements against permanent tables, with the additional overhead of
      having to fill temporary tables as a prerequisite to any query.
Even when the use of temporary tables is justified, they should
      never be implemented as permanent tables masquerading as work tables if
      the number of rows to be stored in them is or can be large. One of the
      problems lies in the automated collection of statistics: when statistics
      are not collected in real time, they are typically gathered by the DBMS
      at a time of zero or low activity. The nature of work tables is that
      they will probably be empty at such slack times, thus giving a wholly
      erroneous indicator to the optimizer. The result of this incorrect, and
      biased, statistical data can be totally inappropriate execution plans
      that not surprisingly lead to dismal performance. If you
      really have to use temporary storage, use tables
      that the database can recognize as being temporary.
Important
Temporary work tables mean more byte-pushing to less suitable
        storage.


Set Processing in SQL



       SQL processes data in complete sets. For most update or delete operations against a database  —and assuming one is not operating against the entire
      table contents—one has to define precisely the set of rows in that table
      that will be affected by the process. This defines the
      granularity  of the impending process, which may be described as
      coarse if a large number of rows will be affected
      or as fine if only few rows will be
      involved.
Any attempt to process a large amount of data in small chunks is
      usually a very bad idea and can be massively inefficient. This approach
      can be defended only where very extensive changes will be made to the
      database which can, first, consume an enormous amount of space for
      storing prior values in case of a transaction rollback, and second, take a very long time to
      rollback if any attempted change should fail. Many people would argue
      that where very considerable changes are to be made, regular commit statements should be scattered
      throughout the data manipulation language (DML) code. However, regular
      commit statements may not help when
      resuming a file upload that has failed. From a strictly practical
      standpoint, it is often much easier, simpler, and faster to resume a
      process from the start rather than try to locate where and when the
      failure occurred and then to skip over what has already been
      committed.
Concerning the size of the log required to rollback transactions
      in case of failure, it can also be argued that the physical database
      layout has to accommodate processes, and not that processes have to make
      do with a given physical implementation. If the amount of undo storage
      that is required is really enormous, perhaps the question should be
      raised as to the frequency with which changes are applied. It may be
      that switching from massive monthly updates to not-so-massive weekly
      ones or even smaller daily ones may provide an effective
      solution.
Important
Thousands of statements in a cursor loop for endless batch
        processing, multiple statements applied to the same data for users
        doomed to wait, one swoop statement to outperform them all.


Action-Packed SQL Statements



     SQL is not a procedural language. Although procedural
      logic can be applied to SQL, such approaches should be used with
      caution. The confusion between procedural and declarative processing is
      most frequently seen when data is required to be extracted from the
      database, processed, and then re-inserted back into the database. When a
      program—or a function within a program—is provided with some input
      value, it is all too common to see that input value used to retrieve one
      or several other values from the database, followed by a loop or some
      conditional logic (usually if...then...else) being
      applied to yet other statements applied to the database. In most cases,
      this behavior is the result of deeply ingrained bad habits or a poor
      knowledge of SQL, combined with a slavish obsession with functional
      specifications. Many relatively complex operations can be accomplished
      in a single SQL statement. If the user provides some value, try to get
      the result set that is of interest without decomposing the process into
      multiple statements fetching intermediate results of only minimal
      relevance to the final output.
There are two main reasons for shunning procedural logic in
      SQL:
	Any access to the database means crossing quite a
          number of software layers, some of which may include network
          accesses.
	Even when no network is involved, there will be interprocess
            communications; more accesses mean more function calls, more
            bandwidth, and more time waiting for the answer. As soon as those
            calls are repeated a fair number of times, the impact on process
            performance can become distinctly perceptible.

	Procedural means that performance and future
          maintenance burdens fall to your program.
	Most database systems incorporate sophisticated algorithms
            for executing operations such as joins, and for transforming
            queries so as to execute them in a more efficient way. Cost-based
            optimizers (CBOs) are complex pieces of software that have
            sometimes grown from being totally unusable when originally
            introduced to becoming mature products, capable of giving
            excellent results in most cases. A good CBO can be extremely
            efficient in choosing the most suitable execution plan. However,
            the scope of operation of the CBO is the SQL statement, nothing
            more. By doing as much as possible in a single statement, you
            shift the burden of achieving the best possible performance from
            your program to the DBMS kernel. You enable your program to take
            advantage of any improvement to the DBMS code, and therefore you
            are indirectly shifting a large part of the future maintenance of
            your program to the DBMS vendor.



As ever, there will be exceptions to the general rule that you
      should shun procedural logic, where in some cases procedural logic may
      indeed help make things faster. The monstrous all-singing-and-dancing
      SQL statement is not always a model for efficiency. However, the
      procedural logic that glues together successive statements that work on
      the same data and hit the same rows can often be pushed into one SQL
      statement. The CBO can consider a single statement that stays close to
      the sound rules of the relational model as a whole and can execute it in
      the most efficient way.
Important
Leave as much as you possibly can to the database optimizer to
        sort out.


Profitable Database Accesses



   When you plan a visit to several shops, the first step is
      to decide what purchases have to be made at each shop. From this point,
      a trip is planned that will ensure minimum repetitive walking backward
      and forward between different shops. The first shop is then visited, the
      purchase completed, and then the next closest shop is visited. This is
      only common sense, and yet the principle underlying this obvious
      approach is not seen in the practical implementation of many database
      programs.
When several pieces of information are required from a single
      table—even if it appears as if they are “unrelated” (which in fact is
      unlikely to be the case)--it is highly inefficient to retrieve this data
      in several separate visits to the database. For example, do not fetch
      row values column by column if multiple columns are required: do the
      work in one operation.
Unfortunately, good object-oriented (OO) practice makes a virtue
      out of defining one method for returning each attribute. But do not
      confuse OO methods with relational database processing. It is a fatal
      mistake to mix relational and object-oriented concepts and to consider
      tables to be classes with columns as the
      attributes.
Important
Maximize each visit to the database to complete as much work as
        can reasonably be achieved for every visit.


Closeness to the DBMS Kernel



       The nearer to the DBMS kernel your code can execute, the
      faster it will run. This is where the true strength of the database
      lies. For example, several database management products allow you to
      extend them by adding new functions, which can sometimes be written in
      comparatively low-level languages such as C. The snag with a low-level
      language that manipulates pointers is that if you mishandle a pointer,
      you can end up corrupting memory. It would be bad enough if you were the
      only user affected. But the trouble with a database server is that, as
      the name implies, it can serve a large number of users: if you corrupt
      the server memory, you can corrupt the data handled by another, totally
      innocent program. As a consequence, responsible DBMS kernels run code in
      a kind of sandbox, where it can crash without taking everything with it
      in its downfall. For instance, Oracle implements a complicated
      communication mechanism between external functions and itself. In some
      ways, this process is similar to that which controls database links, by
      which communication between two (or more) database instances on separate
      servers is managed. If the overall gain achieved by running tightly
      tailored C functions rather than stored PL/SQL procedures is greater
      than the costs of setting up an external environment and
      context-switching, use external functions. But do not use them if you
      intend to call a function for every row of a very large table. It is a
      question of balance, of knowing the full implications of the alternative
      strategies available to solve any given problem.
If functions are to be used, try to always use those that are
      provided by the DBMS. It is not merely a matter of not reinventing the
      wheel: built-in functions always execute much closer to the database
      kernel than any code a third-party programmer can construct, and are
      accordingly far more efficient.
Here is a simple example using Oracle’s SQL that will demonstrate
      the efficiencies to be gained by using Oracle functions. Let’s assume we
      have some text data that has been manually input and that contains
      multiple instances of adjacent “space” characters. We require a function
      that will replace any sequence of two or more spaces by a single space.
      Ignoring the regular expressions available since Oracle Database
      10g, our function might be written as
      follows:
    create or replace function squeeze1(p_string in varchar2)
    return varchar2
    is
      v_string varchar2(512) := '';
      c_char   char(1);
      n_len    number := length(p_string);
      i        binary_integer := 1;
      j        binary_integer;
    begin
      while (i <= n_len)
      loop
        c_char := substr(p_string, i, 1);
        v_string := v_string || c_char;
        if (c_char = ' ')
        then
          j := i + 1;
          while (substr(p_string || 'X', j, 1) = ' ')
          loop
            j := j + 1;
          end loop;
          i := j;
        else
          i := i + 1;
        end if;
      end loop;
      return v_string;
    end;
    /
As a side note, 'X' is
      concatenated to the string in the inner loop to avoid testing j against the length of the string.
There are alternate ways of writing a function to eliminate
      multiple spaces, which can make use of some of the string functions
      provided by Oracle. Here’s one alternative:
    create or replace function squeeze2(p_string in varchar2)
    return varchar2
    is
      v_string varchar2(512) := p_string;
      i        binary_integer := 1;
    begin
      i := instr(v_string, '  ');
      while (i > 0)
      loop
        v_string := substr(v_string, 1, i)
                    || ltrim(substr(v_string, i + 1));
        i := instr(v_string, '  ');
      end loop;
      return v_string;
    end;
    /
And here’s a third way to do it:
    create or replace function squeeze3(p_string in varchar2)
    return varchar2
    is
      v_string varchar2(512) := p_string;
      len1     number;
      len2     number;
    begin
      len1 := length(p_string);
      v_string := replace(p_string, '  ', ' ');
      len2 :=  length(v_string);
      while (len2 < len1)
      loop
        len1 := len2;
        v_string := replace(v_string, '  ', ' ');
        len2 :=  length(v_string);
      end loop;
      return v_string;
    end;
    /
When these three alternative methods are tested on a simple
      example, each behaves exactly as specified, and there is no visible
      performance difference:
    SQL> select squeeze1('azeryt  hgfrdt   r')
      2  from dual
      3  /
    azeryt hgfrdt r

    Elapsed: 00:00:00.00
    SQL> select squeeze2('azeryt  hgfrdt   r')
      2  from dual
      3  /
    azeryt hgfrdt r

    Elapsed: 00:00:00.01
    SQL> select squeeze3('azeryt  hgfrdt   r')
      2  from dual
      3  /
    azeryt hgfrdt r

    Elapsed: 00:00:00.00
Assume now that this operation of stripping out multiple spaces is
      to be called many thousands of times each day. You can use the following
      code to create and populate a test table with random data, by which you
      can examine whether there are differences in performance among these
      three space-stripping functions under a more realistic load:
    create table squeezable(random_text  varchar2(50))
    /

    declare
        i         binary_integer;
        j         binary_integer;
        k         binary_integer;
        v_string  varchar2(50);
    begin
      for i in 1 .. 10000
      loop
        j := dbms_random.value(1, 100);
        v_string := dbms_random.string('U', 50);
        while (j < length(v_string))
        loop
          k := dbms_random.value(1, 3);
          v_string := substr(substr(v_string, 1, j) || rpad(' ', k)
                      || substr(v_string, j + 1), 1, 50);
          j := dbms_random.value(1, 100);
        end loop;
        insert into squeezable
        values(v_string);
      end loop;
      commit;
    end;
    /
This script creates a total of 10,000 rows in the test table (a
      fairly modest total when it is considered how many times some SQL
      statements are executed). The test can now be run as follows:
    select squeeze_func(random_text)
    from squeezable;
When I ran this test, headers and screen display were all switched
      off. Getting rid of output operations ensured that the results reflected
      the space-reduction algorithm and not the time needed to display the
      results. The statements were executed several times to ensure that there
      was no caching effect.
Table 2-2 shows the
      results on the test machine.
Table 2-2. Time to trim spaces from 10,000 rows
	Function
	Mechanism
	Time

	 squeeze1 
	 PL/SQL loop on
              chars 
	0.86 seconds

	 squeeze2 
	instr() + ltrim( )
	0.39 seconds

	 squeeze3 
	replace( ) called in a
              loop
	0.48 seconds




Even though all functions can be called 10,000 times in under one
      second, squeeze3 is 1.8 times as fast
      as squeeze1, and squeeze2 almost 2.2 times as fast. Why? Simply
      because PL/SQL is not “as close to the kernel” as is a SQL function. The
      performance difference may look like a tiny thing when functions are
      executed once in a while, but it can make quite a difference in a batch
      program—or on a heavily loaded OLTP server.
Important
Code loves the SQL kernel—the closer they get, the hotter the
        code.


Doing Only What Is Required



   Developers often use count(*) for no purpose other than to
      implement an existence test. This usually happens as a result of a
      specification such as:
    If there are rows meeting a certain condition
    Then do something to them
which immediately becomes:
    select count(*)
    into counter
    from table_name
    where <certain_condition>

    if (counter > 0) then
Of course in 90% of the cases the count(*) is totally unnecessary and
      superfluous, as in the above example. If an action is required to
      operate on a number of rows, just do it. If no row is affected, so what?
      No harm is done. Moreover, if the process to be applied to those
      hypothetical rows is complex, the very first operation will tell you how
      many of them were affected, either in a system variable (@@ROWCOUNT with Transact-SQL, SQL%ROWCOUNT with PL/SQL, and so forth), in a
      special field of the SQL Communication Area (SQLCA) when using embedded SQL, or through special APIs such as
      mysql_affected_rows( ) in PHP. The
      number of processed rows is also sometimes directly returned by the
      function, which interacts with the database, such as the JDBC executeUpdate( ) method. Counting rows very
      often achieves nothing other than doubling your total search effort,
      because it applies a process twice to the same data.
Further, do not forget that if your purpose is to update or insert
      rows (a frequent case when rows are counted first to check whether the
      key already exists), some database systems provide dedicated statements
      (for instance, Oracle 9i Database’s MERGE
      statement) that operate far more efficiently than you can ever achieve
      by executing redundant counts.
Important
There is no need to code explicitly what the database performs
        implicitly.


SQL Statements Mirror Business Logic



Most database systems provide monitoring facilities that allow you
      to check statements currently being executed , as well as to monitor how many times they are executed.
      At the same time, you should have an idea of how many “business units”
      are being processed—activities such as orders or claims to be processed,
      customers to be billed, or anything else that makes sense to the
      business managers. You should review whether there is a reasonable (not
      absolutely precise) correlation between the two classes of activities.
      In other words, for a given number of customers, is the same number of
      activities being initiated against the database? If a query against the
      customers table is executed 20 times
      more than the number of customers being processed at the same time, it
      is a certainty that there is a problem somewhere. This situation would
      suggest that instead of going once to the table to find required
      information, repeated (and superfluous) visits are being made to the
      same rows in the same table.
Important
Check that your database activity is reasonably consistent with
        the business requirements currently being addressed.


Program Logic into Queries



        There are several ways to achieve procedural logic in a
      database application. It’s possible to put some degree of procedurality
      inside an SQL statement (even if a statement should
      say what, and not how). Even
      when using a well-integrated host language within which SQL statements
      are embedded, it is still preferable to embed as much procedural logic
      as possible within an actual SQL statement, rather than in the host
      language. Of the two alternatives, embedding logic in the SQL statement
      will yield higher performance than embedding it in the application.
      Procedural languages are characterized by the ability to iterate
      (loops ) and to perform conditional logic (if...then...else constructs). SQL
      doesn’t need looping, since by essence it operates on sets; all it
      requires is the ability to test logically for some conditions.
Obtaining conditional logic breaks down into two components—IF and
      ELSE. Achieving IF is easy enough—the where condition provides the capability. What
      is difficult is to obtain the ELSE logic. For example, we may need to
      retrieve a set of rows, and then apply different transformations to
      different subsets. The case
      expression (Oracle has also long provided a functionally equivalent
      operator in decode( ) [*]) makes it easy to simulate some logic: it allows us to
      change on the fly the values that are returned to the result set by
      testing on row values. In pseudocode, the case construct operates like this:[†]
    CASE
    WHEN condition THEN <return something to the result set>
       WHEN condition THEN <return something else>
    ...
       WHEN condition THEN <return still something else>
       ELSE <fall back on this value>
    END
Comparing numerical values or dates is straightforward. With
      strings, functions such as Oracle’s greatest(
      ) or least( ) or MySQL’s
      strcmp( ) can be useful. It is also
      sometimes possible to add some logic to insert statements, through multiple table
      inserts and conditional inserts,[*] and by using the merge
      statement. Don’t hesitate to use such statements if they are available
      with your DBMS. In other words, a lot of logic can be pushed into SQL
      statements; although the benefit may be small when executing only one of
      several statements, the gain can be much greater if you can manage to
      use case or merge or similar functionality to combine
      several statements into one.
Important
Wherever possible, try to embed your conditional logic within
        your SQL statements rather than in an associated host language.


Multiple Updates at Once



      My basic assertion here is that successive updates to a
      single table are acceptable if they affect disjoint sets of rows;
      otherwise they should be combined. For example, here is some code from
      an actual application:[†]
    update tbo_invoice_extractor
    set pga_status = 0
    where pga_status in (1,3)
      and inv_type = 0;
    update tbo_invoice_extractor
       set rd_status = 0
     where rd_status in (1,3)
       and inv_type = 0;
Two successive updates are being applied to the same table. Will
      the same rows be hit twice? There is no way to tell. The question is,
      how efficient are the search criteria? Any attribute with a name like
      type or status is typically a column with a totally
      skewed distribution. It is quite possible that both updates may result
      in two successive full scans of the same table. One update may use an
      index efficiently, and the second update may result in an unavoidable
      full table scan. Or, fortuitously, both may be able to make efficient
      use of an index. In any case, there is almost nothing to lose and
      everything to win by trying to combine both updates into a single
      statement:
    update tbo_invoice_extractor
    set pga_status = (case pga_status
                        when 1 then 0
                        when 3 then 0
                        else pga_status
                      end),
         rd_status = (case rd_status
                        when 1 then 0
                        when 3 then 0
                        else rd_status
                       end)
    where (pga_status in (1,3)
           or rd_status in (1, 3))
      and inv_type = 0;
There is indeed the possibility of some slight overhead due to the
      update of some columns with exactly the same contents they already have.
      But in most cases, one update is a lot faster than several separate
      ones. Notice that in regard to the previous section on logic, how we
      have used implicit conditional logic, by virtue of the case statement, to process only those rows
      that meet the update criteria, irrespective of how many different update
      criteria there may be.
Important
Apply updates in one fell swoop if possible; try to minimize
        repeated visits to the same table.


Careful Use of User-Written Functions



  When a user-written function is embedded in a statement,
      the function may be called a large number of times. If the function
      appears within the select list, it is
      called for each returned row. If it appears within the where clause, it is called for each and every
      row that has successfully passed the filtering criteria previously
      evaluated. This may be a considerable number of times if the other
      criteria are not very selective.
Consider what happens if that same function executes a query. The
      query is executed each time the function is called; in practice, the
      result is exactly the same as a correlated subquery, except that the
      function is an excellent way to prevent the cost-based optimizer from
      executing the main query more intelligently! Precisely because the
      subquery is hidden within the function, the database optimizer cannot
      take any account of this query. Moreover, the stored procedure is not as
      close to the SQL execution engine as is a correlated subquery, and it
      will consequently be even less efficient.
Now I shall present an example demonstrating the dangers of hiding
      SQL code away inside a user-written function. Consider a table flights that describes commercial flights,
      with columns for flight number, departure time, arrival time, and the
      usual three-letter IATA[*] codes for airports. The translation of those codes (over
      9,000 of them) is stored in a reference table that contains the name of
      the city (or of the particular airport when there are several located in
      one city), and of course the name of the country, and so on. Quite
      obviously any display of flight information should include the name of
      the destination city airport rather than the rather austere IATA
      code.
Here we come to one of the contradictions in modern software
      engineering. What is often regarded as “good practice” in programming is
      modularity, with many insulated software layers. That principle is fine
      in the general case, but in the context of database programming, in
      which code is a shared activity between the developer and the database
      engine itself, the desirability of code modularity is less clear. For
      example, we can follow the principle of modularity by building a small
      function to look up IATA codes and present the full airport name
      whenever the function is cited in a query:
    create or replace function airport_city(iata_code in char)
    return varchar2
    is
      city_name  varchar2(50);
    begin
      select city
      into city_name
      from iata_airport_codes
      where code = iata_code;
      return(city_name);
    end;
    /
For readers unfamiliar with Oracle syntax, trunc(sysdate) in the following query refers
      to today at 00:00 a.m., and date arithmetic is based on days; the condition on departure times
      therefore refers to times between 8:30 a.m. and 4:00 p.m. today. Queries
      using the airport_city function might
      be very simple. For example:
    select flight_number,
           to_char(departure_time, 'HH24:MI') DEPARTURE,
           airport_city(arrival) "TO"
    from flights
    where departure_time between trunc(sysdate) + 17/48
                             and trunc(sysdate) + 16/24
    order by departure_time
    /
This query executes with satisfactory speed; on a random sample on
      my machine, 77 rows were returned in 0.18 seconds (the average of
      several runs), the kind of time that leaves users happy (statistics
      indicate that 303 database blocks were accessed, 53 read from disk—and
      there is one recursive call per row).
As an alternative to using a look-up function we could simply
      write a join, which of course looks slightly more complicated:
    select f.flight_number,
           to_char(f.departure_time, 'HH24:MI') DEPARTURE,
           a.city "TO"
    from flights f,
         iata_airport_codes a
    where a.code = f.arrival
      and departure_time between trunc(sysdate) + 17/48
                             and trunc(sysdate) + 16/24
    order by departure_time
    /
This query runs in only 0.05 seconds (the same statistics, but
      there are no recursive calls). It may seem petty and futile to be more
      than three times as fast for a query that runs for less than a fifth of
      a second. However, it is quite common in large systems (particularly in
      the airline world) to have extremely fast queries running several
      hundred thousand times in one day. Let’s say that a query such as the
      one above runs only 50,000 times per day. Using the
      query with the lookup function, the query time will amount to a total of
      2:30 hours. Without the lookup function, it will be under 42 minutes.
      This maintains an improvement ratio of well over 300%, which in a high
      traffic environment represents real and tangible savings that may
      ultimately translate into a financial saving. Very often, the use of
      lookup functions makes the performance of batch programs dreadful.
      Moreover, they increase the “service time” of queries for no
      benefit—which means that fewer concurrent users can use the same box, as
      you shall see in Chapter 9.
Important
The code of user-written functions is beyond the examination of
        the optimizer.


Succinct SQL



 The skillful developer will attempt to do as much as
      possible with as few SQL statements as possible. By contrast, the
      ordinary developer tends to closely follow the different functional
      stages that have been specified; here is an actual example:
    -- Get the start of the accounting period
    select closure_date
    into dtPerSta
    from tperrslt
    where fiscal_year=to_char(Param_dtAcc,'YYYY')
      and rslt_period='1' || to_char(Param_dtAcc,'MM');

    -- Get the end of the period out of closure
    select closure_date
    into dtPerClosure
    from tperrslt
    where fiscal_year=to_char(Param_dtAcc,'YYYY')
      and rslt_period='9' || to_char(Param_dtAcc,'MM');
This is an example of very poor code, even if in terms of raw
      speed it is probably acceptable. Unfortunately, this quality of code is
      typical of much of the coding that performance specialists encounter.
      Two values are being collected from the very same table. Why are they
      being collected through two different, successive statements? This
      particular example uses Oracle, and a bulk
      collect of the two values into an array can easily be
      implemented. The key to doing that is to add an order by clause on rslt_period, as follows:
    select closure_date
    bulk collect into dtPerStaArray
    from tperrslt
    where fiscal_year=to_char(Param_dtAcc,'YYYY')
      and rslt_period in ('1' || to_char(Param_dtAcc,'MM'),
                          '9' || to_char(Param_dtAcc,'MM'))
    order by rslt_period;
The two dates are stored respectively into the first and second
      positions of the array. bulk collect
      is specific to the PL/SQL language but the same reasoning applies to any
      language allowing an explicit or implicit array fetch.
Note that an array is not even required, and the two values can be
      retrieved into two distinct scalar variables using the following little
      trick:[*]
    select max(decode(substr(rslt_period, 1, 1), -- Check the first character
                       '1', closure_date,
                            -- If it's '1' return the date we want
                           to_date('14/10/1066', 'DD/MM/YYYY'))),
                            -- Otherwise something old
           max(decode(substr(rslt_period, 1, 1),
                       '9', closure_date, -- The date we want
                           to_date('14/10/1066', 'DD/MM/YYYY'))),
    into dtPerSta, dtPerClosure
    from tperrslt
    where fiscal_year=to_char(Param_dtAcc,'YYYY')
      and rslt_period in ('1' || to_char(Param_dtAcc,'MM'),
                          '9' || to_char(Param_dtAcc,'MM'));
In this example, since we expect two rows to be returned, the
      problem is to retrieve in one row and two columns what would naturally
      arrive as two rows of a single column each (as in the array fetch
      example). We do that by checking each time the column that allows
      distinction between the two rows, rslt_period. If the row is the required one,
      the date of interest is returned. Otherwise, we return a date (here the
      arbitrary date is that of the battle of Hastings), which we know to be
      in all cases much older (smaller in terms of date
      comparison) than the one we want. By taking the maximum each time, we
      can be ensured that the correct date is obtained. This is a very
      practical trick that can be applied equally well to character or
      numerical data; we shall study it in more detail in Chapter 11.
Important
SQL is a declarative language, so try to distance your code from
        the procedurality of business specifications.


Offensive Coding with SQL



  Programmers are often advised to code defensively,
      checking the validity of all parameters before proceeding. In reality,
      when accessing a database, there is a real advantage in coding
      offensively, trying to do several things simultaneously.
A good example is a succession of various checks, designed to flag
      up an exception whenever the criterion required by any of these checks
      fails to be met. Let’s assume that some kind of payment by a credit card
      has to be processed. There are a number of steps involved. It may be
      necessary to check that the customer id and card number that have been
      submitted are valid, and that they are correctly associated one with the
      other. The card expiration date must also be validated. Finally, the
      current purchase must not exceed the credit limit for the card. If
      everything is correct, the debit operation may proceed.
An unskilled developer may write as follows:
    select count(*)
    from customers
    where customer_id = provided_id
and will check the result.
Then the next stage will be something like this:
    select card_num, expiry_date, credit_limit
    from accounts
    where customer_id = provided_id
These returns will be checked against appropriate error
      codes.
The financial transaction will then proceed.
A skillful developer will do something more like the following
      (assuming that today( ) is the
      function that returns the current date):
    update accounts
    set balance = balance - purchased_amount
    where balance >= purchased_amount
      and credit_limit >= purchased_amount
      and expiry_date > today(  )
      and customer_id = provided_id
      and card_num = provided_cardnum
Then the number of rows updated will be checked. If the result is
      0, the reason can be determined in a single operation, by
      executing:
    select c.customer_id, a.card_num, a.expiry_date,
           a.credit_limit, a.balance
    from customers c
         left outer join accounts a
              on a.customer_id = c.customer_id
              and a.card_num = provided_cardnum
    where c.customer_id = provided_id
If the query returns no row, the inference is that the value of
      customer_id is wrong, if card_num is null the card number is wrong, and
      so on. But in most cases this query will not even be executed.
Note
Did you notice the use of count(*) in the first piece of novice code?
        This is a perfect illustration of the misuse of count(*) to perform an existence
        test.

The essential characteristic of “aggressive coding " is to proceed on the basis of reasonable probabilities.
      For example, there is little point in checking whether the customer
      exists—if they don’t, they won’t be in the database in the first place!
      Assume nothing will fail, and if it does, have mechanisms in place that
      will address the problem at that point and only that point.
      Interestingly, this approach is analogous to the “optimistic concurrency
      control " method adopted in some database systems. Here update
      conflicts are assumed not to occur, and it is only when they do that
      control strictures are brought into play. The result is much higher
      throughput than for systems using pessimistic methods.
Important
Code on a probabilistic basis. Assume the most likely outcome
        and fall back on exception traps only when strictly necessary.


Discerning Use of Exceptions



         There is a thin line between courage and rashness; when I
      recommend coding aggressively, my model is not the charge of the Light
      Brigade at Balaclava.[*] Programming by exception can also be the consequence of an
      almost foolhardy bravado, in which our proud developers determine to “go
      for it.” They have an overriding confidence that testing and the ability
      to handle exceptions will see them through. Ah, the brave die
      young!
As their name implies, exceptions should be exceptional
      occurrences. In the particular case of database programming, all
      exceptions do not require the same computer resources—and this is
      probably the key point to understand if they are to be used
      intelligently. There are good exceptions, conditions that are raised
      before anything has been done, and bad exceptions, which are raised only
      when the full extent of the disaster has actually happened.
For instance, a query against a primary key that finds no row will
      take minimal resources—the situation is detected while searching the
      index. However, if the query cannot use an index, then you have to carry
      out a full table scan before being able to tell positively that no data
      has been found. For a very large table, a total sequential read can
      represent a disaster on a machine near maximum capacity.
Some exceptions are extremely costly, even in the best-case
      scenario; take the detection of duplicate keys. How is uniqueness
      enforced? Almost always by creating a unique index, and it is when a key
      is submitted for entry into that index that any constraint violation
      of that unique index will be revealed. However, when an
      index entry is created, the physical address of the row must be
      provided, which means that the insertion into the table takes place
      prior to the insertion into the index. The constraint violation requires
      that the partial insert must be undone, together with the identification
      of the exact constraint violated being returned as an error message. All
      of these activities carry some significant processing cost. But the
      greatest sin is trying to fight at the individual exception level. Here,
      one is forced to think about individual rows rather than data sets—the
      very antithesis of relational database processing. The consequence of
      repeated constraint violations can be a serious deterioration in
      performance.
Let’s look at an Oracle example of the previous points. Assume
      that following the merger of two companies, email addresses are
      standardized on the <Initial><Name>
      pattern, on 12 characters at most, with all spaces or quotes replaced by
      an underscore character.
Let’s assume that a new employee table is created with the new email
      addresses obtained from a 3,000-row employee_old table. We want each employee to
      have a unique email address. We must therefore assign, for instance,
      flopez to Fernando Lopez, and
      flopez2 to Francisco Lopez (no relation). In fact,
      in our test data, a total of 33 potential duplicate entries exist, which
      is the reason for the following result:
    SQL> insert into employees(emp_num, emp_name,
                               emp_firstname, emp_email)
      2  select emp_num,
      3         emp_name,
      4         emp_firstname,
      5         substr(substr(EMP_FIRSTNAME, 1, 1)
      6               ||translate(EMP_NAME, ' ''', '_  _'), 1, 12)
      7  from employees_old;

    insert into employees(emp_num, emp_name, emp_firstname, emp_email)
    *
    ERROR at line 1:
    ORA-00001: unique constraint (EMP_EMAIL_UQ) violated


    Elapsed: 00:00:00.85
Thirty-three duplicates out of 3,000 is about 1%, so perhaps it
      would be possible to quietly process the conformant 99% and handle the
      rest through exceptions? After all, it would seem that a 1% load could
      be accommodated with some additional exception processing which should
      not be too significant. Following is the code for this optimistic
      approach:
    SQL> declare
      2     v_counter    varchar2(12);
      3     b_ok         boolean;
      4     n_counter    number;
      5     cursor c is  select emp_num,
      6                         emp_name,
      7                         emp_firstname
      8                  from employees_old;
      9  begin
     10    for rec in c
     11    loop
     12      begin
     13        insert into employees(emp_num, emp_name,
     14                              emp_firstname, emp_email)
     15        values (rec.emp_num,
     16                rec.emp_name,
     17                rec.emp_firstname,
     18                substr(substr(rec.emp_firstname, 1, 1)
     19                ||translate(rec.emp_name, ' ''', '_  _'), 1, 12));
     20      exception
     21       when dup_val_on_index then
     22         b_ok := FALSE;
     23         n_counter := 1;
     24         begin
     25           v_counter := ltrim(to_char(n_counter));
     26           insert into employees(emp_num, emp_name,
     27                                 emp_firstname, emp_email)
     28           values (rec.emp_num,
     29                   rec.emp_name,
     30                   rec.emp_firstname,
     31                   substr(substr(rec.emp_firstname, 1, 1)
     32                     ||translate(rec.emp_name, ' ''', '_  _'), 1,
     33                     12 - length(v_counter)) || v_counter);
     34           b_ok := TRUE;
     35         exception
     36          when dup_val_on_index then
     37            n_counter := n_counter + 1;
     38         end;
     39       end;
     40    end loop;
     41  end;
     40  /

    PL/SQL procedure successfully completed.

    Elapsed: 00:00:18.41
But what exactly is the cost of this exception handling? If the same exercise is
      attempted after removing the “problem” rows, the comparison between the
      loop with duplicates and the loop without duplicates shows that the cost
      of processing exceptions in the loop is fairly negligible—with
      duplicates the procedure also takes about 18 seconds to run. However,
      when we run the insert...select of
      our first attempt without duplicates it is considerably faster than the
      loop: we discover that the switch to the one-row-at-a-time logic adds
      close to 50% to processing time. But in such a case, is it possible to
      avoid the row-at-a-time process? Yes, but only by avoiding exceptions.
      It’s the decision of dealing with problem rows through exception
      handling that forced our adoption of sequential row processing.
Alternatively, there might be value in attempting to identify
      those rows that contain email addresses subject to contention, and
      assigning those addresses some arbitrary number to achieve
      uniqueness.
It is easy to determine how many rows are involved in this
      contention by adding a group by
      clause to the SQL statement. However, assigning numbers might be a
      difficult thing to do without using the analytical functions available
      in the major database systems. (Oracle calls them
      analytical functions, DB2 knows them as
      online analytical processing, or OLAP, functions,
      SQL Server as ranking functions.) It is worthwhile
      to explore the solution to this problem in terms of pure SQL.
Each email address can be assigned a unique number:
      1 for the oldest employee whose first name initial
      and surname result in the given email address, 2 to
      the second oldest and so on. By pushing this result into a subquery, it
      is possible to check and concatenate nothing to the first email address
      in each group, and the sequence numbers (not in the Oracle sense of the
      word) to the following ones. The following code shows how our logic can
      be applied:
    SQL> insert into employees(emp_num, emp_firstname,
      2                        emp_name, emp_email)
      3  select emp_num,
      4         emp_firstname,
      5         emp_name,
      6         decode(rn, 1, emp_email,
      7                       substr(emp_email,
      8                       1, 12 - length(ltrim(to_char(rn))))
      9                        || ltrim(to_char(rn)))
     10  from (select emp_num,
     11               emp_firstname,
     12               emp_name,
     13               substr(substr(emp_firstname, 1, 1)
     14                 ||translate(emp_name, ' ''', '_  _'), 1, 12)
     15                          emp_email,
     16               row_number(  )
     17                  over (partition by
     18                        substr(substr(emp_firstname, 1, 1)
     19                         ||translate(emp_name,' ''','_  _'),1,12)
     20                        order by emp_num) rn
     21        from employees_old)
     22  /

    3000 rows created.

    Elapsed: 00:00:11.68
We avoid the costs of row-at-a-time processing, and this solution
      requires only 60% of the original time.
Important
Exception handling forces the adoption of procedural logic.
        Always try to anticipate possible exceptions by remaining within
        declarative SQL.




[*] decode( ) is a bit more
          rudimentary than case and may
          require the use of additional functions such as sign( ) to obtain the same results.

[†] There are two variants of the case construct; the example
          shown is the most sophisticated variant.

[*] Available, for instance, in Oracle since release 9.2.

[†] Table names have been changed.

[*] International Air Transport Association.

[*] The Oracle function decode(
          ) works like case. What
          is compared is the first argument. If it is equal to the second
          argument, then the third one is returned; if there is no fifth
          parameter, then the fourth one corresponds to else; otherwise, if the first argument is
          equal to the fourth one, the fifth one is returned and so on as long
          as we have pairs of values.

[*] During the Crimean War of 1854 that saw England, France, and
          Turkey fight against Russia, a poorly specified order and personal
          enmity between some of the commanders led more than 600 British
          cavalry men to charge down a valley in full line of fire of the
          Russian guns. Around 120 men and half the horses were killed, for no
          result. The bravery of the men, celebrated in a poem by Tennyson and
          (later) several Hollywood movies, helped turn a stupid military
          action into a myth.


Chapter 3. Tactical Dispositions

Indexing



Chi vuole fare tutte queste cose, conviene
      che tenga lo stile e modo romano: il quale fu in prima di fare le
      guerre, come dicano i Franciosi, corte e grosse.
Whoever wants to do all these things must hold to the Roman
      conduct and method, which was first to make the war, as the French say,
      short and sharp.
—Niccolò Machiavelli (1469–1527) Discorsi sopra la
      prima Deca di Tito Livio, II, 6



Once the layout of the battlefield is
    determined, the general should be able to precisely identify
    which are the key parts of the enemy possessions that must be captured. It
    is exactly the same with information systems. The crucial data to be
    retrieved will determine the most efficient access paths into the data
    system. Here, the fundamental tactic is indexing. It is a complex area,
    and one in which competing priorities must be resolved. In this chapter,
    we discuss various aspects of indexes and indexing strategy, which, taken
    together, provide general guidelines for database access
    strategies.
The Identification of “Entry Points”



   Even before starting to write the very first SQL statement
      in a program, you should have an idea about the search criteria that
      will be of importance to users. Values that are fed into a program and
      the size of the data subset defined lay the foundations for indexing.
      Indexes are, above all, a technique for achieving the fastest possible
      access to specific data. Note that I say “specific data,” as indexes
      must be carefully deployed. They are not a panacea: they will not enable
      fast access to all data. In fact, sometimes the very opposite is the
      result, if there is a serious mismatch between the original index
      strategy and the new data-retrieval requirements.
Indexes can be considered to be shortcuts to data, but they are
      not shortcuts in the same sense as a shortcut in a graphical desktop
      environment. Indexes come with some heavy costs, both in terms of disk
      space and, possibly more importantly, in terms of processing costs. For
      example, it is not uncommon to encounter tables in which the volume of
      index data is much larger than the volume of the actual data being
      indexed. I can say the same of index data as I said of redundant table
      data in Chapter 1: indexes are
      usually mirrored, backed up to other disks, and so on, and the very
      large volumes involved cost a lot, not only in terms of storage, but
      also in terms of downtime when you have to restore from a backup.
Figure 3-1 shows a
      real-life case, the main accounting table of a major bank; out of 33 GB
      total for all indexes and the table, indexes take more than 75%.
Let’s forget about storage for a moment and consider processing.
      Whenever we insert or delete a row, all the indexes on the table have to
      be adjusted to reflect the new data. This adjustment, or “maintenance,”
      also applies whenever we update an indexed column; for example, if we
      change the value of an attribute in a column that is either itself
      indexed, or is part of a compound index in which more than one column is
      indexed together. In practice this maintenance activity means a lot of
      CPU resources are used to scan data blocks in memory, I/O activity is
      needed to record the changes to logfiles, together with possibly more
      I/O work against the database files. Finally, recursive operations may
      be required on the database system to maintain storage
      allocations.
[image: A real-life case: Data versus Index out of a 33 GB total]

Figure 3-1. A real-life case: Data versus Index out of a 33 GB
        total

Tests have quantified the real cost of maintaining indexes on a
      table. For example, if the unit time required to insert data into a
      non-indexed table is 100 (seconds, minutes, or hours—it does not really
      matter for this illustration), each additional index on that table will
      add an additional unit time of anything from 100 to 250.
Important
Maintenance costs for one index may exceed those for one
        table.

Although index implementation varies from DBMS to DBMS, the high
      cost of index maintenance is true for all products, as Figures 3-2 and 3-3 show with Oracle and
      MySQL.
[image: The impact of indexes on insertion with Oracle]

Figure 3-2. The impact of indexes on insertion with Oracle

[image: The impact of indexes on insertion with MySQL]

Figure 3-3. The impact of indexes on insertion with MySQL

Interestingly, this index maintenance overhead is of the same
      magnitude as a simple trigger. I have created a simple trigger to record
      into a log table the key of each row inserted
      together with the name of the user and a timestamp—a typical audit
      trail. As one might expect, performance suffers—but in the same order of
      magnitude as the addition of two indexes, as shown in Figure 3-4. Recall how often one
      is urged to avoid triggers for performance reasons! People are usually
      more reluctant to use triggers than they are to use indexes, yet the
      impact may well be very similar.
[image: Comparing the performance impact of indexes and triggers]

Figure 3-4. Comparing the performance impact of indexes and
        triggers

Generating more work isn’t the only way for indexes to hinder
      performance. In an environment with heavy concurrent accesses, more
      indexes will mean aggrieved contention and locking. By nature, an index
      is usually a more compact structure than a table—just compare the number
      of index pages in this book to the number of pages in the book itself.
      Remember that updating an indexed table requires two data activities:
      updating the data itself and updating the index data. As a result,
      concurrent updates, which may affect relatively scattered areas of a
      huge table, and therefore not suffer from any serialization during the
      changes to the actual data, may easily find themselves with much less
      elbow room when updating the indexes. As explained above, these indexes
      are by definition much “tighter” data assemblages.
It must be stressed that, whatever the cost in terms of storage
      and processing power, indexes are vital components of databases. Their
      importance is nowhere greater, as I discuss in Chapter 6, than in transactional
      databases where most SQL statements must either return or operate
      on few rows in large tables. Chapter
      10 shows that decision support systems are also heavily dependent
      for performance on indexing. However, if the data tables we are dealing
      with have been properly normalized (and once again I make no apologies
      for referring to the importance of design), those columns deserving some
      a priori indexing will be very few in a
      transactional database. They will of course include the primary key (the
      tuple, or row, identifier). This column (or columns in the case of a
      compound key) will be automatically indexed simply by virtue of its
      declaration as the primary key. Unique columns are similar and will, in
      all probability, be indexed simply as a by-product of the implementation
      of integrity constraints. Consideration should also be given to indexing
      columns that, although not unique, approach uniqueness—in other words,
      columns with a high variability of values.
As a general rule, experience would suggest that very few indexes
      are required for most tables in a general purpose or transactional
      database, because many tables are searched with a very limited set of
      criteria. The rationale may be very different in decision support
      systems, as you shall see in Chapter
      10. I tend to grow suspicious of tables with many indexes,
      especially when these tables are very large and much updated. A high
      number of indexes may exceptionally be justified, but one should revisit
      the original design to validate the case for heavily indexed
      tables.
Important
In a transactional database, “too many indexes” is often the
        mark of an uncertain design.


Indexes and Content Lists



        The book metaphor can be helpful in another respect—as a
      means of better understanding the role of the index in the DBMS. It is
      important to recognize the distinction between the two mechanisms of the
      table of contents and the book index. Both provide a means of fast
      access into the data, but at two very different levels of granularity.
      The table of contents provides a structured
      overview of the whole book. As such, it is regarded as complementary to
      the index device in books, which is often compared to the index of a
      database.
When you look for a very precise bit of information in a book, you
      turn to the index. You are ready to check 2 or 3 entries, but not
      20--flipping pages between the index and the book itself to check so
      many entries would be both tedious and inefficient. Like a book index, a
      database index will direct you to specific values in one or more records
      (I overlook the use of indexes in range searching for the
      moment).
If you look for substantial information in a book, you either turn
      to the index, get the first index entry about the topic you want to
      study, and then read on, or you turn to the table of contents and
      identify the chapter that is most relevant to your topic. The
      distinction between the table of contents and the index is crucial: an
      entry in a table of contents directs the reader to a block of text,
      perhaps a chapter, or a section. Similarly, Chapter 5 shows mechanisms by which you
      can organize a table and enable data retrieval in a manner similar to a
      table of contents’ access.
An index must primarily be regarded as a means of accessing data
      at an atomic level of granularity, as defined by the original data
      design, and not as a means of retrieving large quantities of
      undifferentiated data. When an indexing strategy is used to pull in
      large quantities of data, the role of indexes is being seriously
      misunderstood. Indexing is being used as a desperate measure to recover
      from an already untenable situation. The commander is beginning to panic
      and is sending off sorties in all directions, hoping that sheer numbers
      will compensate for the lack of a coherent strategy. It never does, of
      course.
Important
Be very sure you understand what you are indexing, and why you
        are indexing it.


Making Indexes Work



     To justify the use of an index, it must provide benefit.
      Just as in our metaphor of the book, you may use an index if you simply
      require very particular information on one item of data. But if you want
      to review an entire subject area, you will turn not to the index, but to
      the table of contents of the book.
There will always be times when the decision between using an
      index or a broader categorization is a difficult one. This is an area
      where the use of retrieval ratios makes its persuasive appearance. Such ratios have a
      hypnotic attraction to many IT and data practitioners because they are
      so neat, so easy, so very scientific!
The applicability of an index has long been judged on the
      percentage of the total data retrieved by a query that uses a key value
      as only search criterion, and conventionally that percentage has often
      been set at 10% (the percentage of rows that match, on average, an index
      key defines the selectivity of the index; the lower
      the percentage, the more selective the index). You will often find this
      kind of rule in the literature. This ratio, and others like it, is based
      on old assumptions regarding such things as the relative performance of
      disk access and memory access. Even if we forget that these performance
      ratios, which have been around since at least the mid-1980s, were based
      on what is today outdated technology (ideal percentages are grossly
      simplistic views), far more factors need to be taken into
      account.
When magical ratios such as our 10% ratio were designed, a
      500,000-row table was considered a very big table; 10% of such a table
      usually meant a few tens of thousand rows. When you have tables with
      hundreds of millions or even billions of rows, the number of rows
      returned by using an index with a similar selectivity of about 10% may
      easily be greater than the number of rows in those mega-tables of yore
      against which the original ratios were estimated.
Consider the part played by modern hard disk systems, equipped as
      they are with large cache storage. What the DBMS sees as “physical I/O”
      may well be memory access; moreover, since the kernel usually shifts
      different amounts of data into memory depending on the type of access
      (table or index), you may be in for a surprise when comparing the
      relative performance of retrievals with and without using an index. But
      these are not the only factors to consider. You also need to watch the
      number of operations, which can truly be performed in parallel. Take
      note of whether the rows associated with an index key value are likely
      to be physically close. For instance, when you have an index on the
      insertion date, barring any quirk such as the special storage options I
      describe in Chapter 5, any query
      on a range of insertion dates will probably find the corresponding rows
      grouped together by construction. Any block or page pointed to by the
      very first key in the range will probably contain as well the rows
      pointed to by the immediately following key values. Therefore, any chunk
      of table we return through use of the index will be rich in data of
      interest to our query, and any data block found through the index will
      be of considerable value to the query’s performance.
When the indexed rows associated with an index key are spread all
      over the table (for example, the references to an article in a table of
      orders), it is quite another matter. Even though the number of relevant
      rows is small as a proportion of the whole, because they are scattered
      all over the disk, the value of the index diminishes. This is
      illustrated by Figure 3-5:
      we can have two unique indexes that are strictly equivalent for fetching
      a single row, and yet one will perform significantly better than the
      other if we look for a range of values, a frequent occurrence when
      working with dates.
Factors such as these blur the picture, and make it difficult to
      give a prescriptive statement on the use of indexes.
[image: When two highly selective indexes may perform differently]

Figure 3-5. When two highly selective indexes may perform
        differently

Important
Rows ordered as index keys lead to a faster range scan.


Indexes with Functions and Conversions



            Indexes are usually implemented as tree structures—mostly
      complex trees—to avoid a fast decay of indexes on heavily inserted, updated, and deleted tables. To find
      the physical location of a row, the address of which is stored in the
      index, one must compare the key value to the value
      stored in the current node of the tree to be able to determine which
      sub-tree must be recursively searched. Let’s now suppose that the value
      that drives our search doesn’t exactly match an actual column value but
      can be compared to the result of a function f(
      ) applied to the column value. In that case we may be tempted
      to express a condition as follows:
    where f(indexed_column) = 'some value'
This kind of condition will typically torpedo the index, making it
      useless. The problem is that nothing guarantees that the function
      f( ) will keep the same order as the
      index data; in fact, in most cases it will not. For instance, let’s
      suppose that our tree-index looks like Figure 3-6.
[image: A simplistic representation of how names might be stored in an index]

Figure 3-6. A simplistic representation of how names might be stored in an
        index

(If the names look familiar, it is because they are those of some
      of Napoleon’s marshals.) Figure
      3-6 is of course an outrageously simplified representation, just
      for the purpose of explaining a particular point; the actual indexes do
      not look exactly like the binary tree shown in Figure 3-6. If we look for the
      MASSENA key, with this search
      condition:
    where name = 'MASSENA'
then the index search is simple enough. We hit LANNES at the root of the tree and compare
      MASSENA to LANNES. We find MASSENA to be greater, based on the
      alphabetical order. We therefore recursively search the right-hand
      sub-tree, the root of which is MORTIER. Our search key is smaller than
      MORTIER, so we search the left-hand
      sub-tree and immediately hit MASSENA.
      Bingo—success.
Now, let’s say that we have a condition such as:
    where substr(name, 3, 1) = 'R'
The third letter is an uppercase R--which
      should return BERNADOTTE, MORTIER, and MURAT. When we make the first visit to the
      index, we hit LANNES, which doesn’t
      satisfy the condition. Not only that, the value that is associated with
      the current tree node gives us no indication whatsoever as to which
      branch we should continue our search into. We are at a loss: the fact
      that the third letter is R is of no help in
      deciding whether we should search the left sub-tree or the right
      sub-tree (in fact, we find elements belonging to our result set in both
      sub-trees), and we are unable to descend the tree in the usual way, by
      selecting a branch thanks to the comparison of the search key to the
      value stored in the current node.
Given the index represented in Figure 3-6, selecting names with
      an R in the third position is going to require a
      sequential data scan, but here another question arises. If the optimizer
      is sufficiently sophisticated, it may be able to judge whether the most
      efficient execution path is a scan of the actual data table or
      inspecting, in turn, each and every node in the index on the column in
      question. In the latter case, the search would lead to an index-based
      retrieval, but not as envisaged in the original model design since we
      would be using the index in a rather inefficient way.
Recall the discussion on atomicity in Chapter 1. Our performance issue stems
      from a very simple fact: if we need to apply a function to a column, it
      means that the atomicity of data in the table isn’t suitable for our
      business requirements. We are not in 1NF!
Atomicity, though, isn’t a simple notion. The ultra-classic
      example is a search condition on dates. Oracle, for instance, uses the
      date type to store not only the date
      information, but also the time information , down to the second (this type is actually known as
      datetime to most other database
      systems). However, to test the unwary, the default date format doesn’t
      display the time information. If you enter something such as:
    where date_entered = to_date('18-JUN-1815',
                                 'DD-MON-YYYY')
then only the rows for which the date (and time!) happens to be
      exactly the 18th of June 1815 at 00:00 (i.e., at
      midnight) are returned. Everyone gets caught out by this issue the very
      first time that they query datetime data. Quite naturally, the first
      impulse is to suppress the time information from date_entered, which the junior practitioners
      usually do in the following way:
    where trunc(date_entered) = to_date('18-JUN-1815',
                                        'DD-MON-YYYY')
Despite the joy of seeing the query “work,” many people fail to
      realize (before the first performance issues begin to arise) that by
      writing their query in such a way they have waved goodbye to using the
      index on date_entered, assuming there
      was one. Does all this mean that you cannot be in 1NF if you are using
      datetime columns? Fortunately, no. In
      Chapter 1, I defined an
      atomic attribute as an attribute in which a where clause can always be referred to in
      full. You can refer in full to a date if you are using a range
      condition. An index on date_entered
      is usable if the preceding condition is written as:
    where date_entered >= to_date('18-JUN-1815',
                                     'DD-MON-YYYY')
      and date_entered < to_date('19-JUN-1815',
                                    'DD-MON-YYYY')
Finding rows with a given date in this way makes an index on
      date_entered usable, because the very
      first condition allows us to descend the tree and reach a sorted list of
      all keys at the bottom of the index hierarchy (we may envision the index
      as a sorted list of keys and associated addresses, above which is
      plugged a tree allowing us to get direct access to every item in the
      list). Therefore, once the first condition has taken us to the bottom
      layer of the index and to the very first item of interest in the list,
      all we have to do is scan the list as long as the second condition is
      true. This type of access is known as an index range
      scan  .
The trap of functions preventing the use of indexes is often even
      worse if the DBMS engine is able to perform
      implicit conversions when a column of a given type
      is equated or compared to a constant of another type in a where condition—a logical error and yet one
      that is allowed by SQL. Once again Oracle provides an excellent example
      of such behavior. For instance, dangers arise when a character column is
      compared to a number. Instead of immediately generating a run-time
      error, Oracle implicitly converts the column to a number to enable the
      comparison to take place. The conversion may indeed generate a run-time
      error if there is an alpha character in that numerical string, but in
      many cases when a string of digits without any true numerical meaning is
      stored as characters (social security numbers or a date of birth shown
      as mmddyy, or ddmmyy, both
      meaning the same, but having very different numerical values), the
      conversion and subsequent comparison will “work"--except that the
      conversion will have rendered any index on the character column almost
      useless.
In the light of the neutralization of indexes by functions,
      Oracle’s design choice to apply the conversion to the column rather than
      to the constant may at first look surprising. However, that decision
      does make some sense. First of all, comparing potatoes to carrots is a
      logical error. By applying the conversion to the column, the DBMS is
      more likely (depending on the execution path) to encounter a value to
      which the conversion does not apply, and therefore the DBMS is more
      likely to generate a runtime error. An error at this stage of the
      process will prove a healthy reminder to the developer, doubtless
      prompting for a correction in the actual data field and raising
      agonizing questions about the quality of the data. Second, assuming that
      no error is generated, the very last thing we want is to return
      incorrect information. If we encounter:
    where account_number = 12345
it is quite possible, and in fact most likely, that the person who
      wrote the query was expecting the account 0000012345 to be returned—which will be the
      case if account_number (the alpha
      string) is converted to number, but not if the query 12345 is converted to a string without any
      special format specification.
One may think that implicit conversions are a rare occurrence,
      akin to bugs. There is much truth in the latter point, but implicit
      conversions are in fact pretty common, especially when such things come
      into play as a parameters table
      holding in a column named parameter_value string representations of
      numbers and dates, as well as filenames or any other regular character
      string. Always make conversions explicit by using conversion
      functions.
It is sometimes possible to index the result
      of a function applied to one or more columns. This facility is available
      with most products under various names (functional
      index, function-based index,
      index extension, and so on, or, more simply,
      index on a computed column). In my view, one should
      be careful with this type of feature and use it only as a standby for
      those cases in which the code cannot be modified.
I have already mentioned the heavy overhead added to data
      modifications as a result of the presence of indexes. Calling a function
      in addition to the normal index load each time an index needs to be
      modified cannot improve the situation: indeed it only adds to the total
      index maintenance cost. As the date_entered example given earlier
      demonstrates, creating a function-based index may be the lazy solution
      to something that can easily be remedied by writing the query in a
      different way. Furthermore, nothing guarantees that a function applied
      to a column retains the same degree of precision that a query against
      the raw column will achieve. Suppose that we store five years of sales
      online and that the sales_date column
      is indexed. On the face of it, such an index looks like an efficient
      one. But indexing with a function that is the month part of the date is
      not necessarily very selective, especially if every year the bulk of
      sales occurs in the run up to Christmas. Evaluating whether the
      resulting functional index will really bring any benefit is not
      necessarily easy without very careful study.
From a purely design point of view, one can argue that a function
      is an implicit recognition that the column in question may be storing
      two or more discrete items of data. Use of a functional index is, in
      most cases, a way to extract some part of the data from a column. As
      pointed out earlier, we are violating the famous first normal form,
      which requires data to be “atomic.” Not using strictly “atomic” data in
      the select list is a forgivable sin. Repeatedly
      using “subatomic” search criteria is a deadly one.
There are some cases, though, when a function-based index may be
      justified. Case-insensitive searches are probably the best example;
      indexing a column converted to upper- or lowercase will allow us to
      perform case-insensitive searches on that column efficiently. That said,
      forcing the case during inserts and
      updates is not a bad solution either.
      In any event, if data is stored in lowercase, then required in
      uppercase, one has to question the thoroughness with which the original
      data design was carried out.
Another tricky conundrum is the matter of duration in the absence
      of a dedicated interval data type.
      Given three time fields, a start date, a completion date, and a
      duration, one value can be determined from any existing two—but only by
      either building a functional index or by storing redundant data.
      Whichever solution is followed, redundancy will be the inevitable
      consequence: in the final analysis, you must weigh the benefits and
      disadvantages of the issues surrounding function-based indexes so that
      you can make informed decisions about using them.
Important
Use of functional indexes is often implicit recognition that
        your data analysis has not even resolved basic data item
        atomicity.


Indexes and Foreign Keys



   It is quite customary to systematically index the foreign
      keys of a table; and it is widely acknowledged to be common wisdom to do
      so. In fact, some design tools automatically generate indexes on these
      keys, and so do some DBMS. However, I urge caution in this respect.
      Given the overall cost of indexes, unnecessarily indexing foreign keys
      may prove a mistake, especially for a table that has many foreign
      keys.
Note
Of course, if your DBMS automatically indexes foreign keys, then
        you have no choice in the matter. You will have to resign yourself to
        potentially incurring unnecessary index overhead.

The rule of indexing the foreign keys comes from what happens when
      (for example) a foreign key in table A references the primary key in table B, and then both tables are concurrently
      modified. The simple model in Figure 3-7 illustrates this
      point.
[image: The simple, Master-Detail example]

Figure 3-7. The simple, Master-Detail example

Imagine that table A is very
      large. If user U1 wants to remove a row from table B, since the primary key for B is referenced by a foreign key in A, the DBMS must check that removal of the row
      will not lead to inconsistencies in the intertable dependencies, and
      must therefore see whether there is any child row in A referencing the row about to be deleted from
      B. If there does happen to be a row
      in A that references our row in
      B, then the deletion must fail,
      because otherwise we would end up with an orphaned row and inconsistent
      data. If the foreign key in A is
      indexed, it can be checked very quickly. If it is not indexed, it will
      take a significant period of time since the session of user U1 will have
      to scan all of table A.
Another problem is that we are not supposed to be alone on this
      database, and lots of things can happen while we scan A. For instance, just after user U1 has
      started the hunt in table A for an
      hypothetical child row, somebody else, say user U2, may want to insert a
      new row into table A which references
      that very same row we want to delete from table B. This situation is described in Figure 3-8, with user U1 first
      accessing table B to check the
      identifier of the row it wants to delete (1), and then searching for a child in table
      A (2). Meanwhile, U2 will have to check that
      the parent row exists in table B. But
      we have a primary key index on B,
      which means that unlike user U1, who is condemned to a slow sequential
      scan of the foreign key values of table A, user U2 will get the answer immediately
      from table B. If U2 quietly inserts
      the new row in table A (3), U2 may commit the change at such a point
      that user U1 finishes checking and wrongly concludes, having found no
      row, that the path is clear for the delete.
[image: Fight for the primary key]

Figure 3-8. Fight for the primary key

Locking is required to prevent such a case, which would otherwise
      irremediably lead to inconsistent data. Data integrity is, as it should
      be, one of the prime concerns of an enterprise-grade DBMS. It will take
      no chance. Whenever we want to delete a row from table B, we must prevent insertion into any table
      that references B of a row
      referencing that particular one while we look for child rows. We have
      two ways to prevent insertions into referencing tables (there may be
      several ones) such as table A:
	We lock all referencing tables (the heavy-handed
          approach).

	We apply a lock to table B
          and make another process, such as U2, wait for this lock to be
          released before inserting a new row into a referencing table (the
          approach taken by most DBMS). The lock will apply to the table, a
          page, or the row, depending on the granularity allowed by the
          DBMS.



In any case, if foreign keys are not indexed, checking for child
      rows will be slow, and we will hold locks for a very long time,
      potentially blocking many changes. In the worst case of the heavy-handed
      approach we can even encounter deadlocks, with two processes holding
      locks and stubbornly refusing to release them as long as the other
      process doesn’t release its lock first. In such a case, the DBMS usually
      solves the dispute by killing one of the processes (hasta la vista,
      baby...) to let the other one proceed.
The case of concurrent updates therefore truly requires indexing
      foreign keys to prevent sessions from locking objects much longer than
      necessary. Hence the oft heard rule that “foreign keys should always be
      indexed.” The benefit of indexing the foreign key is that the elapsed
      time for each process can be drastically reduced, and in turn locking is
      reduced to the minimum level required for ensuring data
      integrity.
What people often forget is that “always index foreign keys” is a
      rule associated with a special case. Interestingly, that special case
      often arises from design quirks, such as the maintenance of summary or
      aggregate denormalized columns in the master table of a master/detail
      relationship. There may be excellent reasons for updating concurrently
      two tables linked by referential integrity constraints. But there are
      also many cases with transactional databases where the referenced table
      is a “true” reference table (e.g., a dictionary, or “look-up” table that
      is very rarely updated, or it’s updated in the middle of the night when
      there is no other activity). In such a case, the only justification for
      the creation of an index on the foreign key columns should be whether
      such an index would be of any benefit from a strictly performance
      standpoint. We mustn’t forget the heavy penalty performance imposed by
      index maintenance. There are many cases when an index on a foreign key
      is not required.
Important
There must be a reason behind indexing; this is as true of
        foreign keys as of other columns.


Multiple Indexing of the Same Columns



     The systematic indexing of foreign keys can often lead to
      situations in which columns belong to several indexes. Let’s consider
      once again a classic example. This consists of an ordering system in
      which some order_details table
      contains, for each order (identified by an order_id, a foreign key referencing the
      orders table) articles (identified by
      article_id, a foreign key referencing
      the articles table) that have been
      purchased, and in what quantity. What we have here is an associative
      table (order_details) resolving a
      many-to-many relationship between the tables orders and articles. Figure 3-9 illustrates the
      relationships among the three tables.
[image: The Orders/Articles example]

Figure 3-9. The Orders/Articles example

Typically, the primary key of order_details will be a composite key, made of the two foreign keys. Order entry is the
      very case when the referenced table and the referencing table are likely
      to be concurrently modified, and therefore we must
      index the order_id foreign key.
      However, the column that is defined here as a foreign key is
      already indexed as part of the composite primary
      key, and (this is the important point) as the very first column in the
      primary key. Since this column is the first column of the composite
      primary key, it can for all intents and purposes provide all the
      benefits as if it were an indexed foreign key. A composite index is
      perfectly usable even if not all columns in the key are specified, as
      long as those at the beginning of the key
      are.
When descending an index tree such as the one described earlier in
      this chapter, it is quite sufficient to be able to compare the leading
      characters of the key to the index nodes to determine which branch of
      the index the search should continue down. There is therefore no reason
      to index order_id alone, since the
      DBMS will be able to use the index on (order_id, article_id) to check for child rows when
      somebody is working on the orders
      table. Locks will therefore not be required for both tables. Note, once
      again, that this reasoning applies only because order_id happens to be the very first column
      in the composite primary key. Had the primary key been defined as
      (article_id, order_id), then we would have had to create an
      index on order_id alone, while not
      building an index on the other foreign key, article_id.
Important
Indexing every foreign key may result in redundant
        indexing.


System-Generated Keys



   System-generated keys (whether through a special number
      column defined as self-incrementing or through the use of
      system-generated counters such as Oracle’s sequences) require special
      care. Some inexperienced designers just love system-generated
      keys  even when they have perfectly valid natural identifiers
      at their disposal. System-generated sequential numbers are certainly a
      far better solution than looking for the greatest current value and
      incrementing it by one (a certain recipe for generating duplicates in an
      environment with some degree of concurrency), or storing a “next value”
      that has to be locked and updated into a dedicated table (a mechanism
      that serializes and dramatically slows down accesses). Nevertheless,
      when many concurrent insertions are running against the same table in
      which these automatic keys are being generated, some very serious
      contention can occur at the creation point of the primary key index
      level. The purpose of the primary key index is primarily to ensure the
      uniqueness of the primary key columns.
The problem is usually that if there is one unique generator (as
      opposed to as many generators as there are concurrent processes, hitting
      totally disjoint ranges of values) we are going to rapidly generate
      numbers that are in close proximity to each other. As a result, when
      trying to insert key values into the primary key index, all processes
      are going to converge on the same index page, and the DBMS engine will
      have to serialize—through locks, latches, semaphores, or whichever
      locking mechanism is at its disposal—the various processes so that each
      one does not try to overwrite the bytes that another one is writing to.
      This is a typical example of contention that leads to some severe
      underuse of the hardware. Processes that could and should work in
      parallel have to wait in order, one behind the other. This bottleneck
      can be particularly severe on multi-processor machines, the very
      environment in which parallelism should be operating.
Some database systems provide some means to reduce the impact of
      system-generated keys; for instance, Oracle allows you to define
      reverse indexes, indexes in which the sequence of bits
      making up the key is inversed before being stored into the index. To
      indicate a very approximate idea of what such an index looks like, let’s
      simply take the same names of marshals as we did in Figure 3-5 and reverse the letters
      instead of bits. We get something looking like Figure 3-10.
[image: A simplified representation of reverse indexing]

Figure 3-10. A simplified representation of reverse indexing

It is easy to understand that even when we insert names that are
      alphabetically very close to one another, they are spread all over the
      various branches of the index tree: look for instance at the respective
      positions of MASSENA (a.k.a. ANESSAM), MORTIER (REITROM) and MURAT (TARUM). Therefore, we hit different places in
      the index and have much less contention than with a normally organized
      index. Close grouping of the index values would lead to a very high
      write activity that is very localized within the index. Before
      searching, Oracle simply applies the same reversing to the value we want
      to search against, and then proceeds as usual to traverse the index
      tree.
Of course, every silver lining has its cloud: when our search
      condition attempts to use a leading string search like this:
    where name like 'M%'
which is a typical range search, the reverse index is no help at
      all. By contrast, a regular index can be used to quickly identify the
      range of values beginning with a certain string that we are interested
      in. The inability of reverse indexes to be used for range searches is, of course, a very minor
      inconvenience with system-generated keys, which are often unknown to end
      users and therefore unlikely to be the object of range scans. But it
      becomes a major hindrance when rows contain timestamps. Timestamped rows
      might arrive in close succession, making the timestamp column a
      potentially good candidate for reverse indexing, but then a timestamp is
      also the type of column against which we are quite likely to be looking
      for ranges of values.
The hash index used in some database systems represents a
      different way to avoid bottlenecking index updates all on one index
      page. With hash indexing, the actual key is transformed into a
      meaningless, randomly distributed numeric key generated by the system,
      which is based on the column value being indexed. Although it is not
      impossible for two values to be transformed into similar, meaningless
      keys, two originally “close” keys will normally hash into two totally
      disconnected values. Once again, hash indexes represent a trick to avoid having a hot
      spot inside an index tree, but that benefit too, comes with
      certain restrictions. The use of a hash index is on an “equality or
      nothing” basis; in other words, range searching, or indeed any query
      against a part of the index key, is out of the question. Nevertheless,
      direct access based on one particular value of the key can be very
      fast.
Even when there are solutions to alleviate contention risks, you
      should not create too many system-generated identifiers. I have
      sometimes found system-generated keys in each and every table (for
      instance a special, single detail_id
      for the type of order_details table
      mentioned above, instead of the more natural combination of order_id and some sequential number within the
      order). This blunderbuss approach is something that, by any standard,
      simply cannot be justified—especially for tables that are referenced by
      no other table.
Important
System-generated keys can provide benefit in the right
        circumstances, but beware of their indiscriminate use!


Variability of Index Accesses



  It is very common to believe that if indexes are used in a
      query, then everything is fine. This is a gross misconception: there are
      many different characteristics of index access. Obviously, the most
      efficient type of index access is through a unique index, in which, at
      most, one row matches a given search value. Typically, such a search
      operation might be based on the primary key. However, as you saw in
      Chapter 2, accessing a table
      through its primary key may be very bad—if you are looping on all key
      values. Such an approach would be like using a teaspoon to move a big
      heap of sand instead of the big shovel of a full scan. So, at the
      tactical level, the most efficient index access is through a unique
      index, but the wider picture may reveal that this could be a costly
      mistake.
When several rows may match a single key value in a non-unique
      index (or when we search on a range of distinct values against a unique
      index), then we enter the world of range scanning. In this situation, we
      may retrieve a series of row addresses from the index, all containing
      the key values we are looking for. It may be a near-unique index, in
      which all key values match one row with the exception of a handful of
      values that match very few rows. Or it may be the other extreme of the
      non-unique indexed column for which all rows contain the same value.
      Indexed columns in which all rows contain the same value are in fact
      something you occasionally find with off-the-shelf software packages in
      which most columns are indexed, just in case. Never forget that finding
      the row in the index is all the work that is required only if:
	You need no other information than data that is part of the
          index key.

	The index is not compressed; otherwise, finding a match in the
          index is nothing more than a presumption that must be corroborated
          by the actual value found in the table.



In all other cases, we are only halfway to meeting the query
      requirement, and we must now access each data block (or page) by the
      address that is provided by the search of the index. Once again, all
      other things being equal, we may have widely different performance,
      depending on whether we shall find the rows matching our search value
      lumped together in the same area of the disk, or scattered all over the
      place.
The preceding description applies to the “regular” index accesses.
      However, a clever query optimizer may decide to use indexes in another
      way. It could operate on several indexes, combining them and doing some
      kind of pre-filtering before fetching the rows. It may decide to execute
      a full scan of a particular index, a strategy based on the judgment that
      this is the most efficient of all available methods for this particular
      query (we won’t go into the subtleties of what “most efficient” means
      here). The query optimizer may decide to systematically collect row
      addresses from an index, without taking the trouble to descend the index
      tree.
So, any reference to an index in an execution plan is far from
      meaning that “all’s well that runs well.” Some index accesses may indeed
      be very fast—and some desperately slow. Even a fast access in a query is
      no guarantee that by combining the query with another one, we could have
      got the result even faster. In addition, if the optimizer is indeed
      smart enough to ignore a useless index in queries, that same useless
      index will nevertheless require to be maintained whenever the table
      contents are modified. This index maintenance is something that may be
      especially significant in the massive uploads or purges routinely
      performed by a batch program. Useful or useless, an index
      has to be maintained.
Important
Indexing is not a panacea: effective deployment rests on your
        complete understanding of the data you are dealing with and making the
        appropriate judgments.


Chapter 4. Maneuvering

Thinking SQL Statements



There is only one principle of war, and that’s this. Hit the other
      fellow, as quickly as you can, as hard as you can, where it hurts him
      most, when he ain’t lookin’.
—Field Marshal Sir William Slim
      (1891-1970)  quoting an anonymous
      Sergeant-Major



In this chapter, we are going to take a
    close look at the SQL query and examine how its construct can
    vary according to the tactical demands of particular situations. This will
    involve examining complex queries and reviewing how they can be decomposed into a succession
    of smaller components, all interdependent, and all contributing to a
    final, complete query.
The Nature of SQL



 Before we begin examining query constructs in detail, we
      need to review some of the general characteristics of SQL itself: how it relates to the database engine and the
      associated optimizer, and what may limit the efficiency of the
      optimizer.
SQL and Databases



Relational databases owe their existence to pioneering
        work by E.F. Codd on the relational theory. From the outset, Codd’s
        work provided a very strong mathematical basis to what had so far been
        a mostly empirical discipline. To make an analogy, for thousands of
        years mankind has built bridges to span rivers, but frequently these
        structures were grossly overengineered simply because the master
        builders of the time didn’t fully understand the true relationships
        between the materials they used to build their bridges, and the
        consequent strengths of these bridges. Once the science of civil
        engineering developed a solid theoretical knowledge of material
        strengths, bridges of a far greater sophistication and safety began to
        emerge, demonstrating the full exploitation of the various
        construction materials being used. Indeed, the extraordinary
        dimensions of some modern bridges reflect the similarly huge increase
        in the data volumes that modern DBMS software is able to address.
        Relational theory has done for databases what civil engineering has
        done for bridges.
It is very common to find confusion between the SQL language,
        databases, and the relational model. The function of a database is
        primarily to store data according to a model of the part of the real
        world from which that data has been obtained. Accordingly, a database
        must provide a solid infrastructure that will allow multiple users to
        make use of that same data, without, at any time, prejudicing the
        integrity of that data when they change it. This will require the
        database to handle contention between users and, in the extreme case,
        to keep the data consistent if the machine were to fail in
        mid-transaction. The database must also perform many other functions
        outside the scope of this book.
As its name says, Structured Query Language, or SQL for short,
        is nothing other than a language, though admittedly with a very tight
        coupling to databases. Equating the SQL language with relational
        databases —or even worse with the relational theory—is as
        misguided as assuming that familiarity with a spreadsheet program or a
        word processor is indicative of having mastered “information
        technology.” In fact, some products that are not databases support
        SQL,[*] and before becoming a standard SQL had to compete
        against other languages such as RDO or QUEL, which were considered by
        many theorists to be superior to SQL.
Whenever you have to solve what I shall generically call an
        SQL problem, you must realize that there are two
        components in action: the SQL expression of the query and the database optimizer. These two
        components interact within three distinct zones, as shown in Figure 4-1. At the center lies
        the relational theory , where mathematicians freely roam. If we simplify
        excessively, we can say that (amongst other useful things) the theory
        informs us that we can retrieve data that satisfies some criteria by
        using a handful of relational operators, and that these operators will
        allow us to answer basically any question. Most importantly, because
        the relational theory is so firmly grounded in mathematics, we can be
        totally confident that relational expressions can be written in
        different ways and yet return the same result. In exactly the same
        way, arithmetic teaches us that 246/369 is exactly the same as
        2/3.
[image: DBMS Protagonists]

Figure 4-1. DBMS Protagonists

However, despite the crucial theoretical importance of
        relational theory, there are aspects of great practical relevance that
        the relational theory has nothing to say about. These fall into an
        area I call “reporting requirements .” The most obvious example in this area is the
        ordering of result sets. Relational theory is concerned only with the
        retrieval of a correct data set, as defined by a query. As we are
        practitioners and not theorists, for us the relational phase consists
        in correctly identifying the rows that will belong to our final result
        set. The matter of how some attributes (columns) of one row relate to
        similar attributes in another row doesn’t belong to this phase, and
        yet this is what ordering is all about. Further, relational theory has
        nothing to say about the numerous statistical functions (such as percentiles and the like) that often appear in
        various dialects of the SQL language. The relational theory operates
        on set, and knows nothing of the imposition of ordering on these sets.
        Despite the fact that there are many mathematical theories built
        around ordering, none have any relevance to the relational
        theory.
At this stage I must point out that what distinguishes
        relational operations from what I have called reporting
        requirements is that relational operations apply to
        mathematical sets of theoretically infinite extent. Irrespective of
        whether we are operating on tables of 10, one million, or one billion
        rows, we can apply any filtering criterion in an identical fashion.
        Once again, we are concerned only with identifying and returning the
        data that matches our criteria. Here, we are in the environment where
        the relational theory is fully applicable. Now, when we want to order
        rows (or perform an operation such as group
        by that most people would consider a relational operation)
        we are no longer working on a potentially infinite data set, but on a
        necessarily finite set. The consequent data set thus ceases to be a
        relation in the mathematical sense of the word. We are outside the
        bounds of the relational theory. Of course, this doesn’t mean that we
        cannot still do clever and useful things against this data using
        SQL.
So we may, as a first approximation, represent an SQL query as a
        double-layered operation as shown in Figure 4-2; first, a relational
        core identifying the set of data we are going to operate on, second, a
        non-relational layer which works on this now finite set to give the
        polishing touch and produce the final result that the user
        expects.
[image: The various layers of an SQL query]

Figure 4-2. The various layers of an SQL query

Despite Figure 4-2’s
        appealingly simple representation of the place of SQL within the data
        environment, an SQL query will in most cases be considerably more
        complex than Figure 4-2
        may suggest; Figure 4-2
        only represents the overall pattern. The relational filter may be a
        generic name for several independent filters combined, for instance,
        through a union construct or by the
        means of subqueries, and the complexity of some SQL constructs can be
        considerable. I shall come back to the topic of SQL code a little
        later. But first I must talk about the relationship between the
        physical implementation of data and the database optimizer.
Important
Do not confuse the true relational functionality of the SQL
          query execution with the additional presentation layer.


SQL and the Optimizer



An SQL engine that receives a query to process will have
        to use the optimizer to find out how to execute that query in the most
        efficient way possible. Here the relational theory strikes again,
        because that theory informs the optimizer of transformations that are
        valid equivalents of the semantically correct query initially provided
        by the developer—even if that original query was clumsily
        written.
Optimization is when the physical implementation of data comes
        into play. Depending on the existence of indexes and their usability
        in relation to a query, some transformations may result in much faster
        execution than other semantically equivalent transformations. Various
        storage models that I introduce in Chapter 5 may also make one particular
        way to execute a query irresistibly attractive. The optimizer examines
        the disposition of the indexes that are available, the physical layout
        of data, how much memory is available, and how many processors are
        available to be applied to the task of executing the query. The
        optimizer will also take into account information concerning the
        volume of the various tables and indexes that may be involved,
        directly or indirectly, through views used by the query. By weighing
        the alternatives that theory says are valid equivalents against the
        possibilities allowed by the implementation of the database, the
        optimizer will generate what is, hopefully, the best execution plan
        for the query.
However, the key point to remember is that, although the
        optimizer may not always be totally weaponless in the non-relational
        layer of an SQL query, it is mainly in the relational core that it
        will be able to deploy its full power—precisely because of the
        mathematical underpinnings of the relational theory. The
        transformation from one SQL query to another raises an important
        point: it reminds us that SQL is supposed to be a declarative
        language . In other words, one should use SQL to express what is
        required, rather than how that requirement is to be met. Going from
        what to how, should, in
        theory, be the work of the optimizer.
You saw in Chapters 1 and
        2 that SQL queries are only some
        of the variables in the equation; but even at the tactical query
        level, a poorly written query may prevent the optimizer from working
        efficiently. Remember, the mathematical basis of the relational theory
        provides an unassailable logic to the proceedings. Therefore, part of
        the art of SQL is to minimize the thickness, so to speak, of the
        non-relational layer—outside this layer, there is not much that the
        optimizer can safely do that guarantees returning exactly the same
        rows as the original query.
Another part of the art of SQL is that when performing
        non-relational operations—loosely defined as operations for which the
        whole (at least at this stage) resulting dataset is known—we must be
        extremely careful to operate on only the data that is strictly
        required to answer the original question, and nothing more. Somehow, a
        finite data set, as opposed to the current row,
        has to be stored somewhere, and storing anything in temporary storage
        (memory or disk) requires significant overhead due to byte-pushing.
        This overhead may dramatically increase as the result set data volumes
        themselves increase, particularly if main memory becomes unavailable.
        A shortage of main memory would initiate the high-resource activity of
        swapping to disk, with all its attendant overheads. Moreover, always
        remember that indexes refer to disk addresses, not temporary
        storage—as soon as the data is in temporary storage, we must wave
        farewell to most fast access methods (with the possible exception of
        hashing).
Some SQL dialects mislead users into believing that they are
        still in the relational world when they have long since left it. Take
        as a simple example the query “Who are the five top earners among
        employees who are not executives?”—a reasonable real-life question,
        although one that includes a distinctly non-relational twist.
        Identifying employees who are not executives is the relational part of
        the query, from which we obtain a finite set of employees that we can
        order. Several SQL dialects allow one to limit the number of rows
        returned by adding a special clause to the select statement. It is
        then fairly obvious that both the ordering and
        the limitation criteria are outside the
        relational layer. However, other dialects, the Oracle version figuring
        prominently here, use other mechanisms. What Oracle has is a dummy
        column named rownum that applies a
        sequential numbering to the rows in the order in which they are
        returned—which means the numbering is applied during the relational
        phase. If we write something such as:
    select empname, salary
    from employees
    where status != 'EXECUTIVE'
      and rownum <= 5
    order by salary desc
we get an incorrect result, at least in the sense that we are
        not getting the top five most highly paid nonexecutives, as the query
        might suggest at first glance. Instead, we get back the first five
        nonexecutives found—they could be the five lowest paid!—ordered in
        descending order of salary. (This query illustrates a well-known trap
        among Oracle practitioners, who have all been burnt at least
        once.)
Let’s just be very clear about what is happening with the
        preceding query. The relational component of the query simply retrieves the first five rows
        (attributes empname and salary only) from the table employees where the employee is not an
        executive in a totally unpredictable order.
        Remember that relational theory tells us that a relation (and
        therefore the table that represents it) is not defined in any way by
        the order in which tuples (and therefore the rows in that table) are
        either stored or retrieved. As a consequence the nonexecutive employee
        with the highest salary may or may not be included in this result
        set—and there is no way we will ever know whether this result set
        actually meets our search criteria correctly.
What we really want is to get all nonexecutives, order them by
        decreasing salary, and only then get the top five in the set. We can
        achieve this objective as follows:
    select *
    from (select empname, salary
          from employees
          where status != 'EXECUTIVE'
          order by salary desc)
    where rownum <= 5
So, how is our query layered in this case?
        Many would be tempted to say that by applying a filtering condition to
        an ordered result, we end up with something looking more or less like
        Figure 4-3.
[image: A misleading view of what the “top five nonexecutives” query looks like]

Figure 4-3. A misleading view of what the “top five nonexecutives” query
          looks like

The truth, however, is more like Figure 4-4.
Using constructs that look relational doesn’t take us back to
        the relational world, because to be in the relational world we must
        apply relational operators to relations. Our subquery uses an order by to sort the results. Once we’ve
        imposed ordering, we no longer have, strictly speaking, a relation (a
        relation is a set, and a set has no order). We end up with an outer
        select that looks relational on the
        surface but is applied to the output of an inline view in which a
        significant component (the order by
        clause) is not a relational process.
[image: What the “top five nonexecutives” query is really like]

Figure 4-4. What the “top five nonexecutives” query is really
          like

My example of the top five nonexecutives is, of course, a simple
        example, but do understand that once we have left the relational
        sphere in the execution of a query, we can no longer return to it. The
        best we can possibly do is to use the output of such a query to feed
        into the relational phase of an outer query. For instance, “in which
        departments are our five top nonexecutive earners working?” What is
        extremely important to understand, though, is that at this stage no
        matter how clever the optimizer is, it will be absolutely unable to
        combine the queries, and will more or less have to execute them in a
        given sequence. Further, any resulting set from an intermediate query
        is likely to be held in temporary storage, whether in memory or on disk, where the choice
        of access methods may be reduced. Once outside the pure relational
        layer, the way we write a query is of paramount importance for
        performance because it will inevitably impose onto the query some
        execution path from which the SQL engine will not be able to
        stray.
To summarize, we can say that the safest approach we can adopt
        is to try to do as much of the job as possible inside the relational
        layer, where the optimizer can operate to maximum efficiency. When the
        situation is such that a given SQL task is no longer a purely
        relational problem, then we must be particularly careful about the
        construct, or the writing of the query itself. Understanding that SQL
        has, like Dr. Jekyll, a double nature is the key to mastering the
        language. If you see SQL as a single-edged sword, then you are
        condemned to remain in the world of tips and tricks for dummies,
        smarties, and mere mortals, possibly useful for impressing the
        opposite sex—although in my experience it doesn’t work much—but an
        approach that will never provide you with a deep understanding of how
        to cope with a difficult SQL problem.
Important
The optimizer rewards those who do the most work in the
          relational layer.


Limits of the Optimizer



Any decent SQL engine relies heavily on its query
        optimizer, which very often performs an excellent job. However, there
        are many aspects of the way optimizers work that you must keep in
        mind:
	Optimizers rely on the information they find in
            the database.
	This information is of two types: general statistical data
              (which must be verified as being fitting), and the essential
              declarative information held in the data definitions. Where
              important semantic information relating to the data relations is
              embedded in triggers or, worse, in application program code,
              that vital information will be totally unavailable to the
              optimizer. Such circumstances will inevitably impact the
              potential performance of the optimizer.

	Optimizers can perform to their best advantage
            where they can apply transformations that are mathematically
            proven to be equivalent.
	When they are required to assess components of a query
              that are non-relational in character, they are on less certain
              grounds and the execution path will stick more closely to what
              was voluntarily or involuntarily suggested by the original
              writing.

	The work of the optimizer contributes to the
            overall response time.
	Comparing a large number of alternative execution paths
              may take time. The end user sees only the total elapsed time and
              is unaware of how much was spent on optimization and how much on
              execution. A clever optimizer might allow itself more time to
              try to improve a query that it expects to take a lot of time to
              run, but there is always a self-imposed limit on its work. The
              trouble is that when you have a 20-way join (which is by no
              means unusual in some applications), the number of combinations
              the optimizer could examine can become unmanageably large even
              when adequate indexing make some links obvious. Compound this
              with the inclusion of a combination of complex views and
              subqueries, and at some point, the optimizer will have to give
              in. It is quite possible to find a situation in which a query
              running in isolation of any others may be very well optimized,
              while the same query deeply nested inside a much more complex
              outer query may take a completely wrong path.

	The optimizer improves individual
            queries.
	It is unable to relate independent queries one to another,
              however. Whatever its efforts, if the bulk of your program is
              fetching data inside procedural code just to feed into
              subsequent queries, the optimizer will not be able to do
              anything for you.



Important
Feed the optimizer with little chunks, and it will optimize
          little pieces. Feed it with a big chunk, and it will optimize a
          task.



Five Factors Governing the Art of SQL



        You have seen in the first part of this chapter exactly
      how SQL includes both relational and non-relational characteristics. You
      have also seen how this affects the efficient (and not-so-efficient)
      workings of the database optimizer. From this point forward, and bearing
      in mind the lessons of the first part of this chapter, we can
      concentrate on the key factors that must be considered when using SQL.
      In my view, there are five main factors:
	The total quantity of data  from which a result set has to be obtained

	The criteria required to define the result set

	The size of the result set

	The number of tables to be processed in order to obtain the
          desired result set

	The number of other users also modifying this same data



Total Quantity of Data



The volume of data we need to read is probably the most
        important factor to take into account; an execution plan that is
        perfectly suitable for a fourteen-row emp table and a four-row dept table may be entirely inappropriate for
        dealing with a 15 million-row financial_flows table against which we have
        to join a 5 million-row products
        table. Note that even a 15 million-row table will not be considered
        particularly large by the standards of many companies. As a matter of
        consequence, it is hard to pronounce on the efficiency of a query
        before having run it against the target volume of data.

Criteria Defining the Result Set



When we write an SQL statement, in most cases it will involve
        filtering conditions  located in where
        clauses, and we may have several where clauses—a major one as well as minor
        ones—in subqueries or views (regular views or in-line views). A
        filtering condition may be efficient or inefficient. However, the
        significance of efficient or
        inefficient is strongly affected by other
        factors, such as physical implementation (as discussed in Chapter 5) and once again, by how much
        data we have to wade through.
We need to approach the subject of defining the result in
        several parts, by considering filtering, the central SQL statements,
        and the impact of large data volumes on our queries. But this is a
        particularly complex area that needs to be treated in some depth, so
        I’ll reserve this discussion until later in this chapter, in the major
        section entitled "Filtering.”

Size of the Result Set



An important and often overlooked factor is how much data a
        query returns (or how much data a statement changes). This is often
        dependent on the size of the tables and the details of the filtering, but not in
        every case. Typically, the combination of several selection criteria
        which of themselves are of little value in selecting data may result
        in highly efficient filtering when used in combination with one
        another. For example, one could cite that retrieving students’ names
        based on whether they received a science or an arts degree will give a
        large result set, but if both criteria are used (e.g., students who
        studied under both disciplines) the consequent result set will
        collapse to a tiny number.
In the case of queries in particular, the size of the result set
        matters not so much from a technical standpoint, but mostly because of
        the end user’s perception. To a very large extent, end users adjust
        their patience to the number of rows they expect: when they ask for
        one needle, they pay little attention to the size of the haystack. The
        extreme case is a query that returns nothing, and a good developer
        should always try to write queries that return few or no rows as fast
        as possible. There are few experiences more frustrating than waiting
        for several minutes before finally seeing a “no data found” message.
        This is especially annoying if you have mistyped something, realized
        your error just after hitting Enter, and then have been unable to
        abort the query. End users are willing to wait to get a lot of data,
        but not to get an empty result. If we consider that each of our
        filtering criteria defines a particular result set and the final
        result set is either the intersection (when conditions are anded) or the union (when conditions are
        ored together) of all the
        intermediate result sets , a zero result is most likely to result from the
        intersection of small, intermediate result sets. In other words, the
        (relatively) most precise criteria are usually the primary reason for
        a zero result set. Whenever there is the slightest possibility that a
        query might return no data, the most likely condition that would
        result in a null return should be checked first—especially if it can
        be done quickly. Needless to say, the order of evaluation of criteria
        is extremely context-sensitive as you shall see later under "Filtering.”
Important
A skillful developer should aim for response times
          proportional to the number of rows returned.


Number of Tables



The number of tables  involved in a query will naturally have some influence
        on performance. This is not because a DBMS engine performs joins
        badly—on the contrary, modern systems are able to join large numbers
        of tables very efficiently.
Joins



The perception of poor join performance is another enduring
          myth associated with relational databases. Folklore has it that one
          should not join too many tables, with five often suggested as the
          limit. In fact, you can quite easily have 15 table joins perform
          extremely well. But there are additional problems associated with
          joining a large number of tables, of which the following are
          examples:
	When you routinely need to join, say, 15 tables, you can
              legitimately question the correctness of the design; keep in
              mind what I said in Chapter
              1—that a row in a table states some kind of truth and can
              be compared to a mathematical axiom. By joining tables, we
              derive other truths. But there is a point at which we must
              decide whether something is an obvious truth that we can call an
              axiom, or whether it is a less obvious truth that we must
              derive. If we spend much of our time deriving our truths,
              perhaps our axioms are poorly chosen in the first place.

	For the optimizer, the complexity increases exponentially
              as the number of tables increases. Once again, the excellent
              work usually performed by a statistical optimizer may comprise a
              significant part of the total response time for a query,
              particularly when the query is run for the first time. With
              large numbers of tables, it is quite impractical for the
              optimizer to explore all possible query paths. Unless a query is
              written in a way that eases the work of the optimizer, the more
              complex the query, the greater the chance that the
              optimizer will bet on the wrong horse.

	When we write a complex query involving many tables, and
              when joins can be written in several fairly distinct ways, the
              odds are high that we’ll pick the wrong construct. If we join
              tables A to B to C to D, the optimizer may not have all the
              information present to know that A can be very efficiently
              joined directly to D, particularly if that join happens to be a
              special case. A sloppy developer trying to fix duplicate rows
              with a distinct can also
              easily overlook a missing join condition.




Complex queries and complex views



Be aware that the apparent number of tables involved
          in a query can be deceptive; some of the tables may actually be
          views, and sometimes pretty complex ones, too. Just as with queries,
          views can also have varying degrees of complexity. They can be used
          to mask columns, rows, or even a combination of rows and columns to
          all but a few privileged users. They can also be used as an
          alternate perspective on the data, building relations that are
          derived from the existing relations stored as tables. In cases such
          as these, a view can be considered shorthand for a query, and this
          is probably one of the most common usages of views. With
          increasingly complex queries, there is a temptation to break a query
          down into a succession of individual views, each representing a
          component of the greater query.
Important
The simplicity of a given query may hide the complexity of
            participating views.

Like most extreme positions, it would be absurd to banish
          views altogether. Many of them are rather harmless animals. However,
          when a view is itself used in a rather complex query, in most cases
          we are only interested in a small fraction of the data returned by
          the view—possibly in a couple of columns, out of a score or more.
          The optimizer may attempt to recombine a simple view into a larger
          query statement. However, once a query reaches a relatively modest
          level of complexity, this approach may become too complex in itself
          to enable efficient processing.
In some cases a view may be written in a way that effectively
          prevents the optimizer from combining it into the larger statement.
          I have already mentioned rownums,
          those virtual columns used in Oracle to indicate the order in which
          rows are initially found. When rownums are used inside a view, a further
          level of complexity is introduced. Any attempt to combine a view
          that references a rownum into a
          larger statement would be almost guaranteed to change the subsequent
          rownum order, and therefore the
          optimizer doesn’t permit a query rewrite in those circumstances. In
          a complicated query, such a view will necessarily be executed in
          isolation. In quite a number of cases then, the DBMS optimizer will
          push a view as is into a statement,[*] running it as a step in the statement execution, and
          using only those elements that are required from the result of the
          view execution.
Frequently, many of the operations executed in a view
          (typically joins to return a description associated with codes) will
          be irrelevant in the context of a larger query, or a query may have
          special search criteria that would have been particularly selective
          when applied to the tables underlying the view. For instance, a
          subsequent union may prove to be
          totally unnecessary because the view is the union of several tables representing
          subtypes, and the larger query filters on only one of the subtypes.
          There is also the danger of joining a view with a table that itself
          appears in the same view, thus forcing multiple passes over this
          table and probably hitting the same rows several times when one pass
          would have been quite sufficient.
When a view returns much more data than required in the
          context of a query that references that view, dramatic performance
          gains can often be obtained by eliminating the view (or using a
          simpler version of the view). Begin by replacing the view reference
          in the main query with the underlying SQL query used to define the
          view. With the components of the view in full sight, it becomes easy
          to remove everything that is not strictly necessary. More often than
          not, it’s precisely what isn’t necessary that prevents the view from
          being merged by the optimizer, and a simpler, cut-down view may give
          excellent results. When the query is correctly reduced to its most
          basic components, it runs much faster.
Many developers may hesitate to push the code for a very
          complex view into an already complex query, not least because it can
          make a complex situation even more complicated. The exercise of
          developing and factoring a complex SQL expression may indeed appear
          to be daunting. It is, however, an exercise quite similar to the
          development of mathematical expressions, as practiced in high
          school. It is, in my view, a very formative exercise and well worth
          the effort of mastering. It is a discipline that provides a very
          sound understanding of the inner workings of a query for developers
          anxious to improve their skills, and in most cases the results can
          be highly rewarding.
Important
Rather than embedding a view inside a query when that view
            returns unnecessary elements, try to decompose the view components
            into the main query body.



Number of Other Users



Finally, concurrency is a factor that you must carefully
        take into account when designing your SQL code. Concurrency is usually
        a concern while writing to the database where block-access
        contention , locking , latching (which means locking of internal DBMS resources), and
        others are the more obvious problem areas; even read consistency can
        in some cases lead to some degree of contention. Any server, no matter
        how impressive its specification, will always have a finite capacity.
        The ideal plan for a query running on a machine with little to no
        concurrency is not necessarily the same as the ideal plan for the same
        query running on the same machine with a high level of concurrency.
        Sorts may no longer find the memory they need and may instead resort
        to writing to disk, thus creating a new source of contention. Some
        CPU-intensive operations—for example, the computation of complicated
        functions, repetitive scanning of index blocks, and so forth—may cause
        the computer to overload. I have seen cases in which more physical
        I/Os resulted in a significantly better time to perform a given task.
        In those cases, there was a high level of concurrency for
        CPU-intensive operations, and when some processes had to wait for
        I/Os, the overworked CPUs were relieved and could run other processes,
        thus ensuring a better overlap. We must often think in terms of global
        throughput of one particular business task, rather than in terms of
        individual user response-time.
Note
Chapter 9 examines
          concurrency in greater detail.



Filtering



How you restrict your result set is one of the most critical
      factors that helps you determine which tactics to apply when writing an
      SQL statement. The collective criteria that filters the data are often
      seen as a motley assortment of conditions associated in the where clause. However, you should very closely
      examine the various where-clause (and
      having-clause, too) conditions when
      writing SQL code.
Meaning of Filtering Conditions



Given the syntax of the SQL language, it is quite
        natural to consider that all filtering conditions    , as expressed in the where clause, are similar in nature. This is
        absolutely not the case. Some filtering conditions apply directly to
        the select operator of relational
        theory, where checking that a
        column in a row (purists would say an attribute in a relation
        variable) matches (or doesn’t match) a given condition. However,
        historically the where clause also
        contains conditions that implement another operator—the join operator. There is, since the advent of
        the SQL92 join syntax, an attempt to differentiate join filtering conditions, located between
        the (main) from clause and the
        where clause, from the select filtering conditions listed in the
        where clause. Joining two (or more)
        tables logically creates a new relation.
Consider this general example of a join:
    select .....
    from t1
       inner join t2
          on t1.join1 = t2.joind2
    where ...
Should a condition on column c2 belonging to t2 come as an additional condition on the
        inner join, expressing that in fact
        you join on a subset of t2? Or
        should a condition inside the where
        clause, along with conditions on columns of t1, express that the filtering applies to
        the result of joining t1 to
        t2? Wherever you choose to place
        your join condition ought not to
        make much of a difference; however, it has been known to lead to
        variations in performance with some optimizers.
We may also have conditions other than joins and the simple
        filtering of values. For instance, we may have conditions restricting
        the returned set of rows to some subtype; we may also have conditions
        that are just required to check the existence of something inside
        another table. All these conditions are not necessarily semantically
        identical, although the SQL syntax makes all of them look equivalent.
        In some cases, the order of evaluation of the conditions is of no consequence; in other cases,
        it is significant.
Here’s an example that you can actually find in more than one
        commercial software package to illustrate the importance of the order
        of the evaluation of conditions. Suppose that we have a parameters table, which holds: parameter_name, parameter_type, and parameter_value, with parameter_value being the string
        representation of whatever type of parameter we have, as defined by
        the attribute parameter_type. (To
        the logical mind this is indeed a story of more woe than that of
        Juliet and her Romeo, since the domain type of attribute parameter_value is a variable feast and thus
        offends a primary rule of relational theory.) Say that we issue a
        query such as:
    select * from parameters
    where parameter_name like '%size'
      and parameter_type = 'NUMBER'
With this query, it does not matter whether the first condition
        is evaluated before or after the second one. However, if we add the
        following condition, where int( )
        is a function to convert from char
        to integer value, then the order of
        evaluation becomes very significant:
    and int(parameter_value) > 1000
Now, the condition on parameter_type must be
        evaluated before the condition on the value, because otherwise we risk
        a run-time error consequent upon attempting to convert a character
        string (if for example parameter_type for that row is defined as
        char) to an integer. The optimizer may not be able to
        figure out that the poor design demands that one condition should have
        higher priority—and you may have trouble specifying it to the
        database.
Important
All search criteria are not equal; some are more equal than
          others.


Evaluation of Filtering Conditions



The very first questions to consider when
        writing a SQL statement are:
	What data is required, and from which tables?

	What input values will we pass to the DBMS engine?

	What are the filtering conditions that allow us to discard
            unwanted rows?



Be aware, however, that some data (principally data used for
        joining tables) may be stored redundantly in several tables. A
        requirement to return values known to be held in the primary key of a
        given table doesn’t necessarily mean that this table must appear in
        the from clause, since this primary
        key may well appear as the foreign key of another table from which we
        also need the data.
Even before writing a query, we should rank the filtering
        conditions. The really efficient ones (of which there may be several,
        and which may apply to different tables) will drive the query, and the
        inefficient ones will come as icing on the cake. What is the criterion
        that defines an efficient filter? Primarily, one that allows us to cut
        down the volume of the data we have to deal with as fast as possible.
        And here we must pay a lot of attention to the way we write; the
        following subsections work through a simple example to illustrate my
        point.
Buyers of Batmobiles



Assume that we have four tables, namely customers, orders, orderdetail, and a table of articles, as shown in Figure 4-5. Please note that
          in the figure the sizes of the boxes representing each table are
          more or less proportional to the volume of data in each table, not
          simply to the number of columns. Primary key columns are
          underlined.
[image: A classical order schema]

Figure 4-5. A classical order schema

Let’s now suppose that our SQL problem is to find the names of
          all the customers living in the city named “Gotham” who have ordered
          the article called “Batmobile” during the last six months. We have,
          of course, several ways to formulate this query; the following is
          probably what an ANSI SQL fan would write:
     select distinct 
 c.custname
     from customers c
          join orders o
            on o.custid = c.custid
          join orderdetail od
            on od.ordid = o.ordid
          join articles a
            on a.artid = od.artid
     where c.city = 'GOTHAM'
       and a.artname = 'BATMOBILE'
       and o.ordered >= somefunc
somefunc is supposed to be a
          function that returns the date six months prior to the current date.
          Notice too, the presence of distinct, which may be required if one of
          our customers is an especially heavy consumer of Batmobiles and has
          recently ordered several of them.
Let’s forget for a while that the optimizer may rewrite the
          query, and look at the execution plan such a statement suggests.
          First, we walk the customers
          table, keeping only rows for which the city happens to be Gotham.
          Then we search the orders table,
          which means that the custid
          column there had better be indexed, because otherwise the only hope
          the SQL engine has of executing the query reasonably fast is to
          perform some sorting and merging or to scan the orders table to build a hash table and
          then operate against that. We are going to apply another filter at
          this level, against the order date. A clever optimizer will not mind
          finding the filtering condition in the where clause and will understand that in
          order to minimize the amount of data to join it must filter on the
          date before performing the join. A not so clever optimizer might be
          tempted to join first, and then filter, and may therefore be
          grateful to you for specifying the filtering condition with the join
          condition, as follows:
      join orders o
        on o.custid = c.custid
        and o.ordered >= somefunc
Even if the filtering condition really has nothing to do with
          the join, it is sometimes difficult for the optimizer to understand
          when that is the case. If the primary key of orderdetail is defined as (ordid, artid) then, because ordid is the first attribute of the index,
          we can make use of that index to find the rows associated with an
          order as in Chapter 3. But if
          the primary key happens to be (artid,
          ordid) (and note, either version is exactly the same as
          far as relational theory is concerned), then tough luck. Some
          products may be able to make some use of the index[*] in that case, but it will not provide the efficient
          access that (ordid, artid) would
          have allowed. Other products will be totally unable to use the
          index. The only circumstance that may save us is the existence of a
          separate index on ordid.
Once we have linked orderdetails to orders, we can proceed to articles—without any problem this time
          since we found artid, the primary
          key, in orderdetail. Finally, we
          can check whether the value in articles is or is not a Batmobile. Is this
          the end of the story? Not quite. As instructed by distinct, we must now sort the resulting
          set of customer names that have passed across all the filtering
          layers so as to eliminate duplicates.
It turns out that there are several alternative ways of
          expressing the query that I’ve just described. One example is to use
          the older join syntax , as follows:
    select distinct c.custname
    from customers c,
         orders o,
         orderdetail od,
         articles a
    where c.city = 'GOTHAM'
      and c.custid = o.custid
      and o.ordid = od.ordid
      and od.artid = a.artid
      and a.artname = 'BATMOBILE'
      and o.ordered >= somefunc
It may just be old habits dying hard, but I prefer this older
          way, if only for one simple reason: it makes it slightly more
          obvious that from a logical point of view the order in which we
          process data is arbitrary, because the same data will be returned
          irrespective of the order in which we inspect tables. Certainly the
          customers table is particularly
          important, since that is the source from which we obtain the data
          that is ultimately required, while in this very specific context,
          all the other tables are used purely to support the remaining
          selection processes. One really has to understand that there is no
          one recipe that works for all cases. The pattern of table joins will
          vary for each situation you encounter. The deciding factor is the
          nature of the data you are dealing with.
A given approach in SQL may solve one problem, but make
          another situation worse. The way queries are written is a bit like a
          drug that may heal one patient but kill another.

More Batmobile purchases



Let’s explore alternative ways to list our buyers of
          Batmobiles. In my view, as a general rule, distinct at the top level should be
          avoided whenever possible. The reason is that if we have overlooked
          a join condition, a distinct will
          hide the problem. Admittedly this is a greater risk when building
          queries with the older syntax, but nevertheless still a risk when
          using the ANSI/SQL92 syntax if tables are joined through several
          columns. It is usually much easier to spot duplicate rows than it is
          to identify incorrect data.
It’s easy to give a proof of the assertion that incorrect
          results may be difficult to spot: the two previous queries that use
          distinct to return the names of
          the customers may actually return a wrong result. If we happen to
          have several customers named “Wayne,” we won’t get that information
          because distinct will not only
          remove duplicates resulting from multiple orders by the same
          customer, but also remove duplicates resulting from homonyms. In
          fact, we should return both the unique customer id and the customer
          name to be certain that we have the full list of Batmobile buyers.
          We can only guess at how long it might take to identify such an
          issue in production.
How can we get rid of distinct then? By acknowledging that we
          are looking for customers in Gotham that satisfy an existence
          test , namely a purchase order for a Batmobile in the past
          six months. Note that most, but not all, SQL dialects support the
          following syntax:
    select c.custname
    from customers c
    where c.city = 'GOTHAM'
      and exists (select null
                  from orders o,
                       orderdetail od,
                       articles a
                  where a.artname = 'BATMOBILE'
                    and a.artid = od.artid
                    and od.ordid = o.ordid
                    and o.custid = c.custid
                    and o.ordered >= somefunc)
If we use an existence test such as this query uses, a name
          may appear more than once if it is common to several customers, but
          each individual customer will appear only once, irrespective of the
          number of orders they placed. You might think that my criticism of
          the ANSI SQL syntax was a little harsh, since customers figure as prominently, if not
          more prominently than before. However, it now features as the source
          for the data we want the query to return. And another query, nested
          this time, appears as a major phase in the identification of the
          subset of customers.
The inner query in the preceding example is strongly linked to
          the outer select. As you can see
          on line 11 (in bold), the inner query refers to the current row of
          the outer query. Thus, the inner query is what is called a
          correlated subquery. The snag with this type of
          subquery is that we cannot execute it before we know the current
          customer. Once again, we are assuming that the optimizer doesn’t
          rewrite the query. Therefore we must first find each customer and
          then check for each one whether the existence test is satisfied. Our
          query as a whole may perform excellently if we have very few
          customers in Gotham. It may be dreadful if Gotham is the place where
          most of our customers are located (a case in which a sophisticated
          optimizer might well try to execute the query in a different
          way).
We have still another way to write our query, which is as
          follows:
    select custname
    from customers
    where city = 'GOTHAM'
      and custid in
                 (select o.custid
                  from orders o,
                       orderdetail od,
                       articles a
                  where a.artname = 'BATMOBILE'
                    and a.artid = od.artid
                    and od.ordid = o.ordid
                    and o.ordered >= somefunc)
In this case, the inner query no longer depends on the outer
          query: it has become an uncorrelated subquery.
          It needs to be executed only once. It should be obvious that we have
          now reverted the flow of execution. In the previous case, we had to
          search first for customers in the right location (e.g.,
          where city is Gotham), and then check each
          order in turn. In this latest version of the query, the identifiers
          of customers who have ordered what we are looking for are obtained
          via a join that takes place in the inner query.
If you have a closer look, however, there are more subtle
          differences as well between the current and preceding examples. In
          the case of the correlated subquery, it is of paramount importance
          to have the orders table indexed
          on custid; in the second case, it
          no longer matters, since then the index (if any) that will be used
          is the index associated with the primary key of customers.
You might notice that the most recent version of the query
          performs an implicit distinct. Indeed,
          the subquery, because of its join, might return many rows for a
          single customer. That duplication doesn’t matter, because the
          in condition checks only to see
          whether a value is in the list returned by the subquery, and
          in doesn’t care whether a given
          value is in that list one time or a hundred times. Perhaps though,
          for the sake of consistency we should apply the same rules to the
          subquery that we have applied to the query as a whole, namely to
          acknowledge that we have an existence test within the subquery as
          well:
    select custname
    from customers
    where city = 'GOTHAM'
      and custid in
                 (select o.custid
                  from orders o
                  where o.ordered >= somefunc
                    and exists (select null
                                from orderdetail od,
                                     articles a
                                where a.artname = 'BATMOBILE'
                                  and a.artid = od.artid
                                  and od.ordid = o.ordid))
or:
    select custname
    from customers
    where city = 'GOTHAM'
      and custid in
                 (select custid
                  from orders
                  where ordered >= somefunc
                    and ordid in (select od.ordid
                                  from orderdetail od,
                                       articles a
                                  where a.artname = 'BATMOBILE'
                                    and a.artid = od.artid)
Irrespective of the fact that our nesting is getting deeper
          and becoming less legible, choosing which query is the best between
          the exists and the in follows the very same rule inside the
          subquery as before: the choice depends on the effectiveness of the
          condition on the date versus the condition on the article. Unless
          business has been very, very slow for the past six months, one might
          reasonably expect that the most efficient condition on which to
          filter the data will be the one on the article name. Therefore, in
          the particular case of the subquery, in is better than exists because it will be faster to find
          all the order lines that refer to a Batmobile and then to check
          whether the sale occurred in the last six months rather than the
          other way round. This approach will be faster assuming that the
          table orderdetail is indexed on
          artid; otherwise, our bright,
          tactical move will fail dismally.
Note
It may be a good idea to check in against exists whenever an existence test is
            applied to a significant number of rows.

Most SQL dialects allow you to rewrite uncorrelated subqueries
          as inline views in the from
          clause. However, you must always remember that an in performs an implicit removal of
          duplicate values, which must become explicit when the subquery is
          moved to become an in-line view in the from clause. For example:
    select custname
    from customers
    where city = 'GOTHAM'
      and custid in
                 (select o.custid
                  from orders o,
                       (select distinct od.ordid
                        from orderdetail od,
                             articles a
                        where a.artname = 'BATMOBILE'
                          and a.artid = od.artid) x
                  where o.ordered >= somefunc
                    and x.ordid = o.ordid)
The different ways you have to write functionally equivalent
          queries (and variants other than those given in this section are
          possible) are comparable to words that are synonyms. In written and
          spoken language, synonyms have roughly the same meaning, but each
          one introduces a subtle difference that makes one particular word
          more suitable to a particular situation or expression (and in some
          cases another synonym is totally inappropriate). In the same way,
          both data and implementation details may dictate the choice of one
          query variant over others.

Lessons to be learned from the Batmobile trade



The various examples of SQL that you saw in the
          preceding section may look like an idle exercise in programming
          dexterity, but they are more than that. The key point is that there
          are many different ways in which we can attack the data, and that we
          don’t necessarily have to go first through customers, then orders, then orderdetail, and then articles as some of the ways of writing
          the query might suggest.
If we represent the strength of our search criteria with
          arrows—the more discriminant the criterion, the larger the arrow—we
          can assume that we have very few customers in Gotham, but that we
          sell quite a number of Batmobiles and business has been brisk for
          the past six months, in which case our battle map may look like
          Figure 4-6. Although we
          have a condition on the article name, the medium arrow points to
          orderdetail because that is what
          truly matters. We may have very few articles for sale, which may
          represent similar percentages of our revenue, or we may have a huge
          number of articles, of which one of the best sellers is the
          Batmobile.
[image: When query discrimination is based on location]

Figure 4-6. When query discrimination is based on location

Alternatively, we can assume that most of our customers are
          indeed based in Gotham, but that very few actually buy Batmobiles,
          in which case our battle plan will look more like Figure 4-7. It is quite
          obvious then, that we really have to cut to pieces the orderdetail table, which is the largest
          one. The faster we slash this table, the faster our query will
          run.
[image: When query discrimination is based on purchase]

Figure 4-7. When query discrimination is based on purchase

Note also—and this is a very important point—that the
          criterion “during the last six months” is not a very precise one.
          But what if we change the criterion to specify the last two months
          and happen to have 10 years of sales history online? In that case,
          it may be more efficient to get to those recent orders first—which,
          thanks to some techniques described in Chapter 5, may be clustered
          together—and then start from there, selecting customers from Gotham,
          on the one hand, and orders for Batmobiles on the other. To put it
          another way, the best execution plan does not only depend on the
          data values, it may also evolve over time.
What then can we conclude from all this? First, that there is
          more than one way to skin a cat...and that an expression of a query
          is usually associated with implicit assumptions about the data. With
          each different expression of a query we will obtain the same result
          set, but it may be at significantly different speeds. The way we
          write the query may influence the execution path, especially when we
          have to apply criteria that cannot be expressed within the truly
          relational part of the environment. If the optimizer is to be
          allowed to function at its best, we must try to maximize the amount
          of true relational processing and ensure the non-relational
          component has minimum impact on the final result.
We have assumed all along in this chapter that statements will
          be run as suggested by the way they are written. Be aware though,
          that an optimizer may rewrite queries—sometimes pretty aggressively.
          You could argue that rewrites by the optimizer don’t matter, because
          SQL is supposed to be a declarative language in which you state what
          you want and let the DBMS provide it. However, you have seen that
          each time we have rewritten a query in a different way, we have had
          to change assumptions about the distribution of data and about
          existing indexes. It is highly important, therefore, to anticipate
          the work of the optimizer to be certain that it will find what it
          needs, whether in terms of indexes or in terms of detailed-enough
          statistical information about the data.
Important
The correct result from an SQL statement is only the first
            step in building the best SQL.



Querying Large Quantities of Data



It may sound obvious, but the sooner we get rid of
        unwanted data, the less we have to process at later stages of a
        query—and the more efficiently the query will run. An excellent
        application of this principle can be found with set operators, of
        which union is probably the most
        widely used. It is quite common to find in a moderately complex
        union a number of tables appearing
        in several of the queries “glued” together with the union operator. One often sees the union of fairly complex joins, with most of
        the joined tables occurring in both select statements of the union—for example, on both sides of the
        union, something like the
        following:
    select ...
    from A,
         B,
         C,
         D,
         E1
    where (condition on E1)
      and (joins and other conditions)
    union
    select ...
    from A,
         B,
         C,
         D,
         E2
    where (condition on E2)
      and (joins and other conditions)
This type of query is typical of the cut-and-paste school of
        programming. In many cases it may be more efficient to use a union of those tables that are not common,
        complete with the screening conditions, and to then push that union into an inline view and join the
        result, writing something similar to:
    select ...
    from A,
         B,
         C,
         D,
         (select ...
          from E1
          where (condition on E1)
          union
          select ...
          from E2
          where (condition on E2)) E
    where (joins and other conditions)
Another classic example of conditions applied at the wrong place
        is a danger associated with filtering when a statement contains a
        group by clause. You can filter on
        the columns that define the grouping, or the result of the aggregate
        (for instance when you want to check whether the result of a count( ) is smaller than a threshold) or
        both. SQL allows you to specify all such conditions inside the
        having clause that filters after
        the group by (in practice, a sort
        followed by an aggregation) has been completed. Any condition bearing
        on the result of an aggregate function must be inside the having clause, since the result of such a
        function is unknown before the group
        by. Any condition that is independent on the aggregate
        should go to the where clause and
        contribute to decrease the number of rows that we shall have to sort
        to perform the group by.
Let’s return to our customers and orders example, admitting that
        the way we process orders is rather complicated. Before an order is
        considered complete, we have to go through several phases that are
        recorded in the table orderstatus,
        of which the main columns are ordid, the identifier of the order; status; and statusdate, which is a timestamp. The
        primary key is compound, consisting of ordid, and statusdate. Our requirement is to list, for
        all orders for which the status is not flagged as complete (assumed to
        be final), the identifier of the order, the customer name, the last
        known order status, and when this status was set. To that end, we
        might build the following query, filtering out completed orders and
        identifying the current status as the latest status assigned:
    select c.custname, o.ordid, os.status, os.statusdate
    from customers c,
         orders o,
         orderstatus os
    where o.ordid = os.ordid
      and not exists (select null
                      from orderstatus os2
                      where os2.status = 'COMPLETE'
                        and os2.ordid = o.ordid)
      and os.statusdate = (select max(statusdate)
                           from orderstatus os3
                           where os3.ordid = o.ordid)
      and o.custid = c.custid
At first sight this query looks reasonable, but in fact it
        contains a number of deeply disturbing features. First, notice that we
        have two subqueries, and notice too that they are not nested as in the
        previous examples, but are only indirectly related to each other. Most
        worrying of all, both subqueries hit the very same table, already
        referenced at the outer level. What kind of filtering condition are we
        providing? Not a very precise one, as it only checks for the fact that
        orders are not yet complete.
How can such a query be executed? An obvious approach is to scan
        the orders table, for each row
        checking whether each order is or is not complete. (Note that we might
        have been happy to find this information in the orders table itself,
        but this is not the case.) Then, and only then, can we check the date
        of the most recent status, executing the subqueries in the order in
        which they are written.
The unpleasant fact is that both subqueries are correlated.
        Since we have to scan the orders
        table, it means that for every row from orders we shall have to check whether we
        encounter the status set to COMPLETE for that order. The subquery to
        check for that status will be fast to execute, but not so fast when
        repeated a large number of times. When there is no COMPLETE status to be found, then a second
        subquery must be executed. What about trying to un-correlate
        queries?
The easiest query to un-correlate happens to be the second one.
        In fact, we can write, at least with some SQL dialects:
      and (o.ordid, os.statusdate) = (select ordid, max(statusdate)
                                      from orderstatus
                                      group by ordid)
The subquery that we have now will require a full scan of
        orderstatus; but that’s not
        necessarily bad, and we’ll discuss our reasoning in a moment.
There is something quite awkward in the condition of the pair of
        columns on the left-hand side of the rewritten subquery condition.
        These columns come from different tables, and they need not do so. In
        fact, we want the order identifier to be the same in orders and orderstatus; will the optimizer understand
        the subtlety of this situation? That is rather uncertain. If the
        optimizer doesn’t understand, then it will be able to execute the
        subquery first, but will have to join the two other tables together
        before being able to exploit the result of the subquery. If the query
        were written slightly differently, the optimizer would have greater
        freedom to decide whether it actually wants to do what I’ve just
        described or exploit the result of the subquery and then join orders to orderstatus:
    and (os.ordid, os.statusdate) = (select ordid, max(statusdate)
                                      from orderstatus
                                      group by ordid)
The reference on the left side to two columns from the same
        table removes the dependence of identification of the most recent
        status for the order on a preliminary join between orderstatus and orders. A very clever optimizer might have
        performed the modification for us, but it is wiser to take no risk and
        specify both columns from the same table to begin with. It is always
        much better to leave the optimizer with as much freedom as we
        can.
You have seen previously that an uncorrelated subquery can
        become a join in an inline view without much effort. We can indeed
        rewrite the entire query to list pending orders as follows:
    select c.custname, o.ordid, os.status, os.statusdate
    from customers c,
         orders o,
         orderstatus os,
         (select ordid, max(statusdate) laststatusdate
          from orderstatus
          group by ordid) x
    where o.ordid = os.ordid
      and not exists (select null
                      from orderstatus os2
                      where os2.status = 'COMPLETE'
                        and os2.ordid = o.ordid)
      and os.statusdate = x.laststatusdate
      and os.ordid = x.ordid
      and o.custid = c.custid
But then, if COMPLETE is
        indeed the final status, do we need the subquery to check the
        nonexistence of the last stage? The inline view helps us to identify
        which is the last status, whether it is COMPLETE or anything else. We can apply a
        perfectly satisfactory filter by checking the latest known
        status:
    select c.custname, o.ordid, os.status, os.statusdate
    from customers c,
         orders o,
         orderstatus os,
         (select ordid, max(statusdate) laststatusdate
          from orderstatus
          group by ordid) x
    where o.ordid = os.ordid
      and os.statusdate = x.laststatusdate
      and os.ordid = x.ordid
      and os.status != 'COMPLETE'
      and o.custid = c.custid
The duplicate reference to orderstatus can be further avoided by using
        OLAP or analytical functions available with some SQL engines. But
        let’s pause here and consider how we have modified the query and, more
        importantly, the execution path. Basically, our natural path was
        initially to scan the orders table,
        and then access through what may reasonably be expected to be an
        efficient index on the table orderstatus. In the last version of our
        query, we will attack through a full scan of orderstatus, to perform a group by. In terms of the number of rows,
        orderstatus will necessarily be
        several times bigger than orders.
        However, in terms of mere volume of data to scan, we can expect it to
        be smaller, possibly significantly smaller, depending on how much
        information is stored for each order.
We cannot say with certainty which approach will be better, it
        depends on the data. Let me add that seeing a full scan on a table
        that is expected to grow is not a good idea (restricting the search to
        the last month’s, or last few months’ worth of data can help). But
        there are significant chances that this last version of our query will
        perform better than the first attempt with the subquery in the
        where clause.
We cannot leave the subject of large data volumes without
        mentioning a slightly special case. When a query returns a very large
        amount of data, you have reasonable grounds for suspecting that it’s
        not an individual sitting at a terminal that executed the query. The
        likelihood is that such a query is part of a batch process. Even if
        there is a longish “preparatory phase,” nobody will complain so long
        as the whole process performs to a satisfactory standard. Do not, of
        course, forget that a phase, preparatory or not, requires
        resources—CPU, memory, and possibly temporary disk space. It helps to
        understand that the optimizer, when returning a lot of data, may
        choose a path which has nothing in common with the path it would adopt
        when returning few rows, even if the fundamental query is
        identical.
Important
Filter out unneeded data as early as possible.


The Proportions of Retrieved Data



A typical and frequently quoted saying is the famous
        “don’t use indexes when your query returns more than 10% of the rows
        of a table.” This states implicitly that (regular) indexes are
        efficient when an index key points to 10% or less of the rows in a
        table. As I have already pointed out in Chapter 3, this rule of thumb dates
        back to a time when relational databases were still regarded with
        suspicion in many companies. In those days, their use was mostly
        confined to that of departmental databases. This was a time when a
        100,000-row table was considered a really big one. Compared to 10% of
        a 500 million-row table, 10% of 100,000 rows is a trifle. Can we
        seriously hope that the best execution plan in one case will still be
        the best execution plan in the other case? Such is wishful
        thinking.
Independently from the evolution of table sizes since the time
        when the “10% of rows” rule of thumb was first coined, be aware that
        the number of rows returned means nothing in itself, except in terms
        of response time expectations by end users. If you compute an average
        value over 1 billion rows, you return a single row, and yet the DBMS
        performs a lot of work. Even without any aggregation, what matters is
        the number of data pages that the DBMS is going to hit when performing
        the query. Data page hits don’t only depend on the existence of
        indexes: as you saw in Chapter
        3, the relation of indexes to the physical order of rows in the
        table can make a significant difference in the number of pages to
        visit. Other implementation issues that I am going to discuss in Chapter 5 play an important part, too:
        depending on how data is physically stored, the same number of rows
        returned may mean that you have to visit massively different numbers
        of data pages. Furthermore, operations that would execute sequentially
        with one access path may be massively parallelized with another one.
        Don’t fall into the row percentage trap.
Important
When we want a lot of data, we don’t necessarily want an
          index.





[*] A good example would be sqlite, a remarkable storage engine
            that allows the management of data inside a file using SQL, but
            that is not a database server.

[*] The optimizer may also sometimes push criteria down into
              the view.

[*] A feature known as skip-scan may
              allow for searching the index.


Chapter 5. Terrain

Understanding Physical Implementation



[...] haben Gegend und Boden eine sehr
      nahe [...] Beziehung zur kriegerischen Tätigkeit, nämlich einen sehr
      entscheidenden Einfluß auf das Gefecht.
[...] Country and ground bear a most intimate [...] relation to
      the business of war, which is their decisive influence on the
      battle.
—Carl von Clausewitz (1780-1831) Vom Kriege, V,
      17



What a program sees as a table is not always
    the plain table it may look like. Sometimes it’s a view, and
    sometimes it really is a table, but with storage parameters that have been
    very carefully established to optimize certain types of operations. In
    this chapter, I explore different ways to arrange the data in a table and
    the operations that those arrangements facilitate.
I should emphasize from the start that the topic of this chapter is
    not disk layout, nor even the relative placement of journal and data
    files. These are the kinds of subjects that usually send system engineers
    and database administrators into mouth-watering paroxysms of delight—but
    no one else. There is much more to database organization than the physical
    dispersion of bytes on permanent storage. It is the actual nature of the
    data that dictates the most important choices.
Both system engineers and database administrators know how much
    storage is used, and they know the various possibilities available in
    terms of data containers, whether very low-level data containers such as
    disk stripes or high-level data containers such as tables. But frequently,
    even database administrators have only a scant knowledge of what lies
    inside those containers. It can sometimes be helpful to choose the terrain
    on which to fight. Just as a general may discuss tactics with the
    engineering corps, so the architect of an application can study with the
    database administrators how best to structure data at the physical level.
    Nevertheless, you may be required to fight your battle on terrain over
    which you have no control or, worse, to use structures that were optimized
    for totally different purposes.
Structural Types



   Even though matters of physical database structure are not
      directly related to the SQL language, the underlying structures of your
      database will certainly influence your tactical use of SQL. The chances
      are that any well-established and working database will fall into one of
      the following structural types :
	The fixed, inflexible model
	There are times when you will have absolutely no choice in
            the matter. You will have to work with the existing database
            structures, no matter how obvious it may be to you that they are
            contributing to the performance difficulties, if they are not
            their actual cause. Whether you are developing new applications,
            or simply trying to improve existing ones, the underlying
            structures are going to control the choices you can make in the
            deployment of your SQL armory. You must try to understand the
            reasoning behind the system and work with it.

	The evolutionary model
	Everything is not always cast in stone, and altering the
            physical layout of data (without modifying the logical model) is
            sometimes an option. Be very aware that there are dangers here and
            that the reluctance of database administrators to make such
            modifications doesn’t stem from laziness. In spite of the risks
            and potential for service interruption attached to such
            operations, many people cling to database reorganization as their
            last hope when facing performance issues. Physical reorganization
            is not in itself the panacea for correcting poor performance. It
            may be quite helpful in some cases, irrelevant elsewhere, and even
            harmful in other cases. It is important to know both what you can
            and cannot expect from such drastic action.



In a sense, if you have to work with a flawed design, neither
      scenario is a particularly attractive option. “Abandon hope, all ye that
      have an incorrect design” might just possibly be overstating the
      situation, but nevertheless I am stressing once again the crucial
      importance of getting the design right at the earliest
      opportunity.
In more than one way, implementation choices are comparable to the
      choice of tires in Formula One motor racing: you have to take a bet on
      the race conditions that you are expecting. The wrong tire choice may
      prove costly, the right one may help you win, but even the best choice
      will not, of itself, assure you of victory.
I won’t discuss SQL constructs in this chapter, nor will I delve
      into the intricacies of specific implementations, which in any case are
      all very much product dependent. However, it is difficult in practice to
      design a reliable architecture without an understanding of all the
      various conditions, good and bad, with or against which the design will
      have to function. Understanding also means sensing how much a particular
      physical implementation can impact performance, for better or for worse.
      This is why I shall try to give you an idea, first of some of the
      practical problems DBMS implementers have had to face to help improve
      the speed of queries and changes to the database (of which more will be
      said in Chapter 9), and second of
      some of the answers they have found. From a practical point of view,
      though, be aware that some of the features presented in this chapter are
      not available with all database systems. Or, if
      they are available, they may require separate licensing.
One last word before we begin. I have tried to establish some
      points of comparison between various commercial products. To that end,
      this chapter presents a number of actual test results. However, it is by
      no means the purpose of this book to organize a beauty contest between
      various database products, especially as the balance may change between
      versions. Similarly, absolute values have no meaning, since they depend
      very strongly on your hardware and the design of the database. This is
      why I have chosen to present only relative values, and why I have also
      chosen (with one exception) to compare variations for only one
      particular DBMS.

The Conflicting Goals



        There are often two conflicting goals when trying to
      optimize the physical layout of data for a system that expects a large
      number of active users, some of them reading and others writing data.
      One goal is to try to store the data in as compact a way as possible and
      to help queries find it as quickly as possible. The other goal is to try
      to spread the data, so that several processes writing concurrently do
      not impede one another and cause contention and competition for
      resources that cannot be shared.
Even when there is no concurrency involved, there is always some
      tension when designing the physical aspect of a database, between trying
      to make both queries and updates (in the general sense of “changes to
      the data”) as fast as possible. Indexing is an obvious case in point:
      people often index in anticipation of queries using the indexed columns
      as selection criteria. However, as seen in Chapter 3, the cost of maintaining
      indexes is extremely high and inserting into an index is often much more
      expensive than inserting into the underlying table alone.
Contention issues affect any data that has to be stored,
      especially in change-heavy transactional applications (I am using the
      generic term change to mean any insert, delete, and
      update operation). Various storage units and some very low layers of the
      operating system can take care of some contention issues. The files that
      contain the database data may be sliced, mirrored, and spread all over
      the place to ensure data integrity in case of hardware failure, as well
      as to limit contention.
Unfortunately, relying on the operating system alone to deal with
      contention is not enough. The base units of data that a DBMS handles
      (known as pages or blocks depending on the product) are usually, even at the lowest
      layers, atomic from a database perspective, especially as they are
      ultimately all scanned in memory. Even when everything is perfect for
      the systems engineer, there may be pure DBMS performance issues.
To get the best possible response time, we must try to keep the
      number of data pages that have to be accessed by the database engine as
      low as possible. We have two principal means of decreasing the number of
      pages that will have to be accessed in the course of a query:
	Trying to ensure a high data density per page

	Grouping together those pieces of data most likely to be
          required during one retrieval process



However, trying to squeeze the data into as few pages as possible
      may not be the optimum approach where the same page is being written by
      several concurrent processes and perhaps also being read at the same
      time. Where that single data page is the subject of multiple read or
      write attempts, conflict resolution takes on an altogether more complex
      and serious dimension.
Many believe that the structure of a database is the exclusive
      responsibility of the database administrator. In reality, it is
      predominantly but not exclusively the
      responsibility of that very important person. The way in which you
      physically structure your data is extremely dependent on the nature of
      the data and its intended use. For example, partitioning can be a
      valuable aid in optimizing a physical design, but it should never be
      applied in a haphazard way. Because there is such an intimate
      relationship between process requirements and physical design , we often encounter profound conflicts between
      alternative designs for the same data when that data is shared between
      two or more business processes. This is just like the dilemma faced by
      the general on the battlefield, where the benefits of using alternative
      parts of his forces (infantry, cavalry, or artillery) have to be
      balanced against the suitability of the terrain across which he has to
      deploy them. The physical design of  tables and indexes is one of those areas where database administrators and
      developers must work together, trying to match the available DBMS
      features in the best possible way against business requirements.
The sections to follow introduce some different strategies and
      show their impact on queries and updates from a single-process
      perspective, which, in practice, is usually the batch program
      perspective.
Important
Reads and writes don’t live in harmony: readers want data
        clustered; and concurrent writers want data scattered.


Considering Indexes as Data Repositories



                 Indexes allow us to find quickly the addresses (references to some particular storage in persistent
      memory, typically file identifiers and offsets within the files) of the
      rows that contain a key we are looking for. Once we have an address,
      then it can be translated into a low-level, operating system reference
      which, if we are lucky, will direct us to the true memory address where
      the data is located. Alternatively, the index search will result in some
      input/output operation taking place before we have the data at our
      disposal in memory.
As discussed previously in Chapter
      3, when the value of a key we are looking for refers to a very
      large number of rows, it is often more efficient simply to scan the
      table from the beginning to the end and ignore the indexes. This is why,
      at least in a transactional database, it is useless to index columns
      with a low number of distinct values (i.e., a low
      cardinality) unless one value is highly selective
      and appears frequently in where
      clauses. Other indexes that we can dispose of are single-column indexes
      on columns that already participate in composite indexes as the leading
      column: there is no need whatsoever to index the same column twice in
      these circumstances. The very common tree-structured, or hierarchical,
      index can be efficiently searched even if we do not have the full key
      value, just as long as we have a sufficient number of leading bytes to
      ensure discrimination.
The use of leading bytes rather than the full index key for
      querying an index introduces an interesting type of optimization. If
      there is an index on (c1, c2, c3),
      this index is usable even if we only specify the value of c1. Furthermore, if the key values are not
      compressed, then the index contains all the data held in the (c1, c2, c3) triplets that are present in the
      table. If we specify c1 to get the
      corresponding values of c2, or of
      c2 to find the corresponding c3, we find within the index itself all the
      data we need, without requiring further access to the actual table. For
      example, to take a very simple analogy, it’s exactly as though you were
      looking for William Shakespeare’s year of birth. Submitting the string
      William Shakespeare to any web search engine will
      return information such as you see in Figure 5-1.
[image: Searching the Web for “William Shakespeare”]

Figure 5-1. Searching the Web for “William Shakespeare”

There is no need to visit any of these sites (which may be a
      pity): we have found our answer in the data returned from the search
      engine index itself. The fourth entry tells us that Shakespeare was born
      in 1564.
When an index is sufficiently loaded with information, going to
      the place it points to becomes unnecessary. This very same reasoning is
      at the root of an often used optimization tactic. We can improve the
      speed of a frequently run query by stuffing into an index additional
      columns (one or more) which of themselves have no part to play in the
      actual search criteria, but which crucially hold the data we need to
      answer our query. Thus the data that we require can be retrieved
      entirely from the index, cutting out completely the need to access the
      original source data. Some products such as DB2 are clever enough to let
      us specify that a unique index includes some other
      columns and check uniqueness of only a part of the composite key. The
      same result can be achieved with Oracle, in a somewhat more indirect
      fashion, by using a non-unique index to enforce a uniqueness or primary
      key constraint.
Conversely, there have been cases of batch programs suddenly
      taking much more time to run to completion than previously, following
      what appears to be the most insignificant modification to the query.
      This minor change was the addition of another column to the list of
      columns returned by a select
      statement. Unfortunately, prior to the modification, the entire query
      could be satisfied by reference to the data returned from an index. The
      addition of the new column forced the database to go back to the table,
      resulting in a hugely significant increase in processor activity.
Let’s look in more detail at the contrast between “index only” and
      “index plus table” retrieval performance. Figure 5-2 illustrates the
      performance impact of fetching one additional column absent from the
      index that is used to answer the query for three of the major database
      systems. The table used for the test was the same in all cases, having
      12 columns populated with 250,000 rows. The primary key was defined as a
      three-column composite key, consisting of first an integer column with
      random values uniformly spread between 1 and 5,000, then a string of 8
      to 10 characters, and then finally a datetime column. There is no other index on
      the table other than the unique index that implements the primary key.
      The reference query is fetching the second and third columns in the
      primary key on the basis of a random value of between 1 and 5,000 in the
      first column. The test measures the performance impact of fetching one
      more column—numeric and therefore relatively small—that doesn’t belong
      to the index. The results in Figure
      5-2 are normalized such that the case of fetching two columns
      that are found in the index is always pegged at 100%. The case of having
      to go to the table and fetch an additional column absent from the index
      is then expressed as some percentage less than 100%.
[image: Performance impact of fetching a third column that has to be retrieved from the table]

Figure 5-2. Performance impact of fetching a third column that has to be
        retrieved from the table

Figure 5-2 shows that
      the performance impact of having to go to the table as well as to the
      index isn’t enormous (around 5 or 10%) but nevertheless it is
      noticeable, and it is much more so with some database products than with
      others. As always, the exact numbers may vary with circumstances, and
      the impact can be much more severe if the table access requires
      additional physical I/O operations, which isn’t the case here.
Pushing to the extreme the principle of storing as much data as
      possible in the indexes, some database management systems, such as
      Oracle, allow you to store all of a table’s data into an index built on
      the primary key, thus getting rid of the table structure altogether.
      This approach saves storage and may save time. The table
      is the index, and is known as an
      index-organized table (I0T) as opposed to the
      regular heap structure.
After the discussion in Chapter
      3 about the cost penalty of index insertion, you might expect
      insertions into an index-organized table to be less costly than applying
      insertions to a table with no other index than the primary key
      enforcement index. In fact, in some circumstances the opposite is true,
      as you can see from Figure
      5-3. It compares insertion rates for a regular table against
      those for an IOT. The tests used a total of four tables. Two table
      patterns with the same column definitions were created, once as a
      regular heap table, and once as an IOT. The first table pattern was a
      small table consisting of the primary key columns plus one additional
      column, and the second pattern a table consisting of the primary key
      columns plus nine other columns, all numeric. The (compound) primary key
      in every table was defined as a number column, a 10-character string,
      and a timestamp. For each case, two tests were performed. In the first
      test, the primary key was subjected to the insertion of randomly ordered
      primary key values. The second test involved the insertion into the
      leading primary key column of an increasing, ordered sequence of
      numbers.
Where the table holds few columns other than the ones that define
      the primary key, it is indeed faster to insert into an IOT. However, if
      the table has even a moderate number of columns, all those columns that
      don’t pertain to the primary key also have to be stored in the index
      structure (sometimes to an overflow area). Since the table is the index,
      much more information is stored there than would otherwise be the case.
      Chapter 3 has also shown that
      inserting into an index is intrinsically more costly than inserting into
      a regular table. The byte-shuffling cost associated with inserting more
      data into a more complicated structure can lead to a severe performance
      penalty, unless the rows are inserted in the same or near-the-same order
      as the primary key index. The penalty is even worse with long character
      strings. In many cases the additional cost of insertion outweighs the
      benefit of not having to go to the table when fetching data through the
      primary key index.[*]
[image: Relative cost of inserting into an Oracle index-organized table compared to a regular (heap-organized) table]

Figure 5-3. Relative cost of inserting into an Oracle index-organized table
        compared to a regular (heap-organized) table

There are, however, some other potential benefits linked to the
      strong internal ordering of indexes, as you shall see next.
Important
Some queries can be answered by retrieving only the index
        data.


Forcing Row Ordering



              There is another aspect to an index-organized table than
      just finding all required data in the index itself without requiring an
      additional access to the table. Because IOTs, being indexes, are, first
      and foremost, strongly ordered structures, their rows are internally
      ordered. Although the notion of order is totally foreign to the
      relational theory, from a practical point of view whenever a query
      refers to a range of values, it helps to find them together instead of
      having to gather data scattered all over the table. The most common
      example of this sort of application is range searching on time series
      data, when you are looking for events that occurred between two
      particular dates.
Most database systems manage to force such an ordering of rows by
      assigning to an index the role of defining the order of rows in the
      table. SQL Server and Sybase call such an index a clustered
      index . DB2 calls it a clustering index  , and it has much the same effect in practice as an
      Oracle IOT. Some queries benefit greatly from this type of organization.
      But similar to index organized tables, updates to columns pertaining to
      the index that defines the order are obviously more costly because they
      entail a physical movement of the data to a new position corresponding
      to the “rank” of the new values. The ordering of rows inevitably favors
      one type of range-scan query at the expense of range scans on
      alternative criteria.
As with IOTs that are defined by the primary key, it is safer to
      use the primary key index as the clustering index, since primary keys
      are never updated (and if your application needs to update your primary
      key, there is something very seriously wrong indeed with your design,
      and it won’t take long before there is something seriously wrong with
      the integrity of your data). In contrast to IOTs, an index other than
      the one that enforces the primary key constraint can be chosen as the
      clustering index. But remember that any ordering unduly favors some
      processes at the expense of others. The primary key, if it is a natural
      key, has a logical significance; the associated index is more equal than
      all the other indexes that may be defined on the table, even unique
      ones. If some columns must be given some particular prominence through
      the physical implementation, these are the ones.
Figure 5-4 illustrates
      the kind of differences you may expect between clustered and
      non-clustered index performance in practice. If we take the same table
      as was used for the index-organized table in Figure 5-3’s example (a
      three-column primary key plus nine numeric columns), and if we insert
      rows in a totally random way, the cost of insertion into a table where
      the primary key index is clustered is quite high, since tests show that
      our insertion rate is about half the insertion rate obtained with a
      non-clustered primary key. But when we run a range scan test on about
      50,000 rows, this clustered index provides really excellent performance.
      In this particular case, the clustered index allows us to outperform the
      non-clustered approach by a factor of 20. We should, of course, see no
      difference when fetching a single row.
A structural optimization, such as a clustered index or an IOT,
      necessarily has some drawbacks. For one thing, such structures apply
      some strong, tree-based, and therefore hierarchical ordering to tables.
      This approach resurrects many of the flaws that saw hierarchical
      databases replaced by relational databases in the corporate world. Any
      hierarchical structure favors one vision of the data and one access path
      over all the others. One particular access path will be better than
      anything you could get with a non-clustered table, but most other access
      paths are likely to be significantly worse. Updates may prove more
      costly. The initial tidy disposition of the data inside the database
      files may deteriorate faster at the physical level, due to chaining,
      overflow pages, and similar constructs, which take a heavy toll on
      performance. Clustered structures are excellent in
[image: How clustered indexes perform]

Figure 5-4. How clustered indexes perform

some cases, boosting performance by an impressive factor. But they
      always need to be carefully tested, because there is a high probability
      that they will make many other processes run slower. One must judge
      their suitability while looking at the global picture—and not on the
      basis of one particular query.
Important
Range scanning on clustered data can give impressive
        performance, but other queries will suffer as a consequence.


Automatically Grouping Data



     You have seen that finding all the rows together when
      doing a range scan can be highly beneficial to performance. There are,
      actually, other means to achieve a grouping of data than the somewhat
      constraining use of clustering indexes or index-organized tables. All
      database management systems let us partition tables
      and indexes—an application of the old principle of divide and
      rule. A large table may be split into more manageable chunks.
      Moreover, in terms of process architecture, partitioning    allows an increased concurrency and parallelism, thus
      leading to more scalable architectures, as you
      shall see in Chapters 9 and 10.
First of all, beware that this very word,
      partition, has a different meaning depending on the
      DBMS under discussion, sometimes even depending on the version of the
      DBMS. There was a time, long ago, when what is now known as an Oracle
      tablespace used to be referred to as a
      partition.
Round-Robin Partitioning



In some cases, partitioning is a totally internal,
        non-data-driven mechanism. We arbitrarily define a number of partitions
        as distinct areas of disk storage, usually closely linked to the
        number of devices on which we want the data to be stored. One table
        may have one or more partitions assigned to it. When data is inserted,
        it is loaded to each partition according to some arbitrary method, in
        a round-robin fashion, so as to balance the load on disk I/O induced
        by the insertions.
Incidentally, the scattering of data across several partitions
        may very well assist subsequent random searches. This mechanism is
        quite comparable to file striping over disk arrays. In fact, if your
        files are striped, the benefit of such a partitioning becomes slight
        and sometimes quite negligible. Round-robin scattering can be thought
        of as a mechanism designed only to arbitrarily spread data
        irrespective of logical data associations, rather than to regroup data
        on the basis of those natural associations. However, with some
        products, Sybase being one of them, one transaction will always write
        to the same partition, thus achieving some business-process-related
        grouping of data.

Data-Driven Partitioning



There is, however, a much more interesting type of
        partitioning known as data-driven partitioning
         . With data-driven partitioning, it is the values,
        found in one or several columns, that defines the partition into which
        each row is inserted. As always, the more the DBMS knows about the
        data and how it is stored, the better.
Most really large tables are large because they contain
        historical data. However, our interest in a particular news event
        quickly wanes as new and fresher events crowd in to demand our
        attention, so it is a safe assumption to make that the
        most-often-queried subset of historical data is the most recent one.
        It is therefore quite natural to try to partition data by date,
        separating the wheat from the chaff, the active data from the dormant
        data.
For instance, a manual way to partition by date is to split a
        large figures table (containing
        data for the last twelve months) into twelve separate tables, one for
        each month, namely jan_figures,
        feb_figures...all the way to
        dec_figures. To ensure that a
        global vision of the year is still available for any queries that
        require it, we just have to define figures as the union of those twelve tables. Such a
        union is often given some kind of
        official endorsement at the database level as a partitioned
        view   , or (in MySQL) a merge table
         . During the month of March, we’ll insert into the
        table mar_figures. Then we’ll
        switch to apr_figures for the
        following month. The use of a view as a blanket object over a set of
        similarly structured tables may appear an attractive idea, but it has
        drawbacks:
	The capital sin is that such a view builds in a fundamental
            design flaw. We know that the underlying tables are logically
            related, but we have no way to inform the DBMS of their
            relationships except, in some cases, via the rather weak
            definition of the partitioned view. Such a multi-table design
            prevents us from correctly defining integrity constraints. We have
            no easy way to enforce uniqueness properly across all the
            underlying tables, and as a matter of consequence, we would have
            to build multiple foreign keys referencing this “set” of tables, a
            situation that becomes utterly difficult and unnatural. All we can
            do in terms of integrity is to add a check constraint on the column that
            determines partitioning. For example, we could add a check constraint to sales_date, to ensure that sales_date in the jun_sales table cannot fall outside the
            June 1 to June 30 range.

	Without specific support for partitioned views in your DBMS,
            it is rather inconvenient to code around such a set of tables,
            because every month we must insert into a different underlying
            table. This means that insert
            statements must be dynamically built to accommodate varying table
            names. The effect of dynamic statements is usually to
            significantly increase the complexity of programs. In our case,
            for instance, a program would have to get the date, either the
            current one or some input value, check it, determine the name of
            the table corresponding to that date, and build up a suitable SQL
            statement. However, the situation is much better with partitioned
            views, because insertions can then usually be performed directly
            through the view, and the DBMS takes care of where to insert the
            rows.
In all cases, however, as a direct consequence of our flawed
            design, it is quite likely that after some unfortunate and
            incoherent insertions we shall be asked to code referential
            integrity checks, thus further compounding a poor design with an
            increased development load—both for the developers and for the
            machine that runs the code. This will move the burden of integrity
            checking from the DBMS kernel to, in the best of cases, code in
            triggers and stored procedures and, in the worst of cases, to the
            application program.

	There is a performance impact on queries when using blanket
            views. If we are interested in the figures for a given month, we
            can query a single table. If we are interested in the figures from
            the past 30 days, we will most often need to query two tables. For
            queries, then, the simplest and more maintainable way to code is
            to query the view rather than the underlying tables. If we have a
            partitioned view and if the column that rules the placement of rows
            belongs to our set of criteria, the DBMS optimizer will be able to
            limit the scope of our query to the proper subset of tables. If
            not, our query will necessarily be more complicated than it would
            be against a regular table, especially if it is a complex query
            involving subqueries or aggregates. The complexity of the query
            will continue to increase as more tables become involved in the
            union. The overhead of querying
            a large union view over
            directly querying a single table will quickly show in repeatedly
            executed statements.



Historically, the first step taken by most database management
        systems towards partitioning has been the support of partitioned
        views. The next logical step has been support for true data-driven
        partitioning. With true partitioning , we have a single table at the logical level, with a
        true primary key able to be referenced by other tables. In addition,
        we have one or several columns that are defined as the
        partition key  ; their values are used to determine into which
        partition a row is inserted. We have all the advantages of partitioned
        views, transparency when operating on the table,
        and we can push back to the DBMS engine the task
        of protecting the integrity of the data, which is one of the primary
        functions of the DBMS. The kernel knows about partitioning, and the
        optimizer will know how to exploit such a physical structure, by
        either limiting operations to a small number of partitions (something
        known as partition pruning  ), or by operating on several partitions in
        parallel.
The exact way partitioning is implemented and the number of
        available options is product-dependent. There are several different
        ways to partition data, which may be more or less appropriate to
        particular situations:
	Hash-partitioning
	Spreads data by determining the partition as the result of
              a computation on the partition key. It’s a totally arbitrary
              placement based entirely on an arithmetic computation, and it
              takes no account at all of the distribution of data values.
              Hash-partitioning does, however, ensure very fast access to rows
              for any specific value of the partition key. It is useless for
              range searching, because the hash function transforms
              consecutive key values into non-consecutive hash values, and
              it’s these hash values that translate to physical
              address.
Note
DB2 provides an additional mechanism called
                range-clustering  , which, although not the same as partitioning,
                nevertheless uses the data from the key to determine physical
                location. It does this through a mechanism that, in contrast
                to hashing, preserves the order of data items. We then gain on
                both counts, with efficient specific accesses as well as
                efficient range scans.


	Range-partitioning
	Seeks to gather data into discrete groups according to
              continuous data ranges. It’s ideally suited for dealing with
              historical data. Range-partitioning is closest to the concept of
              partitioned views that we discussed earlier: a partition is
              defined as being dedicated to the storage of values falling
              within a certain range. An else partition is set up for catching
              everything that might slip through the net. Although the most
              common use of range partitioning is to partition by range of
              temporal values, whether it is hours or years or anything
              between, this type of partitioning is in no way restricted to a
              particular type of data. A multivolume encyclopedia in which the
              articles in each volume would indeed be within the alphabetical
              boundaries of the volume but otherwise in no particular order
              provides a good example of range partitioning.

	List-partitioning
	Is the most manual type of partitioning and may be
              suitable for tailor-made solutions. Its name says it all: you
              explicitly specify that rows containing a list of the possible
              values for the partition key (usually just one column) will be
              assigned to a particular partition. List-partitioning can be
              useful when the distribution of values is anything but
              uniform.



The partitioning process can sometimes be repeated with the
        creation of subpartitions. A subpartition is merely a partition within
        a partition, giving you the ability to partition against a second
        dimension by creating, for instance, hash-partitions within a
        range-partition.
Important
Data partitioning is most valuable when it is based on the
          data values themselves.



The Double-Edged Sword of Partitioning



    Despite the fact that partitioning spreads data from a
      table over multiple, somewhat independent partitions, data-driven
      partitioning is not a panacea for resolving concurrency problems. For
      example, we might partition a table by date, having one partition per
      week of activity. Doing so is an efficient way to spread data for one
      year over 52 logically distinct areas. The problem is that during any
      given week everybody will rush to the same partition to insert new rows.
      Worse, if our partitioning key is the current system date and time, all
      concurrent sessions will be directed towards the very same data block
      (unless some structural implementation tricks have been introduced, such
      as maintaining several lists of pages or blocks where we can insert). As
      a result, we may have some very awkward memory contention. Our large
      table will become a predominantly cold area, with a very hot spot
      corresponding to most current data. Such partitioning is obviously less
      than ideal when many processes are inserting concurrently.
Note
If all data is inserted through a single process, which is
        sometimes the case in data-warehousing environments, then we won’t
        have a hot spot to contend with, and our 52-week partitioning scheme
        won’t lead to concurrency problems.

On the other hand, let’s assume that we choose to partition
      according to the geographical origin of a purchase order (we may have to
      carefully organize our partitioning if our products are more popular in
      some areas and suffer from heavier competition elsewhere). At any given
      moment, since sales are likely to come from nowhere in particular, our
      inserts will be more or less randomly spread over all our partitions.
      The performance impact from our partitioning will be quite noticeable
      when we are running geographical reports. Of course, because we have
      partitioned on spatial criteria, time-based reports will be less
      efficiently generated than if we had partitioned on time. Nevertheless,
      even time-based queries may, to some extent, benefit from partitioning
      since it is quite likely that on a multiprocessor box the various
      partitions will be searched in parallel and the subsequent results
      merged.
There are therefore two sides to partitioning. On the one hand, it
      is an excellent way to cluster data according to the partitioning key so
      as to achieve faster data retrieval. On the other hand, it is a
      no-less-excellent way to spread data during concurrent inserts so as to
      avoid hot spots in the table. These two objectives can work in
      opposition to one another, so the very first thing to consider when
      partitioning is to identify the major problem, and partition against
      that. But it is important to check that the gain on one side is not
      offset by the loss on the other. The ideal case is when the clustering
      of data for selects goes hand in hand
      with suitably spread inserts, but
      this is unfortunately not the most common situation.
Important
Data partitioning can be used to scatter or cluster your data:
        it all depends on your requirements.


Partitioning and Data Distribution



   You may be tempted to believe that if we have a very large
      table and want to avoid contention when many sessions are simultaneously
      writing to the database, then we are necessarily better off partitioning
      the data in one way or another. This is not always true.
Suppose that we have a large table storing the details of orders
      passed by our customers. If, as sometimes happens, a single customer
      represents the bulk of our activity, partitioning on the customer
      identifier is not going to help us very much. We can very roughly divide
      our queries into two families: queries relating to our big customer and
      queries relating to the other, smaller customers. When we query the data
      relating to one small customer, an index on the customer identifier will
      be very selective and therefore efficient, without any compelling need
      for partitioning. A clever optimizer fed with suitable statistics about
      the distribution of keys will be able to detect the skewness and use the
      index. There will be little benefit to having those small customers
      stored into smallish partitions next to the big partition holding our
      main customer.
Conversely, when querying the data attached to our major customer,
      the very same clever optimizer will understand that scanning the table
      is by far the most efficient way of proceeding. In that case, fully
      scanning a partition that comprises, for example, 80% of the total
      volume will not be much faster than doing a full table scan. The end
      users will hardly notice the performance advantage, whereas the
      purchasing department will most certainly notice the extra cost of the
      separately priced partitioning option.
Important
The biggest benefits to queries of table partitioning are
        obtained when data is uniformly spread in respect to the partitioning
        key.


The Best Way to Partition Data



   Never forget that what dictates the choice of a
      nonstandard storage option such as partitioning is the global
      improvement of business operations. It may mean improving a business
      process that is perceived as being of paramount importance to the
      detriment of some other processes. For instance, it makes sense to
      optimize transactional processing that takes place during business hours
      at the expense of a nightly batch job that has ample time to complete.
      The opposite may also be true, and we may decide that we can afford to
      have very slightly less responsive transactions if it allows us to
      minimize a critical upload time during which data is unavailable to
      users. It’s a matter of balance.
In general, you should avoid unduly favoring one process over
      another that needs to be run under similar conditions. In this regard,
      any type of storage that positions data at different locations based on
      the data value (for example both clustering indexes as well as
      partitioning) are very costly when that value is updated. What would
      have previously been an in situ update in a regular
      table, requiring hardly more than perhaps changing and shifting a few
      bytes in the table at an invariant physical address, becomes a delete on one part of the disk, followed by an
      insert somewhere else, with all the
      maintenance operations usually associated with indexes for this type of
      operation.
Having to move data when we update partition keys seems, on the
      surface, to be a situation best avoided. Strangely, however,
      partitioning on a key that is updated may sometimes be preferable to
      partitioning on a key that is immutable once it has been inserted. For
      example, suppose that we have a table being used as a service queue.
      Some process inserts service requests into this table that are of
      different types (say type T1 to type
      Tn). New service requests are initially set to
      status W, meaning “waiting to be processed.” Server
      processes S1 to Sp
      regularly poll the table for requests with the W
      status, change the status of those requests to P
      (meaning “being processed”), and then, as each request is completed its
      status is set to D for “done.”
Let’s further suppose that we have as many server processes as we
      have request types, and that each server process is dedicated to
      handling a particular type of request. Figure 5-5 shows the service queue
      as well as the processes. Of course, since we cannot let the table fill
      with “done” requests, there must be some garbage-collecting process, not
      shown, that removes processed requests after a suitable delay.
[image: A service queue]

Figure 5-5. A service queue

Each server process regularly executes a select (actually, a select ... for update) query with two
      criteria, the type, which depends on the server, and a condition:
    and status = 'W'
Let’s consider alternative ways of partitioning the service queue
      table. One way to partition the table, and possibly the most obvious, is
      to partition by request type. There is a big advantage here should any
      server process crash or fall behind in one way or another. The queue
      will lengthen for that process until it finally catches up, but the
      interruption to the processing of that queue will have no influence on
      the other processes.
Another advantage of partitioning by request type is that we avoid having requests of any one
      type swamp the system. Without partitioning, the polling processes scan
      a queue that under normal circumstances contains very few rows of
      interest. If we have a common waiting line and all of a sudden we have a
      large number of requests of one type and status,
      all the processes will have more requests to
      inspect and therefore each will be slowed down. If we partition by type,
      we establish a watertight wall between the processing of different
      types.
But there is another possible way to partition our service queue
      table, and that is by status. The downside is obvious: any status change
      will make a request migrate from one partition to the next. Can there be
      any advantage to such migration? Actually, there may indeed be benefit
      in this approach. Everything in partition W is
      ready and waiting to be processed. So there is no need to scan over
      requests being processed by another server or requests that have already
      been processed. Therefore, the cost of polling may be significantly
      reduced. Another advantage is that garbage collection will operate on a
      separate partition, and will not disturb the servers.
We cannot say definitively that “partitioning must be by type” or
      “partitioning must be by status.” It depends on how many servers we
      have, their polling frequency, the relative rate at which data arrives,
      the processing time for each type of request, and how often we remove
      processed requests, and so on. We must carefully test various hypotheses
      and consider the overall picture. But it is sometimes more efficient for
      the overall system to sacrifice outright performance for one particular
      operation, if by doing so other, more frequently running processes are
      able to obtain a net advantage, thus benefiting the global business
      operations.
Important
There may be several ways to partition tables, and the most
        obvious is not always the most efficient. Always consider the global
        picture.


Pre-Joining Tables



    We have seen that physically grouping rows together is of
      most benefit when performing range scans, where we are obviously
      interested in a succession of logically adjacent rows. But our
      discussion so far has been with regard to retrieving data from only one
      table. Unless the database design is very, very, very bad, most queries
      will involve far more than one table. It may therefore seem somewhat
      questionable if we group all the data from one table into one physical
      location, only to have to complete the retrieval by visiting several
      randomly scattered locations for data from a second and subsequent
      tables. We need some method to group data from at least two tables into
      the same physical location on disk.
The answer lies in pre-joined tables, a technique that is
      supported by some database systems. Pre-joining is not the same as
      summary tables or materialized
      views, which are themselves nothing other than redundant
      data, pre-digested results that are updated more or less
      automatically.
Pre-joined tables are tables that are physically stored together,
      based on some criterion that will usually be the join condition. (Oracle
      calls such a set of pre-joined tables a cluster,
      which has nothing to do with either index clustering, as defined earlier
      in this chapter, nor with the MySQL clusters of databases, which are
      multiple servers accessing the same set of tables.)
When tables are pre-joined, the basic unit of storage (a page or a
      block), normally devoted to the data from a single table, holds data
      from two or more tables, brought together on the basis of a common join
      key. This arrangement may be very efficient for one specific join. But
      it often proves to be a disaster for everything else. Here’s a review of
      some of the disadvantages of pre-joining tables:
	Once the data from two or more tables starts to be shared
          within one page (or block), the amount of data from one table that
          can be held in one database page obviously falls, as the page is now
          sharing its fixed space between two or more tables. Consequently,
          there is a net increase in the number of pages needed to hold all
          the data from that one table. More I/O is required than previously
          if a full table scan has to be performed.

	Not only is data being shared across additional pages, but the
          effective size of those pages has been reduced from what was
          obviously judged to be the optimum at database creation time, and so
          overflow and chaining start to become significant problems. When
          this happens, the number of successive accesses required to reach
          the actual data also increases.

	Moreover, as anybody who has ever shared an apartment will
          know, one person often expands space occupancy at the expense of the
          other. Database tables are just the same! If you want to address
          this problem by allocating strictly identical storage to each table
          per page in the cluster, the result is frequently storage waste and
          the use of even more pages.



This particular type of storage should be used extremely sparingly
      to solve very specific issues, and then only by database administrators.
      Developers should forget about this technique.
Important
Pre-joining tables is a very specialized tactic to facilitate
        queries, but is often done to the detriment of just about every other
        database activity.


Holy Simplicity



       It is reasonable and safe to assume that any storage
      option that is not the default one, however attractive it may look, can
      introduce a degree of complexity out of all proportion to the possible
      gains that may (or may not) be achieved. In the worst case, a poorly
      chosen storage option can dramatically degrade performance. Military
      history is full of impregnable fortresses built in completely the wrong
      places that failed to fill any useful purpose, and of many a Great Wall
      that never prevented any invasion because the enemy, a bad sport, failed
      to behave as planned. All organizations undergo changes, such as
      divisions and mergers. Business plans and processes may change, too.
      Careful plans may have to be scrapped and rebuilt from scratch.
The trouble with structuring data in a particular way is that it
      is often done with a particular type of process in mind. One of the
      beauties of the relational model is its flexibility. By strongly
      structuring your data at the physical level, you may sacrifice, in a
      somewhat hidden way, some of this flexibility. Of course, some
      structures are less constraining than others, and data partitioning is
      almost unavoidable with enormous databases. But always test very
      carefully and keep in mind that changing the physical structure of a big
      database because it was poorly done initially can take days, if not
      weeks, to complete.
Important
The physical storage organization that works for us today may
        work against us tomorrow.




[*] A reviewer remarked that implementation reasons that are
          beyond the scope of this book also make other
          indexes than the primary key index less efficient on an IOT than
          they would be on a regular table.


Chapter 6. The Nine Situations

Recognizing Classic SQL Patterns



Je pense que pour conserver la clarté dans
      le récit d’une action de guerre, il faut se borner à...ne raconter que
      les faits principaux et décisifs du combat.
To preserve clarity in relating a military action, I think one
      ought to be content with...reporting only the facts that affected the
      decision.
—Général Baron de Marbot (1782-1854) Mémoires, Book
      I, xxvi



Any SQL statement that we execute has to
    examine some amount of data before identifying a result set
    that must be either returned or changed. The way that we have to attack
    that data depends on the circumstances and conditions under which we have
    to fight the battle. As I discuss in Chapter 4, our attack will depend on the
    amount of data from which we retrieve our result set and on our forces
    (the filtering criteria), together with the volume of data to be
    retrieved.
Any large, complicated query can be divided into a succession of
    simpler steps, some of which can be executed in parallel, rather like a
    complex battle is often the combination of multiple engagements between
    various distinct enemy units. The outcome of these different fights may be
    quite variable. But what matters is the final, overall result.
When we come down to the simpler steps, even when we do not reach a
    level of detail as small as the individual steps in the execution plan of
    a query, the number of possibilities is not much greater than the
    individual moves of pieces in a chess game. But as in a chess game,
    combinations can indeed be very complicated.
This chapter examines common situations encountered when accessing
    data in a properly normalized database. Although I refer to queries in
    this chapter, these example situations apply to updates or deletes as
    well, as soon as a where clause is
    specified; data must be retrieved before being changed. When filtering
    data, whether it is for a simple query or to update or delete some rows,
    the following are the most typical situations—I call them the
    nine situations  —that you will encounter:
	Small result set from a few tables with specific criteria
        applied to those tables

	Small result set based on criteria applied to tables other than
        the data source tables

	Small result set based on the intersection of several broad
        criteria

	Small result set from one table, determined by broad selection
        criteria applied to two or more additional tables

	Large result set

	Result set obtained by self-joining on one table

	Result set obtained on the basis of aggregate function(s)

	Result set obtained by simple searching or by range searching on
        dates

	Result set predicated on the absence of other data



This chapter deals with each of these situations in turn and
    illustrates them with either simple, specific examples or with more
    complex real-life examples collected from different programs. Real-life
    examples are not always basic, textbook, one- or two-table affairs. But
    the overall pattern is usually fairly recognizable.
As a general rule, what we require when executing a query is the
    filtering out of any data that does not belong in our final result set as
    soon as possible; this means that we must apply the most efficient of our
    search criteria as soon as possible. Deciding which criterion to apply
    first is normally the job of the optimizer. But, as I discuss in Chapter 4, the optimizer must take into
    account a number of variable conditions, from the physical implementation
    of tables to the manner in which we have written a query. Optimizers do
    not always “get it right,” and there are things we can do to facilitate
    performance in each of our nine situations.
Small Result Set, Direct Specific Criteria



         The typical online transaction-processing query is a query
      returning a small result set from a few tables and with very specific
      criteria applied to those tables. When we are looking for a few rows
      that match a selective combination of conditions, our first priority is
      to pay attention to indexes.
The trivial case of a single table or even a join between two
      tables that returns few rows presents no more difficulty than ensuring
      that the query uses the proper index. However, when many tables are
      joined together, and we have input criteria referring to, for instance,
      two distinct tables TA and TB, then we can either work our way from
      TA to TB or from TB to TA.
      The choice depends on how fast we can get rid of the rows we do not
      want. If statistics reflect the contents of tables with enough accuracy,
      the optimizer should, hopefully, be able to make the proper decision as
      to the join order.
When writing a query to return few rows, and with direct, specific
      criteria, we must identify the criteria that are most efficient at
      filtering the rows; if some criteria are highly critical, before
      anything else, we must make sure that the columns corresponding to those
      criteria are indexed and that the indexes can be used by the
      query.
Index Usability



You’ve already seen in Chapter
        3 that whenever a function is applied to an indexed column, a
        regular index cannot be used. Instead, you would have to create a
        functional index, which means that you index the result of the
        function applied to the column instead of indexing the column.
Remember too that you don’t have to explicitly invoke a function
        to see a function applied; if you compare a column of a given type to
        a column or literal value of a different type, the DBMS may perform an
        implicit type conversion (an implicit call to a conversion function),
        with the performance hit that one can expect.
Once we are certain that there are indexes on our critical
        search criteria and that our query is written in such a way that it
        can take full advantage of them, we must distinguish between unique
        index fetches of a single row, and other fetches—non-unique index or a
        range scan of a unique index.

Query Efficiency and Index Usage



Unique indexes are excellent when joining tables. However, when
        the input to a query is a primary key and the value of the primary key
        is not a primitive input to the program, then you may have a poorly designed
        program on your hands.
What I call primitive input is data that
        has been fed into the program, either typed in by a user or read from
        a file. If the primary key value has been derived from some primitive
        input and is itself the result of a query, the odds are very high that
        there is a massive design flaw in the program. Because this situation
        often means that the output of one query is used as the input to
        another one, you should check whether the two queries can be
        combined.
Important
Excellent queries don’t necessarily come from excellent
          programs.


Data Dispersion



When indexes are not unique, or when a condition on a
        unique index is expressed as a range, for instance:
    where customer_id between ... and ...
or:
    where supplier_name like 'SOMENAME%'
the DBMS must perform a range scan. Rows associated with a given
        key may be spread all over the table being queried, and this is
        something that a cost-based optimizer often understands. There are
        therefore cases when an index range scan would require the DBMS kernel
        to fetch, one by one, a large number of table data pages, each with
        very few rows of relevance to the query, and when the optimizer
        decides that the DBMS kernel is better off scanning the table and
        ignoring the index.
You saw in Chapter 5 that
        many database systems offer facilities such as table
        partitions or clustered indexes to direct the storage of data that we would like to
        retrieve together. But the mere nature of data insertion processes may
        well lead to clumping of data. When we associate a timestamp with each
        row and do mostly inserts into a table, the chances are that most rows
        will be inserted next to one another (unless we have taken special
        measures to limit contention, as I discuss in Chapter 9). The physical proximity of
        the inserted rows is not an absolute necessity and, in fact, the
        notion of order as such is totally foreign to relational algebra. But,
        in practice, it is what may happen. Therefore, when we perform a range
        scan on the index on the timestamp column to look for index entries
        close together in time, the chances are that the rows in question will
        be close together too. Of course, this will be even truer if we have
        tweaked the storage so as to get such a result.
Now, if the value of a key bears no relation to any peculiar
        circumstance of insertion nor to any hidden storage trick, the various
        rows associated with a key value or with a range of key values can be
        physically placed anywhere on disk. The keys in the index are always,
        by construction, held in sorted order. But the associated rows will be
        randomly located in the table. In practice, we shall have to visit
        many more blocks to answer a query involving such an index than would
        be the case were the table partitioned or the index clustered. We can
        have, therefore, two indexes on the same table, with strictly
        identical degrees of selectivity, one of which gives excellent
        results, and the other one, significantly worse results, a situation
        that was mentioned in Chapter 3
        and that it is now time to prove.
To illustrate this case I have created a 1,000,000-row table
        with three columns c1, c2, and c3, c1
        being filled with a sequence number (1 to 1,000,000), c2 with all different random numbers in the
        range 1 to 2,000,000, and c3 with
        random values that can be, and usually are, duplicated. On face value,
        and from a logical point of view, c1 and c2
        are both unique and therefore have identical selectivity. In the case
        of the index on column c1, the
        order of the rows in the table matches the order in the index. In a
        real case, some activity against the table might lead to “holes” left
        by deletions and subsequently filled with out-of-order records due to
        new insertions. By contrast, the order of the rows in the table bears
        no relation to the ordering of the keys in the index on c2.
When we fetch c3, based on a
        range condition of the type:
    where column_name between some_value and some_value + 10
it makes a significant difference whether we use c1 and its associated index (the
        ordered index, where keys are ordered as the rows
        in the table) or c2 and its
        associated index (the random index), as you can
        see in Figure 6-1. Don’t
        forget that we have such a difference because additional accesses to
        the table are required in order to fetch the value of c3; there would be no difference if we had
        two composite indexes, on (c1, c3)
        and (c2, c3), because then we could
        return everything from an index in which the keys are ordered.
The type of difference illustrated in Figure 6-1 also explains why
        sometimes performance can degrade over time, especially when a new
        system is put into production with a considerable amount of data
        coming from a legacy system. It may happen that the initial data
        loading imposes some physical ordering that favors particular queries.
        If a few months of regular activity subsequently destroys this order,
        we may suffer over this period a mysterious 30–40% degradation of
        performance.
[image: Difference of performance when the order in the index matches the order of the rows in the table]

Figure 6-1. Difference of performance when the order in the index matches
          the order of the rows in the table

It should be clear by now that the solution “can’t the DBAs
        reorganize the database from time to time?” is indeed a fudge, not a
        solution. Database reorganizations were once quite in vogue.
        Ever-increasing volumes, 99.9999% uptime requirements and the like
        have made them, for the most part, an administrative task of the past.
        If the physical implementation of rows really is crucial for a
        critical process, then consider one of the self-organizing structures
        discussed Chapter 5, such as
        clustered indexes or index-organized tables. But keep in mind that
        what favors one type of query sometimes disadvantages another type of
        query and that we cannot win on all fronts.
Important
Performance variation between comparable indexes may be due to
          physical data dispersion.


Criterion Indexability



Understand that the proper indexing of specific criteria
        is an essential component of the “small set, direct specific criteria”
        situation. We can have cases when the result set is small and some
        criteria may indeed be quite selective, but are of a nature that isn’t
        suitable for indexing: the following real-life example of a search for
        differences among different amounts in an accounting program is
        particularly illustrative of a very selective criterion, yet unfit for
        indexing.
In the example to follow, a table named glreport contains a column named amount_diff that ought to contain zeroes.
        The purpose of the query is to track accounting errors, and identify
        where amount_diff isn’t zero.
        Directly mapping ledgers to tables and applying a logic that dates
        back to a time when these ledgers where inked with a quill is rather
        questionable when using a modern DBMS, but unfortunately one
        encounters questionable databases on a routine basis. Irrespective of
        the quality of the design, a column such as amount_diff is typical of a column that
        should not be indexed: ideally amount_diff should contain nothing but
        zeroes, and furthermore, it is obviously the result of a
        denormalization and the object of numerous computations. Maintaining
        an index on a column that is subjected to computations is even
        costlier than maintaining an index on a static column, since a
        modified key will “move” inside the index, causing the index to
        undergo far more updates than from the simple insertion or deletion of
        nodes.
Important
All specific criteria are not equally suitable for indexing.
          In particular, columns that are frequently updated increase
          maintenance costs.

Returning to the example, a developer came to me one day saying
        that he had to optimize the following Oracle query, and he asked for
        some expert advice about the execution plan:
    select
        total.deptnum,
        total.accounting_period,
        total.ledger,
        total.cnt,
        error.err_cnt,
        cpt_error.bad_acct_count
    from
     -- First in-line view
     (select
          deptnum,
          accounting_period,
          ledger,
          count(account) cnt
     from
          glreport
     group by
          deptnum,
          ledger,
          accounting_period) total,
     -- Second in-line view
     (select
         deptnum,
         accounting_period,
         ledger,
         count(account) err_cnt
     from
         glreport
     where
         amount_diff <> 0
     group by
         deptnum,
         ledger,
         accounting_period) error,
     -- Third in-line view
     (select
         deptnum,
         accounting_period,
         ledger,
         count(distinct account) bad_acct_count
     from
         glreport
     where
         amount_diff <> 0
     group by
         deptnum,
         ledger,
         accounting_period
     ) cpt_error
    where
       total.deptnum = error.deptnum(+) and
       total.accounting_period = error.accounting_period(+) and
       total.ledger = error.ledger(+) and
       total.deptnum = cpt_error.deptnum(+) and
       total.accounting_period = cpt_error.accounting_period(+) and
       total.ledger = cpt_error.ledger(+)
    order by
       total.deptnum,
       total.accounting_period,
   total.ledger
For readers unfamiliar with Oracle-specific syntax, the several
        occurrences of (+) in the outer
        query’s where clause indicate outer
        joins. In other words:
    select whatever
    from ta,
         tb
    where ta.id = tb.id (+)

is equivalent to:
    select whatever
    from ta
         outer join tb
                 on tb.id = ta.id

The following SQL*Plus output shows the execution plan for the
        query:
    10:16:57 SQL> set autotrace traceonly
    10:17:02 SQL> /

    37 rows selected.

    Elapsed: 00:30:00.06

    Execution Plan
    ----------------------------------------------------------
       0      SELECT STATEMENT Optimizer=CHOOSE
                        (Cost=1779554 Card=154 Bytes=16170)
       1    0   MERGE JOIN (OUTER) (Cost=1779554 Card=154 Bytes=16170)
       2    1     MERGE JOIN (OUTER) (Cost=1185645 Card=154 Bytes=10780)
       3    2       VIEW (Cost=591736 Card=154 Bytes=5390)
       4    3         SORT (GROUP BY) (Cost=591736 Card=154 Bytes=3388)
       5    4           TABLE ACCESS (FULL) OF 'GLREPORT'
                                (Cost=582346 Card=4370894 Bytes=96159668)
       6    2       SORT (JOIN) (Cost=593910 Card=154 Bytes=5390)
       7    6         VIEW (Cost=593908 Card=154 Bytes=5390)
       8    7           SORT (GROUP BY) (Cost=593908 Card=154 Bytes=4004)
       9    8             TABLE ACCESS (FULL) OF 'GLREPORT'
                                  (Cost=584519 Card=4370885 Bytes=113643010)
      10    1     SORT (JOIN) (Cost=593910 Card=154 Bytes=5390)
      11   10       VIEW (Cost=593908 Card=154 Bytes=5390)
      12   11         SORT (GROUP BY) (Cost=593908 Card=154 Bytes=5698)
      13   12           TABLE ACCESS (FULL) OF 'GLREPORT'
                                (Cost=584519 Card=4370885 Bytes=161722745)


    Statistics
    ----------------------------------------------------------
            193  recursive calls
              0  db block gets
        3803355  consistent gets
        3794172  physical reads
           1620  redo size
           2219  bytes sent via SQL*Net to client
            677  bytes received via SQL*Net from client
              4  SQL*Net roundtrips to/from client
             17  sorts (memory)
              0  sorts (disk)
             37  rows processed


I must confess that I didn’t waste too much time on the
        execution plan, since its most striking feature was fairly apparent
        from the text of the query itself: it shows that the table glreport, a tiny 4 to 5 million-row table,
        is accessed three times, once per subquery, and each time through a
        full scan.
Nested queries are often useful when writing complex queries,
        especially when you mentally divide each step, and try to match a
        subquery to every step. But nested queries are not silver bullets, and the preceding example
        provides a striking illustration of how easily they may be
        abused.
The very first inline view in the query computes the number of
        accounts for each department, accounting period, and ledger, and
        represents a full table scan that we cannot avoid. We need to face
        realities; we have to fully scan the table, because we are including
        all rows when we check how many accounts we have. We need to scan the
        table once, but do we absolutely need to access it a second or third
        time?
Important
If a full table scan is required, indexes on the table become
          irrelevant.

What matters is to be able to not only have a very analytic view
        of processing, but also to be able to stand back and consider what we
        are doing in its entirety. The second inline view counts exactly the
        same things as the first one—except that there is a condition on the
        value of amount_diff. Instead of
        counting with the count( )
        function, we can, at the same time as we compute the total count, add
        1 if amount_diff is not 0, and 0
        otherwise. This is very easy to write with the Oracle-specific
        decode(u, v, w, x) function or
        using the more standard case when u = v then
        w else x end construct.
The third inline view filters the same rows as the second one;
        however, here we want to count distinct account numbers. This counting
        is a little trickier to merge into the first subquery; the idea is to
        replace the account numbers (which, by the way, are defined as
        varchar2 [*] in the table) by a value which is totally unlikely to
        occur when amount_diff is 0;
        chr(1) (Oracle-speak to mean
        the character corresponding to the ASCII value 1)
        seems to be an excellent choice (I always feel a slight unease at
        using chr(0) with something written
        in C like Oracle, since C terminates all character strings with a
        chr(0)). We can then count how many
        distinct accounts we have and, of course, subtract one to avoid
        counting the dummy chr(1)
        account.
So this is the suggestion that I returned to the
        developer:
     select  deptnum,
            accounting_period,
            ledger,
            count(account) nb,
            sum(decode(amount_diff, 0, 0, 1)) err_cnt,
            count(distinct decode(amount_diff, 0, chr(1), account)) - 1
                                         bad_acct_count
     from
          glreport
     group by
           deptnum,
           ledger,
           accounting_period

My suggestion was reported to be four times as fast as the
        initial query, which came as no real surprise since the three full
        scans had been replaced by a single one.
Note that there is no longer any where clause in the query: we could say that
        the condition on amount_diff has
        “migrated” to both the logic performed by the decode( ) function inside the select list
        and the aggregation performed by the group
        by clause. The replacement of a filtering condition that
        looked specific with an aggregate demonstrates
        that we are here in another situation, namely a result set obtained on
        the basis of an aggregate function.
Important
In-line queries can simplify a query, but can result in
          excessive and duplicated processing if used without care.



Small Result Set, Indirect Criteria



         A situation that is superficially similar to the previous
      one is when you have a small result set that is based on criteria
      applied to tables other than the data source
      tables. We want data from one table, and yet our conditions apply to
      other, related tables from which we don’t want any data to be returned.
      A typical example is the question of “which customers have ordered a
      particular item” that we amply discussed earlier in Chapter 4. As you saw in Chapter 4, this type of query can be
      expressed in either of two ways:
	As a regular join with a distinct to
          remove duplicate rows that are the result, for instance, of
          customers having ordered the same item several times

	By way of either a correlated or uncorrelated subquery



If there is some particularly selective criterion to apply to the
      table (or tables) from which we obtain the result set, there is no need
      to say much more than what has been said in the previous situation
      “Small Result Set, Direct Specific Criteria”: the query will be driven
      by the selective criterion. and the same reasoning applies. But if there
      is no such criterion, then we have to be much more careful.
To take a simplified version of the example in Chapter 4, identifying the customers who
      have ordered a Batmobile, our typical case will be something like the
      following:
    select distinct orders.custid
    from orders
         join orderdetail
            on (orderdetail.ordid = orders.ordid)
         join articles
            on (articles.artid = orderdetail.artid)
    where articles.artname = 'BATMOBILE'

In my view it is much better, because it is more understandable,
      to make explicit the test on the presence of the article in a customer’s
      orders by using a subquery. But should that subquery be correlated or
      uncorrelated? Since we have no other criterion, the answer should be
      clear: uncorrelated. If not, one would have to scan the orders table and fire the subquery for each
      row—the type of big mistake that passes unnoticed when we start with a
      small orders table but becomes
      increasingly painful as the business gathers momentum.
The uncorrelated subquery can either be written in the classic
      style as:
    select distinct orders.custid
    from orders
    where ordid in (select orderdetails.ordid
                    from orderdetail
                         join articles
                           on (articles.artid = orderdetail.artid)
                    where articles.artname = 'BATMOBILE')

or as a subquery in the from
      clause:
    select distinct orders.custid
    from orders,
         (select orderdetails.ordid
          from orderdetail
               join articles
                 on (articles.artid = orderdetail.artid)
          where articles.artname = 'BATMOBILE') as sub_q
    where sub_q.ordid = orders.ordid

I find the first query more legible, but it is really a matter of
      personal taste. Don’t forget that an in(
      ) condition on the result of the subquery implies a distinct and therefore a sort, which takes us
      to the fringe of the relational model.
Important
Where using subqueries, think carefully before choosing either a
        correlated or uncorrelated subquery.


Small Intersection of Broad Criteria



The situation we talk about in this section is that of a small
      result set based on the intersection of several broad criteria. Each
      criterion individually would produce a large result set, yet the
      intersection of those individual, large sets is a very small, final
      result set returned by the query.
Continuing on with our query example from the preceding section,
      if the existence test on the article that was ordered is not selective,
      we must necessarily apply some other criteria elsewhere (otherwise the
      result set would no longer be a small result set). In this case, the
      question of whether to use a regular join, a correlated subquery, or an
      uncorrelated subquery usually receives a different answer depending on
      both the relative “strength” of the different criteria and the existing
      indexes.
Let’s suppose that instead of checking people who have ordered a
      Batmobile, admittedly not our best-selling article, we look for
      customers who have ordered something that I hope is much less unusual,
      in this case some soap, but purchased last Saturday. Our query then
      becomes something like this:
    select distinct orders.custid
    from orders
         join orderdetail
            on (orderdetail.ordid = orders.ordid)
         join articles
            on (articles.artid = orderdetail.artid)
    where articles.artname = 'SOAP'
      and <selective criterion on the date in the orders table>

Quite logically, the processing flow will be the reverse of what
      we had with a selective article: get the article, then the order lines
      that contained the article, and finally the orders. In the case we’re
      currently discussing, that of orders for soap, we should first get the
      small number of orders placed during the relatively short interval of
      time, and then check which ones refer to the article soap. From a practical point of view, we are
      going to use a totally different set of indexes. In the first case,
      ideally, we would like to see one index on the article name and one on
      the article identifier in the orderdetail table, and then we would have used
      the index on the primary key ordid in
      the orders table. In the case of
      orders for soap, what we want to find is an index on the date in
      orders and then one on orderid in orderdetail, from which we can use the index
      on the primary key of articles—assuming, of course, that in both
      cases using the indexes is the best course to take.
The obvious natural choice to get customers who bought soap last
      Saturday would appear to be a correlated subquery:
    select distinct orders.custid
    from orders
    where <selective criterion on the date in the orders table>
      and exists (select 1
                  from orderdetail
                      join articles
                        on (articles.artid = orderdetail.artid)
                    where articles.artname = 'SOAP'
                      and orderdetails.ordid = orders.ordid)

In this approach, we take for granted that the correlated subquery
      executes very quickly. Our assumption will prove true only if orderdetail is indexed on ordid (we shall then get the article through
      its primary key artid; therefore,
      there is no other issue).
You’ve seen in Chapter 3
      that indexes are something of a luxury in transactional databases, due
      to their high cost of maintenance in an environment of frequent inserts,
      updates, and deletes. This cost may lead us to opt for a “second-best”
      solution. The absence of the vital index on orderdetail and good reason for not creating
      further indexes might prompt us to consider the following:
    select distinct orders.custid
    from orders,
         (select orderdetails.ordid
          from orderdetail,
               articles
          where articles.artid = orderdetail.artid
            and articles.artname = 'SOAP') as sub_q
    where sub_q.ordid = orders.ordid
      and <selective criterion on the date in the orders table>

In this second approach, the index requirements are different: if
      we don’t sell millions of articles, it is likely that the condition on
      the article name will perform quite satisfactorily even in the absence
      of any index on artname. We shall
      probably not need any index on the column artid of orderdetail either: if the article is popular
      and appears in many orders, the join between orderdetail and articles is probably performed in a more
      efficient manner by hash or merge join, rather than by a nested loop
      that would need such an index on artid. Compared to the first approach, we have
      here a solution that we could call a low index
      solution. Because we cannot afford to create indexes on each and every
      column in a table, and because we usually have in every application a
      set of “secondary” queries that are not absolutely critical but only
      require a decent response time, the low index
      approach may perform in a perfectly acceptable manner.
Important
Adding one extra search criterion to an existing query can
        completely change a previous construct: a modified query is
        a new query.


Small Intersection, Indirect Broad Criteria



          An indirect criterion  is one that applies to a column in a table that you are
      joining only for the purpose of evaluating the criterion. The retrieval
      of a small result set through the intersection of two or more broad
      criteria, as in the previous situation “Small Intersection of Broad
      Criteria,” is often a formidable assignment. Obtaining the intersection
      of the large intermediary result sets by joining from a central table,
      or even through a chain of joins, makes a difficult situation even more
      daunting. This situation is particularly typical of the “star schema”
      that I discuss in some detail in Chapter
      10, but you’ll also encounter it fairly frequently in operational
      databases. When you are looking for that rare combination of multiple
      nonselective conditions on the columns of the row, you must expect to
      perform full scans at some point. The case becomes particularly
      interesting when several tables are involved.
The DBMS engine needs to start from somewhere. Even if it can
      process data in parallel, at some point it has to start with one table,
      index, or partition. Even if the resulting set defined by the
      intersection of several huge sets of data is very small, a
      boot-strapping full table scan, and possibly two scans, will be
      required—with a nested loop, hash join, or merge join performed on the
      result. The difficulty will then be to identify which combination of
      tables (not necessarily the smallest ones) will result in the least
      number of rows from which the final result set will be extracted. In
      other words, we must find the weakest point in the line of defense, and
      once we have eliminated it, we must concentrate on obtaining the final
      result set.
Let me illustrate such a case with a real-life Oracle example. The
      original query is a pretty complicated query, with two tables each
      appearing twice in the from clause.
      Although none of the tables is really enormous (the biggest one contains
      about 700,000 rows), the problem is that none of the nine parameters
      that are passed to the query is really selective:
    select (data from ttex_a,
                      ttex_b,
                      ttraoma,
                      topeoma,
                      ttypobj,
                      ttrcap_a,
                      ttrcap_b,
                      trgppdt,
                      tstg_a)
    from ttrcapp ttrcap_a,
         ttrcapp ttrcap_b,
         tstg tstg_a,
         topeoma,
         ttraoma,
         ttex ttex_a,
         ttex ttex_b,
         tbooks,
         tpdt,
         trgppdt,
         ttypobj
    where ( ttraoma.txnum = topeoma.txnum )
      and ( ttraoma.bkcod = tbooks.trscod )
      and ( ttex_b.trscod = tbooks.permor )
      and ( ttraoma.trscod = ttrcap_a.valnumcod )
      and ( ttex_a.nttcod = ttrcap_b.valnumcod )
      and ( ttypobj.objtyp = ttraoma.objtyp )
      and ( ttraoma.trscod = ttex_a.trscod )
      and ( ttrcap_a.colcod = :0 ) -- not selective
      and ( ttrcap_b.colcod = :1 ) -- not selective
      and ( ttraoma.pdtcod = tpdt.pdtcod )
      and ( tpdt.risktyp = trgppdt.risktyp )
      and ( tpdt.riskflg = trgppdt.riskflg )
      and ( tpdt.pdtcod = trgppdt.pdtcod )
      and ( trgppdt.risktyp = :2 ) -- not selective
      and ( trgppdt.riskflg = :3 ) -- not selective
      and ( ttraoma.txnum = tstg_a.txnum )
      and ( ttrcap_a.refcod = :5 ) -- not selective
      and ( ttrcap_b.refcod = :6 ) -- not selective
      and ( tstg_a.risktyp = :4 ) -- not selective
      and ( tstg_a.chncod = :7) -- not selective
      and ( tstg_a.stgnum = :8 ) -- not selective

When run with suitable parameters (here indicated as :0 to :8),
      the query takes more than 25 seconds to return fewer than 20 rows, doing
      about 3,000 physical I/Os and hitting data blocks 3,000,000 times.
      Statistics correctly represent the actual contents of tables (one of the
      very first things to check), and a query against the data dictionary
      gives the number of rows of the tables involved:
    TABLE_NAME                    NUM_ROWS
    --------------------------- ----------
    ttypobj                           186
    trgppdt                           366
    tpdt                             5370
    topeoma                         12118
    ttraoma                         12118
    tbooks                          12268
    ttex                           102554
    ttrcapp                        187759
    tstg                           702403

A careful study of the tables and of their relationships allows us
      to draw the enemy position of Figure 6-2, showing our weak
      criteria represented as small arrows, and tables as boxes the size of
      which approximately indicates the number of rows. One thing is
      especially remarkable: the central position of the ttraoma table that is linked to almost every
      other table. Unfortunately, all of our criteria apply elsewhere. By the
      way, an interesting fact to notice is that we are providing two values
      to match columns risktyp and riskflg of trgppdt—which is joined to tpdt on those very two columns, plus pdtcod. In such a case, it can be worth
      contemplating reversing the flow—for example, comparing the columns of
      tpdt to the constants provided, and
      only then pulling the data from trgppdt.
[image: The enemy position]

Figure 6-2. The enemy position

Most DBMS allow you to check the execution plan chosen by the
      optimizer, either through the explain
      command or sometimes by directly checking in memory how something has
      been executed. When this query took 25 seconds, the plan, although not
      especially atrocious, was mostly a full scan of ttraoma followed by a series of nested
      loops , using the various indexes available rather efficiently
      (it would be tedious to detail the numerous indexes, but suffice to say
      that all columns we are joining on are correctly indexed). Is this full
      scan the reason for slowness? Definitely not. A simple test, fetching
      all the rows of ttraoma (without
      displaying them to avoid the time associated with displaying characters
      on a screen) proves that it takes just a tiny fraction, hardly
      measurable, of the elapsed time for the overall query.
When we consider the weak criteria we have, our forces are too
      feeble for a frontal attack against tstg, the bulk of the enemy troops, and even
      ttrcap won’t lead us very far,
      because we have poor criteria against each instance of this table, which
      intervenes twice in the query. However, it should be obvious that the
      key position of ttraoma, which is
      relatively small, makes an attack against it, as a first step, quite
      sensible—precisely the decision that the optimizer makes without any
      prompting.
If the full scan is not to blame, then where did the optimizer go
      wrong? Have a look at Figure
      6-3, which represents the query as it was executed.
[image: What the optimizer chose to do]

Figure 6-3. What the optimizer chose to do

When we check the order of operations, it all becomes obvious: our
      criteria are so bad, on face value, that the optimizer chose to ignore
      them altogether. Starting with a pretty reasonable full scan of ttraoma, it then chose to visit all the
      smallish tables gravitating around ttraoma before ending with the tables to which
      our filtering criteria apply. This approach is the mistake. It is likely
      that the indexes of the tables we first visit look much more efficient
      to the optimizer, perhaps because of a lower average number of table
      rows per key or because the indexes more closely match the order of the
      rows in the tables. But postponing the application of our criteria is
      not how we cut down on the number of rows we have to process and
      check.
Once we have taken ttraoma and
      hold the key position, why not go on with the tables against which we
      have criteria instead? The join between those tables and ttraoma will help us eliminate unwanted rows
      from ttraoma before proceeding to
      apply joins with the other tables. This is a tactic that is likely to
      pay dividends since—and this is information we have but that is unknown
      to the optimizer—we know we should have, in all cases, very few
      resulting rows, which means that our combined criteria should, through
      the joins, inflict heavy casualties among the rows of ttraoma. Even when the number of rows to be
      returned is larger, the execution path I suggest should still remain
      relatively efficient.
How then can we force the DBMS to execute the query as we want it
      to? It depends on the SQL dialect. As you’ll see in Chapter 11, most SQL dialects allow
      directives, or hints, to the optimizer, although each dialect uses
      different syntax for such hints—telling the optimizer, for instance, to
      take on the tables in the same order as they are listed in the from clause. The trouble with hints is that
      they are more imperative than their name suggests, and every hint is a
      gamble on the future—a bet that circumstances, volumes, database
      algorithms, hardware, and the rest will evolve in such a way that our
      forced execution path will forever remain, if not absolutely the best,
      at least acceptable. In the particular case of our example, since nested
      loops using indexes are the most efficient choice, and because
      nested loops don’t really benefit from parallelism, we are taking a
      rather small risk concerning the future evolution of our tables by
      ordering tables as we want them processed and instructing the optimizer
      to obey. Explicitly forcing the order followed to visit tables was the
      approach actually taken in this real-life case, which resulted in a
      query running in a little less than one second, with hardly fewer
      physical I/Os than before (2,340 versus 3,000—not too surprising since
      we start with a full scan of the very same table) but since we
      “suggested” a more efficient path, logical I/Os fell dramatically—to
      16,500, down from over 3,000,000—with a noticeable result on the
      response time.
Important
Remember that you should heavily document anything that forces
        the hand of the DBMS.

Explicitly forcing the order in which to visit tables by using
      optimizer directives is a heavy-handed approach. A more gentle way to
      obtain the same result from the optimizer, provided that it doesn’t
      savagely edit our SQL clauses, may be to nest queries in the from clause, thus suggesting associations like
      parentheses would in a numerical expression:
    select (select list)
    from (select ttraoma.txnum,
                 ttraoma.bkcod,
                 ttraoma.trscod,
                 ttraoma.pdtcod,
                 ttraoma.objtyp,
                 ...
          from ttraoma,
               tstg tstg_a,
               ttrcapp ttrcap_a
         where tstg_a.chncod = :7
           and tstg_a.stgnum = :8
           and tstg_a.risktyp = :4
           and ttraoma.txnum = tstg_a.txnum
           and ttrcap_a.colcod = :0
           and ttrcap_a.refcod = :5
           and ttraoma.trscod = ttrcap_a.valnumcod) a,
         ttex ttex_a,
         ttrcapp ttrcap_b,
         tbooks,
         topeoma,
         ttex ttex_b,
         ttypobj,
         tpdt,
         trgppdt
    where ( a.txnum = topeoma.txnum )
     and ( a.bkcod = tbooks.trscod )
     and ( ttex_b.trscod = tbooks.permor )
     and ( ttex_a.nttcod = ttrcap_b.valnumcod )
     and ( ttypobj.objtyp = a.objtyp )
     and ( a.trscod = ttex_a.trscod )
     and ( ttrcap_b.colcod = :1 )
     and ( a.pdtcod = tpdt.pdtcod )
     and ( tpdt.risktyp = trgppdt.risktyp )
     and ( tpdt.riskflg = trgppdt.riskflg )
     and ( tpdt.pdtcod = trgppdt.pdtcod )
     and ( tpdt.risktyp = :2 )
     and ( tpdt.riskflg = :3 )
     and ( ttrcap_b.refcod = :6 )

It is often unnecessary to be very specific about the way we want
      a query to be executed and to multiply esoteric hints; the right initial
      guidance is usually enough to put an optimizer on the right track.
      Nested queries making explicit some table associations have the further
      advantage of being quite understandable to a qualified human
      reader.
Important
A confused query can make the optimizer confused. Clarity and
        suggested joins are often enough to help the optimizer provide good
        performance.


Large Result Set



   The situation of a large result set includes any result, irrespective of how it is obtained
      (with the exception of the explicit cases discussed here) that might be
      described as “large” or, in other words, a result set which it would be
      sensible to generate in a batch environment. When you are looking for a
      very large number of rows, even if this number looks like a fraction of
      the total number of rows stored in the tables involved in the query,
      conditions are probably not very selective and the DBMS engine must
      perform full scans, except perhaps in some very special cases of data
      warehousing, which are discussed in Chapter 10.
When a query returns tens of thousand of rows, whether as the
      final result or an intermediate step in a complex query, it is usually
      fairly pointless to look for a subtle use of indexes and fast jumps from
      an index to the table rows of interest. Rather, it’s time to hammer the
      data remorselessly through full scans, usually associated with hash or
      merge joins. There must, however, be intelligence behind the brute
      force. We always must try to scan the objects, whether they are tables,
      indexes, or partitions of either tables or indexes, for which the ratio
      of data returned to data scanned is highest. We must scan objects for
      which filtering is the most coarse, because the best justification for
      the “effort” of scanning is to make it pay by a rich data harvest. A
      situation when a scan is unavoidable is the major exception to the rule
      of trying to get rid of unnecessary data as soon as possible; but we
      must fall back to the usual rule as soon as we are done with the
      unavoidable scans.
As ever, if we consider scanning rows of no interest to us as
      useless work, we must minimize the number of blocks we access. An
      approach often taken is to minimize accesses by hitting indexes rather
      than tables—even if the total volume of indexes is often bigger than the
      volume of data, each individual index is usually much smaller than its
      underlying table. Assuming that an index contains all the required
      information, scanning the index rather than the table makes a lot of
      sense. Implementation techniques such as adding columns to an index to
      avoid visiting the table can also show their worth.
Processing very large numbers of rows, whether you need to return
      them or simply have to check them, requires being very careful about
      what you do when you process each row. Calling a suboptimal,
      user-defined function, for instance, is not extremely important when
      you do it in the select list of a query that returns a small result set
      or when it comes as an additional criterion in a very selective where clause. But when you call such a
      function hundreds of thousands of times, the DBMS is no longer
      forgiving, and a slight awkwardness in the code can bring your server to
      its knees. This is a time for lean and mean code.
One key point to watch is the use of subqueries. Correlated
      subqueries are the death toll of performance when we are processing
      massive amounts of rows. When we can identify several subqueries within
      a query, we must let each of them operate on a distinct and
      “self-sufficient” subset, removing any dependence of one subquery on the
      result set of another. Dependencies between the various datasets
      separately obtained must be solved at the latest stage of query
      execution through hash joins or set operators.
Relying on parallelism may also be a good idea, but only when
      there are very few concurrently active sessions—typically in a batch
      job. Parallelism as it is implemented by a DBMS consists in splitting,
      when possible, one query into multiple subtasks, which are run in
      parallel and coordinated by a dedicated task. With a very high number of
      users, parallelism comes naturally with many similar tasks being
      executed concurrently, and adding DBMS parallelism to de facto
      parallelism often makes throughput worse rather than better. Generally
      speaking, processing very large volumes of information with a very high number of concurrent sessions qualifies
      as a situation in which the best you can aim for is an honorable fight
      and in which the solution is often to throw more hardware into the
      ring.
Response times are, lest we forget about the various waits for the
      availability of a resource in the course of processing, mostly dependent
      on the amount of data we have to browse through. But don’t forget that,
      as you saw in Chapter 4, the
      subjective vision of an end user may be utterly different from a cold
      analysis of the size of the haystack: the only interest to the end user
      is the needle.

Self-Joins on One Table



           In a correctly designed relational database (third normal
      form or above), all non-key columns are about the key, the whole key,
      and nothing but the key, to use an excellent and frequently quoted
      formula.[*] Each row is both logically consistent and distinct from
      all other rows in the same table. It is this design characteristic that
      enables join relationships to be established within the same table. You
      can therefore select in the same query different (not necessarily
      disjoint) sets of rows from the same table and join them as if those
      rows came from several different tables. In this section, I’ll discuss
      the simple self-join and exclude the more complex examples of nested
      hierarchies that I discuss later in Chapter 7.
Self-joins—tables joined to themselves—are much more common than
      hierarchies. In some cases, it is simply because the data is seen in an
      identical way, but from two different angles; for instance, we can
      imagine that a query listing air flights would refer to the airports table twice, once to find the name of
      the departure airport, and once to find the name of the arrival airport.
      For example:
    select f.flight_number,
           a.airport_name departure_airport,
           b.airport_name arrival_airport
    from flights f,
         airports a,
         airports b
    where f.dep_iata_code = a.iata_code
      and f.arr_iata_code = b.iata_code

In such a case, the usual rules apply: what matters is to ensure
      that highly efficient index access takes place. But what if the criteria
      are such that efficient access is not possible? The last thing we want
      is to do a first pass on the table, then a second one to pick up rows
      that were discarded during the first pass. In that case, what we should
      do is a single pass, collect all the rows of interest, and then use a
      construct such as the case statement
      to display separately rows from the two sets; I show examples of this
      “single-pass” approach in Chapter
      11.
There are subtle cases that only superficially look like the
      airport case. Imagine that we store
      in some table cumulative values taken at regular intervals[*] and we want to display by how much the counter increased
      between two successive snapshots. In such a case, we have a relationship
      between two different rows in the same table, but instead of having a
      strong relationship coming from another table, such as the flights table that links the two instances of
      airports together, we have a weak,
      internal relationship: we define that two rows are related not because
      their keys are associated in another table, but because the timestamp of
      one row happens to be the timestamp which immediately follows the
      timestamp of another row.
For instance, if we assume that snapshots are taken every five
      minutes, with a timestamp expressed in seconds elapsed since a reference
      date, we might issue the following query:
    select a.timestamp,
           a.statistic_id,
          (b.counter - a.counter)/5 hits_per_minute
    from hit_counter a,
         hit_counter b
    where b.timestamp = a.timestamp + 300
      and b.statistic_id = a.statistic_id
    order by a.timestamp, a.statistic_id

There is a significant flaw in this script: if the second snapshot
      has not been taken exactly five minutes after the
      first one, down to the second, we may be unable to join the two rows. We
      may therefore choose to express the join condition as a range condition.
      For example:
    select a.timestamp,
            a.statistic_id,
           (b.counter - a.counter) * 60 /
               (b.timestamp - a.timestamp) hits_per_minute
    from  hit_counter a,
          hit_counter b
    where b.timestamp between a.timestamp + 200
                          and a.timestamp + 400
      and b.statistic_id = a.statistic_id
    order by a.timestamp, a.statistic_id

One side effect of this approach is the risk of having bigger data
      gaps than needed when, for one reason or another (such as a change in
      the sampling frequency), two successive records are no longer collected
      between 200 and 400 seconds of each other.
We may play it even safer and use an OLAP function that operates
      on windows of rows. It is indeed difficult to imagine something less
      relational in nature, but such a function can come in handy as the final
      shine on a query, and it can even make a noticeable difference in
      performance. Basically, OLAP functions allow the consideration of
      different subsets of the final result set, through the use of the
      partition clause. Sorts, sums, and
      other similar functions can be applied separately to these individual
      result subsets. We can use the row_number(
      ) OLAP function to create one subset by statistic_id, and then assign to each
      different statistic successive integer numbers that increase as
      timestamps do. When these numbers are generated by the OLAP function, we
      can join on both statistic_id and two
      sequential numbers, as in the following example:
    select a.timestamp,
           a.statistic_id,
           (b.counter - a.counter) * 60 /
                  (b.timestamp - a.timestamp)
    from (select timestamp,
                 statistic_id,
                 counter,
                 row_number( ) over (partition by statistic_id
                                    order by timestamp) rn
          from hit_counter) a,
          (select timestamp,
                  statistic_id,
                  counter,
                  row_number( ) over (partition by statistic_id
                                    order by timestamp) rn
          from hit_counter) b
    where b.rn = a.rn + 1
      and a.statistic_id = b.statistic_id
    order by a.timestamp, a.statistic_id

We may even do better—about 25% faster than the previous query—if
      our DBMS implements, as Oracle does, a lag( column_name
      , n
      ) OLAP function that returns the
      nth previous value for column_name, on the basis of the specified
      partitioning and ordering:
     select timestamp,
            statistic_id,
            (counter - prev_counter) * 60 /
            (timestamp - prev_timestamp)
     from (select timestamp,
                  statistic_id,
                  counter,
                  lag(counter, 1) over (partition by statistic_id
                                        order by timestamp) prev_counter,
                  lag(timestamp, 1) over (partition by statistic_id
                                          order by timestamp) prev_timestamp
          from hit_counter) a
    order by a.timestamp, a.statistic_id

In many cases we don’t have such symmetry in our data, as is shown
      by the flight example. Typically, a query looking for all the data
      associated with the smallest, or the largest, or the oldest, or the most
      recent value of a specific column, first needs to find the actual
      smallest, largest, oldest, or most recent value in the column used for
      filtering (this is the first pass, which compares rows), and then search
      the table again in a second pass, using as a search criterion the value
      identified in the first pass. The two passes can be made (at least
      superficially) into one through the use of OLAP functions that operate
      on sliding windows. Queries applied to data values associated to
      timestamps or dates are a special case of sufficient importance to
      deserve further discussion later in this chapter as the situation "Simple or Range Searching on
      Dates.”
Important
When multiple selection criteria are applied to different rows
        in the same table, functions that operate on sliding windows may be of
        assistance.


Result Set Obtained by Aggregation



    An extremely common situation is the case in which the
      result set is a dynamically computed summary of the detailed data from
      one or more main tables. In other words, we are facing an
      aggregation of data. When data is aggregated, the
      size of the result set isn’t dependent on the precision of the criteria
      that are provided, but merely on the cardinality of the columns that we
      group by. As in the first situation of the small result set obtained
      through precise criteria (and as you’ll see again in Chapter 11), aggregate functions (or aggregates) are also
      often quite useful for obtaining in a single pass on the table results
      that are not truly aggregated but that would otherwise require
      self-joins and multiple passes. In fact, the most interesting SQL uses
      of aggregates are not the cases in which sums or averages are an obvious
      part of the requirements, but situations in which a clever use of
      aggregates provides a pure SQL alternative to a procedural
      processing.
I stress in Chapter 2 that
      one of the keys to efficient SQL coding is a swashbuckling approach to
      code execution, testing for success after the deed rather than executing
      preliminary queries to check if, by chance, the really useful query we
      want to execute may fail: you cannot win a swimming race by tiptoeing
      carefully into the water. The other key point is to try to pack as much
      “action” as possible into an SQL query, and it is in respect to this
      second key point that aggregate functions can be particularly
      useful.
Much of the difficulty of good SQL programming lies in seeing how
      a problem can translate, not into a succession of queries to a database,
      but into very few queries. When, in a program, you need a lot of
      intermediate variables to hold values you get from the database before
      reinjecting them into the database as input to other queries, and if you
      perform against those variables nothing but very simple tests, you can
      bet that you have the algorithm wrong. And it is a striking feature of
      poorly written SQL programs to see the high number of lines of code
      outside of SQL queries that are simply devoted to summing up,
      multiplying, dividing, and subtracting inside loops what is painfully
      returned from the database. This is a totally useless and utterly
      inefficient job: we have SQL aggregate functions for that sort of
      work.
Note
Aggregate functions are very useful tools for solving SQL problems (and we will revisit them in
        Chapter 11, when I talk about
        stratagems); however, it often appears to me that developers use only
        the least interesting aggregate function of all, namely count( ), the real usefulness of which is
        often, at best, dubious in most programs.

Chapter 2 shows that using
      count(*) to decide whether to update
      an existing row or insert a new one is wasteful. You can misuse count(*) in reports as well. A test for
      existence is sometimes implemented as a mock-Boolean value such
      as:
    case count(*)
    when 0 then 'N'
    else 'Y'
    end

Such an implementation gets, when rows are found, all the rows
      that match the condition in order to obtain a precise count, whereas
      finding only one is enough to decide whether Y or N must
      be displayed. You can usually write a much more effective statement by
      using a construct that either limits the number of rows returned or
      tests for existence, effectively stopping processing as soon as a row
      that matches the condition is found.
But when the question at hand is about the most, the least, the
      greatest, or even the first or the last, it is likely that aggregate
      functions (possibly used as OLAP functions) will provide the best
      answer. If you believe that aggregate functions should be used only when
      counts, sums, maxima, minima, or averages are explicitly required, then
      you risk seriously underusing them.
Interestingly, aggregate functions are extremely narrow in scope.
      If you exclude the computation of maximum and minimum values, the only
      thing they can really do is simple arithmetic; a count( ) is nothing more than adding 1s for
      each row encountered. Similarly, the computation of avg( ) is just, on one hand, adding up the
      values in the column it is applied to and, on the other hand, adding 1s,
      and then dividing.
But it is sometimes wonderful what you can do with simple sums. If
      you’re mathematically inclined, you’ll remember how easily you can
      switch between sums and products by the magic of logarithms and power
      functions. And if you’re logically inclined, you know well how much
      OR owes to sums and AND to products.
I’ll show the power of aggregation with a simple example. Assume
      that we have a number of shipments to make and that each shipment is
      made of a number of different orders, each of which has to be separately
      prepared; it is only when each order in a shipment is complete that the
      shipment itself is ready. The problem is how to detect when all the
      orders comprising a shipment are complete.
As is so often the case, there are several ways to determine the
      shipments that are complete. The worst approach would probably be to
      loop on all shipments, inside a second loop on each shipment count how
      many orders have N as value for the
      order_complete column, and return
      shipment IDs for which the count is 0. A much better solution would be to
      recognize the test on the nonexistence of an N value for what it is, and use a subquery,
      correlated or uncorrelated; for instance:
    select shipment_id
    from shipments
    where not exists (select null from orders
                      where order_complete = 'N'
                        and orders.shipment_id = shipments.shipment_id)

This approach is pretty bad if we have no other condition on the
      shipments table. Following is a query
      that may be much more efficient if we have a large shipments table and few uncompleted
      orders:
    select shipment_id
    from shipments
    where shipment_id not in (select shipment_id
                              from orders
                              where order_complete = 'N')

This query can also be expressed as follows, as a variant that an
      optimizer may like better but that wants an index on the column shipment_id of the table orders:
    select shipments.shipment_id
    from shipments
        left outer join orders
              on orders.shipment_id = shipments.shipment_id
              and orders.order_complete = 'N'
    where orders.shipment_id is null

Another alternative is a massive set operation that will operate
      on the primary key index of shipments
      on one hand, and that will perform a full table scan of orders on the other hand:
    select shipment_id
    from shipments
    except
    select shipment_id
    from orders
    where order_complete = 'N'

Be aware that not all DBMS implement the except operator, sometimes known as minus.
But there is still another way to express our query. What we are
      doing, basically, is to return the identifiers of all shipments for
      which a logical AND operation on all
      orders which have been completed returns TRUE. This kind of operation happens to be
      quite common in the real world. As hinted previously, there is a very
      strong link between AND and
      multiplication, and between OR and
      addition. The key is to convert flags such as Y and N to
      0s and 1s. This conversion is a trivial operation
      with the case construct. To get just
      order_complete as a 0 or 1
      value, we can write:
    select shipment_id,
           case when order_complete = 'Y' then 1
                                          else 0
           end flag
    from orders

So far, so good. If we always had a fixed number of orders per
      shipment, it would be easy to sum the calculated column and check if the
      result is the number of orders we expect. However, what we want here is
      to multiply the flag values per shipment and check whether the result is
      0 or 1. That approach works, because even one
      incomplete order, represented by a 0,
      will cause the final result of all the multiplication to also be
      0. The multiplication can be done
      with the help of logarithms (although 0s are not the easiest values to handle with
      logarithms). But in this particular case, our task is even
      easier.
What we want are the shipments for which the first order is
      completed and the second order is completed and...the
      nth order is completed. Logic and the laws of de
      Morgan[*] tell us that this is exactly the same as stating that we
      do not have (first order not completed or second
      order not completed...or nth order not completed).
      Since their kinship to sums makes ORs
      much easier to process with aggregates than ANDs, checking that a list of conditions
      linked by OR is false is much easier
      than checking that a list of conditions linked by AND is true. What we must consider as our true
      predicate is “the order is not completed” rather than the reverse, and
      convert the order_complete flag to
      1 if it is N, and 0 if
      it is Y. In that way, we can easily
      check that we have 0s (or yeses) everywhere by summing up values—if the
      sum is 0, then all orders are
      completed; otherwise, we are at various stages of incompletion.
Therefore we can also express our query as:
    select shipment_id
    from (select shipment_id,
                 case when order_complete = 'N' then 1
                                                else 0
                 end flag
          from orders) s
    group by shipment_id
    having sum(flag) =0

And it can be expressed in an even more concise way as:
    select shipment_id
    from orders
    group by shipment_id
    having sum(case when order_complete = 'N' then 1
                                              else 0
               end) =0

There is another way to write this query that is even simpler,
      using another aggregate function, and without any need to convert flag
      values. Noticing that Y is, from an
      alphabetical point of view, greater than N, it is not too difficult to infer that if
      all values are Y then the minimum
      will necessarily be Y too.
      Hence:
    select shipment_id
    from orders
    group by shipment_id
    having min(order_complete) = 'Y'

This approach of depending on Y
      to be greater than N may not be as
      well grounded mathematically as the flag-to-number conversion, but it is
      just as efficient.
Of course we must see how the query that uses a group by and a condition on the minimum value
      for order_complete compares to the
      other versions that use subqueries or except instead of an aggregate function. What
      we can say is that it has to fully sort the orders table to aggregate the values and check
      whether the sum is or is not 0. As I’ve specified the problem, this
      solution involving a non-trivial use of an aggregate function is likely
      to be faster than the other queries, which hit two tables (shipments and orders), and usually less efficiently.
I have made an extensive use of the having clause in the previous examples. As
      already mentioned in Chapter 4, a
      common example of careless SQL statements involves the use of the
      having clause in aggregate
      statements. Such an example is illustrated in the following (Oracle)
      query, which attempts to obtain the sales per product per week during
      the past month:
    select product_id,
           trunc(sale_date, 'WEEK'),
           sum(sold_qty)
    from sales_history
    group by product_id, trunc(sale_date, 'WEEK')
    having trunc(sale_date, 'WEEK') >= add_month(sysdate, -1)

The mistake here is that the condition expressed in the having clause doesn’t depend on the aggregate.
      As a result, the DBMS has to process all of the data in sales_history, sorting it and aggregating
      against each row, before filtering out ancient figures as the last step
      before returning the required rows. This is the kind of mistake that can
      go unnoticed until sales_history
      grows really big. The proper approach is, of course, to put the
      condition in a where clause, ensuring
      that the filtering occurs at an early stage and that we are working
      afterwards on a much reduced set of data.
I should note that when we apply criteria to views, which are
      aggregated results, we may encounter exactly the same problem if the
      optimizer is not smart enough to reinject our filter
      before aggregation.
You can have slightly more subtle variants of a filter applied
      later than it should be. For instance:
    select customer_id
    from orders
    where order_date < add_months(sysdate, -1)
    group by customer_id
    having sum(amount) > 0

In this query, the following condition looks at first glance like
      a reasonable use of having:
    having sum(amount) > 0

However, this use of having
      does not really make sense if amount
      is always a positive quantity or zero. In that event, we might be better
      using the following condition:
    where amount > 0

We have two possibilities here. Either we keep the group by:
    select customer_id
    from orders
    where order_date < add_months(sysdate, -1)
      and amount > 0
    group by customer_id

or we notice that group by is
      no longer required to compute any aggregate and replace it with a
      distinct that in this case performs
      the same task of sorting and eliminating duplicates:
    select distinct customer_id
    from orders
    where order_date < add_months(sysdate, -1)
      and amount > 0

Placing the condition in the where clause allows unwanted rows to be
      filtered at an earlier stage, and therefore more effectively.
Important
Aggregate as little data as you can.


Simple or Range Searching on Dates



     Among search criteria, dates (and times) hold a particular
      place that is all their own. Dates are extremely common, and more likely
      than other types of data to be subjected to range conditions, whether
      they are bounded (“between this date and that date”) or only partially
      bounded (“before this date”). Very often, and what this situation
      describes, the result set is derived from searches against date values
      referenced to the current date (e.g., “six months earlier than the
      current date,” etc.).
The example in the previous section, “Result Set Obtained by
      Aggregation,” refers to a sales_history table; our condition was on an
      amount, but it is much more common with this type of table to have
      conditions on date, especially to get a snapshot of the data either at a
      given date or between two dates. When you are looking for a value on a
      given date in a table containing historical data , you must pay particular attention to the way you
      identify current data. The way you handle current data may happen to be
      a special case of data predicated on an aggregate condition.
I have already pointed out in Chapter 1 that the design of a table
      destined to store historical data is a tricky affair and that there is
      no easy, ready-made solution. Much depends on what you plan to do with
      your data, whether you are primarily interested in current values or in
      values as of a particular date. The best solution also depends on how
      fast data becomes outdated. If you are a retailer and wish to keep track
      of the wares you sell, it is likely that, unless your country suffers
      severe hyper-inflation, the rate of change of your prices will be pretty
      slow. The rate of change will be higher, possibly much higher, if you
      are recording the price of financial instruments or monitoring network
      traffic.
To a large extent, what matters most with history tables is how
      much historical data you keep on average per item: you may store a lot
      of historical information for very few items, or have few historical
      records for a very large number of items, or anything in between. The
      point here is that the selectivity of any item depends on the number of
      items being tracked, the frequency of sampling (e.g., either once per
      day or every change during the day), and the total time period over
      which the tracking takes place (infinite, purely annual, etc.). We shall
      therefore first consider the case when we have many items with few
      historical values , then the opposite case of few items with a rich
      history, and then, finally, the problem of how to represent the current
      value.
Many Items, Few Historical Values



If we don’t keep an enormous amount of historical data
        per item, the identification of an item is quite selective by itself.
        Specifying the item under study restricts our “working set” to just a
        few historical rows, and it then becomes fairly easy to identify the
        value at a given reference date (the current or a previous date) as
        the value recorded at the closest date prior to the reference date. In
        this case, we are dealing once again with aggregate values.
Unless some artificial, surrogate key has been created (and this
        is a case where there is no real need for a surrogate key), the
        primary key will generally be a composite key on the identifier of
        items (item_id) and the date
        associated with the historical value (record_date). We mostly have two ways of
        identifying the rows that store values that were current as of a given
        reference date: subqueries and OLAP functions.
Using subqueries



If we are looking for the value of one particular item
          as of a given date, then the situation is relatively simple. In
          fact, the situation is deceptively simple, and you’ll often
          encounter a reference to the value that was current for a given item
          at a given date coded as:
     select whatever
     from hist_data as outer
     where outer.item_id = somevalue
       and outer.record_date = (select max(inner.record_date)
                                from hist_data as inner
                                where inner.item_id = outer.item_id
                                  and inner.record_date <= reference_date)

It is interesting to see what the consequences of this type of
          construct suggest in terms of the execution path. First of all, the
          inner query is correlated to the outer one, since the inner query
          references the item_id of the
          current row returned by the outer query. Our starting point is
          therefore the outer query.
Logically, from a theoretical point of view, the order of the
          columns in a composite primary key shouldn’t matter much. In
          practice, it is critical. If we have made the mistake of defining
          the primary key as (record_date,
          item_id) instead of (item_id,
          record_date), we desperately need an additional index on
          item_id for the inner query;
          otherwise, we will be unable to efficiently descend the
          tree-structured index. And we know how costly each additional index
          can be.
Starting with our outer query and finding the various rows
          that store the history of item_id, we will then use the current
          value of item_id to execute the
          subquery each time. Wait! This inner query depends only on item_id, which is, by definition, the same
          for all the rows we check! The logical conclusion: we are going to
          execute exactly the same query, returning exactly the same result
          for each historical row for item_id. Will the optimizer notice that
          the query always returns the same value? The answer may vary. It is
          better not to take the chance.
There is no point in using a correlated subquery if it always
          returns the same value for all the rows for which it is evaluated.
          We can easily uncorrelate it:
    select whatever
    from hist_data as outer
    where outer.item_id = somevalue
      and outer.record_date = (select max(inner.record_date)
                               from hist_data as inner
                               where inner.item_id = somevalue
                                 and inner.record_date <= reference_date)

Now the subquery can be executed without accessing the table:
          it finds everything it requires inside the primary key index.
It may be a matter of personal taste, but a construct that
          emphasizes the primary key is arguably preferable to the preceding
          approach, if the DBMS allows comparing several columns to the output
          of a subquery (a feature that isn’t supported by all
          products):
    select whatever
    from hist_data as outer
    where (outer.item_id, outer.record_date) in
                              (select inner.item_id, max(inner.record_date)
                               from hist_data as inner
                               where inner.item_id = somevalue
                                 and inner.record_date <= reference_date
                               group by inner.item_id)

The choice of a subquery that precisely returns the columns
          matching a composite primary key is not totally gratuitous. If we
          now need to return values for a list of items, possibly the result
          of another subquery, this version of the query naturally suggests a
          good execution path. Replace somevalue in the
          inner query by an in( ) list or a
          subquery, and the overall query will go on performing efficiently
          under the very same assumptions that each item has a relatively
          short history. We have also replaced the equality condition by an
          in clause: in most cases the
          behavior will be exactly the same. As usual, it is at the fringes
          that you encounter differences. What happens if, for instance, the
          user mistyped the identification of the item? The in( ) will return that no data was found,
          while the equality may return a different error.

Using OLAP functions



With databases, OLAP functions such as row_number( ) that we have already used in
          the self-joins situation can provide a
          satisfactory and sometimes even a more efficient way to answer the
          same question “what was the current value for one particular item at
          a given date?” (remember that OLAP functionality does, however,
          introduce a distinctly non-relational aspect to the
          proceedings[*]).
Note
OLAP functions belong to the non-relational layer of SQL.
            They represent the final, or almost final, step in query
            execution, since they have to operate on the post-retrieval result
            set after the filtering has completed.

With a function such as row_number(
          ) we can assign a degree of freshness (one meaning most
          recent) to the data by ranking on date:
    select row_number( ) over (partition by item_id
                              order by record_date desc) as freshness,
            whatever
    from hist_data
    where item_id = somevalue
      and record_date <= reference_date

Selecting the freshest data is then simply a matter of only
          retaining the rows with a value of one for freshness:
    select x.<suitable_columns>
    from (select row_number( ) over (partition by item_id
                                    order by record_date desc) as freshness,
                    whatever
          from hist_data
          where item_id = somevalue
            and record_date <= reference_date) as x
    where x.freshness = 1

In theory, there should be hardly any difference between the
          OLAP function approach and the use of subqueries. In practice, an
          OLAP function hits the table only once, even if the usual sorting
          happens behind the scene. There is no need for additional access to
          the table, even a fast one that uses the primary key. The OLAP
          function approach may therefore be faster (albeit only slightly
          so).


Many Historical Values Per Item



The picture may be different when we have a very large
        number of historical values—for instance, a monitoring system in which
        metrics are collected at a rather high frequency. The difficulty here
        lies in the fact that all the intermediate sorting required for
        identifying the value at or nearest a given date may have to operate
        on a really large amount of data.
Sorting is a costly operation. If we apply the principles of
        Chapter 4, the only way we have
        to reduce the thickness of the non-relational layer is by doing a bit
        more work at the relational level—by increasing the amount of
        filtering. In such a case, it is very important to
        narrow our scope by bracketing the date (or time)
        more precisely for which we want the data. If we only provide an upper
        boundary, then we shall have to scan and sort the full history since
        the beginning of ages. If data is collected at a high frequency, it is
        then reasonable to give a lower limit. If we succeed in restraining
        the “working set” of rows to a manageable size, we are back to the
        case in which we have relatively few historical values per item. If
        specifying both an upper boundary (such as the current date)
        and a lower boundary isn’t an option, our only
        hope is in partitioning per item; operating on a single partition will
        take us closer to the “large result set” situation.

Current Values



When we are predominantly interested in the most recent or
        current values , it is very tempting to design a way to avoid either
        the nested subquery or the OLAP function (which both entail a sort),
        and hit the proper values directly. We mentioned in Chapter 1 that one solution to this
        problem is to associate each value with some “end date”—the kind of
        “best before” you find on your cereal boxes—and to say that for
        current values that end date is far, far away into the future (let’s
        say December 31, 2999). We also mentioned that there were some
        practical issues associated with such a design and the time has now
        come to explore these issues.
With a fixed date, it certainly becomes extremely easy to find
        the current value. Our query simply becomes:
    select whatever
    from hist_data
    where item_id = somevalue
      and record_date = fixed_date_in_the future

We then hit the right row, spot on, through the primary key. And
        of course, nothing prevents us from using either subqueries or OLAP
        functions whenever we need to refer to a date other than the current
        one. There are, however, two main drawbacks to this approach—an
        obvious one and a more subtle one:
	The obvious drawback is that each insertion of a new
            historical value will first require updating what used to be the
            current value with, for example, today’s date, to mean that it
            used to be the current value until today. Then the new value can
            be inserted with the later date, to mean that it is now the
            current value until further notice. This process leads to double
            the amount of work, which is bad enough. Moreover, since in the
            relational theory the primary key is what identifies a row, the
            combination (item_id,
            record_date) can be unique but cannot be the primary key
            since we have to partially update it. We therefore need a
            surrogate key to be referenced by foreign keys (identity column or
            sequence), which further complicates programs. The trouble with
            big historical tables is that usually, to grow that big, they also
            undergo a high rate of insertion. Does the benefit of faster
            querying offset the disadvantage of inserting more slowly? It’s
            difficult to say, but definitely a question worth asking.

	The subtle drawback has to do with the optimizer. The
            optimizer relies on statistics that may be of variable detail,
            with the result that it is not unusual for it to check the lowest
            and highest value in a column to try to assess the spread of
            values. Let us say that our historical table contains values since
            January 1, 2000. Our data will therefore consist of perhaps 99.9%
            historical data, spread over several, but relatively few, years,
            and 0.1% of current data, officially as of December 31, 2999. The
            view of the optimizer will be of data spread over one millennium.
            This skewness on the part of the optimizer view of the data range
            is because it is being misled by the upper boundary date in the
            query (”and record_date =
            fixed_date_in_the future“). The problem
            is then that when you search for something other than current
            values (for instance if you want to collect variations over time
            for statistical purposes), the optimizer may well incorrectly
            decide that since you are accessing such a tiny fraction of the
            millennium, then using indexes is the thing to do, but what you
            really need is to scan the data. Skewness can lead to totally
            wrong execution plans, which are not easy to correct.



Important
You must understand your data and your data distributions if
          you are to understand how the optimizer views your system.



Result Set Predicated on Absence of Data



                  It is a common occurrence to look for rows in one table
      for which there is no matching data in another table—usually for
      identifying exceptions. There are two solutions people most often think
      of when having to deal with this type of problem: using either not in ( ) with an uncorrelated subquery or
      not exists ( ) with a correlated
      subquery. Popular wisdom says that you should use not exists. Since a correlated subquery is
      efficient when used to mop up after the bulk of irrelevant data has been
      cleared out by efficient filtering, popular wisdom has it right when the
      subquery comes after the strong forces of efficient search criteria, and
      totally wrong when the subquery happens to be the only criterion.
One sometimes encounters more exotic solutions to the problem of
      finding rows in one table for which there is no matching data in
      another. The following example is a real-life case that monitoring
      revealed to be one of the costliest queries performed against a database
      (note that question marks are placeholders, or bind
      variables  , for constant values that are passed to the query on
      successive executions):
    insert into ttmpout(custcode,
                        suistrcod,
                        cempdtcod,
                        bkgareacod,
                        mgtareacod,
                        risktyp,
                        riskflg,
                        usr,
                        seq,
                        country,
                        rating,
                        sigsecsui)
    select distinct custcode,
                    ?,
                    ?,
                    ?,
                    mgtareacod,
                    ?,
                    ?,
                    usr,
                    seq,
                   country,
                   rating,
                   sigsecsui
    from ttmpout a
    where a.seq = ?
      and 0 = (select count(*)
               from ttmpout b
               where b.suistrcod = ?
                 and b.cempdtcod = ?
                 and b.bkgareacod = ?
                 and b.risktyp = ?
                 and b.riskflg = ?
                 and b.seq = ?)

This example must not be understood as an implicit unconditional
      endorsement of temporary tables! As a passing remark, I suspect that the
      insert statement was part of a loop.
      Proper performance improvement would probably be achieved by removing
      the loop.
An insertion into a table based on a select on the very same table as in the
      current example is a particular and yet not uncommon case of
      self-reference, an insertion derived from existing rows and conditional
      on the absence of the row to be created.
Using count(*) to test whether
      something exists or doesn’t exist is a bad idea: to count, the DBMS must
      search and find all rows that match. We should use exists in such a case, which stops as soon as
      the first match is encountered. Arguably, it does not make much
      difference if the filtering criterion happens to be the primary key. But
      it may make a very significant difference in other cases—and anyway from
      a semantic point of view there is no reason to say this:
    and 0 = (select count(*) ...)

when we mean this:
    and not exists (select 1 ...)

If we use count(*) as a test
      for existence, we may be lucky enough to benefit from the “invisible
      hand” of a smart optimizer, which will turn our query into something
      more suitable. But this will not necessarily be the case, and it will
      never be the case if the rows are counted into some variable as an
      independent step, because then even the smartest of optimizers cannot
      guess for which purpose we are counting: the result of the count( ) could be a critical value that
      absolutely has to be displayed to the end user!
In such a case when we want to create new, unique rows derived
      from rows already present in the table, however, the right construct to
      use is probably a set operator such as except (sometimes known as minus).
    insert into ttmpout(custcode,
                         suistrcod,
                         cempdtcod,
                         bkgareacod,
                         mgtareacod,
                         risktyp,
                         riskflg,
                         usr,
                         seq,
                         country,
                         rating,
                         sigsecsui)
    (select custcode,
            ?,
            ?,
            ?,
            mgtareacod,
            ?,
            ?,
            usr,
            seq,
            country,
            rating,
            sigsecsui
     from ttmpout
     where seq = ?
     except
     select custcode,
            ?,
            ?,
            ?,
            mgtareacod,
            ?,
            ?,
            usr,
            seq,
            country,
            rating,
            sigsecsui
     from ttmpout
     where suistrcod = ?
       and cempdtcod = ?
       and bkgareacod = ?
       and risktyp = ?
       and riskflg = ?
       and seq = ?)

The big advantage of set operators is that they totally break the
      time frame imposed by subqueries, whether they are correlated or
      uncorrelated. What does breaking the time frame
      mean? When you have correlated subqueries, you must run the outer query,
      and then you must execute the inner query for each row that passes
      through all other filtering criteria. Both queries are extremely
      dependent on each other, since the outer query feeds the inner
      one.
The picture is slightly brighter with uncorrelated subqueries, but
      not yet totally rosy: the inner query must be executed, and in fact
      completed, before the outer query can step in and gather steam
      (something similar occurs even if the optimizer chooses to execute the
      global query as a hash join, which is the smart thing for it to do,
      because to execute a hash join, the SQL engine first has to scan one of
      the tables involved to build a hash array).
With set operators, on the contrary, whether they are union, intersect or except, none of the components in the query
      depends on any other. As a result, the different parts of the query can
      run in parallel. Of course, parallelism is of hardly any benefit if one
      of the steps is very slow while all the others are very fast; and it
      will be of no benefit at all if much of the work in one part is strictly
      identical to the work in another part, because then you are duplicating,
      rather than sharing, the work between processes. But in a favorable
      case, it is much more efficient to have all parts run in parallel before
      the final step, which combines the partial result sets—divide and
      rule.
There is an additional snag with using set operators: they require
      each part of the query to return compatible columns—an identical number
      of columns of identical types. A case such as the following (another
      real-life case, coming from a billing program) is typically unsuited to
      set operators:
    select whatever, sum(d.tax)
    from invoice_detail d,
         invoice_extractor e
    where (e.pga_status = 0
           or e.rd_status = 0)
     and suitable_join_condition
     and (d.type_code in (3, 7, 2)
          or (d.type_code = 4
              and d.subtype_code not in
                   (select trans_code
                    from trans_description
                    where trans_category in (6, 7))))
    group by what_is_required
    having sum(d.tax) != 0

I am always fascinated by the final condition:
    sum(d.tax) != 0

and the way it evokes yellow brick roads and fantasy worlds where
      taxes are negative. A condition such as:
    and d.tax > 0

might have been more appropriate in the where clause, as already demonstrated.
In such a case a set operator would be rather awkward, since we
      would have to hit the invoice_detail
      table—as we can guess, not a lightweight table—several times. However,
      depending on the selectivity of the various criteria provided, typically
      if type_code=4 is a rare and
      therefore selective attribute condition, an exists might be more appropriate than a
      not in ( ). If, however, trans_description happens to be, at least
      relatively, a small table, then there is no doubt that trying to improve
      the query by playing on the existence test alone is a dead end.
Another interesting way to express nonexistence—and often quite an
      efficient one—is to use outer joins. The purpose of outer joins is
      basically to return, in a join, all information from one table,
      including rows for which no match is found in the joined table. As it
      happens, when we are looking for data that has no match in another
      table, it is precisely these rows that are of interest to us. How can we
      identify them? By checking the joined table columns: when there is no
      match, they are replaced with null values.
Something such as:
    select whatever
    from invoice_detail
    where type_code = 4
      and subtype_code not in
                    (select trans_code
                     from trans_description
                     where trans_category in (6, 7))

can therefore be rewritten:
    select whatever
    from invoice_detail
         outer join trans_description
                 on trans_description.trans_category in (6, 7)
                and trans_description.trans_code = invoice_detail.subtype_code
    where trans_description.trans_code is null

I have purposely included the condition on trans_category in the join clause. Whether it should rightly appear
      in this clause or in the where clause
      is debatable but, in fact, filtering before the join or after the join
      is result-neutral (of course, from a performance point of view, it can
      make a difference, depending on the relative selectivity of this
      condition and of the join condition itself). However, we have no such
      latitude with the condition on the null value, since this is something
      that can only be checked after the join.
Apart from the fact that the outer join may in some cases require
      a distinct, in practice there should
      be very little difference between checking the absence of data through
      an outer join or a not in ( ) uncorrelated subquery, since the
      column which is used for the join happens to be the very same column
      that is compared to the result set of the subquery. But SQL is famous
      for being a language in which the manner of the query expression often
      has a very real effect on the pattern of execution, even if the theory
      says otherwise. It all depends on the degree of sophistication of the
      optimizer, and whether it processes both types of queries in a similar
      way or not. In other words, SQL is not a truly declarative language,
      even if the enhancement of optimizers with each new version slowly
      improves its reliability.
Before closing this topic, watch out for the perennial SQL
      party-poopers—null values . Although in an in (
      ) subquery a null value joining the flow of non-null values
      does not bother the outer query, with a not in
      ( ) subquery, any null value returned by the inner query
      causes the not in ( ) condition to be
      evaluated as false. It does not cost much to ensure that a subquery
      returns no null value—and doing so will save you a lot of grief.
Important
Data sets can be compared using various techniques, but outer
        joins and set operators are likely to be efficient.




[*] To non-Oracle users, the varchar2 type is, for all practical
            purposes, the same as the varchar type.

[*] I have seen this elegant formula credited only once—to a 1983
          paper by William Kent, available at http://www.bkent.net.

[*] This is exactly what happens when you collect values from the
          V$ views in Oracle, which contain monitoring information.

[*] The India-born Augustus de Morgan (1806–1871) was a British
          mathematician who contributed to many areas of mathematics, but most
          significantly to the field of logic. The de Morgan laws state that
          the complement of the intersection of any number of sets equals the
          union of their complements and that the complement of the union of
          any number of sets equals the intersection of their complements. If
          you remember that SQL is about sets, and that negating a condition
          returns the complement of the result set returned by the initial
          condition (if you have no null values), you’ll understand why these
          laws are particularly useful to the SQL practitioner.

[*] ...even if the term OLAP was coined by Dr. E.F. Codd
              himself in a 1993 paper.


Chapter 7. Variations in Tactics

Dealing with Hierarchical Data



The golden rule is that there are no golden rules.
—George Bernard Shaw (1856–1950) Man and
      Superman/Maxims for Revolutionists



You have seen in the previous chapter that
    queries sometimes refer to the same table several times and
    that results can be obtained by joining a row from one table to another
    row in the same table. But there is a very important case in which a row
    is not only related to another row, but is dependent upon it. That latter
    row is itself dependent on another one—and so forth. I am talking here of
    the representation of hierarchies.
Tree Structures



        Relational theory struck the final blow to hierarchical
      databases as the main repositories for structured data.
      Hierarchical databases were historically the first attempt at
      structuring data that had so far been stored as records in files.
      Instead of having linear sequences of identical records, various records
      were logically nested. Hierarchical databases were excellent for some
      queries, but their strong structure made one feel as if in a
      straitjacket, and navigating them was painful. They first bore the brunt
      of the assault by network, or CODASYL, databases, in which navigation
      was still difficult but that were more flexible, until the relational
      theory proved that database design was a science and not a craft.
      However, hierarchies, or at least hierarchical representations, are
      extremely common—which probably accounts for the resilience of the
      hierarchical model, still alive today under various names such as
      Lightweight Directory Access Protocol (LDAP) and XML .
The handling of hierarchical data, also widely known as the
      Bill of Materials (BOM) problem, is not the
      simplest of problems to understand. Hierarchies are complicated not so
      much because of the representation of relationships between different
      components, but mostly because of the way you walk
      a tree. Walking a tree simply means visiting all or some of the nodes
      and usually returning them in a given order. Walking a tree is often
      implemented, when implemented at all, by DBMS engines in a procedural
      way—and that procedurality is a cardinal relational sin.
Tree Structures Versus Master/Detail Relationships



Many designers tend, not unnaturally, to consider that a
        parent/child link is in itself not very different from a master/detail
        relationship—the classical orders/order_detail relationship, in which the
        order_detail table stores (as part
        of its own key) the reference of the order it relates to. There are,
        however, at least four major differences between the parent/child link
        and the master/detail relationship:
	Single table
	The first difference is that when we have a tree
              representing a hierarchy , all the nodes are of the very same nature. The
              leaf nodes , in other words the nodes that have no child
              node, are sometimes different, as happens in file management
              systems with folders—regular nodes and files—leaf nodes, but
              I’ll set that case apart for the time being. Since all nodes are
              of the same nature, we describe them in the same way, and they
              will be represented by rows in the same table. Putting it
              another way, we have a kind of master/detail relationship, not
              between two different tables holding rows of different nature,
              but between a table and itself.

	Depth
	The second difference is that in the case of a hierarchy,
              how far you are from the top is often significant information.
              In a master/detail relationship, you are always either the
              master or the detail.

	Ownership
	The third difference is that in a master/detail
              relationship you can have a clean foreign key integrity
              constraint; for instance, every order identifier in the order_detail table must correspond to
              an existing identifier in the orders table, plain and simple. Such
              is not the case with hierarchical data. You can decide to say
              that, for instance, the manager number must refer to an existing
              employee number. Except that you then have a problem with the
              top manager, who in truth reports to the representatives of
              shareholders—the board, not an employee. This leaves us with
              that endless source of difficulties, a null value. And you may
              have several such “special case” rows, since we may need to
              describe in the same table several independent trees, each with
              its own root—something that is called a
              forest.

	Multiple parents
	Associating a “child” with the identifier of a “parent”
              assumes that a child can have only one parent. In fact, there
              are many real-life situations when this is not the case, whether
              it is investments, ingredients in formulae, or screws in
              mechanical parts. A case when a child has multiple parents is
              arguably not a tree in the mathematical sense; unfortunately,
              many real-life trees, including genealogical trees, are more
              complex than simple parent-child relationships, and may even
              require the handling of special cases (outside the scope of this
              book) such as cycles in a line of links.



In his excellent book, Practical Issues in Database
        Management  (Addison Wesley), Fabian Pascal explains that the
        proper relational view of a tree  is to understand that we have two distinct entity
        types, the nodes (for which we may have a special subtype of leaf
        nodes, bearing more information) and the links between the nodes. I
        should point out that this design approach solves the question of
        integrity constraints, since one only describes links that actually
        exist. Pascal’s approach also solves the case of the “child” that
        appears in the descent of numerous “parents.” This case is quite
        common in the industry and yet so rare in textbooks, which usually
        stick to the employee/manager example.
Pascal, following ideas of Chris Date, suggests that there
        should be an explode( ) operator to
        flatten, on the fly, a hierarchy, by providing a view which would make
        explicit the implicit links between nodes. The only snag is that this
        operator has never been implemented. DBMS vendors have quite often
        implemented specialized processes such as the handling of spatial data
        or full-text indexing, but the proper implementation of hierarchical
        data has oscillated between the nonexistent and the feeble, thus
        leaving most of the burden of implementation just where it doesn’t
        belong: with the developer.
As I have already hinted, the main difficulty when dealing with
        hierarchical data lies in walking the tree. Of course, if your aim is
        just to display a tree structure in a graphical user interface, each
        time the user clicks on a node to expand it, you have no particular
        problem: issuing a query that returns all the children of the node for
        which you pass the identifier as argument is a straightforward
        task.

Practical Examples of Hierarchies



In real life, you meet hierarchies very often, but the
        tasks applied to them are rarely simple. Here are just three examples
        of real-life problems involving hierarchies, from different
        industries:
	Risk exposure
	When you attempt to compute your exposure to risk in a
              financial structure such as a hedge fund, the matter becomes
              hierarchically complex. These financial structures invest in
              funds that themselves may hold shares in other funds.

	Archive location
	If you are a big retail bank, you are likely to face a
              nontrivial task if you want to retrieve from your archives the
              file of a loan signed by John Doe seven years ago, because files
              are stored in folders, which are in boxes, which are on shelves,
              which are in cabinets in an alley in some room of some floor of
              some building. The nested “containers” (folders, boxes, shelves,
              etc.) form a hierarchy.

	Use of ingredients
	If you work for the pharmaceutical industry, identifying
              all of the drugs you manufacture that contain an ingredient for
              which a much cheaper equivalent has just been approved and can
              now be used presents the very same type of SQL challenge in a
              totally unrelated area.



It is important to understand that these hierarchical problems
        are indeed quite distinct in their fundamental characteristics. A task
        such as finding the location of a file in an archive means walking a
        tree from the bottom to the top (that is, from a position of high
        granularity to one of increasing aggregation), because you start from
        some single file reference, that will point you to the folder in which
        it is stored, where you will find the identification of a box, and so
        forth on up to the room in a building, and so on, thus determining the
        exact location of the file. Finding all the products that contain a
        given ingredient also happens to be a bottom-up walk, although in that
        case our number of starting points may be very high—and we have to
        repeat the walk each time. By contrast, risk exposure analysis means,
        first, a top-down walk to find all investments, followed by
        computations on the way back up to the top. It is a kind of
        aggregation, only more complicated.
In general, the number of levels in trees tends to be rather small. This is, in fact, the main
        beauty of trees and the reason why they can be efficiently searched.
        If the number of levels is fixed, the only thing
        we have to do is to join the table containing a tree with itself as
        many times as we have levels. Let’s take the case of archives and say
        that the inventory table shows us
        in which folder our loan file is located. This folder identifier will
        take us to a location table, that
        points us the identifier of the box which contains the folder, the
        shelf upon which the box is laid, the cabinet to which the shelf
        belongs, the alley where we can find this cabinet, the room which
        contains the alley, the floor on which the room is located, and,
        finally, the building. If the location table treats folders, boxes,
        shelves, and the like as generic “locations,” a query returning all
        the components in the physical location of a file might look like
        this:
    select building.name building,
           floor.name floor,
           room.name room,
           alley.name alley,
           cabinet.name cabinet,
           shelf.name shelf,
           box.name box,
           folder.name folder
    from inventory,
         location folder,
         location box,
         location shelf,
         location cabinet,
         location alley,
         location room,
         location floor,
         location building
    where inventory.id = 'AZE087564609'
      and inventory.folder = folder.id
      and folder.located_in = box.id
      and box.located_in = shelf.id
      and shelf.located_in = cabinet.id
      and cabinet.located_in = alley.id
      and alley.located_in = room.id
      and room.located_in = floor.id
      and floor.located_in = building.id

This type of query, in spite of an impressive number of joins,
        should run fast since each successive join will use the unique index
        on location (that is, the index on
        id), presumably the primary key.
        But yes, there is a catch: the number of levels in a hierarchy is
        rarely constant. Even in the rather sedate world of archives, the
        contents of boxes are often moved after the passage of time to new
        containers (which may be more compact and, therefore, provide cheaper
        storage). Such activity may well replace two levels in a hierarchy
        with just one, as containers will replace both boxes and shelves. What
        should we do when we don’t know the number of levels? How best do we
        query such a hierarchy? Do we use a union? An outer-join?
Important
Links between objects of the same nature should be modeled as
          trees as soon as the number of levels between two objects is no
          longer a constant.



Representing Trees in an SQL Database



             Trees are generally represented in the SQL world by one of
      three models:
	Adjacency model
	The adjacency model is thus called because the identifier of
            the closest ancestor up in the hierarchy (the parent row) is given
            as an attribute of the child row. Two adjacent nodes in the tree
            are therefore clearly associated. The adjacency model is often
            illustrated by the employee number of the manager being specified
            as an attribute of each employee managed. (The direct association
            of the manager to the employee is in truth a poor design, because
            the manager identification should be an attribute of the
            structure that is managed. There is no reason
            that, when the head of a department is changed, one should update
            the records of all the people who work in the department to
            indicate the new manager). Some products implement special
            operators for dealing with this type of model, such as Oracle’s
            connect by (introduced as early
            as Oracle version 4 around the mid 1980s) or the more recent
            recursive with statement of DB2
            and SQL Server. Without any such operator, the adjacency model is
            very hard to manage.

	Materialized path model
	The idea here is to associate with each node in the tree a
            representation of its position within the tree. This
            representation takes the form of a concatenated list of the
            identifiers of all the node’s ancestors, from the root of the tree
            down to its immediate parent, or as a list of numbers indicating
            the rank within siblings of a given ancestor at one generation (a
            method frequently used by genealogists). These lists are usually
            stored as delimited strings. For instance, '1.2.3.2' means (right to left) that the
            node is the second child of its parent (the path of which is
            '1.2.3'), which itself is the
            third child of the grandparent ('1.2'), and so forth.

	Nested set model
	In this model, devised by Joe Celko,[*] a pair of numbers (defined as a left
            number and a right number) is
            associated to each node in such a fashion that they define an
            interval which always contains the interval associated with any of
            the descendents. The upcoming subsection "Nested Sets Model (After
            Celko)" under "Practical Implementation of
            Trees" gives a practical example of this intricate
            scheme.



There is a fourth, less well-known model, presented by its author,
      Vadim Tropashko, who calls it the nested interval
      model, in a very interesting series of papers.[*] The idea behind this model is, to put it very simply, to
      encode the path of a given node with two numbers, which are interpreted
      as the numerator and the denominator of a rational number (a
      fraction to those uncomfortable with the vocabulary
      of mathematics) instead of an interval. Unfortunately, this model is
      heavy on computations and stored procedures and, while it looks
      promising for a future implementation of good tree-handling functions
      (perhaps the explode( ) operator) in
      a DBMS, it is in practice somewhat difficult to implement and not the
      fastest you can do, which is why I shall focus on the three
      aforementioned models.
To keep in tone with our general theme, and to generate a
      reasonable amount of data, I have created a test database of the
      organizations of the various armies that were opposed in 1815 at the
      famous battle of Waterloo in Belgium, near Brussels[†] (known as orders of battle), which
      describe the structure of the Anglo-Dutch, Prussian, and French armies
      involved—corps, divisions, and brigades down to the level of the
      regiments. I use this data, and mostly the descriptions of the various
      units and the names of their commanders, as the basis for many of the
      examples that you’ll see in this chapter.
I must hasten to say that the point of what follows in this
      chapter is to demonstrate various ways to walk hierarchies and that the
      design of my tables is, to say the least, pretty slack. Typically, a
      proper primary key for a fighting unit should be an understandable and
      standardized code, not a description that may suffer from data entry
      errors. Please understand that any reference to a surrogate id is indeed shorthand for an implicit, sound
      primary key.
The main difficulty with hierarchies is that there is no “best
      representation.” When our interest is mostly confined to the ancestors
      of a few elements (a bottom-up walk), either connect by or the recursive with is, at least functionally and in terms of
      performance, sufficiently satisfactory. However, if we scratch the
      surface, connect by in particular is
      of course a somewhat ugly, non-relational, procedural implementation, in
      the sense that we can only move gradually from one row to the next one.
      It is much less satisfactory when we want to return either a bottom-up
      hierarchy for a very large number of items, or when we need to return a
      very large number of descendants in a top-down walk. As is so often the
      case with SQL, the ugliness that you can hide with a 14-row table
      becomes painfully obvious when you are dealing with millions, not to say
      billions, of rows, and that nice little SQL trick now shows its limits
      in terms of performance.
My example table, which contains a little more than 800 rows, is a
      bit larger than the usual examples, although it is in no way comparable
      to what you can regularly find in the industry. However, it is big
      enough to point out the strengths and weaknesses of the various
      models.
Important
The SQL implementation of trees is DBMS dependent; use what your
        DBMS has to offer.


Practical Implementation of Trees



 The following subsections provide examples of each of the
      three hierarchy models. In each case, rows have been inserted into the
      example tables in the same order (ordered by commander) in an attempt to divorce the
      physical order of the rows from the expected result. Remember that the
      design is questionable, and that the purpose is to show in as simple a
      way as possible how to handle trees according to the model under
      discussion.
Adjacency Model



The following table describes the hierarchical organization of
        an army using the adjacency model . The table name I’ve chosen to use is, appropriately
        enough, ADJACENCY_MODEL. Each row
        in the table describes a military unit. The parent_id points upward in the tree to the
        enclosing unit:
     Name                            Null?    Type
     ------------------------------- -------- --------------
     ID                              NOT NULL NUMBER
     PARENT_ID                                NUMBER
     DESCRIPTION                     NOT NULL VARCHAR2(120)
     COMMANDER                                VARCHAR2(120)

Table ADJACENCY_MODEL has
        three indexes: a unique index on id
        (the primary key), an index on parent_id, and an index on commander. Here are a few sample lines from
        ADJACENCY_MODEL:
    ID  PARENT_ID DESCRIPTION                  COMMANDER
    --- --------- ---------------------------- -----------------------------
    435         0 French Armée du Nord of 1815 Emperor Napoleon Bonaparte
    619       435 III Corps                    Général de Division Dominique
                                               Vandamme
    620       619 8th Infantry Division        Général de Division Baron
                                               Etienne-Nicolas Lefol
    621       620 1st Brigade                  Général de Brigade Billard
                                               (d.15th)
    622       621 15th Rgmt Léger              Colonel Brice
    623       621 23rd Rgmt de Ligne           Colonel Baron Vernier
    624       620 2nd Brigade                  Général de Brigade Baron
                                               Corsin
    625       624 37th Rgmt de Ligne           Colonel Cornebise
    626       620 Division Artillery
    627       626 7/6th Foot Artillery         Captain Chauveau


Materialized Path Model



Table MATERIALIZED_PATH_MODEL stores the same
        hierarchy as ADJACENCY_MODEL but
        with a different representation. The (id,
        parent_id) pair of columns associating adjacent nodes is
        replaced with a single materialized_path column that records the
        full “ancestry” of the current row:
     Name                                Null?    Type
     ----------------------------------- -------- ----------------
     MATERIALIZED_PATH                   NOT NULL VARCHAR2(25)
     DESCRIPTION                         NOT NULL VARCHAR2(120)
     COMMANDER                                    VARCHAR2(120)

Table MATERIALIZED_PATH_MODEL
        has two indexes, a unique index on materialized_path (the primary key), and an
        index on commander. In a real case,
        the choice of the path as the primary key is, of course, a very poor
        one, since people or objects rarely have as a defining characteristic
        their position in a hierarchy. In a proper design, there should be at
        least some kind of id, as in table
        ADJACENCY_MODEL. I have suppressed
        it simply because I had no use for it in my limited tests.
However, my questionable choice of materialized_path as the key was also made
        with the idea of checking in that particular case the benefit of the
        special implementations discussed in Chapter 5, in particular, what happens
        when the table that describes a tree happens to map the tree structure
        of an index? In fact, in this particular example such mapping makes no
        difference.
Here are the same sample lines as in the adjacency model, but
        with the materialized path:
    MATERIALIZED_PATH DESCRIPTION                  COMMANDER
    ----------------- ---------------------------- --------------------------
    F                 French Armée du Nord of 1815 Emperor Napoleon Bonaparte
    F.3               III Corps                    Général de Division
                                                   Dominique Vandamme
    F.3.1             8th Infantry Division        Général de Division Baron
                                                   Etienne-Nicolas Lefol
    F.3.1.1           1st Brigade                  Général de Brigade Billard
                                                   (d.15th)
    F.3.1.1.1         15th Rgmt Léger              Colonel Brice
    F.3.1.1.2         23rd Rgmt de Ligne           Colonel Baron Vernier
    F.3.1.2           2nd Brigade                  Général de Brigade Baron
                                                   Corsin
    F.3.1.2.1         37th Rgmt de Ligne           Colonel Cornebise
    F.3.1.3           Division Artillery
    F.3.1.3.1         7/6th Foot Artillery         Captain Chauveau


Nested Sets Model (After Celko)



With the nested set model , we have two columns, left_num and right_num, which describe how each row
        relates to other rows in the hierarchy. I’ll show shortly how those
        two numbers are used to specify a hierarchical position:
     Name                                Null?    Type
     ----------------------------------- -------- -------------
     DESCRIPTION                                  VARCHAR2(120)
     COMMANDER                                    VARCHAR2(120)
     LEFT_NUM                            NOT NULL NUMBER
     RIGHT_NUM                           NOT NULL NUMBER

Table NESTED_SETS_MODEL has a
        composite primary key, (left_num,
        right_num) plus an index on
        commander. As with the materialized
        path model, this is a poor choice but it is adequate for our present
        tests.
It is probably time now to explain how the mysterious numbers,
        left_num and right_num, are obtained. Basically, one
        starts from the root of the tree, assigning 1 to left_num for the root node. Then all child
        nodes are recursively visited, as shown in Figure 7-1, and a counter
        increases at each call. You can see the
        counter on the line in the figure. It begins with 1 for the root node and increases by one as
        each node is visited.
[image: How nested sets numbers are assigned]

Figure 7-1. How nested sets numbers are assigned

Say that we visit a node for the very first time. For instance,
        in the example of Figure
        7-1, after having assigned the integer 1 to the left_num value of the 1st
        Corps node, we encounter (for the first time) the node
        1st British Guards Division. We increase our
        counter and assign 2 to left_num. Then we visit the node’s children,
        encountering for the first time 1st Guards
        Brigade and assigning the value of our counter, 3 at this stage, to left_num. But this node, on this example,
        has no child. Because there is no child, we increment our counter and
        assign its value to right_num,
        which in this case takes the value 4. Then we move on to the node’s sibling,
        2nd Guards Brigade. It is the same story with
        this sibling. Finally, we return—our second visit—to the parent node
        1st British Guards Division and can assign the
        new value of our counter, which has now reached 7, to its right_num. We then proceed to the next
        sibling, 3rd Anglo-German Division, and so
        on.
As mentioned earlier, you can see that the [left_num, right_num] pair of any node is enclosed
        within the [left_num, right_num] pair of any of its
        ascendants—hence the name of nested sets. Since,
        however, we have three independent trees (the Anglo-Dutch, Prussian,
        and French armies), which is called in technical terms a
        forest, I have had to create an artificial top
        level that I have called Armies of
        1815. Such an artificial top level is not required by the
        other models.
Here is what we get from our example after having computed all
        numbers:
    DESCRIPTION                  COMMANDER                  LEFT_NUM RIGHT_NUM
    ---------------------------- -------------------------- -------- ----------
    Armies of 1815                                                 1       1622
    French Armée du Nord of 1815 Emperor Napoleon Bonaparte      870       1621
    III Corps                    Général de Division            1237       1316
                                 Dominique Vandamme
    8th Infantry Division        Général de Division Baron      1238       1253
                                 Etienne-Nicolas Lefol
    1st Brigade                  Général de Brigade Billard     1239       1244
                                 (d.15th)
    15th Rgmt Léger              Colonel Brice                  1240       1241
    23rd Rgmt de Ligne           Colonel Baron Vernier          1242       1243
    2nd Brigade                  Général de Brigade Baron       1245       1248
                                 Corsin
    37th Rgmt de Ligne           Colonel Cornebise              1246       1247
    Division Artillery                                          1249       1252
    7/6th Foot Artillery         Captain Chauveau               1250       1251

The rows in our sample that are at the bottom level in the
        hierarchy can be spotted by noticing that right_num is equal to left_num + 1.
The author of this clever method claims that it is much better
        than the adjacency model because it operates on sets and that is what
        SQL is all about. This is perfectly true, except that SQL is all about
        unbounded sets, whereas his method relies on finite sets, in that you
        must count all nodes before being able to assign the right_num value of the root. And of course,
        whenever you insert a node somewhere, you must renumber both the
        left_num and right_num values of all the nodes that
        should be visited after the new node, as well as the right_num value of all its ascendants. The
        necessity to modify many other items when you insert a new item is
        exactly what happens when you store an ordered list into an array: as
        soon as you insert a new value, you have to shift, on average, half
        the array. The nested set model is imaginative, no doubt, but a
        relational nightmare, and it is difficult to imagine worse in terms of
        denormalization. In fact, the nested sets model is a pointer-based
        solution, the very quagmire from which the relational approach was
        designed to escape.


Walking a Tree with SQL



 In order to check efficiency and performance, I have
      compared how each model performed with respect to the following two
      problems:
	To find all the units under the command of the French general
          Dominique Vandamme (a top-down query), if possible as an indented
          report (which requires keeping track of the depth within the tree)
          or as a simple list. Note that in all cases we have an index on the
          commander’s name. I refer to this problem as the Vandamme
          query.

	To find, for all regiments of Scottish Highlanders, the
          various units they belong to, once again with and without proper
          indentation (a bottom-up query). We have no index on the names of
          units (column description in the
          tables), and our only way to spot Scottish Highlanders is to look
          for the Highland string in the
          name of the unit, which of course means a full scan in the absence
          of any full-text indexing. I refer to this problem as the
          Highlanders query.



To ensure that the only variation from test to test was in the
      model used, my comparisons are all done using the same DBMS, namely
      Oracle.
Top-Down Walk: The Vandamme Query



In the Vandamme query, we start with the commander of
        the French Third Corps, General Vandamme, and want to display in an
        orderly fashion all units under his command. We don’t want a simple
        list: the structure of the army corps must be clear, as the corps is
        made of divisions that are themselves made of brigades that are
        themselves usually composed of two regiments.
Adjacency model



Writing the Vandamme query with the adjacency
          model is fairly easy when using Oracle’s connect by operator. All you have to
          specify is the node you wish to start from (start with) and how each two successive
          rows returned relate to each other (connect
          by < a column of the current
          row > = prior
          < a column of the previous
          row >, or
          connect by < a
          column of the previous row > = prior < a column of
          the current row >, depending on whether you are walking
          down or up the tree). For indentation, Oracle maintains a
          pseudo-column named level that
          tells you how many levels away from the starting point you are. I am
          using this pseudo-column and left-padding the description with as many spaces as the
          current value of level. My query
          is:
    select lpad(description, length(description) + level) description,
           commander
    from adjacency_model
    connect by parent_id = prior id
    start with commander = 'Général de Division Dominique Vandamme'

And the results are:
    DESCRIPTION                     COMMANDER
    ------------------------------- -----------------------------------------------
     III Corps                      Général de Division Dominique Vandamme
      8th Infantry Division         Général de Division Baron Etienne-Nicolas Lefol
       2nd Brigade                  Général de Brigade Baron Corsin
        37th Rgmt de Ligne          Colonel Cornebise
       1st Brigade                  Général de Brigade Billard (d.15th)
        23rd Rgmt de Ligne          Colonel Baron Vernier
        15th Rgmt Léger             Colonel Brice
           ...
      10th Infantry Division        Général de Division Baron Pierre-Joseph Habert
       2nd Brigade                  Général de Brigade Baron Dupeyroux
        70th Rgmt de Ligne          Colonel Baron Maury
        22nd Rgmt de Ligne          Colonel Fantin des Odoards
        2nd (Swiss) Infantry Rgmt   Colonel Stoffel
       1st Brigade                  Général de Brigade Baron Gengoult
        88th Rgmt de Ligne          Colonel Baillon
        34th Rgmt de Ligne          Colonel Mouton
       Division Artillery
        18/2nd Foot Artillery       Captain Guérin

    40 rows selected.

Now, what about the other member in the adjacency family, the
          recursive with
          statement?[*] With this model, a recursive-factorized statement is
          defined, which is made of the union (the union
          all, to be precise) of two select statements:
	The select that defines
              our starting point, which in this particular case is:
    select 1 level,
           id,
           description,
           commander
    from adjacency_model
    where commander = 'Général de Division Dominique Vandamme'

What is this solitary 1
              for? It represents, as the alias indicates, the depth in the
              tree. In contrast to the Oracle connect
              by implementation, this DB2 implementation has no
              system pseudo-variable to tell us where we are in the tree. We
              can compute our level, however, and I’ll explain more about that
              in just a moment.

	The select which
              defines how each child row relates to its parent row, as it is
              returned by this very same query that we can call, with a touch
              of originality, recursive_query:
    select parent.level + 1,
           child.id,
           child.description,
           child.comander
    from recursive_query parent,
         adjacency_model child
    where parent.id = child.parent_id

Notice in this query that we add 1 to parent.level. Each execution of this
              query represents a step down the tree. For each step down the
              tree, we increment our level, thus keeping track of our
              depth.



All that’s left is to fool around with functions to nicely
          indent the description, and here is our final query:
    with recursive_query(level, id, description, commander)
    as (select 1 level,
               id,
               description,
               commander
        from adjacency_model
        where commander = 'Général de Division Dominique Vandamme'
        union all
        select parent.level + 1,
               child.id,
               child.description,
               child.commander
        from recursive_query parent,
             adjacency_model child
        where parent.id = child.parent_id)
    select char(concat(repeat(' ', level), description), 60) description,
           commander
    from recursive_query

Of course, you have to be a real fan of the recursive with to be able to state without blushing
          that the syntax here is natural and obvious. However, it is not too
          difficult to understand once written; and it’s even rather
          satisfactory, except that the query first returns General Vandamme
          as expected, but then all the officers directly reporting to him,
          and then all the officers reporting to the first one at the previous
          level, followed by all officers reporting to the second one at the
          previous level, and so on. The result is not quite the nice
          top-to-bottom walk of the connect
          by, showing exactly who reports to whom. I’ll hasten to
          say that since ordering doesn’t belong to the relational theory,
          there is nothing wrong with the ordering that you get from with, but that ordering does raise an
          important question: in practice, how can we order the rows from a
          hierarchical query?
Ordering the rows from a hierarchical query using recursive
          with is indeed possible if, for
          instance, we make the not unreasonable assumption that one parent
          node never has more than 99 children and that the tree is not
          monstrously deep. Given these caveats, what we can do is associate
          with each node a number that indicates where it is located in the
          hierarchy—say 1.030801--to mean
          the first child (the two rightmost digits) of the eighth child (next
          two digits, from right to left) of the third child of the root node.
          This assumes, of course, that we are able to order siblings, and we
          may not always be able to assign any natural ordering to them.
          Sometimes it is necessary to arbitrarily assign an order to each
          sibling using, possibly, an OLAP function such as row_number( )  .
We can therefore slightly modify our previous query to
          arbitrarily assign an order to siblings and to use the
          just-described technique for ordering the result rows:
    with recursive_query(level, id, rank, description, commander)
    as (select 1,
               id,
               cast(1 as double),
               description,
               commander
        from adjacency_model
        where commander = 'Général de Division Dominique Vandamme'
        union all
        select parent.level + 1,
               child.id,
               parent.rank + ranking.sn / power(100.0, parent.level),
               child.description,
               child.commander
        from recursive_query parent,
             (select id,
                     row_number( ) over (partition by parent_id
                                        order by description) sn
              from adjacency_model) ranking,
             adjacency_model child
        where parent.id =child.parent_id
          and child.id = ranking.id)
    select char(concat(repeat(' ', level), description), 60) description,
           commander
    from recursive_query
    order by rank

We might fear that the ranking query that appears as a recursive
          component of the query would be executed for each node in the tree
          that we visit, returning the same result set each time. This isn’t
          the case. Fortunately, the optimizer is smart enough not to execute
          the ranking query more than is
          necessary, and we get:
    DESCRIPTION                    COMMANDER
    -----------------------------  ----------------------------------------------
     III Corps                     Général de Division Dominique Vandamme
      10th Infantry Division       Général de Division Baron Pierre-Joseph Habert
       1st Brigade                 Général de Brigade Baron Gengoult
        34th Rgmt de Ligne         Colonel Mouton
        88th Rgmt de Ligne         Colonel Baillon
       2nd Brigade                 Général de Brigade Baron Dupeyroux
        22nd Rgmt de Ligne         Colonel Fantin des Odoards
        2nd (Swiss) Infantry Rgmt  Colonel Stoffel
        70th Rgmt de Ligne         Colonel Baron Maury
       Division Artillery
        18/2nd Foot Artillery      Captain Guérin
      11th Infantry Division       Général de Division Baron Pierre Berthézène
       ...
        23rd Rgmt de Ligne         Colonel Baron Vernier
       2nd Brigade                 Général de Brigade Baron Corsin
        37th Rgmt de Ligne         Colonel Cornebise
       Division Artillery
        7/6th Foot Artillery       Captain Chauveau
      Reserve Artillery            Général de Division Baron Jérôme Doguereau
       1/2nd Foot Artillery        Captain Vollée
       2/2nd Rgmt du Génie

The result is not strictly identical to the connect by case, simply because we have
          ordered siblings by alphabetical order on the description column, while we didn’t order
          siblings at all with connect by
          (we could have ordered them by adding a special clause). But
          otherwise, the very same hierarchy is displayed.
While the result of the with query is logically equivalent to that
          of the connect by query, the
          with query is a splendid example
          of nightmarish, obfuscated SQL, which in comparison makes the
          five-line connect by query look
          like a model of elegant simplicity. And even if on this particular
          example performance is more than acceptable, one can but wonder with
          some anguish at what it might be on very large tables. Must we
          disregard the recursive with as a
          poor, substandard implementation of the superior connect by? Let’s postpone conclusions
          until the end of this chapter.
The ranking number we built in the recursive query is nothing
          more than a numerical representation of the materialized path. It is
          therefore time to check how we can display the troops under the
          command of General Vandamme using a simple materialized path
          implementation.

Materialized path model



Our query is hardly more difficult to write under the
          materialized path model —but for the level, which is derived from the path
          itself. Let’s assume just for an instant that we have at hand a
          function named mp_depth( ) that
          returns the number of hierarchical levels between the current node
          and the top of the tree. We can write a query as:
    select lpad(a.description, length(a.description)
            + mp_depth(...)) description,
           a.commander
    from materialized_path_model a,
         materialized_path_model b
    where a.materialized_path like b.materialized_path || '%'
      and b.commander = 'Général de Division Dominique Vandamme')
    order by a.materialized_path

Before dealing with the mp_depth(
          )  function, I’ll note a few traps.
          In my example, I have chosen to start the materialized path with
          A for the Anglo-Dutch army,
          P for the Prussian one, and
          F for the French one. That first letter is then
          followed by dot-separated digits. Thus, the 12th Dutch line
          battalion, under the command of Colonel Bagelaar, is A.1.4.2.3, while the 11th Régiment of
          Cuirassiers of Colonel Courtier is F.9.1.2.2. Ordering by materialized path
          can lead to the usual problems of alphabetical sorts of strings of
          digits, namely that 10.2 will be
          returned before 2.3; however, I
          should stress that, since the separator has a lower code (in ASCII
          at least) than 0, then the order
          of levels will be respected. The sort may not, however respect the
          order of siblings implied by the path. Does that matter? I don’t
          believe that it does because sibling order is usually information
          that can be derived from something other than the materialized path
          itself (for instance, brothers and sisters can be ordered by their
          birth dates, rather than by the path). Be careful with the approach
          to sorting that I’ve used here. The character encoding used by your
          database might throw off the results.
What about our mysterious mp_depth(
          )  function now? The hierarchical
          difference between any commander under General Vandamme and General
          Vandamme himself can be defined as the difference between the
          absolute levels (i.e., counting down from the root of the tree) of
          the unit commanded by General Vandamme and any of the underlying
          units. How then can we determine the absolute level? Well, by
          counting the dots.
To count the dots, the easiest thing to do is probably to
          start with suppressing them, with the help of
          the replace( ) function that you
          find in the SQL dialect of all major products. All you have to do
          next is subtract the length of the string
          without the dots from the length of the string
          with the dots, and you get exactly what you
          want, the dot-count:
    length((materialized_path) - length(replace(materialized_path, '.', ''))

If we check the result of our dot-counting algorithm for the
          author of the epigraph that adorns Chapter 6 (a cavalry colonel at the
          time), here is what we get:
    SQL> select materialized_path,
      2        length(materialized_path) len_w_dots,
      3        length(replace(materialized_path, '.', '')) len_wo_dots,
      4        length(materialized_path) -
      5             length(replace(materialized_path, '.', '')) depth,
      6        commander
      7  from materialized_path_model
      8  where commander = 'Colonel de Marbot'
      9  /

    MATERIALIZED_PATH LEN_W_DOTS LEN_WO_DOTS      DEPTH COMMANDER
    ----------------- ---------- ----------- ---------- ------------------
    F.1.5.1.1                  9           5          4 Colonel de Marbot

Et voilà.

Nested sets model



Finding all the units under the command of General
          Vandamme is very easy under the nested sets model, since the model
          requires us to have numbered our nodes in such a way that the
          left_num and right_num of a node bracket are the
          left_num and right_num of all descendants. All we have
          to write is:
    select a.description,
           a.commander
    from nested_sets_model a,
         nested_sets_model b
    where a.left_num between b.left_num and b.right_num
      and b.commander = 'Général de Division Dominique Vandamme'

All? Not quite. We have no indentation here. How do we get the
          level? Unfortunately, the only way we have to get the depth of a
          node (from which indentation is derived) is by counting how many
          nodes we have between that node and the root. There is no way to
          derive depth from left_num and
          right_num (in contrast to the
          materialized path model).
If we want to display an indented list under the nested sets
          model, then we must join a third time with our nested_sets_model table, for the sole
          purpose of computing the depth:
    select lpad(description, length(description) + depth) description,
           commander
    from (select count(c.left_num) depth,
                 a.description,
                 a.commander,
                 a.left_num
          from nested_sets_model a,
               nested_sets_model b,
               nested_sets_model c
          where a.left_num between c.left_num and c.right_num
            and c.left_num between b.left_num and b.right_num
            and b.commander = 'Général de Division Dominique Vandamme'
          group by a.description,
                   a.commander,
                   a.left_num)
    order by left_num

The simple addition of the indentation requirement makes the
          query, as with (sic) the recursive with(
          ), somewhat illegible.

Comparing the Vandamme query under the various models



After having checked that all queries were returning
          the same 40 rows properly indented, I then ran each of the queries
          5,000 times in a loop (thus returning a total of 200,000 rows). I
          have compared the number of rows returned per second, taking the
          adjacency model as our 100-mark reference. You see the results in
          Figure 7-2.
[image: Performance comparison for the Vandamme query]

Figure 7-2. Performance comparison for the Vandamme query

As Figure 7-2
          shows, for the Vandamme query, the adjacency model, in which the
          tree is walked using connect by,
          outperforms the competition despite the procedural nature of
          connect by. The materialized path
          makes a decent show, but probably suffers from the function calls to
          compute the depth and therefore the indentation. The cost of a
          nicely indented output is even more apparent with the nested sets
          model, where the obvious performance killer is the computation of
          the depth through an additional join and a group by. One might cynically suggest
          that, since this model is totally hard-wired, static, and
          non-relational, we might as well go whole hog in ignoring relational
          design tenets and store the depth of each node relative to the root.
          Doing so would certainly improve our query’s performance, but at a
          horrendous cost in terms of maintenance.


Bottom-Up Walk: The Highlanders Query



As I said earlier, looking for the Highland string
        within the description attributes will necessarily lead to a full scan
        of the table. But let’s write our query with each of the models in
        turn, and then we’ll consider the resulting performance
        implications.
Adjacency model



The Highlanders query is very straightforward to write using
          connect by, and once again we use
          the dynamically computed level
          pseudo-column to indent our result properly. Note that level was previously giving the depth, and
          now it returns the height since it is always computed from our
          starting point, and that we now return the parent after the
          child:
    select lpad(description, length(description) + level) description,
           commander
    from adjacency_model
    connect by id = prior parent_id
    start with description like '%Highland%'

And here is the result that we get:
    DESCRIPTION                        COMMANDER
    ---------------------------------- ----------------------------------------
     2/73rd (Highland) Rgmt of Foot    Lt-Colonel William George Harris
      5th British Brigade              Major-General Sir Colin Halkett
       3rd Anglo-German Division       Lt-General Count Charles von Alten
        I Corps                        Prince William of Orange
         The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                       Wellington
     1/71st (Highland) Rgmt of Foot    Lt-Colonel Thomas Reynell
      British Light Brigade            Major-General Frederick Adam
       2nd Anglo-German Division       Lt-General Sir Henry Clinton
        II Corps                       Lieutenant-General Lord Rowland Hill
         The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                       Wellington
     1/79th (Highland) Rgmt of Foot    Lt-Colonel Neil Douglas
      8th British Brigade              Lt-General Sir James Kempt
       5th Anglo-German Division       Lt-General Sir Thomas Picton (d.18th)
        General Reserve                Duke of Wellington
         The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                       Wellington
     1/42nd (Highland) Rgmt of Foot    Colonel Sir Robert Macara (d.16th)
      9th British Brigade              Major-General Sir Denis Pack
       5th Anglo-German Division       Lt-General Sir Thomas Picton (d.18th)
        General Reserve                Duke of Wellington
         The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                       Wellington
     1/92nd (Highland) Rgmt of Foot    Lt-Colonel John Cameron
      9th British Brigade              Major-General Sir Denis Pack
       5th Anglo-German Division       Lt-General Sir Thomas Picton (d.18th)
        General Reserve                Duke of Wellington
         The Anglo-Allied Army of 1815 Field Marshal Arthur Wellesley, Duke of
                                       Wellington

    25 rows selected.

The non-relational nature of connect
          by appears plainly enough: our result is not a relation,
          since we have duplicates. The name of the Duke of Wellington appears
          eight times, but in two different capacities, five times (as many
          times as we have Highland regiments) as commander-in-chief, and
          three as commander of the General Reserve. Twice—once as commander
          of the General Reserve and once as commander-in-chief—would have
          been amply sufficient. Can we easily remove the duplicates? No we
          cannot, at least not easily. If we apply a distinct, the DBMS will sort our result to
          get rid of the duplicate rows and will break the hierarchical order.
          We get a result that somehow answers the question. But you can take
          it or leave it according to the details of your requirements.

Materialized path model



The Highlanders query is slightly more difficult to
          write under the materialized path model . Identifying the proper rows and indenting them
          correctly is easy:
    select lpad(a.description, length(a.description)
                           + mp_depth(b.materialized_path)
                             - mp_depth(a.materialized_path)) description,
           a.commander
    from materialized_path_model a,
         materialized_path_model b
    where b.materialized_path like a.materialized_path || '%'
      and b.description like '%Highland%')

However, we have two issues to solve:
	We have duplicates, as with the adjacency model.

	The order of rows is not the one we want.



Paradoxically, the second issue is the reason why we can solve
          the first one easily; since we shall have to find a means of
          correctly ordering anyway, adding a distinct will break nothing in this case.
          How can we order correctly? As usual, by using the materialized path
          as our sort key. By adding these two elements and pushing the query
          into the from clause so as to be
          able to sort by materialized_path
          without displaying the column, we get:
    select description, commander
    from (select distinct lpad(a.description, length(a.description)
                           + mp_depth(b.materialized_path)
                             - mp_depth(a.materialized_path)) description,
                           a.commander,
                           a.materialized_path
          from materialized_path_model a,
               materialized_path_model b
          where b.materialized_path like a.materialized_path || '%'
            and b.description like '%Highland%')
    order by materialized_path desc

which displays:
    DESCRIPTION                         COMMANDER
    ---------------------------------- ----------------------------------------
    1/92nd (Highland) Rgmt of Foot      Lt-Colonel John Cameron
    1/42nd (Highland) Rgmt of Foot      Colonel Sir Robert Macara (d.16th)
     9th British Brigade                Major-General Sir Denis Pack
    1/79th (Highland) Rgmt of Foot      Lt-Colonel Neil Douglas
     8th British Brigade                Lt-General Sir James Kempt
      5th Anglo-German Division         Lt-General Sir Thomas Picton (d.18th)
       General Reserve                  Duke of Wellington
    1/71st (Highland) Rgmt of Foot      Lt-Colonel Thomas Reynell
     British Light Brigade              Major-General Frederick Adam
      2nd Anglo-German Division         Lt-General Sir Henry Clinton
       II Corps                         Lieutenant-General Lord Rowland Hill
    2/73rd (Highland) Rgmt of Foot      Lt-Colonel William George Harris
     5th British Brigade                Major-General Sir Colin Halkett
      3rd Anglo-German Division         Lt-General Count Charles von Alten
       I Corps                          Prince William of Orange
        The Anglo-Allied Army of 1815   Field Marshal Arthur Wellesley, Duke of
                                        Wellington

    16 rows selected.

This is a much nicer and more compact result than is achieved
          with the adjacency model. However, I should point out that a
          condition such as:
    where b.materialized_path like a.materialized_path || '%'

where we are looking for a row in the table aliased by
          a, knowing the rows in the table
          aliased by b, is something that,
          generally speaking, may be slow because we can’t make efficient use
          of the index on the column. What we would like to do, to make
          efficient use of the index, is the opposite, looking for b.materialized_path knowing a.materialized_path. There are ways to
          decompose a materialized path into the list of the materialized
          paths of the ancestors of the node (see Chapter 11), but that operation is
          not without cost. On our sample data, the query we have here was
          giving far better results than decomposing the material path so as
          to perform a more efficient join with the materialized path of each
          ancestor. However, this might not be true against several million
          rows.

Nested sets model



Once again, what hurts this model is that the depth must be
          dynamically computed, and that computation is a rather heavy
          operation. Since the Highlanders query is a bottom-up query, we must
          take care not to display the artificial root node (easily identified
          by left_num = 1) that we have had
          to introduce. Moreover, I have had to hard-code the maximum depth
          (6) to be able to indent properly. In our display, top levels are
          more indented than bottom levels, which means that padding is
          inversely proportional to depth. Since the depth is difficult to
          get, defining the indentation as 6 -
          depth was the simplest way to achieve the required
          result.
As with the materialized path model, we have to reorder
          anyway, so we have no scruple about applying a distinct to get rid of duplicate rows.
          Here’s the query:
    select lpad(description, length(description) + 6 - depth) description,
           commander
    from (select distinct b.description,
                          b.commander,
                          b.left_num,
                          (select count(c.left_num)
                           from nested_sets_model c
                           where b.left_num between c.left_num
                                                and c.right_num) depth
          from nested_sets_model a,
               nested_sets_model b
          where a.description like '%Highland%'
            and a.left_num between b.left_num and b.right_num
            and b.left_num > 1)
    order by left_num desc

This query displays exactly the same result as does the
          materialized path query in the preceding section.

Comparing the various models for the Highlanders
          query



I have applied the same test to the Highlanders query
          as to the Vandamme query earlier, running each of the queries 5,000
          times, with a minor twist: the adjacency model, as we have seen,
          returns duplicate rows that we cannot get rid of. My test returns
          5,000 times 25 rows for the adjacency model, and 5,000 times 16 rows
          with the other models, because they are the only rows of interest.
          If we measure performance as a simple number of rows returned by
          unit of time, with the adjacency model we are also counting many
          rows that we are not interested in. I have therefore added an
          adjusted adjacency model, for which performance is measured as the
          number of rows of interest—the rows returned by the other two
          models—per unit of time. The result is given in Figure 7-3.
It is quite obvious from Figure 7-3 that the adjacency
          model outperforms the two other models by a very wide margin before
          adjustment, and still by a very comfortable margin after adjustment.
          Also notice that the materialized path model is still faster than
          the nested sets model, but only marginally so.
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Figure 7-3. Performance comparison for the Highlanders query

We therefore see that, in spite of its procedural nature, the
          implementation of the connect by
          works rather well, both for top-down and bottom-up queries, provided
          of course that columns are suitably indexed. However, the return of
          duplicate rows in bottom-up queries when there are several starting
          points can prove to be a practical nuisance.
When connect by or a
          recursive with is not available,
          the materialized path model makes a good substitute. It is
          interesting to see that it performs better than the totally
          hard-wired nested sets model.
When designing tables to store hierarchical data, there are a
          number of mistakes to avoid, some of which are made in our
          example:
	The materialized path should in no way be the
              key, even if it is unique.
	It is true that strong hierarchies are not usually
                associated with dynamic environments, but you are not defined
                by your place in a hierarchy.

	The materialized path should not imply any
              ordering of siblings.
	Ordering does not belong to a relational model; it is
                simply concerned with the presentation of data. You must not
                have to change anything in other rows when you insert a new
                node or delete an existing one (which is probably the biggest
                practical reason, forgetting about all theoretical reasons,
                for not using the nested sets model). It is always easy to
                insert a node as the parents’ last child. You can order
                everything first by sorting on the materialized path of the
                parent, and then on whichever attribute looks suitable for
                ordering the siblings.

	The choice of the encoding is not totally
              neutral.
	The choice is not neutral because whether you must sort
                by the materialized path or by the parent’s materialized path,
                you must use that path as a sort key. The safest approach is
                probably to use numbers left padded with zeroes, for instance
                001.003.004.005 (note that
                if we always use three positions for each number, the
                separator can go). You might be afraid of the materialized
                path’s length; but if we assume that each parent never has
                more than 100 children numbered from 0 to 99, 20 characters
                allow us to store a materialized path for up to 10 levels, or
                trees containing up to 10010
                nodes—probably more than needed.



Important
Walking trees, whether down from the root or up from a leaf
            node, is by nature a sequential and therefore slow
            operation.




Aggregating Values from Trees



       Now that you know how to deal with trees, let’s look at
      how you can aggregate values held in tree structures. Most cases for the
      aggregation of values held in hierarchical structures fall into two
      categories: aggregation of values stored in leaf nodes and propagation of percentages across various levels in
      the tree.
Aggregation of Values Stored in Leaf Nodes



In a more realistic example than the one used to illustrate the
        Vandamme and Highlanders queries, nodes carry information—especially
        the leaf nodes. For instance, regiments should hold the number of
        their soldiers, from which we can derive the strength of every
        fighting unit.
Modeling head counts



If we take the same example we used previously,
          restricting it to a subset of the French Third Corps of General
          Vandamme and only descending to the level of brigades, a reasonably
          correct representation (as far as we can be correct) would be the
          tables described in the following subsections.
UNITS. Each row in the
          units table describes the various
          levels of aggregation (army corps, division, brigade) as in tables
          adjacency_model, materialized_path_models, or nested_sets_model, but without any
          attribute to specify how each unit relates to a larger unit:
    ID NAME                       COMMANDER
    -- -------------------------- -----------------------------------------------
     1 III Corps                  Général de Division Dominique Vandamme
     2 8th Infantry Division      Général de Division Baron Etienne-Nicolas Lefol
     3 1st Brigade                Général de Brigade Billard
     4 2nd Brigade                Général de Brigade Baron Corsin
     5 10th Infantry Division     Général de Division Baron Pierre-Joseph Habert
     6 1st Brigade                Général de Brigade Baron Gengoult
     7 2nd Brigade                Général de Brigade Baron Dupeyroux
     8 11th Infantry Division     Général de Division Baron Pierre Berthézène
     9 1st Brigade                Général de Brigade Baron Dufour
    10 2nd Brigade                Général de Brigade Baron Logarde
    11 3rd Light Cavalry Division Général de Division Baron Jean-Simon Domont
    12 1st Brigade                Général de Brigade Baron Dommanget
    13 2nd Brigade                Général de Brigade Baron Vinot
    14 Reserve Artillery          Général de Division Baron Jérôme Doguereau

Since the link between units is no longer stored in this
          table, we need an additional table to describe how the different
          nodes in the hierarchy relate to each other.
UNIT_LINKS_ADJACENCY. We
          may use the adjacency model once more, but this time links between
          the various units are stored separately from other attributes, in an
          adjacency list, in other words a list that
          associates to the (technical) identifier of each row, id, the identifier of the parent row. Such
          a list isolates the structural information. Our unit_links_adjacency table looks like
          this:
            ID  PARENT_ID
    ---------- ----------
             2          1
             3          2
             4          2
             5          1
             6          5
             7          5
             8          1
             9          8
            10          8
            11          1
            12         11
            13         11
            14          1

UNIT_LINKS_PATH. But you
          have seen that an adjacency list wasn’t the only way to describe the
          links between the various nodes in a tree. Alternatively, we may as
          well store the materialized path, and we can put that into the
          unit_links_path table:
            ID PATH
    ---------- -----------------
             1 1
             2 1.1
             3 1.1.1
             4 1.1.2
             5 1.2
             6 1.2.1
             7 1.2.2
             8 1.3
             9 1.3.1
            10 1.3.2
            11 1.4
            12 1.4.1
            13 1.4.2
            14 1.5

UNIT_STRENGTH. Finally, our
          historical source has provided us with the number of men in each of
          the brigades—the lowest unit level in our sample. We’ll put that
          information into our unit_strength table:
            ID        MEN
    ---------- ----------
             3       2952
             4       2107
             6       2761
             7       2823
             9       2488
            10       2050
            12        699
            13        318
            14        152


Computing head counts at every level



With the adjacency model, it is typically quite easy
          to retrieve the number of men we have recorded for the third corps;
          all we have to write is a simple query such as:
    select sum(men)
    from unit_strength
    where id in (select id
                 from unit_links_adjacency
                 connect by prior id = parent_id
                 start with parent_id = 1)

Can we, however, easily get the head count at each level, for
          example, for each division (the battle unit composed of two
          brigades) as well? Certainly, in the very same way, just by changing
          the starting point—using the identifier of each division each time
          instead of the identifier of the French Third Corps.
We are now facing a choice: either we have to code
          procedurally in our application, looping on all fighting units and
          summing up what needs to be summed up, or we have to go for the full
          SQL solution, calling the query that computes the head count for
          each and every row returned. We need to slightly modify the query so
          as to return the actual head count each time the value is directly
          known, for example, for our lowest level, the brigade. For
          instance:
    select u.name,
           u.commander,
           (select sum(men)
            from unit_strength
            where id in (select id
                         from unit_links_adjacency
                         connect by parent_id = prior id
                         start with parent_id = u.id)
               or id = u.id) men
    from units u

It is not very difficult to realize that we shall be hitting
          again and again the very same rows, descending the very same tree
          from different places. Understandably, on large volumes, this
          approach will kill performance. This is where the procedural nature
          of connect by, which leaves us
          without a key to operate on (something I pointed out when I could
          not get rid of duplicates without destroying the order I wanted),
          leaves us no other choice than to adopt procedural processing when
          performance becomes a critical issue; “for all they that take the
          procedure shall perish with the procedure.”
We are in a slightly better position with the materialized
          path here, if we are ready to allow a touch of black magic that I
          shall explain in Chapter 11.
          I have already referred to the explosion of
          links; it is actually possible, even if it is not a pretty sight, to
          write a query that explodes unit_links_path. I have called this view
          exploded_links_path and here is
          what it displays when it is queried:
    SQL> select * from exploded_links_path;

            ID   ANCESTOR      DEPTH
    ---------- ---------- ----------
            14          1          1
            13          1          2
            12          1          2
            11          1          1
            10          1          2
             9          1          2
             8          1          1
             7          1          2
             6          1          2
             5          1          1
             4          1          2
             3          1          2
             2          1          1
             4          2          1
             3          2          1
             7          5          1
             6          5          1
            10          8          1
             9          8          1
            13         11          1
            12         11          1

depth gives the generation
          gap between id and ancestor.
When you have this view, it becomes a trivial matter to sum up
          over all levels (bar the bottom one in this case) in the
          hierarchy:
    select u.name, u.commander, sum(s.men) men
    from units u,
         exploded_links_path el,
         unit_strength s
    where u.id = el.ancestor
      and el.id = s.id
    group by u.name, u.commander

which returns:
    NAME                       COMMANDER                              MEN
    -------------------------- -------------------------------------- -----
    III Corps                  Général de Division Dominique Vandamme 16350
    8th Infantry Division      Général de Division Baron Etienne-      5059
                               Nicolas Lefol
    10th Infantry Division     Général de Division Baron Pierre        5584
                               Joseph Habert
    11th Infantry Division     Général de Division Baron Pierre        4538
                               Berthézène
    3rd Light Cavalry Division Général de Division Baron Jean-Simon    1017
                               Domont

(We can add, through a union, a join between units and unit_strength to see units displayed for
          which nothing needs to be computed.)
I ran the query 5,000 times to determine the numerical
          strength for all units, and then I compared the number of rows
          returned per unit time. As might be expected, the result shows that
          the adjacency model, which had so far performed rather well, bites
          the dust, as is illustrated in Figure 7-4.
[image: Performance comparison when computing the head count of each unit]

Figure 7-4. Performance comparison when computing the head count of
            each unit

Important
Simpler tree implementation sometimes performs quite well
            when computing aggregates.



Propagation of Percentages Across Different Levels



Must we conclude that with a materialized path and a
        pinch of adjacency where available we can solve anything more or less
        elegantly and efficiently? Unfortunately not, and our last example
        will really demonstrate the limits of some SQL implementations when it
        comes to handling trees.
For this case, let’s take a totally different example, and we
        will assume that we are in the business of potions, philters, and
        charms. Each of them is composed of a number of ingredients—and our
        recipes just list the ingredients and their percentage composition.
        Where is the hierarchy? Some of our recipes share a kind of “base
        philter” that appears as a kind of compound ingredient, as in Figure 7-5.
[image: Don’t try this at home]

Figure 7-5. Don’t try this at home

Our aim is, in order to satisfy current regulations, to display
        on the package of Philter #5 the names and proportions of all the
        basic ingredients. First, let’s consider how we can model such a
        hierarchy. In such a case, a materialized path would be rather
        inappropriate. Contrarily to fighting units that have a single,
        well-defined place in the army hierarchy, any ingredient, including
        compound ones such as Potion #9, can contribute to many preparations.
        A path cannot be an attribute of an ingredient. If we decide to
        “flatten” compositions and create a new table to associate a
        materialized path to each basic ingredient in a composition, any
        change brought to Potion #9 would have to ripple through potentially
        hundreds of formulae, with the unacceptable risk in this line of
        business of one change going wrong.
The most natural way to represent such a structure is therefore
        to say that our philter contains so much of powdered unicorn horn, so
        much of asphodel, and so much of Potion #9 and so forth, and to
        include the composition of Potion #9.
Figure 7-6
        illustrates one way we can model our database. We have a generic
        components table with two subtypes,
        recipes and basic_ingredients, and a composition table storing the quantity of a
        component (a recipe or a basic ingredient) that appears in each
        recipe.
[image: The model for recipes]

Figure 7-6. The model for recipes

However, Figure
        7-6’s design is precisely where an approach such as connect by becomes especially clunky.
        Because of the procedural nature of the connect by operator, we can include only two
        levels, which could be enough for the case of Figure 7-5, but not in a general
        case. What do I mean by including two levels? With connect by we have the visibility of two
        levels at once, the current level and the parent level, with the
        possible exception of the root level. For instance:
    SQL> select connect_by_root recipe_id root_recipe,
      2         recipe_id,
      3         prior pct,
      4         pct
      5         component_id
      6  from composition
      7  connect by recipe_id = prior component_id
      8  /

    ROOT_RECIPE  RECIPE_ID   PRIORPCT          PCT COMPONENT_ID
    ----------- ---------- ---------- ------------ ------------
             14         14                       5            3
             14         14                      20            7
             14         14                      15            8
             14         14                      30            9
             14         14                      20           10
             14         14                      10            2
             15         15                      30           14
             15         14         30            5            3
             15         14         30           20            7
             15         14         30           15            8
             15         14         30           30            9
     ...

In this example, root_recipe
        refers to the root of the tree. We can handle simultaneously the
        percentage of the current row and the percentage of the prior row, in
        tree-walking order, but we have no easy way to sum up, or in this
        precise case, to multiply values across a hierarchy, from top to
        bottom.
The requirement for propagating percentages across levels is,
        however, a case where a recursive with statement is particularly useful. Why?
        Remember that when we tried to display the underlings of General
        Vandamme we had to compute the level to know how deep we were in the
        tree, carrying the result from level to level across our walk. That
        approach might have seemed cumbersome then. But that same approach is
        what will now allow us to pull off an important trick. The great
        weakness of connect by is that at
        one given point in time you can only know two generations: the current
        row (the child) and its parent. If we have only two levels, if Potion
        #9 contains 15% of Mandragore and Philter #5 contains 30% of Potion
        #9, by accessing simultaneously the child (Potion #9) and the parent
        (Philter #5) we can easily say that we actually have 15% of 30%—in
        other words, 4.5% of Mandragore in Philter #5. But what if we have
        more than two levels? We may find a way to compute how much of each
        individual ingredient is contained in the final products with
        procedures, either in the program that accesses the database, or by
        invoking user-defined functions to store temporary results. But we
        have no way to make such a computation through plain SQL.
“What percentage of each ingredient does a formula contain?” is
        a complicated question. The recursive with makes answering it a breeze. Instead of
        computing the current level as being the parent level plus 1, all we
        have to do is compute the actual percentage as being the current
        percentage (how much Mandragore we have in Potion #9) multiplied by
        the parent percentage (how much Potion #9 we have in Philter #5). If
        we assume that the names of the components are held in the components table, we can write our recursive
        query as follows:
    with recursive_composition(actual_pct, component_id)
    as (select a.pct,
               a.component_id
        from composition a,
             components b
        where b.component_id = a.recipe_id
          and b.component_name = 'Philter #5'
        union all
        select parent.pct * child.pct,
               child.component_id
        from recursive_composition parent,
             composition child
        where child.recipe_id = parent.component_id)

Let’s say that the components
        table has a component_type column
        that contains I for a basic
        ingredient and R for a recipe. All
        we have to do in our final query is filter (with an
        f ) recipes out, and, since the same basic
        ingredient can appear at various different levels in the hierarchy,
        aggregate per ingredient:
    select x.component_name, sum(y.actual_pct)
    from recursive_composition y,
           components x
    where x.component_id = y.component_id
        and x.component_type = 'I'
    group by x.component_name

As it happens, even if the adjacency model looks like a fairly
        natural way to represent hierarchies, its two implementations are in
        no way equivalent, but rather complementary. While connect by may superficially look easier
        (once you have understood where prior goes) and is convenient for displaying
        nicely indented hierarchies, the somewhat tougher recursive with allows you to process much more complex
        questions relatively easily—and those complex questions are the type
        more likely to be encountered in real life. You only have to check the
        small print on a cereal box or a toothpaste tube to notice some
        similarities with the previous example of composition analysis.
In all other cases, including that of a DBMS that implements a
        connect by, our only hope of
        generating the result from a “single SQL statement” is by writing a
        user-defined function, which has to be recursive if the DBMS cannot
        walk the tree.
Important
A more complex tree walking syntax may make a more complex
          question easier to answer in pure SQL.

While the methods described in this chapter can give reasonably
        satisfactory results against very small amounts of data, queries using
        the same techniques against very large volumes of data may execute “as
        slow as molasses.” In such a case, you might consider a
        denormalization of the model and a trigger-based “flattening” of the
        data. Many, including myself, frown upon denormalization. However, I
        am not recommending that you consider denormalizing for the oft-cited
        inherent slowness of the relational model, so convenient for covering
        up incompetent programming, but because SQL still lacks a truly
        adequate, scaleable processing of tree structures.




[*] First introduced in articles in DBMS
                Magazine (circa 1996), and much later developed in
                Trees and Hierarchies in SQL for Smarties
                (Morgan-Kauffman).

[*] Initially published on http://www.dbazine.com.

[†] Using, with his permission, the data compiled by Peter
          Kessler, at http://www.kessler-web.co.uk.

[*] Using this time the first product that implemented it,
              namely DB2.


Chapter 8. Weaknesses and Strengths

Recognizing and Handling Difficult Cases



No one can guarantee success in war, but only deserve it.
—Sir Winston Churchill (1874–1965)



There are a number of cases when one has
    either to fight on unfavorable ground, or to attack a
    formidable amount of data with feeble weapons. In this chapter, I am going
    to try to describe a number of these difficult cases; first to try to
    sketch some tactics to disentangle oneself with honor from a perilous
    situation, and, perhaps more importantly, to be able to recognize as soon
    as possible those options that may just lead us into a trap. In mechanics,
    the larger the number of moving parts, the greater the odds that something
    will break. This is an observation that applies to complex architectures
    as well. Unfortunately, snappy, exciting new techniques—or indeed
    revamped, dull old ones—often make us forget this important principle:
    keep things simple. Simpler often means faster and always means more
    robust. But simpler for the database doesn’t always mean simpler for the
    developer, and simplicity often requires more skills than
    complexity.
In this chapter, we shall first consider a case when a criterion
    that looks efficient proves rather weak but can be reinvigorated, and then
    we shall consider the dangers of abstract “persistency” layers and
    distributed systems. We shall finally look in some detail at a PHP/MySQL
    example showing the subtleties of combining flexibility with efficiency
    when a degree of freedom is left to the program user for the choice of
    search criteria.
Deceiving Criteria



  I already mentioned in Chapter 6 that in some queries we have a
      very selective combination of criteria that individually are not very
      selective. I noted that this was a rather difficult situation from which
      to achieve good performance.
Another interesting case, but one in which we are not totally
      helpless, is a criterion that at first sight looks efficient, that has
      the potential for becoming an efficient criterion, but that requires
      some attention to fulfill its potential. Credit card validation
      procedures provide a good example of such a criterion. As you may know,
      a credit card number encodes several pieces of information, including
      credit card type, issuer, and so on. By way of example, let’s look at
      the problem of achieving a first level of control for payments made at a
      toll road in one of the most visited Western European countries. This
      means checking a very large number of credit cards, supplied by a large
      number of international issuers, each with its own unique method of
      encoding.
Credit card numbers can have a maximum of 19 digits, with some
      exceptions, such as the cards issued by MasterCard (16 digits), Visa (16
      or 13), and American Express (15 digits), to mention just three
      well-known issuers. The first six digits in all cases indicate who the
      issuer is, and the last digit is a kind of checksum to spot any
      mistyping. A first, coarse level of control could be to check that the
      issuer is known, and that the checksum is correct. However the checksum
      algorithm is public knowledge (it can be found on the Internet) and can
      easily be faked. A more refined level of control also checks that the
      prefix of the card number belongs, for one given issuer, to a valid
      range of values for this issuer, together with an additional control on
      the number of digits in the card. In our case, we are provided with a
      list of about 200,000 valid prefixes of varying lengths.
How do we write the query to test a given card number against the
      valid ranges of values for the card’s issuer? The following is easy
      enough:
    select count(*)
    from credit_card_check
    where ? like prefix + '%'

The where ? indicates the card
      number to check and here + denotes
      string concatenation, often done via || or concat(
      ). We just have to index the prefix column, and we will get a full table
      scan each time.
Why is a full table scan happening? Haven’t we seen that an index
      was usable when we were addressing only the leftmost part of the key?
      True enough, but saying that the value we want to check is the leftmost
      part of the full key is not the same as saying, as here, that the
      full key is the leftmost part of the value we want
      to check. The difference may seem subtle, but the two cases are mirror
      images of each other.
Suppose that the credit card number to verify is 4000 0012 3456
      7899[*] Now imagine that our credit_card_checks table holds values such as
      312345, 3456 and 40001. We can see those three values as
      prefixes and, more or less implicitly, we see them as being in sorted
      order. First of all, they are in ascending order if they are stored as
      strings of characters, but not if they are stored as numbers. But there
      is yet more to worry about.
When we descend a tree (our index), we have a value to compare to
      the keys stored in the tree. If the value is equal to the key stored
      into the current node, we are done. Otherwise, we have to search a
      subtree that depends on whether our value is smaller or greater than
      that key. If we had a prefix of fixed length, we would have no
      difficulty: we should only take the suitable number of digits from our
      card number (the current prefix), and compare it to the prefixes stored
      in the index. But when the length of the prefix varies, which is our
      case, we must compare a different number of characters each time. This
      is not a task that a regular SQL index search knows how to
      perform.
Is there any way out? Fortunately, there is one. An operator such
      as like actually selects a range of
      values. If we want to check, say, that a 16-digit Visa card number is
      like 4000%, it
      actually means that we expect to find it between 4000000000000000 and 400099999999999. If we had a composite index on
      these lower and upper boundary numbers, then we could very easily check
      the card number by checking the index. That is, if all card numbers had
      16 digits. But a varying number of digits is a problem that is easy to
      solve. All cards have a maximum number of 19 digits. If we right-pad our
      Visa card number with three more 0s, thus bringing its total number of
      digits to 19, we can as validly check whether
      4000001234567899000 is between
      4000000000000000000 and
      400099999999999999.
Instead of storing prefixes, we need to have two columns: lower_bound and upper_bound. The first one, the lower_bound, is obtained by right-padding our
      prefix to the maximum length of 19 with 0s, and upper_bound is obtained by right-padding with
      9s. Granted, this is denormalization of a sort. However, this is a real
      read-only reference table, which makes our sin slightly more forgivable.
      We just have to index (lower_bound,
      upper_bound) and write our condition
      as the following to see our query fly:
    where substring(? + '0000000000000000000', 1, 19) between lower_bound
                                                          and upper_bound

Many products directly implement an rpad(
      ) function for right-padding. When we have a variable-length
      prefix to check, the solution is to get back to a common access case—the
      index range scan.
Important
Try to express unusual conditions such as comparisons on a
        prefix or a part of a key in known terms of range condition; whenever
        possible, try to ensure that there is a lower and
        an upper bound.


Abstract Layers



    It is a common practice to create a succession of abstract
      layers over a suite of software primitives, ostensibly for
      maintenance reasons and software reuse. This is a worthy practice and
      provides superb material for exciting management presentations.
      Unfortunately, this approach can very easily be abused, especially when
      the software primitives consist of database accesses. Of course, such an
      industrial aspect of software engineering is usually associated with
      modern, object-oriented languages.
I am going to illustrate how not to
      encapsulate database accesses with some lines from a real-life program.
      Interestingly for a book entitled The Art of SQL,
      the following fragment of C# code (of questionable sharpness...) contains only bits of an
      SQL statement. It is nevertheless extremely relevant to our topic, for
      deplorable reasons.
1    public string Info_ReturnValueUS(DataTable dt,
2                               string    codeForm,
3                                string    infoTxt)
4    {
5      string returnValue = String.Empty ;
6    try
7    {
8      infoTxt = infoTxt.Replace("'","''");
9      string expression = ComparisonDataSet.FRM_CD
10                              + " = '" + codeForm
11                              + "' and " + ComparisonDataSet.TXT_US
12                              + " = '" + infoTxt + "'" ;
13        DataRow[] drsAttr = dt.Select(expression);
14
15        foreach (DataRow dr in drsAttr)
16        {
17         if (dr[ComparisonDataSet.VALUE_US].ToString().ToUpper().Trim(  )
18                                   != String.Empty)
19            {
20             returnValue = dr[ComparisonDataSet.VALUE_US].ToString(  ) ;
21             break;
22            }
23        }
24      }
25      catch (MyException myex)
26      {
27        throw myex ;
28      }
29      catch (Exception ex)
30      {
31        throw new MyException("Info_ReturnValueUS " + ex.Message) ;
32      }
33      return returnValue ;
34    }

There is no need to be a C# expert to grasp the purpose of the
      above method, at least in general terms. The objective is to return the
      text associated with a message code. That text is to be returned in a
      given language (in this case American English, as US suggests). This code is from a multilingual
      system, and there is a second, identical function, in which two other
      letters replace the letters U and
      S. No doubt when other languages will
      be required, the same lines of code will be copied as many times as we
      have different languages, and the suitable ISO code substituted for
      US each time. Will it ease
      maintenance, when each change to the program has to be replicated to
      umpteen identical functions (...but for the ISO code)? I may be forgiven
      for doubting it, in spite of my legendary faith in what exciting
      management presentations promise modern languages to deliver.
But let’s study the program a little more closely. The string expression in lines 9–12 is an example
      of shameless hardcoding , before being passed in line 13 to a Select( ) method that can reasonably be
      expected to perform a query. In fact, it would seem that two different
      types of elements are hardcoded: column names (stored in attributes
      ComparisonDataSet.FRM_CD and ComparisonDataSet.TXT_US--and here,
      apparently, there is one column per supported language, which is a
      somewhat dubious design) and actual values passed to the query (codeForm and infoTxt). Column names can only be hardcoded,
      but there should not be a very great number of different combinations of
      column names, so that the number of different queries that can be
      generated will necessarily be small and we will have no reason to worry
      about this. The same cannot be said of actual values: we may query as
      many different values as we have rows in the table; in fact we may even
      query more, generating queries that may return nothing. The mistake of
      hard-coding values from codeForm and
      infoTxt into the SQL statement is
      serious because this type of “give me the associated label” query is
      likely to be called a very high number of times. As it is written, each
      call will trigger the full mechanism of parsing, determining the best
      execution plan, and so on—for no advantage. The values should be passed
      to the query as bind variables--just like arguments
      are passed to a function.
The loop of lines 15–23 is no less interesting. The program is
      looking for the first value that is not empty in the dataset just
      returned—dare we say the first value that is not null? Why code into an external
      application something that the SQL language can do perfectly well? Why
      return from the server possibly many more rows than are required, just
      to discard them afterwards? This is too much work. The database server
      will do more work, because even if we exit the loop at the first
      iteration, it is quite common to pre-fetch rows in order to optimize
      network traffic. The server may well have already returned tens or
      hundreds of rows before our application program begins its first loop.
      The application server does more work too, because it has to filter out
      most of what the database server painstakingly returned. Needless to
      say, the developer has written more code than is required. It is
      perfectly easy to add a suitable condition to expression, so that unneeded rows are not
      returned. As the C# code generates the query, the server has no idea
      that we are interested only in the first non-null value and will simply
      do as instructed. If we were to try and check on the database side for a
      clue indicating wrongly written code, the only thing that may possibly
      hint at a problem in the code will be the multitude of nearly identical
      hardcoded statements. This anomaly is, however, only a part of the
      larger problem.
One can write very poor code in any language, from plain old COBOL
      down to the coolest object-oriented language. But the greater the degree
      of independence between each layer of software, the better written those
      layers must each be. The problem here is that a succession of software
      layers may be called. No matter how skilled the developer who assembles
      these layers into the overall module, the final performance will be
      constrained by the weakest layer.
The problem of the weakest layer is all the more perverse when you
      inherit bad libraries—as with inheriting bad genes, there is not much
      you can do about it. Rewriting inefficient low-level layers is rarely
      allowed by schedules or budgets. I once learned about a case in which a
      basic operator in a programming language had been “overloaded”
      (redefined) and was performing a database access each time it was used
      by unsuspecting developers! It is all the more complicated to correct
      such a situation, because it is quite likely that individual queries, as
      seen from the database server, will look like conspicuously plain
      queries, not like the bad sort of SQL query that scans millions of rows
      and attracts immediate attention.
Important
Cool database access libraries are not necessarily efficient
        libraries.


Distributed Systems



              Whether you refer to federated systems , a linked server , or a database link, the principle is the same: in
      distributed queries, you are querying data that is not physically
      managed inside the server (or database to the Oracle crowd) you are
      connected to. Distributed queries are executed through complex
      mechanisms, especially for remote updates, in which transaction
      integrity has to be preserved. Such complexity comes at a very heavy
      cost, of which many people are not fully aware.
By way of example, I have run a series of tests against an Oracle
      database, performing massive inserts and selects against a very simple
      local table, and then creating database links and timing the very same operations with each database
      link. I have created three different database links:
	Inter-process
	A link made by connecting through inter-process
            communications—typically what one might do to query data located
            in another database[*] on the same host. No network was involved.

	Loop-back
	A link connecting through TCP, but specifying the loop-back
            address (127.0.0.1) to limit our foray into the network
            layers.

	IP address
	A link specifying the actual IP address of the machine—but
            once again without really using a network, so there is no network
            latency involved.



The result of my tests, as it appears in Figure 8-1, is revealing. In my
      case, there is indeed a small difference linked to my using
      inter-process communications or TCP in loop-back or regular mode. But
      the big performance penalty comes from using a database link in the very
      first place. With inserts, the database link divides the number of rows
      inserted per second by five, and with selects it divides the number of
      rows returned per second by a factor of 2.5 (operating in each case on a
      row-by-row basis).
[image: The cost of faking being far away]

Figure 8-1. The cost of faking being far away

When we have to execute transactions across heterogeneous
      systems , we have no other choice than to use database links or
      their equivalent. If we want data integrity, then we need to use
      mechanisms that preserve data integrity, whatever the cost. There are,
      however, many cases when having a dedicated server is an architectural
      choice, typically for some reference data. The performance penalty is
      quite acceptable for the odd remote reference. It is quite likely that
      if at connection time some particular credentials are checked against a
      remote server, nobody will really notice, as long as the remote server
      is up. If, however, we are massively loading data into a local database
      and performing some validation check against a remote server for each
      row loaded locally, then you can be sure to experience extremely slow
      performance. Validating rows one by one is in itself a bad idea (in a
      properly designed database, all validation should be performed through
      integrity constraints): remote checks will be perhaps two or three times
      slower than the same checks being carried out on the same local
      server.
Distributed queries, involving data from several distinct servers,
      are also usually painful. First of all, when you send a query to a DBMS
      kernel, whatever that query is, the master of the game is the optimizer
      on that kernel. The optimizer will decide how to split the query, to
      distribute the various parts, to coordinate remote and local activity,
      and finally to put all the different pieces together. Finding the
      appropriate path is already a complicated-enough business when
      everything happens on the local server. We should take note that the
      notion of “distribution” is more logical than physical: part of the
      performance penalty comes from the unavailability of remote dictionary
      information in the local cache. The cost penalty will be considerably
      higher with two unrelated databases hosted by the same machine than with
      two databases hosted by two different servers but participating in a
      common federated database and sharing data dictionary
      information.
There is much in common between distributed and
      parallelized queries (when a query is split into a number of independent
      chunks that can be run in parallel) with, as you have seen, the
      additional difficulties of the network layers slowing down significantly
      some of the operations, and of the unavailability at one place of all
      dictionary information making the splitting slightly more hazardous.
      There is also an additional twist here: when sources are
      heterogeneous—for example when a query involves data coming from an
      Oracle database as well as data queried from an SQL Server database, all
      the information the optimizer usually relies on may not be available.
      Certainly, most products gather the same type of information in order to
      optimize queries. But for several reasons, they don’t work in a mutually
      cooperative fashion. First, the precise way each vendor’s optimizer
      works is a jealously guarded secret. Second, each optimizer evolves from
      version to version. Finally, the Oracle optimizer will never be able to
      take full advantage of SQL Server specifics and vice versa. Ultimately,
      only the greatest common denominator can be meaningfully shared between
      different product optimizers.
Even with homogeneous data sources, the course of action is
      narrowly limited. As we have seen, fetching one row across a network
      costs considerably more than when all processes are done locally. The
      logical inference for the optimizer is that it should not take a path
      which involves some kind of to and fro switching between two servers,
      but rather move as much filtering as close to the data as it can. The
      SQL engine should then either pull or push the resulting data set for
      the next step of processing. You have already seen in Chapters 4 and 6 that a correlated
      subquery was a dreadfully bad way to test for existence when there is no
      other search criterion, as in for instance, the following
      example:
    select customer_name
    from customers
    where exists (select null
                  from orders,
                       orderdetails
                  where orders.customer_id = customers.customer_id
                    and orderdetails.order_id = orders.order_id
                    and orderdetails.article_id = 'ANVIL023')

Every row we scan from customers fires a subquery against orders and orderdetails.
It is of course even worse when customers happens to be hosted by one machine
      and orders and orderdetails by another. In such a case, given
      the high cost of fetching a single row, the reasonable solution looks
      like a transformation (in the ideal case, by the optimizer) of the above
      correlated subquery into an uncorrelated one, to produce the following
      instead:
    select customer_name
    from customers
    where customer_id in (select orders.customer_id
                          from orders,
                               orderdetails
                          where orderdetails.article_id = 'ANVIL023'
                            and orderdetails.order_id = orders.order_id)

Furthermore, the subquery should be run at the remote site. Note
      that this is also what should be performed even if you write the query
      as like this:
    select distinct customer_name
    from customers,
         orders,
         orderdetails
    where orders.customer_id = customers.customer_id
      and orderdetails.article_id = 'ANVIL023'
      and orders.order_id = orderdetails.order_id

Now will the optimizer choose to do it properly? This is another
      question, and it is better not to take the chance. But obviously the
      introduction of remote data sources narrows the options we have in
      trying to find the most efficient query. Also, remember that the
      subquery must be fully executed and all the data returned before the
      outer query can kick in. Execution times will, so to speak, add up,
      since no operation can be executed concurrently with another one.
The safest way to ensure that joins of two remote tables actually take place at the remote site is probably to
      create, at this remote site, a view defined as this join and to query
      the view. For instance, in the previous case, it would be a good idea to
      define a view vorders as:
    select orders.customer_id, orderdetails.article_id
    from orders,
         orderdetails
    where orderdetails.order_id = orders.order_id

By querying vorders we limit
      the risks of seeing the DBMS separately fetching data from all the
      remote tables involved in the query, and then joining everything
      locally. Needless to say, if in the previous case, customers and orderdetails were located on the same server
      and orders were located elsewhere, we would indeed be in a very perilous
      position.
Important
The optimizer works well with what it knows well: local data.
        Extensive interaction with remote data sinks performance.


Dynamically Defined Search Criteria



   One of the most common causes for awful visible
      performance (as opposed to the common dismal performance of batch
      programs, which can often be hidden for a while) is the use of
      dynamically defined search criteria. In practice, such criteria are a
      consequence of the dreaded requirement to “let the user enter the search
      criteria as well as the sort order via a screen interface.”
The usual symptoms displayed by this type of application is that
      many queries perform reasonably well, but that unfortunately from time
      to time a query that seems to be almost the same as a well-performing
      query happens to be very, very slow. And of course the problem is
      difficult to fix, since everything is so dynamic.
Dynamic-search applications are often designed as a two-step
      drill-down query, as in Figure
      8-2. Basically, a first screen is displayed to the user with a
      large choice of criteria and an array of possible conditions such as
      exclude or date between ... and .... These criteria are
      used to dynamically build a query that returns a list with some
      identifier and description, from which you can view all the associated
      details by selecting one particular item in the list.
[image: A typical multi-criteria search]

Figure 8-2. A typical multi-criteria search

When the same columns from the same tables are queried with
      varying search criteria, the key to success usually lays in a clever
      generation of SQL queries by the program that accesses the database. I
      am going to illustrate my point in detail with a very simple example, a
      movie database , and we shall only be concerned with returning a list of
      movie titles that satisfy a number of criteria. The environment used in
      this example is a widely popular combination, namely PHP and MySQL. Needless to say, the techniques shown in this
      chapter are in no way specific to PHP or to MySQL—or to movie
      databases.
Designing a Simple Movie Database and the Main Query



Our central table will be something such as the
        following:
    Table MOVIES
       movie_id       int(10) (auto-increment)
       movie_title    varchar(50)
       movie_country  char(2)
       movie_year     year(4)
       movie_category int(10)
       movie_summary  varchar(250)

We certainly need a categories table (referenced by a foreign
        key on movie_category) to hold the
        different genres, such as Action,
        Drama, Comedy,
        Musical, and so forth. It can be argued that some
        movies sometimes span several categories, and a better design would
        involve an additional table representing a many-to-many relationship
        (meaning that one genre can be associated with several movies and that
        each movie can be associated with several genres as well), but for the
        sake of simplicity we shall admit that a single, main genre is enough
        for our needs in this example.
Do we need one table for actors and another for directors?
        Creating two tables would be a design mistake, because it is quite
        common to see actors-turned-directors, and there is no need to
        duplicate personal information. From time to time one even finds a
        movie directed by one of the lead actors.
We therefore need three more tables: people to store information such as name,
        first name, sex, year of birth, and so on; roles to define how people may contribute to
        a movie (actor, director, but also composer, director of photography,
        and the like); and movie_credits to
        state who was doing what in which movie. Figure 8-3 shows our complete
        movie schema.
[image: The movie database schema]

Figure 8-3. The movie database schema

Let’s suppose now that we want to let people search movies in
        our database by specifying either: words from the title, the name of
        the director, or up to three names of any of the actors. Following is
        the source of our prototype page, which I have built in HTML to act as
        our screen display:
    <html>
    <head>
      <title>Movie Database</title>
    </head>
    <body>
    <CENTER>
        <HR>
        <BR>
        Please fill the form to query our database and click on <b>Search</b> when you are done...
        <BR>
        <HR>
        <BR>
    <form action="display_query.php" method="post">
        <TABLE WIDTH="75%">
        <TR>
          <TD>Movie Title :</TD>
          <TD><input type="text" name="title"></TD>
        </TR>
        <TR>
          <TD>Director    :</TD>
          <TD><input type="text" name="director"></TD>
        </TR>
        <TR>
          <TD>Actor       :</TD>
          <TD><input type="text" name="actor1"></TD>
        </TR>
        <TR>
          <TD>Actor       :</TD>
          <TD><input type="text" name="actor2"></TD>
        </TR>
        <TR>
          <TD>Actor       :</TD>
          <TD><input type="text" name="actor3"></TD>
        </TR>
        <TR>
          <TD COLSPAN="2" ALIGN="CENTER">
          <HR>
          <input type="Submit" value="Search">
          <HR>
          </TD>
        </TR>
        </TABLE>
    </form>
    </CENTER>
    </body>
    </html>

This prototype page shows on screen as in Figure 8-4.
First, let me make a few remarks:
	Although we want to store the first and last names
            separately in our database (definitely more convenient if we want
            to generate a listing ordered by last name), we don’t want our
            entry form to look like a passport renewal form: we just want a
            single entry field for each individual.

	We want our query input values to be
            case-insensitive.



[image: The movie database search screen]

Figure 8-4. The movie database search screen

Certainly the thing not to do is to
        generate a query containing a criterion such as:
    and upper(<value entered for actor1>) =
              concat(upper(people_firstname), ' ', upper(people_name))

As shown in Chapter 3, the
        right part of the equality in such a criterion would prevent us from
        using any regular index we might have logically created on the name.
        Several products allow the creation of functional indexes and index
        the result of expressions, but the simplest and therefore best
        solution is probably as follows:
	Systematically store in uppercase any character column that
            is likely to be queried (we can always write a function to
            beautify it before output).

	Split the entry field into first name and (last) name before
            passing it to the query.



The first point simply means inserting upper( string ) instead of string,
        which is easy enough. Keep the second point in mind for the time
        being: I’ll come back to it in just a bit.
If users were to fill all entry fields, all
        the time, then our resulting main query could be something such
        as:
    select movie_title, movie_year
    from movies
         inner join movie_credits mc1
           on mc1.movie_id = movies.movie_id
         inner join people actor1
           on  mc1.people_id = actor1.people_id
         inner join roles actor_role
           on  mc1.role_id = actor_role.role_id
           and mc2.role_id = actor_role.role_id
           and mc3.role_id = actor_role.role_id
         inner join movie_credits mc2
           on mc2.movie_id = movies.movie_id
         inner join people actor2
           on  mc2.people_id = actor2.people_id
         inner join movie_credits mc3
           on mc3.movie_id = movies.movie_id
         inner join people actor3
           on  mc3.people_id = actor3.people_id
         inner join movie_credits mc4
           on mc4.movie_id = movies.movie_id
         inner join people director
           on  mc4.people_id = director.people_id
         inner join roles director_role
           on mc4.role_id = director_role.role_id
    where actor_role.role_name = 'ACTOR'
      and director_role.role_name = 'DIRECTOR'
      and movies.movie_title like 'CHARULATA%'
      and actor1.people_firstname = 'SOUMITRA'
      and actor1.people_name = 'CHATTERJEE'
      and actor2.people_firstname = 'MADHABI'
      and actor2.people_name = 'MUKHERJEE'
      and actor3.people_firstname = 'SAILEN'
      and actor3.people_name = 'MUKHERJEE'
      and director.people_name = 'RAY'
      and director.people_firstname = 'SATYAJIT'

Unfortunately, will somebody who can name the title, director
        and the three main actors of a film (most typically a movie buff)
        really need to use our database? This is very unlikely. The most
        likely search will probably be when a single field or possibly two, at
        most, will be populated. We must therefore anticipate blank fields,
        asking the question: what will we do when no value is passed?
A common way of coding one’s way out of a problematic situation
        like this is to keep the select list unchanged; then to join together
        all the tables that may intervene in one way or another, using
        suitable join conditions; and then to replace the straightforward
        conditions from the preceding example with a long series of:
     and column_name = coalesce(?, column_name)

where ? will be associated
        with the value from an entry field, and coalesce( ) is the function that returns the
        first one of its arguments that is non null. If a value is provided,
        then a filter is applied; otherwise, all values in the column pass the
        test.
All values? Not really; if a column contains a NULL, the condition for that column will
        evaluate to false. We cannot say that something we don’t know is equal
        to something we don’t know, even if it is the same something
        (nothing?). If one condition in our long series of conditions linked
        by and evaluates to false, the query will return nothing, which
        is certainly not what we want. There is a solution though, which is to
        write:
    and coalesce(column_name, constant) = coalesce(?, column_name, constant)

This solution would be absolutely perfect if only it did not
        mean forfeiting the use of any index on
        column_name when a parameter is specified.
        Must we sacrifice the correctness of results to performance, or
        performance to the correctness of results? The latter solution is
        probably preferable, but unfortunately both of them might also mean
        sacrificing our job, a rather unpleasant prospect.
A query that works in all cases, whatever happens, is quite
        difficult to write. The commonly adopted solution is to build such a
        query dynamically. What we can do in this example scenario is to store
        in a string everything up to the where and the fixed conditions on role
        names, and then to concatenate to this string the conditions which
        have been input by our program user—and only those conditions.
Important
A variable number of search criteria calls for dynamically
          built queries.

Assuming that a user searched our database for movies starring
        Amitabh Bachchan, the resulting, dynamically written query might be
        something like the following:
    select distinct movie_title, movie_year
    from movies
         inner join movie_credits mc1
           on mc1.movie_id = movies.movie_id
         inner join people actor1
           on  mc1.people_id = actor1.people_id
         inner join roles actor_role
           on  mc1.role_id = actor_role.role_id
           and mc2.role_id = actor_role.role_id
           and mc3.role_id = actor_role.role_id
         inner join movie_credits mc2
           on mc2.movie_id = movies.movie_id
         inner join people actor2
           on  mc2.people_id = actor2.people_id
         inner join movie_credits mc3
           on mc3.movie_id = movies.movie_id
         inner join people actor3
           on  mc3.people_id = actor3.people_id
         inner join movie_credits mc4
           on mc4.movie_id = movies.movie_id
         inner join people director
           on  mc4.people_id = director.people_id
         inner join roles director_role
           on mc4.role_id = director_role.role_id
    where actor_role.role_name = 'ACTOR'
      and director_role.role_name = 'DIRECTOR'
      and actor1.people_firstname = 'AMITABH'
      and actor1.people_name = 'BACHCHAN'
    order by movie_title, movie_year

First, let me make two remarks:
	We have to make our select a select
            distinct. We do this because we keep the joins without
            any additional condition. Otherwise, as many rows would be
            returned for each movie as we have actors and directors recorded
            for the movie.

	It is very tempting when building the query to concatenate
            the values that we receive to the SQL text under construction
            proper, thus obtaining a query exactly as above. This is not, in
            fact, what we should do. I have already mentioned the subject of
            bind variables; it is now time to explain how they work. The
            proper course is indeed to build the query with placeholders such
            as ? (it depends on the
            language), and then to call a special function to
            bind the actual values to the placeholders.
            It may seem more work for the developer, but in fact it will mean
            less work for the DBMS engine. Even if we rebuild the query each
            time, the DBMS usually caches the statements it executes as a part
            of its standard optimization routines. If the SQL engine is given
            a query to process that it finds in its cache, the DBMS has
            already parsed the SQL text and the optimizer has already
            determined the best execution path. If we use placeholders, all
            queries that are built on the same pattern (such as searches for
            movies starring one particular actor) will use the same SQL text,
            irrespective of the actor’s name. All the setup is done, the query
            can be run immediately, and the end user gets the response
            faster.



Besides performance, there is also a very serious concern
        associated with dynamically built hardcoded queries, a security
        concern: such queries present a wide-open door to the technique known
        as SQL injection. What is SQL injection? Let’s
        say that we run a commercial operation, and that only subscribers are
        allowed to query the full database while access to movies older than
        1960 is free to everybody. Suppose that a malicious non-subscriber
        enters into the movie_title field
        something such as:
    X' or 1=1 or 'X' like 'X

When we simply concatenate entry fields to our query text we
        shall end up with a condition such as:
    where movie_title like 'X' or 1=1 or 'X' like 'X%'
      and movie_year < 1960

which is always true and will obviously filter nothing at all!
        Concatenating the entry field to the SQL statement means that in
        practice anybody will be able to download our full database without
        any subscription. And of course some information is more sensitive
        than movie databases. Binding variables protects from SQL injection.
        SQL injection is a very real security matter for anyone running an
        on-line database, and great care should be taken to protect against
        its malicious use.
Important
When using dynamically built queries, use parameter markers
          and pass values as bind variables, for both performance and security
          (SQL injection) reasons.

A query with prepared joins and dynamically
        concatenated filtering conditions executes very quickly when the
        tables are properly indexed. But there is nevertheless something that
        is worrisome. The preceding example query is a very complicated query,
        particularly when we consider the simplicity of both the output result
        and of what we provided as input.

Right-Sizing Queries



In fact, the complexity of the query is just one part of
        the issue. What happens, in the case of the final query in the
        preceding section, if we have not recorded the name of the director in
        our database, or if we know only the names of the two lead actors? The
        query will return no rows. All right, can we not use outer joins then,
        which return matching values when there is one and NULL when there is none?
Using outer joins might be a solution, except that we don’t know
        what exactly will be queried. What if we only have the name of the
        director in our database? In fact, we would need outer joins
        everywhere—and putting them everywhere is often, logically,
        impossible. We therefore have an interesting case, in which we are
        annoyed by missing information even if all of our attributes are
        defined as mandatory and we have absolutely no NULL values in the database, simply because
        our query so far assumes joins that may be impossible to
        satisfy.
In fact, in the particular case when only one actor name is
        provided, we need a query no more complicated than the
        following:
    select movie_title, movie_year
    from movies
         inner join movie_credits mc1
           on mc1.movie_id = movies.movie_id
         inner join people actor1
           on  mc1.people_id = actor1.people_id
         inner join roles actor_role
           on  mc1.role_id = actor_role.role_id
    where actor_role.role_name = 'ACTOR'
      and actor1.people_firstname = 'AMITABH'
      and actor1.people_name = 'BACHCHAN'
    order by movie_title, movie_year

This “tight-fit” query assumes nothing about our also knowing
        the name of the director, nor of a sufficient number of other actors,
        and hence there is no need for outer joins. Since we have already
        begun building our query dynamically, why not try to inject a little
        more intelligence in our building exercise, so as to obtain a query
        really built to order, exactly tailored to our needs? Our code will no
        doubt be more complicated. Is the complication worth it? The simple
        fact that we are now certain to return all the information available
        when given an actor’s name, even when we don’t know who directed a
        film, should be reason enough for an unqualified “yes.” But
        performance reasons also justify taking this step.
Nothing is as convincing as running a query in a loop a
        sufficient number of times to show the difference between two
        approaches: our “tight-fit” query is five times faster than the
        “one-size-fits-all” query. All other things aside, does it matter if
        our query executes in 0.001 second instead of 0.005 second? Not much,
        if our database is only queried now and then. But there may be a day
        when queries arrive at a rate higher than we can service and keep up
        with, and then we’ll have a problem. Queries will have to be queued,
        and the queue length will increase very quickly—as fast as the number
        of complaints about poor database performance. Simply put, going five
        times faster enables five times as many queries to be processed on the
        same hardware. (We will consider these issues in more detail in Chapter 9.)
Important
Matching criteria with dynamically built queries improves
          performance by minimizing joins, and eliminates the issue of missing
          values.


Wrapping SQL in PHP



Let’s first start our PHP page with a smattering of
        regular HTML before the real PHP code:
<html>
      <head>
         <title>Query result</title>
    </head>
    <body>
    <CENTER>
      <table width="80%">
        <TR><TH>Title</TH><TH>Year</TH><TR>
     
     
    <?php
     ...

(Our page would probably be nicer with a stylesheet....)
Once we have our handle that represents the connection to the
        database, the very first thing to do is to get the values that were
        submitted to the entry screen. Since everything is stored in uppercase
        in our database we can convert the user-entered values directly to
        uppercase too. This is of course something that can be done in the SQL
        code, but it costs nothing to do it in the PHP code:
      $title=strtoupper($_POST['title']);
      $director=strtoupper($_POST['director']);
      $actor1=strtoupper($_POST['actor1']);
      $actor2=strtoupper($_POST['actor2']);
      $actor3=strtoupper($_POST['actor3']);

We now have a technical problem linked to the implementation of
        PHP  binding. Following is the process for binding variables
        in PHP:
	We first write ? in the
            place of every parameter we want to pass to the query.

	Then we call the bind_param(
            ) method that takes as its first argument a string
            containing as many characters as we have values to bind, each
            character telling the type of the parameter we pass (in this case
            it will always be s for
            string), then a variable number of parameters—one per each value
            we want to bind.



All parameters are identified by position (the same is true with
        JDBC, but not with all database systems and languages; for instance,
        you will refer to bind variables by name in an SQLJ program). But our
        main problem is the single call to bind_param( ), which is very convenient when
        we know exactly how many parameters we have to bind, but is not so in
        our case here, in which we do not know in advance how many values a
        user will enter. It would be much more convenient in our case to have
        a method allowing us to loop and bind values one by one.
One way to bind a variable number of values, which is not
        necessarily the most elegant, is to loop on all the variables we have
        received from the form, check which ones actually contain something,
        and store each value in the subsequent positions of an array. We have
        no problem doing this with our example since all the values we may get
        are character strings. If we were expecting something else—for
        instance the year when a movie was first shown—the most sensible
        approach would probably be to treat such a value as a string inside
        the PHP code and to convert it to a number or date in the SQL
        code.
We can use a $paramcnt
        variable to count how many parameters were provided by the user of the
        form, and store the values into a $params array:
      $paramcnt=0;
     
      if ($title != "") {
         $params[$paramcnt] = $title;
         $paramcnt++;
        }

Things get a little more complicated with people names. Remember
        that we have decided that having a single field to enter a name was
        more user-friendly than having to enter the first and last names into
        two separate fields. However, comparing the string entered by the user
        to the concatenation of first name and last name in our people table would prevent the query from
        using the index on the last name and might, moreover, yield wrong
        results: if the user has mistakenly typed two spaces instead of one
        between first name and last name, for instance, we shall not find the
        person.
What we are therefore going to do is to split the entry field
        into first name and last name, assuming that the last name is the last
        word, and that the first name, which may be composed of 0, 1, or
        several words, is what precedes the last name. In PHP, we can easily
        write such a function which sets two parameters that are passed by
        reference:
      function split_name($string, &$firstname, &$lastname)
      {
      /*
       *   We assume that the last name is the last element of the string,
       *   and that we may have several first names
       */
       $pieces = explode(" ", $string);
       $parts = count($pieces);
       $firstnames = array_slice($pieces, 0, $parts - 1);
       $firstname = implode(" ", $firstnames);
       $lastname = $pieces[$parts - 1];
      }

This function will allow us to split $director into $dfn and $dn, $actor1 into $a1fn and $a1n and so on, everything being coded on
        the same model:
      if ($director != "") {
         /* Split firstname / name */
             split_name($director, $dfn, $dln);
         if ($dfn != "")
            {
             $params[$paramcnt] = $dfn;
             $paramcnt++;
            }
         $params[$paramcnt] = $dln;
         $paramcnt++;
        }

Once we have inspected our parameters, all we have to do is to
        build our query, being very careful to insert the parameter markers
        for the bind variables in exactly the same order as they will appear
        in the $params array:
      $query = "select movie_title, movie_year "
              ."from movies";
      /* Director was specified ? */
      if ($director != "")
         {
          $query = $query." inner join movie_credits mcd"
                         ."  on mcd.movie_id = movies.movie_id"
                         ." inner join people director"
                         ."  on  mcd.people_id = director.people_id"
                         ." inner join roles director_role"
                         ."  on mcd.role_id = director_role.role_id";
         }
      /* Any actor was specified ? */
      if ($actor1.$actor2.$actor3 != "")
         {
         /*
          *   First the join on the ROLES table
          */
          $query = $query." inner join roles actor_role";
         /*
          *  Even if only one actor was specified, we may
          *  not necessarily find the name in $actor1 so careful
          */
          $actcnt = 0;
          if ($actor1 != "")
             {
              if ($actcnt == 0)
                 {
                  $query = $query."  on";
                 }
               else
                 {
                  $query = $query."  and";
                 }
              $query = $query." mc1.role_id = actor_role.role_id";
             }
          if ($actor2 != "")
             {
              ...
             }
          if ($actor3 != "")
             {
              ...
             }
         /*
          *   Then join on MOVIE_CREDITS and PEOPLE
          */
          if ($actor1 != "")
             {
              $query = $query." inner join movie_credits mc1"
                             ."  on mc1.movie_id = movies.movie_id"
                             ." inner join people actor1"
                             ."  on actor1.people_id = mc1.people_id";
             }
          if ($actor2 != "")
             {
              ...
             }
          if ($actor3 != "")
             {
              ...
             }
         }
      /*
       *   We are done with the FROM clause; we are using the old 1=1
       *   trick to avoid checking each time whether it is the very
       *   first condition or not - the latter case requires an 'and'.
       */
      $query = $query." where 1=1";
      /*
       * Be VERY careful to add parameters in the same order they were
       * stored into the $params array
       */
      if ($title != "")
         {
          $query = $query." and movies.movie_title like concat(?, '%')";
         }
      /* Director was specified ? */
      if ($director != "")
         {
          $query = $query."  and director_role.role_name = 'DIRECTOR'";
          if ($dfn != "")
             {
             /*
              * Use like instead of regular equality for the first name, it will
              * work with some abbreviations or initials.
              */
              $query = $query
                     ." and director.people_firstname like concat(?, '%')";
             }
          $query = $query." and director.people_name = ?";
         }
      if ($actor1.$actor2.$actor3 != "")
         {
          $query = $query."  and actor_role.role_name = 'ACTOR'";
          if ($actor1 != "")
             {
              ...
             }
          if ($actor2 != "")
             {
              ...
             }
          if ($actor3 != "")
             {
              ...
             }
         }

Once our query is ready, we call the prepare( ) method, then bind our variables;
        this is where our code is not very pretty, since we can have between 1
        and 9 variables to bind and handle, and each variable must be handled
        separately:
      /* create a prepared statement */
      if ($stmt = $mysqli->prepare($query)) {
         /*
          *  Bind parameters for markers
          *
          *  This is the messiest part.
          *  We can have anything between 1 and 9 parameters in all (all strings)
          */
          switch ($paramcnt)
             {
              case 1 :
                   $stmt->bind_param("s", $params[0]);
                   break;
              case ...
                   ...
                   break;
              case 9 :
                   $stmt->bind_param("sssssssss", $params[0],
                                                  $params[1],
                                                  $params[2],
                                                  $params[3],
                                                  $params[4],
                                                  $params[5],
                                                  $params[6],
                                                  $params[7],
                                                  $params[8]);
                   break;
              default :
                   break;
             }

Et voilà! We are done and just have to execute the query and
        display the result:
     /* execute query */
         $stmt->execute(  );
         /* fetch values */
         $stmt->bind_result($mt, $my);
         while ($row = $stmt->fetch(  ))
            {
              printf ("<tr><TD>%s</TD><TD>%d</TD></TR>\n", $mt, $my);
            }
         /* close statement */
         $stmt->close(  );
        }
      else
        {
         printf("Error: %s\n", $mysqli->sqlstate);
        }
    ?>
    </TABLE>
    </CENTER>

Obviously, the code here is significantly more complicated than
        if we had tried to have one single query.
It may seem surprising, after I have advocated pushing as much
        work as possible onto the DBMS side, to now find me defending the use
        of complicated code to build as simple a SQL statement as possible.
        Doing as much work on the SQL side as possible makes sense when it is
        work that has to be performed. But joining three
        times as many tables as are needed in the average query, with some of
        these useless joins not necessarily being very efficient (especially
        when they happen to be against complex views) makes no sense at
        all.
By intelligently building the query, we tightly control what is
        executed in terms of security, correctness of the result, and
        performance. Any simpler solution bears risks of sacrificing at least
        one of these aspects.
To summarize, there are at least three mistakes that are very
        commonly made in queries that take a variable number of search
        criteria:
	First of all, it is quite common to see the
            values against which the columns of the
            tables are compared being concatenated with the
            statement-in-making, thus resulting in a magnificent, totally
            hardcoded statement. Even where queries are supposed to be
            absolutely unpredictable, you usually find a few queries that are
            issued again and again by the users, with only the constants
            varying. Some constants are susceptible to a high degree of
            variability (such as entity identifiers, as opposed to date
            formats or even status codes). It isn’t much work to replace these
            constants by a parameter marker, the syntax of which depends on
            the language (for instance '?')
            and then to bind the actual value to this
            parameter marker. This will result in much less work for the
            server, which will not need to re-analyze the statement each time
            it is issued, and in particular will not need to determine each
            time a best execution plan, that will always
            be the same. And no user will be able to bypass any additional
            restriction you may want to add to the query, which means that by
            binding variables you will plug a serious security issue at the
            same time.

	A second mistake is usually to try to include in the query
            everything that may matter. It is not because
            a search criterion may refer to data stored
            in one table that this table must appear in
            the from clause. I have already
            alluded to this issue in the previous chapters, but the from clause should only contain the
            tables from which we return data, as well as the tables enabling
            us to join them together. As we have seen in Chapter 6, existence tests should
            be solved by subqueries—which are no more difficult to generate
            dynamically than a regular condition in a where clause.

	The most important mistake is the one-size-fits-all
            philosophy. Behind every generic query are usually hidden three or
            four families of queries. Typically, input data is made up of
            identifiers, status values, or some ranges of dates. The input
            values may be strong, efficient criteria, or weak ones, or indeed
            anything in between (sometimes an additional criterion may
            reinforce a weak one by narrowing the scope). From here, trying to
            build several alternate queries in an intelligent fashion, as in
            the various cases of Chapter
            6, is the only sound way out, even if it looks more
            complicated.



Important
More intelligence in the dynamic construction of an SQL
          statement makes for a more efficient SQL statement.





[*] An invalid card number, in case you were wondering... .

[*] Remember that what Oracle calls a
                database is what is known in most other
                database systems as a server.


Chapter 9. Multiple Fronts

Tackling Concurrency



Yet to their General’s Voice they soon obey’d  Innumerable.
       Paradise Lost, Book I
—John Milton (1608–1674)



When we have a lot of sessions running
    concurrently, all accessing one database, we may encounter
    difficulties that can remain hidden when running single-user tests.
    Contention occurs, and locks may be held for unpredictable periods of
    time. This chapter discusses how to face the situation when users advance
    in overwhelming numbers.
There are several different issues associated with a large number of
    concurrent users. One of the most obvious is contention when updating
    (sometimes reading) data and the consequent requirement for locks at one
    level or another. But users are not only fighting for the right to modify
    bytes at one place in the system without any interference from others;
    they are also competing for processing power, access to disks, workspace
    in memory, and network bandwidth. Very often difficulties that are latent
    with a few users become blatant with many. Increases in the number of
    users are not always as smooth as one might expect them to be. Sudden
    increases can come through the meteoritic success of your company, but
    fast-paced increases more often happen through the gradual deployment of
    applications—or sometimes as a result of mergers or buyouts.
The Database Engine as a Service Provider



   You might be tempted to consider the DBMS as an
      intelligent and dedicated servant that rushes to forestall your
      slightest desire and bring data at the exact time when you need it.
      Reality is slightly less exalted than the intelligent servant model, and
      at times a DBMS looks closer to a waiter in a very busy restaurant. If
      you take your time to choose from the menu, chances are that the waiter
      will tell you “I’ll let you choose, and I’ll come back later to take
      your order” before disappearing for a long time. A DBMS is a service
      provider or, perhaps more precisely, a collection of service providers.
      The service is simply to execute some operation against the data,
      fetching it or updating it—and the service may be requested by many
      concurrent sessions at the same time. It is only when
      each session queries efficiently that the DBMS can
      perform efficiently.
The Virtues of Indexes



Let’s execute some fairly basic tests against a very simple
        table with three columns. The first two are integer columns (each
        populated with distinct values from 1 to 50,000), one being declared
        as the primary key and the second without an index. The third column
        (named label) is a text column
        consisting of random strings thirty to fifty characters long. If we
        generate random numbers between 1 and 50,000 and use these random
        numbers as query identifiers to return the label column, you might be
        surprised to discover that on any reasonably powerful machine, the
        following query:
    select label
    from test_table
    where indexed_column = random value

as well as this one:
    select label
    from test_table
    where unindexed_column = random value

provide virtually instant results. How is this possible? A query
        using an unindexed column should be much slower, surely? Actually, a
        50,000-row table is rather small, and if it has as few columns as is
        the case in our example, the number of bytes to scan is not that
        enormous, and a modern machine can perform the full scan very rapidly.
        We indeed have, on one hand, a primary key index search, and on the
        other hand, a full-table scan. What’s happening is that the difference
        between indexed and unindexed access is too small for a human to
        perceive.
To really test the benefit of an index, I have run our queries
        continuously for one minute, and then I have checked on how many
        queries I was able to process by unit of time. The result is
        reassuringly familiar: on the machine on which I ran the test, the
        query using the indexed column can be performed 5,000 times per
        second, while the query using the unindexed column can only be
        performed 25 times per second. A developer running single user tests
        may not really notice a difference, but there is one, and it is truly
        massive.
Important
Even sub-second response times sometimes hide major
          performance issues. Don’t trust unitary tests.


A Just-So Story



Continuing with the example from the preceding section,
        let’s have a look at what may very well happen in practice. Suppose
        that instead of being a number, the key of our table happens to be a
        string of characters. During development, somebody notices that a
        query has unexpectedly returned the wrong result. A quick
        investigation shows that the key column contains both uppercase and
        lowercase characters. Under pressure to make a quick fix, a developer
        modifies the where clause in the
        query and applies an upper( )
        function to the key column—thus forfeiting the index. The developer
        runs the query, the correct result set is returned, and anyone other
        than a native of the planet Krypton cannot possibly notice any
        significant difference in response time. All appears to be for the
        best, and we can ship the code to production.
Now we have hordes of users, all running our query again, again
        and again. Chapter 2 makes the
        point that in our programs we should not execute queries inside loops,
        whether they are cursor loops or the more traditional
        for or while
        constructs. Sadly, we very often find queries nested inside loops on
        the result set of other queries, and as a result, our query can be run
        at a pretty high rate, even without having tens of thousands of
        concurrent users. Let’s see now what happens to our test table when we
        run the query at a high rate, with a set number of executions per unit
        of time, occurring at random intervals. When we execute our query at
        the relatively low rate of 500 per minute, everything appears normal
        whether we use the index or not, as you can see in Figure 9-1. All our queries
        complete in under 0.2 seconds, and nobody will complain.
[image: Response time of a simple query against a 50,000-row table, low query rate]

Figure 9-1. Response time of a simple query against a 50,000-row table,
          low query rate

We actually have to increase our execution rate 10 times, to a
        relatively high rate of 5,000 executions per minute, to notice in
        Figure 9-2 that we may
        occasionally have a slow response when we use the unindexed column as
        key. This, however, affects only a very low percentage of our queries.
        In fact, 97% of them perform in 0.3 seconds or less.
But at 5,000 queries per minute, we are unaware that we are
        tottering on the brink of catastrophe. If we push the rate up to a
        very high 10,000 executions per minute, you can see in Figure 9-3 that a very
        significant proportion of the queries will execute noticeably more
        slowly, some taking as long as 4 seconds to complete. If in another
        test we run the queries that use the index at the same high rate, all
        queries execute imperturbably in 0.1 seconds or less.
Of course, when some queries that used to run fast start to take
        much longer, users are going to complain; and other users who,
        unprompted, would otherwise have noticed nothing will probably grumble
        as well, out of sympathy. The database is slow—can’t it be tuned?
        Database administrators and system engineers will tweak parameters,
        gaining a few weeks of relief, until the evidence will finally impose
        itself, in all its glorious simplicity: we need a more powerful
        server.
[image: Response time of a simple query against a 50,000---row table, high query rate]

Figure 9-2. Response time of a simple query against a 50,000---row table,
          high query rate

[image: Response time of a simple query against a 50,000---row table, very high query rate]

Figure 9-3. Response time of a simple query against a 50,000---row table,
          very high query rate

Important
An increasing load may not cause performance problems, but may
          actually reveal them, suggesting program improvements as an
          alternative to upgrading the hardware.


Get in Line



One can take a fairly realistic view of a DBMS engine by
        imagining it to be like a post office staffed by a number of clerks
        serving customers with a wide array of requests—our queries.
        Obviously, a very big post office will have many counters open at the
        same time and will be able to serve several customers all at the same
        time. We may also imagine that young hypercaffeinated clerks will work
        faster than older, sedate, herbal-tea types. But we all know that what
        will make the biggest difference, especially at peak hours, is the
        requests actually presented by each customer. These will vary between
        the individual who has prepared the exact change to buy a stamp book
        and the one who inquires at length about the various rates at which to
        send a parcel to a remote country, involving the completion of customs
        forms, and so on. What is most irritating is of course when someone
        with a mildly complicated request spends several minutes looking for a
        purse when the moment for payment arrives. But fortunately, in post
        offices, you never encounter the case that is so frequent in real
        database applications: the man with 20 letters who joins the queue on
        20 separate successive occasions, buying only one stamp in each visit
        to the counter. It is important to understand that there are two
        components that determine how quickly one is served at the
        counter:
	The performance of, in our example, the clerk. In the case
            of a database application, this equates to a combination of
            database engine, hardware, and I/O subsystems .

	The degree of complexity of the request itself, and to a
            large extent how the request is presented, its lucidity and
            clarity, such that the clerk can easily understand the request,
            and accordingly make a quick and complete answer.



In the database world, the first component is the domain of
        system engineers and database administrators. The second component
        belongs squarely within the business requirements and development
        arena. The more complicated the overall system, the more important
        becomes the collaboration between the different parties involved when
        you want to get the best out of your hardware and software
        investment.
With the post-office image in mind, we can understand what
        happened in our query test. What matters is the ratio of the number of
        customers arriving (e.g., the rate of execution of queries), to the
        average time required to answer the query. As long as the rate of
        arrival is low enough to enable everyone to find a free counter,
        nobody will complain. However, as soon as customers arrive faster than
        they can be serviced, queues will start to lengthen, just as much for
        the fast queries as for the slow ones.
There is a threshold effect, very similar to what one of Charles
        Dickens’s characters says in David
        Copperfield:
Annual income twenty pounds, annual expenditure nineteen six,
          result happiness. Annual income twenty pounds, annual expenditure
          twenty pounds ought and six, result misery.


This can easily be demonstrated by running our two queries
        simultaneously, the one using the indexed column and the other using
        the unindexed column, at a rate of 5,000 times per second. The
        compound result of Figure
        9-4 is noticeably different from Figure 9-2, in which results
        were shown for the two queries running separately, not concurrently.
        As appears clearly from Figure
        9-4, the performance of the fast query has deteriorated because
        of the simultaneous presence of slow queries.
[image: Fast and slower queries running together, both at a high query rate]

Figure 9-4. Fast and slower queries running together, both at a high
          query rate

Important
System performance crashes when statements arrive faster than
          they can be serviced; all queries are affected, not only slow
          ones.



Concurrent Data Changes



  When you change data, the task of maintaining a good level
      of performance becomes even more difficult as the level of activity
      increases. For one thing, any change is by essence a more costly
      operation than a mere query, since it involves both getting the data and
      then writing it back to the database. In the case of inserts, only the
      latter operation applies. Therefore, data modification, whether updates,
      deletes, or inserts, intrinsically requires a longer service time than
      the equivalent query-only task. This longer service time is made worse
      by one mechanism and one situation that are often confused. The
      mechanism is locking        , and the situation is contention.
Locking



When several users want to modify the same data at
        once—for instance to book the very last seat on a flight—the only
        solution available to the DBMS is to block all but one user, who is
        usually the first person to present the request. The necessity of
        sequentializing access to critical resources is a problem that is as
        old as multiuser systems themselves. It existed with files and records
        long before database systems began to be adopted. One user acquires a
        lock over a resource, and the other users who also want to lock the
        same resource either have to queue up, waiting patiently for the lock
        to be released, or handle the error code that they will receive. In
        many ways, the situation is entirely analogous to our fictitious post
        office when several customers require the use of a single
        photocopier—people must wait patiently for their turn (or turn away
        and come back later).
Locking granularity



One of the most important practical questions to address when
          attempting to change the contents of the database will be to
          determine exactly where the locks will be applied. Locks can impact
          any or all of the following:
	The entire database

	The physical subset of the database where the table is
              stored

	The table identified for modification

	The particular block or page (unit of storage) containing
              the target data

	The table row containing the affected data

	The column(s) in the row



As you can see, how much users interfere with each other is a
          question that relates to the granularity of  the locking procedures. The type of locking that can be applied varies with the DBMS. Locking
          granularity is an area where “big products,” designed for large
          information systems, are significantly different from “small
          products” that have more limited ambitions.
When locks apply to a restricted amount of data, several
          concurrent processes can happily change data in the very same table
          at the same time without much affecting each other. Instead of
          having to wait until another process has finished with its
          transaction to get ahold of a lock, there can be some overlap
          between the various processes—which means that from a hardware point
          of view you can have more processors working, thus making better use
          of your hardware resources. The benefit of a finer granularity can
          be seen quite clearly in Figure
          9-5, which shows the contrast in the total throughput of a
          number of concurrent sessions updating a table, first in
          table-locking mode and then second in row-locking mode. In each case
          the DBMS server is the same one.
[image: Update performance for table versus row locking]

Figure 9-5. Update performance for table versus row locking

In the table-locking case, throughput increases slightly with
          two sessions, because the server, in the sense of service provider,
          is not saturated. But two sessions generate the maximum number of
          updates we can sequentially execute per unit of time, and from then
          on the curve is flat—actually, very slowly decreasing because system
          resources are required to handle more sessions, and this is
          detrimental to the system resources required to perform the updates.
          The situation of table locking can be contrasted with the situation
          of row locking, where changes applied to the same table can occur
          simultaneously as long as they do not affect identical rows. As in
          the case of table locking we will eventually reach a point where we
          saturate the server, but this point is reached both later and for a
          much higher number of concurrent updates.
If your DBMS is rather heavy-handed when locking resources,
          your only hope to cope with a sudden increase of activity,
          optimistically assuming that everything else has been tried, is to
          buy better hardware. “Better hardware” must of course be qualified.
          If locking is the bottleneck, more processors will not help, because
          the critical resource is access to the data. However, faster
          processors may speed up execution, reduce the time locks are
          actually held, and therefore allow the processing of more changes
          per unit of time. Processing still remains strictly sequential, of
          course, and the same number of locks is still applied.

Lock handling



Locking mechanisms are an integral part of the
          implementation of a DBMS and there is not much that we can do about
          them. We are limited to just two directions in dealing with
          locks:
	Try not to lock tables in a haphazard
              way.
	It goes without saying that we should not run a program
                that massively updates rows in a table by the million at the
                same time as many users are trying to execute very short
                update transactions against the same table.

	Try to hold locks for as short a time as
              possible.
	When we are in a situation where several users are
                concurrently attempting to access a resource that cannot be
                shared, speed matters not to one, but to all transactions.
                There is little benefit in running a fast update that has to
                wait for a slow one to release a lock before it can do its
                work. Everything must be fast, or else everything will be
                slow: “A chain is only as strong as its weakest link.”



The overwhelming majority of update and delete statements contain a where clause, and so any rewrite of the
          where clause that speeds up a
          select statement will have the
          same effect on a data manipulation statement with the very same
          where clause. If a delete statement has no where clause (in other words the entire
          table is being deleted!), then it is likely that we would be better
          off using a truncate statement,
          which empties a table (or a partition) much more efficiently.
We mustn’t forget, though, that indexes also have to be
          maintained, and that updating an indexed column is costly; we may
          have to arbitrate between the speed of fetches and the speed of
          changes. The index that might be helpful in the where clause may prove to be a nuisance
          when rows are changed. Concerning insert statements, a number of them may
          actually be insert...select
          constructs in which the link between select performance and insert performance is naturally
          obvious.
You’ve seen in Chapter 2
          that impeccable statement performance doesn’t necessarily rhyme with
          good program performance. When changing data, we have a particular
          scope to consider: the transaction or, in other
          words, the duration of a logical unit of work. We shall have to
          retain locks on a particular part of the database for most if not
          all of the transaction. Everything that need not be done within the
          transaction, especially if it is a slow activity, should be excluded
          from that transaction. The start of a transaction may sometimes be
          implicit with the first data manipulation language (DML) statement
          issued. The end of a transaction is always obvious, as it is marked
          by a commit or rollback statement. With this background,
          some practices are just common sense. Inside a transaction:
	Avoid looping on SQL statements as much as
              possible.

	Keep round-trips between the program and the database,
              whether running as an application server or as a mere client, to
              a minimum, since these add network latency to the overall
              elapsed time.

	Exploit to the full whatever mechanisms the DBMS offers to
              minimize the number of round-trips (e.g., take advantage of
              stored procedures or array fetching).

	Keep any nonessential SQL statements that are not strictly
              necessary within the logical unit of work outside of it. For
              instance, it is quite common to fetch error messages from a
              table, especially in localized applications. If we encounter an
              error, we should end our transaction with a rollback first, and then query the
              error message table, not the reverse: doing so will release
              locks earlier, and therefore help to maximize throughput.



As simple a transaction as one that inserts a new row in both
          a master table and a slave table provides ample ground for mistakes.
          An example for this type of transaction is typically the creation of
          a new customer order (in the master table) and of the first item in
          our shopping basket (held in an order_detail table). The difficulty
          usually comes as a result of using system-generated identifiers for
          the orders.
The primary mistake to avoid is to store into a table the
          “next value to use.” Such a table is mercilessly locked by all
          concurrent processes updating it, thus becoming the major bottleneck
          in the whole application. Depending on the DBMS you are using, a
          system-generated identifier is either the value of an
          auto-incremented column, which will take for each new row inserted the
          value of the previous row plus one, or the next value of a database
          object such as a sequence, which is in essence very similar to an
          auto-incremented column but without the explicit reference to a
          column in an existing table. We have nothing to do to generate a new
          identifier for each new order other than to grab the value generated
          by the system. The snag is that we must know this value to be able
          to link the items in the basket to a particular order. In other
          words, we have to insert this value into table order_detail as well as the master
          table.
Some DBMS products that use auto-incremented columns provide either a system variable (as @@IDENTITY with Transact-SQL), or a
          function (such as MySQL’s last_insert_id(
          )) to retrieve the value that was last generated by the
          session. Fail to use facilities provided by your DBMS, and you are
          condemned to run useless queries to perform the same task in the
          middle of a transaction, thus wasting resources and slowing down
          your transaction. Using functions or variables referring implicitly
          to the last generated value requires a little discipline in
          executing statements in the proper order, particularly if one is
          juggling several auto-incremented columns simultaneously.
For some unknown reason, there is a marked tendency among
          developers who are using sequences to first issue a
          <sequence name> .nextval call to the database to get a new
          value, and then to store it in a program variable for future
          reference. There is actually a <sequence
          name> .currval
          call (or previous value for
          <sequence name> with DB2), and as
          its name implies its purpose is to return the last value that was
          generated for the given sequence. In most cases, there is no need to
          use a program variable to store the current value, and even less to
          precede true action with a special get a new sequence
          value call. In the worst case, some DBMS extensions can
          prove useful. For instance, Oracle (and PL/SQL) users can use the
          returning ... into ... clause of
          insert and update statements to return
          system-generated values without requiring a new round-trip to the
          server. Running one special statement to get the next sequence value
          and adding one more round-trip to the database generates overhead
          that can globally amount to a very significant percentage for simple
          and often executed transactions.
Important
Where transactional activity is high, it is vital that locks
            are never held for operations that don’t require them.


Locking and committing



If we try and hold locks for the minimum possible
          time, we are bound to have to make frequent commits. Committing is a
          very costly process, since it means writing to persistent memory
          (journal files), and therefore initiating physical I/O operations.
          If we commit changes after absolutely every logical unit of work, we
          add a lot of overhead as can be seen in Figure 9-6. The figure shows
          the performance impact of committing every 1, 2, 3...12 rows in the
          case of a very fast update executed by a single user process running
          on an empty test machine. Depending on the statement and the number
          of rows affected, figures may of course vary but the trend is always
          the same. If a batch update program commits every transaction, it
          can easily take two to three times as long to complete as when it
          commits less frequently.
In the case of batch programs in which concurrency control is
          not an issue, it is advisable to avoid committing changes too often.
          The snag with not committing zillions of changes, besides the impact
          of holding the inevitable locks, is that the system has to record
          the pre-change data image for a hypothetical undo operation, which
          will put some serious strain on resources. If the process fails for
          any reason, rolling back the changes may take a considerable amount
          of time. There are two schools of thought on this topic. One favors
          committing changes at regular intervals so as to moderate demands on
          the system in terms of resources, as well as reduce the amount of
          work which might have to be done in case of a database change
          failure. The other school is frankly more gung ho and argues,
[image: Impact of committing on performance]

Figure 9-6. Impact of committing on performance

not without some reason, that system resources are here to
          sustain business processes, not the other way around. For the
          disciples of this school, if higher throughput can be achieved by
          less frequent commits—and if they can afford the occasional failure
          and still have processes completed properly and faster—then there is
          benefit in less frequent commits. Their case is further strengthened
          if the DBMS features some “pass or break” mode that shuns the
          generation of undo data. The commit-once-when-we’re-done approach
          implicitly assumes that redoing everything from scratch when
          something has totally failed is often simpler than trying to fix
          something that only partially worked. Both schemes have advantages
          and disadvantages, and the final choice may often be linked to
          operational constraints—or perhaps even to politics.
In any case, a batch program committing once in a while may
          block interactive users. Likewise, it is possible for interactive
          users to block batch programs. Even when the locking granularity is
          at the row level, a mechanism such as lock
          escalation that is applied by some database systems (in
          which many fine-grain locks are automatically replaced by a
          coarser-grain lock) may lead to a hung system. Even without lock
          escalation, a single uncommitted change may block a massive update.
          One thing is clear: concurrency and batch programs are not a happy
          match, and we must think about our transactions in a different way
          according to whether they are interactive or batch.
Important
The greater the number of concurrent users, the shorter
            should be the commit intervals.


Locking and scalability



When comparing table and row locking  , you have seen that the latter facilitates a much
          better throughput. However, just as with table locking, the
          performance curve quickly reaches its ceiling (the point at which
          performance refuses to improve), and from then on the curve is
          rather flat. Do all products behave in the same way? As a matter of
          fact, they don’t, as Figure
          9-7 shows.
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Figure 9-7. Row locking and concurrency with three database
            systems

To really compare how the various systems were behaving under
          increased concurrency, irrespective of speed on a particular
          example, I performed two series of updates against a large table:
          first, fast updates with a condition on the primary key, and second,
          slow updates with a condition on an unindexed column. These updates
          were repeated with a varying number of sessions, and the total
          number of updates performed was recorded each time.
None of the products displays a strong dependency of
          throughput on the number of sessions with fast updates, probably
          because of a saturation of hardware resources. What is interesting,
          though, is checking whether there is a benefit attached to running a
          larger number of sessions in parallel. Can increased concurrency
          somewhat compensate for speed? This is exactly the same type of
          question as asking “is it better to have a server machine with few
          fast processors or a higher number of slower processors?”
Figure 9-7 shows
          how the ratio of the number of slow updates to the number of fast
          updates evolves as we increase the number of sessions. The DBMS1
          product stands out for two reasons:
	Slow updates are not that slow relatively to fast ones
              (hence a higher ratio than the other products).

	As the steep decrease between 1 and 3 concurrent sessions
              shows, slow updates also suffer relatively more of increased
              concurrency.



The product to watch, though, is not DBMS1. Even if row
          locking were in use in all systems, we see that one of the products,
          DBMS3 on the figure, will scale much better
          than the others, because the ratio slowly but significantly improves
          as more and more concurrent sessions enter the fray. This
          observation may have a significant impact on hardware choices and
          architectures; products such as DBMS1 and DBMS2 would probably get
          the most benefit from faster processors, not more numerous ones.
          From a software point of view, they would also benefit from query
          pooling on a small number of sessions. On the other hand, a product
          such as DBMS3 would better profit from additional processors at the
          same speed and, to some extent, from a higher number of concurrent
          sessions.
How can I explain such differences between DBMS3 and the other
          products? Mostly by two factors:
	Saturation of hardware
              resources
	This probably partly explains what occurs in the case of
                DBMS1, which achieves excellent overall results in terms of
                global throughput, but that simply cannot do better on this
                particular hardware.

	Contention
	Remember that we have the same locking granularity in
                all three cases (row-level locks). Exactly the same statements
                where executed and committed. There is in fact more than data
                locking that limits the amount of work that several sessions
                can perform in parallel. To take a mechanical analogy, we
                could say that there is more friction in the case of DBMS1 and
                DBMS2 than in the case of DBMS3. This friction can also be
                called contention.



Important
Concurrency depends on integrity protection mechanisms that
            include locking as well as other controls that vary from product
            to product.



Contention



Rows in tables are not the only resources that cannot be shared.
        For instance, when one updates a value, the prior or original value
        (undo data) must be saved somewhere in case the user decides to roll
        back the change. On a loaded system, there may actually be some kind
        of competition between two or more processes trying to write undo data
        into the same physical location, even if these processes are operating
        on totally unrelated rows in different tables. Such a situation
        requires some kind of serialization to control events. Likewise, when
        changes are committed and written to transaction logfiles or in-memory
        buffers before being flushed to a file, there must be some means of
        preventing processes from overwriting each other’s bytes.
The examples I’ve just given are examples of
        contention   . More than contention, locking is a mechanism that
        tends to be a defining characteristic of particular DBMS
        architectures, leaving us little choice other than to try and keep to
        an absolute minimum the time that the lock is held. Contention,
        however, is linked to low-level implementation, and there are several
        actions that can be undertaken to tune contention. Some of these
        actions can be performed by systems engineers, for example by
        carefully locating transaction log files on disks. Database
        administrators can also help to improve the situation by playing with
        database parameters and storage options. Finally we can, as
        developers, address these problems in the way we build our
        applications. To show how we can try to code so as to limit
        contention, I shall walk you through a case in which contention is
        usually at its most visible: during multiple, concurrent
        inserts.
Insertion and contention



Let’s take as an example a 14-column table with two
          unique indexes. The primary key constraint is defined on a
          system-generated number (a surrogate key), and a unique constraint
          (enforced by a unique index of course) is applied to a “natural”
          compound key, the combination of some short string of characters and
          a datetime value. We can now proceed to run a series of insert
          operations for an increasing number of simultaneous sessions.
As Figure 9-8
          shows, although we are operating in row-locking mode, adding more
          processes inserting in parallel doesn’t do much to improve the
          number of rows inserted by unit time. The figure displays the median
          and the minimum and maximum values for 10 one-minute runs for each
          of the different numbers of concurrent processes. As you can see,
          there is much variability in the results—but the best result is
          obtained for four concurrent processes (which, by some happy
          coincidence, is not totally unrelated to the number of processors on
          the machine).
Must we conclude that we are saturating the hardware
          resources? The answer of course is yes, but the real question is
          “can’t we make better use of these resources?”
          There is, in a
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Figure 9-8. Concurrent sessions inserting into a regular table

case like this, not much we can do about locking, because we
          never have two processes trying to access the same row. However, we
          do have contention when trying to access the data
          containers. In this situation contention can
          occur at two places within the database: in the table and in the
          index. There may be other contention issues at the system level, but
          these often derive from choices made at the database level.
          Contention consumes CPU, because there is the execution of code that
          is required for handling that very same contention issue, with
          possibly some active waits involved or idle loops while waiting for
          a resource held by a process running on another processor to be
          released. Can we try to lower contention and divert some of the CPU
          cycles to our inserts
          proper?
I have run my example to generate Figure 9-8 on Oracle, one of
          the database systems that provides the widest range of possible
          options to try to limit contention. Basically, database-centric
          solutions to a contention issue will fall into one or more of the
          following three categories:
	DBA solutions

	Architectural solutions

	Development solutions



The following sections review each of these categories.

DBA solutions



A database administrator often has scant knowledge of
          business processes. What we call DBA solutions
          are changes that are applied to the containers themselves. They are
          application-neutral (as it is near impossible to be absolutely
          application-neutral, it would probably be more exact to say that the
          impact is minimal on processes other than the insertion process we
          are trying to improve).
There are two main zones in which Oracle DBAs can try and
          improve a contention issue with a minimum of fuss:
	Transaction space
	The first weapon is playing with the number of
                transaction entry slots reserved in the blocks that constitute
                the actual physical storage of tables and indexes. A
                transaction entry slot can be understood as the embodiment of
                a low-level lock. Without going into arcane detail, let me say
                that competition for these slots usually figures prominently
                among the reasons for contention when several sessions are
                competing for write access to the same block. A DBA can try to
                improve the situation by allocating more space for transaction
                management. The only impact on the rest of the application is
                that less space will be available for data in table or index
                blocks; the direct consequence of such a situation is that
                more blocks will be required to store the same amount of data,
                and operations such as full scans and, to a much lesser
                degree, index searches will have to access more blocks.

	Free lists
	The second weapon is trying to force insertions to be
                directed to different blocks, something that can be done if
                some degree of control is retained on storage management. For
                each table, Oracle maintains one or several lists of blocks
                where new rows can be inserted. By default, there is only one
                list, but if there are several such lists, then insertions are
                assigned in a round-robin fashion to blocks coming from the
                various lists. This solution is not as neutral as allocating
                more space to transaction management; remember that the
                clustering of data has a significant impact on the performance
                of queries, and therefore while we may improve insertion
                performance, we may degrade some other queries.




Architectural solutions



Architectural solutions are those based on a
          modification of the physical disposition of data using the
          facilities of the DBMS. They may have a much more profound impact,
          to the disadvantage of our other processes. The three most obvious
          architectural solutions  are:
	Partitioning
	Range partitioning will of course defeat our purpose if
                our goal is to spread update activity over the table—unless,
                for instance, each process is inserting data for one
                particular month, and we could assign one process to one
                partition, but this is not the situation in our current
                example. Hash partitioning, however, might help. If we compute
                a hash value from our system-generated (sequence) value,
                successive values will be arbitrarily assigned to different
                partitions. Unfortunately, there are limitations to what we
                can do to an index used to enforce a constraint, and therefore
                it’s only contention at the table level that we can hope to
                improve. Moreover, this is a solution that unclusters data,
                which may impact on the performance of other queries.

	Reverse index
	Chapter 3 shows
                that reversing the bytes in index keys can disperse the
                entries of keys that would otherwise have been in close
                proximity to one another, into unrelated leaves of the index,
                and that is a good way to minimize index contention (although
                it will do nothing for table contention). The disadvantage is
                that using a reverse index will prevent us from performing
                range scans on the index, which can be a very serious
                hindrance.

	Index organized table
	Organizing our table as an index will allow us to get
                rid of one of the sources of contention. It will do nothing
                for the second one by itself, but instead of stumbling from
                one point of contention—the table block—to a second point of
                contention—the index block—we will have everybody fighting in
                one place.




Development solutions



Development solutions are in the sole hands of the
          developer and require no change to the physical structure of the
          database. Here are two examples where the developer can influence
          matters:
	Adjusting parallelization
	The attempt at varying the number of concurrent
                processes shows clearly that there is a peak at 4 concurrent
                sessions and that adding more sessions doesn’t help. There is
                no benefit in assigning 10 people to a task that 4 people can
                handle perfectly well; it makes coordination more complicated,
                and some simple subtasks are sooner performed than assigned.
                Figure 9-8 showed
                that the effect of adding extra sessions beyond a
                hardware-dependent number is, in the best of cases, worthless.
                Removing them would put less strain on the system.

	Not using system-generated
              values
	Do we really need sequential values for a surrogate key?
                This is not always the case. Sequential values are of interest
                if we want to process ranges of values, because they allow us
                to use operators such as > or between. But if all we need is a
                unique identifier that can be used as a foreign key value in
                some other tables, why should it belong to a particular range?
                Let’s consider a possible alternative—namely to simply use a
                random number—and regenerate a new one if we hit a value we
                have already used.




Results



 Figure
          9-9 shows the insertion rates we obtained with 10 concurrent
          sessions, using each of the methods just described.
Once again there is a significant variability of results (each
          test was run 10 times, as before). We cannot conclude that a
          technique that works well in this case will behave as well in any
          other one, nor, conversely, that a technique which gives
          disappointing results here will not one day surpass all
          expectations. But the result is nevertheless interesting.
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Figure 9-9. Tactics for limiting insert contention

First, the DBA techniques gave results that were positive, but
          not particularly remarkable. Architectural choices are, in this
          example, rather inefficient. It is worth mentioning that our two
          indexes are enforcing constraints, a situation that limits the
          number of options applicable to them. Therefore, some of the
          techniques may improve contention at the table level when most of
          the contention occurs within indexes. This is typically the case
          with the index organized table, in which table contention is
          eliminated by the simple expedient of removing the table;
          unfortunately, because we now have more data to store inside the
          index, index contention increases and offsets the benefit of no
          longer having the table. This is also a situation in which we find
          that the system resource most in demand happens to be the CPU. This
          situation puts at a disadvantage all the techniques that use extra
          CPU—such as computing hash values or reversing index keys.
Finally, random values provided both the worst and the best
          results. In the worst case, the (integer) random value was generated
          between 1 and a number equal to about twice the number of rows we
          were expecting to insert during the test. As a result, a significant
          number of values were generated more than once, causing primary key
          constraint violation and the necessity to generate a new random
          number. This was of course a waste of time, resulting in excessive
          consumption of resources—plus, since violation is detected when
          inserting the primary key index, and since this index stores the
          physical address, violation is detected after
          the row has been inserted into the table, so an operation must then
          be undone, again at additional cost.
In the best case, the random number was generated out of an
          interval 100 times greater than in the worst case. The improvement
          is striking. But since having 10 concurrent sessions is no more
          efficient than having 4 concurrent sessions, what would have been
          the result with only 4 sessions? Figure 9-10 provides the
          answer.
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Figure 9-10. The impact of contention limiting techniques with fewer
            sessions

Very interestingly, all techniques give significantly better
          results, even if they rank identically in terms of improved
          throughput (e.g., their relative performances remain largely
          similar). The comparison of the results between Figures 9-9 and 9-10 teaches some interesting
          lessons:
	In our case study, the bottleneck is the primary key
              index. Techniques that should strongly limit contention at the
              table level (hash partitioning, IOT) bring no benefit; actually,
              the IOT provides worse performance on this example than does the
              combination of a regular table and a primary key index. On the
              contrary, techniques that reduce contention on both table and
              index (such as allowing more room for transaction management) or
              only improve the situation at the index level (reverse index,
              random surrogate key) all bring benefits.

	The comparison of 10 sessions with 4 sessions shows that
              some of the techniques require additional (and scarce) CPU
              resources from a machine already running flat out and
              consequentially show no improvement.

	The best way to avoid contention is not to use a
              sequentially generated surrogate key! Instead of considering how
              much performance we can gain by adopting various measures, let’s
              consider how much performance loss is (inadvertently?)
              introduced by the use of a sequential key with the resulting
              contention on the primary key index. Solely because of
              contention on the primary key index, our insertion rate drops
              from a rate of 180 to 100 insertions per unit of time; in other
              words, it is divided by a factor of almost 2! The lesson is
              clear: we are better off without auto-incremented columns where
              they are not required, such as for tables that are not
              referenced by other tables or that do not have a very long
              natural primary key.



Can we recommend randomly generated surrogate keys? The
          difference in performance between a key generated out of a very
          large interval of values and a key generated out of too narrow a
          range of values shows that it can be dangerous and not really
          efficient if we expect a final number of rows greater than perhaps
          one hundredth of the total possible number of values. Generating
          random integer values between 1 and 2 billion (a common range for
          integer values) can prove hazardous for a large table;
          unfortunately, tables that are subject to heavy insertion traffic
          have a tendency to grow big rather quickly. However, if your system
          supports “long long integers,” they can be a good solution—if you
          really need a surrogate key.
Important
In contrast to locking, database contention can be improved
            upon. Architects, developers, and administrators can all design so
            as to limit contention.




Chapter 10. Assembly of Forces

Coping with Large Volumes of Data



Thenne entryd in to the bataylle Iubance a geaunt and fought and
      slewe doune ryght and distressyd many of our knyghtes.
—Sir Thomas Malory (d.1471) Le Morte D’Arthur, V,
      11



This chapter deals with the particular
    challenges that are facing us when data volumes swell. Those
    challenges include searching gigantic tables effectively, but also
    avoiding the sometimes distressing performance impact of even a moderate
    volume increase. We’ll first look at the impact of data growth and a very
    large number of rows on SQL queries in the general case. Then we’ll
    examine what happens in the particular environments of data warehousing
    and decision-support systems.
Increasing Volumes



       Some applications see the volume of data they handle
      increase in considerable proportion over time. In particular, any
      application that requires keeping online, for regulatory or business
      analysis purposes, several months or even years of mostly inactive data,
      often passes through phases of crisis when (mostly) batch programs tend
      to overshoot the time allocated to them and interfere with regular,
      human activity.
When you start a new project, the volume of data usually changes,
      as shown in Figure 10-1.
      Initially, hardly anything other than a relatively small amount of
      reference data is loaded into the database. As a new system replaces an
      older one, data inherited from the legacy system is painfully loaded
      into the new one. First, because of the radical rethink of the
      application, conversion from the old system to the new system is fraught
      with difficulties. When deadlines have to be met and some noncritical
      tasks have to be postponed, the recovery of legacy data is a prime
      candidate for slipping behind schedule. As a result, this recovery goes
      on for some time after the system has become operational and teething
      problems have been solved. Second, the old system is usually much poorer
      from a functional perspective than the new one (otherwise, the cost of
      the new project would have made for difficult acceptance up the food
      chain). All this means that the volume of prehistoric data will be
      rather small compared to the data handled by the new system, and several
      months’ worth of old data will probably be equivalent to a few weeks of
      new data at most.
Meanwhile, operational data accumulates.
Usually, one encounters the first serious performance issues about
      midway before the volume that the database is expected to hold at
      cruising speed. Bad queries and bad algorithms are almost invisible,
      from an end-user perspective, when volumes are low or moderate. The raw
      power of hardware often hides gigantic mistakes and may give comfortable
      sub-second response times for full scans of tables that contain several
      hundreds of thousands of rows. You may be seriously misusing the
      hardware, balancing gross programming mistakes with power—but nobody
      will see that until your volume becomes respectable.
At the first crisis point of the project, “expert tuning” is
      usually required to add a couple of indexes that should have been there
      from the start. The system then wobbles until it
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Figure 10-1. The evolution of data in a new application

reaches the target volume. There are usually two target volumes: a
      nominal one (which has been grossly overestimated and which is the
      volume the system has officially been designed to manage) and the real
      target volume (which the system just manages to handle and which is
      often exceeded at some point because archiving of older data has been
      relegated to the very last lot in the project). The second and more
      serious crisis often comes in the wake of reaching that point. When
      archival has finally been put into production, architectural weaknesses
      reviewed, and some critical processes vigorously rewritten, the system
      finally reaches cruising speed, with an increase of data related to the
      natural growth of business—a growth that can lie anywhere between
      flatness and exponential exuberance.
This presentation of the early months in the life of a new
      database application is partly caricature; but it probably bears more
      resemblance to reality than it often should, because the simple mistakes
      that lead to this caricature are not often avoided. However rigorously
      one tries to work, errors are made, because of pressure, lack of time
      for adequate testing, and ambiguous specifications. The only errors that
      can bring irredeemable failure are those linked to the design of the
      database and to the choice of the global architecture—two topics that
      are closely related and that are the foundation of a system. If the
      foundation is not sturdy enough, you need to pull the whole building
      down before reconstructing. Other mistakes may require a more or less
      deep overhaul of what is in place. Most crises, however, need not
      happen. You must anticipate volume increases when coding. And you must
      quickly identify and rewrite a query that deteriorates in performance
      too quickly in the face of increasing data volumes.
Sensitivity of Operations to Volume Increases



All SQL operations are not equally susceptible to variations in
        performance when the number of rows to be processed increases. Some
        SQL operations are insensitive to volume increases, some see
        performance decrease linearly with volume, and some perform very badly
        with large volumes of data.
Insensitivity to volume increase



Typically, there will be no noticeable difference in a
          search on the primary key, whether you are looking for one
          particular key among 1,000 or one among 1,000,000. The common B-tree
          indexes are rather flat and efficient structures, and the size of
          the underlying table doesn’t matter for a single-row, primary-key
          search.
But insensitivity to  volume increase doesn’t mean that single primary-key
          searches are the ultimate SQL search method. When you are looking
          for a large number of rows, the “transactional” single-row operation
          can be significantly inefficient. Just consider the following,
          somewhat artificial, Oracle examples, each showing a range scan on a
          sequence-generated primary key:
    SQL> declare
     2  n_id         number;
     3 cursor c is select customer_id
     4 from orders
     5 where order_id between 10000 and 20000;
     6 begin
     7 open c;
     8 loop
     9 fetch c into n_id;
     10 exit when c%notfound;
     11 end loop;
     12 close c;
     13 end;
     14 /

PL/SQL procedure successfully completed.
Elapsed: 00:00:00.27
    SQL> declare
     2  n_id     number;
     3 begin
     4 for i in 10000 .. 20000
     5 loop
     6 select customer_id
     7 into n_id
     8 from orders
     9 where order_id = i;
     10  end loop;
     11 end;
     12 /
    PL/SQL procedure successfully completed.    Elapsed: 00:00:00.63

The cursor in the first example, which does an explicit range
          scan, runs twice as fast as the iteration on a single row. Why?
          There are multiple technical reasons (“soft parsing,” a fast
          acknowledgement at each iteration that the DBMS engine has already
          met this statement and knows how to execute it, is one of them), but
          the single most important one is that in the first example the
          B-tree is descended once, and then the ordered list of keys is
          scanned and row addresses found and used to access the table; while
          in the second example, the B-tree is descended for each searched
          value in the order_id column. The
          most efficient way to process a large number of rows is
          not to iterate and apply the single-row
          process.

Linear sensitivity to volume increases



End users usually understand well that if twice as
          many rows are returned, a query will take more time to run; but many
          SQL operations double in time when operating on double the number of
          rows without the underlying work being as obvious to the end user,
          as in the case of a full table scan returning rows one after the
          other. Consider the case of aggregate functions; if you compute a
          max( ), that aggregation will
          always return a single row, but the number of rows the DBMS will
          have to operate on may vary wildly over the life of the application.
          Perfectly understandable, but end users will always see a single-row
          returned, so they may complain of performance degradation over time.
          The only way to ensure that the situation will not go from bad to
          worse is to put an upper bound on the number of
          rows processed by using another criterion such as a date range.
          Placing an upper bound keeps data volumes under control. In the case
          of max( ), the idea might be to
          look for the maximum since a given date, and not necessarily since
          the beginning of time. Adding a criterion to a query is not a simple
          technical issue and definitely depends on business requirements, but
          limiting the scope of queries is an option that certainly deserves
          to be pointed out to, and debated with, the people who draft
          specifications.

Non-linear sensitivity to volume increases



Operations that perform sorts suffer more from volume
          increases than operations that just perform a scan, because sorts
          are complex and require on average a little more than a single pass.
          Sorting 100 randomly ordered rows is not 10 times costlier than
          sorting 10 rows, but about 20 times costlier—and sorting 1,000 rows
          is, on average, something like 300 times costlier than sorting 10
          rows.
In real life, however, rows are rarely randomly stored, even
          when techniques such as clustering indexes (Chapter 5) are not used. A DBMS can
          sometimes use sorted indexes for retrieving rows in the expected
          order instead of sorting rows after having fetched them, and
          performance degradation resulting from retrieving a larger sorted
          set, although real, is rarely shocking. Be careful though.
          Performance degradation from sorts often proceeds by fits and
          starts, because smaller sorts will be fully executed in memory,
          while larger sorts will result from the merge of several sorted
          subsets that have each been processed in memory before being written
          to temporary storage. There are, therefore, some “dangerous
          surroundings” where one switches from a relatively fast full-memory
          mode to a much slower memory-plus-temporary-storage mode. Adjusting
          the amount of memory allocated to sorts is a frequent and efficient
          tuning technique to improve sort-heavy operations when flirting with
          the dangerous limit.
By way of example, Figure 10-2 shows how the
          fetch rate (number of rows fetched per unit of time) of a number of
          queries evolves as a table grows. The table used in the test is a
          very simple orders table defined as follows:
    order_id         bigint(20) (primary key)
    customer_id      bigint(20)
    order_date       datetime
    order_shipping   char(1)
    order_comment    varchar(50)

The queries are first a simple primary key-based
          search:
    select order_date
    from orders
    where order_id = ?
then a simple sort:
    select customer_id
    from orders
    order by order_date

then a grouping:
    select customer_id, count(*)
    from orders
    group by customer_id
    having count(*) > 3

then the selection of the maximum value in a nonindexed
          column:
    select max(order_date)
    from orders

and finally, the selection of the “top 5” customers by number
          of orders:
    select customer_id
    from (select customer_id, count(*)
          from orders
          group by customer_id
          order by 2 desc) as sorted_customers
    limit 5

(SQL Server would replace the closing limit 5 with an opening select top 5, and Oracle would replace
          limit 5 with where rownum <= 5.)
The number of rows in the table has varied between 8,000 and
          around 1,000,000, while the number of distinct customer_id values remained constant at
          about 3,000. As you can see in Figure 10-2, the primary key
          search performs almost as well with one million rows as with 8,000.
          There seems to be some very slight degradation at the higher number,
          but the query is so fast that the degradation is hardly noticeable.
          By contrast, the sort suffers. The performance (measured by rows
          returned by unit of time, and therefore independent of the actual
          number of rows fetched) of the sorting query decreases by 40% when
          the number of rows goes from 8,000 to over one million.
The degradation of performance, though, is even more
          noticeable for all the queries that, while returning the very same
          number of aggregated rows, have a great deal more rows to visit to
          get the relatively few rows to be returned. These queries are
          typically the type of queries that are going to draw the most
          complaints from end users. Note that the DBMS doesn’t perform that
          badly: the performance decrease is very close to proportional to the
          number of rows, even for the two queries that require a sort (the
          queries labeled “Group by” and “Top” in Figure 10-2). But end users
          simply see the same amount of data—just returned much more
          slowly.
[image: How some simple queries behave when the queried table grows]

Figure 10-2. How some simple queries behave when the queried table
            grows

Important
All database operations are not equally sensitive to volume
            increases. Anticipate how queries will perform on target
            volumes.


Putting it all together



The main difficulty in estimating how a query will
          behave when data volumes increase is that high sensitivity to volume
          may be hidden deep inside the query. Typically, a query that finds
          the “current value” of an item by running a subquery that looks for
          the last time the price was changed, and then performs a max( ) over the price history, is highly
          sensitive. If we accumulate a large number of price changes, we
          shall probably suffer a slow performance degradation of the
          subquery, and by extension of the outer query as well. The
          degradation will be much less sensitive with an uncorrelated
          subquery, executed only once, than with a correlated subquery that
          will compound the effect by its being fired each time it is
          evaluated. Such degradation may be barely perceptible in a
          single-item operation, but will be much more so in batch
          programs.
Note
The situation will be totally different if we are tracking,
            for instance, the current status of orders in a merchant system,
            because max( ) will apply to a
            narrow number of possible states. Even if the number of orders
            doubles, max( ) will in that
            case always operate on about the same number of rows for one
            order.

Another issue is sorts. We have seen that an increase in the
          number of rows sorted leads to a quite perceptible degradation of
          performance. Actually, what matters is not so much the number of
          rows proper as the number of bytes—in other words, the total amount
          of data to be sorted. This is why joins with what is mostly
          informational data, such as user-friendly labels associated with an
          obscure code (as opposed to the data involved in the filtering
          conditions driving the query), should be postponed to the very last
          stage of a query.
Let’s take a simple example showing why some joins should be
          delayed until the end of a query. Getting the names and addresses of
          our 10 biggest customers for the past year will require joining the
          orders and order_detail tables to get the amount
          ordered by each customer, and joining to a customers table to get each customer’s
          details. If we only want to get our 10 biggest customers, we must
          get everybody who has bought something from us in the past year,
          sort them by decreasing amount, and then limit the output to the
          first ten resulting rows. If we join all the information from the
          start, we will have to sort the names and addresses of
          all our customers from the past year. We don’t
          need to operate on such a large amount of data. What we must do is
          keep the amount of data to be sorted to the strict minimum—the
          customer identifier and the amount. Once everything is sorted, we
          can join the 10 customer_ids we
          are left with to the customers
          table to return all the information that is required. In other
          words, we mustn’t write something like:
    select *
    from (select c.customer_name,
                 c.customer_address,
                 c.customer_postal_code,
                 c.customer_state,
                 c.customer_country
                 sum(d.amount)
          from customers c,
               orders_o,
               order_detail d
          where c.customer_id = o.customer_id
            and o.order_date >= some date expression
            and o.order_id = d.order_id
          group by c.customer_name,
                   c.customer_address,
                   c.customer_postal_code,
                   c.customer_state,
                   c.customer_country
           order by 6 desc) as A
    limit 10

but rather something like:
    select c.customer_name,
           c.customer_address,
           c.customer_postal_code,
           c.customer_state,
           c.customer_country
           b.amount
    from (select a.customer_id,
                 a.amount
          from (select o.customer_id,
                       sum(d.amount) as amount
                from orders_o,
                      order_detail d
                where o.order_date >= some date expression
                  and o.order_id = d.order_id
                group by o.customer_id
                order by 2 desc) as a
          limit 10) as b,
          customers c
    where c.customer_id = b.customer_id
    order by b.amount desc

The second sort is a safeguard in case the join modifies the
          order of the rows resulting from the inner subquery (remember that
          relational theory knows nothing about sorts and that the DBMS engine
          is perfectly entitled to process the join as the optimizer finds
          most efficient). We have two sorts instead of one, but the inner
          sort operates on “narrower” rows, while the outer one operates on
          only 10 rows.
Remember what was said in Chapter 4: we must limit the
          “thickness” of the non-relational layer of SQL queries. The
          thickness depends on the number and complexity of operations, but
          also on the amount of data involved. Since sorts and limits of all
          kinds are non-relational operations, the optimizer will probably not
          rewrite a query to execute a join after having cut the number of
          customer identifiers to the bare minimum. Although an attentive
          reading of two queries may make it obvious that they will return the
          same result, mathematically proving that they
          always return the same result borders on mission impossible. An
          optimizer always plays it safe; a DBMS cannot afford to return wrong
          results by attempting daring rewrites, especially since it knows
          hardly anything about semantics. Our example is therefore a case in
          which the optimizer will limit its action to perform the join in
          inner queries as efficiently as possible. But ordering and
          aggregates put a stop to mingling inner and outer queries, and
          therefore the query will for the most part run as it is written. The
          query that performs the sort of amounts before the joins is, no
          doubt, very ugly. But this ugly SQL code is the way to write it,
          because it is the way the SQL engine should
          execute it if we want resilience to a strong increase in the number
          of customers and orders.
Important
To reduce the sensitivity of your queries to increases in
            the volume of data, operate only on the data that is strictly
            necessary at the deeper levels of a query. Keep ancillary joins
            for the outer level.


Disentangling subqueries



As I have said more than once, correlated subqueries
          must be fired for each row that requires their evaluation. They are
          often a major issue when volume increases transform a few shots into
          sustained rounds of fire. In this section, a real-life example will
          illustrate both how ill-used correlated subqueries can bog a process
          down and how one can attempt to save such a situation.
The issue at hand, in an Oracle context, is a query that
          belongs to an hourly batch to update a security management table.
          Note that this mechanism is already in itself a fudge to speed up
          security clearance checks on the system in question. Over time, the
          process takes more and more time, until reaching, on the production
          server, 15 minutes—which for an hourly process that suspends
          application availability is a bit too much. The situation sends all
          bells ringing and all whistles blowing. Red alert!
The slowness of the process has been narrowed down to the
          following statement:
    insert /*+ append */ into fast_scrty
     ( emplid,
       rowsecclass,
       access_cd,
       empl_rcd,
       name,
       last_name_srch,
       setid_dept,
       deptid,
       name_ac,
       per_status,
       scrty_ovrd_type)
    select distinct
           emplid,
           rowsecclass,
           access_cd,
           empl_rcd,
           name,
           last_name_srch,
           setid_dept,
           deptid,
           name_ac,
           per_status,
          'N'
    from pers_search_fast

Statistics are up to date, so we must focus our attack on the
          query. As it happens, the ill-named pers_search_fast is a view defined by the
          following query:
    1 select a.emplid,
    2        sec.rowsecclass,
    3        sec.access_cd,
    4        job.empl_rcd,
    5        b.name,
    6        b.last_name_srch,
    7        job.setid_dept,
    8        job.deptid,
    9        b.name_ac,
    10        a.per_status
    11 from person a,
    12      person_name b,
    13      job,
    14      scrty_tbl_dept sec
    15 where a.emplid = b.emplid
    16   and b.emplid = job.emplid
    17   and (job.effdt=
    18          ( select max(job2.effdt)
    19            from job job2
    20            where job.emplid = job2.emplid
    21              and job.empl-rcd = job2.empl_rcd
    22              and job2.effdt <= to_date(to_char(sysdate,
    23                                               'YYYY-MM-DD'),'YYYY-MM-DD'))
    24        and job.effseq =
    25              ( select max(job3.effseq)
    26                from job job3
    27                where job.emplid = job3.emplid
    28                  and job.empl_rcd = job3.empl_rcd
    29                  and job.effdt = job3.effdt ) )
    30   and sec.access_cd = 'Y'
    31   and exists
    32           ( select 'X'
    33             from treenode tn
    34             where tn.setid = sec.setid
    35               and tn.setid = job.setid_dept
    36               and tn.tree_name = 'DEPT_SECURITY'
    37               and tn.effdt = sec.tree_effdt
    38               and tn.tree_node = job.deptid
    39               and tn.tree_node_num between sec.tree_node_num
    40                                        and sec.tree_node_num_end
    41               and not exists
    42                    ( select 'X'
    43                      from scrty_tbl_dept sec2
    44                      where sec.rowsecclass = sec2.rowsecclass
    45                        and sec.setid = sec2.setid
    46                        and sec.tree_node_num <> sec2.tree_node_num
    47                        and tn.tree_node_num between sec2.tree_node_num
    48                                                 and sec2.tree_node_num_end
    49                        and sec2.tree_node_num between sec.tree_node_num
    50                                                   and sec.tree_node_num_end ))

This type of “query of death” is, of course, too complicated
          for us to understand at a glance! As an exercise, though, it would
          be interesting for you to pause at this point, consider carefully
          the query, try to broadly define its characteristics, and try to
          identify possible performance stumbling blocks.
If you are done pondering the query, let’s compare notes.
          There are a number of interesting patterns that you may have
          noticed:
	A high number of subqueries. One subquery is even nested,
              and all are correlated.

	No criterion likely to be very selective. The only
              constant expressions are an unbounded comparison with the
              current date at line 22, which is likely to filter hardly
              anything at all; a comparison to a Y/N field at line 30; and a
              condition on tree_name at
              line 36 that looks like a broad categorization. And since the
              insert statement that has
              been brought to our attention contains no where clause, we can expect a good
              many rows to be processed by the query.

	Expressions such as between
              sec.tree_node_num and sec.tree_node_num_end ring a
              familiar bell. This looks like our old acquaintance from Chapter 7, Celko’s nested sets!
              Finding them in an Oracle context is rather unusual, but
              commercial off-the-shelf (COTS) packages often make admirable,
              if not always totally successful, attempts at being portable and
              therefore often shun the useful features of a particular
              DBMS.

	More subtly perhaps, when we consider the four tables
              (actually, one of them, person_name, is a view) in the outer
              from clause, only three of
              them, person, person_name, and job, are cleanly joined. There is a
              condition on scrty_tbl_dept,
              but the join proper is indirect and hidden inside one of the
              subqueries, lines 34 to 38. This is not a recipe for
              efficiency.



One of the very first things to do is to try to get an idea
          about the volumes involved; person_name is a view, but querying it
          indicates no performance issue. The data dictionary tells us how
          many rows we have:
    TABLE_NAME                     NUM_ROWS
    ------------------------------ ----------
    TREENODE                         107831
    JOB                               67660
    PERSON                            13884
    SCRTY_TBL_DEPT                      568

None of these tables is really large; it is interesting to
          notice that one need not deal with hundreds of millions of rows to
          perceive a significant degradation of performance as tables grow.
          The killing factor is how we are visiting tables. Finding out on the
          development server (obviously not as fast as the server used in
          production) how many rows are returned by the view is not very
          difficult but requires steel nerves:
    SQL> select count(*) from PERS_SEARCH_FAST;

     COUNT(*)
    ----------
     264185

    Elapsed: 01:35:36.88

A quick look at indexes shows that both treenode and job are over-indexed, a common flaw of
          COTS packages. We do not have here a case of the “obviously missing
          index.”
Where must we look to find the reason that the query is so
          slow? We should look mostly at the lethal combination of a
          reasonably large number of rows and of correlated subqueries. The
          cascading exists/not exists in particular, is probably what
          does us in.
Note
In real life, all this analysis took me far more time than
            it is taking you now to read about it. Please understand that the
            paragraphs that follow summarize several hours of work and that
            inspiration didn’t come as a flashing illumination!

Take a closer look at the exists/not
          exists expression. The first level subquery introduces
          table treenode. The second level
          subquery again hits table scrty_tbl_dept, already present in the
          outer query, and compares it both to the current row of the first
          level subquery (lines 47 and 48) and to the current row of the outer
          subquery (lines 44, 45, 46, 49, and 50)! If we want to get tolerable
          performance, we absolutely must disentangle these queries.
	Can we understand what the query is about? As it happens,
              treenode, in spite of its
              misleading name, doesn’t seem to be the table that stores the
              “nested sets.” The references to a range of numbers are all
              related to scrty_tbl_dept;
              treenode looks more like a
              denormalized flat list (sad words to use in a supposedly
              relational context) of the “nodes” described in scrty_tbl_dept. Remember that in the
              nested set implementation of tree structures, two values are
              associated with each node and computed in such a way that the
              values associated with a child node are always between the
              values associated with the parent node. If the two values
              immediately follow each other, then we necessarily have a leaf
              node (the reverse is not true, because a subtree may have been
              pruned and value recomputation skipped, for obvious performance
              reasons). If we try to translate the meaning of lines 31 to 50
              in English (sort of), we can say something like:
	There is in treenode
                a row with a particular tree_name that matches job on both setid_dept and deptid, as well as matching scrty_tbl_dept on setid and tree_effdt, and that points to
                either the current “node” in scrty_tbl_dept or to one of its
                descendents. There is no other node (or descendent) in
                scrty_tbl_dept that the
                current treenode row points
                to, that matches the current one on setid and rowsecclass, and that is a
                descendent of that node.



Dreadful jargon, especially when one has not the slightest
          idea of what the data is about. Can we try to express the same thing
          in a more intelligible way, in the hope that it will lead us to more
          intelligible and efficient SQL? The key point is probably in the
          there is no other node part. If there is no
          descendent node, then we are at the bottom of the tree for the node
          identified by the value of tree_node_num in treenode. The subqueries in the initial
          view text are hopelessly mingled with the outer queries. But we can
          write a single contained query that “forgets” for the time being
          about the link between treenode
          and job and computes, for every
          node of interest in scrty_tbl_dept (a small table, under 600
          rows), the number of children that match it on setid and rowsecclass:
    select s1.rowsecclass,
           s1.setid,
           s1.tree_node_num,
           tn.tree_node,
           count(*) - 1 children
    from scrty_tbl_dept s1,
         scrty_tbl_dept s2,
         treenode tn
    where s1.rowsecclass = s2.rowsecclass
      and s1.setid = s2.setid
      and s1.access_cd = 'Y'
      and tn.tree_name = 'DEPT_SECURITY'
      and tn.setid = s1.setid
      and tn.effdt = s1.tree_effdt
      and s2.tree_node_num between s1.tree_node_num
                               and s1.tree_node_num_end
      and tn.tree_node_num between s2.tree_node_num
                               and s2.tree_node_num_end
    group by s1.rowsecclass,
             s1.setid,
             s1.tree_node_num,
             tn.tree_node

(The count(*) - 1 is for
          not counting the current row.) The resulting set will be, of course,
          small, at most a few hundred rows. We shall filter out nodes that
          are not leaf nodes (in our context) by using the preceding query as
          an inline view, and applying a filter:
    and children = 0

From here, and only from here, we can join to job and properly determine the final set.
          Giving the final text of the view would not be extremely
          interesting. Let’s just point out that the first succession of
          exists:
     and (job.effdt=
             ( select max(job2.effdt)
               from job job2
               where job.emplid = job2.emplid
                 and job.empl-rcd = job2.empl_rcd
                 and job2.effdt <= to_date(to_char(sysdate,'YYYY-MM-DD'),
                                                           'YYYY-MM-DD'))
           and job.effseq =
                 ( select max(job3.effseq)
                   from job job3
                   where job.emplid = job3.emplid
                     and job.empl_rcd = job3.empl_rcd
                     and job.effdt = job3.effdt ) )

is meant to find, for the most recent effdt for the current (emplid, empl_rcd) pair, the row with the highest
          effseq value. This condition is
          not, particularly in comparison to the other nested subquery, so
          terrible. Nevertheless, OLAP (or should we say
          analytical, since we are in an Oracle context?)
          functions can handle, when they are available, this type of “top of
          the top” case slightly more efficiently. A query such as:
    select emplid,
           empl_rcd,
           effdt,
           effseq
    from (select emplid,
                 empl_rcd,
                 effdt,
                 effseq
                 row_number() over (partition by emplid, empl_rcd
                                    order by effdt desc, effseq desc) rn
          from job
          where effdt <= to_date(to_char(sysdate,'YYYY-MM-DD'),'YYYY-MM-DD'))
    where rn = 1

will easily select the (emplid,
          empl_rcd) values that we are really interested in and will
          be easily reinjected into the main query as an inline view that will
          be joined to the rest. In real life, after rewriting this query, the
          hourly process that had been constantly lengthening fell from 15 to
          under 2 minutes.
Important
Minimize the dependencies of correlated subqueries on
            elements from outer queries.



Partitioning to the Rescue



When the number of rows to process is on the increase,
        index searches that work wonders on relatively small volumes become
        progressively inefficient. A typical primary key search requires the
        DBMS engine to visit 3 or 4 pages, descending the index, and then the
        DBMS must visit the table page. A range scan will be rather efficient,
        especially when applied to a clustering index that constrains the
        table rows to be stored in the same order as the index keys.
        Nevertheless, there is a point at which the constant to-and-fro
        between index page and table page becomes costlier than a plain linear
        search of the table. Such a linear search can take advantage of
        parallelism and read-ahead facilities made available by the underlying
        operating system and hardware. Index-searches that rely on key
        comparisons are more sequential by nature. Large numbers of rows to
        inspect exemplify the case when accesses should be thought of in terms
        of sweeping scans, not isolated incursions, and joins performed
        through hashes or merges, not loops (all this was discussed in Chapter 6).
Table scans are all the more efficient when the ratio of rows
        that belong to the result set to rows inspected is high. If we can
        split our table, using the data-driven partitioning  introduced in Chapter
        5, in such a way that our search criteria can operate on a well
        defined physical subset of the table, we maximize
        scan efficiency. In such a context, operations on a large range of
        values are much more efficient when applied brutishly to a
        well-isolated part of a table than when the boundaries have to be
        checked with the help of an index.
Of course, data-driven partitioning doesn’t miraculously solve
        all volume issues:
	For one thing, the repartition of the partitioning keys must
            be more or less uniform; if we can find one single value of the
            partitioning key in 90% of rows, then scanning the table rather
            than the partition will hardly make any difference for that key;
            and for the others, they will probably be accessed more
            efficiently by index. The benefit of using an index that operates
            against a partitioned table will be slight for selective values.
            Uniformity of distribution is the reason why dates are so well
            suited to partitioning, and why range partitioning by date is by
            far the most popular method of partitioning.

	A second point, possibly less obvious but no less important,
            is that the boundaries of ranges must be well defined, in both
            their lower value and upper values. This
            isn’t a peculiarity of partitioned tables, because the same can be
            said of index range scans. A half-bounded range, unless we are
            looking for values greater than a value close to the maximum in
            the table or lesser than a value close to the minimum, will
            provide no help in significantly reducing the rows we have to
            inspect. Similarly, a range defined as:



    where date_column_1 >= some value
    and date_column_2 <= some other value

will not enable us to use either partitioning or indexing any
        more efficiently than if only one of the conditions was specified.
        It’s by specifying a between (or
        any semantic equivalent) encompassing a small number of partitions
        that we shall make best usage of partitioning.
Important
Half-bounded conditions make a poor use of both indexes and
          partitions.


Data Purges



Archival and data purges are too often considered ancillary matters, until they
        are seen as the very last hope for retrieving those by-and-large
        satisfactory response times of six months ago. Actually, they are
        extremely sensitive operations that, poorly handled, can put much
        strain on a system and contribute to pushing a precarious situation
        closer to implosion.
The ideal case is when tables are partitioned (true partitioning
        or partitioned view) and when archival and purges operate on
        partitions. If partitions can be simply detached, in one way or
        another, then an archival (or purge) operation is trivial: a partition
        is archived and a new empty one possibly created. If not, we are still
        in a relatively strong position: the query that selects rows for
        archival will be a simple one, and afterwards it will be possible to
        truncate a partition--truncate being a way of emptying a table or
        partition that bypasses most of the usual mechanisms and is therefore
        much faster than regular deletes.
Note
Because truncate bypasses
          so much of the work that delete
          performs, you should use caution. The use of truncate may impact your backups, and it
          may also have other side effects, such as the invalidation of some
          indexes. Any use of truncate
          should always be discussed with your DBAs.

The less-than-ideal, but oh-so-common case is when archival is
        triggered by age and other conditions.
        Accountants, for instance, are often reluctant to archive unpaid
        invoices, even when rather old. This makes the rather simple and
        elegant partition shuffling or truncation look too crude. Must we fall
        back on the dull-but-trusted delete?
It is at this point interesting to try to rank data manipulation
        operations (inserts, updates, and deletes) in terms of overall cost.
        We have seen that inserts are pretty costly, in large part because
        when you insert a new row, all indexes on the table have to be
        maintained. Updates require only maintenance of the indexes on the
        updated columns. Their weakness, compared to inserts, is two-fold:
        first, they are associated with a search (a where clause) that can be as disastrous as
        with a select, with the aggravating
        circumstance that in the meanwhile locks are held. Second, the
        previous value, inexistent in the case of an insert, must be saved
        somewhere so as to be available in case of rollback. Deletes combine
        all the shortcomings: they affect all indexes, are usually associated
        with a where clause that can be
        slow, and need to save the values for a possible transaction
        rollback.
Important
Of all operations that change data, deletes offer the greatest
          potential for trouble.

If we can therefore save on deletes, even at the price of other
        operations, we are likely to end up on the winning side. When a table
        is partitioned and archival and purge are dependent mostly on a date
        condition with strings attached, we can consider a three stage
        purge:
	Insert into a temporary table those old rows that we want to
            keep.

	Truncate partitions.

	Insert back from the temporary table those rows that should
            be retained.



Without partitioning, the situation is much more difficult. In
        order to limit lock duration—and assuming of course that once a row
        has attained the “ready for archival” state, no operation whatsoever
        can put it back to the “no, wait, I have second thought” state—we can
        consider a two-step operation. This two-step operation will be all the
        more advantageous given that the query that identifies rows for
        archiving is a slow-running one. What we may do in that case
        is:
	Build a list of the identifiers of the rows to
            archive.

	Join on this list for both archival and purge, rather than
            running the same slow where
            clause twice, once in a select
            statement and once in a delete
            statement.



Important
A major justification for temporary tables is to enable massive, table-oriented operations that
          would outperform row-wise operations.



Data Warehousing



  The purpose of this book is not to devote half a chapter
      to covering the complex issues linked to data warehousing   . Many books on the topic of data warehousing have been
      written, some of them generic (Ralph Kimball’s The Data
      Warehouse Toolkit and Bill Inmon’s Building the
      Data Warehouse  , both published by John Wiley & Sons, are probably
      the two best-known titles), some of them specific to a DBMS engine.
      There has been something of a religious war between the followers of
      Inmon, who advocates a clean 3NF design of enormous data repositories
      used by decision-support systems, and the supporters of Kimball, who
      believes that data warehouses are a different world with different
      needs, and that therefore the 3NF model, in spite of its qualities in
      the operational world, is better replaced with dimensional
      modeling  , in which reference data is happily denormalized.
As most of this book advocates and assumes a clean 3NF design, I
      will deal hereafter more specifically with dimensional models, to study
      their strengths and the reason for their popularity, but also their
      weaknesses. I will, in particular, examine the interactions between
      operational data stores  (“production databases " to the less enlightened) and decision-support systems,
      since data doesn’t fall from heaven, unless you are working for NASA or
      a satellite operating company, and what you load into dimensional models
      has to come from somewhere. Understand that it is
      not because one is using the SQL language against
      “tables” that one is operating in the relational world.
Facts and Dimensions: the Star Schema



The principle of dimensional modeling is to store
        measurement values, whether they are quantities, amounts, or whatever
        you can imagine into big fact tables  . Reference data is stored into dimension
        tables  that mostly contain self-explanatory labels and that
        are heavily denormalized. There are typically 5 to 15 dimensions, each
        with a system-generated primary key, and the fact table contains all
        the foreign keys. Typically, the date associated with a series of
        measures (a row) in the fact table will not be stored as a date column
        in the fact table, but as a system-generated number that will
        reference a row in the date_dimension table in which the date will
        be declined under all possible forms. If we take,
        for instance, the traditional starting date of the Unix world, January
        1, 1970, it would typically be stored in date_dimension as:
	 date_key 
	 date_value 
	 date_description 
	 day 
	 month 
	 year 
	 quarter 
	 holiday 

	12345
	01/01/1970
	January 1, 1970
	Thursday
	January
	1970
	Q1 1970
	Holiday



Every row that refers to something having occurred on January 1,
        1970 in the fact table would simply store the 12345 key. The rationale behind such an
        obviously non-normalized way of storing data is that, although
        normalization is highly important in environments where data is
        changed, because it is the only way to ensure data integrity, the
        overhead of storing redundant information in a data warehouse is
        relatively negligible since dimension tables contain very few rows
        compared to the normalized fact table. For instance, a one-century
        date dimension would only hold 36,525 rows. Moreover, argues Dr.
        Kimball, having only a fact table surrounded by dimension tables as in
        Figure 10-3 (hence the
        “star schema " name) makes querying that data extremely simple.
        Queries against the data tend to require very few joins, and therefore
        are very fast to execute.
[image: A simple star schema, showing primary keys (PK) and foreign keys (FK)]

Figure 10-3. A simple star schema, showing primary keys (PK) and foreign
          keys (FK)

Anybody with a little knowledge of SQL will probably be startled
        by the implication that the fewer the joins, the faster a query runs.
        Jumping to the defense of joins is not, of course, to recommend
        joining indiscriminately dozens of tables, but unless you have had a
        traumatic early childhood experience with nested loops on big,
        unindexed tables, it is hard to assert seriously that joins are the
        reason queries are slow. The slowness comes from the way queries are
        written; in this light, dimensional modeling can make a lot of sense,
        and you’ll see why as you progress through this chapter.
Important
The design constraints of dimensional modeling are
          deliberately read-oriented, and consequently they frequently ignore
          the precepts of relational design.


Query Tools



The problem with decision-support systems is that their
        primary users have not the slightest idea how to write an SQL query,
        not even a terrible one. They therefore have to use query
        tools  for that purpose, query tools that present them with a
        friendly interface and build queries for them. You saw in Chapter 8 that dynamically generating
        an efficient query from a fixed set of criteria is a difficult task,
        requiring careful thought and even more careful coding. It is easy to
        understand that when the query can actually be anything, a tool can
        only generate a decent query when complexity is low.
The following piece of code is one that I saw actually generated
        by a query tool (it shows some of the columns returned by a subquery
        in a from clause):
    ...
    FROM (SELECT ((((((((((((t2."FOREIGN_CURRENCY"
                             || CASE
                                  WHEN 'tfp' = 'div' THEN t2."CODDIV"
                                  WHEN 'tfp' = 'ac' THEN t2."CODACT"
                                  WHEN 'tfp' = 'gsd' THEN t2."GSD_MNE"
                                  WHEN 'tfp' = 'tfp' THEN t2."TFP_MNE"
                                  ELSE NULL
                                END
                                )
                             || CASE
                                  WHEN 'Y' = 'Y' THEN TO_CHAR (
                                          TRUNC (
                                                 t2."ACC_PCI"
                                                )
                                         )
                                  ELSE NULL
                                END
                               )
                            || CASE
                                 WHEN 'N' = 'Y' THEN t2."ACC_E2K"
                                 ELSE NULL
                               END
                              )
                           || CASE
                                WHEN 'N' = 'Y' THEN t2."ACC_EXT"
                                ELSE NULL
                               END
                              )
                           || CASE ...
It seems obvious from this sample’s select list that at least some “business
        intelligence” tools invest so much intelligence on the business side
        that they have nothing left for generating SQL queries. And when the
        where clause ceases to be
        trivial—forget about it! Declaring that it is better to avoid joins
        for performance reasons is quite sensible in this context. Actually,
        the nearer you are to the “text search in a file” (a.k.a. grep) model, the better. And one
        understands why having a “date dimension” makes sense, because having
        a date column in the fact table and expecting that the query tool will
        transform references to “Q1” into “between January 1 and March 31” to
        perform an index range scan requires the kind of faith you usually
        lose when you stop believing in the Tooth Fairy. By explicitly laying
        out all format variations that end users are likely to use, and by
        indexing all of them, risks are limited. Denormalized dimensions,
        simple joins, and all-round indexing increase the odds that most
        queries will execute in a tolerable amount of time, which is usually
        the case.
Important
Weakly designed queries may perform acceptably against
          dimensional models because the design complexity is much lower than
          in a typical transactional model.


Extraction, Transformation, and Loading



In order for business users to be able to proactively leverage
        strategic cost-generating opportunities (if data warehousing
        literature is to be believed), it falls on some poor souls to ensure
        the mundane task of feeding the decision-support system. And even if
        tools are available, this feeding is rarely an easy task.
Data extraction



Data extraction is not usually handled through SQL queries. In
          the general case, purpose-built tools are used: either utilities or
          special features provided by the DBMS, or dedicated third-party
          products. In the unlikely event that you would want to run your own
          SQL queries to extract information to load into a data warehouse,
          you typically fall into the case of having large volumes of
          information, where full table scans are the safest tactic. You must
          do your best in such a case to operate on arrays (if your DBMS
          supports an array interface—that is fetching into arrays or passing
          multiple values as a single array), so as to limit round-trips
          between the DBMS kernel and the downloading program.

Transformation



Depending on your SQL skills, the source of the data,
          the impact on production systems, and the degree of
          transformation required, you can use the SQL language to perform a
          complex select that will return
          ready-to-load data, use SQL to modify the data in a staging area, or
          use SQL to perform the transformation at the same time as the data
          is uploaded into the data warehouse.
Transformations often include aggregates, because the
          granularity required by decision support systems is usually coarser than the level of detail provided
          by production databases. Typically, values may be aggregated by day.
          If transformation is not more complicated than aggregation, there is
          no reason for performing it as a separate operation. Writing to the
          database is much costlier than reading from it, and updating the
          staging area before updating the data warehouse proper may be adding
          an unwanted costly step.
Such an extra step may be unavoidable, though, when data has
          to be compounded from several distinct operational systems; I can
          list several possible reasons for having to get data from different
          unrelated sources:
	Acute warlordism within the corporation

	A recently absorbed division still using its
              pre-acquisition information system

	A migration spread over time, meaning that at some point
              you have, for instance, domestic operations still running on an
              old information system while international ones are already
              using a new system that will later be used everywhere



The assemblage of data from several sources should be done, as
          much as possible, in a single step, using a combination of set
          operators such as union and of
          in-line views—subqueries in the from clause. Multiple passes carry a
          number of risks and should not be directly applied to the target
          data warehouse. The several-step update of tables, with null columns being suddenly assigned
          values is an excellent recipe for wreaking havoc at the physical
          level. When data is stored in variable length, as is often the case
          with character information and sometimes with numeric information as
          well (Oracle is an example of such a storage strategy), it will
          invariably lead to some of the data being relegated to overflow
          pages, thus compromising the efficiency of both full scans and
          indexed accesses, since indexes usually point to the head part of a
          row. Any pointer to an overflow area will mean visiting more pages
          than would otherwise be necessary to answer a given question, and
          will be costly. If the prepared data is very simply inserted into
          the target data warehouse tables, data will be properly reorganized
          in the process.
It is also quite common to see several updates applied to
          different columns of the same table in turn. Whenever possible,
          perhaps with help from the case
          construct, always update as many columns in one statement as
          possible.
Important
Multiple massive updates applied to a table often wreak
            havoc at the physical level.


Loading



If you build your data warehouse (or data mart, as
          others prefer to say) according to the rules of dimensional
          modeling, all dimensions will use artificial, system-generated keys
          for the purpose of keeping a logical track over time of items that
          may be technically different but logically identical. For instance,
          if you manufacture consumer electronics, a new model with a new
          reference may have been designed to replace an older model, now
          discontinued. By using the same artificial key for both, you can
          consider them as a single logical entity for analysis.
The snag is that the primary keys in your operational database
          will usually have different values from the dimension identifiers
          used in the decision support system, which becomes an issue not with
          dimension tables but with fact tables. You have no reason to use
          surrogate keys for dates in your operational system. In the same
          way, the operational system doesn’t necessarily need to record which
          electronic device model is the successor to another. Dimension
          tables are, for the most part, loaded once and rarely updated.
          Dimensional modeling rests partly on the assumption that the
          fast-changing values are the ones stored in fact tables. As a
          result, for every row you need to insert into the fact table, you
          must retrieve (from the operational database primary key) the value
          of the corresponding surrogate, system-generated key for each of the
          dimensions—which necessarily means as many joins as there are
          different dimensions. Queries against the decision support system
          may require fewer joins, but loading into the decision support
          system will require many more joins because of the mapping between
          operational and dimensional keys.
Important
The advantage of simpler queries against dimensional models
            is paid for by the disadvantage of complex preparation and loading
            of the data.


Integrity constraints and indexes



When a DBMS implements referential integrity checking,
          it is sensible to disable that checking during data load operations.
          If the DBMS engine needs to check for each row that the foreign keys
          exist, the engine does double the amount of work, because any
          statement that uploads the fact table has to
          look for the parent surrogate key anyway. You might also
          significantly speed up loading by dropping most indexes and
          rebuilding them after the load, unless the rows loaded represent a
          small percentage of the size of the table that you are loading, as
          rebuilding indexes on very large tables can be prohibitively
          expensive in terms of resources and time. It would however be a
          potentially lethal mistake to disable all
          constraints, and particularly primary keys. Even if the data being
          loaded has been cleaned and is above all reproach, it is very easy
          to make a mistake and load the same data twice—much easier than
          trying to remove duplicates afterwards.
Important
The massive upload of decision-support systems is one of the
            rare cases when temporarily altering a schema may be
            tolerated.



Querying Dimensions and Facts: Ad Hoc Reports



If query tools are seriously helped by removing anything
        that can get in their way, such as evil joins and sophisticated
        subqueries, there usually comes a day when business users require
        answers that a simplistic schema cannot provide. The dimensional model
        is then therefore duly “embellished” with
        mini-dimensions  , outriggers  , bridge tables  , and all kinds of bells and whistles until it begins
        to resemble a clean 3NF schema, at which point query tools are
        beginning to suffer. One day, a high-ranking user tries something
        daring—and the next day the problem is on the desk of a developer,
        while the tool-generated query is still running. Time for ad hoc
        queries and shock SQL!
It is when you have to write ad hoc queries that it is time to
        get back to dimensional modeling and see the SQL
        implications . Basically, dimensions represent the breaks in a
        report. If an end user often wants to see sales by product, by store,
        and by month, then we have three dimensions involved: the date
        dimension that has been previously introduced, the product dimension,
        and the store dimension. Product and store can be denormalized to
        include information such as product line, brand, and category in one
        case, and region, surface, or whatever criterion is deemed to be
        relevant in the other case. Sales amounts are, obviously,
        facts.
A key characteristic of the star schema is that we are supposed
        to attack the fact table through the dimensions such as in Figure 10-4; in the previous
        example, we might for instance want to see sales by product, store,
        and month for dairy products in the stores
        located in the Southwest and for the
        third quarter. Contrarily to the generally
        recommended practice in normalized operational databases, dimension
        tables are not only denormalized, but are also strongly
        indexed. Indexing all columns means that, whatever the degree of
        detail required (the various columns in a location dimension, such as
        city, state, region, country, area, can be seen as various levels of
        detail, and the same is true of a date dimension), an end user who is
        executing a query will hit an index. Remember that dimensions are
        reference tables that are rarely if ever updated, and therefore there
        is no frightful maintenance cost associated with heavy indexing. If
        all of your criteria refer to data stored in dimension tables, and if
        they are indexed so as to make any type of search fast, you should
        logically hit dimension tables first and then locate the relevant
        values in the fact table.
[image: The usual way of querying tables in the dimensional model]

Figure 10-4. The usual way of querying tables in the dimensional
          model

Hitting dimensions first has very strong SQL implications that
        we must well understand. Normally, one accesses particular rows in a
        table through search criteria, finds some foreign keys in those rows,
        and uses those foreign keys to pull information from the tables those
        keys reference. To take a simple example, if we want to find the phone
        number of the assistant in the department where Owens works, we shall
        query the table of employees basing our search on the “Owens” name,
        find the department number, and use the primary key on the table of
        departments to find the phone number. This is a classic, nested-loop
        join case.
With dimensional modeling, the picture totally changes. Instead
        of going from the referencing table (the employees) to the referenced
        table (the departments), naturally following foreign keys, we start
        from the reference tables—the dimensions. To go where? There is no
        foreign key linking a dimension to the fact table: the opposite is
        true. It is like looking for the names of all the employees in a
        department when all you know is the phone number of the assistant.
        When joining the fact table to the dimension, the DBMS engine will
        have to go through a mechanism other than the usual nested
        loop—perhaps something such as a hash join.
Another peculiarity of queries on dimensional models is that
        they often are perfect examples of the association of criteria that’s
        not too specific, with a relatively narrow intersection to obtain a
        result set that is not, usually, enormous. The optimizer can use a
        couple of tactics for handling such queries. For instance:
	Determining which is the most selective of all
            these not-very-selective criteria, joining the associated
            dimension to the fact table, and then checking each of the other
            dimensions
	Such a tactic is fraught with difficulties. First of all,
              the way dimensions are built may give the optimizer wrong ideas
              about selectivity. Suppose we have a date dimension that is used
              as the reference for many different dates: the sales date, but
              also, for instance, the date on which each store was first
              opened, a fact that may be useful to compare how each store is
              doing after a given number of months of activity. Since the date
              dimension will never be a giant table, we may have decided to
              fill it from the start with seventy years’ worth of dates.
              Seventy years give us, on one hand, enough “historical” dates to
              be able to refer to even the opening of the humble store of the
              present chairman’s grandfather and, on the other hand, enough
              future dates so as to be able to forget about maintaining this
              dimension for quite a while. Inevitably, a reference to the
              sales of last year’s third quarter will make the criterion look
              much more selective than it really is. The problem is that if we
              truly had a “sales date” inside the fact table, it would be
              straightforward to determine the useful range of dates. If we
              just have a “date reference” pointing to the date dimension, the
              starting point for evaluation is the dimension, not the fact
              table.

	Scanning the fact table and discarding any row
            that doesn’t satisfy any of the various criteria
	Since fact tables contain all the measurement or metrics,
              they are very large. If they are partitioned, it will
              necessarily be against a single dimension (two if you use
              subpartitioning). Any query involving three or more dimensions
              will require a full scan of a table that can contain millions of
              rows. Scanning the fact table isn’t the most attractive of
              options.



In such a case, visiting the fact table at an early stage, which
        also means after a first dimension, may be a mistake. Some products
        such as Oracle implement an interesting algorithm, known in Oracle’s
        case as the “star transformation.” We are going to look next at this
        transformation in some detail, including characteristics that are
        peculiar to Oracle, before discussing how such an algorithm may be
        emulated in non-Oracle environments.
Important
Dimensional modeling is built on the premise that dimensions
          are the entry points. Facts must be accessed last.

The star transformation



The principle behind the star transformation is, as a
          very first step, to separately join the fact table to each of the
          dimensions for which we have a filtering condition. The
          transformation makes it appear that we are joining several times to
          the fact table, but appearances are deceiving. What we really want
          is to get the addresses of rows from the fact
          table that match the condition on each dimension. Such an address,
          also known as a rowid (accessible as a
          pseudo-column with Oracle; Postgres has a functionally equivalent
          oid) is stored in indexes. All
          we need to join, therefore, are three objects:
	The index on the column from the dimension table that we
              use as a filtering condition—for instance, the quarters column in date_dimension

	The date_dimension
              itself, in which we find the system-generated artificial primary
              key date_key

	The index on the column in the fact table that is defined
              as a foreign key referencing date_key (star transformations work
              best when the foreign keys in the fact table are indexed)



Even though the fact table appears several times in a star
          query, we will not hit the same data or index pages repeatedly. All
          the separate joins will involve different indexes, and all storing
          rowids referring to the same table—but otherwise those indexes are
          perfectly distinct objects.
As soon as we have the result of two joins, we can combine the
          two resulting sets of rowids, discarding everything that doesn’t
          belong to the intersection of the two sets for an and condition or retaining everything for
          an or condition. This step is
          further simplified if we are using bitmap
           indexes , for which simple bit-wise operations are all that
          is required to select our final set of rowids that refer to rows
          satisfying our conditions. Once we have our final, relatively small
          set of resulting rowids, then we can fetch the corresponding rows
          from the fact table that we are actually visiting for the very first
          time.
Bitmap indexes, as their name says, index values by keeping
          bitmaps telling which rows contain a particular value and which do
          not. Bitmap indexes are particularly appropriate to index
          low-cardinality columns; in other words, columns in which there are
          few distinct values, even if the distribution of those values is not
          particularly skewed. Bitmap indexes were not mentioned in previous
          chapters for an excellent reason: they are totally inappropriate for
          general database operations. There is a major reason for avoiding
          them in a database that incurs normal update activity: when you
          update a bitmap, you have to lock it. Since this type of index is
          designed for columns with few distinct values, you end up preventing
          changes to many, many rows, and you get a behavior that lies
          somewhere between page locking and table locking, but much closer to
          table locking. For read-only databases, however, bitmap indexes may
          prove useful. Bitmap indexes are quickly built during bulk loads and
          take much less storage than regular indexes.

Emulating the star transformation



Although automated star transformation is a feature
          that enables even poorly generated queries to perform efficiently,
          it is quite possible to write a query in a way that will induce the
          DBMS kernel to execute it in a similar, if not exactly identical,
          fashion. I must plead guilty to writing SQL statements that are
          geared at one particular result. From a relational point of view, I
          would deserve to be hanged high. On the other hand, dimensional
          modeling has nothing to do with the relational theory. I am
          therefore using SQL in a shamelessly unrelational way.
Let’s suppose that we have a number of dimension tables named
          dim1, dim2, ...dim n. These
          dimension tables surround our fact table that we shall imaginatively
          call facts. Each row in facts is composed of key1, key2, ...key n, foreign
          keys respectively pointing to one dimension table, plus a number of
          values (the facts) val1, val2, ...val p. The
          primary key of facts is defined
          as a composite key, and is simply made of key1 to key n.
Let’s further imagine that we need to execute a query that
          satisfies conditions on some columns from dim1, dim2, and dim3 (they may, for instance, represent a
          class of products, a store location, and a time period). For
          simplicity, say that we have a series of and conditions, involving col1 in dim1, col2 in dim2 and col3 in dim3. We shall ignore any transformation,
          aggregate or whatever, and limit our creative exercise to returning
          the appropriate set of rows in as effective a way as
          possible.
The star transformation mostly aims to obtain in an efficient
          way the identifiers of the rows from the fact table that will belong
          to our result set, which may be the final result set or an
          intermediate result set vowed to further ordeals. If we start with
          joining dim2 to facts, for instance:
    select ...
    from dim2,
         facts
    where dim2.key2 = facts.key2
      and dim2.col2 = some value
then we have a major issue if we have no Oracle
          rowid, because the identifiers of the
          appropriate rows from facts are
          precisely what we want to see returned. Must we return the primary
          key from facts to properly
          identify the rows? If we do, we hit not only the index on facts(key2), but also table facts itself, which defeats our initial
          purpose. Remember that the frequently used technique to avoid an
          additional visit to the table is to store the information we need in
          the index by adding to the index the columns we want to return. So,
          must we turn our index on facts(key2) into an index on facts(key2, key3...keyn)? If we do that, then we must apply
          the same recipe to all foreign keys! We will end up with
          n indexes that will each be of a size in the
          same order of magnitude as the facts table itself, something that is not
          acceptable and that forces us to read large amounts of data while
          scanning those indexes, thus jeopardizing performance.
What we need for our facts
          table is a relatively small row identifier—a surrogate key that we
          may call fact_id. Although our
          facts table has a perfectly good
          primary key, and although it is not referenced by any other table,
          we still need a compact technical identifier—not to use in other
          tables, but to use in indexes.
With our system-generated fact_id column, we can have indexes on
          (key1, fact_id), (key2, fact_id)...(keyn, fact_id) instead of on the foreign
          keys alone. We can now fully write our previous query as:
    select facts.fact_id
    from dim2,
         facts
    where dim2.key2 = facts.key2
      and dim2.col2 = some value
This version of the query no longer needs the DBMS engine to
          visit anything but the index on col2, the dimension table dim2, and the facts index on (key2, fact_id). Note that by applying the
          same trick to dim2 (and of course
          the other dimension tables), systematically appending the key to
          indexes on every column, the query can be executed by only visiting
          indexes.
Repeating the query for dim1 and dim3 provides us with identifiers of facts
          that satisfy the conditions associated with these dimensions. The
          final set of identifiers satisfying all conditions can easily be
          obtained by joining all the queries:
    select facts1.fact_id
    from (select facts.fact_id
          from dim1,
               facts
          where dim1.key1 = facts.key1
            and dim1.col1 = some value) facts1,
          (select facts.fact_id
           from dim2,
                facts
           where dim2.key2 = facts.key2
             and dim2.col2 = some other value) facts2,
           (select facts.fact_id
            from dim3,
                 facts
            where dim3.key3 = facts.key3
              and dim3.col3 = still another value) facts3
    where facts1.fact_id = facts2.fact_id
       and facts2.fact_id = facts3.fact_id
Afterwards, we only have to collect from facts the rows, the identifiers of which
          are returned by the previous query.
The technique just described is, of course, not specific to
          decision-support systems. But I must point out that we have assumed
          some very heavy indexing, a standard fixture of data marts and,
          generally speaking, read-only databases. In such a context, putting
          more information into indexes and adding a surrogate key column can
          be considered as “no impact” changes. You should be most reluctant
          in normal (including in the relational sense!) circumstances to
          modify a schema so significantly to accommodate queries. But if most
          of the required elements are already in place, as in a data
          warehousing environment, you can certainly take advantage of
          them.

Querying a star schema the way it is not intended to be
          queried



As you have seen, the dimensional model is designed to
          be queried through dimensions. But what happens when, as in Figure 10-5, our input
          criteria refer to some facts (for instance, that the sales amount is
          greater than a given value) as well as to dimensions?
[image: A maverick usage of the dimension model]

Figure 10-5. A maverick usage of the dimension model

We can compare such a case to the use of a group by. If the condition on the fact
          table applies to an aggregate (typically a sum or average), we are
          in the same situation as with a having clause: we cannot provide a result
          before processing all the data, and the condition on the fact table
          is nothing more than an additional step over what we might call
          regular dimensional model processing. The situation
          looks different, but it isn’t.
If, on the contrary, the condition applies to individual rows
          from the fact table, we should consider whether it would be more
          efficient to discard unwanted facts rows earlier in the process, in
          the same way that it is advisable to filter out unwanted rows in the
          where clause of a query, before
          the group by, rather than in the
          having clause that is evaluated
          after the group by. In such a
          case, we should carefully study how to proceed. Unless the fact
          column that is subjected to a condition is indexed—a condition that
          is both unlikely and unadvisable—our entry point will still be
          through one of the dimensions. The choice of the proper dimension to
          use depends on several factors; selectivity is one of them, but not
          necessarily the most important one. Remember the clustering factor
          of indexes, and how much an index that corresponds to the actual,
          physical order of rows in the table outperforms other indexes
          (whether the correspondence is just a happy accident of the data
          input process, or whether the index has been defined as constraining
          the storage of rows in the table). The same phenomenon happens
          between the fact table and the dimensions. The order of fact rows
          may happen to match a particular date, simply because new fact rows
          are appended on a daily basis, and therefore those rows have a
          strong affinity to the date dimension. Or the order of rows may be
          strongly correlated to the “location dimension” because data is
          provided by numerous sites and processed and loaded on a
          site-by-site basis. The star schema may look symmetrical, just as
          the relational model knows nothing of order. But implementation
          hazards and operational processes often result in a break-up of the
          star schema’s theoretical symmetry. It’s important to be able to
          take advantage of this hidden dissymmetry whenever possible.
If there is a particular affinity between one of the
          dimensions to which a search filter must be applied and to the fact
          table, the best way to proceed is probably to join that dimension to
          the fact table, especially if the criterion that is applied to the
          fact table is reasonably selective. Note that in this particular
          case we must join to the actual fact table, obviously through the
          foreign key index, but not limit our access to the index. This will
          allow us to directly get a superset of our target collection of rows
          from the fact table at a minimum cost in terms of visited pages, and
          check the condition that directly applies to fact rows early. The
          other criteria will come later.
Important
The way data is loaded to a star schema can favor one
            dimension over all others.



A (Strong) Word of Caution



Dimensional modeling is a technique, not a theory, and
        it is popular because it is well-suited to the less-than-perfect (from
        an SQL[*] perspective) tools that are commonly used in decision
        support systems, and because the carpet-indexing (as in
        “carpet-bombing”) it requires is tolerable in a read-only
        system—read-only after the loading phase, that is. The problem is that
        when you have 10 to 15 dimensions, then you have 10 to 15 foreign keys
        in your fact table, and you must index all those keys if you want
        queries to perform tolerably well. You have seen that dimensions are
        mostly static and not enormous, so indexing all columns in all
        dimensions is no real issue. But indexing all columns may be much more
        worrisome with a fact table, which can grow very big: just imagine a
        large chain of grocery stores recording one fact each time they sell
        one article. New rows have to be inserted into the fact table very
        regularly. You saw in Chapter 3
        that indexes are extremely costly when inserting; 15 indexes, then,
        will very significantly slow down loading. A common technique to load
        faster is to drop indexes and then recreate them (if possible in
        parallel) once the data is loaded. That technique may work for a
        while, but re-indexing will inexorably take more time as the base
        table grows. Indexing requires sorting, and (as you might remember
        from the beginning of this chapter) sorts belong to the category of
        operations that significantly suffer when the number of rows
        increases. Sooner or later, you will discover that the re-creation of
        indexes takes way too much time, and you may well also be told that
        you have users who live far, far away who would like to access the
        data warehouse in the middle of the night.
Users that want the database to be accessible during a part of
        the night mean a smaller maintenance window for loading the decision
        support system. Meanwhile, because recreating indexes takes longer as
        data accumulates into the decision support database, loading times
        have a tendency to increase. Instead of loading once every night,
        wouldn’t it be possible to have a continuous flow of data from
        operational systems to the data warehouse? But then, denormalization
        can become an issue, because the closer we get to a continuous flow,
        the closer we are to a transactional model, with all the integrity
        issues that only proper normalization can protect against.
        Compromising on normalization is acceptable in a carefully controlled
        environment, an ivory tower. When the headquarters are too close to
        the battlefield, they are submitted to the same rules.




[*] Some will say—with some reason—that SQL itself is not above
            reproach.


Chapter 11. Stratagems

Trying to Salvage Response Times



But my doctrines and I begin to part company.  Jude The
      Obscure, IV, ii
—Thomas Hardy (1840–1928)



I hope to have convinced you in Chapters 1 and 2 about the extent to which
    performance depends, first and foremost, on a sound database design, and
    second, on a clear strategy and well-designed programs. The sad truth is
    that when you are beginning to be acknowledged as a skilled SQL tuner,
    people will not seek your advice until they discover that they have
    performance problems. This happens—at best—during the final stages of
    acceptance testing, after man-months of haphazard development. You are
    then expected to work wonders on queries when table designs, program
    architectures, or sometimes even the requirements themselves may all be
    grossly inappropriate. Some of the most sensitive areas are related to
    interfacing legacy systems—in other words loading the
    database or downloading data to files.
If there is one chapter in this book that should leave a small
    imprint on your memory, it should probably be this one. If you really want
    to remember something, I hope it will not be the
    recipes (those tricky and sometimes entertaining SQL
    queries of death) in this chapter, but the reasoning behind each recipe,
    which I have tried my best to make as explicit as possible. Nothing is
    better than getting things right from the very start; but there is some
    virtue in trying to get the best out of a rotten situation.
You will also find some possible answers to common problems that,
    sometimes surprisingly, seem to induce developers to resort to contorted
    procedures. These procedures are not only far less efficient, but also
    commonly far more obscure and harder to maintain than SQL statements, even
    complex ones.
I shall end this chapter with a number of remarks about a commonly
    used stratagem indirectly linked to SQL proper, that of optimizer
    directives.
Welcome to the heart of darkness.
Turning Data Around



The most common difficulty that you may encounter when
      trying to solve SQL problems is when you have to program against what
      might charitably be called an “unconventional” design. Writing a query
      that performs well is often the most visible challenge. However, I must
      underline that the complex SQL queries that are forced upon developers
      by a poor design only mirror the complication of programs (including
      triggers and stored procedures) that the same poor design requires in
      order to perform basic operations such as integrity checking. By
      contrast, a sound design allows you to declare
      constraints and let the DBMS check them for you, removing much of the
      risk associated with complexity. After all, ensuring data integrity is
      exactly what a DBMS, a rather fine piece of software, has been
      engineered to achieve. Unfortunately, haphazard designs will force you
      to spend days coding application controls. As a bonus, you get very high
      odds of letting software bugs creep in. Unlike popular software systems
      that are in daily use by millions of users, where bugs are rapidly
      exposed and fixed, your home-grown software can hide bugs for weeks or
      months before they are discovered.
Rows That Should Have Been Columns



Rows that should have been originally specified as
        columns are most often encountered with that appalling “design” having
        the magical four attributes--entity_id, attribute_name, attribute_type, attribute_value--that are
        supposed to solve all schema evolution issues. Frighteningly, many
        supporters of this model seem to genuinely believe that it represents
        the ultimate sophistication in terms of normalization. You will find
        it under various, usually flattering, names—such as
        meta-design  , or fact dimension  with data warehouse designers.
Proponents of the magical four attributes praise the
        “flexibility” of this model. There is an obvious confusion of
        flexibility with flabbiness. Being able to add “attributes” on the fly
        is not flexibility; those attributes need to be retrieved and
        processed meaningfully. The dubious benefit of inserting rows instead
        of painstakingly designing the database in the first place is
        absolutely negligible compared to the major coding effort that is
        required, first, to process those new rows, and second, to insure some
        minimal degree of integrity and data consistency. The proper way to
        deal with varying numbers of attributes is to define
        subtypes, as explained in Chapter 1. Subtypes let you define
        clean referential integrity constraints—checks that you will not need
        to code and maintain. A database should not be a mere repository where
        data is dumped without any thought to its semantic integrity.
The predominant characteristic of queries against
        meta-design tables, as tables designed around our
        magical four attributes are sometimes called, is that you find the
        same table invoked a very high number of times in the from clause. Typically, queries will
        resemble something like:
select emp_last_name.entity_id        employee_id,
       emp_last_name.attribute_value  last_name,
       emp_first_name.attribute_value first_name,
       emp_job.attribute_value        job_description,
       emp_dept.attribute_value       department,
       emp_sal.attribute_value        salary
from employee_attributes emp_last_name,
     employee_attributes emp_first_name,
     employee_attributes emp_job,
     employee_attributes emp_dept,
     employee_attributes emp_sal
where emp_last_name.entity_id = emp_first_name.entity_id
  and emp_last_name.entity_id = emp_job.entity_id
  and emp_last_name.entity_id = emp_dept.entity_id
  and emp_last_name.entity_id = emp_sal.entity_id
  and emp_last_name.attribute_name = 'LASTNAME'
  and emp_first_name.attribute_name = 'FIRSTNAME'
  and emp_job.attribute_name = 'JOB'
  and emp_dept.attribute_name = 'DEPARTMENT'
  and emp_sal.attribute_sal = 'SALARY'
order by emp_last_name.attribute_value

Note how the same table is referenced five times in the from clause. The number of
        self-joins is usually much higher than in this simple example.
        Furthermore, such queries are frequently spiced up with outer joins as
        well.
A query with a high number of self-joins performs extremely
        badly on large volumes; it is clear that the only reason for the
        numerous conditions in the where
        clause is to patch all the various “attributes” together. Had the
        table been defined as the more logical employees(employee_id, last_name, first_name,
        job_description, department, salary), our query would have
        been as simple as:
select *
from employees
order by last_name

And the best course for executing this
        query is obviously a plain table scan. The multiple joins and
        associated index accesses of the query against employee_attributes are performance
        killers.
We can never succeed in making a query run as fast against a
        rotten design as it will run against a clean design. Any clever
        rewriting of a SQL query against badly designed tables will be nothing
        more than a wooden leg, returning only some degree of agility to a
        crippled query. However, we can often obtain spectacular results in
        comparison to the multiple joins approach by trying to achieve a
        single pass on the attribute table.
We basically want one row with several attributes (reflecting
        what the table design should have been in the first place) instead of
        multiple rows, each with only one attribute of interest per row.
        Consolidating a multi-row result into a single row is a feat we know
        how to perform: aggregate functions do precisely this. The idea is
        therefore to proceed in two steps, as shown in Figure 11-1:
	Complete each row that contains only one value of interest,
            with as many dummy values as required to obtain the total number
            of attributes that we ultimately want.

	Aggregate the different rows so as to keep only the single
            value of interest from each (the single value in each column). A
            function such as max( ), that
            has the advantage of being applicable to most data types, is
            perfect for this kind of operation.



To be certain that max( )
        will only retain meaningful values, we must use dummy values that will
        necessarily be smaller than any legitimate value we may have in a
        given column. It is probably better to use an explicit value rather
        than null as a dummy value, even
        though max( ) ignores null values
        according to the standard.
If we apply the “recipe” illustrated in Figure 11-1 to our previous
        example, we can get rid of the numerous joins by writing:
[image: Transmogrification of several rows into one row]

Figure 11-1. Transmogrification of several rows into one row

select employee_id,
       max(last_name)        last_name,
       max(first_name)       first_name,
       max(job_description)  job_desription,
       max(department)       department,
       max(salary)           salary
from  -- select all the rows of interest, returning
      -- as many columns as we have rows, one column
      -- of interest per row and values smaller
      -- than any value of interest everywhere else
     (select entity_id                   employee_id,
             case attribute_name
               when 'LASTNAME' then attribute_value
               else ''
             end                         last_name,
             case attribute_name
               when 'FIRSTNAME' then attribute_value
               else ''
             end                         first_name,
             case attribute_name
               when 'JOB' then attribute_value
               else ''
             end                         job_description,
             case attribute_name
               when 'DEPARTMENT' then attribute_value
               else -1
             end                         department,
             case attribute_name
               when 'SALARY' then attribute_value
               else -1
             end                         salary
      from employee_attributes
      where attribute_name in ('LASTNAME',
                               'FIRSTNAME',
                               'JOB',
                               'DEPARTMENT',
                               'SALARY')) as inner
group by inner.employee_id
order by 2

The inner query is not strictly required—we could have used a
        series of max(case when ...
        end)--but the query as written makes the two steps appear
        more clearly.
An aggregate is not, as you might expect, the best option in
        terms of performance. But in the kingdom of the blind, the one-eyed
        man is king, and this type of query just shown usually has no trouble
        outperforming one having a monstrous number of self-joins. A word of
        caution, though: in order to accommodate any unexpectedly lengthy
        attribute, the attribute_value
        column is usually a fairly large variable-length string. As a result,
        the aggregation process may require a significant amount of memory,
        and in some extreme cases you may run into difficulties if the number
        of attributes exceeds a few dozen.
Important
Multiple self-joins can often be avoided by retrieving all
          rows in a single pass, spreading the values across separate columns,
          and using an aggregate function to collapse the many rows into
          one.


Columns That Should Have Been Rows



In contrast to the previous design in which rows have
        been defined for each attribute, another example of poor design occurs
        where columns are created instead of individual rows. The classic
        design mistake made by many beginners is to predefine a fixed number
        of columns for a number of variables, with some of the columns set to
        null when values are missing. A typical example is illustrated in
        Figure 11-2, with a very
        poorly designed movie database (compare this design to the correct
        design of Figure 8-3 in
        Chapter 8).
[image: A badly designed movie database]

Figure 11-2. A badly designed movie database

Instead of using a movie_credits table as we did in Chapter 8 to link the movies table to the people table and record the nature of each
        individual’s involvement, the poor design shown in Figure 11-2 assumes that we
        will never need to record more than a fixed number of lead actors and
        one director. The first assumption is blatantly wrong and so is the
        second one since many sketch comedies have had multiple directors. As
        a representation of reality, this model is plainly flawed, which
        should already be sufficient reason to discard it. To make matters
        worse, a poor design, in which data is stored as columns and yet
        reporting output obviously requires data to be presented as rows,
        often results in rather confusing queries. Unfortunately, writing
        queries against poor database designs seems to be as unavoidable as
        taxes and death in the world of SQL development.
When you want different columns to be displayed as rows, you
        need a pivot table. Pivot tables are used to
        pivot, or turn sideways, tables where we want to
        see columns as rows. A pivot table is, in the context of SQL
        databases, a utility table that contains only one column, filled with
        incrementing values from 1 to
        whatever is needed. It can be a true table or a view—or even a query
        embedded in the from clause of a
        query. Using such a utility table is a favorite old trick of
        experienced SQL developers, and the next few subsections show how to
        create and use them.
Creating a pivot table



The constructs you have seen in Chapter 7 for walking trees are
          usually quite convenient for generating pivot table values; for
          instance, we can use a recursive withaction with those database systems
          that support it. Here is a DB2 example to generate numbers from 1 to
          50:
with pivot(row_num)
   -- Generate 50 values
   -- 1 to 50, one value per row
   as (select 1 row_num
      from sysibm.sysdummy1
      union all
      select row_num + 1
      from pivot
      where row_num < 50)
select row_num
from pivot;

Similar tricks are of course possible with Oracle’s connect by; for instance:[*]
select level
from dual
connect by level <= 50

Using one of these constructs inside the from clause of a query can make that query
          particularly illegible, and it is therefore often advisable to use a
          regular table as pivot. But a recursive query can be useful to fill
          the pivot table (an alternate solution to fill a pivot table is to
          use Cartesian joins between existing tables). Typically, a pivot table
          would hold something like 1,000 rows.

Multiplying rows with a pivot table



Now that we have a pivot table, what can we do with it? One
          way to look at a pivot table is to view it as a row-multiplying
          device. By combining a pivot to a table we want to see pivoted, we
          repeat each of the rows of the table to be transformed as many times
          as we wish. Specifying the number of times we want to see one row
          repeated is simply a matter of adding to the join a limiting
          condition on the pivot table, for instance:
where pivot.row_num <= multiplying value

We can thus multiply the three rows in a test employees table in a very simple way.
          First, here are the three rows:
SQL> select name, job
  2  from employees;
NAME       JOB
---------- ------------------------------
Tom        Manager
Dick       Software engineer
Harry      Software engineer

And now, here is the multiplication, by three, of those
          rows:
SQL> select e.name, e.job, p.row_num
  2  from employees e,
  3       pivot     p
  4  where p.row_num <= 3;

NAME       JOB                               ROW_NUM
---------- ------------------------------ ----------
Tom        Manager                                 1
Dick       Software engineer                       1
Harry      Software engineer                       1
Tom        Manager                                 2
Dick       Software engineer                       2
Harry      Software engineer                       2
Tom        Manager                                 3
Dick       Software engineer                       3
Harry      Software engineer                       3

9 rows selected.

It’s best to index the only column in the pivot table so as
          not to fully scan this table when you need to use very few rows from
          it (as in the preceding example).

Using pivot table values



Besides the mere multiplying effect, the
          Cartesian join also allows us to associate a unique number in
          the range 1 to multiplying value for every copy
          of a row of the table we want to pivot. This value is simply the
          row_num column contributed by the
          pivot table, and it will enable
          us in turn to pick from each copy of a row only partial data. The
          full process of multiplication of the source rows and selection is
          illustrated, with a single row, in Figure 11-3. If we want the
          initial row to finally appear as a single column (which by the way
          implicitly requires the data types of col1 ... coln to be consistent), we must pick just
          one column into each of the rows generated by the Cartesian product.
          By checking the number coming from the pivot table, we can specify with a
          case for each resulting row which
          column is to be displayed to the exclusion of all the others. For
          instance, we can decide to display col1 if the value coming from the pivot
          table is 1, col2 if it is 2, and so on.
[image: Pivoting a row]

Figure 11-3. Pivoting a row

Needless to say, multiplying rows and discarding most of the
          columns we are dealing with is not the most efficient way of
          processing data; keep in mind that we are rowing upstream. An ideal
          database design would avoid the need for such multiplication and
          discarding.
Interestingly, and still in the hypothetical situation of a
          poor (to put it mildly) database design, a pivot table can in some
          circumstances bring direct performance benefits. Let’s suppose that,
          in our badly designed movie database, we want to count how many
          different actors are recorded (note that none of the actor_... columns are indexed, and that we
          therefore have to fetch the values from the table). One way to write
          this query is to use a union:
select count(*)
from (select actor_1
      from movies
      union
      select actor_2
      from movies
      union
      select actor_3
      from movies) as m

But we can also pivot the table to obtain something that looks
          more like a select on the
          movie_credits table of the
          properly designed database:
select count(distinct actor_id)
from --  Use a 3-row pivot to multiply
     --  the number of rows by 3
     --  and return actor_1 the first row in each
     --  set of 3, actor_2 for the second one
     --  and actor_3 for the third one
     (select case pv.row_num
                when 1 then actor_1
                when 2 then actor_2
                else actor_3
             end actor_id
      from movies as m,
           pivot as pv
      where pv.row_num <= 3) as m

The second version runs about twice as fast as the first
          one—significantly faster.

The pivot and unpivot operators



As a possibly sad acknowledgment of the generally poor
          quality of database designs, SQL Server 2005 has introduced two
          operators called pivot and
          unpivot to perform the toppling
          of rows into columns and vice-versa, respectively. The previous
          employee_attributes example can
          be written as follows using the pivot operator:
select entity_id as employee_id,
       [lastname],
       [firstname],
       [job],
       [department],
       [salary]
from employee_attributes as employees
     pivot (max(attribute_value)
            for attribute_name in ([lastname],
                                   [firstname],
                                   [job],
                                   [department],
                                   [salary])
                 as pivoted_employees
order by 2

The specific values in the attribute_name column that we want to
          appear as columns are listed in the for ...
          in clause, using a particular syntax that transforms the
          character data into column identifiers. There is an implicit
          group by applied to all the
          columns from employee_attributes
          that are not referenced in the pivot clause; we must be careful if we
          have other columns (for instance, an attribute_type column) than entity_id, as they may require an
          additional aggregation layer.
The unpivot operator
          performs the reverse operation, and allows us to see the link
          between movie and actor as a more logical collection of (movie_id, actor_id) pairs by
          writing:
select movie_id, actor_type, actor_id
from movies
     unpivot (actor_id for actor_type in ([actor_1],
                                          [actor_2],
                                          [actor_3])) as movie_actors

Note that this query doesn’t exactly produce the result we
          want, since it introduces the name of the original column as a
          virtual actor_type column. There
          is no need to qualify actors as actor_1, actor_2, or actor_3, and once again the query may need
          to be wrapped into another query that only returns movie_id and actor_id.
The use of a pivot table, or of the pivot and unpivot operators, is a very interesting
          technique that can help extricate us from more than one quagmire.
          The support for pivoting operators by major database systems is not,
          of course, to be interpreted as an endorsement of bad design, but as
          an example of realpolitik.
Important
Pivot tables and operators can be a useful technique in
            their own right, but they should never be used as a means of
            glossing over the inadequacies of a bad design.



Single Columns That Should Have Been Something Else



Some designers of our movie database may well have been
        sensitive to the limitation on the number of actors we may associate
        with one movie. Trying to solve design issues with a creative use of
        irrelevant techniques, someone may have come up with a “bright idea”:
        what about storing the actor identifiers as a comma-separated string
        in one wide actors column? For
        instance:
first actor id, second actor id, ...

And so much for the first normal form.... The big design mistake
        here is to store several pieces of data that we need to handle one by
        one into one column. There would be no issue if a complex string—for
        instance a lengthy XML message—were considered as an opaque object by
        the DBMS and handled as if it were an atomic item. But that’s not the
        case here. Here we have several values in one column, and we
        do want to treat and manipulate each value
        individually. We are in trouble.
There are only two workable solutions with a creative design of
        this sort:
	Scrapping it and rewriting everything. This is, of course,
            by far the best solution.

	When delays, costs, and politics require a fast solution,
            the only way out may be to apply a creative SQL solution; once
            again, let me state that “solution” is probably not the best
            choice of words in this case, “fix” would be a better
            description.



I’ll also point out that a more elaborate version of the same
        mistake could use an “XML type” column; I am going to use simple character-string
        manipulation functions in my example, but they could as well be
        XML-extracting functions.
Note
Be warned: “creative SQL” is often a
          euphemism for ugly SQL!

First normal form on the fly



Our problem is to extract various individual
          components from a string of characters and return them one by one on
          separate rows. This is easier with some database systems (for
          instance, Oracle has a very rich set of string functions that
          noticeably eases the work) than with others. Conventions such as
          systematically starting or ending the string with a comma may
          further help us. We are not wimps, but real SQL developers, and we
          are therefore going to take the north face route and assume the
          worst:
	First, let’s assume that our lists of identifiers are in
              the following form:
id1, id2, id3, ..., idn

	Second, we shall also assume that the only sets of
              functions at our disposal are those common to the major database
              systems. We shall use Transact-SQL for our example and only use
              built-in functions. As you will see, a well-designed user
              function might ease both the writing and the performance of the
              resulting query.



Let’s start with a (very small) movies table in which a list of actor
          identifiers is (wrongly) stored as an attribute of the movie:
1> select movie_id, actors
2> from movies
3> go
 movie_id              actors
 --------------------- ----------------------------------------
                     1 123,456,78,96
                     2 23,67,97
                     3 67,456

(3 rows affected)

The first step is to use as many rows from our pivot table as
          we may have characters in the actors string—arbitrarily set to a maximum
          length of 50 characters. We are going to multiply the number of rows
          in the movies table by this
          number, 50. We would naturally be rather reluctant to do something
          similar on millions of rows (as an aside, a function allowing us to
          return the position of the nth separator or the
          nth item in the string would make it necessary
          to multiply only by the maximum number of identifiers we can
          encounter, instead of by the maximum string length).
Our next move is to use the substring( ) function to successively get
          subsets (that can be null) of actors, starting at the first character,
          then moving to the second, and so forth, up to the last character
          (at most, the 50th character). We just have to use the row_num value from the pivot table to find the starting character
          of each substring. If we take for instance the string from the
          actors column that is associated
          to the movie identified by the value 1 for movie_id, we shall get something
          like:
123,456,78,96  associated to the row_num value 1
23,456,78,96   associated to the row_num value 2
3,456,78,96    associated to the row_num value 3
,456,78,96      ....
456,78,96
56,78,96
6,78,96
,78,96
78,96
....

We’ll compute these subsets in a column that we’ll call
          substring1. Having these
          successive substrings, we can now check the position of the first
          comma in them. Our next move is to return as a column called
          substring2 the content of
          substring1 shifted by one
          position. We also locate the position of the first comma in substring2. These operations are
          illustrated in Figure
          11-4. Among the various resulting rows, the only ones to be
          of interest are those marking the beginning of a new identifier in
          the string: the first row in the series that is associated with the
          row_num value of 1, and all the
          rows for which we find a comma in first position of substring1. For all these rows, the
          position of the comma in substring2 tells us the length of the
          identifier that we are trying to isolate.
[image: Splitting-up a comma separated list]

Figure 11-4. Splitting-up a comma separated list

Translated into SQL code, here is what we get:
1> select row_num,
2>        movie_id,
3>        actors,
4>        first_sep,
5>        next_sep
6> from (select row_num,
7>              movie_id,
8>              actors,
9>              charindex(',', substring(actors, row_num,
10>                                      char_length(actors))) first_sep,
11>             charindex(',', substring(actors, row_num + 1,
12>                                  char_length(actors))) + 1 next_sep
13>      from movies,
14>           pivot
15>     where row_num <= 50) as q
16> where row_num = 1
17>    or first_sep = 1
18> go
 row_num     movie_id       actors             first_sep   next_sep
 ----------- -------------- ------------------ ----------- -----------
           1              1 123,456,78,96                4           4
           4              1 123,456,78,96                1           5
           8              1 123,456,78,96                1           4
          11              1 123,456,78,96                1           1
           1              2 23,67,97                     3           3
           3              2 23,67,97                     1           4
           6              2 23,67,97                     1           1
           1              3 67,456                       3           3
           3              3 67,456                       1           1

(9 rows affected)

If we accept that we must take some care to remove commas, and
          the particular cases of both the first and last identifiers in a
          list, getting the various identifiers is then reasonably
          straightforward, even if the resulting code is not for the
          faint-hearted:
1> select movie_id,
2>        actors,
3>        substring(actors,
4>                  case row_num
5>                    when 1 then 1
6>                    else row_num + 1
7>                  end,
8>                  case next_sep
9>                    when 1 then char_length(actors)
10>                   else
11>                     case row_num
12>                       when 1 then next_sep - 1
13>                       else next_sep - 2
14>                     end
15>                 end) as id
16> from (select row_num,
17>              movie_id,
18>              actors,
19>              first_sep,
20>              next_sep
21>       from (select row_num,
22>                    movie_id,
23>                    actors,
24>                    charindex(',', substring(actors, row_num,
25>                              char_length(actors))) first_sep,
26>                    charindex(',', substring(actors, row_num + 1,
27>                              char_length(actors))) + 1 next_sep
28>             from movies,
29>                  pivot
30>             where row_num <= 50) as q
31>       where row_num = 1
32>          or first_sep = 1) as q2
33> go
 movie_id         actors                         id
 ---------------- ------------------------------ -----------------
                1 123,456,78,96                  123
                1 123,456,78,96                  456
                1 123,456,78,96                  78
                1 123,456,78,96                  96
                2 23,67,97                       23
                2 23,67,97                       67
                2 23,67,97                       97
                3 67,456                         67
                3 67,456                         456

(9 rows affected)

We could have made the code slightly simpler by prepending and
          appending a comma to the actors
          column. I leave doing that as an exercise for the undaunted reader.
          Note that as the left alignment shows, the resulting id column is a string and should be
          explicitly converted to numeric before joining to the table that
          stores the actors’ names.
The preceding case, besides being an interesting example of
          solving a SQL problem by successively wrapping queries, also comes
          as a healthy warning of what awaits us on the SQL side of things
          when tables are poorly designed.

Lifting the veil on the Chapter 7 mystery path
          explosion



You may remember that in Chapter 7 I described the
          materialized path model for tree representations. In that chapter I
          noted that it would be extremely convenient if we could “explode” a
          materialized path into the different materialized paths of all its
          ancestors. The advantage of this method is that when we want to walk
          a hierarchy from the bottom up, we can make efficient use of the
          index that should hopefully exist on the materialized path. If we
          don’t “explode” the materialized path, the only way we have to find
          the ancestors of a given row is to specify a condition such
          as:
and offspring.materialized_path
    like concat(ancestor.materialized_path, '%')

Sadly, this is a construct that cannot use the index (for
          reasons that are quite similar to those in the credit card prefix
          problem of Chapter 8).
How can we “explode” the materialized path? The time has come
          to explain how we can pull that rabbit out of the hat. Since our
          node will have, in the general case, several ancestors, the very
          first thing we have to do is to multiply the rows by the number of
          preceding generations. In this way we’ll be able to extract from the
          materialized path of our initial row (for example the row that
          represents the Hussar regiment under the command of Colonel de
          Marbot) the paths of the various ancestors. As always, the solution
          for multiplying rows is to use a pivot table. If we do it this time
          with MySQL, there is a function called substring_index( ) that very conveniently
          returns the substring of its first argument from the beginning up to
          the third argument occurrence of the second argument (hopefully, the
          example is easier to understand). To know how many rows we need from
          the pivot table, we just compute
          how many elements we have in the path in exactly the same way that
          we computed the depth in Chapter
          7, namely by comparing the length of the path to the length
          of the same when separators have been stripped off. Here is the
          query, and the results:
mysql>  select mp.materialized_path,
    ->         substring_index( mp.materialized_path, '.', p.row_num )
    ->                                     as ancestor_path
    -> from materialized_path_model as mp,
    ->      pivot as p
    -> where mp.commander = 'Colonel de Marbot'
    ->   and p.row_num <= 1 + length( mp.materialized_path )
    ->                      - length(replace(mp.materialized_path, '.', ''));
+-------------------+---------------+
| materialized_path | ancestor_path |
+-------------------+---------------+
| F.1.5.1.1         | F             |
| F.1.5.1.1         | F.1           |
| F.1.5.1.1         | F.1.5         |
| F.1.5.1.1         | F.1.5.1       |
| F.1.5.1.1         | F.1.5.1.1     |
+-------------------+---------------+
5 rows in set (0.00 sec)




Querying with a Variable in List



      There is another, and rather important, use of pivot
      tables that I must now mention. In previous chapters I have underlined
      the importance of binding variables  , in other words of passing parameters to SQL queries.
      Variable binding allows the DBMS kernel to skip the parsing phase (in
      other words, the compilation of the statement) after it has done it
      once. Keep in mind that parsing includes steps as potentially costly as
      the search for the best execution path. Even when SQL statements are
      dynamically constructed, it is quite possible, as you have seen in Chapter 8, to pass variables to them.
      There is, however, one difficult case: when the end user can make
      multiple choices out of a combo box and pass a variable number of
      parameters for use in an in list. The
      selection of multiple values raises several issues:
	Dynamically binding a variable number of parameters may not be
          possible with all languages (often you must bind all variables at
          once, not one by one) and will, in any case, be rather difficult to
          code.

	If the number of parameters is different for almost every
          call, two statements that only differ by the number of bind
          variables will be considered to be different statements by the DBMS,
          and we shall lose the benefit of variable binding.



The ability provided by pivot tables to split a string allows us
      to pass a list of values as a single string to the statement,
      irrespective of the actual number of values. This is what I am going to
      demonstrate with Oracle in this section.
The following example shows how most developers would approach the
      problem of passing a list of values to an in list when that list of values is contained
      within a single string. In our case the string is v_list, and most developers would concatenate
      several strings together, including v_list, to produce a complete select statement:
v_statement := 'select count(order_id)'
                   || ' from order_detail'
                   || ' where article_id in ('
                   || v_list || ')';
execute immediate v_statement into n_count;

This example looks dynamic, but for the DBMS it’s in fact all
      hardcoded. Two successive executions will each be different statements,
      both of which will have to be parsed before execution. Can we pass
      v_list as a parameter to the
      statement, instead of concatenating it into the statement? We can, by
      applying exactly the same techniques to the comma-separated value stored
      in variable v_list as we have applied
      to the comma-separated value stored in column actors in the example of on-the-fly
      normalization. A pivot table allows us to write the following somewhat
      wilder SQL statement:
select count(od.order_id)
into n_count
from order_detail od,
     (  -- Return at many rows as we have items in the list
        -- and use character functions to return the nth item
        -- on the nth row
      select to_number(substr(v_list,
                              case row_num
                                when 1 then 1
                                else 1 + instr(v_list, ',', 1, row_num - 1)
                               end,
                               case instr(v_list, ',', 1, row_num)
                                 when 0 then length(v_list)
                                 else
                                   case row_num
                                     when 1  then instr(v_list, ',',
                                                        1, row_num) - 1
                                     else instr(v_list, ',', 1, row_num) - 1
                                          - instr(v_list, ',',
                                                  1, row_num - 1)
                                   end
                                 end)) article_id
      from pivot
      where instr(v_list||',', ',', 1, row_num) > 0
        and row_num <= 250) x
where od.article_id = x.article_id;

You may need, if you are really motivated, to study this query a
      bit to figure out how it all works. The mechanism is all based on
      repeated use of the Oracle function instr(
      ). Let me just say that this function instr( haystack
      , needle
      , from_pos
      , count
      ) returns the
      countth occurrence of
      needle in haystack
      starting at position from_pos (0 is returned when nothing is found), but the
      logic is exactly the same as with the previous examples.
I have run the pivot and hardcoded versions of the query
      successively 1, 10, 100, 1,000, 10,000, and 100,000 times. Each time, I
      randomly generated a list of from 1 to 250 v_list values. The results are shown in Figure 11-5, and they are
      telling: the “pivoted” list is 30% faster as soon as the query is
      repeatedly executed.
[image: Performance of a hardcoded list versus a list transformed with a pivot table]

Figure 11-5. Performance of a hardcoded list versus a list transformed with
        a pivot table

Remember that the execution of a hardcoded query requires parsing
      and then execution, while a query that takes parameters (bind variables)
      can be re-executed subsequently for only a marginal cost of the first
      execution. Even if this later query is noticeably more complicated, as
      long as the execution is faster than execution plus
      parsing for the hardcoded query, the later query wins hands-down in
      terms of performance.
There are actually two other benefits that don’t show up in Figure 11-5:
	Parsing is a very CPU-intensive operation. If CPU happens to
          be the bottleneck, hardcoded queries can be extremely detrimental to
          other queries.

	SQL statements are cached whether they contain parameters or
          whether they are totally hardcoded, because you can imagine having
          hardcoded statements that are repeatedly executed by different
          users, and it makes sense for the SQL engine to anticipate such a
          situation. To take, once again, the movie database example, even if
          the names of actors are hardcoded, a query referring to a very
          popular actor or actress could be executed a large number of
          times.[*] The SQL engine will therefore cache hardcoded
          statements like the others. Unfortunately, a repeatedly executed
          hardcoded statement is the exception rather than the rule. As a
          result, a succession of dynamically built hardcoded statements that
          may each be executed only once or a very few times will all
          accumulate in the cache before being overwritten as a result of the
          normal cache management activity. This cache management will require
          more work and is therefore an additional price to pay.




Aggregating by Range (Bands)



   Some people have trouble writing SQL queries that return
      aggregates for bands. Such queries are actually quite easy to write
      using the case construct. By way of
      example, look at the problem of reporting on the distribution of tables
      by their total row counts. For instance, how many tables contain fewer
      than 100 rows, how many contain 100 to 10,000 rows, how many 10,000 to
      1,000,000 rows, and how many tables store more than 1,000,000
      rows?
Information about tables is usually accessible through data
      dictionary views: for instance, INFORMATION_SCHEMA.TABLES, pg_statistic, and pg_tables, dba_tables, syscat.tables, sysobjects and systabstats, and so on. In my explanation
      here, I’ll assume the general case of a view named table_info, containing, among other things,
      the columns table_name and row_count. Using this table, a simple use of
      case and the suitable group by can give us the distribution by
      row_count that we are after:
select case
         when row_count < 100
              then 'Under 100 rows'
          when row_count >= 100 and row_count < 10000
               then '100 to 10000'
          when row_count >= 10000 and row_count < 1000000
               then '10000 to 1000000'
          else
               'Over 1000000 rows'
        end as range,
        count(*) as table_count
from table_info
where row_count is not null
group by case
           when row_count < 100
                then 'Under 100 rows'
           when row_count >= 100 and row_count < 10000
                then '100 to 10000'
           when row_count >= 10000 and row_count < 1000000
                then '10000 to 1000000'
           else
                'Over 1000000 rows'
         end

There is only one snag here: group
      by performs a sort before aggregating data. Since we are
      associating a label with each of our aggregates, the result is, by
      default, alphabetically sorted on that label:
RANGE             TABLE_COUNT
----------------- ------------
100 to 10000                18
10000 to 1000000            15
Over 1000000 rows            6
Under 100 rows              24

The ordering that would be logical to a human eye in such a case
      is to see Under 100 rows appear first, and then
      each band by increasing number of rows, with Over 1,000,000
      rows coming last. Rather than trying to be creative with
      labels, the stratagem to solve this problem consists of two
      steps:
	Performing the group by on
          two, instead of one, columns, associating with each label a dummy
          column, the only purpose of which is to serve as a sort key

	Wrapping up the query as a query within the from clause, so as to mask the sort key
          thus created and ensure that only the data of interest is
          returned



Here is the query that results from applying the preceding two
      steps:
select row_range, table_count
from ( -- Build a sort key to have bands suitably ordered
       -- and hide it inside a subquery
       select case
               when row_count < 100
                 then 1
               when row_count >= 100 and row_count < 10000
                 then 2
               when row_count >= 10000 and row_count < 1000000
                 then 3
               else
                 4
             end as sortkey,
             case
               when row_count < 100
                 then 'Under 100 rows'
               when row_count >= 100 and row_count < 10000
                 then '100 to 10000'
               when row_count >= 10000 and row_count < 1000000
                 then '10000 to 1000000'
               else
                 'Over 1000000 rows'
             end  as row_range,
             count(*) as table_count
      from table_info
      where row_count is not null
      group by case
                 when row_count < 100
                   then 'Under 100 rows'
                 when row_count >= 100 and row_count < 10000
                   then '100 to 10000'
                 when row_count >= 10000 and row_count < 1000000
                   then '10000 to 1000000'
                 else
                   'Over 1000000 rows'
               end,
               case
                 when row_count < 100
                   then 1
                 when row_count >= 100 and row_count < 10000
                   then 2
                 when row_count >= 10000 and row_count < 1000000
                   then 3
                 else
                   4
               end) dummy
order by sortkey;

And following are the results from executing that query:
ROW_RANGE         TABLE_COUNT
----------------- -----------
Under 100 rows             24
100 to 10000               18
10000 to 1000000           15
Over 1000000 rows           6

Important
Aggregating by range (bands) requires building an artificial
        sort key to display results in desired order.


Superseding a General Case



 The technique of hiding a sort key within a query in the
      from clause, which I used in the
      previous section to display bands, can also be helpful in other
      situations. A particularly important case is when a table contains the
      definition of a general rule that happens to be superseded from time to
      time by a particular case defined in another table. I’ll illustrate by
      example.
I mentioned in Chapter 1
      that the handling of various addresses is a difficult issue. Let’s take the case of an online
      retailer, one that knows at most two addresses for each customer: a
      billing address and a shipping address. In most cases, the two addresses
      are the same. The retailer has decided to store the mandatory billing
      address in the customers table and to
      associate the customer_id identifier
      with the various components of the address (line_1, line_2, city, state, postal_code,
      country) in a different shipping_addresses table for those few
      customers for whom the two addresses differ.
The wrong way to get the shipping address when you know the
      customer identifier is to execute two queries:
	Look for a row in shipping_addresses.

	If nothing is found, then query customers.



An alternate way to approach this problem is to apply an outer
      join on shipping_addresses and
      customers. You will then get two
      addresses, one of which will in most cases be a suite of null values.
      Either you check programmatically if you indeed have a valid shipping
      address, which is a bad solution, or you might imagine using the
      coalesce( ) function that returns its
      first non-null argument:
select ... coalesce(shipping_address.line_1, customers.line_1), ...

Such a use of coalesce( ) would
      be a very dangerous idea, because it implicitly assumes that all
      addresses have exactly the same number of non-null components. If you
      suppose that you do indeed have a different shipping address, but that
      its line_2 component is null while
      the line_2 component of the billing
      address is not, you may end up with a resulting invalid address that
      borrows components from both the shipping and billing addresses. A
      correct approach is to use case to
      check for a mandatory component from the address—which admittedly can
      result in a somewhat difficult to read query. An even better solution is
      probably to use the “hidden sort key” technique, combined with a limit
      on the number of rows returned (select top
      1..., limit 1, where rownum = 1 or similar, depending on the
      DBMS) and write the query as follows:
select *
from (select 1 as sortkey,
             line_1,
             line_2,
             city,
             state,
             postal_code,
             country
      from shipping_addresses
      where customer_id = ?
      union
      select 2 as sortkey,
             line_1,
             line_2,
             city,
             state,
             postal_code,
             country
      from customers
      where customer_id = ?
      order by 1) actual_shipping_address
limit 1

The basic idea is to use the sort key as a preference indicator.
      The limit set on the number of rows returned will therefore ensure that
      we’ll always get the “best match” (note that similar ideas can be
      applied to several rows when a row_number(
      ) OLAP function is available). This approach greatly
      simplifies processing on the application program side, since what is
      retrieved from the DBMS is “certified correct” data.
The technique I’ve just described can also be used in
      multilanguage applications where not everything has been translated into
      all languages. When you need to fetch a message, you can define a
      default language and be assured that you will always get at least some
      message, thus removing the need for additional coding on the application
      side.

Selecting Rows That Match Several Items in a List



   An interesting problem is that of how to write queries
      based on some criteria referring to a varying list of values. This case
      is best illustrated by looking for employees who have certain skills,
      using the three tables shown in Figure 11-6. The skillset table links employees to skills, associating a 1 to 3 skill_level value to distinguish between
      honest competency, strong experience, and outright wizardry.
[image: Tables used for querying employee skills]

Figure 11-6. Tables used for querying employee skills

Finding employees that have a level 2 or 3 SQL skill is easy
      enough:
select e.employee_name
from employees e
where e.employee_id in
     (select ss.employee_id
      from skillset ss,
           skills s
      where s.skill_id = ss.skill_id
        and s.skill_name = 'SQL'
        and ss.skill_level >= 2)
order by e.employee_name

(We can also write the preceding query with a simple join.) If we
      want to retrieve the employees who are competent with Oracle or DB2, all
      we need to do is write:
select e.employee_name, s.skill_name, ss.skill_level
from employees e,
     skillset ss,
     skills s
where e.employee_id = ss.employee_id
  and s.skill_id = ss.skill_id
  and s.skill_name in ('ORACLE', 'DB2')
order by e.employee_name

No need to test for the skill level, since we will accept any
      level. However, we do need to display the skill name; otherwise, we
      won’t be able to tell why a particular employee was returned by the
      query. We also encounter a first difficulty, namely that people who are
      competent in both Oracle and DB2 will appear twice. What we can try to
      do is to aggregate skills by employee. Unfortunately, not all SQL
      dialects provide an aggregate function for concatenating strings (you
      can sometimes write it as a user-defined aggregate function, though). We
      can nevertheless perform a skill aggregate by using the simple stratagem
      of a double conversion  . First we convert our value from string to number, then
      from number back to string once we have aggregated numbers.
Skill levels are in the 1 through 3 range. We can therefore
      confidently represent any combination of Oracle and DB2 skills by a
      two-digit number, assigning for instance the first digit to DB2 and the
      second one to Oracle. This is easily done as follows:
select e.employee_name,
       (case s.skill_name
          when 'DB2' then 10
          else 1
        end) * ss.skill_level as computed_skill_level
from employees e,
     skillset ss,
     skills s
where e.employee_id = ss.employee_id
  and s.skill_id = ss.skill_id
  and s.skill_name in ('ORACLE', 'DB2')

computed_skill_level will
      result in 10, 20, or 30 for DB2 skill levels, while Oracle skill levels
      will remain 1, 2, and 3. We then can very easily aggregate our skill
      levels, and convert them back to a more friendly description:
select employee_name,
       --  Decode the numerically encoded skill + skill level combination
       --  Tens are DB2 skill levels, and units Oracle skill levels
      case
        when aggr_skill_level >= 10
          then 'DB2:' + str(round(aggr_skill_level/10,0)) + ' '
      end
      + case
          when aggr_skill_level % 10 > 0
           then 'Oracle:' + str(aggr_skill_level % 10)
       end as skills
from (select e.employee_name,
             -- Numerically encode skill + skill level
             -- so that we can aggregate them
             sum((case s.skill_name
                    when 'DB2' then 10
                    else 1
                  end) * ss.skill_level)  as aggr_skill_level
      from employees e,
           skillset ss,
           skills s
      where e.employee_id = ss.employee_id
        and s.skill_id = ss.skill_id
        and s.skill_name in ('ORACLE', 'DB2')
     group by e.employee_name) as encoded_skills
order by employee_name

But now let’s try to answer a more difficult question. Suppose
      that the project we want to staff happens to be a migration from one
      DBMS to another one. Instead of finding people who know Oracle or DB2,
      we want people who know both Oracle and DB2.
We have several ways to answer such a question. If the SQL dialect
      we are using supports it, the intersect operator is one solution: we find
      people who are skilled on Oracle on one hand, people who are skilled on
      DB2 on the other hand, and keep the happy few that belong to both sets.
      We certainly can also write the very same query with an in( ):
select e.employee_name
from employees e,
     skillset ss,
     skills s
where s.skill_name = 'ORACLE'
  and s.skill_id = ss.skill_id
  and ss.employee_id = e.employee_id
  and e.employee_id in (select ss2.employee_id
                        from skillset ss2,
                             skills s2
                        where s2.skill_name = 'DB2'
                          and s2.skill_id = ss2.skill_id)

We can also use the double conversion
       solution and filter on the numerical aggregate by using
      the same expressions as we have been using for decoding the encoded_skills computed column. The double
      conversion stratagem has other advantages:
	It hits tables only once.

	It makes it easier to handle more complicated questions such
          as “people who know Oracle and Java, or MySQL and PHP.”

	As we are only using a list of skills, we can use a pivot
          table and bind the list, thus improving performance of oft-repeated
          queries. The row_num pivot table
          column can help us encode since, if the list is reasonably short, we
          can multiply the skill_level
          value by 10 raised to the (row_num -1)th power. If we don’t care
          about the exact value of the skill level, and our DBMS implements
          bit-wise aggregate functions, we can even try to dynamically build a
          bit-map.




Finding the Best Match



 Let’s conclude our adventures in the SQL wilderness by
      combining several of the techniques shown in this chapter and try to
      select employees on the basis of some rather complex and fuzzy
      conditions. We want to find, from among our employees, that one member
      of staff who happens to be the best candidate for a project that
      requires a range of skills across several different environments (for
      example, Java, .NET, PHP, and SQL Server). The ideal candidate is a guru
      in all environments; but if we issue a query asking for the highest
      skill level everywhere it shall probably return no row. In the absence
      of the ideal candidate, we are usually left with imperfect candidates,
      and we must identify someone who has the best competency in as many of
      our environments as possible and is therefore the best suited for the
      project. For instance, if our Java guru is a world expert, but knows
      nothing of PHP, that person is unlikely to be selected.
“Best suited” implies a comparison between the various employees,
      or, in other words, a sort, from which the winner will emerge. Since we
      want only one winner, we shall have to limit the output of our list of
      candidates to the first row. You should already be beginning to see the
      query as a select ... from (select ... order
      by) limit 1 or whatever your SQL dialect permits.
The big question is, of course, how we are going to order the
      employees. Who is going to get the preference between one who has a
      decent knowledge of three of the specified topics, and one who is an
      acknowledged guru of two subjects? It is likely, in a case such as we
      are discussing, that the width of knowledge is what matters more to us
      than the depth of knowledge. We can use a major sort key on the number
      of skills from the requirement list that are mastered, and a minor sort
      key on the sum of the various skill_level values by employee for the skills
      in the requirement list. Our inner query comes quite naturally:
select e.employee_name,
       count(ss.skill_id) as major_key,
       sum(ss.skill_level) as minor_key
from employees e,
     skillset ss,
     skills s
where s.skill_name in ('JAVA', '.NET', 'PHP', 'SQL SERVER')
  and s.skill_id = ss.skill_id
  and ss.employee_id = e.employee_id
group by e.employee_name
order by 2, 3

This query, however, doesn’t tell us anything about the actual
      skill level of our best candidate. We should therefore combine this
      query with a double conversion to get an encoding of skills. I leave
      doing that as an exercise, assuming that you have not yet reached a
      semi-comatose state.
You should also note, from a performance standpoint, that we need
      not refer to the employees table in
      the inner query. The employee name is information that we need only when
      we display the final result. We should therefore handle only employee_id values, and do the bulk of the
      processing using the tables skills
      and skillset. You should also think
      about the rare situation in which two candidates have exactly the same
      skills—do you really want to restrict output to one row?
Note
To paraphrase General Robert E. Lee, “It
        is well that SQL is so terrible, or we should grow too fond of
        it.”


Optimizer Directives



I shall conclude this chapter with a cautionary note about
      optimizer directives  . An SQL optimizer can be compared to the program that
      computes shutter speed and exposure in an automated camera. There are
      conditions when the “auto” mode is no longer appropriate—for instance,
      when the subject of the picture is backlit or for the shooting of night
      scenes. Similarly, all database systems provide one way or another to
      override or at least direct decisions taken by the query optimizer in
      its quest for the Dream Execution Path. There are basically two
      techniques to constrain the optimizer:
	Special settings in the session environment that are applied
          to all queries executed in the session until further notice.

	Local directives explicitly written into individual
          statements.



In the latter case the syntax between products varies, since you
      may have these directives written as an inherent part of the SQL
      statement (for instance force
      index(...) with MySQL or option loop
      join with Transact-SQL), or written as a special syntax
      comment (such as /*+ all_rows */ with
      Oracle).
Optimizer directives have so far been mostly absent from this
      book, and for good reasons. Repeatedly executing queries against living
      data is, to some degree, similar to repeatedly photographing the same
      subject at various times of day: what is backlit in the morning may be
      in full light in the afternoon. Directives are destined to override
      particular quirks in the behavior of the optimizer and are better left
      alone. The most admissible directives are those directives specifying
      either the expected outcome, such as sql_small_result or sql_big_result with MySQL, or whether we are
      more interested in a fast answer, as is generally the case in
      transactional processing, with directives such as option fast 100 with SQL Server or /*+ first_rows(100) */ with Oracle. These
      directives, which we could compare to the “landscape” or “sports” mode
      of a camera, provide the optimizer with information that it would not
      otherwise be able to gather. They are directives that don’t depend on
      the volume or distribution of data; they are therefore stable in time,
      and they do add value. In any case, even directives that add value
      should not be employed unless they are required. The optimizer is able
      to determine a great deal about the best way to proceed when it is given
      a properly written query in the first place. The best and most simple
      example of implicit guidance of the optimizer is possibly the use of
      correlated versus uncorrelated subqueries. They are to be used under
      dissimilar circumstances to achieve functionally identical
      results.
One of the nicest features of database optimizers is their ability
      to adapt to changing circumstances. Freezing their behavior by using
      constraining directives is indicative of a very short-term view that can
      be potentially damaging to performance in the future. Some directives
      are real time-bombs, such as those specifying indexes by name. If, for
      one reason or another a DBA renames an index used in a directive, the
      result can be disastrous. We can get a similarly catastrophic effect
      when a directive specifies a composite index, and this index is rebuilt
      one day with a different column order.
Note
Optimizer directives must be considered the private territory of
        database administrators. The DBA should use them to cope with the
        shortcomings of a particular DBMS release and then remove them if at
        all possible after the next upgrade.

Let me add that it is common to see inexperienced developers
      trying to derive a query from an existing one. When the original query
      contains directives, beginners rarely bother to question whether these
      directives are appropriate to their new case. Beginners simply apply
      what they see as minor changes to the select list and the search
      criteria. As a result, you end up with queries that look like they have
      been fine-tuned, but that often follow a totally irrelevant execution
      path.
Important
The good plan that is forced upon a query today may be
        disastrous tomorrow.




[*] Beware that such a construct may not work with some older
              versions of Oracle.

[*] Actually, the best optimization tactic in this particular
              case would be to cache the result of the query rather than the
              query.


Chapter 12. Employment of Spies

Monitoring Performance



And he that walketh in darkness knoweth not whither he
      goeth..
Gospel according to St. John, 12:35


Intelligence gathering has always been an
    essential part of war. All database systems include monitoring
    facilities, each with varying degrees of sophistication. Third-party
    offerings are also available in some cases. All these monitoring
    facilities are primarily aimed at database administrators. However, when
    they allow you to really see what is going on inside the SQL engine, they
    can become formidable spies in the service of the performance-conscious
    developer. I should note that when monitoring facilities lack the level of
    detail we require, it is usually possible to obtain additional information
    by turning on logging or tracing. Logging or tracing necessarily entails a
    significant overhead, which may not be a very desirable extra load on a
    busy production server that is already painfully clunking along. But
    during performance testing, logging can provide us with a wealth of
    information on what to expect in production.
Detailing all or even some of the various monitoring facilities
    available would be both tedious and product-specific. Furthermore, such an
    inventory would be rapidly outdated. I shall concentrate instead on what
    we should monitor and why. This will provide you with an excellent
    opportunity for a final review of some of the key concepts introduced in
    previous chapters.
The Database Is Slow



              Let’s first try to define the major categories of
      performance issues that we are likely to encounter in production—since
      our goal, as developers, is to anticipate and, if possible, avoid these
      situations. The very first manifestation of a performance issue on a
      production database is often a call to the database administrators’ desk
      to say that “the database is slow” (a useful piece of information for
      database administrators who may have hundreds of database servers in
      their care...). In a well-organized shop, the DBA will be able to check
      whether a monitoring tool does indeed report something unusual, and if
      that is the case, will be able to answer confidently “I know. We are
      working on the case.” In a poorly organized shop, the DBA may well give
      the same answer, lying diplomatically.
In all cases, the end of the call will mean the beginning of a
      frantic scramble for clues.
Such communications stating that “the database is slow” will
      usually have been motivated by one of the five following reasons:
	It’s not the database
	The network is stuttering or the host is totally overloaded
            by something else.
Thanks for calling.

	Sudden global sluggishness
	All tasks slow down, suddenly, for all users. There are two
            cases to consider here:
	Either the performance degradation is really sudden, in
                which case it can often be traced to some system or DBMS
                change (software upgrade, parameter adjustment, or hardware
                configuration modification).

	Or it results from a sudden inflow of queries.






The first case is not a development issue, just one of those
      hazards that make the life of a systems engineer or DBA so exciting. The
      second case is a development or specifications
      issue. Remember the post office of Chapter 9: when customers arrive faster
      than they can be serviced, queues lengthen and performance tumbles down
      all of a sudden. Either the original specifications were tailored too
      tightly and the system is facing a load it wasn’t designed for, or the
      application has been insufficiently stress-tested. In many cases,
      improving some key queries will massively decrease the average service
      time and may improve the situation for a negligible fraction of the cost
      of a hardware upgrade. Sudden global sluggishness is usually
      characterized by the first phone call being followed by many
      others.
	Sudden localized slowness
	If one particular task slows down all of a sudden, locking
            issues should be considered. Database administrators can monitor
            locks and confirm that several tasks are competing for the same
            resources. This situation is a development and task-scheduling
            issue that can be improved by trying to release locks
            faster.

	A slow degradation of performance reaching a
          threshold
	The threshold may first be felt by one hypersensitive user.
            If the load has been steadily increasing over time, the crossing
            of the threshold may be a warning sign of an impending catastrophe
            and may relate to the lengthening service queues of a sudden
            global sluggishness. The crossing of a threshold may also be
            linked to the size increase of badly indexed tables or to a
            degradation of physical storage after heavy delete/update
            operations (hanging high-water mark of a table that has inflated
            then deflated, a Swiss cheese-like effect resulting in much too
            many pages or blocks to store the data, or chaining to overflow
            areas). If the problem is with indexes or physical storage (or
            outdated statistics taking the optimizer down a wrong path), a DBA
            may be able to help, but the necessity for a rescue operation on a
            regular basis is usually the sign of poorly designed
            processes.

	One particularly slow query
	If the application was properly tested, then the case to
            watch for is a dynamically built query provided with a highly
            unusual set of criteria. This is most likely to be a pure
            development issue.



Many of these events can be foreseen and prevented. If you are
      able to identify what loads your server, and if you are able to relate
      database activity to business activity, you have all the required
      elements to identify the weakest spots in an application. You can then
      focus on those weak spots during performance testing and improve
      them.
Important
To anticipate live application performance, you must monitor
        activity very closely during stress tests and user acceptance
        trials.


The Components of Server Load



      Load, in information technology,
      ultimately boils down to a combination of excessive CPU consumption, too
      many input/output operations and insufficient network speed or
      bandwidth. It’s quite similar to the “critical tasks” of project
      management, where one bottleneck can result in the whole system grinding
      not to a halt, but to an unnaceptable level of slowness. If processes
      that are ready to run must wait for some other processes to release the
      CPU, the system is overloaded. If the CPU is idle, waiting for data to
      be sent across the network or to be fetched from persistent storage, the
      system is overloaded too.
“Overloaded,” though, mustn’t be understood as an absolute notion.
      Systems may be compared to human beings in respect of the fact that
      load is not always directly proportional to the work
      accomplished. As C. Northcote Parkinson remarked in
      Parkinson’s Law  , his famous satire of bureaucratic institutions:
Thus, an elderly lady of leisure can spend the entire day in
        writing and dispatching a postcard [...]. The total effort that would
        occupy a busy man for three minutes all told may in this fashion leave
        another person prostrate after a day of doubt, anxiety, and
        toil.


Poorly developed SQL applications can very easily bring a server
      to its knees and yet not achieve very much. Here are a few examples
      (there are many others) illustrating different ways to increase the load
      without providing any useful work:
	Hardcoding all queries
	This will force the DBMS to run parser and optimizer code
            for every execution, before actually performing any data access.
            This technique is remarkably efficient for swamping the
            CPU.

	Running useless queries
	This is a situation more common than one would believe. It
            includes queries that are absolutely useless, such as a dummy
            query to check that the DBMS is up and running before every
            statement (true story), or issuing a count(*) to check whether a row should
            be updated or inserted. Other useless queries also include
            repeatedly fetching information that is stable for the entire
            duration of a session, or issuing 400,000 times a day a query to
            fetch a currency exchange rate that is updated once every
            night.

	Multiplying round-trips
	Operating row-by-row, extensively using cursor
            loops , and banishing stored procedures are all excellent ways to increase the level of
            “chatting” between the application side and the SQL engine,
            wasting time on protocol issues, multiplying packets on the
            network and of course, as a side benefit, preventing the database
            optimizer from doing its work efficiently by keeping most of the
            mysteries of data navigation firmly hidden in the
            application.



Let me underline that these examples of bad use of the DBMS don’t
      specifically include the “bad SQL query” that represents the typical SQL
      performance issue for many people. The queries described in the
      preceding list often run fast. But even when they run at lightning
      speed, useless queries are always too slow: they waste resources that
      may be in short supply during peak activity.
There are two components that affect the load on a database
      server. The visible component is made up of the slow “bad SQL
      queries " that people are desperate to have tuned. The invisible
      component is the background noise of a number of queries each of
      acceptable speed, perhaps even including some very fast ones, that are
      executed over and over again. The cumulative cost of the load generated
      by all this background noise routinely dwarfs the individual load of
      most of the big bad queries. As Sir Arthur Conan Doyle put in the mouth
      of Sherlock Holmes:
It has long been an axiom of mine that the little things are
        infinitely the most important.


As the background noise is spread over time, instead of happening
      all of a sudden, it passes unnoticed. It may nevertheless contribute
      significantly to reducing the “power reserve” that may be needed during
      occasional bursts of activity.
Important
Repetitive short-duration mediocre statements often load a
        server more than the big bad SQL queries that take a long time to
        run.


Defining Good Performance



 Load is one thing, performance another. Good performance
      proves an elusive notion to define. Using CPU or performing a large
      number of I/O operations is not wrong in itself; your company,
      presumably, didn’t buy powerful hardware with the idea of keeping it
      idle.
When the time comes to assess performance, there is a striking
      similarity between the world of databases and the world of corporate
      finance. You find in both worlds some longing for “key performance
      indicators” and magical ratio—and in both worlds, global indicators and
      ratios can be extremely misleading. A good average can hide distressing
      results during the peaks, and a significant part of the load may perhaps
      be traced back to a batch program that is far from optimal but that runs
      at a time of night when no one cares what the load is. To get a true
      appreciation of the real state of affairs, you must drill down to a
      lower level of detail.
To a large extent, getting down to the details is an exercise
      similar to that which is known in managerial circles as “activity-based
      costing.” In a company, knowing in some detail how much you spend is
      relatively easy. However, relating costs to benefits is an exercise
      fraught with difficulties, notoriously for transverse operations such as
      information technology. Determining if you spend the right amount on
      hardware, software, and staff, as well as the rubber bands and duct tape
      required to hold everything together is extremely difficult,
      particularly when the people who actually earn money are “customers” of
      the IT department.
Assessing whether you do indeed spend what you should has three
      prerequisites:
	Knowing what you spend

	Knowing what you get for the money

	Knowing how your return on investment compares with
          acknowledged standards



In the following subsections, I shall consider each of these
      points in turn in the context of database systems.
Knowing What You Spend



In the case of database performance, what we spend
        means, first and foremost, how many data pages we are hitting. The
        physical I/Os that some people tend to focus on are an ancillary
        matter. If you hit a very large number of different data pages, this
        will necessarily entail sustained I/O activity unless your database
        entirely fits in memory. But CPU load is also often a direct
        consequence of hitting the same data pages in memory again and again.
        Reducing the number of data pages accessed is not a panacea, as there
        are cases when the global throughput is higher when some queries hit a
        few more pages than is strictly necessary. But as far as single
        indicators go, the number of data pages hit is probably the most
        significant one. The other cost to watch is excessive SQL statement
        parsing, an activity that can consume an inordinate amount of CPU
        (massive hardcoded insertions can easily take 75% of the CPU available
        for parsing alone).
Important
The two most significant indicators of database load are the
          amount of CPU spent on statement parsing and the number of data
          pages visited when executing queries.


Knowing What You Get



There is a quote that is famous among advertisers, a
        quip attributed to John Wanamaker, a 19th-century American
        retailer:
Half the money I spend on advertising is wasted; the trouble
          is I don’t know which half.


The situation is slightly better with database applications, but
        only superficially. You define what you get in terms of the number of
        rows (or bytes) returned by select statements; and similarly the
        number of rows affected by change operations. But such an apparently
        factual assessment is far from providing a true measure of the work
        performed on your behalf by the SQL engine, for a number of
        reasons:
	First, from a practical point of view, all products don’t
            provide you with such statistics.

	Second, the effort required to obtain a result set may not
            be in proportion to the size of the result set. As a general rule
            you can be suspicious of a very large number of data page hits
            when only a few rows are returned. However such a proportion may
            be perfectly legitimate when data is aggregated. It is impossible
            to give a hard-and-fast rule in this area.

	Third, should data returned from the database for the sole
            purpose of using it as input to other queries be counted as useful
            work? What about systematically updating to N a column in a table without using a
            where clause when N already happens to be the value stored
            in most rows? In both cases, the DBMS engine performs work that
            can be measured in terms of bytes returned or changed.
            Unfortunately, most of the work performed can be avoided.



There are times when scanning large tables or executing a
        long-running query may be perfectly justified (or indeed inescapable).
        For instance, when you run summary reports on very large volumes of
        data, you cannot expect an immediate answer. If an immediate answer is
        required, then it is likely that the data model (the database
        representation of reality) is inappropriate to the questions you want
        to see answered. This is a typical case when a decision support
        database that doesn’t necessarily require the level of detail of the
        main operational database may be suitable. Remember what you saw in
        Chapter 1: correct modeling
        depends both on the data and what you want to do with the data. You
        may share data with your suppliers or customers and yet have a totally
        different database model than they do. Naturally, feeding a decision
        support system will require long and costly operations both on the
        source operational database and the target decision support
        database.
Because what you do with the data matters so much, you cannot
        judge performance if you don’t relate the load to the execution of
        particular SQL statements. The global picture that may be available
        through monitoring utilities (that most often provide cumulative
        counters) is not of much interest if you cannot
        assign to each statement its fair share of the
        load.
As a first stage in the process of load analysis, you must
        therefore capture and collect SQL statements, and try to determine how
        much each one contributes to the overall cost. It may not be important
        to capture absolutely every statement. Database activity is one of
        those areas where the 80/20 rule, the empirical assessment that 80% of
        the consequences result from 20% of the causes, often describes the
        situation rather well. Usually, much of the load comes from a small
        number of SQL statements. We must be careful not to overlook the fact
        that hardcoded SQL statements may distort the picture. With hardcoded
        statements, the DBMS may record thousands of distinct statements where
        a properly coded query would be referenced only once, even though it
        might be called thousands of times, each time with differing
        parameters. Such a situation can usually be spotted quite easily by
        the great number of SQL statements, and sometimes by global
        statistics. For instance, a procedure such as sp_trace_setevent in Transact-SQL lets you
        obtain a precise count of executed cursors, reexecutions of prepared
        cursors, and so on.
If nothing else is available and if you can access the SQL
        engine cache , a snapshot taken at a relatively low frequency of
        once every few minutes may in many cases prove quite useful. Big bad
        queries are usually hard to miss, as also are queries that are being
        executed dozens of times a minute. Global costs should in any case be
        checked in order to validate the hypothesis that what has been missed
        contributes only marginally to the global load. It’s when SQL
        statements are hardcoded that taking snapshots will probably give less satisfactory results; you
        should then try to get a more complete picture, either through logging
        (as already mentioned a high-overhead solution), or by use of less
        intrusive “sniffer” utilities. I should note that even if you catch
        all hardcoded statements, then they have to be “reverse soft-coded” by
        taking constant values out of the SQL text before being able to
        estimate the relative load, not of a single SQL statement, but of one
        particular SQL statement pattern.
Identifying the statements that keep the DBMS busy, though, is
        only part of the story. You will miss much if you don’t then relate
        SQL activity to the essential business activity of the organization
        that is supported by the database. Having an idea of how many SQL
        statements are issued on average each time you are processing a
        customer order is more important to SQL performance than knowing the
        disk transfer rate or the CPU speed under standard conditions of
        temperature and pressure. For one thing, it helps you anticipate the
        effect of the next advertising campaign; and if the said number of SQL
        statements is in the hundreds, you can raise interesting questions
        about the program (could there be, by chance, SQL statements executed
        inside loops that fetch the results of other statements? Could there
        be a statement that is repeatedly executed when it needs to be
        executed only once?). Similarly, costly massive updates of one column in a table accompanied by near identical
        numbers of equally massive updates of other columns from the same
        table with similar where clauses
        immediately raises the question of whether a single pass over the
        table wouldn’t have been enough.
Important
Load figures must be related to SQL statements. SQL statements
          must be related to business activity. Business activity must be
          related to business requirements.


Checking Against Acknowledged Standards



Collecting SQL statements, evaluating their cost and
        roughly relating them to what makes a company or agency tick is an
        exercise that usually points you directly to the parts of the code
        that require in-depth review. The questionable code may be SQL
        statements, algorithms, or both. But knowing what you can expect in
        terms of improvement or how far you could or should go is a very
        difficult part of the SQL expert’s craft; experience helps, but even
        the seasoned practitioner can be left with a degree of
        uncertainty.
It can be useful to establish a baseline, for instance by
        carrying out simple insertion tests and having an idea about the rate
        of insertion that is sustainable on your hardware. Similarly, you
        should check the fetch rate that can be obtained when performing those
        dreaded full scans on some of the biggest tables. Comparing bare-bones
        rates to what some applications manage to accomplish is often
        illuminating: there may be an order of magnitude or more between the
        fetch or insert speed that the SQL engine can attain and what is
        achieved by application programs.
Important
Know the limits of your environment. Measure how many rows you
          can insert, fetch, update, or delete per unit of time on your
          machines.

Once you have defined a few landmarks, you can identify where
        you will obtain the best “return on improvement,” in terms of both
        relevance to business activities and technical feasibility. You can
        then focus on those parts of your programs and get results where it
        matters.
Some practitioners tend to think that as long as end users don’t
        complain about performance, there is no issue and therefore no time to
        waste on trying to make operations go faster. There is some wisdom in
        this attitude; but there is also some short-sightedness as well, for
        two reasons:
	First, end users often have a surprisingly high level of
            tolerance for poor performance; or perhaps it would be more
            appropriate to say that their perception of slowness differs
            widely from that of someone who has a better understanding of what
            happens behind the scenes. End users may complain loudly about the
            performance of those processes of death that cannot possibly do
            better, and express a mild dissatisfaction about other processes
            when I would have long gone ballistic. A low level of complaint
            doesn’t necessarily mean that everything is fine, nor does vocal
            dissatisfaction necessarily mean that there is anything wrong with
            an application except perhaps trying to do too much.

	Second, a slight increase in the load on a server may mean that performance will
            deteriorate from acceptable to unacceptable very quickly. If the
            environment is perfectly stable, there is indeed nothing to fear
            from a slight increase in load. But if your activity records a
            very high peak during one particular month of the year, the same
            program that looks satisfactory for 11 months can suddenly be the
            reason for riots. Here the background noise matters a lot. An
            already overloaded machine cannot keep on providing the same level
            of service when activity increases. There is always a threshold
            that sees mediocre performance tumbling down all of a sudden. It
            is therefore important to study an entire system before a burst of
            activity is encountered to see whether the load can be reduced by
            improving the code. If improving the code isn’t enough to warrant
            acceptable performance, it may be time to switch to bigger iron
            and upgrade the hardware.



Do not forget that “return on improvement” is not simply a
        technical matter. The perception of end users should be given the
        highest priority, even if it is biased and sometimes disconnected from
        the most severe technical issues. They have to work with the program,
        and ergonomics have to be taken into account. It is not unusual to
        meet well-meaning individuals concentrating on improving statistics
        rather than program throughput, let alone end-user satisfaction. These
        well-intentioned engineers can feel somewhat frustrated and
        misunderstood when end users, who only see a very local improvement,
        welcome the result of mighty technical efforts with lukewarm
        enthusiasm. An eighteenth-century author reports that somebody once
        said to a physician, “Well, Mr. X has died, in spite of the promise
        you had made to cure him.” The splendid answer from the physician was,
        “You were away, and didn’t check the progress of the treatment: he
        died cured.”
A database with excellent statistics and yet unsatisfactory
        performance from an end-user point of view is like a patient cured of
        one ailment, but who died of another. Improving performance usually
        means both delivering a highly visible
        improvement to end users, even if it affects a query that is run only
        once a month but that is business-critical, and the more humble,
        longer-term work of streamlining programs, lowering the background
        noise, and ensuring that the server will be able to deliver that power
        boost when it is needed.
Important
Performance improvement as perceived by end users is what
          matters most, but never forget the narrow margin between acceptable
          and unacceptable performance in a loaded environment.


Defining Performance Goals



Performance goals are often defined in terms of elapsed
        time, for example, “this program must run in under 2 hours.” It is
        better though to define them primarily in terms of business items
        processed by unit of time, such as “50,000 invoices per hour” or “100
        loans per minute,” for several reasons:
	It gives a better idea of the service actually provided by a
            given program.

	It makes a decrease in performance more understandable to
            end users when it can be linked to an increase in activity. This
            makes meetings less stormy.

	Psychologically speaking, it is slightly more exciting when
            trying to improve a process to boost throughput rather than
            diminish the elapsed time. An upward curve makes a better chart in
            management presentations than a downward one.



Important
More than anything else, improved performance means first,
          doing more work in the same time, and second, doing it in even less
          time.



Thinking in Business Tasks



  Before focusing on one particular query, don’t forget its
      context. Queries executed in loops are a very bad indicator of the
      quality of code, as are program variables with no other purpose than
      storing information returned from the database before passing it to
      another query. Database accesses are costly, and should be kept to a
      minimum. When you consider the way some programs are written, you are
      left with the impression that when their authors go shopping, they jump
      into their car, drive to a supermarket, park their car, walk up and down
      the aisles, pick a few bottles of milk, head for the checkout, get in
      line, pay, put the milk in the car, drive home, store the milk into the
      fridge, then check the next item on the shopping list before returning
      to the supermarket. And when a spouse complains about the time spent on
      shopping, the excuses given are usually the dense traffic on the road,
      the poor signposting of the food department, and the insufficient number
      of cashiers. All are valid reasons in their own right that may indeed
      contribute to some extent to shopping time, but possibly they are not
      the first issues to fix.
I have met developers who were genuinely persuaded that from a
      performance standpoint, multiplying simple queries was the proper thing
      to do; showing them that the opposite is true was extremely easy. I have
      also heard that very simple SQL statements that avoid joins make
      maintenance easier. The truth is that simplistic SQL makes it easier to
      use totally inexperienced (read cheaper) developers for maintenance, but
      that’s the only thing that can be said in defense of very elementary SQL
      statements. By making the most basic usage of SQL, you end up with
      programs full of statements that, taken one by one, look efficient,
      except perhaps for a handful of particularly poor performers, hastily
      pointed to as “the SQL statements that require tuning.” Very often, some
      of the statements identified as “slow” (and which may indeed be slow)
      are responsible for only a fraction of performance issues.
Important
Brilliantly tuned statements in a bad program operating against
        a badly designed database are no more effective than brilliant tactics
        at the service of a feeble strategy; all they can do is postpone the
        day of reckoning.

You cannot design efficient programs if you don’t understand that
      the SQL language applies to a whole subsystem of data management, and
      isn’t simply a set of primitives to move data between long-term and
      short-term memory. Database accesses are often the most
      performance-critical components of a program, and must be incorporated
      to the overall design.
In trying to make programs simpler by multiplying SQL statements,
      you succumb to a dangerous illusion. Complexity doesn’t originate in
      languages, but in business requirements. With the exclusive use of
      simple SQL statements, complexity doesn’t vanish, it just migrates from
      the SQL side to the application side, with a much increased risk of data
      inconsistency when the logic that should belong to the DBMS side is
      imbedded into the application. Moreover, it puts a significant part of
      processing out of reach of the DBMS optimizer.
I am not advocating the indiscriminate use of long, complex SQL
      statements, or a “single statement” policy. For example, the following
      is a case where there should have been several distinct statements, and
      not a single one:
insert into custdet (custcode, custcodedet, usr, seq, inddet)
select case ?
         when 'GRP' then b.codgrp
         when 'GSR' then b.codgsr
         when 'NIT' then b.codnit
         when 'GLB' then 'GLOBAL'
         else b.codetb
       end,
       b.custcode,
       ?,
       ?,
       'O'
from edic00 a,
     clidet bT
where ((b.codgrp = a.custcode
        and ? = 'GRP')
       or (b.codgsr = a.custcode
           and ? = 'GSR')
       or (b.codnit = a.custcode
           and ? = 'NIT')
       or (a.custcode = 'GLOBAL'
           and ? = 'GLB'))
   and a.seq = ?
   and b.custlvl = ?
   and b.histdat = ?

A statement where a run-time parameter is compared to a constant
      is usually a statement that should have been split into several simpler
      statements. In the preceding example, the value that intervenes in the
      case construct is the same one that
      is successively compared to GRP,
      GSR, NIT, and GLB in the where clause. It makes no sense to force the
      SQL engine into making numerous mutually exclusive tests and sort out a
      situation that could have been cleared on the application side. In such
      a case, an if ... elsif ... elsif
      structure (preferably in order of decreasing probability of occurrence)
      and four distinct insert ... select
      statements would have been much better.
When a complex SQL statement allows you to obtain more quickly the
      data you ultimately need, with a small number of accesses, the situation
      is completely different from the preceding case. Long, complex queries
      are not necessarily slow; it all depends on how they are written. A
      developer should obviously not exceed their personal SQL skill level,
      and not necessarily write 300-line statements head on; but packing as
      much action as possible into each SQL statement should be a prerequisite
      to improving individual statements.
Important
Tuning SQL statements before improving programs and minimizing
        database accesses means that you are ignoring some of the major means
        of tuning improvements.


Execution Plans



When our spies (whether they are users or monitoring facilities)
      have directed our attention to a number of SQL statements, we need to
      inspect these statements more closely. Scrutinizing execution
      plans  is one of the favorite activities of many SQL tuners, if
      we are to believe the high number of posts in forums or mailing lists in
      the form of “I have a SQL query that is particularly slow; here is the
      execution plan....”
Execution plans are usually displayed either as an indented list
      of the various steps involved in the processing of a (usually complex)
      SQL statements, or under a graphical form, as in Figure 12-1. This figure displays
      the execution plan for one of the queries from Chapter 7. Text execution plans are far
      less sexy but are easier to post on forums, which must account for the
      enduring popularity of such plans. Knowing how to correctly read and
      interpret an execution plan, whether it is represented graphically or as
      text, is in itself a valued skill.
[image: A DB2 execution plan]

Figure 12-1. A DB2 execution plan

So far in this book, I have had very little to say on the topic of
      execution plans, except for a couple of examples presented here and
      there without any particular comment. Execution plans are tools, and
      different individuals have different preferences for various tools; you
      are perfectly allowed to have a different opinion, but I usually attach
      a secondary importance to execution plans. Some developers consider
      execution plans as the ultimate key to the understanding of performance
      issues. Two real-life examples will show that one may have some reasons
      to be less than sanguine about using execution plans as the tool of
      choice for improving a query.
Identifying the Fastest Execution Plan



In this section, I am going to test your skills as an
        interpreter of execution plans. I’m going to show three execution
        plans and ask you to choose which is the fastest. Ready? Go, and good
        luck!
Our contestants



The following execution plans show how three variants of the
          same query are executed:
	Plan 1
	Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT
   1    0   SORT (ORDER BY)
   2    1     CONCATENATION
   3    2       NESTED LOOPS
   4    3         HASH JOIN
   5    4           HASH JOIN
   6    5             TABLE ACCESS (FULL) OF 'TCTRP'
   7    5             TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
   8    7               INDEX (RANGE SCAN) OF 'TTRANTRADE_DATE' (NON-UNIQUE)
   9    4           TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
  10    9             INDEX (RANGE SCAN) OF 'TMMKTCCY_NAME' (NON-UNIQUE) ...
  11    3         TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  12   11           INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)
  13    2       NESTED LOOPS
  14   13         HASH JOIN
  15   14           HASH JOIN
  16   15             TABLE ACCESS (FULL) OF 'TCTRP'
  17   15             TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
  18   17               INDEX (RANGE SCAN) OF 'TTRANLAST_UPDATED' (NON-UNIQUE)
  19   14           TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
  20   19             INDEX (RANGE SCAN) OF 'TMMKTCCY_NAME' (NON-UNIQUE)
  21   13         TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  22   21           INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)

	Plan 2
	Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT
   1    0   SORT (ORDER BY)
   2    1     CONCATENATION
   3    2       NESTED LOOPS
   4    3         NESTED LOOPS
   5    4           NESTED LOOPS
   6    5             TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
   7    6               INDEX (RANGE SCAN) OF 'TTRANTRADE_DATE' (NON-UNIQUE)
   8    5             TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
   9    8               INDEX (UNIQUE SCAN) OF 'TMMKTMAIN' (UNIQUE)
  10    4           TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  11   10             INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)
  12    3         TABLE ACCESS (BY INDEX ROWID) OF 'TCTRP'
  13   12           INDEX (UNIQUE SCAN) OF 'TCTRPMAIN' (UNIQUE)
  14    2       NESTED LOOPS
  15   14         NESTED LOOPS
  16   15           NESTED LOOPS
  17   16             TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
  18   17               INDEX (RANGE SCAN) OF 'TTRANLAST_UPDATED' (NON-UNIQUE)
  19   16             TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
  20   19               INDEX (UNIQUE SCAN) OF 'TMMKTMAIN' (UNIQUE)
  21   15           TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  22   21             INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)
  23   14         TABLE ACCESS (BY INDEX ROWID) OF 'TCTRP'
  24   23           INDEX (UNIQUE SCAN) OF 'TCTRPMAIN' (UNIQUE)

	Plan 3
	Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT
   1    0   SORT (ORDER BY)
   2    1     NESTED LOOPS
   3    2       NESTED LOOPS
   4    3         NESTED LOOPS
   5    4           TABLE ACCESS (BY INDEX ROWID) OF 'TMMKT'
   6    5             INDEX (RANGE SCAN) OF 'TMMKTCCY_NAME' (NON-UNIQUE)
   7    4           TABLE ACCESS (BY INDEX ROWID) OF 'TTRAN'
   8    7             INDEX (UNIQUE SCAN) OF 'TTRANMAIN' (UNIQUE)
   9    3         TABLE ACCESS (BY INDEX ROWID) OF 'TCTRP'
  10    9           INDEX (UNIQUE SCAN) OF 'TCTRPMAIN' (UNIQUE)
  11    2       TABLE ACCESS (BY INDEX ROWID) OF 'TFLOW'
  12   11         INDEX (RANGE SCAN) OF 'TFLOWMAIN' (UNIQUE)




Our battle field



The result set of the query consists of 860 rows, and the four
          following tables are involved:
	 Table
                  name 
	 Row count
                  (rounded) 

	tctrp
	18,000

	ttran
	1,500,000

	tmmkt
	1,400,000

	tflow
	5,400,000



All tables are heavily indexed, no index was created, dropped
          or rebuilt, and no change was applied to the data structures. Only
          the text of the query changed between plans, and optimizer
          directives were sometimes applied.
Consider the three execution plans, try to rank them in order
          of likely speed, and if you feel like it you may even venture an
          opinion about the improvement factor.

And the winner is.. .



The answer is that Plan 1 took 27 seconds, Plan 2 one second,
          and Plan 3 (the initial execution plan of the query) one minute and
          12 seconds. You will be forgiven for choosing the wrong plan. In
          fact, with the information that I provided, it would be sheer luck
          for you to have correctly guessed at the fastest plan (or the result
          of a well-founded suspicion that there must be a catch somewhere).
          You can take note that the slowest execution plan is by far the
          shortest, and that it contains no reference to anything other than
          indexed accesses. By contrast, Plan 1 demonstrates that you can have
          two full scans of the same table and yet execute the query almost
          three times faster than a shorter, index-only plan such as Plan
          3.
The point of this exercise was to demonstrate that the length
          of an execution plan is not very meaningful, and that exclusive
          access to tables through indexes doesn’t guarantee that performance
          is the best you can achieve. True, if you have a 300-line plan for a
          query that returns 19 rows, then you might have a problem, but you
          mustn’t assume that shorter is better.


Forcing the Right Execution Plan



The second example is the weird behavior exhibited by one query
        issued by a commercial off-the-shelf software package. When run
        against one database, the query takes 4 minutes, returning 40,000
        rows. Against another database, running the same version of the same
        DBMS, the very same query responds in 11 minutes on comparable
        hardware although all tables involved are much smaller. The comparison
        of execution plans shows that they are wildly different. Statistics
        are up-to-date on both databases, and the optimizer is instructed to
        use them everywhere. The question immediately becomes one of how to
        force the query to take the right execution path on the smaller
        database. DBAs are asked to do whatever is in their power to get the
        same execution plan on both databases. The vendor’s technical team
        works closely with the customer’s team to try to solve the
        problem.
A stubborn query



Following is the text of the query,[*] followed by the plan associated to the fastest
          execution. Take note that the good plan only accesses indexes, not
          tables:
select o.id_outstanding,
       ap.cde_portfolio,
       ap.cde_expense,
       ap.branch_code,
       to_char(sum(ap.amt_book_round
          + ap.amt_book_acr_ad - ap.amt_acr_nt_pst)),
       to_char(sum(ap.amt_mnl_bk_adj)),
       o.cde_outstd_typ
from accrual_port ap,
     accrual_cycle ac,
     outstanding o,
     deal d,
     facility f,
     branch b
where ac.id_owner = o.id_outstandng
  and ac.id_acr_cycle = ap.id_owner
  and o.cde_outstd_typ in ('LOAN', 'DCTLN', 'ITRLN',
                           'DEPOS', 'SLOAN', 'REPOL')
  and d.id_deal = o.id_deal
  and d.acct_enabl_ind = 'Y'
  and (o.cde_ob_st_ctg = 'ACTUA'
       or o.id_outstanding in (select id_owner
                               from subledger))
  and o.id_facility = f.id_facility
  and f.branch_code = b.branch_code
  and b.cde_tme_region = 'ZONE2'
group by o.id_outstanding,
         ap.cde_portfolio,
         ap.cde_expense,
         ap.branch_code,
         o.cde_outstd_typ
having sum(ap.amt_book_round
            + ap.amt_book_acr_ad - ap.amt_acr_nt_pst) <> 0
    or (sum(ap.amt_mnl_bk_adj) is not null
        and sum(ap.amt_mnl_bk_adj) <> 0)

Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT Optimizer=CHOOSE
   1    0   FILTER
   2    1     SORT (GROUP BY)
   3    2       FILTER
   4    3         HASH JOIN
   5    4           HASH JOIN
   6    5             HASH JOIN
   7    6               INDEX (FAST FULL SCAN) OF 'XDEAUN08' (UNIQUE)
   8    6               HASH JOIN
   9    8                 NESTED LOOPS
  10    9                   INDEX (FAST FULL SCAN) OF 'XBRNNN02' (NON-UNIQUE)
  11    9                   INDEX (RANGE SCAN) OF 'XFACNN05' (NON-UNIQUE)
  12    8                 INDEX (FAST FULL SCAN) OF 'XOSTNN06' (NON-UNIQUE)
  13    5             INDEX (FAST FULL SCAN) OF 'XACCNN05' (NON-UNIQUE)
  14    4           INDEX (FAST FULL SCAN) OF 'XAPONN05' (NON-UNIQUE)
  15    3         INDEX (SKIP SCAN) OF 'XBSGNN03' (NON-UNIQUE)

The addition of indexes to the smaller database leads nowhere.
          Existing indexes were initially identical on both databases, and
          creating different indexes on the smaller database brings no change
          to the execution plan. Three weeks after the problem was first
          spotted, attention is now turning to disk striping, without much
          hope. Constraining optimizer directives are beginning to look
          unpleasantly like the only escape route.
Before using directives, it is wise to have a fair idea of the
          right angle of attack. Finding the proper angle, as you have seen in
          Chapters 4 and 6, requires an assessment of the
          relative precision of the various input criteria, even though in
          this case the reasonably large result set (of some 40,000 rows on
          the larger database and a little over 3,000 on the smaller database)
          gives us little hope of seeing one criterion coming forward as
          the key criterion.

Study of search criteria



When we use as the only criterion the condition on what looks
          like a time zone, the query returns 17% more rows than with all
          filtering conditions put together, but it does it blazingly
          fast:
SQL> select count(*) "FAC"
  2  from outstanding
  3  where id_facility in (select f.id_facility
  4                        from facility f,
  5                             branch b
  6                        where f.branch_code = b.branch_code
  7                          and b.cde_tme_region = 'ZONE2');

       FAC
----------
     55797
Elapsed: 00:00:00.66

The flag condition alone filters three times our number of
          rows, but it does it very fast, too:
SQL> select count(*) "DEA"
  2  from outstanding
  3  where id_deal in (select id_deal
  4                    from deal
  5                    where acct_enabl_ind = 'Y');

       DEA
----------
    123970

Elapsed: 00:00:00.63

What about our or condition
          on the outstanding table?
          Following are the results from that condition:
SQL> select count(*) "ACTUA/SUBLEDGER"
  2  from outstanding
  3  where (cde_ob_st_ctg = 'ACTUA'
  4         or id_outstanding in (select id_owner
  5                               from subledger));

ACTUA/SUBLEDGER
---------------
          32757

Elapsed: 00:15:00.64

Looking at these results, it is clear that we have pinpointed
          the problem. This or condition
          causes a huge increase in the query’s execution time.
The execution plan for the preceding query shows only index
          accesses:
Execution Plan
----------------------------------------------------------
   0      SELECT STATEMENT Optimizer=CHOOSE
   1    0   SORT (AGGREGATE)
   2    1     FILTER
   3    2       INDEX (FAST FULL SCAN) OF 'XOSTNN06' (NON-UNIQUE)
   4    2       INDEX (SKIP SCAN) OF 'XBSGNN03' (NON-UNIQUE)

Notice that both index accesses are not exactly the usual type
          of index descent; there is no need to get into arcane details here,
          but a FAST FULL SCAN is in fact
          the choice of using the smaller index rather than the larger
          associated table to perform a scan, and the choice of a SKIP SCAN comes from a similar evaluation
          by the optimizer. In other words, the choice of the access method is
          not exactly driven by the evidence of an excellent path, but
          proceeds from a kind of “by and large, it should be better”
          optimizer assessment. If the execution time is to be believed, a
          SKIP SCAN is not the best of
          choices.
Let’s have a look at the indexes on outstanding (the numbers of distinct index
          keys and distinct column values are estimates, which accounts for
          the slightly inconsistent figures). Indexes in bold are the indexes
          that appear in the execution plan:
INDEX_NAME             DIST KEYS COLUMN_NAME        DIST VAL
--------------------- ---------- ------------------ --------
XOSTNC03                   25378 ID_DEAL                1253
                                 ID_FACILITY            1507
XOSTNN05                  134875 ID_OUTSTANDING       126657
                                 ID_DEAL                1253
                                 IND_AUTO_EXTND            2
                                 CDE_OUTSTD_TYP            5
                                 ID_FACILITY            1507
                                 UID_REC_CREATE          161
                                 NME_ALIAS            126657

XOSTNN06 ID_OUTSTANDING       126657

                                 CDE_OUTSTD_TYP            5

                                 ID_DEAL                1253

                                 CDE_OB_ST_CTG             3

                                 ID_FACILITY            1507
XOSTUN01 (U)              121939 ID_OUTSTANDING       126657
XOSTUN02 (U)              111055 NME_ALIAS            126657

The other index (xbsgnn03)
          is associated with subledger:
INDEX_NAME             DIST KEYS COLUMN_NAME        DIST VAL
--------------------- ---------- ------------------ --------

XBSGNN03                  101298 BRANCH_CODE               8

                                 CDE_PORTFOLIO             5

                                 CDE_EXPENSE              56

                                 ID_OWNER              52664

                                 CID_CUSTOMER            171
XBSGNN04                   59542 ID_DEAL                4205
                                 ID_FACILITY            4608
                                 ID_OWNER              52664
XBSGNN05                   49694 BRANCH_CODE               8
                                 ID_FACILITY            4608
                                 ID_OWNER              52664
XBSGUC02 (U)              147034 CDE_GL_ACCOUNT            9
                                 CDE_GL_SHTNAME            9
                                 BRANCH_CODE               8
                                 CDE_PORTFOLIO             5
                                 CDE_EXPENSE              56
                                 ID_OWNER              52664
                                 CID_CUSTOMER            171
XBSGUN01 (U)              134581 ID_SUBLEDGER         154362

As is too often the case with COTS packages, we have here an
          excellent example of carpet-indexing.
The indexes on outstanding
          raise a couple of questions.
	Why does id_outstanding, the primary key of the
              outstanding table, also appears as the lead column of two other
              indexes? This requires some justification, and very persuasive
              justification too. Even if those indexes were built with the
              purpose of fetching all values from them and avoiding table
              access, one might arguably have relegated id_oustanding to a less prominent
              position; on the other hand, since few columns seem to have a
              high number of distinct values, the very existence of some of
              the indexes would need to be reassessed.

	All is not quiet on the subledger front either. One of the
              most selective values happens to be id_owner. Why does id_owner appear in 4 of the 5 indexes,
              but nowhere as the lead column? Such a situation is surprising
              for an often referenced selective column. Incidentally, finding
              id_owner as the lead column
              of an index would have been helpful with our problem
              query.



Modifying indexes is a delicate business that requires a
          careful study of all the possible side-effects. We have here a
          number of questionable indexes, but we also have an urgent problem
          to solve. Let’s therefore refrain from making any changes to the
          existing indexes and concentrate on the SQL code.
As the numbers of distinct keys of our unique indexes show, we
          are not dealing here with large tables; and in fact the two other
          criteria we have tried to apply to outstanding both gave excellent response
          times, in spite of being rather weak criteria. The pathetic result
          we have with the or construct
          results from an attempt to merge data which was painfully extracted
          from the two indexes. Let’s try something else:
SQL> select count(*) "ACTUA/SUBLEDGER"
  2  from (select id_outstanding
  3        from outstanding
  4        where cde_ob_st_ctg = 'ACTUA'
  5        union
  6        select o.id_outstanding
  7        from outstanding o,
  8             subledger sl
  9        where o.id_outstanding = sl.id_owner)
 10  /

ACTUA/SUBLEDGER
---------------
          32757

Elapsed: 00:00:01.82

No change to the indexes, and yet the optimizer suddenly sees
          the light even if we hit the table outstanding twice. Execution is much, much
          faster now.
Replacing the “problem condition” and slightly reshuffling
          some of the other remaining conditions, cause the query to run in 13
          seconds where it used to take 4 minutes (reputedly the “good case”);
          and only 3.4 seconds on the other database, where it used to take 11
          minutes to return 3,200 rows.

A moral to the story



It is likely that a more careful study and some work
          at the index level would allow the query to run considerably faster
          than 13 seconds. On the other hand, since everybody appeared to be
          quite happy with 4 minutes, 13 seconds is probably a good enough
          improvement.
What is fascinating in this true story (and many examples in
          this book are taken from real life), is how the people involved
          focused (for several weeks) on the wrong issue. There was indeed a
          glaring problem on the smaller database. The comparison of the two
          different execution plans led to the immediate conclusion that the
          execution plan corresponding to the slower execution was wrong
          (true) and therefore, implicitly, that the execution plan
          corresponding to the faster execution was right (false). This was a
          major logical mistake, and it misled several people into
          concentrating on trying to reproduce a bad execution plan instead of
          improving the query.
I must add a final note as a conclusion to the story. Once the
          query has been rewritten, the execution plan is
          still different on the two databases—a
          situation that, given the discrepancy of volumes, only proves that
          the optimizer is doing its job.
Important
The only yardstick of query performance is how long one
            takes to run, not whether the execution plan conforms to
            prejudices.




Using Execution Plans Properly



Execution plans are useful, but mostly to
      check that the DBMS engine is indeed proceeding as intended. The report
      from the field that an execution plan represents is a great tool to
      compare what has been realized to the tactics that were planned, and can
      reveal tactical flaws or overlooked details.
How Not to Execute a Query



Execution plans can be useful even when one has not the
        slightest idea about what a proper execution plan should be. The
        reason is that, by definition, the execution plan of a problem query
        is a bad one, even if it may not look so terrible. Knowing that the
        plan is bad allows us to discover ways to improve the query, through
        the use of one of the most sophisticated tools of formal logic, the
        syllogism, an argument with two premises and one
        conclusion.
This reasoning is as follows:
(Premise 1) The query is dreadfully slow.
(Premise 2) The execution plan displays mostly one type of
          action—for example: full table scans, hash joins, indexed accesses,
          nested loops, and so forth.


(Conclusion) We should rewrite the query and/or possibly change
        indexes so as to suggest something else to the optimizer.
Coaxing the optimizer into taking a totally different course can
        be achieved through a number of means:
	When we have few rows returned, it may be a matter of adding
            one index, or rebuilding a composite index and reversing the order
            of some of the columns; transforming uncorrelated subqueries into
            correlated ones can also be helpful.

	When we have a large number of rows returned we can do the
            opposite, and use parentheses and subqueries in the from clause to suggest a different order
            when joining tables together.

	In doubt, we have quite a number of options besides
            transforming correlated sub queries into uncorrelated subqueries
            and vice versa. We can consider operations such as factorizing
            queries with either a union or
            a with clause. The union of two complex queries can
            sometimes be transformed into a simpler union inside the from clause. Disentangling conditions
            (trying to make each condition dependent on as few other
            conditions as possible) is often helpful. Generally speaking,
            trying to remove as much as possible of whatever imposes a
            processing order on the query and trying to give as much freedom
            as possible to the optimizer is the very first thing to do before
            trying to constrain it. The optimizer must be constrained only
            when everything else goes wrong.

	As a last resort, we may remember the existence of optimizer
            directives and use them very carefully.




Hidden Complexity



Execution plans can also prove to be valuable spies in
        revealing hidden complexity. Queries are not always exactly what a
        superficial inspection shows. The participation of some database
        objects in a query can induce additional work that execution plans
        will bring to light. These database objects are chiefly:
	Views
	Queries may look deceivingly simple. But sometimes what
              appears to be a simple table may turn out to be a view defined
              as a very complex query involving several other views . The names of views may not always be
              distinctive, and even when they are, the name by itself cannot
              give any indication of the complexity of the view. The execution
              plan will show what a casual inspection of the SQL code may have
              missed, and most importantly, it will also tell you if the same
              table is being hit repeatedly.

	Triggers
	Changes to the database may take an anomalous time simply
              because of the execution of triggers . These may be running very slow code or may even
              be the true reason for some locking issues. Triggers are easy to
              miss, execution plans will reveal them.



Important
The essential value of execution plans is to provide a
          starting point for performance investigations and to reveal the
          hidden database operations caused by complex views and
          triggers.



What Really Matters?



    What really matters when trying to improve a query has
      been discussed in the previous chapters, namely:
	The number of rows in the tables involved

	The existing indexes on these tables

	Storage peculiarities, such as partitioning , that can have as strong an impact as indexes on
          performance

	The quality of the various criteria that were provided

	The size of the resulting set



This information provides us with a solid foundation from which to
      investigate query performance, and is far more valuable than an
      execution plan on its own. Once we know were we stand, and what we have
      to fight against, then we can move, and attack tables, always trying to
      get rid of unwanted data as quickly as we can. We must always try to
      leave as much freedom to the optimizer as we can by avoiding any type of
      intra-statement dependencies that would constrain the order in which
      tables must be visited.
In conclusion, I would like to remind you that optimizers, which
      usually prove quite efficient at their job, are unable to work
      efficiently under the following circumstances:
	If you retrieve data piecemeal through multiple statements. It
          is one thing for an application to issue a series of related SQL
          statements. However, the SQL engine can never “know” that such
          statements are related, and cannot optimize across statement
          boundaries. The SQL engine can optimize each individual statement,
          but it cannot optimize the overall process.

	If you use, without any care, the numerous non-relational (and
          sometimes quite useful) features provided by the various SQL
          dialects.



Remember that you should apply non-relational features last, when
      the bulk of data retrieval is done (in the wider acceptance of
      retrieval; data must be retrieved before being updated or deleted).
      Non-relational features operate on finite sets (in other words, arrays),
      not on theoretically infinite relations.
There was a time when you could make a reputation as an SQL expert
      by identifying missing indexes and rewriting statements so as to remove
      functions that were applied to indexed columns. This time is, for the
      most part, gone. Most databases are over-indexed, although sometimes
      inadequately indexed. Functions applied to indexed columns are still
      encountered, but functional indexes provide a “quick fix” to that
      particular problem. However, rewriting a poorly performing query usually
      means more nowadays than shuffling conditions or merely making cosmetic
      changes.
The real challenge is more and more to be able to think globally,
      and to acknowledge that data handling is critical in a world where the
      amount of stored data increases even faster than the performance of the
      hardware. For better or for worse, data handling spells S-Q-L. Like all
      languages, SQL has its idiosyncrasies, its qualities, and numerous
      flaws. Like all languages, mastering SQL requires time, experience—and
      personal talent. I hope that on that long road this book will prove
      helpful to you.
Important
Building optimally performing SQL can be a source of great
        satisfaction—enjoy!




[*] Object names have been slightly changed to protect both
              the innocent and the culprit.
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