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About this book

Lots of people working in cryptography have no deep
concern with real application issues. They are trying to
discover things clever enough to write papers about.

Whitfield Diffie

This book is intended as an introduction to cryptography for pro-
grammers of any skill level. It’s a continuation of a talk of the same
name, which was given by the author at PyCon 2013.

The structure of this book is very similar: it starts with very sim-
ple primitives, and gradually introduces new ones, demonstrating why
they’re necessary. Eventually, all of this is put together into complete,
practical cryptosystems, such as TLS, GPG and OTR.

The goal of this book is not to make anyone a cryptographer or a
security researcher. The goal of this book is to understand how com-
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plete cryptosystems work from a bird’s eye view, and how to apply
them in real software.

The exercises accompanying this book focus on teaching cryptog-
raphy by breaking inferior systems. That way, you won’t just “know”
that some particular thing is broken; you’ll know exactly how it’s bro-
ken, and that you, yourself, armed with little more than some spare
time and your favorite programming language, can break them. By
seeing how many systems that are ostensibly secure to the layman, you
will understand why certain primitives and constructions are necessary.
Hopefully, these exercises will also leave you with healthy distrust of
DIY cryptography in all its forms.

For a long time, cryptography has been deemed the exclusive realm
of experts. From the many internal leaks we’ve seen over the years of
the internals of both large and small corporations alike, it has become
obvious that that approach is doing more harm than good. We can no
longer afford to keep the two worlds strictly separate. We must join
them into one world where all programmers are educated in the basic
underpinnings of information security, so that they, together with in-
formation security professionals, can work together to produce more
secure software systems for all. That does not make people such as
penetration testers and security researchers obsolete or less valuable;
quite the opposite, in fact. By sensitizing all programmers to security
concerns, the need for professional security audits will become more
apparent, not less.

This book hopes to be a bridge: to teach everyday programmers
from any field or specialization to understand just enough cryptogra-
phy to do their jobs, or maybe just satisfy their appetite.
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Development

The entire Crypto 101 project is publicly developed on Github under
the crypto101 organization, including this book.

This is an early pre-release of this book. All of your questions,
comments and bug reports are highly appreciated. If you don’t under-
stand something after reading it, or a sentence is particularly clumsily
worded, that’s a bug and I would very much like to fix it! Of course, if
I never hear about your issue, it’s very hard for me to address…

The copy of this book that you are reading right now is based on
the git commit with hash 1cbe8aa, also known as v0.1.0-4-g1cbe8aa.
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4

Exclusive or

4.1 Description

Exclusive or, often called “XOR”, is a Boolean1 binary2 operator that
is true when either the first input or the second input, but not both,
are true. Another way to think of XOR is a programmable inverter: a
Boolean binary operator where one input bit decides whether or not
to invert the other input bit. “Inverting” bits is much more commonly
called “flipping” bits, a term we’ll use often throughout the book.

1Uses only “true” and “false” as input and output values.
2Takes two parameters.

21



22 CHAPTER 4. EXCLUSIVE OR

In mathematics and cryptography papers, exclusive or is generally
represented by a cross in a circle: ⊕. We’ll use the same notation in
this book:

The inputs and output here are named as if we’re using XOR as an
encryption operation. On the left, we have the plaintext bit pi. The i
is just an index, since we’ll usually deal with more than one such bit.
On top, we have the key bit ki, that decides whether or not to invert
pi. On the right, we have the ciphertext bit, ci, which is the result of
the XOR operation.

4.2 Bitwise XOR

XOR, as we’ve just defined it, operates only on single bits or Boolean
values. Since we usually deal with values comprised of many bits, most
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programming languages provide a “bitwise XOR” operator: an oper-
ator that performs XOR on the respective bits in a value.

Python, for example, provides the ^ (caret) operator that performs
bitwise XOR on integers. It does this by first expressing those two
integers in binary3, and then performing XOR on their respective bits.
Hence the name, bitwise XOR.

73⊕ 87 = 0b1001001⊕ 0b1010111

=

1 0 0 1 0 0 1 (left)
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
1 0 1 0 1 1 1 (right)

= 0 0 1 1 1 1 0

= 0b0011110

= 30

4.3 One-time pads

XOR may seem like an awfully simple, even trivial operator. Even so,
there’s an encryption scheme, called a one-time pad, which consists of
just that single operator. It’s called a one-time pad because it involves
a sequence (the “pad”) of random bits, and the security of the scheme
depends on only using that pad once. This scheme is unique not only
in its simplicity, but also because it has the strongest possible security

3Usually, numbers are already stored in binary internally, so this doesn’t actually
take any work.
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guarantee. If the bits are truly random (and therefore unpredictable by
an attacker), and the pad is only used once, the attacker learns nothing
about the plaintext when they see a ciphertext.

Suppose we can translate our plaintext into a sequence of bits. We
also have the pad of random bits, shared between the sender and the
(one or more) recipients. We can compute the ciphertext by taking the
bitwise XOR of the two sequences of bits.

If an attacker sees the ciphertext, we can prove that they will learn
zero information about the plaintext, which is why this scheme is con-
sidered “unbreakable.” The proof can be understood intuitively by
thinking of XOR as a programmable inverter, and then looking at a
particular bit intercepted by Eve, the eavesdropper.
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Let’s say Eve sees that a particular ciphertext bit ci is 1. She has
no idea if the matching plaintext bit pi was 0 or 1, because she has
no idea of the key bit ki was 0 or 1. Since all of the key bits are truly
random, both options are exactly equally probable.

4.4 Attacks on “one-time pads”

The one-time pad security guarantee only holds if it is used correctly.
First of all, the one-time pad has to consist of truly random data. Sec-
ondly, the one-time pad can only be used once (hence the name). Un-
fortunately, most commercial “one-time pads” are snake oil, and don’t
satisfy at least one of those two properties.

Not using truly random data

The first issue is that they use various deterministic constructs to pro-
duce the one-time pad, instead of using truly random data. That isn’t
necessarily insecure: in fact, the most obvious example, a synchronous
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stream cipher, is something we’ll see later in the book. However, it
does invalidate the “unbreakable” security property of one-time pads.
The end user would be better served by a more honest cryptosystem,
instead of one that lies about its security properties.

Reusing the “one-time” pad

The other issue is with key reuse, which is much more serious. Suppose
an attacker gets two ciphertexts with the same “one-time” pad. The
attacker can then XOR the two ciphertexts, which is also the XOR of
the plaintexts:

c1 ⊕ c2 = (p1 ⊕ k)⊕ (p2 ⊕ k) (definition)
= p1 ⊕ k ⊕ p2 ⊕ k (reorder terms)
= p1 ⊕ p2 ⊕ k ⊕ k (a⊕ b = b⊕ a)

= p1 ⊕ p2 ⊕ 0 (x⊕ x = 0)

= p1 ⊕ p2 (x⊕ 0 = x)

At first sight, that may not seem like an issue. To extract either p1
or p2, you’d need to cancel out the XOR operation, which means you
need to know the other plaintext. The problem is that even the result of
the XOR operation on two plaintexts contains quite a bit information
about the plaintexts themselves. We’ll illustrate this visually with some
images from a broken “one-time” pad process, starting with figure 4.1
on page 27.
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(a) First plaintext. (b) Second plaintext.

(c) First ciphertext. (d) Second ciphertext.

(e) Reused key. (f ) XOR of ciphertexts.

Figure 4.1: Two plaintexts, the re-used key, their respective cipher-
texts, and the XOR of the ciphertexts. Information about the plain-
texts clearly leaks through when we XOR the ciphertexts.
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Crib-dragging

A classical approach to breaking multi-time pad systems involves
“crib-dragging”, a process that uses small sequences that are expected
to occur with high probability. Those sequences are called “cribs”. The
name crib-dragging originated from the fact that these small “cribs”
are dragged from left to right across each ciphertext, and from top to
bottom across the ciphertexts, in the hope of finding a match some-
where in. Those matches form the sites of the start, or “crib”, if you
will, of further decryption.

The idea is fairly simple. Suppose we have several encrypted mes-
sages Ci encrypted with the same “one-time” pad K.4 If we could
correctly guess the plaintext for one of the messages, let’s say Cj , we’d
know K:

Cj ⊕ Pj = (Pj ⊕K)⊕ Pj

= K ⊕ Pj ⊕ Pj

= K ⊕ 0

= K

Since K is the shared secret, we can now use it to decrypt all of
the other messages, just as if we were the recipient:

Pi = Ci ⊕K for all i

Since we usually can’t guess an entire message, this doesn’t actually
work. However, we might be able to guess parts of a message.

4We use capital letters when referring to an entire message, as opposed to just
bits of a message.
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If we guess a few plaintext bits correctly for any of the messages,
that would reveal the key bits at that position for all of the messages,
since k = ci ⊕ pi. Hence, all of the plaintext bits at that position
are revealed: using that value for k, we can compute the plaintext bits
pi = ci ⊕ k for all the other messages.

Guessing parts of the plaintext is a lot easier than guessing the
entire plaintext. Suppose we know that the plaintext is in English.
There’s some sequences that we know will occur very commonly, for
example (the ␣ symbol denotes a space):

• ␣the␣, variants like .␣The␣

• ␣of␣ and variants

• ␣to␣ and variants

• ␣and␣(less common at the start of a sentence)

• ␣a␣ and variants

If we know more about the plaintext, we can make even better
guesses. For example, if it’s HTTP serving HTML, we would expect
to see things like Content-Type, <a>, and so on.

That only tells us which plaintext sequences are likely, giving us
likely guesses. How do we tell if any of those guesses are correct? If
our guess is correct, we know all the other plaintexts at that position
as well, using the technique described earlier. We could simply look at
those plaintexts and decide if they look correct. For example, if they
also contain English text, we’d expect to see a lot of letters e, t, a, o, i,
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n. If we’re seeing binary nonsense instead, we know that the guess was
probably incorrect, or perhaps that message is actually binary data.

These small, highly probable sequences are called “cribs” because
they’re the start of a larger decryption process. Suppose your crib,
␣the␣, was successful and found the five-letter sequence t␣thr in an-
other message. You can then use a dictionary to find common words
starting with thr, such as through. If that guess were correct, it would
reveal four more bytes in all of the ciphertexts, which can be used to
reveal even more. Similarly, you can use the dictionary to find words
ending in t.

This becomes even more effective for some plaintexts that we know
more about. If some HTTP data has the plaintext ent-Len in it, then
we can expand that to Content-Length:␣, revealing many more bytes.

While this technique works as soon as two messages are encrypted
with the same key, it’s clear that this becomes even easier with more
ciphertexts using the same key, since all of the steps become more ef-
fective:

• We get more cribbing positions.

• More plaintext bytes are revealed with each successful crib and
guess, leading to more guessing options elsewhere.

• More ciphertexts are available for any given position, making
guess validation easier and sometimes more accurate.

These are just simple ideas for breaking multi-time pads. While
they’re already quite effective, people have invented even more effec-
tive methods by applying advanced, statistical models based on natu-
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ral language analysis. This only demonstrates further just how broken
multi-time pads are. [30]

4.5 Remaining problems

Real one-time pads, implemented properly, have an extremely strong
security guarantee. It would appear, then, that cryptography is over:
encryption is a solved problem, and we can all go home. Obviously,
that’s not the case.

One-time pads are impractical: the key is at least as large as all
information you’d like to transmit put together. Plus, you’d have to
exchange those keys securely, ahead of time, with all people you’d like
to communicate with. We’d like to communicate securely with every-
one on the Internet, and that’s an impossibly large number of people.
Furthermore, since the keys have to consist of truly random data for
its security property to hold, key generation is fairly difficult and time-
consuming without specialized hardware.

One-time pads pose a trade off. It’s an algorithm with a security
guarantee, but it also has extremely impractical key exchange require-
ments. However, as we’ll see throughout this book, secure symmetric
encryption algorithms aren’t the problem. Cryptographers have de-
signed plenty of those, while practical key management remains one
of the toughest challenges facing modern cryptography. One-time
pads may solve a problem, but it’s the wrong problem.

While they may have their uses, they’re obviously not a panacea.
We need something with manageable key sizes while maintaining se-
crecy. We need ways to negotiate keys over the Internet with people
we’ve never met before.
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Block ciphers

Few false ideas have more firmly gripped the minds
of so many intelligent men than the one that, if they just
tried, they could invent a cipher that no one could break.

David Kahn

5.1 Description

A block cipher is an algorithm that allows us to encrypt blocks of a
fixed length. It provides an encryption function E, that takes a key k
and a plaintext block P , and produces a ciphertext block C:

C = E(k, P ) (5.1)

33
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The plaintext and ciphertext blocks are sequences of bytes. They
are always the same size as one another, and that size is fixed by the
block cipher: it’s called the block cipher’s block size.

Once we’ve encrypted plaintext blocks into ciphertext blocks, they
later have to be decrypted again to recover the original plaintext block.
This is done using a decryption function D, which takes the ciphertext
block C and the key k (the same one used to encrypt the block) as
inputs, and produces the original plaintext block P .

P = D(k,C) (5.2)

Or, in blocks:

A block cipher is a keyed permutation. In the set of possible blocks,
which is the set of all possible byte sequences of the cipher’s block size,
the block cipher maps every block to some other block. For illustration
purposes, we’ll look at a block cipher with a impractically tiny 3-bit
block size, so 23 = 8 possible blocks. Encryption would look like this:

The points a, b, c . . . are blocks. The arrows show which blocks
map to which blocks: that the block at the start of the arrow, encrypted
using E under key k, is mapped to the block at the end of the arrow.
For example, E(k, a) = b.

When you’re decrypting instead of encrypting, the block cipher
just computes the inverse permutation. We get the same illustrations,
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with all the arrows going in the other direction:

The only way to know which block maps to which other block, is
to know the key. A different key will lead to a completely different set
of arrows, for example under k′:

Knowing a bunch of (input, output) pairs shouldn’t give you any
information about any other (input, output) pairs1. As long as we’re
talking about a hypothetical perfect block cipher, there’s no easier way

1The attentive reader may have noticed that this breaks in the extremes: if you
know all but one of the pairs, then you know the last one by exclusion.
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to decrypt a block other than to “brute-force” the key: i.e. just try
every single one of them until you find the right one.

Our toy illustration block cipher only has 23 = 8 possible blocks.
Real, modern block ciphers have much larger block sizes, such as 128
bits. Mathematics tells us that there are n! (pronounced n factorial)
different permutations of an n element set. It’s defined as the product
of all of the numbers from 1 up to and including n:

n! = 1 · 2 · 3 · . . . · (n− 1) · n

Factorials grow incredibly quickly. For example, 5! = 120, 10! =
3628800, and the rate continues to increase. The number of permuta-
tions of the set of blocks of a cipher with a 128 bit block size is (2128)!.
Just 2128 is large already (it takes 38 digits to write it down), so (2128)!

is a mind-bogglingly huge number, impossible to comprehend. Com-
mon key sizes are only in the range of 128 to 256 bits, yielding 2128 to
2256 possibilities. That means that only a tiny fraction of all possible
permutations are possible. That’s okay: that tiny fraction is still more
than large enough that it’s impossible for an attacker to just try them
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all.
Of course, a block cipher should be as easy to compute as possible,

as long as it doesn’t sacrifice any of the above properties.

5.2 AES

The most common block cipher in current use is Advanced Encryp-
tion Standard (AES), the Advanced Encryption Standard. Prior to
being chosen as the Advanced Encryption Standard, the algorithm
was known as Rijndael. Rijndael defined a family of block ciphers,
with block sizes and key sizes that could be any multiple of 32 bits
between 128 bits and 256 bits. [15] When Rijndael became AES
through the Federal Information Processing Standards (FIPS) stan-
dardization process, the the parameters were restricted to a block size
of 128 bits and keys sizes of 128, 192 and 256 bits. [1]

REVIEW: Show how AES works internally?
There are no practical attacks known against AES. While there

have been some developments in the last few years, most of them in-
volve related-key attacks [9], some of them only on reduced-round
versions of AES [8].

A related key attack involves making some predictions about how
AES will behave with two different keys with some specific mathemat-
ical relation. Those predictions provide some information about what
identical (input, output) pairs will look like under those different keys.
Most of these attacks attempt to recover the key entirely, completely
breaking the encryption. While an ideal block cipher wouldn’t be vul-
nerable to a related key attack, no system in the real world should ever
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end up with such related keys. If it does, things have gone so com-
pletely wrong that all further bets are off.

5.3 DES and 3DES

The Data Encryption Standard (DES) is one of the oldest block ci-
phers that saw widespread use. It was published as an official FIPS
standard in 1977. It is no longer considered secure, mainly due to its
tiny key size of 56 bits. (The DES algorithm actually takes a 64 bit key
input, but the remaining 8 bits are only used for parity checking, and
are discarded immediately.) It shouldn’t be used in new systems. On
modern hardware, DES can be brute forced in less than a day. [19]

In an effort to extend the life of the DES algorithm, in a way that
allowed much of the spent hardware development effort to be reused,
people came up with 3DES: a scheme where input is first encrypted,
then decrypted, then encrypted again:

C = EDES(k1, DDES(k2, EDES(k3, p))) (5.3)

This scheme provides two improvements:

• By applying the algorithm several three times, the cipher be-
comes harder to attack directly through cryptanalysis.

• By having the option of using many more total key bits, spread
over the three keys, the set of all possible keys becomes much
larger, making brute-forcing impractical.2

2The set of all keys is commonly called the keyspace.
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The three keys could all be chosen independently (yielding 168 key
bits), or k3 = k1 (yielding 112 key bits), or k1 = k2 = k3, which, of
course, is just plain old DES (with 56 key bits). In the last keying op-
tion, the middle decryption reverses the first encryption, so you really
only get the effect of the last encryption. This is intended as a back-
wards compatibility mode for existing DES systems. If 3DES had
been defined as E(k1, E(k2, E(k3, p))), it would’ve been impossible
to use 3DES implementations for systems that required compatibility
with DES.

Some attacks on 3DES are known, reducing their effective secu-
rity. While breaking 3DES with the first keying option is currently
impractical, 3DES is a poor choice for any modern cryptosystem. The
security margin is already small, and continues to shrink as crypto-
graphic attacks improve and processing power grows.

Far better alternatives, such as AES, are available. Not only are they
more secure than 3DES, they are also generally much, much faster. On
the same hardware and in the same mode of operation (we’ll explain
what that means in the next chapter), AES-128 only takes 12.6 cycles
per byte, while 3DES takes up to 134.5 cycles per byte. [16] Despite
being worse from a security point of view, it is literally an order of
magnitude slower.

While more iterations of DES might increase the security margin,
they aren’t used in practice. Not only has the process never been stan-
dardized, but the performance picture only becomes worse when you
add more iterations of the DES algorithm, since more computation is
required for all those extra iterations. Furthermore, increasing the key
bits has diminishing security returns, only increasing the security level
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of the resulting algorithm by a smaller amount as the number of key
bits increases. While 3DES with keying option 1 has a key length of
168 bits, the effective security level is estimated at only 112 bits.

Even though 3DES is significantly worse in terms of performance
and slightly worse in terms of security, 3DES is still the workhorse
of the financial industry. With a plethora of standards already in ex-
istence and new ones continuing to be created, in such an extremely
technologically conservative industry where Fortran and Cobol still
reign supreme on massive mainframes, it will probably continue to be
used for many years to come, unless there are some large cryptanalytic
breakthroughs that threaten the security of 3DES.

TODO: Explain security levels? See also: explain entropy?

5.4 Remaining problems

Even with block ciphers, there are still some unsolved problems.
For example, we can only send messages of a very limited length:

the block length of the block cipher. Obviously, we’d like to be able to
send much larger messages, or, ideally, streams of indeterminate size.
We’ll address this problem with a stream cipher.

Although we have reduced the key size drastically (from the total
size all data ever sent under a one-time pad scheme versus a few bytes
for most block ciphers), we still need to address the issue of agreeing
on those few key bytes, potentially over an insecure channel. We’ll
address this problem in a later chapter with a key exchange protocol.
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6

Stream ciphers

6.1 Description

A stream cipher is a symmetric encryption algorithm that encrypts a
stream of bits. Ideally, that stream could be as long as we’d like; real-
world stream ciphers have limits, but they are normally sufficiently
large that they don’t pose a practical problem.

6.2 A naive attempt with block ciphers

Let’s try to build a stream cipher using the tools we already have. Since
we already have block ciphers, we could simply divide an incoming
stream into different blocks, and encrypt each block:

41
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abcdefgh︸ ︷︷ ︸ ijklmno︸ ︷︷ ︸ pqrstuvw︸ ︷︷ ︸ ...

↓ ↓ ↓︷ ︸︸ ︷
APOHGMMW

︷ ︸︸ ︷
PVMEHQOM

︷ ︸︸ ︷
MEEZSNFM ...

(6.1)

This scheme is called ECB mode, and it is one of the many ways
that block ciphers can be used to construct stream ciphers. Unfor-
tunately, while being very common in home-grown cryptosystems, it
poses very serious security flaws. For example, in ECB mode, identical
input blocks will always map to identical output blocks:

abcdefgh︸ ︷︷ ︸ abcdefgh︸ ︷︷ ︸ abcdefgh︸ ︷︷ ︸ ...

↓ ↓ ↓︷ ︸︸ ︷
APOHGMMW

︷ ︸︸ ︷
APOHGMMW

︷ ︸︸ ︷
APOHGMMW ...

(6.2)

At first, this might not seem like a particularly serious problem.
Assuming the block cipher is secure, it doesn’t look like an attacker
would be able to decrypt anything. By dividing the ciphertext stream
up into blocks, an attacker would only be able to see that a ciphertext
block, and therefore a plaintext block, was repeated.

We’ll now illustrate the many flaws of ECB mode with two at-
tacks. First, we’ll exploit the fact that repeating plaintext blocks result
in repeating ciphertext blocks, by visually inspecting an encrypted im-
age. Then, we’ll demonstrate that attackers can often decrypt messages
encrypted in ECB mode by communicating with the person perform-
ing the encryption.



6.2. A NAIVE ATTEMPT WITH BLOCK CIPHERS 43

Visual inspection of an encrypted stream

To demonstrate that this is, in fact, a serious problem, we’ll use a sim-
ulated block cipher of various block sizes and apply it to an image1.
We’ll then visually inspect the different outputs.

Because identical blocks of pixels in the plaintext will map to iden-
tical blocks of pixels in the ciphertext, the global structure of the image
is largely preserved.

As you can see, the situation appears to get slightly better with
larger block sizes, but the fundamental problem still remains: the
macrostructure of the image remains visible in all but the most ex-
treme block sizes. Furthermore, all but the smallest of these block
sizes are unrealistically large. For an uncompressed bitmap with three
color channels of 8 bit depth, each pixel takes 24 bits to store. Since
the block size of AES is only 128 bits, that would equate to 5.3 pixels
2 per block, significantly less than the larger block sizes in the exam-
ple. But AES is the workhorse of modern block ciphers—it can’t be
at fault, certainly not because of an insufficient block size.

When we look at a picture of what would happen with an idealized
encryption scheme, we notice that it looks like random noise. Keep
in mind that “looking like random noise” doesn’t mean something is
properly encrypted: it just means that we can’t inspect it using methods
this trivial.

1This particular demonstration only works on uncompressed bitmaps. For other
media, the effect isn’t significantly less damning: it’s just less visual.

2The line over the 3 in 5.3 means it repeats, so the value is 5.333 . . ..
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(a) Plaintext image, 2000 by 1400
pixels, 24 bit color depth.

(b) ECB mode ciphertext, 5 pixel
(120 bit) block size.

(c) ECB mode ciphertext, 30 pixel
(720 bit) block size.

(d) ECB mode ciphertext, 100
pixel (2400 bit) block size.

(e) ECB mode ciphertext, 400
pixel (9600 bit) block size.

(f ) Ciphertext under idealized en-
cryption.

Figure 6.1: Plaintext image with ciphertext images under idealized
encryption and ECB mode encryption with various block sizes. In-
formation about the macro-structure of the image clearly leaks. This
becomes less apparent as block sizes increase, but only at block sizes
far larger than typical block ciphers. Only the first block size (figure
b, a block size of 5 pixels or 120 bits) is realistic.
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Encryption oracle attack

In the previous section, we’ve focused on how an attacker can inspect
a ciphertext encrypted using ECB mode. That’s a passive, ciphertext-
only attack. It’s passive because the attacker doesn’t really interfere
in any communication; they’re simply examining a ciphertext. In this
section, we’ll study an active attack, where the attacker actively com-
municates with their target. We’ll see how the active attack can enable
an attacker to decrypt ciphertexts encrypted using ECB mode.

To do this, we’ll introduce a new concept called an oracle. For-
mally defined oracles are used in the study of computer science, but
for our purposes it’s sufficient to just say that an oracle is something
that will compute some particular function for you.

In our case, the oracle will perform a specific encryption for the
attacker, which is why it’s called an encryption oracle. Given some data
A chosen by the attacker, the oracle will encrypt that data, followed
by a secret suffix S, in ECB mode. Or, in symbols:

C = ECB(Ek, A∥S)

You can see why the concept of an oracle is important here: the
attacker would not be able to compute C themselves, since they do
not have access to the encryption key k or the secret suffix S. The
goal of the oracle is for those values to remain secret, but we’ll see
how an attacker can recover S by inspecting the ciphertext C for many
carefully chosen values of the prefix A.
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Decrypting a block using the oracle

The attacker starts by sending in a plaintext A that’s just one byte
shorter than the block size. That means the block that’s being en-
crypted will consist of those bytes, plus the first byte of S, which we’ll
call s0. The attacker remembers the encrypted block. They don’t know
the value of s0 yet, but now they do know the value of the first en-
crypted block: Ek(A∥s0). In the illustration, this is block CR1:

Then, the attacker tries a full-size block, trying all possible values
for the final byte. Eventually, they’ll find the value of s0; they know
the guess is correct because the resulting ciphertext block will match
the ciphertext block CR1 they remembered earlier.

The attacker can repeat this for the penultimate byte. They submit
a plaintext A that’s two bytes shorter than the block size. The oracle
will encrypt a first block consisting of that A followed by the first two
bytes of the secret suffix, s0s1. The attacker remembers that block.

Since the attacker already knows s0, they try A∥s0 followed by all
possible values of s1. Eventually they’ll guess correctly, which, again,
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they’ll know because the ciphertext blocks match:

The attacker can rinse and repeat, eventually decrypting an entire
block. This allows them to brute-force a block in p · b attempts, where
p is the number of possible values for each byte (so, for 8-bit bytes,
that’s 28 = 256) and b is the block size. Normally, they’d have to try
all of the possible combinations, which would be:
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p · p . . . · p︸ ︷︷ ︸
b positions

= pb

For a typical block size of 16 bytes (or 128 bits), brute forc-
ing would mean trying 25616 combinations. That’s a huge, 39-digit
number. It’s so large that trying all of those combinations is consid-
ered impossible. This attack allows an attacker to do it in at most
256 · 16 = 4096 tries, a far more manageable number.

Conclusion

In the real world, block ciphers are used in systems that encrypt large
amounts of data all the time. We’ve seen that when using ECB mode,
an attacker can both analyze ciphertexts to recognize repeating pat-
terns, and even decrypt messages when given access to an encryption
oracle.

Even when we use idealized block ciphers with unrealistic prop-
erties, such as block sizes of more than a thousand bits, an attacker
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ends up being able to decrypt the ciphertexts. Real world block ci-
phers only have more limitations than our idealized examples, such as
much smaller block sizes.

We aren’t even taking into account any potential weaknesses in
the block cipher. It’s not AES (or our test block ciphers) that cause
this problem, it’s our ECB construction. Clearly, we need something
better.

6.3 Block cipher modes of operation

One of the more common ways of producing a stream cipher is to use
a block cipher in a particular configuration. The compound system be-
haves like a stream cipher. These configurations are commonly called
modes of operation. They aren’t specific to a particular block cipher.

ECB mode, which we’ve just seen, is the simplest such mode of
operation. The letters ECB stand for electronic code book3. For reasons
we’ve already gone into, ECB mode is very ineffective. Fortunately,
there are plenty of other choices.

6.4 CBC mode

CBC mode, which stands for cipher block chaining, is a very com-
mon mode of operation where plaintext blocks are XORed with the
previous ciphertext block before being encrypted by the block cipher.

Of course, this leaves us with a problem for the first plaintext block:
there is no previous ciphertext block to XOR it with. Instead, we pick

3Traditionally, modes of operation seem to be referred to by a three-letter
acronym.
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an initialization vector (IV): a random number that takes the place of
the “first” ciphertext in this construction. Initialization vectors also
appear in many other algorithms. An initialization vector should be
unpredictable; ideally, they will be cryptographically random. They
do not have to be secret: IVs are typically just added to ciphertext
messages in plaintext.

The following diagram demonstrates encryption in CBC mode:

Decryption is the inverse construction, with block ciphers in de-
cryption mode instead of encryption mode:

While CBC mode itself is not inherently insecure (unlike ECB
mode), its particular use in TLS 1.0 was. This eventually led to
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the Browser Exploit Against SSL/TLS (BEAST) attack, which we’ll
cover in more detail in the section on SSL/TLS. The short version is
that instead of using unpredictable initialization vectors, for example
by choosing random ones, the previous ciphertext block was used. Un-
fortunately, it turns out that attackers figured out how to exploit that
property.

6.5 CBC bit flipping attacks

An interesting attack on CBC mode is called a bit flipping attack.
Using a CBC bit flipping attack, attackers can modify ciphertexts en-
crypted in CBC mode so that it will have a predictable effect on the
plaintext.

Suppose we have a CBC encrypted ciphertext. This could be, for
example, a cookie. We take a particular ciphertext block, and we flip
some bits in it. What happens to the plaintext?

When we “flip some bits”, we do that by XORing with a sequence
of bits, which we’ll call X . If the corresponding bit in X is 1, the bit
will be flipped; otherwise, the bit will remain the same.

When we try to decrypt the ciphertext block with the flipped bits,
we will get indecipherable4 nonsense. Remember how CBC decryp-
tion works: the output of the block cipher is XORed with the previous
ciphertext block to produce the plaintext block. Now that the input
ciphertext block Ci has been modified, the output of the block cipher
will be some random unrelated block, and, statistically speaking, non-
sense. After being XORed with that previous ciphertext block, it will

4Excuse the pun.
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still be nonsense. As a result, the produced plaintext block is still just
nonsense. In the illustration, this unintelligible plaintext block is P ′

i .
However, in the block after that, the bits we flipped in the ci-

phertext will be flipped in the plaintext as well! This is because, in
CBC decryption, ciphertext blocks are decrypted by the block cipher,
and the result is XORed with the previous ciphertext block. But since
we modified the previous ciphertext block by XORing it with X , the
plaintext block Pi+1 will also be XORed with X . As a result, the at-
tacker completely controls that ciphertext block, since they can just
flip the bits that aren’t the value they want them to be.

TODO: add previous illustration, but mark the path X takes to
influence P prime {i + 1} in red or something

This may not sound like a huge deal at first. If you don’t know the
plaintext bytes of that next block, you have no idea which bits to flip
in order to get the plaintext you want.

To illustrate how attackers can turn this into a practical attack, let’s
consider a website using cookies. When you register, your chosen user
name is put into a cookie. The website encrypts the cookie and sends
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it to your browser. The next time your browser visits the website, it
will provide the encrypted cookie; the website decrypts it and knows
who you are.

An attacker can often control at least part of the plaintext being
encrypted. In this example, the user name is part of the plaintext of
the cookie. Of course, the website just lets you provide whatever value
for the user name you want at registration, so the attacker can just add
a very long string of Z bytes to their user name. The server will happily
encrypt such a cookie, giving the attacker an encrypted ciphertext that
matches a plaintext with many such Z bytes in them. The plaintext
getting modified will then probably be part of that sequence of Z bytes.

An attacker may have some target bytes that he’d like to see in the
decrypted plaintext, for example, ;admin=1;. In order to figure out
which bytes they should flip (so, the value of X in the illustration),
they just XOR the filler bytes (ZZZ …) with that target. Because two
XOR operations with the same value cancel each other out, the two
filler values (ZZZ …) will cancel out, and the attacker can expect to see
;admin=1; pop up in the next ciphertext block:

P ′
i+1 = Pi+1 ⊕X

= Pi+1 ⊕ ZZZZZZZZZ⊕ ; admin = 1;

= ZZZZZZZZZ⊕ ZZZZZZZZZ⊕ ; admin = 1;

= ; admin = 1;

This attack is another demonstration of an important crypto-
graphic principle: encryption is not authentication! It’s virtually never
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sufficient to simply encrypt a message. It may prevent an attacker from
reading it, but that’s often not even necessary for the attacker to be able
to modify it to say whatever they want it to.

6.6 Padding

So far, we’ve conveniently assumed that all messages just happened to
fit exactly in our system of block ciphers, be it CBC or ECB. That
means that all messages happen to be a multiple of the block size,
which, in a typical block cipher such as AES, is 16 bytes. Of course,
real messages can be of arbitrary length. We need some scheme to
make them fit. That process is called padding.

Padding with zeroes (or some other pad byte)

One way to pad would be to simply append a particular byte value until
the plaintext is of the appropriate length. To undo the padding, you
just remove those bytes. This scheme has an obvious flaw: you can’t
send messages that end in that particular byte value, or you will be
unable to distinguish between padding and the actual message.

PKCS#5/PKCS#7 padding

A better, and much more popular scheme, is PKCS#5/PKCS#7
padding.

PKCS#5, PKCS#7 and later CMS padding are all more or less the
same idea5. Take the number of bytes you have to pad, and pad them

5Technically, PKCS#5 padding is only defined for 8 byte block sizes, but the idea
clearly generalizes easily, and it’s also the most commonly used term.
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with that many times the byte with that value. For example, if the
block size is 8 bytes, and the last block has the three bytes 12 34 45,
the block becomes 12 34 45 05 05 05 05 05 after padding.

If the plaintext happened to be exactly a multiple of the block size,
an entire block of padding is used. Otherwise, the recipient would
look at the last byte of the plaintext, treat it as a padding length, and
almost certainly conclude the message was improperly padded.

This scheme is described in [22].

6.7 CBC padding attacks

We can refine CBC bit flipping attacks to trick a recipient into de-
crypting arbitrary messages!

As we’ve just discussed, CBC mode requires padding the message
to a multiple of the block size. If the padding is incorrect, the recipient
typically rejects the message, saying that the padding was invalid. We
can use that tiny bit of information about the padding of the plaintext
to iteratively decrypt the entire message.

The attacker will do this, one ciphertext block at a time, by trying
to get an entire plaintext block worth of valid padding. We’ll see that
this tells them the what the decryption of their target ciphertext block
is, under the block cipher. We’ll also see that you can do this effi-
ciently and iteratively, just from that little leak of information about
the padding being valid or not.

It may be helpful to keep in mind that a CBC padding attack does
not actually attack the padding for a given message; instead the at-
tacker will be constructing paddings to decrypt a message.

To mount this attack, an attacker only needs two things:
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1. A target ciphertext to decrypt

2. A padding oracle: a function that takes ciphertexts and tells the
attacker if the padding was correct

In this chapter, we’ll assume that PKCS#5/PKCS#7 padding is
being used, since that’s the most popular option. The attack is general
enough to work on other kinds of padding, with minor modifications.

Decrypting the first byte

The attacker fills a block with arbitrary bytes R = r1, r2 . . . rb. They
also pick a target block Ci from the ciphertext that they’d like to de-
crypt. The attacker asks the padding oracle if R∥Ci has valid padding.
Statistically speaking, such a random plaintext block probably won’t
have valid padding: the odds are in the half-a-percent ballpark. If by
pure chance the message happens to already have valid padding, they
can simply skip the next step.
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Next, the attacker tries to modify the message so that it does
have valid padding. They can do that by playing with the last byte
of the plaintext: eventually that byte will be 01, which is always valid
padding. In order to modify the last byte of a plaintext block, the
attacker modifies the last byte of the previous ciphertext block. This
works exactly like it did with CBC bit flipping attacks. That previous
ciphertext block is the block R, so the byte being modified is the last
byte of R, rb.

One way to try all values for that last byte of R is to XOR it with
all values up to 256, since a byte has 256 possible values. Eventually,
the padding oracle will report that for some ciphertext block R, the
decrypted plaintext of R∥Ci has valid padding.

Discovering the padding length

The oracle has just told the attacker that for our chosen value of R,
the plaintext of R∥Ci has valid padding. Since we’re working with
PKCS#5 padding, that means that the plaintext block Pi ends in one
of the following byte sequences:

• 01

• 02 02

• 03 03 03

• …

The first option (01) is much more likely than the others, since
it only requires one byte to have a particular value. The attacker is
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modifying that byte to take every possible value, so it is quite likely
that they happened to stumble upon 01. All of the other valid padding
options not only require that byte to have some particular value, but
also one or more other bytes. For an attacker to end up with a valid
01 padding, they just have to try every possible byte; for an attacker to
end up with a valid 02 02 padding, they have to try every possible byte
and happen to have picked a block that has a 02 in the second-to-last
position.

In order to successfully decrypt the message, we still need to figure
out which one of those options is the actual value of the padding. To
do that, we try to discover the length of the padding by modifying
bytes starting at the left-hand side of Pi until the padding becomes
invalid again. As with everything else in this attack, we modify those
bytes in Pi by modifying the equivalent bytes in our chosen block R.
As soon as padding breaks, you know that the last byte you modified
was part of the valid padding, which tells you how many padding bytes
there are. Since we’re using PKCS#5 padding, that also tells you what
their value is.

Let’s illustrate this with an example. Suppose we’ve successfully
found some block R so that R∥Ci has valid padding. Let’s say that
padding is 03 03 03. Normally, you wouldn’t know this; the point of
this procedure is to discover what that padding is. Suppose the block
size is 8 bytes. So, we know that Pi is currently:

p0p1p2p3p4p5030303 (6.3)

Where p0 …are some bytes of the plaintext. Their actual value
doesn’t matter: the only thing that matters is that they’re not part of
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the padding. When we modify the first byte of R, we’ll cause a change
in the first byte of Pi, so that p0 becomes some other byte p′0:

p′0p1p2p3p4p5030303 (6.4)

As you can see, this doesn’t affect the validity of the padding. The
same goes for p1, p2, p3, p4 and p5. However, when we modify the
byte after that (say, we turn that first 03 into a 02), Pi looks like this:

p′0p
′
1p

′
2p

′
3p

′
4p

′
5020303 (6.5)

Since 02 03 03 isn’t valid PKCS#5 padding, the server will reject
the message. At that point, we know that once we modify six bytes,
the padding breaks. That means the sixth byte is the first byte of the
padding. Since the block is 8 bytes long, we know that the padding
consists of bytes 6, 7 and 8, which means that the padding is three
bytes long, and, in PKCS#5, equal to 03 03 03.

For the next section, we’ll assume that it was just 01, since that is
the most common case. The attack doesn’t really change depending on
the length of the padding. If you guess more bytes of padding correctly,
that just means that there are fewer remaining bytes you will have to
guess manually. (This will become clear once you understand the rest
of the attack.)

Decrypting one byte

At this point, we’ve actually already successfully decrypted the last byte
of the target block of ciphertext! (Actually, we’ve decrypted as many
bytes as we have valid padding; we’re just assuming the worst case sce-
nario that that’s only a single byte.) Since we know that the last byte
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of the decrypted ciphertext block Ci (we’ll call that byte D(Ci)[b]),
XORed with our iteratively found value rb, is 01:

D(Ci)[b]⊕ rb = 01

We can just move the XOR operation to the other side, and we
get:

D(Ci)[b] = 01⊕ rb

The attacker has now tricked the receiver into decrypting the last
byte of the block Ci.

Decrypting subsequent bytes

Next, the attacker tricks the receiver into decrypting the next byte.
Remember the previous equation, where we reasoned that the last byte
of the plaintext was 01:

D(Ci)[b]⊕ rb = 01

Now, we’d like to get that byte to say 02, to produce an almost valid
padding: the last byte would be correct for a 2-byte PKCS#5 padding
(02 02), but that second-to-last byte probably isn’t 02 yet. To do that,
we XOR with 01 to cancel the 01 that’s already there (since two XORs
with the same value cancel each other out), and then we XOR with 02

to get 02:

D(Ci)[b]⊕ rb ⊕ 01⊕ 02 = 01⊕ 01⊕ 02

= 02
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The attacker uses that value for the last byte. Then, they try all
possible values for the second-to-last byte (index b − 1). Eventually,
one of them will cause the message to have valid padding. Since we
modified the random block so that the final byte of the plaintext will
be 02, the only byte in the second-to-last position that can cause valid
padding is 02 as well. Using the same math as above, the attacker has
recovered the second-to-last byte.

Then, it’s just rinse and repeat. The last two bytes are modified to
create an almost-valid padding of 03 03, then the third byte from the
right is modified until the padding is valid, and so on. Repeating this
for all the bytes in the block means the attacker can decrypt the entire
block; repeating it for different blocks means the attacker can read the
entire message.

This attack has proven to be very subtle and hard to fix. First of all,
messages should be authenticated, as well as encrypted. That would
cause modified messages to be rejected. However, many systems de-
crypted (and removed padding) before authenticating the message; so
the information about the padding being valid already leaked.

You might consider to just get rid of the “invalid padding” mes-
sage; declaring the message invalid without specifying why it was in-
valid. That turns out to only be a partial solution for systems that
decrypt before authenticating. Those systems would typically reject
messages with an invalid padding slightly faster than messages with a
valid padding. After all, they didn’t have to do the authentication step:
if the padding is invalid, the message can’t possibly be valid.

That discrepancy was commonly exploited as well. By measur-
ing how long it takes the recipient to reject the message, the attacker
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can tell if the recipient performed the authentication step. That tells
them if the padding was correct or not, providing the padding oracle
to complete the attack.

TODO: Remove TODO about Vaudenay’s padding attack later,
refer to this

6.8 Native stream ciphers

In addition to block ciphers being used in a particular mode of opera-
tion, there are also “native” stream ciphers algorithms that are designed
from the ground up to be a stream cipher.

The most common type of stream cipher is called a synchronous
stream cipher. These algorithms produce a long stream of pseudo-
random bits from a secret symmetric key. This stream, called the
keystream, is then XORed with the plaintext to produce the cipher-
text. Decryption is the identical operation as encryption, just repeated:
the keystream is produced from the key, and is XORed with the ci-
phertext to produce the plaintext.

TODO: Explain parallel with one-time pads
Historically, native stream ciphers have had their issues. For exam-

ple, the NESSIE competition, an international competition for new
cryptographic primitives, did not result in any new stream ciphers: all
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of the participants were broken before the competition ended. RC4,
one of the most popular stream ciphers, has had serious known issues
for years. By comparison, some of the constructions using block ci-
phers seem bulletproof.

Fortunately, more recently, several new cipher algorithms provide
new hope that we can get practical, secure and performant stream ci-
phers.

6.9 RC4

By far the most common stream cipher in common use on desktop and
mobile devices is RC4.

RC4 is sometimes also called ARCFOUR or ARC4, which stands
for alleged RC4. While its source code has been leaked and its imple-
mentation is now well-known, RSA Security, where RC4 originated
and who still hold the trademark on the name, has never acknowledged
that it is the real algorithm.

It quickly came popular because it’s very simple and very fast. It’s
not just extremely simple to implement, it’s also extremely simple to
apply. Being a synchronous stream cipher, there’s little that can go
wrong; with a block cipher, you’d have to worry about things like
modes of operation and padding. Clocking in at around 13.9 cycles
per byte, it’s comparable to AES-128 in CTR (12.6 cycles per byte)
or CBC (16.0 cycles per byte) modes. AES came out a few years after
RC4; when RC4 was designed, the state of the art was 3DES, which
was excruciatingly slow by comparison (134.5 cycles per byte in CTR
mode). [16]
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This algorithm is, unfortunately, quite broken. To better under-
stand just how broken, we’ll take a look at how RC4 works. The de-
scription requires understanding modular addition; if you aren’t famil-
iar with it, you may want to review the appendix section on modular

addition.
Everything in RC4 revolves around a state array and two indexes

into that array. The array consists of 256 bytes forming a permutation:
that is, all possible index values occur exactly once as a value in the
array. That means it maps every possible byte value to every possible
byte value: usually different, but sometimes the same one. We know
that it’s a permutation because S starts as one, and all operations that
modify S always swap values, which obviously keeps it a permutation.

RC4 consists of two major components that work on these indexes
i, j and the state array S:

• The key scheduling algorithm, which produces an initial state
array S for a given key.

• The pseudorandom generator, which produces pseudorandom
bytes from the state array S, modifying it as it goes along.

The key scheduling algorithm

The key scheduling algorithm starts with the identity permutation. That
means that each byte is mapped to itself.
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Then, the key is mixed in with the state. This is done by iterating
over every element of the state. The j index is found by adding the
current value of j (starting at 0) with the next byte of the key, and the
current state element:

Once j has been found, S[i] and S[j] are swapped:

This process is repeated for all the elements of S. If you run out
of key bytes, you just wrap around on the key. This explains why RC4
accepts keys from anywhere between 1 and 256 bytes long. Usually,
128 bit (16 byte) keys are used, which means that each byte in the key
is used 16 times.

Or, in Python:

from itertools import cycle
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def key_schedule(key):

s = range(256)

key_bytes = cycle(ord(x) for x in key)

j = 0

for i in xrange(256):

j = (j + s[i] + next(key_bytes)) % 256

s[i], s[j] = s[j], s[i]

return s

The pseudorandom generator

The pseudorandom generator is responsible for producing pseudoran-
dom bytes from the state S. For each index i, it computes j = j+S[i]

(j starts at 0). Then, S[i] and S[j] are swapped:

To produce the output byte, S[i] and S[j] are added together.
Their sum is used as an index into S; the value at S[S[i] + S[j]] is
the keystream byte Ki:
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We can express this in Python:

def pseudorandom_generator(s):

j = 0

for i in cycle(range(256)):

j = (j + s[i]) % 256

s[i], s[j] = s[j], s[i]

k = (s[i] + s[j]) % 256

yield s[k]

Attacks

There are many attacks on RC4-using cryptosystems where RC4 isn’t
really the issue, but are caused by things like key reuse or failing to au-
thenticate the message. We won’t discuss these in this section. Right
now, we’re only talking about issues specific to the RC4 algorithm it-
self.

Intuitively, we can understand how an ideal stream cipher would
produce a stream of random bits. After all, if that’s what it did, we’d
end up in a situation quite similar to that of a one-time pad.
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The stream cipher is ideal if the best way we have to attack it is to
try all of the keys, a process called brute-forcing the key. If there’s an
easier way, such as through a bias in the output bytes, that’s a flaw of
the stream cipher.

Throughout the history of RC4, people have found many such bi-
ases. In the mid-nineties, Andrew Roos noticed two such flaws:

• The first three bytes of the key is correlated with the first byte of
the keystream.

• The first few bytes of the state are related to the key with a simple
(linear) relation.

For an ideal stream cipher, the first byte of the keystream should
tell me nothing about the key. In RC4, it gives me some information
about the first three bytes of the key. The latter seems less serious: after
all, the attacker isn’t supposed to know the state of the cipher.
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As always, attacks never get worse. They only get better.

Adi Shamir and Itsik Mantin showed that the second byte pro-
duced by the cipher is twice as likely to be zero as it should be.
Other researchers showed similar biases in the first few bytes of the
keystream. This sparked further research by Mantin, Shamir and
Fluhrer[18], showing large biases in the first bytes of the keystream.
They also showed that knowing even small parts of the key would al-
low attackers to make strong predictions about the state and outputs
of the cipher.

Most modern stream ciphers provide a way to combine a long-
term key with a nonce, to produce multiple different keystreams from
the same long-term key. RC4, by itself, doesn’t do that. The most
common approach was also the simplest concatenate the long-term
key k and the nonce n: k∥n, taking advantage of RC4’s flexible key
length requirements. This scheme meant attackers knew some bits of
the key, allowing them to slowly recover the long-term key from a large
amount of messages (around 224 to 226).

WEP, a standard for protecting wireless networks that was pop-
ular at the time, was heavily affected by this attack, since it used this
simplistic nonce combination scheme. A scheme where the long-term
key and the nonce are combined using a cryptographic hash function
wouldn’t have this weakness; TLS and other standards were therefore
not affected.

Again, attacks only get better. Andreas Klein showed more ex-
tensive correlation between the key and the keystream[24]. Instead of
tens of millions of messages with the Fluhrer, Mantin, Shamir attacks,
attackers now only needed several tens of thousands messages to make
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the attack practical. This was applied against WEP with great effect.

In 2013, a team of researchers at Royal Holloway in London pro-
duced a combination of devastating practical attacks[3]. They demon-
strated two attacks.

The first attack is based on single-byte biases in the first 256 bytes
of the keystream. By performing statistical analysis on the keystreams
produced by a large number of keys, they were able to analyze the
already well-known biases in the early keystream bytes of RC4 in very
greater detail.

TODO: illustrate: http://www.isg.rhul.ac.uk/tls/RC4_keystream_
dist_2_45.txt

The second attack is based on double byte biases anywhere in the
keystream. It turns out that adjacent bytes of the keystream have an
exploitable relation, whereas in an ideal stream cipher you would ex-
pect them to be completely independent.

http://www.isg.rhul.ac.uk/tls/RC4_keystream_dist_2_45.txt
http://www.isg.rhul.ac.uk/tls/RC4_keystream_dist_2_45.txt
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Byte pair Byte position (mod 256) i Probability
(0, 0) i = 1 2−16(1 + 2−9)

(0, 0) i ̸∈ {1, 255} 2−16(1 + 2−8)

(0, 1) i ̸∈ {0, 1} 2−16(1 + 2−8)

(0, i+ 1) i ̸∈ {0, 255} 2−16(1 + 2−8)

(i+ 1, 255) i ̸= 254 2−16(1 + 2−8)

(255, i+ 1) i ̸∈ {1, 254} 2−16(1 + 2−8)

(255, i+ 2) i ̸∈ {0, 253, 254, 255} 2−16(1 + 2−8)

(255, 0) i = 254 2−16(1 + 2−8)

(255, 1) i = 255 2−16(1 + 2−8)

(255, 2) i ∈ {0, 1} 2−16(1 + 2−8)

(255, 255) i ̸= 254 2−16(1 + 2−8)

(129, 129) i = 2 2−16(1 + 2−8)

This table may seem a bit daunting at first. The probability ex-
pression in the rightmost column may look a bit complex, but there’s
a reason it’s expressed that way. Suppose that RC4 was a good stream
cipher, and all values occurred with equal probability. Then you’d ex-
pect the probability for any given byte value to be 2−8 since there are
28 different byte values. If RC4 was a good stream cipher, two adja-
cent bytes would both each have probability 2−8, so any given pair of
two bytes would have probability 2−8 · 2−8 = 2−16. However, RC4
isn’t an ideal stream cipher, so these properties aren’t true. By writing
the probability in the 216(1 + 2−k) form, it’s easier to see how much
RC4 deviates from what you’d expect from an ideal stream cipher.

So, let’s try to read the first line of the table. It says that when
the first byte i = 1 of any 256-byte chunk from the cipher is 0, then
the byte following it is slightly more likely ((1 + 2−9 times as likely,
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to be exact) to be 0 than for it to be any other number. We can also
see that when one of the keystream bytes is 255, you can make many
predictions about the next byte, depending on where it occurs in the
keystream. It’s more likely to be 0, 1, 2, 255, or the position in the
keystream plus one or two.

TODO: demonstrate attack success
Again, attacks only get better. These attacks have primarily fo-

cused on the cipher itself, and haven’t been fully optimized for practi-
cal attacks on, say, web services. The attacks can be greatly improved
with some extra information about the plaintext you’re attempting to
recover. For example, HTTP cookies are often base-64 or hex en-
coded.

6.10 Salsa20

Salsa20 is a newer stream cipher designed by Dan Bernstein. Bern-
stein is well-known for writing a lot of open source (public domain)
software, a lot of which is either directly security related or built with
computer security very much in mind.

There are two minor variants of Salsa20, called Salsa20/12 and
Salsa20/8, which are simply the same algorithm except with 12 and 8
rounds6 respectively, down from the original 20. ChaCha is another,
orthogonal tweak of the Salsa20 cipher, which tries to increase the
amount of diffusion per round while maintaining or improving per-
formance. ChaCha doesn’t have a “20” after it; specific algorithms do

6Rounds are repetitions of an internal function. Typically a number of rounds
are required to make a algorithm effective work; attacks often start on reduced-round
versions of an algorithm.
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have a number after them (ChaCha8, ChaCha12, ChaCha20), but
that refers to the number of rounds.

This block cipher is among the state of the art of modern stream
ciphers. As of time of writing, there are no known attacks against
Salsa20, ChaCha20, nor against their reduced-round variants. It is
also pretty fast. For long streams, it takes about 4 cycles per byte for
the full-round version, about 3 cycles per byte for the 12-round ver-
sion and about 2 cycles per byte for the 8-round version, on modern
Intel processors [7] and modern AMD processors [16]. To put that
into comparison, that’s more than three times faster than RC4 7, ap-
proximately three times faster than AES-CTR with a 128 bit key at
12.6 cycles per byte, and roughly in the ballpark of AES GCM mode8

with specialized hardware instructions.

Salsa20 has one particularly interesting property. It’s possible to
“jump” to a particular point in the keystream without computing all
previous bits. This can be useful, for example, if a large file is en-
crypted, and you’d like to be able to do random reads in the middle of
the file. While many encryption schemes require the entire file to be
decrypted, with Salsa20, you can just select the portion you need. An-
other construction that has this property is a mode of operation called
CTR mode, which we’ll talk about later.

7The quoted bencmarks don’t mention RC4 but MARC4, which stands for
“modified alleged RC4”. The RC4 section explains why it’s “alleged”, and modified
means it throws away the first 256 bytes because of a weakness in RC4.

8GCM mode is an authenticated encryption mode, which we will see in more
detail in a later chapter.
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6.11 Native stream ciphers versus modes of
operation

Some texts only consider native stream ciphers to be stream ciphers.
This book emphasizes what the functionality of the algorithm is. Since
both block ciphers in a mode of operation and a native stream cipher
take a secret key and can be used to encrypt a stream, and the two can
usually replace each other in a cryptosystem, we just call both of them
stream ciphers and be done with it.

We will further emphasize the tight link between the two with
CTR mode, a mode of operation which produces a synchronous stream
cipher. While there are also modes of operation (like OFB and CFB)
that can produce self-synchronizing stream ciphers, these are far less
common, and not discussed here.

6.12 CTR mode

CTR mode, short for counter mode, is a mode of operation that works
by concatenating a nonce (which stands for a n/umber used /once) and
a counter. The counter is incremented with each block, and padded
with zeroes so that the whole is as long as the block size. The resulting
concatenated string is run through a block cipher. The outputs of the
block cipher are then used as the keystream.
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This illustration shows a single input blockN∥00 . . . ∥i, consisting
of nonce N , current counter value i and padding, being ran though
block cipher E using key k to produce keystream block Si, which is
then XORed with the plaintext block Pi to produce ciphertext block
Ci.

Obviously, to decrypt, you do the exact same thing again, since
XORing a bit with the same value twice always produces the original
bit: pi ⊕ si ⊕ si = pi. As a consequence, CTR encryption and de-
cryption is the same thing: in both cases you produce the keystream,
and you XOR either the plaintext or the ciphertext with it in order to
get the other one.

For CTR mode to be secure, it is critical that nonces aren’t reused.
If they are, the entire keystream will be repeated, allowing an attacker
to mount multi-time pad attacks.

This is different from an initialization vector such as the one used
by CBC. An IV has to be unpredictable. An attacker being able to
predict a CTR nonce doesn’t really matter: without the secret key, he
has no idea what the output of the block cipher (the sequence in the
keystream) would be.

Like Salsa20, CTR mode has the interesting property that you can
jump to any point in the keystream easily: just increment the counter
to that point. The Salsa20 paragraph on this topic explains why that
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might be useful.
Another interesting property is that since none of the computa-

tions depend on any previous computations, both encryption and de-
cryption are trivial to compute in parallel.

6.13 Stream cipher bit flipping attacks

Stream ciphers, such as native stream ciphers or a block cipher in CTR
mode, are also vulnerable to a bit flipping attack. It’s similar to CBC
bit flipping attacks in the sense that an attacker flips several bits in the
ciphertext, and that causes some bits to be flipped in the plaintext.

This attack is actually much simpler to perform on stream ciphers
than it is on CBC mode. First of all, the bits flipped affect the exact
same bit in the ciphertext, not a bit in the following block. It only
affects that bit; in the CBC bit flipping attacks, the plaintext of the
modified block is scrambled. Since the attacker is modifying a se-
quence of bytes and not a sequence of blocks, they’re not limited to a
block size.

TODO illustrate
This is yet another example of why authentication has to go hand

in hand with encryption. If the message is properly authenticated, the
recipient can simply reject the modified messages, and the attack is
foiled.

6.14 Authenticating modes of operation

There are other modes of operation that provide authentication as well
as encryption at the same time. Since we haven’t discussed authenti-
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cation at all yet, we’ll handle these later.

6.15 Remaining problem

We now have tools that will encrypt large streams of data using a small
key. However, we haven’t actually discussed how we’re going to agree
on that key. As noted in a previous chapter, to communicate between
n people, we need n2 key exchanges. While the key to be exchanged
is a lot smaller now, the fundamental problem of the impossibly large
number of key exchanges hasn’t been solved yet. Next, we’ll look at
key exchange protocols, protocols that allow us to agree on a secret
key over an insecure medium.

Additionally, we’ve seen that encryption isn’t enough to provide
security: without authentication, it’s easy for attackers to modify the
message, and in many flawed systems even decrypt messages. In a
future chapter, we’ll discuss how to authenticate messages, to prevent
attackers from modifying them.





..

7

Key exchange

7.1 Description

Key exchange protocols attempt to solve a problem that, at first glance,
seems impossible. Alice and Bob, who’ve never met before, have to
agree on a secret value. The channel they use to communicate is inse-
cure: we’re assuming that everything they send across the channel is
being eavesdropped on.

We’ll demonstrate such a protocol here. Alice and Bob will end up
having a shared secret, only communicating over the insecure channel.
Despite Eve having literally all of the information Alice and Bob send
to each other, she can’t use any of that information to figure out their
shared secret.

That protocol is called Diffie-Hellman, named after Whitfield

79
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Diffie and Martin Hellman, the two cryptographic pioneers who dis-
covered it. They suggest calling the protocol Diffie-Hellman-Merkle
key exchange, to honor the contributions of Ralph Merkle. While
his contributions certainly deserve honoring, that term hasn’t really
caught on much. For the benefit of the reader we’ll use the more com-
mon term.

Practical implementations of Diffie-Hellman rely on mathemat-
ical problems that are believed to be very complex to solve in the
“wrong” direction, but easy to compute in the “right” direction. Un-
derstanding the mathematical implementation isn’t necessary to un-
derstand the principle behind the protocol. Most people also find it
a lot easier to understand without the mathematical complexity. So,
we’ll explain Diffie-Hellman in the abstract first, without any mathe-
matical constructs. Afterwards, we’ll look at two practical implemen-
tations.

7.2 Abstract Diffie-Hellman

In order to describe Diffie-Hellman, we’ll use an analogy based on
mixing colors. We can mix colors according to the following rules:

• It’s very easy to mix two colors into a third color.

• Mixing two or more colors in different order results in the same
color.

• Mixing colors is one-way. It’s impossible to determine if, let
alone which, multiple colors were used to produce a given color.
Even if you know it was mixed, and even if you know some of the
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colors used to produce it, you have no idea what the remaining
color(s) were.

We’ll demonstrate that with a mixing function like this one, we
can produce a secret color only known by Alice and Bob. Later, we’ll
simply have to describe the concrete implementation of those func-
tions to get a concrete key exchange scheme.

To illustrate why this remains secure in the face of eavesdroppers,
we’ll walk through an entire exchange with Eve, the eavesdropper, in
the middle. Eve is listening to all of the messages sent across the net-
work. We’ll keep track of everything she knows and what she can
compute, and end up seeing why Eve can’t compute Alice and Bob’s
shared secret.

To start the protocol, Alice and Bob have to agree on a base color.
They can communicate that across the network: it’s okay if Eve hears.
Typically, this base color is a fixed part of the protocol; Alice and Bob
don’t need to communicate it. After this step, Alice, Bob and Eve all
have the same information: the base color.

Alice and Bob both pick a random color, and they mix it with the
base color.
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At the end of this step, Alice and Bob know their respective secret
color, the mix of the secret color and the base color, and the base color
itself. Everyone, including Eve, knows the base color.

They then send both of their mixed colors over the network. Eve
sees both mixed colors: but she can’t figure out what either of Alice
and Bob’s secret colors are. Even though she knows the base, she can’t
“un-mix” the colors sent over the network. 1

At the end of this step, Alice and Bob know the base, their re-
spective secrets, their respective mixed colors, and each other’s mixed
colors. Eve knows the base color and both mixed colors.

1While this might seem like an easy operation with black-and-white approxima-
tions of color mixing, keep in mind that this is just a failure of the illustration: our
assumption was that this was hard.
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Once Alice and Bob receive each other’s mixed color, they add
their own secret color to it. Since the order of the computation doesn’t
matter, they’ll both end up with the same secret.

Eve can’t perform that computation. She could using either secret,
since she has both the mixed secrets, but she has neither.
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7.3 Diffie-Hellman with discrete logarithms

This section describes a practical implementation of the abstract
Diffie-Hellman algorithm, based on the discrete logarithm problem.
It is intended to provide some mathematical background, and requires
modular arithmetic to understand. If you are unfamiliar with modular
arithmetic, you can either skip this chapter, or first read the mathe-
matical background appendix.

Discrete log Diffie-Hellman is based on the idea that computing
y in the following equation is easy (at least for a computer):

y ≡ gx (mod p) (7.1)

However, computing x given y, g and p is believed to be very hard.
This is called the discrete logarithm problem, because a similar opera-
tion without the modular arithmetic is called a logarithm.

This is just a concrete implementation of the abstract Diffie-
Hellman process we discussed earlier. The common base color is a
large prime p and the base g. The “color mixing” operation is the equa-
tion given above, where x is the input value and y is the resulting mixed
value.

When Alice or Bob select their random numbers rA and rB , they
mix them with the base to produce the mixed numbers mA and mB :

mA = grA (mod p) (7.2)

mB = grB (mod p) (7.3)

These numbers are sent across the network where Eve can see
them. The premise of the discrete logarithm problem is that that’s
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okay, because figuring out r in m = gr (mod p) is supposedly very
hard.

Once Alice and Bob have each other’s mixed numbers, they add
their own secret number to it. For example, Bob would compute:

s = (grA)rB (mod p) (7.4)

While Alice’s computation looks different, they get the same re-
sult, because (grA)rB = (grB )rA (mod p). This is the shared secret.

Because Eve doesn’t have rA or rB , she can not perform the equiv-
alent computation: she only has the base number g and mixed numbers
mA = grA (mod p) and mB = grB (mod p) , which are useless to
her. She needs either rA or rB (or both) to make the computation
Alice and Bob do.

TODO: Say something about active MITM attacks where the at-
tacker picks smooth values to produce weak secrets?

7.4 Diffie-Hellman with elliptic curves

This section describes a practical implementation of the abstract
Diffie-Hellman algorithm, based on the elliptic curve discrete loga-
rithm problem. It is intended to provide some mathematical back-
ground, and requires a (very basic) understanding of the mathematics
behind elliptic curve cryptography. If you are unfamiliar with elliptic
curves, you can either skip this chapter, or first read the mathematical
background appendix.

One of the benefits of the elliptic curve Diffie-Hellman variant is
that the required key size is much, much smaller than the variant based
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on the discrete log problem. This is because the fastest algorithms for
breaking the discrete log problem have a larger asymptotic complexity
than their elliptic curve variants. For example, one of the fastest al-
gorithms for attacking discrete log Diffie-Hellman, the function field
sieve, has complexity:

O

(
exp
((

64

9
logn

) 1
3

(log logn) 2
3

))
On the other hand, the fastest algorithms that could be used to

break the elliptic curve discrete log problem all have complexity:

O(
√
n)

Relatively speaking, that means that it’s much harder to solve the
elliptic curve problem than it is to solve the regular discrete log prob-
lem, using state of the art algorithms for both. The flip side of that
is that for equivalent security levels, the elliptic curve algorithm needs
much smaller key sizes[28][23]2:

Security level in bits Discrete log key bits ECC key bits
56 512 112
80 1024 160

112 2048 224
128 3072 256
256 15360 512

2These figures are actually for the RSA problem versus the equivalent EC prob-
lem, but their security levels are sufficiently close to give you an idea.
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7.5 Remaining problems

Using Diffie-Hellman, we can agree on shared secrets across an in-
secure Internet, safe from eavesdroppers. However, while n attacker
may not be able to simply get the secret from eavesdropping, an ac-
tive attacker can still break the system. If an attacker (Mallory) is in
between Alice and Bob, they can still perform the Diffie-Hellman pro-
tocol twice: once with Alice, where the attacker pretends to be Bob,
and once with Bob, where the attacker pretends to be Alice.

Alice and Bob will have a shared secret, but the secret is shared
with Mallory. The attacker can then simply take all the messages they
get from one person and send them to the other, they can look at the
plaintext messages, remove messages, and they can also modify them
in any way they choose.

To make matters worse, even if one of the two participants was
somehow aware that this was going on, they would have no way to get
the other party to believe them. After all: the attacker is the one with
the shared secrets that check out, not the intended participant.

While Diffie-Hellman successfully produced a shared secret be-
tween sender and receiver, there’s clearly some pieces of the puzzle still
missing. We need tools that help us authenticate Alice to Bob and vice
versa, and we need tools that help guarantee message integrity: that
the messages the recipient receives are in fact the messages the sender
intended to send.
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Public-key encryption

8.1 Description

So far, we have only done secret-key encryption. Suppose, that you
could have a cryptosystem that didn’t involve a single secret key, but
instead had a key pair: one public key, which you freely distribute,
and a private one, which you keep to yourself. This is called public-
key encryption. People can encrypt information to you by using your
public key. The information is then impossible to decipher without
your private key.

For a long time, people thought this was impossible. However,
starting in the 1970s, such algorithms started appearing. The first
publicly available encryption scheme was produced by three cryptog-
raphers from MIT: Ron Rivest, Adi Shamir and Leonard Adleman.
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The algorithm they published is still the one most common one today,
and carries the first letters of their last names: RSA.

Public-key algorithms aren’t limited to encryption. In fact, you’ve
already seen a public-key algorithm in this book that isn’t directly used
for encryption. There are actually three related classes of public-key
algorithms:

1. Key exchange algorithms, such as Diffie-Hellman, which allow
you to agree on a shared secret across an insecure medium.

2. Encryption algorithms, such as the ones we’ll discuss in this
chapter, which allow people to encrypt without having to agree
on a shared secret.

3. Signature algorithms, which we’ll discuss in a later chapter,
which allow you to sign any piece of information using your pri-
vate key in a way that allows anyone else to easily verify it using
your public key.

8.2 Why not use public-key encryption for
everything?

At face value, it seems that the existence of public-key encryption al-
gorithms obsoletes all our previous secret-key encryption algorithms.
We could just use public key encryption for everything, avoiding all
the added complexity of having to do key agreement for our symmet-
ric algorithms.

By far the most important reason for this is performance. Com-
pared to our speedy stream ciphers (native or otherwise), public-key
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encryption mechanisms are extremely slow. A single 2048-bit RSA
encryption takes 0.29 megacycles, decryption takes a whopping 11.12
megacycles. [16] To put this into comparison, symmetric key algo-
rithms work in order of magnitude 10 or so cycles per byte in either
direction. In order to encrypt or decrypt 2048 bytes, that means ap-
proximately 2500 cycles.

There are a few other problems with most practical cryptosystems.
For example, RSA can’t encrypt anything larger than its modulus,
which is generally less than or equal 4096 bits, far smaller than the
largest messages we’d like to send. Still, the most important reason is
the speed argument given above.

8.3 RSA

As we already mentioned, RSA is one of the first practical public-key
encryption schemes. It remains the most common one to this day.

Encryption and decryption

RSA encryption and decryption relies on modular arithmetic. You
may want to review the modular arithmetic primer before continuing.

In order to generate a key, you pick two large prime numbers p
and q. These numbers have to be picked at random, and in secret. You
multiply them together to produce the modulus N , which is public.
Then, you pick an encryption exponent e, which is also public. Usu-
ally, this value is either 3 or 65537; because those numbers have few 1

numbers in their binary expansion, you can compute the exponentia-
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tion more efficiently. Put together, (N, e) is the public key. Anyone
can use the public key to encrypt a message M into a ciphertext C:

C ≡ M e (mod N)

The next problem is decryption. It turns out that there is a value
d, the decryption exponent, that can turn C back into M . That value is
fairly easy to compute assuming that you know p and q, which we do.
Using d, you can decrypt the message like so:

M ≡ Cd (mod N)

Breaking RSA

Like many cryptosystems, RSA relies on the presumed difficulty of a
particular mathematical problem. For RSA, this is the RSA problem,
specifically: to find the plaintext message M , given a ciphertext C,
and public key (N, e) in the equation:

C ≡ M e (mod N) (8.1)

The easiest way we know how to do that is to factor N back into
p·q. Given p and q, you could just repeat the process that the legitimate
owner of the key does during key generation in order to compute the
private exponent d, and then you’ve won.

Fortunately, we don’t have an algorithm that can factor such large
numbers in reasonable time. Unfortunately, we also haven’t proven
it doesn’t exist. Even more unfortunate, is that we have a theoretical
algorithm, called Shor’s algorithm, that would be able to factor such
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a number in reasonable time, on a quantum computer. Right now,
quantum computers are far from practical, but it does appear that if
someone in the future manages to build one that’s sufficiently large,
RSA becomes ineffective.

Implementation pitfalls

While right now there are no known practical complete breaks against
RSA. That’s not to say that systems employing RSA aren’t routinely
broken. Like with most broken cryptosystems, there’s plenty of cases
where sound components, improperly applied, result in a useless sys-
tem. For a more complete overview of the things that can go wrong
with RSA implementations, please refer to [12] and [4]. In this book,
we’ll just highlight a few interesting ones.

PKCSv1.5 padding

Salt

Salt1 is a provisioning system written in Python. In the author’s opin-
ion, it has one major flaw. It has a module named crypto.

Instead of reusing existing complete cryptosystems2, it imple-
ments its own, using RSA and AES provided by a third party package.

For a long time, Salt used a public exponent of 1, which meant
the encryption phase didn’t actually do anything. While this issue has

1So, there’s Salt the provisioning system, salts the things used in broken password
stores, NaCl pronounced “salt” the cryptography library, and NaCl which runs native
code in some browsers, and probably a bunch I’m forgetting. Can we stop naming
things after it?

2For a variety of reasons, which, even if they were sensible, are secondary to the
tenet of not implementing your own cryptography.
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now been fixed, this only goes to show once again that you probably
shouldn’t implement your own cryptography.

OAEP

OAEP, short for optimal asymmetric encryption padding, is the state
of the art in RSA padding. It was introduced by Mihir Bellare and
Phillip Rogaway in 1995. [6]. Its structure looks like this:

The thing that eventually gets encrypted is X∥Y , which is n bits
long, where n is the number of bits of N , the RSA modulus. It takes a
random blockR that’s k bits long, a constant specified by the standard.
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The message is first padded with zeroes to ben−k bits long. If you look
at the above “ladder”, everything on the left half is n−k bits long, and
everything on the right half is k bits long. The random block R and
zero-padded message M∥000 . . . are combined using two “trapdoor”
functions, G and H . A trapdoor function is a function that’s very easy
to compute in one direction and very hard to reverse. In practice, these
are cryptographic hash functions; we’ll see more about those later.

As you can tell from the diagram, G takes k bits and turns them
into n− k bits, and H is the other way around, taking n− k bits and
turning them into k bits.

The resulting blocks X and Y are concatenated, and the result is
encrypted using the standard RSA encryption primitive, to produce
the ciphertext.

To see how decryption works, we reverse all the steps. The recipi-
ent gets X∥Y when decrypting the message. They know k, since is a
fixed parameter of the protocol. so they can split up X∥Y into X (the
first n bits) and Y (the first n− k bits).

In the previous diagram, the directions are for padding being ap-
plied. Reverse the arrows on the side of the ladder, and you can see
how to revert the padding:

TODO: reverse arrows
We want to get to M , which is in M∥000 . . .. There’s only one

way to compute that, which is:

M∥000 . . . = X ⊕G(R)

Computing G(R) is a little harder:
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G(R) = H(X)⊕ Y

As you can see, at least for some definitions of the functionsH and
G, we need all of X and all of Y (and hence the entire encrypted mes-
sage) in order to learn anything about M . There are many functions
that would be a good choice forH andG; based on cryptographic hash
functions, which we’ll discuss in more detail later in the book.

8.4 Elliptic curve cryptography

TODO: This

8.5 Remaining problem: unauthenticated
encryption

Most public-key encryption schemes can only encrypt small chunks of
data at a time, much smaller than the messages we want to be able to
send. They are also generally quite slow, much slower than their sym-
metric counterparts. Therefore public-key cryptosystems are almost
always used in conjunction with secret-key cryptosystems.

When we discussed stream ciphers, one of the remaining issues
that we were facing was that we still had to exchange secret keys with a
large number of people. With public-key cryptosystems such as public
encryption and key exchange protocols, we’ve now seen two ways that
we can solve that problem. That means that we can now communicate
with anyone, using only public information, completely secure from
eavesdroppers.



8.5. REMAINING PROBLEM: UNAUTHENTICATED
ENCRYPTION 97

So far we’ve only been talking about encryption without any form
of authentication. That means that while we can encrypt and decrypt
messages, we cannot verify that the message is what the sender actually
sent.

While unauthenticated encryption may provide secrecy, we’ve al-
ready seen that without authentication an active attacker can generally
modify valid encrypted messages successfully, despite the fact that they
don’t necessarily know the corresponding plaintext. Accepting these
messages can often lead to secret information being leaked, so that not
even the secrecy property is satisfied.

As a result it has become evident that we need ways to authen-
ticate as well as encrypt our secret communications. This is done by
adding extra information to the message, that only the sender could
have computed. Just like encryption, authentication comes in both
private-key (symmetric) and public-key forms. Symmetric authen-
tication schemes are typically called message authentication codes.
Public-key authentication is typically called a signature.

First, we will introduce a new cryptographic primitive: hash func-
tions. These can be used to produce both signature schemes as well
as message authentication schemes. Unfortunately, they are also very
often abused to produce entirely insecure systems.
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Hash functions

9.1 Description

Hash functions are functions that take an input of indeterminate
length and produce a fixed-length value, also known as a “digest”.

Simple hash functions have many applications. Hash tables, a
common data structure, rely on them. The really only guarantee one
thing: for two identical inputs, they’ll produce an identical output.
Importantly, there’s no guarantee that two identical outputs imply that
the inputs were the same1. A good hash function is also quick to com-
pute.

Since this is a book on cryptography, we’re particularly interested
in cryptographic hash functions. Those are hash functions with much

1That would be impossible: there’s only a finite amount of digests, since they’re
fixed size, but there’s an infinite amount of inputs.

99
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stronger properties. For a cryptographic hash function, we want it to
be impossibly hard to:

1. modify a message without changing the hash.

2. generate a message that has a given hash.

3. find two different messages with the same hash.

The first property implies that cryptographic hash functions will
exhibit something known as the “avalanche effect”. Changing even a
single bit in the input will produce an avalanche of changes through
the entire digest: each bit of the ciphertext will have a 50% chance of
flipping.

The second property, which states that it should be difficult to find
a messagem that has a given hash value h, is called pre-image resistance.
This makes a hash function a one-way function: it’s very easy to com-
pute a hash for a given message, but it’s very hard to compute a message
for a given hash.

The third property talks about finding messages with the same
hash value, comes in two flavors. In the first one, there’s a given mes-
sage m, and it should be difficult to find another message m′ with the
same hash value: that’s called second pre-image resistance. The second
one is stronger, stating that it should be hard to find any two messages
m,m′ that have the same hash value. This is called collision resistance.
Because collision resistance is a stronger form of second pre-image
resistance, they’re sometimes also called weak and strong collision re-
sistance.

TODO: Maybe link to http://www.cs.ucdavis.edu/~rogaway/

papers/relates.pdf for further reading

http://www.cs.ucdavis.edu/~rogaway/papers/relates.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/relates.pdf
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9.2 MD5

TODO: Explain MD5

9.3 SHA-1

TODO: Explain SHA-1

9.4 SHA-2

TODO: Explain SHA-2

9.5 Keccak and SHA-3

TODO: Explain Keccak
TODO: Explain the parameter change debacle in SHA-3

9.6 BLAKE and BLAKE2

TODO: Explain BLAKE, BLAKE2

9.7 Password storage

One of the most common use cases for cryptographic hash functions,
and unfortunately one which is also completely and utterly broken, is
password storage.
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Suppose you have a service where people log in using a username
and a password. You’d have to store the password somewhere, so that
next time the user logs in, you can verify the password they supplied.

Storing the password directly has several issues. Besides an obvi-
ous timing attack in the string comparison, if the password database
were to be compromised, an attacker would be able to just go ahead
and read all of the passwords. Since many users re-use passwords,
that’s a catastrophic failure. Most user databases also contain their e-
mail addresses, so it would be very easy to hi-jack a bunch of your user’s
accounts that are unrelated to this service.

Hash functions to the rescue

An obvious approach would be to hash the password using a cryp-
tographically secure hash function. Since the hash function is easy
to compute, whenever the user provides their password, you can just
compute the hash value of that, and compare that to what you stored
in the database.

If an attacker were to steal the user database, they could only see
the hash values, and not the actual passwords. Since the hash function
is impossible for an attacker to inverse, they wouldn’t be able to turn
those back into the original passwords. Or so people thought.

Rainbow tables

It turns out that this reasoning is flawed. The amount of passwords
that people actually use is very limited. Even with very good pass-
word practices, they’re strings somewhere between 10 and 20 charac-
ters, consisting mostly of things that you can type on common key-



9.7. PASSWORD STORAGE 103

boards. In practice though, people use even worse passwords: things
based on real words (password, swordfish), consisting of few symbols
and few symbol types (1234), or with predictable modifications of the
above (passw0rd).

To make matters worse, hash functions are the same everywhere.
If a user re-uses the same password on two sites, and both of them
hash the password using MD5, the values in the password database
will be the same. It doesn’t even have to be per-user: many passwords
are extremely common (password), so many users will use the same
one.

Keep in mind that a hash function is easy to evaluate. What if
we simply try many of those passwords, creating huge tables mapping
passwords to their hash values?

That’s exactly what some people did, and the tables were just as ef-
fective as you’d expect them to be, completely breaking any vulnerable
password store. Such tables are called rainbow tables. This is because
they’re essentially sorted lists of hash function outputs. Those outputs
will be more or less randomly distributed. When written down in hex-
adecimal formats, this reminded some people of color specifications
like the ones used in HTML, e.g. #52f211, which is lime green.

Salts

The reason rainbow tables were so incredibly effective was because ev-
eryone was using one of a handful of hash functions. The same pass-
word would result in the same hash everywhere.

This problem was generally solved by using salts. By mixing (ap-
pending or prepending) the password with some random value before
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hashing it, you could produce completely different hash values out of
the same hash function. It effectively turns a hash function into a
whole family of related hash functions, with virtually identical security
and performance properties, except with completely different output
values.

The salt value is stored next to the password hash in the database.
When the user authenticates using the password, you just compute the
salt with the password, hash it, and compare it against the stored hash.

If you pick a random value that’s large enough (say, 2160), you’ve
completely defeated ahead-of-time attacks like rainbow tables. In or-
der to successfully mount a rainbow table attack, an attacker would
have to have a separate table for each of those salt values. Since even
a single table was usually quite large, storing a large amount of them
would be impossible. Even if an attacker would be able to store all
that data, he’d still have to compute it. Computing a single table took
a decent amount of time; computing 2160 of them is impossible.

Many systems used a single salt for all users. While that prevented
a rainbow table attack, it still allowed attackers to attack all passwords
at once. Marginally more advanced (but still fundamentally broken)
systems used a different salt for each user, which meant attackers could
only attack one password at a time.

Perhaps the biggest problem with salts is that many programmers
were suddenly convinced they were doing the right thing. They’d heard
of broken password storage schemes, and they “knew” how to do it
properly, so they ignored all talk about how a password database could
be compromised. They weren’t the ones storing passwords in plaintext,
or forgetting to salt their hashes, or re-using salts for different users.
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It was all of those other people that didn’t know what they were doing
that had those problems. Unfortunately, that’s not true. Perhaps that’s
why broken password storage schemes are still the norm.

Modern attacks on weak password systems

To a modern attack, salts quite simply don’t matter. Modern attacks
take advantage of the fact that the hash function being used is easy
to compute. Using faster hardware, in particular video cards, we can
simply enumerate all of the passwords, regardless of salt.

TODO: more concrete performance numbers about GPUs
Salts may make precomputed attacks impossible, but they do very

little against an attacker that actually knows the salt.

So where do we go from here?

In order to protect passwords, you don’t need a hash function, but a key
derivation function. We’ll deal with those in a following chapter.

9.8 Length extension attacks

In many hash functions, particularly the previous generations, the in-
ternal state kept by the hash function was used as the digest value. In
some poorly engineered systems, that causes a critical flaw: if an at-
tacker knows H(M1), it’s very simple to compute H(M1∥M2), with-
out actually knowing the value of M1. Since you know $H(M1), you
know the state of the hash function after it’s hashed M1. You can use
that to reconstruct the hash function, and ask it to hash more bytes.
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Setting the hash function’s internal state to a known state you got from
somewhere else (such as H(M1)) is called fixation.

For most real-world hash functions, it’s a little bit more compli-
cated than that. They commonly have a padding step that an attacker
needs to recreate. MD5 and SHA-1 have the same padding step. It’s
fairly simple, so we’ll go through it:

1. Add a 1 bit to the message.

2. Add zero bits until the length is 448 (mod 512).

3. Take the total length of the message, before padding, and add
it as a 64-bit integer.

For the attacker to be able to compute H(M1∥M2) given H(M1),
the attacker needs to fake that padding, as well. The attacker will ac-
tually compute H(M1∥G∥M2), where G is the glue padding, called
that way because it glues the two messages together. The hard part is
knowing the length of the message M1.

In many systems, the attacker can actually make fairly educated
guesses about the length of M1, though. As an example, consider
the common (broken) example of a secret-prefix authentication code.
People send messagesMi, authenticated usingAi = H(S∥Mi), where
S is a shared secret.

It’s very easy for the recipient to compute the same function, and
verify the code is correct. Any change to the message Mi will change
the value of Ai drastically, thanks to the avalanche effect. Unfortu-
nately, it’s quite easy for attackers to forge messages. Since the authen-
tication codes are usually sent together with the original message, the
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attacker knows the length of the original message. Then, the attacker
only has to guess at the length of the secret, which he’ll probably get
in a hundred or so tries. Contrast this with guessing the secret itself,
which is impossible for any reasonably chosen secret.

There are secure authentication codes that can be designed using
cryptographic hash functions: this one just isn’t it. We’ll see better
ones in a later chapter.

Some hash functions, particularly newer ones such as SHA-3
competition finalists, do not exhibit this property. The digest is com-
puted from the internal state, instead of using the internal state di-
rectly.

This makes the SHA-3-era hash functions not only a bit more
fool-proof, but also enables them to produce simpler schemes for mes-
sage authentication. (We’ll elaborate on those in a later chapter.)
While length extension attacks only affected systems where crypto-
graphic hash functions were being abused in the first place, there’s
something to be said for preventing them anyway. People will end
up making mistakes, we might as well mitigate where we can.

TODO: say why this prevents meet in the middle attacks?

9.9 Hash trees

Hash trees are trees2 where each node is identified by a hash value,
consisting of its contents and the hash value of its ancestor. The root
node, not having an ancestor, simply hashes its own contents.

TODO: illustrate
2Directed graphs, where each node except the root has exactly one ancestor.
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This definition is very wide practical hash trees are often more re-
stricted. They might be binary trees3, or perhaps only leaf nodes carry
data of their own, and parent nodes only carry derivative data. Partic-
ularly these restricted kinds are often called Merkle trees.

Systems like these or their variants are used by many systems,
particularly distributed systems. Examples include distributed ver-
sion control systems such as Git, digital currencies such as Bitcoin,
distributed peer-to-peer networks like Bittorrent, and distributed
databases such as Cassandra.

9.10 Remaining issues

We’ve already illustrated that hash functions, by themselves, can’t au-
thenticate messages. Also, we’ve illustrated that hash functions can’t
be used to secure passwords. We’ll tackle both of these problems in
the following chapters.

While this chapter has focused heavily on what hash functions can’t
do, it can’t be stressed enough that they are still incredibly important
cryptographic primitives. They just happen to be commonly abused
cryptographic primitives.

3Each non-leaf node has no more than two children
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Message authentication codes

10.1 Description

A Message authentication code (MAC) is a small bit of information
that can be used to check the authenticity and the integrity of a mes-
sage. These codes are often called “tags”. A MAC algorithm takes a
message of arbitrary length and a secret key of fixed length, and pro-
duces the tag. The MAC algorithm also comes with a verification
algorithm that takes a message, the key and a tag, and tells you if the
tag was valid or not. (It is not always sufficient to just recompute a tag
and check if they are the same; many secure MAC algorithms are ran-
domized, and will produce different tags every time you apply them.)

Note that we say “message” here instead of “plaintext” or “cipher-
text”. This ambiguity is intentional. In this book we’re mostly inter-

109
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ested in MACs as a way to achieve authenticated encryption, so the
message will always be a ciphertext. That said, there’s nothing wrong
with a MAC being applied to a plaintext message. In fact, we will be
seeing examples of secure authenticated encryption schemes that ex-
plicitly allow for authenticated (but not encrypted) information to be
sent along with the authenticated ciphertext.

Often, when you just want to talk about the authenticity and in-
tegrity of a particular plaintext message, it may be more practical to
use a signing algorithm, which we’ll talk about in a later chapter.

Secure MACs

We haven’t quite defined yet exactly which properties we want from a
secure MAC.

We will be defending against an active attacker. The attacker will
be performing a chosen message attack. That means that an attacker
will ask us the tag for any number of messages mi, and we’ll answer
truthfully with the appropriate tag ti.

An attacker will then attempt to produce an existential forgery, a
fancy way of saying that they will produce some new valid combination
of (m, t). The obvious target for the attacker is the ability to produce
valid tags t′ for new messages m′ of their choosing. We will also con-
sider the MAC insecure if an attacker can compute a new, different
valid tag t′ for a message mi that we previously gave them a valid tag
for.
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Why does a MAC take a secret key?

If you’ve had to deal with verifying the integrity of a message before,
you may have used checksums (like CRC32 or Adler32) or even cryp-
tographic hashes (like the SHA family) in order to compute a check-
sum for the message (depending on the algorithm and who you’re talk-
ing to, they may have called it “hash” or “digest”, too).

Let’s say that you’re distributing a software package. You have
some tarballs with source code in them, and maybe some binary pack-
ages for popular operating systems. Then you put some (cryptographi-
cally secure!) hashes right next to them, so that anyone who downloads
them can verify the hashes and be confident that they downloaded
what they think they downloaded.

Of course, this scheme is actually totally broken. Computing those
hashes is something everyone can do. You’re even relying on that fact
for your user to be able to verify their download. That also means that
an attacker that modified any of the downloads can just compute the
hash again for the modified download, and save that value. A user
downloading the modified file will compute its hash and compare it
against the modified hash, and conclude that the download worked.
The scheme provided no help whatsoever against an attacker modify-
ing the download, either as stored, or in transit.

In order to do this securely, you would either apply signing algo-
rithms to the binaries directly, or by signing the digests, as long as
the hash function used to produce the digest is secure against second-
preimage attacks. The important difference is that producing a sig-
nature (using either a pre-shared key with your users, or, preferably,
a public-key signing algorithm) is not something that an attacker can
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do. Only someone who has the secret keys can do that.

10.2 Combining MAC and message

As we’ve mentioned before, unauthenticated encryption is bad. That’s
why we introduced MACs. Of course, for a MAC to be useful, it
has to make it to the recipient. Since we’re explictly talking about
authenticating encryption, now, we’ll stop using the word “message”
and instead use the less ambiguous “plaintext” and “ciphertext”.

There’s three common ways to combine a ciphertext with a MAC.

1. Authenticate and encrypt. You authenticate the plaintext, en-
crypt the plaintext, and concatenate the two. E(KC , P )∥MAC(KM , P ).
This is how SSH does it.

2. Authenticate, then encrypt. You take the plaintext, concatenate
the MAC of the plaintext, and encrypt the whole. E(KC , P∥MAC(KM , P )).
This is how TLS does it (usually).

3. Encrypt, then authenticate. You encrypt the plaintext, com-
pute the MAC of that ciphertext, and concatenate the two.
E(KC , P )∥MAC(KM , E(KC , P )). This is how IPSec does
it.

These were studied in depth in the landmark paper [26]. Out of all
of these, encrypt-then-authenticate is unequivocally the best option.
It’s so unequivocally the best option that Moxie Marlinspike, a well-
respected information security researcher, has a principle called “The
Cryptographic Doom Principle” for any system that does not follow
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this pattern [29]. (More accurately, Moxie claims that any system that
does anything before checking the MAC is doomed. Both the first
and the second options require you to decrypt something before you
can verify the authentication.)

Authenticate-then-encrypt

Authenticate-then-encrypt is a poor choice, but it’s a subtle poor
choice. It’s still provably secure[26], but only under certain conditions.

At first sight, this scheme appears to work. Sure, you have to de-
crypt before you can do anything, but to many cryptographers, includ-
ing the designers of TLS, this did not appear to pose a problem.

TODO: Explain Vaudenay CBC attack [36]

Authenticate-and-encrypt

Authenticate-and-encrypt has obvious problems. For example, since
the plaintext is authenticated, and that MAC is part of the transmitted
message, an attacker will be able to recognize two identical messages
sent independently using the same MAC key are in fact the same,
essentially leading to a similar problem to what we saw with ECB
mode.

TODO: Explain how this works in SSH (see Moxie’s Doom arti-
cle)

10.3 A naive attempt with hash functions

Many ways of constructing MACs involve hash functions. Perhaps
one of the simplest ways you could imagine doing that is to just prefix



114 CHAPTER 10. MESSAGE AUTHENTICATION CODES

the message with the secret key and hash the whole thing:

t = H(k∥m)

This scheme is most commonly called “Prefix-MAC”, because it
is a MAC algorithm that works by using the secret key as a prefix.

The cryptographically secure hash function H guarantees two
things that are important to us here:

• The tag t will be easy to compute; the hash function H itself is
typically very fast. In many cases we can compute the common
key part ahead of time, so we only have to hash the message
itself.

• Given any number of tags, there is no way for an attacker to
“invert” the hash function to recover k, which would allow them
to forge arbitrary messages.

• Given any number of tags, there is no way for an attacker to
“rewind” the hash function to recover H(k), which may allow
them to forge almost arbitrary messages.

One small caveat: we’re assuming that the secret key k has enough
entropy. Otherwise, we have the same issue that we had for password
storage using hash functions: an attacker could just try every single k
until one of them matches. Once they’ve done that, they’ve almost
certainly found the correct k. That’s not really a failure of the MAC
though: if your secret key contains so little entropy that it’s feasible
for an attacker to try all of them, you’ve already lost, no matter which
MAC algorithm you pick.
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Breaking prefix-MAC

Despite being quite common, this MAC is actually completely inse-
cure for most (cryptographically secure!) hash functions H , including
SHA-2.

As we saw in the chapter on hash functions, many hash functions
such as MD5, SHA-0, SHA-1, SHA-2… all pad the message with
a predictable padding before producing the output digest. The output
digest is the same thing as the internal state of the hash function. That’s
a problem: the attacker can use those properties to forge messages.

First, they use the digest as the internal state of the hash function.
That state matches the state you get when you hash k∥m∥p, where k

is the secret key, m is the message, and p is that predictable padding.
Now, the attacker gets the hash function to consume some new bytes:
the attacker’s chosen message m′. The internal state of the hash func-
tion is now what you get when you feed it k∥m∥p∥m′. The attacker
tells the hash function to produce a digest. Again, the hash func-
tion appends a padding, so we’re now at k∥m∥p∥m′∥p′. The attacker
outputs that digest as the tag. That is exactly the same thing as what
happens when you try to compute the tag for the message m∥p∥m′

under the secret key k. So, the attacker has successfully forged a tag
for a new message, and, by our definition, the MAC is insecure.

This attack is called a length extension attack, because you are ex-
tending a valid message. The padding in the middle p, which started
out as the padding for the original message but has become just some
data in the middle, is called glue padding, because it glues the original
message m and the attacker’s message m′ together.

This attack might sound a little academic, and far from a practical
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problem. We may have proven that the MAC is insecure by our def-
inition, but the only signatures the attacker can successfully forge are
for modifications of messages that we sent and signed; specifically, the
message we sent, followed by some binary junk, followed by something
the attacker chooses. It turns out that for many systems, this is plenty
to result in real breaks. Consider the following Python code that parses
a sequence of key-value pairs that look like k1=v1&k2=v2&...:1

def parse(s):

pairs = s.split(”&”)

parsed = {}

for pair in pairs:

key, value = pair.split(”=”)

parsed[key] = value

return parsed

Since the parsing function only remembers the last value for a
given key (previous values in the dictionary are overwritten), an at-
tacker can effectively control the parsed data entirely.

If you’re thinking that that code has many issues; sure, it does. For
example, it doesn’t handle escaping correctly. But even if it did; that
wouldn’t really fix the length extension attack problem. Most pars-
ing functions will perfectly happily live with that binary junk in the
middle. Hopefully it convinces you that there is in fact a pretty good
chance that an attacker can produce messages with valid tags that say
something entirely different from what you intended.

1I realize there are briefer ways to write that function. I am trying to make it
comprehensible to most programmers; not pleasing to advanced Pythonistas.
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This construction is actually secure in current (SHA-3-era) hash
functions, such as Keccak and BLAKE(2). The specifications for these
algorithms even recommend it as a secure and fast MAC. They use var-
ious techniques to foil length extension attacks: for example, BLAKE
keeps track of the number of bits that have been hashed so far, while
BLAKE2 has a finalization flag that marks a specific block as the last.

Variants

Issues with prefix-MAC has tempted people to come up with all sorts
of clever variations. For example, why not add the key to the end
instead of the beginning (t = H(m∥k), or “suffix-MAC”, if you will)?
Or maybe we should append the key to both ends for good measure
(t = H(k∥m∥k), “sandwich-MAC” perhaps?)?

For what it’s worth, both of these are at least better than prefix-
MAC, but both of these have serious issues. For example, a suffix-
MAC system is more vulnerable to weaknesses in the underlying hash
function; a successful collision attack breaks the MAC. Sandwich-
MAC has other, more complex issues.

Cryptography has produced much stronger MACs, which we’ll see
in the next few sections. There are no good reasons not to use them.

10.4 HMAC

HMAC is a standard to produce a MAC with a cryptographic hash
function as a parameter. It was introduced in 1996 in a paper by Bel-
lare, Canetti and Krawczyk. Many protocols at the time implemented
their own attempt at message authentication using hash functions.
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Most of these attempts failed. The goal of that paper specifically was
to produce a provably secure MAC that didn’t require anything beyond
a secret key and a hash function.

One of the nice features of HMAC is that it has a fairly strong
security proof. As long as the underlying hash function is a pseu-
dorandom function, HMAC itself is also a pseudorandom function.
The underlying hash function doesn’t even have to be collision re-
sistant for HMAC to be a secure MAC. [5] This proof was intro-
duced after HMAC itself, and matched real-world observations: even
though MD5 and to a lesser extent SHA-0 had serious collision at-
tacks, HMAC constructions built from those hash functions still ap-
peared to be entirely secure.

The biggest difference between HMAC and prefix-MAC or its
variants is that the message passes through a hash function twice, and
is combined with the key before each pass. Visually, HMAC looks
like this:

The only surprising thing here perhaps are the two constants pi
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(the inner padding, one hash function’s block length worth of 0x36

bytes) and p0 (the outer padding, one block length worth of 0x5x

bytes). These are necessary for the security proof of HMAC to work;
their particular values aren’t very important, as long as the two con-
stants are different.

The two pads are XORed with the key before use. The result is
either prepended to the original message (for the inner padding pi)
or the intermediate hash output (for the outer padding po). Because
they’re prepended, they can be computed ahead of time, shaving a few
cycles off the MAC computation time.

10.5 One-time MACs

So far, we’ve always assumed that MAC functions can be used with a
single key to produce secure MACs for a very large number of mes-
sages. By contrast, One-time MACs are MAC functions that can only
securely be used once with a single key. That might sound like a silly
idea, since we’ve already talked about regular secure MACs. An al-
gorithm that only works once just seems objectively worse. However,
they have several big advantages:

• They can be incredibly fast to evaluate, even for very large mes-
sages.

• They have a compelling security proof based on the information
content of the tag.

• A construction exists to turn a one-time MAC into a secure
multiple-use MAC, removing the principal problem.
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A typical simple example of such One-time MACs consists of a
simple multiplication and addition modulo some large prime p. In
this case, the secret key consists of two truly random numbers a and
b, both between 1 and p.

t = m · a+ b (mod p)

This simple example only works for one-block messages m, and
some prime p slightly bigger than the biggest m. It can be extended
to support bigger messages M consisting of blocks mi by using a
message-specific polynomial P :

t = (mi · ai + · · ·+m1 · a)︸ ︷︷ ︸
P (M,a)

+b (mod p)

In many ways, a one-time MAC is to authentication what a one-
time pad is to encryption. The security argument is similar: because an
attacker learns no information about the key or the message, because
they are being mixed irreversibly. This demonstrates that the MAC
is secure against attackers trying to produce existential forgeries, even
when that attacker has infinite computational power.

Also like a one-time pad, the security argument relies on two very
important properties about the keys a, b:

• They have to be truly random.

• They have to be used at most once.
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Re-using a and b

We’ll illustrate that our example MAC is insecure if used to authenti-
cate two messages m1,m2 with the same key (a, b):

t1 = m1 · a+ b (mod p)

t2 = m2 · a+ b (mod p)

An attacker can reconstruct a, b with some simple arithmetic,
starting by subtracting the two equations:

t1 − t2 = (m1 · a+ b)− (m2 · a+ b) (mod p)

⇓ (remove parentheses)
t1 − t2 = m1 · a+ b−m2 · a− b (mod p)

⇓ (b and −b cancel out)
t1 − t2 = m1 · a+m2 · a (mod p)

⇓ (factor out a)
t1 − t2 = a · (m1 +m2) (mod p)

⇓ (flip sides, multiply by inverse of (m1 +m2))
a = (t1 − t2)(m1 +m2)

−1 (mod p)

The attacker has a direct way of computing a, allowing them to
plug it into either the equation for t1 or t2 to get b:
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t1 = m1 · a+ b (mod p)

⇓ (reorder terms)
b = t1 −m1 · a (mod p)

As you can see, as with one-time pads, re-using the key even once
leads to a complete failure of the cryptosystem to preserve privacy or
integrity, as the case may be. As a result, One-time MACs are a bit
dangerous to use directly; but we’ll see that with the appropriate con-
struction, that issue can be remedied.

10.6 Carter-Wegman MAC

As we’ve already stated, the obvious problem with One-time MACs
is their limited practicality. Fortunately, it turns out that there is a
construction, called a Carter-Wegman MAC, that turns any secure
one-time MAC into a secure many-time MAC while preserving most
of the performance benefit.

The idea behind a Carter-Wegman MAC is that you can use a
one-time MAC O to produce a tag for the bulk of the data, and then
encrypt a nonce n with a pseudorandom function F , such as a block
cipher, to protect that one-time tag:

CW ((k1, k2), n,M) = F (k1, n)⊕O(k2,M)

Keep in mind that while Carter-Wegman MACs take two distinct
keys k1 and k2, and that Carter-Wegman MACs are related to One-
time MACs which also take two distinct keys, these keys are unrelated.
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The Carter-Wegman MAC’s k2 is the only input here to the fast one-
time MAC O. If that fast one-time MAC is our earlier example that
takes two keys, that k2 would have to get split up into those two keys.

You can tell how a Carter-Wegman MAC exploits the benefits of
both kinds of MACs by considering the two terms of the equation
separately. In F (k1, n), F is just a regular pseudorandom function,
such as a block cipher. It is quite slow by comparison to the one-time
MAC. However, its input, the nonce, is very small. The unpredictable
output of the block cipher masks the output of the one-time MAC. In
the second term,O(k2,M), the large input messageM is only handled
by the very fast one-time MAC O.

These constructions, in particular Poly1305-AES, currently repre-
sent some of the state of the art in MAC functions. The paper ([11])
and RFC ([10]) for an older, related MAC function called UMAC
may also be good sources of extra background information, since they
go into extensive details of the hows and whys of a practical Carter-
Wegman MAC.

10.7 Authenticated encryption modes

So far, we’ve always clearly distinguished encryption from authentica-
tion, and explained the need for both. The majority of secure connec-
tions that are set up every day have that distinction as well: they treat
encryption and authentication as fundamentally different steps.

Alternatively, we could make authentication a fundamental part of
the mode of operation. After all, we’ve already seen that unauthenti-
cated encryption is virtually never what you want; it is, at best, some-
thing you occasionally have to live with. It makes sense to use con-
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structions that not only guarantee the privacy of an arbitrary stream,
but also its integrity.

As we’ve already seen, many of the methods of composing authen-
tication and encryption are inherently insecure. By doing that in a
fixed, secure way such as a properly designed authenticated encryp-
tion mode, an application developer no longer has to make that choice,
which means they also can’t inadvertently make the wrong choice.

Authenticated Encryption with Associated Data (AEAD)

AEAD is a feature of certain modes of authenticated encryption. Such
modes of operation are called AEAD modes. It starts with the premise
that many messages actually consist of two parts:

• The actual content itself

• Metadata: data about the content

In many cases the metadata should be plaintext, but the content it-
self should be encrypted. The entire message should be authenticated:
it should not be possible for an attacker to mess with the metadata and
have the resulting message still be considered valid.

Consider an e-mail alternative as an example cryptosystem. The
metadata about the content might contain the intended recipient. We
definitely want to encrypt and authenticate the content itself, so that
only the recipient can read it. The metadata, however, has to be in
plaintext: the e-mail servers performing the message delivery have to
know which recipient to send the message to.

Many systems would leave this metadata unauthenticated, allow-
ing attackers to modify it. In our case, that looks like it may just lead
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to messages being delivered to the wrong inbox. That also means that
an attacker can force e-mail to be delivered to the wrong person, or
not delivered at all.

AEAD modes address this issue by providing a specified way to
add metadata to encrypted content, so that the whole of the encrypted
content and the metadata is authenticated, and not the two pieces sep-
arately:

10.8 OCB mode

OCB mode is an AEAD mode of operation. It is one of the earliest
developed AEAD modes.

As you can see, most of this scheme looks quite similar to ECB

mode. The name offset codebook (OCB) is quite similar to electronic
codebook, as well. OCB does not share the security issues ECB mode
has, of course; there are several important differences, such as the off-
sets ∆i introduced in each individual block encryption. Additionally,
there is an authentication tag t, built from x, a simple checksum over
the plaintext as well as ta, which authenticates the AEAD associated
data. That associated data tag ta is computed as follows:
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This design has a number of interesting properties. For example,
it is very fast: only requiring roughly one block cipher operation per
encrypted or associate data block, as well as one additional block cipher
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operation for the final tag. The offsets (∆i) are also extremely easy to
compute. The checksum x is just all of the plaintext blocks pi XOR’ed
together. Finally, OCB mode is easy to compute in parallel; only the
final authentication tag is dependent on all the preceding information.

OCB mode also comes with a built-in padding scheme: it be-
haves slightly differently when the plaintexts or authentication text is
not exactly a multiple of the block size. This means that, unlike with
PKCS#5/PKCS#7 padding, there isn’t an entire block of “wasted”
padding if the plaintext happens to be a multiple of the block size.

Despite having several interesting properties going for it, OCB
mode has not received as much attention as some of the alternatives;
one of the main reasons being that it is patent encumbered. Even
though a number of patent licenses are available[33], including a free-
of-charge one for open source software, this does not appear to have
significantly impacted how much OCB mode is used in the field.

10.9 GCM mode

GCM mode is an AEAD mode with an unfortunate case of RAS syn-
drome (redundant acronym syndrome): GCM itself stands for “Galois
Counter Mode”. It is formalized in a NIST Special Publication[2]
and roughly boils down to a combination of classical CTR mode with
a Carter-Wegman MAC. That MAC can be used by itself as well,
which is called GMAC.

Authentication

GCM mode (and by extension GMAC)
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Signature algorithms

11.1 Description

A signature algorithm is the public-key equivalent of a message au-
thentication code. It consists of three parts:

1. a key generation algorithm, which can be shared with other
public-key algorithms

2. a signature generation algorithm

3. a signature verification algorithm

Signature algorithms can be built using encryption algorithms.
Using the private key, we produce a value based on the message, usu-
ally using a cryptographic hash function. Anyone can use the private
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key to retrieve that value, compute what the value should be from the
message, and compare the two to verify. The obvious difference be-
tween this and public-key encryption is that the private key is used
to produce the signature and the public one to retrieve the original,
which is the opposite of how it usually works.

The above explanation glosses over many important details. We’ll
discuss real schemes in more detail below.

11.2 RSA-based signatures

PKCS#1 v1.5

TODO (see #48)

PSS

TODO (see #49)

11.3 DSA

TODO: intro (see #50)

Parameter generation

TODO: explain parameter generation (see #51)

Signing a message

In order to sign a message, the signer picks a random k between 0 and
q. Picking that k turns out to be a fairly sensitive and involved process;
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but we’ll go into more detail on that later. With k chosen, They then
compute the two parts of the signature r, s of the message m:

r = gk (mod q)

s = k−1(H(m) + xr) (mod q)

If either of these happen to be 0 (a rare event, with 1 in q odds,
and q being a pretty large number), pick a different k.

TODO: Talk about k-1, the modular inverse (see #52)

Verifying a signature

Verifying the signature is a lot more complex. Given the message m

and signature (r, s):

w = s−1 (mod q)

u1 = wH(m) (mod q)

u2 = wr (mod q)

v = (gu1yu2 (mod p)) (mod q)

If the signature is valid that final result v will be equal to r, the
second part of the signature.

The trouble with k

While there is nothing wrong with DSA done right, it’s very easy to
get it wrong. Furthermore, DSA is quite sensitive: even a small im-
plementation mistake results in a broken scheme.
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In particular, the choice of the signature parameter k is critical.
The requirements for this number are among the strictest of all random
numbers in cryptographic algorithms. For example, many algorithms
require a nonce. A nonce just has to be unique: you can use it once,
and then you can never use it again. It doesn’t have to be secret. It
doesn’t even have to be unpredictable. A nonce can be implemented
by a simple counter, or a monotonic clock. Many other algorithms,
such as CBC mode, use an initialization vector. It doesn’t have to be
unique: it only has to be unpredictable. It also doesn’t have to be secret:
initialization vectors are typically tacked on to the ciphertext. DSA’s
requirements for the k value are a combination of all of these:

• It has to be unique.

• It has to be unpredictable.

• It has to be secret.

Muddle with any of these properties, and an attacker can probably
retrieve your secret key, even with a modest amount of signatures. For
example, an attacker can recover the secret key knowing only knows a
few bits of k, plus a large amount of valid signatures. [32]

It turns out that many implementations of DSA don’t even get the
uniqueness part right, happily reusing k values. That allows a direct
recovery of the secret key using basic arithmetic. Since this attack is
much simpler to understand, very commonly applicable, and equally
devastating, we’ll discuss it in detail.

Suppose that an attacker sees multiple signatures (ri, si), for dif-
ferent messages mi, all with the same k. The attacker picks any two
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signatures (r1, s1) and (r2, s2) of messages m1 and m2 respectively.
Writing down the equations for s1 and s2:

s1 = k−1(H(m1) + xr1) (mod q)

s2 = k−1(H(m2) + xr2) (mod q)

The attacker can simplify this further: r1 and r2 are equal. Fol-
lowing the definition:

ri = gk (mod q)

Since the signer is reusing k, and the value of r only depends on
k, all ri will be equal. Since the signer is using the same key, x is equal
in the two equations as well.

Subtract the two si equations from each other, followed by some
other arithmetic manipulations:

s1 − s2 = k−1(H(m1) + xr)− k−1(H(m2) + xr) (mod q)

= k−1 ((H(m1) + xr)− (H(m2) + xr)) (mod q)

= k−1(H(m1) + xr −H(m2)− xr) (mod q)

= k−1(H(m1)−H(m2)) (mod q)

Giving us the simple, direct solution for k:

k =
H(m1)−H(m2)

s1 − s2
(mod q)

The hash values H(m1) and H(m2) are easy to compute. They’re
not secret: the messages being signed are public. The two values s1
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and s2 are part of the signatures the attacker saw. So, the attacker can
compute k. That doesn’t give him the private key x yet, though, or the
ability to forge signatures.

Let’s write the equation for s down again, but this time thinking
of k as something we know, and x as the variable we’re trying to solve
for:

s = k−1(H(m) + xr) (mod q)

All (r, s) that are valid signatures satisfy this equation, so we can
just take any signature we saw. Solve for x with some algebra:

sk = H(m) + xr (mod q)

sk −H(m) = xr (mod q)

r−1(sk −H(m)) = x (mod q)

Again, H(m) is public, plus the attacker needed it to compute k,
anyway. They’ve already computed k, and s is plucked straight from
the signature. That just leaves us with r−1 (mod q) (read as: “the
modular inverse of r modulo q”), but that can be computed efficiently
as well. (For more information, see the appendix on modular arith-
metic; keep in mind that q is prime, so the modular inverse can be
computed directly.) That means that the attacker, once they’ve dis-
covered the k of any signature, can recover the private key directly.

So far, we’ve assumed that the broken signer would always use the
same k. To make matters worse, a signer only has to re-use k once
in any two signatures that the attacker can see for the attack to work.
As we’ve seen, if k is repeated, the ri values repeat as well. Since
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ri is a part of the signature, it’s very easy to see when the signer has
made this mistake. So, even if reusing k is something the attacker
only does rarely (because their random number generator is broken,
for example), doing it once is enough for the attacker to break the
DSA scheme.

In short, reusing the k parameter of a DSA signing operation
means an attacker recovers the private key.

TODO: Debian http://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

11.4 ECDSA

TODO: explain (see #53)
As with regular DSA, the choice of k is extremely critical. There

are attacks that manage to recover the signing key using a few thousand
signatures when only a few bits of the nonce leak. [31]

11.5 Repudiable authenticators

Signatures like the ones we described above provide a property called
non-repudiation. In short, it means that you can’t later deny being the
sender of the signed message. Anyone can verify that the signature
was made using your private key, something only you could do.

That may not always be a useful feature; it may be more prudent
to have a scheme where only the intended recipient can verify the sig-
nature. An obvious way to design such a scheme would be to make
sure that the recipient (or, in fact, anyone else) could have computed
an identical value.

http://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/
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Such messages can be repudiated; such a scheme is often called
“deniable authentication”. While it authenticates the sender to the
intended recipient, the sender can later deny (to third parties) having
sent the message. Equivalently, the recipient can’t convince anyone
else that the sender sent that particular message.
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Key derivation functions

12.1 Description

A key derivation function is a function that derives one or more secret
values (the keys) from one secret value.

Many key derivation functions can also take a (usually optional)
salt parameter. This parameter causes the key derivation function to
not always return the same output keys for the same input secret. As
with other cryptosystems, salts are fundamentally different from the
secret input: salts generally do not have to be secret, and can be re-
used.

Key derivation functions can be useful, for example, when a cryp-
tographic protocol starts with a single secret value, such as a shared
password or a secret derived using Diffie-Hellman key exchange, but
requires multiple secret values to operate, such as encryption and
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MAC keys. Another use case of key derivation functions is in crypto-
graphically secure random number generators, which we’ll see in more
detail in a following chapter, where they are used to extract random-
ness with high entropy density from many sources that each have low
entropy density.

There are two main categories of key derivation function, depend-
ing on the entropy content of the secret value, which determines how
many different possible values the secret value can take.

If the secret value is a user-supplied password, for example, it typ-
ically contains very little entropy. There are very few values the pass-
word will take. As we’ve already established in a previous section on
password storage, that means it is necessary that the key derivation
function is hard to compute. That means it requires a non-trivial
amount of computing resources, such as CPU cycles or memory. If
the key derivation function were easy to compute, an attacker could
simply enumerate all possible values of the shared secret, since there
are few possibilities, and then compute the key derivation function for
all of them. As we’ve seen in that previous section on password stor-
age, this is how most modern attacks on password stores work. Using
an appropriate key derivation function, such as scrypt, would prevent
these attacks. In this chapter, we’ll see scrypt, as well as other key
derivation functions in this category.

On the other hand, the secret value could also have a high en-
tropy content. For example, it could be a shared secret derived from
a Diffie-Hellman key agreement protocol, or an API key consisting
of cryptographically random bytes (we’ll discuss cryptographically se-
cure random number generation in the next chapter). In that case, it
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isn’t necessary to have a key derivation function that’s hard to compute:
even if the key derivation function is trivial to compute, there are too
many possible values the secret can take, so an attacker would not be
able to enumerate them all. We’ll see the best-of-breed of this kind of
key derivation function, HKDF, in this chapter.

12.2 Password strength

TODO: NIST Special Publication 800-63

12.3 PBKDF2

12.4 bcrypt

12.5 scrypt

12.6 HKDF

The HMAC-based (Extract-and-Expand) Key Derivation Function
(HKDF), defined in RFC 5869[25] and explained in detail in a re-
lated paper[27], is a key derivation function designed for high entropy
inputs, such as shared secrets from a Diffie-Hellman key exchange. It
is specifically not designed to be secure for low-entropy inputs such as
passwords.

HKDF exists to give people an appropriate, off-the-shelf key
derivation function. Previously, key derivation was often something
that was done ad hoc for a particular standard. Usually these ad hoc
solutions did not have the extra provisions HKDF does, such as salts
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or the optional info parameter (which we’ll discuss later in this sec-
tion); and that’s only in the best case scenario where the KDF wasn’t
fundamentally broken to begin with.

HKDF is based on HMAC. Like HMAC, it is a generic construc-
tion that uses hash functions, and can be built using any cryptograph-
ically secure hash function you want.

HKDF consists of two phases. In the first phase, called the ex-
traction phase, a fixed-length key is extracted from the input entropy.
In the second phase, called the expansion phase, that key is used to
produce a number of pseudorandom keys.

The extraction phase

The extraction phase is responsible for extracting a small amount of
data with a high entropy content from a potentially large amount of
data with a smaller entropy density.

The extraction phase just uses HMAC with a salt:

def extract(salt, data):

return hmac(salt, data)

The salt value is optional. If the salt is not specified, a string of
zeroes equal to the length of the hash function’s output is used. While
the salt is technically optional, the designers stress its importance, be-
cause it makes the independent uses of the KDF (for example, in dif-
ferent applications, or with different users) produce independent re-
sults. Even a fairly low-entropy salt can already contribute signifi-
cantly to the security of the KDF. [25] [27]
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The extraction phase explains why HKDF is not suitable for de-
riving keys from passwords. While the extraction phase is very good
at concentrating entropy, it is not capable of amplifying entropy. It is
designed for compacting a small amount of entropy spread out over
a large amount of data into the same amount of entropy in a small
amount of data, but is not designed for creating a set of keys that are
difficult to compute in the face of a small amount of available entropy.
There are also no provisions for making this phase computationally
intensive. [25]

In some cases, it is possible to skip the extraction phase, if the
shared secret already has all the right properties. For example, if it
is a pseudorandom string of sufficient length, and with sufficient en-
tropy. However, sometimes this should not be done at all, for example
when dealing with a Diffie-Hellman shared secret. The RFC goes into
slightly more detail on the topic of whether or not to skip this step;
but it is generally inadvisable. [25]

The expansion phase

In the expansion phase, the random data extracted from the inputs in
the extraction phase is expanded into as much data as is required.

The expansion step is also quite simple: chunks of data are pro-
duced using HMAC, this time with the extracted secret, not with the
public salt, until enough bytes are produced. The data being HMACed
is the previous output (starting with an empty string), an “info” param-
eter (by default also the empty string), and a counter byte that counts
which block is currently being produced.

def expand(key, info=””):
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”””Expands the key, with optional info.

”””

output = ””

for byte in map(chr, range(256)):

output = hmac(key, output + info + byte)

yield output

def get_output(desired_length, key, info=””):

”””Collects output from the expansion step until enough

has been collected; then returns the collected output.

”””

outputs, current_length = [], 0

for output in expand(key, info):

outputs.append(output)

current_length += len(output)

if current_length >= desired_length:

break

else:

raise RuntimeError(”Desired length too long”)

return ””.join(outputs)[:desired_length]

Like the salt in the extraction phase, the “info” parameter is
entirely optional, but can actually greatly increase the security of
the application. The “info” parameter is intended to contain some
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application-specific context in which the key derivation function is
being used. Like the salt, it will cause the key derivation function
to produce different values in different contexts, further increasing its
security. For example, the info parameter may contain information
about the user being dealt with, the part of the protocol the KDF is
being executed for… [25]
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13

Random number generators

The generation of random numbers is too important
to be left to chance. Robert R. Coveyou

13.1 Introduction

Many cryptographic systems require random numbers. So far, we’ve
just assumed that they’re available and waved our hands vigorously
around those parts. In this chapter, we’ll go more in depth about the
importance and mechanics of random numbers in cryptographic sys-
tems.

Producing random numbers is a fairly intricate process. What’s
worse, is that like so many cryptographic systems gone wrong, that to
the untrained eye, getting it wrong looks exactly like getting it right.
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There’s three categories of random number generation that we’ll
consider separately:

• True random number generators

• Cryptographically secure pseudorandom number generators

• Pseudorandom number generators

13.2 True random number generators

Any one who considers arithmetical methods of pro-
ducing random digits is, of course, in a state of sin.

John von Neumann

John von Neumann, father of the modern model of computing,
made an obvious point. We can’t expect to produce random numbers
using predictable, deterministic arithmetic. We need a source of ran-
domness that isn’t a consequence of deterministic rules.

True random number generators get their randomness from phys-
ical processes. Historically, many systems have been used for produc-
ing such numbers. Systems like dice are still in common use today.
However, for the amount of randomness we need for practical cryp-
tographic algorithms, these are typically far too slow, and often quite
unreliable.

We’ve since come up with more speedy and reliable sources of ran-
domness. There are several categories of physical processes that are
used for hardware random number generation:

• Quantum processes
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• Thermal processes

• Oscillator drift

• Timing events

Keep in mind that not all of these options necessarily generate
high-quality, truly random numbers. We’ll elaborate further on how
they can be applied successfully anyway.

Radioactive decay

One example of a quantum physical process used to produce random
numbers is radioactive decay. We know that radioactive substances
will slowly decay over time. It’s impossible to know when the next
atom will decay; that process is entirely random. Detecting when such
a decay has occurred, however, is fairly easy. By measuring the time
between individual decays, we can produce random numbers.

Shot noise

Shot noise is another quantum physical process used to produce ran-
dom numbers. Shot noise is based on the fact that light and electricity
are caused by the movement of indivisible little packets: photons in
the case of light, and electrons in the case of electricity.

Nyquist noise

An example of a thermal process used to produce random numbers
is Nyquist noise. Nyquist noise is the noise that occurs from charge
carriers (typically electrons) traveling through a medium with a certain
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resistance. That causes a tiny current to flow through the resistor (or,
alternatively put, causes a tiny voltage difference across the resistor).

i =

√
4kBT∆f

R

v = 4kBT∆fR

These formulas may seem a little scary to those who haven’t seen
the physics behind them before, but don’t worry too much: under-
standing them isn’t really necessary to go along with the reasoning.
These formulas are for the the root mean square. If you’ve never heard
that term before, you can roughly pretend that means “average”. ∆f

is the bandwidth, T is the temperature of the system in Kelvins, kB is
Boltzmann’s constant.

As you can see from the formula, Nyquist noise is thermal, or
temperature-dependent. Fortunately, an attacker generally can’t use
that property to break the generator: the temperature at which it would
become ineffective is so low that the system using it has probably al-
ready failed at that point.

By evaluating the formula, we can see that Nyquist noise is quite
small. At room temperature with reasonable assumptions (10 kHz
bandwidth and a 1kΩ resistor), the Nyquist voltage is in the order of
several hundred nanovolts. Even if you round up liberally to a micro-
volt (a thousand nanovolts), that’s still a thousandth of a thousandth
of a volt, and even a tiny AA battery produces 1.5V.

While the formulas describe the root mean square, the value you
can measure will be randomly distributed. By repeatedly measuring it,
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we can produce high-quality random numbers. For most practical ap-
plications, thermal noise numbers are quite high quality and relatively
unbiased.

TODO: we’ve never actually explained the word entropy! “resis-
tance an attacker perceives” is necessary in a good definition!

TODO: explain synchronous stream ciphers as CSPRNGs

13.3 Yarrow

The Yarrow algorithm is a cryptographically secure pseudorandom
number generator.

TODO: actually explain Yarrow
This algorithm is used as the CSPRNG for FreeBSD, and was

inherited by Mac OS X. On both of these operating systems, it’s used
to implement /dev/random. Unlike on Linux, /dev/urandom is just an
alias for /dev/random.

13.4 Blum Blum Shub

TODO: explain this, and why it’s good (provable), but why we don’t
use it (slow)

13.5 Dual_EC_DRBG

Dual_EC_DRBG is a NIST standard for a cryptographically secure pseu-
dorandom bit generator. It sparked a large amount of controversy:
despite being put forth as an official, federal cryptographic standard,
it quickly became evident that it wasn’t very good.
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Cryptanalysis eventually demonstrated that the standard could
contain a back door hidden in the constants specified by the standard,
potentially allowing an unspecified attacker to completely break the
random number generator.

Several years afterwards, leaked documents suggested a back-
door in an unnamed NIST standard released in the same year as
Dual_EC_DRBG, fueling the suspicions further. This lead to an official
recommendation from the standards body to stop using the standard,
which was previously unheard of under such circumstances.

Background

For a long time, the official standards produced by NIST lacked good,
modern cryptographically secure pseudorandom number generators.
It had a meager choice, and the ones that had been standardized had
several serious flaws.

NIST hoped to address this issue with a new publication called
SP 800-90, that contained several new cryptographically secure pseu-
dorandom number generators. This document specified a number of
algorithms, based on different cryptographic primitives:

1. Cryptographic hash functions

2. HMAC

3. Block ciphers

4. Elliptic curves

Right off the bat, that last one jumps out. Using elliptic curves
for random number generation was unusual. Standards like these are
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expected to be state-of-the-art, while still staying conservative. Ellip-
tic curves had been considered before in an academic context, but that
was a far cry from being suggested as a standard for common use.

There is a second reason elliptic curves seem strange. HMAC and
block ciphers are obviously symmetric algorithms. Hash functions
have their applications in asymmetric algorithms such as digital signa-
tures, but aren’t themselves asymmetric. Elliptic curves, on the other
hand, are exclusively used for asymmetric algorithms: signatures, key
exchange, encryption.

That said, the choice didn’t come entirely out of the blue. A choice
for a cryptographically secure pseudorandom number generator with
a strong number-theoretical basis isn’t unheard of: 13.4 is a perfect
example. Those generators are typically much slower than the alterna-
tives. Dual_EC_DRBG, for example, is three orders of magnitude slower
than its peers presented in the same standard. The idea is that the
extra confidence inspired by the stronger mathematical guarantees is
worth the performance penalty. For example, we’re fairly confident
that factoring numbers is hard, but we’re a lot less sure about our hash
functions and ciphers. RSA came out in 1977 and has stood the test
of time quite well since then. DES came out two years later, and is
now considered completely broken. MD4 and MD5 came out over a
decade later, and are completely broken as well.

The problem is though, that the standard didn’t actually provide
the security proof. The standard specifies the generator but then
merely suggests that it would be at least as hard as solving the elliptic
curve discrete log problem. Blum Blum Shub, by contrast, has a proof
that shows that breaking it is at least as hard as solving the quadratic
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residuosity problem. The best algorithm we have for that is factoring
numbers, which we’re fairly sure is pretty hard.

The omission of the proof is a bit silly, because there’s no reason
you’d use a pseudorandom number generator as slow as Dual_EC_DRBG
unless you had proof that you were getting something in return for the
performance hit.

Cryptographers then later did the homework that NIST should
have provided in the specification[34][14]. Those analyses quickly
highlighted a few issues.

A quick overview of the algorithm

The algorithm consists of two parts:

1. Generating pseudorandom points on the elliptic curve, which
are turned into the internal state of the generator;

2. Turning those points into pseudorandom bits.

We’ll illustrate this graphically, with an illustration based on the
work by Shumow and Ferguson, two cryptographers who highlighted
some of the major issues with this algorithm:

Throughout the algorithm, ϕ is a function that takes a curve point
and turns it into an integer. The algorithm needs two given points on
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the curve: P and Q. These are fixed, and defined in the specification.
The algorithm has an internal state s. When producing a new block of
bits, the algorithm turns s into a different value r using the ϕ function
and elliptic curve scalar multiplication with P :

r = ϕ(sP )

That value, r, is used both for producing the output bits and updat-
ing the internal state of the generator. In order to produce the output
bits, a different elliptic curve point, Q, is used. The output bits are
produced by multiplying r with Q, and running the result through a
transformation θ:

o = θ(ϕ(rQ))

In order to perform the state update, r is multiplied with P again,
and the result is converted to an integer. That integer is used as the
new state s.

s = ϕ(rP )

Issues and question marks

First of all, ϕ is extremely simple: it just takes the x-coordinate of the
curve point, and discards the y coordinate. That means that it’s quite
easy for an attacker who sees the output value of ϕ to find points that
could have produced that value. In itself, that’s not necessarily a big
deal; but, as we’ll see, it’s one factor that contributes to the possibility
of a backdoor.
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Another flaw was shown where points were turned into pseudo-
random bits. The θ function simply discards the 16 most significant
bits. Previous designs discarded significantly more: for 256-bit curves
such as these, they discarded somewhere in the range of 120 and 175
bits.

Failing to discard sufficient bits gave the generator a small bias.
The next-bit property was violated, giving attackers a better than 50%
chance of guessing the next bit correctly. Granted, that chance was
only about one in a thousand better than 50%; but that’s still unaccept-
able for what’s supposed to be the state-of-the-art in cryptographically
secure pseudorandom number generators.

Discarding only those 16 bits has another consequence. Because
only 16 bits were discarded, we only have to guess 216 possibilities to
find possible values of ϕ(rQ) that produced the output. That is a very
small number: we can simply enumerate all of them. Those values are
the outputs of ϕ, which as we saw just returns the x coordinate of a
point. Since we know it came from a point on the curve, we just have
to check if our guess is a solution for the curve equation:

y2 ≡ x3 + ax+ b (mod p)

The constants a, b, p are specified by the curve. We’ve just guessed
a value for x, leaving only one unknown, y. We can solve that quite
efficiently. We compute the right hand side and see if it’s a per-
fect square: y2 = q =

√
x3 + ax+ b (mod p). If it is, A =

(x, sqrt(q)) = (x, y) is a point on the curve. This gives us a number
of possible points A, one of which is rQ used to produce the output.

This isn’t a big deal at face value. To find the state of the algorithm,
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an attacker needs to find r, so they can compute s. They still need to
solve the elliptic curve discrete log problem to find r from rQ, given
Q. We’re assuming that that’s hard.

Keep in mind that elliptic curves are primitives used for asymmet-
ric encryption. That problem is expected to be hard to solve in general,
but what if we have some extra information? What if there’s a secret
value e so that eQ = P ?

Let’s put ourselves in the shoes of an attacker knowing e. We
repeat our math from earlier. One of those points A we just found is
the rQ we’re looking for. We can compute:

ϕ(eA) = ϕ(erQ) = ϕ(rP ) (mod p)

That last step is a consequence of the special relationship between
e, P,Q. That’s pretty interesting, because ϕ(rP ) is exactly the compu-
tation the algorithm does to compute s, the new state of the algorithm!
That means that an attacker that knows e can, quite efficiently, com-
pute the new state s from any output o, allowing them to predict all
future values of the generator!

This assumes that the attacker knows which A is the right A. Be-
cause only 16 bits were discarded there are only 16 bits left for us to
guess. That gives us 216 candidate x coordinates. Experimentally,
we find that roughly half of the possible x coordinates correspond to
points on the curve, leaving us with 215 possible curve pointsA, one of
which is rQ. That’s a pretty small number for a bit of computer-aided
arithmetic: plenty small for us to try all options. We can therefore say
that an attacker that does know the secret value e most definitely can
break the generator.
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So, we’ve now shown that if there is a magical e for which eQ = P ,
and you can pick P and Q (and you don’t have to explain where you
got them from), that you could break the generator. How do you pick
such values?

To demonstrate just how possible it is, the researchers started from
the NIST curve’s P and p values, but came up with their ownQ′. They
did this by starting with P , picking a random d (keeping it secret),
and setting Q′ = dP . The trick is that there’s an efficient algorithm
for computing e in eQ′ = P if you know the d in Q′ = dP . This is
the e we need for our earlier attack. When they tried this out, they
discovered that in all cases (that is, for many random d), seeing 32
bytes of output was enough to determine the state s.

All of this, of course, only demonstrates that it is possible for the
specified values of P and Q to be special values with a secret back
door. It doesn’t provide any evidence that the actual values have a
backdoor in them. However, given that the standard never actually
explains how they got the magical value for Q, it doesn’t really inspire
a lot of confidence. Typically, cryptographic standards use “nothing-
up-my-sleeve” numbers, such as the value of some constant such as π
or the natural logarithm base, e.

If someone does know the backdoor, the consequences are obvi-
ously devastating. We’ve already argued for the necessity of crypto-
graphically secure pseudorandom number generators: having a broken
one essentially means that all cryptosystems that use this generator are
completely and utterly defeated.

There are two suggested ways of fixing this particular algorithm:

• Make the θ function more complex to invert, rather than just
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discarding 16 bits. This makes it harder to find candidate points,
and hence, harder to perform the attack. One obvious way
would be to discard more bits. Another option would be to use
a cryptographically secure hash, or a combination of both.

• Generate randomQ every time you start the algorithm, possibly
by picking a random d and setting Q = dP . Of course, d has
to be sufficiently large and truly random: if θ is unchanged, and
there’s only few values d can have, the attacker can just perform
the above attack for all values of d.

Aftermath

TODO: Talk about RSA guy’s comments + snowden leaks

13.6 Mersenne Twister

Mersenne Twister is a very common pseudorandom number genera-
tor. It has many nice properties, such as high performance, a huge
period1 of 219937 − 1, and it passes all but the most demanding ran-
domness tests. Despite all of these, it is not cryptographically secure.
To demonstrate this, we’ll take a look at how the algorithm works.
Fortunately, it’s not very complex.

Internal structure

The standard Mersenne Twister algorithm operates on an internal state
array S consisting of 624 unsigned 32-bit integers, and an index i

1The period of a pseudorandom number generator is how many random numbers
it produces before the entire sequence repeats.
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pointing to the current integer. It consists of three steps:

1. An optional initialization function, which produces an initial
state from a small random value called a seed.

2. An state generation function, which produces a new state from
the old state.

3. An extraction function, also called the tempering function, that
produces a random number from the current element of the state
(the element pointed at by the index i).

Whenever the extraction function is called, the index to the cur-
rent integer is incremented. When all of the current elements of the
state have been used to produce a number, the state initialization func-
tion is called again. The state initialization function is also called right
before the first number is extracted.

So, to recap: the state is regenerated, then the extraction function
goes over each of the elements in the state, until it runs out. This
process repeats indefinitely.

TODO: illustrate
We’ll look at each of the parts briefly. The exact workings of them

is outside the scope of this book, but we’ll look at them just long
enough to get some insight into why Mersenne Twister is unsuitable
as a cryptographically secure random number generator.

The initialization function

The initialization function creates an instance of Mersenne Twister’s
state array, from a small initial random number called a seed.
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The array starts with the seed itself. Then, each next element is
produced from a constant, the previous element, and the index of the
new element. Elements are produced until there are 624 of them.

Here’s the Python source code:

def initialize_state(seed):

state = [seed]

for i in xrange(1, 624):

prev = state[-1]

elem = 0x6c078965 * (prev ^ (prev >> 30)) + i

state.append(uint32(elem))

return state

For those of you who haven’t worked with Python or its bitwise
operators:

• >> and << are right-shift and left-shift

• & is binary AND: 0&0 = 0&1 = 1&0 = 0, and 1&1 = 1.

• ^ is binary XOR, ^= XORs and assigns the result to the name
on the left-hand side, so x ^= k is the same thing as x = x ^ k.

REVIEW: Bitwise arithmetic appendix?
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The state regeneration function

The state regeneration function takes the current state and produces a
new state. It is called right before the first number is extracted, and
every time all 624 elements of the state have been used up.

The Python source code for this function is fairly simple. Note
that it modifies the state array in place, instead of returning a new one.

def regenerate(s):

for i in xrange(624):

y = s[i] & 0x80000000

y += s[(i + 1) % 624] & 0x7fffffff

z = s[(i + 397) % 624]

s[i] = z ^ (y >> 1)

if y % 2:

s[i] ^= 0x9908b0df

The % in an expression like s[(i + n) % 624] means that a next
element of the state is looked at, wrapping around to the start of the
state array if there is no next element.

The tempering function

The tempering function is applied to the current element of the state
before returning it as the produced random number. It’s easier to just
show the code instead of explaining how it works:
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_TEMPER_MASK_1 = 0x9d2c5680

_TEMPER_MASK_2 = 0xefc60000

def temper(y):

y ^= uint32(y >> 11)

y ^= uint32((y << 7) & _TEMPER_MASK_1)

y ^= uint32((y << 15) & _TEMPER_MASK_2)

y ^= uint32(y >> 18)

return y

It may not be obvious, especially if you’re not used to binary arith-
metic, but this function is bijective or one-to-one: each 32 bit integer
input maps to exactly one output, and vice versa: for each 32 bit in-
teger we get as an output there was exactly one 32 bit integer it could
have come from.

Because the tempering function is one-to-one, there is an inverse
function: a function that gives you the untempered equivalent of a
number. It may not be obvious to you how to construct that function
unless you’re a bitwise arithmetic wizard, but that’s okay; in the worst
case scenario we could still brute-force it. Suppose we just try every
single 32 bit integer, and remember the result in a table. Then, when
we get a result, we look it up in the table, and find the original. That
table would have to be at least 232 · 32 bits in length, or about 17.18
GB; big, but not impossibly so.

Fortunately, there’s a much simpler method to compute the inverse
of the temper function. We’ll see why that’s interesting when we eval-
uate the cryptographic security of the Mersenne Twister in the next
section. For those interested in the result, the untempering function
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looks like this:

def untemper(y):

y ^= y >> 18

y ^= ((y << 15) & _TEMPER_MASK_2)

y = _undo_shift_2(y)

y = _undo_shift_1(y)

return y

def _undo_shift_2(y):

t = y

for _ in xrange(5):

t <<= 7

t = y ^ (t & _TEMPER_MASK_1)

return t

def _undo_shift_1(y):

t = y

for _ in xrange(2):

t >>= 11

t ^= y

return t



13.6. MERSENNE TWISTER 163

Cryptographic security

Remember that for cryptographic security, it has to be impossible to
predict future outputs or recover past outputs given present outputs.
The Mersenne Twister doesn’t have that property.

It’s clear that psuedorandom number generators, both those cryp-
tographically secure and those that aren’t, are entirely defined by their
internal state. After all, they are deterministic algorithms: they’re just
trying very hard to pretend not to be. Therefore, you could say that
the principal difference between cryptographically secure and ordinary
pseudorandom number generators is that the cryptographically secure
ones shouldn’t leak information about their internal state, whereas it
doesn’t matter for regular ones.

Remember that in Mersenne Twister, a random number is pro-
duced by taking the current element of the state, applying the tem-
pering function, and returning the result. We’ve also seen that the
tempering function has an inverse function. So, if I can see the output
of the algorithm and apply the inverse of the tempering function, I’ve
recovered one element out of the 624 in the state.

Suppose that I happen to be the only person seeing the outputs of
the algorithm, and you begin at the start of the state, such as with a
fresh instance of the algorithm, that means that I can clone the state
by just having it produce 624 random numbers.

Even if an attacker doesn’t see all 624 numbers, they can often still
recreate future states, thanks to the simple relations between past states
and future states produced by the state regeneration function.

Again, this is not a weakness of Mersenne Twister. It’s designed
to be fast and have strong randomness properties. It is not designed to



164 CHAPTER 13. RANDOM NUMBER GENERATORS

be unpredictable, the principal property of a cryptographically secure
pseudorandom number generators.



Part III

Complete cryptosystems
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SSL and TLS

14.1 Description

SSL, short for Secure Socket Layer, is a cryptographic protocol origi-
nally introduced by Netscape Communications1 for securing traffic on
the Web. The standard is now superseded by TLS (Transport Layer
Security), a standard publicized in RFCs by the IETF. The term SSL
is still commonly used, even when the speaker actually means a TLS
connection. From now on, this book wil only use the term TLS, unless
we really mean the old SSL standard.

Its first and foremost goal[17] is to transport bytes securely, over
the Internet or any other insecure medium. It’s hybrid cryptosystem: it

1For those too young to remember, Netscape is a company that used to make
browsers.
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uses both symmetric and asymmetric algorithms in unison. For exam-
ple, signature algorithms can be used to authenticate peers, and public
key algorithms be used to negotiate shared secrets and authenticate
certificates.

On the symmetric side, stream ciphers (both native and using
modes of operation) are used to encrypt the actual data being trans-
mitted, and MACs are used to authenticate that data.

TLS is the world’s most common cryptosystem, and hence prob-
ably also the most studied. Over the years, many flaws have been dis-
covered in SSL and TLS, despite many of the world’s top cryptogra-
phers contributing to and examining the standard2. As far as we know,
the current versions of TLS are secure, or at least can be configured
securely.

14.2 Handshakes

TODO: explain a modern TLS handshake

Downgrade attacks

SSL 2.0 made the mistake of not authenticating handshakes. This
made it easy to mount downgrade attacks. A downgrade attack is a
man-in-the-middle attack where an attacker modifies the handshake
messages that negotiate which ciphersuite is being used. That way, he
can force the clients to set up the connection using an insecure block
cipher, for example.

2In case I haven’t driven this point home yet: it only goes to show that designing
cryptosystems is hard, and you probably shouldn’t do it yourself.
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Due to cryptographic export restrictions at the time, many ciphers
were only 40 or 56 bit. Even if the attacker couldn’t break the best
encryption both client and server supported, he could probably break
the weakest, which is all that is necessary for a downgrade attack to
succeed.

This is one of the many reasons that there is an explicit RFC[35]
prohibiting new TLS implementations from having SSL v2.0 support.

14.3 Certificate authorities

TLS certificates can be used to authenticate peers, but how do we au-
thenticate the certificate? My bank may very well have a certificate
claiming to be that particular bank, but how do I know it’s actually my
bank, and not just someone pretending to be my bank? Why should
I trust this particular certificate? As we’ve seen when we discussed
these algorithms, anyone can generate as many key pairs as they’d like.
There’s nothing stopping someone from generating a key pair pretend-
ing to be your bank

When someone actually tries to use a certificate to impersonate a
bank, real browsers don’t believe you. They notify the user that the
certificate is untrusted. They do this using the standard TLS trust
model of certificate authorities. TLS clients come with a list of trusted
certificate authorities, commonly shipped with your operating system
or your browser. These are special, trusted certificates, that are carefully
guarded by their owners.

For a fee, these owners will use their certificate authority to sign
other certificates. The idea is that the certificate authority wouldn’t
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sign a certificate for Facebook or a bank or anyone else, unless you
could prove you’re actually them.

When a TLS client connects to a server, that server provides a
certificate chain. Typically, their own certificate is signed by an in-
termediary CA certificate, which is signed by another, and another,
and one that is signed by a trusted root certificate authority. Since
the client already has a copy of that root certificate, they can verify the
signature chain starting with the root.

Your fake certificate doesn’t have a chain leading up to a trusted
root certificate, so the browser rejects it.

TODO: Explain why this is a total racket

14.4 Self-signed certificates

14.5 Client certificates

In TLS, certificates are usually only used to identify the server. This
satisfies a typical use case: users want to communicate securely with
their banks and e-mail providers, and the certificate authenticates the
service they’re talking to. The service usually authenticates the user
using passwords, and, occasionally, two-factor authentication.

In public-key schemes we’ve seen so far, all peers typically had
one or more key pairs of their own. There’s no reason users can’t have
their own certificates, and use them to authenticate to the server. The
TLS specification explicitly supports client certificates. This feature is
only rarely used, even thought it clearly has very interesting security
benefits.



14.6. PERFECT FORWARD SECRECY 171

The main reason for that is probably rooted in the poor user expe-
rience. There are no systems that are easy to use for atechnical people
that rely on client certificates. Since there are few such systems, even
tech-savvy people don’t know about them, which means new systems
aren’t created.

Client certificates are a great solution for when you control both
ends of the wire and want to securely authenticate both peers in a TLS
connection. By producing your own certificate authority, you can even
sign these client certificates to authenticate them.

14.6 Perfect forward secrecy

Historically, the most common way to agree on the pre-master secret is
for the client to select a random number and encrypt it, typically using
RSA. This has a few nice properties. For example, it means the server
can make due with less entropy: since the random bits are handed to
the server by the client, the server doesn’t need to produce any crypto-
graphically random bits. It also makes the handshake slightly faster,
since there’s no need for back-and-forth communication to agree on a
shared secret.

However, it has one major flaw. Suppose an attacker gets access to
the server’s private key. Perhaps they managed to factor the modulus
of the RSA key, or perhaps they broke in and stole it, or perhaps they
used legal force to get the owner to hand over the key. Regardless of
how they acquired it, getting access to the key allows the attacker to
decrypt all past communication. The key allows them to decrypt the
encrypted pre-master secrets, which allows them to derive all of the
symmetric encryption keys, and therefore decrypt everything.
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There are obvious alternatives to this scheme. We’ve already seen
Diffie-Hellman key exchange, allowing two peers to agree on secret
keys over an insecure medium. TLS allows for peers to agree on the
pre-master secret using a Diffie-Hellman exchange, either based on
discrete logs or elliptic curves.

Assuming both peers discard the keys after use like they’re sup-
posed to, getting access to the secret keys wouldn’t allow an attacker
to decrypt previous communication. That property is called perfect
forward secrecy. The term “perfect” is a little contested, but the term
“forward” means that communications can’t be decrypted later if the
long-term keys (such as the server’s private key) fall into the wrong
hands.

Of course, this is only true if Diffie-Hellman exchanges are se-
cure. If an attacker has a significant mathematical and computational
advantage over everyone else, such as an algorithm for solving the dis-
crete log problem more efficiently than thought possible, combined
with many data centers filled with number-crunching computers, it’s
possible that they’ll break the key exchange itself.

14.7 Session resumption

TODO: explain session resumption

14.8 Attacks

As with most attacks, attacks on TLS can usually be grouped into two
distinct categories:
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1. Attacks on the protocol itself, such as subverting the CA mech-
anism;

2. Attacks on a particular implementation or cipher, such as crypt-
analytic attacks exploiting weaknesses in RC4, or timing attacks
in a particular AES implementation.

Unfortunately, SSL/TLS has had many successful attacks in both
categories. This section is particularly about the latter.

CRIME and BREACH

CRIME3 is an attack by the authors of BEAST. It’s an innovative side
channel attack that relies on TLS compression leaking information
about secrets in the plaintext. In a related attack called BREACH4,
the attackers accomplish the same effect using HTTP compression.
That was predicted by the authors of the original paper, but the
BREACH authors were the first to demonstrate it as a practical at-
tack. The BREACH attack was more practically applicable, though:
HTTP compression is significantly more common than TLS com-
pression.

Both of these rely on encryption of a compressed plaintext, and
their mechanisms are virtually identical: only the specific details re-
lated to HTTP compression or TLS compression are relevant. The
largest difference is that with TLS compression, the entire stream can
be attacked; with HTTP compression, only the body is compressed,

3Compression Ratio Info-leak Made Easy
4Browser Reconnaissance and Exfiltration via Adaptive Compression of Hyper-

text
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so HTTP headers are safe. Since the attacks are otherwise extremely
similar, we’ll just talk about how the attack works in the abstract, by
explaining how attackers can learn information about the plaintext if
it is compressed before encryption.

The most common algorithm used to compress both HTTP and
TLS[21] is called DEFLATE. The exact mechanics of DEFLATE
aren’t too important, but the important feature is that byte sequences
that occur more than once can be efficiently stored. When a byte se-
quence recurs5, instead of recording the same sequence, a reference is
provided to the previous sequence: instead of repeating the secret, it
says “go back and look at the thing I wrote N bytes ago”.

Suppose an attacker can control the plaintext. For example, the
attacker injects an invisible iframe6 or some Javascript code that fires
off many requests. The attacker needs some way to inject their guess
of the secret so that their guess occurs in the plaintext, such as the
query parameters7. Usually, they can prefix their guess with something
known, for example, if the CSRF token is:

<input type=”hidden”

name=”csrf-token”

value=”TOKEN_VALUE_HERE”>

… they can prefix the guess with the known part of that.
Then, they make a bunch of guesses, byte per byte. When one of

their guesses is correct, the ciphertext will be just a little shorter. Once
5Within limits; specifically within a sliding window, usually 32kB big. Other-

wise, the pointers would grow bigger than the sequences they’re meant to compress.
6An iframe is a web page embedded within a page.
7The key-value pairs in a URL after the question mark, e.g. the x=1&y=2 in

http://example.test/path?x=1&y=2.
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they have that first byte, they go on to the next one, and so forth, until
they discover the entire secret.

This attack is particularly interesting for a number of reasons. Not
only is it a completely new class of attack, widely applicable to many
cryptosystems, but compressing the plaintext prior to encryption was
actively recommended by existing cryptographic literature. It doesn’t
require any particularly advanced tools: you only need to convince the
user to make requests to a vulnerable website, and you only need to be
able to measure the size of the responses. It’s also extremely effective:
the researchers that published BREACH report being able to extract
secrets, such as CSRF tokens, within one minute.

In order to defend against CRIME, disable TLS compression.
This is generally done in most systems by default. In order to defend
against BREACH, there’s a number of possible options:

• Don’t allow the user to inject arbitrary data into the request.

• Don’t put secrets in the response bodies.

• Regenerate secrets such as CSRF tokens liberally, for example,
each request. 8

It’s a bad idea to simply unconditionally turn off HTTP compres-
sion. While it does successfully stop the attack, HTTP compression
is a critical tool for making the Web faster.

Web apps that consist of a static front-end (say, using HTML5,
JS, CSS) and that only operate using an API, say, JSON over REST,

8Be careful not to drain your system of entropy: perhaps use longer secrets, gen-
erated with a pseudo-random number generator, instead of using a random number
source for cryptographic use.



176 CHAPTER 14. SSL AND TLS

are particularly easy to immunize against this attack. Just disable com-
pression on the channel that actually contains secrets. It makes things
slower, of course, but at least the majority of data can still be served
over a CDN.

14.9 HSTS

HTTP Strict Transport Security (HSTS) is a way for web servers to
communicate that what they’re saying should only ever be transferred
over a secure transport. In practice, the only secure transport that is
ever used for HTTP is TLS.

Using HSTS is quite simple; the web server just adds an ex-
tra Strict-Transport-Security header to the response. The header
value contains a maximum age (max-age), which determines how long
into the future the browser can trust that this website will be HSTS-
enabled. This is typically a large value, such as a year. Browsers suc-
cessfully remembering that a particular host is HSTS-enabled is very
important to the effectiveness of the scheme, as we’ll see in a bit. Op-
tionally, the HSTS header can include the includeSubDomains direc-
tive, which details the scope of the HSTS policy. [20]

There are several things that a conforming web browser will do
when communicating with an HSTS-enabled website:

• Whenever there is any attempt to make any connection to this
website, it will always be done over HTTPS. The browser does
this completely by itself, before making the request to the web-
site.
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• If there is an issue setting up a TLS connection, the website will
not be accessible, instead of simply displaying a warning.

Essentially, HSTS is away for websites to communicate that they
only support secure transports. This helps protect the users against all
sorts of attacks including both passive eavesdroppers (that were hoping
to see some credentials accidentally sent in plaintext, and active man-
in-the-middle attacks such as SSL stripping.

HSTS also defends against mistakes on the part of the web server.
For example, a web server might accidentally pull in some executable
code, such as some Javascript, over an insecure connection. An active
attacker that can intercept and modify that Javascript would then have
complete control over the (supposedly secure) web site.

As with many TLS improvements, HSTS is not a panacea: it is
just one tool in a very big toolbox of stuff that we have to try and make
TLS more secure. HSTS only helps to ensure that TLS is actually
used; it does absolutely nothing to prevent attacks against TLS itself.

HSTS can suffer from a chicken-or-the-egg problem. If a browser
has never visited a particular HSTS-enabled website before, it’s possi-
ble that the browser doesn’t know that that website is HSTS-enabled
yet. Therefore, the browser may still attempt a regular HTTP con-
nection, vulnerable to an SSL stripping attack. Some browsers have
attempted to mitigate this issue by having browsers come pre-loaded
with a list of HSTS websites.
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14.10 Certificate pinning

Certificate pinning is an idea that’s very similar to HSTS, taken a little
further: instead of just remembering that a particular server promises
to support HTTPS, we’ll remember information about their certifi-
cates (in practice, we’ll remember a hash of the public key). When we
connect to a server that we have some stored information about, we’ll
verify their certificates, making it much harder for an impostor to pre-
tend to be the website we’re connecting to using a different certificate.

Browsers originally implemented certificate pinning by coming
shipped with a list of certificates from large, high-profile websites. For
example, Google included whitelisted certificates for all of their ser-
vices in their Chrome browser.

14.11 Secure configurations

In this section, we are only talking about configuration options such
as which ciphers, TLS/SSL versions, et cetera. We’re specifically not
talking about TLS configurations in the sense of trust models, key
management, et cetera.

There are several issues with securely configuring TLS securely:

1. Often, the defaults are unsafe, and people are unaware that they
should be changed.

2. The things that constitute a secure TLS configuration can
change rapidly, because cryptanalysis and practical attacks are
continuously improving.
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3. Old clients that still need to be supported sometimes mean that
you have to hang on to broken configuration options.

A practical example of some of these points coming together is
the BEAST attack. That attack exploited weaknesses in CBC cipher-
suites in TLSv1.0, which were parts of the default ciphersuite specifi-
cations everywhere. Many people recommended defending against it
by switching to RC4. RC4 was already considered cryptographically
weak, later cryptanalysis showed that RC4 was even more broken than
previously suspected. The attack had been known for years before be-
ing practically exploited; it was already fixed in TLSv1.1 in 2006, years
before the BEAST paper being published. However, TLSv1.1 had
not seen wide adoption.

Therefore, good advice necessarily changes over time, and it’s im-
possible to do so in a persistent medium such as a book. Instead, you
should look at continuously updated third party sources such as Qualys
SSL Labs. They provide tests for both SSL clients and servers, and ex-
tensive advice on how to improve configurations.

That said, there are certainly some general things we want from a
TLS configuration.

TODO: say stuff we generally want from TLS configurations
TODO: http://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-01

https://www.ssllabs.com/
https://www.ssllabs.com/
http://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-01
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OpenPGP and GPG

15.1 Description

OpenPGP is an open standard that describes a method for encrypting
and signing messages. GPG is the most popular implementation of
that standard1, available under a free software license.

Unlike TLS, which focuses on data in motion, OpenPGP focuses
on data at rest. A TLS session is active: bytes fly back and forth as
the peers set up the secure channel. An OpenPGP interaction is, by
comparison, static: the sender computes the entire message up front
using information shared ahead of time. In fact, OpenPGP doesn’t
insist that anything is sent at all: for example, it can be used to sign
software releases.

1GPG 2 also implements S/MIME, which is unrelated to the OpenPGP stan-
dard. This chapter only discusses OpenPGP.
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Like TLS, OpenPGP is a hybrid cryptosystem. Users have key
pairs consisting of a public key and a private key. Public key algo-
rithms are used both for signing and encryption. Symmetric key algo-
rithms are used to encrypt the message body; the symmetric key itself
is protected using public-key encryption. This also makes it easy to
encrypt a message for multiple recipients: only the secret key has to be
encrypted multiple times.

15.2 The web of trust

Earlier, we saw that TLS typically uses trusted root certificates to es-
tablish that a particular peer is who they claim to be. OpenPGP does
not operate using such trusted roots. Instead, it relies on a system
called the Web of Trust: a friend-of-a-friend honor system that relies
on physical meetings where people verify identities.

The simplest case is a directly trusted key. If we meet up in person,
we can verify each other’s identities. Perhaps we know each other, or
perhaps we’d check some form of identification. Then, we sign each
other’s keys.

Because I know the key is yours, I know that you can read the
messages encrypted by it, and the other way around. Provided you
don’t share your key, I know that only you can read those messages.
No-one can replace my copy of your key, because they wouldn’t be
able to forge my signature on it.

There’s a direct trust link between the two of us, and we can com-
municate securely.
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A slightly more complicated case is when a friend of yours would
like to send me a message. We’ve never met: he’s never signed my
key, nor have I signed theirs. However, I have signed your key, and
vice versa. You’ve signed your friend’s key, and vice versa. Your friend
can choose to leverage your assertion that I’m indeed the person in
possession of that key you signed, and use that to communicate with
me securely.

You might wonder how your friend would ever see signatures that
you placed on my key. This is because keys and signatures are typically
uploaded to a network of key servers, making them freely available to
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the world.
The above system can be extended to multiple layers of friends.

It relies in no small part in communities being linked by signatures,
which is why many community events include key signing parties,
where people sign each other’s keys. For large events, such as inter-
national programming conferences, this system is very effective. The
main weakness in this system are “islands” of trust: individuals or small
groups with no connections to the rest of the web.

Of course, this is only the default way to use OpenPGP. There’s
nothing stopping you from shipping a particular public key with some
software, and using that to sign messages, just like you might want to
do with TLS.
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Off-The-Record Messaging
(OTR)

16.1 Description

Off-the-record (OTR) messaging is a protocol for securing instant
messaging communication between people[13]. It intends to be the
online equivalent of a private, real-life conversation. It encrypts mes-
sages, preventing eavesdroppers from reading them. It also authenti-
cates peers to each other, so they know who they’re talking to. De-
spite authenticating peers, it is designed to be deniable: participants
can later deny to third parties anything they said to each other. It is
also designed to have perfect forward secrecy: even a compromise of a
long-term public key pair doesn’t compromise any previous conversa-
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tions.
The deniability and perfect forward secrecy properties are very dif-

ferent from those of other systems such as OpenPGP. OpenPGP in-
tentionally guarantees non-repudiability. It’s a great property if you’re
signing software packages, talking on mailing lists or signing busi-
ness invoices, but the authors of OTR argue that those aren’t desir-
able properties for the online equivalent of one-on-one conversations.
Furthermore, OpenPGP’s static model of communication makes the
constant key renegotiation to facilitate OTR’s perfect forward secrecy
impossible.

OTR is typically configured opportunistically, which means that
it will attempt to secure any communication between two peers, if
both understand the protocol, without interfering with communica-
tion where the other peer does not. The protocol is supported in many
different instant messaging clients either directly, or with a plugin.
Because it works over instant messages, it can be used across many
different instant messaging protocols.

A peer can signal that they would like to speak OTR with an ex-
plicit message, called the OTR Query message. If the peer is just
willing to speak OTR but doesn’t require it, they can optionally invis-
ibly add that information to a plaintext message. That happens with a
clever system of whitespace tags: a bunch of whitespace such as spaces
and tab characters are used to encode that information. An OTR-
capable client can interpret that tag and start an OTR conversation;
an client that isn’t OTR-capable just displays some extra whitespace.

OTR uses many of the primitives we’ve seen so far:

• Symmetric key encryption (AES in CTR mode)
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• Message authentication codes (HMAC with SHA-1)

• Diffie-Hellman key exchange

Authenticated key exchange (AKE)

TODO: Explain (https://otr.cypherpunks.ca/Protocol-v3-4.0.0.
html), #33

Data exchange

TODO: Explain (https://otr.cypherpunks.ca/Protocol-v3-4.0.0.
html), #33

https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
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Modular arithmetic

Modular arithmetic is used for many public key cryptosystems, in-
cluding public-key encryption algorithms like RSA and key exchange
protocols like Diffie-Hellman.

Modular arithmetic is something most people actually already un-
derstand, they just don’t know it’s called that. We can illustrate the
principles of modular arithmetic using a clock.

For simplicity’s sake, our 12-hour clock only shows hours, not
minutes or seconds. Unlike real clocks, the hour hand always shows an
exact hour, such as 2 or 9, and is never halfway in between two hours.

A.1 Addition and subtraction

It obviously makes sense to add hours to our clock: if it’s 2 o’clock now,
and you’d like to know what time it is five hours from now, you can
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Figure A.1: A clock, pointing to 2.

add 5, and end up with 7, as you can see in figure A.2 on page 192.

Figure A.2: 2 + 5 = 7, on the clock.

Similarly, we can subtract times. If it’s 10 o’clock now, and you’d
like to know what time it was two hours ago, you subtract two and end
up with 8.

The “weird” part is when you cross the boundary at 12. As far as
the clock is concerned, there’s no real difference between 12 and 0. If
it’s 10 o’clock now, it’ll be 2 o’clock in four hours. If it’s 2 o’clock now,
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Figure A.3: 10− 2 = 8, on the clock.

it was 9 o’clock five hours ago.
This is an example of what’s called “modular arithmetic”. The mod-

ulus, in this case, is 12. We can write the above equations as:

(10 + 4) mod 12 = 2

(2− 5) mod 12 = 9

In these equations, the mod is an operator, giving the remainder
after division. When we are dealing with modular arithmetic, where
all operations are affected by the modulus instead of a simple single
operation, we’ll write (mod 12) at the end of the equation:

10 + 4 ≡ 2 (mod 12)

2− 5 ≡ 9 (mod 12)

This is read as “ten plus four is equivalent to two, modulo twelve”
and “two minus five is equivalent to nine, modulo twelve”. That might
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seems like a trivial notational hack now, but the difference will be-
come apparent once we start applying tricks for doing more complex
modular computations, like multiplication and exponentiation.

A.2 Prime numbers

Prime numbers are wonderful kinds of numbers that come back in
many branches of mathematics. Anything I say about them proba-
bly won’t do them justice; but we’re in a practical book about applied
cryptography, so we’ll only see a few properties.

A prime number is a number that is divisible only by two numbers:
1 and itself. For example, 3 is a prime number, but 4 is not, because it
can be divided by 2.

Any number can be written as a product of prime factors: a bunch
of prime numbers multiplied together. That product is called a factor-
ization. For example, 30 can be factorized into 2, 3 and 5:

30 = 2 · 3 · 5

Sometimes, a prime number will occur more than once in a factor-
ization. For example, the factorization of 360 has 2 in it three times,
and three in it twice:

360 = 23 · 32 · 5

The factorization of any prime number is just that prime number
itself.

Two numbers are called coprime when their greatest common di-
visor is 1, or, to put it in another way, they don’t share any prime
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factors. Since the only prime factor a prime has is itself, that means
that a prime is coprime to every other number.

A.3 Multiplication

You might remember you were first taught multiplication as repeated
addition:

n · x = x+ x+ . . .+ x︸ ︷︷ ︸
n times

Modular multiplication is no different. You can compute modular
multiplication by adding the numbers together, and taking the modu-
lus whenever the sum gets larger than the modulus. You can also just
do regular multiplication, and then take the modulus at the end.

A.4 Division and modular inverses

Division is defined as the inverse of multiplication. So, a · b ≡ c

(mod m), then c
b ≡ a (mod m).

For example, 5 · 6 ≡ 2 (mod 7); so: 2
6 ≡ 5 (mod 7).

Usually, instead of using division directly, we’ll multiply using
something called a modular inverse. The modular inverse of a is a
number, that when you multiply it with a, you get 1. This is just like
the inverse of a number in regular arithmetic: x · 1

x = 1.
Like in regular arithmetic, not all numbers have modular inverses.

This is the equivalent of dividing by zero in regular arithmetic.
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There are two algorithms that are used to compute modular in-
verses: the extended Euclidean algorithm, and with the help of Euler’s
theorem.

The extended Euclidean theorem

TODO: explain, and how you can get modular inverses with it

Using Euler’s theorem

Euler’s theorem states that if two numbers a and n are coprime, then:

aϕ(n) ≡ 1 (mod n)

In that equation, ϕ is Euler’s totient function, which counts the
amount of numbers that are coprime to its argument.

Multiplying both sides by a−1, a’s multiplicative inverse, we get:

aϕ(n)−1 ≡ a−1 (mod n)

That gives us a direct formula for computing a−1. Unfortunately,
it’s still generally less interesting than using the extended Euclidean
algorithm, for two reasons:

1. It requires computing the totient function, which is generally
more complex than running the extended Euclidean algorithm
in the first place (unless you happen to know n’s prime factors)

2. Modular exponentiation is computationally expensive.
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One exception to that rule is for prime moduli. Since a prime is
coprime to every other number, and , since there are p − 1 numbers
smaller than p, ϕ(p) = p − 1. So, for a prime modulus, the modular
inverse of a is:

aϕ(n)−1 ≡ a−1 (mod n)

A.5 Exponentiation

Like multiplication is taught as as repeated addition, exponentiation
can be thought of as repeated multiplication:

an = a · a · . . . · a︸ ︷︷ ︸
n times

Performing modular exponentiation

As with multiplication, it’s possible to compute modular exponentia-
tion by performing regular exponentiation, and then taking the mod-
ulus at the end. However, this is very inefficient, particularly for large
n: the product quickly becomes far too large.

Fortunately, it is possible to compute modular exponentiation
much more efficiently. This is done by splitting the problem up into
smaller sub-problems. For example, instead of computing 220 directly
you could split it up:

220 = (210)2
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210 is something you can compute on your hands: start at 2, which
is 21, and then keep multiplying by two. Every time you multiply by
two, the exponent goes up by 1, so by the time you’ve counted all your
fingers (assuming you have ten of them), you’re done. The result is
1024. So:

220 ≡ (210 mod 15)2 (mod 15)

≡ (1024 mod 15)2 (mod 15)

≡ 42 (mod 15)

≡ 16 (mod 15)

≡ 1 (mod 15)

A particularly efficient way to do it on computers, is splitting the
exponent up into a sum of powers of two. This is called binary expo-
nentiation, or exponentiation by squaring. Suppose we want to com-
pute 3209 (mod 19). First, we split up 209 into a sum of powers of
two. This is process is essentially just writing 209 down in binary:
which would be 0b11010001. That’s very practical if the computa-
tion is being performed by a computer, because that’s often how the
computer had the number stored in the first place.

209 = 1 · 27 +1 · 26 +0 · 25 +1 · 24 +0 · 23 +0 · 22 +0 · 21 +1 · 20

= 1 · 128 +1 · 64 +0 · 32 +1 · 16 +0 · 8 +0 · 4 +0 · 2 +1 · 1
= 128 +64 +16 +1

We use that expansion into a sum of powers of two to rewrite the
equation:
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3209 = 3128+64+16+1

= 3128 · 364 · 316 · 31

Now, we need to compute those individual powers of 3: 1, 16, 64
and 128. A nice property of this algorithm is that we don’t actually
have to compute the big powers separately from scratch. We can use
previously computed smaller powers to compute the larger ones. For
example, we need both 3128 (mod 1)9 and 364 (mod 1)9, but you can
write the former in terms of the latter:

3128 mod 19 = (364 mod 19)2 (mod 19)

Let’s compute all the powers of 3 we need. For sake of brevity,
we won’t write these out entirely, but remember that all tricks we’ve
already seen to compute these still apply:

316 ≡ 17 (mod 19)

364 ≡ (316)4 ≡ 174 ≡ 16 (mod 19)

3128 ≡ (364)2 ≡ 162 ≡ 9 (mod 19)

Filling these back in to our old equation:

3209 = 3128 · 364 · 316 · 31 (mod 19)

≡ 9 · 16 · 17 · 3 (mod 19)

This trick is particularly interesting when the exponent is a very
large number. That is the case in many cryptographic applications.
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For example, in RSA decryption, the exponent is the private key d,
which is usually more than a thousand bits long. Keep in mind that
this method will still leak timing information, so it’s only suitable for
offline computation. Modular exponentiation can also be computed
using a technique called a Montgomery ladder, which we’ll see in the
next section.

Many programming languages provide access to specific modu-
lar exponentiation functions. For example, in Python, pow(e, x, m)

performs efficient modular exponentiation. However, the expression
(e ** x) % m will still use the inefficient method.

Timing-invariant computation using a Montgomery ladder

TODO: explain

A.6 Discrete logarithm

Just like subtraction is the inverse of addition, and division is the in-
verse of multiplication, logarithms are the inverse of exponentiation.
In regular arithmetic, ex = y, if x = loge y. The equivalent of this in
modular arithmetic is commonly called a “discrete logarithm”.

As with division, if you start from the definition as the inverse
of a different operator, it’s easy to come up with examples. For ex-
ample, since 36 ≡ 9 (mod 15), we can define 9 ≡ log3 6 (mod 15).
However computing discrete logarithms is generally fairly hard, unlike
modular inverses. There is no formal proof that computing discrete
logarithms is complex; we just haven’t found any efficient algorithms
to do it.
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There is one theoretical algorithm for computing discrete loga-
rithms efficiently. However, it requires a quantum computer, which
is a fundamentally different kind of computer from the classical com-
puters we use today. While we can build such computers, we can only
build very small ones. The limited size of our quantum computers
strongly limits which problems we can solve. So far, they’re much
more in the realm of the kind of arithmetic a child can do in their
head, than ousting the top of the line classical computers from the
performance throne.

The complexity of computing discrete logarithms, together with
the relative simplicity of computing its inverse, modular exponentia-
tion, is the basis for many public key cryptosystems. Common exam-
ples include the RSA encryption primitive, or the Diffie-Hellman key
exchange protocol.

While cryptosystems based on the discrete logarithm problem are
currently considered secure with appropriate parameter choices, there
are certainly ways that could change in the future. For example:

• Theoretical breakthroughs in number theory could make dis-
crete logarithms significantly easier to compute than we cur-
rently think.

• Technological breakthroughs in quantum computing could lead
to large enough quantum computers.

• Technological breakthroughs in classical computing as well as
the continuous gradual increases in performance and decreases
in cost could increase the size of some problems that can be
tackled using classical computers.
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Discrete logarithm computation is tightly linked to the problem
of number factorization. They are still areas of active mathematical re-
search; the links between the two problems are not still not thoroughly
understood. That said, there are many similarities between the two:

• Both are believed to be hard to compute on classical computers,
but neither has a proof of that fact.

• They can both be efficiently computed on quantum computers
using Shor’s algorithm.

• Mathematical advances in one are typically quickly turned into
mathematical advances in the other.
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B

Elliptic curves

Like modular arithmetic, elliptic curve arithmetic is used for many
public key cryptosystems. Many cryptosystems that traditionally work
with modular arithmetic, such as Diffie-Hellman and DSA, have an
elliptic curve counterpart.

Elliptic curves are curves with the following form:

y2 = x3 − ax+ b

This is the most common form when talking about elliptic curves
in general; there are several other forms which mostly have applica-
tions in cryptography, notably the Edwards form:

x2 + y2 = 1 + dx2y2

We can define addition of points on the curve.

203
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TODO: Move the Abelian group thing somewhere else, since it
applies to our fields thing as well

All of this put together form something called an Abelian group.
That’s a scary-sounding mathematical term that almost everyone al-
ready understands the basics of. Specifically, if you know how to
add integers (. . . − 2,−1, 0, 1, 2, . . .) together, you already know an
Abelian group. An Abelian group satisfies five properties:

1. If a and b are members of the Abelian group and ⋆ is the oper-
ator, then a ⋆ b is also a member of that Abelian group. Indeed,
any two integers added together always get you another integer.
This property is called closure, or, we say that the group is closed
under addition (or whatever the name is of the operation we’ve
defined).

2. If a, b and c are members of the Abelian group, the order of
operations doesn’t matter; to put it differently: we can move the
brackets around. In equation form: (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c).
Indeed, the order in which you add integers together doesn’t
matter; they will always sum up to the same value. This property
is called associativity, and the group is said to be associative.

3. There’s exactly one identity element i, for which a⋆i = i⋆a = a.
For integer addition, that’s zero: a+ 0 = 0 + a = a for all a.

4. For each element a, there’s exactly one inverse element b, for
which a⋆b = b⋆a = i, where i is the identity element. Indeed,
for integer addition, a+ (−a) = (−a) + a = 0 for all a.
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5. The order of elements doesn’t matter for the result of the op-
eration. For all elements a, b, a ⋆ b = b ⋆ a. This is known as
commutativity, and the group is said to be commutative.

The first four properties are called group properties and make
something a group; the last property is what makes a group Abelian.

We can see that our elliptic curve, with the point at infinity and
the addition operator, forms an Abelian group:

1. If P and Q are two points on the elliptic curve, then P + Q is
also always a point on the curve.

2. If P , Q, and R are all points on the curve, then P +(Q+R) =

(P +Q) +R, so the elliptic curve is associative.

3. There’s an identity element, our point at infinity O. For all
points on the curve P , P +O = O + P = P .

4. Each element has an inverse element. This is easiest explained
visually TODO: Explain visually

5. The order of operations doesn’t matter, P +Q = Q+ P for all
P,Q on the curve.

B.1 The elliptic curve discrete log problem

TOOD: explain fully
As with the regular discrete log problem, the elliptic curve discrete

log problem doesn’t actually have a formal proof that the operation is
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“hard” to perform: we just know that there is no publicly available al-
gorithm to do it efficiently. It’s possible, however unlikely, that some-
one has a magical algorithm that makes the problem easy, and that
would break elliptic curve cryptography completely. It’s far more likely
that we will see a stream of continuous improvements, which coupled
with increased computing power eventually eat away at the security of
the algorithm.



..

C

Side-channel attacks

C.1 Timing attacks

AES cache timing

http://tau.ac.il/~tromer/papers/cache.pdf

Elliptic curve timing attacks

TODO: Explain why the edwards form is great?

C.2 Power measurement attacks

TODO: Say something here.
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Glossary

A | B | C | E | G | I | K | M | N | O | S | K | M | O | P

A

AEAD mode

Class of block cipher modes of operation that provides authen-
ticated encryption, as well as authenticating some unencrypted
associated data. 124, 125, 127, 214, 217, 218

asymmetric-key algorithm

See public-key algorithm. 214, 219

asymmetric-key encryption

See public-key encryption. 214

B

block cipher

Symmetric encryption algorithm that encrypts and decrypts
blocks of fixed size. 33, 214, 215

215
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C

Carter-Wegman MAC

Reusable message authentication code scheme built from a one-
time MAC. Combines benefits of performance and ease of use.
122, 127, 214, 217

CBC mode

Cipher block chaining mode; common mode of operation where
the previous ciphertext block is XORed with the plaintext block
during encryption. Takes an initialization vector, which as-
sumes the role of the “block before the first block”. 49, 51, 55,
76, 214, 217

CTR mode

Counter mode; a nonce combined with a counter produces a
sequence of inputs to the block cipher; the resulting ciphertext
blocks are the keystream. 73, 74, 76, 214, 217

E

ECB mode

Electronic code book mode; mode of operation where plaintext
is separated into blocks that are encrypted separately under the
same key. The default mode in many cryptographic libraries,
despite many security issues. 42, 45, 48, 49, 113, 214

encryption oracle

An oracle that will encrypt some data. 45, 48, 214



GLOSSARY 217

G

GCM mode

Galois counter mode; AEAD mode combining CTR mode
with a Carter-Wegman MAC. 214, 217

GMAC

Message authentication code part of GCM mode used sepa-
rately. 127, 214

I

initialization vector

Data used to initialize some algorithms such as CBC mode.
Generally not required to be secret, but required to be unpre-
dictable. Compare nonce, salt. 50, 51, 75, 214, 218, 220, 222

K

key agreement

See key exchange. 214

key exchange

The process of exchanging keys across an insecure medium using
a particular cryptographic protocol. Typically designed to be
secure against eavesdroppers. Also known as key agreement.
191, 214, 217, 219

M
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message authentication code

Small piece of information used to verify authenticity and in-
tegrity of a message. Often called a tag. 214, 216–218

mode of operation

Generic construction that encrypts and decrypts streams, built
from a block cipher. 39, 49, 74, 214, 215

N

nonce

Number used once. Used in many cryptographic protocols.
Generally does not have to be secret or unpredictable, but does
have to be unique. Compare initialization vector, salt. 69, 74,
75, 132, 214, 216, 217, 220

O

OCB mode

Offset codebook mode; high-performance AEAD mode, un-
fortunately encumbered by patents. 214

one-time MAC

Message authentication code that can only be used securely for
a single message. Main benefit is increased performance over
re-usable MACs. 214, 216

oracle

A “black box” that will perform some computation for you. 45,
214, 216
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OTR messaging

Off-the-record messaging, messaging protocol that intends to
mimic the properties of a real-live private conversation. Piggy-
backs onto existing instant messaging protocols. 214

P

public-key algorithm

Algorithm that uses a pair of two related but distinct keys.
Also known as asymmetric-key algorithms. Examples include
public-key encryption and most key exchange protocols. 90,
214, 215

public-key encryption

Encryption using a pair of distinct keys for encryption and de-
cryption. Also known as asymmetric-key encryption. Contrast
with secret-key encryption. 89–91, 96, 130, 182, 191, 214, 215,
219, 220

S

salt

Random data that is added to a cryptographic primitive (usually
a one-way function such as a cryptographic hash function or a
key derivation function) Customizes such functions to produce
different outputs (provided the salt is different). Can be used
to prevent e.g. dictionary attacks. Typically does not have to be
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secret, but secrecy may improve security properties of the sys-
tem. Compare nonce, initialization vector. 103, 137, 139, 140,
214, 217, 218

secret-key encryption

Encryption that uses the same key for both encryption and de-
cryption. Also known as symmetric-key encryption. Contrast
with public-key encryption. 89, 90, 214, 219, 220

stream cipher

Symmetric encryption algorithm that encrypts streams of arbi-
trary size. 26, 49, 62, 63, 72, 74, 214

symmetric-key encryption

See secret-key encryption. 214



Acronyms

P | A | B | C | D | F | G | H | I

A

AEAD

Authenticated Encryption with Associated Data. 124, 125, 214

AES

Advanced Encryption Standard. 37, 186, 214

B

BEAST

Browser Exploit Against SSL/TLS. 51, 214

C

CBC

Cipher Block Chaining. 214

221



222 ACRONYMS

D

DES

Data Encryption Standard. 38, 151, 214

F

FIPS

Federal Information Processing Standards. 37, 38, 214

G

GCM

Galois Counter Mode. 214

H

HKDF

HMAC-based (Extract-and-Expand) Key Derivation Func-
tion. 139, 214

HSTS

HTTP Strict Transport Security. 176, 214

I

IV

initialization vector. 50, 75, 214

K
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KDF

key derivation function. 214

M

MAC

message authentication code. 109, 214, 218

O

OCB

offset codebook. 125, 214

OTR

off-the-record. 185, 214

P

PRF

pseudorandom function. 214

PRP

pseudorandom permutation. 214
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