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Preface

This book is about networks: monitoring them, studying them, and using the results of
those studies to improve them. “Improve” in this context hopefully means to make more
secure, but I don’t believe we have the vocabulary or knowledge to say that confidently
—at least not yet. In order to implement security, we try to achieve something more
quantifiable and describable: situational awareness.

Situational awareness, a term largely used in military circles, is exactly what it says on
the tin: an understanding of the environment you're operating in. For our purposes,
situational awareness encompasses understanding the components that make up your
network and how those components are used. This awareness is often radically different
from how the network is configured and how the network was originally designed.

To understand the importance of situational awareness in information security, I want
you to think about your home, and I want you to count the number of web servers in
your house. Did you include your wireless router? Your cable modem? Your printer?
Did you consider the web interface to CUPS? How about your television set?

To many IT managers, several of the devices listed didn't even register as “web servers.”
However, embedded web servers speak HTTP, they have known vulnerabilities, and
they are increasingly common as specialized control protocols are replaced with a web
interface. Attackers will often hit embedded systems without realizing what they are—
the SCADA system is a Windows server with a couple of funny additional directories,
and the MRI machine is a perfectly serviceable spambot.

This book is about collecting data and looking at networks in order to understand how
the network is used. The focus is on analysis, which is the process of taking security data
and using it to make actionable decisions. I emphasize the word actionable here because
effectively, security decisions are restrictions on behavior. Security policy involves telling
people what they shouldn’t do (or, more onerously, telling people what they must do).
Don’t use Dropbox to hold company data, log on using a password and an RSA dongle,
and don't copy the entire project server and sell it to the competition. When we make




security decisions, we interfere with how people work, and we’d better have good, solid
reasons for doing so.

All security systems ultimately depend on users recognizing the importance of security
and accepting it as a necessary evil. Security rests on people: it rests on the individual
users of a system obeying the rules, and it rests on analysts and monitors identifying
when rules are broken. Security is only marginally a technical problem—information
security involves endlessly creative people figuring out new ways to abuse technology,
and against this constantly changing threat profile, you need cooperation from both
your defenders and your users. Bad security policy will result in users increasingly
evading detection in order to get their jobs done or just to blow off steam, and that adds
additional work for your defenders.

The emphasis on actionability and the goal of achieving security is what differentiates
this book from a more general text on data science. The section on analysis proper covers
statistical and data analysis techniques borrowed from multiple other disciplines, but
the overall focus is on understanding the structure of a network and the decisions that
can be made to protect it. To that end, I have abridged the theory as much as possible,
and have also focused on mechanisms for identifying abusive behavior. Security analysis
has the unique problem that the targets of observation are not only aware they’re being
watched, but are actively interested in stopping it if at all possible.

The MRI and the General’s Laptop

Several years ago, I talked with an analyst who focused primarily on a university hospital.
He informed me that the most commonly occupied machine on his network was the
MRI. In retrospect, this is easy to understand.

“Think about it,” he told me. “It's medical hardware, which means its certified to use a
specific version of Windows. So every week, somebody hits it with an exploit, roots it,
and installs a bot on it. Spam usually starts around Wednesday” When I asked why he
didn’t just block the machine from the Internet, he shrugged and told me the doctors
wanted their scans. He was the first analyst I've encountered with this problem, and he
wasn't the last.

We see this problem a lot in any organization with strong hierarchical figures: doctors,
senior partners, generals. You can build as many protections as you want, but if the
general wants to borrow the laptop over the weekend and let his granddaughter play
Neopets, you've got an infected laptop to fix on Monday.

Just to pull a point I have hidden in there, I'll elaborate. I am a firm believer that the
most effective way to defend networks is to secure and defend only what you need to
secure and defend. I believe this is the case because information security will always
require people to be involved in monitoring and investigation—the attacks change too
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much, and when we do automate defenses, we find out that attackers can now use them
to attack us.!

I am, as a security analyst, firmly convinced that security should be inconvenient, well-
defined, and constrained. Security should be an artificial behavior extended to assets
that must be protected. It should be an artificial behavior because the final line of defense
in any secure system is the people in the system—and people who are fully engaged in
security will be mistrustful, paranoid, and looking for suspicious behavior. This is not
a happy way to live your life, so in order to make life bearable, we have to limit security
to what must be protected. By trying to watch everything, you lose the edge that helps
you protect what’s really important.

Because security is inconvenient, effective security analysts must be able to convince
people that they need to change their normal operations, jump through hoops, and
otherwise constrain their mission in order to prevent an abstract future attack from
happening. To that end, the analysts must be able to identify the decision, produce
information to back it up, and demonstrate the risk to their audience.

The process of data analysis, as described in this book, is focused on developing security
knowledge in order to make effective security decisions. These decisions can be forensic:
reconstructing events after the fact in order to determine why an attack happened, how
it succeeded, or what damage was done. These decisions can also be proactive: devel-
oping rate limiters, intrusion detection systems, or policies that can limit the impact of
an attacker on a network.

Audience

Information security analysis is a young discipline and there really is no well-defined
body of knowledge I can point to and say “Know this” This book is intended to provide
a snapshot of analytic techniques that I or other people have thrown at the wall over the
past 10 years and seen stick.

The target audience for this book is network administrators and operational security
analysts, the personnel who work on NOC floors or who face an IDS console on aregular
basis. My expectation is that you have some familiarity with TCP/IP tools such as
netstat, and some basic statistical and mathematical skills.

In addition, I expect that you have some familiarity with scripting languages. In this
book, I use Python as my go-to language for combining tools. The Python code is il-
lustrative and might be understandable without a Python background, but it is assumed
that you possess the skills to create filters or other tools in the language of your choice.

1. Consider automatically locking out accounts after x number of failed password attempts, and combine it with
logins based on email addresses. Consider how many accounts you can lock out that way.
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In the course of writing this book, I have incorporated techniques from a number of
different disciplines. Where possible, I've included references back to original sources
so that you can look through that material and find other approaches. Many of these
techniques involve mathematical or statistical reasoning that I have intentionally kept
at a functional level rather than going through the derivations of the approach. A basic
understanding of statistics will, however, be helpful.

Contents of This Book

This book is divided into three sections: data, tools, and analytics. The data section
discusses the process of collecting and organizing data. The tools section discusses a
number of different tools to support analytical processes. The analytics section discusses
different analytic scenarios and techniques.

Part I discusses the collection, storage, and organization of data. Data storage and lo-
gistics are a critical problem in security analysis; it’s easy to collect data, but hard to
search through it and find actual phenomena. Data has a footprint, and it’s possible to
collect so much data that you can never meaningfully search through it. This section is
divided into the following chapters:

Chapter 1
This chapter discusses the general process of collecting data. It provides a frame-
work for exploring how different sensors collect and report information and how
they interact with each other.

Chapter 2
This chapter expands on the discussion in the previous chapter by focusing on
sensors that collect network traffic data. These sensors, including tcpdump and
NetFlow, provide a comprehensive view of network activity, but are often hard to
interpret because of difficulties in reconstructing network traffic.

Chapter 3
This chapter discusses sensors that are located on a particular system, such as host-
based intrusion detection systems and logs from services such as HT'TP. Although
these sensors cover much less traffic than network sensors, the information they
provide is generally easier to understand and requires less interpretation and guess-
work.

Chapter 4
This chapter discusses tools and mechanisms for storing traffic data, including
traditional databases, big data systems such as Hadoop, and specialized tools such
as graph databases and REDIS.
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Part IT discusses a number of different tools to use for analysis, visualization, and re-
porting. The tools described in this section are referenced extensively in later sections
when discussing how to conduct different analytics.

Chapter 5
System for Internet-Level Knowledge (SiLK) is a flow analysis toolkit developed by
Carnegie Mellon’s CERT. This chapter discusses SiLK and how to use the tools to
analyze NetFlow data.

Chapter 6
R is a statistical analysis and visualization environment that can be used to effec-
tively explore almost any data source imaginable. This chapter provides a basic
grounding in the R environment, and discusses how to use R for fundamental stat-
istical analysis.

Chapter 7
Intrusion detection systems (IDSes) are automated analysis systems that examine
traffic and raise alerts when they identify something suspicious. This chapter fo-
cuses on how IDSes work, the impact of detection errors on IDS alerts, and how to
build better detection systems whether implementing IDS using tools such as SiLK
or configuring an existing IDS such as Snort.

Chapter 8
One of the more common and frustrating tasks in analysis is figuring out where an
IP address comes from, or what a signature means. This chapter focuses on tools
and investigation methods that can be used to identify the ownership and prove-
nance of addresses, names, and other tags from network traffic.

Chapter 9
This chapter is a brief walkthrough of a number of specialized tools that are useful
for analysis but don't fit in the previous chapters. These include specialized visual-
ization tools, packet generation and manipulation tools, and a number of other
toolkits that an analyst should be familiar with.

The final section of the book, Part III, focuses on the goal of all this data collection:
analytics. These chapters discuss various traffic phenomena and mathematical models
that can be used to examine data.

Chapter 10
Exploratory Data Analysis (EDA) is the process of examining data in order to iden-
tify structure or unusual phenomena. Because security data changes so much, EDA
is a necessary skill for any analyst. This chapter provides a grounding in the basic
visualization and mathematical techniques used to explore data.
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Chapter 11
This chapter looks at mistakes in communications and how those mistakes can be
used to identify phenomena such as scanning.

Chapter 12
This chapter discusses analyses that can be done by examining traffic volume and
traffic behavior over time. This includes attacks such as DDoS and database raids,
as well as the impact of the work day on traffic volumes and mechanisms to filter
traffic volumes to produce more effective analyses.

Chapter 13
This chapter discusses the conversion of network traffic into graph data and the use
of graphs to identify significant structures in networks. Graph attributes such as
centrality can be used to identify significant hosts or aberrant behavior.

Chapter 14
This chapter discusses techniques to determine which traffic is crossing service
ports in a network. This includes simple lookups such as the port number, as well
as banner grabbing and looking at expected packet sizes.

Chapter 15
This chapter discusses a step-by-step process for inventorying a network and iden-
tifying significant hosts within that network. Network mapping and inventory are
critical steps in information security and should be done on a regular basis.

Conventions Used in This Book

The following typographical conventions are used in this book:

Ttalic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.
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This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mpcollins/nsda_examples

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you're reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex-
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Network Security Through Data Analysis by
Michael Collins (O’Reilly). Copyright 2014 Michael Collins, 978-1-449-3579-0”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that
Safa IFl  delivers expert content in both book and video form from

BooksOntine  the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
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How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
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800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
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PART |
Data

This section discusses the collection and storage of data for use in analysis and response.
Effective security analysis requires collecting data from widely disparate sources, each
of which provides part of a picture about a particular event taking place on a network.

To understand the need for hybrid data sources, consider that most modern bots are
general purpose software systems. A single bot may use multiple techniques to infiltrate
and attack other hosts on a network. These attacks may include buffer overflows,
spreading across network shares, and simple password cracking. A bot attacking an SSH
server with a password attempt may be logged by that host’s SSH logfile, providing
concrete evidence of an attack but no information on anything else the bot did. Network
traffic might notbe able to reconstruct the sessions, but it can tell you about other actions
by the attacker—including, say, a successful long session with a host that never reported
such a session taking place, no siree.

The core challenge in data-driven analysis is to collect sufficient data to reconstruct rare
events without collecting so much data as to make queries impractical. Data collection
is surprisingly easy, but making sense of what’s been collected is much harder. In security,
this problem is complicated by rare actual security threats. The majority of network
traffic is innocuous and highly repetitive: mass emails, everyone watching the same
YouTube video, file accesses. A majority of the small number of actual security attacks
will be really stupid ones such as blind scanning of empty IP addresses. Within that
minority is a tiny subset that represents actual threats such as file exfiltration and botnet
communications.

All the data analysis we discuss in this book is I/O bound. This means that the process
of analyzing the data involves pinpointing the correct data to read and then extracting
it. Searching through the data costs time, and this data has a footprint: a single OC-3



can generate five terabytes of raw data per day. By comparison, an eSATA interface can
read about 0.3 gigabytes per second, requiring several hours to perform one search
across that data, assuming that youre reading and writing data across different disks.
The need to collect data from multiple sources introduces redundancy, which costs
additional disk space and increases query times.

A well-designed storage and query system enables analysts to conduct arbitrary queries
on data and expect a response within a reasonable time frame. A poorly designed one
takes longer to execute the query than it took to collect the data. Developing a good
design requires understanding how different sensors collect data; how they comple-
ment, duplicate, and interfere with each other; and how to effectively store this data to
empower analysis. This section is focused on these problems.

This section is divided into four chapters. Chapter 1 is an introduction to the general
process of sensing and data collection, and introduces vocabulary to describe how dif-
ferent sensors interact with each other. Chapter 2 discusses sensors that collect data
from network interfaces, such as tcpdump and NetFlow. Chapter 3 is concerned with
host and service sensors, which collect data about various processes such as servers or
operating systems. Chapter 4 discusses the implementation of collection systems and
the options available, from databases to more current big data technology.



CHAPTER 1
Sensors and Detectors: An Introduction

Effective information monitoring builds on data collected from multiple sensors that
generate different kinds of data and are created by many different people for many
different purposes. A sensor can be anything from a network tap to a firewall log; it is
something that collects information about your network and can be used to make
judgement calls about your network’s security. Building up a useful sensor system re-
quires balancing its completeness and its redundancy. A perfect sensor system would
be complete while being nonredundant: complete in the sense that every event is mean-
ingfully described, and nonredundant in that the sensors don’t replicate information
about events. These goals, probably unachievable, are a marker for determining how to
build a monitoring solution.

No single type of sensor can do everything. Network-based sensors provide extensive
coverage but can be deceived by traffic engineering, can’t describe encrypted traftic, and
can only approximate the activity at a host. Host-based sensors provide more extensive
and accurate information for phenomena theyre instrumented to describe. In order to
effectively combine sensors, I classify them along three axes:

Vantage
The placement of sensors within a network. Sensors with different vantages will see
different parts of the same event.

Domain
The information the sensor provides, whether that’s at the host, a service on the
host, or the network. Sensors with the same vantage but different domains provide
complementary data about the same event. For some events, you might only get
information from one domain. For example, host monitoring is the only way to
find out if a host has been physically accessed.




Action
How the sensor decides to report information. It may just record the data, provide
events, or manipulate the traffic that produces the data. Sensors with different ac-
tions can potentially interfere with each other.

Vantages: How Sensor Placement Affects Data Collection

A sensor’s vantage describes the packets that a sensor will be able to observe. Vantage
is determined by an interaction between the sensor’s placement and the routing infra-
structure of a network. In order to understand the phenomena that impact vantage,
look at Figure 1-1. This figure describes a number of unique potential sensors differ-
entiated by capital letters. In order, these sensor locations are:

A
Monitors the interface that connects the router to the Internet.
B
Monitors the interface that connects the router to the switch.
C
Monitors the interface that connects the router to the host with IP address 128.2.1.1.
D
Monitors host 128.1.1.1.
E
Monitors a spanning port operated by the switch. A spanning port records all traffic
that passes the switch (see the section on port mirroring in Chapter 2 for more
information on spanning ports).
F
Monitors the interface between the switch and the hub.
G
Collects HTTP log data on host 128.1.1.2.
H

Sniffs all TCP traffic on the hub.
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Figure 1-1. Vantage points of a simple network and a graph representation

Each of these sensors has a different vantage, and will see different traffic based on that
vantage. You can approximate the vantage of a network by converting it into a simple
node-and-link graph (as seen in the corner of Figure 1-1) and then tracing the links
crossed between nodes. A link will be able to record any traffic that crosses that link en

route to a destination. For example, in Figure 1-1:

 The sensor at position A sees only traffic that moves between the network and the
Internet—it will not, for example, see traftic between 128.1.1.1 and 128.2.1.1.

« The sensor at B sees any traffic that originates or ends in one of the addresses

“beneath it,” as long as the other address is 128.2.1.1 or the Internet.

o The sensor at C sees only traffic that originates or ends at 128.2.1.1.

Vantages: How Sensor Placement Affects Data Collection
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o The sensor at D, like the sensor at C, only sees traffic that originates or ends at
128.1.1.1.

o The sensor at E sees any traffic that moves between the switches’ ports: traffic from
128.1.1.1 to anything else, traffic from 128.1.1.2 to anything else, and any traffic
from 128.1.1.3 to 128.1.1.32 that communicates with anything outside that hub.

o The sensor at F sees a subset of what the sensor at E sees, seeing only traffic from
128.1.1.3 to 128.1.1.32 that communicates with anything outside that hub.

o G is aspecial case because it is an HT TP log; it sees only HTTP traffic (port 80 and
443) where 128.1.1.2 is the server.

o Finally, H sees any traffic where one of the addresses between 128.1.1.3 and
128.1.1.32 is an origin or a destination, as well as traffic between those hosts.

Note that no single sensor provides complete coverage of this network. Furthermore,
instrumentation will require dealing with redundant traffic. For instance, if I instrument
H and E, I will see any traffic from 128.1.1.3 to 128.1.1.1 twice. Choosing the right
vantage points requires striking a balance between complete coverage of traffic and not
drowning in redundant data.

When instrumenting a network, determining vantage is a three-step process: acquiring
a network map, determining the potential vantage points, and then determining the
optimal coverage.

The first step involves acquiring a map of the network and how it’s connected together
as well as a list of potential instrumentation points. Figure 1-1 is a simplified version of
such a map.

The second step, determining the vantage of each point, involves identifying every po-
tentially instrumentable location on the network and then determining what that loca-
tion can see. This value can be expressed as a range of IP address/port combinations.
Table 1-1 provides an example of such an inventory for Figure 1-1. A graph can be used
to make a first guess at what vantage points will see, but a truly accurate model requires
more in-depth information about the routing and networking hardware. For example,
when dealing with routers it is possible to find points where the vantage is asymmetric
(note that the traffic in Table 1-1 is all symmetric). Refer to “Network Layering and Its
Impact on Instrumentation” on page 16 for more information.

Table 1-1. A worksheet showing the vantage of Figure 1-1

Vantage point  Source IP range Destination IP range

A Internet 128.1,2.1.1-32
128.1,2.1.1-32 Internet

B 128.1.1.1-32 128.2.1.1, Internet
128.2.1.1, Internet 128.1.1.1-32
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Vantage point  Source IP range Destination IP range

C 128.21.1 128.1.1.1-32, Internet
128.1.1.1-32, Internet 128.2.1.1

D 128.1.1.1 128.1.1.2-32, 128.2.1.1, Internet
128.1.1.2-32,128.2.1.1, Internet ~ 128.1.1.1

E 128.1.1.1 128.1.1.2-32, 128.2.1.1, Internet
128.1.1.2 128.1.1.1,128.1.1.3-32, 128.2.1.1,Internet
128.1.1.3-32 128.1.1.1-2,128.2.1.1, Internet

F 128.1.1.3-32 128.1.1.1-2,128.2.1.1, Internet
128.1.1.1-32,128.2.1.1, Internet ~ 128.1.1.3-32

G 128.1,2.1.1-32, Internet 128.1.1.2:tcp/80
128.1.1.2:tcp/80 128.1,2.1.1-32

H 128.1.1.3-32 128.1.1.1-32, 128.2.1.1,Internet

128.1.1.1-32,128.2.1.1, Internet ~ 128.1.1.3-32

The final step is to pick the optimal vantage points shown by the worksheet. The goal
is to choose a set of points that provide monitoring with minimal redundancy. For
example, sensor E provides a superset of the data provided by sensor F, meaning that
there is no reason to include both. Choosing vantage points almost always involves
dealing with some redundancy, which can sometimes be limited by using filtering rules.
For example, in order to instrument traffic between the hosts 128.1.1.3-32, point H
must be instrumented, and that traffic will pop up again and again at points E, F, B, and
A. If the sensors at those points are configured to not report traffic from 128.1.1.3-32,
the redundancy problem is moot.

Domains: Determining Data That Can Be Collected

Sensor G in Figure 1-1 differs from the other sensors in that image; while the other
sensors in the network are presumed to record all network traffic, G is recording only
HTTP traffic (tcp/80). While all the other sensors are collecting network traffic data, G
is collecting data in a different domain. A sensor’s domain describes the scope of the
information it records. A sensor can collect data in one of three domains:

Network
This collects information about network traffic. Examples of these sensors include
VPNs, most intrusion detection systems (IDSes), NetFlow collectors such as YAF
(described in “YAF” on page 96), and TCP collectors such as Snort and raw data
collected by tcpdump.

Host
Resides on the host and monitors the activity on a host: logins, logouts, file accesses,
and so on. A host-based sensor can provide information that a network based sensor
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can’t, such as physical logins to a particular host or the use of a USB peripheral.
Host-based sensors include IPS tools such as Tripwire or McAfee’s HIPS applica-
tion, as well as system logfiles or security logs. Host-based sensors provide infor-
mation on the low-level operation of a host, but won't provide much information
on the services that are running there. Clearly, you can implement host-based sen-
sors only on hosts that you know about. Unauthorized hosts have to be found before
you can monitor them.

Service

Service sensors are generated by a particular service process, such as HTTP or
SMTP server logs. Service sensors keep track of well-formed, if not necessarily
legitimate, activity within the service (for example, an HTTP sensor will record a
failed attempt to fetch a URL, but won't record a port 80 session that didn’t send
HTTP compliant commands). Unlike host and sensor logs, which are general sen-
sors, service-based sensors are focused on logging interactions with a particular
service: mail messages sent, HT'TP requests served, and so on. As with a host-based
sensor, you must be aware that the service exists before you can use a service-based
Sensor.

Stream Reassembly and Packet Dissection

There are a number of different tools that can take network traffic and approximate a
service log by extracting the relevant information from the packets. For example, the
contents of a CLF record (see “HTTP: CLF and ELF” on page 43 for more information)
are exchanged between an HTTP client and an HTTP server.

Network analysis tools often provide packet dissection or session reconstruction facili-
ties as part of deep packet inspection. These construct a model of the session based on
the packet data. These tools are very useful for approximating what happens in a session
if you don't have service logs, however they run into the standard limits involving net-
work session reconstruction: they won’t work with encrypted data, they’re approximat-
ing the session and can miss implementation-specific details, and the process of recon-
struction is expensive. At the same time, these collectors will work on any network traffic
data and do not require the logistically painful process of identifying and instrumenting
individual service.

Note that the domain describes the information that the sensor uses, not the information
that the sensor reports. For example, NetFlow, tcpdump, and network-based IDS sensors
all work within the network domain, but each provides a different output.

To understand the difference between these three domains, consider an HTTP inter-
actionas observed through sensors in three different domains: a network-based monitor
that sniffs packets, a host-based sensor that tracks performance and file accesses, and
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an HTTP server’s logfile. The network sensor can record the packets that were sent, but
does not relate them together into HTTP structures such as sessions, cookies, or pages.
The host sensor can record the last time a file was accessed, but does not relate that file
to a URL or request. The service sensor can say that an HTTP session took place and
include what page was served, but it will not record a half-open scan on port 80.

Of the three sensors, the one with the service domain is the only one that can (barring
tampering with the logger) state that a particular interaction took place; the others can
only provide information for an analyst to use for guesswork. All things being equal, it
is always preferable to have a sensor whose domain is as close to the target as possible.

The sensors’ domains, together with their vantages, determine how redundant a sensor
combination is. If two sensors have the same domain, and one sensor’s vantage is a
superset of the other, the smaller sensor is redundant and probably shouldn’t be run.
Conversely, if two sensors have the same vantage but different domains, they should
complement each other.

Consider the example network in Figure 1-2, which has an HTTPS server on 128.2.1.1,
an unknown HTTP server on 128.2.1.2, and a client on 128.2.1.3.

Internet
A
HTTP server Workstation
(128.1.1.1) Hidden HTTP server (128.1.1.3)
(128.1.1.2)
FTP server
(128.1.1.1)

Figure 1-2. An example of host- and network-based sensors working together
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The HTTPS server is accessible via FTP, which is not logged. We summarize this in-
formation by expanding the table format used in Table 1-1 and adding the domains,
shown in Table 1-2.

Table 1-2. Vantage and domain for Figure 1-2

Vantage point Source IP range Destination IP range Domain

A 128.1.1.1-3 Internet Network
128.1.1.1-3 128.1.1.1-3 Network
Internet 128.1.1.1-3 Network

B 128.1.1.2-3,Internet 128.1.1.1:tcp/443 Service/HTTPS
128.1.1.1:tcp/443 128.1.1.2-3,Internet Service/HTTPS

Now, let’s run through some different attacks and how these sensors react to them.

o An attacker scans the network for FTP servers. The scan and the responses will be
seen by sensor A. B will not see the scan, as there is no FTP sensor.

o An attacker scans the network for HTTPS servers by opening a GET / request to
443. Sensor A sees a session to 128.1.1.1, but sensor B has the actual information
on the session.

o An attacker scans for HTTP servers. A sees the scan, but B logs HT'TPS events—
not HTTP, and ignores the scan. Sensor A also sees the response from 128.1.1.2,
identifying a previously unidentified HT TP server.

Sensors in different domains provide richer information than single sensors, even if
those sensors provide the same vantage. Host-based sensors provide more information
and can provide data, such as unencrypted payload, that might not be available to a
network sensor. However, a defender has to be aware that a host-based sensor exists
before he can use it.

Network-based sensors generally provide more information than host-based sensors,
both because network sensors cover multiple hosts, and because a host may not react
to traffic sent across the network. At the same time, network data is of relatively low
value compared to its volume—more records have to be observed to find out what
happened, and it’s often hard to determine whether a host actually responded to network
traffic. Network sensors can aid in discovery and serve as a fallback to host-based sensors
when that information is not available.

Actions: What a Sensor Does with Data

A sensor’s action describes how the sensor interacts with the data it collects. A sensor
can take one of three basic actions:

10 | Chapter 1: Sensors and Detectors: An Introduction



Report
Simply provide information on all phenomena that the sensor observes. Reporting
sensors are simple and important for baselining. They are also useful for developing
signatures and alerts for phenomena that alerting and blocking sensors haven't yet
been configured to recognize. Reporting sensors include NetFlow collectors,
tcpdump, and server logs.

Event

An event sensor differs from a report sensor in that it consumes multiple data to
produce an event that summarizes some subset of that data. For example, a host-
based intrusion detection system might examine a memory image, find a malware
signature in memory, and send an event indicating that its host was compromised
by malware. At their most extreme, event sensors are black boxes that produce
events in response to internal processes developed by experts. Event sensors include
IDS and antivirus (AV).

Control
A controlling sensor, like an event sensor, consumes multiple data and makes a
judgment about that data before reacting. Unlike an event sensor, a controlling
sensor modifies or blocks traffic when it sends an event. Controlling sensors include
IPSes, firewalls, antispam systems, and some anti-virus systems.

A sensor’s action not only affects how a sensor reports data, but also how it affects the
data it's observing. Controlling sensors can modify or block traffic. Figure 1-3 shows
how these three different types of action interact with data. The figure shows the work
of three sensors: R, a reporting sensor; E, an event sensor; and C, a controlling sensor.
The event and control sensors are signature matching systems that react to the string
ATTACK. Each sensor is placed between the Internet and a single target.
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Figure 1-3. Three different sensor actions

R, the reporter, simply reports the traffic it observes. In this case, it reports both normal
and attack traffic without affecting the traffic and effectively summarizes the data ob-
served. E, the event sensor, does nothing in the presence of normal traffic but raises an
event when attack traffic is observed. E does not stop the traffic; it just sends an event.
C, the controller, sends an event when it sees attack traffic and does nothing to normal
traffic. In addition, however, C blocks the aberrant traffic from reaching the target. If
another sensor is further down the route from C, it will never see the traffic that C blocks.

Aggregation and Transport Tools

When evaluating a logging package, make a point of checking to see if it provides soft-
ware that aggregates or transports records. These capabilities don't add data in response
to phenomena, but they may modify the format and content of records.
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Some examples include the use of aggregation in Cisco NetFlow and the various redi-
rection and transport tools in flow-tools.! Historically, NetFlow records in their basic
format (raw flows) were sent to a collector, which would then aggregate them into various
reports. flow-tools provides a number of tools that can take flow data and route it to
different sensors as needed.

Conclusion

The taxonomy introduced in this chapter should be sufficient to describe any sensors
available for security monitoring and explain how they can potentially interact. This
description is intended to be at a high enough level that an operator can start classifying
sensors without getting mired in details. In Chapter 2 and Chapter 3, we discuss vantage,
domain, and action in-depth in order to provide a more precise enumeration of how
they relate to real systems.

1. The flow-tools mailing list and repository are both available for free download.
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CHAPTER 2
Network Sensors

A network sensor collects data directly from network traffic without the agency of an
intermediary application, making them different from the host-based sensors discussed
in Chapter 3. Examples include NetFlow sensors on a router and sensors that collect
traffic using a snifting tool such as tcpdump.

The challenge of network traffic is the challenge you face with all log data: actual security
events are rare, and data costs time and storage space. Where available, log data is
preferable because it’s clean (a high-level event is recorded in the log data) and compact.
The same event in network traftic would have to be extracted from millions of packets,
which can often be redundant, encrypted, or unreadable. At the same time, it is very
easy for an attacker to manipulate network traffic and produce legitimate-looking but
completely bogus sessions on the wire. An event summed up in a 300-byte log record
could easily be megabytes of packet data, wherein only the first 10 packets have any
analytic value.

>«

That's the bad news. The good news is that network traffic’s “protocol agnosticism,” for
lack of a better term, means that it is also your best source for identifying blind spots in
your auditing. Host-based collection systems require knowing that the host exists in the
first place, and there are numerous cases where you're likely not to know that a particular
service is running until you see its traffic on the wire. Network traffic provides a view
of the network with minimal assumptions—it tells you about hosts on the network you
don’t know existed, backdoors you weren’t aware of, attackers already inside your bor-
der, and routes through your network you never considered. At the same time, when
you face a zero-day vulnerability or new malware, packet data may be the only data
source you have.

The remainder of this chapter is broken down as follows. The next section covers
network vantage: how packets move through a network and how to take advantage of
that when instrumenting the network. The next section covers tcpdump, the funda-
mental network traffic capture protocol, and provides recipes for sampling packets,
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filtering them, and manipulating their length. The section after that covers NetFlow, a
powerful traffic summarization approach that provides high-value, compact summary
information about network traffic. At the end of the chapter, welook at a sample network
and discuss how to take advantage of the different collection strategies.

Network Layering and Its Impact on Instrumentation

Computer networks are designed in layers. A layer is an abstraction of a set of network
functionality intended to hide the mechanics and finer implementation details. Ideally,
each layer is a discrete entity; the implementation at one layer can be swapped out with
another implementation and not impact the higher layers. For example, the Internet
Protocol (IP) resides on layer 3 in the OSI model; an IP implementation can run iden-
tically on different layer 2 protocols such as Ethernet or FDDI.

There are a number of different layering models. The most common ones in use are the
OSI’s seven layer model and TCP/IP’s four layer model. Figure 2-1 shows these two
models, representative protocols, and their relationship to sensor domains as defined
in Chapter 1. As Figure 2-1 shows, the OSI model and TCP/IP model have a rough
correspondence. OSI uses the following seven layers:

1. Physical: The physical layer is composed of the mechanical components used to
connect the network together—the wires, cables, radio waves, and other mecha-
nisms used to transfer data from one location to the next.

2. Data link: The data link layer is concerned with managing information that is
transferred across the physical layer. Data link protocols, such as Ethernet, ensure
that asynchronous communications are relayed correctly. In the IP model, the data
link and physical layers are grouped together as the link layer.

3. Network: The network layer is concerned with the routing of traffic from one data
link to another. In the IP model, the network layer directly corresponds to layer 2,
the Internet layer.

4. Transport: The transport layer is concerned with managing information that is
transferred across the network layer. It has similar concerns to the data link layer,
such as flow control and reliable data transmission, albeit at a different scale. In the
IP model, the transport layer is layer 3.

5. Session: The session layer is concerned with the establishment and maintenance of
a session, and is focused on issues such as authentication. The most common ex-
ample of a session layer protocol today is SSL, the encryption and authentication
layer used by HTTP, SMTP, and many other services to secure communications.

6. Presentation: The presentation layer encodes information for display at a higher
level. A common example of a presentation layer is MIME, the message encoding
protocol used in email.
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7. Application: The application layer is the service, such as HTTP, DNS, and SSH. OSI
layers 5 through 7 correspond roughly to the application layer (layer 4) of the IP

model.
Layer 7: Application NNTP, DNS, FTP, HTTP I' o i
Layer 6: Presentation MIME Layer 4: Application Service
Layer 5: Session SSL
Layer 4: Transport GRE, TCP, UDP Layer 3: Transp-o;t
Layer 3: Network IP, AppleTalk, DECnet Layer 2: Intern-e-t Network
Layer 2:Data Link Ethernet, Xﬁal 802,11, ' -
i Layer 1: Link :
Layer 1: Physical SONET, Twisted Pair, Coax i :
LS j
0SI Model Implementations TCP/IP Model Domain

Figure 2-1. Layering models

The layering model is just that: a model rather than a specification, and models are
necessarily imperfect. The TCP/IP model, for example, eschews the finer details of the
OSI model, and there are a number of cases where protocols in the OSI model might
exist in multiple layers. Network interface controllers (NICs) dwell on layers 1 and 2 in
the model. The layers do impact each other, in particular through how data is trans-
ported (and is observable), and by introducing performance constraints into higher
levels.

The most common place where we encounter the impact of layering on network traffic
is the maximum transmission unit (MTU). The MTU is an upper limit on the size of a
data frame, and impacts the maximum size of a packet that can be sent over that medium.
The MTU for Ethernet is 1,500 bytes, and this constraint means that IP packets will
almost never exceed that size.

The layering model also provides us with a clear difference between the network and
service-based sensor domains. As Figure 2-1 shows, network sensors are focused on
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layers 2 through 4 in the OSI model, while service sensors are focused on layers 5 and
above.

Layering and the Role of Network Sensors

It’s logical to ask why network sensors can’t monitor everything; after all, we're talking
aboutattacks that happen over a network. In addition, network sensors can’t be tampered
with or deleted like host logs, and they will see things like scans or failed connection
attempts that host logs won’t.

Network sensors provide extensive coverage, but recovering exactly what happened
from that coverage becomes more complex as you move higher up the OSI model. At
layer 5 and above, issues of protocol and packet interpretation become increasingly
prominent. Session encryption becomes an option at layer 5, and encrypted sessions
will be unreadable. At layer 6 and layer 7, you need to know the intricacies of the actual
protocol that’s being used in order to extract meaningful information.

Protocol reconstruction from packet data is complex and ambiguous; TCP/IP is de-
signed on end-to-end principles, meaning that the server and client are the only parties
required to be able to construct a session from packets. Tools such as Wireshark (de-
scribed in Chapter 9) or NetWitness can reconstruct the contents of a session, but these
are approximations of what actually happened.

Network, host, and service sensors are best used to complement each other. Network
sensors provide information that the other sensors won’t record, while the host and
service sensors record the actual event.

Recall from Chapter 1 that a sensor’s vantage refers to the traffic that a particular sensor
observes. In the case of computer networks, the vantage refers to the packets that a
sensor observes either by virtue of transmitting the packets itself (via a switch or a
router) or by eavesdropping (within a collision domain). Since correctly modeling
vantage is necessary to efficiently instrument networks, we need to dive a bit into the
mechanics of how networks operate.

Network Layers and Vantage

Network vantage is best described by considering how traffic travels at three different
layers of the OSI model. These layers are across a shared bus or collision domain (layer
1), over network switches (layer 2), or using routing hardware (layer 3). Each layer
provides different forms of vantage and mechanisms for implementing the same.

The most basic form of networking is across a collision domain. A collision domain is
ashared resource used by one or more networking interfaces to transmit data. Examples
of collision domains include a network hub or the channel used by a wireless router. A
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collision domain is called such because the individual elements can potentially send
data at the same time, resulting in a collision; layer 2 protocols include mechanisms to
compensate for or prevent collisions.

The net result is that layer 2 datagrams are broadcast across a common source, as seen
in Figure 2-2. Network interfaces on the same collision domain all see the same data-
grams; they elect to only interpret datagrams that are addressed to them. Network cap-
ture tools like tcpdump can be placed in promiscuous mode and will then record all the
datagrams observed within the collision domain.

Y

{A->B} {A->B} {A->B} {A->B}
] ]

Sent Received Ignored Recorded

Figure 2-2. Vantage across collision domains

Figure 2-2 shows the vantage across abroadcast domain. As seen in this figure, the initial
frame (A to B) is broadcast across the hub, which operates as a shared bus. Every host
connected to the hub can receive and react to the frames, but only B should do so. C, a
compliant host, ignores and drops the frame. D, a host operating in promiscuous mode,
records the frame. The vantage of a hub is consequently all the addresses connected to
that hub.

Shared collision domains are inefficient, especially with asynchronous protocols such
as Ethernet. Consequently, layer 2 hardware such as Ethernet switches are commonly
used to ensure that each host connected to the network has its own dedicated Ethernet
port. This is shown in Figure 2-3.
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Figure 2-3. Vantage across a switch

A capture tool operating in promiscuous mode will copy every frame that is received at
the interface, but the layer 2 switch ensures that the only frames an interface receives
are the ones explicitly addressed to it. Consequently, as seen in Figure 2-3, the A to B
frame is received by B, while C and D receive nothing.

There is a hardware-based solution to this problem. Most switches implement some
form of port mirroring. Port mirroring configurations copy the frames sent between
different ports to common mirrored ports in addition to their original destination.
Using mirroring, you can configure the switch to send a copy of every frame received
by the switch to a common interface. Port mirroring can be an expensive operation,
however, and most switches limit the amount of interfaces or VLANSs monitored.

Switch vantage is a function of the port and the configuration of the switch. By default,
the vantage of any individual port will be exclusively traffic originating from or going
to the interface connected to the port. A mirrored port will have the vantage of the ports
it is configured to mirror.

Layer 3, when routing becomes a concern, is when vantage becomes messy. Routing is
asemiautonomous process that administrators can configure, but is designed to provide
some degree of localized automation in order to provide reliability. In addition, routing
has performance and reliability features, such as the TTL, which can also impact mon-
itoring.

Layer 3 vantage at its simplest operates like layer 2 vantage. Like switches, routers send
trafficacross specific ports. Routers can be configured with mirroring-like functionality,
although the exact terminology differs based on the router manufacturer. The primary
difference is that while layer 2 is concerned with individual Ethernet addresses, at layer
3 the interfaces are generally concerned with blocks of IP addresses because the router
interfaces are usually connected via switches or hubs to dozens of hosts.
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Layer 3 vantage becomes more complex when dealing with multihomed interfaces, such
as the example shown in Figure 2-4. Up until this point, all vantages discussed in this
book have been symmetric—if instrumenting a point enables you to see traffic from A
to B, it also enables you to see traffic from B to A. A multihomed host like a router has
multiple interfaces that traffic can enter or exit.

Recorded {A->B}

{A->B} ~\ 7= {A->B}

{B->A}

Recorded {B->A}

Figure 2-4. Vantage when dealing with multiple interfaces

Figure 2-4 shows an example of multiple interfaces and their potential impact on vantage
at layer 3. In this example, A and B are communicating with each other: A sends the
packet {A—>B} to B, B sends the packet {B—>A} to A. C and D are monitoring at the
routers: router 1 is configured so that the shortest path from A to B is through it. Router
2 is configured so that shortest path from B to A is through it. The net effect of this
configuration is that the vantages at C and D are asymmetric. C will see traffic from A
to B, D will see traffic from B to A, but neither of them will see both sides of the inter-
action. While this example is contrived, this kind of configuration can appear due to
business relationships and network instabilities. It’s especially problematic when dealing
with networks that have multiple interfaces to the Internet.

IP packets have a built-in expiration function: a field called the time-to-live (TTL) value.
The TTL is decremented every time a packet crosses a router (not a layer 2 facility like
a switch), until the TTL reaches zero. In most cases, the TTL should not be a problem
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—most modern stacks set the TTL to at least 64, which is considerably longer than the
number of hops required to cross the entire Internet. However, the TTL is manually
modifiable and there exist attacks that can use the TTL for evasion purposes. Table 2-1
lists default TTLs by operating system.

Table 2-1. Default TTLs by operating system

Operating system TTL value

Linux (2.4, 2.6) 64
FreeBSD 64
Mac 0S X 64
Windows XP 128
Windows 7, Vista 128
Solaris 255

Figure 2-5 shows how the TTL operates. Assume that hosts C and D are operating on
monitoring ports and the packet is going from A to B. Furthermore, the TTL of the
packet is set to 2 initially. The first router receives the packet and passes it to the second
router. The second router drops the packet; otherwise, it would decrement the TTL to
zero. TTL does not directly impact vantage, but instead introduces an erratic type of
blind spot—packets can be seen by one sensor, but not by another several routers later
as the TTL decrements.

{A->B: (Hi, 2)} {A->B: (Hi, 1)}

Monitoring Monitoring
port port

; (
Sent (Can monitor May be able Receives nothing
to monitor

Figure 2-5. Hopping and router vantage
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The netresult of this is that the packet is observed by C, never received by B, and possibly
(depending on the router configuration) observed at D.

Physical Taps

Instead of configuring the networking hardware to report data on a dedicated interface,
you can monitor the cables themselves. This is done using network taps, which are
objects that physically connect to the cables and duplicate traffic for monitoring pur-
poses. Network taps have the advantage of moving the process of collecting and copying
data off the network hardware, but only have the vantage of the cables to which they
connect.

Network Layers and Addressing

Entities on a network will have multiple addresses that can be used to reach them. For
example, the host www.mysite.com may have the IP address 196.168.1.1 and the Ethernet
Address OF:2A:32:AA:2B:14. These addresses are used to resolve the identity of a host
at different abstraction layers of the network. In most networks, a host will have a MAC
(Ethernet) address and an IPv4 or IPv6 address.

These addresses are dynamically moderated through various protocols, and various
types of networking hardware will modify the relationships between addresses. The
most common examples of these are DNS modifications, which associate a single name
with multiple addresses and vice versa; this is discussed in more depth in Chapter 8.
The following addresses are commonly used on networks:

MAC address

A 48-byte identifier used by the majority of layer 2 protocols, including Ethernet,
FDDI, Token Ring, Bluetooth, and ATM. MAC addresses are usually recorded as
asetof sixhexadecimal pairs (e.g., 12:34:56:78:9A:BC). MAC addresses are assigned
to the hardware by the original manufacturer, and the first 24 bits of the interface
are reserved as a manufacturer ID. Aslayer 2 addresses, MAC addresses don't route;
when a frame is transferred across a router, the addressing information is replaced
with the addressing information of the router’s interface. IPv4 and IPv6 addresses
are related to MAC addresses using Address Resolution Protocol (ARP).

IPv4 address
An IPv4 address is a 32-bit integer value assigned to every routable host, with ex-
ceptions made for reserved dynamic address spaces (see Chapter 8 for more infor-
mation on these addresses). IPv4 addresses are most commonly represented in
dotted quad format: four integers between 0 and 255 separated by periods (e.g.,
128.1.11.3).
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IPv6 address

IPv6 is the steadily advancing replacement for IPv4 that fixes a number of design
flaws in the original protocol, in particular the allotment of IP addresses. IPv6 uses
a 128-bit address to identify a host. By default, these addresses are described as a
set of 16-bit hexadecimal values separated by colons (e.g., AAAA:
2134:0918:F23A:A13F:2199:FABE:FAAF). Given their length, IPv6 addresses use a
number of conventions to shorten the representation: initial zeroes are trimmed,
and the longest sequence of 16-bit zero values is eliminated and replaced by double
colons (e.g., 0019:0000:0000:0000:0000:0000:0000:0182 becomes 19::182).

All of these relationships are dynamic, and multiple addresses at one layer can be as-
sociated with one address at a another layer. As discussed earlier, a single DNS name
can be associated with multiple IP addresses through the agency of the DNS service.
Similarly, a single MAC address can support multiple IP addresses through the agency
of the ARP protocol. This type of dynamism can be used constructively (like for tun-
neling) and destructively (like for spoofing).

Packet Data

In the context of this book, packet data really means the output of libpcap, either through
an IDS or tcpdump. Originally developed by LBNLs Network Research Group, libp-
cap is the fundamental network capture tool and serves as the collector for tools such
as Snort, bro, and tcpdump.

Packet capture data is a large haystack with only scattered needles of value to you. Cap-
turing this data requires balancing between the huge amount of data that can be captured
and the data that it makes sense to actually capture.

Packet and Frame Formats

On almost any modern system, tcpdump will be capturing IP over Ethernet, meaning
that the data actually captured by libpcap consists of Ethernet frames containing IP
packets. While IP contains over 80 unique protocols, on any operational network, the
overwhelming majority of traffic will originate from three protocols: TCP (protocol 6),
UDP (protocl 17), and ICMP (protocol 1).

While TCP, UDP, and ICMP make up the overwhelming majority of IP traffic, a number
of other protocols may appear in networks, in particular if VPNs are used. IANA has a
complete list of IP suite protocols. Some notable ones to expect include IPv6 (protocol
number 41), GRE (protocol number 47), and ESP (protocol number 50). GRE and ESP
are used in VPN traffic.

Full pcap capture is often impractical. The sheer size and redundancy of the data means
that it’s difficult to keep any meaningful fraction of network traffic for a reasonable time.
There are three major mechanisms for filtering or limiting packet capture data: the use
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of rolling buffers to keep a timed subsample, manipulating the snap length to capture
only a fixed size packet (such as headers), and filtering traffic using BPF or other filtering
rules. Each approach is an analytic trade-off that provides different benefits and disad-
vantages.

Rolling Buffers

A rolling buffer is a location in memory where data is dumped cyclically: information
is dropped linearly, and when the buffer is filled up, data is dumped at the beginning of
the buffer, and the process repeats. Example 2-1 gives an example of using a rolling
buffer with tcpdump. In this example, the process writes approximately 128 MB to disk,
and then rotates to a new file. After 32 files are filled (specified by the -W switch), the
process restarts.

Example 2-1. Implementing a rolling buffer in tcpdump
host$ tcpdump -1 enl -s 0 -w result -C 128 -W 32

Rolling buffers implement a time horizon on traffic analysis: data is available only as
longasit’s in the buffer. For that reason, working with smaller file sizes is recommended,
because when you find something aberrant, it needs to be pulled out of the buffers
quickly.

Limiting the Data Captured from Each Packet

An alternative to capturing the complete packet is to capture a limited subset of payload,
controlled in tcpdump by the snaplen (-s) argument. Snaplen constrains packets to the
frame size specified in the argument. If you specify a frame size of at least 68 bytes, you
will record the TCP or UDP headers.! That said, this solution is a poor alternative to
NetFlow, which is discussed later in this chapter.

Filtering Specific Types of Packets

An alternative to filtering at the switch is to filter after collecting the traffic at the span-
ning port. With tcpdump and other tools, this can be easily done using Berkeley Packet
Filtering (BPF). BPF allows an operator to specify arbitrarily complex filters, and con-
sequently your possiblities are fairly extensive. Some useful options are described in this
section, along with examples. Figure 2-6 provides a breakdown of the headers for
Ethernet frames, IP, UDP, ICMP, and TCP.

1. The snaplen is based on the Ethernet frame size, so 20 additional bytes have to be added to the size of the
corresponding IP headers.
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Octet 1 Octet 1 Octet 1 | Octet 1
Preamble
Preamble | SOF
*5; Destination MAC
§ Destination MAC | Source MAC
& Source MAC
Length/Type | Data + Pad
Data + Pad...
Checksum
Version WL | Dbscp ECN Length
IP Identifier Flags Fragment Offset
TIL | Protocol Checksum
e Source Address
Destination Address
Options
Payload
Source Port Destination Port
Sequence Number
Acknowledgment Number
§ Offset | Isrv I NS | TCP Flags Window Size
Checksum Urgent Pointer
Options
Payload
Source Port Destination Port
é Length Checksum
Payload
= Type | Code | Checksum
= Payload

Figure 2-6. Frame and packet formats for Ethernet, IP, TCP, UDP, and ICMP

As we walk through the major fields, I identify BPF macros that describe and can be
used to filter on these fields. On most Unix-style systems, the pcap-filter manpage pro-
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vides a summary of BPF syntax. Available commands are also summarized in the
FreeBSD manpage for BPF.

In an Ethernet frame, the most critical fields are the two MAC addresses. These 48-byte
fields are used to identify the hardware addresses of the interfaces that sent and will
receive the traffic. MAC addresses are restricted to a single collision domain, and will
be modified as a packet traverses multiple networks (see Figure 2-5 for an example).
MAC addresses are accessed using the ether src and ether dst predicates in BPF.

tcpdump and MAC Addresses

Most implementations of tcpdump require a command-line switch before showing link-
level (i.e., Ethernet) information. In Mac OS X, the -e switch will show the MAC ad-
dresses.

Within an IP header, the fields you are usually most interested in are the IP addresses,
the length, the TTL, and the protocol. The IP identifier, flags, and fragment offset are
used for attacks involving packet reassembly—however, they are also largely a historical
artifact from before Ethernet was a nearly universal transport protocol. You can get
access to the IP addresses using src host and dst host predicates, which also allow
filtering on netmasks.

Address Filtering in BPF

Addresses in BPF can be filtered using the various host and net predicates. To under-
stand how these work, consider a simple tcpdump output.

host$ tcpdump -n -r sample.pcap | head -5
reading from file sample.pcap, link-type EN1OMB (Ethernet)
20:01:12.094915 IP 192.168.1.3.56305 > 208.78.7.2.389: Flags [S],
seq 265488449, win 65535, options [mss 1460,nop, wscale 3,nop,
nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
20:01:12.094981 IP 192.168.1.3.56302 > 192.168.144.18.389: Flags [S],
seq 1490713463, win 65535, options [mss 1460,nop,wscale 3,nop,
nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
20:01:12.471014 IP 192.168.1.102.7600 > 192.168.1.255.7600: UDP, length 36
20:01:12.861101 IP 192.168.1.6.17784 > 255.255.255.255.17784: UDP, length 27
20:01:12.862487 IP 192.168.1.6.51949 > 255.255.255.255.3483: UDP, length 37

src host or dst host will filter on exact IP addresses; filtering for traffic to or from
192.168.1.3 as shown here:

host$ tcpdump -n -r sample.pcap src host 192.168.1.3 | head -1
reading from file sample.pcap, link-type EN1OMB (Ethernet)
20:01:12.094915 IP 192.168.1.3.56305 > 208.78.7.2.389: Flags [S],
seq 265488449, win 65535, options [mss 1460,nop,wscale 3,nop,
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nop,TS val 1111716334 ecr 0,sackOK,eol], length 0

host$ tcpdump -n -r sample.pcap dst host 192.168.1.3 | head -1

reading from file sample.pcap, link-type EN1OMB (Ethernet)
20:01:13.898712 IP 192.168.1.6.48991 > 192.168.1.3.9000: Flags [S],

seq 2975851986, win 5840, options [mss 1460,sackOK,TS val 911030 ecr 0,
nop,wscale 1], length 0

src net and dst net allow filtering on netblocks. The example below shows how we
can progressively filter addresses in the 192.168.1 network using just the address or
CIDR notation:

# use src net to filter just by matching octets
host$ tcpdump -n -r sample.pcap src net 192.168.1 | head -3
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:12.094915 IP 192.168.1.3.56305 > 208.78.7.2.389: Flags [S],
seq 265488449, win 65535, options [mss 1460,nop,wscale 3,nop,nop,
TS val 1111716334 ecr 0,sackOK,eol], length 0
20:01:12.094981 IP 192.168.1.3.56302 > 192.168.144.18.389: Flags [S],
seq 1490713463, win 65535, options [mss 1460,nop,wscale 3,nop,
nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
# Match an address
host$ tcpdump -n -r sample.pcap src net 192.168.1.5 | head -1
reading from file sample.pcap, link-type EN1OMB (Ethernet)
20:01:13.244094 IP 192.168.1.5.50919 > 208.111.133.84.27017: UDP, length 84
# Match using a CIDR block
host$ tcpdump -n -r sample.pcap src net 192.168.1.64/26 | head -1
reading from file sample.pcap, link-type EN1OMB (Ethernet)
20:01:12.471014 IP 192.168.1.102.7600 > 192.168.1.255.7600: UDP, length 36

To filter on protocols, use the ip proto predicate. BPF also provides a variety of
protocol-specific predicates, such as tcp, udp, and icmp. Packet length can be filtered
using the less and greater predicates, while filtering on the TTL requires more ad-
vanced bit manipulation, which is discussed later.

The following snippet filters out all traffic except that coming within this block (hosts
with the netmask /24).

host$ tcpdump -1 enl -s O -w result src net 192.168.2.0/24

Example 2-2 demonstrates filtering with tcpdump

Example 2-2. Examples of filtering using tcpdump

host$ # Filtering out everything but internal traffic

host$ tcpdump -1 enl -s O -w result src net 192.168.2.0/24 && dst net \
192.168.0.0/16

host$ # Filtering out everything but web traffic, identified by port

host$ tcpdump -1 enl -s 0 -w result ((src port 80 || src port 443) && \
(src net 192.168.2.0))
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In TCP, the port number and flags are the most critical. TCP flags are used to maintain
the TCP state machine, while the port numbers are used to distinguish sessions and for
service identification. Port numbers can be filtered using the src port and dst port
switches, as well as the src portrange and dst portrange switches, which filter across
a range of port values. BPF supports a variety of predicates for TCP flags, including
tcp-fin, tcp-syn, tcp-rst, tcp-push, tcp-ack, and tcp-urg.

Address Classes and CIDR Blocks

An IPv4 address is a 32-bit integer. For convenience, these integers are usually referred
to using dotted quad notation like 01.02.03.04, so the IP address represented by
0x000010FF is written as 0.0.16.255. Level 3 routing is almost never done to individual
addresses, but instead to groups of addresses—historically, classes, now netblocks.

It used to be that a class A address (0.0.0.0-127.255.255.255) had the high order bit set
to zero, the next 7 assigned to an entity, and the remaining 24 bits under the owner’s
control. This gave the owner 2?* addresses to work with. A class B address (128.0.0.0-
191.255.255.255) assigned 16 bits to the owner, and class C (192.0.0.0-223.255.255.255)
assigned 8 bits. This approach led rapidly to address exhaustion, and in 1993, Classless
Inter-Domain Routing (CIDR) was developed to replace the naive class system. Under
the CIDR scheme, users are assigned a netblock via an address and a netmask. The
netmask indicates which bits in the address the user can manipulate, and by convention,
those bits are set to zero. For example, a user who owns the addresses 192.28.3.0-
192.28.3.255 will be given the block 192.28.3.0/24.

As with TCP, the UDP port numbers are most important, and are accessible using the
same port and portrange switches as TCP.

Because ICMP is the Internet’s error-message passing protocol, ICMP messages tend
to contain extremely rich data. The ICMP type and code are the most critical because
they define the syntax for whatever payload (if any) follows. BPF provides a variety of
type and code specific filters, including icmp-echoreply, icmp-unreach, icmp-
tstamp, and icmp-redirect.

What If It's Not Ethernet?

For the sake of brevity, this book focuses exclusively on IP over Ethernet, but you may
well encounter a number of other transport and data protocols. The majority of these
protocols are highly specialized and may require additional capture software besides
the tools built on libpcap.

ATM
Asynchronous Transfer Mode, the great IP slayer of the *90s, ATM is now largely
used for ISDN and PSTN transport, and some legacy installations.
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Fibre Channel
Primarily used for high-speed storage, Fibre Channel is the backbone for a variety
of SAN implementations.

CAN
Stands for controller area network. Primarily associated with embedded systems
such as vehicular networks, CAN is a bus protocol used to send messages in small
isolated networks.

Any form of filtering imposes performance costs. Implementing a spanning port on a
switch or a router sacrifices performance that the switch or router could be using for
traffic. The more complicated a filter is, the more overhead is added by the filtering
software. At nontrivial bandwidths, this will be a problem.

NetFlow

NetFlow is a traffic summarization standard developed by Cisco Systems and originally
used for network services billing. While not intended for security, NetFlow is fantasti-
cally useful for that purpose because it provides a compact summary of network traffic
sessions that can be rapidly accessed and contains the highest-value information that
you can keep in a relatively compact format. NetFlow has been increasingly used for
security analysis since the publication of the original flow-tools package in 1999, and a
variety of tools have been developed that provide NetFlow with additional fields, such
as selected snippets of payload.

The heart of NetFlow is the concept of a flow, which is an approximation of a TCP
session. Recall that TCP sessions are assembled at the endpoint by comparing sequence
numbers. Juggling all the sequence numbers involved in multiple TCP sessions is not
feasible at a router, but it is possible to make a reasonable approximation using timeouts.
A flow is a collection of identically addressed packets that are closely grouped in time.

NetFlow v5 Formats and Fields

NetFlow v5 is the earliest common NetFlow standard, and it’s worth covering the values
in NFv5’s fields before discussing alternatives. NetFlow’s fields (listed in Table 2-2) fall
into three broad categories: fields copied straight from IP packets, fields summarizing
the results of IP packets, and fields related to routing.

Table 2-2. NetFlow v5 fields

Bytes  Name Description

0-3 srcaddr Source IP address

4-7 dstaddr Destination IP address

8-11 nexthop Address of the next hop on the router
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Bytes  Name Description

12-13  input SNMP index of the input interface

14-15  output SNMP index of the output interface

16-19  packets Packets in the flow

20-23  dOctets Number of layer 3 bytes in the flow

24-27  first sysuptime at flow start ®

28-31  last sysuptime at the time of receipt of the last flow’s packet
32-33  srcport TCP/UDP source port

34-35 dstport TCP/UDP destination port, ICMP type and code
36 pad1 Padding

37 tcp_flags Or of all TCP flags in the flow

38 prot IP protocol

39 tos IP type of service

40-41  src_as ASN number of source

42-43  dst_as ASN of destination

44 src_mask Source address prefix mask

45 dst_mask Destination address prefix mask

46-47  pad2 Padding bytes

2This value is relative to the router’s system uptime.

The srcaddr, dstaddr, srcport, dstport, prot, and tos fields of a NetFlow record are
copied directly from the corresponding fields in IP packets. Flows are generated for
every protocol in the IP suite, however, and that means that the srcport and dstport
fields, which strictly speaking are TCP/UDP phenomena, don’t necessarily always mean
something. In the case of ICMP, NetFlow records the type and code in the dstport field.
In the case of other protocols, ignore the value.

The packets, dOctets, first, last, and tcp_flags fields all summarize traffic from
one or more packets. packets and dOctets are simple totals, with the caveat that the
dOctets value is the layer 3 total of octets, meaning that IP and protocol headers are
added in (e.g., a one-packet TCP flow with no payload will be recorded as 40 bytes, and
a one-packet UDP flow with no payload as 28 bytes). The first and last values are,
respectively, the first and last times observed for a packet in the flow.

tcp_flags is a special case. In NetFlow v5, the tcp_flags field consists of an OR of all
the flags that appear in the flow. In well-formed flows, this means that the SYN, FIN,
and ACK flags will always be high.

The final set of fields—nexthop, input, output, src_as, dst_as, src_mask, and
dst_mask—are all routing-related. These values can be collected only at a router.
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“Flow and Stuff:” NetFlow v9 and IPFIX

Cisco developed several versions of NetFlow over its lifetime, with NetFlow v5 ending
up as the workhorse implementation of the standard. But v5 is a limited and obsolete
standard, focused on IPv4 and designed before flows were commonly used. Cisco’s
solution to this was NetFlow v9, a template-based flow reporting standard that enabled
router administrators to specify what fields were included in the flow.

Template-based NetFlow has since been standardized by the IETF as IPFIX.? IPFIX
provides several hundred potential fields for flows, which are described in RFC 5102.

The priority of the standard is on network monitoring and traffic analysis rather than
information security. To address optional fields, IPFIX has the concept of a “vendor
space” In the course of developing the SiLK toolkit, the CERT Network Situational
Awareness Group at Carnegie Mellon University developed a set of security-sensitive
fields that are in their IPFIX vendor space and provide a set of useful fields for security
analysis.

NetFlow Generation and Collection

NetFlow records are generated directly by networking hardware appliances (e.g., a
router or a switch), or by using software to convert packets into flows. Each approach
has different trade-offs.

Appliance-based generation means using whatever NetFlow facility is offered by the
hardware manufacturer. Different manufacturers use similar sounding but different
names than Cisco, such as Jflow by Juniper Networks and NetStream by Huawei. Because
NetFlow is offered by so many different manufacturers with a variety of different rules,
it's impossible to provide a technical discussion about the necessary configurations in
the space provided by this book. However, the following rules of thumb are worth
noting:

« NetFlow generation can cause performance problems on routers, especially older
models. Different companies address this problem in different ways, ranging from
reducing the priority of the process (and dropping records), to offloading the Net-
Flow generation task to optional (and expensive) hardware.

+ Most NetFlow configurations default to some form of sampling in order to reduce
the performance load. For security analysis, NetFlow should be configured to pro-
vide unsampled records.

« Many NetFlow configurations offer anumber of aggregation and reporting formats.
You should collect raw NetFlow, not aggregations.

2. RFC 5101, 5102, and 5103.
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The alternative to router-based collection is to use an application that generates NetFlow
from pcap data, such as the CERT’s Yet Another Flowmeter (YAF) tool, softflowd, or
the extensive flow monitoring tools provided by QoSients Argus tool. These applica-
tions take pcap as files or directly off a network interface and aggregate the packets as
flows. These sensors lack a router’s vantage, but at the same time are able to devote more
processing resources to analyzing the packets and can produce richer NetFlow output,
incorporating features such as deep packet inspection.

Further Reading

1. Richard Bejtlich, The Tao of Network Security Monitoring: Beyond Intrusion De-
tection (Addison-Wesley, 2004).

2. Kevin Fall and Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols (2nd
Edition) (Addison-Wesley, 2011).

3. Michael Lucas, Network Flow Analysis (No Starch Press, 2010).

4. Radia Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking
Protocols (2nd Edition) (Addison-Wesley, 1999).

5. Chris Sanders, Practical Packet Analysis: Using Wireshark to Solve Real-World
Problems (No Starch Press, 2011).
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CHAPTER 3

Host and Service Sensors: Logging
Traffic at the Source

In this chapter, we consider sensors operating in the host or service domain. Host sen-
sors include system logs as well as host-based security tools such as antivirus (AV)
software and tools like McAfee’s Host Intrusion Prevention System (HIPS). Host sensors
monitor the state of a host and its operating system, tracking features such as local disk
usage and peripheral access. Service sensors, including HTTP server logs and mail
transfer logs, describe the activity of a particular service: who sent mail to whom, what
URLs were accessed in the last five minutes, activity that's moderated through a partic-
ular service. For the sake of clarity, I will use “log” to refer to either host or service logs
throughout the remainder of the chapter.

Where available, logs are often preferable to network data because they are generated
by the affected process, removing the process of interpretation and guesswork often
needed with network data. Host and service logs provide concrete information about
events that, viewed from the network perspective, are hard to reconstruct.

Logs have a number of problems, the most important one beinga management headache
—in order to use one, you have to know it exists and get access to it. In addition, host-
based logs come in a large number of formats, many of them poorly documented. At
the risk of a sweeping generalization, the overwhelming majority of logs are designed
for debugging and troubleshooting individual hosts, not to evaluate security across
networks. Where possible, you'll often need to reconfigure them to include more
security-relevant information, possibly needing to write your own aggregation pro-
grams. Finally, logs are a target; attackers will modify or disable logging if possible.

Logs complement network data. Network data is good at finding blind spots, confirming
the results of logs and identifying things that the logs won’t pick up. An effective security
system combines both: network logs for a broad scope, logs for fine detail.
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The remainder of this chapter is focused on data from a number of host logs, including
system logfiles. We begin by discussing several varieties of log data and preferable mes-
sage formats. We then discuss specific host and service logs: Unix system logs, HTTP
server log formats, and email log formats.

Accessing and Manipulating Logfiles

Operating systems have dozens of processes generating log data at any time. In Unix
systems, these logfiles are usually stored as text files in the /var/log directory.
Example 3-1 shows this directory for Mac OS X (the ellipses indicate where lines were
removed for clarity).

Example 3-1. A /var/log directory from a Mac OS X system

drwxr-xr-x 2 _uucp wheel 68 Jun 20 2012 uucp

drwxr-xr-x 2 root wheel 68 Dec 9 2012 apache2
drwxr-xr-x 2 root wheel 68 Jan 7 01:47 ppp

drwxr-xr-x 3 root wheel 102 Mar 12 12:43 performance
-rw-r--r-- 1 root wheel 332 Jun 1 05:30 monthly.out
STW-T----- 1 root admin 6957 Jun 5 00:30 system.log.7.bz2
STW-T----- 1 root admin 5959 Jun 6 00:30 system.log.6.bz2
STW-T----- 1 root admin 5757 Jun 7 00:30 system.log.5.bz2
STW-T----- 1 root admin 5059 Jun 8 00:30 system.log.4.bz2
-rw-r--r-- 1 root wheel 870 Jun 8 03:15 weekly.out
STW-T----- 1 root admin 10539 Jun 9 00:30 system.log.3.bz2
STW-T----- 1 root admin 8476 Jun 10 00:30 system.log.2.bz2
STW-T----- 1 root admin 5345 Jun 11 00:31 system.log.1.bz2
-rw-r--r-- 1 root wheel 131984 Jun 11 18:57 vnetlib
drwxrwx--- 33 root admin 1122 Jun 12 00:23 DiagnosticMessages
STW-T----- 1 root admin 8546 Jun 12 00:30 system.log.0.bz2
STW-T--T-- 1 root wheel 108840 Jun 12 03:15 daily.out
-rw-r--r-- 1 root wheel 22289 Jun 12 04:51 fsck_hfs.log
STW-F-=---- 1 root admin 899464 Jun 12 20:11 install.log

Note several features of this directory. The system.log files are started daily at 0030 and
are differentiated numerically. There are a number of subdirectories for handling var-
ious services. Check the configuration of each individual service you want to acquire
logfiles for, but it'’s not uncommon for Unix systems to dump them to a subdirectory
of /var/log by default.

Unix logfiles are almost always plain text. For example, a brief snippet of a system log
reads as follows:

$ cat system.log

Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred(): Done
getpwnam()

Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred(): Done
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setegid() & seteuid()
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred():
pam_sm_setcred: krb5 user admin doesn't have a principal
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred(): Done
cleanup3
The majority of Unix system logs are text messages created by filling in templates with
specific event information. This kind of templated text is easy to read, but doesn’t scale
very well.

As of Vista, Windows has extensively revamped their logging structure. Windows rec-
ognizes two classes of logfiles: Windows logs and application/service logs. Windows
logs are further subdivided into five classes:

Application log
The application log contains messages from individual applications. Note that
services such as IIS may use auxiliary logs to contain additional information.

Security log
Contains security events, such as logon attempts and audit policy changes.

System log
Messages about system status, such as driver failures.

Forwardedevents log
Stores events from remote hosts.

These logs are recorded in %SystemRoot%\System32\Config by default on most Win-
dows installs; however, the more effective mechanism for accessing and reading the files
is to use the Windows Event Viewer, as seen in Figure 3-1.
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Figure 3-1. The Windows event log

Note the use of the Event ID in Figure 3-1; as with Unix systems, the Windows event
messages are templated text, though Windows explicitly identifies the type of event
using a unique numeric code. These messages are accessible from Microsofts website.

Application logfiles are much less consistently located. As seen in the /var/log directory,
administrative structure may be set up to record a logfile in a fixed location, but almost
every application has the ability to move around logfiles as necessary. When working
with a particular application, consult its documentation to find out where it drops logs.

The Contents of Logfiles

Logs are usually designed to provide debugging and troubleshooting information for
an administrator on the host. Because of this, you will often find that host-based logs
require both some degree of parsing and some degree of reorganization to make them
satisfactory security logs. In this section, we discuss mechanisms for interpreting, trou-
bleshooting, and converting host log data.

The Characteristics of a Good Log Message

Before discussing how to convert alog message, and before complaining about how bad
most log messages are, it behooves us to describe what a good security message should
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look like. A good security log should be descriptive, it should be relatable to other data,
and it should be complete.

A descriptive message is one that contains enough information for an analyst to identify
all necessary accessible resources for the event described by the message. For example,
if a host log records that a user attempted to illegally access a file, it should contain the
user’s ID and the file accessed. A host log recording a change in group permissions for
a user needs to record the user and the group. A log recording a failed remote login
attempt should include the ID that attempted the login and the address that attempted
the login.

For example, consider a log message about a failed login attempt on host 192.168.2.2,
local name myhost. A nondescriptive message would look like this:

Mar 29 11:22:45.221 myhost sshd[213]: Failed login attempt

This message doesn’t tell me anything about why the failure occurred and doesn’t pro-
vide any information to differentiate between this and any other failed login attempts.
I have no information on the target of the attack; is it against the admin account or some
user? Analysts with only this information will have to reconstruct the attempt solely
from timing data, and they can’t even be sure what host was contacted because the name
of the host is nondescriptive and there is no addressing information.

A more descriptive message would look like this:

Mar 29 11:22:45.221 myhost (192.168.2.2) sshd[213]: Failed
login attempt from host 192.168.3.1 as 'admin',
incorrect password

A good mental exercise for building a descriptive message is to fall back to the “five W's
and one H” approach from investigation and journalism: who, what, when, where, why,
and how. The nondescriptive log message answers what (failed login) and when, and
provides a partial answer where (myhost). The descriptive log message answers who
(192.168.3.1 as admin), why and how (incorrect password), and provides a better where.

A relatable message is one where the event is easily related to information from other
sources. For host-based events, this requires IP address and timing information in-
cluding whether an event was remote or physically local, if the event was remote, the IP
address and port of the remote event, and the IP address and port of the host. Relatability
is a particular headache when dealing with service logs, as these types of logs often
introduce additional addressing schemes on top of IP. For example, here’s an unrelatable
mail log message:

Mar 29 11:22:45.221 myhost (192.168.2.2) myspamapp[213]:
Message <21394.283845@spam.com> title 'Herbal Remedies and Tiny Cars'
from 'spammer@spam.com' rejected due to unsolicited commercial content

The message has a lot of information, but it has no way to relate the message sent back
to a particular IP address that sent the message. When looking at log messages, consider
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how you will relate this information to other sources, particularly network traffic. A
more relatable message would be as follows:

Mar 29 11:22:45.221 myhost (192.168.2.2) myspamapp[213]:
Message <21394.283845@spam.com> title 'Herbal Remedies and Tiny Cars'
from 'spammer@spam.com' at SMTP host 192.168.3.1:2034 rejected due
to unsolicited commercial content

This example includes client port and addressing information, so I can now relate it to
network traffic.

A complete log message is one that contains all the information about a particular event
within that single log message. Completeness reduces the number of records an analyst
has to search through and provides the analyst with a clear indicator that there is no
further information to acquire from this process. Incomplete messages are usually a
function of complicated process. For example, an antispam tool might run several dif-
ferent filters on a message, with each filter and the final decision being a separate log
line. For example:

Mar 29 11:22:45.221 myhost (192.168.2.2) myspamapp[213]:
Received Message <21394.283845@spam.com> title
'Herbal Remedies and Tiny Cars' from 'spammer@spam.com' at
SMTP host 192.168.3.1:2034

Mar 29 11:22:45.321 myhost (192.168.2.2) myspamapp[213]:
Message <21394.283845@spam.com> passed reputation filter

Mar 29 11:22:45.421 myhost (192.168.2.2) myspamapp[213]:
Message <21394.283845@spam.com> FAILED Bayesian filter

Mar 29 11:22:45.521 myhost (192.168.2.2) myspamapp[213]:
Message <21394.283845@spam.com> Dropped

With incomplete messages, you have to track state across multiple messages, each of
which gives a snippet of information and which you’re going to have to group together
to do any useful analysis. Consequently, I prefer the message to be aggregated at the
start, like this:

Mar 29 11:22:45.521 myhost (192.168.2.2) myspamapp[213]:
Received Message <21394.283845@spam.com> title
'Herbal Remedies and Tiny Cars' from 'spammer@spam.com' at
SMTP host 192.168.3.1:2034 reputation=pass Bayesian=FAIL decision=DROP

Log messages are often only minimally modifiable directly. Instead, to build an effective
message you might have to write some kind of logging shim. For example, if the log
system outputs syslog messages, you can receive and parse those messages, convert them
to a friendlier format, and then forward them on. When considering converting logfiles,
in addition to the rules above, consider the following:

Convert time to epoch time
Almost all record correlation involves identifying the same phenomenon from dif-
ferent sensors, meaning that you need to look for records that are close in time.
Converting all time values to epoch time reduces parsing complexity, throws out
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the nightmare of time zones and daylight saving time, and ensures a consistent
treatment for a consistent value.

Make sure sensors are synchronized
A corrollary to the first note; make sure that when sensors report the same event,
they are reporting the same time. Trying to correct for this after the fact is terribly
difficult, so make sure that all the sensors are coordinated, that they all report the
same time, and that the clocks are corrected and resynchronized regularly.

Include addressing information
Wherever possible, include the flow five-tuple (source IP, destination IP, source
port, destination port, protocol). If some of the values can be inferred from the
record (e.g., HTTP servers are running TCP), they can be dropped.

Ensure that delimiters are understood by the logger
On several occasions, I have encountered helpful administrators reconfiguring
HTTP logs to use pipes rather than spaces as delimiters. A worthy sentiment, except
when the logging module doesn’t know to escape the pipe when it occurs in text. If
the logger can change its delimiter and understands that the change requires es-
caping the character, let the logger do it.

Use error codes rather than text if possible
Text doesn't scale well—it’s bulky, difficult to parse, and often repetitive. Logging
systems that generate template messages can also include an error code of some
kind as a compact representation of the message. Use this rather than text to save
space.

Existing Logfiles and How to Manipulate Them

We can break logfiles into three major categories: columnar, templated, or annotative.
Columnar logs record records in discrete columns that are distinguishable by delimiters
or fixed text width. Templated logfiles look like English text, but the text comes from a
set of document templates and is enumerable. Annotative logfiles use multiple text re-
cords to describe a single event.

Columnar data, such as HTTP’s CLF format, records one message per event. This mes-
sage is a summary of the entire event, and consists of a fixed set of fields in columnar
format. Columnar logs are relatively easy to deal with as the fields are cleanly delineated
and the format is rigid; every message has the same columns and the same information.

When dealing with columnar data, keep in mind the following:
o Is the data delimited or fixed-width? If it’s fixed-width, are there fields that could

conceivably exceed that width, and if so, are the results truncated or is the column
expanded?

The Contents of Logfiles | 41



o If the data is delimited, is the delimiter escaped when used in the fields? Custom-
izable formats (such as HT'TP logs) may use a default delimiter and automatically
escape it; if you decide to use your own delimiter, it probably won’t be automatically
escaped.

o Is there a maximum record length? If there is a maximum record length, you may
encounter truncated messages with missing fields.

ELF and CLF logfiles, discussed later in this chapter, are good examples of columnar
formats.

Templated text messages record one message per event, but the events are recorded as
unformatted English text. The messages are templated in the sense that they come from
a fixed and enumerable set of templates. Where possible, it’s best to convert templated
text messages into some kind of indexed numeric format. In the best case, this is at least
partly done. For example, the Windows Event Log shown in Figure 3-1 has an Event ID
that describes the type of event and can be used to determine the other arguments that
will be provided.

When dealing with templated text, keep in mind the following:
» Can you get a complete list of the log messages? As an example, consider the Win-

dows logfile in Figure 3-1. Each of these messages is text, but it has a unique integer
ID for the message. Check the documentation for a list of all potential log messages.

Converting Text to Columns

Templated text can be parsed; the messages belong to an enumerable set and can con-
ceivably be converted into a columnar format. Creating such a system, however, requires
developing an intermediary application that can read the text, parse each individual
message, and deposit the result in a schema. Doing so is a nontrivial development task
(and will have to be updated when new messages are developed), but it also can reduce
the amount of space required and increase the readability of the data.

1. From whatever documentation you can find on the text format, identify and select
the messages most relevant to security. Any conversion script is going to consist of
a bunch of regular expressions, and the fewer expressions you have to maintain,
the happier you'll be.

2. For each message, identify the parameters it contains. As an example, consider the
following made-up templated messages: “Antispam tool SPAMKILLER identifies
email <12938@yahoo.com>as Spam,” “Antispam tool SPAMKILLER identifies email
<12938@yahoo.com> as Commercial,” “Antispam tool SPAMKILLER identifies
email <12938@yahoo.com> as Legitimate” There are three potential parameters
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here: the name of the antispam tool (enumerable), the message ID (a string), and
the output (enumerable).

3. Once you've identified parameters for each potential message, merge the parame-
ters to create a superset. The goal of this stage is to create a schema representation
of all the parameters that a message may potentially have; a particular message may
not have all of them.

4. Try to generate at least one event record for every templated message. Documen-
tation can be inaccurate.

In annotative logs, a single event is split across multiple messages unified through a
common ID. Event logs, system logs, and antispam may all potentially use this format.
Annotative logs spread an event across multiple messages, and effectively parsing them
requires identifying the common identifier, pulling all of those messages, and dealing
with the potential for missing messages.

Representative Logfile Formats

In this section, we discuss several common log formats, including ELF and CLE the
standard log formats for HTML messages. The formats discussed here are customizable,
and we provide guidelines for improving the log messages in order to provide more
security-relevant information.

HTTP: CLF and ELF

HTTP is the modern Internet’s reason for existence, and since its development in 1991,
it has metamorphosed from a simple library protocol into the Internet’s glue. Applica-
tions for which, 10 years ago, a developer would have implemented a new protocol are
now routinely offloaded to HT TP and web servers.

HTTP is a challenging protocol to nail down. The core protocol is incredibly simple,
but any modern web browsing session involves combining HTTP, HTML, and Java-
Script to create ad hoc clients of intense complexity. In this section, we briefly discuss
the core components of HT'TP with a focus on the analytical aspects.

HTTP is fundamentally a very simple file access protocol. To understand how simple
itis today, try the exercise in Example 3-2 using netcat. netcat (which can also be invoked
as nc, perhaps because administrators find it so useful that they want to make it easy to
invoke) is a flexible network port access tool that can be used to directly send informa-
tion to ports. It is handy for scripting and capable of a variety of tasks with minimum
automation.
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Example 3-2. Accessing an HTTP server using the command line

host$ echo 'GET /' | nc www.oreilly.com 80 > oreilly.html
host$ kill %1

Executing the command in the previous example should produce a valid HTML file. In
its simplest, most unadorned form, HT TP sessions consist of opening up a connection,
passing a method and a URI, and receiving a file in return.

HTTP is simple enough to be run at the command line by hand if need be—however,
that also means that an enormous amount of functionality is handed over to optional
headers. When dealing with HTTP logs, the primary challenge is deciding which head-
ers to include and which to ignore.

HTTP Headers Worth Noting

There are well over a hundred unique HTTP headers, tracked in RFC 4229. Of these, a
limited number are particularly critical to track. These include:

Cookie
The Cooktie header describes the contents of HT'TP cookies sent by the client to the
server.

Host
The Host header defines the name of the host that the client is contacting. This is
critical when dealing with virtually hosted HT TP servers—that is, multiple servers
at the same IP address differentiated by their domain name.

Referer
The Referer (sic) header includes the URL of the web page containing the link that
initiated this request.

User-Agent
The User-Agent header provides information on the HTTP client, generally the
type of client and the build.

There are two standards for HTTP log data: common log format (CLF) and extended
log format (ELF). Most HTTP log generators (such as Apache’s mod_log) provide ex-
tensive configuration options.

CLF is a single-line logging format developed by NCSA for the original HTTP server;
the W3C provides a minimal definition of the standard. A CLF event is defined as a
seven-value single-line record in the following format:

remotehost rfc931 authuser [date] "request" status bytes
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Where remotehost is the IP name or address of the remote host, rfc931 is the remote
login account name of the user, authuser is the user’s authenticated name, date is the
date and time of the request, request is the request, status is the HTTP status code,
and bytes is the number of bytes.

Pure CLF has several eccentricities that can make parsing problematic. The rfc931 and
authuser fields are effectively artifacts; in the vast majority of the CLF records, the fields

will be set to “~”. The actual format of the date value is unspecified and can vary between
different HTTP server implementations.

A common modification of CLF is Combined Log Format. The Combined Log Format
adds two additional fields to CLF: the HT TP referer field and the user-agent string.

ELF is an expandable columnar format that has largely been confined to IIS, although
tools such as Bluecoat also use it for logging. As with CLE, the W3C maintains the
standard on their website.

An ELF file consists of a sequence of directives followed by a sequence of entries.
Directives are used to define attributes common to the entries, such as the date of all
entries (the Date directive), and the fields in the entry (the Fields directive). Each entry
in ELF is a single HTTP request, and the fields that are defined by the directive are
included in that entry.

ELF fields come in one of three forms: identifier, prefix-identifier, or prefix(header). The
prefix is a one or two character string that defines the direction the information took
(c for client, s for server, r for remote). The identifier describes the contents of the field,
and the prefix(header) value includes the corresponding HTTP header. For example,
cs-method is in the prefix-identifier format and describes the method sent from client
to server, while time is a plain identifier denoting the time at which the session ended.

Example 3-3 shows simple outputs from CLE, Combined Log Format, and ELE. As the
example shows, each event is a single line.

Example 3-3. Examples of CLF and ELF

#CLF
192.168.1.1 - - [2012/0ct/11 12:03:45 -0700] "GET /index.html" 200
1294

# Combined Log Format
192.168.1.1 - - [2012/0ct/11 12:03:45 -0700] "GET /index.html" 200 1294
"http://www.example.com/link.html" "Mozilla/4.08 [en] (Win98; I ;Nav)"

H#ELF

#Version: 1.0

#Date: 2012/0ct/11 00:00:00

#Fields: time c-ip cs-method cs-uri
12:03:45 192.168.1.1 GET /index.html
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Most HTTP logs are some form of CLF output. Although ELF is an expandable format,
I find the need to carry the header around problematic in that I don’t expect to change
formats that much, and would rather that individual log records be interpretable without
this information. Based on principles I discussed earlier, here is how I modify CLF
records:

. Remove the rfc931 and authuser fields. These fields are artifacts and waste space.

. Convert the date to epoch time and represent it as a numeric string, In addition to

my general disdain for text over numeric representations, time representations have
never been standardized in HTTP logfiles. You're better off moving to a numeric
format to ignore the whims of the server.

. Incorporate the server IP address, the source port, and the destination port. I expect

to move the logfiles to a central location for analysis, so I need the server address
to differentiate them. This gets me closer to a five-tuple that I can correlate with
other data.

Add the duration of the event, again to help with timing correlation.

5. Addthehostheader.In case I'm dealing with virtual hosts, this also helps me identify

systems that contact the server without using DNS as a moderator.

Log configuration in Apache is handled via the mod_log config module, which provides
the ability to express logs using a sequence of string macros. For example, to express the
default CLF format, you specify it as:

Combined Log Format is expressed as:

W

time, request string, request status, response size, response time, referer, user-agent
string, and host from the request:

Logging in nginx is controlled with HttpLogModule, which uses a similar log_format
directive. To configure CLE, specity it with:

Combined Log Format is defined as follows:

Cookbook: Creating Logfiles

LogFormat "%h %l %u %t \"%r\" %>s %b"

LogFormat "%h %L %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""

hile my extended format contains the hostname, local IP address, server port, epoch

LogFormat "%h %A %p %{msec}t \"%r\" %>s %b %T \"%{Referer}i\"
\"${User-Agent}i\" \"S${Host}i\""

log_format clf $remote_addr - Sremote_user [$time_local] "Srequest"”
$status $body_bytes_sent;
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log_format combined $remote_addr - $remote_user [$time_local] "Srequest
$status $body_bytes_sent "Shttp_referer" "S$http_user_agent";

My extended format is defined as:

log_format extended $server_addr $remote_addr $remote_port $Smsec
"Srequest$" $status Sbody_bytes_sent Srequest_time $Shttp_referer
Shttp_user_agent $http_host

SMTP

SMTP log messages vary by the MTA used and are highly configurable. In this section,
we discuss two log formats that are representative of the major Unix and Windows
families: sendmail and Microsoft Exchange.

In this section, we focus on logging the transfer of email messages. The logging tools
for these applications provide an enormous amount of information about the server’s
internal status, connection attempts, and other data that, while enormously valuable,
requires a book of its own.

Sendmail moderates mail exchange through syslog, and consequently is capable of
sending an enormous number of informational messages besides the actual email trans-
action. For our purposes, we are concerned with two classes of log messages: messages
describing connections to and from the mail server, and messages describing actual mail
delivery.

By default, sendmail will send messages to /var/maillog, although the logging informa-
tion it sends is controlled by sendmail’s internal logging level. Sendmail uses its own
internal logging level ranging from 1 to 96; a log level of 1 logs all messages of severity
1 to n. Notable log levels include 9 (all message deliveries logged), 10 (inbound con-
nections logged), 12 (outbound connections logged), and 14 (connection refusals log-
ged). Of note is that anything above log level 8 is considered an informational log in
syslog, and anything above 11 a debug log message.

A sendmaillogline consists of five fixed values, followed by a list of one or more equates:
<date> <host> sendmail[<pid>]: <qid>: <equates>

Where <date> is the date, <host> is the name of the host, sendmail is a literal string,
<pid> is the sendmail process ID, and the <qid> is an internal queue ID used to uniquely
identify messages. Sendmail sends at least two log messages when sending an email
message, and the only way to group those messages together is through the gid. Equates
are descriptive parameters given in the form <key>=<value>. Sendmail can send a
number of potential equates, listed in Table 3-1 for messages.

For every email message received, sendmail generates at least two log lines. The first
line is the receiver line, and describes the message’s point of origin. The final line, the

Representative Logfile Formats | 47



sender line, describes the disposition of the mail: sent, quarantined, and where it was
delivered to.

Table 3-1. Relevant sendmail equates

Equate Description

argl Current sendmail implementations enable internal filtering using rule sets; arg1 is
the argument passed to the ruleset.

from The from address of the envelope.
msgid The message ID of the email.

quarantine If sendmail quarantines a mail, this is the reason it was held.

reject If sendmail rejects a mail, this is the reason for rejection.

relay This is the name and address of the host that sent the message; in recipient lines,
it’s the host that sent it, in sender lines, the host that received it.

ruleset This is the ruleset that processed the message, and provides the justification for
rejecting, quarantining, or sending the message.

stat The status of a message’s delivery.

to The email address of a target; multiple to equates can appear in the same line.

Sendmail will take one of four basic actions with a message: reject it, quarantine it,
bounceit, or send it. Rejection is implemented by message filtering and is used for spam
filtering; a rejected message is dropped. Quarantined messages are moved off the queue
to a separate area for further review. A bounce means the mail was not sent to the target,
and results in a nondelivery report being sent back to the origin.

Managing Email Rules and Filtering

Email traffic analysis is complicated, largely because email is attacked constantly (via
spam), and there’s a constantly escalating war between spammers and defenders. Even
in a relatively small enterprise, it’s easy to build a complex defensive infrastructure with
relatively little work. In addition to the spam and defensive issues, email operates in its
own little world—the IP addresses logged by email infrastructure are pretty much ex-
clusively used by the email infrastructure.

As usual, the first step in email instrumentation is figuring out how email is routed. Is
there some kind of dedicated antispam hardware at the gateway, such as a Barracude or
an IronPort box? How many SMTP servers are there, and how do they connect to the
actual email servers (POP, IMAP, Eudora, Exchange)? Figure out where a mail message
will be sent if it’s correctly routed, quarantined, rejected, or bounced. If webmail is
available, figure out where it actually is; where is the webmail server, what’s the route to
SMTP, etc.

Once you've identified the hardware, figure out what blocking is going on. Blocking
techniques include black-box sources (such as AV or IronPort’s reputation service),
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public blacklists such as SpamHaus’s SBL, and internal rules. Each requires a little dif-
ferent treatment.

Since black-box detection systems are basically opaque, it's important to track what
version of the system’s knowledge base is being used and when the system is updated;
verifying updates with network monitoring is a good idea. If you have multiple instances
of the same detector, make sure that their updates are coordinated.

Most blacklist services are publically accessible. Knowing which organization runs the
blacklist, the frequency of its updates, and the delivery mechanisms are all good things.
Aswith AV, verifying communications (particularly if itsa DNSBL) is also a good thing.

Internal monitoring should be identified, audited, and kept under version control. Be-
cause these are the rules that you have the most control over, it’s also a good idea to
compare them to the rest of your blocking infrastructure and see what can be pushed
out of the email system. If you're blocking a particular address, for example, you might
be better off blocking at the router or the firewall.

Email works within its own universe, and the overwhelming majority of IP addresses
recorded in email logs are the addresses of other email servers. To that end, while SMTP
tracking is important, it's often the case that to fully figure out what happened with a
message, you also need to track the IMAP or POP3 servers.

Microsoft Exchange: Message Tracking Logs

Exchange has one master log format for handling messages, the Message Tracking Log
(MTL).

Table 3-2. MTL fields

Field name Description
date-time IS0 8601 representation of the date and time format.
client-ip The IP address of the host that submitted the message to the server.

client-hostname The client_1ip’s FQDN.

server-ip The IP address of the server.

server-hostname The server_ip’s FQDN.

source-context This is optional information about the source, such as an identifier for
the transport agent.

connector-1id The name of the connector.

source Exchange enumeratesanumber of source identities for defining the origin

of a message, such as an inbox rule, a transport agent, or DNS. The
source field will contain this identity.

event-1id The event type. This is also an enumerable quantity, and includes a
number of status messages about how the message was handled.
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Field name

Description

internal-message-

id

message-id

network-message-

id

recipient-address

recipient-status

total-bytes
recipient-count

related-

recipient-address

reference

message-subject

sender-address

return-path
message-info
directionality

tenant-id

original-client-

ip

original-server-

ip

custom-data

This is an internal integer identifier used by Exchange to differentiate
messages. The D is not shared between Exchange servers, soif a message
is passed around, this value will change.

This is the standard SMTP message ID. Exchange will create one if the
message does not already have one.

This is a message ID like _internal-message-id-+ except that it is shared
across copies of the message and created when a message is cloned or
duplicated, such as when it’s sent to a distribution list.

The addresses of the recipients; thisis a semicolon-delimited list of names.

This is a per-recipient status code indicating how each recipient was
handled

The total size of the message in bytes.
The size of recipient-address in terms of number of recipients.

Certain Exchange events (such as redirection) will result in additional
recipients being added to the list; those addresses are added here.

This is message-specific information; the contents are a function of the
type of message (defined in event-id).

The subject found in the Subject: header.

The sender, as specified in the Sender : header; if Sender : is absent,
From: is used instead.

The return email address, as specified in Mail From:.
Event-type dependent message information.

The direction of the message; an enumerable quantity.
No longer used.

The IP address of the client.

The IP address of the server.

Additional data dependent on the type of event.

Logfile Transport: Transfers, Syslog, and Message Queues

Host logs can be transferred off their hosts in a number of ways dependending on how
thelogs are generated and on the capabilities of the operating system. The most common
approaches involve using regular file transfers or the syslog protocol. A newer approach
uses message queues to transport log information.
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Transfer and Logfile Rotation

Most logging applications write to a rotating logfile (see, for example, the rotated system
logs in “Accessing and Manipulating Logfiles” on page 36). In these cases, the logfile will
be closed and archived after a fixed period and a new file started. Once the file is closed,
it can be copied over to a different location to support analytics.

File transfer is simple. It can be implemented using ssh or any other copying protocol.
The major headache is ensuring that the files are actually complete when copied; the
rotation period for the file effectively dictates your response time. For example, if a file
is rotated every 24 hours, then you will, on average, have to wait a day to get a hold of
the latest events.

Syslog

The grandfather of systematic system logging utilities is syslog, a standard approach to
logging originally developed for Unix systems that now comprises a standard, a proto-
col, and a general framework for discussing logging messages. Syslog defines a fixed
message format and the ability to send that message to logger daemons that might reside
on the host or be remotely located.

All syslog messages contain a time, a facility, a severity, and a text message. Table 3-3
and Table 3-4 describe the facilities and priorities encoded in the syslog protocol. As
Table 3-3 shows, the facilities referred to by syslog comprise a variety of fundamental
systems (some of them largely obsolete). Of more concern is what facilities are not
covered—DNS and HTTP, for example. The priorities (in Table 3-4) are generally more
germane, as the vocabulary for their severity has entered into common parlance.

Table 3-3. syslog facilities

Value Meaning

Kernel

User-level

Mail

System daemons
Security/Authorization
Syslogd

Line printer

Network news

uucp

Clock daemon

O 0 ~N o U B W N = o

—_
o

Security/Authorization
ftpd

N
pu—
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12 ntpd

13 Log audit

14 Log alert

15 Clock daemon

16-23 Reserved for local use

Table 3-4. syslog priorities

Value Meaning

0 Emergency: system is unusable

1 Alert: action must be taken immediately
(ritical: critical conditions

Error: error conditions

Warning: warning conditions

Notice: normal but significant condition

Informational: informational messages

~N O B W N

Debug: debugging information

Syslog’s reference implementations are UDP-based, and the UDP standard results in
several constraints. Most important, UDP datagram length is constrained by the MTU
of the layer 2 protocol carrying the datagram, effectively imposing a hard limit of about
1,450 characters on any syslog message. The syslog protocol itself specifies that messages
should be less than 1,024 characters, but this is rarely observed while the UDP cutoff
will affect long messages. In addition, syslog runs on top of UDP, which means that
when messages are dropped, they are lost forever.

The easiest way to solve this problem is to use TCP-based syslog, which is implemented
in the open source domain with tools such as syslog-ng and rsyslog. Both of these tools
provide TCP transport, as well as a number of other capabilities such as database in-
terfaces, the ability to rewrite messages en route, and selective transport of syslog mes-
sages to different receivers. Windows does not support syslog natively, but there exist a
number of commercial applications that provide similar functionality.

CEF: The Common Event Format

Syslog is a transport protocol—it doesn’t specify anything about the actual contents of
a message. A number of different organizations have attempted to develop interopera-
bility standards for security applications, such as Common Intrusion Detection Frame-
work (CIDF) and Intrusion Detection Message Exchange Format (IDMEF). None of
them have achieved serious industry acceptance.
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What has been accepted widely is CEF. Originally developed by ArcSight (now part of
Hewlett-Packard) to provide sensor developers with a standard format in which to send
messages to their SIEM. CEF is a record format that specifies events using a numeric
header and a set of key/value pairs. For example, a CEF message for an attack from host
192.168.1.1 might look like this:

CEF:0|My Attack Detector|Test|1.0|1000|Attack|5|src=192.168.1.1

CEF is transport-agnostic, but the majority of CEF implementations use syslog as their
transport of choice. The actual specification and key/value assignments are available
from HP.

Further Reading

1. Richard Bejtlich, The Practice of Network Security Monitoring: Understanding In-
cident Detection and Response (No Starch Press, 2013).

2. Anton Chuvakin, Logging and Log Management: The Authoritative Guide to Deal-
ing with Syslog, Audit Logs, Alerts, and other IT ‘Noise’ (Syngress, 2012).
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CHAPTER 4

Data Storage for Analysis: Relational
Databases, Big Data, and Other Options

This chapter focuses on the mechanics of storing data for traffic analysis. Data storage
points to the basic problem in information security analysis: information security events
are scattered in a vast number of innocuous logfiles, and effective security analysis re-
quires the ability to process large volumes of data quickly.

There are a number of different approaches available for facilitating rapid data access,
the major choices being flat files, traditional databases, and the emergent NoSQL para-
digm. Each of these designs offers different strengths and weaknesses based on the
structure of the data stored and the skills of the analysts involved.

Flat file systems record data on disk and are accessed directly by analysts, usually using
simple parsing tools. Most log systems create flat file data by default: after producing
some fixed number of records, they close a file and open up a new file. Flat files are
simple to read and analyze, but lack any particular tools for providing optimized access.

Database systems such as Oracle and Postgres are the bedrock of enterprise computing.
They use well-defined interface languages, you can find system administrators and
maintainers with ease, and they can be configured to provide extremely stable and
scalable solutions. At the same time, they are not designed to deal with log data; the data
we discuss in this book has a number of features that ensure that much of the power of
a relational database will go unused.

Finally, there are the emerging technologies loosely grouped under “NoSQL” and “big
data” These include distributed platforms such as Hadoop, databases like MongoDB
and Monet, and specialized tools like Redis and Apache SOLR. These tools are capable,
with the right hardware infrastructure, of providing extremely powerful and reliable
distributed query tools. However, they require heavy duty programming and system
administration skills as well as a significant hardware commitment.
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Analysis involves returning to the well multiple times—when working on a problem,
analysts will go back to the main data repository and pull related data. The data they
choose will be a function of the data they’ve already chosen as patterns become apparent
and questions start taking shape (see Chapter 10 for this workflow in more depth). For
this reason, efficient data access is a critical engineering effort; the time to access data
directly impacts the number of queries an analyst can make, and that concretely impacts
the type of analyses they will do.

Choosing the right data system is a function of the volume of data stored, the type of
data stored, and the population that’s going to analyze it. There is no single right choice,
and depending on the combination of queries expected and data stored, each of these
strategies can be the best.

Log Data and the CRUD Paradigm

The CRUD (create, read, update, and delete) paradigm describes the basic operations
expected of a persistent storage system. Relational database management systems
(RDBMS), the most prevalent form of persistent storage, expect that users will regularly
and asynchronously update existing contents. Relational databases are primarily de-
signed for data integrity, not performance.

Ensuring data integrity requires a significant amount of the system’s resources. Data-
bases use a number of different mechanisms to enforce integrity, including additional
processing and metadata on each row. These features are necessary for the type of data
that RDBMSes were designed for. That data is not log data.

This difference is shown in Figure 4-1. In RDBMSes, users add and query data from a
system constantly, and the system spends resources on tracking these interactions. Log
data does not change, however; once an event has occurred, it is never updated. This
changes the data flow as shown in the figure on the right. In log collection systems, the
only things that write to disk are the sensors; users only read from disk.
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Sensor

Sensor

Log collector

User User User User

Figure 4-1. Comparing RDBMS and log collection systems

This separation of duties between users and sensors means that, when working with log
data, the integrity mechanisms used by databases are wasted. For log data, a properly
designed flat file collection system will often be just as fast as a relational database.

Creating a Well-Organized Flat File System: Lessons from SiLK

In Chapter 5, we discuss SiLK, the analysis system CERT developed to handle large
Netflows. SiLK was a very early big data system. While it doesn’t use current big data
technologies, it was designed around similar principles, and understanding how those
principles work can inform the development of more current systems.

Log analysis is primarily I/O bound, meaning that the primary constraint on perfor-
mance is the number of records read, as opposed to the complexity of the algorithms
run on the records. For example, in the original design of SiLK, we found that it was
considerably faster to keep compressed files on disk—the performance hit from reading
the records off of disk was much higher than the performance hit of decompressing a
file in memory.

Because performance isI/O bound, a good query system will read the minimum number
of relevant records possible. In log collection systems, the most effective way to reduce
the records read is to index them by time and always require a user to specify the time
queried. In SiLK, log records are stored in hourly files in a daily hierarchy, for exam-
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ple: /data/2013/03/14/sensor1_20130314.00 to /data/2013/03/14/sensor1_20130314.23.
SiLK commands include a globbing function that hides the actual filenames from the
user; queries specify a start date and an end date, which in turn is used to derive the
files.

This partitioning process does not have to stop with time. Because network traffic (and
log data) is usually dominated by a couple of major protocols, those individual protocols
can be split off into their own files. In SiLK installations, it's not unusual to split web
traffic from all other traffic because web traffic makes up 40-80% of the traffic on most
networks.

As with most data partitioning schemes, there’s more art than science in deciding when
to stop subdividing the data. As a rule of thumb, having no more than three to five
further partitions after time is acceptable because as you add additional partitions, you
increase complexity for users and developers. In addition, determining the exact par-
titioning scheme usually requires some knowledge of the traffic on the network, so you
can’t do it until after you've acquired a better understanding of the network’s structure,
composition, and the type of data it encounters.

Data Formats and Data Optimization

You decide to store data in flat files and create a system that accepts a billion records a
day. You decide to use ASCII text, and are recording zero-packed source and destination
IP addresses. This means that your IPv4 addresses will take 15 bytes of storage each,
compared to the 4-byte binary representation. This means that every day, you will sac-
rifice 22 GB of space for that text representation. If you have a single GigE interface to
transfer that data on, you will use three minutes just to transfer the wasted space.

Once you start working in large volume datasets, spatial dependencies become issues
on disks (affecting query time and storage duration), as well as on the network (affecting
query time and performance). Because your operations are I/O bound, converting rep-
resentations to a binary format will save space, increase performance, and, far too often,
actually make a design implementable.

The problem of actually developing a compact binary representation of data has largely
been addressed through a number of different representation schemes developed by
Google and other companies. These tools all work in roughly the same way: you specify
aschema using an interface definition language (IDL), and then run a tool on the schema
to create a linkable library that can read and write data in a compact format. There is a
loose similarity to XML and JSON, but with an emphasis on a highly compact, binary
representation.

Google developed the first of these systems in the form of Protocol Buffers. Multiple
tools are available now, including but not limited to:
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Protocol Buffers
Google describes these as a “smaller, faster, simpler” version of XML. Language
bindings are available in Java, C++, and Python. Protocol Buffers (PB) are the oldest
implementation and, while less feature-rich than other implementations, are very
stable.

Thrift
Originally from Facebook and now maintained by the Apache foundation. In ad-
dition to providing serialization and deserialization capabilities, Thrift includes
data transport and RPC mechanisms.

Avro
Developed in tandem with Hadoop, and more dynamic than either PB or Thrift.
Avro specifies schemas using Javascript Object Notation (JSON), and transfers the
schema as part of the messsage contents. Avro is consequently more flexible to
schema changes.

Other serialization standards exist, including MessagePack, ICE, and Etch. As of the
publication of this book, however, PB, Thrift, and Avro are considered the big three.

Taking a record and converting it into an all-ASCII string binary format is a waste of
space. The goal of any conversion process should be to reduce the amount of gratuitous
data in the record; read the section “The Characteristics of a Good Log Message” on
page 38 in Chapter 3 for further discussion on how to reduce record sizes.

A Brief Introduction to NoSQL Systems

The major advance in big data in the past decade has been the popularization of NoSQL
big data systems, particularly the MapReduce paradigm introduced by Google. Map-
Reduce is based around two concepts from functional programming: mapping, which
is the independent application of a function to all elements in a list, and reducing, which
is the combination of consecutive elements in a list into a single element. Example 4-1
clearly shows how these elements work.

Example 4-1. Map and reduce functions in Python

>>> # Map works by applying a function to every element in an array, for example, we
... # create a sample array of 1 to 10

>>> sample = range(1,11)

>>> # We now define a doubling function

>>> def double(x):
return x * 2

>>> # We now apply the doubling function to the sample data
. # This results in a list whose elements are double the
. # original's
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>>> map(double, sample)
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> # Now we create a 2-parameter function which adds two elements

>>> def add(a, b):
return a + b

>>> # We now run reduce with add and the sample, add is applied
. # to every element in turn, so we get add(1,2) which produces
. # 3, the list now looks like [3,3,...] as opposed to
. #[1,2,3....], and the process 1s repeated, 3 is added to 3
... # and the list now looks like [6,4,...] until everything is
. # added

>>> reduce(add, sample)
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MapReduce is a convenient paradigm for parallelization. Map operations are implicitly
parallel because the mapped function is applied to list element individually, and reduc-
tion provides a clear description of how the results are combined. This easy paralleli-
zation enables the implementation of any of a number of big data approaches.

For our purposes, a big data system is a distributed data storage architecture that relies
on massive parallelization. Recall the discussion above about how flat file systems can
enhance performance by intelligently indexing data. But now instead of simply storing
the hourly file on disk, split it across multiple hosts and run the same query on those
hosts in parallel. The finer details depend on the type of storage, for which we can define
three major categories:

Key stores
Including MongoDB, Accumulo, Cassandra, Hypertable, and LevelDB. These sys-
tems effectively operate as a giant hashtable in that a complete document or data
structure is associated with a key for future retrieval. Unlike the other two options,
key store systems don’t use schemas; structure and interpretation are dependent on
the implementor.

Columnar databases
Including MonetDB, Sensage, and Paraccel. Columnar databases split each record
across multiple column files with the same index.

Relational databases
Including MySQL, Postgres, Oracle, and Microsoft’s SQL Server. RDBMSes store
complete records as individually distinguishable rows.

Figure 4-2 explains these relations graphically. In a key store, the record is stored by its
key while the relationship of the recorded data and any schema is left to the user. In a
columnar database, rows are decomposed into their individual fields and then stored,
one field per file, in individual column files. In an RDBMS, each row is a unique and
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distinguishable entity. The schema defines the contents of each row, and rows are stored
sequentially in a file.

AfB]C A B C
1 Vi1 [ vi2 | Vi3 1 Vi1 1 V12 1|Vi3 1 JAVI1BV12CV13
2 V21| V22 | V23 2 | V21 2 (V22 2|V 2 [A:V21B:V22 V23
3 V31| V32 V33 3 V31 3 |V32 31V33 3 |A:V31B:V32C:V33

Figure 4-2. Comparing data storage systems

Key stores are a good choice when you have no idea what the structure of the data is,
you have to implement your own low level queries (e.g., image processing and anything
not easily expressed in SQL), or even if the data has structure. This reflects their original
purpose of supporting unstructured text searches across web pages. Key stores will work
well with web pages, tcpdump records containing payload, images, and other datasets
where the individual records are relatively large (on the order of 60 kb or more, around
the size of the HTML on a modern web page). However, if the data possesses some
structure, such as the ability to be divided into columns, or extensive and repeated
references to the same data, then a columnar or relational model may be preferable.

Columnar databases are preferable when the data is easily divided into individual log
records that don’t need to cross-reference each other, and when the contents are rela-
tively small, such as the CLF and ELF record formats discussed in Chapter 3. Columnar
databases can optimize queries by picking out and processing data from a subset of the
columnsin each record; their performance improves when they query on fewer columns
or return fewer columns. If your schema has a limited number of columns (for example,
an image database containing a small date field, a small ID field, and a large image field),
then the columnar approach will not provide a performance boost.

RDBMSes were originally designed for information that’s frequently replicated across
multiple records, such as a billing database where a single person may have multiple
bills. RDBMSes work best with data that can be subdivided across multiple tables. In
security environments, they’re usually best suited to maintaining personnel records,
event reports, and other knowledge—things that are produced after processing data or
that reflect an organization’s structure. RDBMSes are good at maintaining integrity and
concurrency; if you need to update a row, theyre the default choice. The RDBMS ap-
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proach is probably unwarranted if your data doesn’t change after creating it, individual
records don’t have cross-references, or your schemas store large blobs.

Other Miscellaneous Storage Tools

In addition to the three major storage systems discussed earlier, there are a couple of
other tools and techniques for improving access speed. These storage systems are less
prevalent than the big three, but are generally optimized for specific data or query types.

Graph databases include Neo4j, ArangoDB, and Titan. Graph databases provide scala-
ble, highly efficient queries when working with graph data (see Chapter 13). Traditional
database systems, including the three mentioned earlier, are notoriously poor at man-
aging graphs, as any representation involves making multiple queries to generate the
graph over time. Graph databases provide queries and tools for analyzing graph struc-
tures.

The Lucene library and its companion search engine, Solr, make up an open source text
search engine tool.

Redis is a memory-based key value storage system. If you need to rapidly access data
which can fit in memory (for example, lookup tables), Redis is a very good choice for
handling the lookup and modifications.

Finally, if your wallet is big enough, you should consider the advantages of solid state
storage (SSD). SSD solutions can be expensive, but they have the enormous advantage
of being functionally transparent as part of the filesystem. At the high end, companies
like Violin memory, Fusion-IO, and STEC provide multi-TB rack mounted units that
can be configured to receive and process data at wire speeds.

What Storage Approach to Use

When choosing a storage architecture, consider the type of data you will collect and the
type of reporting you will do with it. Do you expect that you will mostly generate fixed
reports, or do you expect that your analysts will conduct a large number of exploratory
queries?

Table 4-1 provides a summary of the types of decisions that go into choosing a storage
approach. The decisions are listed in order of preference: 1 is best, 3 is worst, X means
don’t bother at all. We will discuss each option in detail in order to explain how they
impact storage choices.
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Table 4-1. Making decisions about data systems

Situation Relational Columnar  Key-store
Have access to multiple disks and hosts
Have access to a single host

Data is less than a terabyte

Data is multiterabyte

Expect to update rows

Never update rows

Data has structure
Individual records are small
Individual records are large

1 1
X X
2 3
1 1
X X
1 1
3 1
1 3
1 3
2 1
Analysts have some development skills 1 1
1 2

2
1
1
2
1
2
Data is unstructured text 2
2
2
3
1
1

Analysts have no development skills

The first decision is really a hardware decision. Big data systems such as columnar
databases and key stores will only provide you with a performance advantage if you can
run parallel nodes, and the more the better. If you have a single host, or even less than
four hosts available, you are probably better off sticking with more traditional database
architectures in order to exploit their more mature administrative and development
facilities.

The next pair of questions is really associated with that hardware question: is your data
really that big? I use a terabyte as an arbitrary cutoff point for big data because I can
realisticallybuya 1TB SSD. If your data isn’t that big, again default to relational databases
or an in-memory storage system like Redis.

The next question is associated with data flow and the CRUD paradigm. If you expect
to regularly update the contents of a row, then the best choice is a relational database.
Columnar and other distributed architectures are designed around the idea that their
contents are relatively static. It's possible to update data in them, but it usually involves
some kind of batch process where the original data is removed and replacements are
put in place.

Streaming Analytics Versus Storing in One Place

The classic analytical system is a centralized repository. Data from multiple sensors is
fed into a huge database, and then analysts pull data out of the huge database. This is
not the only approach, and a hot alternative uses streaming analytics. At the time of
writing this book, distributed streaming analytic systems such as Storm and IBM’s
Websphere are taking off.
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Streaming approaches enable sophisticated real-time analysis by processing the data as
astream of information. In a stream, the data is touched once by a process, and minimal
past state is maintained.

Streaming processing is extremely useful in areas where the process is well-defined and
there is a need for real-time analysis. As such, it is not particularly useful for exploratory
analysis (see Chapter 10). However, when working with well-defined alarms and pro-
cesses, streaming analytics will reduce the overhead of data required at a central repos-
itory, and in large data systems, which can be quite valuable.

After dealing with the question of updates, the next set of questions deal with the struc-
ture and size of the data. Columnar and relational databases are preferable when you
are dealing with well-structured, small records (such as optimized logfiles). These ap-
proaches can take advantage of the schema—for example, if a columnar database is only
using two columns, it can return only those for further processing whereas the key store
has to return the whole record. If records are small or structured, columnar databases
are preferable, followed by relational databases. If records are large or unstructured,
then the key-value approach is more flexible.

The final question on the list is arguably more social than technical, but also important
when considering the design of an analysis system. If you are going to allow analysts
relatively open, unstructured analysis to the data, then you need to have some well-
defined and safe framework for letting them do so. If your analysts are capable of writing
MapReduce functions, then you can use any system without much difficulty. However,
if you expect that analysts will have minimal skills then you may find columnar or
relational systems, which have SQL interfaces, to be preferable. There are relatively
recent efforts to develop SQL-like interfaces for key stores, notably the Hive and Pig
projects from Apache.

Where possible, it’s preferable to limit analysts’ direct access to the data store, instead
allowing them to extract samples that can be processed in EDA tools such as SiLK or R.

Storage Hierarchy, Query Times, and Aging

Any collection system will have to deal with a continuous influx of new data, forcing
older data to move into slower, less expensive storage systems over time. For the pur-
poses of an analytic system, we can break the storage hierarchy we have for data into
four tiers:

« RAM

o SSDs and flash storage

» Hard drives and magnetic storage
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o Tape drives and long-term archives

By setting up a flow monitoring system, you can estimate the volume of incoming traffic
and use that data to calculate initial storage requirements. The key question is how much
data the analysts need.

A good rule of thumb in a business environment is that analysts need fast access to
approximately a week’s worth of data, reasonable access to 90 days’ worth of data, and
further data can be deposited in a tape archive. The 90-day rule means that analysts can
pull back data to at least the previous quarter. Obviously, if your budget allows it, more
data on disk is better, but 90 days is a good minimal requirement. Make sure that if you
doarchive to tape, that the tape data is reasonably accessible—bots last on most networks
for around a year if not longer, and tracing their full activity will involve looking at that
archive.

A number of external constraints also have an impact on data storage, notably the data
retention requirements for your domain and industry. For example, the EU’s data re-
tention directive (directive 2006/24/EC) establishes retention requirements for tele-
communications providers.

As data moves down on the hierarchy, it also often helps to reformat it into a more
summarization- or storage-friendly format. For example, for rapid response I might
want to keep a rolling archive of packets in high-speed storage in order to facilitate rapid
response. As the data moves onto slower sources (from RAM to SSD, from SSD to disk,
from disk to tape), I will start relying more on summaries such as NetFlow.

In addition to simple summarization such as NetFlow, long-term storage can be facili-
tated by identifying and summarizing the most obvious behaviors. For example, scan-
ning and backscatter (see Chapter 11 for more information) take up an enormous
amount of disk space on large networks; traffic has no payload, and there’s little value
in storing the full packet. Identifying, summarizing, and then compressing or removing
scans reduces the footprint of the raw data, especially on larger networks where this
type of background traffic can take up a disproprtionate number of records.

Data fusion—removing idential records or fusing them—is another viable technique.
When collecting data from multiple sources, combining the records that describe the
same phenomenon (by checking IP addresses, ports, and time) can reduce the payload
of these separate records.
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PART Il
Tools

This section is about a number of tools for use in data analysis. The primary focus of
this section is on two particular tools: SiLK and R. The System for Internet-Level
Knowledge (SiLK) is a NetFlow analysis toolkit developed by the CERT at Carnegie
Mellon University, which enables analysts to develop sophisticated flow analysis systems
quickly and efficiently. R, a statistical analysis package developed at the University of
Auckland, enables exploratory data analysis and visualization.

At this time, there is no killer app for network analysis. Analysis requires using many
tools, often in ways they weren’t really designed for. The tools covered in this section
form what I believe to be a basic functional toolkit for an analyst. Combining them with
alight scripting language such as Python empowers analysts to explore data and develop
operationally useful products.

The remainder of this section is divided into five chapters. Chapter 5 describes the SILK
suite, Chapter 6 describes R. Chapter 7 discusses IDS; while IDSes were briefly discussed
in Part I, this chapter discusses the construction and maintenance of these tools—an-
alysts will often produce ad hoc IDSes to identify or deal with attacks. Chapter 8 dis-
cusses tools to identify the ways in which hosts are connected to the Internet, including
reverse DNS lookups, looking glasses, and tools such as traceroute and ping. Finally,
Chapter 9 discusses additional tools that are useful for particular analytic tasks.






CHAPTER'5
The SiLK Suite

SiLK, the System for Internet-Level Knowledge, is a toolkit originally developed by
Carnegie Mellon's CERT to conduct large-scale netflow analysis. SiLK is now used ex-
tensively by the Department of Defense, academic institutions, and industry as a basic
analytical toolkit.

This chapter focuses primarily on using SiLK as an analytical tool. The CERT Network
Situational Awareness team has published extensive references on using SiLK, installing
collectors, and setting up the suite.

What Is SiLK and How Does It Work?

SiLK is a suite of tools for querying and analyzing NetFlow data. The SiLK suite enables
an analyst to rapidly and efficiently query very large volumes of network traffic in order
to identify complex aggregate phenomena or extract individual events.

SiLK is effectively a database at the command line. Each tool performs a specific query,
manipulation, or aggregation of data, and commands are chained together to produce
results. By chaining together multiple records along pipes, SiLK enables the analyst to
create complex commands that field data along multiple channels simultaneously. For
example, the following sequence of SiLK queries pull HTTP (port 80) traffic from flow
data, producing a time series and a list of activity by busiest address. See Example 5-1
for the basics of SiLK operation: commands are passed through a series of pipes, which
can be stdin, stdout, or fifos (named pipes).

Example 5-1. Some overly complicated rwfilter voodoo

$ mkfifo out2

S rwfilter --proto=6 --aport=80 data.rwf --pass=stdout |
rwfilter --input=stdin --proto=6 --pass=stdout
--all=out2 | rwstats --top --count=10 --fields=1 &
rwcount out2 --bin-size=300
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Data is maintained in an efficient binary representation up until the last moment, until
commands that produce text (or some optional outputs) are called to produce output.

SiLK is very much an old-school Unix application suite: a family of tools tied together
with pipes and using a lot of optional arguments. By using this approach, it’s possible
to create powerful analytic scripts with SiLK, because the tools have well-defined in-
terfaces that will efficiently handle binary data. Effectively using SiLK involves con-
necting the appropriate tools together in order to process binary data and produce text
only at the very end of the process.

This chapter also uses some basic Unix shell commands such as s, cat, and head. I
don’t require you to know the shell on an expert level.

Acquiring and Installing SiLK

The SiLK homepage is maintained at the CERT NetSA Security Suite web page. The
SiLK package is available free for download, and can be installed on most Unix systems
without much difficulty. The CERT also provides a live CD image that can be used on
its own.

The SiLK live CD comes with a training dataset called LBNL-05, anonymized header
traces from Lawrence Berkeley National Labs in 2005. If you install the live CD, the data
will be immediately accessible. If not, you can fetch the data from The LBNL-05 refer-
ence data page.'

In addition to the live CD, SiLK is available in several package managers, including
homebrew.

The Datafiles

The LBNL datafiles are stored in a file hierarchy; Example 5-2 shows the results of
downloading and unarchiving them.

Example 5-2. Downloading the SiLK archives

$ gunzip -c SiLK-LBNL-05-noscan.tar
$ gunzip -c SiLK-LBNL-05-scanners.tar
$ cd SiLK-LBNL-05

$ s
README-SO.txt  1in out silk.conf
README-S1. txt inweb outweb

$ 1s in/2005/01/07/*.01
in/2005/01/07/in-S0_20050107.01 in/2005/01/07/in-S1_20050107.01

1. You'll notice that there are two datasets, one with scans and one without. To understand why, read Pang et
al., “The Devil and Packet Trace Anonymization,” ACM CCR 36(1), January 2006.
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When collecting data, SiLK partitions the data into subdirectories that divide traffic by
the type of traffic and the time the event occurred. This provides scalability and speeds
up analysis. However, it’s also generally a black box, and one we’re breaking right now
simply to have some files to work with. For the purposes of demonstration and educa-
tion, we're going to work with four specific files:

o inweb/2005/01/06/iw-S0_20050106.20
o inweb/2005/01/06/iw-SO_20050106.21

 in/2005/01/07/in-S0_20050107.01
e in/2005/01/07/in-S1_20050107.01

These files are not special in any way. I chose them just to provide examples of scan and
nonscan traffic. The following data discusses how to partition data and what the file-
names mean.

Choosing and Formatting Output Field

Manipulation: rwcut

SiLK records are stored in a compact binary format. They can't be read directly, and are
instead accessed using the rwcut tool (see Example 5-3). In the following example, and
any other examples with an output greater than 80 characters, the lines are manually
broken for clarity.

Example 5-3. Simple file access with rwcut

$ rwcut inweb/2005/01/06/iw-S0_20050106.20 | more

sIP| dIP|sPort|dPort|pro| packets| bytes|\
flags| sTime|  dur| eTime|sen|
148.19.251.179| 128.3.148.48| 2497| 80| 6] 16| 2631\
FS PA  |2005/01/06T20:01:54.119| 0.246]|2005/01/06T20:01:54.365| ?|
148.19.251.179|  128.3.148.48| 2498| 80| 6| 14| 2159\

S PA  |2005/01/06T20:01:54.160| 0.260]|2005/01/06T20:01:54.420| ?|

In its default invocation, rwcut outputs 12 fields: source and destination IP addresses
and ports, protocol, number of packets, number of bytes, TCP flags, start time, duration,
end time, and sensor of a flow. These values have been discussed previously in Chap-
ter 2, except for the sensor field. SiLK can be configured to identify individual sensors,
which is useful when you're trying to figure out where traffic came from or where it’s
going. The sensor field is whatever ID is assigned during configuration. In the default
data there are no sensors, so the value is set to a question mark (?).

Choosing and Formatting Output Field Manipulation: rweut | 71



All SiLK commands have built-in documentation. Typing rwcut --help brings up an
enormous help page. We will cover the basic options. A fuller description of options
can be found in the SiLK documentation for rwcut.

The most commonly used rwcut commands select the fields displayed during invoca-
tion. rwcut can actually print 29 different fields, in arbitrary order. A list of these fields
is in Table 5-1.

rwcut fields are specified using the - - fields= option, which takes the numeric values
in Table 5-1 or the string values, and prints the requested fields in the order specified,
as in Example 5-4.

Table 5-1. rwcut fields

Field NumericID Description

sIP 1 Source IP address

dip 2 Destination IP address

sPort 3 Source port

dPort 4 Destination Port: if ICMP, the ICMP type and code is encoded here also
protocol 5 Layer 3 protocol

packets 6 Packets in the flow

bytes 7 Bytes in the flow

flags 8 OR of TCP flags

sTime 9 Start time in seconds

elime 10 End time in seconds

dur n Duration (eTime—sTime)

sensor 12 Sensor ID

in 13 SNMP D of the incoming interface on the router

out 14 SNMP D of the outgoing interface on the router

nhIP 15 Next hop address

sType 16 (lassification of the source address (internal, external)
dType 17 (lassification of the destination address (internal, external)
sCC 18 Country code of the source IP

dcc 19 Country code of the destination IP

class 20 (lass of the flow

type 21 Type of the flow

sTime +msec 22 sTime in milliseconds

elime +msec 23 elime in milliseconds

dur +msec 24 duration msecs

icmpTypeCode 25 ICMP type and code
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Field NumericID Description

initialFlags 26 Flags in the first TCP packet

sessionFlags 27 Flags in all packets except the first

attributes 28 Attributes of the flow observed by the generator
application 29 Guess as to the application in the flow

Example 5-4. Some examples of field ordering

$# Show a limited set of fields
$ rwcut --fileld=1-5 inweb/2005/01/06/1w-S0_20050106.20 | head -2
sIP| dIP|sPort|dPort|pro|
148.19.251.179| 128.3.148.48| 2497| 80| 6]
S#Note the -, now explicitly enumerate
$ rwcut --field=1,2,3,4,5 inweb/2005/01/06/1w-S0_20050106.20 | head -2
sIP| dIP|sPort|dPort|pro|
148.19.251.179| 128.3.148.48| 2497| 80| 6]
S$#Field order is based on what you enter in --field
$ rwcut --field=5,1,2,3,4 inweb/2005/01/06/1w-S0_20050106.20 | head -2
pro| sIP| dIP|sPort|dPort|
6| 148.19.251.179| 128.3.148.48| 2497| 80|
$#lle can use text instead of numbers
$ rwcut --field=sIP,dIP,proto inweb/2005/01/06/iw-S0_20050106.20 |head -2
sIP| dIP|pro]
148.19.251.179|  128.3.148.48| 6|

rwcut supports a number of other output formatting and manipulation tools. Some
particularly useful ones, which let you control the lines that appear in the output, in-
clude:

--no-title
Commonly used with SiLK commands that produce tabular output. Drops the title
from the output table.

- -Num-recs
Outputs a specific number of records, eliminating the need for the head pipe in the
previous example. The default value is zero, which makes rwcut dump the entire
contents of whatever file it’s reading.

--start-rec-numand - -end-rec-num
Can be used to fetch a range of records in the file.

Example 5-5 shows a few ways to manipulate record numbers and headers.

Example 5-5. Manipulating record numbers and headers

$# Drop the title

$ rwcut --fileld=1-9 --no-title inweb/2005/01/06/iw-S0_20050106.20 | head -5

148.19.251.179| 128.3.148.48| 2497| 80| 6] 16| 2631|FS PA
| 2005/01/06T20:01:54.119|
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148.19.251.179|  128.3.148.48| 2498| 80| 6| 14| 2159| S PA
|2005/01/06T20:01:54.160|

148.19.251.179|  128.3.148.48| 2498| 80| 6| 2| 80|F A
| 2005/01/06T20:07:07.845|

56.71.233.157| 128.3.148.48|48906| 80| 6| 5] 300] S

| 2005/01/06T20:01:50.011|
56.96.13.225| 128.3.148.48|50722| 80| 6| 6] 360| S

|2005/01/06T20:02:57.132]|
$# Drop the head statement
$ rwcut --field=1-9 inweb/2005/01/06/iw-SO_20050106.20 --num-recs=5

sIP| dIP|sPort|dPort|pro| packets| bytes| flags

| sTime|
148.19.251.179|  128.3.148.48| 2497| 80| 6| 16| 2631|FS PA
|12005/01/06720:01:54.119|
148.19.251.179|  128.3.148.48| 2498| 80| 6| 14| 2159| S PA
|2005/01/06720:01:54.160 |
148.19.251.179|  128.3.148.48| 2498| 80| 6| 2| 80|F A
|2005/01/06720:07:07.845|

56.71.233.157| 128.3.148.48|48906| 80| 6] 5] 300] S
|2005/01/06720:01:50.011|

56.96.13.225|  128.3.148.48|50722| 80| 6| 6] 360| S

|12005/01/06T20:02:57.132]

S$# Print only the third through fifth record

$ rwcut --field=1-9 inweb/2005/01/06/iw-S0_20050106.20 --start-rec-num=3
--end-rec-num=5

sIP| dIP|sPort|dPort|pro] packets| bytes| flags
| sTime|
148.19.251.179| 128.3.148.48| 2498| 80| 6] 2| 80|F A
|2005/01/06T20:07:07.845|
56.71.233.157] 128.3.148.48|48906 | 80| 6] 5] 300| S
|2005/01/06T20:01:50.011|
56.96.13.225| 128.3.148.48|50722| 80| 6] 6| 360| S

| 2005/01/06T20:02:57.132|

A number of options manipulate output format. Tabulation is controllable with the
--column-separator, --no-final-column, and --no-columns switches. --column-
seperator will change the character used to distinguish columns, while - -no-final-
column drops the delimiter at the end of the line. --no-columns removes any space
padding between columns. The - -delimited switch combines all three: it takes a char-
acter as an argument, uses that character as a column separator, removes all padding in
the columns, and drops the final column separator.

In addition, there are a variety of switches for changing column content:

--integer-1ips
Converts IP addresses to integers rather than dotted quads. This switch is depre-
cated as of SiLK v3, and users should now use - -ip-format=decimal.
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--ip-format

The updated version of --integer-ips, - -ip-format specifies how addresses are
rendered. Options include canonical (dotted quad for IPv4, canonical IPv6 for
IPv6), zero-padded (canonical, except zeroes are expanded to the maximal value
for each format, so 127.0.0.1 is 127.000.000.001), decimal (print as the correspond-
ing 32-bit or 128-bit integer), hexadecimal (print the integer in hexadeximal for-
mat), and force-1pv6 (prints all addresses in canonical IPv6 format, including IPv4
addresses mapped to the :ffff:0:0/96 netblock).

--epoch-time
Prints timestamps as epoch values with floating-point millisecond precision.

--integer-tcp-flags
Converts TCP flags to their integer equivalents.

--zero-pad-ips
Pads the dotted quad IP address format with zeros, so that 128.2.11.12 is printed as
128.002.011.012. Deprecated in favor of - -ip-format in SiLK v3.

--icmp-type-and-code
Places the ICMP type in the source port and the ICMP code in the destination port.

- -pager
Specifies the program to use for paging output.

Example 5-6 shows some of the preceding options.

Example 5-6. Other formatting examples

$# Change from fixed with columns to delims
$ rweut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --no-columns --num-recs=2
sIP|dIP|sPort|dPort|protocol]|
148.19.251.179|128.3.148.48|2497|80|6|
148.19.251.179|128.3.148.48|2498|80]6]|
$# Change the column separator
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --column-sep=:
--num-recs=2
sIP: dIP:sPort:dPort:pro:
148.19.251.179: 128.3.148.48: 2497: 80: 6:
148.19.251.179: 128.3.148.48: 2498: 80: 6:
$# Use --delim to change everything at once
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --delim=: --num-recs=2
sIP:dIP:sPort:dPort:protocol
148.19.251.179:128.3.148.48:2497:80:6
148.19.251.179:128.3.148.48:2498:80:6
S$# Convert IP addresses to integers
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --integer-ip --num-recs=2
sSIP| dIP|sPort|dPort|pro]
2484337587|2147718192| 2497| 80| 6|
2484337587|2147718192| 2498| 80| 6]
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S# Use epoch time
$ rwcut --field=1-5,9 inweb/2005/01/06/iw-S0_20050106.20 --epoch --num-recs=2
sIP| dIP|sPort|dPort|pro| sTime|
148.19.251.179| 128.3.148.48| 2497| 80| 6]1105041714.119]|
148.19.251.179|  128.3.148.48| 2498| 80| 6]1105041714.160|
S# Zero pad IP addresses
$ rwcut --field=1-5,9 inweb/2005/01/06/1iw-S0_20050106.20 --zero-pad --num-recs=2
sIP| dIP|sPort|dPort|pro] sTime|
148.019.251.179]128.003.148.048| 2497| 80| 6]2005/01/06T20:01:54.119]
148.019.251.179]128.003.148.048| 2498| 80| 6]2005/01/06T20:01:54.160]|

You will note that, as the command lines get more complex, I have truncated the longer
options. SiLK uses GNU-style long options universally, so the only requirement for
specifying an option is to type enough characters to make the name unambiguous.
Expect more and more truncation as we build more and more complex commands.

Basic Field Manipulation: rwfilter

The most basic SiLK command with analytical values is rwcut paired with rwfilter
through a pipe. Example 5-7 shows a simple rwfilter command.

Example 5-7. A simple rwfilter command

$ rwfilter --dport=80 inweb/2005/01/06/iw-S0_20050106.20 --pass=stdout
| rwcut --field=1-9 --num-recs=5

sIP| dIP|sPort|dPort|pro| packets| bytes| flags

| sTime|

148.19.251.179|  128.3.148.48| 2497| 80| 6] 16| 2631|FS PA
|2005/01/06T720:01:54.119|

148.19.251.179|  128.3.148.48| 2498| 80| 6] 14| 2159| S PA
|2005/01/06T720:01:54.160|

148.19.251.179|  128.3.148.48| 2498| 80| 6] 2| 80|F A
|2005/01/06T720:07:07.845|

56.71.233.157] 128.3.148.48|48906 | 80| 6] 5] 300| S
|2005/01/06T720:01:50.011|
56.96.13.225| 128.3.148.48|50722| 80| 6] 6| 360| S

|2005/01/06T720:02:57.132|

rwfilter with a single filter (the - -dport option in this case), and a single redirect (the
--pass=stdout) is about as simple as you can get. rwfilter is the workhorse of the
SiLK suite: it reads input (directly from a file, using a set of globbing specifications, or
through a pipe), applies one or more filters to each record in the data, and then redirects
the records based on whether a record matches the filters (passes) or doesn’t match
(fails).

SiLK’s rwfilter documentation is humongous, but primarily consists of repetitively
describing the filter specifications for every field, so don't be intimidated. rwfilter
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options basically do one of three things: they specify how to filter data, how to read data,
or how to direct the result of those filters.

Ports and Protocols

The easiest filters to start with are --sport, --dport, and --protocol. As the names
imply, they filter on the source port, destination port, and protocol, respectively (see
Example 5-8). These values can filter on a specific value (e.g., - -sport=80 will pass any
traffic where the source port is 80), or a range specified with a dash or commas (so
- -sport=79-83 will pass anything where the source port is between 79 and 83 inclusive,

and could be expressed as - -sport=79,80,81,82,83).

Example 5-8. Example filtering on sport

$ rwfilter --dport=4350-4360 1inweb/2005/01/06/iw-S0_20050106.20
--pass=stdout | rwcut --field=1-9 --num-recs=5

sIP| dIP|sPort|dPort|pro| packets| bytes| flags
| sTime|
218.131.115.42| 131.243.105.35| 80| 4360| 6| 2| 80|F A
|2005/01/06T20:24:21.879]
148.19.96.160|131.243.107.239| 80| 4350| 6] 27| 35445|FS PA
|2005/01/06T20:59:42.451|
148.19.96.160|131.243.107.239| 80| 4352| 6] 4] 709|FS PA
|2005/01/06T20:59:42.507|
148.19.96.160|131.243.107.239| 80| 4351 6] 15| 16938|FS PA
|2005/01/06T20:59:42.501|
148.19.96.160|131.243.107.239| 80| 4353| 6] 4] 704|FS PA
|2005/01/06T20:59:42.544|
$ rwfilter --sport=4000- inweb/2005/01/06/iw-S0_20050106.20
--pass=stdout | rwcut --field=1-9 --num-recs=5
sIP| dIP|sPort|dPort|pro| packets| bytes| flags
| sTime|
56.71.233.157| 128.3.148.48|48906| 80| 6| 5] 300| S
|2005/01/06T20:01:50.011]|
56.96.13.225| 128.3.148.48|50722| 80| 6] 6] 360| S
|2005/01/06T20:02:57.132]
56.96.13.225| 128.3.148.48|50726| 80| 6] 6] 360| S
|2005/01/06T20:02:57.432|
58.236.56.129|  128.3.148.48|32621| 80| 6| 3] 144] S
|2005/01/06T20:12:10.747|
56.96.13.225|  128.3.148.48|54497| 443| 6| 6] 360] S
|2005/01/06T20:09:30.124|
$ rwfilter --dport=4350,4352 1inweb/2005/01/06/iw-S0_20050106.20
--pass=stdout | rwcut --field=1-9 --num-recs=5
sIP| dIP|sPort|dPort|pro| packets| bytes| flags
| sTime|
148.19.96.160|131.243.107.239| 80| 4350| 6] 27| 35445|FS PA
|2005/01/06T20:59:42.451|
148.19.96.160|131.243.107.239| 80| 4352| 6] 4] 709|FS PA
|2005/01/06T20:59:42.507|
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148.19.96.160|131.243.107.239| 80| 4352 6] 1] 40| A
|2005/01/06T720:59:42.516|

$ rwfilter --proto=1 1n/2005/01/07/in-S0_20050107.01 --pass=stdout
| rwcut --field=1-6 --num-recs=2

sIP| dIP|sPort|dPort|pro| packets|
35.223.112.236| 128.3.23.93| 0] 2048| 1| 1]
62.198.182.170| 128.3.23.81| 0] 2048] 1| 1]

$ rwfilter --proto=1,6,17 1n/2005/01/07/in-S0_20050107.01 --pass=stdout
| rwcut --num-recs=2 --fields=1-6

sIP| dIP|sPort|dPort|pro] packets|
116.66.41.147|131.243.163.201| 4283| 1026| 17| 1]
116.66.41.147|131.243.163.201| 3131| 1027| 17| 1|
$ rwfilter --proto=1,6,17 in/2005/01/07/in-S0_20050107.01 --fail=stdout
| rwcut --num-recs=2 --fields=1-6
sIP| dIP|sPort|dPort|pro| packets|
57.120.186.177| 128.3.26.171| 0] 0| 50| 70|
57.120.186.177| 128.3.26.171| 0] 0] 50| 81|

Note the use of --fail in the last example. Because there are 255 potential protocols,
specifying “everything but TCP, ICMP, and UDP” could be expressed in two ways: either
by specifying everything you want (--proto=0,2-5,7-16,18-), or by using the --
fail option. I'll discuss more advanced manipulation of - -pass and - - failin the next
chapter.

Size

Volume (size) options (bytes and packets) are similar to the protocol and port options
in that you express them numerically. Unlike the enumerations (ports and protocol),
these numeric values can be expressed only as single digits or ranges, not as comma-
separated values. So, - -packets=70-81 is acceptable, but - -bytes=1,2,3,4 is not.

IP Addresses

The simplest form of IP address filtering simply expresses the IP address directly (see
Example 5-9). The following examples show strict filtering on the source
(--saddress) and destination (- -daddress) address, and the - -any-address option.
- -any-address will match either source or destination addresses.

Example 5-9. Filtering on IP addresses

$ rwfilter --saddress=197.142.156.83 --pass=stdout
in/2005/01/07/1n-S0_20050107.01 | rwcut --num-recs=2

sIP| dIP|sPort|dPort|pro] packets| bytes| flags|
sTime| dur| eTime|sen|
197.142.156.83| 224.2.127.254|44510| 9875| 17| 12| 7163|
2005/01/07T01:24:44.359|  16.756|2005/01/07T01:25:01.115| ?|
197.142.156.83| 224.2.127.254|44512| 9875| 17| 4| 2590
2005/01/07T01:25:02.375| 5.742|2005/01/07T01:25:08.117| ?|

$ rwfilter --daddress=128.3.26.249 --pass=stdout
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in/2005/01/07/1n-S0_20050107.01 | rwcut --num-recs=2

sIP| dIP|sPort|dPort|pro]
sTime| dur|
211.210.215.142]| 128.3.26.249| 4068|

2005/01/07T01:27:06.789|

25|

203.126.20.182]| 128.3.26.249|51981| 4587|

2005/01/07T01:27:04.812|  18.530|2005/01/07T01:27:23.

$ rwfilter --any-address=128.3.26.249

--pass=stdout 1n/2005/01/07/in-S0_20050107.01 | rwcut --num-recs=2

6]

5.052|2005/01/07T01:27:11.

6]

sIP| dIP|sPort|dPort|pro]
sTime| dur|
211.210.215.142| 128.3.26.249| 4068|

2005/01/07T01:27:06.789|

25|

203.126.20.182]| 128.3.26.249|51981| 4587|

2005/01/07T01:27:04.812|  18.530|2005/01/07T01:27:23.342|

6]

5.052|2005/01/07T01:27:11.841|

6]

Address options accept a variety of range descriptors. Each quad in an IP address can
be expressed using the same comma-dash format that protocols and ports use. IP ad-
dresses will also accept the character x to mean 0-255. This expression can be used within
each quad; SiLK will match each quad separately. In addition to this comma-dash for-
mat, SiLK can match on CIDR blocks.

SiLK supports IPv6 by using IPv6’s colon-based notation. The following are all examples

of valid IPvé filters in SiLK, and Example 5-10 shows how to filter them:

ffffix
1 ffff:0:32aa2,0-5
. ffff:0.0.5-130,1,255.x

Example 5-10. Filtering IP ranges

S$#Filtering on the last quad

$ rwfilter --daddress=131.243.104.x inweb/2005/01/06/iw-S0_20050106.20

--pass=stdout | rwcut --field=1-5 --num-recs=5
sIP| dIP|sPort|dPort|pro|

150.52.105.212|131.243.104.181|
150.52.105.212[131.243.104.181|
59.100.39.174| 131.243.104.27|
59.100.39.174| 131.243.104.27|
59.100.39.174| 131.243.104.27|

# Filtering a range of specific values in the third quad
$ rwfilter --daddress=131.243.104,107,219.x inweb/2005/01/06/iw-S0_20050106.20
--pass=stdout | rwcut --field=1-5 --num-recs=5

80| 1262| 6|
80| 1263| 6|
80| 3188| 6|
80| 3191| 6|
80| 3193| 6|

sIP| dIP|sPort|dPort|pro|

208.122.23.36]131.243.219.201|
205.233.167.250(131.243.219.201|
58.68.205.40| 131.243.219.37|
208.233.181.122| 131.243.219.37|
58.68.205.40| 131.243.219.37|

# Using CIDR blocks

$ rwfilter --saddress=56.81.0.0/16 inweb/2005/01/06/iw-S0_20050106.20

80| 2473| 6|
80| 2471| 6|
80| 3433| 6|
80| 3434| 6|
80| 3435| 6]

--pass=stdout | rwcut --fileld=1-5 --num-recs=5
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sIP| dIP|sPort|dPort|pro|
56.81.19.218|131.243.219.201| 80| 2480| 6]
56.81.16.73|131.243.219.201| 80| 2484| 6]
56.81.16.73|131.243.219.201| 80| 2486| 6]
56.81.30.48|131.243.219.201| 443| 2490| 6]
56.81.31.159[131.243.219.201| 443| 2489| 6|

Time

There are three time options: - -stime, --etime, and - -active-time. These fields re-
quire a time range, which in SiLK is written in the format:

YYYY/MM/DDTHH:MM:SS-YYYY/MM/DDTHH: MM: SS

Note the T separating the day and hour. The - -stime and - -etime fields filter exactly
what it says on the can, which can be a bit counterintuitive; specifying
--stime=2012/11/08T00:00:00-2012/11/08T00:02:00 filters any record whose start
time is between midnight and two minutes after midnight on November 8, 2012. Re-
cords that started before midnight and are still being transmitted during that range will
not pass. To find records that occurred within a particular period, use the --active-
time filter.

TCP Options

Flows are aggregates of packets, and in the majority of cases, this aggregation is relatively
easy to understand. For example, the number of bytes in a flow is the sum of the number
of bytes of all the packets that comprise the flow. TCP flags, however, are a bit more
problematic. In NetFlow v5, a flow’s flags are the bitwise OR of the flags in its constituent
packets—meaning that a flow indicates that a flag was present or absent in the entire
flow, but not where. A flow could conceivably consist of a gibberish sequence of flags
such as a FIN, then an ACK and SYN. Monitoring software such as YAF expands Net-
Flow to include additional flag fields, which SiLK can take advantage of.

The core flag filtering switches are --flags-initial,--flags-all, and --flags-
session. These options accept flags in the form high flags/mask flags. If a flag is listed
in the mask, SiLK always parses it. If a flag is listed in the high flags, SiLK passes it only
if the value is high. The flags themselves are expressed using the characters in Table 5-2.

Table 5-2. Expressing TCP flags in rwfilter

Character Flag

F FIN
S SYN
R RST
p PSH
A ACK
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Character Flag

U URG
E ECE

C CWR

The combination of high flags and mask flags tends to confuse people, so let’s review
some examples. Remember that the basic rule is that in order to evaluate a flag, it must
be in the mask. A flag specified as high but not specified in the mask will be ignored.

o Setting the value to S/S will pass any record where the SYN flag is high.

o Setting the value to S/SA will pass any record where the SYN flag is high and the
ACK flag is low.

o Setting the value to SA/SA will pass any record where both SYN and ACK flags are
high.

o A combination like SAF/SAFR will return any record where the SYN, ACK, FIN
flags are high and the RST flag is low, which would be expected of a normal TCP
connection.

In addition to these options, SiLK provides a set of flag-specific options in the form of
--syn-flag, --fin-flag, and so on for each potential flag. These options take a 1 or 0
as an argument: setting the value to 1 will pass records where the flag is high, 0 will pass
records where the flag is low, and not including the option will pass all records.

What Should TCP Flags Look Like?

The combination of TCP flags in any particular flow can be a useful indicator of the
flow’s behavior, and there are certain flag combinations that raise suspicion.

Almost all TCP flows should pass either SAF/SAFR or SAR/SAFR, without passing
SAFR/SAFR. This is because most sessions will end in a FIN, with aberrations ending
in a RST. If both FIN and RST are seen, that’s suspicious.

A TCP session without an ACK flag is curious, especially if that session has four or more
packets. Stacks are usually hardcoded to give up after n packets, where 7 tends to be in
the neighborhood of three.

For a client, the initial flag should be a SYN, while a server should have a SYN+ACK.
You should never see a SYN after the initial flag. Resynchronization would mean a new
session started using the same ephemeral port, which is weird for TCP.

The PSH and URG flags are, in my mind, the universal indicator of boring sessions. If
I see a session without PSH, especially if the session is long, it strikes me as curious. In
my mind, a “normal” TCP session will have FSPA high. A flow with just PA high is

Basic Field Manipulation: rwfilter | 81



usually a keep-alive and an indication of a broken flow—look in the repository for the
same address combination and you’ll probably find a SAP flow occurring before it.

Backscatter/response messages include A, SA, and RA flows. A good number of RA
packets will arrive on any large network due to backscatter from spoofed DDoS attacks.
There isn’t really anything you can do about these packets; they’re not even directly
aimed at your network.

Helper Options

If you compare rwfilter’s option-based filtering against tcpdump’s BPF filtering, it’s
immediately obvious that rwfilter’s approach is much more primitive. This was an
intentional decision: rwfilter is focused on processing large volumes as quickly as pos-
sible, and the overhead involved in processing some kind of parseable language was
deemed too expensive.

The place where this usually trips people up is the lack of obvious not and or operators.
For example, if you want to filter out all web sessions, you may try to filter traftic where
one port is 80, and the other is ephemeral. The initial attempt might be:

rwfilter --sport=80,1024-65535 --dport=80,1024-65535 --pass=stdout

The problem is that this will also pass any flows where the source and destination port
are both 80, and flows where the source and destination port are both ephemeral. To
deal with problems like this, rwfilter has a collection of helper functions, which com-
bined with the - -fail option and multiple filters should be able to address any of these
problems.

In the case of ports, the --aport option refers to either the source or the destination
port. Using - -aport and two filters, you can identify the appropriate sessions as follows:
rwfilter --aport=80 --pass=stdout | rwfilter --input-pipe=stdin
--aport=1024-65535 --pass=stdout

The first filter identifies anything engaged in port 80 traffic, and the second takes that
set and identifies anything that also used an ephemeral port.

A number of IP address helper options are available. - -anyaddress filters across source
and destination addresses simultaneously. - -not-saddress and - -not-daddress pass
records with addresses that don’t match the option specification.

Miscellaneous Filtering Options and Some Hacks

rwfilter hasa couple of direct text output options: - -print-stat (see Example 5-11)
and - -print-volume-stat. These can be used to print a summary of the traffic without
having to resort to cut, count, or other display tools. They also will print volumes of
records that did not pass a filter.
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Example 5-11. Using --print-stat
$ rwfilter --print-volume-stat in/2005/01/07/in-S0_20050107.01 --proto=0-255

| Recs | Packets| Bytes| Files|
Total| 2019 2730488| 402105501 | 1]
Pass| 2019 2730488 | 402105501
Fail| 0] 0] 0] |
$ rwfilter --print-stat in/2005/01/07/in-S0_20050107.01 --proto=0-255
Files 1. Read 2019. Pass 2019. Fail 0.

Note in Example 5-11 the use of the - -proto=0-255 option. In almost all invocations,
rwfilter expects some form of filtering applied to it, so when you need a filter that
passes everything, the easiest approach is just to specify all the protocols. - -print-
stat and - -print-volume-stat output to stderr, so you can still use stdout for pass,
fail, and all channels.

Like rwcut, rwfilter has a record limit command. - -max-pass-records and - -max-
fail-records can be used to limit the number of records passed through a pass or fail
channel.

rwfileinfo and Provenance

SiLK filter files contain a fair amount of metadata, which can be accessed using the
rwfileinfo command (see Example 5-12). rwfileinfo can work with files, as seen in
the examples below, or directly on stdin by using stdin or - as an argument.

Example 5-12. Using rwfileinfo

$ rwfileinfo in/2005/01/07/in-S0_20050107.01
in/2005/01/07/in-S0_20050107.01:

format(id) FT_RWAUGMENTED(0x14)
version 2

byte-order littleEndian
compression(id) none(0)
header-length 28

record-length 28

record-version 2

silk-version 0

count-records 2019

file-size 56560

packed-file-info 2005/01/07701:00:00 ? ?
$ rwfilter --print-stat in/2005/01/07/in-S0_20050107.01 --proto=6
- -pass=example.rwf
Files 1. Read 2019. Pass 1353. Fail 666.
$ rwfileinfo example.rwf
example.rwf:

format(id) FT_RWGENERIC(0x16)
version 16
byte-order littleEndian
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compression(id) none(0)

header-length 156
record-length 52
record-version 5
silk-version 2.1.0
count-records 1353
file-size 70512

command-lines
1 rwfilter --print-stat --proto=6 --pass=example.rwf
in/2005/01/07/1n-S0_20050107.01
$ rwfilter --aport=25 example.rwf --pass=example2.rwf --fail=example2_fail.rwf
$ rwfileinfo example2.rwf
example2.rwf:

format(id) FT_RWGENERIC(Ox16)
version 16

byte-order littleEndian
compression(id) none(0)
header-length 208

record-length 52

record-version 5

silk-version 2.1.0
count-records 95

file-size 5148

command-lines

1 rwfilter --print-stat --proto=6 --pass=example.rwf
in/2005/01/07/1n-S0_20050107.01

2 rwfilter --aport=25 --pass=example2.rwf
--fail=example2_fail.rwf example.rwf

The fields reported by rwfileinfo are as follows:

example2.rwf
The first line of every rwfileinfo dump is the name of the file.

format(id)
SiLK files are maintained in a number of different optimized formats; the format
value is a C macro describing the type of the file, followed by the hexadecimal ID
of that type.

version
The version of the file format.

byte-order
The order in which bytes are stored on disk; SiLK maintains distinct little- and big-
endian formats for faster reading.

compression(id)
Whether the file is natively compressed, again for faster reading.
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header-length
The size of the file header; a SiLK file with no records will be just the size of the
header-length.

record-length
The size of individual file records. This value will be 1 if records are variable length.

record-version
The version of the records (note that record versions are distinct from file versions
and SiLK versions).

silk-version
The version of the SiLK suite used to create the file.

count-records
The number of records in the file.

file-size
The total size of the file; if the file is uncompressed, this value should be equivalent
to the header length added to the product of the record length and record count.

command-lines
A record of the SiLK commands used to create the file.

Example 5-13 shows how to use the - -note-add command.

Example 5-13. Using --note-add

$ rwfilter --aport=22 example.rwf --note-add='Filtering ssh' --pass=ex2.rwf
$ rwfileinfo ex2.rwf
ex2.rwf:
format(id) FT_RWGENERIC(Ox16)
version 16
byte-order littleEndian
compression(id) none(0)
header-length 260
record-length 52
record-version 5
silk-version 2.1.0
count-records 10
file-size 780

command-lines

1 rwfilter --print-stat --proto=6 --pass=example.rwf
in/2005/01/07/1n-S0_20050107.01

2 rwfilter --aport=22 --note-add=Filtering ssh
--pass=ex2.rwf example.rwf
annotations

1 Filtering ssh
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Combining Information Flows: rwcount

rwcount can produce time series data from the output of an rwfilter command. It
works by placing counts of bytes, packets, and flow records into fixed-duration bins,
which are equally sized time periods specified by the user. rwcount is a relatively
straightforward application. Most of its complexity comes from relating the flows, which
themselves have a duration, to the bins.

The simplest invocation of rwcount is shown in Example 5-14. The first thing to notice
is the use of the - -bin-size option. In this example, the bins are half an hour, or 1,800
seconds. If - -bin-size isn’t specified, rwcount will default to 30-second bins. Bin sizes
don’t have to be integers; floating-point specifications with a resolution down to the
millisecond are acceptable for people who like lots of bins in their output.

Example 5-14. Simple rwcount invocation

$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
rwcount --bin-size=1800

Date| Records| Bytes| Packets|
2005/01/07T01:00:00] 257.58]| 42827381.72] 248724.14|
2005/01/07T01:30:00| 1589.61| 211453506.60 | 1438751.93|
2005/01/07T02:00:00] 171.81]| 147824612.67| 1043011.93]

As Example 5-14 shows, rwcount outputs four columns: a date column in SiLK’s stan-
dard date format (YYYY/MM/DDTHH:MM:SS), followed by record, byte, and packet
columns. The floating-point values are a function of rwcount interpolating how much
traffic should be in each bin; rwcount calls this a load scheme.

The load scheme is an attempt by rwcount to approximate how much of a flow took
place over the period specified by the bins. In the default load scheme, rwcount splits
each flow proportionally across all the bins during which the flow was taking place. For
example, if a flow takes place from 00:04:00 to 00:11:00, and bins are five minutes long,
1/7 of the flow will be added to the first (00:00:00-00:04:59) bin, 5/7 to the second bin
(00:05:00-00:09:59), and 1/7 to the third (00:10:00-00:14:59) bin. rwcount takes an in-
teger parameter in the - - load-scheme option, with the following results:

0 Split the traffic evenly across all bins covered. In the previous example, the flow
would be split into thirds, and a third added to each bin.

1 Add the entire flow to the first bin covered by the flow. In the previous example,
00:00:00-00:04:59.

2 Add the entire flow to the last bin covered by the flow. In the previous example,
00:10:00-00:14:59.
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3 Add the entire flow to the middle bin covered by the flow. In the previous example,

00:05:00-00:09:59.

4 The default load scheme.

rwcount uses the flow data provided to guess which time bins are required, but some-
times you have to explicitly specify the time, especially when coordinating multiple files.
This can be done using the - -start-epoch and - -end-epoch options to specify starting
and ending bin times. Note that these parameters can use the epoch time or yyyy/mm/
dd:HH:MM:SS format. rwcount also has an option to print dates using epoch time: the

--epoch-slots option.

The - -skip-zero option (see Example 5-15) is one of a number of output format op-
tions. Normally, rwcount prints every empty bin it has allocated, but - - skip-zero causes
empty bins to be omitted from the output. In addition, rwcount supports many of the
output options mentioned for rwcut: --no-titles, --no-columns, --column-

separator, --no-final-delimter, and - -delimited.

Example 5-15. Using epoch slots and the --skip-zero option

rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
rwcount --bin-size=1800.00 --epoch

Date| Records| Bytes| Packets|
1105059600 | 257.58| 42827381.72| 248724.14|
1105061400 | 1589.61| 211453506.60]| 1438751.93]
1105063200 | 171.81| 147824612.67| 1043011.93|
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
rwcount --bin-size=1800.00
--epoch --start-epoch=1105057800
Date| Records| Bytes| Packets|
1105057800 | 0.00] 0.00] 0.00]
1105059600 | 257.58| 42827381.72| 248724.14|
1105061400 | 1589.61| 211453506.60]| 1438751.93]
1105063200 | 171.81| 147824612.67 | 1043011.93|
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
rwcount --bin-size=1800.00
--epoch --start-epoch=1105056000
Date| Records| Bytes| Packets|
1105056000 | 0.00] 0.00] 0.00]
1105057800 | 0.00| 0.00| 0.00]
1105059600 | 257.58] 42827381.72] 248724.14|
1105061400 | 1589.61| 211453506.60 | 1438751.93|
1105063200 | 171.81| 147824612.67| 1043011.93]
$ rwfilter 1n/2005/01/07/in-S0_20050107.01 --all=stdout |
rwcount --bin-size=1800.00
--epoch --start-epoch=1105056000 --skip-zero
Date| Records| Bytes| Packets|
1105059600 | 257.58| 42827381.72| 248724.14|
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1105061400 | 1589.61]| 211453506.60 | 1438751.93]
1105063200 | 171.81] 147824612.67 | 1043011.93]

rwset and IP Sets

IP sets are SiLK’s most powerful capability, and something that distinguishes the toolkit
from most other analytical tools. An IP set is a binary representation of an arbitrary
collection of IP addresses. IP sets can be created from text files, from SiLK data, or by
using other binary SiLK structures.

The easiest way to start with IP sets is to create one, as in Example 5-16.

Example 5-16. Creating IP sets with rwset

$ rwfilter 1n/2005/01/07/in-S0_20050107.01 --all=stdout |
rwset --sip-file=sip.set --dip-file=dip.set

$ s -1 *.set

-rw-r--r-- 1 mcollins staff 580 Jan 10 01:06 dip.set

-rw-r--r-- 1 mcollins staff 15088 Jan 10 01:06 sip.set

$ rwsetcat sip.set | head -5

0.0.0.0

32.16.40.178

32.24.41.181

32.24.215.49

32.30.13.177

$ rwfileinfo sip.set

sip.set:
format(id) FT_IPSET(Ox1d)
version 16
byte-order littleEndian
compression(id) none(0)
header-length 76
record-length 1
record-version 2
silk-version 2.1.0
count-records 15012
file-size 15088

command-lines
1 rwset --sip-file=sip.set --dip-file=dip.set

rwset takes flow records and produces up to four output files. The file specified with
--sip-file will contain source IP addresses from the flow, - -dip-file will contain
destination addresses, - -any - file will contain source and destination IP addresses, and
nhip-file will contain next hop addresses. The output is binary and read with rwset
cat, and as with all SiLK files, the file can be examined using rwfileinfo.

The power of IP sets comes when they’re combined with rwfilter. rwfilter has eight
commands that accept IP sets (--sipset, --dipset, --nhipset, - -anyset, and their
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negations). Sets are explicitly designed so rwfilter can rapidly query using them, en-
abling a variety of useful queries, as seen in Example 5-17.

Example 5-17. Set manipulation and response

$ # First, we create IP sets; I use aport=123 (NTP on UDP) to filter down
$ # to a reasonable set of addresses. NTP clients and servers use the same
S # port.
$ rwfilter 1n/2005/01/07/in-S0_20050107.01 --pass=stdout --aport=123 |
rwset --sip-file=sip.set --dip-file=dip.set
S # Now, let's see how many IP addresses are created
$ rwsetcat --count-ip sip.set
15
$ # Generating output using rwfilter; note the use of the --dipset file as the

$ # sip set; this means that I'm now looking for messages that responded to
$ # these addresses. This means that I've seen ntp going to and from the
$ # address, meaning it's likely to be a legitimate speaker, as opposed to a
$ # scan on port 123.
$ rwfilter out/2005/01/07/out-S0_20050107.01 --dipset=sip.set --pass=stdout
--aport=123 | rwcut | head -5
sIP| dIP|sPort|dPort|pro] packets| bytes| \
flags| sTime| dur | eTime|sen|
128.3.23.152| 56.7.90.229| 123| 123| 17| 1] 76| \
| 2005/01/07T01:10:00.520| 0.083]2005/01/07T01:10:00.603| ?|
128.3.23.152| 192.41.221.11| 123| 123] 17| 1] 76| \
| 2005/01/07T01:10:15.519| 0.000|2005/01/07T01:10:15.519] ?|
128.3.23.231| 87.221.134.185| 123| 123| 17| 1] 76| \
| 2005/01/07T01:24:46.251| 0.005]2005/01/07T01:24:46.256| ?|
128.3.26.152| 58.243.214.183| 123|10123]| 17| 1] 76| \

| 2005/01/07T01:27:08.854| 0.000|2005/01/07T01:27:08.854| ?|

$ # Let's look at statistics; using the same file, I look at the hosts

$ # that responded

S rwfilter out/2005/01/07/out-S0_20050107.01 --dipset=sip.set --aport=123
--print-stat

Files 1. Read 12393. Pass 21. Fail 12372.

$ # Now I look at everyone else; not-dipset means that I'm looking at everything

S # on port 123 that doesn't go to these addresses.

$ rwfilter out/2005/01/07/out-S0_20050107.01 --not-dipset=sip.set --aport=123
--print-stat

Files 1. Read 12393. Pass 337. Fail 12056.

Sets can also be generated by hand using rwsetbuild, which takes text input and pro-
duces a set file as the output. The rwsetbuild specification takes any of the IP address
specifications used by the --saddress option in rwfilter: literal addresses, integers,
ranges within dotted quads, and netmasks. Example 5-18 demonstrates this.

Example 5-18. Building a set using rwsetbuild

$ cat > setsample.txt

# Comments in set files are prefaced with a hashmark
# Literal address

255.230.1.1
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# Note that I'm putting addresses in some semi-random order; the output
# will be ordered.

111.2.3-4.1-2

# Netmask

22.11.1.128/30

D

$ rwsetbuild setsample.txt setsample.set

$ rwsetcat --print-ip setsample.set

22.11.1.128
22.11.1.129
22.11.1.130
22.11.1.132
111.2.3.1
111.2.3.2
111.2.4.1
111.2.4.2
255.230.1.1

Sets can also be manipulated using the rwsettool command, which provides a variety
of mechanisms for adding and removing sets. rwusettool supports four manipulations:

--union
Creates a set that includes any address that appears in any of the sets.

--intersect
Creates a set that includes only addresses that appear in all the sets specified.

--difference
Removes addresses in the latter sets from the first set.

--sample
Randomly samples a set to produce a subset.

rwsettool is generally invoked using an output path (- -output=_file_), butif nothing
is specified, it will dump to stdout. As with rwfilter, rwsettool output is binary, so
a pure terminal dump triggers an error. Example 5-19 shows a manipulation with
rwsettool.

Example 5-19. Set manipulation with rwsettool

$ rm setsample2.set

$ cat > setsample2.txt

# Build a set that covers our original setsample file to
# see what happens with various functions

22.11.1.128/29

$ rwsetbuild setsample2.txt setsample2.set

$ rwsettool --union setsample.set setsample2.set | rwsetcat
22.11.1.128

22.11.1.129

22.11.1.130

22.11.1.131
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22.11.
22.11.
22.11.
22.11.
111.2.
111.2.
111.2.
111.2.
255.230.1.1

$ rwsettool --intersect setsample.set setsample2.set | rwsetcat
22.11.1.128

22.11.1.129

22.11.1.130

22.11.1.131

$ rwsettool --difference setsample.set setsample2.set | rwsetcat
111.2.3.1

111.2.3.2

111.2.4.1

111.2.4.2

255.230.1.1

.132
.133
.134
.135

AR WWRRLRRER
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rwuniq

rwuniq is the utility knife of counting tools. It allows an analyst to specify a key con-
taining one or more fields, and will then count a number of different values, including
total number of bytes, packets, flow records, or unique IP addresses matching the key.

rwunig’s default configuration counts the number of flows that occurred for a particular
key. The key itself must be specified using the - - field option, which accepts the field
specifiers in Table 5-1. rwuniq can accept multiple fields, and the key will be generated
in the order specified in the command line. Example 5-20 demonstrates the key features
of the - - field option. As it shows, field order in the option affects field ordering in the
output.

Example 5-20. Various field specifiers using rwuniq

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
rwuniqg --field=sip,proto | head -4

sIP|pro] Records|
131.243.142.85| 17| 1]
131.243.141.187| 17| 6|
128.3.23.41| 17| 4]

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
rwuniq --field=1,2 | head -4

sIP| dIP| Records|
128.3.174.158]| 128.3.23.44| 2|
128.3.191.1]239.255.255.253] 8|
128.3.161.98|131.243.163.206| 1]

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
rwuniq --field=sip,sport | head -4
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sIP|sPort| Records|

131.243.63.143|53504| 1]
131.243.219.52|61506| 1]
131.243.163.206| 1032| 1]

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
rwuniq --fileld=sport,sip | head -4

sPort| sIP| Records|
55876| 131.243.61.70] 1]
51864|131.243.103.106| 1]
50955| 131.243.103.13]| 1]

Also, note that when fields’ orders are changed, the order in which records are output
also changes. rwuniq does not guarantee record ordering by default; sorting can be
ordered by using the - -sort-output option.

rwuniq provides a number of count switches that instruct it to count additional values
(see Example 5-21). The counting switches are - -bytes, - -packets, - -flows, --sip-
distinct, and --dip-distinct. Each of these fields can be used on their own, or by
specifying a threshold (e.g., - -bytes, - -bytes=10, or - -bytes=10-100). A single-value
threshold (--bytes=10) provides a minimum, while a two-value threshold
(- -bytes=10-100) provides a range with a minimum and maximum. If you don’t specify
an argument, then the switch returns all values.

Example 5-21. Field spec with rwuniq

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
rwuniq --field=sport,sip --bytes --packets | head -5

sPort| sIP| Bytes| Packets|
55876| 131.243.61.70] 308 4]
51864|131.243.103.106| 308 4]
50955| 131.243.103.13| 308 4]
56568| 128.3.212.145| 360 | 5]

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
rwuniq --field=sport,sip --bytes --packets=8 | head -5

sPort| sIP| Bytes| Packets|
0] 131.243.30.224| 2520 30|
959 128.3.215.60] 876 | 19|
2315|131.243.124.237| 608| 8|
56838| 131.243.61.187| 616]| 8|

$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
rwuniq --field=sport,sip --bytes --packets=8-20 | head -5

sPort| sIP| Bytes| Packets|
959 128.3.215.60] 876| 19|
2315[131.243.124.237| 608| 8|
56838| 131.243.61.187| 616 | 8|
514]  128.3.97.166| 2233| 20|
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rwhag

The last set of tools to discuss in this chapter are bag tools. A bag is a form of storage
structure. It contains a key (which can be an IP address, a port, the protocol, or an
interface index), and a count of values for that key. Bags can be created from scratch or
from flow data using the rwbag command (see Example 5-22).

Example 5-22. An rwbag call, creating an IP address bag

Srwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
rwbag --sip-bytes=sip_bytes.bag
$rwbagcat sip_bytes.bag | head -5

128.3.2.16| 10026403 |
128.3.2.46| 27946
128.3.2.96| 218605 |
128.3.2.98| 636|
128.3.2.102| 1568|

Like sets, bags are a second-order binary structure for SiLK, meaning that they have
their own toolkit (rwbagcat, rwbagtool, and rwbagbuild), the data is binary (so it can’t
be read with cat or a text editor), and they can be derived from flow data or built from
a datafile.

The basic bag generation tool is rwbag, which as seen in Example 5-22, takes flow data
and produces a bag file from it. rwbag can generate 27 types of bags, simultaneously if
you're so inclined. These 27 types comprise three types of counting (bytes, packets,
and flows), and nine types of key (sip, dip, sport, dport, proto, sensor, input, out
put, nhip). Combine the key and the counting type, and you have a switch that will
create a bag. For example, to count all packets from source and destination IP addresses,
call rwbag --sip-packets=bl.bag --dip-packets=b2.bag.

Advanced SiLK Facilities

In this section, we discuss more advanced SiLK facilities, in particular, the use of PMAPs
and the collection and conversion of SiLK data.

pmaps

A SiLK prefix map (PMAP) is a binary file that associates specific subnetworks (prefixes)
with tags. PMAPs are used to record various mappings of a network, such as whether
a network belongs to a particular organization or ASN, or country code lookup. Using
a source such as GeolP, you can build a PMAP that associates IP addresses with their
country of origin.

The SiLK tool suite expects some basic PMAPs:
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address_types.pmap
Describes an address’s type, conventionally indicating whether the address is inside
or outside of the network you are monitoring. Specify the default filesystem location
for this PMAP using the SILK_ADDRESS_TYPES environmental variable.

country_codes.pmap
This PMAP describes the country code for an address. Specify the default location
for this PMAP using the SILK_COUNTRY_CODES environmental variable.

PMAPs, like set files, can be created from text. Example 5-23 shows a simple PMAP file.
Note the following attributes:

o Theset oflabels at the beginning. PMAPs do not store strings, but enumerable types
identified by an integer. This enumeration is defined using the labels. You can see
that the PMAP in Example 5-23, for instance, stores a 3 to mark normal traffic.

o The default key. Any value that doesn't match one of the network blocks listed in
the map is given the default value.

o The actual declarations. Each declaration consists of a network specification, such
192.168.0.0/16, followed by a label.

Example 5-23. PMAP Input

# This 1s a simple PMAP file that tracks some of the standard RFC 1918
# reserved addresses

#

# First we create some labels

label 0 1918-reserved

label 1 multicast

label 2 future

label 3 normal

#

# Specify the mode; this must be either ip or proto-port. ip in this case
# refers to v4 addresses

#

mode ip

#

# Everything otherwise not specified is normal

default normal

# Now the maps

192.168.0.0/16 1918-reserved

10.0.0.0/8 1918-reserved
172.16.0.0/12 1918-reserved
224.0.0.0/4 multicast
240.0.0.0/4 future

Once you've created a text representations of the PMAP, you can compile the binary
PMAP file using the rwpmapbuild command. rwpmapbuild has two mandatory argu-
ments: an input filename, with the file in the text format described above, and a name
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for the output file. As with most SiLK commands, rwpmapbuild will not overwrite an
existing output file. For example:

$ rwpmapbuild -1 reserve.txt -o reserve.pmap

$ 1s -1 reserve.*
-rw-r--r-- 1 mcollins staff 406 May 27 17:16 reserve.pmap
-rw-r--r-- 1 mcollins staff 526 May 27 17:00 reserve.txt

Once a PMAP file is created, it can be added to rwfilter and rwcut using the pmap-
file argument. Specifying the use of a PMAP file effectively creates a new set of fields
in the filter and cut commands; since PMAP files are explicitly related to IP addresses,
these new fields are bound to IP addresses.

Consider Example 5-24, which uses rwcut. In this example, the - -pmap- file argument
is colon-delimited; the value before the colon (reserve in the example) is a label, and
the value after is a filename. rwcut binds the term reserve to the pmaps for the source
and destination IP address, creating two new fields: src-reserve (for the mapping of
the source address to the PMAP) and dst-reserve (for the mapping of the destination
address) to the PMAP.

Example 5-24. Creating the src-reserve and dst-reserve fields

$ rwcut --pmap-file=reserve:reserve.pmap --fields=1-4,src-reserve,dst-reserve
traceroute.rwf | head -5
sIP| dIP|sPort|dPort| src-reserve| dst-reserve|
192.168.1.12| 192.168.1.1|65428| 53| 1918-reserved| 1918-reserved|
192.168.1.12| 192.168.1.1|56126| 53] 1918-reserved| 1918-reserved|
192.168.1.12| 192.168.1.1]52055| 53| 1918-reserved| 1918-reserved|
192.168.1.1| 92.168.1.12| 53|56126| 1918-reserved| 1918-reserved|

$ # Using the pmap in filter; note that rwcut is not using the pmap

$ rwfilter --pmap-file=reserve:reserve.pmap --pass=stdout traceroute.rwf
--pmap-src-reserve=1918-reserved | rwcut --field=1-5
| head -5

sIP| dIP|sPort|dPort|pro]

192.168.1.12| 192.168.1.1|65428| 53| 17|

192.168.1.12| 192.168.1.1|56126| 53| 17|

192.168.1.12| 192.168.1.1|52055| 53| 17|

192.168.1.1] 192.168.1.12| 53|56126| 17|

Collecting SiLK Data

There are a number of different tools for collecting data and pushing it into SiLK. The
major ones are YAF, which is a flow collector, and rwptoflow and rwtuc, which convert
other data into SiLK format.
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YAF

Yet Another Flowmeter (YAF) is the reference implementation for the IETF IPFIX stan-
dard, and is the standard flow collection software for the SiLK toolkit. YAF can read
pcap data from files or capture packets directly, which it then assembles into flow records
and exports to disk. It has online documentation. The tool itself can be entirely config-
ured using command-line options, but the number of options is fairly daunting. At its
simplest, a YAF command looks like this:

$ sudo yaf -1 enl --live=pcap -out /tmp/yaf/yaf

This reads data from interface en1 and drops it to the file in the temporary directory.
Additional options control how data is read and how it is converted into flow and output
format

yaf output is specified via the --out switch in tandem with the --ipfix and --
rotate switches. By default, --out outputs to a file; in the example above, the file
is /tmp/yaf/yaf, but any valid filename will do (if - -out is set to -, then yaf will output
to stdout).

When - -out is specified with - -rotate, yaf writes the output to files that are rotated
by a delay specified by the - -rotate switch (e.g., - -rotate 3600 will update files every
hour). In this mode, yaf uses the name specified by --out as a base filename, and
attaches a suftix specified in YYYYMMDDhhmmss format, along with a decimal serial
number and then a .yaf file extension.

When yaf is specified with the - - ipfix switch, it communicates IPFIX data to a daemon
located elsewhere on the network. In this case (the most complicated option), --
ipfix takes a transport protocol as an argument, while - -out takes the IP address of
the host. The additional - -ipfix-port switch takes a port number when needed. Con-
sult the documentation for more information.

The most important options are:

--live
Specifies the type of data being read; possible values formats are pcap, dag, or
napatech. dag and napatech refer to proprietary packet capture systems, so unless
you have that hardware, just set - - 1ive to pcap.

--filter
Applies a BPF filter to the pcap data.

--out
The output specifier, discussed above. The output specifier will be a file, a file prefix,
or an IP address depending on whatever other switches are used.
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--ipfix
Takes a transport protocol (tcp, udp, sctp, or spread) as an argument, and specifies
that output is IPFIX transported over the network. Consult the yaf documentation
for more information.

--ipfix-port
Used only if - -ipfix is specified. It specifies the port that the IPFIX data is sent to.

--rotate
Used only with files. If present, the filename in - -out is used as a prefix, and files
are written with a timestamp appended to them. The --rotate option takes an
argument and the number of seconds before moving to a new file.

--silk
Specifies output that can be parsed by SiLK’s rwflowpack tools.

--idle-timeout
Specifies the idle timeout for flows in seconds. If a flow is present in the flow cache
and isn’t active, it’s flushed as soon as it’s been inactive for the duration of the idle
timeout. Defaults to 300 seconds (five minutes).

--active-timeout
Specifies the active timeout for flows; the active timeout is the maximum amount
of time an active flow will be stored in cache before being flushed. Defaults to 30
minutes (1,800 seconds). Note that the active timeout determines the maximum
observed duration of collected flows.

YAF has many more options, but these are the basic ones to consider when configuring
flows. Consult the YAF manpage for more details.

Cookbook: YAF

YAF has a ton of options, and how they operate together can be a bit confusing. Here
are some examples of YAF invocations:

Read yaf from an interface (en1) and write to a file on disk:
Ssudo yaf -1 enl --live=pcap -o /tmp/yaf/yaf
Rotate the files every five minutes:
Ssudo yaf -i enl --rotate 300 --live=pcap -o /tmp/yaf/yaf
Read a file from disk and convert it:
Syaf <example.pcap >yafout
Run a BPF filter on the data, in this case for TCP data only

$ sudo yaf -1 enl --rotate 300 --live=pcap -o /tmp/yaf/yaf --filter="tcp"
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Export the YAF data over IPFIX to address 128.2.14.11:3059

$ sudo yaf --live pcap --in ethl --out 128.2.14.11 --ipfix-port=3059
--ipfix tcp

rwptoflow

SiLK uses its own compact binary formats to represent NetFlow data that tools such as
rwcut and rwcount present in a human-readable form. There are times when an analyst
needs to convert other data into SiLK format, such as taking packet captures from IDS
alerts and converting it into a format where IP set filtering can be done on the data.

The go-to tool for this task is rwptoflow. rwptoflow is a packet data to flow conversion
tool. It does not aggregate flows; instead, each flow generated by rwptoflow is converted
into a one-packet flow record. The resulting file can then be manipulated by the SiLK
suite as any other flow file.

rwptoflow is invoked relatively simply with an input filename as its argument. In
Example 5-25, the pcap data from a traceroute is converted into flow data using rwpto
flow. The resulting raw file is then read using rwcut and you can see the correspondence
between the traceroute records and the resulting flow records.

Example 5-25. Converting pcap data with rwptoflow

$ tcpdump -v -n -r traceroute.pcap | head -6
reading from file traceroute.pcap, link-type EN10MB (Ethernet)
21:06:50.559146 IP (tos 0x0, ttl 255, id 8010, offset 0, flags [none],
proto UDP (17), length 64)
192.168.1.12.65428 > 192.168.1.1.53: 63077+ A? jaws.oscar.aol.com. (36)
21:06:50.559157 IP (tos 0x0, ttl 255, id 37467, offset 0, flags [none],
proto UDP (17), length 86)
192.168.1.12.56126 > 192.168.1.1.53: 30980+ PTR?
dr._dns-sd._udp.0.1.168.192.in-addr.arpa. (58)
21:06:50.559158 IP (tos 0x0, ttl 255, id 2942, offset 0, flags [none],
proto UDP (17), length 66)
192.168.1.12.52055 > 192.168.1.1.53: 990+ PTR? db._dns-sd._udp.home. (38)
$ rwptoflow traceroute.pcap > traceroute.rwf
$ rwcut --num-recs=3 --fields=1-5 traceroute.rwf
sIP| dIP|sPort|dPort|pro|
192.168.1.12| 192.168.1.1]65428| 53| 17|
192.168.1.12| 192.168.1.1|56126| 53| 17]
192.168.1.12| 192.168.1.1]52055| 53| 17|

rwtuc

When correlating data between different sources, you will occasionally want to convert
it into SiLK’s format. rwtuc is the default tool for converting data into SiLK represen-
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tation, as it works with columnar text files. Using rwtuc, you can convert IDS alerts and
other data into SiLK data for further manipulations.

The easiest way to invoke rwtuc is to use it as an inverse of rwcut. Create a file with
columnar entries and make sure that the titles match those used by rwcut:

$cat rwtuc_sample. txt

sIP |dIP |proto

128.2.11.4 | 29.3.11.4 | 6

11.8.3.15 | 9.12.1.4 | 17

$ rwtuc < rwtuc_sample.txt > rwtuc_sample.rwf

$ rwcut rwtuc_sample.rwf --field=1-6

sIP| dIP|sPort|dPort|pro] packets|
128.2.11.4] 29.3.11.4| 0] 0] 6] 1]
11.8.3.15] 9.12.1.4] 0] 0] 17| 1]

As the following fragment shows, rwtuc will read the columns, use the headers to de-
termine column content, and stuff any unspecified fields with a default value if no col-
umn is provided. rwtuc can also take column specifications at the command line using
the - -fields and - -column-separator switches, as so:

$Scat rwtuc_sample2.txt

128.2.11.4 x 29.3.11.4 x 6 x 5

7.3.1.1 x 128.2.11.4 x 17 x 3

$ rwtuc --filelds=sip,dip,proto,packets --column-sep=x < rwtuc_sample2.txt
> rwtuc_sample2.rwf

$ rwcut --filelds=1-7 rwtuc_sample2.rwf

sIP| dIP|sPort|dPort|pro| packets| bytes|
128.2.11.4| 29.3.11.4| 0] 0] 6] 5] 5]
7.3.1.1| 128.2.11.4| 0] 0] 17| 3| 3|

SiLK’s binary format requires values for every field, which means that rwtuc makes a
best guess for field values that it doesn’t have. For instance, the previous example speci-
fies packets as a field but not bytes, so rwtuc just defines the packet value to be identical
to the byte value.

If there exists a common default value (e.g., all traffic has the same protocol), this value
can be defined using one of a number of field-stuffing options in rwtuc. These options
areidentical to the field filtering options in rwfilter, except they only take single values.
For example, - -proto=17 sets the protocol of every entry to 17.

In the fragment below, we use the field stuffing command - -bytes=300 to set a value
of 300 bytes for every entry in rwtuc_sample2.txt:

$ rwtuc --fields=sip,dip,proto,packets --column-sep=x --bytes=300 <
rwtuc_sample2.txt > rwtuc_sample2.rwf
$ rweut --fields=1-7 rwtuc_sample2.rwf

sIP| dIP|sPort|dPort|pro| packets| bytes|
128.2.11.4| 29.3.11.4] 0] ol 6| 5] 300
7.3.1.1] 128.2.11.4| 0] 0] 17| 3] 300]
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The resulting RWF file will contain a value of 300 bytes, even though the byte value is
not in the original text file. The packet values, which are specified in the file, are set to

whatever was specified there.

Further Reading

1. Time Shimeall, Sid Faber, Markus DeShon, and Drew Kompanek, “Using SiLK for
Network Traffic Analysis,” Software Engineering Institute.
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CHAPTER 6
An Introduction to R for Security Analysts

R is an open source statistical analysis package developed initially by Ross Thaka and
Robert Gentleman of the University of Auckland. R was designed primarily by statisti-
cians and data analysts, and is related to commercial statistical packages such as S and
SPSS. R is a toolkit for exploratory data analysis; it provides statistical modeling and
data manipulation capabilities, visualization, and a full-featured programming
language.

R fulfills a particular utility knife-like role for analysis. Analytic work requires some
tool for creating and manipulating small ad hoc databases that summarize raw data. For
example, hour summaries of traffic volume from a particular host broken down by
services. These tables are more complex than the raw data but are not intended for final
publication—they still require more analysis. Historically, Microsoft Excel has been the
workhorse application for this type of analysis. It provides numeric analysis, graphing,
and a simple columnar view of data that can be filtered, sorted, and ordered. I've seen
analysts trade Excel files around like they were scraps of paper.

I switched from Excel to R because I found it to be a superior product for large-scale
numerical analysis. The graphical nature of Excel makes it clunky when you deal with
significantly sized datasets. I find R’s table manipulation capabilities to be superior, it
provides provenance in the form of saveable and sharable workspaces, the visualization
capabilities are powerful, and the presence of a full-featured scripting language enables
rapid automation. Much of what is discussed in this chapter can be done in Excel, but
if you can invest the time to learn R, I believe you’ll find it well spent.

The first half of this chapter focus on accessing and manipulating data using R’s pro-
gramming environment. The second half focuses on the process of statistical testing
using R.
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Installation and Setup

R is a well-maintained open source project. The Comprehensive R Archive Network
(CRAN) maintains current binaries for Windows, Mac OS X, and Linux systems, an R
package repository, and extensive documentation.

The easiest way to install R is to grab the appropriate binary (at the top of the home
page). R is also available for every major package manager. For the rest of this chapter,
I am going to assume you're using R within its own graphical interface.

There are a number of other tools available for working with R, depending on the tools
and environments youre comfortable with. RStudio is an integrated development en-
vironment providing data, project, and task management tools in a more traditional
IDE framework. For Emacs users, Emacs Speaks Statistics or ESS-mode provides an
interactive environment.

Basics of the Language

This section is a crash course in R’s language. R is a rich language with a surface 'm
barely scratching. However, at the end of this section, you’ll be able to write a simple R
program, run it at the command line, and save it as a library.

The R Prompt

Starting R will present you with a window and command prompt. An example R console
is shown in Figure 6-1. As this figure shows, the console is dominated by a large text
window and a series of buttons at the top that provide supplemental functions. Note
the two text fields under the button row. The first shows the current working directory
and the second is the help function. R is very well documented, so get used to using
that box.
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R Console

@R aEQH 18 ()

Help Search

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl®.8.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()" or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
"citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

[R.app GUI 1.62 (6558) x86_64-apple-darwinl@.8.0]

[Workspace restored from /Users/mcollins/.RData]
[History restored from /Users/mcollins/.Rapp.history]

> s<-"Hi There'

> x<-3 + 11 + (3 * log(exp(2)))
> print(s)

[1] "Hi There"

>

Figure 6-1. The R console

In Figure 6-1, I've typed a couple of simple commands, recreated here:

> s<-'Hi There'

> x<- 3 + 11 + (3 * log(exp(2)))
> print(s)

[1] "Hi There"

> print(x)

[1] 20

The command line prompt for R is >; after that, you can enter commands by hand. Ifa
command is partly completed (for example, by opening but not closing parentheses),
the next prompt will be a sign, and continue until closure.

> s<- 3 * (
+5+ 11

+ + 2

+)

> S

[1] 54

Note that when R returns a value (for example, the output of s in the previous example),
it prints a [1] in square brackets. The value in brackets is an array index; if an array
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spreads over several lines, the relevant index will be printed at the beginning of each
line.

> s<-seq(1,20)
>s

[1] 1 2 3 4 5 6 7 8 910 11 12
[13] 13 14 15 16 17 18 19 20

Help can be accessed by using help(term) or ?term. Search through help via
help.search() or ?2.

To quit R, use the switch icon or the appropriate quit command (Command-Q or Ctrl-
Q) for the operating system. If youre using pure command-line R (i.e., without the
graphical interface), you can end the session using Ctrl-D or typing q() at the prompt.

When R terminates, it asks whether you want to save the workspace. Workspace files
can be reloaded after a session to continue whatever work that was being done at the
time of termination.

R Variables

R supports a number of different data types, including scalar integers, character data
(strings), Booleans and floating-point values, vectors, matrices, and lists. The scalar
types, as shown in the following example, can be assigned using the < (“gets”), =, and
— operators. R overloads some complicated scoping into its assignment operators, and
for our purposes (and almost all R programming), R style guides recommend using the
< operator instead of the = sign.

# Assign some value directly
a<-1

b<-1.0

c<-'A String'

d<-T

# We'll assign e to d

e<-d

e

[1] TRUE

> d

[1] TRUE

> # Now we we reassign d, and we see d changes but e remains the same.
> d<-2

> d

[1] 2

> e

[1] TRUE

>
>
>
>
>
>
>
>

An R vector is an ordered set of one or more values of the same type: character, logical,
or string. Vectors can be created using the ¢ function or any of a number of other
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functions. Vectors are the most commonly used element in R: the scalar values we used
earlier were technically vectors of length 1.!

> # An example of an integer vector

> int.vec<-c(1,2,3,4,5)

> int.vec

[1]12345

> # Floating point numbers will be cast to integer, or integers to floats
> # as needed

> float.vec<-c(1,2.0,3)

> float.vec

[1]123

> float.vec<-c(1,2.45,3)

> float.vec

[1] 1.00 2.45 3.00

> # Vectors can also be logical

> logical.vec<-c(T,F,F,T)

> logical.vec

[1] TRUE FALSE FALSE TRUE

> # They will be cast to integers if put into a numeric vector
> mixed.vec<-c(1,2,FALSE,TRUE)

> mixed.vec

111201

> # Character vectors consist of one or more strings; note that a
> #string 1s a single element

> char.vec <- c("One","Two","Three")

> char.vec

[1] "One"  "Two" "Three"

> # Length gives vector lengths

> length(int.vec)

[1] 5

> # Note that the character vector's length is the length of the total
> # number of strings, not the individual characters

> length(char.vec)

[1] 3

Note the length of the character vector: in R, strings are treated as a single element
regardless of the number of characters. There are functions for accessing strings—nchar

to get the length, and substr and strsplit to extract elements from a string—but
individual character strings are not as directly accessible as they are in Python.

R provides a number of functions for vector arithmetic. A vector can be added to or
multiplied by another vector; if they’re equally sized, the result will be calculated on an
element-by-element basis. If one vector is smaller, it will be repeated to make a vector
of equal size. (A vector whose length is not a factor of the other vector will raise an
error.) This applies to single-element vectors as well: add a single element to a longer

1. Note the use of periods rather than underscores; R’s predecessors (S and S-Plus) established this convention
and while it’s not a syntactical mistake to use an underscore, most R code will use periods the way other
languages use underscores.
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vector and each element in the vector will be added to; multiply and each element will
be multiplied.

Vectors are indexable. Individual elements can be accessed using square brackets, so
v[k] is the kth element of v. Vectors also support ranged slicing, such as v[a:b]. A
negative index will eliminate the indexed element from the vector, like in the following
code block:

# We start by creating a vector out of two others
vl <- c(1,2,3,4,5)
v2 <- ¢(6,7,8,9,10)
v3 <- c(v1,v2)
v3
[1] 1 2 3 4 5 6 7 8 910
> # Note that there's no nesting
> # Basic arithmetic - multiplication and addition
>2 *vl
[1] 2 4 6 810
>2 *v3
[1] 2 4 6 8 10 12 14 16 18 20
>1+ vl
[1123456
> vl * v2
# Multiplication
[1] 6 14 24 36 50
# Slicing a range
> v3[1:3]
[1]1 123
# This 1s identical to v3[1]
> v3[1:1]
[1] 1
> v3[2:4]
[1] 234
# Reverse the range to reverse the vector
> v3[3:1]
[11321
# Use negative numbers to cut out elements
> v3[-3]
[1] 1 2 4 5 6 7 8 910
> v3[-1:-3]
[1] 4 5 6 7 8 9 10
> # You can use logical vectors as selectors; selection returns anything where
> # the index is true
> v3[c(T,F)]
[1113579

V V. V VvV Vv

R can construct matrices out of vectors using the matrix function. As with vectors,
matrices can be added and multiplied (with themselves, vectors, and other matrices),
and selected and sliced using a number of different approaches, like those shown here:
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# Matrices are constructed using the matrix commmand, as shown in the
# basic form below. Note that columns are filled up first.
s<-matrix(v3,nrow=2,ncol=5)

s

vV V V Vv

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> # Adding a single element
>s + 3
[,1]1 [,2] [,3] [,4] [,5]
[1,] 4 6 8 10 12
[2,] 5 7 9 11 13
> # Multiplication
>s * 2
[,11 [,2] [,3] [,4] [,5]
[1,] 2 6 10 14 18
[2,1] 4 8 12 16 20
> # Multiplication by a matrix
>s * g
[,1]1 [,2] [,3] [,4] [,5]
[1,] 1 9 25 49 81
[2,] 4 16 36 64 100
> # Adding a vector, note that addition goes
> # through the columns first
> s + v3
[,1]1 [,2] [,3] [,4] [,5]
[1,] 2 6 10 14 18
[2,] 4 8 12 16 20
> # Adding a smaller vector, note that
> # 1t loops over the matrix, column-first
>s + vl

[,11 [,2]1 [,3] [.4] [,5]

[1,] 2 6 10 9 13

[2,] 4 8 7 11 15

> # Slicing; the use of the comma will strike most people as weird.
> # Before the commma are the rows, after the comma are the columns.
> # The result is returned as a vector, which is why the "column" is now
> # horizontal

> s[,1]

[1] 12

> s[1,]

[1113579

> # Accesssing a single element

> s[1,1]

[1] 1

> # Now I'm accessing the 1st and 2nd column elements from the
> # first row; again, get a vector back

> s[1,1:2]

[1] 13

> # First and second row elements from the first column

> s[1:2,1]

[1] 12
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> # Now I get a matrix back because I pull two vectors
> s[1:2,1:2]
[,1]1 [,2]
[1,] 1 3
[2,] 2 4
> # Selection using booleans, the first value is the row I pull from
> s[c(T,F)]
[11135709
> s[c(F,T)]
[1] 2 4 6 810
> # If I specify another vector, it'll pull out columns
> s[c(F,T),c(T,F,T,T,F)]
[1]1 2 6 8

An R list is effectively a vector of vector elements, each of which can be composed of its
own lists. Lists, like matrices, are constructed with their own special command. Lists
can be sliced like a vector, although individual elements are accessed using double
brackets. Of more interest, lists can be named; individual vectors can be assigned a name
and then accessed using the $ operator.

# Review elements of earlier vectors

> v3

[1] 1 2 3 4 5 6 7 8 910
> v4

[1] "Hi" "There" "Kids"

> # Create a list; note that we can add an arbitrary number of elements.
# Each element added is a new index.

list.a <- list(v3,v4,c('What','The'),11)

# Dump the list; note the list indices in double brackets.

list.a

[[1]1]

[1] 1 2 3 4 5 6 7 8 910

VvV V. V Vv

[[2]]
[1] "Hi" "There" "Kids"

[[31]
[1] "What" "The"

[[4]1]
[1] 11
> # Lists do not support vector arithmetic.
> list.a + 1
Error in list.a + 1 : non-numeric argument to binary operator
> # Individual elements can be examined via indexing. Single brackets
> # return a list.
> list.a[1]
[[1]]
[1] 1 2 3 4 5 6 7 8 910
> # Double brackets return the element itself; note that the list index
> # (the [[1]]) isn't present here
> list_a[[1]]
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[1] 1 2 3 4 5 6 7 8 910
> # The single brackets returned a list, and the double brackets then returned
> # the first element in that single-element list.
> list_a[1][[1]]
[1] 1 2 3 4 5 6 7 8 910
> # Access using double brackets, then a single bracket in the vector.
> list_a[[1]][1]
[1] 1
> list_a[[2]][2]
[1] "There"
> # We can modify the results.

> list_a[[2]][2] <- 'Wow'

> # Now we'll create a named list.

> list_b <- list(values=vi1,rant=v2,miscellany=c(1,2,3,4,5,9,10))

> # The parameter names become the list element names, and the arguments
> # are the actual elements of the list.

> list_b

$values

[1112345

$rant

[1]1 6 7 8 9 10

smiscellany
[11 1 2 3 4 5 910

> # Named elements are accessed using the dollar sign.

> list_bSmiscellany

[11 1 2 3 4 5 910

> # After accessing, you can use standard slicing.

> list_bSmiscellany[2]

[1] 2

> # Note that the index and the name point to the same value.
> list_b[[3]]

[11 1 2 3 4 5 910

Understanding list syntax is important for data frames, which we discuss in more depth
later.

Writing Functions

R functions are created by binding the results of the function command to a symbol,
like so:

> add_elements <- function(a,b) a + b
> add_elements(2,3)

[1] 5

> simple_math <- function(x,y,z) {

+ t <- c(x,y)

+ z *t

+3
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Note the curly braces. In R, curly braces are used to hold multiple expressions, and
return the final statement of those multiple expressions. Curly braces can be used
without a function or anything else, as shown here:

>{8+7

+ 9+ 2

+ c('hi', "there")

+ 3}

[1] "hi" "there"

So, in simple_math, the results in the braces are evaluated sequentially and the final
result returned. The final result need not have any relationship to the previous state-
ments within the block. R does have a return statement to control the termination and
return of a function, but the convention is not to use it if the results are obvious.

As the examples show, function arguments are defined in the function statement. Ar-
guments can be given a default value by using the = sign; any argument to which you
assign a default value becomes optional. Argument assignment can be done through
order or by explicitly using the argument name, as shown here:

# Create a function with an optional argument

> test<-function(x,y=10) { x +y }

# If the argument is not passed, R will use the default
> test(1)

[1] 11

> # Call both arguments and values are set positionally
> test(1,5)

[1] 6

> # The value can also be assigned using the argument name
> test(1,y=9)

[1] 10

> # For all variables

> test(x=3,y=3)

[1] 6

> # Names supercede position

> test(y=8,x=4)

[1] 12

> # A value without a default still must be assigned.
> test()

Error in x +y : 'x' is missing

R’s functional features allow you to treat functions as objects that can be manipulated,
evaluated, and applied as needed. Functions can be passed to other functions as pa-
rameters, and by using the apply and Reduce functions, can be used to support more
complex evaluation.

# Create a function to be called by another function
inc.func<-function(x) { x + 1}
dual.func<-function(y) { y(2) }

dual.func(inc.func)

1] 3

— VvV VvV V V
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# R has a number of different apply functions based on input type

# (matrix, list, vector) and output type.

test.vec<-1:20

test.vec

[1] 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20

> # Run sapply on an anonymous function; note that the function isn't bound

> # to an object; it exists for the duration of the run. I could just as

> # easily call sapply(c,inc.func) to use the function inc.func defined above.
> sapply(test.vec,function(x) x+2)

[1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

vV V V Vv

> # Where sapply is the classic map function, Reduce is the classic fold/reduce

> # function, reducing a vector a single value. 1In this case, the function

> # passed adds a and b together, adding the integers 1 to 20 together yields 210
> # Note Reduce's capitalization

> Reduce(function(a,b) a+b,1:20)

[1] 210

A pointaboutloopsin R: Rsloops (particularly the for loop) are notoriously slow. Many
tasks that would be done with a for loop in Python or C are done in R using a number
of functional constructs. sapply and Reduce are the frontend for this.

Conditionals and Iteration

The basic conditional statement in R is if..then..else, using else if to indicate mul-
tiple statements. The if statement is itself a function, and returns a value that can be
evaluated.

> # A simple if/then which prints out a string

> if (a == b) print("Equivalent") else print("Not Equivalent")

[1] "Not Equivalent"

> # We could just return values directly

> if (a==b) "Equivalent" else "Not Equivalent"

[1] "Not Equivalent"

# If/then is a function, so we can plug it into another function or an if/then

> 1f((if (a!=b) "Equivalent" else "Not Equivalent") == \
"Not Equivalent") print("Really not equivalent")
> a<-45

> # Chain together multiple if/then statements using else if

> if (a == 5) "Equal to five" else if (a == 20) "Equal to twenty" \
else if (a == 45) "Equal to forty five" else "Odd beastie"

[1] "Equal to forty five"

> a<-5

> if (a == 5) "Equal to five" else if (a == 20) "Equal to twenty" \

else if (a == 45) "Equal to forty five" else "Odd beastie"

[1] "Equal to five"

> a<-97

> if (a == 5) "Equal to five" else if (a == 20) "Equal to twenty" \

else if (a == 45) "Equal to forty five" else "Odd beastie"

[1] "Odd beastie"
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R provides a switch statement as a compact alternative to multiple 1f/then clauses.
The switch statement uses positional arguments for integer comparisons, and optional
parameter assignments for text comparison.

# When switch takes a number as its first parameter, it returns the
# argument with an index that corresponds to that number, so the following
returns the second argument, "Is"

switch(2,"This","Is","A","Test")

[1] "Is"

> proto<-"'tcp'

> # If parameters are named, those text strings are used for matching
> switch(proto,tcp=6,udp=17,icmp=1)

[1] 6

> # The last parameter is the default argument

> proto<-'unknown'

> switch(proto, tcp=6,udp=17,icmp=1, -1)

[1] -1

> # To use a switch repeatedly, bind it to a function

> proto<-function(x) { switch(x, tcp=6,udp=17,1icmp=1)}

> proto('tcp')

[1] 6

> proto('udp')

[1] 17

> proto('icmp')

[1] 1

vV V Vv

\

R has three looping constructs: repeat, which provides infinite loops by default;
while, which does a conditional evaluation in each loop; and for, which iterates over
a vector. Internal loop operations are controlled by break (which terminates the loop),
and next (which skips through an iteration), as seen here:

# A repeat loop; note that repeat loops run infinitely unless there's a break
# statement in the loop. If you don't specify a condition, it'll run forever.
1<-0
repeat {

i<-1+1

print(i)

if (1 > 4) break;

+ + + v vV v VvV

+
(]

[1]
[1]
[1]
[1]
[1] 5
> # The while loop with identical functionality; this one doesn't require the
# break statement
i1<-1
while( 1 < 6) {

print(i)

i<-1+1

A wN R

— 4+ + + V V V

—
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[1]
[1]
[1]
[1]
> # The for loop is most compact
> s<-1:5

> for(i1 in s) print(i)

[1]1

[1] 2

[1] 3

[1] 4

[1] 5

v W

Although R provides these looping constructs, it’s generally better to avoid loops in
favor of functional operations such as sapply. R is not a general purpose programming
language; it was explicitly designed to provide statistical analysts with a rich toolkit of
operations. R contains an enormous number of optimized functions and other tools
available for manipulating data. We cover some later in this chapter, but a good R ref-
erence source is invaluable.

Using the R Workspace

R provides users with a persistent workspace, meaning that when a user exits an R
session, they are provided the option to save the data and variables they have in place
for future use. This is done largely transparently, as the following command-line ex-
ample shows:

> s<-1:15
> s

[1] 12 2 3 4 5 6 7 8 910 11 12 13 14 15
> t<-(s*3) - 5
>t

[1] -2 1 4 7 10 13 16 19 22 25 28 31 34 37 40
>
Save workspace image? [y/n/c]: y

$ R --silent
>s

[1] 12 2 3 4 5 6 7 8 910 11 12 13 14 15
> t

[1] -2 1 4 7 10 13 16 19 22 25 28 31 34 37 40

Whenever you start R in a particular directory, it checks for a workspace file (.RData)
andloadsits contents if it exists. On exiting a session, .RData will be updated if requested.
It can also be saved in the middle of a session using the save.image() command. This
can be a lifesaver when trying out new analyses or long commands.

You can get a list of objects in a workspace using the 1s function, which returns a vector
of object names. They can be deleted using the rm function. Objects in a workspace can
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be saved and loaded using the save and load functions. These take a list of objects and
a filename as an argument, and automatically load the results into the environment.

# let's create some simple objects
a<-1:20

t<-rnorm(50,10,5)

# Ls will showm to us

1sO)

1] "a" "t"

# Now we save them
save(a,t,file="'simple_data')
# we delete them and look
rm(a,t)

1s()

character(0)

> load('simple_data')

> 1s()

[1] "a" "t"

V VV V Vr—/V V V VYV

If you have a simple R script you want to load up, use the source command to load the
file. The sink command will redirect output to a file.

Data Frames

Data frames are a structure unique to R and, arguably, the most important structure
from an analysts view. A data frame is an ad hoc data table: a tabular structure where
each column represents a single variable. In other languages, data frames are imple-
mented partially by using arrays or hashtables, but R includes data frames as a basic
structure and provides facilities for selecting, filtering, and manipulating the contents
of a data frame in a far more sophisticated way from the start.

Let’s start by creating a simple data frame, as you can see in Example 6-1. The easiest
way to construct a data frame is to use the data. frame operation on a set of identically
sized vectors.

Example 6-1. Creating a data frame

names<-c('Manny', '"Moe', 'Jack"')
ages<-c(25,35,90)

states<-c('NJ','NE','N]")

summary.data <- data.frame(names, ages, states)
summary.data

names ages states

V V. V V Vv

1 Manny 25 NJ
2 Moe 35 NE
3 Jack 90 NJ

v

summary.data$names
[1] Manny Moe  Jack
Levels: Jack Manny Moe
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Here, data.frame made each array into a column to form a table with three columns
and three rows. We could then extract a column. Note the use of the term “Levels” when
referring to the vector of names referenced by summary.data$names.

Factors

In the process of creating the table, R converted the strings in the data into factors, which
are a vector of categories. Factors can be created from strings or integers, for example:

> services<-c("http","bittorrent","smtp","http","http","bittorrent")

> service.factors<-factor(services)

> service.factors

[1] http bittorrent smtp http http bittorrent
Levels: bittorrent http smtp

> services

[1] "http" "bittorrent" "smtp" "http" "http" "bittorrent”

The levels of the factor describe the individual categories of the factor.
R’s default behavior in many functions is to convert strings to factors. This is done in

read.table and data. frame and controllable via the stringsAsFactors argument, as
well as the stringsAsFactors option.

The command for accessing data frames is read. table, which has a variety of param-
eters for reading different data types. In Example 6-2, options are passed to let it read
rwcut output in the input file, sample.txt.

Example 6-2. Passing options to read.table

$ cat sample.txt | cut -d '|' -f 1-4
sIP| dIP|sPort|dPort|

10.0.0.1| 10.0.0.2|56968] 80|

10.0.0.1| 10.0.0.2]56969| 80|

10.0.0.3]...
$ R --silent
> s<-read.table(file="'sample.txt',header=T,sep="'|"',strip.white=T)
> s

sIP dIP sPort dPort pro packets bytes flags
1 10.0.0.1 10.0.0.2 56968 80 6 4 172 FS A
2 10.0.0.1 10.0.0.2 56969 80 6 5 402 FS PA
3 10.0.0.3 65.164.242.247 56690 80 6 5 1247 FS PA
4 10.0.0.4 99.248.195.24 62904 19380 6 1 407 F PA
5 10.0.0.3 216.73.87.152 56691 80 6 7 868 FS PA
6 10.0.0.3 216.73.87.152 56692 80 6 5 760 FS PA
7 10.0.0.5 138.87.124.42 2871 2304 6 7 603 F PA
8 10.0.0.3 216.73.87.152 56694 80 6 5 750 FS PA
9 10.0.0.1 72.32.153.176 56970 80 6 6 918 FS PA

sTime dur eTime sen X
1 2008/03/31718:01:03.030 0 2008/03/31T18:01:03.030 0 NA
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2 2008/03/31T18:01:03.040 0 2008/03/31T18:01:03.040 0 NA
3 2008/03/31718:01:03.120 0 2008/03/31T18:01:03.120 0 NA
4 2008/03/31T18:01:03.160 0 2008/03/31T18:01:03.160 0 NA
5 2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
6 2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
7 2008/03/31718:01:03.380 0 2008/03/31T18:01:03.380 0 NA
8 2008/03/317T18:01:03.430 0 2008/03/31T18:01:03.430 0 NA
9 2008/03/31T18:01:03.500 0 2008/03/31T18:01:03.500 0 NA

Note the arguments used. file is self explanatory. The header argument instructs R to
treat the first line of the file as names for the columns in the resulting data frame. sep
defines a column separator, in this case, the default | used by SiLK commands. The
strip.white command instructs R to strip out excess whitespace from the file. The net
result is that every value is read in and converted automatically into a columnar format.

Now that I have data, I can filter and manipulate it, as shown in Example 6-3.

Example 6-3. Manipulating and filtering data

> # I can filter records by creating boolean vectors out of them, for example:
> sSdPort == 80

[1] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE

> # I can then use that value to filter out the rows where s$dPort == 80

> # Note the comma. If I didn't use it, I would select the columns

> # instead of the rows.

> s[sSdPort==80, ]

sIP dIP sPort dPort pro packets bytes flags
1 10.0.0.1 10.0.0.2 56968 80 6 4 172 FS A
2 10.0.0.1 10.0.0.2 56969 80 6 5 402 FS PA
3 10.0.0.3 65.164.242.247 56690 80 6 5 1247 FS PA
5 10.0.0.3 216.73.87.152 56691 80 6 7 868 FS PA
6 10.0.0.3 216.73.87.152 56692 80 6 5 760 FS PA
8 10.0.0.3 216.73.87.152 56694 80 6 5 750 FS PA
9 10.0.0.1 72.32.153.176 56970 80 6 6 918 FS PA

sTime dur eTime sen X

1 2008/03/31718:01:03.030 0 2008/03/31T18:01:03.030 0 NA
2 2008/03/31T18:01:03.040 0 2008/03/31T18:01:03.040 0 NA
3 2008/03/31T718:01:03.120 0 2008/03/31T18:01:03.120 0 NA
5 2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
6 2008/03/31T718:01:03.220 0 2008/03/31T18:01:03.220 0 NA
8 2008/03/31T18:01:03.430 0 2008/03/31T18:01:03.430 0 NA
9 2008/03/31T18:01:03.500 0 2008/03/31T18:01:03.500 0 NA
> # I can also combine rules, use | for or and & for and
> s[sSdPort==80 & s$sIP=='10.0.0.3",]

sIP dIP sPort dPort pro packets bytes flags
3 10.0.0.3 65.164.242.247 56690 80 6 5 1247 FS PA
5 10.0.0.3 216.73.87.152 56691 80 6 7 868 FS PA
6 10.0.0.3 216.73.87.152 56692 80 6 5 760 FS PA
8 10.0.0.3 216.73.87.152 56694 80 6 5 750 FS PA

sTime dur eTime sen X

3 2008/03/31T718:01:03.120 0 2008/03/31T18:01:03.120 0 NA

v

2008/03/31718:01:03.220 0 2008/63/31T18:01:03.220 0 NA
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2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
2008/03/31718:01:03.430 0 2008/03/31T18:01:03.430 0 NA
# I can access columns using their names
s[s$dPort==80 & s$sIP=='10.0.0.3"',][c('sIP','dIP', " 'sTime")]
sIP dIp sTime
10.0.0.3 65.164.242.247 2008/03/31718:01:03.120
10.0.0.3 216.73.87.152 2008/03/31718:01:03.220
10.0.0.3 216.73.87.152 2008/03/31T18:01:03.220
10.0.0.3 216.73.87.152 2008/03/31718:01:03.430
# And I can access a single row
s[1,]
sIP dIP sPort dPort pro packets bytes flags sTime
1 10.0.0.1 10.0.0.2 56968 80 6 4 172 FS A 2008/03/31T18:01:03.030
dur eTime sen X
1 0 2008/03/31T18:01:03.030 0 NA

VvV V o O
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R’s data frames provide us with what is effectively an ad hoc single table database. In
addition to the selection of rows and columns shown in earlier examples, we can add
new columns using the $ operator.

> # Create a new vector of payload bytes

> payload_bytes <- s$bytes - (40 * sSpackets)

> s$payload_bytes <- payload_bytes

> s[0:2,][c('sIP','dIP', 'bytes', 'packets', 'payload_bytes')]
sIP dIP bytes packets payload_bytes

1 10.0.0.1 10.0.0.2 172 4 12

2 10.0.0.1 10.0.0.2 402 5 202

Visualization

R provides extremely powerful visualization capabilities out of the box, and many stan-
dard visualizations are available as high-level commands. In the following example, we’ll
produce a histogram using a sample from a normal distribution and then plot the results
on screen.

Chapter 10 discusses various visualization techniques. In this section, we focus on var-
ious features of R visualization, including controlling the images, saving them, and
manipulating them.

Visualization Commands

R has a number of high-level visualization commands to plot time series, histograms,
and bar charts. The workhorse command of the suite is plot, which can be used to
provide a number of plots derived from scatterplots: simple scatterplots, stair steps, and
series. The major plot names are listed in Table 6-1 and are described in the help
command.
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Table 6-1. High-level visualization commands

Command Description

barplot Barchart

boxplot Box plot

hist Histogram

pairs Paired plot

plot Scatterplot and related plots
qgnorm QQ plot

Parameters to Visualization

There are two major mechanisms for controlling the parameters of a visualization. First,
almost all visualization commands offer a standard suite of options as parameters. The
major options are shown in Table 6-2 and the results of visualizing them are shown in
the companion image, Figure 6-2.

Table 6-2. Common visualization options

Option Parameter Description

axes Boolean If true, adds axes

log Boolean If true, plots on a logarithmic scale
main Character Main title

sub Character Subtitle for the plot

type Character Controls the type of graph plotted
xlab Character Label for the x-axis

ylab Character Label for the y-axis
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Figure 6-2. Visualizing options

Visualization options are also controlled using the par function, which provides a huge
number of special options for managing axis size, point types, font choices, and the like.
par takes an enormous number of options that you can read about via help(par).
Table 6-3 provides some of the more important ones.

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

# We're going to use par to draw a 3-columm, 2-row matrix, then fill in 3 cells
# of the matrix with different plots using other par values
par(mfcol=c(2,3))

# Draw the default histogram

hist(sample_rnorm,main="'Sample Histogram')

# Now we move to the 2nd row, center column

par(mfg=c(2,2,2,3))

# Change the size of the axes to half the default

par(cex.axis=0.5)

# Make the axes blue

par(col.axis='blue')

# Make the plot itself red

par(col = 'red")

# Now we plot as a scatter

plot(sample_rnorm,main="'Sample scatter')

# After we've plotted this, it will automatically move to the

# 3rd row, 1st column

# Restore the axis size

par(cex.axis=1.0)

# Change the point type for a scatterplot. Use help(points) to get a list of
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> # the numbers for PCH
> par(pch=24)
> plot(sample_rnorm,main="'Sample Scatter with New Points')

Table 6-3. Useful par arguments

Name Type Description
mfcol 2-integer (row, col) vector Breaks the canvas into a row-by-column set
of cells
mfg 4-integer (row, col, nrows, Specifies the specific cell in mfcol to draw
ncols) vector in
cex? Floating point Sets the font size, defaults to 1, so specifying

cex=0. 5indicates that all sizes are now half
the original size

col Character® Color
lty Number or character Line type
pch Number Point type

?cex and col have a number of child parameters: . axis, .main, . lab, and . sub, which affect
the corresponding element. cex . main is the relative size of the font for the tite, for example.

b Color strings can be a string like red, or a hexadecimal RGB string in the form #RRGGBB.

Annotating a Visualization

When drawing visualizations, I usually prefer to have some kind of model or annotation
available to compare the visualization against. For example, if 'm comparing a visual-
ization against a normal distribution, I want the appropriate normal distribution on the
screen to compare it against the results of the histogram.

R provides a number of support functions for drawing text on a plot. These include
lines, points, abline, polygon, and text. Unlike the high-level plot functions, these
write directly to the screen without resetting the image. In this section, we will show
how to use 1ines and text to annotate an image.

We'll begin by generating a histogram for a common scenario: scanning traffic plus
typical user traffic on a /22 (1024 host) network. The observed parameter is the number
of hosts, and we assume that under normal circumstances, that value is normally dis-
tributed with a mean of 280 hosts and a standard deviation of 30. One out of every 10
events will take place during a scan. During the scan, the count of hosts observed is
always 1024, as the scanner hits everyone on the network.

# First we model typical activity using a gaussian distribution via rnorm
normal_activity <- rnorm(300,280,30)

# We then create a vector of attacks, where every attack is 1024 hosts
attack_activity <- rep(1024,30)

# We concatenate the two together; because we're focusing on the number of
# hosts and not a time dependency, we don't care about ordering

V V.V V VvV V
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> activity_vector<-c(normal_activity, attack_activity)
> hist(activity_vector,breaks=50,xlab="'Hosts observed',\
ylab='Probability of Occurence',prob=T,main='Simulated Scan Activity')

Note the breaks and prob arguments in the histogram. breaks governs the number of
bins in the histogram, which is particularly important when you’re dealing with a long-
tailed distribution like this model. prob plots the histogram as a density rather than as
frequency counts.

We will now fit a curve. To do so, we create a vector of x and a vector of y values for the
lines function. The x values are evenly split points on the range covered by our em-
pirical distribution, while the y values are derived using the dnorm function:

xpoints<-seq(min(activity_vector),max(activity_vector),length=50)

# Use dnorm to calculate the corresponding y values, given a feed

# of x values (xpoints) and a model of a normal distribution using

# the mean and sd from the activity vector. The value will be a poor
# fit, as the attack skews the traffic.
ypoints<-dnorm(xpoints,mean=mean(activity_vector),sd=sd(activity_vector))
# Plot the histogram, which wipes the canvas clean
hist(activity_vector,breaks=50,xlab="'Hosts observed',\
ylab='Density',prob=T,main="'Simulated Scan Activity')
> # Draw the fit line, using lines
> lines(xpoints,ypoints,lwd=2)
> # Draw text. The x and y value are derived from the plot.
> text(550,0.010,"This is an example of a fit")

V V.V V V V V V

Exporting Visualization

Rvisualizations are output on devices, which can be called by using a number of different
functions. The default device is X11 on Unix systems, quartz on Mac OS X and
win.graph on Windows. Rs help for Devices (note the case) provides a list of what’s
available on the current platform.

To print R output, open an output device (such as png, jpeg, or pdf) and then write
commands as normal. The results will be written to the device file until you deactivate
it using dev.off(). At this point, you should call your default device again without
parameters.

# Output a histogram to the file 'histogram.png'
png(file='histogram.png')

hist(rnorm(200,50,20))

dev.off()

quartz()

vV V.V VvV Vv

Analysis: Statistical Hypothesis Testing

R is designed to provide a statistical analyst with a variety of tools for examining data.
The programming features discussed so far in this chapter are a means to that end. The
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primary features we want to use R for are to support the construction of alarms by
identifying statistically significant features (see Chapter 7 for more discussion of alarm
construction).

Identifying attributes that are useful for alarms requires identifying “important” be-
havior, for various definitions of important. R provides an enormous suite of tools for
exploring data and testing data statistically. Learning to use these tools requires an un-
derstanding of the common test statistics that Rs tools provide. The remainder of this
chapter focuses on these tasks.

Hypothesis Testing

Statistical hypothesis testing is the process of evaluating a claim about the behavior of
the world based on the evidence from a particular dataset. A claim might be that the
data is normally distributed, or that the attacks on our network come during the morn-
ing. Hypothesis testing begins with a hypothesis that can be compared against a model
and then potentially invalidated. The language of hypothesis testing is often counter-
intuitive because it relies on a key attribute of the sciences—science can’t prove an as-
sertion, it can disprove that assertion or, alternatively, fail to disprove it. Consequently,
hypothesis tests focus on “rejecting the null hypothesis.”

Statistical testing begins with a claim referred to as the null hypothesis (H,). The most
basic null hypothesis is that there is no relationship between the variables in a dataset.
The alternative hypothesis (H,) states the opposite of the null—that there is evidence of
a relationship. The null hypothesis is tested by comparing the likelihood of the data
being generated by a process modeling the null, under the assumptions made by the
null.

For example, consider the process of testing a coin to determine whether it’s evenly
weighted or weighted to favor one side. We test the coin by flipping it repeatedly. The
null hypothesis states that the probability of landing heads is equal to the probability of
landing tails: P=0.5. The alternative hypothesis states that the weighting is biased toward
one side.

To determine whether the coin is weighted, we have to flip it multiple times. The ques-
tion in constructing the test is how many times we have to flip the coin to make that
determination. Figure 6-3 shows the breakdown of probabilities for coin flipping com-
binations? for one through four flips.

2. Combinations aren’t ordered, so getting tails then heads is considered equivalent to getting heads then tails
when calculating probabilities.
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Figure 6-3. Model of coin flipping for an evenly weighted coin

The results follow the binomial distribution, which we can calculate using R’s dbinom

function.?

VvV V. VvV Vv

# Use dbinom to get the probabilities of © to 4 heads given that
# there are 4 coin flips and the probability of getting heads on
# an individual flip is 0.5
dbinom((0:4),4,p=0.5)
[1] 0.0625 0.2500 0.3750 0.2500 0.0625

> # results are in order - so 0 heads, 1 heads, 2 heads, 3 heads, 4 heads

In order to determine if a result is significant, we need to determine the probability of
the result happening by chance. In statistical testing, this is done by using a p-value. The
p-value is the probability that if the null hypothesis is true, you will get a result at least
as extreme as the observed results. The lower the p-value, the lower the probability that
the observed result could have occurred under the null hypothesis. Conventionally, a
null hypothesis is rejected when the p-value is below 0.05.

To understand the concept of extremity here, consider a binomial test with no successes
and four coin flips. In R:

> binom.test(0,4,p=0.5)

Exact binomial test

3. A note on R convention: R provides a common family of functions for most common parametric distribu-
tions. These functions are differentiated by the first letter: r for random, d for density, q for quantile, and p
for probability distribution.
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data: 0 and 4
number of successes = 0, number of trials = 4, p-value = 0.125
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.0000000 0.6023646
sample estimates:
probability of success
0

That p-value of 0.125 is the sum of the probabilities that a coin flip was four heads
(0.0625) AND four tails (also 0.0625). The p value s, in this context “two tailed,” meaning
that it accounts for both extremes. Similarly, if we account for one heads:

> binom.test(1,4,p=0.5)
Exact binomial test

data: 1 and 4
number of successes = 1, number of trials = 4, p-value = 0.625
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.006309463 0.805879550
sample estimates:
probability of success
0.25

The p-value is 0.625, the sum of 0.0625 + 0.25 + 0.25 + 0.0625 (everything but the
probability of 2 heads and 2 tails).

Testing Data

One of the most common tests to do with R is to test whether or not a particular dataset
matches a distribution. For information security and anomaly detection, having data
that follows a distribution enables us to estimate thresholds for alarms. That said, we
rarely actually encounter data that can be modeled with a distribution, as discussed in
Chapter 10. Determining that a phenomenon can be satisfactorily modeled with a dis-
tribution enables you to use the distribution’s characteristic functions to predict the
value.

The classic example of this estimation process is the use of the mean and standard
deviation to predict values of a normally distributed phenomenon. A normal distribu-
tion has a probability density function of the form:

1 )
o~ 2n ¢

Where p is the mean and o is the standard deviation of the model.
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If traffic can be satisfactorily modeled with a distribution, it provides us with a mathe-
matical toolkit for estimating the probability of an occurrence happening. The chance
of actually encountering a satisfactory model, as discussed in Chapter 10, is rare—when
you do, it will generally be after heavily filtering the data and applying multiple heuristics
to extract something suitably well behaved.

This matters because if you use the mathematics for a model without knowing if the
model works, then you run the risk of building a faulty sensor. There exist, and R pro-
vides, an enormous number of different statistical tests to determine whether you can
use a model. For the sake of brevity, this text focuses on two tests that provide a basic
toolkit. These are:

Shapiro-Wilk (shapiro.test)
The Shapiro-Wilk test is a goodness of fit test against the normal distribution. Use
this to test whether or not a sample set is normally distributed.

Kolmogorov-Smirnov (ks.test)
A goodness of fit test to use against continuous distributions such as the normal or
uniform.

All of these tests operate in a similar fashion: the test function is run against a sample
set and another sample set (either provided explicitly or through a function call). A test
statistic describing the quality of the fit is generated, and a p-value produced.

The Shapiro-Wilk test (shapiro.test) is a normality test; the null hypothesis is that the
data provided is normally distributed. See Example 6-4 for an example of running the
test.

Example 6-4. Running the Shapiro-Wilk test

># Test to see whether a random normally distributed
># function passes the shapiro test
> shapiro.test(rnorm(100,100,120))

Shapiro-Wilk normality test

data: rnorm(100, 100, 120)

W = 0.9863, p-value = 0.3892

> # We will explain these numbers in a moment

> # Test to see whether a uniformly distributed function passes the shapiro test
> shapiro.test(runif(100,100,120))

Shapiro-Wilk normality test

data: runif(100, 100, 120)
W = 0.9682, p-value = 0.01605

All statistical tests produce a test statistic (W in the Shapiro-Wilk test), which is com-
pared against its distribution under the null hypothesis. The exact value and interpre-
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tation of the statistic is test-specific, and the p-value should be used instead as a nor-
malized interpretation of the value.

The Kolmogorov-Smirnov test (ks.test) is a simple goodness-of-fit test that is used to
determine whether or not a dataset matches a particular continuous distribution such
as the normal or uniform distribution. It can be used either with a function (in which
case it compares the dataset provided against the function) or with two datasets (in
which case it compares them to each other). See the test in action in Example 6-5.

Example 6-5. Using the KS test

# The KS test in action; let's create two random uniform distributions
a.set <- runif(n=100, min=10, max=20)

b.set <- runif(n=100, min=10, max=20)

ks.test(a.set, b.set)

>
>
>
>

Two-sample Kolmogorov-Smirnov test

data: a.set and b.set
D = 0.07, p-value = 0.9671
alternative hypothesis: two-sided

# Now we'll compare a set against the distribution, using the function.
# Note that I use punif to get the distribution and pass in the same

# parameters as I would if I were calling punif on its own
ks.test(a.set, punif, min=10, max=20)

VvV V. V Vv

One-sample Kolmogorov-Smirnov test

data: a.set

D = 0.0862, p-value = 0.447

alternative hypothesis: two-sided

> # I need an estimate before using the test.

> # For the uniform, I can use min and max, like I'd use mean and sd for
> # the normal

> ks.test(a.set,punif,min=min(a.set),max=max(a.set))

One-sample Kolmogorov-Smirnov test

data: a.set

D = 0.0829, p-value = 0.4984

alternative hypothesis: two-sided

> # Now one where I reject the null; I'll treat the data as if it
> # were normally distributed and estimate again

> ks.test(a.set,pnorm,mean=mean(a.set),sd=sd(a.set))

One-sample Kolmogorov-Smirnov test
data: a.set

D = 0.0909, p-value = 0.3806
alternative hypothesis: two-sided
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> #Hmm, p-value's high... Because I'm not using enough samples, let's
> # do this again with 400 samples each.

> a.set<-runif(400,min=10,max=20)

> b.set<-runif(400,min=10,max=20)

> # Compare against each other

> ks.test(a.set,b.set)$p.value

[1] 0.6993742

> # Compare against the distribution

> ks.test(a.set,punif,min=min(a.set),max=max(a.set))Sp.value
[1] 0.5499412

> # Compare against a different distribution

> ks.test(a.set,pnorm, mean = mean(a.set),sd=sd(a.set))$p.value
[1] 0.001640407

The KS test has weak power. The power of an experiment refers to its ability to correctly
reject the null hypothesis. Tests with weak power require a larger number of samples
than more powerful tests. Sample size, especially when working with security data, is a
complicated issue. The majority of statistical tests come from the wet-lab world, where
acquiring 60 samples can be a bit of an achievement. While it is possible for network
traffic analysis to collect huge numbers of samples, the tests will start to behave wonkily
with too much data; small deviations from normality will result in certain tests rejecting
the data, and you can always start throwing in more data, effectively crafting the test to
meet your goals.

In my experience, distribution tests are usually a poor second choice to a good visual-
ization. Chapter 10 discusses this in more depth.

Further Reading

1. Patrick Burns, The R Inferno.

2. Richard Cotton, Learning R: A Step-by-Step Function Guide to Data Analysis
(O'Reilly, 2013).

3. Russell Langley, Practical Statistics Simply Explained (Dover, 2012).
4. The R Project, An Introduction to R.

5. Larry Wasserman, All of Statistics: A Concise Course in Statistical Inference
(Springer Texts in Statistics, 2004).
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CHAPTER7

Classification and Event Tools:
IDS, AV, and SEM

This chapter focuses on the development and use of event-based sensors such as intru-
sion detection systems (IDSes). These systems include passive sensors such as IDSes
and most AVs, as well as active systems such as firewalls. Analytically, they all behave
similarly—they analyze data and create events in response to that data. Event construc-
tion is what differentiates an IDS from a simple reporting sensor such as NetFlow. Simple
sensors report everything they observe, while an IDS or other classifying sensor is con-
figured to report only on specific phenomena that it infers from the data it observes.

Many analytic processes will eventually result in some form of IDS. For example, you
might want to develop a system detecting abusive activity on a host. Using some of the
math in Part III, you build up a model of abusive activity, create some thresholds, and
raise an alert whenever there’s a threshold.

The problem is that these processes almost never work as intended. Operational IDS
systems are very hard to implement properly. The problem is not detection; the problem
is contextand attribution. IDS systems are easily, and usually, configured into uselesness.
Either they produce so many alarms that analysts ignore them, or they’re configured to
produce so few alarms that they might as well not be there. Developing effective alarms
requires understanding how IDSes are used operationally, how they fail as classifiers,
and the impact of those failures on analysts.

This chapter is divided into two parts. The first section breaks down IDS systems and
the way they’re used on floors. It discusses how IDS systems fail and how these failure
modes impact analysis. The second section is focused on the construction of better
detection systems, and discusses strategies to improve the efficacy of signature, and
anomaly-based detection techniques.
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How an IDS Works

AllIDSes are expert systems of a type called a binary classifier. A classifier reads in data
and marks it as one of two categories. Either the data is normal and requires no further
action, or the data is characteristic of an attack. If it is an attack, then the system reacts
as specified; event sensors generate an event, controllers block traffic, and so on.

An IDS system interprets data in a different way than passive sensors such as NetFlow.
A simple sensor reports on everything it monitors, while an IDS only reports on events
that it is configured to report on. IDSes differ based on the data they use to make this
interpretation and the process they use to make this decision.

There are several problems with classification, which we can term the moral, the stat-
istical, and the behavioral. The moral problem is that attacks can be indistinguishable
from innocuous, or even permitted, user activity. For example, a DDoS attack and a
flash crowd can look very similar until some time has passed. The statistical problem is
that IDS systems are often configured to make hundreds or millions of tests a day—
under those conditions, even low false positive rates can result in far more false positives
in a day than true positives in a month. The behavioral problem is that attackers are
intelligent parties interested in evading detection, and often can do so with minimal
damage to their goals.

This section will discuss IDS, and often take a very pessimistic view of its capabilities.
We begin with a discussion of the vocabulary of intrusion detection, then move onto
the mechanics of binary classifiers, and then into the problem of engineering detection
systems and the impact of classifier failures.

Basic Vocabulary

We can break IDS along two primary axes: where the IDS is placed, and how the IDS
makes decisions. On the first axis, IDS is broken into Network-Based IDS (NIDS), and
Host-Based IDS (HIDS). On the second axis, IDS is split between signature-based sys-
tems and anomaly-based systems.

An NIDS is effectively any IDS that begins with pcap data. In the open source domain,
this includes systems such as Snort, Bro, and Suricata. NIDS systems operate under the
constraints discussed for network sensors in Chapter 2, such as the need to receive traffic
through port mirroring or direct connect to the network and an inability to read en-
crypted traffic.

HIDSes operate within the host domain and are usually far more varied than NIDSes.
An HIDS can monitor network activity, physical access (such as whether a user is trying
to use a USB device), and information from the operating system such as ACL violations
or file accesses.

Figure 7-1 shows how several common IDS systems break down along these axes.
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Figure 7-1. A breakdown of common IDS

Figure 7-1 shows seven examples of different IDS. These are:

Snort
The most commonly used IDS. Snortis a network-based signature matching system
that uses hand-crafted Snort signatures to identify malicious traffic. Snort provides
an extensive language for describing signatures and can be manually configured to
add new ones.

Bro
A sophisticated traffic analysis system that can be used for intrusion detection using
both signatures and anomalies. Bro is less of an IDS than a traffic analysis language.
Bro has recently been redesigned to work with clusters.

Suricata
An experimental open source IDS developed by the Open Information Security
Foundation with funding from the Department of Homeland Security. Suricata is
the youngest IDS listed here and is used for experimentation in new techniques in
intrusion detection.

Peakflow
A commercial traffic analysis package developed by Arbor Networks, Peakflow
analyzes NetFlow traffic to identify and mitigate attacks such as DDoS.
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Tripwire
A file integrity monitoring system. Tripwire monitors specific directories and raises
events when it sees the contents of the directory change.

AV
Antivirus systems such as Symantec, ClamAV, or McAfee are the most common
forms of a signature-based HIDS. AV systems examine host disk and memory for
the binary signatures of malware and raise alerts when encountering suspicious
binaries.

McAfee HIPS
McAfee’s host intrusion prevention (HIPS) is one of several commercial IPS pack-
ages. HIPS systems such as this one combine binary analysis with log analysis, such
as examining ACL violations or suspicious file modifications.

The vast majority of IDSes are signature-based. A signature-based system uses a set of
rules that are derived independently from the target in order to identify malicious be-
havior. For example, a Snort signature written in Snort’s rule language could look like
this:

alert tcp 192.4.1.0/24 any -> SHOME_NET 22 (flow:to_server,established; \
content:"root";)

This alert is raised when traffic from a suspicious network (192.4.1.0/24) attempts to
contact any host on the internal network and tries to log on as root to SSH. An HIDS
may offer signatures such as “raise an alert when a user tries to delete the security log”
Ruleset creation and management is a significant issue for signature-based IDS, and
well-crafted rules are often the secret sauce that differentiates various commercial pack-
ages.

A signature-based IDS will only raise alerts when it has a rule specifying to do so. This
limitation means that signature-based IDSes usually have a high false negative rate,
meaning that a large number of attacks go unreported by them. The most extreme
version of this problem is associated with vulnerabilities. AV primarily, but also NIDS
and HIDS, rely on specific binary signatures in order to identify malware (see “On Code
Red and Malware Evasiveness” on page 133 for a more extensive discussion on this). These
signatures require that some expert have access to an exploit; these days, exploits are
commonly “zero-day,” meaning that they’re released and in the wild before anyone has
the opportunity to write a signature.

Anomaly-based IDSes are built by training (or optionally configuring) the IDS on traffic
data in order to create a model of normal activity. Once this model is created, deviations
from the model are anomalous, suspicious, and produce events. For example, a simple
anomaly-based NIDS might monitor traffic to specific hosts and generate an event when
traftic suddenly spikes upward, indicating a DDoS or other suspicious event.
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Anomaly-based IDSes are used far less than signature-based IDS, primarily because
they have the opposite problem of a signature-based IDS—a high false positive rate.
Anomaly-based IDSes are notorious for creating alerts incessantly, and are often dialed
down to produce a minimal number of alerts rather than constantly go off.

Historically, IDS systems didn’t interoperate because there wasn’t anything to intero-
perate with; IDS reported directly to the analyst. As security systems have become more
complex, there’s a growing interest in security event management (SEM) software' such
as ArcSight, LogRhythms, LogStash, and Splunk. An SEM is effectively a database that
collects data from multiple detection systems. After it is collected, the data can be col-
lated and compound events can be created from one or more sensors.

On Code Red and Malware Evasiveness

Sometimes there’s a fine line between NIDS and AV. Read the original papers on NIDS
by Paxson and Roesch and you’ll see that they were thinking about hand-crafted attacks
on systems that they’d be able to defend by looking for people trying to log in as root or
admin. There was a functionality change around 2001, which was the beginning of a
very nasty worm-heavy era in defense. Worms like Code Red and Slammer caused
widespread havoc by spreading actively and destructively choking bandwidth.

The Code Red v1 and v2 worms both exploited a buffer overflow in Microsoft IIS in
order to subvert IIS processes and launch an attack against the White House. The orignal
Code Red worm contained a payload looking like the following:

GET /default.ida?NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801
%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8bO0%u531b%u53ff
%u0078%u0000%ub0=a HTTP/1.0

IDS at the time detected Code Red by looking for that specific payload, and a couple of
weeks later, an updated version of the worm using the same exploit was launched. The
payload for Code Red II looked like this:

GET /default.ida?XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXX
L G00.0.9.0.0.9.0.9.0.9.0.09.00.0,0.9.0.9.0.0.9,0.9.0.9.9.0.9.0.99.0.9.0.9909.090.09.090,.99.090.990.90090.90999.9009
L OUGVO0 000 00.090.00.0.90.09090.90.090900909009.090.09090.99090.90.090900.90.990.9090.9.9090
XXXXXXXXXXXXXXXXXXXXXX%Uu9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801
%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8bO0%u531b%u53ff
%u0078%u0000%ub0=a HTTP/1.0

1. A number of similar tools are associated with SEM, particularly security information management (SIM) and
security information and event management (SIEM). Technically, SIM refers to the log data and information
management while SEM is focused on more abstract events, but you are more likely to hear people say “SIM/
SEM/SIEM” or some other aggregate.
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Asabuffer overflow, the Code Red worms needed to pad their contents in order to reach
a specific memory location; the worms were often differentiated by the presence of an
X or an N in the buffer. The thing is, the buffer contents are irrelevant to the execution
of the worm; an attacker could change them at will without changing the functionality.

This has been a problem for IDS ever since. As originally conceived, intrusion detection
systems were looking for anomalous and suspicious user behavior. These types of long
term hacks could be detected and stopped because they’d be happening over the course
of hours or days, which is enough time for analysts to examine the alert, vet it, and take
a course of action. Modern attacks are largely automated, and the actual subversion and
control of a host can take place instantaneously if the right conditions are met.

The problem of binary signature management has gotten significantly worse in the past
decade because it’s easy for attackers to modify payload without changing the function-
ality of the worm. If you examine threat databases such as Symantec’s (see Chapter 8),
you will find that there are hundreds or more variants of common worms, each of them
with a different binary signature.

As for the explosive, destructive worms like Slammer, they basically calmed down for
what I will best describe as evolutionary reasons. Much like it doesn’t pay a physical
virus to kill its host until it’s had a chance to spread, modern worms are generally more
restrained in their reproduction. It’s better to own the Internet than to destroy it.

Classifier Failure Rates: Understanding the Base-Rate Fallacy

All IDS systems are applied exercises in classification, a standard problem in AI and
statistics. A classifier is a process that takes in input data and classifies the data into one
of at least two categories. In the case of IDS systems, the categories are usually “attack”
and “normal”

Signature and anomaly-based IDSes view attacks in fundamentally different ways, and
this impacts the type of errors they make. A signature-based IDS is calibrated to look
for specific weird behaviors such as malware signatures or unusual login attempts.
Anomaly-based IDSes are trained on normal behavior and then look for anything that
steps outside the norm. Signature-based IDSes have high false negative rates, meaning
that they miss a lot of attacks. Anomaly-based IDSes have high false positive rates, which
means that they consider a lot of perfectly normal activity to be an attack.

IDSes are generally binary classifiers, meaning that they break data into two cate-
gories. Binary classifiers have two failure modes:

False positives
Also called a TypeI error, this occurs when something that doesn’t have the property
you're searching for is classified as having the property. This occurs, for instance,
when email from the president of your company informing you about a promotion
is classified as spam.
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False negatives
Also called a Type II error, this occurs when something that has the property you're
searching for is classified as not having the property. This happens, for instance,
when spam mail appears in your inbox.

Sensitivity refers to the percentage of positive classifications that are correct, and spe-
cificity refers to the percentage of negative classifications that are correct. A perfect
detection has perfect sensitivity and specificity. In the worst case, neither rate is above
50%: the same as flipping a coin.

Most systems require some degree of tradeoff; generally, increasing the sensitivity means
also accepting a lower specificity. A reduction in false negatives will be accompanied by
an increase in false positives, and vice versa.

To describe this tradeoff, we can use a visualization called a receiver operating charac-
teristic (ROC) curve. A ROC curve plots the specificity against the false positive rates,
using a third characteristic (the operating characteristic) as a control. Figure 7-2 shows
an example of a ROC curve.
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Figure 7-2. ROC curve showing packet size of messages sent for BitTorrent detection

In this case, the operating characteristic is the number of packets in a session and is
shown on the horizontal lines in the plot. At this site, HTTP traffic (falling at the very
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left edge) has a good ratio of true to false positives, whereas SMTP is harder to classify
correctly, and FTP even harder.

Now, let’s ask a question. We have an ROC curve and we calibrate a detector so it has a
99% true positive rate, and a 1% false positive rate. We receive an alert. What is the
probability that the alert is a true positive? It isn’t 99%; the true positive rate is the
probability that if an attack took place, the IDS would raise an alarm.

Let’s define a test as the process that an IDS uses to make a judgement call about data.
For example, a test might consist of collecting 30 seconds worth of network traffic and
comparing it against a predicted volume, or examining the first two packets of a session
for a suspicious string.

Now assume that the probability of an actual attack taking place during a test is 0.01%.
This means that out of every 10,000 tests the IDS conducts, one of them will be an attack.
So out of every 10,000 tests, we raise one alarm due to an attack—after all, we have a
99% true positive rate. However, the false positive rate is 1%, which means that 1% of
the tests raise an alarm even though nothing happened. This means that for 10,000 tests,
we can expect roughly 101 alarms: 100 false positives and 1 true positive, meaning that
the probability that an alarm is raised because of an attack is 1/101 or slightly less than
1%.

This base-rate fallacy explains why doctors don’'t run every test on every person. When
the probability of an actual attack is remote, the false positives will easily overwhelm
the true positives. This problem is exacerbated because nobody in their right mind trusts
an IDS to do the job alone.

Applying Classification

Consider the data flow in Figure 7-3, which is a simple representation of how an IDS is
normally used in defense.
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Figure 7-3. Simple detection workflow

Figure 7-3 breaks alert processing into three steps: IDS receives data, raises an alert, and
that alert is then passed to analysts either directly or through a SIEM.

Once an IDS generates an alert, that alert must be forwarded to an analyst for further
action. Analysts begin by examining the alert and figuring out what the alert means.
This may be a relatively simple process, but often it becomes wider-ranging and may
involve a number of queries. Simple queries will include looking at the geolocation,
ownership, and past history of the address originating the attack (see Chapter 8), by
examining the payload of the event using tcpdump or Wireshark. With more complex
attacks, analysts will have to reach out to Google, news, blogs, and message boards to
identify similar attacks or real-world events precipitating the attack.

With the exception of IPS systems, which work on very crude and obvious attacks such
as DDoSes, there is always an interim analytical step between alert and action. At this
point, analysts have to take the alert and determine if the alert is a threat, if the threat
is relevant to them, and whether or not there’s anything they can do about it. This is a
nontrivial problem, consider the following scenarios:

o TheIDSreports that an attacker is exploiting a particular IIS vulnerability. Are there
any IIS servers on the network? Have they been patched so they’re not subject to
the exploit? Is there evidence from other sources that the attacker succeeded?

o The IDS reports that an attacker is scanning the network. Can we stop the scan?
Should we bother given that there are another hundred scans going on right now?
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o The IDS reports that a host is systematically picking through a web server and
copying every file. Is the host a Google spider, and would stopping it mean that our
company’s primary website would no longer be visible on Google?

Note that these are not actually failures on the part of detection. The first two scenarios
represent actual potential threats, but those threats may not matter, and that decision
can only be made through a combination of context and policy decisions.

Verifying alerts takes time. An analyst might be able to seriously process approximately
one alert an hour, and complex events will take days to investigate. Consider how that
time is spent given the false positive rates discussed earlier.

Improving IDS Performance

There are two approaches to improving how IDSes work. The first is to improve the
IDS as a classifier; that is, increase the sensitivity and specificity. The second way is to
reduce the time an analyst needs to process an alert by fetching additional information,
providing context, and identifying courses of action.

There are no perfect rules to this process. For example, although it’s always a good (and
necessary) goal to minimize false positives, analysts will take a more nuanced approach
to this problem. For example, if there’s a temporary risk of a nasty attack, an analyst will
often tolerate a higher false positive rate in order to more effectively defend against that
attack.

There’s a sort of Parkinson’s Law problem here. All of our detection and monitoring
systems provide only partial coverage because the Internet is weird, and we don’t really
have a good grasp of what we’re missing. As any floor improves its detection process, it
will find that there are newer and nastier alerts to consider. To paraphrase Donald
Rumsfeld: we do have a problem with unknown unknowns.

This problem of unknown unknowns makes false negatives a particular headache. By
definition, a signature-based IDS can't alert on anything it isn’t configured to alert on.
That said, most signature matching systems will be configured to identify only a limited
subset of all the malicious behaviors that a particular host uses. By combining signature
and anomaly detecting IDSes together, you can at least begin to identify the blind spots.

Enhancing IDS Detection

Improving an IDS as a classifier involves reducing the false positive and false negative
rates. This is generally best done by reducing the scope of the traffic the IDS examines.
In the same way that a doctor doesn’t run a test until he has a symptom to work with,
we try to run the IDS only when we have an initial suspicion that something odd is
going on. A number of different mechanisms are available based on whether youre
using a signature- or an anomaly-based IDS.

138 | Chapter7: Classification and Event Tools: IDS, AV, and SEM



Inconsistent Notification: A Headache with Multiple IDSes

A special category of false negative involves inconsistent IDS rulesets. Imagine that you
run a network with the access points A and B, with IDS running on both. If you don’t
keep the ruleset on IDS A consistent with the ruleset on IDS B, you will find that A sends
you alerts that B doesn’t recognize and vice versa.

The easiest way to manage this problem is to treat the rulesets as any other source code.
That is, put the rules in a version control system, make sure that you commit and com-
ment them, and then install the rules from your version control system. Keeping the
rules under version control’s a good idea anyway because if you're doing a multi-month
traffic investigation, you really will want to look at those old rulesets to figure out exactly
what you were blocking last April.

There is a class of IDS that makes this type of management particularly problematic,
however. AV and some other detection systems are usually black-box systems. A black-
box system provides ruleset updates as a subscription service, and the rulesets are usually
completely inaccessible to an administrator. Inconsistent identification can be particu-
larly problematic with black-box systems where, at the best you must keep track of what
the current rulebase is and identify systems that are behind.?

One mechanism common to both signature and anomaly-based IDSes is using inven-
tory to create whitelists. Pure whitelists, meaning that you implicitly trust all traffic from
ahost, are always arisk. I don’t recommend simply whitelisting a host and never check-
ing it. A better approach, and one that is going to appear in various forms throughout
this discussion, is to use whitelisting as a guide for less or more extensive instrumen-
tation.

For example, I create an inventory of all the web servers on my network. A host that is
not a web server is de facto suspicious if I see it serving HTTP traffic. In that case, I want
to capture a representative cut of traftic and figure out why it’s now a web server. At the
same time, for actual web servers, I will use my standard signatures.

In signature-based IDSes, the signature base can usually be refined so that the rule
triggers only for specific protocols or in tandem with other indicators. For example, a
rule to detect the payload string “herbal supplement” on port 25 will track spam emails
with that title, but also internal mail such as “we’re getting a lot of herbal supplement
spam lately” Reducing the false positive rate in this case involves adding more con-
straints to the match, such as tracking only mail from outside the network (filtering on

2. This has the nice bonus of identifying systems that may be compromised. Malware will disable AV as a matter
of course.
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addresses). By refining the rule to use more selective expressions, an operator can reduce
the false positive rate.

As an example, consider the following (stupid) rule to determine whether or not some-
one is logging on as root to an SSH server:

alert tcp any any -> any 22 (flow:to_server, established;)

A Snort rule consists of two logical sections: the header and the options. The header
consists of the rule’s action and addressing information (protocol, source address,
source port, destination address, destination port). Options consist of a number of spe-
cific keywords separated by semicolons.

In the example above, the action is alert, indicating that Snort generates an alert and
logs the packet. Alternative actions include log (log the packet without alerting), pass
(ignore the packet), and drop (block the packet) Following the action is a string naming
the protocol, tcp in this case, with udp, icmp, and ip being other options. The action is
followed by source to destination information separated by the arrow (—) digraph.
Source information can be expressed as an address (e.g., 128.1.11.3), a netblock
(118.2.0.0/16) as above, or any to indicate all addresses. Snort can also define various
collections of addresses with macros (e.g., $HOME_NET to indicate the home network for
an IDS), to implement the inventory-based whitelisting discussed earlier.

This rule raises an alert when anyone successfully connects to an ssh server, which is
far too vague. In order to refine the rule, I have to add additional constraints. For ex-
ample, I can constrain it to only raise an alert if it comes from a specific network, and
if someone tries to log on specifically as root.

alert tcp 118.2.0.0/16 any -> any 21 (flow:to_server,established; \
content:"root"; pcre:"/user\s_root/i";)
Following the addressing information are one or more rule options. Options can be used
to refine a rule, fine-tuning the information the rule looks for in order to reduce the
false positive rate. Options can also be used to add additional information to an alert,
trigger another rule, or to complete a variety of other actions.

Snort defines well over 70 options for various forms of analysis. A brief survey of the
more useful rules include:

content

content is Snort’s bread-and-butter pattern matching rule; it does an exact match
of the data passed in the content option against packet payload. content can use
binary and text data, enclosing the binary data in pipes. For example, content: |05
11|H|02 23| matches the byte with contents 5, then 11, then the letter H, then the
byte 2, then the byte 23. A number of other options directly impact content, such
asdepth (specifying where in the payload to stop searching), and of fset (specifying
where in the payload to start searching).
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HTTP options
A number of HTTP options (http_client_body, http_cookie, http_header) will
extract the relevant information from an HTTP packet for analysis by content.

pcre
The pcre option uses a PCRE regular expression to match against a packet. Regular
expressions are expensive; make sure to use content to prefilter traffic and skip
applying the regular expression against every packet.

flags
Checks to see whether or not specific TCP flags are present.

flow
The flow keyword specifies the direction traffic is flowing in, such as from a client,
to a client, from a server, or to a server. The flow keyword also describes certain
characteristics of the session, such as whether or not it was actually established.

Snort’s rule language is used by several other IDSes, notably Suricata. Other systems
may differentiate themselves with additional options (for example, Suricatahasan iprep
option for looking at IP address reputation).

Unlike signature-based systems, where you can’t really go wrong by discussing Snort
rules, anomaly-detection systems are more likely to be built by hand. Consequently,
when discussing how to make an anomaly detector more effective, we have to operate
at a more basic level. Throughout Part III, we discuss a number of different numerical
and behavioral techniques for implementing anomaly-detection systems, as well as cases
for false positives. However, this is an appropriate place to discuss general criteria for
building good anomaly-detection systems.

In their simplest forms, anomaly-detection systems raise alarms via thresholds. For
example, I might decide to build anomaly detection for a file server by counting the
number of bytes downloaded from a server every minute. I can do so using rwfilter to
filter the data, and rwcount to count it over time. I then use R, and generate a histogram
showing the probability that the value is above x. The nice thing about histograms and
statistical anomaly detection is that I control this nominal false positive rate. A test every
minute and a 95% threshold before raising alarms means that I create three alarms an
hour; a 99% threshold means one alarm every two hours.

The problem lies in picking a threshold that is actually useful. For example, if an attacker
is aware that I'll raise an alarm if he’s too busy, he can reduce his activity below the
threshold. This type of evasiveness is really the same kind we saw with Code Red in “On
Code Red and Malware Evasiveness” on page 133. The attacker in that case could change
the contents of the buffer without impacting the worm’s performance. When you iden-
tify phenomena for anomaly detection, you should keep in mind how it impacts the
attacker’s goals; detection is simply the first step.
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I have four of rules of thumb I apply when evaluating phenomena for an anomaly
detection system: predictability, manageable false positives, disruptibility, and impact
on attacker behavior.

Predictability is the most basic quality to look for in a phenomenon. A predictable
phenomenon is one whose value effectively converges over time. “Convergence” is
something that I have to be a bit hand-wavy about. You may find that nine days out of
ten, a threshold is x, and then on the tenth day it rises to 10x because of some unexplained
weirdness. Expect unexplained weirdness; if you can identify and describe outliers be-
haviorally and whatever remains has an upper limit you can express, then you've got
something predictable. False positives will happen during investigation, and true pos-
itives will happen during training!

The second rule is manageable false positives. Look at a week of traffic for any publicly
available host and you will see something weird happen. Can you explain this weirdness?
Is it the same address over and over again? Is it a common service, such as a crawler
visiting a web server? During the initial training process for any anomaly detector, you
should log how much time you spend identifying and explaining outliers, and whether
you can manage those outliers through whitelisting or other behavioral filters. The less
you have to explain, the lower a burden you impose on busy operational analysts.

A disruptible phenomenon is one that the attacker must affect in order to achieve his
goals. The simpler, the better. For example, to download traffic from a web server, the
attacker must contact the web server. He may not need to do so from the same address,
and he may not need authentication, but he needs to pull down data.

Finally, there’s the impact of a phenomenon on attacker behavior. The best alarms are
the ones that the attacker has to trigger. Over time, if a detector impacts an attacker, the
attacker will learn to evade or confuse it. We see this in antispam and the various tools
used to trick Bayesian filtering, and we see it consistently in insider threats. When con-
sidering an alarm, consider how the attacker can evade it, such as:

By moving slower
Can an attacker impact the alarm if she reduces her activity? If so, what’s the impact
on the attacker’s goal? If a scanner slows her probes, how long does it take to scan
your network? If a file leech copies your site, how long to copy the whole site?

By moving faster
Can an attacker confuse the system if he moves faster? If he risks detection, can he
move faster than your capability to block him by moving as fast as possible?

By distributing the attack
If an attacker works from multiple IP addresses, can the individual addresses slip
under the threshold?
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By alternating behaviors
Can an attacker swap between suspicious and innocent behavior, and confuse the
IDS that way?

Many of the techniques discussed previously imply a degree of heterogeneity in your
detection system. For example, anomaly-detection systems might have to be configured
individually for different hosts. I have found it useful to push that idea toward a sub-
scription model, where analysts choose which hosts to monitor, decide on the thresh-
olds, and provide them with whitelisting and blacklisting facilities for every host they
decide to monitor. Subscriptions ensure that the analyst can treat each host individually,
and eventually build up an intuition for normal behavior on that host (for example,
knowing that traffic to the payroll server goes bonkers every two weeks).

The subscription model acknowledges that you can’t monitor everything, and conse-
quently the next question about any subscription-based approach is precisely what to
monitor. Chapter 13 and Chapter 15 discuss this issue in more depth.

Enhancing IDS Response

IDS, particularly NIDS, was conceived of as a real-time detection system—there would
be enough of a gap between the time the attack began and the final exploit that, armed
with the IDS alerts, the defenders could stop the attack before it caused significant
damage. This concept was developed in a time when attackers might use two computers,
when attacks were hand-crafted by experts, and when malware was far more primitive.
Now, IDS is too often a recipe for annoyance. It’s not simply a case of misclassified
attacks; it’s a case of attackers attacking hosts that aren’t there in the hopes that they’ll
find something to take over.

At some point, you will make an IDS as effective a detector as you can, and you’ll still
get false positives because there are normal behaviors that look like attacks and the only
way you'll figure this out is by investigating them. Once you reach that point, you're left
with the alerting problem: IDSes generate simple alerts in real time, and analysts have
to puzzle them out. Reducing the workload on analysts means aggregating, grouping,
and manipulating alerts so that the process of verification and response is faster and
conducted more effectively.

When considering how to manipulate an alert, first ask what the response to that alert
will be. Most CSIRTS have a limited set of actions they can take in response to an alert,
such as modifying a firewall or IPS rules, removing a host from the network for further
analysis, or issuing policy changes. These responses rarely take place in real time, and
it’s not uncommon for certain attacks to not merit any response at all. The classic ex-
ample of the latter case is scanning: it's omnipresent, it's almost impossible to block, and
there’s very little chance of catching the culprit.
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If a real-time response isn't necessary, it’s often useful to roll up alerts, particularly by
attacker IP address or exploit type. It’s not uncommon for IDSes to generate multiple
alerts for the same attacker. These behaviors, which are not apparent with single real-
time alerts, become more obvious when the behavior is aggregated.

Prefetching Data

After receiving an alert, analysts have to validate the information and examine it. This
usually involves tasks such as determining the country of origin, the targets, and any
past activity by this address. Prefetching this information helps enormously to reduce
the burden on analysts.

In particular with anomaly-detection sytems, it helps to present options. As we've
discussed, anomaly detections are often threshold-based, raising an alert after a phe-
nomenon exceeds a threshold. Instead of simply presenting an aberrant event, return a
top-n list of the most aberrant events at a fixed interval.

Providing summary data in visualizations such as time series plots or contact graphs
helps reduce the cognitive burden on the analyst. Instead of just producing a straight
text dump of query information, generate relevant plots. Chapter 10 discusses this issue
in more depth.

Finally, consider monitoring assets rather than simply monitoring attacks. Most detec-
tion systems are focused on attacker behavior, such as raising an alert when a specific
attack signature is detected. Instead of focusing on attacker behavior, assign your ana-
lysts specific hosts on the network to watch and analyze the traffic to and from the asset
for anomalies. Lower-priority targets should be protected using more restrictive tech-
niques, such as restrictive firewalls.

Assigning analysts to assets rather than simply reacting to alerts has another advantage:
analysts can develop expertise about the systems theyre watching. False positives often
rise out of common processes that aren’t easily described to the IDS, such as a rise in
activity to file servers because a project is reaching crunch time, regular requests to
payroll, a service that’s popular with a specific demographic. Expertise reduces the time
analysts need to sift through data, and helps them throw out the trivia to focus on more
significant threats.
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CHAPTER 8

Reference and Lookup: Tools for Figuring
Out Who Someone Is

Each alert or logfile line that reports an event provides some basic information about
the source of the event. Just from the IP address, you can derive information about
geographic location and do a reverse DNS lookup. This chapter covers tools that help
you track the identity of a host.

This chapter is focused on the idea of “walking up” the OSI stack, mentioned in “Net-
work Layering and Its Impact on Instrumentation” on page 16. I like to view the OSI
layer as a sequence of lookup processes. Each layer offers a different piece of addressing
information, such as the MAC address at layer 2, the IP address at 3, and the ports at 4.
This information is moved between layers through the agency of various referencing
systems: Address Resolution Protocol (ARP) maps IP addresses to MAC addresses, DNS
maps domain names to IP addresses, and so on. Again, the abstraction isn't perfect—
DNS translation doesn’t move us up or down the OSI stack—but by walking up each
layer, we can describe what the addresses mean and when they are relevant to investi-
gation.

The remainder of this chapter is structured as follows: a section on MAC addresses,
then IPv4 and IPv6, followed by Internet-layer information, then DNS, then higher-
level protocols. Finally comes a discussion of other important tools that don’t fit in the
layering model—in particular, reputation databases and malware repositories.

It's unfortunate that some of our lookup techniques depend on poorly maintained public
databases, but they can still be indispensable as long as you understand this limitation.

MAC and Hardware Addresses

Chapter 2 discusses the basics of a Media Access Controller (MAC) address. MAC ad-
dresses are defined in the network hardware to provide a locally unique address for
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hosts within a single layer 2 network. The majority of MAC addresses follow the 48-bit
Extended Unique Identifier (EUI) standard: 6 bytes expressed hexadecimally (e.g.,
08-21-23-41-FA-BB). More modern network hardware may use EUI-64, which adds an
additional 16 bits. When a frame goes from a 48-bit system to a 64-bit system, the 48-
bit address is padded to 64 bits.

Figure 8-1 shows how the EUI-48 and EUI-64 break down.

oul

EUI-48 EUIO EUI EUI2 EUI3 EUI 4 EUIS

oul
EUI-48
Convertedto [ EUIO EUI EUI2 FF FE EUI3 EUl 4 EUIS
EUI-64
oul

EUl-64 EUIO EUI EUI2 EUI3 EUl 4 EUI'5 Eul6 EUl7

Figure 8-1. The EUI-48 and EUI-64 standards

Note two things in particular. First, if an EUI-48 is converted to an EUI-64, you can tell
this by looking at bytes 3 and 4, which will be FFFE. More important is that the first 3
bytes are the Organizationally Unique Identifier (OUI), which is a 24-bit value assigned
by the IEEE to the hardware manufacturer. OUT’s are fixed serial numbers, and if you
know the OUI, you can find out who manufactured the card. The IEEE maintains a list
of OUI assignments, where you can use a search engine to find OUIs by company, or
companies by OUL

For example, consider the following packet from a pcap:

$ tcpdump -c 1 -e -n -r web.pcap

reading from file web.pcap, link-type EN10MB (Ethernet)

00:37:56.480768 8c:2d:aa:46:f9:71 > 00:1f:90:92:70:5a, ethertype IPv4 (0x0800),
length 78: 192.168.1.12.50300 > 157.166.241.11.80: Flags [S],
seq 4157917085, win 65535, options [mss 1460,nop,wscale 4,nop,
nop,TS val 560054289 ecr 0,sackOK,eol], length 0

148 | Chapter 8: Reference and Lookup: Tools for Figuring Out Who Someone Is


http://bit.ly/oui-guide
http://bit.ly/oui-guide

The communication goes from 8c:2d:aa:46:f9:71 to 00:1£:90:92:70:5a. Looking these up
tells us that 8c:2d:aa belongs to Apple, and 00-1f-90 belongs to Actiontec Electronics,
who make Verizon’s FIOS routers.

There’s Less Work Than You Think

A common analytical stumbling block comes when an analyst tries to build a compli-
cated general solution to a problem when only a limited number of options are present.
To use a military example, you don’t have to develop a general solution for identifying
aircraft carriers because there are only 20 of them in active service. Instead of working
on one big problem, you can solve 20 problems that are considerably smaller and mostly
similar.

When dealing with hardware systems and applications, it often helps to stop, step back,
and do some market research. The problem often becomes smaller when you find out,
for example, that while there are a bunch of systems with embedded web servers, most
of them are using Allegro RomPager.

MAC addresses operate entirely within the scope of the local network. To communicate
beyond the borders of a router, the host must have an IP address. The relationship
between a local MAC and an IP address is managed through the address resolution
protocol (ARP). Individual hosts maintain ARP tables that contain mappings between
IP addresses and MAC addresses on a network. For example, on my local host, I can
query the ARP table using arp -a:

$ arp -a

wireless_broadband_router.home (192.168.1.1) at 0:1f:90:92:70:5a on enl ifscope

/[ethernet]

new-host-2.home (192.168.1.3) at 0:1le:c2:a6:17:fb on enl ifscope [ethernet]

new-host.home (192.168.1.4) at cc:8:e0:68:b8:a4 on enl ifscope [ethernet]

apple-tv-3.home (192.168.1.9) at 7c:d1:c3:26:35:bf on enl ifscope [ethernet]
? (192.168.1.255) at ff:ff:ff:ff:ff:ff on enl ifscope [ethernet]

Do the lookups and you’ll find that I really like Apple hardware. Or I prefer to keep my
Windows and Linux boxes physically wired.

Analytically, MAC addresses (when you can get them, and you’ll normally have them
only for your local network, as already explained) are particularly useful for identifying
and differentiating hardware, particularly networking hardware such as routers. IP ad-
dresses are considerably more fungible than MAC addresses, and if you need to track
a mobile asset like a laptop or anything moderated through DHCP, the MAC address
will be your best asset for doing so.
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IP Addressing

IP addresses are the most commonly accessed piece of information about a host, and
often the only piece of data you will have about a host.

IP is slowly transitioning from IPv4 to IPv6. IPv6 corrects a number of design errors in
IPv4, the most notable being IP address exhaustion. An IPv4 address is a 32-bit value,
conventionally written in “dotted quad” format: four bytes, written decimally, separated
by periods (like 192.168.1.1). At the time of IPv4’s original design, nobody seriously
expected that the 4 billion addresses provided would be exhausted, and many of the
early allocations of IPv4 addresses are comically generous, as you can see from the
master list of /8 allocations. A /8 is a collection of 16 million+ addresses (22*) all of which
have the same first octet, so0 9.0.0.0 to 9.255.255.255 is all owned by IBM, for example.
Looking at the list, you’ll see that several of the blocks were assigned large and early to
companies such as Xerox and Ford who don't really use the space they have. The situa-
tion has actually improved over the past few years, when several drug companies owned
nearly empty /8s and have since returned them to JANA.

The majority of the English-speaking Internet still runs on IPv4, while in Asia and
elsewhere, IPv6 is increasingly prevalent. The uneven allocation of IPv4 addresses forces
countries who have come to the Internet historically later to build IPv6 infrastructure.

IPv4 Addresses, Their Structure, and Significant Addresses

IPv4 addresses can be expressed using a number of different notations. The most com-
mon is the dotted quad format discussed earlier: four integer values between 0 and 255,
separated by periods. Addresses can also be referred to directly as a value, usually in
hexadecimal. Consequently, the IP address 0xA1010203 is 161.1.2.3 as a dotted quad,
and 2701197827 as a decimal integer.

Groups of IP addresses are usually described linearly (e.g., 128.2.11.3-128.2.3.14), or
using a Classless Internet Domain Routing (CIDR) block. CIDR blocks, which are dis-
cussed in more depth later, are a mechanism for describing the addresses reachable by
picking a particular route. Addresses in CIDR notation are represented by a prefix,’
which is a dotted quad representation of the significant bits of an address, and then a
mask, which indicates how many bits make up the prefix.

For example, the CIDR block 128.2.11.0/24 consists of all addresses whose first 24 bits
are 128.2.11, so any address from 128.2.11.0 to 128.2.11.255 is in that block.

A number of IP addresses are either reserved or fixed by convention in network con-
figuration. For an individual host on a network, the most important are the broadcast
address, gateway, and netmask. IP networks are logically divided into subnets, a col-

1. Note that the prefix is the equivalent to a subnets netmask.
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lection of contiguous addresses that can all communicate with each other without the
need for internal routing. When configuring an IP address, this range is specified using
anetmask, which is an IP address with a certain number of its least significant bits zeroed
out.

To communicate outside its subnet, a host will have to talk to a router, and does so using
a preconfigured gateway address. The gateway address is simply the IP address of the
router’s interface to the subnet. Gateway addresses are customarily assigned the lowest
value in the subnet, but this is not a requirement.

A networK’s broadcast address is set to the subnet mask, but with all the host bits high
(e.g., for a network with subnet mask 192.168.1.0, the broadcast address is
192.168.1.255). Messages sent to the broadcast address are sent to every target within
the network. The broadcast address is one of a number of addresses you should never
see outside of local network traffic. Addresses ending in .255, for lack of a better term,
smell funny.

A number of IPv4 addresses are reserved for specific networking functions. These ad-
dresses are specifically intended for local use and consequently should not be seen
crossing networks. The most significant are:

Local identification addresses
These belong to the 0.0.0.0/8 CIDR block (0.0.0.0-0.255.255.255). Local identifi-
cation addresses are used during the startup sequence for a host that doesn’t have
an IP address yet.

Loopback address
The loopback address of a host is 127.0.0.1. Traffic sent to the loopback address is
sent back to the host without entering the network. IANA has reserved the entire
127.0.0.0/8 CIDR block (127.0.0.0-127.255.255.255) for loopback, so as with local
identification, nothing from the 127.0.0.0/8 CIDR block should be seen crossing
network boundaries.

RFC 1918 netblocks
This document defines a number of netblocks for private use. These addresses can
be used within local networks with the intent that they never communicate directly
with the global Internet. The RFC netblocks are 10.0.0.0/8, 192.168.0.0/16 and
172.16.0.0/12. Addresses within these blocks are often assigned automatically by
local routing tools or DHCP.

Multicast addresses
Multicast addresses are used to classify specific groups of hosts within a subnet. For
example, multicast address 224.0.0.2 is the “all routers” multicast address, and all
routers within the subnet will receive traffic sent there. Multicast traffic is primarily
the focus of routing and other Internet control protocols.
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IPv6 Addresses, Their Structure and Significant Addresses

One of the most significant changes between IPv4 and IPv6 is the number of addresses
they make available. IPv6 assigns 128 bits to each address; this ensures plenty of ad-
dresses, but introduces some problems in notation.

The default format for an address is eight 16-bit hexadecimal values separated by colons,
such as 2001:0010:AF3A:FB31:09A8:08A1:1098:1101. Given that this is a long and
clumsy representation, addresses are usually represented using a number of shorthand
conventions. When writing IPv6 addresses, apply these rules:

o Leading zeroes in any group are omitted, so 01AA:0002 can be written as 1AA:2.

o Consecutive groups of zero may be replaced with a pair of colons, so
2001:0:0:0:0:0:0:1 is written as 2001::1. The double-colon reduction can be used
only once, so 2001:0:0:0:11:0:0:1 is written as 2001::11:0:0:1.

The RIRs and IP Address Allocation

Researching an IP address often means tracing the chain of ownership from IANA to a
specific organization. The process of reservation is hierarchical; at the top level, IP ad-
dress allocation is controlled by the Internet Assigned Numbers Authority (IANA).
IANA is a department of the Internet Corporation for Assigned Names and Numbers
(ICANN), the US-based nonprofit in charge of managing IP address and DNS name
assignment.

IANA delegates the control of blocks of numbers to the Regional Internet Registries
(RIRs), continental organizations that manage the allocation of IP addresses and Au-
tonomous System numbers within their continent. RIRs are the intermediary between
IANA and the various national and TLD registrars that actually deal with the allocation
of addresses (see Table 8-1).

Table 8-1. The RIRs
RIR Domain URL

ARIN  USand Canada www.arin.net

LACNIC Central and South America, the Caribbean lacnic.net

RIPE  Europe, Russia, and the Middle East www.ripe.net
APNIC  Asia and Oceana www.apnic.net
AfriNIC  Africa www.afrinic.net

IANA delegates address blocks to the RIRs, and the RIRs in turn allocate sections of
those blocks to organizations within their domains. RIRs then allocate address blocks

to their members, and those members can allocate subblocks or addresses as they see
fit.
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This allocation process means that every IP address has a chain of ownership. That
ownership begins with IANA, is allocated to one of the RIRs, and then down through
one or more ISPs until it reaches whatever party is currently using the address. Beyond
the final ISP (generally, below a /24 or a /27), address ownership is more fungible—it’s
rare to be able to associate a specific address with a specific person unless that’s a matter
of public record via whois, or the ISP is willing to give up that information.

As with IPv4, multiple IPv6 blocks are reserved for specific functions. The most im-
portant reservation at this point is 2000::/3 (as with IPv4, CIDR block notation can be
used with IPv6 addresses, and the mask can extend up to 128 bits). IPv6 space is huge,
and to help keep routes reasonably close together, all routable traffic in IPv6 should be
in the 2000::/3 block. Further divisions within the 2000::/3 block are maintained by
IANA as it does with the /8 registry for IPv4. The master reference is available on the
IPv6 Global Unicast Address Assignments page.

Additional address blocks of note include the ::/128 and ::1/128 blocks, which are the
unspecified and loopback address (the equivalent of 0.0.0.0, and 127.0.0.0 for IPv4).

Of particular interest are the utility address blocks 2001:758::/29 and 2001:678::/29.
2001:758:/29 is specifically assigned to Internet Exchange Points (IXPs); an IXP is a
physical location where multiple ISPs interconnect with each other. 2001:678::/29 rep-
resents a block of provider-independent addresses; users can contact their RIRs directly
for these addresses.

For clarity, a summary of local and unroutable addresses is provided in Table 8-2.

Table 8-2. Notable addresses

IPv4 block IPv6 block Description

0.0.0.0/0 /0 Default route; addresses from this block shouldn’t be seen
0.0.0.0/32 =128 Unspecified address

127.0.0.1/8 21128 Loopback

192.168.16.0/24  £c00::/7 Reserved for local traffic

10.0.0.0/8 fc00::/7 Reserved for local traffic

172.16.0.0/12  fc00::/7 Reserved for local traffic
224.0.0.0/4 ff00::/8 Multicast addresses

Checking Connectivity: Using ping to Connect to an Address

The most basic command-line tool for checking connectivity is ping. ping works by
using ICMP (see “Packet and Frame Formats” on page 24) messages. ping sends an
ICMP echo request (type 8, code 0) to the target. On receiving an echo request message,
the target should respond with an echo reply (type 0, code 0). Example 8-1 shows the
output of ping and a pcap of the contents.
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Example 8-1. ping output

$ ping -c 1 nytimes.com
PING nytimes.com (170.149.168.130): 56 data bytes
64 bytes from 170.149.168.130: icmp_seq=0 ttl=252 time=29.388 ms

$ tcpdump -Xnr ping.pcap
reading from file ping.pcap, link-type EN1OMB (Ethernet)
20:38:09.074960 IP 192.168.1.12 > 170.149.168.130:
ICMP echo request, id 44854, seq 0, length 64
0x0000: 4500 0054 0942 0000 4001 5c9b cOa8 016c E..T.B..@.\.....

0x0010: aa%5 a882 0800 0fb8 af36 0000 5175 d7f1 ......... 6..Qu..
0x0020: 0001 2436 0809 0abb 0cOd 0edf 1011 1213 ..$.............
0x0030: 1415 1617 1819 1lalb 1cld 1lelf 2021 2223 ............. 1#
0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 S$%&'()*+,-./0123
0x0050: 3435 3637 4567

20:38:09.104250 IP 170.149.168.130 > 192.168.1.12:
ICMP echo reply, id 44854, seq 0, length 64
0x0000: 4500 0054 0942 0000 fcO1l ab9a aa95 a882 E..T.B..........

0x0010: c0a8 010c 0000 17b8 af36 0000 5175 d7f1 ......... 6..Qu..
0x0020: 0001 2436 0809 0abb 0cOd 0edf 1011 1213 ..$.............
0x0030: 1415 1617 1819 1lalb 1cld 1lelf 2021 2223 ............. 1#
0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 S$%&'()*+,-./0123
0x0050: 3435 3637 4567

Note first the size of the packet and the tt1 value. These values are usually set by default
by the TCP stack. In the case of Mac OS X, the ICMP packet has a 56-byte payload,
which results in an 84-byte packet (20 bytes of IP header, 8 bytes of ICMP header, and
56 bytes payload). The type and code are at 0x0014-0x0015 (08 for the request, 00 for
the response). After the ICMP header, note that the contents of the packet are echoed.
ICMP has a concept of a session, and in many cases, messages are sent in response to
packets from entirely different protocols. Different ICMP messages use different tech-
niques to indicate their point of origin; in the case of ping, this is done by echoing the
packet’s original contents.

ping is a simple application: it sends an echo request with an embedded sequence iden-
tifier. The application then waits until a specified timeout (usually on the order of 4,000
ms); if the response is received in that time, the response is printed and the next packet
is sent. ping is a diagnostic tool, and any serious implementation will provide a number
of command line switches for manipulating packet composition.

Sweeping Pings and Ping Sweeping

These are actually different terms, although Google gets confused when you enter a
search for them. A ping sweep (or ping sweeping) is a scanning technique that system-
atically pings all the IP addresses assigned to a network to determine which ones are
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present and which ones are not. Ping sweeping is supported by nmap and a number of
other scanning tools, although you can write a script to do it in about 20 seconds.

A sweeping ping, in contrast, is a sequence of ping messages that undergo size increases
with each packet. Sweeping pings are intended to diagnose channels by identifying
traffic manipulation or MTU issues. Sweeping pings are enabled by a command-line
option on most modern ping implementations.

It’s not uncommon to find networks blocking ICMP messages. Ping sweeping is con-
sequently a middling tool for finding hosts on a network; direct TCP or UDP scanning
will generally be more effective.

Tracerouting

tracerouteis a tool and technique to identify the routers that forward packets from point
A to point B. traceroute produces a sequential list of routers by manipulating packet
TTLs.

The TTL (time to live) field of an IP packet is a mechanism developed to prevent packets
from bouncing through the Internet forever. Every time a packet is forwarded by a
router, its TTL value decreases by one. When the TTL reaches zero, the forwarding
router drops the packet and sends an ICMP time exceeded (type 11) message.

$traceroute www.nytimes.com

traceroute to www.nytimes.com (170.149.168.130), 64 hops max, 52 byte packets
1 wireless_broadband_router (192.168.1.1) 1.189 ms 0.544 ms 0.802 ms

2 1100.washdc-vfttp-47.verizon-gni.net (96.255.98.1) 2.157 ms 1.401 ms

1.451 ms

3 g0-13-2-7.washdc-lcr-22.verizon-gni.net (130.81.59.154) 3.768 ms 3.751 ms
3.985 ms

4 ae5-0.res-bb-rtri.verizon-gni.net (130.81.209.222) 2.029 ms 2.314 ms
2.314 ms

5 0.xe-3-1-1.bri1.iad8.alter.net (152.63.37.141) 2.731 ms 2.759 ms 2.781 ms

6 xe-2-1-0.er2.iad10.us.above.net (64.125.13.173) 3.313 ms 3.706 ms 3.970 ms

.cr2.dca2.us.above.net (64.125.29.214) 3.741 ms 3.668 ms

.cr2.dca2.us.above.net (64.125.26.241) 4.638 ms

.crl.dca2.us.above.net (64.125.28.249) 3.677 ms

.crl.dca2.us.above.net (64.125.26.41) 3.744 ms

.crl.dca2.us.above.net (64.125.28.249) 4.496 ms

.crl.1ga5.us.above.net (64.125.26.102) 24.637 ms

.crl.lga5.us.above.net (64.125.26.98) 10.293 ms 9.679 ms

10 xe .mpri.ewrl.us.above.net (64.125.27.133) 20.660 ms 10.043 ms

11 xe-0-0-0.mprl.ewr4.us.above.net (64.125.25.246) 15.881 ms 16.848 ms
16.070 ms

12 64.125.173.70.t01646-03.above.net (64.125.173.70) 30.177 ms 29.339 ms
31.793 ms
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As the next code block shows, traceroute sends an initial 52-byte message, and then
proceeds to receive sequential information about each address it contacts en route to
170.149.168.130. Let’s look at the payload in more depth.

$ tcpdump -nXr traceroute.pcap | more

21:06:51.202439 IP 192.168.1.12.46950 > 170.149.168.130.33435: UDP, length 24
0x0000: 4500 0034 b767 0000 0111 ed85 cPa8 010c E..4.g..........
0x0010: aa95 a882 b766 829b 0020 bOdf 0000 00O ..... foviein.
0x0020: 0000 0000 OEEO 0000 OCEEO 0000 OEEO 00O ..........oc....
0x0030: 0000 0000 e

21:06:51.203481 IP 192.168.1.1 > 192.168.1.12: ICMP time exceeded in-transit,

length 60
0x0000: 45cO 0050 a201 0000 4001 548e cOa8 0101 E..P....Q@.T.....
0x0010: c0a8 010c 0bOO 09fe 00OO 0OOO 4500 0034 ............ E..4

0x0020: b767 0000 0111 ed85 cPa8 010c aa95 a882 .g......evvuennn
0x0030: b766 829b 0020 bodf 00O 0O 0O 0O .f..............
0x0040: 0000 0000 OEOO 0000 OEEO 0000 OEOEO 0O ..........cc....
21:06:51.203691 IP 192.168.1.12.46950 > 170.149.168.130.33436: UDP, length 24
0x0000: 4500 0034 b768 0000 0111 ed84 cha8 010c E..4.h..........
0x0010: aa95 a882 b766 829c 0020 bode 0OOO 00O ..... fovviiont.
0x0020: 0000 0000 OEEO 0000 OEEO 0000 OO 00O ...........c....
0x0030: 0000 0000 e
21:06:51.204191 IP 192.168.1.1 > 192.168.1.12: ICMP time exceeded in-transit,

length 60
0x0000: 45cO 0050 a202 0000 4001 548d cta8 0101 E..P....Q@.T.....
0x0010: c0a8 010c 0bOO 09fe 00OO 0OOO 4500 0034 ............ E..4

0x0020: b768 0000 0111 ed84 c0a8 010c aa95 a882 .h..............
0x0030: b766 829c 0020 bOde 0000 0000 0000 6000 .f..............
0x0040: 0000 0000 O0OOO OOOO 0000 0O 00O 000 ................

Note that traceroute sends out UDP messages, starting at port 33435 and incrementing
the port number by one with each additional message. The port number is incremented
in order to reconstruct the order in which the packets are sent. Note that the ICMP
packet from offset 0x001C onward contains the original UDP packet. As noted above,
ICMP messages need to use a number of different techniques to provide context—error
messages such as TTL exceeded include the IP header and the first 8 bytes of the original
packet. This includes the UDP source port number. traceroute orders the ICMP mes-
sages in order of this port number in order to determine the order in which those
messages were sent.

While traceroute uses UDP by default, the same technique can be used by TCP or any
other protocol where there is a controllable value (such as ephemeral port number) in
the first 8 bytes of the IP payload.

pingand traceroute are more useful if you can use them from different locations. To that
end, a number of Internet service providers and other organizations provide looking
glass servers. A looking glass server is a publicly accessible (generally via the Web) in-
terface to any of a number of common Internet applications. Most looking glasses are
managed by NOCs or ISPs, and provide access to multiple routers. There is no standard
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for implementation, and different looking glasses will provide different services. A
comprehesive list is available at www.traceroute.org.

IP Intelligence: Geolocation and Demographics

A number of database and intelligence services provide further information about an
IP address. This type of augmentation data includes ownership, geolocation, and dem-
ographic information.

It's important to distinguish this augmentation data from information such as autono-
mous system, domain name, and whois data. The latter is necessary for the upkeep of
the network, and is maintained by Internet organizations related to ICANN. Geoloca-
tion, demographic data, and ownership are intelligence products. The companies that
produce them use a variety of mechanisms including network scanning as well as shoe-
leather investigation to produce it. This leads to several important qualities:

o The intelligence updates slowly, whereas DNS names can change very rapidly. It
takes additional checking to find out that 128.2.11.214 is no longer involved in
selling car parts and is now hosting malware.

o There is always some degree of approximation. As a rule of thumb, intelligence data
getslessaccurate as you delve down into finer detail. Country information is usually
good, but 'm moderately skeptical about city information outside of the US and
western Europe, and I never trust physical location.

 You get what you pay for. The companies that produce this data have customers
who need it. Most of the companies started out providing demographic data for
large websites, and it’s still common to find limits on the number of queries you
can conduct per license. You pay for accuracy and you pay for precision. There are
free intelligence databases, but if you want to get finer detail than country codes,
prepare to crack open your wallet.

The most commonly used open source reference is MaxMind’s GeolP, which provides
a number of databases for city, country, region, organization, ISP, and network speed.
They also provide free services in the form of “lite” databases for finding city and coun-
try. All of their products are downloadable databases and are updated regularly. Max-
Mind has been providing this service for years, along with a number of APIs in Python
and other scripting languages that are available to access the database.

For more extensive information, options include Neustar and Digital Envoy’s Digital
Element. Both provide more precise measurement, as well as additional demographic
data such as Metropolitan Statistical Area (MSA) (contiguous areas of high population
density used by the government for statistical analysis) and North American Industry
Classification System (NAICS) codes (a numerical identifier akin to a Dewey Decimal
number for business type). These services are not cheap, however.
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DNS

In a just world, each IP address would have a single DNS name, and finding the DNS
name associated with an IP address would be a simple matter of consulting a database.
This world is not just.

DNS is the glue that makes the Internet usable by human beings. As one of the older
services making the Internet work, DNS overlaps a couple of other services (particularly
mail). DNS is, at this point, a distributed database that provides lookup information for
a number of different relationships, in particular DNS name to IP address, DNS name
to DNS name, email address to mail server, and so on.

DNS Name Structure

A domain name consists of a hierarchical sequence of labels separated by periods, such
as www.oreilly.com. Domain names become more general as you read from right to left,
ending at the root domain (the root domain is ., but it’s almost always implicit). Domain
names do have limits. The total length of a name cannot exceed 253 characters, and
individual labels are limited to 64.

Historically, labels were limited to a restricted subset of ASCII characters for the name.
Since 2009, it has been possible to acquire internationalized domain names, which are
encoded using character systems such as Chinese, Greek, and so on.? The mechanical
limits of 253 characters per name still hold, though the encoding is more complex.

NICs and Domain Name Allocation

The authority to allocate domain names, as with IP addresses, begins with ICANN.
ICANN controls the root zone and defines the top-level domains (TLDs) that lie just
below the root of the tree. As with addresses, each TLD has a managing authority re-
ferred to as a network information center (NIC). Each NIC establishes different policies
for name allocation—for example, anyone can get a .com address, but only accredited
educational institutions qualify for a .edu address. Depending on NIC policy, registra-
tion authority may be further delegated to one or more registrars.

IANA defines four categories of TLD. The oldest category is the generic TLDs (gTLD);
these are country-agnostic top-level domains such as .com or .edu. Following gTLDs is
the one-domain infrastructural TLD, which contains the .arpa domain used for reverse
DNS lookups. A country code TLD (ccTLD) is a two-letter top-level domain for a coun-
tries (e.g., .ie for Ireland). A new set of internationalized TLDs (IDN ccTLD) allow non-
Latin characters.

2. Internationalized domain names raise the risk of homographic attacks, such as creating a domain name that
looks like oreilly.com but uses a Cyrillic O.
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Each TLD has its own NIC. Table 8-3 below shows the NICs for a number of commonly
consulted TLDs.

Table 8-3. Notable NICs

TLD NIC URL

.org  Public Interest Registry WWW.pir.org

.biz Neustar www.neustar.biz/enterprise/domain-name-registry
.com VeriSign www.verisigninc.com/

.net  VeriSign www.verisigninc.com/

.edu  Educause www.educause.ed

.int IANA www.iana.org/domains/int

fr AFNIC www.afnic.fr/

.uk  Nominet www.nominet.org.uk

.y Coordination Center for TLD RU  www.cctld.ru/en/
.an CNNIC www1.cnnic.cn/

kr KISA www.kisa.or.kr/

This hierarchy of nameservers also serves to determine which servers are authorita-
tive. Top-level registries assign authority to subregistries by granting them zones. Each
zone has one master server that maintains its domain names and is authoritative when
queried, but zones can be nested in order to give different servers authority.

Forward DNS Querying Using dig

The basic DNS query tool is domain information groper (dig), a command-line DNS
client that enables you to query DNS for all of the major records. Begin by conducting
a simple dig query:

$ dig oreilly.com
dig oreilly.com

; <<>> DiG 9.8.3-P1 <<>> oreilly.com

;3 global options: +cmd

;5 Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29081

;5 flags: gr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: O, ADDITIONAL: O

53 QUESTION SECTION:
soreilly.com. IN A

53 ANSWER SECTION:
oreilly.com. 383 IN A 208.201.239.101
oreilly.com. 383 IN A 208.201.239.100
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;5 Query time: 10 msec

;3 SERVER: 192.168.1.1#53(192.168.1.1)
55 WHEN: Sat Jul 20 19:11:17 2013

;3 MSG SIZE rcvd: 61

$ dig +short oreilly.com
208.201.239.101

208.201.239.100

We will consider dig’s display options, and then the structure of the DNS response. As
seen in the previous example, the basic dig command provides extensive information
about the query, beginning with a list of options invoked, then a DNS header, and then
several sections corresponding to the query. Note the QUERY, ANSWER, AUTHORITY, and
ADDITIONAL fields in the header line, and how those correspond to the lines in the
corresponding sections. Because this domain returned no AUTHORITY or ADDITIONAL
records, none are shown in the output. The query is followed by a set of statistics about
the query: the server, the time it took, and the size of the message.

dig provides an enormous number of output options; the previous example showed the
default display. Individual sections of that display can be turned off using +nocom
ments (which kills all the comments beginning with a double semicolon), +nostats
(killing the statistics at the end), and +noquestion and +noanswer (to eliminate the DNS
responses). +short will simply remove all the cruft and show the responses.

dig is simply a DNS client, so the majority of information seen is from the DNS server
itself. dig enables queries to different servers by using @ in the command line. For
example:

$ # 8.8.8.8 is Google's public DNS server; let's query a CDN using it
$ dig @8.8.8.8 www.foxnews.com

; <<>> DiG 9.8.3-P1 <<>> @8.8.8.8 www.foxnews.com

; (1 server found)

;3 global options: +cmd

;5 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18702

;5 flags: gr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: @, ADDITIONAL: O

53 QUESTION SECTION:
;www. foxnews.com. IN A

55 ANSWER SECTION:

www . foxnews . com. 282 IN CNAME  www.foxnews.com.edgesuite.net.
www. foxnews.com.edgesuite.net. 21582 IN CNAME a20.g.akamai.net.
a20.g.akamati.net. 2 IN A 204.245.190.42
a20.g.akamati.net. 2 IN A 204.245.190.8

55 Query time: 141 msec

;5 SERVER: 8.8.8.8#53(8.8.8.8)

55 WHEN: Sat Jul 20 19:48:01 2013
33 MSG SIZE rcvd: 135
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$ # Query using my default server
$ dig www.foxnews.com

; <<>> DiG 9.8.3-P1 <<>> www.foxnews.com

;3 global options: +cmd

;3 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47098

;3 flags: gr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: O, ADDITIONAL: O

53 QUESTION SECTION:
;www. foxnews.com. IN A

55 ANSWER SECTION:

www . foxnews . com. 189 IN CNAME  www.foxnews.com.edgesuite.net.
www. foxnews.com.edgesuite.net. 9699 IN CNAME a20.g.akamail.net.
a20.g.akamati.net. 9 IN A 23.66.230.160
a20.g.akamati.net. 9 IN A 23.66.230.106

53 Query time: 97 msec

53 SERVER: 192.168.1.1#53(192.168.1.1)
55 WHEN: Sat Jul 20 19:48:09 2013

;3 MSG SIZE rcvd: 135

As you can see, querying a CDN-moderated site (Fox News uses Akamai) results in
radically different IP addresses for the same name. CDNs manipulate the DNS to ensure
that caches of published data are geographically close to their target. If you don’t specify
the server using @, dig will default to whatever server the system is configured to use
(for example, in Unix systems this is maintained in /etc/resolv.conf).

A CDN is a caching network that makes the Internet viable. Before the Web, a user
might visit four to five hosts in an hour; after the Web, a request to a web page might
launch a hundred different HT TP requests. The majority of these requests are redirected
via DNS to caching servers that are located geographically nearby.

CDNs add an annoying wrinkle to web analysis, because a single CDN server may host
multiple websites. Once an address is identified as a CDN, figuring out exactly what it
is tends to be prohibitively difficult.

Now, let’s look at the DNS data. DNS is a federated database system. So queries go first
to a local DNS server, which sends a response if it possesses the answer to the query. If
the server doesn’t have the information, it uses the hierarchical structure of the name
to figure out where to send the request, waits for a response, and sends the response
back. DNS supports a number of different queries, termed resource records (RRs), and
the options sent during the query specify the resource record requested as well as options
for querying additional servers. The values with As or CNAMES in the lines above are
resource records.

Note that the header lists eight fields:
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opcode
This field was intended to specify a number of different actions, such as queries,
inverse queries, and server status. In practice, it should always be set to query. A
number of other opcodes exist, but they are used to communicate information
between servers.

status
The status of the response. Three messages appear most often: NOERROR, NXDO
MAIN, and SERVFAIL. NOERROR indicates that the query was successful, NXDOMAIN
indicates that no domain was available, and SERVFAIL indicates that authoritative
servers for the domain were unreachable.

id
The message ID. DNS is a UDP-moderated protocol and uses message IDs to track
queries and responses.

flags
These provide information on the response, and include gr (set high for aresponse),
aa (sethigh when the answer is from an authoritative server), ra (recursion desired),
and rd (recursion available).

The remaining four fields refer to the categories of records sent in response. These four
are:

QUERY
This record is simply a copy of the original request; you can see in this case that the
query is echoed in what dig refers to as the QUESTION section.

ANSWER
Contains the response.

AUTHORITY
Reserved for records that identify other servers.

ADDITIONAL
Provides additional information, such as the expected responses to future queries.

Additional information is very much a function of the nameserver’s administrators. A
common example of its use follows, where the information provides a name lookup for
the mail server identified by an MX query:

$ dig +nostats +nocmd mx cmu.edu

;5 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30852

;3 flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: O, ADDITIONAL: 3

53 QUESTION SECTION:
;Ccmu.edu. IN MX
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55 ANSWER SECTION:

cmu.edu. 20051 IN MX 10 CMU-MX-02.ANDREW.cmu.edu.
cmu.edu. 20051 IN MX 10 CMU-MX-03.ANDREW.cmu.edu.
cmu.edu. 20051 IN MX 10 CMU-MX-04.ANDREW.cmu.edu.
cmu.edu. 20051 IN MX 10 CMU-MX-01.ANDREW.cmu.edu.

;5 ADDITIONAL SECTION:

CMU-MX-03.ANDREW.cmu.edu. 20412 IN A 128.2.155.68
CMU-MX-01.ANDREW.cmu.edu. 20232 IN A 128.2.11.59
CMU-MX-02.ANDREW.cmu.edu. 20051 IN A 128.2.11.60

Now, let’s discuss what those resource records actually mean. DNS has upward of 20
resource records for different functions. The major ones are:

A
An answer record, providing the IP address associated with a particular name.

AAAA
Like A, but provides an IPv6 address for a name.

CNAME
Relates two names, a canonical name and an alias.

MX
Returns the mailserver for a domain.

PTR
Points to a canonical name; mostly used for DNS reverse lookups.

TXT
Contains arbitrary text data.

NS
Describes the nameserver for an address.

SOA
Provides information about the authoritative nameserver for an address.

dig starts all resource records with the same four values: a name, a time to live (T'TL),
a class, and an identifier for the RR (for example: cmu.edu, 20051, IN, MX).Thename
is passed with the query. The TTL indicates for how long (in seconds) the value of the
name can be trusted; DNS relies heavily on caching and the TTL provides instructions
on when to refresh the cache. The class will almost invariably be IN (Internet); other
class names are possible, but outside the scope of this book.

A and AAAA provide basic DNS functionality: they associate the queried name with
an IP address. A records provide IPv4 addresses, and AAAA records provide IPv6 ad-
dresses. By default, dig queries for A records, while other record types are specified by
adding them to the command line, seen here:
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$ dig +nocomment +noquestion +nostats +nocmd www.google.com

www.google.com. 55 IN A 74.125.228.81
www.google.com. 55 IN A 74.125.228.83
www.google.com. 55 IN A 74.125.228.84
www.google.com. 55 IN A 74.125.228.80
www.google.com. 55 IN A 74.125.228.82

$ dig +nocomment +noquestion +nostats +nocmd aaaa www.google.com
www.google.com. 18 IN AAAA 2607:f8b0:4004:802::1014

Note that the query to Google responds with five A records. This is an example of round
robin DNS allocation, a common load balancing technique. In round robin allocation,
the same domain name is assigned to multiple IP addresses. Consequently, when a query
chooses an IP address to contact for the name, it effectively picks the name randomly
from the set of targets. Round robin DNS allocation is one of many DNS hacks that
makes reverse lookups (IP addresses from names) incredibly annoying.

Note also the short TTL values. If a particular Google server goes down, the TTL guar-
antees that in 55 seconds, the user has good odds of contacting another server.

Canonical name (CNAME) records are used to associate an alias to a canonical name.
For example, consider lookups for www.oreilly.com:

dig +nocomment +noquestion +nostats +nocmd www.oreilly.com

www.oreilly.com. 3563 IN CNAME  oreilly.com.
oreilly.com. 506 IN A 208.201.239.101
oreilly.com. 506 IN A 208.201.239.100

As this shows, the name www.oreilly.com actually points to oreilly.com. www.oreil-
ly.com does not have an IP address; it points to oreilly.com, and that name has an IP
address. Canonical names are used for shortcuts (as in the previous example), and also
to manage content distribution. The example using Fox News showed how Akamai first
aliases all of Fox News’ sites into its own network names using CNAME.

DNS provides the lookup functions for email, through the agency of the mail ex-
change (MX) record. MX records record the addresses of mail servers for a particular
domain. For example, if I decide to mail jbro@andrew.cmu.edu, I can find the mail server
for doing so by looking up the MX records for cmu.edu:

$dig +noquestion +nostats +nocmd mx cmu.edu

;3 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49880

;5 flags: gr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: O, ADDITIONAL: 2

55 ANSWER SECTION:

cmu.edu. 21560 IN MX 10 CMU-MX-03.ANDREW.cmu.edu.
cmu.edu. 21560 IN MX 10 CMU-MX-04.ANDREW.cmu.edu.
cmu.edu. 21560 IN MX 10 CMU-MX-01.ANDREW.cmu.edu.
cmu.edu. 21560 IN MX 10 CMU-MX-02.ANDREW.cmu.edu.

;5 ADDITIONAL SECTION:
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CMU-MX-01.ANDREW.cmu.edu. 21519 IN A 128.2.11.59
CMU-MX-02.ANDREW.cmu.edu. 21159 IN A 128.2.11.60

MX records include a server name (such as CMU-MX-03.ANDREW.cmu.edu), as well as a
priority value for the email server. The weighting value is used to choose a mail server:
mail clients should pick mail servers in order of ascending priority (i.e., 1 should be
chosen before 10).

Of note in this example are the A records shoved into the additional section. These
records resolve the CMU-MX-01 and CMU-MZX-02 addresses. This is a conscious de-
cision by CMU’s DNS administrators to include this information and reduce the num-
ber of lookups done.

NS records are used to find the authoritative nameserver for a zone. For example, for
O’Reilly Media:

$ dig +nostat ns oreilly.com

; <<>> DiG 9.8.3-P1 <<>> +nostat ns oreilly.com

;5 global options: +cmd

;5 Got answer:

;5 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 32310

;5 flags: gr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: @, ADDITIONAL: O

55 QUESTION SECTION:
;oreilly.com. IN NS

53 ANSWER SECTION:
oreilly.com. 3600 IN NS nsautha.oreilly.com.
oreilly.com. 3600 IN NS nsauthb.oreilly.com.

Now look at the NS record for a site managed by a CDN, such as Fox News again:

$ dig +nostat ns foxnews.com

; <<>> DiG 9.8.3-P1 <<>> +nostat ns foxnews.com

;5 global options: +cmd

;5 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38538

;3 flags: gr rd ra; QUERY: 1, ANSWER: 8, AUTHORITY: @, ADDITIONAL: 5

53 QUESTION SECTION:
; foxnews.com. IN NS

55 ANSWER SECTION:

foxnews.com. 300 IN NS usc2.akam.net.
foxnews.com. 300 IN NS nsl.chi.foxnews.com.
foxnews.com. 300 IN NS ns1-253.akam.net.
foxnews.com. 300 IN NS dns.tpa.foxnews.com.
foxnews.com. 300 IN NS uswl.akam.net.
foxnews.com. 300 IN NS usw3.akam.net.
foxnews.com. 300 IN NS asia3.akam.net.
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foxnews.com. 300 IN NS usc4.akam.net.

;5 ADDITIONAL SECTION:

uswl.akam.net. 28264 IN A 96.17.144.195
usw3.akam.net. 50954 IN A 69.31.59.199
asia3.akam.net. 28264 IN A 222.122.64.134
usc4.akam.net. 28264 IN A 96.6.112.196
usc2.akam.net. 88188 IN A 69.31.59.199

Note that in this case, the authoritative nameservers are largely owned by akam.net
(Akamai). Fox News is hosted by Akamai’s CDN, and Akamai modifies the names of
the hosts as necessary in order to boost performance.

SOA records contain summary information about the authoritative server for a domain.
Theserecords are most commonly encountered during failed lookups. When an address
isn’t found, the SOA information for that zone’s server is returned instead.

dig @8.8.4.4 +multiline +nostat zlkoriongomk.com

; <<>> D1G 9.8.3-P1 <<>> @8.8.4.4 +multiline +nostat zlkoriongomk.com
; (1 server found)

;3 global options: +cmd

;5 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 11857

;3 flags: qr rd ra; QUERY: 1, ANSWER: ©, AUTHORITY: 1, ADDITIONAL: 0O

53 QUESTION SECTION:
;zlkoriongomk.com. IN A

55 AUTHORITY SECTION:

com. 899 IN SOA a.gtld-servers.net. nstld.verisign-grs.com. (
1374373035 ; serial
1800 ; refresh (30 minutes)
900 ; retry (15 minutes)
604800 ; expire (1 week)
86400 ; minimum (1 day)
)

The SOA field begins with the source host, followed by a contact email address. After
this address comes a serial number, which indicates how many times the source file has
been modified, and then timeout statistics. Note the \+multiline option for dig; this
will provide a multiple line, more human-readable output for the SOA record.

The TXT field is a wildcard field used for any text output that the server administrator
feels like passing. For example, Google passes strings for managing Google Apps:

$ dig +short txt google.com
"v=spf1 include:_spf.google.com 1p4:216.73.93.70/31 1p4:216.73.93.72/31 ~all"
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The DNS Reverse Lookup

A reverse lookup is the process of reconstructing a DNS name from an IP address. For
example, if I want to find out who owns 208.201.139.101, I do so using dig -x:

$ dig +nostat -x 208.201.139.101

; <<>> D1G 9.8.3-P1 <<>> +nostat -x 208.201.139.101

;3 global options: +cmd

;3 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7519

;3 flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: @, ADDITIONAL: O

53 QUESTION SECTION:
;101.139.201.208.1n-addr.arpa. 1IN PTR

53 ANSWER SECTION:
101.139.201.208.1n-addr.arpa. 21600 IN PTR host-d101.studley.com.

Reverse lookups are requests to get DNS names from IP addresses. Note that the ques-
tion section does not request the IP address, 208.201.139.101, but 101.139.201.208.in-
addr.arpa, which lists the fields of the IP address in reverse order. When DNS does a
reverse lookup, it creates a special domain name to query in the in-addr.arpa TLD.? The
string of digits and periods used for a reverse lookup is the original IP address reversed.
The is because DNS names and IP addresses are defined in a contradictory fashion. A
DNS name becomes more finely defined (from TLD to domain to individual host) by
reading from right to left, while IP addresses are more finely defined reading from left
to right.

Reverse lookups are a kludge. Note that the record returned in the answer is a Pointer
(PTR) record. PTR records are not automatically created with the canonical A records,
butare instead registered separately by the NIC. More important, there’s no requirement
that a PTR record be registered, and the relationship between names and IP addresses
is tenuous at best.

For example, consider a CDN. If I look up one of Fox News’ IP addresses, such as
23.66.230.66, I get this:

dig +nostat +nocmd -x 23.66.230.66

;3 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56379

;3 flags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: O, ADDITIONAL: 0O

53 QUESTION SECTION:
;66.230.66.23.1n-addr.arpa. IN PTR

3. .arpa officially stands for Address and Routing Parameter area. This name is a backronym, because the
abbreviation originally meant Advanced Research Projects Agency, the DoD agency that originally funded
Internet development
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53 ANSWER SECTION:
66.230.66.23.1n-addr.arpa. 290 IN
PTR a23-66-230-66.deploy.static.akamaitechnologies.com.

The CDN becomes an informational dead end; the answer from the reverse lookup has
no meaningful relation to the names in the original query.

In general, DNS information is best collected at the time of the original query. The
uncertainty of reverse lookups is part of the reason for this. However, even if reverse
lookups worked perfectly, attackers often use very short-lived names. Where possible,
record domain names as they’re used (such as the URL in HTTP logs) rather than trying
to reconstruct them after the fact.

Using whois to Find Ownership

While DNS can provide information on a domains name, the meat of ownership in-
formation is provided by whotis. This is a federated protocol (RFC 3921) that lists the
putative owners of DNS names. The standard whois query on a domain will return
ownership and contact information for a domain, as seen in Example 8-2.

Example 8-2. A whois query for oreilly.com

S$whois oreilly.com
<boilerplate>

Domain Name: OREILLY.COM
Registrar: GODADDY.COM, LLC
Whois Server: whois.godaddy.com
Referral URL: http://registrar.godaddy.com
Name Server: NSAUTHA.OREILLY.COM
Name Server: NSAUTHB.OREILLY.COM
Status: clientDeleteProhibited
Status: clientRenewProhibited
Status: clientTransferProhibited
Status: clientUpdateProhibited
Updated Date: 26-may-2012
Creation Date: 27-may-1997
Expiration Date: 26-may-2013

<more boilerplate>

Registered through: GoDaddy.com, LLC (http://www.godaddy.com)
Domain Name: OREILLY.COM

Created on: 26-May-97

Expires on: 25-May-13

Last Updated on: 26-May-12

Registrant:
0'Reilly Media, Inc.
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1005 Gravenstein Highway North
Sebastopol, California 95472
United States

Administrative Contact:
Contact, Admin nic-ac@oreilly.com
0'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472
United States
+1.7078277000 Fax -- +1.7078290104

Technical Contact:
Contact, Tech nic-tc@oreilly.com
0'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472
United States
+1.7078277000 Fax -- +1.7078290104

Domain servers in listed order:
NSAUTHA.OREILLY.COM
NSAUTHB.OREILLY.COM

You'll note that a whois entry for a domain returns an enormous amount of boilerplate
information. You will also find that the information returned has no particular fixed
format—whois information is the electronic equivalent of 3x5 index cards. Depending
on who owns the card and how they decide to administer it, you may get phone numbers
and biographies, or nothing at all.

A good way to get a feel for the differences in registration is to take a look at the regis-
tration files for different countries. There is no central whois database—instead, de-
pending on the top-level domain, whois information may be maintained by any of a
number of whois servers. For example, Russian whois data (the .ru domain) is main-
tained by whois.ripn.net, French by lvs-vip.nic.fr, and Brazilian by registro.br. Fortu-
nately, the good folks at whois-servers.net provide aliases for every country and TLD,
and depending on your whois implementation, the information may be baked into the
executable for you already.

At the minimum, any whois implementation will provide the ability to specify a lookup
server using the -h switch. Sowhois -h ru.tld-servers.netisidentical to whois -h
whois.ripn.net. Several whois implementations offer a country-specific -c option,
making whois -c RU identical to both of the previous examples.

In addition to providing information on domain names, whois is also useful for pro-
viding information on address allocation and ownership. If whois is called with an IP
address rather than a name, like in Example 8-3, it will provide information on the
organization that owns that address, often in the form of a netblock. For example, if I
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look up the whois information for Voila, a French search engine, I get different infor-
mation based on whether I look at RIPE (the European top-level registry) or the French
NIC. RIPE is informative; the French NIC is considerably less so.

Example 8-3. Using whois with an IP address

$dig +short voila.fr
193.252.148.80

whois -h whois.ripe.net 193.252.148.80
This i1s the RIPE Database query service.
The objects are in RPSL format.

R X R X »n

The RIPE Database is subject to Terms and Conditions.
See http://www.ripe.net/db/support/db-terms-conditions.pdf

xR

% Note: this output has been filtered.
% To receilve output for a database update, use the "-B" flag.

% Information related to '193.252.148.0 - 193.252.148.255"'

% Abuse contact for '193.252.148.0 - 193.252.148.255' is 'gestionip.ft@orange.com'

inetnum: 193.252.148.0 - 193.252.148.255
netname: ORANGE - PORTAILS

descr: France Telecom

descr: internet portals for multiple services
country: FR

admin-c: WPTR1-RIPE

tech-c: WPTR1-RIPE

status: ASSIGNED PA

remarks: for hacking, spamming or security problems send mail to
remarks: abuse@orange. fr

mnt-by: FT-BRX

source: RIPE # Filtered

role: Wanadoo Portails Technical Role
address: France Telecom - OPF/Portail/DOP/Hebex
address: 48, rue Camille Desmoulins

address: 92791 Issy Les Moulineaux Cedex 9
address: FR

phone: +33 1 5888 6500

fax-no: +33 1 5888 6680

admin-c: WPTR1-RIPE

tech-c: WPTR1-RIPE

nic-hdl: WPTR1-RIPE

mnt-by: FT-BRX

source: RIPE # Filtered

% This query was served by the RIPE Database Query Service version 1.60.2 (WHOIS4)

$ whois -h fr.whois-servers.net 195.152.120.129
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%% This is the AFNIC Whois server.
%% complete date format : DD/MM/YYYY
%% short date format : DD/MM

%% version : FRNIC-2.5

%% Rights restricted by copyright.
%% See http://www.afnic.fr/afnic/web/mentions-legales-whois_en

%% Use '-h' option to obtain more information about this service.

=

% [96.255.98.126 REQUEST] >> 195.152.120.129

=
R

RL Net [#####Hii##] - RL IP [#utitHts . |

You will find that the situation is reversed with Asian information. The APNIC whois
is often fairly sparse, but the whois entries at the country level are usually informative.

Whois information is particularly useful when you can’t get much useful data out of a
DNS reverse lookup. If you can't find the specific domain name, you can use whois to
at least find the block of addresses that host the domain.

Additional Reference Tools

In addition to network and routing information, there exist a number of commonly
accessible sites containing information on exploits, attacks, and the reputation of par-
ticular IP addresses. These sites are usually small, volunteer-run and have a fair degree
of turnover to them.

DNSBLs

A DNS Blackhole List (DNSBL) is a DNS-based IP address database used primarily as
an antispam technique. The first DNSBLs were actually implemented using BGP, and
were intended to actively drop routes associated with spammer IP addresses. DNSBLs
are instead DNS-moderated, they serve as reputation databases for email software. For
example, a mail transfer agent can consult a DNSBL to determine if the sending IP is a
spammer and react accordingly.

DNSBLs work by providing a reverse-lookup style functionality on their DNS servers.
For example, I can look up an echo address on a DNSBL using dig:

$ dig 2.0.0.127.sbl.spamhaus.org

; <<>> DiG 9.8.3-P1 <<>> 2.0.0.127.sbl.spamhaus.org

;3 global options: +cmd

;3 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45434
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55 flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: ©, ADDITIONAL: O

; QUESTION SECTION:
2.0.0.127.sbl.spamhaus.org. IN A

s
3

53 ANSWER SECTION:
2.0.0.127.sbl.spamhaus.org. 300 IN A 127.0.0.2

;5 Query time: 39 msec

;3 SERVER: 192.168.1.1#53(192.168.1.1)
53 WHEN: Sun Jul 28 15:10:23 2013

33 MSG SIZE rcvd: 60

The address I intended to query was 127.0.0.2. Note that, as with a reverse lookup, I
reverse the IP address. After reversing the address, I attach it to the name of the list and
query. This process is effectively a reverse lookup without relying on the hard-
coded .arpa TLD. Instead, the response is provided by an A record provided by Spam-
haus’s SBL server.

DNSBLs differ depending on the list and provider. Providers may provide several dif-
ferent forms of lists for different categories of traffic. Different providers will also pro-
vide different policies for adding or removing addresses from the DNSBL. How different
organizations handle delisting (address removal) radically impacts the character of the
list. Most automatically drop an address a fixed number of days after the last abuse;
others require manual intervention.

Some notable DNSBLs include:

Spam and Open Relay Blocking System (SORBS)
Provides over 15 different DNSBLs that categorize hosts into a number of different
behaviors. SORBS is particularly useful for categorizing dynamic addresses such as
dialup and DSL addresses through a specialized list, the Dynamic User and Host
List (DUHL).

Spamhaus
A nonprofit private company that produces a number of distinct blacklists and
whitelists. Spamhaus’s most commonly used lists are the PBL (end-user addresses),
SBL (spam addresses), and XBL (hijacked IP addresses and bots). These lists are
accessible as a single combined service, ZEN.

SpamCop
Currently owned by Cisco Systems, SpamCop began as a private effort and even-
tually became part of IronPort’s email reputation system. Currently, SpamCop pro-
vides one public list, the SpamCop Block List (SCBL).

DNSBLs are useful as a categorized source of hostile activity. Using a DNSBL, an analyst
can determine whether a particular address has been doing something hostile elsewhere
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on the Internet and possibly what kind of activity it was. They supplement the more
basiclookup information discussed earlier by providing some idea of a site’s past history.

DNSBLs are designed to be real-time tools that work primarily with mail agents, not to
support forensic analysis. Records will change quickly and unpredictably, so an address
may be recognized by the DNSBL as hostile at the time of an event, but be delisted when
an analyst examines it later. Most of the blacklists sell some kind of feed or data dump
that, for forensic purposes, is preferable.
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CHAPTER 9
More Tools

As discussed at the beginning of the book, there are a lot of tools that you will end up
using for one or two specific purposes. In this section, I discuss other tools that I find
handy for analysis and include a brief explanation about how to use them.

Many of these tools are pretty powerful—far more than in a three-page summary can
describe. I will touch on each of these tools very briefly and try to provide an example
for each. However, be prepared to look for additional material and supplemental doc-
umentation.

Visualization

While R is my primary tool for graph visualization, there are several additional tools
that are handy under specific circumstances. Graphviz is toolkit for visualizing graphs.
Gnuplot is the utility knife of plotting tools: powerful, scriptable, and profoundly un-
friendly.

Graphviz

Graphviz is a graph layout and visualization package. Originally developed by AT&T
Labs, the package is now released under the Eclipse license and is actively maintained.

Graphviz is actually a suite of tools, each of which provides a different mechanism for
automatically laying out graphs. With each tool, you provide a graph specification, and
the tool automatically lays out the graph based on the specification. Graphs are specified
via a language called dot, which specifies nodes of various attributes and then links
connecting them. An example dot command and output are shown in Example 9-1,
with the results illustrated in Figure 9-1.
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Example 9-1. A sample graph in dot

# This 1s a simple dotfile showing the basic features of a graph
digraph sample_graph {
# Nodes are specified with the node command, if note labeled seperately
# Theilr labels are their names
node [shape=circle] node_a, node_b;
# The shape will automatically be a circle
node [label="Node Gamma"] node_c;
# Node attributes are passed down the line, so if I want to
# avoid everything being called 'Node gamma', I have to reset
# the label to the node name
node [shape=square, label="\N"] node_1, node_2;
node [shape=doublecircle] node_3;
# Edge attributes are put in square brackets; label is the text label
# for the graph

node_1 -> node_a [ label="Transition 1,A" ];
node_a -> node_1;
node_b -> node_b [ label="Transition B,B" ];
node_c -> node_2;
node_2 -> node_1;

# Color is controlled with the color attribte
node_2 -> node_3 [color = "blue"];

node_2 -> node_a;

# Style lets you specify dotted, bold, &c.
node_2 -> node_b [style = "dotted"];

node_2 -> node_c;

label="Sample Graph";

fontsize=14;

node 2 f----------mccmmcmaeaaa '

Node Gamma node_a node_b Transition B,B

Transition 1,A

» node_1

Sample Graph

Figure 9-1. Resulting layout in dot
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It’s very easy to convert log records from their own formats to dot, and the resulting
graphs can often be used to visually signify features such as central nodes. Example 9-2
shows the code that converts HT TP page and referrer sites into links and then plots the
progression of surfing using dot. An example graph is shown in Figure 9-2.

Example 9-2. Convert Web Log Records into Dot Graphs

#!/usr/bin/env python
#
log2dot.py

#
#
# Input:

# Log files from stdin. We assume these files have been processed to
# provide the URL and Referer URL

#

#

Output
Stdout produces a dot file which can be run through graphviz
import sys, re
host_id = re.compile('~http://([*/]1+)/.*S$")
pairs = {}
nodes = {}
def graph_output(nodes, pairs):
graph_header = """
digraph graph_output {
rotate = 90;
size="7.5,10";

+*

print graph_header
a = nodes.keys()
a.sort()
for 1 in a:
print "node [shape = circle] i;"
a = pairs.keys()
a.sort()
for 1 in a:
for j in pairs[i].keys():
# Prints each link then labels it with the number of occurrences
print '%s -> %s [label="%d"] ;' % (i,j,patrs[1][3])
print "}"

if __name__ == '__main__
for 1 in sys.stdin.readlines():
values = i[:-1].split()
host = values[-2][:-1]
referrer = values[-1]
if host_id.match(referrer):
refname = host_id.match(referrer).groups()[0]
else:
refname = referrer
a = host.split('.")
if a[0] == 'www':
host = '.'.join(a[1:])
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a = refname.split('.")
if a[0] == 'www':
refname = '.'.join(a[1:])

host = host.replace('-','_")
host = host.replace('.','_")
refname = refname.replace('-','_")
refname = refname.replace('.','_ ")
nodes[host] = 1
nodes[refname] = 1
if pairs.has_key(refname):
if pairs[refname].has_key(host):
pairs[refname][host] += 1
else:
pairs[refname][host] = 1
else:
pairs[refname] = {host:1}
graph_output(nodes, pairs)

admin_brightcove_com

Figure 9-2. Sample output of the log2dot script

pagead2_googlesyndication_com

Communications and Probing

Network monitoring, as I've discussed it in this book, is largely passive. There are a
number of situations where more active monitoring and testing is warranted, however.
The tools in this section are used for actively poking and probing at a network.

In the context of this book, I've focused on tools that are used to actively supplement
monitoring infrastructure. They’re used to provide example sessions (netcat), supple-
ment passive monitoring with active probing (nmap), or to provide crafted sessions to
test specific monitoring configurations (Scapy).
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netcat

netcat is a Unix command-line tool that redirects output to TCP and UDP sockets. The
power of netcat is that it turns sockets into just another pipe-accessible Unix FIFO. Using
netcat, it is possible to quickly implement clients, servers, proxies, and portscanners.

netcat’s simplest invocation is netcat host port, which creates a TCP socket to the
specified host and port number. Input can be passed to netcat and output read using
standard Unix redirects, like this:

Secho "GET /" | netcat www.oreilly.com 80
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

In this example, we use netcat to fetch the index page of a website. The GET / is standard
HTTP syntax.' If you know how to create a session using a particular protocol such as
HTTP, SMTP, or the like, you can send it through netcat to create a client.

On the same principle, you can use netcat for banner grabbing (see Chapter 15). For
example, I can grab an ssh banner by sending a bogus session through netcat to an SSH
server:

$ echo "WAFFLES" | nc fakesite.com 22
SSH-2.0-0penSSH_6.2
Protocol mismatch.

Note the use of nc in the example; on most netcat packages, the two applications will be
aliases to each other. By default, netcat opens a TCP connection, this can be modified
using the -u option.

netcat provides a number of command-line options for finer control of the tool. For
example, to improve banner grabbing, we can use a range of ports:

echo "WAFFLES" | nc -wl -v fakesite.com 20-30
fakesite.com [127.0.0.1] 21 (ftp) open

220 fakesite.com NcFTPd Server (licensed copy) ready.
500 Syntax error, command unrecognized.

fakesite.com [127.0.0.1] 22 (ssh) open
SSH-2.0-0penSSH_6.2

The -v option specifies verbosity, adding the lines about which ports are opened. The
-wl command specifies a 1-second wait, and the 20-30 specifies to check the ports 20
through 30.

Simple portscanning can be done using the -z option, which simply checks to see if a
connection is open. For example:

1. HTTP is an extremely robust protocol and tolerates any combination of session attempts, so this is a bit of a
straw man for the sake of example.
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$nc -n -wl -z -vv 192.168.1.9 3689-3691

192.168.1.9 3689 (daap) open

192.168.1.9 3690 (svn): Connection refused
192.168.1.9 3691 (magaya-network): Connection refused
Total received bytes: 0

Total sent bytes: 0

Which, in this case, scans an Apple TV.

netcat is a very handy tool for banner grabbing and internal analytics because it enables
you to build an ad hoc client for any application very quickly. When new internal sites
are identified, netcat can be used to scan and probe them for more information if a
better tool isn’t available.

nmap

Passive security analysis will only go so far, and every effective internal security program
should have at least one scanning tool available to them. Network Mapper (nmap) is
the best open source scanning tool available.

The reason to use nmap, or any other scanning tool, is because these tools contain a
huge amount of information about vulnerabilities and operating systems. The goal of
any scanning effort is to gain intelligence about a targeted host or network. While a
simple half-open scan can be easily implemented using just about anything with a com-
mand line, professional scanning tools benefit from expert systems that can combine
banner grabbing, packet analysis, and other techniques to identify host information.
For example, consider a simple nmap scan on the Apple TV used in the previous example
(address 192.168.1.9):

$ nmap -A 192.168.1.9

Starting Nmap 6.25 ( http://nmap.org ) at 2013-07-28 19:44 EDT
Nmap scan report for Apple-TV-3.home (192.168.1.9)

Host 1s up (0.0058s latency).

Not shown: 995 closed ports

PORT STATE SERVICE VERSION
3689/tcp open daap Apple iTunes DAAP 11.0.1d1
5000/tcp open rtsp Apple AirTunes rtspd 160.10 (Apple TV)

| rtsp-methods:

|_  ANNOUNCE, SETUP, RECORD, PAUSE, FLUSH, TEARDOWN, OPTIONS, \
GET_PARAMETER, SET_PARAMETER, POST, GET

7000/tcp open http Apple AirPlay httpd

| http-methods: Potentially risky methods: PUT

|_See http://nmap.org/nsedoc/scripts/http-methods.html

|_http-title: Site doesn't have a title.

7100/tcp open http Apple AirPlay httpd

| _http-methods: No Allow or Public header in OPTIONS response (status code 400)

|_http-title: Site doesn't have a title.

62078/tcp open tcpwrapped

Service Info: 0Ss: 0S X, Mac 0S X; Device: media device;
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CPE: cpe:/o:apple:mac_os_x

Service detection performed. Please report any incorrect results at
http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 69.63 seconds
The nmap scan contains information about open ports, the version of the server software
on those ports, potential risks, and additional data such as the CPE string.”

Analytically, scan tools are used immediately after a new host is discovered on a network
in order to figure out exactly what the host is. In particular, this is done by using the
following process:

1. Audit flow data to see if any new host/port combinations are appearing on the
network.

2. If new hosts are found, run nmap on the hosts to determine what they’re running.

3. If nmap can’t identify the service on the port, run nc to do some basic banner
grabbing and find out what the new port is.

Scapy

Scapy is a Python-based packet manipulation and analysis library. Using Scapy, you can
rip apart packets in a Python-friendly structure, visualize their contents and create new
correct IP packets that can be appended or injected into a collection of packets. Scapy
is my go-to tool for converting and manipulating tcpdump records.

Scapy provides a Python-friendly representation of tcpdump data. Once you've loaded
the data, you can view it using a number of display functions or examine the various
layers of each packet, which are represented as their own elements in a dictionary. In
Example 9-3, we read in and examine some packet contents using Scapy’s provided text
features and produce the image accompanying it. Figure 9-3 shows the output.

Example 9-3. Reading and examining packet contents

>>> # we start by loading up a dump file using rdpcap
>>> >> s=rdpcap('web.pcap')
>>> # We look for the first packet with TCP payload
>>> for 1 in range(0,100):
if len(s[i1][TCP].payload) > 0O:

print 1

break
63
>>> # We look at its contents using show()

2. CPE is a NIST project to provide a common framework for describing platforms.
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>>> >>> s[63].show()
#it#[ Ethernet ]###
dst= 00:1f:90:92:70:5a
src= 8c:2d:3a:46:f9:71
type= 0x800
#it#[ IP J##t#
version= 4L
ihl= 5L
tos= Ox0
len= 1110
id= 10233
flags= DF
frag= oL
ttl= 64
proto= tcp
chksum= 0xbe42
src= 192.168.1.12
dst= 157.166.241.11
\options\
#H#[ TCP (#u#
sport= 50300
dport= http
seq= 4157917086
ack= 3403794807
dataofs= 8L
reserved= 0L
flags= PA
window= 8235
chksum= 0x5dd5
urgptr= 0
options= [('NOP', None), ('NOP', None), ('Timestamp',
(560054364, 662137900))]
#4#[ Raw |###
load= 'GET / HTTP/1.1\r\nHost: www.cnn.com\r\nConnection:...'
>>> # Dump the contents using PDFdump
>>> s[63].pdfdump('http.pdf')
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Ml 00 1f 90 92 70 5al8c 2d aa 46 £f9 71[_0_&!_0_@ 00

dst 00:1f:90:92:70:5a 02,061 27 19 40 c0 a8 0L Oc %a
PRy 0b (00 50/ £7 d4 c7 e 18

src 8c:2d:aa:46:f9:71 ;

type 0x800. -[20 2| 00 00  Oa c0 5c_

47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31
1P ——/0d 0a 48 6f 73 74 3a 20 77 77 77 2e 63 6e 6e 2e
version aL .~ 63 6f 6d 0d Oa 43 6f 6e 6e 65 63 T4 69 6f 6e 3a
ihl sL—m— 20 6b 65 65 70 2d 61 6¢c 69 76 65 0d Oa 41 63 63
tos 0x0 __— ! 65 78 74 2f 68 T4 6d 6c 2c 61
len 1110— /70 70 6c 69 63 61 74 69 6f 6e 2f 78 68 74 6d 6¢
id 10233 /~2b 78 6d 6c 2¢c 61 70 70 6c 69 63 61 74 69 6f 6e
flags DF / 2f 78 6d 6c 3b 71 3d 30 2e 39 2c 2a 2f 2a 3b 71
frag oL 3d 30 2e 38 0d Oa 55 73 65 72 2d 41 67 65 6e T4
ttl 64 |3a 20 44 6f Ta 69 6c 6c 61 2f 35 2e 30 20 28 4d
proto tep AL 3b 20 49 6e 74 65 6¢c 20
chksum Oxbed2—— 20 31 30 5f 38 5f 33 29
src 192.168.1.12— 62 4b 69 74 2f 35 33 37
dst 157.166.241.11 4d 4c 2c 20 6¢c 69 6b 65
options I} 43 68 72 6f 6d 65 2f 32
TP _ 2e 34 33 20 53 61 66 61
sport 50300—— 31 0d Oa 41 63 63 65 70
dport http 6e 67 3a 20 67 Ta 69 70

2c 73 64 63 68 0d Oa 41

seq 4157917086
ack 3403794807 6e 67 75 61 67 65 3a 20
dataofs 8L 3b 71 3d 30 2e 38 0d Oa
reserved o 68 61 72 73 65 T4 3a 20
flags PA 2d 31 2¢c 75 74 66 2d 38
indow 8235—— 3b 71 3d 30 2e 33 0d Oa
“EE oodds 75 67 3d 35 31 36 36 33
Ergsff’ o 63 30 61 33 64 31 34 36
options [('NOP', None), ([ -] 63 31 36 65 34 30 30 32 32 33 36 3b 20 6f 70 74
' ' 69 6d 69 Ta 65 6¢ 79 53 65 67 6d 65 6e 74 73 3d
Raw] 25 37 42 25 32 32 31 37 30 39 36 32 33 34 30 25
load 'GET / HTTP/LINA\[.] 32 32 25 33 41 25 32 32 66 61 6¢c 73 65 25 32 32
25 32 43 25 32 32 31 37 31 36 35 37 39 36 31 25
32 32 25 33 41 25 32 32 67 63 25 32 32 25 32 43
25 32 32 31 37 32 31 34 38 36 37 39 25 32 32 25

Figure 9-3. When fully installed, Scapy can produce graphical disassemblies of a packet

I use Scapy primarily to convert and reformat tcpdump records. The following example
is a very simple application of this. The supplied script, shown in Example 9-4, provides

a columnar output for pcap files similar to rwcut’s output.

Example 9-4. tcpcut.py script

#!/usr/bin/env python
#

tcpcut.py

This 1s a script that takes a tcpdump file as input and dumps
the contents to screen in a format similar to rwcut.

It supports only nine fields and no prompts for the standard
pedagogical reason.

Input
tcpcut.py data_file

HOoH O O O OH OH R R R R R

Output
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# Columnar output to stdout
from scapy.all import *
import sys, time

header = '%15s|%15s|%5s|%5s|%5s|%15s|"' % ('sip','dip', 'sport', 'dport’',
'proto', 'bytes"')
tfn = sys.argv[1]

pcap_data = rdpcap(tfn)

for 1 in pcap_data:

sip = 1[IP].src

dip = i[IP].src

if {1[IP].proto ==
sport = 1[TCP].sport
dport = 1[TCP].dport

elif 1[IP].proto == 17:
sport = 1[UDP].sport
dport = 1[UDP].dport

else:
sport = 0
dport = 0

bytes = 1[IP].len

print "%15s|%15s|%5d|%5d|%5d|%15d" % (sip, dip, sport, dport,

i[IP].proto, bytes)

I also use Scapy to generate data for session testing. For example, if presented with a
new logging system, I'll generate a session using pcap and run that against the logging
system, then tweak the session using Scapy to see how my changes affect the logged
records.

Packet Inspection and Reference

The tools discussed in this section are all focused on enhancing packet inspection and
analysis. Wireshark is arguably the most useful packet inspection tool available, and
geoip is a handy reference tool for figuring out where traffic data came from.

Wireshark

I’'m not going to burn a lot of space on Wireshark because, like Snort and nmap, it's one
ofthe most common and well-documented tools available for traffic analysis. Wireshark
is a graphical protocol analyzer that provides facilities for examining packets and col-
lecting statistics on them, as well as a number of tools for meaningfully exploring the
data.
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Wireshark’s real strength is in its extensive library of dissectors for analyzing packet data.
A dissector is a set of rules and procedures for ripping apart packet data and recon-
structing the session underneath. An example of this is shown in Figure 9-4, which
shows how Wireshark can extract and display the contents of an HTTP session.

X web.pcsp Wireshark 1.10.5 (SVN Rev 54262 f

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help
eodNd cRxe ceswTFLEE QAN FEMHE B
Filter: = [Expression... Clear Appl e

No. Time Source Destination 4 » Frame 64: 1124 bytes on wire (8992 bits), 1124 bytes captured (8992 bits)
B . o . B mvEthernet II, Src: Apple 46:79:71 (8c:2d:aa:46:f9:71), Dst: Actionte 92:70:5a (00:1f:90:92
520.070013157.166.226.31 192.168.1.12 » Internet Protocol Version 4, Src: 192.168.1.12 (192.168.1.12), Dst: 157.166.241.11 (157.1

530.070035192.168.1.12 157.166.226.31 » Transmission Control Protocol, Src Port: 50300 (50300), Dst Port: http (80), Seq: 1, Ack:
540.076719157.166.226.31 192.168.1.12 - Hypertext Transfer Protocol

550.076789157.166.226.31 192.168.1.12 > GET / HTTP/1.1\r\n

560.076806192.168.1.12  157.166.226.31 Host: www.cnn.comr\n

570.076820192.168.1.12  157.166.226.31 Connection: keep-alive\r\n

580.076986157.166.241.11 192.168.1.12 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
590.077017192.168.1.12  157.166.241.11 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_8_3) AppleWebKit/537.31 (KHTML, 1

600.080951157.166.241.11 192.168.1.12 Accept-Encoding: gzip,deflate,sdch\rin
610.081008157.166.241,11 192.168.1.12 Accept-Language: en-US,en;q=0.8\r\n

620.081624192,168.1,12  157.166,241.11 Accept-Charset: 150-8859-1,utf-8;g=0.7,%;g=0.3\r\n

63 0.081039192.168.1.12 _157.166.241.11 [truncated] Cookie: ug=516636466b8ecc0a3d146c16e4002236; optimizelySegments=%7B%2217696
\r\n

650.173066157.166.241,11 192.168.1.12 [FULL request URL: http://ww.cnn,con/]

660.173369157.166.241.11 192.168.1.12 [HTTP request 1/3]

670.173461192.168.1.12  157.166.241.11 | [Response in frame: 307]

680.173667157.166.241.11 192.168.1.12 | [Next request in frame: 1374]

690.173694192.168.1.12  157.166.241.11

700.173970157.166.241.11 192.168.1.12

710.173996192.168.1.12 157.166.241.11

720.179991157.166.241.11 192.168.1.12

730.180037192.168.1.12  157.166.241.11 = 0000 00 1f 90 92 70 5a 8c 2d aa 46 f9 71 08 00 45 00

740.222490192.168.1.12 23.15.9.160 0010 04 56 27 f9 40 00 40 06 be 42 cO a8 01 Oc 9d a6

750.222558192.168.1.12 23.15.9.160 0020 f1 Ob c4 7c 00 50 f7 d4 c7 9e ca el c9 77 80 18 W
760.222651192.168.1.12  23.15.9.160 0030 20 2b 5d d5 00 00 01 01 08 Oa 21 61 cO 5¢ 27 77  + A'w
770.222709102 .168.1.12  23.15.9.160 0040 6C 2c 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31  1,GET / HTTP/1.1
78 0.222864192.168.1.12 0050 0d 0a 48 6f 73 74 3a 20 77 77 77 2e 63 6e 6e 2e ..Host: www.cnn.

0060 63 6T 6d 0d 0a 43 6f 6e 6e 65 63 74 69 6f 6e 3a com..Con nection:
0070 20 6b 65 65 70 2d 61 6c 69 76 65 Od Oa 41 63 63 keep-al ive..Acc
0080 65 70 74 3a 20 74 65 78 74 2f 68 74 6d 6c 2c 61 ept: tex t/html,a
0090 76 70 6c 69 63 61 74 69 6f 6e 2f 78 68 74 6d 6C pplicati on/xhtml
820.227576192.168.1.12 00a® 2b 78 6d 6c 2c 61 70 70 6c 69 63 61 74 69 6f 6e  +xml,app lication
830.22999523.15.9.160 00b0 2f 78 6d 6c 3b 71 3d 30 2e 39 2c 2a 2f 2a 3b 71  /xml;q=0 .9,*/*;q
840.23036423.15.9.160 . 00cO 3d 30 2e 38 0d Oa 55 73 65 72 2d 41 67 65 6e 74 =0.8..Us er-Agent
850.230412192.168.1.12  23.15.9.160 . 00d0 3a 20 4d 6f 7a 69 6c 6c 61 2f 35 2e 30 20 28 4d  : Mozill a/5.0 (M

79 0.22719423.15.9.160
800.22725723.15.9.160
810.227304192.168.1.12

— . AReA A1 A3 RO Ae 74 Af 73 AR 3h 2M 49 e 74 A5 Ac 20 acintosh : Tntel
© #[File: * Users /mcollins /Deskt .. {Packets: 1765 - Displayed: 1765 (100.0%) - Load time: 0:00.352 Profile: Default

Figure 9-4. An example Wireshark screen showing session reconstruction

GeolP

Geolocation services take IP addresses and return information on the physical location
of the address. Geolocation is an intelligence process: researchers start with the alloca-
tion from NICs and then combine a number of different approaches ranging from
mapping transmission delays to calling up companies and finding their mailing ad-
dresses.

MaxMind’s GeolP is the default free geolocation database. The free version (GeoLite)
will provide you with city, country, and ASN information.

Applied Security has produced a good GeolP library in Python (pygeoip, also available
in pip). pygeoip works with both the commercial and free database instances. The fol-
lowing sample script, pygeoip_lookup.py, shows how the API works:

#!/usr/bin/env python

#
# pygeoip_lookup.py
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#

# Takes any IP addresses passed to it as input,

# runs them through the maxminds geoip database and
# returns the country code.

#

include sys,string,pygeoip

gi_handle = None
try:

geoip_dbfn = sys.argv[1]

gi_handle = pygeoip.GeoIP(geoip_dbfn,pygeoip.MEMORY_CACHE)
except:

sys.stderr.write("Specify a database\n")

sys.exit(-1)

for 1 in sys.stdin.readlines():
ip = 1[:-1]
cc = gi_handle.country_code_by_addr(ip)
print "%s %s" % (ip, cc)
Geolocation is big business, and there are a number of commercial geolocation data-
bases available. MaxMind offers their own, and other options include Neustar’s IP In-
telligence, Akamai, and Digital Envoy.

The NVD, Malware Sites, and the C*Es

The National Vulnerability Database (NVD) is a public service maintained by NIST to
enumerate and classify vulnerabilities in software and hardware systems. The NVD
project has been operating under several different names for years, and there are several
distinct components to the database. The most important started at MITRE under a
variety of names beginning with C and ending with E:

CVE
The Common Vulnerabilities and Exposures database is a mechanism for enumer-
ating software vulnerabilites and exploits.

CPE
The Common Platform Enumeration database provides a mechanism for describ-
ing software platforms using a hierarchical string. CVE entries use the CPE to refer
to the specific vulnerable software releases covered by the CVE.

CCE
The Common Configuration Enumeration describes and enumerates software
configurations, such as an Apache Install. CCE is still under construction.

NVD manages all of these enumerations under the Security Content Automation Pro-
tocol (SCAP), an ongoing effort to automate security configuration. For analysis pur-
poses, the CVE is the most critical part of this entire mishegas. A single vulnerability
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may have dozens or hundreds of different exploits written for it, but the CVE number
for that vulnerability ties them all together.

In addition to the government funded efforts, there are a number of other common
exploit listings. These include:

BugTraq IDs
BugTraq is a vulnerability mailing list that covers new exploits and vulnerabilities
sent in by a large number of independent researchers. BugTraq uses a simple nu-
merical ID and maintains a list for each new vulnerability identified. BugTraqs bug
reports tend to heavily overlap the NVD.

OSVDB
A vulnerability database maintained by the Open Security Foundation (OSF), a
nonprofit organization for managing vulnerability data.

Symantec’s Security Response
This site contains a database and summary for every malware signature produced
by Symantec’s AV software.

McAfee’s Threat Center
The Threat Center serves the same purpose as Symantec’s site; it’s a frontend to the
currently identified threats and malware that McAfee’s AV software tracks.

Kaspersky’s Securelist Threat Descriptions
Kaspersky’s list of signatures.

These databases are more directly useful to malware researchers, who are obviously
more focused on exploits and takeover. For network security analysis, these sites are
primarily useful for identifying the vectors by which a worm or other malware propa-
gates through a network, and consequently getting a good first approximation of what
the traffic feed for malware will look like. For example, if a piece of malware propagates
over HT'TP and NetBIOS,? then you have some network services and port numbers to
start poking at.

Search Engines, Mailing Lists, and People

Here’s the difference between an average analyst and a good one. The average analyst
will receive data from pcap or weblogs and come to a conclusion with the data provided.
The good analyst will seek out other information, whether from weblogs, mailing lists,
or by communicating with analysts in other forums.

Computer security is a constantly changing field, and attacks are a constant moving
target. It is very easy to grow complacent as an analyst because there are so many simple

3. Which, admittedly, describes a lot of malware.
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attacks to track and monitor, while attackers evolve to use new tools and approaches.
Internet traffic changes for many reasons, many of them nontechnical—I've found the
explanations for traffic jumps on mailing lists such as NANOG as well as the New York
Times front page.

Further Reading

1. Laura Chappell and Gerald Combs, “Wireshark 101: Essential Skills for Network
Analysis”

Graphviz
Gordon “Fyodor” Lyon, “Nmap Network Scanning,” Nmap Project, 2009.
The Nmap project

Scapy
Wireshark

AN A o
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PART Il
Analytics

In the previous two sections of the book, we've discussed the types of data you can
collect, and tools for manipulating that data. In this section, we focus on taking that data
and conducting analyses on that.

Each chapter in the following section focuses on a different family of mathematical and
analytical techniques that can be used on data. The focus of each chapter is on providing
information that is more security-relevant or floor-relevant. Chapter 10 focuses on the
process of Exploratory Data Analysis (EDA), and should be read before anything else.
Chapter 11, Chapter 12, Chapter 13, and Chapter 14 provide examples of behaviors,
relate them to attacks, and discuss ways that these behaviors can be used to construct
alarms or be used for forensics and investigation. Chapter 15 looks at the problem of
mapping a network, applying the techniques in the previous chapters to provide situa-
tional awareness.






CHAPTER 10
Exploratory Data Analysis and Visualization

Exploratory Data Analysis (EDA) is the process of examining a dataset without pre-
conceived assumptions about the data and its behavior. Real-world datasets are messy
and complex, and require progressive filtering and stratification in order to identify
phenomena that are worth using for alarms, anomaly detection, and forensics. Attackers
and the Internet itself are a moving target, and analysts face a constant influx of weird-
ness. For this reason, EDA is a constant process.

The point of EDA is to get a better grip on a dataset before pulling out the math. To
understand why this is necessary, I want to walk through a simple statistical exercise.
In Table 10-1, there are four datasets, each consisting of a vector X and a vector Y. For
each dataset, calculate these values:

e Themeanof Xand Y
o The variance of X and Y

e The correlation between X and Y

Table 10-1. Four datasets

| Il ] v

X Y X Y X Y X Y
100 8.04 100 914 100 746 80 6.58
80 695 80 814 80 677 80 576
130 758 13.0 874 130 1274 80 771
90 881 90 877 90 711 80 884
10 833 110 926 110 781 80 847
140 996 140 810 140 884 80 7.04
60 724 60 613 60 608 80 525
40 426 40 310 40 539 190 1250
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120 10.84
70 482
50  5.68

120 913 120 815
70 726 7.0 6.42
50 474 50 573

v

8.0
8.0
8.0

5.56
791
6.89

You will find that the mean, variance, and correlation are identical for each dataset, but
simply by looking at the numbers, you should suspect something fishy. A visualization
will show just how diverse they are. Figure 10-1 plots these sets and shows how each
dataset results in a radically different distribution. The Anscombe Quartet was designed
to show the impact of outliers (such as in dataset IV) and visualization on data analysis.
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Figure 10-1. The Anscombe Quartet, visualized

As this example shows, simple visualization will identify significant features of the da-
taset that aren’t identified by reaching for the stats. The classic mistake in statistical
analysis involves pulling out the math before looking at the data. For example, analysts
will often calculate the mean and standard deviation of a dataset in order to produce a
threshold value (normally around 3.5 standard deviations from the mean). This thresh-
old is based on the assumption that the dataset is normally distributed; if it isn’t (and it
rarely is), then simple counting will produce more effective results.
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The Goal of EDA: Applying Analysis

The point of any EDA process is to move toward a model; that model might be a formal
representation of the data, or it might be as simple as “raise an alarm when we see too
much stuff” (where “too much” and “stuff” are, of course, exquisitely quantified). For
information security, we will discuss four basic goals for data analysis: alarm construc-
tion, forensics, defense construction, and situational awareness.

When used as an alarm, an analytic process involves generating some kind of number,
comparing itagainsta model of normal activity, and determining if the observed activity
requires an analyst’s attention. An anomaly isn’t necessarily an attack, and an attack
doesn’'t necessarily merit a response. A good alarm will be based on phenomena that are
predictable under normal circumstances, which the defender can do something about,
and which the attacker must disrupt to reach his goals.

The problem in operational informational security isn't creating alarms—it’s making
them manageable. The first thing an analyst has to do when she receives an alarm is
provide context—validating that the threat is real, ensuring that it’s relevant, determin-
ing the extent of the damage, and recommending actions to take place. False positives
are a signficant problem, but they do not represent the whole scope of failure modes for
alarms. Good analysis can increase the efficacy of alarms. See Chapter 7 for a more
extensive discussion of this.

The majority of security analysis is forensic analysis, taking place after an event has
occurred. Forensic analysis may begin in response to information from anywhere:
alarms, IDS signals, user reports, or newspaper articles.’

A forensic analysis begins with some datum, such as an infected IP address or a hostile
website. From there, the investigator has to find out as much as possible about the attack
—the extent of the damage, other activities by the attacker, a timeline of the attacK’s
major events. Forensic analysis is often the most data-intensive work an analyst can do,
as it involves correlating data from multiple sources ranging from traffic logs to per-
sonnel interviews and looking through archives for data stored years ago.

Alarms and forensic analysis are both reactive measures, but an analyst can also use
data proactively and construct defenses. As analysts, we have a set of tools, such as policy
recommendations, firewall rules, and authentication, that can be used to implement
defenses. The challenge when doing so is that these measures are fundamentally re-
strictive; from a user’s perspective, security is a set of rules that limit their behavior now
in order to prevent some abstract bad thing from happening later.

1. There’s nothing quite like the day you start an investigation based on the attacker being written up in the
New York Times.
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People are always the last line of defense in information security. If security is imple-
mented poorly or arbitarily, it encourages an adversarial relationship between system
administrators and users, and before long, everything is moving on port 80. Analysis
can be used to determine reasonable constraints that will limit attackers without im-
posing an undue burden on users.

Alarms, forensics, and redesign are all focused on the attack cycle—detecting attacks,
understanding attacks, and recovering from attacks. Throughout this cycle, however,
there is a constant dependence on knowledge management. Knowledge management
in the form of inventories, past history, lookup data, and even phone books changes
processes from rolling disasters into manageable disasters.

Knowledge management affects everything. For example, almost all intrusion detection
systems (especially signature management systems) focus on packet contents without
knowing, for example, that the IIS exploit they've helpfully identified was aimed at an
Amiga 3000 running Apache.? In IDSes, a false positive is usually a sign that the IDS
copped out early. Maintaining inventory and mapping information is a necessary first
step toward developing effective alarms; many attacks are failures, and that failure can
be identified through context and the alert trashed before it annoys analysts.

Good inventory and past history data can also be used to speed a forensic investigation.
Many forensic analyses are cross-referencing different data sources in order to provide
context, and this information is predictable. For example, if [ have an internal IP address,
I’ll want to know who owns it and what software it’s running.

Knowledge management requires pulling data from a number of discrete sources and
putting it in one place. Information like ASNs, whois data, and even simple phone
numbers are often stored in dozens if not hundreds of variably maintained databases
and subject to local restrictions and politics. Internal network status is often just as
chaotic, if not more so because almost invariably people are running services on the
network that nobody knows about. Often, the very process of identifying assets for an
ops floor will help network management and IT concerns in general.

As you look at data, keep in mind the goals of the data analysis. In the end, you have to
figure out what the process is for—whether it’s an alarm, timeline reconstruction, or
figuring out whether you can introduce a firewall rule without dealing with pitchforks
and torches.

EDA Workflow

Figure 10-2 is a workflow diagram for EDA in infosec. As this workflow shows, the core
EDA process is aloop involving EDA techniques, extracting phenomena and analyzing

2. It exists.
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them in more depth. EDA begins with a question, which can be as open-ended as “What
does typical activity look like?” The question drives the process of data selection. For
example, addressing a question such as “Can BitTorrent traffic be identified by packet
size?” could involve selecting traffic communicated with known BitTorrent trackers or
traffic that communicated on ports 6881-6889 (the common BitTorrent ports).

EDA

Apply
Technique

Extract
Phenomena

—’

Analyze

| _—Y\ Phenomena

Primary archive

Other data

Figure 10-2. A workflow for exploratory data analysis

In the EDA loop, an analyst repeats three steps: summarizing and examining the data
using a technique, identifying phenomena in the data, and then examining those phe-
nomena in more depth. An EDA technique is a process for taking a dataset and sum-
marizing it in some way that allows a person to identify phenomena worth investigating.
Many EDA techniques are visualizations, and the majority of this chapter is focused on
visual tools. Other EDA techniques include data-mining approaches such as clustering,
and classic statistical techniques such as regression analysis.

EDA techniques provide behavioral cues that can then be used to go back to the original
data, extract particular phenomena from that dataset and examine them in more depth.
For example, looking at port 6881-6889 traffic, an analyst finds that hosts often have
flows containing between 50 and 200 bytes of payload. Using that information, he goes
back to the original data and uses Wireshark to find out that those packets are BitTorrent
control packets.
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This technique-extract-analyze process can be repeated indefinitely; finding phenom-
ena and knowing when to stop are arts learned through experience. Analysis involves
an enormous number of false positives because the most effective initial formulations
are broad and prone to false positives. The EDA process will often require looking at
multiple data sources. For example, an analyst looking at BitTorrent data could consult
the protocol definition or run a BitTorrent client himself to determine whether the
properties observed in the data hold true.

At some point, the EDA process has to stop. On the completion of EDA, an analyst will
usually have multiple potential mechanisms for answering the initial question. For ex-
ample, when looking for periodic phenomena such as dial-homes to botnet C&Cs, it’s
possible to use autocorrelation, Fourier analysis, or simply count time in bins. Once an
analyst has options, the real question is which one to use, which is determined by a
process usually driven by testing and operational demand.

The testing process should take the techniques developed during EDA and determine
which ones are most suitable for operational use. This phase of the process involves
constructing alarms and reports. See Chapter 7 on anomaly detection for more infor-
mation about the criteria that make a good alarm.

Variables and Visualization

The most accessible and commonly approached EDA techniques are visualizations.
Visualizations are tools, and based on the type of data examined and the goal of the
analysis, there are a number of specific visualizations that can be applied to the task. In
order to understand data, we have to start by understanding variables.

A variable is a characteristic of an entity that can be measured or counted, such as weight
or temperature. Variables can change between entities or over time; the height of a
person changes as she ages, and different people have different heights.

There are four categories of variables, which readers who have had an elementary sta-
tistics course will be familiar with. T'll review them briefly here, in descending order of
rigor:

Interval

An interval variable is one where the difference between two values is meaningful,
but the ratio between two values has no meaning. In network traffic data, the start
time of an event is the most common form of interval data. For example, an event
may be recorded at 100 seconds after midnight, and another one at 200 seconds
after midnight. The second event takes place after the first one, but it isn’t mean-
ingful to talk about it taking place “twice as long” after the first one since there’s no
real concept of “zero start time.”
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Ratio
A ratio variable is like an interval variable, but also has a meaningful form of “zero,”
which enables us to discuss ratio variables in terms of multiplication and division.
One form of a ratio variable is the number of bytes in a packet. For example, we can
have a packet with 200 bytes, and another one with 400 bytes. As with interval
variables, we can describe one as larger than the other, and we can also describe the
second packet as “twice as large” as the second one.

Ordinal
Data is in numerical order, but does not have fixed intervals. Customer ratings fall
in this category. A rating of 5 is higher than 4, and 4 is higher than 3, so you can be
assured that 5 is also higher than 3. But you can’t say that the degree of customer
satisfaction goes up the same from 3 to 4 and from 4 to 5. (A common error is to
base calculations on this, treating ratings as interval or ratio data.)

Nominal
This data is just named rather than numeric, as the term “nominal” indicates. There
is no order to it. Data of this type that you commonly track include your hosts and
your services (web, email, etc.).

Data isn’t necessarily ordinal just because it’s designated by numbers. Your ports are
nominal data. Port 80 is not “higher” in some way than port 25; it’s best just to think of
the numbers as alternative names for your HTTP port, your SMTP port, etc.

Interval, ratio, and ordinal variables are also referred to as quantitative, while nominal
variables are also called qualitative. Interval and ratio variables can be further divided
into discrete and continuous variables. A discrete variable has an indivisible difference
between every value, while continuous variables have infinitely divisible differences. In
network traffic data, almost all data collected is discrete. For example, a packet can
contain 9 or 10 bytes of payload, but nothing in between. Even values such as start time
are discrete, even if the subdivisions are extremely fine. Continuous variables are gen-
erally derived in some way, such as the average number of bytes per packet.

Univariate Visualization: Histograms, QQ Plots, Boxplots,
and Rank Plots

Based on the type of variable measured, we can choose different visualizations. The most
basic visualizations are applied to univariate data, which consists of one observed vari-
able per unit measured. Examples of univariate measurements include the number of
bytes per packet or the number of IP addresses observed over a period.
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Histograms

A histogram is the fundamental plot for ratio and interval data; it is a count of how often
a variable takes each possible value. A histogram consists of a set of bins, which are
discrete ranges of values, and frequencies. Thus, if you can receive packets at any rate
from 0 to 10,000 a second, you can create 10 bins for the ranges 0 to 999, 1,000 to 1,999,
and so on. A frequency is the number of times that the observed value occurred within
the range of the bin.

Generating a Histogram

The base material for a histogram is a set of quantitative observations. At the R prompt,
for example, a quick and dirty histogram can be generated from raw data.

> sample <- rnorm(10,25,5)
> sample
[1] 30.79303 25.52480 22.29529 29.20203 21.88355 19.73429 24.99312
[8] 20.79997 22.24344 24.29335
> hist(sample)
The rnorm function in R takes the sample size, the mean of the values, and their standard
deviation as parameters and generates a set of random observations. As is normal with
R, the hist function holds your hand a lot, automatically assigning bin widths, for
example.

Handy arguments to remember with the hist function include:

prob (takes a Boolean)
When set to True, the histogram will be plotted to have an area of 1. When set to
False, the histogram will plot the frequencies.

breaks (takes multiple options)
breaks defines how the histogram bins up data. If set to a numeric value, it specifies
the number of bins. If set to a vector, it uses the values of the vector as the break-
points. It can also be set to a string to specify a predefined algorithm, or to a function
pointer.

A histogram is valuable for data analysis because it helps you find structure in a variable’s
distribution, and structure provides material for further investigation. In the case of the
histogram, that structure is generally a mode, the most commonly occuring value in a
distribution. In a histogram, modes appear as peaks. Histogram analysis almost invar-
iably consists of two questions:

1. Is the distribution normal or another one I know how to use?

2. What are the modes?
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As an example of this type of analysis, take a look at the histogram in Figure 10-3. This
is a histogram of flow size distributions for BitTorrent sessions, showing a distinctive
peak between about 78-82 bytes. This peak is defined by the BitTorrent protocol: its
the result of a BitTorrent peer asking another peer if it has a particular piece of a file,
and getting back “no” as an answer.

Modes enable you to ask new questions. Once you've identified modes in a distribution,
you can go back to the source data and examine the records that produced the mode.
In the example in Figure 10-3, you could go back to the times in the second mode (the
250-255 peak) and see whether the traffic showed any distinctive characteristics—short
flows, long flows, communications with empty addresses, and so on. Modes direct your
questions.
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Figure 10-3. A distribution of BitTorrent flow sizes

This process of visualizing, then returning to the repository and pulling more detailed
data is a good example of the iterative analysis shown in Figure 10-2. EDA is a cyclic
process where analysts will return to the source (or multiple sources) repeatedly to
understand why something is distinctive.
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Bar Plots (Not Pie Charts)

A bar plot is the analog to a histogram when working with univariate qualitative data.
Like a histogram, it plots the frequency of values observed in the dataset by using the
height of various bars. Figure 10-4 is an example of such a plot, in this case showing the
count of various services from network traffic data.

The difference between bar plots and histograms lies in the binning. Qualitative data
can be grouped into ranges, and in histograms, the bins represent those ranges. These
bins are approximations, and the range of values they contain can be changed in order
to provide a more descriptive image. In the case of bar plots, the different potential
values of the data are discrete, enumerable, and often have no ordering. This lack of
ordering is a particular issue when working with multiple bar plots—when doing so,
make sure to keep the same order in each plot and to include zero values.
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Figure 10-4. A bar plot showing the distribution of major services

In scientific visualization, bar plots are preferred over pie charts. Viewers have a hard
time differentiating fine variations in pie slice sizes, variations that are much more ap-
parent in bar plots.
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The Quantile-Quantile (QQ) Plot

A Quantile-Quantile (QQ) plot compares the distributions of two variables against each
other. A QQ plot is a two-dimensional plot, with the x-axis being the values of one
distribution normalized as quantiles, and the y-axis being values of the second distri-
bution again normalized as quantiles. For example, if I break each distribution into 100
centiles, the first point is the first percentile for each, the 50th point is the 50th percentile
for each, and so on.

Figure 10-5 and Figure 10-6 show two QQ plots with the companion code following.
These plots, generated using R's qgnorm function, plot each distribution against a normal
distribution. The first plot, a normal distribution, shows the expected behavior when
two similar distributions are plotted on a QQ plot—the values track the diagonal. There
is some deviation but it isn’t very severe. Compare the results with the uniform distri-
bution in the second figure; in this one, significant deviations happen on the ends of
the plot.
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Figure 10-5. Example QQ plot against a normal distribution
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Figure 10-6. Example QQ plot against a uniform distribution

> # Generate a uniform and a normal distribution

> set.normal <- rnorm(n = 200, mean=10, sd = 5)

> set.unif <- runif(n = 200, min = 10, max = 30)

> # Plot against the norm for the normal set

> qgnorm(set.normal,main='QQ Plot Against a Normal Dist')
> gqline(set.normal)

> # Same drill for the uniform distribution

> ggnorm(set.unif, main='QQ Plot Against a Uniform Dist')
> qqline(set.unif)

R has a number of QQ plotting routines. The most important are ggnorm, which plots
a dataset against the normal distribution; qgplot, which generates a qq plot comparing
any two datasets; and qqline, which draws the reference line.

Is It Normal?

In Chapter 6 and this chapter, we've discussed a number of techniques for determining
whether or not a dataset is normally distributed, or to be more precise, can be satisfac-
torily modeled using a normal distribution. Parametric distributions, if applicable, open
up a number of tools to us. The problem is that in raw network data they’re rarer than
Yeti. Among the techniques listed are:

o The Shapiro-Wilk Test (Example 6-4), a statistical normality test.
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o The Kolmogorov-Smirnov Test (Example 6-5), a general goodness-of-fit test.
« Histograms (“Histograms” on page 198), visualizing the distribution.

« QQ plots (“Bar Plots (Not Pie Charts)” on page 200), comparing the data against a
normal.

Of all the tools available, I view visualization approaches (histograms and QQ plots) as
the preferable option. My interest in acquiring a distribution is utilitarian. 'm looking
for reasonable thresholds and something that matches the math well enough that I can
use other tools because we don’t have the control to make very sensitive measurements.
Attackers will usually be fairly easy to identify once you've picked the right metric. The
classic mistake with using means and standard distributions without looking at the data
is that most network security datasets have a number of outliers. These outliers end up
producing ridiculously large standard deviations, and the resulting threshold is trig-
gered only for egregious events.

The Five-Number Summary and the Boxplot

The five-number summary is a standard statistical shorthand for describing a dataset.
It consists of the following five values:

o The minimum value in a dataset

o The first quartile of the dataset

o The second quartile or median of the dataset
o The third quartile of the dataset

o The maximum value in the dataset

Quartiles are points that split the dataset into quarters, so the five numbers translate
into the smallest value, the 25% threshold, the median, the 75% threshold, and the
maximum. The five-number summary is a shorthand, and if you're looking at a lot of
datasets very quickly, it can provide you with a quick feel for what the set looks like.

The five-number summary can be visualized using a boxplot (Figure 10-7), which is also
called a box-and-whiskers plot. A boxplot consists of five lines, one for each value in the
five-number summary. The center three lines are then connected as a box (the box of
the plot) and the outer two lines are connected by perpendicular lines (the whiskers) of
the plot.

Univariate Visualization: Histograms, QQ Plots, Boxplots, and Rank Plots | 203



05 : 00 i 05 10 15 2.0 i25

Min 25% 50% 75% Max

Figure 10-7. A boxplot and the corresponding histogram

Generating a Boxplot

In R, five-number summaries are generated using the fivenum command, as shown in
the following example.

> s<-rnorm(100,mean=25,sd=5)
> fivenum(s)
[1] 14.61463 22.26498 24.50200 27.43826 37.99568

A basic boxplot is generated with the boxplot command, as follows, resulting in the
image in Figure 10-8.

>boxplot(s)
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Figure 10-8. An example boxplot

Note that this plot produced a series of dots outside the whiskers. These are outliers,
meaning they are far outside the first and third quartiles. By default, a low value is
considered an outlier if its distance to the first quartile is more than 1.5 times the in-
terquartile range (the difference between the first and third quartiles). Similarly, a high
value is considered an outlier if its distance to the third quartile is more than 1.5 times
the interquartile range.

Handy parameters to remember with boxplot include:

notch (Boolean)
Setto True, it places a notch at the median value of the boxplot. If two plots notches
don’t overlap, it’s a strong indicator that their medians differ.

range (numeric)
Describes how far the whiskers will extend. The default value is 1.5, as described
earlier in the sidebar. If you set range to zero, whiskers will extend as far as they
need to and no values will be outliers.

When dealing with five-number summaries, it'’s not unusual to toss in the mean
(Figure 10-9). Consequently, you will often see boxplots that include the mean with an
extra character, usually an x. In R, you have to do multiple plots on the same canvas to
produce this, as follows:

>boxplot(s)
>points(mean(s), pch="'x")

In this example, the pch parameter sets the character of the point; in this case, an x.
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boxplot can take multiple vectors, making it a quick tool for comparing multiple dis-
crete datasets. If, for example, you've identified several different phenomena in a dataset,
you could split each one into a separate column for comparison. The following example
shows this with some cooked scan data, producing the side-by-side boxplot in
Figure 10-10.

> nonscan<-rnorm(100,mean=150,sd=30)
> scan<-runif(50,min=254,max=255)
> boxplot(nonscan,scan,names=c('nonscan', 'scan'))
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Figure 10-10. Side-by-side boxplots

I rarely find boxplots to be useful on their own. If I'm dealing with a single value, 'm
going to get more information out of a histogram. Boxplots become more valuable when
you start stacking bunches of them together, a situation where histograms are going to
be just too busy to be meaningfully examined.

Bivariate Description

Bivariate data consists of two observed variables per unit measured. Examples of bi-
variate data include the number of bytes and packets observed in a traffic flow (which
is an example of two quantitative variables), and the number of packets per protocol
(an example of a quantitative and qualitative variable). The most common plots used
for bivariate data are scatterplots (for comparing two quantitative variables), multiple
boxplots (for comparing quantitative and qualitative variables), and contingency tables
(for comparing two qualitative variables).

Scatterplots

Scatterplots are the workhorse of quantitative plots, and show the relationship between
two ordinal, interval, or ratio variables. The primary challenge when analyzing scatter-
plots is to identify structure among the noise. Common features in a scatterplot are
clusters, gaps, linear relationships, and outliers.
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Let’s start exploring scatterplots by looking at completely unrelated data. Figure 10-11
is an example of a noisy scatterplot, generated in this case by plotting two uniform
distributions against each other. This is a boring plot.
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Figure 10-11. A boring scatterplot

Clusters and gaps are changes in the density of a scatterplot. The boring scatterplot in
Figure 10-11 is a plot of uniform variables of unrelated density. If the two variables are
related, then there should be a change in the density of the data somewhere on the plot.
Figure 10-12 shows an example of clusters and gaps. In this example, there is a marked
increase in activity in the lower-left quadrant, and a marked decrease in the upper-right
quadrant.
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Figure 10-12. Clusters and gaps in data

Linear relationships, as the name indicates, appear in scatterplots as a line. The strength
of the relationship can be estimated from the density of the points around the line.
Figure 10-13 shows an example of three simple linear relationships of the form y=kx,
but each relationship is progressively weaker and noisier.
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Examples of Linear Relationships
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Figure 10-13. Linear relationships in data

Contingency Tables

Contingency tables are the preferred visualization when comparing categorical data
against categorical data. A contingency table is simply a matrix: the rows list all the
values one variable can have, the columns list all the values the other variable can have,
and the entry in each cell is the number of observations that had both categories in
common. Depending on the implementation, contingency tables also include a row and
column containing the marginals for that row, a sum of all the values occurring in the
TOW.

In R, contingency tables are constructed using the table command, which returns a
table that can then be queried for marginals, as shown here:

# An example R table, created from two vectors of hosts and services
> hosts[0:3]
[1] "A" "B" "A"
> services[0:3]
[1] "http" "dns" "smtp"
> # Table creation, hosts, and services have to be the same length
> info.table<-table(hosts,services)
> info.table
services

hosts dns http smtp ssh

A 2 15 10 0
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B 6 5 3 4
C 3 3 1 2
> # You can access the marginals by calling margin.table
> margin.table(info.table)
[1] 54
> margin.table(info.table, 1)
hosts
A B C
27 18 9
> margin.table(info.table, 2)
services
dns http smtp ssh
11 23 14 6

Multivariate Visualization

A multivariate dataset is one that contains at least three variables per unit measured.
Multivariate visualization is more of a technique rather than a specific set of plots. Most
multivariate visualizations are built by taking a bivariate visualization and finding a way
to add additional information. The most common approaches include colors or chang-
ing icons, plotting multiple images, and using animation.

Building good multivariate visualizations requires providing information from each of
the datsets without drowning the reader in details. It’s easy to plot a dozen different
datasets on the same chart, but the results are often confusing.

The most basic approach for multivariate visualization is to overlay multiple datasets
on the same chart, using different tickmarks or colors to indicate the originating dataset.
As arule of thumb, you can plot about four series on a chart without confusing a reader.
When picking the colors or symbols to use, keep the following in mind:

« Don't use yellow; it looks too much like white and is often invisible on printouts
and monitors.

o Choose symbols that are very different from each other. I personally like the open
circle, closed circle, triangle, and cross.

 Choose colors that are far away from each other on the color wheel: red, green, blue,
and black are my preferred choices.

o Avoid complex symbols. Many plotting packages offer a variety of asterisk-like
figures that are hard to differentiate.

« Be consistent with your color and symbol choices, and don’t overlap their domains.
In other words, don’t decide that red is HT'TP and triangles are FTP.

For more information on plotting multiple series in R, consult “Annotating a Visuali-
zation” on page 120.
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An alternative to plotting multiple sets on the same chart is to use multiple small plots
next to each other. Commonly called trellis plots, Figure 10-14 is a good example gen-
erated by R’s pairs command. When run on a data frame, pairs generates a matrix like
the one shown in Figure 10-14—each pair of variables is a distinct scatterplot. Each
scatterplot shows the relationship between the pair, and as this example shows it’s very
easy to quickly identify that volume and articles seem to have some relationship while
everything else looks unrelated.

R’s pairs plot is a powerful data exploration tool and is a good example of the expressive
power of multiple visualizations. By relating multiple simple visualizations together in
awell-defined and clear structure, you can process an enormous amount of data quickly.
The key to building visualizations like this one is simplicity—small plots need to be
careful with how they use real estate.

I find that trellis plots are usually the best option for plotting multivariate data because
they provide a clean and user-controlled mechanism for showing the relationship be-
tween different variables. The minimal layout of Figure 10-14 is an important design
feature to pay attention to in multivariate visualization. Trellis plots usually have an
enormous amount of redundant metadata (e.g., axes, ticks, and labels) relative to the
number of plots. To address this problem, use extremely minimal data representations
in the plots: drop redundant axes, and remove internal labels and ticks.

Pairs Plot of Volume Data
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Figure 10-14. Trellis plot of volume data
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Animation is pretty much what it says on the tin: you create multiple images and then
step through them. In my experience, animation doesn’t work very well. It reduces the
amount of information directly observable by an analyst, who has to correlate what’s
going on in her memory as opposed to visually.

Operationalizing Security Visualization

EDA and visualization are part of the exploratory process and, as such, are somewhat
rough around the edges. The EDA process involves a large number of dead ends and
false starts. During the operationalization phase of an analytic process, the visualizations
will need to be modified in order to supplement action and response. Additional pro-
cessing and modification is needed to polish a visualization sufficiently for it to work
on the floor. The following rules provide examples of good and bad visualizations and
how to address the problems of visualizing data for information security.

Rule one: bound and partition your visualization to manage disruptions

When plotting security information, you need to expect and manage disruptions—after
all, the whole point of looking for security events is to find disruptive activity. Plotting
features like autoscaling can work against you by hiding data when something weird
happens. For example, consider a count of anomalous events such as in Figure 10-15.
This plot has two anomalies, but one is obscured by the need to plot the second.

Multivariate Visualization | 213



Basic Plot
(=]
(=]
o
(=]
(=]
{9}
(=]
]
o i
E 3
50 ™
o
> .
(=]
(=]
o
(=]
e
) [
TTTTTITITTITITIT I T I I T I T I T I I T I T I I I T I T I I T T I T IoIT I T T
06:15 06:23 07:07 07:15 07:23 08:07 08:15
Time (day:hour)

Figure 10-15. Autoscale’s impact on disruptive event visualization

There are two strategies for dealing with these spikes. The first is to use logarithmic
scaling on the dependent (y) axis. Log scaling replaces the linear scale with a logarithmic
scale. For example, the ticks on the axis go from being 10, 20, 30, 40 to 10, 100, 1000,
10000. Figure 10-16 shows a logarithmic plot of the same phenomenon. Using a loga-
rithmic scale will reduce the difference between the major anomaly and the rest of the
data.
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Figure 10-16. Using a log scale plot to limit the impact of large outliers

A logarithmic scale is suitable for EDA, and most tools provide an option to automat-
ically plot data this way. With R, you pass in a log parameter to the plotting command
to indicate which axis should be logarithmic (e.g., log="y").

I don'tlike using logarithmic scales when developing an operational visualization, how-
ever. With logarithmic scales you tend to lose information about typical phenomena—
the curve for typical traffic in Figure 10-16 is deformed by the logarithmic scale. Also,
the explanation of what a logarithmic scale is a bit recondite; I don't want to have to
explain logarithmic scaling over and over again. When somebody is looking at the same
data repeatedly, I'd prefer to keep it linear.

For these reasons, I prefer to keep the scaling on a plot consistent and identify and
remove outliers. We've seen an example of this in Figure 10-8, where R automatically
splits outliers from the boxplot. When developing an operational plot, I estimate the
range of the plot, and usually set the upper limit displayed to the 98th percentile of the
observed data. Then, when an anomaly occurs, I plot it separately and differently from
the other data to indicate that it is an anomaly. Figure 10-17 shows a simple example of
this.
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Controlling Disruptive Anomalies
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Figure 10-17. Partitioning anomalies out from normal data

The anomaly in Figure 10-17 is identified by the single line indicating that it’s off the
scale. The second anomaly (at 07:11) is not detected by that process, but the event is
now obvious through visualization. That said, the anomaly marker is completely mean-
ingless without further information and training, which leads into rule two.

Rule two: label anomalies

If rule one is in place, then you've already established some basic rules for discerning
anomalies from normal traffic. Operational visualization is an aid to anomaly detection,
so the same rules as constructing IDS (see Chapter 7) apply—prefetch data to reduce
the operator’s response time. As an example, the anomaly in Figure 10-18 is annotated
with the information about what caused the anomaly as well as some statistics.
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Labelling Disruptive Anomalies
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Figure 10-18. Labeling anomalies to aid investigation

Labeling anomalies on the plot can be useful for rapid reference, but if there are too
many anomalies (and working off of rule one, you should expect that there will be too
many anomalies). You can see this happening in Figure 10-18 where the label, while
informative, is already consuming about a fifth of the horizontal space available. A better
approach is to explain the anomalies in a separate table next to the visualization, which
allows you to include as much data as necessary.

Rule three: use trendlines, distinguish artifacts from observations

Operational visualizations need to balance summarization and smoothing techniques
that can help the analyst process data without getting mired in details, while at the same
time providing the analyst with the actual data that happened and not thinking for him.
As aresult, when I operationally visualize data I prefer to include the raw data and then
some kind of smoothing trendline at the same time. Figure 10-19 is a simple example
of this kind of visualization, where a moving average is used to smooth out the observed
disruptions.
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Figure 10-19. Moving average over direct observations

When creating visualizations like this, you need to ensure that the analyst can clearly
differentiate between the data (the original) information and the artifacts you've created
to aid analysis. You also need, as per rule one, to keep track of the impact of disruptive
events—you don’t want them interfering with your smoothing.

Rule four: be consistent across plots

Visualization exploits our pattern matching capabilities. However, those capabilities just
love to run rampant on the vaguest hint. For example, you decide to pick a red line to
represent HTTP traffic in a per-host activity. If you then decide to use a red line to
represent incoming traffic in the same suite of visualizations, somebody is going to
assume it's HTTP traffic again.

Rule five: annotate with contextual information

In addition to labeling anomalies, it’s good to include unobtrusive contextual data that
can help facilitate analysis. The example shown in Figure 10-20 adds some gray bars to
indicate whether or not activity is taking place during or outside business hours.
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Figure 10-20. Adding some color to identify time of day

Rule six: avoid flash in favor of expressiveness

Finally, recognize that operational visualization is intended to be processed quickly and
repeatedly. It's not a showcase for innovative graphic representation. The goal of op-
erational visualization should be to express information quickly and clearly. Graphically
excessive features like animation, unusual color choices, and the like will increase the
time it takes to process the image without contributing information.

Be particularly careful about visualizations based on real-world or cyberspace
metaphors. Whimsy wears thin very quickly, and we’re not dealing with the physical
world here. Metaphors such as “opening a desk” or “rattling all the doors in a building”
(visualizations I've seen tried and the less said about them the better) often look neat in
concept, but they usually require complex interstitial animations (which take up time)
and lose information because of the metaphor. Focus on simple, expressive, serious
displays.

Rule seven: when performing long jobs, give the user some status feedback

When I run SiLK queries, I have a habit of running them with the - -print-file switch
active, not because I care about which files are being accessed, but in order to have an
indicator of whether the process is running or if the system is hung. When building
visualizations, it’s important to know how long it will take to complete one and to pro-
vide the user with some feedback that the visualization is actually being generated.
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CHAPTER 11
On Fumbling

Up to this point, we have discussed a number of techniques for collecting and analyzing
data. We must now marry this with attacker behavior.

Recall from the introduction the distinction between anomaly and signature detection.
A focus of this book is on identifying viable mechanisms for detecting and dealing with
anomalies, and to find these mechanisms, we must identify general attacker behaviors.
Fumbling, which is the topic of this chapter, is the first of several such behaviors.

Fumbling refers to the process of systematically failing to connect to a target using a
reference. That reference might be an IP address, a URL, or an email address. What
makes fumbling suspicious is that a legitimate user should be given the reference he
needs. When you start at a new company, they tell you the name of the email server;
you don’t have to guess it.

Attackers don’t have access to that information. They must guess, steal, or scout that
data from the system, and they will make mistakes. Often, those mistakes are huge and
systematic. Identifying their mistakes and differentiating them from innocent errors is
a valuable first step for analysis.

In this chapter, we will look at models of normal user behavior that are violated by
attackers. This chapter integrates a variety of results from previous chapters, including
material on email, network traffic, and social network analysis.

Attack Models

We need some vocabulary for talking about how attackers behave. There are a number
of papers and studies on attack models that try to break the hacking process into a
number of discrete steps. These models range from relatively simple linear affairs to
extremely detailed attack trees that attempt to catalog each vulnerability and exploit. I'll
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start by laying out a simple but flexible model that contains steps common to a majority
of attacks.

Reconnaissance
The attacker scouts out the target. Depending on the type of attack, reconnaissance
may consist of googling, social engineering (posting on message boards to find and
befriend users of a network), or active scanning using nmap or related tools.

Subversion
The attacker launches an exploit against a target and takes control. This may be
done via a remote exploit, sending a Trojan file, or even password cracking.

Configuration
The attacker converts the target into a system more suitable for his own use. This
may involve disabling antivirus packages, installing additional malware, taking in-
ventory of the system and its capabilities, and/or installing additional defenses to
prevent other attackers from taking over the target.

Exploitation
The attacker now uses the host for his own purposes. The nature of exploitation
varies based on the attacker’s original reason for being interested in the target (dis-
cussed shortly).

Propagation
The attacker will, if possible, use the host to attack other hosts. The host may serve
as an expendable proxy, attacking neighbors (for example, other hosts behind a
firewall on a 192.168.0.0/16 network).

This model isn’t perfect, but it'’s a good general description of how attackers behave
without getting bogged down in technical minutiae. There are always common tweaks,
for example:

o Peer-to-peer worm propagation and phishing attacks rely on passive exploits and
a bit of social engineering. These attacks rely on a target clicking a link or accessing
afile, which requires that the bait (the filename or story surrounding it) be attractive
enough to merit a click. At the time of this writing, for example, there’s a spate of
phishing attacks using credit ratings as the bait—the earliest informed me that my
credit rating had risen and the latest batch is more ominously warning me of the
consequences of a recently dropped credit rating. On peer-to-peer networks, at-
tackers will drop Trojans with the names of current games or albums in order to
attract victims. Even in this case, “surveillance” is still possible. The phishing attacks
donein many APT attacks often depend on scouting out the population and posting
habits of a site before identifying victims likely to respond to a crafted mail.

o Worms often merge the reconnaissance and subversion stages into one step. Some
examples of this are shown later in the chapter (notably, in Example 11-1), where
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an attacker just launches exploits against well-known PHP URLs without checking
to see if they actually exist.

Your Attacker Just Isn’t That Into You: Interested and
Uninterested Attackers

When we think about attackers, we tend to think of technically literate individuals fig-
uring out specific weaknesses on a site in order to grab files or information off of it. This
is the classic example of an interested attacker who wants to subvert and control a par-
ticular site in order to acquire cash, data, street cred, or who knows what. They make
for great stories, but have been, if not a disappearing breed, a progressively minuscule
portion of attacks for 10 years or more.

The vast majority of attacks today are conducted by uninterested attackers who want to
take over as many hosts as possible and don’t care about the fine details of any particular
one. Uninterested attacks are largely automated; they have to be in order to tolerate their
inordinately high failure rate. Because of this, the reconnaissance and subversion steps
are often merged together. An automated worm may simply launch its attack against
every host it encounters, regardless of whether the host is vulnerable.

Uninterested attackers rely on tools and the expectation that someone, somewhere, will
be vulnerable. In most cases, they won't even be aware that a host exists until they take
it over. Early examples of uninterested attackers harvested robots for DDoS networks.
Botmasters would take over a dozen or so machines, install DDoS software on them,
and then launch SYN floods against targets. As connectivity increased, the scope and
flexibility of botnets increased as well—attackers started installing software to work as
proxies, rob images from attached webcams and sell them to porn sites, install spambots,
and carry out a virtually limitless catalog of other abuses.

Uninterested attackers consequently operate more like harvesters than a traditional
targeted attacker. A uninterested attacker runs a script, then filters through the results
of that script to see what she’s pulled in. A host has a webcam, and it’s located on a college
dorm? Porn feed. A host has a lot of disk space and a fat pipe? Fileserver. A host is a
home machine? Keylogger.

This harvest-based approach means that attackers often have little to no idea what they’re
taking over. In the early days of SCADA exploits, it was apparent that the attackers had
no idea what they were looking at, just a Windows host with some weird applications
and extra directories. Even now, it's not uncommon to see medical hardware taken over
and used as a botnet.

In recent years, a host’s “configuration” also includes its role: who owns it, what its used
for, and what kind of bragging rights can be acquired by bagging it. For example, if two
countries share a hostile border, resident hacker rings will deface sites in the opposing
country. The Department of Defense runs literally thousands of websites, ranging from
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intelligence servers to grade schools. It's not hard to find a vulnerable site and then
announce to the world that you've “hacked the DoD!” after the fact. Something to keep
in mind.

Fumbling: Misconfiguration, Automation, and Scanning

We'll use the term a fumble to refer generically to any failed attempt by a host to access
a resource. A fumble in TCP means that a host wasn't able to reach a particular host
address/port combination, whereas a fumble in HTTP refers to the inability to access
a URL. Individual fumbles are expected and are not automatically suspicious. What’s
more of a concern is a tendency toward repeated fumbling. Fumbling as an aggregate
behavior can happen for several reasons: an error in lookup or configuration, automated
software, and scanning.

Lookup Failures

Fumbles usually happen because the destination doesn’t exist in the first place. This can
be a transient phenomenon due to misaddressing or movement, or it can be due to
someone addressing a resource that never existed.

Keep in mind that people rarely enter addresses by hand. Most users will never directly
enter an IP address, instead relying on DNS to moderate their communications. Simi-
larly, apart from a TLD, users rarely enter URLs by hand, instead copying or clicking
them from other applications. When someone does enter a faulty address or URL, it

usually means that something further up the chain of lookup protocols that got him
there failed.

When a target moves, misaddressing is a common phenomenon. In the case of a mis-
address, the target does exist, but the source is misinformed about the address. For
example, an attacker may enter the wrong name or IP address, or use an earlier IP
address after a host moves.

Every site has unused IP addresses and port numbers. For instance, a /24 (class C)
address space allows 254 addresses (two more are reserved for special purposes), but
the network usually uses only a fraction of them. An unused address or port number is
called dark space. Legitimate users rarely try to access dark space, but attackers almost
always do. However, knocking on the door of an usused IP address or port is not dan-
gerous in itself, and is so common that tracking it isn’t worthwhile.

Misaddressing is often a common mode failure, meaning that it will not be limited to
one or two users, but to a large community. The classic example of a misaddress is
somebody sending a messsage to a mailing list, and then mistyping the URL. When this
happens, you don’t see one or two errors, and you don’t see individual errors. You see
the exact same meaningless string occurring over and over again, coming from dozens
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if not hundreds of sites. If you see a large number of fumbles, coming from different
sites, all identical and all indicating a misspelling, then it’s a good sign that the error has
a common cause such as a misconfigured DNS, a faulty redirect on the web server, or
an email with the wrong URL.

Automation

People are impatient. Very often, when they can't actually reach a site, they may retry
once, but then they’ll go off and find something better to do with their time. Conversely,
automated systems retry connections as a reliability measure, and will often return after
a relatively short interval to see if the target is up and running.

On a network traffic feed, this means that a protocol that is human-driven (SSH, HTTP,
Telnet) is likely to have a lower failure rate per connection than protocols that are largely
automated (SMTP, peer-to-peer communications).

Scanning

Scanning is the most common form of attack traffic observed on the network. If you own
anontrivial chunk of IP space (say a /24 or more), you will literally be scanned thousands
of times a day.

Scanning is one of the great sources for bogus security figures. If you classify a scan as
an attack, then you can claim to be dealing with thousands of attacks per day. Attacks
you’re going to do precisely nothing about, but still thousands. Scanning is easy, fun,
and stupid amusement for script kiddies.

Imagine that your network is a two-dimensional grid, where the x-axis shows your IP
addresses and the y-axis shows the ports. The grid will then have 65,536 by k cells, where
k is the total number of IP addresses. Now, every time a scanner hits a target (an IP/port
combination), mark a cell. If you're interested in all the capabilities of a single host, you
may open up a connection to every port it has, resulting in a single vertical line on the
grid, a vertical scan. The complement to a vertical scan is a horizontal scan, where the
attacker communicates with every host on the network, but only a specific port.

As arule of thumb, defenders scan vertically and attackers horizontally. The difference
is primarily opportunistic—an attacker scans a network horizontally because he is un-
interested in the targets outside of the vulnerabilities he can exploit. An attacker who is
interested in a specific target may well scan it vertically. Defenders scan vertically be-
cause they can’t predict what an attacker will hit.

If an attacker knows something about the structure of a network ahead of time, she may
use a hit-list, a list of IP addresses which she knows or suspects may be vulnerable. An
example of a common hit-listattack is described by Alata and Dacier: the attacker begins
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by using a blind scan of a network to identify SSH hosts and then sometime later uses
that list to begin password attacks.!

|dentifying Fumbling

There are two stages to identifying the process of fumbling. The first is determining
what, in a protocol, means that a user failed to correctly access a resource. In other
words, what does a failed access “look” like? The second stage is determining whether
the failure is consistent or transient, global or local.

TCP Fumbling: The State Machine

Identifying failed TCP connections requires some understanding of the TCP state ma-
chine and how it works. As we've discussed before, TCP imposes the illusion of a stream-
based protocol on top of the packet-based IP. This simulation of a stream is produced
using the TCP state machine, shown in Figure 11-1.

Under normal circumstances, a TCP session consists of a sequence of handshake packets
that set up initial state.

o On the client side, the transition is from SYN_SENT (client sends an initial SYN
packet) to ESTABLISHED (client receives a SYN|ACK packet from server, sends
an ACK in response), and then to normal session operations.

o On the server side, the transition is from LISTEN to SYN_RCVD (receives a SYN,
sends a SYN|ACK), and then to ESTABLISHED (receives an ACK).

o For either side, closure consists of at least two packets (CLOSE_WAIT to
LAST_ACK or FIN_WAIT_1 to CLOSING/FIN_WAIT_2 to TIME_WAIT).

1. Alata, E. et al,, “Lessons learned from the deployment of a high-interaction honeypot,” EDCC 2006.
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Figure 11-1. The TCP state machine, from texample.net

The net result of these transitions is that a well-behaved TCP/IP session requires at
least three packets simply to set up the connection. This is overhead required by TCP,
and does not include any communications done by the protocol itself. Throw in a stan-
dard MTU of 1,500 bytes, and most legitimate sessions are going to consist of at least
several dozen packets.

Automated retry attempts add another layer of complexity to the problem. RFC 1122
establishes basic guidelines for TCP retransmission attempts and recommends a min-
imum of three retransmissions before giving up on a connection. The actual retry value
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is usually softcoded and stack-dependent; for example, in Linux systems, the number
of retries generally defaults to 3 and is controlled by the tcp_retries1 TCP variable.
In Windows systems, the TcpMaxConnectRetransmissions registry value in HKLM
\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters governs this behavior.

An analyst can identify fumbling by looking at a variety of indicators, depending on the
type of data the operator has available and the degree of accuracy necessary. These
techniques include relying on a network map, looking for bidirectional traffic, and ex-
amining a unidirectional flow for activity. Each technique has strengths and weaknesses,
which I'll discuss.

Network maps

The best tool for identifying fumbling is a current and accurate network map. Network
maps can identify a fumble by looking at a single packet, while examining TCP traffic
requires looking for replies and reattempts.

That said, a network map is not relying on actual network information—it’s relying on
a model of the network that was constructed some time before the event. At the most
extreme example, a map of a DHCP network has a limited viable lifetime, but even a
statically addressed network will see new services and hosts arrive on a regular basis.
When using a network map, make sure to regularly test its integrity using one of the
other techniques listed in this section.

Unidirectional flow filtering

If you have access to both sides of a session (i.e., client to server, server to client), iden-
tifying complete sessions is simply a matter of joining the two sides together. In the
absence of that information, it’s still possible to guess whether packets are part of a whole
session.

In my personal experience, I find flows to be more effective than individual packets for
detecting fumbling. A fumbler doesn’t interact with a service proper because there is no
payload to examine. At the same time, identifying fumbling involves looking for mul-
tiple identically addressed packets that occur around the same time, which is the text-
book definition of a flow.

Depending on the amount of information needed and the precision required, a number
of different heuristics can identify fumbles in TCP flows. The basic techniques involve
looking at flags, packet counts, or payload size and packet count.

Flags are a good indicator of fumbling, but using them is complicated by a messy col-
lection of corner cases happily exploited by scanners to differentiate different IP stack
implementations. Recall from the Figure 11-1 that a client sends an ACK flag only after
receiving an initial SYN + ACK from the server. In the absence of a response, the client
should not send an ACK flag; consequently, flows with a SYN and no ACK flag are a
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good indicator of a fumble. There exists the potential that a response came outside of
the timeout of the flow collector, but that’s rare in applied cases.

Attackers craft packets with odd flag combinations in order to determine stack and
firewall configurations. The best known of these combinations is the “Christmas tree”
packet (so called because all flags are lit up like a Christmas tree), setting SYN ACK FIN
PUSH URG RST. Combinations of flags with both SYN and FIN high are common as
well. When dealing with long-lived protocols (such as SSH), it’s not uncommon to
encounter a packet consisting solely of an ACK. These packets are TCP keep-alive
packets and are not fumbling.

Another odd, non-fumbling behavior is backscatter. Backscatter occurs when a host
opens a connection to an existing server using a spoofed address, and the server sends
the corresponding response to the original spoofed address. Lone SYN, ACK, and RST
packets that don’t hit a target are likely to be backscatter.

An easy, if rough, indicator of whether a flow shows a complete session is to simply look
at the number of packets. A legitimate TCP session requires at least three packets of
overhead before it considers transmitting service data. Furthermore, most stacks set
their retry value to between three and five packets. These rules provide a simple filter:
TCP flows that have five packets or less are likely to be fumbles.

Flow size can be complemented by looking at the ratio of packet size to number of
packets. TCP SYN packets contain a number of TCP options of variable length. During
a failed connection, the host will send the same SYN packet options repeatedly. Con-
sequently, if a flow is an n-packet SYN fumble, we can expect that the total number of
bytes sent is nx(40 + k), where k is the total size of the options.

ICMP Messages and Fumbling

ICMP is actually designed to inform a user that she has failed to make a connection.
ICMP type 3 messages (destination unreachable) are supposed to be sent to a host to
indicate that the target network (code 0), host (code 1), or port (code 3) cannot be
reached by the client packet. ICMP also provides messages indicating that a route is
unknown (code 7) or administratively prohibited (code 13).

With the exception of pings, ICMP messages appear in response to failures in other
protocols. Several messages, such as host or net unreachable, originate from some point
other than the destination address—generally the nearest router. ICMP messages may
also be filtered, depending on the policies of the network in question, and consequently
not received by your sensors.

This asymmetry means that when tracking fumbling from ICMP traffic, it is more pro-
ductive to look for the response. If you see a sudden spike in messages originating from
arouter, it's a good bet that the target it’s sending the messages to has been probing that
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router’s network. You can then look at the host’s traffic to identify what it did commu-
nicate with that might be suspicious.

You Were Scanned, Here’s Your Medal

At this point, scanning is so omnipresent, unstoppable, and obnoxious that it has ceased
to be an attack and instead has become a form of Internet weather. I can place a rea-
sonable bet that youre mostly being scanned on TCP ports 80, 443, 22, 25, and 135
without looking at your network.

So, scanning in and of itself is uninteresting, but there is still value in scan detection.
Primarily, this is an optimization issue. As discussed in Chapter 4, scanning data can be
shunted off during postprocessing in order to reduce the number of records that an
analyst encounters in the main data flow. As you monitor larger networks, the problem
of scan data becomes increasingly more and more important—a dumb scanner ona /16
will generate 65,535 flows for every port he decides to hit. You may see eight flows for
a long lived SSH session, if you see them among all the scanning noise.

Scan removal is best done on an IP-by-IP basis, because if a host is scanning the network,
it’s likely not doing anything legitimate. Identify each scanning address and remove all
traffic originating from that address. This traffic set can then be trended by identifying
the destination ports of the scans, determining the exploits used (if identified by IDS),
and comparing the types of scans conducted over time. Top-# lists are generally not
particularly useful for scan trending because the top five positions have been fairly static
for the past five years.

In operational environments, I generally haven’t been too fussy about exactly identifying
flow traffic, instead opting to use the high-pass filter approach to split TCP traffic into
short and long files, and then using the long files as the default dataset for queries. In
occasions when I really need to access the short files, the data is there, and the probability
of a short communication actually being meaningful and all traffic from that host being
in the short file is pretty much nonexistent.

Analytically, scan data is often more useful for identifying who responded to a scan rather
than who sent it. Attackers are likely to scan your network far more actively and far
more often than your own network management staff, meaning that by keeping track
of the hosts that responded to scans, you will likely discover new systems and services
long before your next audit.

Speculatively, there may be some value in scan trending. SANS, among other organi-
zations, does keep track of current scanning statistics on the Internet storm center.
However, if there is value in trending, it has to get past the overwhelming dominance
of the top five ports: ports 22, 25, 80, 443, and 139.
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Identifying UDP Fumbling

It’s rarely possible to identify a failed UDP connection from the UDP traffic itself. TCP
has symmetry baked into the protocol, whereas UDP doesn’t provide any guarantees of
delivery. If a UDP service provides some form of symmetry or other reciprocity, that’s
a service-specific attribute. In order of preference, network maps and ICMP traffic are
the best ways to identify UDP fumbling.

Fumbling at the Service Level

Service-level fumbling commonly results from scanning, automated exploits, and a
number of scouting tools. Unlike network-level fumbling, service-level fumbling is
usually clearly identifiable as such because there are error codes in most major services
that are logged and can be used to differentiate illegitimate connections from legitimate
requests.

HTTP Fumbling

Recall that each HTTP transaction returns a three-digit status code, of which the 4xx
family of status codes are reserved for client errors. In the 4xx family, the two most
important and common access errors are 404 (not found) and 401 (unauthorized).

404 indicates that a resource was not available at the URL specified by the requestor,
and is the most common HTTP error in existence. Users will often trigger 404 errors
by hand, such as when they mistype a complex URL. Misconfiguration will often cause
problems as well, such as when someone publicizes a URL that doesn’t exist.

These types of errors, from a misconfigured URL announcement or fat-fingering, are
relatively easy to identify. In the first case, fat-fingering should be relatively rare. Fat-
fingered URLs will rarely repeat—if one user is mistyping, he’ll mistype slightly differ-
ently each time. At the same time, since fat-fingering is an individual mistake, the same
fat-fingering will not appear from multiple locations. If you see the same mistake coming
from multiple discrete locations, that is more likely to be a result of a misconfigured
URL announcement. Such an announcement may be identifiable by examining the
HTTP Referer header. If the Referer points to a site you have control over, then you
can identify and fix the error on that site.

The third common source for 404 errors is bots scanning HTTP sites for well-known
vulnerabilities. Because most modern HT TP sites are built on top of a collection of other
applications, they often carry vulnerabilities from one or more of their component ap-
plications. These vulnerabilities are well-known, placed in common locations, and con-
sequently hunted for by bots everywhere. The URLs referenced in Example 11-1 are all
associated with phpMyAdmin, a common MySQL database management tool.
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Example 11-1. Botnets attempting to fetch common URLs

223.85.245.54 - - [16/Feb/2013:20:10:12 -0500]

"GET /pma/scripts/setup.php HTTP/1.1" 404 390 "-" "ZmEu"
223.85.245.54 - - [16/Feb/2013:20:10:15 -0500]

"GET /MyAdmin/scripts/setup.php HTTP/1.1" 404 394 "-" "ZmEu"
188.230.44.113 - - [17/Feb/2013:16:54:05 -0500]

"GET http://www.scanproxy.net:80/p-80.html HTTP/1.0" 404 378 "-"

194.44.28.21 - - [18/Feb/2013:06:20:07 -0500]

"GET /wO0tw00t.at.blackhats.romanian.anti-sec:) HTTP/1.1" 404 410

"t "ZmEU"

194.44.28.21 - - [18/Feb/2013:06:20:07 -0500]

"GET /phpMyAdmin/scripts/setup.php HTTP/1.1" 404 397 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:08 -0500]

"GET /phpmyadmin/scripts/setup.php HTTP/1.1" 404 397 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:08 -0500]

"GET /pma/scripts/setup.php HTTP/1.1" 404 390 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:09 -0500]

"GET /myadmin/scripts/setup.php HTTP/1.1" 404 394 "-"

Unlike the 404 errors discussed earlier, 404 scanning is generally identifiable by being
completely unrelated to the actual structure of a site. Attackers are guessing that some-
thing is there and are going by the documentation and common practice to try to reach
a vulnerable target.

401 errors are authentication errors, and come from HTTP’s basic access authentication
mechanism—which you should never use. 401 authentication was baked into the HT TP
standard early on,? and uses unencrypted base64-encoded passwords to authenticate a
user’s access to protected directories.

Basic access authentication is a disaster and should not be used by any modern web
server. If you do see 401 errors in your system logs, you should identify and eliminate
the source of them on your server. Unfortunately, basic authentication still occasionally
pops up in embedded systems as the only form of authentication available.

Webcrawlers and Robots.txt

Search engines employ automated processes called, variously, crawlers, spiders, or ro-
bots to scout out websites and identify searchable content. These crawlers can be phe-
nomenally aggressive in copying site contents; website owners can define what the
crawlers access using the robot exclusion standard, or robots.txt. The standard defines
a common file (the aforementioned robots.txt), which is accessed by the crawler and
provides instructions about which files it can and can’t access.

2. See RFC 1945 and RFC 2617.
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A host that doesn’t access robots.txt and immediately begins poking around the site is
suspicious. Furthermore, robots.txt is a voluntary standard; there’s nothing preventing
a crawler from ignoring it, and it’s not uncommon for unethical or new crawlers to
ignore the instructions.

It’s also not uncommon for scanners who want to probe a site to pretend to be a crawler.
Crawlers are usually identifiable by two behaviors: they use a User -Agent string unique
to the crawler, and they come from a fixed range of IP addresses.” Most search engines
publish their address ranges to help stop masquerading; these address ranges can
change, so regularly checking a site such as the Robots Database or List of User-
Agents is a good idea.

SMTP Fumbling

For our purposes, SMTP fumbling occurs when a host sends mail to a nonexistent
address. Depending on SMTP server configurations, this will result in one of three
actions: a rejection, a bounce, or (in the case of a catch-all configuration) redirection to
a catch-all account. All of these events should be logged by the SMTP server that makes
the final routing decision.

Analyzing SMTP fumbles runs into the same problem that analyzing all SMTP traffic
does: spam. There are alot of failed addresses sent in SMTP messages because spammers
will send mail to every conceivable address.* Consequently, the relatively innocuous
reasons for fumbling (misaddressing) may exist but are drowned in spam. At the same
time, the reasons for attackers to fumble (reconnaissance) are effectively pointless be-
cause spammers don’t probe to see whether an address exists; they spam it.

There may be one good reason to analyze failed SMTP addresses: uncovering deception.
In several APT-type spear-phishing emails, I've seen the attackers seed the To: line with
several realistic but fake looking addresses. I assume that the addresses are either out of
date due to enterprise turnover or intentionally added to provide the mail with a veneer
of legitimacy.

Analyzing Fumbling

Until some brilliant researcher comes up with a better technique, scan detection will boil
down to testing for X events of interest across a Y-sized time window.

— Stephen Northcutt

3. Googlebot is a notable exception to this, and includes instructions on how to verify Googlebot.

4. Tonce logged onto an account I had never used and was greeted by 3,000 spam messages.
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Fumbling alarms can be used to detect scans, spams, and other phenomena where the
attacker has next to no knowledge about the target network.

Building Fumbling Alarms

When tracking fumbles, the goal is to raise an alarm when there’s suspicion that fum-
bling is not simply accidental. To do so, the alarm must first collect fumbling events
using the rules discussed previously in this chapter. These mechanisms include:

1. Creating or consulting a map of targets to determine whether the attacker is reach-
ing a real target.

2. Examining traffic for evidence of a failure to connect. Examples of failures to con-
nect include:

a. Asymmetric TCP sessions, or TCP sessions without ACK flags
b. HTTP 404 records

c. Email bounce logs

Innocuous fumbling, as a false positive, are generally the result of some form of mis-
configuration or miscommunication to the target. For example: the DNS name for
destination.com is moved from IP address A to IP address B; until the change thoroughly
propagates through the DNS system, users will accidentally visit address A instead of
B. These types of errors, when they occur, will come from multiple sources and will be
consistent. Going back to the destination.com case, address A is no longer used and
address C on the same network is dark (that is, it has no domain name); users may
accidentally visit A for a while, but they will not visit C. Suspicious fumbling involves
users who visit multiple nonexistent destinations; a host may visit A due to a configu-
ration error, he might possibly visit C due to chance, but if he visits A and C, then he’s
more likely scouting out a target.

Distinguishing malicious fumbling from innocuous failures is therefore, as Northcutt
says, about deciding on a threshold—the number of events tolerated before you raise
an alert. There are a number of mechanisms to do this:

1. Calculate an expected value for the number of hosts on the network that a user
should contact within a fixed period.

2. Analternative method is to use sequential hypothesis testing, a statistical technique
that calculates the likelihood that a phenomenon will pass or fail a particular test
multiple times. This approach was pioneered in infosec by Jaeyeoon Jung in her
2004 paper, “Fast Portscan Detection Using Sequential Hypothesis Testing”

5. Jung, Jaeyeon et al. “Fast Portscan Detection Using Sequential Hypothesis Testing” Paper presented at the
IEEE Symposium on Security and Privacy, Oakland, CA, May 2004.
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3. Raise an alert whenever a user visits a dark address.

The thing about malicious fumbling is that the attackers, generally, have no particular
reason to be subtle. If someone is scanning a site, she’s going to hit everything quickly.
Statistical methods are primarily useful to find the attacker quickly, and consequently
have more use in active defense rather than in alarm generation.

Forensic Analysis of Fumbling

Scanning qua scanning is basically of no interest. Every idiot on the planet scans the
Internet, and a number of them scan it multiple times daily. There is some worm-based
scanning (such as with Code Red and SQLSlammer, if you want to get truly Jurassic),
which has gone on for years without any noticeable effect. Scanning is like rain: it's going
to happen, and the real question is identifying the damage that it causes.

When receiving a scan alarm, there are several basic questions to ask:

1. Who responded to the scanner? As far as I'm concerned, scanners can visit as much
of my dark space as they like. What I'm really concerned about is whether anyone
in my network talked back to the scanner, and what they did afterward. More spe-
cific questions include:

a. Did the scanner have a serious conversation with any host? Attack software
usually rolls scanning and exploit into a two-step process. Consequently, my first
question about any scan is whether it ended before the true exploit.

b. Did any responding host have suspicious conversations afterward? Suspicious
conversations include communications with external hosts (especially if it’s an
internal server), receipt of a file, and communications on odd ports.

2. Did the scanner find out something about my network I didn’t know? Inventories
are always at least slightly out of date, and attacks are taking place all the time. Given
that, it makes sense to take advantage of the scanner’s hard work for our own benefit.

a. Did the scanner identify previously unknown hosts? This is an example of the
previous item about unknown information.

b. Did the scanner identify previously unknown services?

3. What else did the scanner do? Bots usually do multiple things at one time, and it’s
good to check whether the scanner scanned other ports, engaged in other types of
probes, or tried multiple types of attacks.

There are several good questions to ask about fumblers in general:

1. What else did the fumbler do? If the same address or source is sending mail to
multiple targets, it’s likely to be a spammer and, much like a scanner, is using a bot
as a utility knife kind of tool.

Analyzing Fumbling | 235



2.

Are there preferred targets? This particularly applies to fumbling with email ad-
dresses, because IP addresses are drawn from a much smaller pool. Are there com-
mon target addresses on your network? If so, they’re good candidates for further
instrumentation.

Engineering a Network to Take Advantage of Fumbling

Fumbling often takes advantage of common network configuration and assumptions.
Most obviously, attackers scan common ports like 22 because they expect to encounter
services there. You can take advantage of these assumptions to place more sensitive
instrumentation on the network, such as full packet capture.

Because malicious scans exploit the regularity of most target sites, you can make the
lives of attackers a bit harder by configuring your site in a somewhat irregular way:

Rearrange addresses

Most scanning is linear: the attacker will hit address X, then X+1, and so on. Most
administrators and DHCP implementations also assign addresses linearly. It's not
uncommon to have a /24 or /27 where the upper half is entirely dark. Rearranging
addresses so that they’re scattered evenly across the network, or leaving large empty
gaps in the network is a simple method that creates dark space.

Move targets

Port assignments are largely a social convention, and most modern applications
should be able to handle a service located on an unorthodox port. Especially when
dealing with internal services, which shouldn't be accessed by the outside world,
port reassignment is a cheap mechanism to frustrate more basic scanners.

Further Reading

1.

Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan, “Fast Ports-
can Detection Using Sequential Hypothesis Testing,” Proceedings of the 2004 IEEE
Symposium on Security and Privacy.
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CHAPTER 12
Volume and Time Analysis

In this chapter, we look at phenomena that can be identified by comparing traffic volume
against the passage of time. “Volume” may be a simple count of the number of bytes or
packets, or it may be a construct such as the number of IP addresses transferring files.
Based on the traffic observed, there are a number of different phenomena that can be
pulled out of traffic data, particularly:

Beaconing
When someone contacts your host at regular intervals, it is a possible sign of an
attack.

File extraction
Massive downloads are suggestive of someone stealing your internal data.

Denial of Service (DoS)
Preventing your servers from providing service.

Traffic volume data is noisy. Most of the observables that you can directly count, such
as the number of bytes over time, vary highly and have no real relationship between the
volume of the event and its significance. In other words, there’s rarely a significant
relationship between the number of bytes and the importance of the events. This chapter
will help you find unusual behaviors through scripts and visualizations, but a certain
amount of human eyeballing and judgment are necessary to determine which behaviors
to consider dangerous.

The Workday and Its Impact on Network Traffic Volume

The bulk of traffic on an enterprise network comes from people who are paid to work
there, so their traffic is going to roughly follow the hours of the business day. Traffic will
trough during the evening, rise around 0800, peak around 1300, and drop off around
1800.
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To show how dominant the workday is, consider Figure 12-1, a plot showing the pro-
gression of the SOBIG.F email worm across the SWITCH network in 2003. SWITCH is
Switzerland and Lichtenstein’s educational network, and makes up a significant fraction
of the national traffic for Switzerland. In Figure 12-1, the plot shows the total volume
of SMTP traffic over time for a two-week period. SoBIG propagates at the end of the
plot. But what I want to highlight is the normal activity during the earlier part of the
week on the left. Note that each weekday is a notched peak, with the notch coming at
lunchtime. Note also that there is considerably less activity over the weekend.
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Figure 12-1. Mail traffic and propagation of a worm across Switzerland’s SWITCH net-
work (image courtesy of Dr. Arno Wagner)

This is a social phenomenon; knowing roughly where the address you're monitoring is
(home, work, school), and the local time zone can help predict both events and volumes.
For example, in the evening, streaming video companies become a more significant
fraction of traffic as people kick back and watch TV.

There are a number of useful rules of thumb for working with workday schedules to
identify, map, and manage anomalies. These include tracking active and inactive peri-
ods, tracking the internal schedule of an organization, and keeping track of the time
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zone. The techniques covered in this section are a basic, empirical approach to time
series analysis; considerably more advanced techniques are covered in the books cited.

When working with site data, [ usually find that it’s best to break traffic into “on” (people
are working) and “off” (people are at home) periods. The histogram in Figure 12-2
shows how this phenomenon can affect the distribution of traffic volume—in this case,
the two distinct peaks correspond to the on-periods and off-periods. Modeling the two
periods separately will provide a more accurate volume estimate without pulling out
the heavier math used for time series analysis.

Volume Observations
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Figure 12-2. Distribution of traffic in a sample network, where the peak on the right is
workday and the peak on the left is evening

When determining on-periods and off-periods, consider the schedule of the organiza-
tionitself. If your company has any special or unusual holidays, such as taking a founder’s
birthday off, keep track of those as potential off-days. Similarly, are there parts of the
organization that are staffed constantly and other parts that are only 9 to 5? If something
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is constantly staffed, keep track of the shift changes, and you’ll often see traffic repeat
at the start of a shift as everyone logs on, checks email, meets, and then starts working.

The Value of Off-Days

Off-time is valuable. If I want to identify dial-homes, file exfiltration, and other suspi-
cious activity, I like to do so by watching off-hours. There’s less traffic, there are fewer
people, and if someone is ignorant of a company’s internal circadian rhythm, she’ll be
a lot easier to identify during those periods than if she’s hiding in the crowd.

This is the reason I like to keep track of a company’s own special off-times. It’s easy
enough for someone to hide his traffic by keeping all activity in 9-5/M-F, but if the
attacker doesn’t know the company gives St. Swithin’s Day off, then he’s more likely to
stick out.

I've seen this particular phenomenon show up when dealing with insiders, particularly
people worried about shoulder surfing or physical surveillance. They’ll move their ac-
tivity to evenings and weekends in order to make sure their neighbors don’t ask what
they’re doing, and then show up fairly visibly in the traffic logs.

Business processes are a common source of false positives with volume analysis. For
example, I've seen a corporate site where there’s a sudden biweekly spike in traffic to a
particular server. The server, which covered company payroll, was checked by every
employee every other Friday and never visited otherwise. Phenomena that occurs
weekly, biweekly, or on multiples of 30 days is likely to be associated with the business’s
own processes and should be identified as such for future reference.

Beaconing

Beaconing is the process of systematically and regularly contacting a host. For instance,
botnets will poll their command servers for new instructions periodically. This is par-
ticularly true of many modern botnets that use HTTP as a moderator. Such behavior
will appear to you as information flows at regular intervals between infected systems
on your site and an unknown address off-site.

However, there are many legitimate behaviors that also generate routine traffic flows.
Examples include:

Keep alives
Long-lived sessions, such as an interactive SSH session, will send empty packets at
regular intervals in order to maintain a connection with the target.
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Software updates
Most modern applications include some form of automated update checkup. AV,
in particular, regularly downloads signature updates to keep track of the latest mal-
ware.

News and weather
Many news, weather, and other interactive sites regularly refresh the page as long
as a client is open to read it.

Beacon detection is a two-stage process. The first stage involves identifying consistent
signals. An example process for doing so is the find_beacons.py script shown in
Example 12-1. find_beacons.py takes a sequence of flow records and dumps them into
equally sized bins. Each input consists of two fields: the IP address where an event was
found and the starting time of the flow, as returned by rwcut. rwsort is used to order the
traffic by source IP and time.

The script then checks the median distance between the bins and scores each IP address
on the fraction of bins that fall within some tolerance of that median. If a large number
of flows are near the median, you have found a regularly recurring event.

Example 12-1. A simple beacon detector

#!/usr/bin/env python
#

find_beacons.py

input:

rwsort --field=1,9 | rwcut --no-title --epoch --field=1,9 | <stdin>
command line:
find_beacons.py precision tolerance [epoch]

precision: integer expression for bin size (in seconds)

tolerance: floating point representation for tolerance expressed as

fraction from median, e.g. 0.05 means anything within (median -

0.5*median, median + 0.5*median) is acceptable

epoch: starting time for bins; if not specified, set to midnight of the first
time read.

HOoFH OH O OH O H HHH R R

This 1s a very simple beacon detection script which works by breaking a traffic
feed into [precision] length bins. The distance between bins is calculated and
the median value is used as representative of the distance. If all the distances
are within tolerance% of the median value, the traffic is treated as a beacon.

H ¥

import sys

if len(sys.argv) >= 3:
precision = int(sys.argv[1])
tolerance = float(sys.argv[2])
else:
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sys.stderr.write("Specify the precision and tolerance\n")

starting_epoch = -1
if len(sys.argv) >= 4:
starting_epoch = int(sys.argv[3])

current_ip =

def process_epoch_info(bins):
a = bins.keys()
a.sort()
distances = []
# We create a table of distances between the bins
for 1 in range(0, len(a) -1):
distances.append(a[i + 1] - a[i])

distances.sort()
median = distances(len(distances)/2)
tolerance_range = (median - tolerance * median, median + tolerance *median)
# Now we check bins
count = 0
for 1 in distances:
if (1 >= tolerance_range[0]) and (1 <= tolerance_range[1]):

count+=1

return count, len(distances)

bins = {} # Checklist of bins hit during construction; sorted and
# compared later. AA be cause it's really a set and I
# should start using those.

results = {} # Associate array containing the results of the binning
# analysis, dumped during the final report

# We start reading in data; for each line I'm building a table of
# beaconing events. The beaconing events are simply indications that
# traffic 'occurred' at time X. The size of the traffic, how often it occurred,
# how many flows is irrelevant. Something happened, or it didnt.
for 1 in sys.stdin.readlines():
ip, time = 1.split('|')[0:2]

if ip != current_1ip:
results[ip] = process_epoch_info(bins)
bins = {}

if starting_epoch == -1:

starting_epoch = time - (time % 86400) # Sets it to midnight of that day
bin = (time - starting_epoch) / precision
bins[bin] = 1

a = bins.sort()
for 1 in a:
print "%15s|%5d|%5d|%8.4f" % (ip, bins[a][0], bins[a][1],
100.0 * (float(bins[a[0]])/float(bins[a[1]])))
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The second stage of beacon detection (as usual) is inventory management. An enormous
number of legitimate applications, as we saw earlier, transmit data periodically. NTP,
routing protocols, and AV tools all dial home on a regular basis for information updates.
SSH also tends to show periodic behavior, because administrators run periodic main-
tenance tasks via the protocol.

File Transfers/Raiding

Data theft is still the most basic form of attack on a database or website, especially if the
website is internal or an otherwise protected resource. For lack of a better term, I'll use
raiding to denote copying a website or database in order to later disseminate, dump, or
sell the information. The difference between raiding and legitimate access is a matter
of degree, as the point of any server is to serve data.

Obviously, raiding should result in a change in traffic volume. Raiding is usually con-
ducted quickly (possibly while someone is packing up her cubicle) and often relies on
automated tools such as wget. It's possible to subtly raid, but that would require the
attacker to have both the time to slowly extract data and the patience to do so.

Volume is one of the easiest ways to identify a raid. The first step is building up a model
of the normal volume originating from a host over time. The calibrate_raid.py script in
Example 12-2 provides thresholds for volume over time, as well as a table of results to
plot.

Example 12-2. A raid detection script

#!/usr/bin/env python
#
calibrate_raid.py

input:
Nothing
output:
writes a report containing a time series and volume estimates to stdout
command_line
calibrate_raid.py start_date end_date ip_address server_port period_size

start_date: The date to begin the query on

end_date: The date to end the query on

ip_address: the server address to query

server_port: the port of the server to query

period_size: the size of the periods to use for modeling the time

Glven a particular IP address, this generates a time series (via rwcount)
and a breakdown on what the expected values at the 90-100% thresholds would
be. The count output can then be run through a visualizer in order to
check for outliers or anomalies.

HOoH OH O OH O OH O OH R OHH R H R R R R R

import sys,os,tempfile
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start_date = sys.argv[1]
end_date = sys.argv[2]
ip_address = sys.argv[3]
server_port = int(sys.argv[4])
period_size = int(size.arg[5])

if __name__ == '__main

fh, temp_countfn = tempfile.mkstemp()
os.close(fh)
# Note that the filter call uses the IP address as the source, and the
# server port as the source. We're pulling out flows that originated
# FROM the server, which means that they should be the data from the
# file transfer. If we used daddress/dport, we'd be logging the
# (much smaller) requests to the server from the clients.
#
os.system(('rwfilter --saddress=%s --sport=%d --start-date=%s ',
'--end-date=%s --pass=stdout | rwcount --epoch-slots',
' --bin-size=%d --no-title > %s') % (
ip_address, server_port, start_date, end_date, period_size,
temp_countfn))

A note on the filtering I'm doing here. You *could* rwfilter to
only include 4-packet or above sessions, therefore avoiding the
scan responses. However, those *should* be minuscule, and
therefore I elect not to in this case.

Load the count file into memory and add some structure

= open(temp_countfn, 'r')

We're basically just throwing everything into a histogram, so I need

to establish a min and max

min = 99999999999L

max = -1

data = {}

for 1 in a.readlines():

time, records, bytes, packets = map(lambda x:float(x),
i[:-1].split(']"')[0:4])

H H o HH

if bytes < min:
min = bytes
if bytes > max:
max = bytes
data[time] = (records, bytes, packets)
a.close()
os.unlink(temp_countfn)
# Build a histogram with hist_size slots
histogram = []
hist_size = 100
for 1 in range(0,hist_size):
histogram.append(0)
bin_size = (max - min) / hist_size
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total_entries = len(data.values)

for records, bytes, packets in data.values():
bin_index = (bytes - min)/bin_size
histogram[bin_1index] += 1

# Now we calculate the thresholds from 90 to 100%
thresholds = []
for 1 in range(90, 100):

thresholds.append(0.01 * 1 * total_entries)
total = 0
last_match = 0 # index in thresholds where we stopped
# Step 1, we dump the thresholds
for 1 in range(0, hist_size):

total += histogram[i]

if total >= thresholds[last_match]:

while thresholds[last_match] < total:
print "%3d%% | %d" % (90 + last_match, (i * bin_size) + min)

a = data.keys()
a.sort()
for 1 in a:

print "%15d|%10d|%10d|%10d" % (i, data[1][0], data[i][1], data[i][2])

Visualization is critical when calibrating volume thresholds for detecting raiding or
other raiding anomalies. We've discussed the problem with standard deviations in
Chapter 10, and a histogram is the easiest way to determine whether a distribution is
even remotely Gaussian. In my experience, a surprising number of services regularly
raid hosts—web spiders and the Internet archive being among the more notable exam-
ples. If a site is strictly internal, backups and internal mirroring are common false pos-
itives.

Visualization can identify these outliers. The example in Figure 12-3 shows that the
overwhelming majority of traffic occurs below about 1000 MB/10 min, but those few
outliers above 2000 MB/10 min will cause problems for calibrate_raid.py and most
training algorithms. Once you have identified the outliers, you can record them in a
whitelist and remove them from the filter command using - -not-dipset. You can then
use rwcount to set up a simple alert mechanism.
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Volume Observations With Exaggerated Outliers
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Figure 12-3. Traffic volume with outliers; determining the origin and cause of outliers
will reduce alerts

Locality

Locality is the tendency of references (memory locations, URLs, IP addresses) to cluster
together. For example, if you track the web pages visited by a user over time, you will
find that the majority of pages are located in a small and predictable number of sites
(spatial locality), and that users tend to visit the same number of sites over and over
(temporal locality). Locality is a well understood concept in computer science, and
serves as the foundation of caching, CDNs, and reverse proxies.

Locality is particularly useful as a complement to volumetric analysis because users are
generally predictable. Users visit a small number of sites and talk to a small number of
people, and while there are occasional changes, we can model this behavior using a
working set.
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Figure 12-4. A Working Set in Operation

Figure 12-4 is a graphical example of a working set in operation. In this example, the
working set is implemented as an LRU (Least Recently Used) queue of fixed size (in this
case, four references in the queue). This working set is tracking web surfing, so it gets
fed URLs from an HTTP server logfile and adds them to the stack. Working sets only
keep one copy of every reference they see, so a four-reference set like the one shown in
Figure 12-4 will only show four references. When a working set receives a reference, it
does one of three things:

1. If there are empty references left, the new reference is enqueued at the back of the
queue (I to II).

2. If the queue is filled AND the reference is present, the reference is moved to the
back of the queue.

3. If the queue is filled AND the reference is NOT present, then the reference is en-
queued at the back of the queue, and the reference at the front of the queue is
removed.

The code in Example 12-3 shows an LRU working set model in python.

Example 12-3. Calculating working set characteristics

#!/usr/bin/env python

#

#

# Describe the locality of a host using working_set depth analysis.
# Inputs:

# stdin - a sequence of tags
#

# Command line args:

# first: working_set depth

Locality | 247



import sys

try:
working_set_depth = int(sys.argv[1])

except:
sys.stderr.write("Specify a working_set depth at the command line\n")
sys.exit(-1)

working_set = []

i = sys.stdin.readline()

total_processed = 0

total_popped = 0

unique_symbols = {}

while 1 1= '":
value = i[:-1] #Ditch the obligatory \n
unique_symbols[value] = 1 # Add in the symbol
total_processed += 1

try:

vind = working_set.index(value)
except:

vind = -1

if (vind == -1):
# Value isn't present as an LRU cache; delete the
# least recently used value and store this at the end
working_set.append(value)
if len(working_set) > working_set_depth:
del working_set[0]
working_set.append(value)
total_popped +=1
else:
# Most recently used value; move it to the end of the working_set
del working_set[vind]

# Calculate probability of replacement stat
p_replace = 100.0 * (float(total_popped)/float(total_processed))

print "%10d %10d %10d %8.4f" % (total_processed, unique_symbols,
working_set_depth, p_replace)

Figure 12-5 shows an example of what working sets will look like. This figure plots the
probability of replacing a value in the working set as a function of the working set size.
Two different sets are compared here: a completely random set where references are
picked from a set of 10 million symbols, and a model of user activity using a Pareto
distribution. The Pareto model is adequate for modeling normal user activity, if actually
a bit [ess stable than users under normal circumstances.

Note the “knee” in the Pareto model, while the random model remains consistent at a
100% replacement rate. Working sets generally have an ideal size after which increasing
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the set’s size is counterproductive. This knee is representative of this phenomenon—
you can see that the probability of replacement drops slightly before the knee, but re-
mains effectively stable afterward.
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Figure 12-5. Working set analysis

The value of working sets is that once they’re calibrated, they reduce user habit down
to two parameters: the size of the queue modeling the set and the probability that a
reference will result in a queue replacement.

DDoS, Flash Crowds, and Resource Exhaustion

Denial of Service (DoS) is a goal, not a specific strategy. A DoS results in a host that
cannot be reached from remote locations. Most DoS attacks are implemented as a Dis-
tributed Denial of Service (DDoS) attack in which the attacker uses a network of cap-
tured hosts in order to implement the DoS. There are several ways an attacker can
implement DoS§, including but not limited to:

Service level exhaustion
The targeted host runs a publicly accessible service. Using a botnet, the attacker
starts a set of clients on the target, each conducting some trivial but service-specific
interaction (such as fetching the home page of a website).
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SYN flood
The SYN flood is the classic DDoS attack. Given a target with an open TCP port,
the attacker sends clients against the attacker. The clients don’t use the service on
the port, but simply open connections using a SYN packet and leave the connection
open.

Bandwidth exhaustion
Instead of targeting a host, the attacker sends a massive flood of garbage traffic
towards the host, intending to overwhelm the connection between the router and
the target.

And you shouldn’t ignore a simple insider attack: the attacker walks over to the physical
server and disconnects it.

All these tactics produce the same result, but each tactic will appear differently in net-
work traffic and may require different mitigation techniques. Exactly how many re-
sources the attacker needs is a function of how the attacker implements DDoS. As arule
of thumb, the higher up an attack is on the OSI model, the more stress it places on the
target and the fewer bots are required by the attacker. For example, bandwidth exhaus-
tion hits the router and basically has to exhaust the router interface. SYN flooding, the
classic DDoS attack, has to simply exhaust the target’'s TCP stack. At higher levels, tools
like Slowloris effectively create a partial HT'TP connection, exhausting the resources of
the web server.

This has several advantages from an attacker’s perspective. Fewer resources consumed
means fewer bots involved and a legitimate session is more likely to be allowed through
by a firewall that might block a packet crafted to attack the IP or TCP layer.

DDoS and Routing Infrastructure

DDoS attacks aimed specifically at routing infrastructure will produce collateral dam-
age. Consider a simple network like the one in Figure 12-6; the heavy line shows the
path of the attack to subnetwork C. The attacker hitting subnetwork C is exhausting not
just the connection at C, but also the router’s connection to the Internet. Consequently,
hosts on networks A and B will not be able to reach the Internet and will see their
incoming Internet traffic effectively drop to zero.
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Figure 12-6. DDoS collateral damage

This type of problem is not uncommon on colocated services, and emphasizes that
DDoS defense is rooted at network infrastructure. I am, in the long run, deeply curious
to see how cloud computing and DDoS are going to marry. Cloud computing enables
defenders to run highly distributed services across the Internet’s routing infrastructure.
This, in turn, increases the resources the attacker needs to take out a single defender.

With DoS attacks, the most common false positives are flash crowds and cable cuts. A
flash crowd is a sudden influx of legitimate traffic to a site in response to some kind of
announcement or notification. Alternate names for flash crowds such as SlashDot ef-
fect, farking, or Reddit effect provide a good explanation of what’s going on.

These different classes of attacks are usually easily distinguished by looking at a graph
of incoming traffic. Some idealized images are shown in Figure 12-7, which explain the
basic phenomena.
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Figure 12-7. Different classes of bandwidth exhaustion

The images in Figure 12-7 describe three different classes of bandwidth exhaustion: a
DDoS, a flash crowd, and a cable cut or other infrastructure failure. Each plot is of
incoming traffic and equivalent to sitting right at the sensor. The differences between
the plots reflect the phenomena causing the problems.

DDoS attacks are mechanical. The attack usually switches on and off instantly, as the
attacker is issuing commands remotely to a network of bots. When a DDoS starts, it
almost instantly consumes as much bandwidth as available. In many DDoS plots, the
upper limit on the plot is dictated by the networking infrastructure: if you have a 10 GB
pipe, the plot maxes at 10 GB. DDoS attacks are also consistent. Once they start, they
generally keep humming along at about the same volume. Most of the time, the attacker
has grossly overprovisioned the attack. Bots are being removed while the attack goes
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on, but there’s more than enough to consume all available bandwidth even if a significant
fraction are knocked offline.

DDoS mitigation is an endurance contest. The best defense is to provision out band-
width before the attack starts. Once an attack actually occurs, the best you can do at any
particular location is to try to identify patterns in the traffic and block the ones causing
the most damage. Examples of patterns to look for include:

o Identifying a core audience for the target and limiting traffic to the core audience.
The audience may be identified by using IP address, netblock, country code, or
language, among other attributes. What is critical is that the audience has a limited
overlap with the attacker set. The script in Example 12-4 provides a mechanism for
ordering /24s by the difference between two sets: historical users that you trust and
new users whom you suspect of being part of a DDoS attack.

o Spoofed attacks are occasionally identifiable by some flaw in the spoofing. The ran-
dom number generator for the spoof might set alladdresses to x.x.x.1,as an example.

Example 12-4. An example script for ordering blocks

#!/usr/bin/env python

#

# ddos_1intersection.py

#

# input:

# Nothing

# output:

# A report comparing the number of addresses in two sets, ordered by the
# largest number of hosts in set A which are not present in set B.
#

# command_line

# ddos_intersection.py historical_set ddos_set

#

# historical_set: a set of historical data giving external addresses

# which have historically spoken to a particular host or network

# ddos_set: a set of data from a ddos attack on the host

# This is going to work off of /24's for simplicity.

#

import sys,os,tempfile

historical_setfn = sys.argv[1]
ddos_setfn = sys.argv[2]
blocksize = int(sys.argv[3])

mask_fh, mask_fn = tempfile.mkstemp()
os.close(mask_fh)
os.unlink(mask_fn)

os.system(('rwsettool --mask=24 --output-path=stdout %s | ' +
' rwsetcat | sed 's/$/\/24/' | rwsetbuild stdin %s') %
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(historical_setfn, mask_fn))

bins = {}
# Read and store all the /24's in the historical data
a = os.popen(('rwsettool --difference %s %s --output-path=stdout | ',

'rwsetcat --network-structure=C') % (mask_fn, historical_setfn),'r')
# First column is historical, second column is ddos
for 1 in a.readlines():
address, count = i[:-1].split('|')[0:2]
bins[address] = [int(count), 0]

a.close()
# Repeat the process with all the data in the ddos set
a = os.popen(('rwsettool --difference %s %s --output-path=stdout | ',

'rwsetcat --network-structure=C') % (mask_fn, ddos_setfn),'r')
for 1 in a.readlines():
address, count = i[:-1].split('|')[0:2]
# I'm intersecting the maskfile again, since I originally intersected it against
# the file I generated the maskfile from, any address that I find in the file
# will already be in the bins associative array
bins[address][1] = int(count)

#
# Now we order the contents of the bins. This script is implicitly written to
# support a whitelist-based approach -- addresses which appear in the historical

# data are candidates for whitelisting, all other addresses will be blocked.
# We order the candidate blocks in terms of the number of historical addresses
# allowed in, decreasing for every attacker address allowed in.
address_list = bins.items()
address_list.sort(lambda x,y:(y[1][0]-x[11[0])-(y[1]1[1]-x[1]1[1]))
print "%20s|%10s|%10s" % ("Block", "Not-DDoS", "DDoS")
for address, result in address_list:
print "%20s|%10d|%10d" % (address, bins[address][0], bins[address][1])

This type of filtering works more effectively if the attack is focused on striking a specific
service, such as DDoSing a web server with HTTP requests. If the attacker is instead
focused on traffic flooding a router interface, the best defenses will normally lie up-
stream from you.

As discussed in Chapter 11, people are impatient where machines are not, and this
behavior is the easiest way to differentiate flash crowds from DDoS attacks. As the flash
crowd plot in Figure 12-7 shows, when the event occurs, the initial burst of bandwidth
is followed by a rapid falloff. The falloff is because people have discovered that they can’t
reach the targeted site and have moved on to more interesting pastures until some later
time.

Flash crowds are public affairs—for some reason, somebody publicized the target. As a
result, it’s often possible to figure out the origin of the flash crowd. For example, HT TP
referrer logs will include a reference to the site. Googling the targeted site is often a good
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option. If you are familiar with the press and news associated with your site, this is also
a good option.

Cable cuts and mechanical failures will result in an actual drop in traffic. This is shown
in the cable cut figure, where all of a sudden traffic goes to zero. When this happens,
the first follow-up step is to try to generate some traffic fo the target, and ensure that
the problem is actually a failure in traffic and not a failure in the detector. After that,
you need to bring an alternate system online and then research the cause of the failure.

DDoS and Force Multipliers

Functionally, DDoSes are wars of attrition: how much traffic can the attacker throw at
the target, and how can the target compensate for that bandwidth? Attackers can im-
prove the impact of their attack through a couple of different strategies: they can acquire
more resources, attack at different layers of the stack, and rely on Internet infrastructure
to inflict additional damage. Each of these techniques effectively serves as a force mul-
tiplier for attackers, increasing the havoc with the same number of bots under their
control.

The process of resource acquisition is really up to the attacker. The modern Internet
underground provides a mature market for the rental and use of botnets. An alternative
approach, used notably by some of Anonymous, involves volunteers. Anonymous has
developed a family of JavaScript and C# DDoS§ tools under the monicker “LOIC” (Low
Orbit Ion Cannon) to conduct DDoS attacks. The LOIC family of tools are, in compar-
ison to hardcore malware, fairly primitive. Arguably, they’re not intended to be anything
more than that given their hacktivist audience.

These techniques rely on processing asymmetry: the attacker in some way juggles op-
erations so that the processing demand on the server per connection is higher than the
processing demand on the client. Development decisions will impact a system’s vulner-
ability to a higher-level DDoS.!

Attackers can also rely on Internet infrastructure to conduct attacks. This is generally
done by taking a response service and sending the response to a forged target address.
The classic example of this, the smurf attack, consisted of a ping where the host A,
wanting to DDoS site B, sends a spoofed ping to abroadcast address. Every host receiving
the ping (i.e., everything sharing the broadcast address) then drowns the target in re-
sponses. The most common modern form of this attack uses DNS reflection: the attacker
sends a spoofed request to a DNS resolver, which then sends an inordinately informative
and helpfully large packet in response.

1. This is true historically as well. Fax machines are subject to black fax attacks, where the attacker sends an
entirely black page and wastes toner.
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Applying Volume and Locality Analysis

The phenomena discussed in this chapter are detectable using a number of different
approaches. In general, the problem is not so much detecting them as differentiating
malicious activity from legitimate but similar-appearing activity. In this section, we
discuss a number of different ways to build detectors and limit false positives.

Data Selection

Traffic data is noisy, and there’s little correlation between the volume of traffic and the
malice of a phenomenon. An attacker can control a network using ssh and generate
much less traffic than a legitimate user sending an attachment over email. The basic
noisiness of the data is further exacerbated by the presence of garbage traffic such as
scanning and other background radiation (see Chapter 11 for more information on
this).

The most obvious values to work with when examining volume are byte and packet
counts over a period. They are also generally so fantastically noisy that you’re best off
using them to identify DDoS and raiding attacks and little else.

Because the values are so noisy and so easily disrupted, I prefer working with constructed
value such as a flow. NetFlow groups traffic into session approximations; I can then
filter the flows on different behaviors, such as:

o Filtering traffic that talks only to legitimate hosts and not to dark space, this ap-
proach requires access to a current map of the network, as discussed in Chapter 15.

o Splitting short TCP sessions (four packets or less) from longer sessions, or looking
for other indications that a session is legitimate, such as the presence of a PSH flag.
See Chapter 11 for more discussion on this behavior.

o Further partitioning traffic into command, fumble, and file transfers. This ap-
proach, discussed in Chapter 14, extends the filtering process to different classes of
traffic, some of which should be rare.

« Using simple volume thresholds. Instead of recording the byte count, for example,
record the number of 100, 1000, 10000, and 100000+ byte flows received. This will
reduce the noise you're dealing with.

Whenever youre doing this kind of filtering, it's important to not simply throw out the
data, but actually partition it. For example, if you count thresholded volume, record the
1-100, 100+, 1000+, 10000+ and 100000+ values as separate time series. The reason for
partitioning the data is purely paranoia. Any time you introduce a hard rule for what
data you're going to ignore, you've created an opening for an attacker to imitate the
ignored data.
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A less noisy alternative to volume counts are values such as the number of IP addresses
reaching a network or the number of unique URLs fetched. These values are more
computationally expensive to calculate as they require distinguishing individual values;
this can be done using a tool like rwset in the SiLK suite or with an associative array.
Address counts are generally more stable than volume counts, but at least splitting off

the hosts who are only scanning is (again) a good idea to reduce the noise.

Example 12-5 illustrates how to apply filtering and partitioning to flow data in order to

produce time series data.

Example 12-5. A simple time series output application

#

#

# gen_timeseries.py

#

# Generates a timeseries output by reading flow records and partitioning

# the data in this case, into short (<=4 packet) TCP flows, and long

# (>4 packet) TCP flows.

#

# Output

# Time <bytes> <packets> <addresses> <long bytes> <long packets> <long addresses>
#

# Takes as input

# rwcut --fields=sip,dip,bytes,packets,stime --epoch-time --no-title

#

# We assume that the records are chronologically ordered, that is, no record
# will produce an stime earlier than the records preceding it in the

# output.

import sys

current_time = sys.maxint
start_time = sys.maxint
bin_size = 300 # We'll use five minute bins for convenience
ip_set_long = set()
ip_set_short = set()
byte_count_long = 0
byte_count_short = 0
packet_count_long = 0
packet_count_short = 0
for 1 in sys.stdin.readlines():
sip, dip, bytes, packets, stime = i[:-1].split(']|"')[0:5]
# convert the non integer values
bytes, packets, stime = map(lambda x: int(float(x)), (bytes, packets, stime))
# Now we check the time binning; if we're onto a new bin, dump and
# reset the contents
if (stime < current_time) or (stime > current_time + bin_size):
ip_set_long = set()
ip_set_short = set()
byte_count_long = byte_count_short
packet_count_long = packet_count_short

n o
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if (current_time == sys.maxint):

# Set the time to a 5 minute period at the start of the
currently observed epoch. This is done in order to
ensure that the time values are always some multiple
of five minutes apart, as opposed to dumping something
at t, t+307, t+619 and so on.

current_time = stime - (stime % bin_size)
else:

# Now we output results

print "%10d %10d %10d %10d %10d %10d %10d" % (

current_time, len(ip_set_short), byte_count_short,
packet_count_short,len(ip_set_long), byte_count_long,
packet_count_long)

current_time = stime - (stime % bin_size)

H O B R

else:
# Instead of printing, we're just adding up data
# First, determine if the flow is long or short
if (packets <= 4):
# flow is short
byte_count_short += bytes
packet_count_short += packets
ip_set_short.update([sip,dip])
else:
byte_count_long += bytes
packet_count_long += packets
ip_set_long.update([sip,dip])

if byte_count_long + byte count_short != 0:
# Final print line check
print "%10d %10d %10d %10d %10d %10d %10d" % (
current_time, len(ip_set_short), byte_count_short,
packet_count_short,len(ip_set_long), byte_count_long,
packet_count_long)

Keep track of what you're partitioning and analyzing. For example, if you decide to
calculate thresholds for a volume-based alarm only on sessions from Bulgaria that have
at least 100 bytes, then you need to make sure that approach is used to calculate future
thresholds, but that it’s also documented, and why.

Using Volume as an Alarm

The easiest way to construct a volume-based alarm is to calculate a histogram and then
pick thresholds based on the probability that a sample will exceed the observed thresh-
old. calibrate_raid in Example 12-2 is a good example of this kind of threshold calcu-
lation. When generating alarms, consider the time of day issues discussed in “The
Workday and Its Impact on Network Traffic Volume” on page 237, and whether you
want multiple models; a single model will normally cost you precision. Also, when
considering thresholds, consider the impact of unusually low values and whether they
merit investigation.
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Given the noisiness of traffic volume data, expect a significant number of false positives.
Most false positives for volume breaches come from hosts that have a legitimate reason
for copying or archiving a target, such as a web crawler or archiving software. Several
of the IDS mitigation techniques discussed in “Enhancing IDS Response” on page 143
are useful here; in particular, whitelisting anomalies after identifying that the source is
innocuous and rolling up events.

Using Beaconing as an Alarm

Beaconing is used to detect a host that is consistently communicating with other hosts.
To identify malicious activity, beaconing is primarily used to identify communications
with a botnet command and control server. To detect beacons, you identify hosts that
communicate consistently over a time window, as done with find_beacons.py.

Beacon detection runs into an enormous number of false positives because software
updates, AV updates, and even SSH cron jobs have consistent and predictable intervals.
Beacon detection consequently depends heavily on inventory management. After re-
ceiving an alert, you will have to determine whether a beaconing host has a legitimate
justification, which you can do if the beaconing is from a known protocol, is commu-
nicating with a legitimate host, or provides other evidence that the traffic is not botnet
C&C traffic. Once identified as legitimate, the indicia of the beacon (the address and
likely the port used for communication) should be recorded to prevent further false
positives.

Also of import are hosts that are supposed to be beaconing, but don't. This is particularly
critical when dealing with AV software, because attackers often disable AV when con-
verting a newly owned host. Checking to see that all the hosts that are supposed to visit
an update site do so is a useful alternative alarm.

Using Locality as an Alarm

Locality measures user habits. The advantage of the working set model is that it provides
room for those habits to break. Although people are predictable, they do mail new
contacts or visit new websites at irregular intervals. Locality-based alarms are conse-
quently useful for measuring changes in user habits, such as differentiating the normal
user of a website from someone who is raiding it, or identifying when a site’s audience
changes during a DDoS.

Locality is a useful complement to volume-based detection for identifying raiding. A
host that is raiding the site or otherwise scanning it will demonstrate minimal locality,
as it will want to visit all the pages on the site as quickly as possible. In order to determine
whether or not a host is raiding, look at what the host is fetching and the speed at which
the host is working.
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The most common false positives in this case are search engines and bots such as Goo-
glebot. A well-behaved bot can be identified by its User -Agent string, and if the host is
not identified as a bot by that string, you have a dangerous host.

A working set model can also be applied to a server rather than individual users. Such
a working set is going to be considerably larger than a user profile, but it is possible to
use that set to track the core audience of a website or an SSH server.

Engineering Solutions

Raid detection is a good example of a scenario in which you can apply analysis and are
probably better off not building a detector. The histograms generated by cali-
brate_raid.py or analysis done by counting the expected volume a user pulls over a day
is ultimately about determining how much data a user will realistically access from a
server.

This same information can be used to impose rate limits on the servers. Instead of firing
off an alert when a user exceeds this threshold, use a rate limiting module (such as
Apache’s Quota) to cut the user off. If youre worried about user revolt, set the threshold
to 200% of the maximum you observe and identify outliers who need special permis-
sions to exceed even that high threshold.

This approach is going to be most effective when you've got a server whose data radically
exceeds the average usage of any one user. If people access a server and use less than a
megabyte of traffic a day, whereas the server has gigabytes of data, you've got an easily
defensible target.

Further Reading

1. Avril Coghlan, “A Little Book of R for Time Series”

2. John McHugh and Carrie Gates, “Locality: A New Paradigm in Anomaly Detection,”
Proceedings of the 2003 New Security Paradigms Workshop.
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CHAPTER 13
Graph Analysis

A graph is a mathematical construct composed of one or more nodes (or vertices) con-
nected together by one or more links (or edges). Graphs are an effective way to describe
communication without getting lost in the weeds. They can be used to model connec-
tivity and provide a comprehensive view of that connectivity while abstracting away
details such as packet sizes and session length. Additionally, graph attributes such as
centrality can be used to identify critical nodes in a network. Finally, many important
protocols (in particular, SMTP and routing) rely on algorithms that model their par-
ticular network as a graph.

The remainder of this chapter is focused on the analytic properties of graphs. We begin
by describing what a graph is and then developing examples for major attributes: short-
est paths, centrality, clusters, and clustering coefficient.

Graph Attributes: What Is a Graph?

A graph is a mathematical representation of a collection of objects and their interrela-
tionships. Originally developed in 1736 by Leonhard Euler to address the problem of
crossing the bridges of Konigsberg, graphs have since been used to model everything
from the core members of conspiracies to the frequency of sounds uttered in the English
language. Graphsare an extremely powerful and flexible descriptive tool, and that power
comes because they are extremely fungible. Researchers in mathematics, engineering,
and sociology have developed an extensive set of constructed and observed graph at-
tributes that can be used to model various behaviors. The first challenge in using graphs
is deciding which attributes you need and how to derive them. The following attributes
represent a subset of what can be done with graphs, and are chosen for their direct
relevance to the traffic models built later. Any good book on graph theory will include
more attributes because at some point, someone has tried just about anything with a
graph.
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At the absolute minimum, a graph is composed of nodes and links, where a link is a
connection between exactly two nodes. A link can be directed or undirected; if a link is
directed, then it has an origin and a destination. Conventionally, a graph is either com-
posed entirely of directed links, or entirely of undirected links. If a graph is undirected,
then each node has a degree, which is the number of links connected to that node. Nodes
in a directed graph have an indegree, which is the number of links with a destination
that is that node, and an outdegree, which is the number of links whose origin is the
node.

(ii

.

Figure 13-1. Directed and undirected graphs: in (i), the graph is undirected and each
node has degree 2; in (ii), the graph is directed: node a has outdegree 2, indegree 0; node
b has outdegree 1, indegree 1; node ¢ has outdegree 0, indegree 2

In network traffic logs, there are a number of candidates for conversion to graphs. In
flow data, IP addresses can be used as nodes and the existence of a flow between them
can be used as links. In HTTP server logs, nodes can be individual pages linked together
by Referer headers. In mail logs, email addresses can be nodes, and the links between
them can be expressed as mail. Anything expressed as a communication from point A
to point B is a suitable candidate.

A disclaimer about code in this section of the book: it is intended primarily for educa-
tional purposes, so in the interests of clearly pointing out how various algorithms or
numbers work, I've avoided optimization and a lot of the exception trapping I'd use in
production code. This is particularly important when dealing with graph analysis, since
graph algorithms are notoriously expensive. There are a number of good libraries avail-
able for doing graph analysis, and they will process complex graphs much more effi-
ciently than anything I hack together here.

The script in Example 13-1 can create directed or undirected graphs from lists of pairs
(for example, the output of rwcut --field=1,2 --no-title --delim=' "'). There are
a couple of methods under the hood for implementing graphs; in this case, I'm using
adjacency lists, which I feel are the most intuitively obvious. In an adjacency list imple-
mentation, each node maintains a table of all the links adjacent to it.
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Example 13-1. Basic graphs

#!/usr/bin/env python

#

# basic_graph.py

#

# Library

# Provides:

# Graph Object, which as a constructor takes a flow file
#

import os, sys

class UndirGraph:
""" An undirected, unweighted graph class. This also serves as the base class
for all other graph implementations in this chapter """
def add_node(self, node_id):

self.nodes.add(node_id)

def add_link(self, node_source, node_dest):
self.add_node(node_source)
self.add_node(node_dest)
if not self.links.has_key(node_source):
self.links[node_source] = {}
self.links[node_source][node_dest] = 1
if not self.links.has_key(node_dest):
self.links[node_dest] = {}
self.links[node_dest][node_source] = 1
return

def count_links(self):
total = 0
for 1 in self.links.keys():
total += len(self.links[1].keys())
return total/2 # Compensating for link doubling in undirected graph

def neighbors(self, address):
# Returns a list of all the nodes adjacent to the node address,
# returns an empty list of there are no ndoes (technically impossible with
# these construction rules, but hey).
if self.nodes.has_key(address):
return self.links[address].keys()
else:
return None

def __str__(self):
return 'Undirected graph with %d nodes and %d links' % (len(self.nodes),
self.count_links())

def adjacent(self, sip, dip):
# Note, we've defined the graph as undirected during construction,
# consequently links only has to return the source.
if self.links.has_key(sip):
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if self.links[sip].has_key(dip):
return True

def __init__(self):

This graph is implemented using adjacency lists; every node has
a key in the links hashtable, and the resulting value is another hashtable.

The nodes table is redundant for undirected graphs, since the existence of
a link between X and Y implies a link between Y and X, but in the case of
directed graphs it'll providea speedup if I'm just looking for a
particular node.

self.links = {}

self.nodes = set()
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class DirGraph(UndirGraph):

def add_link(self, node_source, node_dest):
# Note that in comparison to the undirected graph, we only
# add links in one direction
self.add_node(node_source)
self.add_node(node_dest)
if not self.links.has_key(node_source):

self.links[node_source] = {}

self.links[node_source][node_dest] = 1
return

def count_links(self):
# This had to be changed from the original count_links since I'm now
# using an undirected graph.
total = 0
for 1 in self.links.keys():
total += len(self.links[1].keys())
return total

if __name__ == '__main__
This is a stub executable that will create and then render an
undirected graph assuming that it receives some kind of

space delimited set of (source, dest) pairs on input

o FH oH O H R

= sys.stdin.readlines()

tgt_graph = DirGraph()

for 1 in a:
source, dest = 1.split()[0:2]
tgt_graph.add_link(source, dest)

print tgt_graph

print "Links:"

for 1 in tgt_graph.links.keys():

dest_links = ' '.join(tgt_graph.links[i].keys())

print '%s: %s' % (i, dest_links)
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Graph Construction Versus Graph Attributes

It’s really tempting when working with graphs to start creating complicated relations
between network attributes to graph attributes, such as deciding direction points from
client to server, or weighting links with the traffic between nodes.

I have found that constructions are more trouble than they’re worth. It’s better to start
with a simple graph and examine its attributes rather than try to build up a complicated
graph representation. With that in mind, two rules for converting raw data into graphs:

Define communication
A link should represent a communication between two nodes; with flow data that
may mean that a link only occurs when the flow has 10 or more packets and an
ACK flag high in order to throw out scanning and failed login attempts.

Define node identity
Should IP addresses be a node, or IP addresses and ports in combination? I've found
it useful to split the ports into services (everything under 1024 is unique; everything
above that is client) and then use an IP:service combination.

Labeling, Weight, and Paths

On a graph, a path is a set of links connecting two nodes. In a directed graph, paths
follow the direction of the link, while in an undirected graph they can move in either
direction. Of particular importance in graph analysis are shortest paths, which as the
name implies are the shortest set of links required to get from point A to point B (see
Example 13-2).

Example 13-2. An shortest path algorithm

#!/usr/bin/env python

#
#

apsp.py -- implemented weighted paths and dijkstra's algorithm

import sys,os,basic_graph

class WeightedGraph(basic_graph.UndirGraph):

def add_link(self, node_source, node_dest, weight):

# Weighted bidirectional link aid, note that

# we keep the aa, but now instead of simply setting the value to

# 1, we add the weight value. This reverts to an unweighted

# graph if we always use the same weight.

self.add_node(node_source)

self.add_node(node_dest)

if not self.links.has_key(node_source):
self.links[node_source] = {}

if not self.links[node_source].has_key(node_dest):
self.links[node_source][node_dest] = 0
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def

self.links[node_source][node_dest] += weight

if not self.links.has_key(node_dest):
self.links[node_dest] = {}

if not self.links[node_dest].has_key(node_source):
self.links[node_dest][node_source] = 0

self.links[node_dest][node_source] += weight

dijkstra(self, node_source):

# Glven a source node, create a map of paths for each vertex
D = {} # Tentative distnace table

P = {} # predecessor table

# The predecessor table exploits a unique feature of shortest paths,
# every subpath of a shortest path is itself a shortest path, so if

# you find that (B,C,D) is the shortest path from A to E, then

# (B,C) is the shortest path from A to D. All you have to do is keep
# track of the predecessor and walk backwards.

infy = 999999999999 # Shorthand for infinite
for 1 in self.nodes:

D[i] = infy

P[1] = None

D[node_source] = 0
node_list = list(self.nodes)
while node_list != []:
current_distance = infy
current_node = None
# Step 1, find the node with the smallest distance, that'll
# be node_source in the first call as it's the only one
# where D =0
for 1 in node_list:
if D[1] < current_distance:
current_distance = D[1]
current_node = i
node_index = node_list.index(1i)
del node_list[node_index] # Remove it from the list
if current_distance == infy:
break # We've exhausted all paths from the node,
# everything else is in a different component
for 1 in self.neighbors(current_node):
new_distance = D[current_node] + self.links[current_node][1i]
if new_distance < D[i]:
D[1] = new_distance
P[1] = current_node
node_list.insert(0, 1)
for 1 in D.keys():
if D[1] == infy:
del D[1]
for 1 in P.keys():
if P[1] is None:
del P[1]
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return D,P

def apsp(self):
# Calls dijkstra repeatedly to create an all-pairs shortest paths table
apsp_table = {}
for 1 in self.nodes:
apsp_table[i] = self.dijkstra(i)
return apsp_table

An alternative formulation of shortest paths uses weighting. In a weighted graph, links
are assigned a numeric weight. When weight is assigned, the shortest path is no longer
simply the smallest number of connected links from point A to point B, but the set of
links whose total weight is smallest. Figure 13-2 shows these attributes in more detail.

Shortest paths are a fundamental building block in graph analysis. In most routing
services, such as Open Shortest Path First (OSPF), finding shortest paths is the goal. As
a result, a good number of graph analyses begin by building a table of shortest paths
between all the nodes using an All Pairs, Shortest Paths (APSP) algorithm on the graph
in order to create a table of all of them. The code in the following sidebar provides an
example of using Dijkstra’s Algorithm on a weighted, undirected, graph to calculate
shortest paths.

(i) (ii)
o DN o §
20 |3

(iii)

O—Q@

Figure 13-2. Weighting and paths, the shortest path from a to d: (i) in an undirected,
unweighted graph, the shortest path involves the least nodes, (ii) in a weighted graph,
the shortest path generally has the lowest total weight, (iii) in a directed graph, the
shortest path might not be achievable
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Dijkstra’s algorithm is a good shortest path algorithm that can handle any graph whose
link weights are positive. Shortest path algorithms are critical in a number of fields, and
there are consequently a huge number of algorithms available depending on the struc-
ture of the graph, the construction of the nodes, and the amount of knowledge of the
graph that the individual nodes have.

Shortest paths effectively define the distance between nodes on a graph, and serve as
the building blocks for a number of other attributes. Of particular importance are
centrality attributes (see Example 13-3). Centrality is a concept originating in social
network analysis; social network analysis models the relationships between entities us-
ing graphs and mines the graphs for attributes showing the relationship between these
entities in bulk. Centrality, for which there are several measures, is an indicator of how
important a node is to that graph’s structure.

Example 13-3. Centrality calculation

#/usr/bin/env python

#

#

# centrality.py

#

# script which generates centrality statistics for a dataset

#

# input:

# A table of pairs in the form source, destination with a space separating them
# Weight is implicit, the weight of a link is the number of times a pair appears
#

# command_line

# calc_centrality.py n

# n: integer value, the number of elements to return in the report

#

# Output

# 7 Column report of the form rank | betweenness winner | betweenness

# score | degree winner | degree score | closeness winner | closeness

# score

import sys,string
import apsp

n = int(sys.argv[1])

closeness_results = []
degree_results = []
betweenness_results = []

target_graph = apsp.WeightedGraph()

# load up the graph

for 1 in sys.stdin.readlines():
source, dest = i[:-1].split()
target_graph.add_link(source, dest, 1)
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# Calculate degree centrality; the easiest of the bunch since it's just the

# degree
for 1 in target_graph.nodes:
degree_results.append((i, len(target_graph.neighbors(i))))

apsp_results = target_graph.apsp()

# Now, calculate the closeness centrality scores

for 1 in target_graph.nodes:
dt = apsp_results[i][0] # This is the distance table
total_distance = reduce(lambda a,b:a+b, dt.values())
closeness_results.append((i, total_distance))

# Now, we calcualte betweenness centrality scores

bt_table = {}
for 1 in target_graph.nodes:
bt_table[i] = 0

for current_node in target_graph.nodes:
# Reconstruct the shortest paths from the predecessor table;
# for every entry in the distance table, walk backwards from that
# entry to the correspending origin to get the shortest path, then
# count the nodes in that path on the master bt table
pred_table = apsp_results[i][1] # We have the predecessor table
sp_list = apsp_results[i][0]
if current_node in sp_list.keys():

path = []
for working_node in sp_list.keys():
if working_node != current_node:

# We should be done with working node at this point, count

# the nodes there for bt score
for 1 in path:
bt_table[i] += 1
else:
path.append(working_node)
working_node = pred_table[working_node]

for 1 in bt_table.keys():
betweenness_results.append((i,bt_table[i]))

# Order the tables, remember that betweenness and degree use higher score, closeness

# lower score

degree_results.sort(lambda a,b:b[1]-a[1])
betweenness_results.sort(lambda a,b:b[1]-a[1])
closeness_results.sort(lambda a,b:a[1]-b[1])

print "%5s|%155|%10s|%15s|%10s|%155]|%10s" %
("Rank", "Between", "Score", "Degree", "Score","Close", "Score")
for 1 in range(0, n):
print "%5d|%15s|%10d|%15s|%10d|%15s|%16d" % ( 1 + 1,
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str(betweenness_results[1][0]),
betweenness_results[i][1],
str(degree_results[1][0]),
degree_results[i][1],
str(closeness_results[1][0]),
closeness_results[i1][1])

We're going to consider three metrics for centrality in this book: degree, closeness, and
betweenness. Degree is the simplest centrality measure; in an undirected graph, the
degree centrality of a node is the node’s degree.

Closeness and betweenness centrality are both associated with shortest paths. The
closeness centrality represents the ease of transmitting information from a particular
node to any other node on the graph. To calculate the closeness of a node, you calculate
the sum total distance between that node and every other node in the graph. The node
with the Jowest total value has the highest closeness centrality.

Like closeness centrality, betweenness centrality is a function of the shortest paths. Be-
tweenness centrality repersents the likelihood that a node will be part of the shortest
path between any two particular nodes. Betweenness centrality is calculated by gener-
ating a table of all the shortest paths and then counting the number of paths using that
node.

Centrality algorithms are all relative measures. Operationally, they’re generally best used
as ranking algorithms. For example, finding that a particular web page has a high be-
tweenness centrality means that most users when surfing are going to visit that page,
possibly because it’s a gatekeeper or an important index. Observing user surfing patterns
and finding that a particular node has a high closeness centrality can be useful for iden-
tifying important news or information sites.

Components and Connectivity

If two nodes in an undirected graph have a path between them, then they are connec-
ted. The set of all nodes that have paths to each other composes a connected compo-
nent. In directed graphs, the corresponding terms are weakly connected (if the paths
exist when direction isignored), and strongly connected (if the paths exist when direction
is accounted for).

A graph can be broken into its components by using a breadth-first search. A breadth-
first search (BEFS) is a search that progresses by picking a node, examining all the neigh-
bors of that node, and then examining each of those neighbors in turn. This contrasts
with a depth-first search (DFS), which examines a single neighbor, then a neighbor of
that neighbor, and so on. The code in Example 13-4 shows how to use a breadth-first
search to break a graph into components.
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Example 13-4. Calculating components and clustering coefficient

#!/usr/bin/env python

#

#

import os,sys, basic_graph

def calculate_components(g):
# Creates a table of components via a breadth first search.
component_table = {}
unfinished_nodes = {}
for 1 in g.nodes.keys():
unfinished_nodes[i] = 1
node_list = [g.nodes.keys()[0]]
component_index = 1
while node_list != []:
current_node = node_list[0]
del node_list[0]
del unfinished_nodes[current_node]
for 1 in g.neighbors(current_node):
component_table[1] = component_index
node_list.insert(0, i)
if node_list == [] and len(unfinished_nodes) > 0:
node_list = [unfinished_nodes.keys()[0]]
return component_table

Clustering Coefficient

Another mechanism for measuring the relationship between nodes on a graph is the
clustering coefficient. The clustering coefficient is the probability that any two neighbors
of a particular node on a graph are neighbors of each other. Example 13-5 shows a code
snippet for calculating the clustering coefficient.

Example 13-5. Calculating clustering coefficient

def calculate_clustering_coefficients(g):
# Clustering coefficient for a node is the
# fraction of its neighbors who are also neighbors with each other
node_ccs = {}
for 1 in g.nodes.keys():
mutual_neighbor_count = 0
neighbor_list = g.neighbors(i)
neighbor_set = {}
for j in neighbor_list:
neighbor_set[j] = 1
for j in neighbor_list:
# We grab his neighbors and find out how many of them are in the
# set
new_neighbor_list = g.neighbors[j]
for k in new_neighbor_list:
if k != 1 and neighbor_list.has_key(k):
mutual_neighbor_count += 1
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# We now calculate the coefficient by dividing by d*(d-1) to get the
# fraction
cc = float(mutual_neighbor_count)/((float(len(neighbor_list) *
(len(neighbor_list) -1 ))))
node_ccs[i] = cc
total_cc = reduce(lambda a,b:node_ccs[a] + node_ccs[b], node_ccs.keys())
total_cc = total_cc/len(g.nodes.keys())
return total_cc

The clustering coefficient is a useful measure of “peerishness” A graph of a pure client
server network will have a clustering coefficient of zero—a client talks only to servers,
and servers talk only to clients. We've had some success using clustering as a measure
of the impact of spam on large networks. As an example of this, Figure 13-3 shows the
impact of the shutdown of McColo, a bulletproof hosting provider on SMTP network
structure on a large network. Following McColos shutdown, the clustering coefficient
for SMTP rose by about 50%.

The relationship between peerishness and spam may be a bit obscure; SMTP, like DNS
and other early Internet services, is very sharing-oriented. An SMTP client in one in-
teraction may operate as a server for another interaction, and there should be interac-
tions between each other. Spammers, however, operate eftectively as superclients—they
talk to servers, but never operate as a server for anyone else. This behavior manifests as
a low clustering coefficient. Remove the spammers, and the SMTP network starts to
look more like a peer-to-peer network and the clustering coefficent rises.
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Figure 13-3. Clustering coefficient and large email networks

Analyzing Graphs

Graph analysis can be used for a number of purposes. Centrality metrics are a useful
tool both for engineering and for forensic analysis, while components and graph at-
tributes can be used to generate a number of alarms.

Using Component Analysis as an Alarm

In Chapter 11 we discussed detection mechanisms that relied on the attacker’s ignorance
of a particular network, such as blind scanning and the like. Connected components
are a good way of modeling a different type of attacker ignorance. An attacker might
know where various servers and systems are located on a network, but he doesn’t know
how they relate to each other. Organizational structure can be identified by looking at
connected components, and a number of attacks such as APT and hit-list attacks, which
may know the target but not how targets relate to each other, can be identified by ex-
amining these components.

To understand how this phenomenon can be used as an alarm, consider the graphical
example in Figure 13-4. In this example, a network is composed of two discrete com-
ponents (say, engineering and marketing), and there is little interaction between them.
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When an attacker appears and tries to communicate with the hosts on the network, he
combines these two components to produce one huge component that does not appear
under normal circumstances.

\

——> ()

Figure 13-4. An attacker artifically links discrete components

To implement this type of alarm, you must first identify a service that can be divided
into multiple components. Good candidates are services such as SSH that require some
form of user login; permissions mean that certain users won’t have access, which breaks
the network into discrete components. SMTP and HTTP are generally bad candidates,
though HT TP is feasible if you are looking exclusively at servers that require user login,
and you limit your analysis to just those servers (e.g., by using an IPSet).

After you've identified your set of servers, identify components to monitor. And after
youidentify a component, calculate its size—the number of nodes within the component
as a function of the time taken to collect it (for example, 60 seconds of netflow). The
distribution is likely to be sensitive not only to the time taken to collect the traffic, but
also the time of day. Breaking traffic at least into on/off periods (as discussed in Chap-
ter 12) is likely to help.

There are two ways to identify components: either by size order or by tracking hosts
within the components. In the case of size order, you simply track the size of the largest
component, the second largest component, and so on. This approach is simple, robust,
and relatively insensitive to subtle attacks. It’s not uncommon for the largest component
to make up more than one-third of the total nodes in the graph, so you need a fairly
aggressive attack to disrupt the size of the component. The alternative approach involves
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identifying nodes by their component (e.g., component A is the component containing
address 127.0.1.2).

Using Centrality Analysis for Forensics

Centrality is a useful tool for identifying important nodes in a network, and for identi-
fying nodes that communicate at much lower volumes than traffic analysis can identify.

Consider an attack where the attacker infects one or more hosts on a network with
malware. These infected hosts now communicate with a command and control server
that was previously not present. Figure 13-5 shows this scenario in more depth; before
hosts A, B, and C are infected, one node shows some degree of centrality. Following
infection, a new node (Mal) is the most central node in the set.

Before Infection After Infection

Figure 13-5. Centrality in forensics

This kind of analysis can be done by isolating traffic data into two sets, a pre-event set
and a post-event set. For example, after finding out that the network received a malicious
attachment at a particular time, I can pull traffic before that time to produce a pre-event
set and traffic after that time to find a post-event set. Looking for newly central nodes
gives me a reasonable chance of identifying the command and control server.

Using Breadth-First Searches Forensically

Once you've identified that a malicious host is communicating on your network, the
next step is to find out who he’s talking to, such as the host’s C&C or other infected hosts
on the network. Once you've found that out, you can repeat the process to find out who
they talked to in order to identify other targets.
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This iterative investigation is a breadth-first search. You start with a single node, look
at all of its neighbors for suspicious behavior, and then repeat the process on their
neighbors (see Example 13-6). This type of graph-based investigation can help identify
other infected hosts, suspicious targets, and other systems on the network that need
investigation or analysis.

Example 13-6. Examining a site’s neighbors

#!/usr/bin/env python

#

This 1s a somewhat ginned-up example of how to use breadth-first searches to
crawl through a dataset and identify other hosts that are using BitTorrent.
The crawling criteria are as follows:

A communicates to B on ports 6881-6889
A and B send a large file between each other (> 1 MB)

The point of the example is that you could use any criteria you want and put

Comand line

crawler.py seed_ip datafile

seed_ip 1s the ip address of a known bittorrent user
datafile
import os, sys, basic_graph

#
#
#
#
#
#
#
# multiple criteria into constructing the graph.
#
#
#
#
#
#
#
#

def extract_neighbors(ip_address, datafile):

# Given an ip_address, identify the nodes adjacent to that
# address by finding flows that have that address as either a source or
# destination. The other address in the pair is considered a neighbor.
a = os.popen("""rwfilter --any-address=%s --sport=1024-65535 --dport=1024-65535 \
--bytes=1000000- --pass=stdout %s | rwfilter --input=stdin --aport=6881-6889 \
--pass=stdout | rwuniq --fields=1,2 --no-title""" % (ip_address,datafile), 'r')
# In the query, note the fairly rigorous port definitions I'm using -- everything
# starts out as high. This is because, depending on the stack implementation,
# ports 6881-6889 (the BT ports) may be used as ephemeral ports. By breaking
# out client ports in the initial filtering call, I'm guaranteeing that I
# don't accidently record, say, a web session to port 6881.
# The 1 MB limit is also supposed to constrain us to actual BT file transfers.
neighbor_set = set()
for 1 in a.readlines():

sip, dip = il.split('|')[0:2].strip()

# I check to see if IP address is the source or destination of the

# flow; whichever one it is, I add the complementary address to the

# neighbor set (e.g., if ip_address is sip, I add the dip)

if sip == ip_address:

neighbor_set.add(dip)
else:
neighbor_set.add(sip)

a.close()
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return neighbor_set

if __name__ == '__main__
starting_1ip = sys.argv[1]
datafile = sys.argv[2]
candidate_set = set([starting_1ip])
while len(candidate_set) > 0:
target_ip = candidate_set.pop()
target_set.add(target_1ip)
neighbor_set = extract_neighbors(target_ip, datafile)
for 1 in neighbor_set:
if not 1 in target_set:
candidate_set.add(1)
for 1 in target_set:
print 1

Using Centrality Analysis for Engineering

Given limited monitoring resources and analyst attention, effectively monitoring a net-
work requires identifying mission-critical hosts and assigning resources to protecting
and watching them. That said, in any network, there’s a huge difference between the
hosts that people say they need and the hosts they actually use. Using traffic analysis to
identify critical hosts helps differentiate between what’s important on paper and what
users actually visit.

Centrality is one of a number of metrics that can be used to identify criticality. Alter-
natives include counting the number of hosts that visit a site (which is effectively degree
centrality) and looking at traffic volume. Centrality is a good complement to volume.

Further Reading

1. Michael Collins and Michael Reiter, “Hit-list Worm Detection and Bot Identifica-
tion in Large Networks Using Protocol Graphs,” Proceedings of the 2007 Sympo-
sium on Recent Advances in Intrusion Detection.

2. Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein, Introduc-
tion to Algorithims, Third Edition (MIT Press, 2009).

3. igraph (R graph library)

4. Lun Li, David Alderson, Reiko Tanaka, John C. Doyle, and Walter Willinger, “To-
wards a Theory of Scale-Free Graphs: Definition, Properties, and Implications (Ex-
tended Version).”

5. Neo4j
6. Networkx (Python graph library)
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CHAPTER 14
Application Identification

It used to be so easy to identify applications in network traffic; you looked at the port
number, or if that failed, you looked at a couple of header packets for identification
information. But these identifiers have become muddier over the past decade, in par-
ticular as users seek to hide certain classes of traftic (BitTorrent!) and as privacy advo-
cates push for increased encryption.

There are still methods for identifying traffic that do not rely on payload. Most protocols
have a well-defined sequence and certain predictable behaviors that mark them so you
don’t have to look at payload. By looking at the hosts to which a session talks and at
packet sizes, a surprising amount of information is available.

This chapter is broken into two major sections. The first section focuses on techniques
for identifying a protocol, starting with the most obvious methods and moving toward
more complex techniques such as behavioral analysis. The second section discusses the
contents of application banners and discusses some methods for finding behavioral and
payload information for analysis.

Mechanisms for Application Identification

In a perfectly safe and secure computing environment, you could just examine the con-
figuration file on each server and it would tell you all the traffic that the server allows.
Unfortunately, there are many hidden ways of starting traffic that undermine this simple
strategy. You may have hosts on your system you don’t know about that were started by
users with innocent or not-so-innocent goals of their own. Services can be started by
administrators or ordinary users outside of your startup configuration. And legitimate
servers can be taken over by intruders and used for things you never intended. Although
many of the techniques in this section are commonly run by snoopers who don't have
access to your servers’ configuration files, you should be using the techniques as well
so you know what is really happening.
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Port Number

Port numbers are the first way to check what a service is, and while there’s no technical
requirement that a particular service runs on a particular port, there are social conven-
tions that tend to make it so. JANA maintains a public registry of port numbers and
their associated services. Although port number assignment is effectively arbitrary, and
users have an active interest in evading detection by using previously untouched port
numbers (or, slightly more deviously, by using common port numbers), the well-known
ports still carry enough official and innocent traffic to make them the first-pass mech-
anism for identifying protocols. Techniques we’ll discuss later in this section often use
port numbers as an assertion on the user’s part. For example, a user talking on port 80
is effectively asserting that she’s talking to a web server.

Port number assignment is chaotic because all anyone really has to do is pick a number
and hope nobody else is using it. The official registry maintained by IANA focuses on
protocols designed as part of the RFC process. Other registries and lists include a
Wikipedia page, speedguide, and the SANS Internet Storm Center, which provides a
mini-messageboard per port with useful insights.

So a huge number of ports are reserved for certain applications, and another huge
number are used conventionally for other applications—but there are a small set of
applications that actually matter. Table 14-1 lists the ports that I worry about the most
with a short description explaining why in each case.

Table 14-1. Ports to care about

Port Name Meaning
The Holy Trinity
80/tcp HTTP Not only is HTTP the basic protocol for nearly everything

on the Internet now, it’s also the most commonly imitated
protocol. Users will drop traffic on port 80 to evade firewall

rules.

25/tep SMTP Email is the most critical service after HTTP and also one
of the most attacked.

53/udp DNS Another critical foundational protocol; DNS attacks will

seriously damage networks.

Infrastructure and Management

179/tcp BGP A core protocol for inter-network routing.

161-162/udp SNMP System Network Management Protocol; used to manage
routers and other devices.

22/tep SSH The administrative workhorse.

23/tep Telnet IfIsee Telnet, I kill the connection. It is obsolete and should

be replaced by other protocols, notably SSH.
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Port
123/udp

389/tcp

File Transfer
20/tcp
21/tep

69/tcp

137-139/tcp & udp

Name Meaning

NTP Network Time Protocol; used to coordinate clocks on
networks.

LDAP Lightweight Directory Access Protocol; manages directory
services.

FTP-data Along with 21, makes up FTP.

FTP The FTP control port. Another service | kill if | see it. Use
SFTP.

TFTP Trivial file transfer; largely used by system administrators

and hopefully never seen crossing a border router.

NETBIOS NetBiosis the infrastructure used for Service Message Block
(SMB) and in particular provides sharing features for
Windows and (via Samba) Unix systems. Pounded by
attacks over its history.

Email

143/tcp IMAP Internet Message Access Protocol; one of the two standard
email client protocols.

110/tcp POP3 Post Office Protocol; the other standard email client
protocol.

Databases

1521/tep Oracle The primary Oracle server port.

1433/tcp & udp SQL Server Microsoft SQL Server’s port.

3306/tcp MySQL Server MySQL's default port.

5432/tcp Postgresql Server - Postgres’s default port.

File Sharing

6881-6889/tcp BitTorrent The default BitTorrent client ports.

6346-6348/tcp & udp  Gnutella Bearshare and Limewire’s default gnutella ports.

4662/tcp & udp eDonkey Default port for eDonkey clients.

On Unix and Windows systems, port assignment is supposed to be controlled by
the /etc/services file (\WINDOWS\SYSTEM32\DRIVERS\ETC\SERVICES on Win-
dowshosts). A dump of the file, shown in Example 14-1, shows that it’s a simple database
listing a service name and the corresponding host.

Example 14-1. The contents of /etc/services

$ # Catting /etc/services without header info

$ cat /etc/services | egrep -v '#' | head -10

rtmp 1/ddp #Routing Table Maintenance Protocol
tcpmux 1/udp # TCP Port Service Multiplexer
tcpmux 1/tcp # TCP Port Service Multiplexer
nbp 2/ddp #Name Binding Protocol
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compressnet 2/udp # Management Utility

compressnet 2/tcp # Management Utility
compressnet 3/udp # Compression Process
compressnet 3/tcp # Compression Process
echo 4/ddp #AppleTalk Echo Protocol
rje 5/udp # Remote Job Entry

The names in the services file are used by getportbyname and any other port lookup
functions to identify protocols. This does not, of course, mean that the users are really
invoking those services, just that services says the ports are supposed to be used by the
services. For example, to get a list of all the services I have listening on a host, I use
netstat -a, as shown in Example 14-2:

Example 14-2. Netstat and /etc/services/

# I'm running a django web server on port 8000, and I run netstat
$ netstat -a | grep LISTEN

tcpd 0 0 Tlocalhost.irdmi * ok LISTEN
tcp46 0 0 *.8508 *LE LISTEN
tcp46 0 0 *.8507 *oE LISTEN
$ cat /etc/services | grep irdmi

irdmi2 7999 /udp # 1RDMI2

irdmi2 7999/tcp # 1RDMI2

irdmi 8000/udp # 1RDMI

irdmi 8000/tcp # 1RDMI

netstat consults /etc/services to determine what the port number is named, and you can
always find the real port number in /etc/services. However, there is no guarantee that
the service is actually what the named service is—in my example, I'm running a Django
web server.

It’s appropriate at this point to make a digression into the raving paranoia characteristic
of a network traffic analyst. netstat is obviously a great tool for identifying which ports
are open on your host, but if you want more certainty, scan the machine vertically and
compare the results.

Port Assignment

Any symmetric TCP or UDP transaction uses two port numbers: the server portis used
by the client to send traffic to the server, and the client port used by the server to respond.
Client ports are short-lived and recycled from a pool of ephemeral ports; the size and
allocation of the pool is a function of the TCP stack in question and user configuration.

There are several conventions regarding port assignment. The most important is the
distinction between port numbers 1024 and below: nearly every operating system re-
quires that has a socket on one of these requires root or administrative access. When
used legitimately, this means only the administrator can start a service such as a web or
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email server. But this property also makes services on those ports attractive to attackers,
because subverting those processes grants root privileges.

Generally, ports below 1024 are used only to run server sockets. This isn't to say that
you couldn’t use them for clients, only that it would be contrary to standard practice
and mildly insane because you're using a client port with root access. Technically, an
ephemeral port can be any port above 1024, but there are a number of conventions in
their assignment.

IANA has assigned a standard range (49152 to 65535) for ephemeral ports. However,
this range is still in the process of being adopted, and different operating systems will
have different default ranges. Table 14-2 lists common port assignments.

Table 14-2. Port assignment rules for various operating systems

Operating system Default range Controllable
Windows, through XP 1025-5000 Partly, through MaxUserPort in Tepip\Parameters
Windows, Vistaonward  49152-65535  Yes, via netsh

Mac 0S X 49152-65535  Yes, through net.inet.ip.portrange
family in sysctl

Linux 32768-65535  Yes, through /proc/sys/net/ipv4/ip_local_port_range

FreeBSD 49152-65535  Yes, through net.inet.ip.portrange
family in sysctl

Application Identification by Banner Grabbing

Banner grabbing and its companion function, OS fingerprinting, are scanning techni-
ques used to determine server and operating system information. They rely on the
convention that the first thing most applications do when woken up is identify them-
selves. Most server applications respond to an open socket by passing their protocol,
their current version, or other configuration information. If they don’t do it automati-
cally, they will often do so with a little prodding.

Banner grabbing can easily be done manually using any “keyboard to the socket” tool,
such as netcat (see Chapter 9 for more information). Example 14-3 shows active banner
grabbing using netcat to collect some data. Note that I am able to pull information from
several servers without actually using the protocol in question.

Example 14-3. Examples of active banner grabbing with netcat

# Open a connection to an SSH server

# Note that I receilve information without the need for actual
# interaction with the server.

$ netcat 192.168.2.1 22

SSH-2.0-0penSSH_6.1

~C
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# Open an IMAP connection.

# Again, note that I have to do nothing with mail itself.

$ netcat 192.168.2.1 143

* OK [CAPABILITY IMAP4revl LITERAL+ SASL-IR LOGIN-REFERRALS
ID ENABLE STARTTLS AUTH=PLAIN AUTH=LOGIN] Dovecot ready.

An alternative to active banner grabbing is passive banner grabbing, which can be done
using tcpdump. Since a banner is really just text that appears at the beginning of a session,
grabbing the payload of the first five or six packets will provide banner data as well.

bannergrab.py is a very simple banner grabbing script using Scapy (from Chapter 9).
It’s not trying to parse banner contents—it’s just grabbing the first load of information
it sees. This can be quite informative. Example 14-4 shows the contents from the SSH
dump.

Example 14-4. Grabbing client and server banners using scapy

#!/usr/bin/env python

#

#

# bannergrab.py

# This 1s a Scapy application that loads up a banner file and drops
# out the client and server banners. To do so, it

# reads the contents of the client and server files from the session,
# extracts ASCII text, and dumps it to screen.

#

from scapy.all import *

import sys

sessions = {}

packet_data = rdpcap(sys.argv[1])
for 1 in packet_data:
if not sessions.has_key(i[IP].src):
sessions[i[IP].src] = "'
try:
sessions[i[IP].src] += i[TCP].payload.load
except:
pass

for j in sessions.keys():
print j, sessions[j][0:200]

$ bannergrab.py ssh.dmp

WARNING: No route found for IPv6 destination :: (no default route?)
192.168.1.12

216.92.179.155 SSH-2.0-OpenSSH_6.1

Example 14-5 shows a pull from www.cnn.com:
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Example 14-5. A pull from cnn.com

57.166.224.246 HTTP/1.1 200 OK
Server: nginx

Date: Sun, 14 Apr 2013 04:34:36 GMT
Content-Type: application/javascript
Transfer-Encoding: chunked
Connection: keep-alive

Vary: Accept-Encoding

Last-Modified: Sun

157.166.255.216

157.166.241.11 HTTP/1.1 200 OK
Server: nginx

Date: Sun, 14 Apr 2013 04:34:27 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive

Set-Cookie: CG=US:DC:Washington; path=/
Last-Modified

66.235.155.19 HTTP/1.1 302 Found

Date: Sun, 14 Apr 2013 04:34:35 GMT

Server: Omniture DC/2.0.0

Access-Control-Allow-Origin: *

Set-Cookie: s_vi=[CS]v1|28B31B23851D063C-60000139000324E4[CE];
Expires=Tue, 14 Apr 2

23.6.20.211 HTTP/1.1 200 OK

x-amz-1d-2: 287K0oW3vWNpotJIGpnORaXExCzKkFIQ/hkpAXjWUQTb6hSBzDQioFUOWYZMRCq7V

x-amz-request-id: 8B6B2E3CDBC2E300

Content-Encoding: gzip

ETag: "e5f0fa3fbe0175c47fead164922230d4"

Acc

192.168.1.12 GET / HTTP/1.1

Host: www.cnn.com

Connection: keep-alive

Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebK
23.15.9.160 HTTP/1.1 200 OK

Server: Apache

Last-Modified: Wed, 10 Apr 2013 13:44:28 GMT

ETag: "233bf1-3e803-4dad1de67a700"

Accept-Ranges: bytes

Content-Type: text/css

Vary: Accept-Encoding

Content-Encoding

63.85.36.42 HTTP/1.1 200 OK
Content-Length: 43

Content-Type: image/gif

Date: Sun, 14 Apr 2013 04:34:36 GMT
Connection: keep-alive

Pragma: no-cache
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Expires: Mon, 01 Jan 1990 00:00:00 GMT
Cache-Control: priv

138.108.6.20 HTTP/1.1 200 OK
Server: nginx

Date: Sun, 14 Apr 2013 04:34:35 GMT
Content-Type: image/gif
Transfer-Encoding: chunked
Connection: keep-alive

Keep-Alive: timeout=20

In the previous example, the client is midway through the dump (at 192.168.1.12). Note
the sheer number of web servers; this is a common feature with modern websites, and
you can expect to see dozens of servers involved in constructing a single page. Also note
the information provided: the server sends content information, the server name, and
abunch of configuration data. The client string includes a variety of acceptable formats,
and the User-Agent string, which we’ll discuss in more depth later.

Banner grabbing is fairly simple. The challenge lies in identifying what the banners
mean. Different applications have radically different banners, which are often complete
languages in themselves.

Application Identification by Behavior

In the absence of payload, it’s often difficult to tell what an application is, but an enor-
mous amount of information is still available about what an application does. Behavioral
analysis focuses on finding cues for the application’s behavior by examining features
such as the packet sizes and connection failures.

Packet sizes in any IP protocol are bound by the maximum transmission unit (MTU),
the maximum frame size defined by the layer 2 protocol. When IP attempts to send a
packet larger than the MTU, the original packet is split into the number of MTU-sized
packets that are required to transmit it. In tcpdump and NetFlow data, this means that
the maximum packet size you will ever see is controlled by the shortest MTU of the
route taken by that packet so far. Because the Internet is dominated by Ethernet, this
imposes an effective limit of 1,500 bytes on packet sizes.

We can use this limit to split network traffic into four major categories:

Fumbling
Covered in Chapter 11, this consists of failed attempts to open connections to tar-
gets.

Control traffic
Small, fixed-size packets sent by clients and servers at the beginning of a session.
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Chatter
Packets less than the MTU in size, of varying size and sent back and forth between
clients and servers. Chatter messages are characteristic of chat protocols like ICQ
and AIM, as well as the command messages for many protocols such as SMTP and
BitTorrent.

File transfer
Asymmetric traffic where one side sends packets almost entirely of MTU size and
the other side sends ACKs in response. Characteristic of SMTP, HTTP, and FTP.

Control packets are, when available, the most interesting information you can find on
a service because their sizes are often specified by the service itself. Control messages
are often implemented as templates of some form, with specific areas to fill in the blanks.
As aresult, even with the payload obscured, the sizes can often be used to identify them.

Histograms, presented in “Histograms” on page 198, are useful for comparing protocols
via the lengths of their control messages. As an example, consider Figure 14-1. This is
a plot of histograms for short flows (less than 1,000 bytes in total) from clients to Bit-
Torrent and web servers.

HTTP ==
14% BitTorrent mesess |
12%
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Frequency (Percentage of Messages)
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0 48 96 144 192 240 288 336 384 432 480
Message Length (Bytes)

Figure 14-1. Histogram comparing BitTorrent and HTTP short flow sizes
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For a web client, this consists primarily of issuing the HTTP GET request and then
receiving a file. The GET requests, as you can see in Figure 14-1, are spread over a
somewhat normalized distribution between about 200 and 400 bytes. Conversely, the
BitTorrent packets have a huge peak between 48 and 96 bytes, a function of the 68-byte
BitTorrent handshake message.

Histograms can be checked visually, as in Figure 14-1, or numerically by calculating the
L1 (or Manhattan) distance. In a histogram, calculate the L1 distance as the sum of the
differences between each bin. Normalized to percentages, this provides a value between
0 and 2, with 0 indicating that the two histograms are identical, and 2 indicating that
the two histograms are complete opposites. Example 14-6 shows how to calculate the
L1 distance in Python.

Example 14-6. Calculating L1 distance in Python
#!/usr/bin/env python
#

calc_l1.py

Given two data files consisting purely of sizes and a histogram
specification (bin size, max bin size), calculate the 11 distance
between two histograms

command line;
calc_l1 size min max file_a file_b

size: the size of a histogram bin
min: the minimum size to bin
max: the maximum size to bin

HOH O H R

import sys

bin_size = int(sys.argv[1])
bin_min = int(sys.argv[2])
bin_max = int(sys.argv[3])
file_1 = sys.argv[4]
file_2 = sys.argv[5]

bin_count = 1 + ((bin_max - bin_min)/bin_size)
histograms = [[],[]]
totals = [0,0]

for 1 in range(0, bin_count):
for j in range(0,2):
histograms[j].append(0)

# Generate histograms
for h_index, file_name in ((0, file_1), (1,file_2)):
fh = open(file_name, 'r')

288 | Chapter 14: Application Identification


http://bit.ly/l1-norm

results = map(lambda x:int(x), fh.readlines())
fh.close()
for 1 in results:
if 1 <= bin_max:
index = (1 - bin_min)/bin_size
histograms[h_index][index] += 1
totals[h_index] += 1

# Compare and calculate 11 distance

11.d = 0.0

for 1 in range(0, bin_count):
ho_pct = float(histograms[0][1])/float(totals[0])
h1_pct = float(histograms[1][1])/float(totals[1])
11_d += abs(h0_pct - hil_pct)

print 11_d

Chatting and file transfers can be examined by identifying the individual packet sizes
or, in the case of flow files, comparing the mean packet sizes for the flow (flow bytes
divided by flow packets). If one side is close to MTU, odds are that it’s a file transfer, and
if both sides are roughly asymmetric and greater than 40 bytes per packet, some form
of chatter may be going on. To illustrate this graphically, consider the plots in Figure 14-2
and Figure 14-3. These show the packet sizes for a file transfer (HTTP) and chat (AIM)
session, respectively.
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Figure 14-2. Packet sizes for an HTTP session
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Packet Sizes for an AIM Session
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Figure 14-3. Packet sizes for an AIM session

Application Identification by Subsidiary Site

Network-aware applications rarely exist in a vacuum. Software updates, registration
servers, database updates, advertising, and user tracking are all examples of network-
based functionality that an application can conduct without a user being aware of them.
At the same time, users may visit support forums, talk on message boards, or require
access to information just to run the application.

As example of this behavior, consider two applications: antivirus and BitTorrent. Any
antivirus application needs to contact its home servers on a regular basis in order to
update the knowledgebase. This activity is so predictable that it's not uncommon for
malware to explicitly disable the update addresses on the local host. Any host running
AV should be contacting these addresses on a regular basis, and anyone who does is
likely to be running AV.

Now consider BitTorrent. BitTorrent has done a considerable amount of work in recent
years to decentralize the protocol. In the late 2000s, it was possible to identify trackers
and then identify users by finding out who was communicating with the tracker. Al-
though tracker ID is less effective now, BitTorrent users still need to find their files, and
the relevant magnet links are concentrated on sites such as the Pirate Bay, KickAssTor-
rents, and other specialized torrent sites. Find a user who visits the Pirate Bay, then find
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someone engaging in huge file downloads on weird ports, and you have probably found
a BitTorrent user. Once you've identified a server or host running a particular service,
look at who else is talking to it.

Application Banners: Identifying and Classifying

Application banners can provide a lot of information about applications, servers, op-
erating systems, and versions of all these things. Unfortunately, the format of these
banners changes radically with each service, almost like a different language. The good
news is that, with the exception of web browsers, most application banners are relatively
simple. The bad news is that web browsers will make most of the banners you see.

Non-Web Banners

This section discusses server banners for servers not using the Web. Banners can provide
information on the operating system and the protocol, or can be obfuscated to prevent
scanners from acquiring intelligence.

SMTP banners are defined in RFC 5321. On client login, an SMTP server should re-
spond with a 220 status code (the greeting), along with some domain information. Given
that SMTP servers are one of the most commonly targeted services by scanners, it’s not
unusual to find SMTP banners reduced to a bare minimum by system administrators.

Microsoft defines the default banner for MS Exchange as:

220 <Servername> Microsoft ESMTP MAIL service ready at
<RegionalDay-Date-24HourTimeFormat> <RegionalTimeZoneOffset>

with optional customization. An example banner for Exchange is:

220 mailserver.bogodomain.com Microsoft ESMTP MAIL service ready at
Sat, 16 Feb 2013 08:34:14 +0100

SSH is defined in RFC 4253. On client login, an SSH server sends a brief message pro-
viding an identification string. According to the protocol definition, the identification
string will be of the form:

SSH-protoversion-softwareversion SP comments CR LF

where SP is a space, CR is a carriage return, and LF is a line feed. All modern imple-
mentations of SSH should use 2.0 for the protocol version, but a server that supports
previous versions of SSH should identify its version as 1.99. Comments are optional.

The following banner is an example of SSH before version 2.0, which should be rare:
SSH-1.99-0penSSH_3.5p1
Everything else should be 2.0 or above:

SSH-2.0-0penSSH_4.3
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As these two examples show, the first step to identifying a banner is usually to find the
relevant technical documentation. This may be an RFC for an IETF-engineered protocol
such as IMAP, POP3, SSH, or SMTP. For protocols that do not involve the IETF, some
searching may be required to identify the developer of the protocol and any support
sites. For example, BitTorrent’s protocol is currently specified at the theory.org wiki.

Web Client Banners: The User-Agent String

Web clients send browsers a complicated configuration string defining their capabilities
and preferences: the platform the browser runs on, the operating system, and a variety
of configuration details. This string, User-Agent, is defined in RFC 2616, but can be-
come phenomenally complicated (as well as informative) fairly quickly.

Some user-agent strings are shown sorted by broswer in Example 14-7.

Example 14-7. Example user-agent strings by browser

Firefox:

Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.12) Gecko/20080214
Firefox/2.0.0.12

Mozilla/5.0 (Windows; U; Windows NT 5.1; cs; rv:1.9.0.8) Gecko/2009032609
Firefox/3.0.8

Mozilla/5.0 (X11; U; Linux 1686; en-US; rv:1.8) Gecko/20051111 Firefox/1.5

Internet Explorer:

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2;
Media Center PC 6.0; InfoPath.3; MS-RTC LM 8; Zune 4.7)

Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)

Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; Xbox)

Safari:
Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_6_8) AppleWebKit/534.57.1
(KHTML, like Gecko) Version/5.1.7 Safari/534.57.1
Mozilla/5.0 (iPad; CPU 0S 6_0 like Mac 0S X) AppleWebKit/536.26
(KHTML, like Gecko) Version/6.0 Mobile/10A403 Safari/8536.25

Opera:

Opera/9.80 (Windows NT 6.0) Presto/2.12.388 Version/12.11

Opera/9.80 (Macintosh; Intel Mac 0S X 10.8.2) Presto/2.12.388 Version/12.11
Opera/9.80 (X11; Linux 1686; U; ru) Presto/2.8.131 Version/11.11
Mozilla/5.0 (Windows NT 6.1; rv:2.0) Gecko/20100101 Firefox/4.0 Opera 12.11

Chrome:

Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24
(KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24

Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_7_3) AppleWebKit/535.19
(KHTML, like Gecko) Chrome/18.0.1025.151 Safari/535.19

Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus Build/IMM76B)
AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.133
Mobile Safari/535.19

Mozilla/5.0 (iPhone; U; CPU iPhone 0S 5_1_1 like Mac 0S X; en)
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AppleWebKit/534.46.0 (KHTML, like Gecko) Cri0S/19.0.1084.60
Mobile/9B206 Safari/7534.48.3

Googlebot:
Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Bingbot:
Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)

Baiduspider:
Mozilla/5.0 (compatible; Bailduspider/2.0; +http://www.baildu.com/search/
spider.html)

The user agent strings in Example 14-7 follow a basic structure that is derived from the
original RFC 2616 specification along with various detritus from the browser wars.
These attributes are broken down as follows:

1. Aninitial tag, usuallyMozilla/4.0 or higher. The use of Mozilla as the default string
isarelic ofthe browser wars. Suffice it to say that almost every browser automatically
masquerades as Mozilla.

2. A set of values in parentheses that will tell you what the browser really is. These
values vary based on the browser make and configuration, but usually contain the
actual browser name, the OS, and a number of optional parameters.

3. Following the parentheses (usually) is a tag naming the layout engine for the soft-
ware; the layout engine is the browser’s toolkit for rendering HTML, and the same
engine can be used by multiple browsers. Common engines include Gecko (used
by Firefox, Mozilla, and SeaMonkey), WebKit (used by Safari and Chrome), Presto
(Opera), and Trident (IE).

As Example 14-7 shows, the actual composition of the string is very much a function
of the browser, the OS, and the idiosyncratic whims of the implementor.
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CHAPTER 15
Network Mapping

In this chapter, we discuss mechanisms for managing the rate of false positives produced
by detection systems by reducing make-work. Consider this scenario: I create a signature
today to identify the IIS exploit of the week, and sometime tomorrow afternoon it starts
firing oft like crazy. Yay, somebody’s using an exploit! I check the logs, and I find out
that I am not in fact being attacked by this exploit because my network actually doesn’t
run IIS. Not only have I wasted analyst time dealing with the alert, I've wasted my time
writing the original alert for something to which the network isn't vulnerable.

The process of inventory is the foundation of situational awareness. It enables you to
move from simply reacting to signatures to continuous audit and protection. It provides
you with baselines and an efficient anomaly detection strategy, it identifies critical assets,
and it provides you with contextual information to speed up the process of filtering
alerts.

Creating an Initial Network Inventory and Map

Network mappingis an iterative process that combines technical analysis and interviews
with site administrators. The theory behind this process is that any inventory generated
by design is inaccurate to some degree, but accurate enough to begin the process of
instrumentation and analysis. Acquiring this inventory begins with identifying the per-
sonnel responsible for managing the network.

The mapping process described in this book consists of four distinct phases, which
combine iterative traffic analysis and asking a series of questions of network adminis-
trators and personnel. These questions inform the traffic analyses, and the analyses lead
to more queries. Figure 15-1 shows how the process progresses: in phase I, you identify
the space of IP addresses you are monitoring, and in each progressive phase you par-
tition the space into different categories.
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Figure 15-1. The mapping process

Creating an Inventory: Data, Coverage, and Files

In a perfect world, a network map should enable you to determine, based on addresses
and ports, the traffic you are seeing on any host on the network. The likelihood of
producing such a perfect map on an enterprise network is pretty low because by the
time you finish the initial inventory, something on the network will have changed. Maps
are dynamic and consequently have to be updated on a regular basis. This updating
process provides you with a facility for continuously auditing the network.

A security inventory should keep track of every addressable resource on the network
(that is, anything an attacker could conceivably reach if she had network access, even if
that means access inside the network). It should keep track of which services are running
on the resource, and it should keep track of how that system is monitored. An example
inventory is shown in Table 15-1.

Table 15-1. An example worksheet

Address Name Protocol Port Role Last seen  Sensors Comments
128.2.1.4 www.server.com tcp 80  HTTP Server 2013/05/14 Flow 1,Log Primary web server
128.2.1.4 www.server.com  tcp 22 SSHServer  2013/05/14 Flow 1,Log Administrators only
128.2.1.5-128.2.1.15  N/A N/A N/A  Client 2013/05/14  Flow 2 Workstations
128.2.1.16-128.2.1.31  N/A N/A N/A~ Empty 2013/05/14  Flow 2 Dark space

Table 15-1 has an entry for each unique observed port and protocol combination on
the network, along with a role, an indicator of when the host was last seen in the sensor
data, and the available sensor information. These fields are the minimum set that you
should consider if generating an inventory. Additional potential items to consider in-
clude the following:

o The Role field should be enumerable, rather than an actual text field. Enumerating
the roles will make searching much less painful. A suggested set of categories is:

— Service Server, where Service is HTTP, SSH, etc.

296 | Chapter 15: Network Mapping



— Workstation, to indicate a dedicated client

— NAT, to indicate a network address translator

— Service Proxy for any proxies

— Firewall for Firewalls

— Sensor for any sensors

— Routing for any routing equipment

— VPN for VPN concentrators and other equipment

— DHCP for any dynamically addressed space

— Dark for any address that is allocated in the network but has no host on it

o Identifying VPNs, NATs, DHCP, and proxies, as we'll discuss in a moment, is par-
ticularly important—they mess up the address allocation and increase the com-
plexity of analysis.

 Keeping centrality or volume metrics is also useful. A five-number summary of
volume over a month is a good starting point for anomaly detection.

o Per-host whitelists are a useful tool for anomaly management (see Chapter 2 for a
more extensive discussion). The inventory is a good place to track per-host whitelist
and rule files.

o Ownership and point of contact information is critical. One of the most time-
consuming steps after identifying an attack is usually finding out who owns the
victim.

« Keeping track of the specific services on hosts, and the versions of those services,
helps track the risk that a particular system has to current exploits. This can be
identified by banner grabbing, but it's more effective to just scan the network using
the inventory as a guideline.

Table 15-1 could be kept on paper or a spreadsheet, but it really should be kept in an
RDBMS or other storage system. Once you've created the inventory, it will serve as a
simple anomaly detection system, and should be updated regularly by automated pro-
cesses.

Phase I: The First Three Questions

The first step of any inventory process involves figuring out what is already known and
what is already available for monitoring. For this reason, instrumentation begins at a
meeting with the network administrators." The purpose of this initial meeting is to
determine what is monitored, specifically:

1. Preferably at a brewpub.
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o What addresses make up the network?
o What sensors do I have?

o How are the sensors related to traffic?

Start with addresses, because they serve as the foundation of the inventory. More specific
questions to ask include:

Is the network IPv4 or IPv6?
If the network is IPv6, there’s going to be a lot more address space to play with,
which reduces the need for DHCP and NAT. The network is more likely to be IPv4,
however, and that means that if it is of any significant size, there’s likely to be a fair
degree of aliasing, NAT, and other address conservation tricks.

How many addresses are accessible or hidden behind NATs?
Ideally, you should be able to get a map showing the routing on the network, whether
there are DMZs, and what information is hidden behind NATs. These individual
subnets are future candidates for instrumentation.

How many hosts are on the network?
Determine how many PCs, clients, servers, computers, and embedded systems are
on the network. These systems are the things youre defending. Pay particular at-
tention to embedded systems such as printers and teleconferencing tools because
they often have network servers, are hard to patch and update, and are often over-
looked in inventories.

This discussion should end with a list of all your potential IP addresses. This list will
probably include multiple instances of the same ephemeral spaces over and over again.
For example, if there are six subnets behind NAT firewalls, expect to see 192.168.0.0/16
repeated six times. You should also get an estimate of how many hosts are in each subnet
and in the network as a whole.

The next set of questions to ask involves current instrumentation. Host-based instru-
mentation (e.g., server logs and the like, as discussed in Chapter 3) are not the primary
target at this point. Instead, the goal is to identify whether network-level collection is
available. If it is available, determine what is collected, and if not, determine whether it
can be turned on. More specific questions to ask include:

What is currently being collected?
A source doesn't have to be collected “for security purposes” to be useful. NetFlow,
for example, has been primarily used as a billing system, but can be useful in mon-
itoring as well.

Are there NetFlow-capable sensors?
For example, if Cisco routers with built-in NetFlow instrumentation are available,
use them as your initial sensors.
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Is any IDS present?
An IDS such as Snort can be configured to just dump packet headers. Depending
on the location of the IDS (such as if it’s on the border of a network), it may be
possible to put up a flow collector there as well.

At the conclusion of this discussion, you should come up with a plan for initially in-
strumenting the network. The goal of this initial instrumentation should be to capitalize
on any existing monitoring systems and to acquire a systematic monitoring capability
for cross-border traffic. As a rule of thumb, on most enterprise networks, it’s easiest to
turn on deactivated capabilities such as NetFlow, while it’s progressively more difficult,
respectively, to add new software and hardware.

The Default Network

Throughout this chapter, I use sidebars to discuss more concrete methods to answer
the high-level questions in the text. These sidebars involve a hefty number of SiLK
queries and at least a little understanding of how SiLK breaks down data.

The default network is shown in Figure 15-2. As described by SiLK, this network as two
sensors: R1 (Router 1) and R2 (Router 2). There are three types of data: in (coming
from the cloud into the network), out (going from the network to the cloud), and
internal (traffic that doesn’t cross the border into the cloud).
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Router 1 (monitored)
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o Router 2 (not monitored)
T Host C
External B

Figure 15-2. Unmonitored routes in action

In addition, there exist a number of IP sets. initial.set isalist of hosts on the network
provided by administrators during the initial interview. This set is composed of
servers.set and clients.set, comprising the clients and servers. servers.set con-
tainswebservers.set,dnsservers.set,and sshservers.set as subsets. These sets are
accurate at the time of the interview, but will be updated as time passes.

Phase II: Examining the IP Space

You'll need to consider the following questions:

o Are there unmonitored routes?
o What IP space is dark?

o Which IP addresses are network appliances?
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Following phase I, you should have an approximate inventory of the network and a live
feed of, at the minimum, cross-border traffic data. With this information, you can begin
to validate the inventory by comparing the traffic you are receiving against the list of IP
addresses that the administrators provided you. Note the use of the word validate—you
are comparing the addresses that you observe in traffic against the addresses you were
told would be there.

Your first goal is to determine whether instrumentation is complete or incomplete, in
particular, whether you have any unmonitored routes to deal with—that is, legitimate
routes where traffic is not being recorded. Figure 15-2 shows some common examples
of dark routes. In this figure, a line indicates a route between two entities:

o The first unmonitored route occurs when traftic moves through router 2, which is
not monitored. For example, if host A communicates with external address B using
router 2, you will not see A’ traffic to B or B’s traffic to A.

o A more common problem in modern networks is the present of wireless bridges.
Most modern hosts have access to multiple wireless networks, especially in shared
facilities. Host B in the example can communicate with the Internet while bypassing
router 1 entirely.

The key to identifying unmonitored routes is to look at asymmetric traffic flow. Routing
protocols forward traffic with minimal interest in the point of origin, so if you have n
access points coming into your network, the chance of any particular session going in
and out of the same point is about I/n. You can expect some instrumentation failures
to result on any network, so there are always going to be broken sessions, but if you find
consistent evidence of asymmetric sessions between pairs of addresses, that’s good evi-
dence that the current monitoring configuration is missing something.

The best tool for finding asymmetric sessions is TCP traffic, because TCP is the most
common protocol in the IP suite that guarantees a response. To identify legitimate TCP
sessions, take the opposite approach from Chapter 11: look for sessions where the SYN,
ACK, and FIN flags are high, with multiple packets or with payload.

Identifying Asymmetric Traffic

To identify asymmetric traffic, look for TCP sessions that carry payload and don’t have
a corresponding outgoing session. This can be done using rwuniq and rwfilter:

$ rwfilter --start-date=2013/05/10:00 --end-date=2013/05/10:00 --proto=6 \
--type=out --packets=4- --flags-all=SAF/SAF --pass=stdout | \

rwuniq --field=1,2 --no-title --sort | cut -d '|' -f 1,2 > outgoing.txt
Note that I use 1,2 for the rwuniq above, and 2,1 for the rwunig below.
This ensures that the

fields are present in the same order when I compare output.

rwfilter --start-date=2013/05/10:00 --end-date=2013/05/10:00 --proto=6 \

v oH R R
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--type=in --packets=4- --flags-all=SAF/SAF --pass=stdout | rwuniq \
--field=2,1 --no-title --sort | cut -d '|' -f 2,1 > incoming.txt

Once these commands finish, I will have two files of internal IP and external IP pairs.
I can compare these pairs directly using -cmp or a hand-written routine. Example 15-1
shows a python example that generates a report of unidirectional flows:

Example 15-1. Generating a report of unidirectional flows

#!/usr/bin/env python

#

H O O HE R

compare_reports.py
Command line: compare_reports.py filel file2

Reads the contents of two files and checks to see if the same
IP pairs appear.

import sys, os
def read_file(fn):

if __name__ == '__main

ip_table = set()

a = open(fn,'r")

for 1 in a.readlines():
sip, dip = map(lambda x:x.strip(), i.split('|')[0:2])
key = "%15s:%15s" % (sip, dip)
ip_table.add(key)

a.close()

return ip_table

incoming = read_file(sys.argv[1])
outgoing = read_file(sys.argv[2])
missing_pairs = set()
total_pairs = set()
# Being a bit sloppy here, run on both incoming and outgoing to ensure
# that if there's an element in one not in the other, it gets caught
for 1 in incoming:
total_pairs.add(i)
if not 1 in outgoing:
missing_pairs.add(i)
for 1 in outgoing:
total_pairs.add(i)
if not 1 in incoming:
missing_pairs.add(i)
print missing_pairs, total_pairs
# Now do some address breakdowns
addrcount = {}
for 1 in missing_pairs:
in_value, out_value = i.split(':')[0:2]
if not addrcount.has_key(in_value):
addrcount[in_value] = 0
if not addrcount.has_key(out_value):
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addrcount[out_value] = 0

addrcount[in_value] += 1

addrcount[out_value] += 1
# Simple report, number of missing pairs, list of most commonly occurring
# addresses
print "%d missing pairs out of %d total" % (len(missing_pairs),

len(total_pairs))

s = addrcount.items()
s.sort(lambda a,b:b[1] - a[1]) # lambda just guarantees order
print "Most common addresses:"
for 1 in s[0:10]:

print "%15s %5d" % (i[0],addrcount[i[0]])

This approach is best done using passive collection because it ensures that you are
observing traffic from a number of locations outside the network. Scanning is also for
identifying dark spaces and back doors. When you scan and control the instrumenta-
tion, not only can you see the results of your scan on your desktop, but you can compare
the traffic from the scan against the data provided by your collection system.

Although you can scan the network and check whether all your scanning sessions match
your expectations (i.e., you see responses from hosts and nothing from empty space),
you are scanning from only a single location, when you really need to look at traffic
from multiple points of origin.

If you find evidence of unmonitored routes, you need to determine whether they can
be instrumented and why they aren’t being instrumented right now. Unmonitored
routes are a security risk: they can be used to probe, exfiltrate, and communicate without
being monitored.

Unmonitored routes and dark spaces have similar traffic profiles to each other; in both
cases, a TCP packet sent to them will not elicit a reply. The difference is that in an
unmonitored route, this happens due to incomplete instrumentation, while a dark space
has nothing to generate a response. Once you have identified your unmonitored routes,
any monitored addresses that behave in the same way should be dark.

Identifying Dark Space

Dark spaces can be found either passively or actively. Passive identification requires
collecting traffic to the network and progressively eliminating all address that respond
or are unmonitored—at that point, the remainder should be dark. The alternative ap-
proach is to actively probe the addresses in a network and record the ones that don't
respond; those addresses should be dark.

Passive collection requires gathering data over a long period. At the minimum, collect
traffic for at least a week to ensure that dynamic addressing and business processes are
handled.
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$ rwfilter --type=out --start-date=2013/05/01:00 --end-date=2013/05/08:23 \
--proto=0-255 --pass=stdout | rwset --sip-file=light.set

# Now remove the lit addresses from our total inventory

$ rwsettool --difference --output=dark.set initial.set light.set

An alternative approach is to ping every host on the network to determine whether it
is present.

$ for 1 in “rwsetcat initial.set’
do
# Do a ping with a 5 second timeout and 1 attempt to each target
ping -q -c 1 -t 5 ${1} | tail -2 >> pinglog.txt
done
pinglog.txt will contain the summary information from the ping command, which will
look like this:

--- 128.2.11.0 ping statistics ---
1 packets transmitted, 0 packets received, 100.0% packet loss

The contents can be parsed to produce a dark map.

Of these two options, scanning will be faster than passive mapping, but you have to
make sure the network will return ECHO REPLY ICMP messages to your pings.

Another way to identify dynamic spaces through passive monitoring is to take hourly
pulls and compare the configuration of dark and light addresses in each hour.

“Network appliances” in this context really means router interfaces. Router interfaces
are identifiable by looking for routing protocols such as BGP, RIP, and OSPE. Another
mechanism to use is to check for “ICMP host not found” messages (also known as
network unreachable messages), which are generated only by routers.

Finding Network Appliances

Identifying network appliances involves either using traceroute, or looking for specific
protocols used by them. Every host mentioned by traceroute except the endpoint is a
router. If you check for protocols, candidates include:

BGP
BGP is commonly spoken by routers that route traffic across the Internet, and won't
be common inside corporate networks unless you have a very big network. BGP
runs on TCP port 179.

# This will identify communications from the outside world with BGP speakers
# inside.
$ rwfilter --type=in --proto=6 --dport=179 --flags-all=SAF/SAF \
--start-date=2013/05/01:00 --end-date=2013/05/01:00 --pass=bgp_speakers.rwf
OSPF and EIGRP
Common protocols for managing routing on small networks. EIGRP is protocol
number 88, OSPF protocol number 89.
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# This will identify communications between OSPF and EIGRP speakers,
note the use of internal, we don't expect this traffic to be cross-border
$ rwfilter --type=internal --proto=88,89 --start-date=2013/05/01:00 \
--end-date=2013/05/01:00 --pass=stdout | rwfilter --proto=88 \
--input-pipe=stdin --pass=eigrp.rwf --fail=ospf.rwf

**

RIP
Another internal routing protocol, RIP is implemented on top of UDP using port
520.

# This will identify communications with RIP speakers
$ rwfilter --type=internal --proto=17 --aport=520 \
--start-date=2013/05/01:00 --end-date=2013/05/01:00 --pass=rip_speakers.rwf
ICMP
Host unreachable messages (ICMP Type 3, Code 7) and time exceeded messages
(ICMP Type 11) both originate from routers.

# Filter out icmp messages, the longer period is because ICMP is much rarer
$ rwfilter --type=out --proto=1 --icmp-type=3,11 --pass=stdout \
--start-date=2013/05/01:00 \
--end-date=2013/05/01:23 | rwfilter --icmp-type=11 --input-pipe=stdin \
--pass=ttl_exceeded.rwf --fail=stdout | rwfilter --input-pipe=stdin \
--icmp-code=7 --pass=not_found.rwf
$ rwset --sip=routers_ttl.set ttl_exceeded.rwf
$ rwset --sip=routers_nf.set not_found.rwf
$ rwsettool --union --output-path=routers.set routers_nf.set routers_ttl.set
The results of this step will provide you with a list of router interface addresses. Each
router on the network will control one or more of these interfaces. At this point, it’s a
good idea to go back to the network administrators in order to associate these interfaces

with actual hardware.

Phase Ill: Identifying Blind and Confusing Traffic

You'll need to consider the following questions:

« Are there NATs?

o Are there proxies, reverse proxies, or caches?

o Isthere VPN traffic?

o Are there dynamic addresses?
After completing phase II, you will have identified which addresses within your network
are active. The next step is to identify which addresses are going to be problematic. Life

would be easier for you if every host were assigned a static IP address, that address were
used by exactly one host, and the traffic were easily identifiable by port and protocol.

Obviously, these constraints don’t hold. Specific problems include:
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NATs
These are a headache because they alias multiple IP addresses behind a much
smaller set of addresses.

Proxies, reverse proxies, and caches
Like a NAT, a proxy hides multiple IP addresses behind a single proxy host address.
Proxies generally operate at higher levels in the OSI stack and often handle specific
protocols. Reverse proxies, as the name implies, provide aliases for multiple server
addresses and are used for load balancing and caching. Caches store repeatedly
referenced results (such as web pages) to improve performance.

VPNs
Virtual Private Network (VPN) traffic obscures the contents of protocols, hiding
what’s being done and hiding how many hosts are involved. VPN traffic includes
IPv6-over-IPv4 protocols such as 6to4 and Teredo, and encrypted protocols such
as SSH and TOR. All of these protocols encapsulate traffic, meaning that the ad-
dresses seen at the IP layer are relays, routers, or concentrators rather than the actual
hosts doing something.

Dynamic addresses
Dynamic addressing, such as that assigned through DHCP, causes a single host to
migrate through a set of addresses over time. Dynamic addressing complicates
analysis by introducing a lifetime for each address. You can never be sure whether
the host you're tracking through its IP address did something after its DHCP lease
expired.

These particular elements should be well-documented by network administrators, but
there are a number of different approaches for identifying them. Proxies and NATSs can
both be identified by looking for evidence that a single IP address is serving as a frontend
for multiple addresses. This can be done via packet payload or flow analysis, although
packet payload is more certain.

Identifying NATs

NATSs are an enormous pain to identify unless you have access to payload data, in which
case they simply become a significant pain. The best approach for identifying NATs is
to quiz the network administrators. Failing that, you have to identify NATs through
evidence that there are multiple addresses hidden behind the same address. A couple
of different indicia can be used for this.

Variant User -Agent strings
The best approach I've seen to identify NAT is to pull the User-Agent strings from
web sessions. Using a script such as bannergrab.py from Chapter 14, you can pull
and dump all instances of the User-Agent string issuing from the NAT. If you see
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different instances of the same browser, or multiple browsers, you are likely looking
ata NAT.

There is a potential false positive here. A number of applications (including email cli-
ents) include some form of HTTP interaction these days. Consequently, it’s best to re-
strict yourself to explicit browser banners, such as those output by Firefox, IE, Chrome,
and Opera.

Multiple logons to common servers
Identify major internal and external services used by your network. Examples in-
clude the company email server, Google, and major newspapers. If a site is a NAT,
you should expect to see redundant logins from the same address. Email server logs
and internal HTTP server logs are the best tool for this kind of research.

TTL behavior
Recall that time-to-live (TTL) values are assigned by the IP stack and that initial
values are OS-specific. Check the TTLs coming from a suspicious address and see
if they vary. Variety suggests multiple hosts behind the address. If values are the
same but below the initial TTL for an OS, you're seeing evidence of multiple hops
to reach that address.

Identifying Proxies

Proxy identification requires you to have both sides of the proxy instrumented.
Figure 15-3 shows the network traffic between clients, proxies, and servers. As this figure
shows, proxies take in requests from multiple clients, and send those requests off to
multiple servers. In this way, a proxy behaves as both a server (to the clients it’s proxying
for) and as a client (to the servers it’s proxying to). If your instrumentation lets you see
both the client-to-proxy and proxy-to-server communication, you can identify the
proxy by viewing this traffic pattern. If you don’t, you can use the techniques discussed
in the previous cookbook on NAT identification. The same principles apply because,
after all, a proxy is a frontend to multiple clients like a NAT firewall.

Host 1, Port 2000 Port 1080
Port 2000
Host 1, Port 2001 Server A, Port 80
Host 3, Port 2025 Port 2001 Server B, Port 80
Port 2002 g ¢ Port 80
Host 4, Port 3018 Port 2003 ervert, Fort
Clients Proxy Servers

Figure 15-3. Network connections for a proxy
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To identify a proxy using its connectivity, first look for hosts that are acting like clients.
You can tell a client because it uses multiple ephemeral ports. For example, using rwu-
niq, you can identify clients on your network as follows:

$ rwfilter --type=out --start-date=2013/05/10:00 --end-date=2013/05/10:01 \
--proto=6,17 --sport=1024-65535 --pass=stdout | rwuniq --field=1,3 \
--no-title | cut -d '|' -f 1 | sort | unig -c | egrep -v '~[ J+1' |\
cut -d " " -f 3 | rwsetbuild stdin clients.set

That command identifies all combinations of source IP address (sip) and source port
number (sport) in the sample data and eliminates any situation where a host only used
one port. The remaining hosts are using multiple ports. It’s possible that hosts that are
using only seven or eight ports at a time are running multiple servers, but as the distinct
port count rises, the likelihood of them running multiple services drops.

Once you've identified clients, the next step is to identify which of the clients are also
behaving as servers (see “Identifying Servers” on page 309).

VPN traffic can be identified by looking for the characteristic ports and protocols used
by VPNs. VPNs obscure traffic analysis by wrapping all of the traffic they transport in
another protocol such as GRE. Once you've identified a VPN’s endpoints, instrument
there. Once the wrapper has been removed from VPN traffic, you should be able to
distinguish flows and session data.

Identifying VPN Traffic
The major protocols and ports used by VPN traffic are:

IPSec
IPSec refers to a suite of protocols for encrypted communications over VPNs. The
two key protocols are AH (authentication header, protocol 51) and ESP (Encapsu-
lating Security Payload, protocol 50):

$ rwfilter --start-date=2013/05/13:00 --end-date=2013/05/13:01 --proto=50,51 \
- -pass=vpn.rwf
GRE
GRE (generic routing encapsulation) is the workhorse protocol for a number of
VPN implementations. It can be identified as protocol 47.

$ rwfilter --start-date=2013/05/13:00 --end-date=2013/05/13:01 --proto=47 \
--pass=gre.rwf

A number of common tunneling protocols are also identifiable using port and protocol
numbers, although unlike standard VPNs, they are generally software-defined and don’t

require special assets specifically for routing. Examples include SSH, Teredo, 6to4, and
TOR.
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Phase IV: Identifying Clients and Servers

After identifying the basic structure of the network, the next step is to identify what the
network does, which requires profiling and identifying clients and servers on the net-
work. Questions include:

o What are the major internal servers?
o Are there servers running on unusual ports?

o Are there FTP, HTTP, SMTP, or SSH servers that are not known to system admin-
istration?

o Are servers running as clients?

o Where are the major clients?

Identifying Servers

Servers can be identified by looking for ports that receive sessions and by looking at the
spread of communications to ports.

To identify ports that are receiving sessions, you need either access to pcap data or flow
instrumentation that distinguishes the initial flags of a packet from the rest of the body
(which you can get through YAF, as described in “YAF” on page 96). In a flow, the
research then becomes a matter of identifying hosts that respond with a SYN and ACK:

$ rwfilter --proto=6 --flags-init=SA|SA --pass=server_traffic.rwf \
--start-date=2013/05/13:00 --end-date=2013/05/13:00 --type=in
This approach won't work with UDDP, because a host can send UDP traffic to any port
it pleases without any response. An alternate approach, which works with both UDP
and TCP, is to look at the spread of a port/protocol combination. I briefly touched on
this in “Identifying Proxies” on page 307, and we’ll discuss it in more depth now.

A server is a public resource. This means that the address has to be sent to the clients,
and that, over time, you can expect multiple clients to connect to the server’s address.
Therefore, over time, you will see multiple flows with distinct source IP/source port
combinations all communicating with the same destination IP/destination port com-
bination. This differs from the behavior of a client, which will issue multiple sessions
from different source ports to a number of distinct hosts. Figure 15-4 shows this phe-
nomenon graphically.
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Port 2001 ——— ] Host1, Port g0 /D Host 1, Port 2034
Port2002 | f————— | Host2,Ports0 Port8 | ] Host2, Port 3096
Port2003 | |————— ] Host3, Port80 Host 3, Port 4411
Port2004 | |————— ] Host4, ort80 Host 4, Port 2133

Client’s view Server's view

Figure 15-4. A graphical illustration of spread

Spread can easily be calculated with flow data by using the rwuniq command. Given a
candidate file of traffic originating from one IP address, use the following:
$rwuniq --field=1,2 --dip-distinct candidate_file | sort -t '|' -k3 -nr |\
head -15
The more distinct IP addresses talk to the same host/port combination, the more likely

is it that the port represents a server. In this script, servers will appear near the top of
the list.

By using spread and direct packet analysis, you should have a list of most of the IP:port
combinations that are running servers. This is always a good time to scan those IP:port
combinations to verify what’s actually running: in particular, search for servers that are
not running on common ports. Servers are a public resource (for some limited definition
of “public”), and when they appear on an unusual port, it may be an indication that a
user didn’t have permissions to run the server normally (suspicious behavior) or was
trying to hide it (also suspicious behavior, especially if you've read Chapter 11).

Once you've identified the servers on a network, determine which ones are most im-
portant. There are a number of different metrics for doing so, including:

Total volume over time
This is the easiest and most common approach.

Internal and external volume
This differentiates servers accessed only by your own users from those accessed by
the outside world.

Graph centrality
Path and degree centrality often identify hosts that are important and that would
be missed using pure degree statistics (number of contacts). See Chapter 13 for
more information.
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The goal of this exercise is to produce a list of servers ordered by priority, from the ones
you should watch the most to the ones that are relatively low profile or, potentially, even
removable.

Once you have identified all the servers on a network, it’s a good time to go back to talk
to the network administrators.” This is because you will almost invariably find servers
that nobody knew were running on the network, examples of which include:

o Systems being run by power users
« Embedded web servers

o Occupied hosts

Identifying Sensing and Blocking Infrastructure

Questions to consider:

o Are there any IDS or IPS systems in place? Can I modify their configuration?
o What systems do I have log access to?

o Are there any firewalls?

o Are there any router ACLs?

o Isthere an antispam system at the border, or is antispam handled at the mail server,
or both?

o Is AV present?

The final step of any new instrumentation project is to figure out what security software
and capabilities are currently present. In many cases, these systems will be identifiable
more from an absence than a presence. For example, if no hosts on a particular network
show evidence of BitTorrent traffic (ports 6881-6889), it’s likely that a router ACL is
blocking BitTorrent.

Updating the Inventory: Toward Continuous Audit

Once you’ve built an initial inventory, queue up all the analysis scripts you've written
to run on a regular basis. The goal is to keep track of whats changed on your network
over time.

This inventory provides a handy anomaly-detection tool. The first and most obvious
approach is to keep track of changes in the inventory. Sample questions to ask include:

2. Preferably at a place that serves vodka.
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o Are there new clients or servers on the network?
 Have previously existing addresses gone dark?

» Has a new service appeared on a client?

Changes in the inventory can be used as triggers for other analyses. For example, when
a new client or server appears on the network, you can start analyzing its flow data to
see who it communicates with, scan it, or otherwise experiment on it in order to fill the
inventory with information on the new arrival.

In the long term, keeping track of what addresses are known and monitored is a first
approximation for how well youre protecting the network. It's impossible to say “X is
more secure than Y”; we just don’t have the ability to quantitatively measure the X factor
that is attacker interest. By working with the map, you can track coverage either as a
strict number (out of X addresses on the network, Y are monitored) or as a percentage.

Further Reading

1. Umesh Shankar and Vern Paxson, “Active Mapping: Resisting NIDS Evasion
Without Altering Traffic,” Proceedings of the 2003 IEEE Symposium on Security
and Privacy.

2. Austin Whisnant and Sid Faber, “Network Profiling Using Flow;” CMU/SEI-2012-
TR-006, Software Engineering Institute.
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reducing false alerts with, 138
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client port, 282
identification of, 309
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web client banners, 292
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dst-reserve field, 95
Dynamic User and Host List (DUHL), 172

E

echo request/reply, 153

EDA (see exploratory data analysis)
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exploitation attacks, 222
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alarms for, 234
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automated systems, 225
definition of, 221, 224
forensic analysis of, 235
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HTTP (Hypertext Transfer Protocol)
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failure rate in, 225
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anomaly-based systems, 130, 132-141
applying classification, 136
AV (antivirus systems), 132
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log file transport, 50
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EUI standards for, 148
Mac OS X
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port assignments in, 283
mail exchange
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managing rules and filtering, 48
Microsoft Exchange, 49, 291
sendmail log format, 47
malware, 133
malware sites, 186
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MapReduce, 59
maps, network, 228
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McAfee HIPS (host intrusion prevention sys-
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McAfee’s Threat Center, 187
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tion System), 157
National Institute of Standards and Technology
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NATs (network address translators), identifica-
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NetFlow
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record generation and collection, 32
TCP session/flow concept, 30, 80
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V9 and IPFIX, 32
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layering and, 18
NetFlow, 30
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pcap-filter manpage, 27
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peer-to-peer worm propagation, 222, 225
peerishness, 272
phishing attacks, 222
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plot command, 117
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rnorm function, 198
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visualization commands, 117
visualization export, 121
visualization parameters, 118
raiding, 243
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SiLK (System for Internet-Level Knowledge),
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failure rate in, 225
fumbling behaviors and, 233
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System for Internet-Level Knowledge (see SiLK)
System Log, 37

system.log files, 36
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table command, 210
tep predicate, 28
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redirecting output to with netcat, 179
TCP/IP (transmission control protocol/internet
protocol)
asymmetric sessions and, 301
port number/flag filtering in, 29, 80
port numbers in, 280, 282
sensor domains and, 16
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TCP state machine, 226
tcpdump
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data capture with, 24
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MAC adresses and, 27
record manipulation with Scapy, 181
rolling buffer implementation, 25
snaplen (-s) argument, 25
technique-extract-analyze process, 195
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traffic volume (see volume/time analysis)
transmission control protocol/internet protocol
(see TCP/IP)
transport tools, 12
trellis plots, 212
trendlines, 217
TripWire, 132
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accessing port numbers in, 29, 280, 282
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identifying servers in, 309
redirecting socket output to with netcat, 179
UDP protocol 17, 24
udp predicate, 28
unidirectional flow filtering, 228
uniform distribution, 202
univariate visualization
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Unix
basic shell commands, 70
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Colophon

The animal on the cover of Network Security Through Data Analysis is a European
Merlin (Falco columbarius). There is some debate as to whether the North American
and the European/Asian varieties of Merlin are actually different species. Carl Linnaeus
was the first to classify the bird in 1758 using a specimen from America, then in 1771
the ornithologist Marmaduke Tunstall assigned a separate taxon to the Eurasian Merlin,
calling it Falco aesalon in his book Ornithologica Britannica.

Recently, it has been found that there are significant genetic variations between North
American and European types of Merlin, supporting the idea that they should be offi-
cially classified as distinct species. It is believed that the separation between the two
kinds happened more than a million years ago, and since then the birds have existed
completely independently of each other.

The Merlin is more heavily built than most other small falcons and can weigh almost a
pound, depending on the time of year. Females are generally larger than males, which
is common among raptors. This allows the male and female to hunt different types of
prey animals and means that less territory is required to support a mating pair. Merlins
normally inhabit open country, such as scrubland, forests, parks, grasslands, and moor-
land. They prefer areas with low and medium-height vegetation because it allows them
to hunt easily and find the abandoned nests that they take on as their own. During the
winter, European Merlins are known to roost communally with Hen Harriers, another
bird of prey.

Breeding occurs in May and June, and pairs are monogamous for the season. The Mer-
lins will often use the empty nests of crows or magpies, but it is also common, especially
in the UK, to find Merlins nesting in crevices in cliffs or buildings. Females lay three to
six eggs, which hatch after an incubation period of 28 to 32 days. The chicks will be
dependent on their parents for up to 4 weeks before starting out on their own.

In medieval times, chicks were taken from the nest and hand-reared to be used for
hunting. The Book of St. Albans, a handbook of gentleman’s pursuits, included Merlins
in the “Hawking” section, calling the species, “the falcon for a lady.” Today, they are still
trained by falconers for hunting smaller birds, but this practice is declining because of



conservation efforts. The most serious threat to Merlins is habitat destruction, especially
in their breeding areas. However, since the birds are highly adaptable and have been
successful at living in settled areas, their population remains stable around the world.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.
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