[image: First Edition]
Network Security Through Data Analysis

Building Situational Awareness

Michael Collins

Preface

This book is about networks: monitoring them, studying them, and
using the results of those studies to improve them. “Improve” in this
context hopefully means to make more secure, but I don’t believe we have the
vocabulary or knowledge to say that confidently—at least not yet. In
order to implement security, we try to achieve
something more quantifiable and describable: situational awareness.
Situational awareness, a term largely used in military circles, is
exactly what it says on the tin: an understanding of the environment
you’re operating in. For our purposes, situational awareness
encompasses understanding the components that make up your network and how
those components are used. This awareness is often radically
different from how the network is configured and how the network was
originally designed.
To understand the importance of situational awareness in information
security, I want you to think about your home, and I want you to count
the number of web servers in your house. Did you include your wireless
router? Your cable modem? Your printer? Did you consider the web
interface to CUPS? How about your television set?
To many IT managers, several of the devices listed didn’t even
register as “web servers.” However, embedded web servers speak HTTP,
they have known vulnerabilities, and they are increasingly common as
specialized control protocols are replaced with a web interface.
Attackers will often hit embedded systems without realizing what they
are—the SCADA system is a Windows server with a couple of funny
additional directories, and the MRI machine is a perfectly serviceable
spambot.
This book is about collecting data and looking at networks in order to
understand how the network is used. The focus is on analysis, which is the
process of taking security data and using it to make actionable decisions. I emphasize the word actionable here because effectively, security
decisions are restrictions on behavior. Security policy
involves telling people what they shouldn’t do (or, more onerously,
telling people what they must do). Don’t use Dropbox to hold company
data, log on using a password and an RSA dongle, and don’t copy the entire
project server and sell it to the competition. When we make security
decisions, we interfere with how people work, and we’d better have good, solid reasons for doing so.
All security systems ultimately depend on users recognizing the
importance of security and accepting it as a necessary evil. Security rests on people: it rests on the individual users of a
system obeying the rules, and it rests on analysts and monitors
identifying when rules are broken. Security is only marginally a
technical problem—information security involves endlessly creative
people figuring out new ways to abuse technology, and against this
constantly changing threat profile, you need cooperation from both
your defenders and your users. Bad security policy will result in
users increasingly evading detection in order to get their jobs done or
just to blow off steam, and that adds additional work for your
defenders.
The emphasis on actionability and the goal of achieving security is
what differentiates this book from a more general text on data
science. The section on analysis proper covers statistical
and data analysis techniques borrowed from multiple other disciplines,
but the overall focus is on understanding the structure of a network
and the decisions that can be made to protect it. To that end, I have abridged the theory as much as possible, and have also focused on
mechanisms for identifying abusive behavior. Security analysis has
the unique problem that the targets of observation are not only aware
they’re being watched, but are actively interested in stopping it if at
all possible.
The MRI and the General’s Laptop
Several years ago, I talked with an analyst who focused primarily on a
university hospital. He informed me that the most commonly occupied
machine on his network was the MRI. In retrospect, this is easy to understand.
“Think about it,” he told me. “It’s medical hardware, which means its
certified to use a specific version of Windows. So every week,
somebody hits it with an exploit, roots it, and installs a bot on it.
Spam usually starts around Wednesday.” When I asked why he didn’t
just block the machine from the Internet, he shrugged and told me the
doctors wanted their scans. He was the first analyst I’ve encountered
with this problem, and he wasn’t the last.
We see this problem a lot in any organization with strong hierarchical figures:
doctors, senior partners, generals. You can build as many protections
as you want, but if the general wants to borrow the laptop over the
weekend and let his granddaughter play Neopets, you’ve got an infected
laptop to fix on Monday.

Just to pull a point I have hidden in there, I’ll elaborate. I am a firm believer
that the most effective way to defend networks is to secure and defend
only what you need to secure and defend. I believe this is the case
because information security will always require people to be involved in
monitoring and investigation—the attacks change too much, and when
we do automate defenses, we find out that attackers can now use them
to attack us.[1]
I am, as a security analyst, firmly convinced that security should be
inconvenient, well-defined, and constrained. Security should be an
artificial behavior extended to assets that must be protected. It
should be an artificial behavior because the final line of defense in
any secure system is the people in the system—and people who are
fully engaged in security will be mistrustful, paranoid, and looking
for suspicious behavior. This is not a happy way to live your life, so in order to make life bearable, we have to limit security to what must be
protected. By trying to watch everything, you lose the edge that
helps you protect what’s really important.
Because security is inconvenient, effective security analysts must
be able to convince people that they need to change their normal
operations, jump through hoops, and otherwise constrain their mission
in order to prevent an abstract future attack from happening. To that
end, the analysts must be able to identify the decision, produce
information to back it up, and demonstrate the risk to their audience.
The process of data analysis, as described in this book, is focused on
developing security knowledge in order to make effective security
decisions. These decisions can be forensic: reconstructing events
after the fact in order to determine why an attack happened, how it
succeeded, or what damage was done. These decisions can also be
proactive: developing rate limiters, intrusion detection systems, or
policies that can limit the impact of an attacker on a network.
Audience

Information security analysis is a young discipline and there really
is no well-defined body of knowledge I can point to and say “Know
this.” This book is intended to provide a snapshot of analytic
techniques that I or other people have thrown at the wall over the
past 10 years and seen stick.
The target audience for this book is network administrators and
operational security analysts, the personnel who work on NOC floors or
who face an IDS console on a regular basis. My expectation is that
you have some familiarity with TCP/IP tools such as netstat, and some basic statistical and mathematical
skills.
In addition, I expect that you have some familiarity
with scripting languages. In this book, I use Python as my go-to
language for combining tools. The Python code is illustrative and
might be understandable without a Python background, but it is assumed
that you possess the skills to create filters or other tools in
the language of your choice.
In the course of writing this book, I have incorporated techniques
from a number of different disciplines. Where possible, I’ve included
references back to original sources so that you can look through that
material and find other approaches. Many of these techniques involve
mathematical or statistical reasoning that I have intentionally kept
at a functional level rather than going through the derivations of the
approach. A basic understanding of statistics will, however, be
helpful.

Contents of This Book

This book is divided into three sections: data, tools, and analytics.
The data section discusses the process of collecting and organizing
data. The tools section discusses a number of different tools to
support analytical processes. The analytics section discusses
different analytic scenarios and techniques.
Part I discusses the collection, storage, and organization of
data. Data storage and logistics are a critical problem in security
analysis; it’s easy to collect data, but hard to search through it
and find actual phenomena. Data has a footprint, and it’s possible to
collect so much data that you can never meaningfully search through
it. This section is divided into the following chapters:
	
Chapter 1

	
This chapter discusses the general process of collecting
data. It provides a framework for exploring how different sensors
collect and report information and how they interact with each other.

	
Chapter 2

	
This chapter expands on the discussion in the
previous chapter by focusing on sensors that collect network traffic
data. These sensors, including tcpdump and NetFlow, provide a
comprehensive view of network activity, but are often hard to
interpret because of difficulties in reconstructing network traffic.

	
Chapter 3

	
This chapter discusses sensors that are located on a
particular system, such as host-based intrusion detection systems and logs from services such
as HTTP. Although these sensors cover much less traffic than network
sensors, the information they provide is generally easier to
understand and requires less interpretation and guesswork.

	
Chapter 4

	
This chapter discusses tools and mechanisms for storing
traffic data, including traditional databases, big data systems such
as Hadoop, and specialized tools such as graph databases and REDIS.

Part II discusses a number of different tools to use for
analysis, visualization, and reporting. The tools described in this
section are referenced extensively in later sections when
discussing how to conduct different analytics.
	
Chapter 5

	
System for Internet-Level Knowledge (SiLK) is a flow
analysis toolkit developed by Carnegie Mellon’s CERT. This chapter
discusses SiLK and how to use the tools to analyze NetFlow data.

	
Chapter 6

	
R is a statistical analysis and visualization environment that can be used to effectively explore almost any data source
imaginable. This chapter provides a basic grounding in the R
environment, and discusses how to use R for fundamental statistical
analysis.

	
Chapter 7

	
Intrusion detection systems (IDSes) are automated analysis
systems that examine traffic and raise alerts when they identify
something suspicious. This chapter focuses on how IDSes work, the
impact of detection errors on IDS alerts, and how to build better detection
systems whether implementing IDS using tools such as SiLK or
configuring an existing IDS such as Snort.

	
Chapter 8

	
One of the more common and frustrating tasks in
analysis is figuring out where an IP address comes from, or what a
signature means. This chapter focuses on tools and investigation methods that
can be used to identify the ownership and provenance of addresses,
names, and other tags from network traffic.

	
Chapter 9

	
This chapter is a brief walkthrough of a number of
specialized tools that are useful for analysis but don’t fit in the
previous chapters. These include specialized visualization tools,
packet generation and manipulation tools, and a number of other
toolkits that an analyst should be familiar with.

The final section of the book, Part III, focuses on the goal
of all this data collection: analytics. These chapters
discuss various traffic phenomena and mathematical models that can be
used to examine data.
	
Chapter 10

	
Exploratory Data Analysis (EDA) is the process of examining data in order to identify
structure or unusual phenomena. Because security data changes so much,
EDA is a necessary skill for any analyst. This chapter provides a
grounding in the basic visualization and mathematical techniques used
to explore data.

	
Chapter 11

	
This chapter looks at mistakes in communications and
how those mistakes can be used to identify phenomena such as scanning.

	
Chapter 12

	
This chapter discusses analyses that can be done by
examining traffic volume and traffic behavior over time. This
includes attacks such as DDoS and database raids, as well as the
impact of the work day on traffic volumes and mechanisms to filter
traffic volumes to produce more effective analyses.

	
Chapter 13

	
This chapter discusses the conversion of network
traffic into graph data and the use of graphs to identify significant
structures in networks. Graph attributes such as centrality can be
used to identify significant hosts or aberrant behavior.

	
Chapter 14

	
This chapter discusses techniques to determine which
traffic is crossing service ports in a network. This includes simple
lookups such as the port number, as well as banner grabbing and
looking at expected packet sizes.

	
Chapter 15

	
This chapter discusses a step-by-step process for
inventorying a network and identifying significant hosts within that
network. Network mapping and inventory are critical steps in
information security and should be done on a regular basis.

Conventions Used in This Book

The following typographical conventions are used in this book:
	
Italic

	
Indicates new terms, URLs, email addresses, filenames, and file extensions.

	
Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	
Constant width bold

	
Shows commands or other text that should be typed literally by the user.

	
Constant width italic

	
Shows text that should be replaced with user-supplied values or by values determined by context.

Tip
This icon signifies a tip, suggestion, or general note.

Warning
This icon indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/mpcollins/nsda_examples
This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Network Security Through Data Analysis by Michael Collins (O’Reilly). Copyright 2014 Michael Collins, 978-1-449-3579-0.”
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Note
Safari Books Online is an on-demand digital library that delivers expert content in both book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and creative professionals use Safari Books Online as their primary resource for research, problem solving, learning, and certification training.
Safari Books Online offers a range of product mixes and pricing programs for organizations, government agencies, and individuals. Subscribers have access to thousands of books, training videos, and prepublication manuscripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or Canada)
	707-829-0515 (international or local)
	707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://oreil.ly/nstda.
To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.
For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgements

I need to thank my editor, Andy Oram, for his incredible support and feedback, without which I would still be rewriting commentary on network vantage over and over again. I also want to thank my assistant editors, Allyson MacDonald and Maria Gulick, for riding herd and making me get the thing finished. I also need to thank my technical reviewers: Rhiannon Weaver, Mark Thomas, Rob Thomas, André DiMino, and Henry Stern. Their comments helped me to rip out more fluff and focus on the important issues.
This book is an attempt to distill down a lot of experience on ops floors and in research labs, and I owe a debt to many people on both sides of the world. In no particular order, this includes Tom Longstaff, Jay Kadane, Mike Reiter, John McHugh, Carrie Gates, Tim Shimeall, Markus DeShon, Jim Downey, Will Franklin, Sandy Parris, Sean McAllister, Greg Virgin, Scott Coull, Jeff Janies, and Mike Witt.
Finally, I want to thank my parents, James and Catherine Collins. Dad died during the writing of this work, but he kept asking me questions, and then since he didn’t understand the answers, questions about the questions until it was done.

[1] Consider automatically locking out accounts
after x number of failed password attempts, and combine it with logins
based on email addresses. Consider how many accounts you can lock out
that way.

Part I. Data

This section discusses the collection and storage of data for use in
analysis and response. Effective security analysis requires
collecting data from widely disparate sources, each of which provides part of a picture about a particular event taking place on a
network.
To understand the need for hybrid data sources, consider that most
modern bots are general purpose software systems. A single bot may
use multiple techniques to infiltrate and attack other hosts
on a network. These attacks may include buffer overflows, spreading
across network shares, and simple password cracking. A bot attacking
an SSH server with a password attempt may be logged by that host’s SSH
logfile, providing concrete evidence of an attack but no information
on anything else the bot did. Network traffic might not be able to
reconstruct the sessions, but it can tell you about other actions by the attacker—including, say, a successful long session with a host that never
reported such a session taking place, no siree.
The core challenge in data-driven analysis is to collect sufficient data to reconstruct rare events without collecting so much
data as to make queries impractical. Data collection is surprisingly
easy, but making sense of what’s been collected is much harder. In
security, this problem is complicated by rare actual security
threats. The majority of network traffic is innocuous and
highly repetitive: mass emails, everyone watching the same YouTube
video, file accesses. A majority of the small number of actual security attacks will be really
stupid ones such as blind scanning of empty IP addresses. Within
that minority is a tiny subset that represents actual threats
such as file exfiltration and botnet communications.
All the data analysis we discuss in this book is I/O bound. This means that the
process of analyzing the data involves pinpointing the correct data to
read and then extracting it. Searching through the data costs time,
and this data has a footprint: a single OC-3 can generate five
terabytes of raw data per day. By comparison, an eSATA interface can read about 0.3 gigabytes per second, requiring several hours to
perform one search across that data, assuming that you’re reading
and writing data across different disks. The need to collect data
from multiple sources introduces redundancy, which costs additional disk
space and increases query times.
A well-designed storage and query system enables analysts to
conduct arbitrary queries on data and expect a response within a
reasonable time frame. A poorly designed one takes longer to
execute the query than it took to collect the data. Developing a good
design requires understanding how different sensors collect data; how
they complement, duplicate, and interfere with each other; and how to
effectively store this data to empower analysis. This section is
focused on these problems.
This section is divided into four chapters. Chapter 1 is an
introduction to the general process of sensing and data collection,
and introduces vocabulary to describe how different sensors interact
with each other. Chapter 2 discusses sensors that collect data
from network interfaces, such as tcpdump and NetFlow.
Chapter 3 is concerned with host and service sensors,
which collect data about various processes such as servers or
operating systems. Chapter 4 discusses the implementation of
collection systems and the options available, from
databases to more current big data technology.

Chapter 1. Sensors and Detectors: An Introduction

Effective information monitoring builds on data collected from
multiple sensors that generate different kinds of data and are created
by many different people for many different purposes. A sensor can be
anything from a network tap to a firewall log; it is something that
collects information about your network and can be used to make
judgement calls about your network’s security. Building up a useful
sensor system requires balancing its completeness and its redundancy.
A perfect sensor system would be complete while being nonredundant:
complete in the sense that every event is meaningfully described, and
nonredundant in that the sensors don’t replicate information about events.
These goals, probably unachievable, are a marker for determining
how to build a monitoring solution.
No single type of sensor can do everything. Network-based sensors
provide extensive coverage but can be deceived by traffic
engineering, can’t describe encrypted traffic, and can only
approximate the activity at a host. Host-based sensors provide more
extensive and accurate information for phenomena they’re instrumented
to describe. In order to effectively combine sensors, I classify them
along three axes:
	
Vantage

	
The placement of sensors within a network. Sensors
 with different vantages will see different parts of the same
 event.

	
Domain

	
The information the sensor provides, whether that’s at
 the host, a service on the host, or the network. Sensors with the
 same vantage but different domains provide complementary
 data about the same event. For some events, you might only get
 information from one domain. For example, host monitoring is
 the only way to find out if a host has been physically accessed.

	
Action

	
How the sensor decides to report information. It may
 just record the data, provide events, or manipulate the traffic
 that produces the data. Sensors with different actions can
 potentially interfere with each other.

Vantages: How Sensor Placement Affects Data Collection

A sensor’s vantage describes the packets that a sensor will be able to
observe. Vantage is determined by an interaction between
the sensor’s placement and the routing infrastructure of a network.
In order to understand the phenomena that impact vantage, look at
Figure 1-1. This figure describes a number of unique
potential sensors differentiated by capital letters. In order, these
sensor locations are:
	
A

	
Monitors the interface that connects
 the router to the Internet.

	
B

	
Monitors the interface that connects
 the router to the switch.

	
C

	
Monitors the interface that connects
 the router to the host with IP address 128.2.1.1.

	
D

	
Monitors host 128.1.1.1.

	
E

	
Monitors a spanning port operated by the
 switch. A spanning port records
 all traffic that passes the switch (see the section on port mirroring in Chapter 2 for more information on spanning ports).

	
F

	
Monitors the interface between the
 switch and the hub.

	
G

	
Collects HTTP log data on host 128.1.1.2.

	
H

	
Sniffs all TCP traffic on the hub.

[image: Vantage points of a simple network and a graph representation]

Figure 1-1. Vantage points of a simple network and a graph representation

Each of these sensors has a different vantage, and will see different
traffic based on that vantage. You can approximate the vantage of a
network by converting it into a simple node-and-link graph (as seen in
the corner of Figure 1-1) and then tracing the links crossed
between nodes. A link will be able to record any traffic that crosses
that link en route to a destination. For example, in
Figure 1-1:
	
The sensor at position A sees only traffic that moves between
the network and the Internet—it will not, for example, see traffic
between 128.1.1.1 and 128.2.1.1.

	
The sensor at B sees any traffic that originates or ends in one
of the addresses “beneath it,” as long as the other address is
128.2.1.1 or the Internet.

	
The sensor at C sees only traffic that originates or ends at
128.2.1.1.

	
The sensor at D, like the sensor at C, only sees traffic that
originates or ends at 128.1.1.1.

	
The sensor at E sees any traffic that moves between
the switches’ ports: traffic from 128.1.1.1 to anything else, traffic
from 128.1.1.2 to anything else, and any traffic from 128.1.1.3 to
128.1.1.32 that communicates with anything outside that hub.

	
The sensor at F sees a subset of what the sensor at E sees, seeing only
traffic from 128.1.1.3 to 128.1.1.32 that communicates with anything
outside that hub.

	
G is a special case because it is an HTTP log; it sees only HTTP traffic
(port 80 and 443) where 128.1.1.2 is the server.

	
Finally, H sees any traffic where one of the addresses
between 128.1.1.3 and 128.1.1.32 is an origin or a destination, as
well as traffic between those hosts.

Note that no single sensor provides complete coverage of this
network. Furthermore, instrumentation will require dealing with
redundant traffic. For instance, if I instrument H and E, I will see
any traffic from 128.1.1.3 to 128.1.1.1 twice. Choosing the right
vantage points requires striking a balance between complete coverage of traffic
and not drowning in redundant data.
When instrumenting a network, determining vantage is a three-step
process: acquiring a network map, determining the potential vantage
points, and then determining the optimal coverage.
The first step involves acquiring a map of the network and how it’s
connected together as well as a list of potential instrumentation
points. Figure 1-1 is a simplified version of such a map.
The second step, determining the vantage of each point, involves
identifying every potentially instrumentable location on the network
and then determining what that location can see. This value can be
expressed as a range of IP address/port combinations. Table 1-1 provides an example of such an inventory for
Figure 1-1. A graph can be used to make a first guess at
what vantage points will see, but a truly accurate model requires
more in-depth information about the routing and networking hardware.
For example, when dealing with routers it is possible to find points
where the vantage is asymmetric (note that the traffic in
Table 1-1 is all symmetric). Refer to Network Layering and Its Impact on Instrumentation for more information.
Table 1-1. A worksheet showing the vantage of Figure 1-1
	 Vantage point 	 Source IP range 	 Destination IP range
	A
	Internet
	128.1, 2.1.1-32

	
	128.1, 2.1.1-32
	Internet

	B
	128.1.1.1-32
	128.2.1.1, Internet

	
	128.2.1.1, Internet
	128.1.1.1-32

	C
	128.2.1.1
	128.1.1.1-32, Internet

	
	128.1.1.1-32, Internet
	128.2.1.1

	D
	128.1.1.1
	128.1.1.2-32, 128.2.1.1, Internet

	
	128.1.1.2-32, 128.2.1.1, Internet
	128.1.1.1

	E
	128.1.1.1
	128.1.1.2-32, 128.2.1.1, Internet

	
	128.1.1.2
	128.1.1.1, 128.1.1.3-32, 128.2.1.1,Internet

	
	128.1.1.3-32
	128.1.1.1-2,128.2.1.1, Internet

	F
	128.1.1.3-32
	128.1.1.1-2, 128.2.1.1, Internet

	
	128.1.1.1-32, 128.2.1.1, Internet
	128.1.1.3-32

	G
	128.1,2.1.1-32, Internet
	128.1.1.2:tcp/80

	
	128.1.1.2:tcp/80
	128.1,2.1.1-32

	H
	128.1.1.3-32
	128.1.1.1-32, 128.2.1.1,Internet

	
	128.1.1.1-32, 128.2.1.1, Internet
	128.1.1.3-32

The final step is to pick the optimal vantage points shown by the
worksheet. The goal is to choose a set of points that provide
monitoring with minimal redundancy. For example, sensor E provides a
superset of the data provided by sensor F, meaning that there is no
reason to include both. Choosing vantage points almost always
involves dealing with some redundancy, which can sometimes
be limited by using filtering rules. For example, in order to
instrument traffic between the hosts 128.1.1.3–32, point H must be
instrumented, and that traffic will pop up again and again at points
E, F, B, and A. If the sensors at those points are configured to not
report traffic from 128.1.1.3–32, the redundancy problem is moot.

Domains: Determining Data That Can Be Collected

Sensor G in Figure 1-1 differs from the other sensors in
that image; while the other sensors in the network are presumed to
record all network traffic, G is recording only HTTP traffic
(tcp/80). While all the other sensors are collecting network traffic
data, G is collecting data in a different domain. A sensor’s domain
describes the scope of the information it records. A sensor can
collect data in one of three domains:
	
Network

	
This collects information about network traffic. Examples of
these sensors include VPNs, most intrusion detection systems (IDSes),
NetFlow collectors such as YAF (described in YAF), and TCP
collectors such as Snort and raw data collected by tcpdump.

	
Host

	
Resides on the host and monitors the activity on a host:
logins, logouts, file accesses, and so on. A host-based sensor can
provide information that a network based sensor can’t, such as
physical logins to a particular host or the use of a USB peripheral.
Host-based sensors include IPS tools such as Tripwire or McAfee’s HIPS
application, as well as system logfiles or security logs. Host-based
sensors provide information on the low-level operation of a host, but
won’t provide much information on the services that are running
there. Clearly, you can implement host-based sensors only on hosts
that you know about. Unauthorized hosts have to be found before you
can monitor them.

	
Service

	
Service sensors are generated by a particular service
process, such as HTTP or SMTP server logs. Service
sensors keep track of well-formed, if not necessarily legitimate, activity within the service (for example, an HTTP sensor will
record a failed attempt to fetch a URL, but won’t record a port
80 session that didn’t send HTTP compliant commands). Unlike
host and sensor logs, which are general sensors, service-based
sensors are focused on logging interactions with a particular
service: mail messages sent, HTTP requests served, and so on. As
with a host-based sensor, you must be aware that the service
exists before you can use a service-based sensor.

Stream Reassembly and Packet Dissection
There are a number of different tools that can take network traffic
and approximate a service log by extracting the relevant information
from the packets. For example, the contents of a CLF record (see
HTTP: CLF and ELF for more information) are exchanged between an HTTP client
and an HTTP server.
Network analysis tools often provide packet dissection or session
reconstruction facilities as part of deep packet inspection. These construct a model of the session based on the packet data.
These tools are very useful for approximating what happens in a
session if you don’t have service logs, however they run into the
standard limits involving network session reconstruction: they won’t
work with encrypted data, they’re approximating the session and can
miss implementation-specific details, and the process of
reconstruction is expensive. At the same time, these collectors will
work on any network traffic data and do not require the logistically
painful process of identifying and instrumenting individual service.

Note that the domain describes the information that the sensor uses, not
the information that the sensor reports. For example, NetFlow,
tcpdump, and network-based IDS sensors all work within the network
domain, but each provides a different output.
To understand the difference between these three domains, consider an
HTTP interaction as observed through sensors in three different
domains: a network-based monitor that sniffs packets, a host-based
sensor that tracks performance and file accesses, and an HTTP server’s
logfile. The network sensor can record the packets that were sent,
but does not relate them together into HTTP structures such as
sessions, cookies, or pages. The host sensor can record the last time
a file was accessed, but does not relate that file to a URL or
request. The service sensor can say that an HTTP session took place
and include what page was served, but it will not record a half-open scan on
port 80.
Of the three sensors, the one with the service domain is the only one
that can (barring tampering with the logger) state that a particular
interaction took place; the others can only provide information for
an analyst to use for guesswork. All things being equal, it is always
preferable to have a sensor whose domain is as close to the target as
possible.
The sensors’ domains, together with their vantages, determine how redundant
a sensor combination is. If two sensors have the same domain, and one
sensor’s vantage is a superset of the other, the smaller sensor is
redundant and probably shouldn’t be run. Conversely, if two sensors
have the same vantage but different domains, they should complement
each other.
Consider the example network in Figure 1-2, which has an
HTTPS server on 128.2.1.1, an unknown HTTP server on 128.2.1.2, and
a client on 128.2.1.3.
[image: An example of host- and network-based sensors working together]

Figure 1-2. An example of host- and network-based sensors working together

The HTTPS server is accessible via FTP, which
is not logged. We summarize this information by expanding the table
format used in Table 1-1 and adding the domains, shown in
Table 1-2.
Table 1-2. Vantage and domain for Figure 1-2
	 Vantage point 	 Source IP range 	 Destination IP range 	 Domain
	A
	128.1.1.1-3
	Internet
	Network

	
	128.1.1.1-3
	128.1.1.1-3
	Network

	
	Internet
	128.1.1.1-3
	Network

	B
	128.1.1.2-3,Internet
	128.1.1.1:tcp/443
	Service/HTTPS

	
	128.1.1.1:tcp/443
	128.1.1.2-3,Internet
	Service/HTTPS

Now, let’s run through some different attacks and how these sensors
react to them.
	
An attacker scans the network for FTP servers. The scan and the
 responses will be seen by sensor A. B will not see the scan, as
 there is no FTP sensor.

	
An attacker scans the network for HTTPS servers by opening a
 GET / request to 443. Sensor A sees a session to 128.1.1.1, but
 sensor B has the actual information on the session.

	
An attacker scans for HTTP servers. A sees the scan, but B logs
 HTTPS events—not HTTP, and ignores the scan. Sensor A also sees the
 response from 128.1.1.2, identifying a previously unidentified
 HTTP server.

Sensors in different domains provide richer information than
single sensors, even if those sensors provide the same vantage. Host-based sensors provide more information and can provide data, such
as unencrypted payload, that might not be available to a network sensor.
However, a defender has to be aware that a host-based sensor
exists before he can use it.
Network-based sensors generally provide more information than
host-based sensors, both because network sensors cover multiple hosts,
and because a host may not react to traffic sent across the
network. At the same time, network data is of relatively low value
compared to its volume—more records have to be observed to find out
what happened, and it’s often hard to determine whether a host
actually responded to network traffic. Network sensors can aid in
discovery and serve as a fallback to host-based sensors when that
information is not available.

Actions: What a Sensor Does with Data

A sensor’s action describes how the sensor interacts with the data
it collects. A sensor can take one of three basic actions:
	
Report

	
Simply provide information on all
 phenomena that the sensor observes. Reporting sensors are simple and
 important for baselining. They are also useful for developing signatures and
 alerts for phenomena that alerting and blocking sensors haven’t yet
 been configured to recognize. Reporting sensors include NetFlow
 collectors, tcpdump, and server logs.

	
Event

	
An event sensor differs from a report sensor in that it
 consumes multiple data to produce an event that summarizes some
 subset of that data. For example, a host-based intrusion detection
 system might examine a memory image, find a malware signature in
 memory, and send an event indicating that its host was compromised
 by malware. At their most extreme, event sensors are black boxes
 that produce events in response to internal processes developed by
 experts. Event sensors include IDS and antivirus (AV).

	
Control

	
A controlling sensor, like an event sensor, consumes
 multiple data and makes a judgment about that data before reacting.
 Unlike an event sensor, a controlling sensor modifies or blocks
 traffic when it sends an event. Controlling sensors include IPSes, firewalls, antispam systems,
 and some anti-virus systems.

A sensor’s action not only affects how a sensor reports data, but also
how it affects the data it’s observing. Controlling sensors can
modify or block traffic. Figure 1-3 shows how these three
different types of action interact with data. The figure shows the
work of three sensors: R, a reporting sensor; E, an event sensor;
and C, a controlling sensor. The event and control sensors are
signature matching systems that react to the string ATTACK. Each
sensor is placed between the Internet and a single target.
[image: Three different sensor actions]

Figure 1-3. Three different sensor actions

R, the reporter, simply reports the traffic it observes. In this
case, it reports both normal and attack traffic without affecting the
traffic and effectively summarizes the data observed. E, the event
sensor, does nothing in the presence of normal traffic but raises an
event when attack traffic is observed. E does not stop the traffic;
it just sends an event. C, the controller, sends an event when it
sees attack traffic and does nothing to normal traffic. In addition,
however, C blocks the aberrant traffic from reaching the target. If
another sensor is further down the route from C, it will never see the
traffic that C blocks.
Aggregation and Transport Tools
When evaluating a logging package, make a point of checking to see if
it provides software that aggregates or transports records. These
capabilities don’t add data in response to phenomena, but they may
modify the format and content of records.
Some examples include the use of aggregation in Cisco NetFlow and the
various redirection and transport tools in flow-tools.[2] Historically,
NetFlow records in their basic format (raw flows) were sent to a
collector, which would then aggregate them into various reports.
flow-tools provides a number of tools that can take flow data and
route it to different sensors as needed.

Conclusion

The taxonomy introduced in this chapter should be sufficient to
describe any sensors available for security monitoring and explain how
they can potentially interact. This description is intended to be at a high enough level that an operator can start classifying sensors without getting mired in details. In Chapter 2 and Chapter 3, we discuss vantage, domain, and action in-depth in order to provide a more precise enumeration of how they relate to real systems.

[2] The flow-tools mailing list and repository are both available for free download.

Chapter 2. Network Sensors

A network sensor collects data directly from
network traffic without the agency of an intermediary
application, making them different from the host-based sensors discussed in Chapter 3. Examples include NetFlow sensors on a router and sensors
that collect traffic using a sniffing tool such as tcpdump.
The challenge of network traffic is the challenge you face with
all log data: actual security events are rare, and data costs time and storage space. Where available, log data is preferable
because it’s clean (a high-level event is recorded in the log data)
and compact. The same event in network traffic would have to be
extracted from millions of packets, which
can often be redundant, encrypted, or unreadable. At the same time, it is
very easy for an attacker to manipulate network traffic and produce
legitimate-looking but completely bogus sessions on the wire. An
event summed up in a 300-byte log record could easily be megabytes of
packet data, wherein only the first 10 packets have any analytic value.
That’s the bad news. The good news is that network traffic’s
“protocol agnosticism,” for lack of a better term, means that it is
also your best source for identifying blind spots in your auditing.
Host-based collection systems require knowing that the host exists
in the first place, and there are numerous cases where you’re likely
not to know that a particular service is running until you see its
traffic on the wire. Network traffic provides a view of the network
with minimal assumptions—it tells you about hosts on the
network you don’t know existed, backdoors you weren’t aware of,
attackers already inside your border, and routes through your network
you never considered. At the same time, when you face a zero-day
vulnerability or new malware, packet data may be the only data source
you have.
The remainder of this chapter is broken down as follows. The next
section covers network vantage: how packets move
through a network and how to take advantage of that when instrumenting
the network. The next section covers tcpdump, the fundamental
network traffic capture protocol, and provides recipes for sampling
packets, filtering them, and manipulating their length. The section after
that covers NetFlow, a powerful traffic summarization approach that
provides high-value, compact summary information about network
traffic. At the end of the chapter, we look at a sample network
and discuss how to take advantage of the different collection strategies.
Network Layering and Its Impact on Instrumentation

Computer networks are designed in layers. A layer is an abstraction
of a set of network functionality intended to hide the mechanics and
finer implementation details. Ideally, each layer is a discrete
entity; the implementation at one layer can be swapped out with
another implementation and not impact the higher layers. For example,
the Internet Protocol (IP) resides on layer 3 in the OSI model; an IP
implementation can run identically on different layer 2 protocols such
as Ethernet or FDDI.
There are a number of different layering models. The most common ones
in use are the OSI’s seven layer model and TCP/IP’s four layer
model. Figure 2-1 shows these two models, representative
protocols, and their relationship to sensor domains as defined in
Chapter 1. As Figure 2-1 shows, the OSI model and TCP/IP
model have a rough correspondence. OSI uses the following seven layers:
	
Physical: The physical layer is composed of the mechanical
 components used to connect the network together—the wires,
 cables, radio waves, and other mechanisms used to transfer data
 from one location to the next.

	
Data link: The data link layer is concerned with managing
 information that is transferred across the physical layer. Data link
 protocols, such as Ethernet, ensure that asynchronous
 communications are relayed correctly. In the IP model, the
 data link and physical layers are grouped together as the
 link layer.

	
Network: The network layer is concerned with the routing
 of traffic from one data link to another. In the IP model,
 the network layer directly corresponds to layer 2, the
 Internet layer.

	
Transport: The transport layer is concerned with managing
 information that is transferred across the network layer. It has similar concerns to the data link layer, such as flow control
 and reliable data transmission, albeit at a different scale.
 In the IP model, the transport layer is layer 3.

	
Session: The session layer is concerned with the
 establishment and maintenance of a session, and is focused on
 issues such as authentication. The most common example of a
 session layer protocol today is SSL, the encryption and
 authentication layer used by HTTP, SMTP, and many other
 services to secure communications.

	
Presentation: The presentation layer encodes information for display at a higher level. A
 common example of a presentation layer is MIME, the message
 encoding protocol used in email.

	
Application: The application layer is the service, such as
 HTTP, DNS, and SSH. OSI layers 5 through 7 correspond roughly to the application layer (layer 4) of the IP model.

[image: Layering models]

Figure 2-1. Layering models

The layering model is just that: a model rather than a
specification, and models are necessarily imperfect. The TCP/IP
model, for example, eschews the finer details of the OSI model, and
there are a number of cases where protocols in the OSI model might
exist in multiple layers. Network interface controllers (NICs) dwell
on layers 1 and 2 in the model. The layers do impact each
other, in particular through how data is transported (and is
observable), and by introducing performance constraints into higher
levels.
The most common place where we encounter the impact of layering on
network traffic is the maximum transmission unit (MTU). The MTU is
an upper limit on the size of a data frame, and impacts the maximum
size of a packet that can be sent over that medium. The MTU for
Ethernet is 1,500 bytes, and this constraint means that IP packets will
almost never exceed that size.
The layering model also provides us with a clear difference between
the network and service-based sensor domains. As Figure 2-1
shows, network sensors are focused on layers 2 through 4 in the
OSI model, while service sensors are focused on layers 5 and above.
Layering and the Role of Network Sensors
It’s logical to ask why network sensors can’t monitor everything;
after all, we’re talking about attacks that happen over a network.
In addition, network sensors can’t be tampered with or deleted like
host logs, and they will see things like scans or failed connection
attempts that host logs won’t.
Network sensors provide extensive coverage, but recovering exactly
what happened from that coverage becomes more complex as you move
higher up the OSI model. At layer 5 and above, issues of protocol
and packet interpretation become increasingly prominent. Session encryption becomes an option at
layer 5, and encrypted sessions will be unreadable. At layer 6 and
layer 7, you need to know the intricacies of the actual protocol
that’s being used in order to extract meaningful information.
Protocol reconstruction from packet data is complex and ambiguous;
TCP/IP is designed on end-to-end principles, meaning that the server
and client are the only parties required to be able to construct a
session from packets. Tools such as Wireshark (described in Chapter 9) or NetWitness can reconstruct the contents of a session, but these are
approximations of what actually happened.
Network, host, and service sensors are best used to complement each
other. Network sensors provide information that the other
sensors won’t record, while the host and service sensors record
the actual event.

Recall from Chapter 1 that a sensor’s vantage refers to the
traffic that a particular sensor observes. In the case of computer
networks, the vantage refers to the packets that a sensor observes
either by virtue of transmitting the packets itself (via a switch
or a router) or by eavesdropping (within a collision domain). Since
correctly modeling vantage is necessary to efficiently instrument
networks, we need to dive a bit into the mechanics of how networks
operate.
Network Layers and Vantage

Network vantage is best described by considering how traffic travels
at three different layers of the OSI model. These layers are across a
shared bus or collision domain (layer 1), over network switches (layer
2), or using routing hardware (layer 3). Each layer provides different
forms of vantage and mechanisms for implementing the same.
The most basic form of networking is across a collision domain. A
collision domain is a shared resource used by one or more networking
interfaces to transmit data. Examples of collision domains include a
network hub or the channel used by a wireless router. A collision
domain is called such because the individual elements can potentially
send data at the same time, resulting in a collision; layer 2
protocols include mechanisms to compensate for or prevent collisions.
The net result is that layer 2 datagrams are broadcast across a common
source, as seen in Figure 2-2. Network interfaces on the same
collision domain all see the same datagrams; they elect to only
interpret datagrams that are addressed to them. Network capture tools
like tcpdump can be placed in promiscuous mode and
will then record all the datagrams observed within the collision
domain.
[image: Vantage across collision domains]

Figure 2-2. Vantage across collision domains

Figure 2-2 shows the vantage across a broadcast domain. As
seen in this figure, the initial frame (A to B) is broadcast across
the hub, which operates as a shared bus. Every host connected to the
hub can receive and react to the frames, but only B should do so. C,
a compliant host, ignores and drops the frame. D, a host operating in
promiscuous mode, records the frame. The vantage of a hub is
consequently all the addresses connected to that hub.
Shared collision domains are inefficient, especially with asynchronous
protocols such as Ethernet. Consequently, layer 2 hardware such as
Ethernet switches are commonly used to ensure that each host connected
to the network has its own dedicated Ethernet port. This is shown in
Figure 2-3.
[image: Vantage across a switch]

Figure 2-3. Vantage across a switch

A capture tool operating in promiscuous mode will copy every frame
that is received at the interface, but the layer 2 switch ensures that
the only frames an interface receives are the ones explicitly
addressed to it. Consequently, as seen in Figure 2-3, the A to B
frame is received by B, while C and D receive nothing.
There is a hardware-based solution to this problem. Most switches
implement some form of port mirroring. Port mirroring configurations
copy the frames sent between different ports to common mirrored ports
in addition to their original destination. Using mirroring, you can
configure the switch to send a copy of every frame received by the
switch to a common interface. Port mirroring can be an expensive
operation, however, and most switches limit the amount of interfaces
or VLANs monitored.
Switch vantage is a function of the port and the configuration of the
switch. By default, the vantage of any individual port will be
exclusively traffic originating from or going to the interface
connected to the port. A mirrored port will have the vantage of the
ports it is configured to mirror.
Layer 3, when routing becomes a concern, is when vantage becomes
messy. Routing is a semiautonomous process that administrators can
configure, but is designed to provide some degree of localized
automation in order to provide reliability. In addition, routing has
performance and reliability features, such as the TTL, which can also
impact monitoring.
Layer 3 vantage at its simplest operates like layer 2 vantage.
Like switches, routers send traffic across specific ports. Routers
can be configured with mirroring-like functionality, although the
exact terminology differs based on the router manufacturer. The
primary difference is that while layer 2 is concerned with individual
Ethernet addresses, at layer 3 the interfaces are generally concerned
with blocks of IP addresses because the router interfaces are usually
connected via switches or hubs to dozens of hosts.
Layer 3 vantage becomes more complex when dealing with multihomed
interfaces, such as the example shown in Figure 2-4. Up until
this point, all vantages discussed in this book have been symmetric—if instrumenting a point enables you to see traffic from A to B, it
also enables you to see traffic from B to A. A multihomed host like a
router has multiple interfaces that traffic can enter or exit.
[image: Vantage when dealing with multiple interfaces]

Figure 2-4. Vantage when dealing with multiple interfaces

Figure 2-4 shows an example of multiple interfaces and
their potential impact on vantage at layer 3. In this example, A and
B are communicating with each other: A sends the packet {A→B} to B,
B sends the packet {B→A} to A. C and D are monitoring at the
routers: router 1 is configured so that the shortest path from A to B
is through it. Router 2 is configured so that shortest path from B to
A is through it. The net effect of this configuration is that the
vantages at C and D are asymmetric. C will see traffic from A to B, D
will see traffic from B to A, but neither of them will see both sides
of the interaction. While this example is contrived, this kind of configuration can appear due to business
relationships and network instabilities. It’s especially problematic when dealing with networks that
have multiple interfaces to the Internet.
IP packets have a built-in expiration function: a field called the
time-to-live (TTL) value. The TTL is decremented every time a packet
crosses a router (not a layer 2 facility like a switch), until the TTL
reaches zero. In most cases, the TTL should not be a problem—most
modern stacks set the TTL to at least 64, which is considerably longer
than the number of hops required to cross the entire Internet.
However, the TTL is manually modifiable and there exist attacks that
can use the TTL for evasion purposes. Table 2-1 lists default TTLs by operating system.
Table 2-1. Default TTLs by operating system
	 Operating system 	 TTL value
	Linux (2.4, 2.6)
	64

	FreeBSD
	64

	Mac OS X
	64

	Windows XP
	128

	Windows 7, Vista
	128

	Solaris
	255

Figure 2-5 shows how the TTL operates. Assume that hosts C and D
are operating on monitoring ports and the packet is going from A to B.
Furthermore, the TTL of the packet is set to 2 initially. The first
router receives the packet and passes it to the second router. The
second router drops the packet; otherwise, it would decrement the TTL to zero.
TTL does not directly impact vantage, but instead introduces an
erratic type of blind spot—packets can be seen by one sensor, but
not by another several routers later as the TTL decrements.
[image: Hopping and router vantage]

Figure 2-5. Hopping and router vantage

The net result of this is that the packet is observed by C, never
received by B, and possibly (depending on the router configuration)
observed at D.
Physical Taps
Instead of configuring the networking hardware to report data on a
dedicated interface, you can monitor the cables themselves. This is
done using network taps, which are objects that physically connect to the cables
and duplicate traffic for monitoring purposes. Network taps have the
advantage of moving the process of collecting and copying data off the network hardware, but only have the vantage of the cables
to which they connect.

Network Layers and Addressing

Entities on a network will have multiple addresses that can be used
to reach them. For example, the host www.mysite.com may have the IP
address 196.168.1.1 and the Ethernet Address 0F:2A:32:AA:2B:14. These
addresses are used to resolve the identity of a host at different
abstraction layers of the network. In most networks, a host will have
a MAC (Ethernet) address and an IPv4 or IPv6 address.
These addresses are dynamically moderated through various protocols,
and various types of networking hardware will modify the relationships
between addresses. The most common examples of these are DNS
modifications, which associate a single name with multiple
addresses and vice versa; this is discussed in more depth in
Chapter 8. The following addresses are commonly used on
networks:
	
MAC address

	
A 48-byte identifier used by the majority of layer 2
protocols, including Ethernet, FDDI, Token Ring, Bluetooth, and ATM.
MAC addresses are usually recorded as a set of six hexadecimal pairs
(e.g., 12:34:56:78:9A:BC). MAC addresses are assigned to the hardware
by the original manufacturer, and the first 24 bits of the interface
are reserved as a manufacturer ID. As layer 2 addresses, MAC
addresses don’t route; when a frame is transferred across a router,
the addressing information is replaced with the addressing information
of the router’s interface. IPv4 and IPv6 addresses are related to MAC
addresses using Address Resolution Protocol (ARP).

	
IPv4 address

	
An IPv4 address is a 32-bit integer value assigned to
every routable host, with exceptions made for reserved dynamic address
spaces (see Chapter 8 for more information on these addresses).
IPv4 addresses are most commonly represented in dotted quad format:
four integers between 0 and 255 separated by periods (e.g.,
128.1.11.3).

	
IPv6 address

	
IPv6 is the steadily advancing replacement for IPv4
that fixes a number of design flaws in the original protocol, in
particular the allotment of IP addresses. IPv6 uses a 128-bit address
to identify a host. By default, these addresses are described as a
set of 16-bit hexadecimal values separated by colons
(e.g., AAAA:2134:0918:F23A:A13F:2199:FABE:FAAF). Given their length,
IPv6 addresses use a number of conventions to shorten the
representation: initial zeroes are trimmed, and the longest sequence
of 16-bit zero values is eliminated and replaced by double colons
(e.g., 0019:0000:0000:0000:0000:0000:0000:0182 becomes 19::182).

All of these relationships are dynamic, and multiple addresses at one
layer can be associated with one address at a another layer. As
discussed earlier, a single DNS name can be associated with multiple IP
addresses through the agency of the DNS service. Similarly, a single
MAC address can support multiple IP addresses through the agency of
the ARP protocol. This type of dynamism can be used constructively (like for tunneling) and destructively (like for spoofing).

Packet Data

In the context of this book, packet data really means the output of
libpcap, either through an IDS or tcpdump. Originally developed
by LBNL’s Network Research Group, libpcap is the fundamental network
capture tool and serves as the collector for tools such as Snort, bro,
and tcpdump.
Packet capture data is a large haystack with only scattered needles of
value to you. Capturing this data requires balancing
between the huge amount of data that can be captured and the data that it
makes sense to actually capture.
Packet and Frame Formats

On almost any modern system, tcpdump will be capturing IP over
Ethernet, meaning that the data actually captured by libpcap
consists of Ethernet frames containing IP packets. While IP contains
over 80 unique protocols, on any operational network, the overwhelming
majority of traffic will originate from three protocols: TCP (protocol
6), UDP (protocl 17), and ICMP (protocol 1).
While TCP, UDP, and ICMP make up the overwhelming majority of IP
traffic, a number of other protocols may appear in networks, in
particular if VPNs are used. IANA has a complete list of IP suite protocols. Some notable ones to expect include IPv6
(protocol number 41), GRE (protocol number 47), and ESP (protocol
number 50). GRE and ESP are used in VPN traffic.
Full pcap capture is often impractical. The sheer size and
redundancy of the data means that it’s difficult to keep any
meaningful fraction of network traffic for a reasonable time. There
are three major mechanisms for filtering or limiting packet capture
data: the use of rolling buffers to keep a timed subsample,
manipulating the snap length to capture only a fixed size packet (such
as headers), and filtering traffic using BPF or other filtering rules.
Each approach is an analytic trade-off that provides different benefits
and disadvantages.

Rolling Buffers

A rolling buffer is a location in memory where data is dumped
cyclically: information is dropped linearly, and when the buffer is
filled up, data is dumped at the beginning of the buffer, and the
process repeats. Example 2-1 gives an example of
using a rolling buffer with tcpdump. In this example, the process
writes approximately 128 MB to disk, and then rotates to a new file.
After 32 files are filled (specified by the -W switch), the
process restarts.
Example 2-1. Implementing a rolling buffer in tcpdump
host$ tcpdump -i en1 -s 0 -w result -C 128 -W 32

Rolling buffers implement a time horizon on traffic analysis: data is
available only as long as it’s in the buffer. For that reason,
working with smaller file sizes is recommended, because when you find
something aberrant, it needs to be pulled out of the buffers
quickly.

Limiting the Data Captured from Each Packet

An alternative to capturing the complete packet is to capture a
limited subset of payload, controlled in tcpdump by the snaplen
(-s) argument. Snaplen constrains packets to the frame size
specified in the argument. If you specify a frame size of at least 68 bytes,
you will record the TCP or UDP headers.[3] That said, this solution is a
poor alternative to NetFlow, which is discussed later in this chapter.

Filtering Specific Types of Packets

An alternative to filtering at the switch is to filter after
collecting the traffic at the spanning port. With tcpdump and other
tools, this can be easily done using Berkeley Packet
Filtering (BPF). BPF allows an operator to specify arbitrarily complex
filters, and consequently your possiblities are fairly extensive. Some
useful options are described in this section, along with examples. Figure 2-6 provides a breakdown of the headers for Ethernet frames, IP, UDP, ICMP, and TCP.
[image: Frame and packet formats for Ethernet, IP, TCP, UDP, and ICMP]

Figure 2-6. Frame and packet formats for Ethernet, IP, TCP, UDP, and ICMP

As we walk through the
major fields, I identify BPF macros that describe and can be
used to filter on these fields. On most Unix-style systems, the
pcap-filter manpage provides a summary of BPF syntax. Available
commands are also summarized in the FreeBSD manpage for BPF.
In an Ethernet frame, the most critical fields are the two MAC
addresses. These 48-byte fields are used to identify the hardware
addresses of the interfaces that sent and will receive the traffic.
MAC addresses are restricted to a single collision domain, and will be
modified as a packet traverses multiple networks (see Figure 2-5
for an example). MAC addresses are accessed using the ether src and
ether dst predicates in BPF.
tcpdump and MAC Addresses
Most implementations of tcpdump require a command-line switch before
showing link-level (i.e., Ethernet) information. In Mac OS X, the -e
switch will show the MAC addresses.

Within an IP header, the fields you are usually most interested in are
the IP addresses, the length, the TTL, and the protocol. The IP
identifier, flags, and fragment offset are used for attacks involving
packet reassembly—however, they are also largely a historical
artifact from before Ethernet was a nearly universal transport
protocol. You can get access to the IP addresses using src host and
dst host predicates, which also allow filtering on netmasks.
Address Filtering in BPF
Addresses in BPF can be filtered using the various host and net
predicates. To understand how these work, consider a simple tcpdump
output.
host$ tcpdump -n -r sample.pcap | head -5
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:12.094915 IP 192.168.1.3.56305 > 208.78.7.2.389: Flags [S],
 seq 265488449, win 65535, options [mss 1460,nop, wscale 3,nop,
 nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
20:01:12.094981 IP 192.168.1.3.56302 > 192.168.144.18.389: Flags [S],
 seq 1490713463, win 65535, options [mss 1460,nop,wscale 3,nop,
 nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
20:01:12.471014 IP 192.168.1.102.7600 > 192.168.1.255.7600: UDP, length 36
20:01:12.861101 IP 192.168.1.6.17784 > 255.255.255.255.17784: UDP, length 27
20:01:12.862487 IP 192.168.1.6.51949 > 255.255.255.255.3483: UDP, length 37
src host or dst host will filter on exact IP addresses; filtering for
traffic to or from 192.168.1.3 as shown here:
host$ tcpdump -n -r sample.pcap src host 192.168.1.3 | head -1
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:12.094915 IP 192.168.1.3.56305 > 208.78.7.2.389: Flags [S],
 seq 265488449, win 65535, options [mss 1460,nop,wscale 3,nop,
 nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
host$ tcpdump -n -r sample.pcap dst host 192.168.1.3 | head -1
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:13.898712 IP 192.168.1.6.48991 > 192.168.1.3.9000: Flags [S],
 seq 2975851986, win 5840, options [mss 1460,sackOK,TS val 911030 ecr 0,
 nop,wscale 1], length 0
src net and dst net allow filtering on netblocks. The example below shows how we can progressively filter addresses in the 192.168.1 network using just the address or CIDR notation:
use src net to filter just by matching octets
host$ tcpdump -n -r sample.pcap src net 192.168.1 | head -3
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:12.094915 IP 192.168.1.3.56305 > 208.78.7.2.389: Flags [S],
 seq 265488449, win 65535, options [mss 1460,nop,wscale 3,nop,nop,
 TS val 1111716334 ecr 0,sackOK,eol], length 0
20:01:12.094981 IP 192.168.1.3.56302 > 192.168.144.18.389: Flags [S],
 seq 1490713463, win 65535, options [mss 1460,nop,wscale 3,nop,
 nop,TS val 1111716334 ecr 0,sackOK,eol], length 0
Match an address
host$ tcpdump -n -r sample.pcap src net 192.168.1.5 | head -1
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:13.244094 IP 192.168.1.5.50919 > 208.111.133.84.27017: UDP, length 84
Match using a CIDR block
host$ tcpdump -n -r sample.pcap src net 192.168.1.64/26 | head -1
reading from file sample.pcap, link-type EN10MB (Ethernet)
20:01:12.471014 IP 192.168.1.102.7600 > 192.168.1.255.7600: UDP, length 36

To filter on protocols, use the ip proto predicate. BPF also
provides a variety of protocol-specific predicates, such as tcp,
udp, and icmp. Packet length can be filtered using the less and
greater predicates, while filtering on the TTL requires more
advanced bit manipulation, which is discussed later.
The following snippet filters out all traffic except that coming within
this block (hosts with the netmask /24).
host$ tcpdump -i en1 -s 0 -w result src net 192.168.2.0/24
Example 2-2 demonstrates filtering with tcpdump
Example 2-2. Examples of filtering using tcpdump
host$ # Filtering out everything but internal traffic
host$ tcpdump -i en1 -s 0 -w result src net 192.168.2.0/24 && dst net \
 192.168.0.0/16
host$ # Filtering out everything but web traffic, identified by port
host$ tcpdump -i en1 -s 0 -w result ((src port 80 || src port 443) && \
 (src net 192.168.2.0))

In TCP, the port number and flags are the most critical. TCP flags are
used to maintain the TCP state machine, while the port numbers are
used to distinguish sessions and for service identification. Port
numbers can be filtered using the src port and dst port switches,
as well as the src portrange and dst portrange switches, which filter across a range of port values. BPF supports a variety of
predicates for TCP flags, including tcp-fin, tcp-syn, tcp-rst,
tcp-push, tcp-ack, and tcp-urg.
Address Classes and CIDR Blocks
An IPv4 address is a 32-bit integer. For convenience, these integers
are usually referred to using dotted quad notation like
o1.o2.o3.o4, so the IP address represented by 0x000010FF is written as
0.0.16.255. Level 3 routing is almost never done to
individual addresses, but instead to groups of addresses—historically, classes, now netblocks.
It used to be that a class A address (0.0.0.0–127.255.255.255) had the high
order bit set to zero, the next 7 assigned to an entity, and the
remaining 24 bits under the owner’s control. This gave the owner 224
addresses to work with. A class B address (128.0.0.0–191.255.255.255)
assigned 16 bits to the owner, and class C (192.0.0.0–223.255.255.255)
assigned 8 bits. This approach led rapidly to address exhaustion, and
in 1993, Classless Inter-Domain Routing (CIDR) was developed to
replace the naive class system.
Under the CIDR scheme, users are assigned a netblock via an address
and a netmask. The netmask indicates which bits in the address the
user can manipulate, and by convention, those bits are set to zero.
For example, a user who owns the addresses 192.28.3.0–192.28.3.255
will be given the block 192.28.3.0/24.

As with TCP, the UDP port numbers are most important, and are
accessible using the same port and portrange switches as TCP.
Because ICMP is the Internet’s error-message passing protocol, ICMP
messages tend to contain extremely rich data. The ICMP type and code are
the most critical because they define the syntax for whatever payload (if
any) follows. BPF provides a variety of type and code specific
filters, including icmp-echoreply, icmp-unreach, icmp-tstamp,
and icmp-redirect.

What If It’s Not Ethernet?

For the sake of brevity, this book focuses exclusively on IP over
Ethernet, but you may well encounter a number of other transport and data
protocols. The majority of these
protocols are highly specialized and may require additional capture
software besides the tools built on libpcap.
	
ATM

	
 Asynchronous Transfer Mode, the great IP slayer of the ’90s,
 ATM is now largely used for ISDN and PSTN transport, and some
 legacy installations.

	
Fibre Channel

	
 Primarily used for high-speed storage, Fibre Channel
 is the backbone for a variety of SAN implementations.

	
CAN

	
 Stands for controller area network. Primarily associated with embedded
 systems such as vehicular networks, CAN is a bus protocol used
 to send messages in small isolated networks.

Any form of filtering imposes performance costs. Implementing a spanning port
on a switch or a router sacrifices performance that the switch or router could
be using for traffic. The more complicated a filter is, the more overhead is
added by the filtering software. At nontrivial bandwidths, this
will be a problem.

NetFlow

NetFlow is a traffic summarization standard developed by Cisco Systems
and originally used for network services billing. While not intended
for security, NetFlow is fantastically useful for that purpose
because it provides a compact summary of network traffic sessions that
can be rapidly accessed and contains the highest-value information
that you can keep in a relatively compact format. NetFlow has been
increasingly used for security analysis since the publication of the
original flow-tools package in 1999, and a variety of tools have
been developed that provide NetFlow with additional fields, such as
selected snippets of payload.
The heart of NetFlow is the concept of a flow, which is an
approximation of a TCP session. Recall that TCP sessions are assembled
at the endpoint by comparing sequence numbers. Juggling all the
sequence numbers involved in multiple TCP sessions is not feasible at
a router, but it is possible to make a reasonable approximation using
timeouts. A flow is a collection of identically addressed packets
that are closely grouped in time.
NetFlow v5 Formats and Fields

NetFlow v5 is the earliest common NetFlow standard, and it’s worth
covering the values in NFv5’s fields before discussing alternatives.
NetFlow’s fields (listed in Table 2-2) fall into three broad categories: fields copied
straight from IP packets, fields summarizing the results of IP
packets, and fields related to routing.
Table 2-2. NetFlow v5 fields
	Bytes	 Name 	 Description
	0–3
	srcaddr
	Source IP address

	4–7
	dstaddr
	Destination IP address

	8–11
	nexthop
	Address of the next hop on the router

	12–13
	input
	SNMP index of the input interface

	14–15
	output
	SNMP index of the output interface

	16–19
	packets
	Packets in the flow

	20–23
	dOctets
	Number of layer 3 bytes in the flow

	24–27
	first
	sysuptime at flow start [a]

	28–31
	last
	sysuptime at the time of receipt of the last flow’s packet

	32–33
	srcport
	TCP/UDP source port

	34–35
	dstport
	TCP/UDP destination port, ICMP type and code

	36
	pad1
	Padding

	37
	tcp_flags
	Or of all TCP flags in the flow

	38
	prot
	IP protocol

	39
	tos
	IP type of service

	40–41
	src_as
	ASN number of source

	42–43
	dst_as
	ASN of destination

	44
	src_mask
	Source address prefix mask

	45
	dst_mask
	Destination address prefix mask

	46–47
	pad2
	Padding bytes

	[a] This value is relative to the router’s system uptime.

The srcaddr, dstaddr, srcport, dstport, prot, and tos
fields of a NetFlow record are copied directly from the corresponding
fields in IP packets. Flows are generated for every protocol in the
IP suite, however, and that means that the srcport and dstport
fields, which strictly speaking are TCP/UDP phenomena, don’t
necessarily always mean something. In the case of ICMP, NetFlow
records the type and code in the dstport field. In the case of other
protocols, ignore the value.
The packets, dOctets, first, last, and tcp_flags fields all
summarize traffic from one or more packets. packets and dOctets
are simple totals, with the caveat that the dOctets value is the
layer 3 total of octets, meaning that IP and protocol headers are
added in (e.g., a one-packet TCP flow with no payload will be recorded
as 40 bytes, and a one-packet UDP flow with no payload as 28 bytes). The
first and last values are, respectively, the first and last times
observed for a packet in the flow.
tcp_flags is a special case. In NetFlow v5, the tcp_flags field
consists of an OR of all the flags that appear in the flow. In
well-formed flows, this means that the SYN, FIN, and ACK flags will
always be high.
The final set of fields—nexthop, input, output, src_as,
dst_as, src_mask, and dst_mask—are all routing-related. These
values can be collected only at a router.
“Flow and Stuff:” NetFlow v9 and IPFIX

Cisco developed several versions of NetFlow over its lifetime, with
NetFlow v5 ending up as the workhorse implementation of the standard.
But v5 is a limited and obsolete standard, focused on IPv4 and
designed before flows were commonly used. Cisco’s solution to this
was NetFlow v9, a template-based flow reporting standard that enabled
router administrators to specify what fields were included in the
flow.
Template-based NetFlow has since been standardized by the IETF as
IPFIX.[4] IPFIX provides several
hundred potential fields for flows, which are described in RFC 5102.
The priority of the standard is on network monitoring and traffic
analysis rather than information security. To address optional
fields, IPFIX has the concept of a “vendor space.” In the course of
developing the SiLK toolkit, the CERT Network Situational Awareness
Group at Carnegie Mellon University developed a set of
security-sensitive fields that are in their IPFIX vendor space and
provide a set of useful fields for security analysis.

NetFlow Generation and Collection

NetFlow records are generated directly by networking hardware
appliances (e.g., a router or a switch), or by using software to
convert packets into flows. Each approach has different trade-offs.
Appliance-based generation means using whatever NetFlow facility is
offered by the hardware manufacturer. Different manufacturers use
similar sounding but different names than Cisco, such as Jflow by
Juniper Networks and NetStream by Huawei. Because NetFlow is offered
by so many different manufacturers with a variety of different rules,
it’s impossible to provide a technical discussion about the necessary
configurations in the space provided by this book. However, the
following rules of thumb are worth noting:
	
NetFlow generation can cause performance problems on routers,
 especially older models. Different companies address this problem
 in different ways, ranging from reducing the priority of the process
 (and dropping records), to offloading the NetFlow generation task
 to optional (and expensive) hardware.

	
Most NetFlow configurations default to some form of sampling in
 order to reduce the performance load. For security analysis,
 NetFlow should be configured to provide unsampled records.

	
Many NetFlow configurations offer a number of aggregation and
 reporting formats. You should collect raw NetFlow, not aggregations.

The alternative to router-based collection is to use an application
that generates NetFlow from pcap data, such as the CERT’s Yet Another
Flowmeter (YAF) tool,
softflowd, or the extensive flow monitoring tools provided by QoSient’s Argus tool. These
applications take pcap as files or directly off a network interface
and aggregate the packets as flows. These sensors lack a
router’s vantage, but at the same time are able to devote more
processing resources to analyzing the packets and can produce richer
NetFlow output, incorporating features such as deep packet inspection.

Further Reading

	
Richard Bejtlich, The Tao of Network Security Monitoring: Beyond Intrusion Detection (Addison–Wesley, 2004).

	
Kevin Fall and Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols (2nd Edition) (Addison–Wesley, 2011).

	
Michael Lucas, Network Flow Analysis (No Starch Press, 2010).

	
Radia Perlman, Interconnections: Bridges, Routers, Switches, and Internetworking Protocols (2nd Edition) (Addison–Wesley, 1999).

	
Chris Sanders, Practical Packet Analysis: Using Wireshark to Solve Real-World Problems (No Starch Press, 2011).

[3] The snaplen is based on the
Ethernet frame size, so 20 additional bytes have to be added to the
size of the corresponding IP headers.

[4] RFC 5101, 5102, and 5103.

Chapter 3. Host and Service Sensors: Logging Traffic at the Source

In this chapter, we consider sensors operating in the host or service
domain. Host sensors include system logs as well as host-based
security tools such as antivirus (AV) software and tools like McAfee’s Host
Intrusion Prevention System (HIPS). Host sensors monitor the state of a host
and its operating system, tracking features such as local disk usage
and peripheral access. Service sensors, including HTTP server logs
and mail transfer logs, describe the activity of a particular service: who sent mail to whom, what URLs were accessed in the last five
minutes, activity that’s moderated through a particular service.
For the sake of clarity, I will use “log” to refer to either host or
service logs throughout the remainder of the chapter.
Where available, logs are often preferable to network data because they
are generated by the affected process, removing the process of
interpretation and guesswork often needed with network data. Host and
service logs provide concrete information about events that, viewed from
the network perspective, are hard to reconstruct.
Logs have a number of problems, the most important one being a
management headache—in order to use one, you have to know it exists
and get access to it. In addition, host-based logs come in a
large number of formats, many of them poorly documented. At the risk
of a sweeping generalization, the overwhelming majority of logs
are designed for debugging and troubleshooting individual hosts, not
to evaluate security across networks. Where possible, you’ll
often need to reconfigure them to include more security-relevant
information, possibly needing to write your own aggregation programs.
Finally, logs are a target; attackers will modify or disable
logging if possible.
Logs complement network data. Network data is good at finding
blind spots, confirming the results of logs and identifying
things that the logs won’t pick up. An effective security system combines both: network logs for a broad scope, logs for
fine detail.
The remainder of this chapter is focused on data from a number of host
logs, including system logfiles. We begin by discussing several
varieties of log data and preferable message formats. We then
discuss specific host and service logs: Unix system logs, HTTP server
log formats, and email log formats.
Accessing and Manipulating Logfiles

Operating systems have dozens of processes generating log data at
any time. In Unix systems, these logfiles are usually stored as
text files in the /var/log directory. Example 3-1 shows this directory for Mac OS X (the ellipses indicate where lines were removed for clarity).
Example 3-1. A /var/log directory from a Mac OS X system
drwxr-xr-x 2 _uucp wheel 68 Jun 20 2012 uucp
...
drwxr-xr-x 2 root wheel 68 Dec 9 2012 apache2
drwxr-xr-x 2 root wheel 68 Jan 7 01:47 ppp
drwxr-xr-x 3 root wheel 102 Mar 12 12:43 performance
...
-rw-r--r-- 1 root wheel 332 Jun 1 05:30 monthly.out
-rw-r----- 1 root admin 6957 Jun 5 00:30 system.log.7.bz2
-rw-r----- 1 root admin 5959 Jun 6 00:30 system.log.6.bz2
-rw-r----- 1 root admin 5757 Jun 7 00:30 system.log.5.bz2
-rw-r----- 1 root admin 5059 Jun 8 00:30 system.log.4.bz2
-rw-r--r-- 1 root wheel 870 Jun 8 03:15 weekly.out
-rw-r----- 1 root admin 10539 Jun 9 00:30 system.log.3.bz2
-rw-r----- 1 root admin 8476 Jun 10 00:30 system.log.2.bz2
-rw-r----- 1 root admin 5345 Jun 11 00:31 system.log.1.bz2
-rw-r--r-- 1 root wheel 131984 Jun 11 18:57 vnetlib
drwxrwx--- 33 root admin 1122 Jun 12 00:23 DiagnosticMessages
-rw-r----- 1 root admin 8546 Jun 12 00:30 system.log.0.bz2
-rw-r--r-- 1 root wheel 108840 Jun 12 03:15 daily.out
-rw-r--r-- 1 root wheel 22289 Jun 12 04:51 fsck_hfs.log
-rw-r----- 1 root admin 899464 Jun 12 20:11 install.log

Note several features of this directory. The system.log files are
started daily at 0030 and are differentiated numerically. There are
a number of subdirectories for handling various services. Check the
configuration of each individual service you want to acquire logfiles
for, but it’s not uncommon for Unix systems to dump them to a
subdirectory of /var/log by default.
Unix logfiles are almost always plain text. For example, a brief
snippet of a system log reads as follows:
$ cat system.log
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred(): Done
 getpwnam()
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred(): Done
 setegid() & seteuid()
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred():
 pam_sm_setcred: krb5 user admin doesn't have a principal
Jun 19 07:24:49 local-imac.home loginwindow[58]: in pam_sm_setcred(): Done
 cleanup3
The majority of Unix system logs are text messages created by filling
in templates with specific event information. This kind of templated
text is easy to read, but doesn’t scale very well.
As of Vista, Windows has extensively revamped their logging structure.
Windows recognizes two classes of logfiles: Windows logs and
application/service logs. Windows logs are further subdivided into
five classes:
	
Application log

	
The application log contains messages from
 individual applications. Note that services such as IIS may use
 auxiliary logs to contain additional information.

	
Security log

	
Contains security events, such as logon attempts
 and audit policy changes.

	
System log

	
Messages about system status, such as driver failures.

	
Forwardedevents log

	
Stores events from remote hosts.

These logs are recorded in %SystemRoot%\System32\Config by default on
most Windows installs; however, the more effective mechanism for
accessing and reading the files is to use the Windows Event Viewer, as
seen in Figure 3-1.
[image: The Windows event log]

Figure 3-1. The Windows event log

Note the use of the Event ID in Figure 3-1; as with Unix
systems, the Windows event messages are templated text, though
Windows explicitly identifies the type of event using a unique numeric
code. These messages are accessible from Microsoft’s website.
Application logfiles are much less consistently located. As seen in
the /var/log directory, administrative structure may be set up to
record a logfile in a fixed location, but almost every application
has the ability to move around logfiles as necessary. When working
with a particular application, consult its documentation to find out
where it drops logs.

The Contents of Logfiles

Logs are usually designed to provide debugging and troubleshooting
information for an administrator on the host. Because of this, you
will often find that host-based logs require both some degree of
parsing and some degree of reorganization to make them satisfactory
security logs. In this section, we discuss mechanisms for
interpreting, troubleshooting, and converting host log data.
The Characteristics of a Good Log Message

Before discussing how to convert a log message, and before complaining
about how bad most log messages are, it behooves us to describe what a
good security message should look like. A good security log should be
descriptive, it should be relatable to other data, and it should
be complete.
A descriptive message is one that contains enough information for an
analyst to identify all necessary accessible resources for the event
described by the message. For example, if a host log records that a
user attempted to illegally access a file, it should contain the
user’s ID and the file accessed. A host log recording a change in
group permissions for a user needs to record the user and the group.
A log recording a failed remote login attempt should include the ID
that attempted the login and the address that attempted the login.
For example, consider a log message about a failed login attempt on
host 192.168.2.2, local name myhost. A nondescriptive message would
look like this:
Mar 29 11:22:45.221 myhost sshd[213]: Failed login attempt
This message doesn’t tell me anything about why the failure occurred
and doesn’t provide any information to differentiate between this
and any other failed login attempts. I have no information on the
target of the attack; is it against the admin account or some
user? Analysts with only this information will have to reconstruct
the attempt solely from timing data, and they can’t even be sure what
host was contacted because the name of the host is nondescriptive and there is no addressing information.
A more descriptive message would look like this:
Mar 29 11:22:45.221 myhost (192.168.2.2) sshd[213]: Failed
 login attempt from host 192.168.3.1 as 'admin',
 incorrect password
A good mental exercise for building a descriptive message is to fall
back to the “five Ws and one H” approach from investigation and
journalism: who, what, when, where, why, and how. The nondescriptive
log message answers what (failed login) and when, and provides a
partial answer where (myhost). The descriptive log message answers
who (192.168.3.1 as admin), why and how (incorrect password), and
provides a better where.
A relatable message is one where the event is easily related to
information from other sources. For host-based events, this requires
IP address and timing information including whether an event was remote or
physically local, if the event was remote, the IP address and port of
the remote event, and the IP address and port of the host.
Relatability is a particular headache when dealing with service logs,
as these types of logs often introduce additional addressing schemes
on top of IP. For example, here’s an unrelatable mail log message:
Mar 29 11:22:45.221 myhost (192.168.2.2) myspamapp[213]:
 Message <21394.283845@spam.com> title 'Herbal Remedies and Tiny Cars'
 from 'spammer@spam.com' rejected due to unsolicited commercial content
The message has a lot of information, but it has no way to relate the
message sent back to a particular IP address that sent the message.
When looking at log messages, consider how you will relate this
information to other sources, particularly network traffic. A more
relatable message would be as follows:
Mar 29 11:22:45.221 myhost (192.168.2.2) myspamapp[213]:
 Message <21394.283845@spam.com> title 'Herbal Remedies and Tiny Cars'
 from 'spammer@spam.com' at SMTP host 192.168.3.1:2034 rejected due
 to unsolicited commercial content
This example includes client port and addressing information, so I can
now relate it to network traffic.
A complete log message is one that contains all the information about
a particular event within that single log message. Completeness
reduces the number of records an analyst has to search through and
provides the analyst with a clear indicator that there is no further
information to acquire from this process. Incomplete messages are
usually a function of complicated process. For example, an antispam
tool might run several different filters on a message, with each
filter and the final decision being a separate log line. For example:
Mar 29 11:22:45.221 myhost (192.168.2.2) myspamapp[213]:
 Received Message <21394.283845@spam.com> title
 'Herbal Remedies and Tiny Cars' from 'spammer@spam.com' at
 SMTP host 192.168.3.1:2034
Mar 29 11:22:45.321 myhost (192.168.2.2) myspamapp[213]:
 Message <21394.283845@spam.com> passed reputation filter
Mar 29 11:22:45.421 myhost (192.168.2.2) myspamapp[213]:
 Message <21394.283845@spam.com> FAILED Bayesian filter
Mar 29 11:22:45.521 myhost (192.168.2.2) myspamapp[213]:
 Message <21394.283845@spam.com> Dropped
With incomplete messages, you have to track state across multiple
messages, each of which gives a snippet of information and which
you’re going to have to group together to do any useful analysis.
Consequently, I prefer the message to be aggregated at the start,
like this:
Mar 29 11:22:45.521 myhost (192.168.2.2) myspamapp[213]:
 Received Message <21394.283845@spam.com> title
 'Herbal Remedies and Tiny Cars' from 'spammer@spam.com' at
 SMTP host 192.168.3.1:2034 reputation=pass Bayesian=FAIL decision=DROP
Log messages are often only minimally modifiable directly. Instead,
to build an effective message you might have to write some kind of
logging shim. For example, if the log system outputs syslog messages,
you can receive and parse those messages, convert them to a friendlier
format, and then forward them on. When considering converting logfiles, in addition to the rules above, consider the following:
	
Convert time to epoch time

	
Almost all record correlation involves identifying the same phenomenon
from different sensors, meaning that you need to look for records
that are close in time. Converting all time values to epoch time
reduces parsing complexity, throws out the nightmare of time zones and
daylight saving time, and ensures a consistent treatment for a
consistent value.

	
Make sure sensors are synchronized

	
A corrollary to the first note; make sure that when sensors report the same event, they are reporting the same time. Trying to correct for this after the fact is terribly difficult, so make sure that all the sensors are coordinated, that they all report the same time, and that the clocks are corrected and resynchronized regularly.

	
Include addressing information

	
Wherever possible, include the flow five-tuple (source IP, destination
IP, source port, destination port, protocol). If some of the values
can be inferred from the record (e.g., HTTP servers are running
TCP), they can be dropped.

	
Ensure that delimiters are understood by the logger

	
On several occasions, I have encountered helpful administrators
reconfiguring HTTP logs to use pipes rather than spaces as delimiters. A worthy sentiment, except when the logging module doesn’t
know to escape the pipe when it occurs in text. If the logger can
change its delimiter and understands that the change requires escaping
the character, let the logger do it.

	
Use error codes rather than text if possible

	
Text doesn’t scale
well—it’s bulky, difficult to parse, and often repetitive. Logging
systems that generate template messages can also include an error code
of some kind as a compact representation of the message. Use this
rather than text to save space.

Existing Logfiles and How to Manipulate Them

We can break logfiles into three major categories: columnar,
templated, or annotative. Columnar logs record records in discrete
columns that are distinguishable by delimiters or fixed text width.
Templated logfiles look like English text, but the text comes from a
set of document templates and is enumerable. Annotative logfiles use
multiple text records to describe a single event.
Columnar data, such as HTTP’s CLF format, records one message per
event. This message is a summary of the entire event, and consists of
a fixed set of fields in columnar format. Columnar logs are
relatively easy to deal with as the fields are cleanly delineated and
the format is rigid; every message has the same columns and the same
information.
When dealing with columnar data, keep in mind the following:
	
Is the data delimited or fixed-width? If it’s fixed-width, are
 there fields that could conceivably exceed that width, and if
 so, are the results truncated or is the column expanded?

	
If the data is delimited, is the delimiter escaped when used in
 the fields? Customizable formats (such as HTTP logs) may use a
 default delimiter and automatically escape it; if you decide to
 use your own delimiter, it probably won’t be automatically
 escaped.

	
Is there a maximum record length? If there is a maximum record
 length, you may encounter truncated messages with missing fields.

ELF and CLF logfiles, discussed later in this chapter, are good
examples of columnar formats.
Templated text messages record one message per event, but the events
are recorded as unformatted English text. The messages are
templated in the sense that they come from a fixed and enumerable
set of templates. Where possible, it’s best to convert templated text
messages into some kind of indexed numeric format. In the best case,
this is at least partly done. For example, the Windows Event Log
shown in Figure 3-1 has an Event ID that describes the type of
event and can be used to determine the other arguments that will be
provided.
When dealing with templated text, keep in mind the following:
	
Can you get a complete list of the log messages? As an
 example, consider the Windows logfile in Figure 3-1. Each of these messages is text, but it has a unique integer ID
 for the message. Check the documentation for a list of all potential log messages.

Converting Text to Columns
Templated text can be parsed; the messages belong to an enumerable
set and can conceivably be converted into a columnar format. Creating
such a system, however, requires developing an intermediary
application that can read the text, parse each individual message, and
deposit the result in a schema. Doing so is a nontrivial development
task (and will have to be updated when new messages are developed),
but it also can reduce the amount of space required and increase the
readability of the data.
	
From whatever documentation you can find on the text format,
 identify and select the messages most relevant to security. Any
 conversion script is going to consist of a bunch of regular
 expressions, and the fewer expressions you have to maintain, the
 happier you’ll be.

	
For each message, identify the parameters it contains. As an
 example, consider the following made-up templated messages:
 “Antispam tool SPAMKILLER identifies email <12938@yahoo.com> as
 Spam,” “Antispam tool SPAMKILLER identifies email <12938@yahoo.com>
 as Commercial,” “Antispam tool SPAMKILLER identifies email
 <12938@yahoo.com> as Legitimate.” There are three potential
 parameters here: the name of the antispam tool (enumerable), the
 message ID (a string), and the output (enumerable).

	
Once you’ve identified parameters for each potential message,
 merge the parameters to create a superset. The goal of this stage
 is to create a schema representation of all the parameters that a
 message may potentially have; a particular message may not have
 all of them.

	
Try to generate at least one event record for every templated
 message. Documentation can be inaccurate.

In annotative logs, a single event is split across multiple messages
unified through a common ID. Event logs, system logs, and antispam may
all potentially use this format. Annotative logs spread an event
across multiple messages, and effectively parsing them requires
identifying the common identifier, pulling all of those messages, and
dealing with the potential for missing messages.

Representative Logfile Formats

In this section, we discuss several common log formats, including
ELF and CLF, the standard log formats for HTML messages. The formats
discussed here are customizable, and we provide guidelines for
improving the log messages in order to provide more security-relevant
information.
HTTP: CLF and ELF

HTTP is the modern Internet’s reason for existence, and since its
development in 1991, it has metamorphosed from a simple library protocol
into the Internet’s glue. Applications for which, 10 years ago, a
developer would have implemented a new protocol are now routinely
offloaded to HTTP and web servers.
HTTP is a challenging protocol to nail down. The core protocol is
incredibly simple, but any modern web browsing session involves
combining HTTP, HTML, and JavaScript to create ad hoc clients of
intense complexity. In this section, we briefly discuss the core
components of HTTP with a focus on the analytical aspects.
HTTP is fundamentally a very simple file access protocol. To
understand how simple it is today, try the exercise in Example 3-2 using
netcat. netcat (which can also be invoked as nc, perhaps because
administrators find it so useful that they want to make it easy to invoke)
is a flexible network port access tool that can be used to directly
send information to ports. It is handy for scripting and capable of a
variety of tasks with minimum automation.
Example 3-2. Accessing an HTTP server using the command line
host$ echo 'GET /' | nc www.oreilly.com 80 > oreilly.html
host$ kill %1

Executing the command in the previous example should produce a valid
HTML file. In its simplest, most unadorned form, HTTP sessions
consist of opening up a connection, passing a method and a URI, and
receiving a file in return.
HTTP is simple enough to be run at the command line by hand if need
be—however, that also means that an enormous amount of
functionality is handed over to optional headers. When dealing with
HTTP logs, the primary challenge is deciding which headers to include
and which to ignore.
HTTP Headers Worth Noting
There are well over a hundred unique HTTP headers, tracked in
RFC 4229. Of these, a limited
number are particularly critical to track. These include:
	
Cookie

	
 The Cookie header describes the contents of HTTP cookies sent by the client to the server.

	
Host

	
 The Host header defines the name of the host that the client is contacting. This is critical when dealing with virtually hosted HTTP servers—that is, multiple servers at the same IP address differentiated by their domain name.

	
Referer

	
 The Referer (sic) header includes the URL of the web page containing the link that initiated this request.

	
User-Agent

	
 The User-Agent header provides information on the HTTP client, generally the type of client and the build.

There are two standards for HTTP log data: common log format (CLF) and extended log format (ELF). Most HTTP log generators (such as Apache’s
mod_log) provide extensive configuration options.
CLF is a single-line logging format developed by NCSA for the original
HTTP server; the W3C provides a minimal definition of the standard. A CLF event is defined as a seven-value single-line record in
the following format:
remotehost rfc931 authuser [date] "request" status bytes
Where remotehost is the IP name or address of the remote host,
rfc931 is the remote login account name of the user, authuser is the user’s
authenticated name, date is the date and time of the request,
request is the request, status is the HTTP status code, and
bytes is the number of bytes.
Pure CLF has several eccentricities that can make parsing problematic.
The rfc931 and authuser fields are effectively artifacts; in the
vast majority of the CLF records, the fields will be set to “–”. The
actual format of the date value is unspecified and can vary between
different HTTP server implementations.
A common modification of CLF is Combined Log Format. The Combined
Log Format adds two additional fields to CLF: the HTTP referer field
and the user-agent string.
ELF is an expandable columnar format that has largely been confined
to IIS, although tools such as Bluecoat also use it for logging. As
with CLF, the W3C maintains the standard
on their website.
An ELF file consists of a sequence of directives followed by a
sequence of entries. Directives are used to define attributes
common to the entries, such as the date of all entries (the Date
directive), and the fields in the entry (the Fields directive).
Each entry in ELF is a single HTTP request, and the fields that are
defined by the directive are included in that entry.
ELF fields come in one of three forms: identifier,
prefix-identifier, or prefix(header). The prefix is a one or two
character string that defines the direction the information took (c
for client, s for server, r for remote). The identifier describes
the contents of the field, and the prefix(header) value includes the
corresponding HTTP header. For example, cs-method is in the
prefix-identifier format and describes the method sent from client
to server, while time is a plain identifier denoting the time at
which the session ended.
Example 3-3 shows simple outputs from CLF, Combined Log
Format, and ELF. As the example shows, each event is a single line.
Example 3-3. Examples of CLF and ELF
#CLF
192.168.1.1 - - [2012/Oct/11 12:03:45 -0700] "GET /index.html" 200
1294

Combined Log Format
192.168.1.1 - - [2012/Oct/11 12:03:45 -0700] "GET /index.html" 200 1294
"http://www.example.com/link.html" "Mozilla/4.08 [en] (Win98; I ;Nav)"

#ELF
#Version: 1.0
#Date: 2012/Oct/11 00:00:00
#Fields: time c-ip cs-method cs-uri
12:03:45 192.168.1.1 GET /index.html

Most HTTP logs are some form of CLF output. Although ELF is an
expandable format, I find the need to carry the header around
problematic in that I don’t expect to change formats that much, and
would rather that individual log records be interpretable without this
information. Based on principles I discussed earlier, here is how I
modify CLF records:
	
Remove the rfc931 and authuser fields.
These fields are artifacts and waste space.

	
Convert the date to epoch time and represent it as a numeric string,
In addition to my general disdain for text over numeric
representations, time representations have never been standardized in
HTTP logfiles. You’re better off moving to a numeric format to
ignore the whims of the server.

	
Incorporate the server IP address, the source port, and the destination port.
I expect to move the logfiles to a central location for analysis,
so I need the server address to differentiate them. This gets me
closer to a five-tuple that I can correlate with other data.

	
Add the duration of the event,
again to help with timing correlation.

	
Add the host header.
In case I’m dealing with virtual hosts, this also helps me identify systems that contact the server without using DNS as a moderator.

Cookbook: Creating Logfiles
Log configuration in Apache is handled via the mod_log_config
module, which provides the ability to express logs using a sequence of
string macros. For example, to express the default CLF format, you
specify it as:
LogFormat "%h %l %u %t \"%r\" %>s %b"
Combined Log Format is expressed as:
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""
While my extended format contains the hostname, local IP address,
server port, epoch time, request string, request status, response
size, response time, referer, user-agent string, and host from the
request:
LogFormat "%h %A %p %{msec}t \"%r\" %>s %b %T \"%{Referer}i\"
 \"${User-Agent}i\" \"${Host}i\""
Logging in nginx is controlled with HttpLogModule, which uses a
similar log_format directive. To configure CLF, specify it
with:
log_format clf $remote_addr - $remote_user [$time_local] "$request"
 $status $body_bytes_sent;
Combined Log Format is defined as follows:
log_format combined $remote_addr - $remote_user [$time_local] "$request"
 $status $body_bytes_sent "$http_referer" "$http_user_agent";
My extended format is defined as:
log_format extended $server_addr $remote_addr $remote_port $msec
 "$request$" $status $body_bytes_sent $request_time $http_referer
 $http_user_agent $http_host

SMTP

SMTP log messages vary by the MTA used and are
highly configurable. In this section, we discuss two log
formats that are representative of the major Unix and Windows
families: sendmail and Microsoft Exchange.
In this section, we focus on logging the transfer of email
messages. The logging tools for these applications provide an
enormous amount of information about the server’s internal status,
connection attempts, and other data that, while enormously valuable,
requires a book of its own.
Sendmail moderates mail exchange through syslog, and consequently is
capable of sending an enormous number of informational messages
besides the actual email transaction. For our purposes, we are
concerned with two classes of log messages: messages describing
connections to and from the mail server, and messages describing actual
mail delivery.
By default, sendmail will send messages to /var/maillog, although
the logging information it sends is controlled by sendmail’s
internal logging level. Sendmail uses its own internal logging level
ranging from 1 to 96; a log level of n logs all messages of
severity 1 to n. Notable log levels include 9 (all message
deliveries logged), 10 (inbound connections logged), 12 (outbound
connections logged), and 14 (connection refusals logged). Of note is
that anything above log level 8 is considered an informational log in
syslog, and anything above 11 a debug log message.
A sendmail log line consists of five fixed values, followed by a list of
one or more equates:
<date> <host> sendmail[<pid>]: <qid>: <equates>
Where <date> is the date, <host> is the name of the host, sendmail
is a literal string, <pid> is the sendmail process ID, and the
<qid> is an internal queue ID used to uniquely identify messages.
Sendmail sends at least two log messages when sending an email
message, and the only way to group those messages together is through
the qid. Equates are descriptive parameters given in the form
<key>=<value>. Sendmail can send a number of potential equates,
listed in Table 3-1 for messages.
For every email message received, sendmail generates at least two
log lines. The first line is the receiver line, and describes
the message’s point of origin. The final line, the sender line,
describes the disposition of the mail: sent, quarantined, and where
it was delivered to.
Table 3-1. Relevant sendmail equates
	Equate	 Description
	arg1
	Current sendmail implementations enable internal filtering using rule sets; arg1 is the argument passed to the ruleset.

	from
	The from address of the envelope.

	msgid
	The message ID of the email.

	quarantine
	If sendmail quarantines a mail, this is the reason it was held.

	reject
	If sendmail rejects a mail, this is the reason for rejection.

	relay
	This is the name and address of the host that sent the message; in recipient lines, it’s the host that sent it, in sender lines, the host that received it.

	ruleset
	This is the ruleset that processed the message, and provides the justification for rejecting, quarantining, or sending the message.

	stat
	The status of a message’s delivery.

	to
	The email address of a target; multiple to equates can appear in the same line.

Sendmail will take one of four basic actions with a message: reject
it, quarantine it, bounce it, or send it. Rejection is implemented by
message filtering and is used for spam filtering; a rejected message
is dropped. Quarantined messages are moved off the queue to a
separate area for further review. A bounce means the mail was not
sent to the target, and results in a nondelivery report being sent back to
the origin.
Managing Email Rules and Filtering
Email traffic analysis is complicated, largely because email is
attacked constantly (via spam), and there’s a constantly escalating
war between spammers and defenders. Even in a relatively small
enterprise, it’s easy to build a complex defensive infrastructure with
relatively little work. In addition to the spam and defensive issues,
email operates in its own little world—the IP addresses logged by
email infrastructure are pretty much exclusively used by the email
infrastructure.
As usual, the first step in email instrumentation is figuring out how
email is routed. Is there some kind of dedicated antispam hardware at
the gateway, such as a Barracude or an IronPort box? How many SMTP
servers are there, and how do they connect to the actual email servers
(POP, IMAP, Eudora, Exchange)? Figure out where a mail message will
be sent if it’s correctly routed, quarantined, rejected, or bounced. If
webmail is available, figure out where it actually is; where is the
webmail server, what’s the route to SMTP, etc.
Once you’ve identified the hardware, figure out what blocking is going
on. Blocking techniques include black-box sources (such as AV or
IronPort’s reputation service), public blacklists such as SpamHaus’s SBL, and internal rules. Each requires a little different treatment.
Since black-box detection systems are basically opaque, it’s important
to track what version of the system’s knowledge base is being used and
when the system is updated; verifying updates with network monitoring
is a good idea. If you have multiple instances of the same detector,
make sure that their updates are coordinated.
Most blacklist services are publically accessible. Knowing which
organization runs the blacklist, the frequency of its updates, and the
delivery mechanisms are all good things. As with AV, verifying
communications (particularly if its a DNSBL) is also a good thing.
Internal monitoring should be identified, audited, and kept under
version control. Because these are the rules that you have the most
control over, it’s also a good idea to compare them to the rest of
your blocking infrastructure and see what can be pushed out of the
email system. If you’re blocking a particular address, for example,
you might be better off blocking at the router or the firewall.
Email works within its own universe, and the overwhelming majority of
IP addresses recorded in email logs are the addresses of other email
servers. To that end, while SMTP tracking is important, it’s often
the case that to fully figure out what happened with a message, you also need to track the IMAP or POP3 servers.

Microsoft Exchange: Message Tracking Logs

Exchange has one master log format for handling messages, the Message Tracking Log (MTL).
Table 3-2. MTL fields
	 Field name 	 Description
	date-time
	ISO 8601 representation of the date and time format.

	client-ip
	The IP address of the host that submitted the message to the server.

	client-hostname
	The client_ip’s FQDN.

	server-ip
	The IP address of the server.

	server-hostname
	The server_ip’s FQDN.

	source-context
	This is optional information about the source, such as an identifier for the transport agent.

	connector-id
	The name of the connector.

	source
	Exchange enumerates a number of source identities for defining the origin of a message, such as an inbox rule, a transport agent, or DNS. The source field will contain this identity.

	event-id
	The event type. This is also an enumerable quantity, and includes a number of status messages about how the message was handled.

	internal-message-id
	This is an internal integer identifier used by Exchange to differentiate messages. The ID is not shared between Exchange servers, so if a message is passed around, this value will change.

	message-id
	This is the standard SMTP message ID. Exchange will create one if the message does not already have one.

	network-message-id
	This is a message ID like _internal-message-id+ except that it is shared across copies of the message and created when a message is cloned or duplicated, such as when it’s sent to a distribution list.

	recipient-address
	The addresses of the recipients; this is a semicolon-delimited list of names.

	recipient-status
	This is a per-recipient status code indicating how each recipient was handled

	total-bytes
	The total size of the message in bytes.

	recipient-count
	The size of recipient-address in terms of number of recipients.

	related-recipient-address
	Certain Exchange events (such as redirection) will result in additional recipients being added to the list; those addresses are added here.

	reference
	This is message-specific information; the contents are a function of the type of message (defined in event-id).

	message-subject
	The subject found in the Subject: header.

	sender-address
	The sender, as specified in the Sender: header; if Sender: is absent, From: is used instead.

	return-path
	The return email address, as specified in Mail From:.

	message-info
	Event-type dependent message information.

	directionality
	The direction of the message; an enumerable quantity.

	tenant-id
	No longer used.

	original-client-ip
	The IP address of the client.

	original-server-ip
	The IP address of the server.

	custom-data
	Additional data dependent on the type of event.

Logfile Transport: Transfers, Syslog, and Message Queues

Host logs can be transferred off their hosts in a number of ways
dependending on how the logs are generated and on the capabilities of the
operating system. The most common approaches involve using regular
file transfers or the syslog protocol. A newer approach uses
message queues to transport log information.
Transfer and Logfile Rotation

Most logging applications write to a rotating logfile (see, for
example, the rotated system logs in Accessing and Manipulating Logfiles). In these cases,
the logfile will be closed and archived after a fixed period and a
new file started. Once the file is closed, it can be copied over to a
different location to support analytics.
File transfer is simple. It can be implemented using ssh or any
other copying protocol. The major headache is ensuring that the files
are actually complete when copied; the rotation period for the file
effectively dictates your response time. For example, if a file is
rotated every 24 hours, then you will, on average, have to wait a day
to get a hold of the latest events.

Syslog

The grandfather of systematic system logging utilities is syslog, a
standard approach to logging originally developed for Unix systems
that now comprises a standard, a protocol, and a general framework for
discussing logging messages. Syslog defines a fixed message format
and the ability to send that message to logger daemons that might reside on the host or be remotely located.
All syslog messages contain a time, a facility, a severity, and a
text message. Table 3-3 and Table 3-4 describe the
facilities and priorities encoded in the syslog protocol. As
Table 3-3 shows, the facilities referred to by syslog comprise
a variety of fundamental systems (some of them largely obsolete). Of
more concern is what facilities are not covered—DNS and HTTP, for
example. The priorities (in Table 3-4) are generally more
germane, as the vocabulary for their severity has entered into common
parlance.
Table 3-3. syslog facilities
	Value 	Meaning
	0
	Kernel

	1
	User-level

	2
	Mail

	3
	System daemons

	4
	Security/Authorization

	5
	Syslogd

	6
	Line printer

	7
	Network news

	8
	UUCP

	9
	Clock daemon

	10
	Security/Authorization

	11
	ftpd

	12
	ntpd

	13
	Log audit

	14
	Log alert

	15
	Clock daemon

	16-23
	Reserved for local use

Table 3-4. syslog priorities
	Value 	 Meaning
	0
	Emergency: system is unusable

	1
	Alert: action must be taken immediately

	2
	Critical: critical conditions

	3
	Error: error conditions

	4
	Warning: warning conditions

	5
	Notice: normal but significant condition

	6
	Informational: informational messages

	7
	Debug: debugging information

Syslog’s reference implementations are UDP-based, and the UDP standard
results in several constraints. Most important, UDP datagram length
is constrained by the MTU of the layer 2 protocol carrying the
datagram, effectively imposing a hard limit of about 1,450 characters
on any syslog message. The syslog protocol itself specifies that
messages should be less than 1,024 characters, but this is rarely
observed while the UDP cutoff will affect long messages. In
addition, syslog runs on top of UDP, which means that when messages
are dropped, they are lost forever.
The easiest way to solve this problem is to use TCP-based syslog,
which is implemented in the open source domain with tools such as
syslog-ng and
rsyslog. Both of these tools
provide TCP transport, as well as a number of other capabilities such
as database interfaces, the ability to rewrite messages en route, and
selective transport of syslog messages to different receivers.
Windows does not support syslog natively, but there exist a number of
commercial applications that provide similar functionality.
CEF: The Common Event Format
Syslog is a transport protocol—it doesn’t specify anything about
the actual contents of a message. A number of different organizations
have attempted to develop interoperability standards for security
applications, such as Common Intrusion Detection Framework (CIDF) and Intrusion Detection Message Exchange Format (IDMEF). None of them
have achieved serious industry acceptance.
What has been accepted widely is CEF. Originally developed by
ArcSight (now part of Hewlett-Packard) to provide sensor developers
with a standard format in which to send messages to their SIEM. CEF
is a record format that specifies events using a numeric header and a
set of key/value pairs. For example, a CEF message for an attack from
host 192.168.1.1 might look like this:
CEF:0|My Attack Detector|Test|1.0|1000|Attack|5|src=192.168.1.1
CEF is transport-agnostic, but the majority of CEF implementations use
syslog as their transport of choice. The actual specification and
key/value assignments are available from HP.

Further Reading

	
Richard Bejtlich, The Practice of Network Security Monitoring: Understanding Incident Detection and Response (No Starch Press, 2013).

	
Anton Chuvakin, Logging and Log Management: The Authoritative Guide to Dealing with Syslog, Audit Logs, Alerts, and other IT ‘Noise’ (Syngress, 2012).

Chapter 4. Data Storage for Analysis: Relational Databases, Big Data, and Other Options

This chapter focuses on the mechanics of storing data for traffic
analysis. Data storage points to the basic problem in information
security analysis: information security events are scattered in a
vast number of innocuous logfiles, and effective security analysis
requires the ability to process large volumes of data quickly.
There are a number of different approaches available for facilitating
rapid data access, the major choices being flat files, traditional
databases, and the emergent NoSQL paradigm. Each of these designs
offers different strengths and weaknesses based on the structure of
the data stored and the skills of the analysts involved.
Flat file systems record data on disk and are accessed directly by
analysts, usually using simple parsing tools. Most log systems create
flat file data by default: after producing some fixed number of
records, they close a file and open up a new file. Flat files
are simple to read and analyze, but lack any particular tools for
providing optimized access.
Database systems such as Oracle and Postgres are the bedrock of
enterprise computing. They use well-defined interface languages, you
can find system administrators and maintainers with ease, and they can
be configured to provide extremely stable and scalable solutions. At
the same time, they are not designed to deal with log data; the data
we discuss in this book has a number of features that ensure that much of
the power of a relational database will go unused.
Finally, there are the emerging technologies loosely grouped under
“NoSQL” and “big data.” These include distributed platforms such as
Hadoop, databases like MongoDB and Monet, and specialized tools like
Redis and Apache SOLR. These tools are capable, with the right
hardware infrastructure, of providing extremely powerful and reliable
distributed query tools. However, they require heavy duty programming
and system administration skills as well as a significant hardware
commitment.
Analysis involves returning to the well multiple times—when working
on a problem, analysts will go back to the main data repository and
pull related data. The data they choose will be a function of the
data they’ve already chosen as patterns become apparent and questions
start taking shape (see Chapter 10 for this workflow in more depth).
For this reason, efficient data access is a critical engineering
effort; the time to access data directly impacts the number of queries
an analyst can make, and that concretely impacts the type of analyses
they will do.
Choosing the right data system is a function of the volume of data
stored, the type of data stored, and the population that’s going to
analyze it. There is no single right choice, and depending on the
combination of queries expected and data stored, each of these
strategies can be the best.
Log Data and the CRUD Paradigm

The CRUD (create, read, update, and delete) paradigm describes the
basic operations expected of a persistent storage system. Relational
database management systems (RDBMS), the most prevalent form of persistent storage, expect that
users will regularly and asynchronously update existing contents.
Relational databases are primarily designed for data integrity, not
performance.
Ensuring data integrity requires a significant amount of the system’s
resources. Databases use a number of different mechanisms to enforce integrity, including additional processing and metadata on each row. These
features are necessary for the type of data that RDBMSes were designed
for. That data is not log data.
This difference is shown in Figure 4-1. In RDBMSes,
users add and query data from a system constantly, and the system spends resources on tracking these interactions. Log data does not
change, however; once an event has occurred, it is never updated.
This changes the data flow as shown in the figure on the right. In
log collection systems, the only things that write to disk are the
sensors; users only read from disk.
[image: Comparing RDBMS and log collection systems]

Figure 4-1. Comparing RDBMS and log collection systems

This separation of duties between users and sensors means that, when
working with log data, the integrity mechanisms used by databases are
wasted. For log data, a properly designed flat file collection system
will often be just as fast as a relational database.
Creating a Well-Organized Flat File System: Lessons from SiLK

In Chapter 5, we discuss SiLK, the analysis system CERT developed to
handle large Netflows. SiLK was a very early big data system. While
it doesn’t use current big data technologies, it was designed around
similar principles, and understanding how those principles work can
inform the development of more current systems.
Log analysis is primarily I/O bound, meaning that the primary constraint
on performance is the number of records read, as opposed to the
complexity of the algorithms run on the records. For example, in the
original design of SiLK, we found that it was considerably faster to
keep compressed files on disk—the performance hit from reading the
records off of disk was much higher than the performance hit of
decompressing a file in memory.
Because performance is I/O bound, a good query system will read the
minimum number of relevant records possible. In log collection
systems, the most effective way to reduce the records read is to index
them by time and always require a user to specify the time queried.
In SiLK, log records are stored in hourly files in a daily hierarchy,
for example: /data/2013/03/14/sensor1_20130314.00 to
/data/2013/03/14/sensor1_20130314.23. SiLK commands include a
globbing function that hides the actual filenames from the user;
queries specify a start date and an end date, which in turn is used to
derive the files.
This partitioning process does not have to stop with time. Because
network traffic (and log data) is usually dominated by a couple of
major protocols, those individual protocols can be split off into
their own files. In SiLK installations, it’s not unusual to split web
traffic from all other traffic because web traffic makes up 40–80% of the
traffic on most networks.
As with most data partitioning schemes, there’s more art than science
in deciding when to stop subdividing the data. As a rule of thumb,
having no more than three to five further partitions after time is acceptable because
as you add additional partitions, you increase complexity for users
and developers. In addition, determining the exact partitioning
scheme usually requires some knowledge of the traffic on the network,
so you can’t do it until after you’ve acquired a better
understanding of the network’s structure, composition, and the type of
data it encounters.
Data Formats and Data Optimization
You decide to store data in flat files and create a system that
accepts a billion records a day. You decide to use ASCII text, and
are recording zero-packed source and destination IP addresses. This
means that your IPv4 addresses will take 15 bytes of storage each,
compared to the 4-byte binary representation. This means that every
day, you will sacrifice 22 GB of space for that text
representation. If you have a single GigE interface to transfer that
data on, you will use three minutes just to transfer the wasted space.
Once you start working in large volume datasets, spatial dependencies
become issues on disks (affecting query time and storage duration), as
well as on the network (affecting query time and performance). Because
your operations are I/O bound, converting representations to a binary
format will save space, increase performance, and, far too often,
actually make a design implementable.
The problem of actually developing a compact binary representation of
data has largely been addressed through a number of different
representation schemes developed by Google and other companies. These
tools all work in roughly the same way: you specify a schema using an
interface definition language (IDL), and then run a tool on the schema to
create a linkable library that can read and write data in a compact
format. There is a loose similarity to XML and JSON, but with an
emphasis on a highly compact, binary representation.
Google developed the first of these systems in the form of Protocol
Buffers. Multiple tools are available now, including but not limited to:
	
Protocol Buffers

	
Google
 describes these as a “smaller, faster, simpler”
 version of XML. Language bindings are available in Java, C++,
 and Python. Protocol Buffers (PB) are the oldest implementation
 and, while less feature-rich than other implementations,
 are very stable.

	
Thrift

	
Originally from Facebook and now maintained by the
 Apache foundation. In
 addition to providing serialization and deserialization
 capabilities, Thrift includes data transport and RPC
 mechanisms.

	
Avro

	
 Developed in tandem with Hadoop, and more dynamic than
 either PB or Thrift. Avro specifies schemas using
 Javascript Object Notation (JSON), and transfers the schema as part
 of the messsage contents. Avro is consequently more flexible
 to schema changes.

Other serialization standards exist, including MessagePack, ICE,
and Etch. As of the publication of
this book, however, PB, Thrift, and Avro are considered the big
three.
Taking a record and converting it into an all-ASCII string binary
format is a waste of space. The goal of any conversion process should
be to reduce the amount of gratuitous data in the record; read the
section The Characteristics of a Good Log Message in Chapter 3 for further
discussion on how to reduce record sizes.

A Brief Introduction to NoSQL Systems

The major advance in big data in the past decade has been the
popularization of NoSQL big data systems, particularly the MapReduce
paradigm introduced by Google. MapReduce is based around two concepts
from functional programming: mapping, which is the independent
application of a function to all elements in a list, and reducing, which is the
combination of consecutive elements in a list into a single element.
Example 4-1 clearly shows how these elements work.
Example 4-1. Map and reduce functions in Python
>>> # Map works by applying a function to every element in an array, for example, we
... # create a sample array of 1 to 10
>>> sample = range(1,11)
>>> # We now define a doubling function
...
>>> def double(x):
... return x * 2
...
>>> # We now apply the doubling function to the sample data
... # This results in a list whose elements are double the
... # original's
...
>>> map(double, sample)
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
>>> # Now we create a 2-parameter function which adds two elements
...
>>> def add(a, b):
... return a + b
...
>>> # We now run reduce with add and the sample, add is applied
... # to every element in turn, so we get add(1,2) which produces
... # 3, the list now looks like [3,3,...] as opposed to
... # [1,2,3....], and the process is repeated, 3 is added to 3
... # and the list now looks like [6,4,...] until everything is
... # added
...
>>> reduce(add, sample)
55

MapReduce is a convenient paradigm for parallelization. Map
operations are implicitly parallel because the mapped function is
applied to list element individually, and reduction provides a clear
description of how the results are combined. This easy
parallelization enables the implementation of any of a number of big
data approaches.
For our purposes, a big data system is a distributed data storage
architecture that relies on massive parallelization. Recall the discussion above about how
flat file systems can enhance performance by intelligently indexing
data. But now instead of simply storing the hourly file on disk, split
it across multiple hosts and run the same query on those hosts in
parallel. The finer details depend on the type of storage, for which
we can define three major categories:
	
Key stores

	
Including MongoDB, Accumulo, Cassandra, Hypertable, and
LevelDB. These systems effectively operate as a giant hashtable in
that a complete document or data structure is associated with a key
for future retrieval. Unlike the other two options, key store systems
don’t use schemas; structure and interpretation are dependent on the
implementor.

	
Columnar databases

	
Including MonetDB, Sensage, and Paraccel. Columnar
databases split each record across multiple column files with the same
index.

	
Relational databases

	
Including MySQL, Postgres, Oracle, and
Microsoft’s SQL Server. RDBMSes store complete records as
individually distinguishable rows.

Figure 4-2 explains these relations graphically. In a key store,
the record is stored by its key while the relationship of the recorded
data and any schema is left to the user. In a columnar database, rows
are decomposed into their individual fields and then stored, one field
per file, in individual column files. In an RDBMS, each row is
a unique and distinguishable entity. The schema defines the contents
of each row, and rows are stored sequentially in a file.
[image: Comparing data storage systems]

Figure 4-2. Comparing data storage systems

Key stores are a good choice when you have no idea what the structure
of the data is, you have to implement your own low level queries
(e.g., image processing and anything not easily expressed in SQL), or
even if the data has structure. This reflects their original purpose
of supporting unstructured text searches across web pages. Key stores
will work well with web pages, tcpdump records containing payload,
images, and other datasets where the individual records are
relatively large (on the order of 60 kb or more, around the size of the
HTML on a modern web page). However, if the data possesses some
structure, such as the ability to be divided into columns, or
extensive and repeated references to the same data, then a columnar or
relational model may be preferable.
Columnar databases are preferable when the data is easily divided into
individual log records that don’t need to cross-reference each other, and when
the contents are relatively small, such as the CLF and ELF record
formats discussed in Chapter 3. Columnar databases can optimize
queries by picking out and processing data from a subset of the
columns in each record; their performance improves when they query on
fewer columns or return fewer columns. If your schema has a limited
number of columns (for example, an image database containing a small
date field, a small ID field, and a large image field), then the
columnar approach will not provide a performance boost.
RDBMSes were originally designed for information that’s frequently
replicated across multiple records, such as a billing database
where a single person may have multiple bills. RDBMSes work best
with data that can be subdivided across multiple tables. In security
environments, they’re usually best suited to maintaining personnel
records, event reports, and other knowledge—things that are
produced after processing data or that reflect an organization’s
structure. RDBMSes are good at maintaining integrity and concurrency; if you need to update a row, they’re the default choice. The RDBMS approach is probably unwarranted if your
data doesn’t change after creating it, individual records don’t have
cross-references, or your schemas store large blobs.
Other Miscellaneous Storage Tools
In addition to the three major storage systems discussed earlier, there
are a couple of other tools and techniques for improving access speed.
These storage systems are less prevalent than the big three, but are generally optimized for specific data or query types.
Graph databases include Neo4j, ArangoDB, and Titan. Graph databases
provide scalable, highly efficient queries when working
with graph data (see Chapter 13). Traditional database systems,
including the three mentioned earlier, are notoriously poor at managing
graphs, as any representation involves making multiple queries to
generate the graph over time. Graph databases provide queries and
tools for analyzing graph structures.
The Lucene library and its companion search engine, Solr, make up an open
source text search engine tool.
Redis is a memory-based key value storage system. If you need to
rapidly access data which can fit in memory (for example, lookup
tables), Redis is a very good choice for handling the lookup and
modifications.
Finally, if your wallet is big enough, you should consider the
advantages of solid state storage (SSD). SSD solutions can be expensive,
but they have the enormous advantage of being functionally transparent
as part of the filesystem. At the high end, companies like Violin
memory, Fusion-IO, and STEC provide multi-TB rack mounted units that
can be configured to receive and process data at wire speeds.

What Storage Approach to Use

When choosing a storage architecture, consider the type of data you
will collect and the type of reporting you will do with it. Do you
expect that you will mostly generate fixed reports, or do you expect
that your analysts will conduct a large number of exploratory queries?
Table 4-1 provides a summary of the types of decisions that go
into choosing a storage approach. The decisions are listed in order
of preference: 1 is best, 3 is worst, X means don’t bother at all.
We will discuss each option in detail in order to explain how they impact
storage choices.
Table 4-1. Making decisions about data systems
	 Situation 	 Relational 	 Columnar 	 Key-store 	
	Have access to multiple disks and hosts
	2
	1
	1
	

	Have access to a single host
	1
	X
	X
	

	Data is less than a terabyte
	1
	2
	3
	

	Data is multiterabyte
	2
	1
	1
	

	Expect to update rows
	1
	X
	X
	

	Never update rows
	2
	1
	1
	

	Data is unstructured text
	2
	3
	1
	

	Data has structure
	2
	1
	3
	

	Individual records are small
	2
	1
	3
	

	Individual records are large
	3
	2
	1
	

	Analysts have some development skills
	1
	1
	1
	

	Analysts have no development skills
	1
	1
	2
	

The first decision is really a hardware decision. Big data systems
such as columnar databases and key stores will only provide you with
a performance advantage if you can run parallel nodes, and the more the
better. If you have a single host, or even less than four hosts
available, you are probably better off sticking with more traditional
database architectures in order to exploit their more mature
administrative and development facilities.
The next pair of questions is really associated with that hardware
question: is your data really that big? I use a terabyte as an
arbitrary cutoff point for big data because I can realistically buy a
1TB SSD. If your data isn’t that big, again default to relational
databases or an in-memory storage system like Redis.
The next question is associated with data flow and the CRUD paradigm.
If you expect to regularly update the contents of a row, then the
best choice is a relational database. Columnar and other distributed
architectures are designed around the idea that their contents are
relatively static. It’s possible to update data in them, but it
usually involves some kind of batch process where the original data is
removed and replacements are put in place.
Streaming Analytics Versus Storing in One Place
The classic analytical system is a centralized repository. Data from
multiple sensors is fed into a huge database, and then analysts pull
data out of the huge database. This is not the only approach, and a
hot alternative uses streaming analytics. At the time of writing this
book, distributed streaming analytic systems such as Storm and IBM’s Websphere are taking off.
Streaming approaches enable sophisticated real-time analysis by
processing the data as a stream of information. In a stream, the data
is touched once by a process, and minimal past state is maintained.
Streaming processing is extremely useful in areas where the process is
well-defined and there is a need for real-time analysis. As such, it
is not particularly useful for exploratory analysis (see Chapter 10).
However, when working with well-defined alarms and processes,
streaming analytics will reduce the overhead of data required at a
central repository, and in large data systems, which can be quite
valuable.

After dealing with the question of updates, the next set of questions
deal with the structure and size of the data. Columnar and relational
databases are preferable when you are dealing with well-structured,
small records (such as optimized logfiles). These approaches can
take advantage of the schema—for example, if a columnar database is
only using two columns, it can return only those for further
processing whereas the key store has to return the whole record. If
records are small or structured, columnar databases are preferable,
followed by relational databases. If records are large or
unstructured, then the key-value approach is more flexible.
The final question on the list is arguably more social than technical,
but also important when considering the design of an analysis system.
If you are going to allow analysts relatively open, unstructured
analysis to the data, then you need to have some well-defined and safe
framework for letting them do so. If your analysts are capable of
writing MapReduce functions, then you can use any system without much
difficulty. However, if you expect that analysts will have minimal
skills then you may find columnar or relational systems, which have
SQL interfaces, to be preferable. There are relatively recent efforts
to develop SQL-like interfaces for key stores, notably the Hive and
Pig projects from Apache.
Where possible, it’s preferable to limit analysts’ direct access to
the data store, instead allowing them to extract samples that can be processed in EDA tools such as SiLK or R.
Storage Hierarchy, Query Times, and Aging

Any collection system will have to deal with a continuous influx of
new data, forcing older data to move into slower, less expensive
storage systems over time. For the purposes of an analytic system, we
can break the storage hierarchy we have for data into four tiers:
	
RAM

	
SSDs and flash storage

	
Hard drives and magnetic storage

	
Tape drives and long-term archives

By setting up a flow monitoring system, you can estimate the volume of
incoming traffic and use that data to calculate initial storage
requirements. The key question is how much data the analysts need.
A good rule of thumb in a business environment is that analysts need
fast access to approximately a week’s worth of data, reasonable access
to 90 days’ worth of data, and further data can be deposited in a tape
archive. The 90-day rule means that analysts can pull back data to at
least the previous quarter. Obviously, if your budget allows it, more
data on disk is better, but 90 days is a good minimal requirement.
Make sure that if you do archive to tape, that the tape data is
reasonably accessible—bots last on most networks for around a year
if not longer, and tracing their full activity will involve looking at
that archive.
A number of external constraints also have an impact on data
storage, notably the data retention requirements for your
domain and industry. For example, the EU’s data retention directive
(directive 2006/24/EC) establishes retention requirements for
telecommunications providers.
As data moves down on the hierarchy, it also often helps to reformat
it into a more summarization- or storage-friendly format. For example,
for rapid response I might want to keep a rolling archive of packets
in high-speed storage in order to facilitate rapid response. As the
data moves onto slower sources (from RAM to SSD, from SSD to disk,
from disk to tape), I will start relying more on summaries such as
NetFlow.
In addition to simple summarization such as NetFlow, long-term storage
can be facilitated by identifying and summarizing the most obvious
behaviors. For example, scanning and backscatter (see Chapter 11
for more information) take up an enormous amount of disk space on
large networks; traffic has no payload, and there’s little value
in storing the full packet. Identifying, summarizing, and then
compressing or removing scans reduces the footprint of the raw
data, especially on larger networks where this type of background
traffic can take up a disproprtionate number of records.
Data fusion—removing idential records or fusing them—is another viable technique. When collecting data from multiple sources, combining
the records that describe the same phenomenon (by checking IP
addresses, ports, and time) can reduce the payload of these separate
records.

Part II. Tools

This section is about a number of tools for use in data analysis. The
primary focus of this section is on two particular tools: SiLK and
R. The System for Internet-Level Knowledge (SiLK) is a NetFlow analysis
toolkit developed by the CERT at Carnegie Mellon University, which
enables analysts to develop sophisticated flow analysis systems
quickly and efficiently. R, a statistical analysis package developed
at the University of Auckland, enables exploratory data analysis and
visualization.
At this time, there is no killer app for network analysis. Analysis
requires using many tools, often in ways they weren’t
really designed for. The tools covered in this section form what I
believe to be a basic functional toolkit for an analyst. Combining them with
a light scripting language such as Python empowers analysts to explore
data and develop operationally useful products.
The remainder of this section is divided into five chapters.
Chapter 5 describes the SiLK suite, Chapter 6 describes R.
Chapter 7 discusses IDS; while IDSes were briefly discussed in
Part I, this chapter discusses the construction and maintenance
of these tools—analysts will often produce ad hoc IDSes to identify
or deal with attacks. Chapter 8 discusses tools to identify the ways in which
hosts are connected to the Internet, including reverse DNS lookups, looking
glasses, and tools such as traceroute and ping. Finally,
Chapter 9 discusses additional tools that are useful for
particular analytic tasks.

Chapter 5. The SiLK Suite

SiLK, the System for Internet-Level Knowledge, is a toolkit originally
developed by Carnegie Mellon’s CERT to conduct large-scale netflow
analysis. SiLK is now used extensively by the Department of Defense,
academic institutions, and industry as a basic analytical toolkit.
This chapter focuses primarily on using SiLK as an analytical tool.
The CERT Network Situational Awareness team has published extensive references on using SiLK, installing collectors, and setting up the suite.
What Is SiLK and How Does It Work?

SiLK is a suite of tools for
querying and analyzing NetFlow data. The SiLK suite enables an
analyst to rapidly and efficiently query very large volumes of network
traffic in order to identify complex aggregate phenomena or extract
individual events.
SiLK is effectively a database at the command line.
Each tool performs a specific query, manipulation, or aggregation of
data, and commands are chained together to produce results.
By chaining together multiple records along pipes, SiLK enables the
analyst to create complex commands that field data along multiple
channels simultaneously. For example, the following sequence of SiLK
queries pull HTTP (port 80) traffic from flow data, producing a
time series and a list of activity by busiest address. See Example 5-1 for the basics of SiLK operation: commands are passed through a series of pipes, which can be stdin,
stdout, or fifos (named pipes).
Example 5-1. Some overly complicated rwfilter voodoo
$ mkfifo out2
$ rwfilter --proto=6 --aport=80 data.rwf --pass=stdout |
 rwfilter --input=stdin --proto=6 --pass=stdout
 --all=out2 | rwstats --top --count=10 --fields=1 &
 rwcount out2 --bin-size=300

Data is maintained in an efficient
binary representation up until the last moment, until commands that
produce text (or some optional outputs) are called to produce output.
SiLK is very much an old-school Unix application suite: a family of
tools tied together with pipes and using a lot of optional arguments.
By using this approach, it’s possible to create powerful analytic
scripts with SiLK, because the tools have well-defined interfaces that
will efficiently handle binary data. Effectively using SiLK involves
connecting the appropriate tools together in order to process binary
data and produce text only at the very end of the process.
This chapter also uses some basic Unix shell commands such as
ls, cat, and head. I don’t require you to know the shell on an
expert level.

Acquiring and Installing SiLK

The SiLK homepage is maintained at the CERT NetSA Security Suite web page. The SiLK package is available free for download, and can be installed on most Unix systems without much
difficulty. The CERT also provides a live CD image that can be used
on its own.
The SiLK live CD comes with a training dataset called LBNL-05,
anonymized header traces from Lawrence Berkeley National Labs in 2005.
If you install the live CD, the data will be immediately accessible.
If not, you can fetch the data from The LBNL-05
reference data page.[5]
In addition to the live CD, SiLK is available in several package
managers, including homebrew.
The Datafiles

The LBNL datafiles are stored in a file hierarchy; Example 5-2 shows the results of downloading and unarchiving them.
Example 5-2. Downloading the SiLK archives
$ gunzip -c SiLK-LBNL-05-noscan.tar
$ gunzip -c SiLK-LBNL-05-scanners.tar
$ cd SiLK-LBNL-05
$ ls
README-S0.txt in out silk.conf
README-S1.txt inweb outweb
$ ls in/2005/01/07/*.01
in/2005/01/07/in-S0_20050107.01 in/2005/01/07/in-S1_20050107.01

When collecting data, SiLK partitions the data into subdirectories
that divide traffic by the type of traffic and the time the event
occurred. This provides scalability and speeds up analysis.
However, it’s also generally a black box, and one we’re breaking right
now simply to have some files to work with. For the purposes of
demonstration and education, we’re going to work with four specific
files:
	
inweb/2005/01/06/iw-S0_20050106.20

	
inweb/2005/01/06/iw-S0_20050106.21

	
in/2005/01/07/in-S0_20050107.01

	
in/2005/01/07/in-S1_20050107.01

These files are not special in any way. I chose them just to provide
examples of scan and nonscan traffic. The following data discusses
how to partition data and what the filenames mean.

Choosing and Formatting Output Field Manipulation: rwcut

SiLK records are stored in a compact binary format. They can’t be read
directly, and are instead accessed using the rwcut tool (see Example 5-3). In the following
example, and any other examples with an output greater than
80 characters, the lines are manually broken for clarity.
Example 5-3. Simple file access with rwcut
$ rwcut inweb/2005/01/06/iw-S0_20050106.20 | more
 sIP| dIP|sPort|dPort|pro| packets| bytes|\
 flags| sTime| dur| eTime|sen|
 148.19.251.179| 128.3.148.48| 2497| 80| 6| 16| 2631|\
FS PA |2005/01/06T20:01:54.119| 0.246|2005/01/06T20:01:54.365| ?|
 148.19.251.179| 128.3.148.48| 2498| 80| 6| 14| 2159|\
 S PA |2005/01/06T20:01:54.160| 0.260|2005/01/06T20:01:54.420| ?|
...

In its default invocation, rwcut outputs 12 fields: source and destination IP addresses and ports, protocol, number of
packets, number of bytes, TCP flags, start time, duration, end time,
and sensor of a flow. These values have been discussed previously in
Chapter 2, except for the sensor field. SiLK can be
configured to identify individual sensors, which is useful when you’re
trying to figure out where traffic came from or where it’s going. The
sensor field is whatever ID is assigned during configuration. In the
default data there are no sensors, so the value is set to a question
mark (?).
All SiLK commands have built-in documentation. Typing rwcut --help
brings up an enormous help page. We will cover the basic
options. A fuller description of options can be found in the
SiLK documentation for
rwcut.
The most commonly used rwcut commands select the fields displayed
during invocation. rwcut can actually print 29 different fields, in
arbitrary order. A list of these fields is in Table 5-1.
rwcut fields are specified using the --fields= option, which takes
the numeric values in Table 5-1 or the string values, and prints
the requested fields in the order specified, as in Example 5-4.
Table 5-1. rwcut fields
	Field 	 Numeric ID 	 Description
	sIP
	1
	Source IP address

	dIP
	2
	Destination IP address

	sPort
	3
	Source port

	dPort
	4
	Destination Port: if ICMP, the ICMP type and code is encoded here also

	protocol
	5
	Layer 3 protocol

	packets
	6
	Packets in the flow

	bytes
	7
	Bytes in the flow

	flags
	8
	OR of TCP flags

	sTime
	9
	Start time in seconds

	eTime
	10
	End time in seconds

	dur
	11
	Duration (eTime–sTime)

	sensor
	12
	Sensor ID

	in
	13
	SNMP ID of the incoming interface on the router

	out
	14
	SNMP ID of the outgoing interface on the router

	nhIP
	15
	Next hop address

	sType
	16
	Classification of the source address (internal, external)

	dType
	17
	Classification of the destination address (internal, external)

	scc
	18
	Country code of the source IP

	dcc
	19
	Country code of the destination IP

	class
	20
	Class of the flow

	type
	21
	Type of the flow

	sTime +msec
	22
	sTime in milliseconds

	eTime +msec
	23
	eTime in milliseconds

	dur +msec
	24
	duration msecs

	icmpTypeCode
	25
	ICMP type and code

	initialFlags
	26
	Flags in the first TCP packet

	sessionFlags
	27
	Flags in all packets except the first

	attributes
	28
	Attributes of the flow observed by the generator

	application
	29
	Guess as to the application in the flow

Example 5-4. Some examples of field ordering
$# Show a limited set of fields
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 | head -2
 sIP| dIP|sPort|dPort|pro|
 148.19.251.179| 128.3.148.48| 2497| 80| 6|
$#Note the -, now explicitly enumerate
$ rwcut --field=1,2,3,4,5 inweb/2005/01/06/iw-S0_20050106.20 | head -2
 sIP| dIP|sPort|dPort|pro|
 148.19.251.179| 128.3.148.48| 2497| 80| 6|
$#Field order is based on what you enter in --field
$ rwcut --field=5,1,2,3,4 inweb/2005/01/06/iw-S0_20050106.20 | head -2
pro| sIP| dIP|sPort|dPort|
 6| 148.19.251.179| 128.3.148.48| 2497| 80|
$#We can use text instead of numbers
$ rwcut --field=sIP,dIP,proto inweb/2005/01/06/iw-S0_20050106.20 |head -2
 sIP| dIP|pro|
 148.19.251.179| 128.3.148.48| 6|

rwcut supports a number of other output formatting and manipulation
tools. Some particularly useful ones, which let you control the
lines that appear in the output, include:
	
--no-title

	
Commonly used with SiLK commands that produce
tabular output. Drops the title from the output table.

	
--num-recs

	
Outputs a
specific number of records, eliminating the need for the head pipe
in the previous example. The default value is zero, which makes rwcut
dump the entire contents of whatever file it’s reading.

	
--start-rec-num and --end-rec-num

	
Can be used to fetch a range of records in the file.

Example 5-5 shows a few ways to manipulate record numbers and headers.
Example 5-5. Manipulating record numbers and headers
$# Drop the title
$ rwcut --field=1-9 --no-title inweb/2005/01/06/iw-S0_20050106.20 | head -5
 148.19.251.179| 128.3.148.48| 2497| 80| 6| 16| 2631|FS PA
 |2005/01/06T20:01:54.119|
 148.19.251.179| 128.3.148.48| 2498| 80| 6| 14| 2159| S PA
 |2005/01/06T20:01:54.160|
 148.19.251.179| 128.3.148.48| 2498| 80| 6| 2| 80|F A
 |2005/01/06T20:07:07.845|
 56.71.233.157| 128.3.148.48|48906| 80| 6| 5| 300| S
 |2005/01/06T20:01:50.011|
 56.96.13.225| 128.3.148.48|50722| 80| 6| 6| 360| S
 |2005/01/06T20:02:57.132|
$# Drop the head statement
$ rwcut --field=1-9 inweb/2005/01/06/iw-S0_20050106.20 --num-recs=5
 sIP| dIP|sPort|dPort|pro| packets| bytes| flags
| sTime|
 148.19.251.179| 128.3.148.48| 2497| 80| 6| 16| 2631|FS PA
|2005/01/06T20:01:54.119|
 148.19.251.179| 128.3.148.48| 2498| 80| 6| 14| 2159| S PA
|2005/01/06T20:01:54.160|
 148.19.251.179| 128.3.148.48| 2498| 80| 6| 2| 80|F A
|2005/01/06T20:07:07.845|
 56.71.233.157| 128.3.148.48|48906| 80| 6| 5| 300| S
|2005/01/06T20:01:50.011|
 56.96.13.225| 128.3.148.48|50722| 80| 6| 6| 360| S
|2005/01/06T20:02:57.132|
$# Print only the third through fifth record
$ rwcut --field=1-9 inweb/2005/01/06/iw-S0_20050106.20 --start-rec-num=3
 --end-rec-num=5
 sIP| dIP|sPort|dPort|pro| packets| bytes| flags
| sTime|
 148.19.251.179| 128.3.148.48| 2498| 80| 6| 2| 80|F A
|2005/01/06T20:07:07.845|
 56.71.233.157| 128.3.148.48|48906| 80| 6| 5| 300| S
|2005/01/06T20:01:50.011|
 56.96.13.225| 128.3.148.48|50722| 80| 6| 6| 360| S
|2005/01/06T20:02:57.132|

A number of options manipulate output format. Tabulation is
controllable with the --column-separator, --no-final-column, and
--no-columns switches. --column-seperator will change the
character used to distinguish columns, while --no-final-column drops
the delimiter at the end of the line. --no-columns removes any
space padding between columns. The --delimited switch combines
all three: it takes a character as an argument, uses that character as
a column separator, removes all padding in the columns, and drops the
final column separator.
In addition, there are a variety of switches for changing column
content:
	
--integer-ips

	
Converts IP addresses to integers rather than dotted
quads. This switch is deprecated as of SiLK v3, and users should now
use --ip-format=decimal.

	
--ip-format

	
The updated version of --integer-ips, --ip-format
specifies how addresses are rendered. Options include canonical
(dotted quad for IPv4, canonical IPv6 for IPv6), zero-padded
(canonical, except zeroes are expanded to the maximal value for each
format, so 127.0.0.1 is 127.000.000.001), decimal (print as the
corresponding 32-bit or 128-bit integer), hexadecimal (print the
integer in hexadeximal format), and force-ipv6 (prints all addresses
in canonical IPv6 format, including IPv4 addresses mapped to the
::ffff:0:0/96 netblock).

	
--epoch-time

	
Prints timestamps as epoch values with floating-point millisecond precision.

	
--integer-tcp-flags

	
Converts TCP flags to their integer equivalents.

	
--zero-pad-ips

	
Pads the dotted quad IP address format with zeros,
so that 128.2.11.12 is printed as 128.002.011.012. Deprecated in
favor of --ip-format in SiLK v3.

	
--icmp-type-and-code

	
Places the ICMP type in the source port and the ICMP code in the destination
port.

	
--pager

	
Specifies the program to use for paging output.

Example 5-6 shows some of the preceding options.
Example 5-6. Other formatting examples
$# Change from fixed with columns to delims
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --no-columns --num-recs=2
sIP|dIP|sPort|dPort|protocol|
148.19.251.179|128.3.148.48|2497|80|6|
148.19.251.179|128.3.148.48|2498|80|6|
$# Change the column separator
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --column-sep=:
 --num-recs=2
 sIP: dIP:sPort:dPort:pro:
 148.19.251.179: 128.3.148.48: 2497: 80: 6:
 148.19.251.179: 128.3.148.48: 2498: 80: 6:
$# Use --delim to change everything at once
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --delim=: --num-recs=2
sIP:dIP:sPort:dPort:protocol
148.19.251.179:128.3.148.48:2497:80:6
148.19.251.179:128.3.148.48:2498:80:6
$# Convert IP addresses to integers
$ rwcut --field=1-5 inweb/2005/01/06/iw-S0_20050106.20 --integer-ip --num-recs=2
 sIP| dIP|sPort|dPort|pro|
2484337587|2147718192| 2497| 80| 6|
2484337587|2147718192| 2498| 80| 6|
$# Use epoch time
$ rwcut --field=1-5,9 inweb/2005/01/06/iw-S0_20050106.20 --epoch --num-recs=2
 sIP| dIP|sPort|dPort|pro| sTime|
 148.19.251.179| 128.3.148.48| 2497| 80| 6|1105041714.119|
 148.19.251.179| 128.3.148.48| 2498| 80| 6|1105041714.160|
$# Zero pad IP addresses
$ rwcut --field=1-5,9 inweb/2005/01/06/iw-S0_20050106.20 --zero-pad --num-recs=2
 sIP| dIP|sPort|dPort|pro| sTime|
148.019.251.179|128.003.148.048| 2497| 80| 6|2005/01/06T20:01:54.119|
148.019.251.179|128.003.148.048| 2498| 80| 6|2005/01/06T20:01:54.160|

You will note that, as the command lines get more complex, I have
truncated the longer options. SiLK uses GNU-style long options universally,
so the only requirement for specifying an option is to type enough
characters to make the name unambiguous. Expect more and more
truncation as we build more and more complex commands.

Basic Field Manipulation: rwfilter

The most basic SiLK command with analytical values is rwcut paired with rwfilter
through a pipe. Example 5-7 shows a simple rwfilter command.
Example 5-7. A simple rwfilter command
$ rwfilter --dport=80 inweb/2005/01/06/iw-S0_20050106.20 --pass=stdout
 | rwcut --field=1-9 --num-recs=5
 sIP| dIP|sPort|dPort|pro| packets| bytes| flags
 | sTime|
 148.19.251.179| 128.3.148.48| 2497| 80| 6| 16| 2631|FS PA
 |2005/01/06T20:01:54.119|
 148.19.251.179| 128.3.148.48| 2498| 80| 6| 14| 2159| S PA
 |2005/01/06T20:01:54.160|
 148.19.251.179| 128.3.148.48| 2498| 80| 6| 2| 80|F A
 |2005/01/06T20:07:07.845|
 56.71.233.157| 128.3.148.48|48906| 80| 6| 5| 300| S
 |2005/01/06T20:01:50.011|
 56.96.13.225| 128.3.148.48|50722| 80| 6| 6| 360| S
 |2005/01/06T20:02:57.132|

rwfilter with a single filter (the --dport option in this case),
and a single redirect (the --pass=stdout) is about as simple as you
can get. rwfilter is the workhorse of the SiLK suite: it reads
input (directly from a file, using a set of globbing specifications,
or through a pipe), applies one or more filters to each record in the
data, and then redirects the records based on whether a record matches
the filters (passes) or doesn’t match (fails).
SiLK’s rwfilter documentation is
humongous, but primarily consists of repetitively describing the
filter specifications for every field, so don’t be intimidated.
rwfilter options basically do one of three things: they specify
how to filter data, how to read data, or how to direct the
result of those filters.
Ports and Protocols

The easiest filters to start with are --sport, --dport, and
--protocol. As the names imply, they filter on the source
port, destination port, and protocol, respectively (see Example 5-8). These values can
filter on a specific value (e.g., --sport=80 will pass any traffic
where the source port is 80), or a range specified with a dash or
commas (so --sport=79-83 will pass anything where the source port is
between 79 and 83 inclusive, and could be expressed as
--sport=79,80,81,82,83).
Example 5-8. Example filtering on sport
$ rwfilter --dport=4350-4360 inweb/2005/01/06/iw-S0_20050106.20
 --pass=stdout | rwcut --field=1-9 --num-recs=5
 sIP| dIP|sPort|dPort|pro| packets| bytes| flags
 | sTime|
 218.131.115.42| 131.243.105.35| 80| 4360| 6| 2| 80|F A
 |2005/01/06T20:24:21.879|
 148.19.96.160|131.243.107.239| 80| 4350| 6| 27| 35445|FS PA
 |2005/01/06T20:59:42.451|
 148.19.96.160|131.243.107.239| 80| 4352| 6| 4| 709|FS PA
 |2005/01/06T20:59:42.507|
 148.19.96.160|131.243.107.239| 80| 4351| 6| 15| 16938|FS PA
 |2005/01/06T20:59:42.501|
 148.19.96.160|131.243.107.239| 80| 4353| 6| 4| 704|FS PA
 |2005/01/06T20:59:42.544|
$ rwfilter --sport=4000- inweb/2005/01/06/iw-S0_20050106.20
 --pass=stdout | rwcut --field=1-9 --num-recs=5
 sIP| dIP|sPort|dPort|pro| packets| bytes| flags
 | sTime|
 56.71.233.157| 128.3.148.48|48906| 80| 6| 5| 300| S
 |2005/01/06T20:01:50.011|
 56.96.13.225| 128.3.148.48|50722| 80| 6| 6| 360| S
 |2005/01/06T20:02:57.132|
 56.96.13.225| 128.3.148.48|50726| 80| 6| 6| 360| S
 |2005/01/06T20:02:57.432|
 58.236.56.129| 128.3.148.48|32621| 80| 6| 3| 144| S
 |2005/01/06T20:12:10.747|
 56.96.13.225| 128.3.148.48|54497| 443| 6| 6| 360| S
 |2005/01/06T20:09:30.124|
$ rwfilter --dport=4350,4352 inweb/2005/01/06/iw-S0_20050106.20
 --pass=stdout | rwcut --field=1-9 --num-recs=5
 sIP| dIP|sPort|dPort|pro| packets| bytes| flags
 | sTime|
 148.19.96.160|131.243.107.239| 80| 4350| 6| 27| 35445|FS PA
 |2005/01/06T20:59:42.451|
 148.19.96.160|131.243.107.239| 80| 4352| 6| 4| 709|FS PA
 |2005/01/06T20:59:42.507|
 148.19.96.160|131.243.107.239| 80| 4352| 6| 1| 40| A
 |2005/01/06T20:59:42.516|
$ rwfilter --proto=1 in/2005/01/07/in-S0_20050107.01 --pass=stdout
 | rwcut --field=1-6 --num-recs=2
 sIP| dIP|sPort|dPort|pro| packets|
 35.223.112.236| 128.3.23.93| 0| 2048| 1| 1|
 62.198.182.170| 128.3.23.81| 0| 2048| 1| 1|
$ rwfilter --proto=1,6,17 in/2005/01/07/in-S0_20050107.01 --pass=stdout
 | rwcut --num-recs=2 --fields=1-6
 sIP| dIP|sPort|dPort|pro| packets|
 116.66.41.147|131.243.163.201| 4283| 1026| 17| 1|
 116.66.41.147|131.243.163.201| 3131| 1027| 17| 1|
$ rwfilter --proto=1,6,17 in/2005/01/07/in-S0_20050107.01 --fail=stdout
 | rwcut --num-recs=2 --fields=1-6
 sIP| dIP|sPort|dPort|pro| packets|
 57.120.186.177| 128.3.26.171| 0| 0| 50| 70|
 57.120.186.177| 128.3.26.171| 0| 0| 50| 81|

Note the use of --fail in the last example. Because there are 255
potential protocols, specifying “everything but TCP, ICMP, and UDP”
could be expressed in two ways: either by specifying everything you want (--proto=0,2-5,7-16,18-), or
by using the --fail option. I’ll discuss more advanced
manipulation of --pass and --fail in the next chapter.

Size

Volume (size) options (bytes and packets) are similar to the protocol and
port options in that you express them numerically. Unlike the
enumerations (ports and protocol), these numeric values can be
expressed only as single digits or ranges, not as comma-separated values.
So, --packets=70-81 is acceptable, but --bytes=1,2,3,4 is not.

IP Addresses

The simplest form of IP address filtering simply expresses the IP
address directly (see Example 5-9). The following examples show strict filtering on the
source (--saddress) and destination (--daddress) address, and the
--any-address option. --any-address will match either source or
destination addresses.
Example 5-9. Filtering on IP addresses
$ rwfilter --saddress=197.142.156.83 --pass=stdout
 in/2005/01/07/in-S0_20050107.01 | rwcut --num-recs=2
 sIP| dIP|sPort|dPort|pro| packets| bytes| flags|
 sTime| dur| eTime|sen|
 197.142.156.83| 224.2.127.254|44510| 9875| 17| 12| 7163| |
2005/01/07T01:24:44.359| 16.756|2005/01/07T01:25:01.115| ?|
 197.142.156.83| 224.2.127.254|44512| 9875| 17| 4| 2590| |
2005/01/07T01:25:02.375| 5.742|2005/01/07T01:25:08.117| ?|
$ rwfilter --daddress=128.3.26.249 --pass=stdout
 in/2005/01/07/in-S0_20050107.01 | rwcut --num-recs=2
 sIP| dIP|sPort|dPort|pro| packets| bytes| flags|
 sTime| dur| eTime|sen|
211.210.215.142| 128.3.26.249| 4068| 25| 6| 7| 388|FS PA |
 2005/01/07T01:27:06.789| 5.052|2005/01/07T01:27:11.841| ?|
 203.126.20.182| 128.3.26.249|51981| 4587| 6| 56| 2240|F A |
 2005/01/07T01:27:04.812| 18.530|2005/01/07T01:27:23.342| ?|
$ rwfilter --any-address=128.3.26.249
 --pass=stdout in/2005/01/07/in-S0_20050107.01 | rwcut --num-recs=2
 sIP| dIP|sPort|dPort|pro| packets| bytes| flags|
 sTime| dur| eTime|sen|
211.210.215.142| 128.3.26.249| 4068| 25| 6| 7| 388|FS PA |
 2005/01/07T01:27:06.789| 5.052|2005/01/07T01:27:11.841| ?|
 203.126.20.182| 128.3.26.249|51981| 4587| 6| 56| 2240|F A |
 2005/01/07T01:27:04.812| 18.530|2005/01/07T01:27:23.342| ?|

Address options accept a variety of range descriptors.
Each quad in an IP address can be expressed using the same comma-dash
format that protocols and ports use. IP addresses will also accept
the character x to mean 0-255. This expression can be used within
each quad; SiLK will match each quad separately. In addition to this
comma-dash format, SiLK can match on CIDR blocks.
SiLK supports IPv6 by using IPv6’s colon-based notation. The
following are all examples of valid IPv6 filters in SiLK, and Example 5-10 shows how to filter them:
::ffff:x
::ffff:0:aaaa,0-5
::ffff:0.0.5-130,1,255.x
Example 5-10. Filtering IP ranges
$#Filtering on the last quad
$ rwfilter --daddress=131.243.104.x inweb/2005/01/06/iw-S0_20050106.20
 --pass=stdout | rwcut --field=1-5 --num-recs=5
 sIP| dIP|sPort|dPort|pro|
 150.52.105.212|131.243.104.181| 80| 1262| 6|
 150.52.105.212|131.243.104.181| 80| 1263| 6|
 59.100.39.174| 131.243.104.27| 80| 3188| 6|
 59.100.39.174| 131.243.104.27| 80| 3191| 6|
 59.100.39.174| 131.243.104.27| 80| 3193| 6|
Filtering a range of specific values in the third quad
$ rwfilter --daddress=131.243.104,107,219.x inweb/2005/01/06/iw-S0_20050106.20
 --pass=stdout | rwcut --field=1-5 --num-recs=5
 sIP| dIP|sPort|dPort|pro|
 208.122.23.36|131.243.219.201| 80| 2473| 6|
205.233.167.250|131.243.219.201| 80| 2471| 6|
 58.68.205.40| 131.243.219.37| 80| 3433| 6|
208.233.181.122| 131.243.219.37| 80| 3434| 6|
 58.68.205.40| 131.243.219.37| 80| 3435| 6|
Using CIDR blocks
$ rwfilter --saddress=56.81.0.0/16 inweb/2005/01/06/iw-S0_20050106.20
 --pass=stdout | rwcut --field=1-5 --num-recs=5
 sIP| dIP|sPort|dPort|pro|
 56.81.19.218|131.243.219.201| 80| 2480| 6|
 56.81.16.73|131.243.219.201| 80| 2484| 6|
 56.81.16.73|131.243.219.201| 80| 2486| 6|
 56.81.30.48|131.243.219.201| 443| 2490| 6|
 56.81.31.159|131.243.219.201| 443| 2489| 6|

Time

There are three time options: --stime, --etime, and
--active-time. These fields require a time range, which in SiLK is
written in the format:
YYYY/MM/DDTHH:MM:SS-YYYY/MM/DDTHH:MM:SS
Note the T separating the day and hour. The --stime and --etime
fields filter exactly what it says on the can, which can be a bit
counterintuitive; specifying --stime=2012/11/08T00:00:00-2012/11/08T00:02:00 filters any
record whose start time is between midnight and two minutes after
midnight on November 8, 2012. Records that started before midnight
and are still being transmitted during that range
will not pass. To find
records that occurred within a particular period, use the
--active-time filter.

TCP Options

Flows are aggregates of packets, and in the majority of cases, this
aggregation is relatively easy to understand. For example, the number
of bytes in a flow is the sum of the number of bytes of all the
packets that comprise the flow. TCP flags, however, are a bit more
problematic. In NetFlow v5, a flow’s flags are the bitwise OR of the
flags in its constituent packets—meaning that a flow indicates that
a flag was present or absent in the entire flow, but not where. A
flow could conceivably consist of a gibberish sequence of flags
such as a FIN, then an ACK and SYN. Monitoring software such as YAF
expands NetFlow to include additional flag fields, which SiLK can take
advantage of.
The core flag filtering switches are --flags-initial,--flags-all,
and --flags-session. These options accept flags in the form high
flags/mask flags. If a flag is listed in the mask, SiLK always
parses it. If a flag is listed in the high flags, SiLK passes it
only if the value is high. The flags themselves are expressed using
the characters in Table 5-2.
Table 5-2. Expressing TCP flags in rwfilter
	 Character 	 Flag
	F
	FIN

	S
	SYN

	R
	RST

	P
	PSH

	A
	ACK

	U
	URG

	E
	ECE

	C
	CWR

The combination of high flags and mask flags tends to confuse people,
so let’s review some examples. Remember that the basic rule is that
in order to evaluate a flag, it must be in the mask. A flag
specified as high but not specified in the mask will be ignored.
	
Setting the value to S/S will pass any record
where the SYN flag is high.

	
Setting the value to S/SA will pass any
record where the SYN flag is high and the ACK flag is low.

	
Setting the value to SA/SA will pass any record where both SYN and ACK flags
are high.

	
A combination like SAF/SAFR will return any record where the
SYN, ACK, FIN flags are high and the RST flag is low, which would
be expected of a normal TCP connection.

In addition to these options, SiLK provides a set of flag-specific
options in the form of --syn-flag, --fin-flag, and so on for each
potential flag. These options take a 1 or 0 as an argument:
setting the value to 1 will pass records where the flag is high, 0
will pass records where the flag is low, and not including the option
will pass all records.
What Should TCP Flags Look Like?
The combination of TCP flags in any particular flow can be a useful
indicator of the flow’s behavior, and there are certain flag
combinations that raise suspicion.
Almost all TCP flows should pass either SAF/SAFR or SAR/SAFR,
without passing SAFR/SAFR. This is because most sessions will end in a FIN, with
aberrations ending in a RST. If both FIN and RST are seen, that’s
suspicious.
A TCP session without an ACK flag is curious, especially if that
session has four or more packets. Stacks are usually hardcoded to
give up after n packets, where n tends to be in the neighborhood
of three.
For a client, the initial flag should be a SYN, while a server should
have a SYN+ACK. You should never see a SYN after the initial flag.
Resynchronization would mean a new session started using the same
ephemeral port, which is weird for TCP.
The PSH and URG flags are, in my mind, the universal indicator of
boring sessions. If I see a session without PSH, especially if the
session is long, it strikes me as curious. In my mind, a “normal” TCP
session will have FSPA high. A flow with just PA high is usually a
keep-alive and an indication of a broken flow—look in the repository
for the same address combination and you’ll probably find a SAP flow
occurring before it.
Backscatter/response messages include A, SA, and RA flows. A good
number of RA packets will arrive on any large network due to
backscatter from spoofed DDoS attacks. There isn’t really anything
you can do about these packets; they’re not even directly aimed at
your network.

Helper Options

If you compare rwfilter’s option-based filtering against tcpdump’s
BPF filtering, it’s immediately obvious that rwfilter’s approach is
much more primitive. This was an intentional decision: rwfilter is
focused on processing large volumes as quickly as possible, and the
overhead involved in processing some kind of parseable language was
deemed too expensive.
The place where this usually trips people up is the lack of obvious
not and or operators. For example, if you want to filter out all
web sessions, you may try to filter traffic where one port is 80, and
the other is ephemeral. The initial attempt might be:
rwfilter --sport=80,1024-65535 --dport=80,1024-65535 --pass=stdout
The problem is that this will also pass any flows where the source and
destination port are both 80, and flows where the source and
destination port are both ephemeral. To deal with problems like this,
rwfilter has a collection of helper functions, which combined with
the --fail option and multiple filters should be able to address any
of these problems.
In the case of ports, the --aport option refers to either
the source or the destination port. Using --aport and two
filters, you can identify the appropriate sessions as follows:
rwfilter --aport=80 --pass=stdout | rwfilter --input-pipe=stdin
 --aport=1024-65535 --pass=stdout
The first filter identifies anything engaged in port 80 traffic, and
the second takes that set and identifies anything that also used an
ephemeral port.
A number of IP address helper options are available. --anyaddress
filters across source and destination addresses
simultaneously. --not-saddress and --not-daddress pass
records with addresses that don’t match the option specification.

Miscellaneous Filtering Options and Some Hacks

rwfilter has a couple of direct text output options:
--print-stat (see Example 5-11) and --print-volume-stat. These can be used to print
a summary of the traffic without having to resort to cut, count, or
other display tools. They also will print volumes of records that
did not pass a filter.
Example 5-11. Using --print-stat
$ rwfilter --print-volume-stat in/2005/01/07/in-S0_20050107.01 --proto=0-255
 | Recs| Packets| Bytes| Files|
Total| 2019| 2730488| 402105501| 1|
 Pass| 2019| 2730488| 402105501| |
 Fail| 0| 0| 0| |
$ rwfilter --print-stat in/2005/01/07/in-S0_20050107.01 --proto=0-255
Files 1. Read 2019. Pass 2019. Fail 0.

Note in Example 5-11 the use of the --proto=0-255 option. In almost
all invocations, rwfilter expects some form of filtering applied
to it, so when you need a filter that passes everything, the easiest
approach is just to specify all the protocols. --print-stat and
--print-volume-stat output to stderr, so you can still use stdout
for pass, fail, and all channels.
Like rwcut, rwfilter has a record limit command.
--max-pass-records and --max-fail-records can be used to limit the
number of records passed through a pass or fail channel.

rwfileinfo and Provenance

SiLK filter files contain a fair amount of metadata, which can be
accessed using the rwfileinfo command (see Example 5-12). rwfileinfo can work with
files, as seen in the examples below, or directly on stdin by using
stdin or - as an argument.
Example 5-12. Using rwfileinfo
$ rwfileinfo in/2005/01/07/in-S0_20050107.01
in/2005/01/07/in-S0_20050107.01:
 format(id) FT_RWAUGMENTED(0x14)
 version 2
 byte-order littleEndian
 compression(id) none(0)
 header-length 28
 record-length 28
 record-version 2
 silk-version 0
 count-records 2019
 file-size 56560
 packed-file-info 2005/01/07T01:00:00 ? ?
$ rwfilter --print-stat in/2005/01/07/in-S0_20050107.01 --proto=6
 --pass=example.rwf
Files 1. Read 2019. Pass 1353. Fail 666.
$ rwfileinfo example.rwf
example.rwf:
 format(id) FT_RWGENERIC(0x16)
 version 16
 byte-order littleEndian
 compression(id) none(0)
 header-length 156
 record-length 52
 record-version 5
 silk-version 2.1.0
 count-records 1353
 file-size 70512
 command-lines
 1 rwfilter --print-stat --proto=6 --pass=example.rwf
 in/2005/01/07/in-S0_20050107.01
$ rwfilter --aport=25 example.rwf --pass=example2.rwf --fail=example2_fail.rwf
$ rwfileinfo example2.rwf
example2.rwf:
 format(id) FT_RWGENERIC(0x16)
 version 16
 byte-order littleEndian
 compression(id) none(0)
 header-length 208
 record-length 52
 record-version 5
 silk-version 2.1.0
 count-records 95
 file-size 5148
 command-lines
 1 rwfilter --print-stat --proto=6 --pass=example.rwf
 in/2005/01/07/in-S0_20050107.01
 2 rwfilter --aport=25 --pass=example2.rwf
 --fail=example2_fail.rwf example.rwf

The fields reported by rwfileinfo are as follows:
	
example2.rwf

	
The first line of every rwfileinfo dump is the name of the file.

	
format(id)

	
SiLK files are maintained in a number of different
 optimized formats; the format value is a C macro describing the
 type of the file, followed by the hexadecimal ID of that type.

	
version

	
The version of the file format.

	
byte-order

	
The order in which bytes are stored on disk; SiLK
 maintains distinct little- and big-endian formats for faster reading.

	
compression(id)

	
Whether the file is natively compressed, again for
 faster reading.

	
header-length

	
The size of the file header; a SiLK file with no
 records will be just the size of the header-length.

	
record-length

	
The size of individual file records. This value
 will be 1 if records are variable length.

	
record-version

	
The version of the records (note that record versions are
 distinct from file versions and SiLK versions).

	
silk-version

	
The version of the SiLK suite used to create the file.

	
count-records

	
The number of records in the file.

	
file-size

	
The total size of the file; if the file is uncompressed,
 this value should be equivalent to the header length added to the
 product of the record length and record count.

	
command-lines

	
A record of the SiLK commands used to create the file.

Example 5-13 shows how to use the --note-add command.
Example 5-13. Using --note-add
$ rwfilter --aport=22 example.rwf --note-add='Filtering ssh' --pass=ex2.rwf
$ rwfileinfo ex2.rwf
ex2.rwf:
 format(id) FT_RWGENERIC(0x16)
 version 16
 byte-order littleEndian
 compression(id) none(0)
 header-length 260
 record-length 52
 record-version 5
 silk-version 2.1.0
 count-records 10
 file-size 780
 command-lines
 1 rwfilter --print-stat --proto=6 --pass=example.rwf
 in/2005/01/07/in-S0_20050107.01
 2 rwfilter --aport=22 --note-add=Filtering ssh
 --pass=ex2.rwf example.rwf
 annotations
 1 Filtering ssh

Combining Information Flows: rwcount

rwcount can produce time series data from the output of
an rwfilter command. It works by placing counts of bytes, packets, and flow
records into fixed-duration bins, which are equally
sized time periods specified by the user. rwcount
is a relatively straightforward application. Most of its complexity
comes from relating the flows, which themselves have a duration, to
the bins.
The simplest invocation of rwcount is shown in Example 5-14. The
first thing to notice is the use of the --bin-size option. In this
example, the bins are half an hour, or 1,800 seconds. If --bin-size
isn’t specified, rwcount will default to 30-second bins. Bin sizes
don’t have to be integers; floating-point specifications with a
resolution down to the millisecond are acceptable for people who
like lots of bins in their output.
Example 5-14. Simple rwcount invocation
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
 rwcount --bin-size=1800
 Date| Records| Bytes| Packets|
2005/01/07T01:00:00| 257.58| 42827381.72| 248724.14|
2005/01/07T01:30:00| 1589.61| 211453506.60| 1438751.93|
2005/01/07T02:00:00| 171.81| 147824612.67| 1043011.93|

As Example 5-14 shows, rwcount outputs four columns: a date column
in SiLK’s standard date format (YYYY/MM/DDTHH:MM:SS), followed by record,
byte, and packet columns. The floating-point values are a function of
rwcount interpolating how much traffic should be in each bin;
rwcount calls this a load scheme.
The load scheme is an attempt by rwcount to approximate how much of
a flow took place over the period specified by the bins. In the
default load scheme, rwcount splits each flow proportionally across
all the bins during which the flow was taking place. For example, if
a flow takes place from 00:04:00 to 00:11:00, and bins are five
minutes long, 1/7 of the flow will be added to the first
(00:00:00-00:04:59) bin, 5/7 to the second bin (00:05:00-00:09:59),
and 1/7 to the third (00:10:00-00:14:59) bin. rwcount takes an
integer parameter in the --load-scheme option, with the following
results:
	

0

	

Split the traffic evenly across all bins covered. In the previous example, the flow would be split into thirds, and a third added to each bin.

	

1

	

Add the entire flow to the first bin covered by the flow. In the previous example, 00:00:00-00:04:59.

	

2

	

Add the entire flow to the last bin covered by the flow. In the previous example, 00:10:00-00:14:59.

	

3

	

Add the entire flow to the middle bin covered by the flow. In the previous example, 00:05:00-00:09:59.

	

4

	

The default load scheme.

rwcount uses the flow data provided to guess which time bins are
required, but sometimes you have to explicitly specify the time,
especially when coordinating multiple files. This can be done using
the --start-epoch and --end-epoch options to specify starting and
ending bin times. Note that these parameters can use the epoch time
or yyyy/mm/dd:HH:MM:SS format. rwcount also has an option to print
dates using epoch time: the --epoch-slots option.
The --skip-zero option (see Example 5-15) is one of a number of output format options.
Normally, rwcount prints every empty bin it has allocated, but
--skip-zero causes empty bins to be omitted from the output. In
addition, rwcount supports many of the output options mentioned for
rwcut: --no-titles, --no-columns, --column-separator,
--no-final-delimter, and --delimited.
Example 5-15. Using epoch slots and the --skip-zero option
rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
 rwcount --bin-size=1800.00 --epoch
 Date| Records| Bytes| Packets|
 1105059600| 257.58| 42827381.72| 248724.14|
 1105061400| 1589.61| 211453506.60| 1438751.93|
 1105063200| 171.81| 147824612.67| 1043011.93|
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
 rwcount --bin-size=1800.00
 --epoch --start-epoch=1105057800
 Date| Records| Bytes| Packets|
 1105057800| 0.00| 0.00| 0.00|
 1105059600| 257.58| 42827381.72| 248724.14|
 1105061400| 1589.61| 211453506.60| 1438751.93|
 1105063200| 171.81| 147824612.67| 1043011.93|
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
 rwcount --bin-size=1800.00
 --epoch --start-epoch=1105056000
 Date| Records| Bytes| Packets|
 1105056000| 0.00| 0.00| 0.00|
 1105057800| 0.00| 0.00| 0.00|
 1105059600| 257.58| 42827381.72| 248724.14|
 1105061400| 1589.61| 211453506.60| 1438751.93|
 1105063200| 171.81| 147824612.67| 1043011.93|
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
 rwcount --bin-size=1800.00
 --epoch --start-epoch=1105056000 --skip-zero
 Date| Records| Bytes| Packets|
 1105059600| 257.58| 42827381.72| 248724.14|
 1105061400| 1589.61| 211453506.60| 1438751.93|
 1105063200| 171.81| 147824612.67| 1043011.93|

rwset and IP Sets

IP sets are SiLK’s most powerful capability, and something that
distinguishes the toolkit from most other analytical tools. An IP set
is a binary representation of an arbitrary collection of IP addresses.
IP sets can be created from text files, from SiLK data, or by using other
binary SiLK structures.
The easiest way to start with IP sets is to create one, as in Example 5-16.
Example 5-16. Creating IP sets with rwset
$ rwfilter in/2005/01/07/in-S0_20050107.01 --all=stdout |
 rwset --sip-file=sip.set --dip-file=dip.set
$ ls -l *.set
-rw-r--r-- 1 mcollins staff 580 Jan 10 01:06 dip.set
-rw-r--r-- 1 mcollins staff 15088 Jan 10 01:06 sip.set
$ rwsetcat sip.set | head -5
0.0.0.0
32.16.40.178
32.24.41.181
32.24.215.49
32.30.13.177
$ rwfileinfo sip.set
sip.set:
 format(id) FT_IPSET(0x1d)
 version 16
 byte-order littleEndian
 compression(id) none(0)
 header-length 76
 record-length 1
 record-version 2
 silk-version 2.1.0
 count-records 15012
 file-size 15088
 command-lines
 1 rwset --sip-file=sip.set --dip-file=dip.set

rwset takes flow records and produces up to four output files. The
file specified with --sip-file will contain source IP addresses from
the flow, --dip-file will contain destination addresses,
--any-file will contain source and destination IP addresses, and
nhip-file will contain next hop addresses. The output is binary and
read with rwsetcat, and as with all SiLK files, the file can be examined
using rwfileinfo.
The power of IP sets comes when they’re combined with rwfilter.
rwfilter has eight commands that accept IP sets (--sipset,
--dipset, --nhipset, --anyset, and their negations).
Sets are explicitly designed so rwfilter can rapidly query using
them, enabling a variety of useful queries, as seen in Example 5-17.
Example 5-17. Set manipulation and response
$ # First, we create IP sets; I use aport=123 (NTP on UDP) to filter down
$ # to a reasonable set of addresses. NTP clients and servers use the same
$ # port.
$ rwfilter in/2005/01/07/in-S0_20050107.01 --pass=stdout --aport=123 |
 rwset --sip-file=sip.set --dip-file=dip.set
$ # Now, let's see how many IP addresses are created
$ rwsetcat --count-ip sip.set
15
$ # Generating output using rwfilter; note the use of the --dipset file as the
$ # sip set; this means that I'm now looking for messages that responded to
$ # these addresses. This means that I've seen ntp going to and from the
$ # address, meaning it's likely to be a legitimate speaker, as opposed to a
$ # scan on port 123.
$ rwfilter out/2005/01/07/out-S0_20050107.01 --dipset=sip.set --pass=stdout
 --aport=123 | rwcut | head -5
 sIP| dIP|sPort|dPort|pro| packets| bytes| \
flags| sTime| dur| eTime|sen|
 128.3.23.152| 56.7.90.229| 123| 123| 17| 1| 76| \
 | 2005/01/07T01:10:00.520| 0.083|2005/01/07T01:10:00.603| ?|
 128.3.23.152| 192.41.221.11| 123| 123| 17| 1| 76| \
 | 2005/01/07T01:10:15.519| 0.000|2005/01/07T01:10:15.519| ?|
 128.3.23.231| 87.221.134.185| 123| 123| 17| 1| 76| \
 | 2005/01/07T01:24:46.251| 0.005|2005/01/07T01:24:46.256| ?|
 128.3.26.152| 58.243.214.183| 123|10123| 17| 1| 76| \
 | 2005/01/07T01:27:08.854| 0.000|2005/01/07T01:27:08.854| ?|
$ # Let's look at statistics; using the same file, I look at the hosts
$ # that responded
$ rwfilter out/2005/01/07/out-S0_20050107.01 --dipset=sip.set --aport=123
 --print-stat
Files 1. Read 12393. Pass 21. Fail 12372.
$ # Now I look at everyone else; not-dipset means that I'm looking at everything
$ # on port 123 that doesn't go to these addresses.
$ rwfilter out/2005/01/07/out-S0_20050107.01 --not-dipset=sip.set --aport=123
 --print-stat
Files 1. Read 12393. Pass 337. Fail 12056.

Sets can also be generated by hand using rwsetbuild, which takes
text input and produces a set file as the output. The rwsetbuild
specification takes any of the IP address specifications used by the
--saddress option in rwfilter: literal addresses, integers, ranges
within dotted quads, and netmasks. Example 5-18 demonstrates this.
Example 5-18. Building a set using rwsetbuild
$ cat > setsample.txt
Comments in set files are prefaced with a hashmark
Literal address
255.230.1.1
Note that I'm putting addresses in some semi-random order; the output
will be ordered.
111.2.3-4.1-2
Netmask
22.11.1.128/30
^D
$ rwsetbuild setsample.txt setsample.set
$ rwsetcat --print-ip setsample.set
22.11.1.128
22.11.1.129
22.11.1.130
22.11.1.132
111.2.3.1
111.2.3.2
111.2.4.1
111.2.4.2
255.230.1.1

Sets can also be manipulated using the rwsettool command, which
provides a variety of mechanisms for adding and removing sets.
rwsettool supports four manipulations:
	
--union

	
Creates a set that includes any address that appears in any of the sets.

	
--intersect

	
Creates a set that includes only addresses that appear in all the sets specified.

	
--difference

	
Removes addresses in the latter sets from the first set.

	
--sample

	
Randomly samples a set to produce a subset.

rwsettool is generally invoked using an output path
(--output=_file_), but if nothing is specified, it will dump to
stdout. As with rwfilter, rwsettool output is binary, so a pure
terminal dump triggers an error. Example 5-19 shows a manipulation with rwsettool.
Example 5-19. Set manipulation with rwsettool
$ rm setsample2.set
$ cat > setsample2.txt
Build a set that covers our original setsample file to
see what happens with various functions
22.11.1.128/29
$ rwsetbuild setsample2.txt setsample2.set
$ rwsettool --union setsample.set setsample2.set | rwsetcat
22.11.1.128
22.11.1.129
22.11.1.130
22.11.1.131
22.11.1.132
22.11.1.133
22.11.1.134
22.11.1.135
111.2.3.1
111.2.3.2
111.2.4.1
111.2.4.2
255.230.1.1
$ rwsettool --intersect setsample.set setsample2.set | rwsetcat
22.11.1.128
22.11.1.129
22.11.1.130
22.11.1.131
$ rwsettool --difference setsample.set setsample2.set | rwsetcat
111.2.3.1
111.2.3.2
111.2.4.1
111.2.4.2
255.230.1.1

rwuniq

rwuniq is the utility knife of counting tools. It allows an
analyst to specify a key containing one or more fields, and will then
count a number of different values, including total number of bytes,
packets, flow records, or unique IP addresses matching the key.
rwuniq’s default configuration counts the number of flows that
occurred for a particular key. The key itself must be specified using
the --field option, which accepts the field specifiers in
Table 5-1. rwuniq can accept multiple fields, and the key will
be generated in the order specified in the command line. Example 5-20 demonstrates the key features of the --field option. As it shows, field order in the option affects field
ordering in the output.
Example 5-20. Various field specifiers using rwuniq
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
 rwuniq --field=sip,proto | head -4
 sIP|pro| Records|
 131.243.142.85| 17| 1|
131.243.141.187| 17| 6|
 128.3.23.41| 17| 4|
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
 rwuniq --field=1,2 | head -4
 sIP| dIP| Records|
 128.3.174.158| 128.3.23.44| 2|
 128.3.191.1|239.255.255.253| 8|
 128.3.161.98|131.243.163.206| 1|
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
 rwuniq --field=sip,sport | head -4
 sIP|sPort| Records|
 131.243.63.143|53504| 1|
 131.243.219.52|61506| 1|
131.243.163.206| 1032| 1|
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
 rwuniq --field=sport,sip | head -4
sPort| sIP| Records|
55876| 131.243.61.70| 1|
51864|131.243.103.106| 1|
50955| 131.243.103.13| 1|

Also, note that when fields’ orders are changed,
the order in which records are output also changes. rwuniq does
not guarantee record ordering by default; sorting can be ordered by
using the --sort-output option.
rwuniq provides a number of count switches that instruct it to count
additional values (see Example 5-21). The counting switches are --bytes, --packets,
--flows, --sip-distinct, and --dip-distinct. Each of these fields can
be used on their own, or by specifying a threshold (e.g., --bytes,
--bytes=10, or --bytes=10-100). A single-value threshold
(--bytes=10) provides a minimum, while a two-value threshold
(--bytes=10-100) provides a range with a minimum and maximum. If
you don’t specify an argument, then the switch returns all values.
Example 5-21. Field spec with rwuniq
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
 rwuniq --field=sport,sip --bytes --packets | head -5
sPort| sIP| Bytes| Packets|
55876| 131.243.61.70| 308| 4|
51864|131.243.103.106| 308| 4|
50955| 131.243.103.13| 308| 4|
56568| 128.3.212.145| 360| 5|
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
 rwuniq --field=sport,sip --bytes --packets=8 | head -5
sPort| sIP| Bytes| Packets|
 0| 131.243.30.224| 2520| 30|
 959| 128.3.215.60| 876| 19|
 2315|131.243.124.237| 608| 8|
56838| 131.243.61.187| 616| 8|
$ rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
 rwuniq --field=sport,sip --bytes --packets=8-20 | head -5
sPort| sIP| Bytes| Packets|
 959| 128.3.215.60| 876| 19|
 2315|131.243.124.237| 608| 8|
56838| 131.243.61.187| 616| 8|
 514| 128.3.97.166| 2233| 20|

rwbag

The last set of tools to discuss in this chapter are bag tools. A
bag is a form of storage structure. It contains a key (which can be
an IP address, a port, the protocol, or an interface index), and a
count of values for that key. Bags can be created from scratch or
from flow data using the rwbag command (see Example 5-22).
Example 5-22. An rwbag call, creating an IP address bag
$rwfilter out/2005/01/07/out-S0_20050107.01 --all=stdout |
 rwbag --sip-bytes=sip_bytes.bag
$rwbagcat sip_bytes.bag | head -5
 128.3.2.16| 10026403|
 128.3.2.46| 27946|
 128.3.2.96| 218605|
 128.3.2.98| 636|
 128.3.2.102| 1568|

Like sets, bags are a second-order binary structure for SiLK, meaning
that they have their own toolkit (rwbagcat, rwbagtool, and
rwbagbuild), the data is binary (so it can’t be read with cat or a
text editor), and they can be derived from flow data or built from a
datafile.
The basic bag generation tool is rwbag, which as seen in Example 5-22, takes flow data and produces a bag file from it.
rwbag can generate 27 types of bags, simultaneously if you’re so
inclined. These 27 types comprise three types of counting (bytes,
packets, and flows), and nine types of key (sip, dip, sport, dport,
proto, sensor, input, output, nhip). Combine the key and the counting
type, and you have a switch that will create a bag. For example, to
count all packets from source and destination IP addresses,
call rwbag --sip-packets=b1.bag --dip-packets=b2.bag.

Advanced SiLK Facilities

In this section, we discuss more advanced SiLK facilities, in
particular, the use of PMAPs and the collection and conversion of SiLK
data.
pmaps

A SiLK prefix map (PMAP) is a binary file that associates specific
subnetworks (prefixes) with tags. PMAPs are used to record various
mappings of a network, such as whether a network belongs to a
particular organization or ASN, or country code lookup. Using a source
such as GeoIP, you can build a PMAP
that associates IP addresses with their country of origin.
The SiLK tool suite expects some basic PMAPs:
	
address_types.pmap

	
Describes an address’s type,
 conventionally indicating whether the address is inside or
 outside of the network you are monitoring. Specify the default
 filesystem location for this PMAP using the SILK_ADDRESS_TYPES
 environmental variable.

	
country_codes.pmap

	
This PMAP describes the country code for an
 address. Specify the default location for this PMAP using
 the SILK_COUNTRY_CODES environmental variable.

PMAPs, like set files, can be created from text. Example 5-23 shows a
simple PMAP file. Note the following attributes:
	
The set of labels at the beginning. PMAPs do not store strings, but enumerable types identified by an integer. This enumeration is defined using the labels. You can see that the PMAP in Example 5-23, for instance, stores a 3 to mark normal traffic.

	
The default key. Any value that doesn’t match one of the network blocks listed in the map is given the default value.

	
The actual declarations. Each declaration consists of a network specification, such 192.168.0.0/16, followed by a label.

Example 5-23. PMAP Input
This is a simple PMAP file that tracks some of the standard RFC 1918
reserved addresses
#
First we create some labels
label 0 1918-reserved
label 1 multicast
label 2 future
label 3 normal
#
Specify the mode; this must be either ip or proto-port. ip in this case
refers to v4 addresses
#
mode ip
#
Everything otherwise not specified is normal
default normal
Now the maps
192.168.0.0/16 1918-reserved
10.0.0.0/8 1918-reserved
172.16.0.0/12 1918-reserved
224.0.0.0/4 multicast
240.0.0.0/4 future

Once you’ve created a text representations of the PMAP, you can
compile the binary PMAP file using the rwpmapbuild command.
rwpmapbuild has two mandatory arguments: an input filename, with
the file in the text format described above, and a name for the output
file. As with most SiLK commands, rwpmapbuild will not overwrite an
existing output file. For example:
$ rwpmapbuild -i reserve.txt -o reserve.pmap
$ ls -l reserve.*
 -rw-r--r-- 1 mcollins staff 406 May 27 17:16 reserve.pmap
 -rw-r--r-- 1 mcollins staff 526 May 27 17:00 reserve.txt
Once a PMAP file is created, it can be added to rwfilter and rwcut
using the pmap-file argument. Specifying the use of a PMAP file
effectively creates a new set of fields in the filter and cut
commands; since PMAP files are explicitly related to IP addresses,
these new fields are bound to IP addresses.
Consider Example 5-24, which uses rwcut. In this example,
the --pmap-file argument is colon-delimited; the value before the
colon (reserve in the example) is a label, and the value after is a
filename. rwcut binds the term reserve to the pmaps for the source
and destination IP address, creating two new fields: src-reserve (for
the mapping of the source address to the PMAP) and dst-reserve (for
the mapping of the destination address) to the PMAP.
Example 5-24. Creating the src-reserve and dst-reserve fields
$ rwcut --pmap-file=reserve:reserve.pmap --fields=1-4,src-reserve,dst-reserve
 traceroute.rwf | head -5
 sIP| dIP|sPort|dPort| src-reserve| dst-reserve|
 192.168.1.12| 192.168.1.1|65428| 53| 1918-reserved| 1918-reserved|
 192.168.1.12| 192.168.1.1|56126| 53| 1918-reserved| 1918-reserved|
 192.168.1.12| 192.168.1.1|52055| 53| 1918-reserved| 1918-reserved|
 192.168.1.1| 92.168.1.12| 53|56126| 1918-reserved| 1918-reserved|

$ # Using the pmap in filter; note that rwcut is not using the pmap
$ rwfilter --pmap-file=reserve:reserve.pmap --pass=stdout traceroute.rwf
 --pmap-src-reserve=1918-reserved | rwcut --field=1-5
 | head -5
sIP| dIP|sPort|dPort|pro|
192.168.1.12| 192.168.1.1|65428| 53| 17|
192.168.1.12| 192.168.1.1|56126| 53| 17|
192.168.1.12| 192.168.1.1|52055| 53| 17|
192.168.1.1| 192.168.1.12| 53|56126| 17|

Collecting SiLK Data

There are a number of different tools for collecting data and pushing
it into SiLK. The major ones are YAF, which is a flow collector,
and rwptoflow and rwtuc, which convert other data into SiLK format.
YAF

Yet Another Flowmeter (YAF) is the reference implementation for the
IETF IPFIX standard, and is the standard flow collection software for
the SiLK toolkit. YAF can read pcap data from files or capture
packets directly, which it then assembles into flow records and
exports to disk.
It has online documentation. The tool itself can be
entirely configured using command-line options, but the number of
options is fairly daunting. At its simplest, a YAF command looks
like this:
$ sudo yaf -i en1 --live=pcap -out /tmp/yaf/yaf
This reads data from interface en1 and drops it to the file in the
temporary directory. Additional options control how data is read and
how it is converted into flow and output format
yaf output is specified via the --out switch in tandem with the
--ipfix and --rotate switches. By default, --out outputs to a
file; in the example above, the file is /tmp/yaf/yaf, but any valid
filename will do (if --out is set to -, then yaf will output to
stdout).
When --out is specified with --rotate, yaf writes the output to
files that are rotated by a delay specified by the --rotate switch
(e.g., --rotate 3600 will update files every hour). In this mode,
yaf uses the name specified by --out as a base filename, and
attaches a suffix specified in YYYYMMDDhhmmss format, along with a
decimal serial number and then a .yaf file extension.
When yaf is specified with the --ipfix switch, it communicates
IPFIX data to a daemon located elsewhere on the network. In this case
(the most complicated option), --ipfix takes a transport protocol as
an argument, while --out takes the IP address of the host. The
additional --ipfix-port switch takes a port number when needed.
Consult the documentation for more information.
The most important options are:
	
--live

	
Specifies the type of data being read; possible
 values formats are pcap, dag, or napatech. dag and
 napatech refer to proprietary packet capture systems, so
 unless you have that hardware, just set --live to pcap.

	
--filter

	
Applies a BPF filter to the pcap data.

	
--out

	
The output specifier, discussed above. The output
 specifier will be a file, a file prefix, or an IP address
 depending on whatever other switches are used.

	
--ipfix

	
Takes a transport protocol (tcp, udp, sctp, or
 spread) as an argument, and specifies that output is IPFIX
 transported over the network. Consult the yaf
 documentation for more information.

	
--ipfix-port

	
Used only if --ipfix is specified. It
 specifies the port that the IPFIX data is sent to.

	
--rotate

	
Used only with files. If present, the filename
 in --out is used as a prefix, and files are written with a
 timestamp appended to them. The --rotate option takes an
 argument and the number of seconds before moving to a new file.

	
--silk

	
Specifies output that can be parsed by SiLK’s
 rwflowpack tools.

	
--idle-timeout

	
Specifies the idle timeout for flows in
 seconds. If a flow is present in the flow cache and isn’t
 active, it’s flushed as soon as it’s been inactive for the
 duration of the idle timeout. Defaults to 300 seconds (five
 minutes).

	
--active-timeout

	
Specifies the active timeout for flows;
 the active timeout is the maximum amount of time an active
 flow will be stored in cache before being flushed. Defaults
 to 30 minutes (1,800 seconds). Note that the active timeout
 determines the maximum observed duration of collected flows.

YAF has many more options, but these are the basic ones to consider
when configuring flows. Consult the YAF manpage for more details.
Cookbook: YAF
YAF has a ton of options, and how they operate together can be a bit
confusing. Here are some examples of YAF invocations:
Read yaf from an interface (en1) and write to a file on disk:
$sudo yaf -i en1 --live=pcap -o /tmp/yaf/yaf
Rotate the files every five minutes:
$sudo yaf -i en1 --rotate 300 --live=pcap -o /tmp/yaf/yaf
Read a file from disk and convert it:
$yaf <example.pcap >yafout
Run a BPF filter on the data, in this case for TCP data only
$ sudo yaf -i en1 --rotate 300 --live=pcap -o /tmp/yaf/yaf --filter="tcp"
Export the YAF data over IPFIX to address 128.2.14.11:3059
$ sudo yaf --live pcap --in eth1 --out 128.2.14.11 --ipfix-port=3059
 --ipfix tcp

rwptoflow

SiLK uses its own compact binary formats to represent NetFlow data
that tools such as rwcut and rwcount present in a human-readable
form. There are times when an analyst needs to convert other data
into SiLK format, such as taking packet captures from IDS alerts and
converting it into a format where IP set filtering can be done on the
data.
The go-to tool for this task is rwptoflow. rwptoflow is a packet
data to flow conversion tool. It does not aggregate flows; instead,
each flow generated by rwptoflow is converted into a one-packet flow
record. The resulting file can then be manipulated by the SiLK suite
as any other flow file.
rwptoflow is invoked relatively simply with an input filename as its
argument. In Example 5-25, the pcap data from a traceroute
is converted into flow data using rwptoflow. The resulting raw file
is then read using rwcut and you can see the correspondence between
the traceroute records and the resulting flow records.
Example 5-25. Converting pcap data with rwptoflow
$ tcpdump -v -n -r traceroute.pcap | head -6
reading from file traceroute.pcap, link-type EN10MB (Ethernet)
21:06:50.559146 IP (tos 0x0, ttl 255, id 8010, offset 0, flags [none],
 proto UDP (17), length 64)
 192.168.1.12.65428 > 192.168.1.1.53: 63077+ A? jaws.oscar.aol.com. (36)
21:06:50.559157 IP (tos 0x0, ttl 255, id 37467, offset 0, flags [none],
 proto UDP (17), length 86)
 192.168.1.12.56126 > 192.168.1.1.53: 30980+ PTR?
 dr._dns-sd._udp.0.1.168.192.in-addr.arpa. (58)
21:06:50.559158 IP (tos 0x0, ttl 255, id 2942, offset 0, flags [none],
 proto UDP (17), length 66)
 192.168.1.12.52055 > 192.168.1.1.53: 990+ PTR? db._dns-sd._udp.home. (38)
$ rwptoflow traceroute.pcap > traceroute.rwf
$ rwcut --num-recs=3 --fields=1-5 traceroute.rwf
 sIP| dIP|sPort|dPort|pro|
 192.168.1.12| 192.168.1.1|65428| 53| 17|
 192.168.1.12| 192.168.1.1|56126| 53| 17|
 192.168.1.12| 192.168.1.1|52055| 53| 17|

rwtuc

When correlating data between different sources, you will occasionally
want to convert it into SiLK’s format. rwtuc is the default tool
for converting data into SiLK representation, as it works with
columnar text files. Using rwtuc, you can convert IDS alerts and
other data into SiLK data for further manipulations.
The easiest way to invoke rwtuc is to use it as an inverse of
rwcut. Create a file with columnar entries and make sure that the
titles match those used by rwcut:
$cat rwtuc_sample.txt
sIP |dIP |proto
128.2.11.4 | 29.3.11.4 | 6
11.8.3.15 | 9.12.1.4 | 17
$ rwtuc < rwtuc_sample.txt > rwtuc_sample.rwf
$ rwcut rwtuc_sample.rwf --field=1-6
 sIP| dIP|sPort|dPort|pro| packets|
 128.2.11.4| 29.3.11.4| 0| 0| 6| 1|
 11.8.3.15| 9.12.1.4| 0| 0| 17| 1|
As the following fragment shows, rwtuc will read the columns, use the headers
to determine column content, and stuff any unspecified fields with a
default value if no column is provided. rwtuc can also take column
specifications at the command line using the --fields and
--column-separator switches, as so:
$cat rwtuc_sample2.txt
128.2.11.4 x 29.3.11.4 x 6 x 5
7.3.1.1 x 128.2.11.4 x 17 x 3
$ rwtuc --fields=sip,dip,proto,packets --column-sep=x < rwtuc_sample2.txt
 > rwtuc_sample2.rwf
$ rwcut --fields=1-7 rwtuc_sample2.rwf
 sIP| dIP|sPort|dPort|pro| packets| bytes|
 128.2.11.4| 29.3.11.4| 0| 0| 6| 5| 5|
 7.3.1.1| 128.2.11.4| 0| 0| 17| 3| 3|
SiLK’s binary format requires values for every field, which means that
rwtuc makes a best guess for field values that it doesn’t have. For
instance, the previous example specifies packets as a field but not
bytes, so rwtuc just defines the packet value to be identical to the
byte value.
If there exists a common default value (e.g., all traffic has
the same protocol), this value can be defined using one of a number of
field-stuffing options in rwtuc. These options are identical to
the field filtering options in rwfilter, except they only take
single values. For example, --proto=17 sets the protocol of
every entry to 17.
In the fragment below, we use the field stuffing command --bytes=300
to set a value of 300 bytes for every entry in rwtuc_sample2.txt:
$ rwtuc --fields=sip,dip,proto,packets --column-sep=x --bytes=300 <
 rwtuc_sample2.txt > rwtuc_sample2.rwf
$ rwcut --fields=1-7 rwtuc_sample2.rwf
 sIP| dIP|sPort|dPort|pro| packets| bytes|
 128.2.11.4| 29.3.11.4| 0| 0| 6| 5| 300|
 7.3.1.1| 128.2.11.4| 0| 0| 17| 3| 300|
The resulting RWF file will contain a value of 300 bytes, even though
the byte value is not in the original text file. The packet values,
which are specified in the file, are set to whatever was specified
there.

Further Reading

	
Time Shimeall, Sid Faber, Markus DeShon, and Drew Kompanek, “Using SiLK for Network Traffic Analysis,” Software Engineering Institute.

[5] You’ll
notice that there are two datasets, one with scans and one without.
To understand why, read Pang et al., “The Devil and Packet Trace
Anonymization,” ACM CCR 36(1), January 2006.

Chapter 6. An Introduction to R for Security Analysts

R is an open source statistical analysis package developed initially
by Ross Ihaka and Robert Gentleman of the University of Auckland. R
was designed primarily by statisticians and data analysts, and is
related to commercial statistical packages such as S and SPSS. R is a
toolkit for exploratory data analysis; it provides statistical
modeling and data manipulation capabilities, visualization, and a full-featured programming language.
R fulfills a particular utility knife-like role for analysis. Analytic
work requires some tool for creating and manipulating small ad hoc
databases that summarize raw data. For example, hour summaries of
traffic volume from a particular host broken down by services. These
tables are more complex than the raw data but are not intended for
final publication—they still require more analysis. Historically,
Microsoft Excel has been the workhorse application for this type of
analysis. It provides numeric analysis, graphing, and a simple columnar
view of data that can be filtered, sorted, and ordered. I’ve seen
analysts trade Excel files around like they were scraps of paper.
I switched from Excel to R because I found it to be a superior product for
large-scale numerical analysis. The graphical nature of Excel makes
it clunky when you deal with significantly sized datasets. I find R’s
table manipulation capabilities to be superior, it provides provenance
in the form of saveable and sharable workspaces, the visualization
capabilities are powerful, and the presence of a full-featured
scripting language enables rapid automation. Much of what is
discussed in this chapter can be done in Excel, but if you can invest
the time to learn R, I believe you’ll find it well spent.
The first half of this chapter focus on accessing and manipulating
data using R’s programming environment. The second half focuses on
the process of statistical testing using R.
Installation and Setup

R is a well-maintained open source project.
The Comprehensive R Archive Network (CRAN)
maintains current binaries for Windows, Mac OS X, and Linux systems,
an R package repository, and extensive documentation.
The easiest way to install R is to grab the appropriate binary (at the
top of the home page). R is also available for every major package
manager. For the rest of this chapter, I am going to assume you’re
using R within its own graphical interface.
There are a number of other tools available for working with R,
depending on the tools and environments you’re comfortable with.
RStudio is an integrated development
environment providing data, project, and task management tools in a
more traditional IDE framework. For Emacs users, Emacs Speaks
Statistics or ESS-mode provides an
interactive environment.

Basics of the Language

This section is a crash course in R’s language. R is a rich language
with a surface I’m barely scratching. However, at the end of this
section, you’ll be able to write a simple R program, run it at the
command line, and save it as a library.
The R Prompt

Starting R will present you with a window and command prompt. An
example R console is shown in Figure 6-1. As this figure shows,
the console is dominated by a large text window and a series of
buttons at the top that provide supplemental functions. Note the two
text fields under the button row. The first shows the current working
directory and the second is the help function. R is very well
documented, so get used to using that box.
[image: The R console]

Figure 6-1. The R console

In Figure 6-1, I’ve typed a couple of simple commands, recreated here:
> s<-'Hi There'
> x<- 3 + 11 + (3 * log(exp(2)))
> print(s)
[1] "Hi There"
> print(x)
[1] 20
The command line prompt for R is >; after that, you can enter
commands by hand. If a command is partly completed (for example, by
opening but not closing parentheses), the next prompt will be a
sign, and continue until closure.
> s<- 3 * (
+ 5 + 11
+ + 2
+)
> s
[1] 54
Note that when R returns a value (for example, the output of s in
the previous example), it prints a [1] in square brackets. The value
in brackets is an array index; if an array spreads over several lines,
the relevant index will be printed at the beginning of each line.
> s<-seq(1,20)
> s
 [1] 1 2 3 4 5 6 7 8 9 10 11 12
[13] 13 14 15 16 17 18 19 20
Help can be accessed by using help(term) or ?term. Search
through help via help.search() or ??.
To quit R, use the switch icon or the appropriate quit command (Command-Q
or Ctrl-Q) for the operating system. If you’re using pure
command-line R (i.e., without the graphical interface), you can end
the session using Ctrl-D or typing q() at the prompt.
When R terminates, it asks whether you want to save the workspace.
Workspace files can be reloaded after a session to continue whatever
work that was being done at the time of termination.

R Variables

R supports a number of different data types, including scalar integers,
character data (strings), Booleans and floating-point values, vectors,
matrices, and lists. The scalar types, as shown in the following
example, can be assigned using the ← (“gets”), =, and → operators.
R overloads some complicated scoping into its assignment operators,
and for our purposes (and almost all R programming), R style guides
recommend using the ← operator instead of the = sign.
> # Assign some value directly
> a<-1
> b<-1.0
> c<-'A String'
> d<-T
> # We'll assign e to d
> e<-d
> e
[1] TRUE
> d
[1] TRUE
> # Now we we reassign d, and we see d changes but e remains the same.
> d<-2
> d
[1] 2
> e
[1] TRUE
An R vector is an ordered set of one or more values of the same
type: character, logical, or string. Vectors can be created using the
c function or any of a number of other functions. Vectors are the
most commonly used element in R: the scalar values we used earlier
were technically vectors of length 1.[6]
> # An example of an integer vector
> int.vec<-c(1,2,3,4,5)
> int.vec
[1] 1 2 3 4 5
> # Floating point numbers will be cast to integer, or integers to floats
> # as needed
> float.vec<-c(1,2.0,3)
> float.vec
[1] 1 2 3
> float.vec<-c(1,2.45,3)
> float.vec
[1] 1.00 2.45 3.00
> # Vectors can also be logical
> logical.vec<-c(T,F,F,T)
> logical.vec
[1] TRUE FALSE FALSE TRUE
> # They will be cast to integers if put into a numeric vector
> mixed.vec<-c(1,2,FALSE,TRUE)
> mixed.vec
[1] 1 2 0 1
> # Character vectors consist of one or more strings; note that a
> #string is a single element
> char.vec <- c("One","Two","Three")
> char.vec
[1] "One" "Two" "Three"
> # Length gives vector lengths
> length(int.vec)
[1] 5
> # Note that the character vector's length is the length of the total
> # number of strings, not the individual characters
> length(char.vec)
[1] 3
Note the length of the character vector: in R, strings are treated as
a single element regardless of the number of characters. There are
functions for accessing strings—nchar to get the length, and
substr and strsplit to extract elements from a string—but
individual character strings are not as directly accessible as they
are in Python.
R provides a number of functions for vector arithmetic. A vector can
be added to or multiplied by another vector; if they’re equally sized,
the result will be calculated on an element-by-element basis. If
one vector is smaller, it will be repeated to make a vector of equal size. (A
vector whose length is not a factor of the other vector will raise an
error.) This applies to single-element vectors as well: add a single
element to a longer vector and each element in the vector will be added to;
multiply and each element will be multiplied.
Vectors are indexable. Individual elements can be accessed using
square brackets, so v[k] is the kth element of v. Vectors also
support ranged slicing, such as v[a:b]. A negative index will
eliminate the indexed element from the vector, like in the following code block:
> # We start by creating a vector out of two others
> v1 <- c(1,2,3,4,5)
> v2 <- c(6,7,8,9,10)
> v3 <- c(v1,v2)
> v3
 [1] 1 2 3 4 5 6 7 8 9 10
> # Note that there's no nesting
> # Basic arithmetic - multiplication and addition
> 2 * v1
[1] 2 4 6 8 10
> 2 * v3
 [1] 2 4 6 8 10 12 14 16 18 20
> 1 + v1
[1] 2 3 4 5 6
> v1 * v2
Multiplication
[1] 6 14 24 36 50
Slicing a range
> v3[1:3]
[1] 1 2 3
This is identical to v3[1]
> v3[1:1]
[1] 1
> v3[2:4]
[1] 2 3 4
Reverse the range to reverse the vector
> v3[3:1]
[1] 3 2 1
Use negative numbers to cut out elements
> v3[-3]
[1] 1 2 4 5 6 7 8 9 10
> v3[-1:-3]
[1] 4 5 6 7 8 9 10
> # You can use logical vectors as selectors; selection returns anything where
> # the index is true
> v3[c(T,F)]
[1] 1 3 5 7 9
R can construct matrices out of vectors using the matrix function.
As with vectors, matrices can be added and multiplied (with
themselves, vectors, and other matrices), and selected and sliced using a
number of different approaches, like those shown here:
> # Matrices are constructed using the matrix commmand, as shown in the
> # basic form below. Note that columns are filled up first.
> s<-matrix(v3,nrow=2,ncol=5)
> s
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
> # Adding a single element
> s + 3
 [,1] [,2] [,3] [,4] [,5]
[1,] 4 6 8 10 12
[2,] 5 7 9 11 13
> # Multiplication
> s * 2
 [,1] [,2] [,3] [,4] [,5]
[1,] 2 6 10 14 18
[2,] 4 8 12 16 20
> # Multiplication by a matrix
> s * s
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 9 25 49 81
[2,] 4 16 36 64 100
> # Adding a vector, note that addition goes
> # through the columns first
> s + v3
 [,1] [,2] [,3] [,4] [,5]
[1,] 2 6 10 14 18
[2,] 4 8 12 16 20
> # Adding a smaller vector, note that
> # it loops over the matrix, column-first
> s + v1
 [,1] [,2] [,3] [,4] [,5]
[1,] 2 6 10 9 13
[2,] 4 8 7 11 15
> # Slicing; the use of the comma will strike most people as weird.
> # Before the commma are the rows, after the comma are the columns.
> # The result is returned as a vector, which is why the "column" is now
> # horizontal
> s[,1]
[1] 1 2
> s[1,]
[1] 1 3 5 7 9
> # Accesssing a single element
> s[1,1]
[1] 1
> # Now I'm accessing the 1st and 2nd column elements from the
> # first row; again, get a vector back
> s[1,1:2]
[1] 1 3
> # First and second row elements from the first column
> s[1:2,1]
[1] 1 2
> # Now I get a matrix back because I pull two vectors
> s[1:2,1:2]
 [,1] [,2]
[1,] 1 3
[2,] 2 4
> # Selection using booleans, the first value is the row I pull from
> s[c(T,F)]
[1] 1 3 5 7 9
> s[c(F,T)]
[1] 2 4 6 8 10
> # If I specify another vector, it'll pull out columns
> s[c(F,T),c(T,F,T,T,F)]
[1] 2 6 8
An R list is effectively a vector of vector elements, each of which
can be composed of its own lists. Lists, like matrices, are constructed with
their own special command. Lists can be sliced like a vector, although
individual elements are accessed using double brackets. Of more
interest, lists can be named; individual vectors can be assigned a
name and then accessed using the $ operator.
Review elements of earlier vectors
> v3
 [1] 1 2 3 4 5 6 7 8 9 10
> v4
[1] "Hi" "There" "Kids"
> # Create a list; note that we can add an arbitrary number of elements.
> # Each element added is a new index.
> list.a <- list(v3,v4,c('What','The'),11)
> # Dump the list; note the list indices in double brackets.
> list.a
[[1]]
 [1] 1 2 3 4 5 6 7 8 9 10

[[2]]
[1] "Hi" "There" "Kids"

[[3]]
[1] "What" "The"

[[4]]
[1] 11
> # Lists do not support vector arithmetic.
> list.a + 1
Error in list.a + 1 : non-numeric argument to binary operator
> # Individual elements can be examined via indexing. Single brackets
> # return a list.
> list.a[1]
[[1]]
 [1] 1 2 3 4 5 6 7 8 9 10
> # Double brackets return the element itself; note that the list index
> # (the [[1]]) isn't present here
> list_a[[1]]
 [1] 1 2 3 4 5 6 7 8 9 10
> # The single brackets returned a list, and the double brackets then returned
> # the first element in that single-element list.
> list_a[1][[1]]
 [1] 1 2 3 4 5 6 7 8 9 10
> # Access using double brackets, then a single bracket in the vector.
> list_a[[1]][1]
[1] 1
> list_a[[2]][2]
[1] "There"
> # We can modify the results.
> list_a[[2]][2] <- 'Wow'
> # Now we'll create a named list.
> list_b <- list(values=v1,rant=v2,miscellany=c(1,2,3,4,5,9,10))
> # The parameter names become the list element names, and the arguments
> # are the actual elements of the list.
> list_b
$values
[1] 1 2 3 4 5

$rant
[1] 6 7 8 9 10

$miscellany
[1] 1 2 3 4 5 9 10

> # Named elements are accessed using the dollar sign.
> list_b$miscellany
[1] 1 2 3 4 5 9 10
> # After accessing, you can use standard slicing.
> list_b$miscellany[2]
[1] 2
> # Note that the index and the name point to the same value.
> list_b[[3]]
[1] 1 2 3 4 5 9 10
Understanding list syntax is important for data frames, which we discuss in more depth later.

Writing Functions

R functions are created by binding the results of the function
command to a symbol, like so:
> add_elements <- function(a,b) a + b
> add_elements(2,3)
[1] 5
> simple_math <- function(x,y,z) {
+ t <- c(x,y)
+ z * t
+ }
Note the curly braces. In R, curly braces are used to hold multiple expressions, and return the final statement of those multiple expressions. Curly braces can be used without a function or anything else, as shown here:
> { 8 + 7
+ 9 + 2
+ c('hi','there')
+ }
[1] "hi" "there"
So, in simple_math, the results in the braces are evaluated
sequentially and the final result returned. The final result need not
have any relationship to the previous statements within the block. R
does have a return statement to control the termination and return
of a function, but the convention is not to use it if the results are
obvious.
As the examples show, function arguments are defined in the function
statement. Arguments can be given a default value by using the =
sign; any argument to which you assign a default value becomes
optional. Argument assignment can be done through order or by
explicitly using the argument name, as shown here:
Create a function with an optional argument
> test<-function(x,y=10) { x + y }
If the argument is not passed, R will use the default
> test(1)
[1] 11
> # Call both arguments and values are set positionally
> test(1,5)
[1] 6
> # The value can also be assigned using the argument name
> test(1,y=9)
[1] 10
> # For all variables
> test(x=3,y=3)
[1] 6
> # Names supercede position
> test(y=8,x=4)
[1] 12
> # A value without a default still must be assigned.
> test()
Error in x + y : 'x' is missing
R’s functional features allow you to treat functions as objects that
can be manipulated, evaluated, and applied as needed. Functions can be
passed to other functions as parameters, and by using the apply and
Reduce functions, can be used to support more complex evaluation.
> # Create a function to be called by another function
> inc.func<-function(x) { x + 1 }
> dual.func<-function(y) { y(2) }
> dual.func(inc.func)
[1] 3
> # R has a number of different apply functions based on input type
> # (matrix, list, vector) and output type.
> test.vec<-1:20
> test.vec
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
> # Run sapply on an anonymous function; note that the function isn't bound
> # to an object; it exists for the duration of the run. I could just as
> # easily call sapply(c,inc.func) to use the function inc.func defined above.
> sapply(test.vec,function(x) x+2)
 [1] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
> # Where sapply is the classic map function, Reduce is the classic fold/reduce
> # function, reducing a vector a single value. In this case, the function
> # passed adds a and b together, adding the integers 1 to 20 together yields 210
> # Note Reduce's capitalization
> Reduce(function(a,b) a+b,1:20)
[1] 210
A point about loops in R: R’s loops (particularly the for loop) are
notoriously slow. Many tasks that would be done with a for loop in
Python or C are done in R using a number of functional constructs.
sapply and Reduce are the frontend for this.

Conditionals and Iteration

The basic conditional statement in R is if…then…else, using
else if to indicate multiple statements. The if statement is itself
a function, and returns a value that can be evaluated.
> # A simple if/then which prints out a string
> if (a == b) print("Equivalent") else print("Not Equivalent")
[1] "Not Equivalent"
> # We could just return values directly
> if (a==b) "Equivalent" else "Not Equivalent"
[1] "Not Equivalent"
If/then is a function, so we can plug it into another function or an if/then
> if((if (a!=b) "Equivalent" else "Not Equivalent") == \
 "Not Equivalent") print("Really not equivalent")
> a<-45
> # Chain together multiple if/then statements using else if
> if (a == 5) "Equal to five" else if (a == 20) "Equal to twenty" \
 else if (a == 45) "Equal to forty five" else "Odd beastie"
[1] "Equal to forty five"
> a<-5
> if (a == 5) "Equal to five" else if (a == 20) "Equal to twenty" \
 else if (a == 45) "Equal to forty five" else "Odd beastie"
[1] "Equal to five"
> a<-97
> if (a == 5) "Equal to five" else if (a == 20) "Equal to twenty" \
 else if (a == 45) "Equal to forty five" else "Odd beastie"
[1] "Odd beastie"
R provides a switch statement as a compact alternative to multiple
if/then clauses. The switch statement uses positional arguments for
integer comparisons, and optional parameter assignments for text
comparison.
> # When switch takes a number as its first parameter, it returns the
> # argument with an index that corresponds to that number, so the following
> returns the second argument, "Is"
> switch(2,"This","Is","A","Test")
[1] "Is"
> proto<-'tcp'
> # If parameters are named, those text strings are used for matching
> switch(proto,tcp=6,udp=17,icmp=1)
[1] 6
> # The last parameter is the default argument
> proto<-'unknown'
> switch(proto, tcp=6,udp=17,icmp=1, -1)
[1] -1
> # To use a switch repeatedly, bind it to a function
> proto<-function(x) { switch(x, tcp=6,udp=17,icmp=1)}
> proto('tcp')
[1] 6
> proto('udp')
[1] 17
> proto('icmp')
[1] 1
R has three looping constructs: repeat, which provides infinite
loops by default; while, which does a conditional evaluation in each
loop; and for, which iterates over a vector. Internal loop
operations are controlled by break (which terminates the loop), and
next (which skips through an iteration), as seen here:
> # A repeat loop; note that repeat loops run infinitely unless there's a break
> # statement in the loop. If you don't specify a condition, it'll run forever.
> i<-0
> repeat {
+ i <- i + 1
+ print(i)
+ if (i > 4) break;
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
> # The while loop with identical functionality; this one doesn't require the
> # break statement
> i <- 1
> while(i < 6) {
+ print(i)
+ i <- i + 1
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
> # The for loop is most compact
> s<-1:5
> for(i in s) print(i)
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
Although R provides these looping constructs, it’s generally better to
avoid loops in favor of functional operations such as sapply. R is
not a general purpose programming language; it was explicitly
designed to provide statistical analysts with a rich toolkit of
operations. R contains an enormous number of optimized functions and
other tools available for manipulating data. We cover some later
in this chapter, but a good R reference source is invaluable.

Using the R Workspace

R provides users with a persistent workspace, meaning that when a user
exits an R session, they are provided the option to save the data and
variables they have in place for future use. This is done largely
transparently, as the following command-line example shows:
> s<-1:15
> s
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
> t<-(s*3) - 5
> t
 [1] -2 1 4 7 10 13 16 19 22 25 28 31 34 37 40
>
Save workspace image? [y/n/c]: y
$ R --silent
> s
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
> t
 [1] -2 1 4 7 10 13 16 19 22 25 28 31 34 37 40
Whenever you start R in a particular directory, it checks for a
workspace file (.RData) and loads its contents if it exists. On
exiting a session, .RData will be updated if requested. It can also be
saved in the middle of a session using the save.image() command.
This can be a lifesaver when trying out new analyses or long commands.
You can get a list of objects in a workspace using the ls function,
which returns a vector of object names. They can be deleted using the
rm function. Objects in a workspace can be saved and loaded using the
save and load functions. These take a list of objects and a
filename as an argument, and automatically load the results into the
environment.
> # let's create some simple objects
> a<-1:20
> t<-rnorm(50,10,5)
> # Ls will showm to us
> ls()
[1] "a" "t"
> # Now we save them
> save(a,t,file='simple_data')
> # we delete them and look
> rm(a,t)
> ls()
character(0)
> load('simple_data')
> ls()
[1] "a" "t"
If you have a simple R script you want to load up, use the source
command to load the file. The sink command will redirect output to
a file.

Data Frames

Data frames are a structure unique to R and, arguably, the most
important structure from an analyst’s view. A data frame is an ad hoc
data table: a tabular structure where each column represents a
single variable. In other languages, data frames are implemented
partially by using arrays or hashtables, but R includes data
frames as a basic structure and provides facilities for selecting,
filtering, and manipulating the contents of a data frame in a far more
sophisticated way from the start.
Let’s start by creating a simple data frame, as you can see in Example 6-1. The easiest way to
construct a data frame is to use the data.frame operation on a set of
identically sized vectors.
Example 6-1. Creating a data frame
> names<-c('Manny','Moe','Jack')
> ages<-c(25,35,90)
> states<-c('NJ','NE','NJ')
> summary.data <- data.frame(names, ages, states)
> summary.data
 names ages states
1 Manny 25 NJ
2 Moe 35 NE
3 Jack 90 NJ
> summary.data$names
[1] Manny Moe Jack
Levels: Jack Manny Moe

Here, data.frame made each array into a column to form a table with
three columns and three rows. We could then extract a column. Note
the use of the term “Levels” when referring to the vector of names
referenced by summary.data$names.
Factors
In the process of creating the table, R converted the strings in the
data into factors, which are a vector of categories. Factors can be
created from strings or integers, for example:
> services<-c("http","bittorrent","smtp","http","http","bittorrent")
> service.factors<-factor(services)
> service.factors
[1] http bittorrent smtp http http bittorrent
Levels: bittorrent http smtp
> services
[1] "http" "bittorrent" "smtp" "http" "http" "bittorrent"
The levels of the factor describe the individual categories of the factor.
R’s default behavior in many functions is to convert strings to
factors. This is done in read.table and data.frame and
controllable via the stringsAsFactors argument, as well as the
stringsAsFactors option.

The command for accessing data frames is
read.table, which has a variety of parameters for reading
different data types. In Example 6-2, options are passed to let it
read rwcut output in the input file, sample.txt.
Example 6-2. Passing options to read.table
$ cat sample.txt | cut -d '|' -f 1-4
 sIP| dIP|sPort|dPort|
 10.0.0.1| 10.0.0.2|56968| 80|
 10.0.0.1| 10.0.0.2|56969| 80|
 10.0.0.3|...
$ R --silent
> s<-read.table(file='sample.txt',header=T,sep='|',strip.white=T)
> s
 sIP dIP sPort dPort pro packets bytes flags
1 10.0.0.1 10.0.0.2 56968 80 6 4 172 FS A
2 10.0.0.1 10.0.0.2 56969 80 6 5 402 FS PA
3 10.0.0.3 65.164.242.247 56690 80 6 5 1247 FS PA
4 10.0.0.4 99.248.195.24 62904 19380 6 1 407 F PA
5 10.0.0.3 216.73.87.152 56691 80 6 7 868 FS PA
6 10.0.0.3 216.73.87.152 56692 80 6 5 760 FS PA
7 10.0.0.5 138.87.124.42 2871 2304 6 7 603 F PA
8 10.0.0.3 216.73.87.152 56694 80 6 5 750 FS PA
9 10.0.0.1 72.32.153.176 56970 80 6 6 918 FS PA
 sTime dur eTime sen X
1 2008/03/31T18:01:03.030 0 2008/03/31T18:01:03.030 0 NA
2 2008/03/31T18:01:03.040 0 2008/03/31T18:01:03.040 0 NA
3 2008/03/31T18:01:03.120 0 2008/03/31T18:01:03.120 0 NA
4 2008/03/31T18:01:03.160 0 2008/03/31T18:01:03.160 0 NA
5 2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
6 2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
7 2008/03/31T18:01:03.380 0 2008/03/31T18:01:03.380 0 NA
8 2008/03/31T18:01:03.430 0 2008/03/31T18:01:03.430 0 NA
9 2008/03/31T18:01:03.500 0 2008/03/31T18:01:03.500 0 NA

Note the arguments used. file is self explanatory. The header
argument instructs R to treat the first line of the file as names for
the columns in the resulting data frame. sep defines a column
separator, in this case, the default | used by SiLK commands. The
strip.white command instructs R to strip out excess whitespace from
the file. The net result is that every value is read in and converted
automatically into a columnar format.
Now that I have data, I can
filter and manipulate it, as shown in Example 6-3.
Example 6-3. Manipulating and filtering data
> # I can filter records by creating boolean vectors out of them, for example:
> s$dPort == 80
[1] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
> # I can then use that value to filter out the rows where s$dPort == 80
> # Note the comma. If I didn't use it, I would select the columns
> # instead of the rows.
> s[s$dPort==80,]
 sIP dIP sPort dPort pro packets bytes flags
1 10.0.0.1 10.0.0.2 56968 80 6 4 172 FS A
2 10.0.0.1 10.0.0.2 56969 80 6 5 402 FS PA
3 10.0.0.3 65.164.242.247 56690 80 6 5 1247 FS PA
5 10.0.0.3 216.73.87.152 56691 80 6 7 868 FS PA
6 10.0.0.3 216.73.87.152 56692 80 6 5 760 FS PA
8 10.0.0.3 216.73.87.152 56694 80 6 5 750 FS PA
9 10.0.0.1 72.32.153.176 56970 80 6 6 918 FS PA
 sTime dur eTime sen X
1 2008/03/31T18:01:03.030 0 2008/03/31T18:01:03.030 0 NA
2 2008/03/31T18:01:03.040 0 2008/03/31T18:01:03.040 0 NA
3 2008/03/31T18:01:03.120 0 2008/03/31T18:01:03.120 0 NA
5 2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
6 2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
8 2008/03/31T18:01:03.430 0 2008/03/31T18:01:03.430 0 NA
9 2008/03/31T18:01:03.500 0 2008/03/31T18:01:03.500 0 NA
> # I can also combine rules, use | for or and & for and
> s[s$dPort==80 & s$sIP=='10.0.0.3',]
 sIP dIP sPort dPort pro packets bytes flags
3 10.0.0.3 65.164.242.247 56690 80 6 5 1247 FS PA
5 10.0.0.3 216.73.87.152 56691 80 6 7 868 FS PA
6 10.0.0.3 216.73.87.152 56692 80 6 5 760 FS PA
8 10.0.0.3 216.73.87.152 56694 80 6 5 750 FS PA
 sTime dur eTime sen X
3 2008/03/31T18:01:03.120 0 2008/03/31T18:01:03.120 0 NA
5 2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
6 2008/03/31T18:01:03.220 0 2008/03/31T18:01:03.220 0 NA
8 2008/03/31T18:01:03.430 0 2008/03/31T18:01:03.430 0 NA
> # I can access columns using their names
> s[s$dPort==80 & s$sIP=='10.0.0.3',][c('sIP','dIP','sTime')]
 sIP dIP sTime
3 10.0.0.3 65.164.242.247 2008/03/31T18:01:03.120
5 10.0.0.3 216.73.87.152 2008/03/31T18:01:03.220
6 10.0.0.3 216.73.87.152 2008/03/31T18:01:03.220
8 10.0.0.3 216.73.87.152 2008/03/31T18:01:03.430
> # And I can access a single row
> s[1,]
 sIP dIP sPort dPort pro packets bytes flags sTime
1 10.0.0.1 10.0.0.2 56968 80 6 4 172 FS A 2008/03/31T18:01:03.030
 dur eTime sen X
1 0 2008/03/31T18:01:03.030 0 NA

R’s data frames provide us with what is effectively an ad hoc single
table database. In addition to the selection of rows and columns
shown in earlier examples, we can add new columns using the
$ operator.
> # Create a new vector of payload bytes
> payload_bytes <- s$bytes - (40 * s$packets)
> s$payload_bytes <- payload_bytes
> s[0:2,][c('sIP','dIP','bytes','packets','payload_bytes')]
 sIP dIP bytes packets payload_bytes
1 10.0.0.1 10.0.0.2 172 4 12
2 10.0.0.1 10.0.0.2 402 5 202

Visualization

R provides extremely powerful visualization capabilities out of the
box, and many standard visualizations are available as high-level
commands. In the following example, we’ll produce a histogram using a
sample from a normal distribution and then plot the results on screen.
Chapter 10 discusses various visualization techniques. In this
section, we focus on various features of R
visualization, including controlling the images, saving them, and manipulating
them.
Visualization Commands

R has a number of high-level visualization commands to
plot time series, histograms, and bar charts. The workhorse
command of the suite is plot, which can be used to provide a number
of plots derived from scatterplots: simple scatterplots, stair steps,
and series. The major plot names are listed in Table 6-1 and are
described in the help command.
Table 6-1. High-level visualization commands
	 Command 	 Description
	barplot
	Barchart

	boxplot
	Box plot

	hist
	Histogram

	pairs
	Paired plot

	plot
	Scatterplot and related plots

	qqnorm
	QQ plot

Parameters to Visualization

There are two major mechanisms for controlling the parameters of a
visualization. First, almost all visualization commands offer a standard
suite of options as parameters. The major options
are shown in Table 6-2 and the results of visualizing them are
shown in the companion image, Figure 6-2.
Table 6-2. Common visualization options
	 Option 	 Parameter 	 Description
	axes
	Boolean
	If true, adds axes

	log
	Boolean
	If true, plots on a logarithmic scale

	main
	Character
	Main title

	sub
	Character
	Subtitle for the plot

	type
	Character
	Controls the type of graph plotted

	xlab
	Character
	Label for the x-axis

	ylab
	Character
	Label for the y-axis

[image: Visualizing options]

Figure 6-2. Visualizing options

Visualization options are also controlled using the par function,
which provides a huge number of special options for managing axis
size, point types, font choices, and the like. par takes an enormous
number of options that you can read about via help(par). Table 6-3
provides some of the more important ones.
> # We're going to use par to draw a 3-columm, 2-row matrix, then fill in 3 cells
> # of the matrix with different plots using other par values
> par(mfcol=c(2,3))
> # Draw the default histogram
> hist(sample_rnorm,main='Sample Histogram')
> # Now we move to the 2nd row, center column
> par(mfg=c(2,2,2,3))
> # Change the size of the axes to half the default
> par(cex.axis=0.5)
> # Make the axes blue
> par(col.axis='blue')
> # Make the plot itself red
> par(col = 'red')
> # Now we plot as a scatter
> plot(sample_rnorm,main='Sample scatter')
> # After we've plotted this, it will automatically move to the
> # 3rd row, 1st column
> # Restore the axis size
> par(cex.axis=1.0)
> # Change the point type for a scatterplot. Use help(points) to get a list of
> # the numbers for PCH
> par(pch=24)
> plot(sample_rnorm,main='Sample Scatter with New Points')
Table 6-3. Useful par arguments
	 Name 	 Type 	 Description
	mfcol
	2-integer (row, col) vector
	Breaks the canvas into a row-by-column set of cells

	mfg
	4-integer (row, col, nrows, ncols) vector
	Specifies the specific cell in mfcol to draw in

	cex [a]
	Floating point
	Sets the font size, defaults to 1, so specifying cex=0.5 indicates that all sizes are now half the original size

	col
	Character [b]
	Color

	lty
	Number or character
	Line type

	pch
	Number
	Point type

	[a] cex and col have a number of child parameters: .axis, .main, .lab, and .sub, which affect the corresponding element. cex.main is the relative size of the font for the tite, for example.

[b] Color strings can be a string like red, or a hexadecimal RGB string in the form #RRGGBB.

Annotating a Visualization

When drawing visualizations, I usually prefer to have some kind of
model or annotation available to compare the visualization against.
For example, if I’m comparing a visualization against a normal
distribution, I want the appropriate normal distribution on the
screen to compare it against the results of the histogram.
R provides a number of support functions for drawing text on a plot.
These include lines, points, abline, polygon, and text.
Unlike the high-level plot functions, these write directly to the
screen without resetting the image. In this section, we will show how
to use lines and text to annotate an image.
We’ll begin by generating a histogram for a common scenario: scanning
traffic plus typical user traffic on a /22 (1024 host) network. The
observed parameter is the number of hosts, and we assume that under
normal circumstances, that value is normally distributed with a mean
of 280 hosts and a standard deviation of 30. One out of every 10
events will take place during a scan. During the scan, the count of
hosts observed is always 1024, as the scanner hits everyone on the
network.
> # First we model typical activity using a gaussian distribution via rnorm
> normal_activity <- rnorm(300,280,30)
> # We then create a vector of attacks, where every attack is 1024 hosts
> attack_activity <- rep(1024,30)
> # We concatenate the two together; because we're focusing on the number of
> # hosts and not a time dependency, we don't care about ordering
> activity_vector<-c(normal_activity, attack_activity)
> hist(activity_vector,breaks=50,xlab='Hosts observed',\
 ylab='Probability of Occurence',prob=T,main='Simulated Scan Activity')
Note the breaks and prob arguments in the histogram. breaks
governs the number of bins in the histogram, which is particularly
important when you’re dealing with a long-tailed distribution like
this model. prob plots the histogram as a density rather than as
frequency counts.
We will now fit a curve. To do so, we create a vector of x and a
vector of y values for the lines function. The x values are evenly
split points on the range covered by our empirical distribution, while the y
values are derived using the dnorm function:
> xpoints<-seq(min(activity_vector),max(activity_vector),length=50)
> # Use dnorm to calculate the corresponding y values, given a feed
> # of x values (xpoints) and a model of a normal distribution using
> # the mean and sd from the activity vector. The value will be a poor
> # fit, as the attack skews the traffic.
> ypoints<-dnorm(xpoints,mean=mean(activity_vector),sd=sd(activity_vector))
> # Plot the histogram, which wipes the canvas clean
> hist(activity_vector,breaks=50,xlab='Hosts observed',\
 ylab='Density',prob=T,main='Simulated Scan Activity')
> # Draw the fit line, using lines
> lines(xpoints,ypoints,lwd=2)
> # Draw text. The x and y value are derived from the plot.
> text(550,0.010,"This is an example of a fit")

Exporting Visualization

R visualizations are output on devices, which can be called by using
a number of different functions. The default device
is X11 on Unix systems, quartz on Mac OS X and
win.graph on Windows. R’s help for Devices (note the case) provides a
list of what’s available on the current platform.
To print R output, open an output device (such as png, jpeg, or
pdf) and then write commands as normal. The results will be written
to the device file until you deactivate it using dev.off(). At this
point, you should call your default device again without parameters.
> # Output a histogram to the file 'histogram.png'
> png(file='histogram.png')
> hist(rnorm(200,50,20))
> dev.off()
> quartz()

Analysis: Statistical Hypothesis Testing

R is designed to provide a statistical analyst with a variety of tools
for examining data. The programming features discussed so far in this
chapter are a means to that end. The primary features we want to use
R for are to support the construction of alarms by identifying
statistically significant features (see Chapter 7 for more
discussion of alarm construction).
Identifying attributes that are useful for alarms requires
identifying “important” behavior, for various definitions of
important. R provides an enormous suite of tools for exploring data
and testing data statistically. Learning to use these tools
requires an understanding of the common test statistics that R’s tools
provide. The remainder of this chapter focuses on these tasks.
Hypothesis Testing

Statistical hypothesis testing is the process of evaluating a claim
about the behavior of the world based on the evidence from a
particular dataset. A claim might be that the data is normally
distributed, or that the attacks on our network come during the
morning. Hypothesis testing begins with a hypothesis that can be
compared against a model and then potentially invalidated. The
language of hypothesis testing is often counterintuitive because it
relies on a key attribute of the sciences—science can’t prove an
assertion, it can disprove that assertion or, alternatively, fail to
disprove it. Consequently, hypothesis tests focus on “rejecting the
null hypothesis.”
Statistical testing begins with a claim referred to as the null
hypothesis (H0). The most basic null hypothesis is that there is no
relationship between the variables in a dataset. The alternative
hypothesis (H1) states the opposite of the null—that there is
evidence of a relationship. The null hypothesis is tested by
comparing the likelihood of the data being generated by a process
modeling the null, under the assumptions made by the null.
For example, consider the process of testing a coin to determine
whether it’s evenly weighted or weighted to favor one side. We test
the coin by flipping it repeatedly. The null hypothesis states that
the probability of landing heads is equal to the probability of
landing tails: P=0.5. The alternative hypothesis states that the
weighting is biased toward one side.
To determine whether the coin is weighted, we have to flip it multiple
times. The question in constructing the test is how many times we have
to flip the coin to make that determination. Figure 6-3 shows the
breakdown of probabilities for coin flipping combinations[7] for one through four flips.
[image: Model of coin flipping for an evenly weighted coin]

Figure 6-3. Model of coin flipping for an evenly weighted coin

The results follow
the binomial distribution, which we can calculate using R’s dbinom
function.[8]
> # Use dbinom to get the probabilities of 0 to 4 heads given that
> # there are 4 coin flips and the probability of getting heads on
> # an individual flip is 0.5
> dbinom((0:4),4,p=0.5)
[1] 0.0625 0.2500 0.3750 0.2500 0.0625
> # results are in order - so 0 heads, 1 heads, 2 heads, 3 heads, 4 heads
In order to determine if a result is significant, we need to determine
the probability of the result happening by chance. In statistical
testing, this is done by using a p-value. The p-value is the
probability that if the null hypothesis is true, you will get a
result at least as extreme as the observed results. The lower the
p-value, the lower the probability that the observed result could have
occurred under the null hypothesis. Conventionally, a null hypothesis
is rejected when the p-value is below 0.05.
To understand the concept of extremity here, consider a binomial
test with no successes and four coin flips. In R:
> binom.test(0,4,p=0.5)

 Exact binomial test

data: 0 and 4
number of successes = 0, number of trials = 4, p-value = 0.125
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
 0.0000000 0.6023646
sample estimates:
probability of success
 0
That p-value of 0.125 is the sum of the probabilities that a coin flip
was four heads (0.0625) AND four tails (also 0.0625). The p value
is, in this context “two tailed,” meaning that it accounts for both
extremes. Similarly, if we account for one heads:
> binom.test(1,4,p=0.5)

 Exact binomial test

data: 1 and 4
number of successes = 1, number of trials = 4, p-value = 0.625
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
 0.006309463 0.805879550
sample estimates:
probability of success
 0.25
The p-value is 0.625, the sum of 0.0625 + 0.25 + 0.25 + 0.0625
(everything but the probability of 2 heads and 2 tails).

Testing Data

One of the most common tests to do with R is to test whether or not a
particular dataset matches a distribution. For information security
and anomaly detection, having data that follows a distribution enables
us to estimate thresholds for alarms. That said, we rarely actually
encounter data that can be modeled with a distribution, as discussed
in Chapter 10. Determining that a phenomenon can be satisfactorily
modeled with a distribution enables you to use the distribution’s
characteristic functions to predict the value.
The classic example of this estimation process is the use of the mean
and standard deviation to predict values of a normally distributed
phenomenon. A normal distribution has a probability density function
of the form:
[image: image with no caption]

Where μ is the mean and σ is the standard deviation of the
model.
If traffic can be satisfactorily modeled with a distribution, it
provides us with a mathematical toolkit for estimating the probability
of an occurrence happening. The chance of actually encountering a
satisfactory model, as discussed in Chapter 10, is rare—when you
do, it will generally be after heavily filtering the data and applying
multiple heuristics to extract something suitably well behaved.
This matters because if you use the mathematics for a model without
knowing if the model works, then you run the risk of building a
faulty sensor. There exist, and R provides, an enormous number of
different statistical tests to determine whether you can use a model.
For the sake of brevity, this text focuses on two tests that provide
a basic toolkit. These are:
	
Shapiro-Wilk (shapiro.test)

	
The Shapiro-Wilk test is a
 goodness of fit test against the normal distribution. Use this
 to test whether or not a sample set is normally distributed.

	
Kolmogorov-Smirnov (ks.test)

	
A goodness of fit test to use
 against continuous distributions such as the normal or uniform.

All of these tests operate in a similar fashion: the test function is
run against a sample set and another sample set (either provided
explicitly or through a function call). A test statistic describing
the quality of the fit is generated, and a p-value produced.
The Shapiro-Wilk test (shapiro.test) is a normality test; the null
hypothesis is that the data provided is normally distributed. See Example 6-4 for an example of running the test.
Example 6-4. Running the Shapiro-Wilk test
># Test to see whether a random normally distributed
># function passes the shapiro test
> shapiro.test(rnorm(100,100,120))

 Shapiro-Wilk normality test

data: rnorm(100, 100, 120)
W = 0.9863, p-value = 0.3892
> # We will explain these numbers in a moment
> # Test to see whether a uniformly distributed function passes the shapiro test
> shapiro.test(runif(100,100,120))

 Shapiro-Wilk normality test

data: runif(100, 100, 120)
W = 0.9682, p-value = 0.01605

All statistical tests produce a test statistic (W in the
Shapiro-Wilk test), which is compared against its distribution under
the null hypothesis. The exact value and interpretation of the
statistic is test-specific, and the p-value should be used instead as
a normalized interpretation of the value.
The Kolmogorov-Smirnov test (ks.test) is a simple goodness-of-fit
test that is used to determine whether or not a dataset matches a
particular continuous distribution such as the normal or uniform
distribution. It can be used either with a function (in which case it
compares the dataset provided against the function) or with two datasets (in which case it compares them to each other). See the test in action in Example 6-5.
Example 6-5. Using the KS test
> # The KS test in action; let's create two random uniform distributions
> a.set <- runif(n=100, min=10, max=20)
> b.set <- runif(n=100, min=10, max=20)
> ks.test(a.set, b.set)

 Two-sample Kolmogorov-Smirnov test

data: a.set and b.set
D = 0.07, p-value = 0.9671
alternative hypothesis: two-sided

> # Now we'll compare a set against the distribution, using the function.
> # Note that I use punif to get the distribution and pass in the same
> # parameters as I would if I were calling punif on its own
> ks.test(a.set, punif, min=10, max=20)

 One-sample Kolmogorov-Smirnov test

data: a.set
D = 0.0862, p-value = 0.447
alternative hypothesis: two-sided
> # I need an estimate before using the test.
> # For the uniform, I can use min and max, like I'd use mean and sd for
> # the normal
> ks.test(a.set,punif,min=min(a.set),max=max(a.set))

 One-sample Kolmogorov-Smirnov test

data: a.set
D = 0.0829, p-value = 0.4984
alternative hypothesis: two-sided
> # Now one where I reject the null; I'll treat the data as if it
> # were normally distributed and estimate again
> ks.test(a.set,pnorm,mean=mean(a.set),sd=sd(a.set))

 One-sample Kolmogorov-Smirnov test

data: a.set
D = 0.0909, p-value = 0.3806
alternative hypothesis: two-sided

> #Hmm, p-value's high... Because I'm not using enough samples, let's
> # do this again with 400 samples each.
> a.set<-runif(400,min=10,max=20)
> b.set<-runif(400,min=10,max=20)
> # Compare against each other
> ks.test(a.set,b.set)$p.value
[1] 0.6993742
> # Compare against the distribution
> ks.test(a.set,punif,min=min(a.set),max=max(a.set))$p.value
[1] 0.5499412
> # Compare against a different distribution
> ks.test(a.set,pnorm, mean = mean(a.set),sd=sd(a.set))$p.value
[1] 0.001640407

The KS test has weak power. The power of an experiment refers to
its ability to correctly reject the null hypothesis. Tests with weak
power require a larger number of samples than more powerful tests.
Sample size, especially when working with security data, is a
complicated issue. The majority of statistical tests come from the
wet-lab world, where acquiring 60 samples can be a bit of an
achievement. While it is possible for network traffic analysis to
collect huge numbers of samples, the tests will start to behave
wonkily with too much data; small deviations from normality will
result in certain tests rejecting the data, and you can always start
throwing in more data, effectively crafting the test to meet your
goals.
In my experience, distribution tests are usually a poor second choice
to a good visualization. Chapter 10 discusses this in more depth.

Further Reading

	
Patrick Burns, The R Inferno.

	
Richard Cotton, Learning R: A Step-by-Step Function Guide to Data Analysis (O’Reilly, 2013).

	
Russell Langley, Practical Statistics Simply Explained (Dover, 2012).

	
The R Project, An Introduction to R.

	
Larry Wasserman, All of Statistics: A Concise Course in Statistical Inference (Springer Texts in Statistics, 2004).

[6] Note the use of periods rather than underscores; R’s predecessors (S and S-Plus) established this convention and while it’s not a syntactical mistake to use an underscore, most R code will use periods the way other languages use underscores.

[7] Combinations aren’t ordered, so getting tails then heads is considered equivalent to getting heads then tails when calculating probabilities.

[8] A note on R convention: R provides a common family of
functions for most common parametric distributions. These functions
are differentiated by the first letter: r for random, d for density, q
for quantile, and p for probability distribution.

Chapter 7. Classification and Event Tools: IDS, AV, and SEM

This chapter focuses on the development and use of event-based
sensors such as intrusion detection systems (IDSes). These systems
include passive sensors such as IDSes and most AVs, as well as active
systems such as firewalls. Analytically, they all behave similarly—they analyze data and create events in response to that data.
Event construction is what differentiates an IDS from a simple reporting
sensor such as NetFlow. Simple sensors report everything they
observe, while an IDS or other classifying sensor is configured to
report only on specific phenomena that it infers from the data it
observes.
Many analytic processes will eventually result in some form of IDS.
For example, you might want to develop a system detecting abusive
activity on a host. Using some of the math in Part III,
you build up a model of abusive activity, create some thresholds, and
raise an alert whenever there’s a threshold.
The problem is that these processes almost never work as intended.
Operational IDS systems are very hard to implement properly. The
problem is not detection; the problem is context and attribution.
IDS systems are easily, and usually, configured into uselesness. Either they produce so many alarms that analysts ignore them, or
they’re configured to produce so few alarms that they might as well not be
there. Developing effective alarms requires understanding how IDSes are
used operationally, how they fail as classifiers, and the impact of
those failures on analysts.
This chapter is divided into two parts. The first section breaks down
IDS systems and the way they’re used on floors. It discusses how IDS
systems fail and how these failure modes impact analysis. The second
section is focused on the construction of better detection systems,
and discusses strategies to improve the efficacy of signature, and
anomaly-based detection techniques.
How an IDS Works

All IDSes are expert systems of a type called a binary classifier. A
classifier reads in data and marks it as one of two categories. Either the data is normal and requires no further action, or the data
is characteristic of an attack. If it is an attack, then the system
reacts as specified; event sensors generate an event,
controllers block traffic, and so on.
An IDS system interprets data in a different way than passive sensors
such as NetFlow. A simple sensor reports on everything it
monitors, while an IDS only reports on events that it is configured to
report on. IDSes differ based on the data they use to make this
interpretation and the process they use to make this decision.
There are several problems with classification, which we can term the
moral, the statistical, and the behavioral. The moral problem is
that attacks can be indistinguishable from innocuous, or even
permitted, user activity. For example, a DDoS attack and a flash
crowd can look very similar until some time has passed. The
statistical problem is that IDS systems are often configured to make
hundreds or millions of tests a day—under those conditions, even
low false positive rates can result in far more false positives in a
day than true positives in a month. The behavioral problem is that
attackers are intelligent parties interested in evading detection, and
often can do so with minimal damage to their goals.
This section will discuss IDS, and often take a very pessimistic view
of its capabilities. We begin with a discussion of the
vocabulary of intrusion detection, then move onto the mechanics of
binary classifiers, and then into the problem of engineering detection
systems and the impact of classifier failures.
Basic Vocabulary

We can break IDS along two primary axes: where the IDS is placed, and
how the IDS makes decisions. On the first axis, IDS is broken into
Network-Based IDS (NIDS), and Host-Based IDS (HIDS). On the
second axis, IDS is split between signature-based systems and
anomaly-based systems.
An NIDS is effectively any IDS that begins with pcap data. In the
open source domain, this includes systems such as Snort, Bro, and
Suricata. NIDS systems operate under the constraints discussed for
network sensors in Chapter 2, such as the need to receive
traffic through port mirroring or direct connect to the network and an
inability to read encrypted traffic.
HIDSes operate within the host domain and are usually far more varied
than NIDSes. An HIDS can monitor network activity, physical access (such
as whether a user is trying to use a USB device), and
information from the operating system such as ACL violations or file
accesses.
Figure 7-1 shows how several common IDS systems break down
along these axes.
[image: A breakdown of common IDS]

Figure 7-1. A breakdown of common IDS

Figure 7-1 shows seven examples of different IDS. These are:
	
Snort

	
The most
 commonly used IDS. Snort is a network-based
 signature matching system that uses hand-crafted Snort
 signatures to identify malicious traffic. Snort provides an
 extensive language for describing signatures and can be
 manually configured to add new ones.

	
Bro

	
A sophisticated
 traffic analysis system that can be used for intrusion
 detection using both signatures and anomalies. Bro is less
 of an IDS than a traffic analysis language. Bro has recently
 been redesigned to work with clusters.

	
Suricata

	
An
 experimental open source IDS developed by the Open Information
 Security Foundation with funding from the Department of
 Homeland Security. Suricata is the youngest IDS listed here
 and is used for experimentation in new techniques in intrusion
 detection.

	
Peakflow

	
A commercial traffic analysis package developed by
 Arbor Networks, Peakflow
 analyzes NetFlow traffic to identify and mitigate attacks such
 as DDoS.

	
Tripwire

	
A file integrity monitoring system. Tripwire monitors specific directories and raises events when it sees the contents of the directory change.

	
AV

	
Antivirus systems such as Symantec, ClamAV, or McAfee are
 the most common forms of a signature-based HIDS. AV systems
 examine host disk and memory for the binary signatures of
 malware and raise alerts when encountering suspicious binaries.

	
McAfee HIPS

	
McAfee’s host intrusion prevention (HIPS) is one
 of several commercial IPS packages. HIPS systems such as this
 one combine binary analysis with log analysis, such as
 examining ACL violations or suspicious file modifications.

The vast majority of IDSes are signature-based. A signature-based
system uses a set of rules that are derived independently from the
target in order to identify malicious behavior. For example, a Snort
signature written in Snort’s rule language could look like this:
 alert tcp 192.4.1.0/24 any -> $HOME_NET 22 (flow:to_server,established; \
 content:"root";)
This alert is raised when traffic from a suspicious network
(192.4.1.0/24) attempts to contact any host on the internal network
and tries to log on as root to SSH. An HIDS may offer signatures such
as “raise an alert when a user tries to delete the security log.”
Ruleset creation and management is a significant issue for signature-based IDS, and well-crafted rules are often the secret sauce that
differentiates various commercial packages.
A signature-based IDS will only raise alerts when it has a rule
specifying to do so. This limitation means that signature-based IDSes
usually have a high false negative rate, meaning that a large
number of attacks go unreported by them. The most extreme version of
this problem is associated with vulnerabilities. AV primarily, but
also NIDS and HIDS, rely on specific binary signatures in order to
identify malware (see On Code Red and Malware Evasiveness for a more extensive discussion on
this). These signatures require that some expert have access to an
exploit; these days, exploits are commonly “zero-day,” meaning that
they’re released and in the wild before anyone has the opportunity
to write a signature.
Anomaly-based IDSes are built by training (or optionally configuring)
the IDS on traffic data in order to create a model of normal activity.
Once this model is created, deviations from the model are anomalous,
suspicious, and produce events. For example, a simple anomaly-based
NIDS might monitor traffic to specific hosts and generate an event
when traffic suddenly spikes upward, indicating a DDoS or other
suspicious event.
Anomaly-based IDSes are used far less than signature-based IDS,
primarily because they have the opposite problem of a signature-based
IDS—a high false positive rate. Anomaly-based IDSes are notorious
for creating alerts incessantly, and are often dialed down to produce
a minimal number of alerts rather than constantly go off.
Historically, IDS systems didn’t interoperate because there wasn’t
anything to interoperate with; IDS reported directly to the analyst.
As security systems have become more complex, there’s a growing
interest in security event management (SEM) software[9] such as ArcSight, LogRhythms, LogStash, and Splunk. An
SEM is effectively a database that collects data from multiple
detection systems. After it is collected, the data can be collated and
compound events can be created from one or more sensors.
On Code Red and Malware Evasiveness
Sometimes there’s a fine line between NIDS and AV. Read the original
papers on NIDS by Paxson and Roesch and you’ll see that they were
thinking about hand-crafted attacks on systems that they’d be
able to defend by looking for people trying to log in as root or
admin. There was a functionality change around 2001, which was the beginning
of a very nasty worm-heavy era in defense. Worms like Code Red and
Slammer caused widespread havoc by spreading actively and
destructively choking bandwidth.
The Code Red v1 and v2 worms both exploited a buffer overflow in
Microsoft IIS in order to subvert IIS processes and launch an attack
against the White House. The orignal Code Red worm contained a
payload looking like the following:
GET /default.ida?NN
NNN
NNN
NNNNNNNNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801
%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff
%u0078%u0000%u00=a HTTP/1.0
IDS at the time detected Code Red by looking for that specific
payload, and a couple of weeks later, an updated version of the worm
using the same exploit was launched. The payload for Code Red II
looked like this:
GET /default.ida?XX
XXX
XXX
XXXXXXXXXXXXXXXXXXXXXX%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801
%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff
%u0078%u0000%u00=a HTTP/1.0
As a buffer overflow, the Code Red worms needed to pad their contents
in order to reach a specific memory location; the worms were often
differentiated by the presence of an X or an N in the buffer. The
thing is, the buffer contents are irrelevant to the execution of the
worm; an attacker could change them at will without changing the
functionality.
This has been a problem for IDS ever since. As originally conceived,
intrusion detection systems were looking for anomalous and suspicious
user behavior. These types of long term hacks could be detected and
stopped because they’d be happening over the course of hours or days, which is
enough time for analysts to examine the alert, vet it, and take a
course of action. Modern attacks are largely automated, and the
actual subversion and control of a host can take place instantaneously
if the right conditions are met.
The problem of binary signature management has gotten significantly
worse in the past decade because it’s easy for attackers to modify
payload without changing the functionality of the worm. If you
examine threat databases such as Symantec’s (see Chapter 8), you
will find that there are hundreds or more variants of common worms,
each of them with a different binary signature.
As for the explosive, destructive worms like Slammer, they basically
calmed down for what I will best describe as evolutionary reasons.
Much like it doesn’t pay a physical virus to kill its host until it’s
had a chance to spread, modern worms are generally more restrained in
their reproduction. It’s better to own the Internet than to destroy
it.

Classifier Failure Rates: Understanding the Base-Rate Fallacy

All IDS systems are applied exercises in classification, a standard
problem in AI and statistics. A classifier is a process that takes
in input data and classifies the data into one of at least two
categories. In the case of IDS systems, the categories are usually
“attack” and “normal.”
Signature and anomaly-based IDSes view attacks in fundamentally
different ways, and this impacts the type of errors they make. A
signature-based IDS is calibrated to look for specific weird behaviors
such as malware signatures or unusual login attempts. Anomaly-based
IDSes are trained on normal behavior and then look for anything that
steps outside the norm. Signature-based IDSes have high false negative
rates, meaning that they miss a lot of attacks. Anomaly-based IDSes
have high false positive rates, which means that they consider a lot of perfectly
normal activity to be an attack.
IDSes are generally binary classifiers, meaning that they break data
into two categories. Binary classifiers have two failure modes:
	
False positives

	
Also called a Type I error, this occurs when
 something that doesn’t have the property you’re searching for is
 classified as having the property. This occurs, for instance, when
 email from the president of your company informing you about a
 promotion is classified as spam.

	
False negatives

	
Also called a Type II error, this occurs when
 something that has the property you’re searching for is classified as
 not having the property. This happens, for instance, when spam mail
 appears in your inbox.

Sensitivity refers to the percentage of positive classifications
that are correct, and specificity refers to the percentage of
negative classifications that are correct. A perfect detection has
perfect sensitivity and specificity. In the worst case, neither rate
is above 50%: the same as flipping a coin.
Most systems require some degree of tradeoff; generally,
increasing the sensitivity means also accepting a lower specificity. A
reduction in false negatives will be accompanied by an increase in
false positives, and vice versa.
To describe this tradeoff, we can use a visualization called a
receiver operating characteristic (ROC) curve. A ROC curve plots
the specificity against the false positive rates, using a third
characteristic (the operating characteristic) as a control. Figure 7-2 shows an example of a ROC
curve.
[image: ROC curve showing packet size of messages sent for BitTorrent detection]

Figure 7-2. ROC curve showing packet size of messages sent for BitTorrent detection

In this case, the operating characteristic is the number of
packets in a session and is shown on the horizontal lines in the
plot. At this site, HTTP traffic (falling at the very left edge) has a good ratio of true to false positives, whereas SMTP is harder to
classify correctly, and FTP even harder.
Now, let’s ask a question. We have an ROC curve and we calibrate a
detector so it has a 99% true positive rate, and a 1% false positive
rate. We receive an alert. What is the probability that the alert
is a true positive? It isn’t 99%; the true positive rate is the
probability that if an attack took place, the IDS would raise an alarm.
Let’s define a test as the process that an IDS uses to make a
judgement call about data. For example, a test might consist of
collecting 30 seconds worth of network traffic and comparing it
against a predicted volume, or examining the first two packets of a
session for a suspicious string.
Now assume that the probability of an actual attack taking place
during a test is 0.01%. This means that out of every 10,000 tests the
IDS conducts, one of them will be an attack. So out of every 10,000
tests, we raise one alarm due to an attack—after all, we have a 99%
true positive rate. However, the false positive rate is 1%, which
means that 1% of the tests raise an alarm even though nothing
happened. This means that for 10,000 tests, we can expect roughly 101
alarms: 100 false positives and 1 true positive, meaning that the
probability that an alarm is raised because of an attack is 1/101 or
slightly less than 1%.
This base-rate fallacy explains why doctors don’t run every test on
every person. When the probability of an actual attack is remote, the
false positives will easily overwhelm the true positives. This
problem is exacerbated because nobody in their right mind trusts an
IDS to do the job alone.

Applying Classification

Consider the data flow in Figure 7-3, which is a simple
representation of how an IDS is normally used in defense.
[image: Simple detection workflow]

Figure 7-3. Simple detection workflow

Figure 7-3 breaks alert processing into three steps: IDS receives data,
raises an alert, and that alert is then passed to analysts either
directly or through a SIEM.
Once an IDS generates an alert, that alert must be forwarded to an
analyst for further action. Analysts begin by examining the alert and
figuring out what the alert means. This may be a relatively simple
process, but often it becomes wider-ranging and may involve a
number of queries. Simple queries will include looking at the
geolocation, ownership, and past history of the address originating the
attack (see Chapter 8), by examining the payload of the event using
tcpdump or Wireshark. With more complex attacks, analysts will have
to reach out to Google, news, blogs, and message boards to identify
similar attacks or real-world events precipitating the attack.
With the exception of IPS systems, which work on very crude and
obvious attacks such as DDoSes, there is always an interim analytical
step between alert and action. At this point, analysts have to take
the alert and determine if the alert is a threat, if the threat is
relevant to them, and whether or not there’s anything they can do
about it. This is a nontrivial problem, consider the following
scenarios:
	
The IDS reports that an attacker is exploiting a particular
 IIS vulnerability. Are there any IIS servers on the
 network? Have they been patched so they’re not subject to
 the exploit? Is there evidence from other sources
 that the attacker succeeded?

	
The IDS reports that an attacker is scanning the network.
 Can we stop the scan? Should we bother given that there
 are another hundred scans going on right now?

	
The IDS reports that a host is systematically picking
 through a web server and copying every file. Is the host a
 Google spider, and would stopping it mean that our
 company’s primary website would no longer be visible on Google?

Note that these are not actually failures on the part of detection.
The first two scenarios represent actual potential threats, but
those threats may not matter, and that decision can only be made
through a combination of context and policy decisions.
Verifying alerts takes time. An analyst might be able to seriously
process approximately one alert an hour, and complex events will take
days to investigate. Consider how that time is spent given the false
positive rates discussed earlier.

Improving IDS Performance

There are two approaches to improving how IDSes work. The first is to
improve the IDS as a classifier; that is, increase the sensitivity and
specificity. The second way is to reduce the time an analyst needs to
process an alert by fetching additional information, providing
context, and identifying courses of action.
There are no perfect rules to this process. For example, although
it’s always a good (and necessary) goal to minimize false positives,
analysts will take a more nuanced approach to this problem. For
example, if there’s a temporary risk of a nasty attack, an analyst
will often tolerate a higher false positive rate in order to more
effectively defend against that attack.
There’s a sort of Parkinson’s Law problem here. All of our detection
and monitoring systems provide only partial coverage because the Internet is
weird, and we don’t really have a good grasp of what we’re missing.
As any floor improves its detection process, it will find that there
are newer and nastier alerts to consider. To paraphrase Donald
Rumsfeld: we do have a problem with unknown unknowns.
This problem of unknown unknowns makes false negatives a particular
headache. By definition, a signature-based IDS can’t alert on
anything it isn’t configured to alert on. That said, most signature
matching systems will be configured to identify only a limited subset
of all the malicious behaviors that a particular host uses. By combining
signature and anomaly detecting IDSes together, you can at least begin
to identify the blind spots.
Enhancing IDS Detection

Improving an IDS as a classifier involves reducing the false positive
and false negative rates. This is generally best done by reducing the
scope of the traffic the IDS examines. In the same way that a doctor
doesn’t run a test until he has a symptom to work with, we try to run
the IDS only when we have an initial suspicion that something odd is
going on. A number of different mechanisms are available based on
whether you’re using a signature- or an anomaly-based IDS.
Inconsistent Notification: A Headache with Multiple IDSes
A special category of false negative involves inconsistent IDS
rulesets. Imagine that you run a network with the access points A and
B, with IDS running on both. If you don’t keep the ruleset on IDS A
consistent with the ruleset on IDS B, you will find that A sends you
alerts that B doesn’t recognize and vice versa.
The easiest way to manage this problem is to treat the rulesets as any
other source code. That is, put the rules in a version control
system, make sure that you commit and comment them, and then install
the rules from your version control system. Keeping the rules under
version control’s a good idea anyway because if you’re doing a multi-month
traffic investigation, you really will want to look at those old
rulesets to figure out exactly what you were blocking last April.
There is a class of IDS that makes this type of management
particularly problematic, however. AV and some other detection
systems are usually black-box systems. A black-box system provides
ruleset updates as a subscription service, and the rulesets are
usually completely inaccessible to an administrator. Inconsistent
identification can be particularly problematic with black-box systems
where, at the best you must keep track of what the current rulebase is
and identify systems that are behind.[10]

One mechanism common to both signature and anomaly-based IDSes is
using inventory to create whitelists. Pure whitelists, meaning that
you implicitly trust all traffic from a host, are always a risk. I
don’t recommend simply whitelisting a host and never checking it. A
better approach, and one that is going to appear in various forms
throughout this discussion, is to use whitelisting as a guide for less
or more extensive instrumentation.
For example, I create an inventory of all the web servers on my
network. A host that is not a web server is de facto suspicious if
I see it serving HTTP traffic. In that case, I want to capture a
representative cut of traffic and figure out why it’s now a
web server. At the same time, for actual web servers, I will use my
standard signatures.
In signature-based IDSes, the signature base can usually be refined so
that the rule triggers only for specific protocols or in tandem with
other indicators. For example, a rule to detect the payload string
“herbal supplement” on port 25 will track spam emails with that title, but
also internal mail such as “we’re getting a lot of herbal supplement spam
lately.” Reducing the false positive rate in this case involves
adding more constraints to the match, such as tracking only mail from
outside the network (filtering on addresses). By refining the rule to
use more selective expressions, an operator can reduce the false
positive rate.
As an example, consider the following (stupid) rule to determine
whether or not someone is logging on as root to an SSH server:
 alert tcp any any -> any 22 (flow:to_server, established;)
A Snort rule consists of two logical sections: the header and the
options. The header consists of the rule’s action and addressing
information (protocol, source address, source port, destination
address, destination port). Options consist of a number of specific
keywords separated by semicolons.
In the example above, the action is alert, indicating that Snort
generates an alert and logs the packet. Alternative actions include
log (log the packet without alerting), pass (ignore the packet),
and drop (block the packet) Following the action is a string naming
the protocol, tcp in this case, with udp, icmp, and ip being other
options. The action is followed by source to destination information
separated by the arrow (→) digraph. Source information can be
expressed as an address (e.g., 128.1.11.3), a netblock
(118.2.0.0/16) as above, or any to indicate all addresses. Snort
can also define various collections of addresses with macros (e.g.,
$HOME_NET to indicate the home network for an IDS), to implement the
inventory-based whitelisting discussed earlier.
This rule raises an alert when anyone successfully connects to an ssh
server, which is far too vague. In order to refine the rule, I have
to add additional constraints. For example, I can constrain it to
only raise an alert if it comes from a specific network, and if
someone tries to log on specifically as root.
 alert tcp 118.2.0.0/16 any -> any 21 (flow:to_server,established; \
 content:"root"; pcre:"/user\s_root/i";)
Following the addressing information are one or more rule options.
Options can be used to refine a rule, fine-tuning the information the
rule looks for in order to reduce the false positive rate. Options
can also be used to add additional information to an alert, trigger
another rule, or to complete a variety of other actions.
Snort defines well over 70 options for various forms of analysis. A
brief survey of the more useful rules include:
	
content

	
content is Snort’s bread-and-butter pattern matching
 rule; it does an exact match of the data passed in the content
 option against packet payload. content can use binary and text
 data, enclosing the binary data in pipes. For example,
 content:|05 11|H|02 23| matches the byte with contents 5,
 then 11, then the letter H, then the byte 2, then the byte 23.
 A number of other options directly impact content, such as
 depth (specifying where in the payload to stop searching), and
 offset (specifying where in the payload to start searching).

	
HTTP options

	
A number of HTTP options (http_client_body,
 http_cookie, http_header) will extract the relevant
 information from an HTTP packet for analysis by content.

	
pcre

	
The pcre option uses a PCRE regular expression to match
 against a packet. Regular expressions are expensive; make sure
 to use content to prefilter traffic and skip applying the
 regular expression against every packet.

	
flags

	
Checks to see whether or not specific TCP flags are
 present.

	
flow

	
The flow keyword specifies the direction traffic is
 flowing in, such as from a client, to a client, from a server, or
 to a server. The flow keyword also describes certain
 characteristics of the session, such as whether or not it was
 actually established.

Snort’s rule language is used by several other IDSes, notably Suricata.
Other systems may differentiate themselves with additional options
(for example, Suricata has an iprep option for looking at IP address
reputation).
Unlike signature-based systems, where you can’t really go wrong by
discussing Snort rules, anomaly-detection systems are more likely to
be built by hand. Consequently, when discussing how to make an
anomaly detector more effective, we have to operate at a more basic
level. Throughout Part III, we discuss a number of
different numerical and behavioral techniques for implementing anomaly-detection systems, as well as cases for false positives. However,
this is an appropriate place to discuss general criteria for building
good anomaly-detection systems.
In their simplest forms, anomaly-detection systems raise alarms via
thresholds. For example, I might decide to build anomaly detection
for a file server by counting the number of bytes downloaded from a
server every minute. I can do so using rwfilter to filter the data, and
rwcount to count it over time. I then use R, and generate a
histogram showing the probability that the value is above x. The nice
thing about histograms and statistical anomaly detection is that I
control this nominal false positive rate. A test every minute and a
95% threshold before raising alarms means that I create three alarms an
hour; a 99% threshold means one alarm every two hours.
The problem lies in picking a threshold that is actually useful. For
example, if an attacker is aware that I’ll raise an alarm if he’s too
busy, he can reduce his activity below the threshold. This type
of evasiveness is really the same kind we saw with Code Red in
On Code Red and Malware Evasiveness. The attacker in that case could change the contents
of the buffer without impacting the worm’s performance. When you
identify phenomena for anomaly detection, you should keep in mind how
it impacts the attacker’s goals; detection is simply the first step.
I have four of rules of thumb I apply when evaluating phenomena for an anomaly detection system: predictability, manageable false positives, disruptibility, and impact on attacker behavior.
Predictability is the most basic quality to look for in a phenomenon.
A predictable phenomenon is one whose value effectively converges over
time. “Convergence” is something that I have to be a bit hand-wavy
about. You may find that nine days out of ten, a threshold is x, and
then on the tenth day it rises to 10x because of some unexplained
weirdness. Expect unexplained weirdness; if you can identify and
describe outliers behaviorally and whatever remains has an upper limit
you can express, then you’ve got something predictable. False
positives will happen during investigation, and true positives will
happen during training!
The second rule is manageable false positives. Look at a week of
traffic for any publicly available host and you will see something
weird happen. Can you explain this weirdness? Is it the same address
over and over again? Is it a common service, such as a crawler
visiting a web server? During the initial training process for any
anomaly detector, you should log how much time you spend identifying
and explaining outliers, and whether you can manage those outliers
through whitelisting or other behavioral filters. The less you have
to explain, the lower a burden you impose on busy operational
analysts.
A disruptible phenomenon is one that the attacker must affect in order
to achieve his goals. The simpler, the better. For example, to
download traffic from a web server, the attacker must contact the
web server. He may not need to do so from the same address, and he may not
need authentication, but he needs to pull down data.
Finally, there’s the impact of a phenomenon on attacker behavior. The best alarms are the ones that the attacker has to trigger. Over time, if a detector impacts an attacker, the attacker will learn to evade or confuse it. We see this in antispam and the various tools used to trick Bayesian filtering, and we see it consistently in insider threats. When considering an alarm, consider how the attacker can evade it, such as:
	
By moving slower

	
Can an attacker impact the alarm if she reduces her activity? If so, what’s the impact on the attacker’s goal? If a scanner slows her probes, how long does it take to scan your network? If a file leech copies your site, how long to copy the whole site?

	
By moving faster

	
Can an attacker confuse the system if he moves faster? If he risks detection, can he move faster than your capability to block him by moving as fast as possible?

	
By distributing the attack

	
If an attacker works from multiple IP addresses, can the individual addresses slip under the threshold?

	
By alternating behaviors

	
Can an attacker swap between suspicious and innocent behavior, and confuse the IDS that way?

Many of the techniques discussed previously imply a degree of heterogeneity
in your detection system. For example, anomaly-detection systems
might have to be configured individually for different hosts. I have
found it useful to push that idea toward a subscription model, where
analysts choose which hosts to monitor, decide on the thresholds, and
provide them with whitelisting and blacklisting facilities for every host
they decide to monitor. Subscriptions ensure that the analyst can
treat each host individually, and eventually build up an intuition for
normal behavior on that host (for example, knowing that traffic to the
payroll server goes bonkers every two weeks).
The subscription model acknowledges that you can’t monitor everything, and consequently the next question about any subscription-based approach is precisely what to monitor. Chapter 13 and Chapter 15 discuss this issue in more depth.

Enhancing IDS Response

IDS, particularly NIDS, was conceived of as a real-time detection
system—there would be enough of a gap between the time the attack
began and the final exploit that, armed with the IDS alerts, the
defenders could stop the attack before it caused significant damage.
This concept was developed in a time when attackers might use two
computers, when attacks were hand-crafted by experts, and when malware
was far more primitive. Now, IDS is too often a recipe for annoyance. It’s not simply a case of misclassified attacks; it’s a case of
attackers attacking hosts that aren’t there in the hopes that they’ll
find something to take over.
At some point, you will make an IDS as effective a detector as you
can, and you’ll still get false positives because there are normal
behaviors that look like attacks and the only way you’ll figure this
out is by investigating them. Once you reach that point, you’re left
with the alerting problem: IDSes generate simple alerts in real time,
and analysts have to puzzle them out. Reducing the workload on
analysts means aggregating, grouping, and manipulating alerts so that
the process of verification and response is faster and conducted more
effectively.
When considering how to manipulate an alert, first ask what the
response to that alert will be. Most CSIRTS have a limited set of
actions they can take in response to an alert, such as modifying
a firewall or IPS rules, removing a host from the network for further
analysis, or issuing policy changes. These responses rarely take
place in real time, and it’s not uncommon for certain attacks to not
merit any response at all. The classic example of the latter case is
scanning: it’s omnipresent, it’s almost impossible to block, and
there’s very little chance of catching the culprit.
If a real-time response isn’t necessary, it’s often useful to roll up
alerts, particularly by attacker IP address or exploit type. It’s not
uncommon for IDSes to generate multiple alerts for the same attacker. These behaviors, which are not apparent with single real-time alerts, become
more obvious when the behavior is aggregated.

Prefetching Data

After receiving an alert, analysts have to validate
the information and examine it. This usually involves tasks such as
determining the country of origin, the targets, and any past activity
by this address. Prefetching this information helps enormously to
reduce the burden on analysts.
In particular with anomaly-detection sytems, it helps to present
options. As we’ve discussed, anomaly detections are often
threshold-based, raising an alert after a phenomenon exceeds a
threshold. Instead of simply presenting an aberrant event, return a
top-n list of the most aberrant events at a fixed interval.
Providing summary data in visualizations such as time series plots or
contact graphs helps reduce the cognitive burden on the analyst.
Instead of just producing a straight text dump of query information,
generate relevant plots. Chapter 10 discusses this issue in more
depth.
Finally, consider monitoring assets rather than simply monitoring
attacks. Most detection systems are focused on attacker behavior,
such as raising an alert when a specific attack signature is detected.
Instead of focusing on attacker behavior, assign your analysts
specific hosts on the network to watch and analyze the traffic to and
from the asset for anomalies. Lower-priority targets should be
protected using more restrictive techniques, such as restrictive
firewalls.
Assigning analysts to assets rather than simply reacting to alerts has
another advantage: analysts can develop expertise about the systems
they’re watching. False positives often rise out of common processes
that aren’t easily described to the IDS, such as a rise in activity to
file servers because a project is reaching crunch time, regular
requests to payroll, a service that’s popular with a specific
demographic. Expertise reduces the time analysts need to sift
through data, and helps them throw out the trivia to focus on more
significant threats.

Further Reading

	
Stefan Axelsson, “The Base-Rate Fallacy and the Difficulty of Intrusion Detection,” ACM Transactions on Information and System Security, Vol. 3, Issue 3, August 2000.

	
Brian Caswell, Jay Beale, and Andrew Baker. Snort IDS and IPS Toolkit (Syngress, 2007).

	
Vern Paxson, “Bro: A System for Detecting Network Intruders in Real-Time,” Computer Networks: The International Journal of Computer and Telecommunications Networking, Vol. 31, Issue 23-24, December 1999.

	
Martin Roesch, “Snort—Lightweight Intrusion Detection for Networks,” Proceedings of the 1999 Large Installation Systems Administration Conference.

[9] A
number of similar tools are associated with SEM, particularly
security information management (SIM) and security information and
event management (SIEM). Technically, SIM refers to the log data and
information management while SEM is focused on more abstract events,
but you are more likely to hear people say “SIM/SEM/SIEM” or some other
aggregate.

[10] This has the nice bonus
of identifying systems that may be compromised. Malware will disable
AV as a matter of course.

Chapter 8. Reference and Lookup: Tools for Figuring Out Who Someone Is

Each alert or logfile line that reports an event provides some basic information
about the source of the event. Just from the IP address, you can
derive information about geographic location and do a reverse
DNS lookup. This chapter covers tools that
help you track the identity of a host.
This chapter is focused on the idea of “walking up” the OSI stack,
mentioned in Network Layering and Its Impact on Instrumentation. I like to view the OSI layer as
a sequence of lookup processes. Each layer offers a different piece
of addressing information, such as the MAC address at layer 2, the IP
address at 3, and the ports at 4. This information is moved between
layers through the agency of various referencing systems: Address Resolution Protocol (ARP) maps IP addresses to MAC addresses, DNS maps
domain names to IP addresses, and so on. Again, the abstraction isn’t
perfect—DNS translation doesn’t move us up or down the OSI stack—but
by walking up each layer, we can describe what the addresses mean
and when they are relevant to investigation.
The remainder of this chapter is structured as follows: a section on MAC addresses, then IPv4 and IPv6,
followed by Internet-layer information, then DNS, then higher-level
protocols. Finally comes a discussion of other important
tools that don’t fit in the layering model—in particular,
reputation databases and malware repositories.
It’s unfortunate that some of our lookup techniques depend on
poorly maintained public databases, but they can still be
indispensable as long as you understand this limitation.
MAC and Hardware Addresses

Chapter 2 discusses the basics of a Media Access
Controller (MAC) address. MAC addresses are defined in the network
hardware to provide a locally unique address for hosts within a single
layer 2 network. The majority of MAC addresses follow the 48-bit
Extended Unique Identifier (EUI) standard: 6 bytes expressed hexadecimally (e.g., 08-21-23-41-FA-BB). More
modern network hardware may use EUI-64, which adds an additional 16
bits. When a frame goes from a 48-bit system to a 64-bit system,
the 48-bit address is padded to 64 bits.
Figure 8-1 shows how the EUI-48 and EUI-64 break down.
[image: The EUI-48 and EUI-64 standards]

Figure 8-1. The EUI-48 and EUI-64 standards

Note two things in particular.
First, if an EUI-48 is converted to an EUI-64, you can
tell this by looking at bytes 3 and 4, which will be
FFFE. More important is that the first 3 bytes are the
Organizationally Unique Identifier (OUI), which is a 24-bit value assigned
by the IEEE to the hardware manufacturer. OUI’s are fixed serial
numbers, and if you know the OUI, you can find out who manufactured
the card. The IEEE maintains a
list of OUI
assignments, where you can use a search engine to find OUIs by company, or
companies by OUI.
For example, consider the following packet from a pcap:
$ tcpdump -c 1 -e -n -r web.pcap
reading from file web.pcap, link-type EN10MB (Ethernet)
00:37:56.480768 8c:2d:aa:46:f9:71 > 00:1f:90:92:70:5a, ethertype IPv4 (0x0800),
 length 78: 192.168.1.12.50300 > 157.166.241.11.80: Flags [S],
 seq 4157917085, win 65535, options [mss 1460,nop,wscale 4,nop,
 nop,TS val 560054289 ecr 0,sackOK,eol], length 0
The communication goes from 8c:2d:aa:46:f9:71 to 00:1f:90:92:70:5a.
Looking these up tells us that 8c:2d:aa belongs to Apple, and 00-1f-90
belongs to Actiontec Electronics, who make Verizon’s FIOS routers.
There’s Less Work Than You Think
A common analytical stumbling block comes when an analyst tries to
build a complicated general solution to a problem when only a limited
number of options are present. To use a military example, you don’t
have to develop a general solution for identifying aircraft carriers
because there are only 20 of them in active service. Instead of
working on one big problem, you can solve 20 problems that are
considerably smaller and mostly similar.
When dealing with hardware systems and applications, it often helps to
stop, step back, and do some market research. The problem often
becomes smaller when you find out, for example, that while there are a
bunch of systems with embedded web servers, most of them are
using Allegro RomPager.

MAC addresses operate entirely within the scope of the local network.
To communicate beyond the borders of a router, the host must have an
IP address. The relationship between a local MAC and an IP address is
managed through the address resolution protocol (ARP). Individual
hosts maintain ARP tables that contain mappings between IP
addresses and MAC addresses on a network. For example, on my local
host, I can query the ARP table using arp -a:
$ arp -a
wireless_broadband_router.home (192.168.1.1) at 0:1f:90:92:70:5a on en1 ifscope
/[ethernet]
new-host-2.home (192.168.1.3) at 0:1e:c2:a6:17:fb on en1 ifscope [ethernet]
new-host.home (192.168.1.4) at cc:8:e0:68:b8:a4 on en1 ifscope [ethernet]
apple-tv-3.home (192.168.1.9) at 7c:d1:c3:26:35:bf on en1 ifscope [ethernet]
? (192.168.1.255) at ff:ff:ff:ff:ff:ff on en1 ifscope [ethernet]
Do the lookups and you’ll find that I really like Apple hardware.
Or I prefer to keep my Windows and Linux boxes physically wired.
Analytically, MAC addresses (when you can get them, and you’ll
normally have them only for your local network, as already explained) are particularly useful for
identifying and differentiating hardware, particularly
networking hardware such as routers. IP addresses are considerably more
fungible than MAC addresses, and if you need to track a mobile asset
like a laptop or anything moderated through DHCP, the MAC address will be your
best asset for doing so.

IP Addressing

IP addresses are the most commonly accessed piece of information about
a host, and often the only piece of data you will have about a host.
IP is slowly transitioning from IPv4 to IPv6. IPv6 corrects a number
of design errors in IPv4, the most notable being IP address
exhaustion. An IPv4 address is a 32-bit value, conventionally written
in “dotted quad” format: four bytes, written decimally, separated by
periods (like 192.168.1.1). At the time of IPv4’s original design,
nobody seriously expected that the 4 billion addresses provided would
be exhausted, and many of the early allocations of IPv4 addresses are
comically generous, as
you can see
from the
master list of /8 allocations.
A /8 is a collection of 16 million+ addresses (224) all of which have
the same first octet, so 9.0.0.0 to 9.255.255.255 is all owned by IBM,
for example. Looking at the list, you’ll see that several of the
blocks were assigned large and early to companies such as Xerox and
Ford who don’t really use the space they have. The situation has
actually improved over the past few years, when several drug companies
owned nearly empty /8s and have since returned them to IANA.
The majority of the English-speaking Internet still runs on IPv4,
while in Asia and elsewhere, IPv6 is increasingly prevalent. The uneven
allocation of IPv4 addresses forces countries who have come to the
Internet historically later to build IPv6 infrastructure.
IPv4 Addresses, Their Structure, and Significant Addresses

IPv4 addresses can be expressed using a number of different notations.
The most common is the dotted quad format discussed earlier: four
integer values between 0 and 255, separated by periods. Addresses can
also be referred to directly as a value, usually in hexadecimal.
Consequently, the IP address 0xA1010203 is 161.1.2.3 as a dotted quad,
and 2701197827 as a decimal integer.
Groups of IP addresses are usually described linearly (e.g.,
128.2.11.3–128.2.3.14), or using a Classless Internet Domain Routing
(CIDR) block. CIDR blocks, which are discussed in more depth later,
are a mechanism for describing the addresses reachable by picking a
particular route. Addresses in CIDR notation are represented by a
prefix,[11] which is a dotted quad representation of the
significant bits of an address, and then a mask, which indicates how
many bits make up the prefix.
For example, the CIDR block 128.2.11.0/24 consists of all addresses
whose first 24 bits are 128.2.11, so any address from 128.2.11.0 to
128.2.11.255 is in that block.
A number of IP addresses are either reserved or fixed by convention in
network configuration. For an individual host on a network, the most
important are the broadcast address, gateway, and netmask. IP networks
are logically divided into subnets, a collection of contiguous
addresses that can all communicate with each other without the need
for internal routing. When configuring an IP address, this range is
specified using a netmask, which is an IP address with a
certain number of its least significant bits zeroed out.
To communicate outside its subnet, a host will have to talk to a router,
and does so using a preconfigured gateway address. The gateway
address is simply the IP address of the router’s interface to the
subnet. Gateway addresses are customarily assigned the lowest value
in the subnet, but this is not a requirement.
A network’s broadcast address is set to the subnet mask, but with all
the host bits high (e.g., for a network with subnet mask 192.168.1.0,
the broadcast address is 192.168.1.255). Messages sent to the
broadcast address are sent to every target within the network. The
broadcast address is one of a number of addresses you should never
see outside of local network traffic. Addresses ending in .255, for
lack of a better term, smell funny.
A number of IPv4 addresses are reserved for specific networking
functions. These addresses are specifically intended for local use and
consequently should not be seen crossing networks. The most
significant are:
	
Local identification addresses

	
These belong to the 0.0.0.0/8 CIDR block
(0.0.0.0–0.255.255.255). Local identification addresses are used
during the startup sequence for a host that doesn’t have an IP address
yet.

	
Loopback address

	
The loopback address of a host is 127.0.0.1. Traffic sent to the
loopback address is sent back to the host without entering the
network. IANA has reserved the entire 127.0.0.0/8 CIDR block
(127.0.0.0–127.255.255.255) for loopback, so as with local
identification, nothing from the 127.0.0.0/8 CIDR block should be seen
crossing network boundaries.

	
RFC 1918 netblocks

	
This document defines a number of netblocks for private use.
These addresses can be used within local networks with the intent that
they never communicate directly with the global Internet. The RFC
netblocks are 10.0.0.0/8, 192.168.0.0/16 and 172.16.0.0/12. Addresses
within these blocks are often assigned automatically by local routing
tools or DHCP.

	
Multicast addresses

	
Multicast addresses are used to classify
specific groups of hosts within a subnet. For example, multicast
address 224.0.0.2 is the “all routers” multicast address, and all
routers within the subnet will receive traffic sent there. Multicast
traffic is primarily the focus of routing and other Internet control
protocols.

IPv6 Addresses, Their Structure and Significant Addresses

One of the most significant changes between IPv4 and IPv6 is the
number of addresses they make available. IPv6 assigns 128 bits to each address;
this ensures plenty of addresses, but introduces some problems in
notation.
The default format for an address is eight 16-bit hexadecimal values
separated by colons, such as
2001:0010:AF3A:FB31:09A8:08A1:1098:1101. Given that this is a long
and clumsy representation, addresses are usually represented using a
number of shorthand conventions. When writing IPv6 addresses, apply
these rules:
	
Leading zeroes in any group are omitted, so 01AA:0002 can be written as 1AA:2.

	
Consecutive groups of zero may be replaced with a pair of colons, so 2001:0:0:0:0:0:0:1 is written as 2001::1. The double-colon reduction can be used only once, so 2001:0:0:0:11:0:0:1 is written as 2001::11:0:0:1.

The RIRs and IP Address Allocation
Researching an IP address often means tracing the chain of ownership
from IANA to a specific organization. The process of reservation is
hierarchical; at the top level, IP address allocation is controlled by
the Internet Assigned Numbers Authority (IANA).
IANA is a department of the Internet Corporation for Assigned Names
and Numbers (ICANN), the US-based nonprofit in charge of managing IP
address and DNS name assignment.
IANA delegates the control of blocks of numbers to the Regional
Internet Registries (RIRs), continental organizations that manage the
allocation of IP addresses and Autonomous System numbers within their
continent. RIRs are the intermediary between IANA and the various
national and TLD registrars that actually deal with the allocation of
addresses (see Table 8-1).
Table 8-1. The RIRs
	 RIR 	 Domain 	 URL
	ARIN
	US and Canada
	www.arin.net

	LACNIC
	Central and South America, the Caribbean
	lacnic.net

	RIPE
	Europe, Russia, and the Middle East
	www.ripe.net

	APNIC
	Asia and Oceana
	www.apnic.net

	AfriNIC
	Africa
	www.afrinic.net

IANA delegates address blocks to the RIRs, and the RIRs in turn allocate
sections of those blocks to organizations within their domains. RIRs
then allocate address blocks to their members, and those members can
allocate subblocks or addresses as they see fit.
This allocation process means that every IP address has a chain of
ownership. That ownership begins with IANA, is allocated to one of
the RIRs, and then down through one or more ISPs until it reaches
whatever party is currently using the address. Beyond the final ISP
(generally, below a /24 or a /27), address ownership is more fungible—it’s rare to be able to associate a specific address with a
specific person unless that’s a matter of public record via whois, or
the ISP is willing to give up that information.

As with IPv4, multiple IPv6 blocks are reserved for specific
functions. The most important reservation at this point is 2000::/3
(as with IPv4, CIDR block notation can be used with IPv6 addresses,
and the mask can extend up to 128 bits). IPv6
space is huge, and to help keep routes reasonably close together,
all routable traffic in IPv6 should be in the 2000::/3 block.
Further divisions within the 2000::/3 block are maintained by IANA as
it does with the /8 registry for IPv4. The master reference is
available on the
IPv6 Global Unicast Address Assignments page.
Additional address blocks of note include the ::/128 and ::1/128
blocks, which are the unspecified and loopback address (the equivalent
of 0.0.0.0, and 127.0.0.0 for IPv4).
Of particular interest are the utility address blocks 2001:758::/29
and 2001:678::/29. 2001:758:/29 is specifically assigned to Internet
Exchange Points (IXPs); an IXP is a physical location where multiple
ISPs interconnect with each other. 2001:678::/29 represents a block
of provider-independent addresses; users can contact their RIRs
directly for these addresses.
For clarity, a summary of local and unroutable addresses is provided
in Table 8-2.
Table 8-2. Notable addresses
	 IPv4 block 	 IPv6 block 	 Description
	0.0.0.0/0
	::/0
	Default route; addresses from this block shouldn’t be seen

	0.0.0.0/32
	::/128
	Unspecified address

	127.0.0.1/8
	::1/128
	Loopback

	192.168.16.0/24
	fc00::/7
	Reserved for local traffic

	10.0.0.0/8
	fc00::/7
	Reserved for local traffic

	172.16.0.0/12
	fc00::/7
	Reserved for local traffic

	224.0.0.0/4
	ff00::/8
	Multicast addresses

Checking Connectivity: Using ping to Connect to an Address

The most basic command-line tool for checking connectivity is ping.
ping works by using ICMP (see Packet and Frame Formats) messages. ping sends
an ICMP echo request (type 8, code 0) to the target. On receiving an
echo request message, the target should respond with an echo reply
(type 0, code 0). Example 8-1 shows the output of ping
and a pcap of the contents.
Example 8-1. ping output
$ ping -c 1 nytimes.com
PING nytimes.com (170.149.168.130): 56 data bytes
64 bytes from 170.149.168.130: icmp_seq=0 ttl=252 time=29.388 ms

$ tcpdump -Xnr ping.pcap
reading from file ping.pcap, link-type EN10MB (Ethernet)
20:38:09.074960 IP 192.168.1.12 > 170.149.168.130:
 ICMP echo request, id 44854, seq 0, length 64
 0x0000: 4500 0054 0942 0000 4001 5c9b c0a8 010c E..T.B..@.\.....
 0x0010: aa95 a882 0800 0fb8 af36 0000 5175 d7f1 6..Qu..
 0x0020: 0001 24a6 0809 0a0b 0c0d 0e0f 1011 1213 ..$.............
 0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 !"#
 0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
 0x0050: 3435 3637 4567
20:38:09.104250 IP 170.149.168.130 > 192.168.1.12:
 ICMP echo reply, id 44854, seq 0, length 64
 0x0000: 4500 0054 0942 0000 fc01 a09a aa95 a882 E..T.B..........
 0x0010: c0a8 010c 0000 17b8 af36 0000 5175 d7f1 6..Qu..
 0x0020: 0001 24a6 0809 0a0b 0c0d 0e0f 1011 1213 ..$.............
 0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 !"#
 0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+,-./0123
 0x0050: 3435 3637 4567

Note first the size of the packet and the ttl value. These values
are usually set by default by the TCP stack. In the case of Mac OS X, the
ICMP packet has a 56-byte payload, which results in an 84-byte packet
(20 bytes of IP header, 8 bytes of ICMP header, and 56 bytes payload).
The type and code are at 0x0014-0x0015 (08 for the request, 00 for the
response). After the ICMP header, note that the contents of the
packet are echoed. ICMP has a concept of a session, and in many cases,
messages are sent in response to packets from entirely different
protocols. Different ICMP messages use different techniques to
indicate their point of origin; in the case of ping, this is done by
echoing the packet’s original contents.
ping is a simple application: it sends an echo request with an embedded
sequence identifier. The application then
waits until a specified timeout (usually on the order of 4,000 ms); if
the response is received in that time, the response is printed and the
next packet is sent. ping is a diagnostic tool, and any serious
implementation will provide a number of command line switches for
manipulating packet composition.
Sweeping Pings and Ping Sweeping
These are actually different terms, although Google gets confused when
you enter a search for them. A ping sweep (or ping sweeping) is a
scanning technique that systematically pings all the IP addresses
assigned to a network to determine which ones are present and which
ones are not. Ping sweeping is supported by nmap and a number of
other scanning tools, although you can write a script to do it in
about 20 seconds.
A sweeping ping, in contrast, is a sequence of ping messages that undergo
size increases with each packet. Sweeping pings are intended to
diagnose channels by identifying traffic manipulation or MTU issues.
Sweeping pings are enabled by a command-line option on most modern
ping implementations.
It’s not uncommon to find networks blocking ICMP messages. Ping
sweeping is consequently a middling tool for finding hosts on a
network; direct TCP or UDP scanning will generally be more
effective.

Tracerouting

traceroute is a tool and technique to identify the routers that
forward packets from point A to point B. traceroute produces a
sequential list of routers by manipulating packet TTLs.
The TTL (time to live) field of an IP packet is a mechanism developed
to prevent packets from bouncing through the Internet forever. Every
time a packet is forwarded by a router, its TTL value decreases by
one. When the TTL reaches zero, the forwarding router drops the
packet and sends an ICMP time exceeded (type 11) message.
$traceroute www.nytimes.com
traceroute to www.nytimes.com (170.149.168.130), 64 hops max, 52 byte packets
 1 wireless_broadband_router (192.168.1.1) 1.189 ms 0.544 ms 0.802 ms
 2 l100.washdc-vfttp-47.verizon-gni.net (96.255.98.1) 2.157 ms 1.401 ms
 1.451 ms
 3 g0-13-2-7.washdc-lcr-22.verizon-gni.net (130.81.59.154) 3.768 ms 3.751 ms
 3.985 ms
 4 ae5-0.res-bb-rtr1.verizon-gni.net (130.81.209.222) 2.029 ms 2.314 ms
 2.314 ms
 5 0.xe-3-1-1.br1.iad8.alter.net (152.63.37.141) 2.731 ms 2.759 ms 2.781 ms
 6 xe-2-1-0.er2.iad10.us.above.net (64.125.13.173) 3.313 ms 3.706 ms 3.970 ms
 7 xe-4-1-0.cr2.dca2.us.above.net (64.125.29.214) 3.741 ms 3.668 ms
 xe-3-0-0.cr2.dca2.us.above.net (64.125.26.241) 4.638 ms
 8 xe-1-0-0.cr1.dca2.us.above.net (64.125.28.249) 3.677 ms
 xe-7-2-0.cr1.dca2.us.above.net (64.125.26.41) 3.744 ms
 xe-1-0-0.cr1.dca2.us.above.net (64.125.28.249) 4.496 ms
 9 xe-3-2-0.cr1.lga5.us.above.net (64.125.26.102) 24.637 ms
 xe-2-2-0.cr1.lga5.us.above.net (64.125.26.98) 10.293 ms 9.679 ms
10 xe-2-2-0.mpr1.ewr1.us.above.net (64.125.27.133) 20.660 ms 10.043 ms
 10.004 ms
11 xe-0-0-0.mpr1.ewr4.us.above.net (64.125.25.246) 15.881 ms 16.848 ms
 16.070 ms
12 64.125.173.70.t01646-03.above.net (64.125.173.70) 30.177 ms 29.339 ms
 31.793 ms
As the next code block shows, traceroute sends an initial 52-byte message,
and then proceeds to receive sequential information about each address
it contacts en route to 170.149.168.130. Let’s look at the payload in
more depth.
$ tcpdump -nXr traceroute.pcap | more
21:06:51.202439 IP 192.168.1.12.46950 > 170.149.168.130.33435: UDP, length 24
 0x0000: 4500 0034 b767 0000 0111 ed85 c0a8 010c E..4.g..........
 0x0010: aa95 a882 b766 829b 0020 b0df 0000 0000 f..........
 0x0020: 0000 0000 0000 0000 0000 0000 0000 0000
 0x0030: 0000 0000
21:06:51.203481 IP 192.168.1.1 > 192.168.1.12: ICMP time exceeded in-transit,
 length 60
 0x0000: 45c0 0050 a201 0000 4001 548e c0a8 0101 E..P....@.T.....
 0x0010: c0a8 010c 0b00 09fe 0000 0000 4500 0034 E..4
 0x0020: b767 0000 0111 ed85 c0a8 010c aa95 a882 .g..............
 0x0030: b766 829b 0020 b0df 0000 0000 0000 0000 .f..............
 0x0040: 0000 0000 0000 0000 0000 0000 0000 0000
21:06:51.203691 IP 192.168.1.12.46950 > 170.149.168.130.33436: UDP, length 24
 0x0000: 4500 0034 b768 0000 0111 ed84 c0a8 010c E..4.h..........
 0x0010: aa95 a882 b766 829c 0020 b0de 0000 0000 f..........
 0x0020: 0000 0000 0000 0000 0000 0000 0000 0000
 0x0030: 0000 0000
21:06:51.204191 IP 192.168.1.1 > 192.168.1.12: ICMP time exceeded in-transit,
 length 60
 0x0000: 45c0 0050 a202 0000 4001 548d c0a8 0101 E..P....@.T.....
 0x0010: c0a8 010c 0b00 09fe 0000 0000 4500 0034 E..4
 0x0020: b768 0000 0111 ed84 c0a8 010c aa95 a882 .h..............
 0x0030: b766 829c 0020 b0de 0000 0000 0000 0000 .f..............
 0x0040: 0000 0000 0000 0000 0000 0000 0000 0000
Note that traceroute sends out UDP messages, starting at port 33435
and incrementing the port number by one with each additional message.
The port number is incremented in order to reconstruct the order in
which the packets are sent. Note that the ICMP packet from offset
0x001C onward contains the original UDP packet. As noted above,
ICMP messages need to use a number of different techniques to provide
context—error messages such as TTL exceeded include the IP header
and the first 8 bytes of the original packet. This includes the UDP
source port number. traceroute orders the ICMP messages in order of
this port number in order to determine the order in which those messages were
sent.
While traceroute uses UDP by default, the same technique can be used
by TCP or any other protocol where there is a controllable value
(such as ephemeral port number) in the first 8 bytes of the IP
payload.
ping and traceroute are more useful if you can use them from
different locations. To that end, a number of Internet service
providers and other organizations provide looking glass servers. A
looking glass server is a publicly accessible (generally via the Web)
interface to any of a number of common Internet applications. Most looking glasses are managed by NOCs or ISPs, and provide access to multiple routers. There is no standard for implementation, and different looking glasses will provide different services. A comprehesive list is available at www.traceroute.org.

IP Intelligence: Geolocation and Demographics

A number of database and intelligence services provide
further information about an IP address. This type of augmentation data
includes ownership, geolocation, and demographic information.
It’s important to distinguish this augmentation data from information
such as autonomous system, domain name, and whois data. The latter is
necessary for the upkeep of the network, and is maintained by Internet
organizations related to ICANN. Geolocation, demographic data, and
ownership are intelligence products. The companies that produce them
use a variety of mechanisms including network scanning as well as
shoe-leather investigation to produce it. This leads to several
important qualities:
	
The intelligence updates slowly, whereas DNS names can change very
 rapidly. It takes
 additional checking to find out that 128.2.11.214 is no longer involved in selling
 car parts and is now hosting malware.

	
There is always some degree of approximation. As a rule of
 thumb, intelligence data gets less accurate as you delve
 down into finer
 detail. Country information is usually good, but I’m
 moderately skeptical about city information outside of the
 US and western Europe, and I never trust physical location.

	
You get what you pay for. The companies that produce this
 data have customers who need it. Most of the companies started out
 providing demographic data for large websites, and it’s
 still common to find limits on the number of queries you can
 conduct per license. You pay for accuracy and you pay for
 precision. There are free intelligence databases, but if you
 want to get finer detail than country codes, prepare to crack open
 your wallet.

The most commonly used open source reference is MaxMind’s
GeoIP, which
provides a number of databases for city, country, region, organization,
ISP, and network speed. They also provide free services in the form of
“lite” databases for finding city and country. All of their products
are downloadable databases and are updated regularly. MaxMind has
been providing this service for years, along with a number of APIs in Python
and other scripting languages that are available to access the database.
For more extensive information, options include
Neustar and Digital Envoy’s
Digital Element. Both provide
more precise measurement, as well as additional demographic data such
as Metropolitan Statistical Area (MSA) (contiguous areas of high
population density used by the government for statistical analysis)
and North American Industry Classification System (NAICS) codes (a
numerical identifier akin to a Dewey Decimal number for business type).
These services are not cheap, however.

DNS

In a just world, each IP address would have a single DNS name, and
finding the DNS name associated with an IP address would be a simple
matter of consulting a database. This world is not just.
DNS is the glue that makes the Internet usable by human beings. As
one of the older services making the Internet work, DNS overlaps a
couple of other services (particularly mail). DNS is, at this point,
a distributed database that provides lookup information for a number
of different relationships, in particular DNS name to IP address, DNS
name to DNS name, email address to mail server, and so on.
DNS Name Structure

A domain name consists of a hierarchical sequence of labels
separated by periods, such as www.oreilly.com. Domain names become
more general as you read from right to left, ending at the root domain (the root domain is ., but it’s almost always implicit). Domain names do have limits. The
total length of a name cannot exceed 253 characters, and individual
labels are limited to 64.
Historically, labels were limited to a restricted subset of ASCII
characters for the name. Since 2009, it has been possible to acquire
internationalized domain names, which are encoded using character
systems such as Chinese, Greek, and so on.[12] The
mechanical limits of 253 characters per name still hold, though the
encoding is more complex.
NICs and Domain Name Allocation
The authority to allocate domain names, as with IP addresses, begins
with ICANN. ICANN controls the root zone and defines the top-level
domains (TLDs) that lie just below the root of the tree. As with addresses,
each TLD has a managing authority referred to as a network
information center (NIC). Each NIC establishes different policies
for name allocation—for example, anyone can get a .com address, but
only accredited educational institutions qualify for a .edu address.
Depending on NIC policy, registration authority may be further
delegated to one or more registrars.
IANA defines four categories of TLD. The oldest category is the
generic TLDs (gTLD); these are country-agnostic top-level domains
such as .com or .edu. Following gTLDs is the one-domain
infrastructural TLD, which contains the .arpa domain used for
reverse DNS lookups. A country code TLD (ccTLD) is a two-letter
top-level domain for a countries (e.g., .ie for Ireland). A new set of
internationalized TLDs (IDN ccTLD) allow non-Latin characters.
Each TLD has its own NIC. Table 8-3 below shows the NICs for a
number of commonly consulted TLDs.
Table 8-3. Notable NICs
	 TLD 	 NIC 	 URL
	.org
	Public Interest Registry
	www.pir.org

	.biz
	Neustar
	www.neustar.biz/enterprise/domain-name-registry

	.com
	VeriSign
	www.verisigninc.com/

	.net
	VeriSign
	www.verisigninc.com/

	.edu
	Educause
	www.educause.ed

	.int
	IANA
	www.iana.org/domains/int

	.fr
	AFNIC
	www.afnic.fr/

	.uk
	Nominet
	www.nominet.org.uk

	.ru
	Coordination Center for TLD RU
	www.cctld.ru/en/

	.cn
	CNNIC
	www1.cnnic.cn/

	.kr
	KISA
	www.kisa.or.kr/

This hierarchy of nameservers also serves to determine which servers
are authoritative. Top-level registries assign authority to
subregistries by granting them zones. Each zone has one master
server that maintains its domain names and is authoritative when
queried, but zones can be nested in order to give different servers
authority.

Forward DNS Querying Using dig

The basic DNS query tool is domain information groper (dig),
a command-line DNS client that enables you to query DNS for
all of the major records. Begin by conducting a simple dig query:
$ dig oreilly.com
dig oreilly.com

; <<>> DiG 9.8.3-P1 <<>> oreilly.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29081
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com. IN A

;; ANSWER SECTION:
oreilly.com. 383 IN A 208.201.239.101
oreilly.com. 383 IN A 208.201.239.100

;; Query time: 10 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sat Jul 20 19:11:17 2013
;; MSG SIZE rcvd: 61
$ dig +short oreilly.com
208.201.239.101
208.201.239.100
We will consider dig’s display options, and then the structure of
the DNS response. As seen in the previous example, the basic dig
command provides extensive information about the query, beginning with
a list of options invoked, then a DNS header, and then several
sections corresponding to the query. Note the QUERY, ANSWER, AUTHORITY,
and ADDITIONAL fields in the header line, and how those correspond to
the lines in the corresponding sections. Because this domain returned no AUTHORITY or
ADDITIONAL records, none are shown in the output. The query is
followed by a set of statistics about the query: the server, the
time it took, and the size of the message.
dig provides an enormous number of output options; the previous
example showed the default
display. Individual sections of that display can be
turned off using +nocomments (which kills all the comments beginning
with a double semicolon), +nostats (killing the statistics at the
end), and +noquestion and +noanswer (to eliminate the DNS
responses). +short will simply remove all the cruft and show the
responses.
dig is simply a DNS client, so the majority of information seen is
from the DNS server itself. dig enables queries to different
servers by using @ in the command line. For example:
$ # 8.8.8.8 is Google's public DNS server; let's query a CDN using it
$ dig @8.8.8.8 www.foxnews.com
; <<>> DiG 9.8.3-P1 <<>> @8.8.8.8 www.foxnews.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 18702
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.foxnews.com. IN A

;; ANSWER SECTION:
www.foxnews.com. 282 IN CNAME www.foxnews.com.edgesuite.net.
www.foxnews.com.edgesuite.net. 21582 IN CNAME a20.g.akamai.net.
a20.g.akamai.net. 2 IN A 204.245.190.42
a20.g.akamai.net. 2 IN A 204.245.190.8

;; Query time: 141 msec
;; SERVER: 8.8.8.8#53(8.8.8.8)
;; WHEN: Sat Jul 20 19:48:01 2013
;; MSG SIZE rcvd: 135

$ # Query using my default server
$ dig www.foxnews.com

; <<>> DiG 9.8.3-P1 <<>> www.foxnews.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 47098
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.foxnews.com. IN A

;; ANSWER SECTION:
www.foxnews.com. 189 IN CNAME www.foxnews.com.edgesuite.net.
www.foxnews.com.edgesuite.net. 9699 IN CNAME a20.g.akamai.net.
a20.g.akamai.net. 9 IN A 23.66.230.160
a20.g.akamai.net. 9 IN A 23.66.230.106

;; Query time: 97 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sat Jul 20 19:48:09 2013
;; MSG SIZE rcvd: 135
As you can see, querying a CDN-moderated site (Fox News uses Akamai)
results in radically different IP addresses for the same name. CDNs
manipulate the DNS to ensure that caches of published data are
geographically close to their target. If you don’t specify the server
using @, dig will default to whatever server the system is
configured to use (for example, in Unix systems this is maintained in
/etc/resolv.conf).
A CDN is a caching network that makes the Internet viable. Before
the Web, a user might visit four to five hosts in an hour; after the Web, a
request to a web page might launch a hundred different HTTP requests.
The majority of these requests are redirected via DNS to caching
servers that are located geographically nearby.
CDNs add an annoying wrinkle to web analysis, because a single CDN
server may host multiple websites. Once an address is identified as a
CDN, figuring out exactly what it is tends to be prohibitively
difficult.
Now, let’s look at the DNS data. DNS is a federated database
system. So queries go first to a local DNS server, which sends a
response if it possesses the answer to the query. If the server
doesn’t have the information, it uses the hierarchical structure of
the name to figure out where to send the request, waits for a
response, and sends the response back. DNS supports a number of
different queries, termed resource records (RRs), and the options
sent during the query specify the resource record requested as well as
options for querying additional servers. The values with As or CNAMES
in the lines above are resource records.
Note that the header lists eight fields:
	
opcode

	
This field was intended to specify a number of
different actions, such as queries, inverse queries, and server status.
In practice, it should always be set to query. A number of other
opcodes exist, but they are used to communicate information between
servers.

	
status

	
The status of the response. Three messages
appear most often: NOERROR, NXDOMAIN, and SERVFAIL. NOERROR
indicates that the query was successful, NXDOMAIN indicates that no
domain was available, and SERVFAIL indicates that authoritative
servers for the domain were unreachable.

	
id

	
The message ID. DNS is a UDP-moderated protocol and uses
message IDs to track queries and responses.

	
flags

	
These provide information on the response, and include
qr (set high for a response), aa (set high when the answer is from
an authoritative server), ra (recursion desired), and rd
(recursion available).

The remaining four fields refer to the categories of records sent in
response. These four are:
	
QUERY

	
This record is simply a copy of the original request;
you can see in this case that the query is echoed in what dig refers
to as the QUESTION section.

	
ANSWER

	
Contains the response.

	
AUTHORITY

	
Reserved for records that identify other servers.

	
ADDITIONAL

	
Provides additional
information, such as the expected responses to future queries.

Additional information is very much a function of the nameserver’s
administrators. A common example of its use follows, where the
information provides a name lookup for the mail server identified by an
MX query:
$ dig +nostats +nocmd mx cmu.edu
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30852
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 3

;; QUESTION SECTION:
;cmu.edu. IN MX

;; ANSWER SECTION:
cmu.edu. 20051 IN MX 10 CMU-MX-02.ANDREW.cmu.edu.
cmu.edu. 20051 IN MX 10 CMU-MX-03.ANDREW.cmu.edu.
cmu.edu. 20051 IN MX 10 CMU-MX-04.ANDREW.cmu.edu.
cmu.edu. 20051 IN MX 10 CMU-MX-01.ANDREW.cmu.edu.

;; ADDITIONAL SECTION:
CMU-MX-03.ANDREW.cmu.edu. 20412 IN A 128.2.155.68
CMU-MX-01.ANDREW.cmu.edu. 20232 IN A 128.2.11.59
CMU-MX-02.ANDREW.cmu.edu. 20051 IN A 128.2.11.60
Now, let’s discuss what those resource records actually
mean. DNS has upward of 20 resource records for different functions.
The major ones are:
	
A

	
An answer record, providing the IP address associated with a particular name.

	
AAAA

	
Like A, but provides an IPv6 address for a name.

	
CNAME

	
Relates two names, a canonical name and an alias.

	
MX

	
Returns the mailserver for a domain.

	
PTR

	
Points to a canonical name; mostly used for DNS reverse lookups.

	
TXT

	
Contains arbitrary text data.

	
NS

	
Describes the nameserver for an address.

	
SOA

	
Provides information about the authoritative nameserver for an address.

dig starts all resource records with the same four values: a name,
a time to live (TTL), a class, and an identifier for the RR (for
example: cmu.edu, 20051, IN, MX). The name is passed with the query.
The TTL indicates for how long (in seconds) the value of the name can
be trusted; DNS relies heavily on caching and the TTL provides
instructions on when to refresh the cache. The class will almost
invariably be IN (Internet); other class names are possible, but
outside the scope of this book.
A and AAAA provide basic DNS functionality: they associate the queried
name with an IP address. A records provide IPv4 addresses, and AAAA
records provide IPv6 addresses. By default, dig queries for A
records, while other record types are specified by adding them to the
command line, seen here:
$ dig +nocomment +noquestion +nostats +nocmd www.google.com
www.google.com. 55 IN A 74.125.228.81
www.google.com. 55 IN A 74.125.228.83
www.google.com. 55 IN A 74.125.228.84
www.google.com. 55 IN A 74.125.228.80
www.google.com. 55 IN A 74.125.228.82
$ dig +nocomment +noquestion +nostats +nocmd aaaa www.google.com
www.google.com. 18 IN AAAA 2607:f8b0:4004:802::1014
Note that the query to Google responds with five A records. This is
an example of round robin DNS allocation, a common load balancing
technique. In round robin allocation, the same domain name is
assigned to multiple IP addresses. Consequently, when a query chooses
an IP address to contact for the name, it effectively picks the
name randomly from the set of targets. Round robin DNS allocation is
one of many DNS hacks that makes reverse lookups (IP addresses from
names) incredibly annoying.
Note also the short TTL values. If a particular Google server goes
down, the TTL guarantees that in 55 seconds, the user has good odds of
contacting another server.
Canonical name (CNAME) records are used to associate an alias to a
canonical name. For example, consider lookups for www.oreilly.com:
dig +nocomment +noquestion +nostats +nocmd www.oreilly.com
www.oreilly.com. 3563 IN CNAME oreilly.com.
oreilly.com. 506 IN A 208.201.239.101
oreilly.com. 506 IN A 208.201.239.100
As this shows, the name www.oreilly.com actually points to
oreilly.com. www.oreilly.com does not have an IP address; it
points to oreilly.com, and that name has an IP address. Canonical
names are used for shortcuts (as in the previous example), and also to
manage content distribution. The example using Fox News showed how
Akamai first aliases all of Fox News’ sites into its own network names
using CNAME.
DNS provides the lookup functions for email, through the agency of the
mail exchange (MX) record. MX records record the addresses of
mail servers for a particular domain. For example, if I decide to mail
jbro@andrew.cmu.edu, I can find the mail server for doing so by
looking up the MX records for cmu.edu:
$dig +noquestion +nostats +nocmd mx cmu.edu
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 49880
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 2

;; ANSWER SECTION:
cmu.edu. 21560 IN MX 10 CMU-MX-03.ANDREW.cmu.edu.
cmu.edu. 21560 IN MX 10 CMU-MX-04.ANDREW.cmu.edu.
cmu.edu. 21560 IN MX 10 CMU-MX-01.ANDREW.cmu.edu.
cmu.edu. 21560 IN MX 10 CMU-MX-02.ANDREW.cmu.edu.

;; ADDITIONAL SECTION:
CMU-MX-01.ANDREW.cmu.edu. 21519 IN A 128.2.11.59
CMU-MX-02.ANDREW.cmu.edu. 21159 IN A 128.2.11.60
MX records include a server name (such as CMU-MX-03.ANDREW.cmu.edu),
as well as a priority value for the email server. The weighting value
is used to choose a mail server: mail clients should pick mail servers
in order of ascending priority (i.e., 1 should be chosen before 10).
Of note in this example are the A records shoved into the additional
section. These records resolve the CMU-MX-01 and CMU-MX-02 addresses.
This is a conscious decision by CMU’s DNS administrators to include
this information and reduce the number of lookups done.
NS records are used to find the authoritative nameserver for a zone.
For example, for O’Reilly Media:
$ dig +nostat ns oreilly.com

; <<>> DiG 9.8.3-P1 <<>> +nostat ns oreilly.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 32310
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;oreilly.com. IN NS

;; ANSWER SECTION:
oreilly.com. 3600 IN NS nsautha.oreilly.com.
oreilly.com. 3600 IN NS nsauthb.oreilly.com.
Now look at the NS record for a site managed by a CDN, such as Fox
News again:
$ dig +nostat ns foxnews.com

; <<>> DiG 9.8.3-P1 <<>> +nostat ns foxnews.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38538
;; flags: qr rd ra; QUERY: 1, ANSWER: 8, AUTHORITY: 0, ADDITIONAL: 5

;; QUESTION SECTION:
;foxnews.com. IN NS

;; ANSWER SECTION:
foxnews.com. 300 IN NS usc2.akam.net.
foxnews.com. 300 IN NS ns1.chi.foxnews.com.
foxnews.com. 300 IN NS ns1-253.akam.net.
foxnews.com. 300 IN NS dns.tpa.foxnews.com.
foxnews.com. 300 IN NS usw1.akam.net.
foxnews.com. 300 IN NS usw3.akam.net.
foxnews.com. 300 IN NS asia3.akam.net.
foxnews.com. 300 IN NS usc4.akam.net.

;; ADDITIONAL SECTION:
usw1.akam.net. 28264 IN A 96.17.144.195
usw3.akam.net. 50954 IN A 69.31.59.199
asia3.akam.net. 28264 IN A 222.122.64.134
usc4.akam.net. 28264 IN A 96.6.112.196
usc2.akam.net. 88188 IN A 69.31.59.199
Note that in this case, the authoritative nameservers are largely
owned by akam.net (Akamai). Fox News is hosted by Akamai’s CDN, and
Akamai modifies the names of the hosts as necessary in order to boost
performance.
SOA records contain summary information about the authoritative server for a
domain. These records are most commonly encountered during failed
lookups. When an address isn’t found, the SOA information for that
zone’s server is returned instead.
dig @8.8.4.4 +multiline +nostat zlkoriongomk.com

; <<>> DiG 9.8.3-P1 <<>> @8.8.4.4 +multiline +nostat zlkoriongomk.com
; (1 server found)
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 11857
;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0

;; QUESTION SECTION:
;zlkoriongomk.com. IN A

;; AUTHORITY SECTION:
com. 899 IN SOA a.gtld-servers.net. nstld.verisign-grs.com. (
 1374373035 ; serial
 1800 ; refresh (30 minutes)
 900 ; retry (15 minutes)
 604800 ; expire (1 week)
 86400 ; minimum (1 day)
)
The SOA field begins with the source host, followed by a contact email
address. After this address comes a serial number, which indicates how
many times the source file has been modified, and then timeout
statistics. Note the \+multiline option for dig; this will provide a
multiple line, more human-readable output for the SOA record.
The TXT field is a wildcard field used for any text output that the server
administrator feels like passing. For example, Google passes strings
for managing Google Apps:
$ dig +short txt google.com
"v=spf1 include:_spf.google.com ip4:216.73.93.70/31 ip4:216.73.93.72/31 ~all"

The DNS Reverse Lookup

A reverse lookup is the process of reconstructing a DNS name from an
IP address. For example, if I want to find out who owns
208.201.139.101, I do so using dig -x:
$ dig +nostat -x 208.201.139.101

; <<>> DiG 9.8.3-P1 <<>> +nostat -x 208.201.139.101
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7519
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;101.139.201.208.in-addr.arpa. IN PTR

;; ANSWER SECTION:
101.139.201.208.in-addr.arpa. 21600 IN PTR host-d101.studley.com.
Reverse lookups are requests to get DNS names from IP addresses. Note that the
question section does not request the IP address, 208.201.139.101, but
101.139.201.208.in-addr.arpa, which lists the fields of the IP address
in reverse order. When DNS does a reverse lookup, it
creates a special domain name to query in the in-addr.arpa
TLD.[13] The string of digits and
periods used for a reverse lookup is the original IP address reversed.
The is because DNS names and IP addresses are defined in a
contradictory fashion. A DNS name becomes more finely defined (from
TLD to domain to individual host) by reading from right to left, while
IP addresses are more finely defined reading from left to right.
Reverse lookups are a kludge. Note that the record returned in the
answer is a Pointer (PTR) record. PTR records are not automatically
created with the canonical A records, but are instead registered
separately by the NIC. More important, there’s no requirement that
a PTR record be registered, and the relationship between names and IP
addresses is tenuous at best.
For example, consider a CDN. If I look up one of Fox News’ IP
addresses, such as 23.66.230.66, I get this:
dig +nostat +nocmd -x 23.66.230.66
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 56379
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;66.230.66.23.in-addr.arpa. IN PTR

;; ANSWER SECTION:
66.230.66.23.in-addr.arpa. 290 IN
PTR a23-66-230-66.deploy.static.akamaitechnologies.com.
The CDN becomes an informational dead end; the answer from the
reverse lookup has no meaningful relation to the names in the original
query.
In general, DNS information is best collected at the time of the
original query. The uncertainty of reverse lookups is part of the
reason for this. However, even if reverse lookups worked perfectly,
attackers often use very short-lived names. Where possible, record
domain names as they’re used (such as the URL in HTTP logs) rather
than trying to reconstruct them after the fact.

Using whois to Find Ownership

While DNS can provide information on a domain’s name, the meat of
ownership information is provided by whois. This is a federated
protocol (RFC 3921) that
lists the putative owners of DNS names. The standard whois query on a domain will return
ownership and contact information for a domain, as seen in Example 8-2.
Example 8-2. A whois query for oreilly.com
$whois oreilly.com

<boilerplate>

 Domain Name: OREILLY.COM
 Registrar: GODADDY.COM, LLC
 Whois Server: whois.godaddy.com
 Referral URL: http://registrar.godaddy.com
 Name Server: NSAUTHA.OREILLY.COM
 Name Server: NSAUTHB.OREILLY.COM
 Status: clientDeleteProhibited
 Status: clientRenewProhibited
 Status: clientTransferProhibited
 Status: clientUpdateProhibited
 Updated Date: 26-may-2012
 Creation Date: 27-may-1997
 Expiration Date: 26-may-2013

<more boilerplate>

 Registered through: GoDaddy.com, LLC (http://www.godaddy.com)
 Domain Name: OREILLY.COM
 Created on: 26-May-97
 Expires on: 25-May-13
 Last Updated on: 26-May-12

 Registrant:
 O'Reilly Media, Inc.
 1005 Gravenstein Highway North
 Sebastopol, California 95472
 United States

 Administrative Contact:
 Contact, Admin nic-ac@oreilly.com
 O'Reilly Media, Inc.
 1005 Gravenstein Highway North
 Sebastopol, California 95472
 United States
 +1.7078277000 Fax -- +1.7078290104

 Technical Contact:
 Contact, Tech nic-tc@oreilly.com
 O'Reilly Media, Inc.
 1005 Gravenstein Highway North
 Sebastopol, California 95472
 United States
 +1.7078277000 Fax -- +1.7078290104

 Domain servers in listed order:
 NSAUTHA.OREILLY.COM
 NSAUTHB.OREILLY.COM

You’ll note that a whois entry for a domain returns an enormous amount
of boilerplate information. You will also find that the information
returned has no particular fixed format—whois information is the
electronic equivalent of 3×5 index cards. Depending on who owns the
card and how they decide to administer it, you may get phone numbers
and biographies, or nothing at all.
A good way to get a feel for the differences in registration is to
take a look at the registration files for different countries. There
is no central whois database—instead, depending on the top-level
domain, whois information may be maintained by any of a number of
whois servers. For example, Russian whois data (the .ru domain) is
maintained by whois.ripn.net, French by lvs-vip.nic.fr, and Brazilian
by registro.br. Fortunately, the good folks at whois-servers.net
provide aliases for every country and TLD, and depending on your whois
implementation, the information may be baked into the executable for
you already.
At the minimum, any whois implementation will provide the ability to
specify a lookup server using the -h switch. So whois -h
ru.tld-servers.net is identical to whois -h whois.ripn.net. Several
whois implementations offer a country-specific -c option, making
whois -c RU identical to both of the previous examples.
In addition to providing information on domain names, whois is also
useful for providing information on address allocation and ownership.
If whois is called with an IP address rather than a name, like in Example 8-3, it will
provide information on the organization that owns that address, often
in the form of a netblock. For example, if I look up the whois
information for Voila, a French search engine, I get different
information based on whether I look at RIPE (the European top-level
registry) or the French NIC. RIPE is informative; the French NIC is
considerably less so.
Example 8-3. Using whois with an IP address
$dig +short voila.fr
193.252.148.80

$ whois -h whois.ripe.net 193.252.148.80
% This is the RIPE Database query service.
% The objects are in RPSL format.
%
% The RIPE Database is subject to Terms and Conditions.
% See http://www.ripe.net/db/support/db-terms-conditions.pdf

% Note: this output has been filtered.
% To receive output for a database update, use the "-B" flag.

% Information related to '193.252.148.0 - 193.252.148.255'

% Abuse contact for '193.252.148.0 - 193.252.148.255' is 'gestionip.ft@orange.com'

inetnum: 193.252.148.0 - 193.252.148.255
netname: ORANGE-PORTAILS
descr: France Telecom
descr: internet portals for multiple services
country: FR
admin-c: WPTR1-RIPE
tech-c: WPTR1-RIPE
status: ASSIGNED PA
remarks: for hacking, spamming or security problems send mail to
remarks: abuse@orange.fr
mnt-by: FT-BRX
source: RIPE # Filtered

role: Wanadoo Portails Technical Role
address: France Telecom - OPF/Portail/DOP/Hebex
address: 48, rue Camille Desmoulins
address: 92791 Issy Les Moulineaux Cedex 9
address: FR
phone: +33 1 5888 6500
fax-no: +33 1 5888 6680
admin-c: WPTR1-RIPE
tech-c: WPTR1-RIPE
nic-hdl: WPTR1-RIPE
mnt-by: FT-BRX
source: RIPE # Filtered

% This query was served by the RIPE Database Query Service version 1.60.2 (WHOIS4)

$ whois -h fr.whois-servers.net 195.152.120.129
%%
%% This is the AFNIC Whois server.
%%
%% complete date format : DD/MM/YYYY
%% short date format : DD/MM
%% version : FRNIC-2.5
%%
%% Rights restricted by copyright.
%% See http://www.afnic.fr/afnic/web/mentions-legales-whois_en
%%
%% Use '-h' option to obtain more information about this service.
%%
%% [96.255.98.126 REQUEST] >> 195.152.120.129
%%
%% RL Net [##########] - RL IP [#########.]

You will find that the situation is reversed with Asian information.
The APNIC whois is often fairly sparse, but the whois entries at the
country level are usually informative.
Whois information is particularly useful when you can’t get much
useful data out of a DNS reverse lookup. If you can’t find the
specific domain name, you can use whois to at least find the block of
addresses that host the domain.

Additional Reference Tools

In addition to network and routing information, there exist a number
of commonly accessible sites containing information on exploits,
attacks, and the reputation of particular IP addresses. These sites
are usually small, volunteer-run and have a fair degree of turnover to
them.
DNSBLs

A DNS Blackhole List (DNSBL) is a DNS-based IP address database used
primarily as an antispam technique. The first DNSBLs were actually
implemented using BGP, and were intended to actively drop routes
associated with spammer IP addresses. DNSBLs are instead
DNS-moderated, they serve as reputation databases for email software. For example, a mail transfer agent can consult a DNSBL to determine if the
sending IP is a spammer and react accordingly.
DNSBLs work by providing a reverse-lookup style functionality on
their DNS servers. For example, I can look up an echo address on a
DNSBL using dig:
$ dig 2.0.0.127.sbl.spamhaus.org

; <<>> DiG 9.8.3-P1 <<>> 2.0.0.127.sbl.spamhaus.org
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 45434
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;2.0.0.127.sbl.spamhaus.org. IN A

;; ANSWER SECTION:
2.0.0.127.sbl.spamhaus.org. 300 IN A 127.0.0.2

;; Query time: 39 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Sun Jul 28 15:10:23 2013
;; MSG SIZE rcvd: 60
The address I intended to query was 127.0.0.2. Note that, as with a
reverse lookup, I reverse the IP address. After reversing the
address, I attach it to the name of the list and query. This process
is effectively a reverse lookup without relying on the hard-coded
.arpa TLD. Instead, the response is provided by an A record provided
by Spamhaus’s SBL server.
DNSBLs differ depending on the list and provider. Providers may
provide several different forms of lists for different categories of
traffic. Different providers will also provide different policies for
adding or removing addresses from the DNSBL. How different
organizations handle delisting (address removal) radically impacts
the character of the list. Most automatically drop an address a
fixed number of days after the last abuse; others require manual
intervention.
Some notable DNSBLs include:
	
Spam and Open Relay Blocking System (SORBS)

	
 Provides over 15 different DNSBLs that
 categorize hosts into a number of different behaviors. SORBS is
 particularly useful for categorizing dynamic addresses such as
 dialup and DSL addresses through a specialized list, the Dynamic
 User and Host List (DUHL).

	
Spamhaus

	
A nonprofit
 private company that produces a number of distinct blacklists and
 whitelists. Spamhaus’s most commonly used lists are the PBL
 (end-user addresses), SBL (spam addresses), and XBL (hijacked IP
 addresses and bots). These lists are accessible as a single
 combined service, ZEN.

	
SpamCop

	
Currently owned by Cisco Systems, SpamCop began as a
 private effort and eventually became part of IronPort’s email
 reputation system. Currently, SpamCop provides one public list,
 the SpamCop Block List (SCBL).

DNSBLs are useful as a categorized source of hostile activity. Using
a DNSBL, an analyst can determine whether a particular address has
been doing something hostile elsewhere on the Internet and possibly
what kind of activity it was. They supplement the more basic lookup
information discussed earlier by providing some idea of a site’s past
history.
DNSBLs are designed to be real-time tools that work primarily with
mail agents, not to support forensic analysis. Records will change
quickly and unpredictably, so an address may be recognized by the
DNSBL as hostile at the time of an event, but be delisted when an
analyst examines it later. Most of the blacklists sell some kind of
feed or data dump that, for forensic purposes, is preferable.

[11] Note that the prefix is the equivalent to a
subnet’s netmask.

[12] Internationalized
domain names raise the risk of homographic attacks, such as
creating a domain name that looks like oreilly.com but uses a Cyrillic O.

[13] .arpa officially stands for Address and Routing
Parameter area. This name is a backronym, because the abbreviation
originally meant Advanced Research Projects Agency, the DoD agency
that originally funded Internet development

Chapter 9. More Tools

As discussed at the beginning of the book, there are a lot of tools
that you will end up using for one or two specific purposes. In this
section, I discuss other tools that I find handy for analysis and
include a brief explanation about how to use them.
Many of these tools are pretty powerful—far more than in a three-page summary can describe. I will touch on each of these tools very briefly and try to provide an example for each. However, be prepared to look for additional material and supplemental documentation.
Visualization

While R is my primary tool for graph visualization, there are several
additional tools that are handy under specific circumstances.
Graphviz is toolkit for visualizing graphs. Gnuplot is the utility
knife of plotting tools: powerful, scriptable, and profoundly
unfriendly.
Graphviz

Graphviz is a graph layout and visualization
package. Originally developed by AT&T Labs, the package is now
released under the Eclipse license and is actively maintained.
Graphviz is actually a suite of tools, each of which provides a
different mechanism for automatically laying out graphs. With each
tool, you provide a graph specification, and the tool automatically
lays out the graph based on the specification. Graphs are
specified via a language called dot, which specifies nodes of
various attributes and then links connecting them. An example dot
command and output are shown in Example 9-1, with the results illustrated in Figure 9-1.
Example 9-1. A sample graph in dot
This is a simple dotfile showing the basic features of a graph
digraph sample_graph {
 # Nodes are specified with the node command, if note labeled seperately
 # Their labels are their names
 node [shape=circle] node_a, node_b;
 # The shape will automatically be a circle
 node [label="Node Gamma"] node_c;
 # Node attributes are passed down the line, so if I want to
 # avoid everything being called 'Node gamma', I have to reset
 # the label to the node name
 node [shape=square, label="\N"] node_1, node_2;
 node [shape=doublecircle] node_3;
 # Edge attributes are put in square brackets; label is the text label
 # for the graph
 node_1 -> node_a [label="Transition 1,A"];
 node_a -> node_1;
 node_b -> node_b [label="Transition B,B"];
 node_c -> node_2;
 node_2 -> node_1;
 # Color is controlled with the color attribte
 node_2 -> node_3 [color = "blue"];
 node_2 -> node_a;
 # Style lets you specify dotted, bold, &c.
 node_2 -> node_b [style = "dotted"];
 node_2 -> node_c;
 label="Sample Graph";
 fontsize=14;
}

[image: Resulting layout in dot]

Figure 9-1. Resulting layout in dot

It’s very easy to convert log records from their own formats to dot,
and the resulting graphs can often be used to visually signify
features such as central nodes. Example 9-2 shows the code that converts
HTTP page and referrer sites into links and then plots the progression
of surfing using dot. An example graph is shown in Figure 9-2.
Example 9-2. Convert Web Log Records into Dot Graphs
#!/usr/bin/env python
#
log2dot.py
#
Input:
Log files from stdin. We assume these files have been processed to
provide the URL and Referer URL
#
Output
Stdout produces a dot file which can be run through graphviz
import sys, re
host_id = re.compile('^http://([^/]+)/.*$')
pairs = {}
nodes = {}
def graph_output(nodes, pairs):
 graph_header = """
 digraph graph_output {
 rotate = 90;
 size="7.5,10";
 """
 print graph_header
 a = nodes.keys()
 a.sort()
 for i in a:
 print "node [shape = circle] i;"
 a = pairs.keys()
 a.sort()
 for i in a:
 for j in pairs[i].keys():
 # Prints each link then labels it with the number of occurrences
 print '%s -> %s [label="%d"] ;' % (i,j,pairs[i][j])
 print "}"

if __name__ == '__main__':
 for i in sys.stdin.readlines():
 values = i[:-1].split()
 host = values[-2][:-1]
 referrer = values[-1]
 if host_id.match(referrer):
 refname = host_id.match(referrer).groups()[0]
 else:
 refname = referrer
 a = host.split('.')
 if a[0] == 'www':
 host = '.'.join(a[1:])
 a = refname.split('.')
 if a[0] == 'www':
 refname = '.'.join(a[1:])

 host = host.replace('-','_')
 host = host.replace('.','_')
 refname = refname.replace('-','_')
 refname = refname.replace('.','_')
 nodes[host] = 1
 nodes[refname] = 1
 if pairs.has_key(refname):
 if pairs[refname].has_key(host):
 pairs[refname][host] += 1
 else:
 pairs[refname][host] = 1
 else:
 pairs[refname] = {host:1}
 graph_output(nodes, pairs)

[image: Sample output of the log2dot script]

Figure 9-2. Sample output of the log2dot script

Communications and Probing

Network monitoring, as I’ve discussed it in this book, is largely
passive. There are a number of situations where more active
monitoring and testing is warranted, however. The tools in this
section are used for actively poking and probing at a network.
In the context of this book, I’ve focused on tools that are used to
actively supplement monitoring infrastructure. They’re used to
provide example sessions (netcat), supplement passive monitoring
with active probing (nmap), or to provide crafted sessions to test
specific monitoring configurations (Scapy).
netcat

netcat is a Unix command-line
tool that redirects output to TCP and UDP sockets. The power of
netcat is that it turns sockets into just another pipe-accessible
Unix FIFO. Using netcat, it is possible to quickly implement
clients, servers, proxies, and portscanners.
netcat’s simplest invocation is netcat host port, which creates a
TCP socket to the specified host and port number. Input can be passed
to netcat and output read using standard Unix redirects, like this:
$echo "GET /" | netcat www.oreilly.com 80
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
...
In this example, we use netcat to fetch the index page of a website.
The GET / is standard HTTP syntax.[14] If you know how
to create a session using a particular protocol such as HTTP, SMTP, or
the like, you can send it through netcat to create a client.
On the same principle, you can use netcat for banner grabbing (see
Chapter 15). For example, I can grab an ssh banner by sending
a bogus session through netcat to an SSH server:
$ echo "WAFFLES" | nc fakesite.com 22
SSH-2.0-OpenSSH_6.2
Protocol mismatch.
Note the use of nc in the example; on most netcat packages,
the two applications will be aliases to each other. By default,
netcat opens a TCP connection, this can be modified using the -u
option.
netcat provides a number of command-line options for finer control
of the tool. For example, to improve banner grabbing, we can use a
range of ports:
echo "WAFFLES" | nc -w1 -v fakesite.com 20-30
fakesite.com [127.0.0.1] 21 (ftp) open
220 fakesite.com NcFTPd Server (licensed copy) ready.
500 Syntax error, command unrecognized.
fakesite.com [127.0.0.1] 22 (ssh) open
SSH-2.0-OpenSSH_6.2
The -v option specifies verbosity, adding the lines about which
ports are opened. The -w1 command specifies a 1-second wait, and the
20-30 specifies to check the ports 20 through 30.
Simple portscanning can be done using the -z option, which simply
checks to see if a connection is open. For example:
$ nc -n -w1 -z -vv 192.168.1.9 3689-3691
192.168.1.9 3689 (daap) open
192.168.1.9 3690 (svn): Connection refused
192.168.1.9 3691 (magaya-network): Connection refused
Total received bytes: 0
Total sent bytes: 0
Which, in this case, scans an Apple TV.
netcat is a very handy tool for banner grabbing and internal analytics
because it enables you to build an ad hoc client for any application
very quickly. When new internal sites are identified, netcat can be
used to scan and probe them for more information if a better tool
isn’t available.

nmap

Passive security analysis will only go so far, and every effective
internal security program should have at least one scanning tool
available to them. Network Mapper (nmap) is the best open source scanning tool
available.
The reason to use nmap, or any other scanning tool, is because these
tools contain a huge amount of information about vulnerabilities and
operating systems. The goal of any scanning effort is to gain
intelligence about a targeted host or network. While a simple
half-open scan can be easily implemented using just about anything
with a command line, professional scanning tools benefit from expert
systems that can combine banner grabbing, packet analysis, and other
techniques to identify host information. For example, consider a
simple nmap scan on the Apple TV used in the previous example (address
192.168.1.9):
$ nmap -A 192.168.1.9

Starting Nmap 6.25 (http://nmap.org) at 2013-07-28 19:44 EDT
Nmap scan report for Apple-TV-3.home (192.168.1.9)
Host is up (0.0058s latency).
Not shown: 995 closed ports
PORT STATE SERVICE VERSION
3689/tcp open daap Apple iTunes DAAP 11.0.1d1
5000/tcp open rtsp Apple AirTunes rtspd 160.10 (Apple TV)
| rtsp-methods:
|_ ANNOUNCE, SETUP, RECORD, PAUSE, FLUSH, TEARDOWN, OPTIONS, \
 GET_PARAMETER, SET_PARAMETER, POST, GET
7000/tcp open http Apple AirPlay httpd
| http-methods: Potentially risky methods: PUT
|_See http://nmap.org/nsedoc/scripts/http-methods.html
|_http-title: Site doesn't have a title.
7100/tcp open http Apple AirPlay httpd
|_http-methods: No Allow or Public header in OPTIONS response (status code 400)
|_http-title: Site doesn't have a title.
62078/tcp open tcpwrapped
Service Info: OSs: OS X, Mac OS X; Device: media device;
CPE: cpe:/o:apple:mac_os_x

Service detection performed. Please report any incorrect results at
http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 69.63 seconds
The nmap scan contains information about open ports, the version of
the server software on those ports, potential risks, and additional
data such as the CPE
string.[15]
Analytically, scan tools are used immediately after a new host is
discovered on a network in order to figure out exactly what the host
is. In particular, this is done by using the following process:
	
Audit flow data to see if any new host/port combinations are
 appearing on the network.

	
If new hosts are found, run nmap on the hosts to determine
 what they’re running.

	
If nmap can’t identify the service on the
 port, run nc to do some basic banner grabbing and find out what
 the new port is.

Scapy

Scapy is a Python-based packet
manipulation and analysis library. Using Scapy, you can rip apart
packets in a Python-friendly structure, visualize their contents and
create new correct IP packets that can be appended or injected into a
collection of packets. Scapy is my go-to tool for converting and
manipulating tcpdump records.
Scapy provides a Python-friendly representation of tcpdump data. Once
you’ve loaded the data, you can view it using a number of display
functions or examine the various layers of each packet, which are
represented as their own elements in a dictionary. In Example 9-3, we read in and examine some packet contents using Scapy’s
provided text features and produce the image accompanying it. Figure 9-3 shows the output.
Example 9-3. Reading and examining packet contents
>>> # we start by loading up a dump file using rdpcap
>>> >> s=rdpcap('web.pcap')
>>> # We look for the first packet with TCP payload
>>> for i in range(0,100):
... if len(s[i][TCP].payload) > 0:
... print i
... break
...
63
>>> # We look at its contents using show()
>>> >>> s[63].show()
###[Ethernet]###
 dst= 00:1f:90:92:70:5a
 src= 8c:2d:aa:46:f9:71
 type= 0x800
###[IP]###
 version= 4L
 ihl= 5L
 tos= 0x0
 len= 1110
 id= 10233
 flags= DF
 frag= 0L
 ttl= 64
 proto= tcp
 chksum= 0xbe42
 src= 192.168.1.12
 dst= 157.166.241.11
 \options\
###[TCP]###
 sport= 50300
 dport= http
 seq= 4157917086
 ack= 3403794807
 dataofs= 8L
 reserved= 0L
 flags= PA
 window= 8235
 chksum= 0x5dd5
 urgptr= 0
 options= [('NOP', None), ('NOP', None), ('Timestamp',
 (560054364, 662137900))]
###[Raw]###
 load= 'GET / HTTP/1.1\r\nHost: www.cnn.com\r\nConnection:...'
>>> # Dump the contents using PDFdump
>>> s[63].pdfdump('http.pdf')

[image: When fully installed, Scapy can produce graphical disassemblies of a packet]

Figure 9-3. When fully installed, Scapy can produce graphical disassemblies of a packet

I use Scapy primarily to convert and reformat tcpdump records. The
following example is a very simple application of this. The supplied
script, shown in Example 9-4, provides a columnar output for pcap files similar
to rwcut’s output.
Example 9-4. tcpcut.py script
#!/usr/bin/env python
#
#
tcpcut.py
#
This is a script that takes a tcpdump file as input and dumps
the contents to screen in a format similar to rwcut.
It supports only nine fields and no prompts for the standard
pedagogical reason.
#
Input
tcpcut.py data_file
#
Output
Columnar output to stdout

from scapy.all import *

import sys, time

header = '%15s|%15s|%5s|%5s|%5s|%15s|' % ('sip','dip','sport','dport',
 'proto','bytes')
tfn = sys.argv[1]

pcap_data = rdpcap(tfn)

for i in pcap_data:
 sip = i[IP].src
 dip = i[IP].src
 if i[IP].proto == 6:
 sport = i[TCP].sport
 dport = i[TCP].dport
 elif i[IP].proto == 17:
 sport = i[UDP].sport
 dport = i[UDP].dport
 else:
 sport = 0
 dport = 0
 bytes = i[IP].len
 print "%15s|%15s|%5d|%5d|%5d|%15d" % (sip, dip, sport, dport,
 i[IP].proto, bytes)

I also use Scapy to generate data for session testing. For example,
if presented with a new logging system, I’ll generate a session using
pcap and run that against the logging system, then tweak the session
using Scapy to see how my changes affect the logged records.

Packet Inspection and Reference

The tools discussed in this section are all focused on enhancing packet
inspection and analysis. Wireshark is arguably the most useful
packet inspection tool available, and geoip is a handy reference
tool for figuring out where traffic data came from.
Wireshark

I’m not going to burn a lot of space on Wireshark because, like Snort
and nmap, it’s one of the most common and well-documented tools
available for traffic analysis. Wireshark is a graphical protocol
analyzer that provides facilities for examining packets and
collecting statistics on them, as well as a number of tools
for meaningfully exploring the data.
Wireshark’s real strength is in its extensive library of dissectors
for analyzing packet data. A dissector is a set of rules and
procedures for ripping apart packet data and reconstructing the
session underneath. An example of this is shown in Figure 9-4,
which shows how Wireshark can extract and display the contents of an
HTTP session.
[image: An example Wireshark screen showing session reconstruction]

Figure 9-4. An example Wireshark screen showing session reconstruction

GeoIP

Geolocation services take IP addresses and return information on the
physical location of the address. Geolocation is an intelligence
process: researchers start with the allocation from NICs and then
combine a number of different approaches ranging from mapping
transmission delays to calling up companies and finding their mailing
addresses.
MaxMind’s GeoIP is the default free
geolocation database. The free version (GeoLite) will provide you
with city, country, and ASN information.
Applied Security has produced a good GeoIP
library in Python (pygeoip,
also available in pip). pygeoip works with both the commercial and
free database instances. The following sample script, pygeoip_lookup.py,
shows how the API works:
#!/usr/bin/env python
#
pygeoip_lookup.py
#
Takes any IP addresses passed to it as input,
runs them through the maxminds geoip database and
returns the country code.
#

include sys,string,pygeoip

gi_handle = None
try:
 geoip_dbfn = sys.argv[1]
 gi_handle = pygeoip.GeoIP(geoip_dbfn,pygeoip.MEMORY_CACHE)
except:
 sys.stderr.write("Specify a database\n")
 sys.exit(-1)

for i in sys.stdin.readlines():
 ip = i[:-1]
 cc = gi_handle.country_code_by_addr(ip)
 print "%s %s" % (ip, cc)
Geolocation is big business, and there are a number of commercial
geolocation databases available. MaxMind offers their own, and other
options include Neustar’s
IP Intelligence, Akamai,
and Digital Envoy.

The NVD, Malware Sites, and the C*Es

The National Vulnerability Database (NVD) is a public service
maintained by NIST to enumerate and classify vulnerabilities in
software and hardware systems. The NVD project has been operating under
several different names for years, and there are several distinct
components to the database. The most important started at MITRE under
a variety of names beginning with C and ending with E:
	
CVE

	
The Common Vulnerabilities and Exposures database is a
 mechanism for enumerating software vulnerabilites and exploits.

	
CPE

	
The Common Platform Enumeration database provides a
 mechanism for describing software platforms using a hierarchical
 string. CVE entries use the CPE to refer to the specific vulnerable
 software releases covered by the CVE.

	
CCE

	
The Common Configuration Enumeration describes and
 enumerates software configurations, such as an Apache Install. CCE
 is still under construction.

NVD manages all of these enumerations under the Security Content
Automation Protocol (SCAP), an ongoing effort to automate security
configuration. For analysis purposes, the CVE is the most critical
part of this entire mishegas. A single vulnerability may have dozens
or hundreds of different exploits written for it, but the CVE number
for that vulnerability ties them all together.
In addition to the government funded efforts, there are a number of
other common exploit listings. These include:
	
BugTraq IDs

	
BugTraq is a vulnerability mailing list that
 covers new exploits and vulnerabilities sent in by a large
 number of independent researchers. BugTraq uses a simple
 numerical ID and maintains a list for each new vulnerability identified.
 BugTraq’s bug reports tend to heavily overlap the NVD.

	
OSVDB

	
A
 vulnerability database maintained by the Open Security
 Foundation (OSF), a nonprofit organization for managing vulnerability
 data.

	
Symantec’s Security Response

	
 This site contains
 a database and summary for every malware signature produced by
 Symantec’s AV software.

	
McAfee’s Threat Center

	
 The Threat Center
 serves the same purpose as Symantec’s site; it’s a frontend to
 the currently identified threats and malware that McAfee’s AV
 software tracks.

	
Kaspersky’s Securelist Threat Descriptions

	
 Kaspersky’s
 list of signatures.

These databases are more directly useful to malware researchers, who
are obviously more focused on exploits and takeover. For network
security analysis, these sites are primarily useful for identifying
the vectors by which a worm or other malware propagates through a
network, and consequently getting a good first approximation of what
the traffic feed for malware will look like. For example, if a piece
of malware propagates over HTTP and NetBIOS,[16] then you have some network
services and port numbers to start poking at.

Search Engines, Mailing Lists, and People

Here’s the difference between an average analyst and a good one. The
average analyst will receive data from pcap or weblogs and come to a
conclusion with the data provided. The good analyst will seek out
other information, whether from weblogs, mailing lists, or by
communicating with analysts in other forums.
Computer security is a constantly changing field, and attacks are a
constant moving target. It is very easy to grow complacent as an analyst
because there are so many simple attacks to track and monitor, while
attackers evolve to use new tools and approaches. Internet traffic
changes for many reasons, many of them nontechnical—I’ve found the
explanations for traffic jumps on mailing lists such as NANOG as well
as the New York Times front page.

Further Reading

	
Laura Chappell and Gerald Combs, “Wireshark 101: Essential Skills for Network Analysis.”

	
Graphviz

	
Gordon “Fyodor” Lyon, “Nmap Network Scanning,” Nmap Project, 2009.

	
The Nmap project

	
Scapy

	
Wireshark

[14] HTTP is an extremely
robust protocol and tolerates any combination of session attempts, so
this is a bit of a straw man for the sake of example.

[15] CPE is a
NIST project to provide a common framework for describing platforms.

[16] Which,
admittedly, describes a lot of malware.

Part III. Analytics

In the previous two sections of the book, we’ve discussed the types of
data you can collect, and tools for manipulating that data. In this
section, we focus on taking that data and conducting analyses on that.
Each chapter in the following section focuses on a different family of
mathematical and analytical techniques that can be used on data. The
focus of each chapter is on providing information that is more
security-relevant or floor-relevant. Chapter 10 focuses on the
process of Exploratory Data Analysis (EDA), and should be read
before anything else. Chapter 11, Chapter 12, Chapter 13,
and Chapter 14 provide examples of behaviors, relate them to
attacks, and discuss ways that these behaviors can be used to
construct alarms or be used for forensics and investigation.
Chapter 15 looks at the problem of mapping a network, applying
the techniques in the previous chapters to provide situational
awareness.

Chapter 10. Exploratory Data Analysis and Visualization

Exploratory Data Analysis (EDA) is the process of examining a dataset
without preconceived assumptions about the data and its behavior.
Real-world datasets are messy and complex, and require progressive
filtering and stratification in order to identify phenomena that are
worth using for alarms, anomaly detection, and forensics. Attackers
and the Internet itself are a moving target, and analysts face a
constant influx of weirdness. For this reason, EDA is a constant
process.
The point of EDA is to get a better grip on a dataset before pulling
out the math. To understand why this is necessary, I want to walk
through a simple statistical exercise. In Table 10-1, there are
four datasets, each consisting of a vector X and a vector Y. For
each dataset, calculate these values:
	
The mean of X and Y

	
The variance of X and Y

	
The correlation between X and Y

Table 10-1. Four datasets
	I 	II 	III 	IV
	X
	Y
	X
	Y
	X
	Y
	X
	Y

	10.0
	8.04
	10.0
	9.14
	10.0
	7.46
	8.0
	6.58

	8.0
	6.95
	8.0
	8.14
	8.0
	6.77
	8.0
	5.76

	13.0
	7.58
	13.0
	8.74
	13.0
	12.74
	8.0
	7.71

	9.0
	8.81
	9.0
	8.77
	9.0
	7.11
	8.0
	8.84

	11.0
	8.33
	11.0
	9.26
	11.0
	7.81
	8.0
	8.47

	14.0
	9.96
	14.0
	8.10
	14.0
	8.84
	8.0
	7.04

	6.0
	7.24
	6.0
	6.13
	6.0
	6.08
	8.0
	5.25

	4.0
	4.26
	4.0
	3.10
	4.0
	5.39
	19.0
	12.50

	12.0
	10.84
	12.0
	9.13
	12.0
	8.15
	8.0
	5.56

	7.0
	4.82
	7.0
	7.26
	7.0
	6.42
	8.0
	7.91

	5.0
	5.68
	5.0
	4.74
	5.0
	5.73
	8.0
	6.89

You will find that the mean, variance, and correlation are identical
for each dataset, but simply by looking at the numbers, you should
suspect something fishy. A visualization will show just how diverse
they are. Figure 10-1 plots these sets and shows how each dataset results in a radically different distribution. The Anscombe
Quartet was designed to show the impact of outliers (such as in dataset IV) and visualization on data analysis.
[image: The Anscombe Quartet, visualized]

Figure 10-1. The Anscombe Quartet, visualized

As this example shows, simple visualization will identify significant
features of the dataset that aren’t identified by reaching for the
stats. The classic mistake in statistical analysis involves pulling
out the math before looking at the data. For example, analysts will
often calculate the mean and standard deviation of a dataset in order
to produce a threshold value (normally around 3.5 standard deviations
from the mean). This threshold is based on the assumption that the dataset is normally distributed; if it isn’t (and it rarely is), then
simple counting will produce more effective results.
The Goal of EDA: Applying Analysis

The point of any EDA process is to move toward a model; that model
might be a formal representation of the data, or it might be as simple
as “raise an alarm when we see too much stuff” (where “too much” and
“stuff” are, of course, exquisitely quantified). For information
security, we will discuss four basic goals for data analysis: alarm
construction, forensics, defense construction, and situational
awareness.
When used as an alarm, an analytic process involves generating some
kind of number, comparing it against a model of normal activity, and
determining if the observed activity requires an analyst’s
attention. An anomaly isn’t necessarily an attack, and an attack
doesn’t necessarily merit a response. A good alarm will be based on
phenomena that are predictable under normal circumstances, which the
defender can do something about, and which the attacker must disrupt
to reach his goals.
The problem in operational informational security isn’t creating
alarms—it’s making them manageable. The first thing an analyst has
to do when she receives an alarm is provide context—validating that
the threat is real, ensuring that it’s relevant, determining the extent of
the damage, and recommending actions to take place. False positives
are a signficant problem, but they do not represent the whole scope
of failure modes for alarms. Good analysis can increase the efficacy
of alarms. See Chapter 7 for a more extensive discussion of this.
The majority of security analysis is forensic analysis, taking place
after an event has occurred. Forensic analysis may begin in response
to information from anywhere: alarms, IDS signals, user reports, or
newspaper articles.[17]
A forensic analysis begins with some datum, such as an infected IP
address or a hostile website. From there, the investigator has to
find out as much as possible about the attack—the extent of the
damage, other activities by the attacker, a timeline of the attack’s
major events. Forensic analysis is often the most data-intensive work
an analyst can do, as it involves correlating data from multiple
sources ranging from traffic logs to personnel interviews and looking
through archives for data stored years ago.
Alarms and forensic analysis are both reactive measures, but an
analyst can also use data proactively and construct defenses. As
analysts, we have a set of tools, such as policy recommendations,
firewall rules, and authentication, that can be used to implement
defenses. The challenge when doing so is that these measures are
fundamentally restrictive; from a user’s perspective, security is a
set of rules that limit their behavior now in order to prevent some
abstract bad thing from happening later.
People are always the last line of defense in information security.
If security is implemented poorly or arbitarily, it encourages an
adversarial relationship between system administrators and users, and
before long, everything is moving on port 80. Analysis can be used to
determine reasonable constraints that will limit attackers without
imposing an undue burden on users.
Alarms, forensics, and redesign are all focused on the attack cycle—detecting attacks, understanding attacks, and recovering from attacks.
Throughout this cycle, however, there is a constant dependence on
knowledge management. Knowledge management in the form of
inventories, past history, lookup data, and even phone books changes
processes from rolling disasters into manageable disasters.
Knowledge management affects everything. For example, almost all
intrusion detection systems (especially signature management systems)
focus on packet contents without knowing, for example, that the IIS
exploit they’ve helpfully identified was aimed at an Amiga 3000
running Apache.[18] In IDSes, a false positive is
usually a sign that the IDS copped out early. Maintaining inventory
and mapping information is a necessary first step toward developing
effective alarms; many attacks are failures, and that failure can be
identified through context and the alert trashed before it annoys
analysts.
Good inventory and past history data can also be used to speed a
forensic investigation. Many forensic analyses are cross-referencing
different data sources in order to provide context, and this
information is predictable. For example, if I have an internal IP
address, I’ll want to know who owns it and what software it’s running.
Knowledge management requires pulling data from a number of discrete
sources and putting it in one place. Information like ASNs, whois
data, and even simple phone numbers are often stored in dozens if not
hundreds of variably maintained databases and subject to local
restrictions and politics. Internal network status is often just as
chaotic, if not more so because almost invariably people are running
services on the network that nobody knows about. Often, the very
process of identifying assets for an ops floor will help network
management and IT concerns in general.
As you look at data, keep in mind the goals of the data analysis. In
the end, you have to figure out what the process is for—whether
it’s an alarm, timeline reconstruction, or figuring out whether you
can introduce a firewall rule without dealing with pitchforks and
torches.

EDA Workflow

Figure 10-2 is a workflow diagram for EDA in infosec. As
this workflow shows, the core EDA process is a loop involving EDA
techniques, extracting phenomena and analyzing them in more depth.
EDA begins with a question, which can be as open-ended as “What does
typical activity look like?” The question drives the process of data
selection. For example, addressing a question such as “Can BitTorrent
traffic be identified by packet size?” could involve selecting
traffic communicated with known BitTorrent trackers or traffic that
communicated on ports 6881–6889 (the common BitTorrent ports).
[image: A workflow for exploratory data analysis]

Figure 10-2. A workflow for exploratory data analysis

In the EDA loop, an analyst repeats three steps: summarizing and
examining the data using a technique, identifying phenomena in the
data, and then examining those phenomena in more depth. An EDA
technique is a process for taking a dataset and summarizing it in
some way that allows a person to identify phenomena worth
investigating. Many EDA techniques are visualizations, and the
majority of this chapter is focused on visual tools. Other EDA
techniques include data-mining approaches such as clustering, and
classic statistical techniques such as regression analysis.
EDA techniques provide behavioral cues that can then be used to go
back to the original data, extract particular phenomena from that dataset and examine them in more depth. For example, looking at port
6881–6889 traffic, an analyst finds that hosts often have flows
containing between 50 and 200 bytes of payload. Using that
information, he goes back to the original data and uses Wireshark to
find out that those packets are BitTorrent control packets.
This technique-extract-analyze process can be repeated indefinitely;
finding phenomena and knowing when to stop are arts learned
through experience. Analysis involves an enormous number of false
positives because the most effective initial formulations are broad
and prone to false positives. The EDA process will often require
looking at multiple data sources. For example, an analyst looking at
BitTorrent data could consult the protocol definition or run a
BitTorrent client himself to determine whether the properties observed
in the data hold true.
At some point, the EDA process has to stop. On the completion of EDA,
an analyst will usually have multiple potential mechanisms for
answering the initial question. For example, when looking for
periodic phenomena such as dial-homes to botnet C&Cs, it’s possible
to use autocorrelation, Fourier analysis, or simply count time in
bins. Once an analyst has options, the real question is which one to
use, which is determined by a process usually driven by testing and operational demand.
The testing process should take the techniques developed during EDA
and determine which ones are most suitable for operational use. This
phase of the process involves constructing alarms and reports. See
Chapter 7 on anomaly detection for more information about the criteria that make a good
alarm.

Variables and Visualization

The most accessible and commonly approached EDA techniques are visualizations. Visualizations are tools, and based on the type of data examined and the goal of the analysis, there are a number of specific visualizations that can be applied to the task. In order to
understand data, we have to start by understanding variables.
A variable is a characteristic of an entity that can be measured or
counted, such as weight or temperature. Variables can change between
entities or over time; the height of a person changes as she ages, and
different people have different heights.
There are four categories of variables, which readers who
have had an elementary statistics course will be familiar with. I’ll
review them briefly here, in descending order of rigor:
	
Interval

	
An interval variable is one where the difference between
two values is meaningful, but the ratio between two values has no
meaning. In network traffic data, the start time of an event is the
most common form of interval data. For example, an event may be
recorded at 100 seconds after midnight, and another one at 200 seconds
after midnight. The second event takes place after the first one,
but it isn’t meaningful to talk about it taking place “twice as long”
after the first one since there’s no real concept of “zero start
time.”

	
Ratio

	
A ratio variable is like an interval variable, but also has a
meaningful form of “zero,” which enables us to discuss ratio variables
in terms of multiplication and division. One form of a ratio variable
is the number of bytes in a packet. For example, we can have a packet
with 200 bytes, and another one with 400 bytes. As with interval
variables, we can describe one as larger than the other, and we can
also describe the second packet as “twice as large” as the second one.

	
Ordinal

	
Data is in numerical order, but does not have fixed
intervals. Customer ratings fall in this category. A rating of 5 is
higher than 4, and 4 is higher than 3, so you can be assured that 5 is
also higher than 3. But you can’t say that the degree of customer
satisfaction goes up the same from 3 to 4 and from 4 to 5. (A common
error is to base calculations on this, treating ratings as interval or
ratio data.)

	
Nominal

	
This data is just named rather than numeric, as the term
“nominal” indicates. There is no order to it. Data of this type that
you commonly track include your hosts and your services (web, email,
etc.).

Data isn’t necessarily ordinal just because it’s designated by
numbers. Your ports are nominal data. Port 80 is not “higher” in some
way than port 25; it’s best just to think of the numbers as
alternative names for your HTTP port, your SMTP port, etc.
Interval, ratio, and ordinal variables are also referred to as
quantitative, while nominal variables are also called qualitative.
Interval and ratio variables can be further divided into discrete
and continuous variables. A discrete variable has an indivisible
difference between every value, while continuous variables have
infinitely divisible differences. In network traffic data, almost all
data collected is discrete. For example, a packet can contain 9 or 10 bytes of payload, but nothing in between. Even values such as
start time are discrete, even if the subdivisions are extremely fine.
Continuous variables are generally derived in some way, such as the
average number of bytes per packet.

Univariate Visualization: Histograms, QQ Plots, Boxplots, and Rank Plots

Based on the type of variable measured, we can choose different
visualizations. The most basic visualizations are applied to
univariate data, which consists of one observed variable
per unit measured. Examples of univariate measurements include the
number of bytes per packet or the number of IP addresses observed over
a period.
Histograms

A histogram is the fundamental plot for ratio and interval data; it
is a count of how often a variable takes each possible value. A
histogram consists of a set of bins, which are discrete ranges of
values, and frequencies. Thus, if you can receive packets at any
rate from 0 to 10,000 a second, you can create 10 bins for the
ranges 0 to 999, 1,000 to 1,999, and so on. A frequency is the number of
times that the observed value occurred within the range of the bin.
Generating a Histogram
The base material for a histogram is a set of quantitative
observations. At the R prompt, for example, a quick and dirty
histogram can be generated from raw data.
> sample <- rnorm(10,25,5)
> sample
 [1] 30.79303 25.52480 22.29529 29.20203 21.88355 19.73429 24.99312
 [8] 20.79997 22.24344 24.29335
> hist(sample)
The rnorm function in R takes the sample size, the mean of the
values, and their standard deviation as parameters and generates a set
of random observations. As is normal with R, the hist function holds
your hand a lot, automatically assigning bin widths, for example.
Handy arguments to remember with the hist function include:
	
prob (takes a Boolean)

	
When set to True, the histogram will be plotted to
have an area of 1. When set to False, the histogram will plot the
frequencies.

	
breaks (takes multiple options)

	
breaks defines how the histogram
bins up data. If set to a numeric value, it specifies the
number of bins. If set to a vector, it uses the values of the
vector as the breakpoints. It can also be set to a string to
specify a predefined algorithm, or to a function pointer.

A histogram is valuable for data analysis because it helps you find
structure in a variable’s distribution, and structure provides
material for further investigation. In the case of the histogram, that
structure is generally a mode, the most commonly occuring value in a
distribution. In a histogram, modes appear as peaks. Histogram
analysis almost invariably consists of two questions:
	
Is the distribution normal or another one I know how to use?

	
What are the modes?

As an example of this type of analysis, take a look at the histogram
in Figure 10-3. This is a histogram of flow size distributions
for BitTorrent sessions, showing a distinctive peak
between about 78–82 bytes. This peak is defined by the BitTorrent
protocol: it’s the result of a BitTorrent peer asking another peer
if it has a particular piece of a file, and getting back “no” as an
answer.
Modes enable you to ask new questions. Once you’ve identified modes
in a distribution, you can go back to the source data and examine the
records that produced the mode. In the example in Figure 10-3,
you could go back to the times in the second mode (the 250–255 peak)
and see whether the traffic showed any distinctive
characteristics—short flows, long flows, communications with empty
addresses, and so on. Modes direct your questions.
[image: A distribution of BitTorrent flow sizes]

Figure 10-3. A distribution of BitTorrent flow sizes

This process of visualizing, then returning to the repository and
pulling more detailed data is a good example of the iterative analysis
shown in Figure 10-2. EDA is a cyclic process where analysts
will return to the source (or multiple sources) repeatedly to
understand why something is distinctive.

Bar Plots (Not Pie Charts)

A bar plot is the analog to a histogram when working with univariate
qualitative data. Like a histogram, it plots the frequency of values
observed in the dataset by using the height of various
bars. Figure 10-4 is an example of such a plot, in this case
showing the count of various services from network traffic data.
The difference between bar plots and histograms lies in the binning.
Qualitative data can be grouped into ranges, and in histograms, the
bins represent those ranges. These bins are approximations, and
the range of values they contain can be changed in order to provide a
more descriptive image. In the case of bar plots, the different
potential values of the data are discrete, enumerable, and often have
no ordering. This lack of ordering is a particular issue when working
with multiple bar plots—when doing so, make sure to keep the same
order in each plot and to include zero values.
[image: A bar plot showing the distribution of major services]

Figure 10-4. A bar plot showing the distribution of major services

In scientific visualization, bar plots are preferred over pie charts.
Viewers have a hard time differentiating fine variations in pie slice sizes,
variations that are much more apparent in bar plots.

The Quantile-Quantile (QQ) Plot

A Quantile-Quantile (QQ) plot compares the distributions of two
variables against each other. A QQ plot is a two-dimensional plot,
with the x-axis being the values of one distribution normalized as
quantiles, and the y-axis being values of the second distribution
again normalized as quantiles. For example, if I break each
distribution into 100 centiles, the first point is the first
percentile for each, the 50th point is the 50th percentile for each, and
so on.
Figure 10-5 and Figure 10-6 show two QQ plots with the companion code following. These plots, generated using R’s qqnorm function, plot each distribution
against a normal distribution. The first plot, a normal
distribution, shows the expected behavior when two similar
distributions are plotted on a QQ plot—the values track the
diagonal. There is some deviation but it isn’t very severe. Compare
the results with the uniform distribution in the second figure; in
this one, significant deviations happen on the ends of the plot.
[image: Example QQ plot against a normal distribution]

Figure 10-5. Example QQ plot against a normal distribution

[image: Example QQ plot against a uniform distribution]

Figure 10-6. Example QQ plot against a uniform distribution

> # Generate a uniform and a normal distribution
> set.normal <- rnorm(n = 200, mean=10, sd = 5)
> set.unif <- runif(n = 200, min = 10, max = 30)
> # Plot against the norm for the normal set
> qqnorm(set.normal,main='QQ Plot Against a Normal Dist')
> qqline(set.normal)
> # Same drill for the uniform distribution
> qqnorm(set.unif, main='QQ Plot Against a Uniform Dist')
> qqline(set.unif)
R has a number of QQ plotting routines. The most important are
qqnorm, which plots a dataset against the normal distribution;
qqplot, which generates a qq plot comparing any two datasets; and
qqline, which draws the reference line.
Is It Normal?
In Chapter 6 and this chapter, we’ve discussed a number of techniques
for determining whether or not a dataset is normally distributed, or
to be more precise, can be satisfactorily modeled using a normal
distribution. Parametric distributions, if applicable, open up a
number of tools to us. The problem is that in raw network data
they’re rarer than Yeti. Among the techniques listed are:
	
The Shapiro-Wilk Test (Example 6-4), a statistical normality test.

	
The Kolmogorov-Smirnov Test (Example 6-5), a general goodness-of-fit test.

	
Histograms (Histograms), visualizing the distribution.

	
QQ plots (Bar Plots (Not Pie Charts)), comparing the data against a normal.

Of all the tools available, I view visualization approaches
(histograms and QQ plots) as the preferable option. My interest in
acquiring a distribution is utilitarian. I’m looking for reasonable
thresholds and something that matches the math well enough that I can
use other tools because we don’t have the control to make very sensitive measurements. Attackers will usually
be fairly easy to identify once you’ve picked the right metric.
The classic mistake with using means and standard distributions
without looking at the data is that most network security datasets
have a number of outliers. These outliers end up producing
ridiculously large standard deviations, and the resulting threshold is
triggered only for egregious events.

The Five-Number Summary and the Boxplot

The five-number summary is a standard statistical shorthand for
describing a dataset. It consists of the following five values:
	
The minimum value in a dataset

	
The first quartile of the dataset

	
The second quartile or median of the dataset

	
The third quartile of the dataset

	
The maximum value in the dataset

Quartiles are points that split the dataset into quarters, so the
five numbers translate into the smallest value, the 25% threshold, the
median, the 75% threshold, and the maximum. The five-number summary is
a shorthand, and if you’re looking at a lot of datasets very quickly,
it can provide you with a quick feel for what the set looks like.
The five-number summary can be visualized using a boxplot (Figure 10-7), which is also
called a box-and-whiskers plot. A boxplot consists of five lines,
one for each value in the five-number summary. The center three lines
are then connected as a box (the box of the plot) and the outer two
lines are connected by perpendicular lines (the whiskers) of the plot.
[image: A boxplot and the corresponding histogram]

Figure 10-7. A boxplot and the corresponding histogram

Generating a Boxplot

In R, five-number summaries are generated using the fivenum command,
as shown in the following example.
> s<-rnorm(100,mean=25,sd=5)
> fivenum(s)
[1] 14.61463 22.26498 24.50200 27.43826 37.99568
A basic boxplot is generated with the boxplot command, as follows,
resulting in the image in Figure 10-8.
>boxplot(s)
[image: An example boxplot]

Figure 10-8. An example boxplot

Note that this plot produced a series of dots outside the whiskers.
These are outliers, meaning they are far outside the first and third
quartiles. By default, a low value is considered an outlier if its
distance to the first quartile is more than 1.5 times the
interquartile range (the difference between the first and third
quartiles). Similarly, a high value is considered an outlier if its
distance to the third quartile is more than 1.5 times the
interquartile range.
Handy parameters to remember with boxplot include:
	
notch (Boolean)

	
Set to True, it places a notch at the median
value of the boxplot. If two plots notches don’t overlap, it’s
a strong indicator that their medians differ.

	
range (numeric)

	
Describes how far the whiskers will
extend. The default value is 1.5, as described earlier in the
sidebar. If you set range to zero,
whiskers will extend as far as they need to and no values will be
outliers.

When dealing with five-number summaries, it’s not unusual to toss in
the mean (Figure 10-9). Consequently, you will often see boxplots that include the
mean with an extra character, usually an x. In R, you have to do
multiple plots on the same canvas to produce this, as follows:
>boxplot(s)
>points(mean(s), pch='x')
In this example, the pch parameter sets the character of the point;
in this case, an x.
[image: A boxplot with a mean]

Figure 10-9. A boxplot with a mean

boxplot can take multiple vectors, making it a quick tool for
comparing multiple discrete datasets. If, for example, you’ve
identified several different phenomena in a dataset, you could split
each one into a separate column for comparison. The following
example shows this with some cooked scan data, producing the
side-by-side boxplot in Figure 10-10.
> nonscan<-rnorm(100,mean=150,sd=30)
> scan<-runif(50,min=254,max=255)
> boxplot(nonscan,scan,names=c('nonscan','scan'))
[image: Side-by-side boxplots]

Figure 10-10. Side-by-side boxplots

I rarely find boxplots to be useful on their own. If I’m dealing with a
single value, I’m going to get more information out of a
histogram. Boxplots become more valuable when you start stacking
bunches of them together, a situation where histograms are going to be
just too busy to be meaningfully examined.

Bivariate Description

Bivariate data consists of two observed variables per unit measured.
Examples of bivariate data include the number of bytes and packets
observed in a traffic flow (which is an example of two quantitative
variables), and the number of packets per protocol (an example of a
quantitative and qualitative variable). The most common plots used
for bivariate data are scatterplots (for comparing two quantitative
variables), multiple boxplots (for comparing quantitative and
qualitative variables), and contingency tables (for comparing two
qualitative variables).
Scatterplots

Scatterplots are the workhorse of quantitative plots, and show the
relationship between two ordinal, interval, or ratio variables. The
primary challenge when analyzing scatterplots is to identify structure
among the noise. Common features in a scatterplot are clusters, gaps,
linear relationships, and outliers.
Let’s start exploring scatterplots by looking at completely unrelated
data. Figure 10-11 is an example of a noisy scatterplot, generated
in this case by plotting two uniform distributions against each other.
This is a boring plot.
[image: A boring scatterplot]

Figure 10-11. A boring scatterplot

Clusters and gaps are changes in the density of a scatterplot. The
boring scatterplot in Figure 10-11 is a plot of uniform variables of
unrelated density. If the two variables are related, then there
should be a change in the density of the data somewhere on the plot.
Figure 10-12 shows an example of clusters and gaps. In this
example, there is a marked increase in activity in the lower-left
quadrant, and a marked decrease in the upper-right quadrant.
[image: Clusters and gaps in data]

Figure 10-12. Clusters and gaps in data

Linear relationships, as the name indicates, appear in scatterplots as
a line. The strength of the relationship can be estimated from the
density of the points around the line. Figure 10-13 shows an
example of three simple linear relationships of the form y=kx, but
each relationship is progressively weaker and noisier.
[image: Linear relationships in data]

Figure 10-13. Linear relationships in data

Contingency Tables

Contingency tables are the preferred visualization when comparing
categorical data against categorical data. A contingency table is
simply a matrix: the rows list all the values one variable can have,
the columns list all the values the other variable can have, and the
entry in each cell is the number of observations that had both
categories in common. Depending on the implementation, contingency
tables also include a row and column containing the marginals for
that row, a sum of all the values occurring in the row.
In R, contingency tables are constructed using the table command,
which returns a table that can then be queried for marginals, as
shown here:
An example R table, created from two vectors of hosts and services
> hosts[0:3]
[1] "A" "B" "A"
> services[0:3]
[1] "http" "dns" "smtp"
> # Table creation, hosts, and services have to be the same length
> info.table<-table(hosts,services)
> info.table
 services
hosts dns http smtp ssh
 A 2 15 10 0
 B 6 5 3 4
 C 3 3 1 2
> # You can access the marginals by calling margin.table
> margin.table(info.table)
[1] 54
> margin.table(info.table, 1)
hosts
 A B C
27 18 9
> margin.table(info.table, 2)
services
 dns http smtp ssh
 11 23 14 6

Multivariate Visualization

A multivariate dataset is one that contains at least three variables
per unit measured. Multivariate visualization is more of a technique
rather than a specific set of plots. Most multivariate visualizations
are built by taking a bivariate visualization and finding a way to add
additional information. The most common approaches include colors or
changing icons, plotting multiple images, and using animation.
Building good multivariate visualizations requires providing
information from each of the datsets without drowning the reader in
details. It’s easy to plot a dozen different datasets on the same
chart, but the results are often confusing.
The most basic approach for multivariate visualization is to overlay
multiple datasets on the same chart, using different tickmarks or
colors to indicate the originating dataset. As a rule of thumb, you can plot about four series on a chart without confusing a reader. When picking the colors or symbols to use, keep the following in mind:
	
Don’t use yellow; it looks too much like white and is often invisible on printouts and monitors.

	
Choose symbols that are very different from each other. I personally like the open circle, closed circle, triangle, and cross.

	
Choose colors that are far away from each other on the color wheel: red, green, blue, and black are my preferred choices.

	
Avoid complex symbols. Many plotting packages offer a variety of asterisk-like figures that are hard to differentiate.

	
Be consistent with your color and symbol choices, and don’t overlap their domains. In other words, don’t decide that red is HTTP and triangles are FTP.

For more information on plotting multiple series in R, consult Annotating a Visualization.
An alternative to plotting multiple sets on the same chart is to use
multiple small plots next to each other. Commonly called trellis
plots, Figure 10-14 is a good example generated by R’s
pairs command. When run on a data frame, pairs generates a matrix
like the one shown in Figure 10-14—each pair of variables
is a distinct scatterplot. Each scatterplot shows the relationship
between the pair, and as this example shows it’s very easy to quickly
identify that volume and articles seem to have some relationship while
everything else looks unrelated.
R’s pairs plot is a powerful data exploration tool and is a good
example of the expressive power of multiple visualizations. By
relating multiple simple visualizations together in a well-defined and
clear structure, you can process an enormous amount of data quickly.
The key to building visualizations like this one is simplicity—small plots need to be careful with how they use real estate.
I find that trellis plots are usually the best option for plotting
multivariate data because they provide a clean and user-controlled
mechanism for showing the relationship between different variables.
The minimal layout of Figure 10-14 is an important design
feature to pay attention to in multivariate visualization. Trellis
plots usually have an enormous amount of redundant metadata (e.g.,
axes, ticks, and labels) relative to the number of plots. To address
this problem, use extremely minimal data representations in the plots: drop redundant axes, and remove internal labels and ticks.
[image: Trellis plot of volume data]

Figure 10-14. Trellis plot of volume data

Animation is pretty much what it says on the tin: you create multiple
images and then step through them. In my experience, animation
doesn’t work very well. It reduces the amount of information
directly observable by an analyst, who has to correlate what’s going
on in her memory as opposed to visually.
Operationalizing Security Visualization

EDA and visualization are part of the exploratory process and, as
such, are somewhat rough around the edges. The EDA process involves a
large number of dead ends and false starts. During the
operationalization phase of an analytic process, the visualizations
will need to be modified in order to supplement action and response.
Additional processing and modification is needed to polish a
visualization sufficiently for it to work on the floor. The following
rules provide examples of good and bad visualizations and how to
address the problems of visualizing data for information security.
Rule one: bound and partition your visualization to manage disruptions

When plotting security information, you need to expect and manage
disruptions—after all, the whole point of looking for security
events is to find disruptive activity. Plotting features like
autoscaling can work against you by hiding data when something weird
happens. For example, consider a count of anomalous events such as in
Figure 10-15. This plot has two anomalies, but one is obscured by the
need to plot the second.
[image: Autoscale’s impact on disruptive event visualization]

Figure 10-15. Autoscale’s impact on disruptive event visualization

There are two strategies for dealing with these spikes. The first is
to use logarithmic scaling on the dependent (y) axis. Log scaling
replaces the linear scale with a logarithmic scale. For example, the
ticks on the axis go from being 10, 20, 30, 40 to 10, 100, 1000,
10000. Figure 10-16 shows a logarithmic plot of the same
phenomenon. Using a logarithmic scale will reduce the difference
between the major anomaly and the rest of the data.
[image: Using a log scale plot to limit the impact of large outliers]

Figure 10-16. Using a log scale plot to limit the impact of large outliers

A logarithmic scale is suitable for EDA, and most tools provide an
option to automatically plot data this way. With R, you pass in a
log parameter to the plotting command to indicate which axis should
be logarithmic (e.g., log="y").
I don’t like using logarithmic scales when developing an operational
visualization, however. With logarithmic scales you tend to lose
information about typical phenomena—the curve for typical traffic
in Figure 10-16 is deformed by the logarithmic scale. Also, the
explanation of what a logarithmic scale is a bit recondite; I don’t
want to have to explain logarithmic scaling over and over again. When
somebody is looking at the same data repeatedly, I’d prefer to keep it
linear.
For these reasons, I prefer to keep the scaling on a plot consistent
and identify and remove outliers. We’ve seen an example of this in
Figure 10-8, where R automatically splits outliers from the
boxplot. When developing an operational plot, I estimate the
range of the plot, and usually set the upper limit displayed to the
98th percentile of the observed data. Then, when an anomaly occurs, I
plot it separately and differently from the other data to indicate
that it is an anomaly. Figure 10-17 shows a simple example of
this.
[image: Partitioning anomalies out from normal data]

Figure 10-17. Partitioning anomalies out from normal data

The anomaly in Figure 10-17 is identified by the single line
indicating that it’s off the scale. The second anomaly (at 07:11) is not
detected by that process, but the event is now obvious through
visualization. That said, the anomaly marker is completely
meaningless without further information and training, which leads into
rule two.

Rule two: label anomalies

If rule one is in place, then you’ve already established some basic
rules for discerning anomalies from normal traffic. Operational
visualization is an aid to anomaly detection, so the same rules as
constructing IDS (see Chapter 7) apply—prefetch data to reduce
the operator’s response time. As an example, the anomaly in
Figure 10-18 is annotated with the information about what caused
the anomaly as well as some statistics.
[image: Labeling anomalies to aid investigation]

Figure 10-18. Labeling anomalies to aid investigation

Labeling anomalies on the plot can be useful for rapid reference, but
if there are too many anomalies (and working off of rule one, you should
expect that there will be too many anomalies). You can see this
happening in Figure 10-18 where the label, while informative, is
already consuming about a fifth of the horizontal space available. A
better approach is to explain the anomalies in a separate table next
to the visualization, which allows you to include as much data as
necessary.

Rule three: use trendlines, distinguish artifacts from observations

Operational visualizations need to balance summarization and smoothing
techniques that can help the analyst process data without getting
mired in details, while at the same time providing the analyst with
the actual data that happened and not thinking for him. As a result,
when I operationally visualize data I prefer to include the raw data
and then some kind of smoothing trendline at the same time.
Figure 10-19 is a simple example of this kind of visualization, where a
moving average is used to smooth out the observed disruptions.
[image: Moving average over direct observations]

Figure 10-19. Moving average over direct observations

When creating visualizations like this, you need to ensure that the
analyst can clearly differentiate between the data (the original)
information and the artifacts you’ve created to aid analysis. You
also need, as per rule one, to keep track of the impact of disruptive
events—you don’t want them interfering with your smoothing.

Rule four: be consistent across plots

Visualization exploits our pattern matching capabilities. However,
those capabilities just love to run rampant on the vaguest hint.
For example, you decide to pick a red line to represent HTTP traffic
in a per-host activity. If you then decide to use a red line to
represent incoming traffic in the same suite of visualizations,
somebody is going to assume it’s HTTP traffic again.

Rule five: annotate with contextual information

In addition to labeling anomalies, it’s good to include unobtrusive
contextual data that can help facilitate analysis. The example shown
in Figure 10-20 adds some gray bars to indicate whether or not
activity is taking place during or outside business hours.
[image: Adding some color to identify time of day]

Figure 10-20. Adding some color to identify time of day

Rule six: avoid flash in favor of expressiveness

Finally, recognize that operational visualization is intended to be
processed quickly and repeatedly. It’s not a showcase for innovative
graphic representation. The goal of operational visualization should
be to express information quickly and clearly. Graphically excessive
features like animation, unusual color choices, and the like will
increase the time it takes to process the image without contributing
information.
Be particularly careful about visualizations based on real-world or
cyberspace metaphors. Whimsy wears thin very quickly, and we’re not
dealing with the physical world here. Metaphors such as “opening a
desk” or “rattling all the doors in a building” (visualizations I’ve
seen tried and the less said about them the better) often look neat in
concept, but they usually require complex interstitial animations
(which take up time) and lose information because of the metaphor.
Focus on simple, expressive, serious displays.

Rule seven: when performing long jobs, give the user some status feedback

When I run SiLK queries, I have a habit of running them with the
--print-file switch active, not because I care about which files are
being accessed, but in order to have an indicator of whether the process is running or if the system is hung. When building
visualizations, it’s important to know how long it will take to
complete one and to provide the user with some feedback that the
visualization is actually being generated.

Further Reading

	
Greg Conti, Security Data Visualization: Graphical Techniques for Network Analysis (No Starch Press, 2001).

	
NIST Handbook of Explorator Data Analysis

	
Cathy O’Neil and Rachel Schutt, Doing Data Science (O’Reilly, 2013).

	
Edward Tufte, The Visual Display of Quantitative Information (Graphics Press, 2001).

	
John Tukey, Exploratory Data Analysis (Pearson, 1997).

[17] There’s nothing quite like the day you
start an investigation based on the attacker being written up in the
New York Times.

[18] It exists.

Chapter 11. On Fumbling

Up to this point, we have discussed a number of techniques for
collecting and analyzing data. We must now marry this with attacker
behavior.
Recall from the introduction the distinction between anomaly and
signature detection. A focus of this book is on identifying viable
mechanisms for detecting and dealing with anomalies, and to find these
mechanisms, we must identify general attacker behaviors. Fumbling,
which is the topic of this chapter, is the first of several such
behaviors.
Fumbling refers to the process of systematically failing to connect to
a target using a reference. That reference might be an IP address, a URL, or an email address. What makes fumbling
suspicious is that a legitimate user should be given the reference
he needs. When you start at a new company, they tell you the name
of the email server; you don’t have to guess it.
Attackers don’t have access to that information. They must guess,
steal, or scout that data from the system, and they will make mistakes.
Often, those mistakes are huge and systematic. Identifying their
mistakes and differentiating them from innocent errors is a valuable
first step for analysis.
In this chapter, we will look at models of normal user
behavior that are violated by attackers. This chapter integrates a
variety of results from previous chapters, including material on
email, network traffic, and social network analysis.
Attack Models

We need some vocabulary for talking about how attackers behave. There
are a number of papers and studies on attack models that try to
break the hacking process into a number of discrete steps. These
models range from relatively simple linear affairs to extremely
detailed attack trees that attempt to catalog each vulnerability and
exploit. I’ll start by laying out a simple but flexible model that
contains steps common to a majority of attacks.
	
Reconnaissance

	
The attacker scouts out the target.
Depending on the type of attack, reconnaissance may consist of
googling, social engineering (posting on message boards to find and
befriend users of a network), or active scanning using nmap or related tools.

	
Subversion

	
The attacker launches an exploit against a target and
takes control. This may be done via a remote exploit,
sending a Trojan file, or even password cracking.

	
Configuration

	
The attacker converts the target into a system more
suitable for his own use. This may involve disabling antivirus packages,
installing additional malware, taking inventory of the system and its
capabilities, and/or installing additional defenses to prevent other
attackers from taking over the target.

	
Exploitation

	
The attacker now uses the host for his own purposes.
The nature of exploitation varies based on the attacker’s original
reason for being interested in the target (discussed shortly).

	
Propagation

	
The attacker will, if possible, use the host to
attack other hosts. The host may serve as an expendable proxy,
attacking neighbors (for example, other hosts behind a firewall on a 192.168.0.0/16 network).

This model isn’t perfect, but it’s a good general description of how
attackers behave without getting bogged down in technical minutiae.
There are always common tweaks, for example:
	
Peer-to-peer worm propagation and phishing attacks rely on passive
 exploits and a bit of social engineering. These attacks rely on a
 target clicking a link or accessing a file, which requires that the
 bait (the filename or story surrounding it) be attractive
 enough to merit a click. At the time of this writing, for
 example, there’s a spate of phishing attacks using credit ratings
 as the bait—the earliest informed me that my credit rating had
 risen and the latest batch is more ominously warning me of the
 consequences of a recently dropped credit rating. On peer-to-peer
 networks, attackers will drop Trojans with the names of
 current games or albums in order to attract victims. Even in this
 case, “surveillance” is still possible. The phishing attacks done
 in many APT attacks often depend on scouting out the population and
 posting habits of a site before identifying victims likely to
 respond to a crafted mail.

	
Worms often merge the reconnaissance and subversion stages into one
 step. Some examples of this are shown later in the chapter
 (notably, in Example 11-1), where an attacker just launches
 exploits against well-known PHP URLs without checking to see if
 they actually exist.

Your Attacker Just Isn’t That Into You: Interested and Uninterested Attackers
When we think about attackers, we tend to think of technically
literate individuals figuring out specific weaknesses on a site in
order to grab files or information off of it. This is the classic
example of an interested attacker who wants to subvert and
control a particular site in order to acquire cash, data, street cred,
or who knows what. They make for great stories, but have been, if not
a disappearing breed, a progressively minuscule portion of attacks for
10 years or more.
The vast majority of attacks today are conducted by uninterested
attackers who want to take over as many hosts as possible and don’t
care about the fine details of any particular one. Uninterested
attacks are largely automated; they have to be in order to tolerate
their inordinately high failure rate. Because of this, the
reconnaissance and subversion steps are often merged together. An
automated worm may simply launch its attack against every host it
encounters, regardless of whether the host is vulnerable.
Uninterested attackers rely on tools and the expectation that
someone, somewhere, will be vulnerable. In most cases, they won’t
even be aware that a host exists until they take it over. Early
examples of uninterested attackers harvested robots for DDoS
networks. Botmasters would take over a dozen or so machines, install
DDoS software on them, and then launch SYN floods against targets. As
connectivity increased, the scope and flexibility of botnets increased
as well—attackers started installing software to work as proxies, rob
images from attached webcams and sell them to porn sites, install
spambots, and carry out a virtually limitless catalog of other
abuses.
Uninterested attackers consequently operate more like harvesters than
a traditional targeted attacker. A uninterested attacker runs a
script, then filters through the results of that script to see what
she’s pulled in. A host has a webcam, and it’s located on a college
dorm? Porn feed. A host has a lot of disk space and a fat pipe?
Fileserver. A host is a home machine? Keylogger.
This harvest-based approach means that attackers often have little to
no idea what they’re taking over. In the early days of SCADA
exploits, it was apparent that the attackers had no idea what they
were looking at, just a Windows host with some weird applications and
extra directories. Even now, it’s not uncommon to see medical
hardware taken over and used as a botnet.
In recent years, a host’s “configuration” also includes its role: who
owns it, what its used for, and what kind of bragging rights can be
acquired by bagging it. For example, if two countries share a hostile border, resident hacker rings will deface sites in the opposing country.
The Department of Defense runs literally thousands of websites,
ranging from intelligence servers to grade schools. It’s not hard to
find a vulnerable site and then announce to the world that you’ve
“hacked the DoD!” after the fact. Something to keep in mind.

Fumbling: Misconfiguration, Automation, and Scanning

We’ll use the term a fumble to refer generically to any failed
attempt by a host to access a resource. A fumble in TCP means that a
host wasn’t able to reach a particular host address/port combination,
whereas a fumble in HTTP refers to the inability to access a URL.
Individual fumbles are expected and are not automatically suspicious. What’s more of a concern is a tendency toward repeated fumbling.
Fumbling as an aggregate behavior can happen for several reasons: an
error in lookup or configuration, automated software, and scanning.
Lookup Failures

Fumbles usually happen because the destination doesn’t exist in the
first place. This can be a transient phenomenon due to misaddressing
or movement, or it can be due to someone addressing a resource that
never existed.
Keep in mind that people rarely enter addresses by hand. Most
users will never directly enter an IP address, instead relying on DNS
to moderate their communications. Similarly, apart from a TLD, users
rarely enter URLs by hand, instead copying or clicking them from
other applications. When someone does enter a faulty address or URL,
it usually means that something further up the chain of lookup
protocols that got him there failed.
When a target moves, misaddressing is a common phenomenon. In the
case of a misaddress, the target does exist, but the source is
misinformed about the address. For example, an attacker may enter the
wrong name or IP address, or use an earlier IP address after a host
moves.
Every site has unused IP addresses and port numbers. For instance, a
/24 (class C) address space allows 254 addresses (two more are reserved
for special purposes), but the network usually uses only a fraction of
them. An unused address or port number is called dark
space. Legitimate users rarely try to access dark space, but
attackers almost always do. However, knocking on the door of an usused
IP address or port is not dangerous in itself, and is so common that
tracking it isn’t worthwhile.
Misaddressing is often a common mode failure, meaning that it will not
be limited to one or two users, but to a large community. The classic
example of a misaddress is somebody sending a messsage to a mailing
list, and then mistyping the URL. When this happens, you don’t see
one or two errors, and you don’t see individual errors. You see the
exact same meaningless string occurring over and over again, coming
from dozens if not hundreds of sites. If you see a large number of
fumbles, coming from different sites, all identical and all indicating
a misspelling, then it’s a good sign that the error has a common cause such as a misconfigured DNS, a faulty redirect on the web server, or an email
with the wrong URL.

Automation

People are impatient. Very often, when they can’t actually
reach a site, they may retry once, but then they’ll go off and find
something better to do with their time. Conversely, automated systems
retry connections as a reliability measure, and will often return
after a relatively short interval to see if the target is up and
running.
On a network traffic feed, this means that a protocol that is human-driven (SSH, HTTP, Telnet) is likely to have a lower failure rate per
connection than protocols that are largely automated (SMTP,
peer-to-peer communications).

Scanning

Scanning is the most common form of attack traffic observed on the
network. If you own a nontrivial chunk of IP space (say a /24 or
more), you will literally be scanned thousands of times a day.
Scanning is one of the great sources for bogus security figures. If
you classify a scan as an attack, then you can claim to be dealing
with thousands of attacks per day. Attacks you’re going to do
precisely nothing about, but still thousands. Scanning is easy, fun,
and stupid amusement for script kiddies.
Imagine that your network is a two-dimensional grid, where the x-axis
shows your IP addresses and the y-axis shows the ports. The grid will
then have 65,536 by k cells, where k is the total number of IP
addresses. Now, every time a scanner hits a target (an IP/port
combination), mark a cell. If you’re interested in all the
capabilities of a single host, you may open up a connection to every
port it has, resulting in a single vertical line on the grid, a
vertical scan. The complement to a vertical scan is a horizontal
scan, where the attacker communicates with every host on the network,
but only a specific port.
As a rule of thumb, defenders scan vertically and attackers
horizontally. The difference is primarily opportunistic—an
attacker scans a network horizontally because he is uninterested in
the targets outside of the vulnerabilities he can exploit. An
attacker who is interested in a specific target may well scan it
vertically. Defenders scan vertically because they can’t predict what
an attacker will hit.
If an attacker knows something about the structure of a network ahead
of time, she may use a hit-list, a list of IP addresses which she
knows or suspects may be vulnerable. An example of a common hit-list
attack is described by Alata and Dacier: the attacker begins by using a blind scan of a network
to identify SSH hosts and then sometime later uses that list to
begin password attacks.[19]

Identifying Fumbling

There are two stages to identifying the process of fumbling. The first
is determining what, in a protocol, means that a user failed to
correctly access a resource. In other words, what does a failed access
“look” like?
The second stage is determining whether the failure is consistent or
transient, global or local.
TCP Fumbling: The State Machine

Identifying failed TCP connections requires some understanding of the
TCP state machine and how it works. As we’ve discussed before,
TCP imposes the illusion of a stream-based protocol on top of the
packet-based IP. This simulation of a stream is produced using the
TCP state machine, shown in Figure 11-1.
Under normal circumstances, a TCP session consists of a sequence of
handshake packets that set up initial state.
	
On the client side, the
transition is from SYN_SENT (client sends an initial SYN packet) to
ESTABLISHED (client receives a SYN|ACK packet from server, sends an
ACK in response), and then to normal session operations.

	
On the server
side, the transition is from LISTEN to SYN_RCVD (receives a SYN, sends a
SYN|ACK), and then to ESTABLISHED (receives an ACK).

	
For either side, closure
consists of at least two packets (CLOSE_WAIT to LAST_ACK or FIN_WAIT_1
to CLOSING/FIN_WAIT_2 to TIME_WAIT).

[image: The TCP state machine, from texample.net]

Figure 11-1. The TCP state machine, from texample.net

The net result of these transitions is that a well-behaved TCP/IP
session requires at least three packets simply to set up
the connection. This is overhead required by TCP, and does not
include any communications done by the protocol itself. Throw in a
standard MTU of 1,500 bytes, and most legitimate sessions are going to
consist of at least several dozen packets.
Automated retry attempts add another layer of complexity to the
problem. RFC 1122 establishes basic guidelines for TCP retransmission
attempts and recommends a minimum of three retransmissions before
giving up on a connection. The actual retry value is usually
softcoded and stack-dependent; for example, in Linux systems, the
number of retries generally defaults to 3 and is controlled by the
tcp_retries1 TCP variable. In Windows systems, the
TcpMaxConnectRetransmissions registry value in
HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters governs this behavior.
An analyst can identify fumbling by looking at a variety of
indicators, depending on the type of data the operator has available
and the degree of accuracy necessary. These techniques include
relying on a network map, looking for bidirectional traffic, and
examining a unidirectional flow for activity. Each technique has
strengths and weaknesses, which I’ll discuss.
Network maps

The best tool for identifying fumbling is a current and accurate
network map. Network maps can identify a fumble by looking at a
single packet, while examining TCP traffic requires looking for
replies and reattempts.
That said, a network map is not relying on actual network information—it’s relying on a model of the network that was constructed some
time before the event. At the most extreme example, a map of a DHCP
network has a limited viable lifetime, but even a statically addressed
network will see new services and hosts arrive on a regular basis.
When using a network map, make sure to regularly test its integrity
using one of the other techniques listed in this section.

Unidirectional flow filtering

If you have access to both sides of a session (i.e., client to server,
server to client), identifying complete sessions is simply a
matter of joining the two sides together. In the absence of that
information, it’s still possible to guess whether packets are
part of a whole session.
In my personal experience, I find flows to be more effective than individual
packets for detecting fumbling. A fumbler doesn’t interact with a
service proper because there is no payload to examine. At the same time,
identifying fumbling involves looking for multiple identically
addressed packets that occur around the same time, which is the textbook
definition of a flow.
Depending on the amount of information needed and the precision
required, a number of different heuristics can
identify fumbles in TCP flows. The basic techniques involve
looking at flags, packet counts, or payload size and packet count.
Flags are a good indicator of fumbling, but using them is complicated
by a messy collection of corner cases happily exploited by scanners to
differentiate different IP stack implementations. Recall from the
Figure 11-1 that a client sends an ACK flag only after
receiving an initial SYN + ACK from the server. In the absence of a
response, the client should not send an ACK flag; consequently, flows
with a SYN and no ACK flag are a good indicator of a fumble. There
exists the potential that a response came outside of the timeout of
the flow collector, but that’s rare in applied cases.
Attackers craft packets with odd flag combinations in order to
determine stack and firewall configurations. The best known of these
combinations is the “Christmas tree” packet (so called because all
flags are lit up like a Christmas tree), setting SYN ACK FIN PUSH URG RST.
Combinations of flags with both SYN and FIN high are common as well. When
dealing with long-lived protocols (such as SSH), it’s not uncommon to
encounter a packet consisting solely of an ACK. These packets are TCP
keep-alive packets and are not fumbling.
Another odd, non-fumbling behavior is backscatter. Backscatter occurs when a host opens a
connection to an existing server using a spoofed address, and the
server sends the corresponding response to the original spoofed
address. Lone SYN, ACK, and RST packets that don’t hit a target are
likely to be backscatter.
An easy, if rough, indicator of whether a flow shows a complete
session is to simply look at the number of packets. A legitimate TCP
session requires at least three packets of overhead before it considers
transmitting service data. Furthermore, most stacks set their retry
value to between three and five packets. These rules provide a simple filter: TCP flows that have five packets or less are likely to be fumbles.
Flow size can be complemented by looking at the ratio of packet size
to number of packets. TCP SYN packets contain a number of TCP options of variable length. During a failed connection, the host will send the same SYN packet options repeatedly. Consequently, if a flow is an n-packet SYN fumble, we can expect that the total number of bytes
sent is n×(40 + k), where k is the total size of the options.

ICMP Messages and Fumbling

ICMP is actually designed to inform a user that she has failed to make
a connection. ICMP type 3 messages (destination unreachable) are
supposed to be sent to a host to indicate that the target network
(code 0), host (code 1), or port (code 3) cannot be reached by the
client packet. ICMP also provides messages indicating that a route is
unknown (code 7) or administratively prohibited (code 13).
With the exception of pings, ICMP messages appear in response
to failures in other protocols. Several messages, such as host or net
unreachable, originate from some point other than the destination
address—generally the nearest router. ICMP messages may also be
filtered, depending on the policies of the network in question, and
consequently not received by your sensors.
This asymmetry means that when tracking fumbling from ICMP traffic, it
is more productive to look for the response. If you see a sudden
spike in messages originating from a router, it’s a good bet that the
target it’s sending the messages to has been probing that router’s
network. You can then look at the host’s traffic to identify what it
did communicate with that might be suspicious.
You Were Scanned, Here’s Your Medal
At this point, scanning is so omnipresent, unstoppable, and obnoxious
that it has ceased to be an attack and instead has become a form of
Internet weather. I can place a reasonable bet that you’re mostly
being scanned on TCP ports 80, 443, 22, 25, and 135 without looking at
your network.
So, scanning in and of itself is uninteresting, but there is still
value in scan detection. Primarily, this is an optimization issue.
As discussed in Chapter 4, scanning data can be shunted off during
postprocessing in order to reduce the number of records that an
analyst encounters in the main data flow. As you monitor larger
networks, the problem of scan data becomes increasingly more and more
important—a dumb scanner on a /16 will generate 65,535 flows for
every port he decides to hit. You may see eight flows for a long lived
SSH session, if you see them among all the scanning noise.
Scan removal is best done on an IP-by-IP basis, because if a host is
scanning the network, it’s likely not doing anything legitimate.
Identify each scanning address and remove all traffic originating
from that address. This traffic set can then be trended by
identifying the destination ports of the scans, determining the
exploits used (if identified by IDS), and comparing the types of scans
conducted over time. Top-n lists are generally not particularly
useful for scan trending because the top five positions have been fairly
static for the past five years.
In operational environments, I generally haven’t been too fussy about
exactly identifying flow traffic, instead opting to use the high-pass
filter approach to split TCP traffic into short and long files,
and then using the long files as the default dataset for queries. In
occasions when I really need to access the short files, the data is
there, and the probability of a short communication actually being
meaningful and all traffic from that host being in the short file is
pretty much nonexistent.
Analytically, scan data is often more useful for identifying who
responded to a scan rather than who sent it. Attackers are likely
to scan your network far more actively and far more often than your
own network management staff, meaning that by keeping track of the
hosts that responded to scans, you will likely discover new systems and
services long before your next audit.
Speculatively, there may be some value in scan trending. SANS, among
other organizations, does keep track of current scanning statistics on
the Internet storm center. However,
if there is value in trending, it has to get past the overwhelming
dominance of the top five ports: ports 22, 25, 80, 443, and 139.

Identifying UDP Fumbling

It’s rarely possible to identify a failed UDP connection from the UDP
traffic itself. TCP has symmetry baked into the protocol, whereas UDP doesn’t
provide any guarantees of delivery. If a UDP service provides some
form of symmetry or other reciprocity, that’s a service-specific
attribute. In order of preference, network maps and ICMP traffic are
the best ways to identify UDP fumbling.

Fumbling at the Service Level

Service-level fumbling commonly results from scanning, automated
exploits, and a number of scouting tools. Unlike network-level
fumbling, service-level fumbling is usually clearly identifiable as
such because there are error codes in most major services that are logged
and can be used to differentiate illegitimate connections from
legitimate requests.
HTTP Fumbling

Recall that each HTTP transaction returns a three-digit status code, of
which the 4xx family of status codes are reserved for client errors.
In the 4xx family, the two most important and common access errors are
404 (not found) and 401 (unauthorized).
404 indicates that a resource was not available at the URL specified
by the requestor, and is the most common HTTP error in existence.
Users will often trigger 404 errors by hand, such as when they mistype a complex URL. Misconfiguration will often cause problems
as well, such as when someone publicizes a URL that doesn’t exist.
These types of errors, from a misconfigured URL announcement or
fat-fingering, are relatively easy to identify. In the first case,
fat-fingering should be relatively rare. Fat-fingered URLs will rarely
repeat—if one user is mistyping, he’ll mistype slightly differently
each time. At the same time, since fat-fingering is an individual
mistake, the same fat-fingering will not appear from multiple
locations. If you see the same mistake coming from multiple discrete
locations, that is more likely to be a result of a misconfigured URL
announcement. Such an announcement may be identifiable by examining
the HTTP Referer header. If the Referer points to a site you have
control over, then you can identify and fix the error on that site.
The third common source for 404 errors is bots scanning HTTP sites for
well-known vulnerabilities. Because most modern HTTP sites are built
on top of a collection of other applications, they often carry
vulnerabilities from one or more of their component applications.
These vulnerabilities are well-known, placed in common locations, and
consequently hunted for by bots everywhere. The URLs
referenced in Example 11-1 are all associated with phpMyAdmin, a
common MySQL database management tool.
Example 11-1. Botnets attempting to fetch common URLs
223.85.245.54 - - [16/Feb/2013:20:10:12 -0500]
 "GET /pma/scripts/setup.php HTTP/1.1" 404 390 "-" "ZmEu"
223.85.245.54 - - [16/Feb/2013:20:10:15 -0500]
 "GET /MyAdmin/scripts/setup.php HTTP/1.1" 404 394 "-" "ZmEu"
188.230.44.113 - - [17/Feb/2013:16:54:05 -0500]
 "GET http://www.scanproxy.net:80/p-80.html HTTP/1.0" 404 378 "-"
194.44.28.21 - - [18/Feb/2013:06:20:07 -0500]
 "GET /w00tw00t.at.blackhats.romanian.anti-sec:) HTTP/1.1" 404 410
 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:07 -0500]
 "GET /phpMyAdmin/scripts/setup.php HTTP/1.1" 404 397 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:08 -0500]
 "GET /phpmyadmin/scripts/setup.php HTTP/1.1" 404 397 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:08 -0500]
 "GET /pma/scripts/setup.php HTTP/1.1" 404 390 "-" "ZmEu"
194.44.28.21 - - [18/Feb/2013:06:20:09 -0500]
 "GET /myadmin/scripts/setup.php HTTP/1.1" 404 394 "-"

Unlike the 404 errors discussed earlier, 404 scanning is generally
identifiable by being completely unrelated to the actual structure
of a site. Attackers are guessing that something is there and are
going by the documentation and common practice to try to reach a
vulnerable target.
401 errors are authentication errors, and come from HTTP’s basic
access authentication mechanism—which you should never use. 401 authentication was baked into
the HTTP standard early on,[20] and
uses unencrypted base64-encoded passwords to authenticate a user’s
access to protected directories.
Basic access authentication is a disaster and should not be used by
any modern web server. If you do see 401 errors in your system logs,
you should identify and eliminate the source of them on your server.
Unfortunately, basic authentication still occasionally pops up in
embedded systems as the only form of authentication available.
Webcrawlers and Robots.txt
Search engines employ automated processes called, variously,
crawlers, spiders, or robots to scout out websites and identify
searchable content. These crawlers can be phenomenally aggressive in
copying site contents; website owners can define what the crawlers access
using the robot exclusion standard, or robots.txt. The standard
defines a common file (the aforementioned robots.txt), which is
accessed by the crawler and provides instructions about which files
it can and can’t access.
A host that doesn’t access robots.txt and immediately begins poking
around the site is suspicious. Furthermore, robots.txt is a voluntary
standard; there’s nothing preventing a crawler from ignoring it, and
it’s not uncommon for unethical or new crawlers to ignore the
instructions.
It’s also not uncommon for scanners who want to probe a site to
pretend to be a crawler. Crawlers are usually identifiable by two
behaviors: they use a User-Agent string unique to the crawler, and
they come from a fixed range of IP addresses.[21]
Most search engines publish their address ranges to help stop
masquerading; these address ranges can change, so regularly checking a
site such as the Robots Database or
List of User-Agents is a good idea.

SMTP Fumbling

For our purposes, SMTP fumbling occurs when a host sends mail to a
nonexistent address. Depending on SMTP server configurations, this
will result in one of three actions: a rejection, a bounce,
or (in the case of a catch-all configuration) redirection to a
catch-all account. All of these events should be logged by the SMTP
server that makes the final routing decision.
Analyzing SMTP fumbles runs into the same problem that analyzing all
SMTP traffic does: spam. There are a lot of failed addresses sent in
SMTP messages because spammers will send mail to every conceivable
address.[22] Consequently, the relatively
innocuous reasons for fumbling (misaddressing) may exist but are
drowned in spam. At the same time, the reasons for attackers to
fumble (reconnaissance) are effectively pointless because spammers don’t
probe to see whether an address exists; they spam it.
There may be one good reason to analyze failed SMTP
addresses: uncovering deception. In several APT-type
spear-phishing emails, I’ve seen the attackers seed the To: line with
several realistic but fake looking addresses. I assume that the
addresses are either out of date due to enterprise turnover or
intentionally added to provide the mail with a veneer of legitimacy.

Analyzing Fumbling

Until some brilliant researcher comes up with a better technique, scan detection will boil down to testing for X events of interest across a Y-sized time window.
—
Stephen Northcutt

Fumbling alarms can be used to detect scans, spams, and other phenomena
where the attacker has next to no knowledge about the target network.
Building Fumbling Alarms

When tracking fumbles, the goal is to raise an alarm when there’s
suspicion that fumbling is not simply accidental. To do so, the alarm
must first collect fumbling events using the rules discussed
previously in this chapter. These mechanisms include:
	
Creating or consulting a map of targets to determine
 whether the attacker is reaching a real target.

	
Examining traffic for evidence of a failure to connect. Examples
 of failures to connect include:

	
Asymmetric TCP sessions, or TCP sessions without ACK flags

	
HTTP 404 records

	
Email bounce logs

Innocuous fumbling, as a false positive, are generally the result of
some form of misconfiguration or miscommunication to the target. For
example: the DNS name for destination.com is moved from IP address A to
IP address B; until the change thoroughly propagates through the DNS
system, users will accidentally visit address A instead of B. These
types of errors, when they occur, will come from multiple sources and
will be consistent. Going back to the destination.com case, address A
is no longer used and address C on the same network is dark (that is,
it has no domain name); users may accidentally visit A for a while,
but they will not visit C. Suspicious fumbling involves users who
visit multiple nonexistent destinations; a host may visit A due to a
configuration error, he might possibly visit C due to chance, but if
he visits A and C, then he’s more likely scouting out a target.
Distinguishing malicious fumbling from innocuous failures is
therefore, as Northcutt says, about deciding on a threshold—the
number of events tolerated before you raise an alert. There are a
number of mechanisms to do this:
	
Calculate an expected value for the number of hosts on the
 network that a user should contact within a fixed period.

	
An alternative method is to use sequential hypothesis testing, a
 statistical technique that calculates the likelihood that a
 phenomenon will pass or fail a particular test multiple times.
 This approach was pioneered in infosec by Jaeyeoon Jung in her
 2004 paper, “Fast Portscan Detection Using Sequential Hypothesis
 Testing.”[23]

	
Raise an alert whenever a user visits a dark address.

The thing about malicious fumbling is that the attackers, generally,
have no particular reason to be subtle. If someone is scanning a
site, she’s going to hit everything quickly. Statistical methods
are primarily useful to find the attacker quickly, and consequently
have more use in active defense rather than in alarm generation.

Forensic Analysis of Fumbling

Scanning qua scanning is basically of no interest. Every idiot on
the planet scans the Internet, and a number of them scan it multiple
times daily. There is some worm-based scanning (such as with Code Red
and SQLSlammer, if you want to get truly Jurassic), which has gone on
for years without any noticeable effect. Scanning is like rain:
it’s going to happen, and the real question is identifying the damage that
it causes.
When receiving a scan alarm, there are several basic questions to ask:
	
Who responded to the scanner? As far as I’m concerned, scanners
 can visit as much of my dark space as they like. What I’m really
 concerned about is whether anyone in my network talked back to the scanner, and
 what they did afterward. More specific questions include:

	
Did the scanner have a serious conversation with any host?
 Attack software usually rolls scanning and exploit into a two-step process.
 Consequently, my first question about any scan is whether it ended
 before the true exploit.

	
Did any responding host have suspicious conversations
 afterward? Suspicious conversations include communications with
 external hosts (especially if it’s an internal server), receipt of
 a file, and communications on odd ports.

	
Did the scanner find out something about my network I didn’t know?
 Inventories are always at least slightly out of date, and attacks
 are taking place all the time. Given that, it makes sense to take
 advantage of the scanner’s hard work for our own benefit.

	
Did the scanner identify previously unknown hosts? This is an
 example of the previous item about unknown information.

	
Did the scanner identify previously unknown services?

	
What else did the scanner do? Bots usually do multiple things at
 one time, and it’s good to check whether the scanner scanned
 other ports, engaged in other types of probes, or tried
 multiple types of attacks.

There are several good questions to ask about fumblers in general:
	
What else did the fumbler do? If the same address or source is sending mail
 to multiple targets, it’s likely to be a spammer and, much like a scanner, is
 using a bot as a utility knife kind of tool.

	
Are there preferred targets? This particularly applies to fumbling with
 email addresses, because IP addresses are drawn from a much smaller pool. Are there
 common target addresses on your network? If so, they’re good candidates for
 further instrumentation.

Engineering a Network to Take Advantage of Fumbling

Fumbling often takes advantage of common network configuration and
assumptions. Most obviously, attackers scan common ports like 22
because they expect to encounter services there. You can take
advantage of these assumptions to place more sensitive instrumentation
on the network, such as full packet capture.
Because malicious scans exploit the regularity of most target sites,
you can make the lives of attackers a bit harder by configuring your
site in a somewhat irregular way:
	
Rearrange addresses

	
Most scanning is linear: the attacker will
hit address X, then X+1, and so on. Most administrators and DHCP
implementations also assign addresses linearly. It’s not uncommon to
have a /24 or /27 where the upper half is entirely dark. Rearranging
addresses so that they’re scattered evenly across the network, or
leaving large empty gaps in the network is a simple method that creates
dark space.

	
Move targets

	
Port assignments are largely a social convention, and
most modern applications should be able to handle a service located on
an unorthodox port. Especially when dealing with internal services,
which shouldn’t be accessed by the outside world, port reassignment is
a cheap mechanism to frustrate more basic scanners.

Further Reading

	
Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan, “Fast Portscan Detection Using Sequential Hypothesis Testing,” Proceedings of the 2004 IEEE Symposium on Security and Privacy.

[19] Alata, E. et al.,
“Lessons learned from the deployment of a high-interaction honeypot,”
EDCC 2006.

[20] See RFC 1945 and RFC 2617.

[21] Googlebot is a
notable exception to this, and includes
instructions on how to verify
Googlebot.

[22] I once logged onto an account I had never used and
was greeted by 3,000 spam messages.

[23] Jung, Jaeyeon et al. “Fast Portscan Detection Using Sequential Hypothesis Testing.” Paper presented at the IEEE Symposium on Security and Privacy, Oakland, CA, May 2004.

Chapter 12. Volume and Time Analysis

In this chapter, we look at phenomena that can be identified by
comparing traffic volume against the passage of time. “Volume” may be
a simple count of the number of bytes or packets, or it may be a
construct such as the number of IP addresses transferring files.
Based on the traffic observed, there are a number of different
phenomena that can be pulled out of traffic data, particularly:
	
Beaconing

	
When someone contacts your host at regular intervals,
it is a possible sign of an attack.

	
File extraction

	
Massive downloads are suggestive of someone stealing
your internal data.

	
Denial of Service (DoS)

	
Preventing your servers from providing
service.

Traffic volume data is noisy. Most of the observables that you can
directly count, such as the number of bytes over time, vary highly and
have no real relationship between the volume of the event and its
significance. In other words, there’s rarely a significant
relationship between the number of bytes and the importance of the
events. This chapter will help you find unusual behaviors through
scripts and visualizations, but a certain amount of human eyeballing
and judgment are necessary to determine which behaviors to consider
dangerous.
The Workday and Its Impact on Network Traffic Volume

The bulk of traffic on an enterprise network comes from people who are
paid to work there, so their traffic is going to roughly follow the
hours of the business day. Traffic will trough during the
evening, rise around 0800, peak around 1300, and drop off around 1800.
To show how dominant the workday is, consider Figure 12-1, a plot
showing the progression of the SoBIG.F email worm across the
SWITCH network in 2003. SWITCH is Switzerland
and Lichtenstein’s educational network, and makes up a significant
fraction of the national traffic for Switzerland. In Figure 12-1,
the plot shows the total volume of SMTP traffic over time for a two-week period. SoBIG propagates at the end of the plot. But what I want
to highlight is the normal activity during the earlier part of the
week on the left. Note that each weekday is a notched peak, with the
notch coming at lunchtime. Note also that there is considerably less
activity over the weekend.
[image: Mail traffic and propagation of a worm across Switzerland’s SWITCH network (image courtesy of Dr. Arno Wagner)]

Figure 12-1. Mail traffic and propagation of a worm across Switzerland’s SWITCH network (image courtesy of Dr. Arno Wagner)

This is a social phenomenon; knowing roughly where the address you’re
monitoring is (home, work, school), and the local time zone can help
predict both events and volumes. For example, in the evening,
streaming video companies become a more significant
fraction of traffic as people kick back and watch TV.
There are a number of useful rules of thumb for working with workday
schedules to identify, map, and manage anomalies. These include
tracking active and inactive periods, tracking the internal schedule
of an organization, and keeping track of the time zone. The techniques
covered in this section are a basic, empirical approach to time series
analysis; considerably more advanced techniques are covered in the
books cited.
When working with site data, I usually find that it’s best to break
traffic into “on” (people are working) and “off” (people are at home)
periods. The histogram in Figure 12-2 shows how this phenomenon
can affect the distribution of traffic volume—in this case, the two
distinct peaks correspond to the on-periods and off-periods. Modeling
the two periods separately will provide a more accurate volume
estimate without pulling out the heavier math used for time series
analysis.
[image: Distribution of traffic in a sample network, where the peak on the right is workday and the peak on the left is evening]

Figure 12-2. Distribution of traffic in a sample network, where the peak on the right is workday and the peak on the left is evening

When determining on-periods and off-periods, consider the schedule of
the organization itself. If your company has any special or unusual
holidays, such as taking a founder’s birthday off, keep track of those
as potential off-days. Similarly, are there parts of the organization
that are staffed constantly and other parts that are only 9 to 5? If
something is constantly staffed, keep track of the shift changes,
and you’ll often see traffic repeat at the start of a shift as everyone
logs on, checks email, meets, and then starts working.
The Value of Off-Days
Off-time is valuable. If I want to identify dial-homes, file
exfiltration, and other suspicious activity, I like to do so by
watching off-hours. There’s less traffic, there are fewer people, and if
someone is ignorant of a company’s internal circadian rhythm, she’ll be a lot easier to identify during those periods than if
she’s hiding in the crowd.
This is the reason I like to keep track of a company’s own special
off-times. It’s easy enough for someone to hide his traffic by
keeping all activity in 9–5/M–F, but if the attacker doesn’t know the
company gives St. Swithin’s Day off, then he’s more likely to stick out.
I’ve seen this particular phenomenon show up when dealing with
insiders, particularly people worried about shoulder surfing or
physical surveillance. They’ll move their activity to evenings and
weekends in order to make sure their neighbors don’t ask what they’re
doing, and then show up fairly visibly in the traffic logs.

Business processes are a common source of false positives with volume
analysis. For example, I’ve seen a corporate site where there’s a
sudden biweekly spike in traffic to a particular server. The server,
which covered company payroll, was checked by every employee every
other Friday and never visited otherwise. Phenomena that occurs
weekly, biweekly, or on multiples of 30 days is likely to be
associated with the business’s own processes and should be identified
as such for future reference.

Beaconing

Beaconing is the process of systematically and regularly contacting
a host. For instance, botnets will
poll their command servers for new instructions periodically. This is
particularly true of many modern botnets that use HTTP as a
moderator. Such behavior will appear to you as information flows at
regular intervals between infected systems on your site and an unknown
address off-site.
However, there are many legitimate behaviors that also generate
routine traffic flows. Examples include:
	
Keep alives

	
Long-lived sessions, such as an interactive SSH
 session, will send empty packets at regular intervals in order to
 maintain a connection with the target.

	
Software updates

	
Most modern applications include some form
 of automated update checkup. AV, in particular, regularly
 downloads signature updates to keep track of the latest malware.

	
News and weather

	
Many news, weather, and other
 interactive sites regularly refresh the page as long as a client
 is open to read it.

Beacon detection is a two-stage process. The first stage involves
identifying consistent signals. An example process for doing so is
the find_beacons.py script shown in Example 12-1. find_beacons.py takes a sequence of flow records and dumps them into
equally sized bins. Each input consists of two fields: the IP address
where an event was found and the starting time of the flow, as
returned by rwcut. rwsort is used to order the traffic by source
IP and time.
The script then checks the median distance between
the bins and scores each IP address on the fraction of bins that fall within
some tolerance of that median.
If a large number of flows are near the median, you have found a
regularly recurring event.
Example 12-1. A simple beacon detector
#!/usr/bin/env python
#
#
find_beacons.py
#
input:
rwsort --field=1,9 | rwcut --no-title --epoch --field=1,9 | <stdin>
command line:
find_beacons.py precision tolerance [epoch]
#
precision: integer expression for bin size (in seconds)
tolerance: floating point representation for tolerance expressed as
fraction from median, e.g. 0.05 means anything within (median -
0.5*median, median + 0.5*median) is acceptable
epoch: starting time for bins; if not specified, set to midnight of the first
time read.

This is a very simple beacon detection script which works by breaking a traffic
feed into [precision] length bins. The distance between bins is calculated and
the median value is used as representative of the distance. If all the distances
are within tolerance% of the median value, the traffic is treated as a beacon.

import sys

if len(sys.argv) >= 3:
 precision = int(sys.argv[1])
 tolerance = float(sys.argv[2])
else:
 sys.stderr.write("Specify the precision and tolerance\n")

starting_epoch = -1
if len(sys.argv) >= 4:
 starting_epoch = int(sys.argv[3])

current_ip = ''

def process_epoch_info(bins):
 a = bins.keys()
 a.sort()
 distances = []
 # We create a table of distances between the bins
 for i in range(0, len(a) -1):
 distances.append(a[i + 1] - a[i])

 distances.sort()
 median = distances(len(distances)/2)
 tolerance_range = (median - tolerance * median, median + tolerance *median)
 # Now we check bins
 count = 0
 for i in distances:
 if (i >= tolerance_range[0]) and (i <= tolerance_range[1]):
 count+=1
 return count, len(distances)

bins = {} # Checklist of bins hit during construction; sorted and
 # compared later. AA be cause it's really a set and I
 # should start using those.
results = {} # Associate array containing the results of the binning
 # analysis, dumped during the final report

We start reading in data; for each line I'm building a table of
beaconing events. The beaconing events are simply indications that
traffic 'occurred' at time X. The size of the traffic, how often it occurred,
how many flows is irrelevant. Something happened, or it didnt.
for i in sys.stdin.readlines():
 ip, time = i.split('|')[0:2]
 if ip != current_ip:
 results[ip] = process_epoch_info(bins)
 bins = {}

 if starting_epoch == -1:
 starting_epoch = time - (time % 86400) # Sets it to midnight of that day
 bin = (time - starting_epoch) / precision
 bins[bin] = 1

a = bins.sort()
for i in a:
 print "%15s|%5d|%5d|%8.4f" % (ip, bins[a][0], bins[a][1],
 100.0 * (float(bins[a[0]])/float(bins[a[1]])))

The second stage of beacon detection (as usual) is inventory
management. An enormous number of legitimate applications, as we saw
earlier, transmit data periodically. NTP, routing protocols, and AV
tools all dial home on a regular basis for information updates. SSH
also tends to show periodic behavior, because administrators run
periodic maintenance tasks via the protocol.

File Transfers/Raiding

Data theft is still the most basic form of attack on a database or
website, especially if the website is internal or an otherwise
protected resource. For lack of a better term, I’ll use raiding
to denote copying a website or database in order to later
disseminate, dump, or sell the information. The difference between
raiding and legitimate access is a matter of degree, as the point
of any server is to serve data.
Obviously, raiding should result in a change in traffic volume.
Raiding is usually conducted quickly (possibly while someone is
packing up her cubicle) and often relies on automated tools such as
wget. It’s possible to subtly raid, but that would require the
attacker to have both the time to slowly extract data and the
patience to do so.
Volume is one of the easiest ways to identify a raid.
The first step is building up a model of the normal volume originating
from a host over time. The calibrate_raid.py script in
Example 12-2 provides thresholds for volume over time, as well
as a table of results to plot.
Example 12-2. A raid detection script
#!/usr/bin/env python
#
calibrate_raid.py
#
input:
Nothing
output:
writes a report containing a time series and volume estimates to stdout
command_line
calibrate_raid.py start_date end_date ip_address server_port period_size
#
start_date: The date to begin the query on
end_date: The date to end the query on
ip_address: the server address to query
server_port: the port of the server to query
period_size: the size of the periods to use for modeling the time
#
Given a particular IP address, this generates a time series (via rwcount)
and a breakdown on what the expected values at the 90-100% thresholds would
be. The count output can then be run through a visualizer in order to
check for outliers or anomalies.
#
import sys,os,tempfile

start_date = sys.argv[1]
end_date = sys.argv[2]
ip_address = sys.argv[3]
server_port = int(sys.argv[4])
period_size = int(size.arg[5])

if __name__ == '__main__':
 fh, temp_countfn = tempfile.mkstemp()
 os.close(fh)
 # Note that the filter call uses the IP address as the source, and the
 # server port as the source. We're pulling out flows that originated
 # FROM the server, which means that they should be the data from the
 # file transfer. If we used daddress/dport, we'd be logging the
 # (much smaller) requests to the server from the clients.
 #
 os.system(('rwfilter --saddress=%s --sport=%d --start-date=%s ',
 '--end-date=%s --pass=stdout | rwcount --epoch-slots',
 ' --bin-size=%d --no-title > %s') % (
 ip_address, server_port, start_date, end_date, period_size,
 temp_countfn))

 # A note on the filtering I'm doing here. You *could* rwfilter to
 # only include 4-packet or above sessions, therefore avoiding the
 # scan responses. However, those *should* be minuscule, and
 # therefore I elect not to in this case.

 # Load the count file into memory and add some structure
 #
 a = open(temp_countfn, 'r')
 # We're basically just throwing everything into a histogram, so I need
 # to establish a min and max
 min = 99999999999L
 max = -1
 data = {}
 for i in a.readlines():
 time, records, bytes, packets = map(lambda x:float(x),
 i[:-1].split('|')[0:4])
 if bytes < min:
 min = bytes
 if bytes > max:
 max = bytes
 data[time] = (records, bytes, packets)
 a.close()
 os.unlink(temp_countfn)
 # Build a histogram with hist_size slots
 histogram = []
 hist_size = 100
 for i in range(0,hist_size):
 histogram.append(0)
 bin_size = (max - min) / hist_size
 total_entries = len(data.values)
 for records, bytes, packets in data.values():
 bin_index = (bytes - min)/bin_size
 histogram[bin_index] += 1

 # Now we calculate the thresholds from 90 to 100%
 thresholds = []
 for i in range(90, 100):
 thresholds.append(0.01 * i * total_entries)
 total = 0
 last_match = 0 # index in thresholds where we stopped
 # Step 1, we dump the thresholds
 for i in range(0, hist_size):
 total += histogram[i]
 if total >= thresholds[last_match]:
 while thresholds[last_match] < total:
 print "%3d%% | %d" % (90 + last_match, (i * bin_size) + min)
 a = data.keys()
 a.sort()
 for i in a:
 print "%15d|%10d|%10d|%10d" % (i, data[i][0], data[i][1], data[i][2])

Visualization is critical when calibrating volume thresholds for
detecting raiding or other raiding anomalies. We’ve discussed the
problem with standard deviations in Chapter 10, and a histogram is
the easiest way to determine whether a distribution is even remotely
Gaussian. In my experience, a surprising number of services regularly
raid hosts—web spiders and the Internet archive being among the
more notable examples. If a site is strictly internal, backups and
internal mirroring are common false positives.
Visualization can identify these outliers. The example in
Figure 12-3 shows that the overwhelming majority of traffic occurs
below about 1000 MB/10 min, but those few outliers above 2000
MB/10 min will cause problems for calibrate_raid.py and most
training algorithms. Once you have identified the outliers, you can
record them in a whitelist and remove them from the filter command
using --not-dipset. You can then use rwcount to set up a simple
alert mechanism.
[image: Traffic volume with outliers; determining the origin and cause of outliers will reduce alerts]

Figure 12-3. Traffic volume with outliers; determining the origin and cause of outliers will reduce alerts

Locality

Locality is the tendency of references (memory locations, URLs, IP
addresses) to cluster together. For example, if you track the
web pages visited by a user over time, you will find that the majority
of pages are located in a small and predictable number of sites
(spatial locality), and that users tend to visit the same number of
sites over and over (temporal locality). Locality is a well understood
concept in computer science, and serves as the foundation of caching,
CDNs, and reverse proxies.
Locality is particularly useful as a complement to volumetric
analysis because users are generally predictable. Users visit a
small number of sites and talk to a small number of people, and while
there are occasional changes, we can model this behavior
using a working set.
[image: A Working Set in Operation]

Figure 12-4. A Working Set in Operation

Figure 12-4 is a graphical example of a working set in operation. In
this example, the working set is implemented as an LRU (Least Recently
Used) queue of fixed size (in this case, four references in the queue). This working set is
tracking web surfing, so it gets fed URLs from an HTTP server logfile
and adds them to the stack. Working sets only keep one copy of every
reference they see, so a four-reference set like the one shown in
Figure 12-4 will only show four references. When a working set
receives a reference, it does one of three things:
	
If there are empty references left, the new reference is enqueued at the back of the queue (I to II).

	
If the queue is filled AND the reference is present, the reference is moved to the back of the queue.

	
If the queue is filled AND the reference is NOT present, then the reference is enqueued at the back of the queue, and the reference at the front of the queue is removed.

The code in Example 12-3 shows an LRU working set model in python.
Example 12-3. Calculating working set characteristics
#!/usr/bin/env python
#
#
Describe the locality of a host using working_set depth analysis.
Inputs:
stdin - a sequence of tags
#
Command line args:
first: working_set depth

import sys

try:
 working_set_depth = int(sys.argv[1])
except:
 sys.stderr.write("Specify a working_set depth at the command line\n")
 sys.exit(-1)

working_set = []

i = sys.stdin.readline()
total_processed = 0
total_popped = 0
unique_symbols = {}
while i != '':
 value = i[:-1] #Ditch the obligatory \n
 unique_symbols[value] = 1 # Add in the symbol
 total_processed += 1
 try:
 vind = working_set.index(value)
 except:
 vind = -1

 if (vind == -1):
 # Value isn't present as an LRU cache; delete the
 # least recently used value and store this at the end
 working_set.append(value)
 if len(working_set) > working_set_depth:
 del working_set[0]
 working_set.append(value)
 total_popped +=1
 else:
 # Most recently used value; move it to the end of the working_set
 del working_set[vind]

Calculate probability of replacement stat
p_replace = 100.0 * (float(total_popped)/float(total_processed))

print "%10d %10d %10d %8.4f" % (total_processed, unique_symbols,
 working_set_depth, p_replace)

Figure 12-5 shows an example of what working sets will
look like. This figure plots the probability of replacing a value in
the working set as a function of the working set size. Two different
sets are compared here: a completely random set where references are
picked from a set of 10 million symbols, and a model of user activity
using a Pareto distribution. The Pareto model is adequate for
modeling normal user activity, if actually a bit less stable than
users under normal circumstances.
Note the “knee” in the Pareto model, while the random model remains
consistent at a 100% replacement rate. Working sets generally have an
ideal size after which increasing the set’s size is counterproductive.
This knee is representative of this phenomenon—you can see that the
probability of replacement drops slightly before the knee, but remains
effectively stable afterward.
[image: Working set analysis]

Figure 12-5. Working set analysis

The value of working sets is that once they’re calibrated, they
reduce user habit down to two parameters: the size of the queue
modeling the set and the probability that a reference will result in
a queue replacement.
DDoS, Flash Crowds, and Resource Exhaustion

Denial of Service (DoS) is a goal, not a specific strategy. A DoS
results in a host that cannot be reached from remote locations. Most
DoS attacks are implemented as a Distributed Denial of Service (DDoS)
attack in which the attacker uses a network of captured hosts in order to
implement the DoS. There are several ways an attacker can implement
DoS, including but not limited to:
	
Service level exhaustion

	
The targeted host runs a publicly
 accessible service. Using a botnet, the attacker starts a set
 of clients on the target, each conducting some
 trivial but service-specific interaction (such as fetching the
 home page of a website).

	
SYN flood

	
The SYN flood is the classic DDoS attack. Given a
 target with an open TCP port, the attacker sends clients against
 the attacker. The clients don’t use the service on the port, but
 simply open connections using a SYN packet and leave the
 connection open.

	
Bandwidth exhaustion

	
Instead of targeting a host, the
 attacker sends a massive flood of garbage traffic towards the
 host, intending to overwhelm the connection between the router
 and the target.

And you shouldn’t ignore a simple insider attack: the attacker walks
over to the physical server and disconnects it.
All these tactics produce the same result, but each tactic will appear
differently in network traffic and may require different mitigation
techniques. Exactly how many resources the attacker needs is a
function of how the attacker implements DDoS. As a rule of thumb, the
higher up an attack is on the OSI model, the more stress it places on
the target and the fewer bots are required by the attacker. For
example, bandwidth exhaustion hits the router and basically has to
exhaust the router interface. SYN flooding, the classic DDoS attack,
has to simply exhaust the target’s TCP stack. At higher levels, tools
like Slowloris effectively create a
partial HTTP connection, exhausting the resources of the web server.
This has several advantages from an attacker’s perspective. Fewer
resources consumed means fewer bots involved and a legitimate session
is more likely to be allowed through by a firewall that might block a
packet crafted to attack the IP or TCP layer.

DDoS and Routing Infrastructure

DDoS attacks aimed specifically at routing infrastructure will produce
collateral damage. Consider a simple network like the one in
Figure 12-6; the heavy line shows the path of the attack to
subnetwork C. The attacker hitting subnetwork C is exhausting not just the
connection at C, but also the router’s connection to the
Internet. Consequently, hosts on networks A and B will not be able to
reach the Internet and will see their incoming Internet traffic
effectively drop to zero.
[image: DDoS collateral damage]

Figure 12-6. DDoS collateral damage

This type of problem is not uncommon on colocated services, and
emphasizes that DDoS defense is rooted at network infrastructure. I
am, in the long run, deeply curious to see how cloud computing and
DDoS are going to marry. Cloud computing enables defenders to run
highly distributed services across the Internet’s routing
infrastructure. This, in turn, increases the resources the attacker
needs to take out a single defender.
With DoS attacks, the most common false positives are flash crowds
and cable cuts. A flash crowd is a sudden influx of legitimate
traffic to a site in response to some kind of announcement or
notification. Alternate names for flash crowds such as SlashDot
effect, farking, or Reddit effect provide a good explanation of what’s
going on.
These different classes of attacks are usually easily distinguished by
looking at a graph of incoming traffic. Some idealized images are
shown in Figure 12-7, which explain the basic phenomena.
[image: Different classes of bandwidth exhaustion]

Figure 12-7. Different classes of bandwidth exhaustion

The images in Figure 12-7 describe three different classes of
bandwidth exhaustion: a DDoS, a flash crowd, and a cable cut or other
infrastructure failure. Each plot is of incoming traffic and
equivalent to sitting right at the sensor. The differences between the
plots reflect the phenomena causing the problems.
DDoS attacks are mechanical. The attack usually switches on and off
instantly, as the attacker is issuing commands remotely to a network
of bots. When a DDoS starts, it almost instantly consumes as much
bandwidth as available. In many DDoS plots, the upper limit on the
plot is dictated by the networking infrastructure: if you have a 10 GB
pipe, the plot maxes at 10 GB. DDoS attacks are also
consistent. Once they start, they generally keep humming along at
about the same volume. Most of the time, the attacker has grossly
overprovisioned the attack. Bots are being removed while the attack
goes on, but there’s more than enough to consume all available
bandwidth even if a significant fraction are knocked offline.
DDoS mitigation is an endurance contest. The best defense is to
provision out bandwidth before the attack starts. Once an attack
actually occurs, the best you can do at any particular location is to
try to identify patterns in the traffic and block the ones causing the
most damage. Examples of patterns to look for include:
	
Identifying a core audience for the target and limiting traffic
 to the core audience. The audience may be identified by using IP
 address, netblock, country code, or language, among other
 attributes. What is critical is that the audience has a limited
 overlap with the attacker set. The script in Example 12-4
 provides a mechanism for ordering /24s by the difference between two
 sets: historical users that you trust and new users whom you
 suspect of being part of a DDoS attack.

	
Spoofed attacks are occasionally identifiable by some flaw in
 the spoofing. The random number generator for the spoof might
 set all addresses to x.x.x.1, as an example.

Example 12-4. An example script for ordering blocks
#!/usr/bin/env python
#
ddos_intersection.py
#
input:
Nothing
output:
A report comparing the number of addresses in two sets, ordered by the
largest number of hosts in set A which are not present in set B.
#
command_line
ddos_intersection.py historical_set ddos_set
#
historical_set: a set of historical data giving external addresses
which have historically spoken to a particular host or network
ddos_set: a set of data from a ddos attack on the host
This is going to work off of /24's for simplicity.
#
import sys,os,tempfile

historical_setfn = sys.argv[1]
ddos_setfn = sys.argv[2]
blocksize = int(sys.argv[3])

mask_fh, mask_fn = tempfile.mkstemp()
os.close(mask_fh)
os.unlink(mask_fn)

os.system(('rwsettool --mask=24 --output-path=stdout %s | ' +
 ' rwsetcat | sed 's/$/\/24/' | rwsetbuild stdin %s') %
 (historical_setfn, mask_fn))

bins = {}
Read and store all the /24's in the historical data
a = os.popen(('rwsettool --difference %s %s --output-path=stdout | ',
 'rwsetcat --network-structure=C') % (mask_fn, historical_setfn),'r')
First column is historical, second column is ddos
for i in a.readlines():
 address, count = i[:-1].split('|')[0:2]
 bins[address] = [int(count), 0]

a.close()
Repeat the process with all the data in the ddos set
a = os.popen(('rwsettool --difference %s %s --output-path=stdout | ',
 'rwsetcat --network-structure=C') % (mask_fn, ddos_setfn),'r')
for i in a.readlines():
 address, count = i[:-1].split('|')[0:2]
 # I'm intersecting the maskfile again, since I originally intersected it against
 # the file I generated the maskfile from, any address that I find in the file
 # will already be in the bins associative array
 bins[address][1] = int(count)

#
Now we order the contents of the bins. This script is implicitly written to
support a whitelist-based approach -- addresses which appear in the historical
data are candidates for whitelisting, all other addresses will be blocked.
We order the candidate blocks in terms of the number of historical addresses
allowed in, decreasing for every attacker address allowed in.
address_list = bins.items()
address_list.sort(lambda x,y:(y[1][0]-x[1][0])-(y[1][1]-x[1][1]))
print "%20s|%10s|%10s" % ("Block", "Not-DDoS", "DDoS")
for address, result in address_list:
 print "%20s|%10d|%10d" % (address, bins[address][0], bins[address][1])

This type of filtering works more effectively if the attack is
focused on striking a specific service, such as DDoSing a web server
with HTTP requests. If the attacker is instead focused on traffic
flooding a router interface, the best defenses will normally lie
upstream from you.
As discussed in Chapter 11, people are impatient where machines
are not, and this behavior is the easiest way to differentiate flash crowds from
DDoS attacks. As the flash crowd plot in Figure 12-7 shows, when the event occurs,
the initial burst of bandwidth is followed by a rapid falloff. The
falloff is because people have discovered that they can’t reach the
targeted site and have moved on to more interesting pastures until
some later time.
Flash crowds are public affairs—for some reason, somebody
publicized the target. As a result, it’s often possible to figure out
the origin of the flash crowd. For example, HTTP referrer logs will
include a reference to the site. Googling the targeted site is often
a good option. If you are familiar with the press and news
associated with your site, this is also a good option.
Cable cuts and mechanical failures will result in an actual drop in
traffic. This is shown in the cable cut figure, where all of a sudden
traffic goes to zero. When this happens, the first follow-up step is
to try to generate some traffic to the target, and ensure that the
problem is actually a failure in traffic and not a failure in the detector.
After that, you need to bring an alternate system online and then
research the cause of the failure.
DDoS and Force Multipliers
Functionally, DDoSes are wars of attrition: how much traffic can
the attacker throw at the target, and how can the target compensate
for that bandwidth? Attackers can improve the impact of their attack
through a couple of different strategies: they can acquire more
resources, attack at different layers of the stack, and rely on
Internet infrastructure to inflict additional damage. Each of these
techniques effectively serves as a force multiplier for attackers,
increasing the havoc with the same number of bots under their control.
The process of resource acquisition is really up to the attacker. The
modern Internet underground provides a mature market for the rental
and use of botnets. An alternative approach, used notably by some of
Anonymous, involves volunteers. Anonymous has developed a family of
JavaScript and C# DDoS tools under the monicker “LOIC” (Low Orbit Ion
Cannon) to conduct DDoS attacks. The LOIC family of tools are, in
comparison to hardcore malware, fairly primitive. Arguably, they’re
not intended to be anything more than that given their hacktivist
audience.
These techniques rely on processing asymmetry: the attacker in some
way juggles operations so that the processing demand on the server per
connection is higher than the processing demand on the client.
Development decisions will impact a system’s vulnerability to a
higher-level DDoS.[24]
Attackers can also rely on Internet infrastructure to conduct attacks.
This is generally done by taking a response service and sending the
response to a forged target address. The classic example of this, the
smurf attack, consisted of a ping where the host A, wanting to DDoS
site B, sends a spoofed ping to a broadcast address. Every host
receiving the ping (i.e., everything sharing the broadcast address)
then drowns the target in responses. The most common modern form of
this attack uses DNS reflection: the attacker sends a spoofed
request to a DNS resolver, which then sends an inordinately
informative and helpfully large packet in response.

Applying Volume and Locality Analysis

The phenomena discussed in this chapter are detectable using a number
of different approaches. In general, the problem is not so much detecting them as differentiating malicious activity
from legitimate but similar-appearing activity. In this section, we
discuss a number of different ways to build detectors and limit
false positives.
Data Selection

Traffic data is noisy, and there’s little correlation between the volume
of traffic and the malice of a phenomenon. An attacker can control a
network using ssh and generate much less traffic than a legitimate
user sending an attachment over email. The basic noisiness of the
data is further exacerbated by the presence of garbage traffic such as
scanning and other background radiation (see Chapter 11 for more
information on this).
The most obvious values to work with when examining volume are byte
and packet counts over a period. They are also generally so
fantastically noisy that you’re best off using them to identify DDoS
and raiding attacks and little else.
Because the values are so noisy and so easily disrupted, I prefer
working with constructed value such as a flow. NetFlow groups traffic into session approximations; I can then filter the flows
on different behaviors, such as:
	
Filtering traffic that talks only to legitimate hosts and not to
 dark space, this approach requires access to a current map of the
 network, as discussed in Chapter 15.

	
Splitting short TCP sessions (four packets or less) from longer
 sessions, or looking for other indications that a session is
 legitimate, such as the presence of a PSH flag. See
 Chapter 11 for more discussion on this behavior.

	
Further partitioning traffic into command, fumble, and file
 transfers. This approach, discussed in Chapter 14, extends the
 filtering process to different classes of traffic, some of which
 should be rare.

	
Using simple volume thresholds. Instead of recording the byte
 count, for example, record the number of 100, 1000,
 10000, and 100000+ byte flows received. This will reduce the
 noise you’re dealing with.

Whenever you’re doing this kind of filtering, it’s important to not simply
throw out the data, but actually partition it. For example, if you
count thresholded volume, record the 1–100, 100+, 1000+, 10000+ and
100000+ values as separate time series. The reason for partitioning
the data is purely paranoia. Any time you introduce a hard
rule for what data you’re going to ignore, you’ve created an opening
for an attacker to imitate the ignored data.
A less noisy alternative to volume counts are values such as the
number of IP addresses reaching a network or the number of unique
URLs fetched. These values are more computationally expensive to
calculate as they require distinguishing individual values; this can
be done using a tool like rwset in the SiLK suite or with an
associative array. Address counts are generally more stable than
volume counts, but at least splitting off the hosts who are only
scanning is (again) a good idea to reduce the noise.
Example 12-5 illustrates how to apply filtering and partitioning
to flow data in order to produce time series data.
Example 12-5. A simple time series output application
#
#
gen_timeseries.py
#
Generates a timeseries output by reading flow records and partitioning
the data in this case, into short (<=4 packet) TCP flows, and long
(>4 packet) TCP flows.
#
Output
Time <bytes> <packets> <addresses> <long bytes> <long packets> <long addresses>
#
Takes as input
rwcut --fields=sip,dip,bytes,packets,stime --epoch-time --no-title
#
We assume that the records are chronologically ordered, that is, no record
will produce an stime earlier than the records preceding it in the
output.

import sys
current_time = sys.maxint
start_time = sys.maxint
bin_size = 300 # We'll use five minute bins for convenience
ip_set_long = set()
ip_set_short = set()
byte_count_long = 0
byte_count_short = 0
packet_count_long = 0
packet_count_short = 0
for i in sys.stdin.readlines():
 sip, dip, bytes, packets, stime = i[:-1].split('|')[0:5]
 # convert the non integer values
 bytes, packets, stime = map(lambda x: int(float(x)), (bytes, packets, stime))
 # Now we check the time binning; if we're onto a new bin, dump and
 # reset the contents
 if (stime < current_time) or (stime > current_time + bin_size):
 ip_set_long = set()
 ip_set_short = set()
 byte_count_long = byte_count_short = 0
 packet_count_long = packet_count_short = 0
 if (current_time == sys.maxint):
 # Set the time to a 5 minute period at the start of the
 # currently observed epoch. This is done in order to
 # ensure that the time values are always some multiple
 # of five minutes apart, as opposed to dumping something
 # at t, t+307, t+619 and so on.
 current_time = stime - (stime % bin_size)
 else:
 # Now we output results
 print "%10d %10d %10d %10d %10d %10d %10d" % (
 current_time, len(ip_set_short), byte_count_short,
 packet_count_short,len(ip_set_long), byte_count_long,
 packet_count_long)
 current_time = stime - (stime % bin_size)
 else:
 # Instead of printing, we're just adding up data
 # First, determine if the flow is long or short
 if (packets <= 4):
 # flow is short
 byte_count_short += bytes
 packet_count_short += packets
 ip_set_short.update([sip,dip])
 else:
 byte_count_long += bytes
 packet_count_long += packets
 ip_set_long.update([sip,dip])

if byte_count_long + byte_count_short != 0:
 # Final print line check
 print "%10d %10d %10d %10d %10d %10d %10d" % (
 current_time, len(ip_set_short), byte_count_short,
 packet_count_short,len(ip_set_long), byte_count_long,
 packet_count_long)

Keep track of what you’re partitioning and analyzing. For example, if
you decide to calculate thresholds for a volume-based alarm only on
sessions from Bulgaria that have at least 100 bytes, then you need to
make sure that approach is used to calculate future thresholds, but
that it’s also documented, and why.

Using Volume as an Alarm

The easiest way to construct a volume-based alarm is to calculate a
histogram and then pick thresholds based on the probability that a
sample will exceed the observed threshold. calibrate_raid in
Example 12-2 is a good example of this kind of threshold calculation.
When generating alarms, consider the time of day issues discussed in
The Workday and Its Impact on Network Traffic Volume, and whether you want multiple models; a single
model will normally cost you precision. Also, when considering
thresholds, consider the impact of unusually low values and whether
they merit investigation.
Given the noisiness of traffic volume data, expect a significant
number of false positives. Most false positives for volume breaches
come from hosts that have a legitimate reason for copying or archiving
a target, such as a web crawler or archiving software. Several of the
IDS mitigation techniques discussed in Enhancing IDS Response are useful
here; in particular, whitelisting anomalies after identifying that the
source is innocuous and rolling up events.

Using Beaconing as an Alarm

Beaconing is used to detect a host that is consistently communicating
with other hosts. To identify malicious activity, beaconing is
primarily used to identify communications with a botnet command and
control server. To detect beacons, you identify hosts that
communicate consistently over a time window, as done with
find_beacons.py.
Beacon detection runs into an enormous number of false positives
because software updates, AV updates, and even SSH cron jobs have
consistent and predictable intervals. Beacon detection consequently
depends heavily on inventory management. After receiving an alert, you
will have to determine whether a beaconing host has a legitimate
justification, which you can do if the beaconing is from a known protocol, is
communicating with a legitimate host, or provides other evidence that the
traffic is not botnet C&C traffic. Once identified as legitimate, the
indicia of the beacon (the address and likely the port used for
communication) should be recorded to prevent further false positives.
Also of import are hosts that are supposed to be beaconing, but
don’t. This is particularly critical when dealing with AV software,
because attackers often disable AV when converting a newly owned host.
Checking to see that all the hosts that are supposed to visit an
update site do so is a useful alternative alarm.

Using Locality as an Alarm

Locality measures user habits. The advantage of the working set model
is that it provides room for those habits to break. Although people
are predictable, they do mail new contacts or visit new websites at
irregular intervals. Locality-based alarms are consequently useful
for measuring changes in user habits, such as differentiating the
normal user of a website from someone who is raiding it, or
identifying when a site’s audience changes during a DDoS.
Locality is a useful complement to volume-based detection for
identifying raiding. A host that is raiding the site or otherwise
scanning it will demonstrate minimal locality, as it will want to
visit all the pages on the site as quickly as possible. In order to
determine whether or not a host is raiding, look at what the host is
fetching and the speed at which the host is working.
The most common false positives in this case are search engines and
bots such as Googlebot. A well-behaved bot can be identified by its
User-Agent string, and if the host is not identified as a bot by
that string, you have a dangerous host.
A working set model can also be applied to a server rather than
individual users. Such a working set is going to be considerably
larger than a user profile, but it is possible to use that set to
track the core audience of a website or an SSH server.

Engineering Solutions

Raid detection is a good example of a scenario in which you can apply analysis
and are probably better off not building a detector. The histograms
generated by calibrate_raid.py or analysis done by counting the
expected volume a user pulls over a day is ultimately about
determining how much data a user will realistically access from a
server.
This same information can be used to impose rate limits on the
servers. Instead of firing off an alert when a user exceeds this
threshold, use a rate limiting module (such as Apache’s Quota) to cut
the user off. If you’re worried about user revolt, set the
threshold to 200% of the maximum you observe and identify outliers who
need special permissions to exceed even that high threshold.
This approach is going to be most effective when you’ve got a server
whose data radically exceeds the average usage of any one user. If
people access a server and use less than a megabyte of traffic a day, whereas
the server has gigabytes of data, you’ve got an easily defensible
target.

Further Reading

	
Avril Coghlan, “A Little Book of R for Time Series”

	
John McHugh and Carrie Gates, “Locality: A New Paradigm in Anomaly Detection,” Proceedings of the 2003 New Security Paradigms Workshop.

[24] This is true historically as well. Fax
machines are subject to black fax attacks, where the attacker sends
an entirely black page and wastes toner.

Chapter 13. Graph Analysis

A graph is a mathematical construct composed of one or more nodes
(or vertices) connected together by one or more links
(or edges). Graphs are an effective way to describe
communication without getting lost in the weeds. They can be used
to model connectivity and provide a comprehensive view of that
connectivity while abstracting away details such as packet sizes and
session length. Additionally, graph attributes such as centrality can
be used to identify critical nodes in a network. Finally, many
important protocols (in particular, SMTP and routing) rely on
algorithms that model their particular network as a graph.
The remainder of this chapter is focused on the analytic properties of
graphs. We begin by describing what a graph is and then developing
examples for major attributes: shortest paths, centrality, clusters,
and clustering coefficient.
Graph Attributes: What Is a Graph?

A graph is a mathematical representation of a collection of objects
and their interrelationships. Originally developed in 1736 by
Leonhard Euler to address the problem of crossing the bridges of
Konigsberg, graphs have since been used to model everything from the
core members of conspiracies to the frequency of sounds uttered in
the English language. Graphs are an extremely powerful and flexible
descriptive tool, and that power comes because they are extremely
fungible. Researchers in mathematics, engineering, and sociology
have developed an extensive set of constructed and observed graph
attributes that can be used to model various behaviors. The first
challenge in using graphs is deciding which attributes you need and how
to derive them. The following attributes represent a subset of what
can be done with graphs, and are chosen for their direct relevance to
the traffic models built later. Any good book on graph theory will include more attributes because at some point, someone
has tried just about anything with a graph.
At the absolute minimum, a graph is composed of nodes and links,
where a link is a connection between exactly two nodes. A link can be
directed or undirected; if a link is directed, then it has an
origin and a destination. Conventionally, a graph is either
composed entirely of directed links, or entirely of undirected links.
If a graph is undirected, then each node has a degree, which is the
number of links connected to that node. Nodes in a directed graph
have an indegree, which is the number of links with a destination that is
that node, and an outdegree, which is the number of links whose
origin is the node.
[image: Directed and undirected graphs: in (i), the graph is undirected and each node has degree 2; in (ii), the graph is directed: node a has outdegree 2, indegree 0; node b has outdegree 1, indegree 1; node c has outdegree 0, indegree 2]

Figure 13-1. Directed and undirected graphs: in (i), the graph is undirected and each node has degree 2; in (ii), the graph is directed: node a has outdegree 2, indegree 0; node b has outdegree 1, indegree 1; node c has outdegree 0, indegree 2

In network traffic logs, there are a number of candidates for
conversion to graphs. In flow data, IP addresses can be used as nodes
and the existence of a flow between them can be used as links. In HTTP server
logs, nodes can be individual pages linked together by Referer
headers. In mail logs, email addresses can be nodes, and the links
between them can be expressed as mail. Anything expressed as a
communication from point A to point B is a suitable candidate.
A disclaimer about code in this section of the book: it is intended primarily
for educational purposes, so in the interests of clearly
pointing out how various algorithms or numbers work, I’ve avoided
optimization and a lot of the exception trapping I’d use in production
code. This is particularly important when dealing with graph analysis, since graph algorithms are notoriously expensive. There are a number of good libraries available for doing graph analysis, and they will process complex graphs much more efficiently than anything I hack together here.
The script in Example 13-1 can create directed or undirected graphs
from lists of pairs (for example, the output of rwcut --field=1,2
--no-title --delim=' '). There are a couple of methods under the hood
for implementing graphs; in this case, I’m using adjacency lists,
which I feel are the most intuitively obvious. In an adjacency list
implementation, each node maintains a table of all the links adjacent
to it.
Example 13-1. Basic graphs
#!/usr/bin/env python
#
basic_graph.py
#
Library
Provides:
Graph Object, which as a constructor takes a flow file
#
import os, sys

class UndirGraph:
 """ An undirected, unweighted graph class. This also serves as the base class
 for all other graph implementations in this chapter """
 def add_node(self, node_id):
 self.nodes.add(node_id)

 def add_link(self, node_source, node_dest):
 self.add_node(node_source)
 self.add_node(node_dest)
 if not self.links.has_key(node_source):
 self.links[node_source] = {}
 self.links[node_source][node_dest] = 1
 if not self.links.has_key(node_dest):
 self.links[node_dest] = {}
 self.links[node_dest][node_source] = 1
 return

 def count_links(self):
 total = 0
 for i in self.links.keys():
 total += len(self.links[i].keys())
 return total/2 # Compensating for link doubling in undirected graph

 def neighbors(self, address):
 # Returns a list of all the nodes adjacent to the node address,
 # returns an empty list of there are no ndoes (technically impossible with
 # these construction rules, but hey).
 if self.nodes.has_key(address):
 return self.links[address].keys()
 else:
 return None

 def __str__(self):
 return 'Undirected graph with %d nodes and %d links' % (len(self.nodes),
 self.count_links())

 def adjacent(self, sip, dip):
 # Note, we've defined the graph as undirected during construction,
 # consequently links only has to return the source.
 if self.links.has_key(sip):
 if self.links[sip].has_key(dip):
 return True

 def __init__(self):
 #
 # This graph is implemented using adjacency lists; every node has
 # a key in the links hashtable, and the resulting value is another hashtable.
 #
 # The nodes table is redundant for undirected graphs, since the existence of
 # a link between X and Y implies a link between Y and X, but in the case of
 # directed graphs it'll providea speedup if I'm just looking for a
 # particular node.
 self.links = {}
 self.nodes = set()

class DirGraph(UndirGraph):
 def add_link(self, node_source, node_dest):
 # Note that in comparison to the undirected graph, we only
 # add links in one direction
 self.add_node(node_source)
 self.add_node(node_dest)
 if not self.links.has_key(node_source):
 self.links[node_source] = {}
 self.links[node_source][node_dest] = 1
 return

 def count_links(self):
 # This had to be changed from the original count_links since I'm now
 # using an undirected graph.
 total = 0
 for i in self.links.keys():
 total += len(self.links[i].keys())
 return total

if __name__ == '__main__':
 #
 # This is a stub executable that will create and then render an
 # undirected graph assuming that it receives some kind of
 # space delimited set of (source, dest) pairs on input
 #
 a = sys.stdin.readlines()
 tgt_graph = DirGraph()
 for i in a:
 source, dest = i.split()[0:2]
 tgt_graph.add_link(source, dest)
 print tgt_graph
 print "Links:"
 for i in tgt_graph.links.keys():
 dest_links = ' '.join(tgt_graph.links[i].keys())
 print '%s: %s' % (i, dest_links)

Graph Construction Versus Graph Attributes
It’s really tempting when working with graphs to start creating
complicated relations between network attributes to graph
attributes, such as deciding direction points from client to
server, or weighting links with the traffic between nodes.
I have found that constructions are more trouble than they’re worth.
It’s better to start with a simple graph and
examine its attributes rather than try to build up a complicated graph
representation. With that in mind, two rules for converting raw data
into graphs:
	
Define communication

	
 A link should represent a communication between two nodes; with flow data that may mean that a link only occurs when the flow has 10 or more packets and an ACK flag high in order to throw out scanning and failed login attempts.

	
Define node identity

	
 Should IP addresses be a node, or IP addresses and ports in combination? I’ve found it useful to split the ports into services (everything under 1024 is unique; everything above that is client) and then use an IP:service combination.

Labeling, Weight, and Paths

On a graph, a path is a set of links connecting two nodes. In a
directed graph, paths follow the direction of the link, while in an
undirected graph they can move in either direction. Of particular
importance in graph analysis are shortest paths, which as the name
implies are the shortest set of links required to get from point A to
point B (see Example 13-2).
Example 13-2. An shortest path algorithm
#!/usr/bin/env python
#
apsp.py -- implemented weighted paths and dijkstra's algorithm

import sys,os,basic_graph

class WeightedGraph(basic_graph.UndirGraph):
 def add_link(self, node_source, node_dest, weight):
 # Weighted bidirectional link aid, note that
 # we keep the aa, but now instead of simply setting the value to
 # 1, we add the weight value. This reverts to an unweighted
 # graph if we always use the same weight.
 self.add_node(node_source)
 self.add_node(node_dest)
 if not self.links.has_key(node_source):
 self.links[node_source] = {}
 if not self.links[node_source].has_key(node_dest):
 self.links[node_source][node_dest] = 0
 self.links[node_source][node_dest] += weight
 if not self.links.has_key(node_dest):
 self.links[node_dest] = {}
 if not self.links[node_dest].has_key(node_source):
 self.links[node_dest][node_source] = 0
 self.links[node_dest][node_source] += weight

 def dijkstra(self, node_source):
 # Given a source node, create a map of paths for each vertex
 D = {} # Tentative distnace table
 P = {} # predecessor table

 # The predecessor table exploits a unique feature of shortest paths,
 # every subpath of a shortest path is itself a shortest path, so if
 # you find that (B,C,D) is the shortest path from A to E, then
 # (B,C) is the shortest path from A to D. All you have to do is keep
 # track of the predecessor and walk backwards.

 infy = 999999999999 # Shorthand for infinite
 for i in self.nodes:
 D[i] = infy
 P[i] = None

 D[node_source] = 0
 node_list = list(self.nodes)
 while node_list != []:
 current_distance = infy
 current_node = None
 # Step 1, find the node with the smallest distance, that'll
 # be node_source in the first call as it's the only one
 # where D =0
 for i in node_list:
 if D[i] < current_distance:
 current_distance = D[i]
 current_node = i
 node_index = node_list.index(i)
 del node_list[node_index] # Remove it from the list
 if current_distance == infy:
 break # We've exhausted all paths from the node,
 # everything else is in a different component
 for i in self.neighbors(current_node):
 new_distance = D[current_node] + self.links[current_node][i]
 if new_distance < D[i]:
 D[i] = new_distance
 P[i] = current_node
 node_list.insert(0, i)
 for i in D.keys():
 if D[i] == infy:
 del D[i]
 for i in P.keys():
 if P[i] is None:
 del P[i]
 return D,P

 def apsp(self):
 # Calls dijkstra repeatedly to create an all-pairs shortest paths table
 apsp_table = {}
 for i in self.nodes:
 apsp_table[i] = self.dijkstra(i)
 return apsp_table

An alternative formulation of shortest paths uses weighting. In a
weighted graph, links are assigned a numeric weight. When weight is
assigned, the shortest path is no longer simply the smallest number of
connected links from point A to point B, but the set of links whose
total weight is smallest. Figure 13-2 shows these attributes
in more detail.
Shortest paths are a fundamental building block in graph analysis. In
most routing services, such as Open Shortest Path First (OSPF),
finding shortest paths is the goal. As a result,
a good number of graph analyses begin by building a table of shortest
paths between all the nodes using an All Pairs, Shortest
Paths (APSP) algorithm on the graph in order to create a table of all of
them. The code in the following sidebar provides an example of using
Dijkstra’s Algorithm on a weighted, undirected, graph to calculate
shortest paths.
[image: Weighting and paths, the shortest path from a to d: (i) in an undirected, unweighted graph, the shortest path involves the least nodes, (ii) in a weighted graph, the shortest path generally has the lowest total weight, (iii) in a directed graph, the shortest path might not be achievable]

Figure 13-2. Weighting and paths, the shortest path from a to d: (i) in an undirected, unweighted graph, the shortest path involves the least nodes, (ii) in a weighted graph, the shortest path generally has the lowest total weight, (iii) in a directed graph, the shortest path might not be achievable

Dijkstra’s algorithm is a good shortest path algorithm that can
handle any graph whose link weights are positive. Shortest path
algorithms are critical in a number of fields, and there are
consequently a huge number of algorithms available depending on the
structure of the graph, the construction of the nodes, and the amount
of knowledge of the graph that the individual nodes have.
Shortest paths effectively define the distance between nodes on a
graph, and serve as the building blocks for a number of other
attributes. Of particular importance are centrality attributes (see Example 13-3).
Centrality is a concept originating in social network analysis; social
network analysis models the relationships between entities using
graphs and mines the graphs for attributes showing the relationship
between these entities in bulk. Centrality, for which there are
several measures, is an indicator of how important a node is to that
graph’s structure.
Example 13-3. Centrality calculation
#/usr/bin/env python
#
#
centrality.py
#
script which generates centrality statistics for a dataset
#
input:
A table of pairs in the form source, destination with a space separating them
Weight is implicit, the weight of a link is the number of times a pair appears
#
command_line
calc_centrality.py n
n: integer value, the number of elements to return in the report
#
Output
7 Column report of the form rank | betweenness winner | betweenness
score | degree winner | degree score | closeness winner | closeness
score
import sys,string
import apsp

n = int(sys.argv[1])

closeness_results = []
degree_results = []
betweenness_results = []

target_graph = apsp.WeightedGraph()

load up the graph
for i in sys.stdin.readlines():
 source, dest = i[:-1].split()
 target_graph.add_link(source, dest, 1)

Calculate degree centrality; the easiest of the bunch since it's just the
degree
for i in target_graph.nodes:
 degree_results.append((i, len(target_graph.neighbors(i))))

apsp_results = target_graph.apsp()

Now, calculate the closeness centrality scores
for i in target_graph.nodes:
 dt = apsp_results[i][0] # This is the distance table
 total_distance = reduce(lambda a,b:a+b, dt.values())
 closeness_results.append((i, total_distance))

Now, we calcualte betweenness centrality scores

bt_table = {}
for i in target_graph.nodes:
 bt_table[i] = 0

for current_node in target_graph.nodes:
 # Reconstruct the shortest paths from the predecessor table;
 # for every entry in the distance table, walk backwards from that
 # entry to the correspending origin to get the shortest path, then
 # count the nodes in that path on the master bt table
 pred_table = apsp_results[i][1] # We have the predecessor table
 sp_list = apsp_results[i][0]
 if current_node in sp_list.keys():
 path = []
 for working_node in sp_list.keys():
 if working_node != current_node:
 # We should be done with working node at this point, count
 # the nodes there for bt score
 for i in path:
 bt_table[i] += 1
 else:
 path.append(working_node)
 working_node = pred_table[working_node]

for i in bt_table.keys():
 betweenness_results.append((i,bt_table[i]))

Order the tables, remember that betweenness and degree use higher score, closeness
lower score

degree_results.sort(lambda a,b:b[1]-a[1])
betweenness_results.sort(lambda a,b:b[1]-a[1])
closeness_results.sort(lambda a,b:a[1]-b[1])

print "%5s|%15s|%10s|%15s|%10s|%15s|%10s" %
 ("Rank", "Between", "Score", "Degree", "Score","Close", "Score")
for i in range(0, n):
 print "%5d|%15s|%10d|%15s|%10d|%15s|%10d" % (i + 1,
 str(betweenness_results[i][0]),
 betweenness_results[i][1],
 str(degree_results[i][0]),
 degree_results[i][1],
 str(closeness_results[i][0]),
 closeness_results[i][1])

We’re going to consider three metrics for centrality in this book:
degree, closeness, and betweenness. Degree is the simplest
centrality measure; in an undirected graph, the degree centrality of
a node is the node’s degree.
Closeness and betweenness centrality are both associated with shortest
paths. The closeness centrality represents the ease of transmitting
information from a particular node to any other node on the graph. To
calculate the closeness of a node, you calculate the sum total
distance between that node and every other node in the graph. The
node with the lowest total value has the highest closeness
centrality.
Like closeness centrality, betweenness centrality is a function of the
shortest paths. Betweenness centrality repersents the likelihood that
a node will be part of the shortest path between any two particular
nodes. Betweenness centrality is calculated by generating a table of
all the shortest paths and then counting the number of paths using
that node.
Centrality algorithms are all relative measures. Operationally,
they’re generally best used as ranking algorithms. For example,
finding that a particular web page has a high betweenness centrality
means that most users when surfing are going to visit that page,
possibly because it’s a gatekeeper or an important index. Observing
user surfing patterns and finding that a particular node has a high
closeness centrality can be useful for identifying important news or
information sites.

Components and Connectivity

If two nodes in an undirected graph have a path between them, then
they are connected. The set of all nodes that have paths to each
other composes a connected component. In directed graphs, the
corresponding terms are weakly connected (if the paths exist when
direction is ignored), and strongly connected (if the paths exist
when direction is accounted for).
A graph can be broken into its components by using a breadth-first
search. A breadth-first search (BFS) is a search that progresses by
picking a node, examining all the neighbors of that node, and then
examining each of those neighbors in turn. This contrasts with a
depth-first search (DFS), which examines a single neighbor, then a
neighbor of that neighbor, and so on. The code in Example 13-4 shows how to use a breadth-first search to break a graph into
components.
Example 13-4. Calculating components and clustering coefficient
#!/usr/bin/env python
#
#
import os,sys, basic_graph

def calculate_components(g):
 # Creates a table of components via a breadth first search.
 component_table = {}
 unfinished_nodes = {}
 for i in g.nodes.keys():
 unfinished_nodes[i] = 1
 node_list = [g.nodes.keys()[0]]
 component_index = 1
 while node_list != []:
 current_node = node_list[0]
 del node_list[0]
 del unfinished_nodes[current_node]
 for i in g.neighbors(current_node):
 component_table[i] = component_index
 node_list.insert(0, i)
 if node_list == [] and len(unfinished_nodes) > 0:
 node_list = [unfinished_nodes.keys()[0]]
 return component_table

Clustering Coefficient

Another mechanism for measuring the relationship between nodes on a
graph is the clustering coefficient. The clustering coefficient is
the probability that any two neighbors of a particular node on a graph
are neighbors of each other. Example 13-5 shows a code
snippet for calculating the clustering coefficient.
Example 13-5. Calculating clustering coefficient
def calculate_clustering_coefficients(g):
 # Clustering coefficient for a node is the
 # fraction of its neighbors who are also neighbors with each other
 node_ccs = {}
 for i in g.nodes.keys():
 mutual_neighbor_count = 0
 neighbor_list = g.neighbors(i)
 neighbor_set = {}
 for j in neighbor_list:
 neighbor_set[j] = 1
 for j in neighbor_list:
 # We grab his neighbors and find out how many of them are in the
 # set
 new_neighbor_list = g.neighbors[j]
 for k in new_neighbor_list:
 if k != i and neighbor_list.has_key(k):
 mutual_neighbor_count += 1
 # We now calculate the coefficient by dividing by d*(d-1) to get the
 # fraction
 cc = float(mutual_neighbor_count)/((float(len(neighbor_list) *
 (len(neighbor_list) -1))))
 node_ccs[i] = cc
 total_cc = reduce(lambda a,b:node_ccs[a] + node_ccs[b], node_ccs.keys())
 total_cc = total_cc/len(g.nodes.keys())
 return total_cc

The clustering coefficient is a useful measure of “peerishness.” A graph of a pure client server network will have a clustering coefficient of zero—a client
talks only to servers, and servers talk only to clients. We’ve had
some success using clustering as a measure of the impact of spam on
large networks. As an example of this, Figure 13-3 shows the
impact of the shutdown of McColo, a bulletproof hosting
provider on SMTP network structure on a large network. Following
McColo’s shutdown, the clustering coefficient for SMTP rose by about
50%.
The relationship between peerishness and spam may be a bit obscure; SMTP, like DNS and other early Internet services, is very sharing-oriented. An SMTP client in one interaction may operate as a server
for another interaction, and there should be interactions between each
other. Spammers, however, operate effectively as superclients—they talk to servers, but never operate as a server for anyone else.
This behavior manifests as a low clustering coefficient. Remove the
spammers, and the SMTP network starts to look more like a peer-to-peer
network and the clustering coefficent rises.
[image: Clustering coefficient and large email networks]

Figure 13-3. Clustering coefficient and large email networks

Analyzing Graphs

Graph analysis can be used for a number of purposes. Centrality
metrics are a useful tool both for engineering and for forensic
analysis, while components and graph attributes can be used to
generate a number of alarms.
Using Component Analysis as an Alarm

In Chapter 11 we discussed detection mechanisms that relied on the
attacker’s ignorance of a particular network, such as blind scanning and the
like. Connected components are a good way of modeling a different
type of attacker ignorance. An attacker might know where various
servers and systems are located on a network, but he doesn’t know how
they relate to each other. Organizational structure can be identified
by looking at connected components, and a number of attacks such as
APT and hit-list attacks, which may know the target but not how
targets relate to each other, can be identified by examining these
components.
To understand how this phenomenon can be used as an alarm, consider
the graphical example in Figure 13-4. In this example, a network
is composed of two discrete components (say, engineering and
marketing), and there is little interaction between them. When an attacker appears and tries to communicate with
the hosts on the network, he combines these two components to produce
one huge component that does not appear under normal circumstances.
[image: An attacker artifically links discrete components]

Figure 13-4. An attacker artifically links discrete components

To implement this type of alarm, you must first identify a service
that can be divided into multiple components. Good candidates are
services such as SSH that require some form of user login; permissions mean that certain users won’t have access, which breaks the network into discrete components.
SMTP and HTTP are generally bad candidates, though HTTP is feasible
if you are looking exclusively at servers that require user login, and
you limit your analysis to just those servers (e.g., by using an IPSet).
After you’ve identified your set of servers, identify components to
monitor. And after you identify a component, calculate its size—the
number of nodes within the component as a function of the time taken
to collect it (for example, 60 seconds of netflow). The distribution
is likely to be sensitive not only to the time taken to collect the
traffic, but also the time of day. Breaking traffic at least into
on/off periods (as discussed in Chapter 12) is likely to help.
There are two ways to identify components: either by size order
or by tracking hosts within the components. In the case of size
order, you simply track the size of the largest component, the second
largest component, and so on. This approach is simple, robust, and
relatively insensitive to subtle attacks. It’s not uncommon for the
largest component to make up more than one-third of the total nodes in
the graph, so you need a fairly aggressive attack to disrupt the size
of the component. The alternative approach involves identifying
nodes by their component (e.g., component A is the component
containing address 127.0.1.2).

Using Centrality Analysis for Forensics

Centrality is a useful tool for identifying important nodes in a
network, and for identifying nodes that communicate at much
lower volumes than traffic analysis can identify.
Consider an attack where the attacker infects one or more hosts on a
network with malware. These infected hosts now communicate with a
command and control server that was previously not present.
Figure 13-5 shows this scenario in more depth; before hosts A, B,
and C are infected, one node shows some degree of centrality.
Following infection, a new node (Mal) is the most central node in
the set.
[image: Centrality in forensics]

Figure 13-5. Centrality in forensics

This kind of analysis can be done by isolating traffic data into two
sets, a pre-event set and a post-event set. For example, after finding out that the network received a malicious attachment at a particular time, I can pull traffic before that time to produce a pre-event set and traffic after that time to find a post-event set. Looking for newly central
nodes gives me a reasonable chance of identifying the command and
control server.

Using Breadth-First Searches Forensically

Once you’ve identified that a malicious host is communicating on your
network, the next step is to find out who he’s talking to, such as the
host’s C&C or other infected hosts on the network. Once you’ve found
that out, you can repeat the process to find out who they talked to
in order to identify other targets.
This iterative investigation is a breadth-first search. You start
with a single node, look at all of its neighbors for suspicious
behavior, and then repeat the process on their neighbors (see Example 13-6). This
type of graph-based investigation can help identify other infected
hosts, suspicious targets, and other systems on the network that need
investigation or analysis.
Example 13-6. Examining a site’s neighbors
#!/usr/bin/env python
#
This is a somewhat ginned-up example of how to use breadth-first searches to
crawl through a dataset and identify other hosts that are using BitTorrent.
The crawling criteria are as follows:
A communicates to B on ports 6881-6889
A and B send a large file between each other (> 1 MB)
#
The point of the example is that you could use any criteria you want and put
multiple criteria into constructing the graph.
#
#
Comand line
#
crawler.py seed_ip datafile
#
seed_ip is the ip address of a known bittorrent user
datafile
import os, sys, basic_graph

def extract_neighbors(ip_address, datafile):
 # Given an ip_address, identify the nodes adjacent to that
 # address by finding flows that have that address as either a source or
 # destination. The other address in the pair is considered a neighbor.
 a = os.popen("""rwfilter --any-address=%s --sport=1024-65535 --dport=1024-65535 \
 --bytes=1000000- --pass=stdout %s | rwfilter --input=stdin --aport=6881-6889 \
 --pass=stdout | rwuniq --fields=1,2 --no-title""" % (ip_address,datafile), 'r')
 # In the query, note the fairly rigorous port definitions I'm using -- everything
 # starts out as high. This is because, depending on the stack implementation,
 # ports 6881-6889 (the BT ports) may be used as ephemeral ports. By breaking
 # out client ports in the initial filtering call, I'm guaranteeing that I
 # don't accidently record, say, a web session to port 6881.
 # The 1 MB limit is also supposed to constrain us to actual BT file transfers.
 neighbor_set = set()
 for i in a.readlines():
 sip, dip = i.split('|')[0:2].strip()
 # I check to see if IP address is the source or destination of the
 # flow; whichever one it is, I add the complementary address to the
 # neighbor set (e.g., if ip_address is sip, I add the dip)
 if sip == ip_address:
 neighbor_set.add(dip)
 else:
 neighbor_set.add(sip)
 a.close()
 return neighbor_set

if __name__ == '__main__':
 starting_ip = sys.argv[1]
 datafile = sys.argv[2]
 candidate_set = set([starting_ip])
 while len(candidate_set) > 0:
 target_ip = candidate_set.pop()
 target_set.add(target_ip)
 neighbor_set = extract_neighbors(target_ip, datafile)
 for i in neighbor_set:
 if not i in target_set:
 candidate_set.add(i)
 for i in target_set:
 print i

Using Centrality Analysis for Engineering

Given limited monitoring resources and analyst attention, effectively
monitoring a network requires identifying mission-critical hosts and
assigning resources to protecting and watching them. That said, in
any network, there’s a huge difference between the hosts that people
say they need and the hosts they actually use. Using traffic
analysis to identify critical hosts helps differentiate between what’s
important on paper and what users actually visit.
Centrality is one of a number of metrics that can be used to identify
criticality. Alternatives include counting the number of hosts that
visit a site (which is effectively degree centrality) and looking at
traffic volume. Centrality is a good complement to volume.

Further Reading

	
Michael Collins and Michael Reiter, “Hit-list Worm Detection and Bot Identification in Large Networks Using Protocol Graphs,” Proceedings of the 2007 Symposium on Recent Advances in Intrusion Detection.

	
Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein, Introduction to Algorithims, Third Edition (MIT Press, 2009).

	
igraph (R graph library)

	
Lun Li, David Alderson, Reiko Tanaka, John C. Doyle, and Walter Willinger, “Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications (Extended Version).”

	
Neo4j

	
Networkx (Python graph library)

Chapter 14. Application Identification

It used to be so easy to identify applications in network traffic; you looked at the port number, or if
that failed, you looked at a couple of header packets for
identification information. But these identifiers have become muddier
over the past decade, in particular as users seek to hide certain
classes of traffic (BitTorrent!) and as privacy advocates
push for increased encryption.
There are still methods for identifying traffic that do not rely on
payload. Most protocols have a well-defined sequence and certain
predictable behaviors that mark them so you don’t have to look at
payload. By looking at the hosts to which a session talks and at packet sizes, a
surprising amount of information is available.
This chapter is broken into two major sections. The first section
focuses on techniques for identifying a protocol, starting with
the most obvious methods and moving toward more complex techniques
such as behavioral analysis. The second section discusses the
contents of application banners and discusses some methods for finding
behavioral and payload information for analysis.
Mechanisms for Application Identification

In a perfectly safe and secure computing environment, you could just
examine the configuration file on each server and it would tell you
all the traffic that the server allows. Unfortunately, there are
many hidden ways of starting traffic that undermine this simple
strategy. You may have hosts on your system you don’t know about that were
started by users with innocent or not-so-innocent goals of their
own. Services can be started by administrators or ordinary users
outside of your startup configuration. And legitimate servers can be
taken over by intruders and used for things you never
intended. Although many of the techniques in this section are commonly
run by snoopers who don’t have access to your servers’ configuration
files, you should be using the techniques as well so you know what is
really happening.
Port Number

Port numbers are the first way to check what a service is, and while there’s no technical requirement that a particular service runs on a particular port, there are social conventions that tend to make it so. IANA maintains a public registry of port numbers and their associated services. Although port number assignment is effectively arbitrary, and
users have an active interest in evading detection by using
previously untouched port numbers (or, slightly more deviously, by
using common port numbers), the well-known ports still carry enough official and innocent
traffic to make them the first-pass mechanism for identifying
protocols. Techniques we’ll discuss later in this section often use
port numbers as an assertion on the user’s part. For example, a user
talking on port 80 is effectively asserting that she’s talking to a
web server.
Port number assignment is chaotic because all anyone really has to do
is pick a number and hope nobody else is using it. The
official registry maintained by IANA focuses on protocols designed as part of the RFC
process. Other registries and lists
include a Wikipedia page,
speedguide, and the SANS
Internet Storm Center, which provides a mini-messageboard per port with
useful insights.
So a huge number of ports are reserved for certain applications,
and another huge number are used conventionally for other applications—but there are a small set of applications that actually matter.
Table 14-1 lists the ports that I worry
about the most with a short description explaining why in each case.
Table 14-1. Ports to care about
	Port 	 Name 	 Meaning
	The Holy Trinity

	80/tcp
	HTTP
	Not only is HTTP the basic protocol for nearly everything on the Internet now, it’s also the most commonly imitated protocol. Users will drop traffic on port 80 to evade firewall rules.

	25/tcp
	SMTP
	Email is the most critical service after HTTP and also one of the most attacked.

	53/udp
	DNS
	Another critical foundational protocol; DNS attacks will seriously damage networks.

	Infrastructure and Management

	179/tcp
	BGP
	A core protocol for inter-network routing.

	161-162/udp
	SNMP
	System Network Management Protocol; used to manage routers and other devices.

	22/tcp
	SSH
	The administrative workhorse.

	23/tcp
	Telnet
	If I see Telnet, I kill the connection. It is obsolete and should be replaced by other protocols, notably SSH.

	123/udp
	NTP
	Network Time Protocol; used to coordinate clocks on networks.

	389/tcp
	LDAP
	Lightweight Directory Access Protocol; manages directory services.

	File Transfer

	20/tcp
	FTP-data
	Along with 21, makes up FTP.

	21/tcp
	FTP
	The FTP control port. Another service I kill if I see it. Use SFTP.

	69/tcp
	TFTP
	Trivial file transfer; largely used by system administrators and hopefully never seen crossing a border router.

	137-139/tcp & udp
	NETBIOS
	NetBios is the infrastructure used for Service Message Block (SMB) and in particular provides sharing features for Windows and (via Samba) Unix systems. Pounded by attacks over its history.

	Email

	143/tcp
	IMAP
	Internet Message Access Protocol; one of the two standard email client protocols.

	110/tcp
	POP3
	Post Office Protocol; the other standard email client protocol.

	Databases

	1521/tcp
	Oracle
	The primary Oracle server port.

	1433/tcp & udp
	SQL Server
	Microsoft SQL Server’s port.

	3306/tcp
	MySQL Server
	MySQL’s default port.

	5432/tcp
	Postgresql Server
	Postgres’s default port.

	File Sharing

	6881-6889/tcp
	BitTorrent
	The default BitTorrent client ports.

	6346-6348/tcp & udp
	Gnutella
	Bearshare and Limewire’s default gnutella ports.

	4662/tcp & udp
	eDonkey
	Default port for eDonkey clients.

On Unix and Windows systems, port assignment is supposed to be
controlled by the /etc/services file
(\WINDOWS\SYSTEM32\DRIVERS\ETC\SERVICES on Windows hosts). A dump of the file, shown in Example 14-1, shows that
it’s a simple database listing a service name and the corresponding
host.
Example 14-1. The contents of /etc/services
$ # Catting /etc/services without header info
$ cat /etc/services | egrep -v '^#' | head -10
rtmp 1/ddp #Routing Table Maintenance Protocol
tcpmux 1/udp # TCP Port Service Multiplexer
tcpmux 1/tcp # TCP Port Service Multiplexer
nbp 2/ddp #Name Binding Protocol
compressnet 2/udp # Management Utility
compressnet 2/tcp # Management Utility
compressnet 3/udp # Compression Process
compressnet 3/tcp # Compression Process
echo 4/ddp #AppleTalk Echo Protocol
rje 5/udp # Remote Job Entry

The names in the services file are used by getportbyname and any
other port lookup functions to identify protocols. This does not,
of course, mean that the users are really invoking those services, just that
services says the ports are supposed to be used by the services. For example, to get a list of all the services I have listening on a host, I use netstat -a, as shown in Example 14-2:
Example 14-2. Netstat and /etc/services/
I'm running a django web server on port 8000, and I run netstat
$ netstat -a | grep LISTEN
tcp4 0 0 localhost.irdmi *.* LISTEN
tcp46 0 0 *.8508 *.* LISTEN
tcp46 0 0 *.8507 *.* LISTEN
$ cat /etc/services | grep irdmi
irdmi2 7999/udp # iRDMI2
irdmi2 7999/tcp # iRDMI2
irdmi 8000/udp # iRDMI
irdmi 8000/tcp # iRDMI

netstat consults /etc/services to determine what the port number
is named, and you can always find the real port number in
/etc/services. However, there is no guarantee that the service is
actually what the named service is—in my example, I’m running a
Django web server.
It’s appropriate at this point to make a digression into the raving
paranoia characteristic of a network traffic analyst. netstat is
obviously a great tool for identifying which ports are open on your
host, but if you want more certainty, scan the machine vertically
and compare the results.
Port Assignment
Any symmetric TCP or UDP transaction uses two port numbers: the server port is used by the client to send traffic to
the server, and the client port used by the server to respond. Client ports are short-lived and recycled from a pool of
ephemeral ports; the size and allocation of the pool is a function
of the TCP stack in question and user configuration.
There are several conventions regarding port assignment. The most important is the distinction between port numbers 1024
and below: nearly every operating system requires that has a socket on one of these requires root or administrative access. When used legitimately, this means only the administrator can start a service such as a web or email server. But this property also
makes services on those ports attractive to attackers, because subverting
those processes grants root privileges.
Generally, ports below 1024 are used only to run server sockets. This
isn’t to say that you couldn’t use them for clients, only that
it would be contrary to standard practice and mildly insane because you’re
using a client port with root access. Technically, an ephemeral
port can be any port above 1024, but there are a number of conventions
in their assignment.
IANA has assigned a standard range (49152 to 65535) for ephemeral ports. However, this range is still in the process of being adopted, and different operating systems will have different default ranges. Table 14-2 lists common port assignments.
Table 14-2. Port assignment rules for various operating systems
	 Operating system 	 Default range 	 Controllable
	Windows, through XP
	1025-5000
	Partly, through MaxUserPort in Tcpip\Parameters

	Windows, Vista onward
	49152-65535
	Yes, via netsh

	Mac OS X
	49152-65535
	Yes, through net.inet.ip.portrange family in sysctl

	Linux
	32768-65535
	Yes, through /proc/sys/net/ipv4/ip_local_port_range

	FreeBSD
	49152-65535
	Yes, through net.inet.ip.portrange family in sysctl

Application Identification by Banner Grabbing

Banner grabbing and its companion function, OS fingerprinting, are
scanning techniques used to determine server and operating system
information. They rely on the convention that the first thing most
applications do when woken up is identify themselves. Most
server applications respond to an open socket by passing their
protocol, their current version, or other configuration information.
If they don’t do it automatically, they will often do so with a little
prodding.
Banner grabbing can easily be done manually using any “keyboard to the
socket” tool, such as netcat (see Chapter 9 for more
information). Example 14-3 shows active banner
grabbing using netcat to collect some data. Note that I am able to
pull information from several servers without actually using the
protocol in question.
Example 14-3. Examples of active banner grabbing with netcat
Open a connection to an SSH server
Note that I receive information without the need for actual
interaction with the server.
$ netcat 192.168.2.1 22
SSH-2.0-OpenSSH_6.1
^C
Open an IMAP connection.
Again, note that I have to do nothing with mail itself.
$ netcat 192.168.2.1 143
* OK [CAPABILITY IMAP4rev1 LITERAL+ SASL-IR LOGIN-REFERRALS
 ID ENABLE STARTTLS AUTH=PLAIN AUTH=LOGIN] Dovecot ready.

An alternative to active banner grabbing is passive banner grabbing,
which can be done using tcpdump. Since a banner is really just text
that appears at the beginning of a session, grabbing the payload of
the first five or six packets will provide banner data as well.
bannergrab.py is a very simple banner grabbing script using Scapy
(from Chapter 9). It’s not trying to parse banner contents—it’s
just grabbing the first load of information it sees. This can be
quite informative. Example 14-4 shows the contents from the SSH
dump.
Example 14-4. Grabbing client and server banners using scapy
#!/usr/bin/env python
#
#
bannergrab.py
This is a Scapy application that loads up a banner file and drops
out the client and server banners. To do so, it
reads the contents of the client and server files from the session,
extracts ASCII text, and dumps it to screen.
#
from scapy.all import *
import sys
sessions = {}

packet_data = rdpcap(sys.argv[1])
for i in packet_data:
 if not sessions.has_key(i[IP].src):
 sessions[i[IP].src] = ''
 try:
 sessions[i[IP].src] += i[TCP].payload.load
 except:
 pass

for j in sessions.keys():
 print j, sessions[j][0:200]

$ bannergrab.py ssh.dmp
WARNING: No route found for IPv6 destination :: (no default route?)
192.168.1.12
216.92.179.155 SSH-2.0-OpenSSH_6.1

Example 14-5 shows a pull from www.cnn.com:
Example 14-5. A pull from cnn.com
57.166.224.246 HTTP/1.1 200 OK
Server: nginx
Date: Sun, 14 Apr 2013 04:34:36 GMT
Content-Type: application/javascript
Transfer-Encoding: chunked
Connection: keep-alive
Vary: Accept-Encoding
Last-Modified: Sun
157.166.255.216
157.166.241.11 HTTP/1.1 200 OK
Server: nginx
Date: Sun, 14 Apr 2013 04:34:27 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
Set-Cookie: CG=US:DC:Washington; path=/
Last-Modified

66.235.155.19 HTTP/1.1 302 Found
Date: Sun, 14 Apr 2013 04:34:35 GMT
Server: Omniture DC/2.0.0
Access-Control-Allow-Origin: *
Set-Cookie: s_vi=[CS]v1|28B31B23851D063C-60000139000324E4[CE];
 Expires=Tue, 14 Apr 2
23.6.20.211 HTTP/1.1 200 OK
x-amz-id-2: 287KOoW3vWNpotJGpn0RaXExCzKkFJQ/hkpAXjWUQTb6hSBzDQioFUoWYZMRCq7V
x-amz-request-id: 8B6B2E3CDBC2E300
Content-Encoding: gzip
ETag: "e5f0fa3fbe0175c47fea0164922230d4"
Acc

192.168.1.12 GET / HTTP/1.1
Host: www.cnn.com
Connection: keep-alive
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebK
23.15.9.160 HTTP/1.1 200 OK
Server: Apache
Last-Modified: Wed, 10 Apr 2013 13:44:28 GMT
ETag: "233bf1-3e803-4da01de67a700"
Accept-Ranges: bytes
Content-Type: text/css
Vary: Accept-Encoding
Content-Encoding

63.85.36.42 HTTP/1.1 200 OK
Content-Length: 43
Content-Type: image/gif
Date: Sun, 14 Apr 2013 04:34:36 GMT
Connection: keep-alive
Pragma: no-cache
Expires: Mon, 01 Jan 1990 00:00:00 GMT
Cache-Control: priv

138.108.6.20 HTTP/1.1 200 OK
Server: nginx
Date: Sun, 14 Apr 2013 04:34:35 GMT
Content-Type: image/gif
Transfer-Encoding: chunked
Connection: keep-alive
Keep-Alive: timeout=20

In the previous example, the client is midway through the dump (at 192.168.1.12). Note the
sheer number of web servers; this is a common feature with modern
websites, and you can expect to see dozens of servers involved in
constructing a single page. Also note the information provided: the
server sends content information, the server name, and a bunch of
configuration data. The client string includes a variety of
acceptable formats, and the User-Agent string, which we’ll discuss in
more depth later.
Banner grabbing is fairly simple. The challenge lies in
identifying what the banners mean. Different applications have
radically different banners, which are often complete languages in themselves.

Application Identification by Behavior

In the absence of payload, it’s often difficult to tell what an
application is, but an enormous amount of information is still
available about what an application does. Behavioral analysis
focuses on finding cues for the application’s behavior by examining
features such as the packet sizes and connection failures.
Packet sizes in any IP protocol are bound by the maximum
transmission unit (MTU), the maximum frame size defined by
the layer 2 protocol. When IP attempts to send a packet larger than
the MTU, the original packet is split into the number of MTU-sized
packets that are required to transmit it. In tcpdump and NetFlow data,
this means that the maximum packet size you will ever see is
controlled by the shortest MTU of the route taken by that packet so
far. Because the Internet is dominated by Ethernet, this imposes an
effective limit of 1,500 bytes on packet sizes.
We can use this limit to split network traffic into four major
categories:
	
Fumbling

	
Covered in Chapter 11, this consists of
 failed attempts to open connections to targets.

	
Control traffic

	
Small,
 fixed-size packets sent by clients and servers at the
 beginning of a session.

	
Chatter

	
Packets less than the MTU in size, of varying size and sent
 back and forth between clients and servers. Chatter
 messages are characteristic of chat protocols like ICQ
 and AIM, as well as the command messages for many
 protocols such as SMTP and BitTorrent.

	
File transfer

	
Asymmetric traffic where one side
 sends packets almost entirely of MTU size and the other side
 sends ACKs in response. Characteristic of SMTP, HTTP, and FTP.

Control packets are, when available, the most interesting information
you can find on a service because their sizes are often specified by
the service itself. Control messages are often implemented as
templates of some form, with specific areas to fill in the blanks. As
a result, even with the payload obscured, the sizes can often be used
to identify them.
Histograms, presented in Histograms, are useful for comparing
protocols via the lengths of their control messages. As an example,
consider Figure 14-1. This is a plot of histograms for short flows
(less than 1,000 bytes in total) from clients to BitTorrent and web
servers.
[image: Histogram comparing BitTorrent and HTTP short flow sizes]

Figure 14-1. Histogram comparing BitTorrent and HTTP short flow sizes

For a web client, this consists primarily of issuing the
HTTP GET request and then receiving a file. The GET requests, as you
can see in Figure 14-1, are spread over a somewhat normalized
distribution between about 200 and 400 bytes. Conversely, the
BitTorrent packets have a huge peak between 48 and 96 bytes, a
function of the 68-byte BitTorrent handshake message.
Histograms can be checked visually, as in Figure 14-1, or
numerically by calculating the L1 (or Manhattan) distance. In a
histogram, calculate the L1 distance as the sum of the differences
between each bin. Normalized to percentages, this provides a value
between 0 and 2, with 0 indicating that the two histograms are
identical, and 2 indicating that the two histograms are complete
opposites. Example 14-6 shows how to calculate the L1 distance in Python.
Example 14-6. Calculating L1 distance in Python
#!/usr/bin/env python
#
#
calc_l1.py
#
Given two data files consisting purely of sizes and a histogram
specification (bin size, max bin size), calculate the l1 distance
between two histograms
#
command line;
calc_l1 size min max file_a file_b
#
size: the size of a histogram bin
min: the minimum size to bin
max: the maximum size to bin
#
#
import sys

bin_size = int(sys.argv[1])
bin_min = int(sys.argv[2])
bin_max = int(sys.argv[3])
file_1 = sys.argv[4]
file_2 = sys.argv[5]

bin_count = 1 + ((bin_max - bin_min)/bin_size)
histograms = [[],[]]
totals = [0,0]

for i in range(0, bin_count):
 for j in range(0,2):
 histograms[j].append(0)

Generate histograms
for h_index, file_name in ((0, file_1), (1,file_2)):
 fh = open(file_name, 'r')
 results = map(lambda x:int(x), fh.readlines())
 fh.close()
 for i in results:
 if i <= bin_max:
 index = (i - bin_min)/bin_size
 histograms[h_index][index] += 1
 totals[h_index] += 1

Compare and calculate l1 distance
l1_d = 0.0
for i in range(0, bin_count):
 h0_pct = float(histograms[0][i])/float(totals[0])
 h1_pct = float(histograms[1][i])/float(totals[1])
 l1_d += abs(h0_pct - h1_pct)

print l1_d

Chatting and file transfers can be examined by identifying the
individual packet sizes or, in the case of flow files, comparing the
mean packet sizes for the flow (flow bytes divided by flow packets).
If one side is close to MTU, odds are that it’s a file transfer,
and if both sides are roughly asymmetric and greater than 40 bytes per
packet, some form of chatter may be going on. To illustrate this
graphically, consider the plots in Figure 14-2 and
Figure 14-3. These show the packet sizes for a file transfer
(HTTP) and chat (AIM) session, respectively.
[image: Packet sizes for an HTTP session]

Figure 14-2. Packet sizes for an HTTP session

[image: Packet sizes for an AIM session]

Figure 14-3. Packet sizes for an AIM session

Application Identification by Subsidiary Site

Network-aware applications rarely exist in a vacuum. Software
updates, registration servers, database updates, advertising, and user
tracking are all examples of network-based functionality that an
application can conduct without a user being aware of them. At the
same time, users may visit support forums, talk on message boards, or
require access to information just to run the application.
As example of this behavior, consider two applications: antivirus and
BitTorrent. Any antivirus application needs to contact its home
servers on a regular basis in order to update the knowledgebase. This
activity is so predictable that it’s not uncommon for malware to
explicitly disable the update addresses on the local host. Any host
running AV should be contacting these addresses on a regular basis, and
anyone who does is likely to be running AV.
Now consider BitTorrent. BitTorrent has done a considerable amount of
work in recent years to decentralize the protocol. In the late 2000s,
it was possible to identify trackers and then identify
users by finding out who was communicating with the tracker. Although
tracker ID is less effective now, BitTorrent users still need to find their
files, and the relevant magnet links are concentrated on sites such as
the Pirate Bay, KickAssTorrents, and other specialized torrent
sites. Find a user who visits the Pirate Bay, then find someone
engaging in huge file downloads on weird ports, and you have probably found a BitTorrent
user. Once you’ve identified a server or host
running a particular service, look at who else is talking to it.

Application Banners: Identifying and Classifying

Application banners can provide a lot of
information about applications, servers, operating systems, and
versions of all these things. Unfortunately, the format of these banners changes radically with each service, almost like a different language. The good news is that, with the exception of
web browsers, most application banners are relatively simple. The bad
news is that web browsers will make most of the banners you see.
Non-Web Banners

This section discusses server banners for servers not using the Web.
Banners can provide information on the
operating system and the protocol, or can be obfuscated
to prevent scanners from acquiring intelligence.
SMTP banners are defined in RFC 5321. On client login, an SMTP server
should respond with a 220 status code (the greeting), along with some
domain information. Given that SMTP servers are one of the most
commonly targeted services by scanners, it’s not unusual to find SMTP
banners reduced to a bare minimum by system administrators.
Microsoft defines the default banner for MS Exchange as:
220 <Servername> Microsoft ESMTP MAIL service ready at
 <RegionalDay-Date-24HourTimeFormat> <RegionalTimeZoneOffset>
with optional customization. An example banner for Exchange is:
220 mailserver.bogodomain.com Microsoft ESMTP MAIL service ready at
 Sat, 16 Feb 2013 08:34:14 +0100
SSH is defined in RFC 4253. On client login, an SSH server sends
a brief message providing an identification string. According to the
protocol definition, the identification string will be of the form:
SSH-protoversion-softwareversion SP comments CR LF
where SP is a space, CR is a carriage return, and LF is a line feed.
All modern implementations of SSH should use 2.0 for the protocol
version, but a server that supports previous versions of SSH should
identify its version as 1.99. Comments are optional.
The following banner is an example of SSH before version 2.0, which should be rare:
SSH-1.99-OpenSSH_3.5p1
Everything else should be 2.0 or above:
SSH-2.0-OpenSSH_4.3
As these two examples show, the first step to identifying a banner is
usually to find the relevant technical documentation. This may be an
RFC for an IETF-engineered protocol such as IMAP, POP3, SSH, or SMTP.
For protocols that do not involve the IETF, some searching may be
required to identify the developer of the protocol and any support
sites. For example, BitTorrent’s protocol is currently specified at
the theory.org wiki.

Web Client Banners: The User-Agent String

Web clients send browsers a complicated configuration string defining
their capabilities and preferences: the platform the browser runs
on, the operating system, and a variety of configuration details.
This string, User-Agent, is defined in RFC
2616, but can become phenomenally complicated (as well as informative) fairly
quickly.
Some user-agent strings are shown sorted by broswer in Example 14-7.
Example 14-7. Example user-agent strings by browser
Firefox:
Mozilla/5.0 (X11; U; Linux x86_64; en-US; rv:1.8.1.12) Gecko/20080214
 Firefox/2.0.0.12
Mozilla/5.0 (Windows; U; Windows NT 5.1; cs; rv:1.9.0.8) Gecko/2009032609
 Firefox/3.0.8
Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8) Gecko/20051111 Firefox/1.5

Internet Explorer:
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2;
 Media Center PC 6.0; InfoPath.3; MS-RTC LM 8; Zune 4.7)
Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; Trident/6.0)
Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; Xbox)

Safari:
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/534.57.1
 (KHTML, like Gecko) Version/5.1.7 Safari/534.57.1
Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS X) AppleWebKit/536.26
 (KHTML, like Gecko) Version/6.0 Mobile/10A403 Safari/8536.25

Opera:
Opera/9.80 (Windows NT 6.0) Presto/2.12.388 Version/12.11
Opera/9.80 (Macintosh; Intel Mac OS X 10.8.2) Presto/2.12.388 Version/12.11
Opera/9.80 (X11; Linux i686; U; ru) Presto/2.8.131 Version/11.11
Mozilla/5.0 (Windows NT 6.1; rv:2.0) Gecko/20100101 Firefox/4.0 Opera 12.11

Chrome:
Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/535.24
 (KHTML, like Gecko) Chrome/19.0.1055.1 Safari/535.24
Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.19
 (KHTML, like Gecko) Chrome/18.0.1025.151 Safari/535.19
Mozilla/5.0 (Linux; Android 4.0.4; Galaxy Nexus Build/IMM76B)
 AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.133
 Mobile Safari/535.19
Mozilla/5.0 (iPhone; U; CPU iPhone OS 5_1_1 like Mac OS X; en)
 AppleWebKit/534.46.0 (KHTML, like Gecko) CriOS/19.0.1084.60
 Mobile/9B206 Safari/7534.48.3

Googlebot:
Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

Bingbot:
Mozilla/5.0 (compatible; bingbot/2.0; +http://www.bing.com/bingbot.htm)

Baiduspider:
Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/
spider.html)

The user agent strings in Example 14-7 follow a basic structure
that is derived from the original RFC 2616 specification along with
various detritus from the browser wars. These attributes are broken
down as follows:
	
An initial tag, usually Mozilla/4.0 or higher. The use of
 Mozilla as the default string is a relic of the browser wars.
 Suffice it to say that almost every browser automatically masquerades as
 Mozilla.

	
A set of values in parentheses that will tell you what the
 browser really is. These values vary based on the browser
 make and configuration, but usually contain the actual
 browser name, the OS, and a number of optional parameters.

	
Following the parentheses (usually) is a tag naming the layout
 engine for the software; the layout engine is the browser’s
 toolkit for rendering HTML, and the same engine can be used by
 multiple browsers. Common engines include Gecko (used by
 Firefox, Mozilla, and SeaMonkey), WebKit (used by Safari and
 Chrome), Presto (Opera), and Trident (IE).

As Example 14-7 shows, the actual composition of the string is
very much a function of the browser, the OS, and the idiosyncratic
whims of the implementor.

Further Reading

	
Michael Collins and Michael Reiter, “Finding Peer-to-Peer File Sharing Using Coarse Network Behaviors,” Proceedings of the 2007 ESORICS Conference.

	
Hajime Inoue, Dana Jansens, Abdulrahman Hijazi, and Anil Somayaji, “NetADHICT: A Tool for Understanding Network Traffic,” Large Installation System Administration Conference (LISA ’07). November, 2007.

	
NetADHICT Homepage

	
Michael Zalewski’s p0f

	
UserAgentString.com

Chapter 15. Network Mapping

In this chapter, we discuss mechanisms for managing the
rate of false positives produced by detection systems by reducing
make-work. Consider this scenario: I create a signature today to
identify the IIS exploit of the week, and sometime tomorrow afternoon
it starts firing off like crazy. Yay, somebody’s using an exploit! I
check the logs, and I find out that I am not in fact being attacked by
this exploit because my network actually doesn’t run IIS. Not only
have I wasted analyst time dealing with the alert, I’ve wasted my
time writing the original alert for something to which the network isn’t vulnerable.
The process of inventory is the foundation of situational
awareness. It enables you to move from simply reacting to signatures
to continuous audit and protection. It provides you with baselines
and an efficient anomaly detection strategy, it identifies critical
assets, and it provides you with contextual information to speed up
the process of filtering alerts.
Creating an Initial Network Inventory and Map

Network mapping is an iterative process that combines technical analysis
and interviews with site administrators. The theory behind this
process is that any inventory generated by design is inaccurate to
some degree, but accurate enough to begin the process of
instrumentation and analysis. Acquiring this inventory begins with
identifying the personnel responsible for managing the network.
The mapping process described in this book consists of four distinct
phases, which combine iterative traffic analysis and asking a series
of questions of network administrators and personnel. These questions
inform the traffic analyses, and the analyses lead to more queries.
Figure 15-1 shows how the process progresses: in phase I, you
identify the space of IP addresses you are monitoring, and in each
progressive phase you partition the space into different categories.
[image: The mapping process]

Figure 15-1. The mapping process

Creating an Inventory: Data, Coverage, and Files

In a perfect world, a network map should enable you to determine,
based on addresses and ports, the traffic you are seeing on any host
on the network. The likelihood of producing such a perfect map on an
enterprise network is pretty low because by the time you finish the initial
inventory, something on the network will have changed. Maps are
dynamic and consequently have to be updated on a regular basis.
This updating process provides you with a facility for continuously
auditing the network.
A security inventory should keep track of every addressable resource
on the network (that is, anything an attacker could conceivably reach
if she had network access, even if that means access inside the
network). It should keep track of which services are running on the
resource, and it should keep track of how that system is monitored.
An example inventory is shown in Table 15-1.
Table 15-1. An example worksheet
	Address 	Name 	 Protocol 	 Port 	 Role 	 Last seen 	 Sensors 	Comments
	128.2.1.4
	www.server.com
	tcp
	80
	HTTP Server
	2013/05/14
	Flow 1, Log
	Primary web server

	128.2.1.4
	www.server.com
	tcp
	22
	SSH Server
	2013/05/14
	Flow 1, Log
	Administrators only

	128.2.1.5-128.2.1.15
	N/A
	N/A
	N/A
	Client
	2013/05/14
	Flow 2
	Workstations

	128.2.1.16-128.2.1.31
	N/A
	N/A
	N/A
	Empty
	2013/05/14
	Flow 2
	Dark space

Table 15-1 has an entry for each unique observed port and
protocol combination on the network, along with a role, an
indicator of when the host was last seen in the sensor data, and the available
sensor information. These fields are the minimum set that
you should consider if generating an inventory. Additional potential
items to consider include the following:
	
The Role field should be enumerable, rather than an actual
 text field. Enumerating the roles will make searching much
 less painful. A suggested set of categories is:

	
Service Server, where Service is HTTP, SSH, etc.

	
Workstation, to indicate a dedicated client

	
NAT, to indicate a network address translator

	
Service Proxy for any proxies

	
Firewall for Firewalls

	
Sensor for any sensors

	
Routing for any routing equipment

	
VPN for VPN concentrators and other equipment

	
DHCP for any dynamically addressed space

	
Dark for any address that is allocated in the network but
 has no host on it

	
Identifying VPNs, NATs, DHCP, and proxies, as we’ll discuss in a
 moment, is particularly important—they mess up the address allocation
 and increase the complexity of analysis.

	
Keeping centrality or volume metrics is also useful. A
 five-number summary of volume over a month is a good starting
 point for anomaly detection.

	
Per-host whitelists are a useful tool for anomaly management
 (see Chapter 2 for a more extensive discussion).
 The inventory is a good place to track per-host whitelist and
 rule files.

	
Ownership and point of contact information is critical. One of the
 most time-consuming steps after identifying an attack is usually finding
 out who owns the victim.

	
Keeping track of the specific services
 on hosts, and the versions of those services, helps track the risk that a particular system has to
 current exploits. This can be identified by banner grabbing, but
 it’s more effective to just scan the network using the
 inventory as a guideline.

Table 15-1 could be kept on paper or a spreadsheet, but it
really should be kept in an RDBMS or other storage system. Once you’ve
created the inventory, it will serve as a simple anomaly detection
system, and should be updated regularly by automated processes.

Phase I: The First Three Questions

The first step of any inventory process involves figuring out what is
already known and what is already available for monitoring. For this
reason, instrumentation begins at a meeting with the network
administrators.[25] The purpose of
this initial meeting is to determine what is monitored, specifically:
	
What addresses make up the network?

	
What sensors do I have?

	
How are the sensors related to traffic?

Start with addresses, because they serve as the foundation of the
inventory. More specific questions to ask include:
	
Is the network IPv4 or IPv6?

	
If the network is IPv6,
 there’s going to be a lot more address space to play with,
 which reduces the need for DHCP and NAT. The network
 is more likely to be IPv4, however, and that means that if
 it is of any significant size, there’s likely to be a fair
 degree of aliasing, NAT, and other address conservation
 tricks.

	
How many addresses are accessible or hidden behind NATs?

	
 Ideally, you should be able to get a map showing the
 routing on the network, whether there are DMZs, and what
 information is hidden behind NATs. These individual
 subnets are future candidates for instrumentation.

	
How many hosts are on the network?

	
Determine how many
 PCs, clients, servers, computers, and embedded systems
 are on the network. These systems are the things you’re
 defending. Pay particular attention to embedded systems
 such as printers and teleconferencing tools because they often
 have network servers, are hard to patch and update, and
 are often overlooked in inventories.

This discussion should end with a list of all your potential IP
addresses. This list will probably include multiple instances of the
same ephemeral spaces over and over again. For example, if there are
six subnets behind NAT firewalls, expect to see 192.168.0.0/16
repeated six times. You should also get an estimate of how many hosts
are in each subnet and in the network as a whole.
The next set of questions to ask involves current instrumentation.
Host-based instrumentation (e.g., server logs and the like, as
discussed in Chapter 3) are not the primary target at this point.
Instead, the goal is to identify whether network-level collection is
available. If it is available, determine what is collected, and if not,
determine whether it can be turned on. More specific questions to ask
include:
	
What is currently being collected?

	
A source doesn’t
 have to be collected “for security purposes” to be useful.
 NetFlow, for example, has been primarily used as a
 billing system, but can be useful in monitoring as well.

	
Are there NetFlow-capable sensors?

	
For example, if
 Cisco routers with built-in NetFlow instrumentation are
 available, use them as your initial sensors.

	
Is any IDS present?

	
An IDS such as Snort can be
 configured to just dump packet headers. Depending on the
 location of the IDS (such as if it’s on the border of a network), it
 may be possible to put up a flow collector there as well.

At the conclusion of this discussion, you should come up with a plan for
initially instrumenting the network. The goal of this initial
instrumentation should be to capitalize on any existing monitoring
systems and to acquire a systematic monitoring capability for
cross-border traffic. As a rule of thumb, on most enterprise networks,
it’s easiest to turn on deactivated capabilities such as NetFlow,
while it’s progressively more difficult, respectively, to add new
software and hardware.
The Default Network

Throughout this chapter, I use sidebars to discuss more concrete
methods to answer the high-level questions in the text. These
sidebars involve a hefty number of SiLK queries and at least a little
understanding of how SiLK breaks down data.
The default network is shown in Figure 15-2. As described by
SiLK, this network as two sensors: R1 (Router 1) and R2 (Router 2).
There are three types of data: in (coming from the cloud into the
network), out (going from the network to the cloud), and internal
(traffic that doesn’t cross the border into the cloud).
[image: Unmonitored routes in action]

Figure 15-2. Unmonitored routes in action

In addition, there exist a number of IP sets. initial.set is a list
of hosts on the network provided by administrators during the
initial interview. This set is composed of servers.set and
clients.set, comprising the clients and servers. servers.set contains
webservers.set, dnsservers.set, and sshservers.set as subsets.
These sets are accurate at the time of the interview, but will be
updated as time passes.

Phase II: Examining the IP Space

You’ll need to consider the following questions:
	
Are there unmonitored routes?

	
What IP space is dark?

	
Which IP addresses are network appliances?

Following phase I, you should have an approximate inventory of the
network and a live feed of, at the minimum, cross-border traffic data.
With this information, you can begin to validate the inventory by
comparing the traffic you are receiving against the list of IP
addresses that the administrators provided you. Note the use of the word validate—you are comparing the addresses that you observe in
traffic against the addresses you were told would be there.
Your first goal is to determine whether instrumentation is complete or
incomplete, in particular, whether you have any unmonitored routes to
deal with—that is, legitimate routes where traffic is not being
recorded. Figure 15-2 shows some common examples of dark
routes. In this figure, a line indicates a route between two
entities:
	
The first unmonitored route occurs when traffic moves through router
 2, which is not monitored. For example, if host A
 communicates with external address B using router 2, you
 will not see A’s traffic to B or B’s traffic to A.

	
A more common problem in modern networks is the present of
 wireless bridges. Most modern hosts have access to
 multiple wireless networks, especially in shared facilities.
 Host B in the example can communicate with the Internet
 while bypassing router 1 entirely.

The key to identifying unmonitored routes is to look at asymmetric
traffic flow. Routing protocols forward traffic with minimal interest
in the point of origin, so if you have n access points coming into
your network, the chance of any particular session going in and out
of the same point is about 1/n. You can expect some instrumentation
failures to result on any network, so there are always going to be
broken sessions, but if you find consistent evidence of asymmetric
sessions between pairs of addresses, that’s good evidence that the current
monitoring configuration is missing something.
The best tool for finding asymmetric sessions is TCP traffic, because
TCP is the most common protocol in the IP suite that guarantees a
response. To identify legitimate TCP sessions, take the opposite approach
from Chapter 11: look for sessions where the SYN, ACK, and FIN
flags are high, with multiple packets or with payload.
Identifying Asymmetric Traffic

To identify asymmetric traffic, look for TCP sessions that carry
payload and don’t have a corresponding outgoing session. This
can be done using rwuniq and rwfilter:
$ rwfilter --start-date=2013/05/10:00 --end-date=2013/05/10:00 --proto=6 \
 --type=out --packets=4- --flags-all=SAF/SAF --pass=stdout | \
 rwuniq --field=1,2 --no-title --sort | cut -d '|' -f 1,2 > outgoing.txt
Note that I use 1,2 for the rwuniq above, and 2,1 for the rwuniq below.
This ensures that the
fields are present in the same order when I compare output.
$ rwfilter --start-date=2013/05/10:00 --end-date=2013/05/10:00 --proto=6 \
 --type=in --packets=4- --flags-all=SAF/SAF --pass=stdout | rwuniq \
 --field=2,1 --no-title --sort | cut -d '|' -f 2,1 > incoming.txt
Once these commands finish, I will have two files of internal IP and external IP
pairs. I can compare these pairs directly using -cmp or a
hand-written routine. Example 15-1 shows a python example that generates a report of unidirectional flows:
Example 15-1. Generating a report of unidirectional flows
#!/usr/bin/env python
#
#
compare_reports.py
#
Command line: compare_reports.py file1 file2
#
Reads the contents of two files and checks to see if the same
IP pairs appear.
#
import sys, os
def read_file(fn):
 ip_table = set()
 a = open(fn,'r')
 for i in a.readlines():
 sip, dip = map(lambda x:x.strip(), i.split('|')[0:2])
 key = "%15s:%15s" % (sip, dip)
 ip_table.add(key)
 a.close()
 return ip_table

if __name__ == '__main__':
 incoming = read_file(sys.argv[1])
 outgoing = read_file(sys.argv[2])
 missing_pairs = set()
 total_pairs = set()
 # Being a bit sloppy here, run on both incoming and outgoing to ensure
 # that if there's an element in one not in the other, it gets caught
 for i in incoming:
 total_pairs.add(i)
 if not i in outgoing:
 missing_pairs.add(i)
 for i in outgoing:
 total_pairs.add(i)
 if not i in incoming:
 missing_pairs.add(i)
 print missing_pairs, total_pairs
 # Now do some address breakdowns
 addrcount = {}
 for i in missing_pairs:
 in_value, out_value = i.split(':')[0:2]
 if not addrcount.has_key(in_value):
 addrcount[in_value] = 0
 if not addrcount.has_key(out_value):
 addrcount[out_value] = 0
 addrcount[in_value] += 1
 addrcount[out_value] += 1
 # Simple report, number of missing pairs, list of most commonly occurring
 # addresses
 print "%d missing pairs out of %d total" % (len(missing_pairs),
 len(total_pairs))
 s = addrcount.items()
 s.sort(lambda a,b:b[1] - a[1]) # lambda just guarantees order
 print "Most common addresses:"
 for i in s[0:10]:
 print "%15s %5d" % (i[0],addrcount[i[0]])

This approach is best done using passive collection because it
ensures that you are observing traffic from a number of locations
outside the network. Scanning is also for identifying dark spaces and
back doors. When you scan and control the instrumentation, not only
can you see the results of your scan on your desktop, but you can
compare the traffic from the scan against the data provided by your
collection system.
Although you can scan the network and check whether all
your scanning sessions match your expectations (i.e., you see
responses from hosts and nothing from empty space), you are
scanning from only a single location, when you really need to look at
traffic from multiple points of origin.
If you find evidence of unmonitored routes, you need to determine whether they can
be instrumented and why they aren’t being instrumented right now.
Unmonitored routes are a security risk: they can be used to probe,
exfiltrate, and communicate without being monitored.
Unmonitored routes and dark spaces have similar traffic profiles to
each other; in both cases, a TCP packet sent to them will not elicit a
reply. The difference is that in an unmonitored route, this happens
due to incomplete instrumentation, while a dark space has nothing to
generate a response. Once you have identified your unmonitored
routes, any monitored addresses that behave in the same way should be
dark.

Identifying Dark Space

Dark spaces can be found either passively or actively. Passive
identification requires collecting traffic to the network and
progressively eliminating all address that respond or are unmonitored—at that point, the remainder should be dark. The alternative
approach is to actively probe the addresses in a network and record
the ones that don’t respond; those addresses should be dark.
Passive collection requires gathering data over a long period. At the
minimum, collect traffic for at least a week to ensure that dynamic
addressing and business processes are handled.
$ rwfilter --type=out --start-date=2013/05/01:00 --end-date=2013/05/08:23 \
 --proto=0-255 --pass=stdout | rwset --sip-file=light.set
Now remove the lit addresses from our total inventory
$ rwsettool --difference --output=dark.set initial.set light.set
An alternative approach is to ping every host on the network to
determine whether it is present.
$ for i in `rwsetcat initial.set`
 do
 # Do a ping with a 5 second timeout and 1 attempt to each target
 ping -q -c 1 -t 5 ${i} | tail -2 >> pinglog.txt
 done
pinglog.txt will contain the summary information from the ping command,
which will look like this:
--- 128.2.11.0 ping statistics ---
1 packets transmitted, 0 packets received, 100.0% packet loss
The contents can be parsed to produce a dark map.
Of these two options, scanning will be faster than passive mapping,
but you have to make sure the network will return ECHO REPLY ICMP
messages to your pings.
Another way to identify dynamic spaces through passive monitoring is
to take hourly pulls and compare the configuration of dark and light
addresses in each hour.
“Network appliances” in this context really means router interfaces.
Router interfaces are identifiable by looking for routing protocols
such as BGP, RIP, and OSPF. Another mechanism to use is to check for
“ICMP host not found” messages (also known as network unreachable
messages), which are generated only by routers.

Finding Network Appliances

Identifying network appliances involves either using traceroute, or
looking for specific protocols used by them. Every host mentioned by
traceroute except the endpoint is a router. If you check for protocols, candidates
include:
	
BGP

	
BGP is commonly spoken by routers that
 route traffic across the Internet, and won’t be common
 inside corporate networks unless you have a very big
 network. BGP runs on TCP port 179.

This will identify communications from the outside world with BGP speakers
inside.
$ rwfilter --type=in --proto=6 --dport=179 --flags-all=SAF/SAF \
 --start-date=2013/05/01:00 --end-date=2013/05/01:00 --pass=bgp_speakers.rwf
	
OSPF and EIGRP

	
Common protocols for managing routing on
 small networks. EIGRP is protocol number 88, OSPF protocol
 number 89.

This will identify communications between OSPF and EIGRP speakers,
note the use of internal, we don't expect this traffic to be cross-border
$ rwfilter --type=internal --proto=88,89 --start-date=2013/05/01:00 \
 --end-date=2013/05/01:00 --pass=stdout | rwfilter --proto=88 \
 --input-pipe=stdin --pass=eigrp.rwf --fail=ospf.rwf
	
RIP

	
Another internal routing protocol, RIP is implemented on
 top of UDP using port 520.

This will identify communications with RIP speakers
$ rwfilter --type=internal --proto=17 --aport=520 \
 --start-date=2013/05/01:00 --end-date=2013/05/01:00 --pass=rip_speakers.rwf
	
ICMP

	
Host unreachable messages (ICMP Type 3, Code 7) and time
 exceeded messages (ICMP Type 11) both originate from routers.

Filter out icmp messages, the longer period is because ICMP is much rarer
$ rwfilter --type=out --proto=1 --icmp-type=3,11 --pass=stdout \
 --start-date=2013/05/01:00 \
 --end-date=2013/05/01:23 | rwfilter --icmp-type=11 --input-pipe=stdin \
 --pass=ttl_exceeded.rwf --fail=stdout | rwfilter --input-pipe=stdin \
 --icmp-code=7 --pass=not_found.rwf
$ rwset --sip=routers_ttl.set ttl_exceeded.rwf
$ rwset --sip=routers_nf.set not_found.rwf
$ rwsettool --union --output-path=routers.set routers_nf.set routers_ttl.set
The results of this step will provide you with a list of router
interface addresses. Each router on the network will control one or
more of these interfaces. At this point, it’s a good idea to go back
to the network administrators in order to associate these interfaces
with actual hardware.

Phase III: Identifying Blind and Confusing Traffic

You’ll need to consider the following questions:
	
Are there NATs?

	
Are there proxies, reverse proxies, or caches?

	
Is there VPN traffic?

	
Are there dynamic addresses?

After completing phase II, you will have identified which addresses
within your network are active. The next step is to identify which
addresses are going to be problematic. Life would be easier for you if every host
were assigned a static IP address, that address were used by
exactly one host, and the traffic were easily identifiable by port
and protocol.
Obviously, these constraints don’t hold. Specific problems include:
	
NATs

	
These are a headache
 because they alias multiple IP addresses behind a much smaller
 set of addresses.

	
Proxies, reverse proxies, and caches

	
Like a NAT, a proxy hides
 multiple IP addresses behind
 a single proxy host address. Proxies generally operate at higher levels
 in the OSI stack and often handle
 specific protocols. Reverse proxies, as the name implies,
 provide aliases for multiple server addresses and are used for
 load balancing and caching. Caches store
 repeatedly referenced results (such as web pages) to improve
 performance.

	
VPNs

	
Virtual Private Network (VPN) traffic obscures the
 contents of protocols, hiding what’s being done and
 hiding how many hosts are involved. VPN traffic includes
 IPv6-over-IPv4 protocols such as
 6to4 and Teredo, and encrypted protocols such as SSH and TOR.
 All of these protocols encapsulate traffic, meaning that the
 addresses seen at the IP layer are relays, routers, or
 concentrators rather than the actual hosts doing something.

	
Dynamic addresses

	
Dynamic addressing, such as that assigned through
 DHCP, causes a single host to migrate through a set of
 addresses over time. Dynamic addressing complicates analysis
 by introducing a lifetime for each address. You can never be
 sure whether the host you’re tracking through its IP address did something after its DHCP lease
 expired.

These particular elements should be well-documented by network
administrators, but there are a number of different approaches for
identifying them.
Proxies and NATs can both be identified by looking for evidence that a
single IP address is serving as a frontend for multiple addresses.
This can be done via packet payload or flow analysis, although packet
payload is more certain.
Identifying NATs

NATs are an enormous pain to identify unless you have access to
payload data, in which case they simply become a significant pain.
The best approach for identifying NATs is to quiz the network
administrators. Failing that, you have to identify NATs through
evidence that there are multiple addresses hidden behind the same
address. A couple of different indicia can be used
for this.
	
Variant User-Agent strings

	
The best approach I’ve seen to identify NAT is to pull the
User-Agent strings from web sessions. Using a script such as
bannergrab.py from Chapter 14, you can pull and dump all
instances of the User-Agent string issuing from the NAT. If you see
different instances of the same browser, or multiple browsers,
you are likely looking at a NAT.

There is a potential false positive here. A number of applications
(including email clients) include some form of HTTP interaction these
days. Consequently, it’s best to restrict yourself to explicit browser
banners, such as those output by Firefox, IE, Chrome, and Opera.
	
Multiple logons to common servers

	
Identify major internal and external services used by your network.
Examples include the company email server, Google, and major
newspapers. If a site is a NAT, you should expect to see
redundant logins from the same address. Email server logs and
internal HTTP server logs are the best tool for this kind of research.

	
TTL behavior

	
Recall that time-to-live (TTL) values are assigned by the IP stack and that initial
values are OS-specific. Check the TTLs coming from a suspicious
address and see if they vary. Variety suggests multiple hosts behind the address. If values
are the same but below the initial TTL for an OS, you’re
seeing evidence of multiple hops to reach that address.

Identifying Proxies

Proxy identification requires you to have both
sides of the proxy instrumented. Figure 15-3 shows the network traffic between clients, proxies, and servers. As this figure
shows, proxies take in requests from multiple clients, and send those
requests off to multiple servers. In this way, a proxy behaves as
both a server (to the clients it’s proxying for) and as a client (to
the servers it’s proxying to). If your instrumentation lets you see
both the client-to-proxy and proxy-to-server communication,
you can identify the proxy by viewing this traffic pattern. If you
don’t, you can use the techniques discussed in the previous cookbook on
NAT identification. The same principles apply because, after all, a proxy is
a frontend to multiple clients like a NAT firewall.
[image: Network connections for a proxy]

Figure 15-3. Network connections for a proxy

To identify a proxy using its connectivity, first look for hosts
that are acting like clients. You can tell a client because it uses
multiple ephemeral ports. For example, using rwuniq, you can identify
clients on your network as follows:
$ rwfilter --type=out --start-date=2013/05/10:00 --end-date=2013/05/10:01 \
 --proto=6,17 --sport=1024-65535 --pass=stdout | rwuniq --field=1,3 \
 --no-title | cut -d '|' -f 1 | sort | uniq -c | egrep -v '^[]+1' |\
 cut -d ' ' -f 3 | rwsetbuild stdin clients.set
That command identifies all combinations of source IP address (sip)
and source port number (sport) in the
sample data and eliminates any situation where a host only used one
port. The remaining hosts are using multiple ports. It’s possible
that hosts that are using only seven or eight ports at a time are running
multiple servers, but as the distinct port count rises, the likelihood
of them running multiple services drops.
Once you’ve identified clients, the next step is to identify which of
the clients are also behaving as servers (see Identifying Servers).
VPN traffic can be identified by looking for the characteristic ports
and protocols used by VPNs. VPNs obscure traffic analysis by wrapping
all of the traffic they transport in another protocol such as GRE.
Once you’ve identified a VPN’s endpoints, instrument there. Once the wrapper has been removed from VPN traffic, you should be able to distinguish flows and session data.

Identifying VPN Traffic

The major protocols and ports used by VPN traffic are:
	
IPSec

	
 IPSec refers to a suite of protocols for encrypted
 communications over VPNs. The two key protocols are AH
 (authentication header, protocol 51) and ESP (Encapsulating
 Security Payload, protocol 50):

$ rwfilter --start-date=2013/05/13:00 --end-date=2013/05/13:01 --proto=50,51 \
 --pass=vpn.rwf
	
GRE

	
 GRE (generic routing encapsulation) is the workhorse protocol
 for a number of VPN implementations. It can be identified
 as protocol 47.

$ rwfilter --start-date=2013/05/13:00 --end-date=2013/05/13:01 --proto=47 \
 --pass=gre.rwf
A number of common tunneling protocols are also identifiable using
port and protocol numbers, although unlike standard VPNs, they are
generally software-defined and don’t require special assets
specifically for routing. Examples include SSH, Teredo, 6to4, and TOR.

Phase IV: Identifying Clients and Servers

After identifying the basic structure of the network, the next step is
to identify what the network does, which requires profiling and
identifying clients and servers on the network. Questions include:
	
What are the major internal servers?

	
Are there servers running on unusual ports?

	
Are there FTP, HTTP, SMTP, or SSH servers that are not known to system administration?

	
Are servers running as clients?

	
Where are the major clients?

Identifying Servers

Servers can be identified by looking for ports that receive
sessions and by looking at the spread of communications to ports.
To identify ports that are receiving sessions, you need either access
to pcap data or flow instrumentation that distinguishes the initial
flags of a packet from the rest of the body (which you can get through
YAF, as described in YAF). In a
flow, the research then becomes a matter of identifying hosts that
respond with a SYN and ACK:
$ rwfilter --proto=6 --flags-init=SA|SA --pass=server_traffic.rwf \
 --start-date=2013/05/13:00 --end-date=2013/05/13:00 --type=in
This approach won’t work with UDP, because a host can send UDP traffic
to any port it pleases without any response. An alternate approach,
which works with both UDP and TCP, is to look at the spread of a
port/protocol combination. I briefly touched on this in
Identifying Proxies, and we’ll discuss it in more depth
now.
A server is a public resource. This means that the address has to be
sent to the clients, and that, over time, you can expect multiple clients to connect to the server’s address. Therefore, over time, you
will see multiple flows with distinct source IP/source port
combinations all communicating with the same destination
IP/destination port combination. This differs from the behavior of a
client, which will issue multiple sessions from different source ports
to a number of distinct hosts. Figure 15-4 shows this phenomenon
graphically.
[image: A graphical illustration of spread]

Figure 15-4. A graphical illustration of spread

Spread can easily be calculated with flow data by using the rwuniq
command. Given a candidate file of traffic originating from one IP
address, use the following:
$rwuniq --field=1,2 --dip-distinct candidate_file | sort -t '|' -k3 -nr |\
 head -15
The more distinct IP addresses talk to the same host/port combination,
the more likely is it that the port represents a server. In this script,
servers will appear near the top of the list.
By using spread and direct packet analysis, you should have a list of
most of the IP:port combinations that are running servers. This is
always a good time to scan those IP:port combinations to verify what’s
actually running: in particular, search for servers that
are not running on common ports. Servers are a public resource (for
some limited definition of “public”), and when they appear on an unusual
port, it may be an indication that a user didn’t have permissions to
run the server normally (suspicious behavior) or was trying to hide
it (also suspicious behavior, especially if you’ve read Chapter 11).
Once you’ve identified the servers on a network, determine which ones
are most important. There are a number of different metrics for doing
so, including:
	
Total volume over time

	
 This is the easiest and most common approach.

	
Internal and external volume

	
 This differentiates servers accessed only by your own users from those accessed by the outside world.

	
Graph centrality

	
 Path and degree centrality often identify hosts that are important and that would be missed using pure degree statistics (number of contacts). See Chapter 13 for more information.

The goal of this exercise is to produce a list of servers ordered by
priority, from the ones you should watch the most to the ones that
are relatively low profile or, potentially, even removable.
Once you have identified all the servers on a network, it’s a good
time to go back to talk to the network administrators.[26] This is because you will almost invariably
find servers that nobody knew were running on the network, examples of
which include:
	
Systems being run by power users

	
Embedded web servers

	
Occupied hosts

Identifying Sensing and Blocking Infrastructure

Questions to consider:
	
Are there any IDS or IPS systems in place? Can I modify their configuration?

	
What systems do I have log access to?

	
Are there any firewalls?

	
Are there any router ACLs?

	
Is there an antispam system at the border, or is antispam handled at the mail server, or both?

	
Is AV present?

The final step of any new instrumentation project is to figure out what
security software and capabilities are currently present. In many
cases, these systems will be identifiable more from an absence than
a presence. For example, if no hosts on a particular network show
evidence of BitTorrent traffic (ports 6881–6889), it’s likely that a router ACL is blocking BitTorrent.

Updating the Inventory: Toward Continuous Audit

Once you’ve built an initial inventory, queue up all the analysis
scripts you’ve written to run on a regular basis. The
goal is to keep track of what’s changed on your network over time.
This inventory provides a handy anomaly-detection tool. The first and most
obvious approach is to keep track of changes in the inventory. Sample
questions to ask include:
	
Are there new clients or servers on the network?

	
Have previously existing addresses gone dark?

	
Has a new service appeared on a client?

Changes in the inventory can be used as triggers for other analyses.
For example, when a new client or server appears on the network, you
can start analyzing its flow data to see who it communicates with,
scan it, or otherwise experiment on it in order to fill the inventory
with information on the new arrival.
In the long term, keeping track of what addresses are known and
monitored is a first approximation for how well you’re protecting the
network. It’s impossible to say “X is more secure than Y”; we just
don’t have the ability to quantitatively measure the X factor that is
attacker interest. By working with the map, you can track coverage
either as a strict number (out of X addresses on the network, Y are
monitored) or as a percentage.

Further Reading

	
Umesh Shankar and Vern Paxson, “Active Mapping: Resisting NIDS Evasion Without Altering Traffic,” Proceedings of the 2003 IEEE Symposium on Security and Privacy.

	
Austin Whisnant and Sid Faber, “Network Profiling Using Flow,” CMU/SEI-2012-TR-006, Software Engineering Institute.

[25] Preferably at a brewpub.

[26] Preferably at a
place that serves vodka.

Index

A
	actions
		control, Actions: What a Sensor Does with Data
	
	event production, Actions: What a Sensor Does with Data, Classification and Event Tools: IDS, AV, and SEM
	
	reporting, Actions: What a Sensor Does with Data
	

	active banner grabbing, Application Identification by Banner Grabbing
	
	active security analysis, nmap
	
	Address and Routing Parameter area, The DNS Reverse Lookup
	
	address filtering, Filtering Specific Types of Packets, IP Addresses
	
	Address Resolution Protocol (ARP), Network Layers and Addressing, MAC and Hardware Addresses
	
	addressing
		address classes and CIDR blocks, Filtering Specific Types of Packets
	
	address exhaustion, IP Addressing
	
	checking connectivity, Checking Connectivity: Using ping to Connect to an Address
	
	DNS lookup, The DNS Reverse Lookup
	
	dynamic addresses, Phase III: Identifying Blind and Confusing Traffic
	
	identifying geolocation/demographics, IP Intelligence: Geolocation and Demographics
	
	identifying routers, Tracerouting
	
	IPv4 address structure and function, IPv4 Addresses, Their Structure, and Significant Addresses
	
	IPv6 address structure and function, IPv6 Addresses, Their Structure and Significant Addresses
	
	network layers and, Network Layers and Addressing
	
	network mapping and, Phase I: The First Three Questions
	
	notable addresses, IPv6 Addresses, Their Structure and Significant Addresses
	
	researching chain of ownership, IPv6 Addresses, Their Structure and Significant Addresses
	
	unused addresses, Lookup Failures
	

	address_types.pmap, pmaps
	
	adjacency lists, Graph Attributes: What Is a Graph?
	
	aggregation tools, Actions: What a Sensor Does with Data
	
	Akamai, Forward DNS Querying Using dig
	
	alarm construction, The Goal of EDA: Applying Analysis
	
	alert processing, steps of, Applying Classification
	
	All Pairs, Shortest Paths (APSP), Labeling, Weight, and Paths
	
	analytics
		achieving effective, Data, Data Storage for Analysis: Relational Databases, Big Data, and Other Options, Search Engines, Mailing Lists, and People
	
	application identification, Application Identification–Web Client Banners: The User-Agent String
	
	common mistakes in, The Quantile-Quantile (QQ) Plot
	
	exploratory data analysis (EDA), Exploratory Data Analysis and Visualization–Rule seven: when performing long jobs, give the user some status feedback
	
	for fumbling behaviors, On Fumbling–Engineering a Network to Take Advantage of Fumbling
	
	graph analysis, Graph Analysis–Using Centrality Analysis for Engineering
	
	network mapping, Network Mapping–Updating the Inventory: Toward Continuous Audit
	
	space and query times, Data
	
	streaming analytics, What Storage Approach to Use
	
	volume/time analysis, Volume and Time Analysis–Engineering Solutions
	

	animation, drawbacks of, Multivariate Visualization
	
	annotated data logs, Existing Logfiles and How to Manipulate Them, Existing Logfiles and How to Manipulate Them
	
	anomaly-based IDS, Basic Vocabulary–Enhancing IDS Detection
	
	Anonymous, DDoS and Routing Infrastructure
	
	Anscombe Quartet, Exploratory Data Analysis and Visualization
	
	Apache
		log configuration in, HTTP: CLF and ELF
	
	Quota rate limiting module, Engineering Solutions
	

	appliance-based generation, NetFlow Generation and Collection
	
	application identification
		banner identification/classification, Application Banners: Identifying and Classifying
	
	by banner grabbing, Application Identification by Banner Grabbing
	
	by behavior, Application Identification by Behavior
	
	by subsidiary site, Application Identification by Subsidiary Site
	
	challenges in, Application Identification
	
	mechanisms for, Mechanisms for Application Identification
	
	non-web banners, Non-Web Banners
	
	port numbers, Port Number
	

	Application Log, Accessing and Manipulating Logfiles
	
	apply function, Writing Functions
	
	APSP (see All Pairs, Shortest Paths)
	
	ARP (see Address Resolution Protocol)
	
	.arpa domain, DNS Name Structure, The DNS Reverse Lookup
	
	asymmetric traffic, Phase II: Examining the IP Space
	
	ATM (Asynchronous Transfer Mode), What If It’s Not Ethernet?
	
	attack models, Attack Models
	
	attackers, interested vs. uninterested, Attack Models
	
	authentication errors, HTTP Fumbling
	
	authoritative nameservers, DNS Name Structure, Forward DNS Querying Using dig
	
	autocorrelation, EDA Workflow
	
	Autonomous System numbers, IPv6 Addresses, Their Structure and Significant Addresses
	
	autoscaling, Rule one: bound and partition your visualization to manage disruptions
	
	AV (antivirus systems)
		application identification and, Application Identification by Subsidiary Site
	
	basic operation of, Basic Vocabulary
	
	beaconing and, Using Beaconing as an Alarm
	
	malware databases, The NVD, Malware Sites, and the C*Es
	

	Avro, Creating a Well-Organized Flat File System: Lessons from SiLK
	

B
	backscatter, Unidirectional flow filtering
	
	bag tools, rwbag
	
	bandwidth exhaustion, Basic Vocabulary, DDoS, Flash Crowds, and Resource Exhaustion, DDoS and Routing Infrastructure
	
	bannergrab.py script, Application Identification by Banner Grabbing
	
	banners
		application ID with banner grabbing, Application Identification by Banner Grabbing
	
	identifying/classifying, Application Banners: Identifying and Classifying
	
	non-web banners, Non-Web Banners
	
	web client banners, Web Client Banners: The User-Agent String
	

	bar charts, Visualization Commands
	
	bar plots, Bar Plots (Not Pie Charts)
	
	base-rate fallacy, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	beaconing, Volume and Time Analysis, Beaconing, Using Beaconing as an Alarm
	
	behavioral analysis, Application Identification by Behavior
		(see also fumbling behaviors)
	

	Berkeley Packet Filtering (BPF)
		address filtering in, Filtering Specific Types of Packets
	
	filtering potential with, Filtering Specific Types of Packets
	
	tcp flag filtering, Filtering Specific Types of Packets, Helper Options
	

	betweenness centrality, Labeling, Weight, and Paths
	
	binary classifiers, How an IDS Works, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	binary format, Creating a Well-Organized Flat File System: Lessons from SiLK, What Is SiLK and How Does It Work?, rwset and IP Sets
	
	binary signature management, Basic Vocabulary
	
	bins/binning
		bar plots and, Bar Plots (Not Pie Charts)
	
	in histograms, Histograms
	

	BitTorrent
		application identification and, Application Identification, Application Identification by Subsidiary Site
	
	control message comparisons, Application Identification by Behavior
	
	exploratory data analysis and, EDA Workflow
	
	flow size distribution, Histograms
	

	bivariate descriptions
		contingency tables, Contingency Tables
	
	scatterplots, Bivariate Description
	

	bot attacks
		404 errors and, HTTP Fumbling
	
	interested vs. uninterested attackers, Attack Models
	
	types of, Data
	

	botnets, Beaconing, DDoS and Routing Infrastructure, Using Beaconing as an Alarm
	
	boxplots/box-and-whiskers plots, The Five-Number Summary and the Boxplot
	
	breadth-first search (BFS), Components and Connectivity, Using Breadth-First Searches Forensically
	
	breaks (multiple options) argument, Histograms
	
	Bro, Basic Vocabulary
	
	broadcast addresses, IPv4 Addresses, Their Structure, and Significant Addresses
	
	broadcast domains, Network Layers and Vantage
	
	buffer overflow, Basic Vocabulary
	
	BugTraq IDs, The NVD, Malware Sites, and the C*Es
	

C
	cable cuts, DDoS and Routing Infrastructure, DDoS and Routing Infrastructure
	
	caching networks, Forward DNS Querying Using dig
	
	calibrate_raid.py script, File Transfers/Raiding, Using Volume as an Alarm
	
	CAN (Controller Area Network), What If It’s Not Ethernet?
	
	Canonical Name (CNAME) records, Forward DNS Querying Using dig
	
	CCE (Common Configuration Enumeration), The NVD, Malware Sites, and the C*Es
	
	ccTLD (country code TLD), DNS Name Structure
	
	CDNs (see content delivery networks)
	
	CEF (Common Event Format), Syslog
	
	centrality attributes, Labeling, Weight, and Paths, Using Centrality Analysis for Forensics, Using Centrality Analysis for Engineering
	
	CERT Network Situational Awareness, The SiLK Suite
	
	CERT Yet Another Flowmeter (YAF) tool, NetFlow Generation and Collection
	
	chatter, Application Identification by Behavior, Application Identification by Behavior
	
	Christmas tree packet, Unidirectional flow filtering
	
	CIDF (Common Intrusion Detection Framework), Syslog
	
	CIDR (see Classless Inter-Domain Routing)
	
	Class A/B/C addresses, Filtering Specific Types of Packets
	
	classification
		application in IDS, Applying Classification
	
	base-rate fallacy, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	binary classifiers, How an IDS Works, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	classification/event tools, Classification and Event Tools: IDS, AV, and SEM–Prefetching Data
	
	problems with, How an IDS Works
	
	reducing false alerts with, Enhancing IDS Detection
	

	Classless Inter-Domain Routing (CIDR), Filtering Specific Types of Packets, IPv4 Addresses, Their Structure, and Significant Addresses
	
	CLF (common log format), HTTP: CLF and ELF
	
	clients
		client port, Port Number
	
	identification of, Phase IV: Identifying Clients and Servers
	
	implementing with netcat, netcat
	
	web client banners, Web Client Banners: The User-Agent String
	

	closeness centrality, Labeling, Weight, and Paths
	
	cloud computing, DDoS and Routing Infrastructure
	
	clustering coefficient, Clustering Coefficient
	
	CNAME (Cannonical Name) records, Forward DNS Querying Using dig
	
	Code Red worm, Basic Vocabulary
	
	collision domains, Network Layers and Vantage
	
	columnar data logs, Existing Logfiles and How to Manipulate Them
	
	columnar databases, A Brief Introduction to NoSQL Systems
	
	columns
		changing content in SiLK, Choosing and Formatting Output Field Manipulation: rwcut
	
	converting text to, Existing Logfiles and How to Manipulate Them
	

	.com addresses, DNS Name Structure
	
	Combined Log Format, HTTP: CLF and ELF
	
	Common Configuration Enumeration (CCE), The NVD, Malware Sites, and the C*Es
	
	Common Event Format(CEF), Syslog
	
	Common Intrusion Detection Framework (CIDF), Syslog
	
	common log format (CLF), HTTP: CLF and ELF
	
	communications/probing
		netcat, Communications and Probing
	
	nmap, nmap
	
	Scapy, Scapy
	

	Comprehensive R Archive Network (CRAN), Installation and Setup
	
	configuration attacks, Attack Models
	
	connected components, Components and Connectivity
	
	content delivery networks (CDNs), Forward DNS Querying Using dig, The DNS Reverse Lookup
	
	contingency tables, Contingency Tables
	
	continuous variables, Variables and Visualization
	
	control traffic, Application Identification by Behavior
	
	Controller Area Network (CAN), What If It’s Not Ethernet?
	
	Cookie header, HTTP: CLF and ELF
	
	country code TLD (ccTLD), DNS Name Structure
	
	country_codes.pmap, pmaps
	
	CPE (Common Platform Enumeration), The NVD, Malware Sites, and the C*Es
	
	CRAN (Comprehensive R Archive Network), Installation and Setup
	
	crawlers, HTTP Fumbling
	
	CRUD (create, read, update and delete) paradigm, Log Data and the CRUD Paradigm
	
	CVE (Common Vulnerabilities and Exposures) database, The NVD, Malware Sites, and the C*Es
	

D
	dark space, Lookup Failures, Identifying Dark Space
	
	data collection
		host/service sensors, Host and Service Sensors: Logging Traffic at the Source–Syslog
	
	network sensors, Network Sensors–NetFlow Generation and Collection
	
	sensors/detectors, Sensors and Detectors: An Introduction–Actions: What a Sensor Does with Data
	

	data collection, need for hybrid sources, Data, The Goal of EDA: Applying Analysis
	
	data frames
		accessing, Data Frames
	
	creation of, Data Frames
	

	data partitioning, Creating a Well-Organized Flat File System: Lessons from SiLK, Data Selection
	
	data storage, Data Storage for Analysis: Relational Databases, Big Data, and Other Options–Storage Hierarchy, Query Times, and Aging
		centralized vs. streaming analytics, What Storage Approach to Use
	
	comparisons of, A Brief Introduction to NoSQL Systems
	
	data fusion, Storage Hierarchy, Query Times, and Aging
	
	design goals, Data
	
	flat file systems, Creating a Well-Organized Flat File System: Lessons from SiLK
	
	log data vs. CRUD paradigm, Log Data and the CRUD Paradigm
	
	major choices for, Data Storage for Analysis: Relational Databases, Big Data, and Other Options
	
	NoSQL systems, A Brief Introduction to NoSQL Systems
	
	optimized format for, Creating a Well-Organized Flat File System: Lessons from SiLK
	
	other tools for, A Brief Introduction to NoSQL Systems
	
	retention directives, Storage Hierarchy, Query Times, and Aging
	
	selecting the best system, Data Storage for Analysis: Relational Databases, Big Data, and Other Options, What Storage Approach to Use
	
	storage hierarchy, Storage Hierarchy, Query Times, and Aging
	

	data theft, File Transfers/Raiding
	
	data visualization (see visualization)
	
	databases
		choice of, Data Storage for Analysis: Relational Databases, Big Data, and Other Options
	
	columnar, A Brief Introduction to NoSQL Systems
	
	creation of ad hoc, An Introduction to R for Security Analysts
	
	CVE (Common Vulnerabilities and Exposures), The NVD, Malware Sites, and the C*Es
	
	graph, A Brief Introduction to NoSQL Systems
	
	malware, The NVD, Malware Sites, and the C*Es
	
	National Vulnerability Database (NVD), The NVD, Malware Sites, and the C*Es
	
	OSVDB vulnerability database, The NVD, Malware Sites, and the C*Es
	
	relational, A Brief Introduction to NoSQL Systems
	

	DDoS (see Distributed Denial of Service)
	
	default network, The Default Network
	
	defense construction, The Goal of EDA: Applying Analysis
	
	degree centrality, Labeling, Weight, and Paths
	
	degrees, Graph Attributes: What Is a Graph?
	
	delisting (address removal), DNSBLs
	
	Denial of Service (DoS), Volume and Time Analysis
	
	depth-first search (DFS), Components and Connectivity
	
	dig (see domain information groper)
	
	Digital Envoy’s Digital Element, IP Intelligence: Geolocation and Demographics
	
	Dijkstra’s Algorithm, Labeling, Weight, and Paths
	
	discrete variables, Variables and Visualization
	
	disruptibility, Enhancing IDS Detection
	
	Distributed Denial of Service (DDoS)
		bandwidth exhaustion, DDoS and Routing Infrastructure
	
	consistency in, DDoS and Routing Infrastructure
	
	false-positive alerts, DDoS and Routing Infrastructure
	
	force multipliers, DDoS and Routing Infrastructure
	
	mitigation of, DDoS and Routing Infrastructure
	
	routing infrastructure and, DDoS and Routing Infrastructure
	
	types of attacks, DDoS, Flash Crowds, and Resource Exhaustion
	

	distributed query tools, Data Storage for Analysis: Relational Databases, Big Data, and Other Options
	
	distribution analysis
		common mistakes in, The Quantile-Quantile (QQ) Plot
	
	modes, Histograms
	
	normal distribution, Exploratory Data Analysis and Visualization, The Quantile-Quantile (QQ) Plot
	
	uniform distribution, The Quantile-Quantile (QQ) Plot
	

	DNS (domain name system)
		basics of, DNS
	
	finding ownership with whois, Using whois to Find Ownership
	
	forward querying using dig, Forward DNS Querying Using dig–Forward DNS Querying Using dig
	
	name allocation, DNS Name Structure
	
	name structure, DNS Name Structure
	
	reverse lookup, The DNS Reverse Lookup
	

	DNS Blackhole List (DNSBL), DNSBLs–DNSBLs
	
	DNS reflection, DDoS and Routing Infrastructure
	
	domain information groper (dig)
		display options, Forward DNS Querying Using dig
	
	forward DNS querying with, Forward DNS Querying Using dig
	
	mail exchange records and, Forward DNS Querying Using dig
	
	multiline option, Forward DNS Querying Using dig
	
	querying different servers with, Forward DNS Querying Using dig
	
	resource records and, Forward DNS Querying Using dig
	

	domains
		differences between, Domains: Determining Data That Can Be Collected
	
	host, Domains: Determining Data That Can Be Collected, Domains: Determining Data That Can Be Collected
	
	network, Domains: Determining Data That Can Be Collected, Domains: Determining Data That Can Be Collected
	
	service, Domains: Determining Data That Can Be Collected, Domains: Determining Data That Can Be Collected
	

	DoS (see Denial of Service)
	
	dotted quad notation, Network Layers and Addressing, Filtering Specific Types of Packets
	
	dst host predicate, Filtering Specific Types of Packets
	
	dst-reserve field, pmaps
	
	Dynamic User and Host List (DUHL), DNSBLs
	

E
	echo request/reply, Checking Connectivity: Using ping to Connect to an Address
	
	EDA (see exploratory data analysis)
	
	.edu addresses, DNS Name Structure
	
	ELF (extended log format), HTTP: CLF and ELF
	
	email (see mail exchange)
	
	end-rec-num command, Choosing and Formatting Output Field Manipulation: rwcut
	
	ephemeral ports, Port Number
	
	epoch time, The Characteristics of a Good Log Message
	
	epoch-time switch, Choosing and Formatting Output Field Manipulation: rwcut
	
	error codes, The Characteristics of a Good Log Message
	
	ESP (protocol number 50), Packet and Frame Formats
	
	/etc/services file, Port Number
	
	ether dst predicate, Filtering Specific Types of Packets
	
	ether src predicate, Filtering Specific Types of Packets
	
	event construction, Actions: What a Sensor Does with Data, Classification and Event Tools: IDS, AV, and SEM
	
	Excel, An Introduction to R for Security Analysts
	
	exploitation attacks, Attack Models
	
	exploratory data analysis (EDA)
		bivariate description, Bivariate Description–Contingency Tables
	
	goals of, The Goal of EDA: Applying Analysis
	
	multivariate visualization, Multivariate Visualization–Multivariate Visualization
	
	operationalizing, Operationalizing Security Visualization–Rule seven: when performing long jobs, give the user some status feedback
	
	purpose of, Exploratory Data Analysis and Visualization
	
	univariate visualization, Univariate Visualization: Histograms, QQ Plots, Boxplots, and Rank Plots–Generating a Boxplot
	
	variables and, Variables and Visualization
	
	workflow, EDA Workflow
	

	extended log format (ELF), HTTP: CLF and ELF
	
	Extended Unique Identifier (EUI), MAC and Hardware Addresses
	

F
	factors, Data Frames
	
	false-negative alerts, Basic Vocabulary, Classifier Failure Rates: Understanding the Base-Rate Fallacy, Enhancing IDS Detection
	
	false-positive alerts
		anomaly-based IDSes, Basic Vocabulary
	
	beacon detection and, Using Beaconing as an Alarm
	
	business processes, The Workday and Its Impact on Network Traffic Volume
	
	definition of, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	detection system evaluation and, Enhancing IDS Detection
	
	inventory process and, The Goal of EDA: Applying Analysis
	
	locality-based alarms, Using Locality as an Alarm
	
	reducing, Enhancing IDS Detection
	
	volume-based alarms and, Using Volume as an Alarm
	
	with variant user-agent strings, Identifying NATs
	

	farking, DDoS and Routing Infrastructure
	
	Fibre Channel, What If It’s Not Ethernet?
	
	file transfers/raiding, Transfer and Logfile Rotation, Volume and Time Analysis, File Transfers/Raiding, Application Identification by Behavior, Application Identification by Behavior
	
	find_beacons.py script, Beaconing, Using Beaconing as an Alarm
	
	five-number summary, The Five-Number Summary and the Boxplot
	
	flag filtering, Unidirectional flow filtering
	
	flash crowds, DDoS and Routing Infrastructure, DDoS and Routing Infrastructure
	
	flat file systems, Data Storage for Analysis: Relational Databases, Big Data, and Other Options, Creating a Well-Organized Flat File System: Lessons from SiLK
	
	flow analysis (see exploratory data analysis; NetFlow; SilK)
	
	flow filtering, unidirectional, Unidirectional flow filtering
	
	forensic analysis, The Goal of EDA: Applying Analysis, Forensic Analysis of Fumbling
	
	ForwardedEvents Log, Accessing and Manipulating Logfiles
	
	4xx HTTP family status codes, HTTP Fumbling
	
	Fourier analysis, EDA Workflow
	
	frequencies, in histograms, Histograms
	
	fumbling behaviors, On Fumbling–Engineering a Network to Take Advantage of Fumbling
		alarms for, Building Fumbling Alarms
	
	attack models, Attack Models
	
	automated systems, Automation
	
	definition of, On Fumbling, Fumbling: Misconfiguration, Automation, and Scanning
	
	forensic analysis of, Forensic Analysis of Fumbling
	
	HTTP fumbling, HTTP Fumbling
	
	ICMP messages and, ICMP Messages and Fumbling
	
	identification of, Identifying Fumbling
	
	interested vs. uninterested attackers, Attack Models
	
	lookup failures, Lookup Failures
	
	network configuration and, Engineering a Network to Take Advantage of Fumbling
	
	network maps and, Network maps
	
	scanning, Scanning, ICMP Messages and Fumbling
	
	service-level fumbling, Fumbling at the Service Level
	
	SMTP fumbling, SMTP Fumbling
	
	TCP fumbling, Identifying Fumbling
	
	UDP fumbling, Identifying UDP Fumbling
	
	unidirectional flow filtering, Unidirectional flow filtering
	
	web crawlers/robots.txt, HTTP Fumbling
	

G
	gateway addresses, IPv4 Addresses, Their Structure, and Significant Addresses
	
	generic TLDs (gTLD), DNS Name Structure
	
	GeoIP, IP Intelligence: Geolocation and Demographics, GeoIP
	
	GeoLite, GeoIP
	
	geolocation/demographics, IP Intelligence: Geolocation and Demographics, GeoIP
	
	getportbyname, Port Number
	
	Global Unicast Address Assignments, IPv6 Addresses, Their Structure and Significant Addresses
	
	GNU-style long options, Choosing and Formatting Output Field Manipulation: rwcut
	
	graph analysis, Graph Analysis–Using Centrality Analysis for Engineering
		breadth- vs. depth-first searches, Components and Connectivity
	
	breadth-first search forensics, Using Breadth-First Searches Forensically
	
	centrality analysis engineering, Using Centrality Analysis for Engineering
	
	centrality analysis forensics, Using Centrality Analysis for Forensics
	
	centrality attributes, Labeling, Weight, and Paths
	
	clustering coefficient, Clustering Coefficient
	
	component analysis alarms, Analyzing Graphs
	
	components/connectivity, Components and Connectivity
	
	data selection for, Graph Attributes: What Is a Graph?
	
	directed vs. undirected links, Graph Attributes: What Is a Graph?
	
	graph attributes, Graph Attributes: What Is a Graph?
	
	graph construction vs. graph attributes, Graph Attributes: What Is a Graph?
	
	paths, Labeling, Weight, and Paths
	
	weighting, Labeling, Weight, and Paths
	

	graph databases, A Brief Introduction to NoSQL Systems
	
	Graphviz
		dot commands in, Graphviz
	
	web log conversion with, Graphviz
	

	GRE (protocol number 47), Packet and Frame Formats
	

H
	harvest-based approach, Attack Models
	
	histograms
		comparing control message lengths with, Application Identification by Behavior
	
	determining normal distribution with, The Quantile-Quantile (QQ) Plot, File Transfers/Raiding
	
	hist command in R, Visualization Commands
	
	univariate visualization with, Univariate Visualization: Histograms, QQ Plots, Boxplots, and Rank Plots
	

	hit-lists, Scanning
	
	Host header, HTTP: CLF and ELF
	
	host intrusion prevention systems (HIPS), Basic Vocabulary
	
	host predicates, Filtering Specific Types of Packets
	
	Host-Based IDS (HIDS), Basic Vocabulary, Basic Vocabulary
	
	host/service sensors, Host and Service Sensors: Logging Traffic at the Source–Syslog
		accessing/manipulating log files, Accessing and Manipulating Logfiles
	
	basics of, Host and Service Sensors: Logging Traffic at the Source
	
	benefit of data logs, Host and Service Sensors: Logging Traffic at the Source
	
	log file contents, The Contents of Logfiles
	
	log file transport, Logfile Transport: Transfers, Syslog, and Message Queues
	
	representative log file formats, Representative Logfile Formats
	

	HTTP (Hypertext Transfer Protocol)
		challenges of, HTTP: CLF and ELF
	
	critical headers to monitor, HTTP: CLF and ELF
	
	failure rate in, Automation
	
	fumbling behaviors and, HTTP Fumbling
	
	fundamentals of, HTTP: CLF and ELF
	
	log format standards in, HTTP: CLF and ELF
	

I
	IANA (see Internet Assigned Numbers Authority)
	
	ICANN (see Internet Corporation for Assigned Names and Numbers)
	
	ICMP (Internet Control Message Protocol)
		BBF filters for, Filtering Specific Types of Packets
	
	echo request/reply, Checking Connectivity: Using ping to Connect to an Address
	
	fumbling behaviors and, ICMP Messages and Fumbling
	
	ICMP protocol 1, Packet and Frame Formats
	
	network mapping and, Finding Network Appliances
	

	icmp predicate, Filtering Specific Types of Packets
	
	icmp-type-and-code switch, Choosing and Formatting Output Field Manipulation: rwcut
	
	IDMEF (Intrusion Detection Message Exchange Format), Syslog
	
	IDN ccTLD (internationalized TLDs), DNS Name Structure
	
	IDS (see intrusion detection systems)
	
	infrastructural TLD, DNS Name Structure
	
	insider attacks, The Workday and Its Impact on Network Traffic Volume, File Transfers/Raiding, DDoS, Flash Crowds, and Resource Exhaustion
	
	inspection/reference tools
		additional sources, Search Engines, Mailing Lists, and People
	
	GeoIP, GeoIP
	
	malware sites, The NVD, Malware Sites, and the C*Es
	
	National Vulnerability Database (NVD), The NVD, Malware Sites, and the C*Es
	
	Wireshark, Packet Inspection and Reference
	

	integer-ips switch, Choosing and Formatting Output Field Manipulation: rwcut
	
	integer-tcp-flags switch, Choosing and Formatting Output Field Manipulation: rwcut
	
	intelligence information, IP Intelligence: Geolocation and Demographics
	
	interactive sites, Beaconing
	
	interface definition language (IDL), Creating a Well-Organized Flat File System: Lessons from SiLK
	
	internationalized domain names, DNS Name Structure
	
	internationalized TLDs (IDN ccTLD), DNS Name Structure
	
	Internet Assigned Numbers Authority (IANA), IPv6 Addresses, Their Structure and Significant Addresses, DNS Name Structure, Port Number
	
	Internet Control Message Protocol (see ICMP)
	
	Internet Corporation for Assigned Names and Numbers (ICANN), IPv6 Addresses, Their Structure and Significant Addresses, DNS Name Structure
	
	Internet Exchange Points (IXPs), IPv6 Addresses, Their Structure and Significant Addresses
	
	Internet Protocol Flow Information Export (IPFIX), “Flow and Stuff:” NetFlow v9 and IPFIX
	
	internet protocols (see IP (internet protocols))
	
	interval variables, Variables and Visualization
	
	Intrusion Detection Message Exchange Format (IDMEF), Syslog
	
	intrusion detection systems (IDS)
		anomaly-based systems, Basic Vocabulary, Basic Vocabulary–Enhancing IDS Detection
	
	applying classification, Applying Classification
	
	AV (antivirus systems), Basic Vocabulary
	
	base-rate fallacy and, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	basics of, How an IDS Works
	
	Bro, Basic Vocabulary
	
	drawbacks of, Classification and Event Tools: IDS, AV, and SEM
	
	enhancing detection, Enhancing IDS Detection
	
	enhancing response, Enhancing IDS Response
	
	event construction in, Classification and Event Tools: IDS, AV, and SEM
	
	Host-Based (HIDS), Basic Vocabulary, Basic Vocabulary
	
	improving performance of, Improving IDS Performance
	
	inconsistent rulesets, Enhancing IDS Detection
	
	McAfee HIPS, Basic Vocabulary
	
	Network-Based (NIDS), Basic Vocabulary, Basic Vocabulary
	
	Peakflow, Basic Vocabulary
	
	prefetching data, Prefetching Data
	
	signature-based systems, Basic Vocabulary–Enhancing IDS Detection
	
	Snort, Basic Vocabulary, Enhancing IDS Detection
	
	Suricata, Basic Vocabulary
	
	TripWire, Basic Vocabulary
	
	whitelisting in, Enhancing IDS Detection
	

	inventory process
		client/server identification, Phase IV: Identifying Clients and Servers
	
	continuous audit, Updating the Inventory: Toward Continuous Audit
	
	creating initial inventory/map, Creating an Initial Network Inventory and Map
	
	current instrumentation, Phase I: The First Three Questions
	
	default network, The Default Network
	
	dynamic nature of, Creating an Inventory: Data, Coverage, and Files
	
	example worksheet for, Creating an Inventory: Data, Coverage, and Files
	
	hosts, Phase I: The First Three Questions
	
	importance of, The Goal of EDA: Applying Analysis, Network Mapping
	
	IP address validation, Phase II: Examining the IP Space
	
	IP addresses, Phase I: The First Three Questions
	
	mapping process, Creating an Inventory: Data, Coverage, and Files
	
	sensing/blocking infrastructure, Identifying Sensing and Blocking Infrastructure
	
	traffic identification, Phase III: Identifying Blind and Confusing Traffic
	

	IP (internet protocols)
		ATM (Asynchronous Transfer Mode), What If It’s Not Ethernet?
	
	CAN (Controller Area Network), What If It’s Not Ethernet?
	
	Fibre Channel, What If It’s Not Ethernet?
	
	for VPN traffic, Identifying VPN Traffic
	
	human vs. automated, Automation
	
	list of available, Packet and Frame Formats
	

	IP addressing (see addressing)
	
	IP Intelligence, GeoIP
	
	ip proto predicate, Filtering Specific Types of Packets
	
	IP sets
		creation with rwset, rwset and IP Sets
	
	generation with rwsetbuild, rwset and IP Sets
	
	manipulation with rwfilter, rwset and IP Sets
	
	manipulation with rwsettool, rwset and IP Sets
	

	ip-format switch, Choosing and Formatting Output Field Manipulation: rwcut
	
	IPFIX (Internet Protocol Flow Information Export), “Flow and Stuff:” NetFlow v9 and IPFIX
	
	IPv4/IPv6 addresses
		address exhaustion, IP Addressing
	
	associating with country of origin, pmaps
	
	basics of, Network Layers and Addressing
	
	CIDR blocks and, Filtering Specific Types of Packets
	
	IPv4 address structure and function, IPv4 Addresses, Their Structure, and Significant Addresses
	
	IPv6 address structure and function, IPv6 Addresses, Their Structure and Significant Addresses
	
	IPv6 Global Unicast Address Assignments, IPv6 Addresses, Their Structure and Significant Addresses
	
	IPv6 protocol number 41, Packet and Frame Formats
	
	network mapping and, Phase I: The First Three Questions
	
	notable addresses, IPv6 Addresses, Their Structure and Significant Addresses
	

	iterative analysis, Histograms, Using Breadth-First Searches Forensically
	
	IXPs (Internet Exchange Points), IPv6 Addresses, Their Structure and Significant Addresses
	

J
	Javascript Object Notation (JSON), Creating a Well-Organized Flat File System: Lessons from SiLK
	

K
	Kaspersky’s Securelist Threat Descriptions, The NVD, Malware Sites, and the C*Es
	
	keep-alives, Beaconing
	
	key store systems, A Brief Introduction to NoSQL Systems
	
	keyboard-to-the-socket tool, Application Identification by Banner Grabbing
	
	knowledge management, The Goal of EDA: Applying Analysis
	
	Kolmogorov-Smirnov test, Testing Data, The Quantile-Quantile (QQ) Plot
	

L
	L1 distance, Application Identification by Behavior
	
	layers (see network layers)
	
	libpcap, Packet Data
	
	links, Graph Attributes: What Is a Graph?
	
	Linux, port assignments in, Port Number
	
	LNBL-05 (Lawrence Berkeley National Labs) data files, Acquiring and Installing SiLK
	
	load balancing techniques, Forward DNS Querying Using dig
	
	load schemes, Combining Information Flows: rwcount
	
	local identification addresses, IPv4 Addresses, Their Structure, and Significant Addresses
	
	locality, Locality, Using Locality as an Alarm
	
	logarithmic scaling, Rule one: bound and partition your visualization to manage disruptions
	
	logging packages
		evaluation of, Actions: What a Sensor Does with Data
	
	logfile rotation periods, Transfer and Logfile Rotation
	

	logs
		access/manipulation of, Accessing and Manipulating Logfiles
	
	annotative data, Existing Logfiles and How to Manipulate Them, Existing Logfiles and How to Manipulate Them
	
	benefits/drawbacks of, Host and Service Sensors: Logging Traffic at the Source
	
	columnar data, Existing Logfiles and How to Manipulate Them
	
	contents of, The Contents of Logfiles
	
	converting data into dot graphs, Graphviz
	
	log file transport, Logfile Transport: Transfers, Syslog, and Message Queues
	
	log message building, The Characteristics of a Good Log Message
	
	log message conversion guidelines, The Characteristics of a Good Log Message
	
	manipulation of existing, Existing Logfiles and How to Manipulate Them
	
	representative log file formats, Representative Logfile Formats
	
	templated data, Existing Logfiles and How to Manipulate Them
	

	LOIC (Low Orbit Ion Cannon), DDoS and Routing Infrastructure
	
	looking glass servers, Tracerouting
	
	lookup failures, Lookup Failures
	
	loopback addresses, IPv4 Addresses, Their Structure, and Significant Addresses
	
	looping constructs, Conditionals and Iteration
	
	Lucene library, A Brief Introduction to NoSQL Systems
	

M
	MAC (Ethernet) addresses
		access in BBF, Filtering Specific Types of Packets
	
	ARP tables, MAC and Hardware Addresses
	
	basics of, Network Layers and Addressing
	
	EUI standards for, MAC and Hardware Addresses
	

	Mac OS X
		/var/log_ directory, Accessing and Manipulating Logfiles
	
	displaying mac addresses in, Filtering Specific Types of Packets
	
	port assignments in, Port Number
	

	mail exchange
		mail MX record, Forward DNS Querying Using dig
	
	managing rules and filtering, SMTP
	
	Microsoft Exchange, Microsoft Exchange: Message Tracking Logs, Non-Web Banners
	
	sendmail log format, SMTP
	

	malware, Basic Vocabulary
	
	malware sites, The NVD, Malware Sites, and the C*Es
	
	mapping, definition of, A Brief Introduction to NoSQL Systems
	
	MapReduce, A Brief Introduction to NoSQL Systems
	
	maps, network, Network maps
	
	marginals, Contingency Tables
	
	Maximum Transmission Unit (MTU), Network Layering and Its Impact on Instrumentation, Application Identification by Behavior
	
	MaxMind’s GeoIP, IP Intelligence: Geolocation and Demographics, GeoIP
	
	McAfee HIPS (host intrusion prevention system), Basic Vocabulary
	
	McAfee’s Threat Center, The NVD, Malware Sites, and the C*Es
	
	McColo shutdown, Clustering Coefficient
	
	mechanical failures, DDoS and Routing Infrastructure
	
	Media Access Controller (MAC) address (see MAC (Ethernet) addresses)
	
	Message Tracking Log (MTL), Microsoft Exchange: Message Tracking Logs
	
	Metropolitan Statistical Area (MSA), IP Intelligence: Geolocation and Demographics
	
	Microsoft Excel, An Introduction to R for Security Analysts
	
	misaddressing, Lookup Failures
	
	modes, Histograms
	
	multicast addresses, IPv4 Addresses, Their Structure, and Significant Addresses
	
	multivariate visualization
		animation, Multivariate Visualization
	
	basic approach to, Multivariate Visualization
	
	trellis plots, Multivariate Visualization
	

N
	NAICS (North American Industry Classification System), IP Intelligence: Geolocation and Demographics
	
	National Institute of Standards and Technology (NIST), The NVD, Malware Sites, and the C*Es
	
	National Vulnerability Database (NVD), The NVD, Malware Sites, and the C*Es
	
	NATs (network address translators), identification of, Identifying NATs
	
	net predicates, Filtering Specific Types of Packets
	
	netblocks, Filtering Specific Types of Packets
	
	netcat, netcat, Application Identification by Banner Grabbing
	
	NetFlow
		benefits of, NetFlow
	
	data analysis with SiLK , The SiLK Suite–rwtuc
	
	record generation and collection, NetFlow Generation and Collection
	
	TCP session/flow concept, NetFlow, TCP Options
	
	V5 formats and fields, NetFlow v5 Formats and Fields
	
	V9 and IPFIX, “Flow and Stuff:” NetFlow v9 and IPFIX
	
	vs. intrusion detection systems, Classification and Event Tools: IDS, AV, and SEM
	

	netmasks, IPv4 Addresses, Their Structure, and Significant Addresses
	
	netstat, Port Number
	
	network information center (NIC), DNS Name Structure
	
	network interface controllers (NICs), Network Layering and Its Impact on Instrumentation
	
	network layers
		addressing and, Network Layers and Addressing
	
	collision domains (layer 1), Network Layers and Vantage
	
	impact on traffic, Network Layering and Its Impact on Instrumentation
	
	layering models, Network Layering and Its Impact on Instrumentation
	
	network sensors and, Network Layering and Its Impact on Instrumentation
	
	network switches (layer 2), Network Layers and Vantage
	
	OSI vs. TCP/IP, Network Layering and Its Impact on Instrumentation
	
	routing hardware (layer 3), Network Layers and Vantage
	
	vantage and, Network Layers and Vantage
	

	network sensors, Network Sensors–NetFlow Generation and Collection
		benefits of, Network Sensors
	
	layering and, Network Layering and Its Impact on Instrumentation
	
	NetFlow, NetFlow
	
	network layers and instrumentation, Network Layering and Its Impact on Instrumentation
	
	packet data and, Packet Data
	
	vs. host-based sensors, Network Sensors
	
	vs. service-based sensors, Network Layering and Its Impact on Instrumentation
	

	Network Situational Awareness (NetSA), The SiLK Suite
	
	Network-Based IDS (NIDS), Basic Vocabulary, Basic Vocabulary
	
	networks
		caching networks, Forward DNS Querying Using dig
	
	default network, The Default Network
	
	finding network appliances, Finding Network Appliances
	
	fumbling behaviors and, Engineering a Network to Take Advantage of Fumbling
	
	identifying asymmetric traffic, Identifying Asymmetric Traffic
	
	identifying dark space, Identifying Dark Space
	
	identifying network address translators, Identifying NATs
	
	identifying servers, Identifying Servers
	
	identifying VPN traffic, Identifying Proxies
	
	instrumentation steps, Vantages: How Sensor Placement Affects Data Collection
	
	mapping with pmaps, pmaps
	
	network maps, Network maps, Network Mapping–Updating the Inventory: Toward Continuous Audit
	
	network taps, Network Layers and Vantage
	
	proxy identification, Identifying Proxies
	
	traffic categories, Application Identification by Behavior
	

	Neustar, IP Intelligence: Geolocation and Demographics, GeoIP
	
	news sites, Beaconing
	
	NIC (network information center), DNS Name Structure
	
	NICs (network interface controllers), Network Layering and Its Impact on Instrumentation
	
	NIDS (see Network-Based IDS)
	
	90-day rule, Storage Hierarchy, Query Times, and Aging
	
	NIST (National Institute of Standards and Technology), The NVD, Malware Sites, and the C*Es
	
	nmap, nmap
	
	no-title command, Choosing and Formatting Output Field Manipulation: rwcut
	
	node-and-link graph, Vantages: How Sensor Placement Affects Data Collection
	
	nodes, Graph Attributes: What Is a Graph?
	
	nominal variables, Variables and Visualization
	
	normal distribution
		QQ plots against, The Quantile-Quantile (QQ) Plot
	
	techniques for determining, The Quantile-Quantile (QQ) Plot
	
	threshold values and, Exploratory Data Analysis and Visualization, The Quantile-Quantile (QQ) Plot
	

	North American Industry Classification System (NAICS), IP Intelligence: Geolocation and Demographics
	
	NoSQL systems
		basics of, A Brief Introduction to NoSQL Systems
	
	storage types in, A Brief Introduction to NoSQL Systems
	

	not operators, Helper Options
	
	note-add command, rwfileinfo and Provenance
	
	num-recs command, Choosing and Formatting Output Field Manipulation: rwcut
	
	NVD (National Vulnerability Database), The NVD, Malware Sites, and the C*Es
	

O
	observables, value of, Volume and Time Analysis
	
	Open Security Foundation (OSF), The NVD, Malware Sites, and the C*Es
	
	Open Shortest Path First (OSPF), Labeling, Weight, and Paths, Finding Network Appliances
	
	operational IDS systems, Classification and Event Tools: IDS, AV, and SEM
	
	or operators, Helper Options
	
	Oracle, Data Storage for Analysis: Relational Databases, Big Data, and Other Options
	
	ordering script, DDoS and Routing Infrastructure
	
	ordinal variables, Variables and Visualization
	
	Organizationally Unique Identifier (OUI), MAC and Hardware Addresses
	
	OS fingerprinting, Application Identification by Banner Grabbing
	
	OSI (Open Systems Interconnect) model, Network Layering and Its Impact on Instrumentation, Reference and Lookup: Tools for Figuring Out Who Someone Is, DDoS, Flash Crowds, and Resource Exhaustion
	
	OSVDB vulnerability database, The NVD, Malware Sites, and the C*Es
	
	outliers, The Quantile-Quantile (QQ) Plot, Generating a Boxplot, Rule one: bound and partition your visualization to manage disruptions
		identification with calibrate_raid.py script, File Transfers/Raiding
	

P
	p-value, Hypothesis Testing
	
	packet data
		balancing collection of, Packet Data
	
	converting to flow with rwptoflow, rwptoflow
	
	filtering data capture, Filtering Specific Types of Packets
	
	full vs. limited capture of, Packet and Frame Formats
	
	generating for session testing with Scapy, Scapy
	
	limiting data capture, Limiting the Data Captured from Each Packet
	
	packet and frame formats, Packet and Frame Formats
	
	rolling buffers for, Rolling Buffers
	

	packets
		Christmas tree packet, Unidirectional flow filtering
	
	control packets, Application Identification by Behavior
	
	dissection tools, Domains: Determining Data That Can Be Collected
	
	expiration function in, Network Layers and Vantage
	
	identifying forwarding routers, Tracerouting
	
	inspection with Wireshark, Packet Inspection and Reference
	
	manipulation/analysis with Scapy, Scapy
	
	maximum size of, Application Identification by Behavior
	

	pager switch, Choosing and Formatting Output Field Manipulation: rwcut
	
	par function, Parameters to Visualization
	
	parallelization, A Brief Introduction to NoSQL Systems
	
	partitioning schemes, Creating a Well-Organized Flat File System: Lessons from SiLK, Rule one: bound and partition your visualization to manage disruptions, Data Selection
	
	paths, Labeling, Weight, and Paths
	
	PBL (end-user addresses), DNSBLs
	
	pcap-filter manpage, Filtering Specific Types of Packets
	
	Peakflow, Basic Vocabulary
	
	peer-to-peer worm propagation, Attack Models, Automation
	
	peerishness, Clustering Coefficient
	
	phishing attacks, Attack Models
	
	physical attacks, DDoS, Flash Crowds, and Resource Exhaustion
	
	physical taps, Network Layers and Vantage
	
	pie charts, drawbacks of, Bar Plots (Not Pie Charts)
	
	ping sweep/sweeping, Checking Connectivity: Using ping to Connect to an Address
	
	ping tool, Checking Connectivity: Using ping to Connect to an Address, Tracerouting, DDoS and Routing Infrastructure
	
	plot command, Visualization Commands
	
	Pointer (PTR) records, The DNS Reverse Lookup
	
	port assignments, Engineering a Network to Take Advantage of Fumbling, Port Number
	
	port mirroring, Network Layers and Vantage
	
	portscanners, implementing with netcat, netcat
	
	Postgres, Data Storage for Analysis: Relational Databases, Big Data, and Other Options
	
	pre- vs. post-event sets, Using Centrality Analysis for Forensics
	
	predictability, Enhancing IDS Detection
	
	Prefix Maps (pmaps)
		attributes of, pmaps
	
	basic types of, pmaps
	

	prefixes, IPv4 Addresses, Their Structure, and Significant Addresses
	
	print-stat/print-volume-stat commands, Miscellaneous Filtering Options and Some Hacks
	
	prob (Boolean) argument, Histograms
	
	probability, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	probing (see communications/probing)
	
	propagation attacks, Attack Models
	
	Protocol Buffers (PB), Creating a Well-Organized Flat File System: Lessons from SiLK
	
	proxies, identification of, Identifying Proxies
	
	pygeoip, GeoIP
	
	Python, calculating L1 distance in, Application Identification by Behavior
	

Q
	qqline function, The Quantile-Quantile (QQ) Plot
	
	qqnorm function, The Quantile-Quantile (QQ) Plot
	
	qqplot function, The Quantile-Quantile (QQ) Plot
	
	qualitative variables, Variables and Visualization
	
	Quantile-Quantile (QQ) plots, The Quantile-Quantile (QQ) Plot
	
	quantitative variables, Variables and Visualization
	
	quartiles, The Five-Number Summary and the Boxplot
	

R
	R for Security Analysts, Multivariate Visualization
		accessing help in, The R Prompt
	
	basics of, An Introduction to R for Security Analysts
	
	benefits of, An Introduction to R for Security Analysts
	
	conditionals and iteration, Conditionals and Iteration
	
	data frames, Data Frames
	
	data manipulating/filtering, Data Frames
	
	exiting, The R Prompt
	
	factors in, Data Frames
	
	hist function, Histograms
	
	installation/setup of, Installation and Setup
	
	log parameter in, Rule one: bound and partition your visualization to manage disruptions
	
	matrix construction in, R Variables
	
	qqline function, The Quantile-Quantile (QQ) Plot
	
	qqnorm function, The Quantile-Quantile (QQ) Plot
	
	qqplot function, The Quantile-Quantile (QQ) Plot
	
	R console, The R Prompt
	
	R functions, Writing Functions
	
	R lists, R Variables
	
	R prompt, Basics of the Language
	
	R variables, R Variables
	
	R vectors, R Variables
	
	R workspace, Using the R Workspace
	
	rnorm function, Histograms
	
	statistical hypothesis testing, Analysis: Statistical Hypothesis Testing
	
	table command, Contingency Tables
	
	testing data in, Testing Data
	
	visualization annotation, Annotating a Visualization
	
	visualization commands, Visualization
	
	visualization export, Exporting Visualization
	
	visualization parameters, Parameters to Visualization
	

	raiding, File Transfers/Raiding
	
	rate limits, Engineering Solutions
	
	ratio variable, Variables and Visualization
	
	read.table command, Data Frames
	
	receiver operating characteristic (ROC) curve, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	reconnaissance attacks, Attack Models
	
	Reddit effect, DDoS and Routing Infrastructure
	
	Redis, A Brief Introduction to NoSQL Systems
	
	reduce function, Writing Functions
	
	reducing, definition of, A Brief Introduction to NoSQL Systems
	
	reference/inspection tools (see inspection/reference tools)
	
	reference/lookup tools
		DNS Blackhole List, DNSBLs
	
	domain name system, DNS–Using whois to Find Ownership
	
	IP addressing, IP Addressing–IP Intelligence: Geolocation and Demographics
	
	MAC/hardware addresses, MAC and Hardware Addresses–MAC and Hardware Addresses
	
	OSI stack and, Reference and Lookup: Tools for Figuring Out Who Someone Is
	

	Referer header, HTTP: CLF and ELF
	
	Regional Internet Registries (RIRs), IPv6 Addresses, Their Structure and Significant Addresses
	
	registrars, DNS Name Structure
	
	relational database management systems (RDBMS), Log Data and the CRUD Paradigm, A Brief Introduction to NoSQL Systems
	
	relational databases, A Brief Introduction to NoSQL Systems
	
	resource exhaustion, DDoS, Flash Crowds, and Resource Exhaustion
	
	resource records (RRs), Forward DNS Querying Using dig
	
	reverse lookup (DNS), The DNS Reverse Lookup
	
	RFC 1918 netblocks, IPv4 Addresses, Their Structure, and Significant Addresses
	
	robots.txt/robots exclusion standard, HTTP Fumbling
	
	rolling buffers, Rolling Buffers
	
	routers, identifying forwarding, Tracerouting
	
	rulesets, Enhancing IDS Detection
	
	rwbag command, creating storage structure with, rwbag
	
	rwcount command
		combining information flows with, Combining Information Flows: rwcount
	
	load scheme in, Combining Information Flows: rwcount
	
	skip-zero option, Combining Information Flows: rwcount
	

	rwcut tool
		built-in documentation, Choosing and Formatting Output Field Manipulation: rwcut
	
	default output fields, Choosing and Formatting Output Field Manipulation: rwcut
	
	field ordering, Choosing and Formatting Output Field Manipulation: rwcut
	
	file access with, Choosing and Formatting Output Field Manipulation: rwcut
	
	list of possible fields, Choosing and Formatting Output Field Manipulation: rwcut
	
	output formatting tools, Choosing and Formatting Output Field Manipulation: rwcut
	
	record number/header manipulation, Choosing and Formatting Output Field Manipulation: rwcut
	
	specification of, Choosing and Formatting Output Field Manipulation: rwcut
	

	rwfileinfo command
		fields reported by, rwfileinfo and Provenance
	
	metadata access with, rwfileinfo and Provenance
	
	note-add command, rwfileinfo and Provenance
	

	rwfilter command
		direct text output options, Miscellaneous Filtering Options and Some Hacks
	
	documentation for, Basic Field Manipulation: rwfilter
	
	field manipulation with, Basic Field Manipulation: rwfilter
	
	flag filtering, TCP Options
	
	helper options, Helper Options
	
	identifying asymmetric traffic with, Identifying Asymmetric Traffic
	
	IP address filtering, IP Addresses
	
	IP set manipulation and response, rwset and IP Sets
	
	port/protocol filtering, Ports and Protocols
	
	size filtering, Size
	
	time filtering, Time
	

	rwpmapbuild command, pmaps
	
	rwptoflow, packet data conversion with, rwptoflow
	
	rwset command, creating IP sets with, rwset and IP Sets, Data Selection
	
	rwsetbuild command, building IP sets with, rwset and IP Sets
	
	rwsettool command, manipulating IP sets with, rwset and IP Sets
	
	rwtuc command, data conversion with, rwtuc
	
	rwuniq command
		calculating spreads with, Identifying Servers
	
	counting values with, rwuniq
	
	field specifiers in, rwuniq
	
	identifying asymmetric traffic with, Identifying Asymmetric Traffic
	

S
	SANS Internet Storm Center, Port Number
	
	SBL (spam addresses), DNSBLs
	
	scanning, Scanning, ICMP Messages and Fumbling
	
	scanning tools, nmap
	
	Scapy, Scapy, Application Identification by Banner Grabbing
	
	scatterplots, Bivariate Description
	
	Securelist Threat Descriptions, The NVD, Malware Sites, and the C*Es
	
	security
		actionable decisions and, Preface
	
	active monitoring/testing, Communications and Probing
	
	advanced skills needed, Search Engines, Mailing Lists, and People
	
	basic skills needed, Audience
	
	inconvenience of, Preface, The Goal of EDA: Applying Analysis
	

	Security Content Automation Protocol (SCAP), The NVD, Malware Sites, and the C*Es
	
	Security Event Management (SEM), Basic Vocabulary
	
	Security Log, Accessing and Manipulating Logfiles
	
	sendmail log format, SMTP
	
	sensitivity, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	sensors/detectors
		actions of, Actions: What a Sensor Does with Data
	
	attack reactions of, Domains: Determining Data That Can Be Collected
	
	basics of, Sensors and Detectors: An Introduction–Actions: What a Sensor Does with Data
	
	controlling sensors, Actions: What a Sensor Does with Data
	
	event sensors, Actions: What a Sensor Does with Data, Classification and Event Tools: IDS, AV, and SEM–Prefetching Data
	
	host/service sensors, Domains: Determining Data That Can Be Collected, Host and Service Sensors: Logging Traffic at the Source–Syslog
	
	network sensors, Domains: Determining Data That Can Be Collected, Network Sensors–NetFlow Generation and Collection
	
	reporting sensors, Actions: What a Sensor Does with Data
	
	vantages of, Vantages: How Sensor Placement Affects Data Collection, Domains: Determining Data That Can Be Collected
	

	serialization standards, Creating a Well-Organized Flat File System: Lessons from SiLK
	
	server disconnection, DDoS, Flash Crowds, and Resource Exhaustion
	
	server port, Port Number
	
	servers
		identification of, Identifying Servers
	
	implementing with netcat, netcat
	

	service level exhaustion, DDoS, Flash Crowds, and Resource Exhaustion
	
	session reconstruction, Domains: Determining Data That Can Be Collected, Wireshark
	
	session testing, Scapy
	
	Shapiro-Wilk test, Testing Data, The Quantile-Quantile (QQ) Plot
	
	shortest paths, Labeling, Weight, and Paths
	
	signature-based IDS systems, Basic Vocabulary–Enhancing IDS Detection
	
	SiLK (System for Internet-Level Knowledge), The SiLK Suite–rwtuc
		basic field manipulation in, Basic Field Manipulation: rwfilter
	
	basics of, What Is SiLK and How Does It Work?
	
	benefits of, What Is SiLK and How Does It Work?
	
	built-in documentation, Choosing and Formatting Output Field Manipulation: rwcut, Basic Field Manipulation: rwfilter
	
	combining information flows with rwcount, Combining Information Flows: rwcount
	
	counting values with rwuniq, rwuniq
	
	creating IP sets with wrset, rwset and IP Sets
	
	data collection with rwptoflow, rwptoflow
	
	data collection with YAF, YAF
	
	data conversion with rwtuc, rwtuc
	
	installation of, Acquiring and Installing SiLK
	
	metadata access with rwfileinfo command, rwfileinfo and Provenance
	
	output field manipulation formatting, Choosing and Formatting Output Field Manipulation: rwcut
	
	storage structure of rwbag, rwbag
	
	subnetwork association with pmaps, pmaps
	

	SIM/SEM/SIEM (security information/event management), Basic Vocabulary
	
	simple math, Writing Functions
	
	situational awareness
		definition of, Preface
	
	foundation of, Network Mapping
	

	Slammer worm, Basic Vocabulary
	
	SlashDot effect, DDoS and Routing Infrastructure
	
	SMTP (Simple Mail Transfer Protocol)
		banners in, Non-Web Banners
	
	clustering coefficient and, Clustering Coefficient
	
	failure rate in, Automation
	
	fumbling behaviors and, SMTP Fumbling
	
	log file formats in, SMTP
	

	smurf attacks, DDoS and Routing Infrastructure
	
	snaplen (-s) argument, Limiting the Data Captured from Each Packet
	
	Snort, Basic Vocabulary, Enhancing IDS Detection
	
	SOA (Start of Authority) records, Forward DNS Querying Using dig, Forward DNS Querying Using dig
	
	software updates, Beaconing
	
	solid state storage (SSD), A Brief Introduction to NoSQL Systems
	
	Solr, A Brief Introduction to NoSQL Systems
	
	Spam and Open Relay Blocking System (SORBS), DNSBLs
	
	spam, fumbling behaviors and, SMTP Fumbling
	
	SpamCop, DNSBLs
	
	Spamhaus, DNSBLs
	
	spatial dependencies, Creating a Well-Organized Flat File System: Lessons from SiLK
	
	spatial locality, Locality
	
	spear-phishing attacks, SMTP Fumbling
	
	specificity, Classifier Failure Rates: Understanding the Base-Rate Fallacy
	
	spiders, HTTP Fumbling
	
	spreads, Identifying Servers
	
	src host predicate, Filtering Specific Types of Packets
	
	src-reserve field, pmaps
	
	standard deviations, The Quantile-Quantile (QQ) Plot
	
	start-rec-num command, Choosing and Formatting Output Field Manipulation: rwcut
	
	statistical analysis, An Introduction to R for Security Analysts
		(see also R for Security Analysts)
	
	five-number summary, The Five-Number Summary and the Boxplot
	
	threshold values, Exploratory Data Analysis and Visualization, The Quantile-Quantile (QQ) Plot, Using Volume as an Alarm
	
	variables, Variables and Visualization, Histograms
	

	stream reassembly, Domains: Determining Data That Can Be Collected
	
	streaming processing, What Storage Approach to Use
	
	subversion attacks, Attack Models
	
	Suricata, Basic Vocabulary
	
	sweeping ping, Checking Connectivity: Using ping to Connect to an Address
	
	switch statements, Conditionals and Iteration
	
	Symantec’s Security Response, The NVD, Malware Sites, and the C*Es
	
	SYN Flood, DDoS, Flash Crowds, and Resource Exhaustion
	
	syslog logging utility, Syslog
	
	System for Internet-Level Knowledge (see SiLK)
	
	System Log, Accessing and Manipulating Logfiles
	
	system.log files, Accessing and Manipulating Logfiles
	

T
	table command, Contingency Tables
	
	tcp predicate, Filtering Specific Types of Packets
	
	TCP sockets
		fumbling behaviors, Identifying Fumbling
	
	redirecting output to with netcat, netcat
	

	TCP/IP (transmission control protocol/internet protocol)
		asymmetric sessions and, Phase II: Examining the IP Space
	
	port number/flag filtering in, Filtering Specific Types of Packets, TCP Options
	
	port numbers in, Port Number, Port Number
	
	sensor domains and, Network Layering and Its Impact on Instrumentation
	
	TCP (protocol 6), Packet and Frame Formats
	
	TCP state machine, TCP Fumbling: The State Machine
	

	tcpdump
		active banner grabbing with, Application Identification by Banner Grabbing
	
	Berkeley Packet Filtering (BPF), Filtering Specific Types of Packets
	
	data capture with, Packet Data
	
	filtering with, Filtering Specific Types of Packets, Helper Options
	
	MAC adresses and, Filtering Specific Types of Packets
	
	record manipulation with Scapy, Scapy
	
	rolling buffer implementation, Rolling Buffers
	
	snaplen (-s) argument, Limiting the Data Captured from Each Packet
	

	technique-extract-analyze process, EDA Workflow
	
	template-based NetFlow, “Flow and Stuff:” NetFlow v9 and IPFIX
	
	templated data logs, Existing Logfiles and How to Manipulate Them
	
	temporal locality, Locality
	
	text
		converting to columns, Existing Logfiles and How to Manipulate Them
	
	drawing on a plot, Annotating a Visualization
	

	The Threat Center, The NVD, Malware Sites, and the C*Es
	
	threshold values, Exploratory Data Analysis and Visualization, The Quantile-Quantile (QQ) Plot, Using Volume as an Alarm
	
	Thrift, Creating a Well-Organized Flat File System: Lessons from SiLK
	
	time series data, Data Selection
	
	time-to-live (TTL) value, Network Layers and Vantage, Tracerouting, Identifying NATs
	
	tools
		aggregation/transport, Actions: What a Sensor Does with Data
	
	classification/event, Classification and Event Tools: IDS, AV, and SEM–Prefetching Data
	
	communications/probing, Communications and Probing
	
	packet inspection/reference, Packet Inspection and Reference–Search Engines, Mailing Lists, and People
	
	R for Security Analysts, An Introduction to R for Security Analysts–Testing Data
	
	reference/lookup, Reference and Lookup: Tools for Figuring Out Who Someone Is–DNSBLs
	
	SiLK (System for Internet-Level Knowledge), The SiLK Suite–rwtuc
	
	visualization, Visualization
	

	traceroute tool, Tracerouting
	
	traffic logs (see logs)
	
	traffic volume (see volume/time analysis)
	
	transmission control protocol/internet protocol (see TCP/IP)
	
	transport tools, Actions: What a Sensor Does with Data
	
	trellis plots, Multivariate Visualization
	
	trendlines, Rule three: use trendlines, distinguish artifacts from observations
	
	TripWire, Basic Vocabulary
	
	Type I Errors (see false-positive alerts)
	
	Type II Errors (see false-negative alerts)
	

U
	UDP (User Datagram Protocol)
		accessing port numbers in, Filtering Specific Types of Packets, Port Number, Port Number
	
	fumbling behaviors and, Identifying UDP Fumbling
	
	identifying servers in, Identifying Servers
	
	redirecting socket output to with netcat, netcat
	
	UDP protocol 17, Packet and Frame Formats
	

	udp predicate, Filtering Specific Types of Packets
	
	unidirectional flow filtering, Unidirectional flow filtering
	
	uniform distribution, The Quantile-Quantile (QQ) Plot
	
	univariate visualization
		bar plots, Bar Plots (Not Pie Charts)
	
	boxplots/box-and-whiskers plots, The Five-Number Summary and the Boxplot
	
	five-number summary, The Five-Number Summary and the Boxplot
	
	histograms, Univariate Visualization: Histograms, QQ Plots, Boxplots, and Rank Plots
	
	Quantile-Quantile (QQ) plots, The Quantile-Quantile (QQ) Plot
	

	Unix
		basic shell commands, What Is SiLK and How Does It Work?
	
	log files in, Accessing and Manipulating Logfiles
	
	port assignments in, Port Number
	
	redirecting output to TCP/UDP sockets with netcat, netcat
	
	sendmail log format, SMTP
	
	SiLK application, What Is SiLK and How Does It Work?
	

	unmonitored routes, identification of, Phase II: Examining the IP Space
	
	User-Agent header, HTTP: CLF and ELF
	
	user-agent strings, Web Client Banners: The User-Agent String, Identifying NATs
	

V
	vantage
		determining, Vantages: How Sensor Placement Affects Data Collection
	
	multiple interfaces and, Network Layers and Vantage
	
	network layers and, Network Layers and Vantage
	
	phenomena impacting, Vantages: How Sensor Placement Affects Data Collection
	
	selecting optimal, Vantages: How Sensor Placement Affects Data Collection
	

	variables, Variables and Visualization, Histograms
	
	vendor space concept, “Flow and Stuff:” NetFlow v9 and IPFIX
	
	vertical scans, Scanning
	
	virtual private networks (see VPNs)
	
	visualization
		benefits of, The Quantile-Quantile (QQ) Plot
	
	bivariate, Bivariate Description–Contingency Tables
	
	guidelines for operationalizing, Operationalizing Security Visualization–Rule seven: when performing long jobs, give the user some status feedback
	
	multivariate, Multivariate Visualization–Multivariate Visualization
	
	purpose of, Exploratory Data Analysis and Visualization
	
	raiding detection and, File Transfers/Raiding
	
	univariate, Univariate Visualization: Histograms, QQ Plots, Boxplots, and Rank Plots–Generating a Boxplot
	
	variables and, Variables and Visualization
	
	with Graphviz, Visualization
	
	with R, Visualization
	

	volume-based alarms, Using Volume as an Alarm
	
	volume/time analysis, Volume and Time Analysis–Engineering Solutions
		alarms, Using Volume as an Alarm
	
	beaconing, Beaconing
	
	data selection for, Data Selection
	
	Distributed Denial of Service (DDoS), DDoS, Flash Crowds, and Resource Exhaustion
	
	engineering solutions, Engineering Solutions
	
	file transfers/raiding, File Transfers/Raiding
	
	leisure-time traffic volume, The Workday and Its Impact on Network Traffic Volume
	
	locality, Locality
	
	off-times and, The Workday and Its Impact on Network Traffic Volume
	
	phenomena available, Volume and Time Analysis
	
	workday traffic volume, The Workday and Its Impact on Network Traffic Volume
	

	VPNs (virtual private networks), Packet and Frame Formats, Phase III: Identifying Blind and Confusing Traffic, Identifying Proxies
	

W
	weather sites, Beaconing
	
	web client banners, Web Client Banners: The User-Agent String
	
	web spiders, File Transfers/Raiding
	
	webcrawlers, HTTP Fumbling
	
	weighting, Labeling, Weight, and Paths
	
	White House attack, Basic Vocabulary
	
	whitelisting, Enhancing IDS Detection
	
	whois queries, Using whois to Find Ownership
	
	Windows
		log files in, Accessing and Manipulating Logfiles
	
	Microsoft Exchange, Microsoft Exchange: Message Tracking Logs, Non-Web Banners
	
	port assignments in, Port Number, Port Number
	
	Windows Event Viewer, Accessing and Manipulating Logfiles
	

	wireless bridges, Phase II: Examining the IP Space
	
	Wireshark, Wireshark
	
	working sets, Locality
	
	worm attacks, Basic Vocabulary, The NVD, Malware Sites, and the C*Es, Attack Models
	

X
	XBL (hijacked IP addresses and bots), DNSBLs
	

Y
	Yet Another Flowmeter (YAF) tool, NetFlow Generation and Collection, YAF
	

Z
	ZEN service, DNSBLs
	
	zero-pad-ips switch, Choosing and Formatting Output Field Manipulation: rwcut
	
	zones, DNS Name Structure
	

Colophon
The animal on the cover of Network Security Through Data Analysis is a European Merlin (Falco columbarius). There is some debate as to whether the North American and the European/Asian varieties of Merlin are actually different species. Carl Linnaeus was the first to classify the bird in 1758 using a specimen from America, then in 1771 the ornithologist Marmaduke Tunstall assigned a separate taxon to the Eurasian Merlin, calling it Falco aesalon in his book Ornithologica Britannica.
Recently, it has been found that there are significant genetic variations between North American and European types of Merlin, supporting the idea that they should be officially classified as distinct species. It is believed that the separation between the two kinds happened more than a million years ago, and since then the birds have existed completely independently of each other.
The Merlin is more heavily built than most other small falcons and can weigh almost a pound, depending on the time of year. Females are generally larger than males, which is common among raptors. This allows the male and female to hunt different types of prey animals and means that less territory is required to support a mating pair.
Merlins normally inhabit open country, such as scrubland, forests, parks, grasslands, and moorland. They prefer areas with low and medium-height vegetation because it allows them to hunt easily and find the abandoned nests that they take on as their own. During the winter, European Merlins are known to roost communally with Hen Harriers, another bird of prey.
Breeding occurs in May and June, and pairs are monogamous for the season. The Merlins will often use the empty nests of crows or magpies, but it is also common, especially in the UK, to find Merlins nesting in crevices in cliffs or buildings. Females lay three to six eggs, which hatch after an incubation period of 28 to 32 days. The chicks will be dependent on their parents for up to 4 weeks before starting out on their own.
In medieval times, chicks were taken from the nest and hand-reared to be used for hunting. The Book of St. Albans, a handbook of gentleman’s pursuits, included Merlins in the “Hawking” section, calling the species, “the falcon for a lady.” Today, they are still trained by falconers for hunting smaller birds, but this practice is declining because of conservation efforts. The most serious threat to Merlins is habitat destruction, especially in their breeding areas. However, since the birds are highly adaptable and have been successful at living in settled areas, their population remains stable around the world.
The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Network Security Through Data Analysis

Building Situational Awareness

Michael Collins

Editor
Andy Oram

Editor
Allyson MacDonald

Editor
Nicole Shelby

Editor
Gillian McGarvey

	Revision History
	2014-02-05	First release

Copyright © 2014 Michael Collins

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most
 titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department:
 800-998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Network Security Through Data Analysis, the picture of a European Merlin, and related trade dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to distinguish
 their products are claimed as trademarks. Where those designations appear
 in this book, and O’Reilly Media, Inc. was aware of a trademark claim,
 the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book,
 the publisher and author assume no responsibility for errors or omissions,
 or for damages resulting from the use of the information contained herein.

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

2014-02-06T15:45:48Z

OEBPS/images/nsda_0101.png
Internet

128.2.1.1
(workstation)

(Spanning Port)

128.1.1.1 128.1.1.2
(workstation) (HTTP server)

@ 128.1.1.3-32
(workstations)

Graph Representation

OEBPS/images/nsda_1005.png
Sample Quantiles

20

15

10

QQ Plot Against a Normal Dist

-2 -1 0 1 2

Theoretical Quantiles

OEBPS/images/nsda_1401.png
T
ae
F3
=g
S
=
@
C
n ya
i
[
L L L L L L L
® R ® R R R R R
< &) o o < &)

(sabessay Jo obejuadiad) Aousnbaig

96

48

Message Length (Bytes)

OEBPS/images/nsda_1402.png
Server Bytes

Client Bytes

1000 1500

0 500

500

1500 1000

Packet Sizes for an H

ITTP Session

Server MTU

" unmnnumuul

Client MTU

T T T
20

40 50

Packet Order

OEBPS/images/nsda_1018.png
‘Volume

10000 15000 20000 25000

5000

Labelling Disruptive Anomalies

06:15 06:23 07:07 07:15 07:23 08:07 08:15
Time (day:hour)

OEBPS/images/nsda_0204.png
Recorded {A->B}

Recorded {B->A}

OEBPS/bk01-toc.html
Network Security Through Data Analysis

Table of Contents
		Preface		Audience

		Contents of This Book

		Conventions Used in This Book

		Using Code Examples

		Safari® Books Online

		How to Contact Us

		Acknowledgements

		I. Data		1. Sensors and Detectors: An Introduction		Vantages: How Sensor Placement Affects Data Collection

		Domains: Determining Data That Can Be Collected

		Actions: What a Sensor Does with Data

		Conclusion

		2. Network Sensors		Network Layering and Its Impact on Instrumentation		Network Layers and Vantage

		Network Layers and Addressing

		Packet Data		Packet and Frame Formats

		Rolling Buffers

		Limiting the Data Captured from Each Packet

		Filtering Specific Types of Packets

		What If It’s Not Ethernet?

		NetFlow		NetFlow v5 Formats and Fields		“Flow and Stuff:” NetFlow v9 and IPFIX

		NetFlow Generation and Collection

		Further Reading

		3. Host and Service Sensors: Logging Traffic at the Source		Accessing and Manipulating Logfiles

		The Contents of Logfiles		The Characteristics of a Good Log Message

		Existing Logfiles and How to Manipulate Them

		Representative Logfile Formats		HTTP: CLF and ELF

		SMTP

		Microsoft Exchange: Message Tracking Logs

		Logfile Transport: Transfers, Syslog, and Message Queues		Transfer and Logfile Rotation

		Syslog

		Further Reading

		4. Data Storage for Analysis: Relational Databases, Big Data, and Other Options		Log Data and the CRUD Paradigm		Creating a Well-Organized Flat File System: Lessons from SiLK

		A Brief Introduction to NoSQL Systems

		What Storage Approach to Use		Storage Hierarchy, Query Times, and Aging

		II. Tools		5. The SiLK Suite		What Is SiLK and How Does It Work?

		Acquiring and Installing SiLK		The Datafiles

		Choosing and Formatting Output Field Manipulation: rwcut

		Basic Field Manipulation: rwfilter		Ports and Protocols

		Size

		IP Addresses

		Time

		TCP Options

		Helper Options

		Miscellaneous Filtering Options and Some Hacks

		rwfileinfo and Provenance

		Combining Information Flows: rwcount

		rwset and IP Sets

		rwuniq

		rwbag

		Advanced SiLK Facilities		pmaps

		Collecting SiLK Data		YAF

		rwptoflow

		rwtuc

		Further Reading

		6. An Introduction to R for Security Analysts		Installation and Setup

		Basics of the Language		The R Prompt

		R Variables

		Writing Functions

		Conditionals and Iteration

		Using the R Workspace

		Data Frames

		Visualization		Visualization Commands

		Parameters to Visualization

		Annotating a Visualization

		Exporting Visualization

		Analysis: Statistical Hypothesis Testing		Hypothesis Testing

		Testing Data

		Further Reading

		7. Classification and Event Tools: IDS, AV, and SEM		How an IDS Works		Basic Vocabulary

		Classifier Failure Rates: Understanding the Base-Rate Fallacy

		Applying Classification

		Improving IDS Performance		Enhancing IDS Detection

		Enhancing IDS Response

		Prefetching Data

		Further Reading

		8. Reference and Lookup: Tools for Figuring Out Who Someone Is		MAC and Hardware Addresses

		IP Addressing		IPv4 Addresses, Their Structure, and Significant Addresses

		IPv6 Addresses, Their Structure and Significant Addresses

		Checking Connectivity: Using ping to Connect to an Address

		Tracerouting

		IP Intelligence: Geolocation and Demographics

		DNS		DNS Name Structure

		Forward DNS Querying Using dig

		The DNS Reverse Lookup

		Using whois to Find Ownership

		Additional Reference Tools		DNSBLs

		9. More Tools		Visualization		Graphviz

		Communications and Probing		netcat

		nmap

		Scapy

		Packet Inspection and Reference		Wireshark

		GeoIP

		The NVD, Malware Sites, and the C*Es

		Search Engines, Mailing Lists, and People

		Further Reading

		III. Analytics		10. Exploratory Data Analysis and Visualization		The Goal of EDA: Applying Analysis

		EDA Workflow

		Variables and Visualization

		Univariate Visualization: Histograms, QQ Plots, Boxplots, and Rank Plots		Histograms

		Bar Plots (Not Pie Charts)

		The Quantile-Quantile (QQ) Plot

		The Five-Number Summary and the Boxplot

		Generating a Boxplot

		Bivariate Description		Scatterplots

		Contingency Tables

		Multivariate Visualization		Operationalizing Security Visualization		Rule one: bound and partition your visualization to manage disruptions

		Rule two: label anomalies

		Rule three: use trendlines, distinguish artifacts from observations

		Rule four: be consistent across plots

		Rule five: annotate with contextual information

		Rule six: avoid flash in favor of expressiveness

		Rule seven: when performing long jobs, give the user some status feedback

		Further Reading

		11. On Fumbling		Attack Models

		Fumbling: Misconfiguration, Automation, and Scanning		Lookup Failures

		Automation

		Scanning

		Identifying Fumbling		TCP Fumbling: The State Machine		Network maps

		Unidirectional flow filtering

		ICMP Messages and Fumbling

		Identifying UDP Fumbling

		Fumbling at the Service Level		HTTP Fumbling

		SMTP Fumbling

		Analyzing Fumbling		Building Fumbling Alarms

		Forensic Analysis of Fumbling

		Engineering a Network to Take Advantage of Fumbling

		Further Reading

		12. Volume and Time Analysis		The Workday and Its Impact on Network Traffic Volume

		Beaconing

		File Transfers/Raiding

		Locality		DDoS, Flash Crowds, and Resource Exhaustion

		DDoS and Routing Infrastructure

		Applying Volume and Locality Analysis		Data Selection

		Using Volume as an Alarm

		Using Beaconing as an Alarm

		Using Locality as an Alarm

		Engineering Solutions

		Further Reading

		13. Graph Analysis		Graph Attributes: What Is a Graph?

		Labeling, Weight, and Paths

		Components and Connectivity

		Clustering Coefficient

		Analyzing Graphs		Using Component Analysis as an Alarm

		Using Centrality Analysis for Forensics

		Using Breadth-First Searches Forensically

		Using Centrality Analysis for Engineering

		Further Reading

		14. Application Identification		Mechanisms for Application Identification		Port Number

		Application Identification by Banner Grabbing

		Application Identification by Behavior

		Application Identification by Subsidiary Site

		Application Banners: Identifying and Classifying		Non-Web Banners

		Web Client Banners: The User-Agent String

		Further Reading

		15. Network Mapping		Creating an Initial Network Inventory and Map		Creating an Inventory: Data, Coverage, and Files

		Phase I: The First Three Questions		The Default Network

		Phase II: Examining the IP Space		Identifying Asymmetric Traffic

		Identifying Dark Space

		Finding Network Appliances

		Phase III: Identifying Blind and Confusing Traffic		Identifying NATs

		Identifying Proxies

		Identifying VPN Traffic

		Phase IV: Identifying Clients and Servers		Identifying Servers

		Identifying Sensing and Blocking Infrastructure

		Updating the Inventory: Toward Continuous Audit

		Further Reading

		Index

		Colophon

		Copyright

OEBPS/images/nsda_1012.png
Clusters and Gaps in Data

o Lo
. 3

o0
a o Lo
o o o | ¥
o ° o S © re

T e,

$ ooy Fots
T8 o% ° w0 lg

. . . . -
o0b 08 09 OF 02 O

OEBPS/images/nsda_1015.png
‘Volume

300000 500000

100000

0

Basic Plot

06:15 06:23 07:07 07:15 07:23 08:07 08:15
Time (day:hour)

OEBPS/images/nsda_1501.png
[g | [g
Dark Space Dark Space Dark Space

IP Space # VPN, &C VPN, &C

Phase| Phasell Phase lll Phase IV

OEBPS/images/nsda_1502.png
External A

Router 1 (monitored)

Wireless bridge

HostA Router 2 (not monitored)

External B

OEBPS/images/nsda_1203.png
Density

0.00004 0.00008 0.00012

0.00000

Volume Observations With Exaggerated Outliers

00 n_m

T T T T]
2e+04 4e+04 6e+04 8e+04 1e+05
Volume (Packets, 6 Min Sample)

OEBPS/images/nsda_1202.png
Density

0.00010 0.00015

0.00005

0.00000

Volume Observations

i

r
5000

T T T
10000 15000 20000
Volume (Packets, 6 Min Sample)

1
25000

OEBPS/images/cover.png.jpg
Michael Collins

OEBPS/images/nsda_1101.png
Timeout after two maximum
segment lifetimes (2*MSL)

Timeout/RST Active open/SYN

CLOSED

Passive open

LISTEN

SYN/SYN + ACK

SYN_RCVD

Close/FIN

Send/SYN

SYN/SYN + ACK

SYN_SENT

SYN + ACK/ACK

ESTABLISHED

FIN/ACK

LAST_ACK

FIN/ACK

OEBPS/images/nsda_1207.png.jpg
Iratfic (MB/s)

1000 1500

500

Example DDoS Attack Example Flash Crowd
3
g
3
2
]
s
@8
28
£
g®
=8
2
3
°
50 100 150 200 250 300 0 5 100 150 200 250 300
Time (Ticks) Time (Ticks)
Example Cable Cut
s
©
3
=Y
ze
E
B
2
m
°
0 50 100 150 200 250 300

Time (Ticks)

OEBPS/images/nsda_0205.png
{A->B: (Hi, 1)}

Monitoring
port

Monitoring
port

Sent Can monitor May be able Receives nothing
to monitor

OEBPS/images/nsda_0602.png
Y axis, set by "ylab™

15 20 25 30

10

Title, set by "main™

40

60

T T
80 100 120

Xaxis, set by "xlab",
Subtitle, set by "sul

1
140

OEBPS/images/nsda_1201.png
#total bytes/hour sent to port SMTP (25/TCP)

2.50% 10710

2.00*10110

1.50*10A10

1.00*10A10

5.00*1019

0.00* 1010

Sobig. F E-Mail Worm Propagation observed in the SWITCH Network

L
08.08.
00:00

L L L 1 1 L
10.08. 12.08. 14.08. 16.08. 18.08. 20.08.
00:00 00:00 00:00 00:00 00:00 00:00

Date and Time (CEST = UT(+2)

L
22.08.
00:00

OEBPS/images/nsda_0903.png
Ethernet|

dst
src
type
IP]
version
il
tos
len
id
flags DF 6c 3b 71 3d 30 2e 39 2c 2a 2f 2a 3b 71
frag oL 38 0d 0a 55 73 65 72 2d 41 67 65 6e 74
ttl 64 6f 7a 69 6c 6c 61 2f 35 2e 30 20 28 4d
proto tep 6e 74 6f 73 68 3b 20 49 6e 74 65 6¢c 20
chksum Oxbed2—— 20 4f 53 20 58 20 31 30 5f 38 5f 33 29
src 192.168.1.12 70 6c 65 57 65 62 4b 69 74 2f 35 33 37
dst 20 28 4b 48 54 4d 4c 2c 20 6¢ 69 6b 65
options 63 6b 6f 29 20 43 68 72 6f 6d 65 2f 32
TP 2e 31 34 31 30 2e 34 33 20 53 61 66 61
spﬁ 35 33 37 2e 33 31 0d 0a 41 63 63 65 70
dport 6e 63 6f 64 69 6e 67 3a 20 67 7a 69 70
seq 4157917086 66 6c 61 74 65 2c 73 64 63 68 0d Oa 41
ack 3403794807 70 74 2d 4c 61 6e 67 75 61 67 65 3a 20
dataofs 8L 55 53 2c 65 6e 3b 71 3d 30 2e 38 0d 0Oa
reserved o 65 70 74 2d 43 68 61 72 73 65 74 3a 20
flags PA — 2d 38 38 35 39 2d 31 2c 75 74 66 2d 38
window 8235 30 2e 37 2c 2a 3b 71 3d 30 2e 33 0d Oa
chksum 0x5dd5 6b 69 65 3a 20 75 67 3d 35 31 36 36 33
urgptr 0 30 62 38 65 63 63 30 61 33 64 31 34 36
" ' .) 65 34 30 30 32 32 33 36 3b 20 6f 70 74

options [('NOP’, None), ('[...] Ta 65 6c
Raw| 25 32 32
load 'GET / HTTP/LI\A[.] 33 41 25

25 32 32

33 41 25

31 37 32

OEBPS/images/nsda_0703.png
Internet

raw data

Network

Analysts

OEBPS/images/nsda_1001.png
12

10

12

10

12

10

A

10

12

.
14

16

18 20

10

12

14

16

18

20

L

L

!

10

12

14

16

18 20

8

10

12

14

16

18

20

OEBPS/images/nsda_1013.png.jpg
150 200 250 300

100

50

Examples of Linear Relationships

OEBPS/images/nsda_1008.png
GE

0e

[+

0z

[-1%

OEBPS/images/nsda_1002.png
Technique

Extract
Extract data Phenomena

Analyze
Phenomena

Primary archive

Other data

OEBPS/images/nsda_1007.png
00 i 05 10 15 20 {25

Min 25% 50% 75% Max

OEBPS/images/nsda_1003.png
T J 1 T ! i 1
- |
rzzzzz]
rzzz]
ag 7|
N}
IS %
[~
& Trzrr7IrZZZZZ77]
- C
L
TZZZZZZZ77Z777777772
L =
7 Z
Tz
- [
=
L 1 L 1 1 L L
9 2 e R 9 2 R
g & & & & & & %8

(sobessa J0 abejuaoiad) Aousnbaiq

96 144 192 240 288 336 384 432 480

48

Message Length (Bytes)

OEBPS/images/nsda_1205.png
Probability of Replacement

¥ v v
Pareto Distribution
Random Distribution

100

20 5

0 L L L L L L ! L L

0 20 40 60 80 100 120 140 160 180 200
Working Set Size

OEBPS/images/nsda_0402.png
V21B:V22 (V23

A

) o
= @
S S
~ ~
= =
& &
= o=
= =

OEBPS/images/nsda_1403.png
Server Bytes

Client Bytes

1000 1500

0 500

500

1500 1000

Packet Sizes for an AIM Session

Server MTU

'||| i’| " iu-

R

Client MTU

T
20

Packet Order

30

40

OEBPS/images/nsda_1206.png

OEBPS/images/nsda_0702.png
True Positive Rate

0.96 T T

4 15 Packets
0955 d
y 60 Packets
0.95 V
Y
4
\4
0.945
110 Packets
0.94
Protocols
FTP ===
HTTP —@—
SMTP =--§7---
0.935 . ' -
0 0.2 0.6 0.8

0.4
False Positive Rate

OEBPS/images/nsda_0902.png
admin_brightcove_com pagead2_googlesyndication_com

OEBPS/images/nsda_1010.png
250

200

150

100

T
nonscan

T
scan

OEBPS/images/nsda_1019.png
‘Volume

10000 15000 20000 25000

5000

Observations and Trend

06:15 06:23 07:07 07:15 07:23 08:07 08:15
Time (day:hour)

OEBPS/images/nsda_1004.png
Count
10

20

15

Counts of Major Services

smtp
Servloe

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/DejaVuSerif.otf

OEBPS/DejaVuSans-Bold.otf

OEBPS/images/nsda_0202.png
Received

Ignored

Recorded

OEBPS/UbuntuMono-Regular.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/images/nsda_0103.png
“NORMAL”

0 “NORMAL"
1

“NORMAL”

“ATTACK"
0 "ATTACK"

“ATTACK”

“NORMAL"
0
“NORMAL"
“ATTACK”
“we're
attacked”
“ATTACK”

“NORMAL”

“NORMAL"

“ATTACK"

“attack
blocked”

OEBPS/images/nsda_0801.png
oul

EUI-48 mm I ENEE

oul

EUI-48

oncrego [W0 | w1 | w2 an | o | ws
EUI-64

fis | EUls m fI7

OEBPS/images/nsda_1304.png

OEBPS/images/nsda_0401.png
Sensor

Log collector

Sensor

User User User User

OEBPS/images/nsda_1301.png

OEBPS/images/nsda_1204.png
/help.html

Add

Jtech.html
finfo.html

/info.html

/help.html
[tech.html

/info.html

/info.html

/help.html

/tech.html

(U] (1) (1 (V)

Move

OEBPS/images/nsda_1006.png
Sample Quantiles

30

25

20

15

10

QQ Plot Against a Uniform Dist

oo

-1 0 1
Theoretical Quantiles

OEBPS/images/nsda_1017.png
‘Volume

10000 15000 20000 25000

5000

Controlling Disruptive Anomalies

06:15 06:23 07:07 07:15 07:23 08:07 08:15
Time (day:hour)

OEBPS/images/nsda_1020.png
Volume

15000 20000 25000

10000

5000

Adding Time of Day

06:15 06:23 07:07 07:15 07:23 08:07 08:15
Time (day:hour)

OEBPS/images/nsda_0601.png
SRwAaBEBOMN NS

‘RConsole

R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin10.8.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details

Natural language support but running in an English locale

R is a collaborative project with many contributors
Type 'contributors()' for more information and
"citation()' on how to cite R or R packages in publications.

Type 'demo()" for some demos, 'help()' for on-line help, or
*help.start()' for an HTML browser interface to help
Type 'qQ)" to quit R.

[R.app GUI 1.62 (6558) x86_64-apple-darwin10.8.0]

[Workspace restored from /Users/mcollins/.RData]
[History restored from /Users/mcollins/.Rapp.history]

> s<-'Hi There'

> x<-3 + 11 + (3 * log(exp(2)))
> print(s)

[1] "Hi There"

>

OEBPS/images/nsda_0102.png
Internet

HTTP server Workstation

(128.1.1.1) Hidden HTTP server (128.1.13)
(128.1.1.2)

FTP server

(128.1.1.1)

OEBPS/images/nsda_0603.png
Flip
2
Flips
Flips

4
Flips

— .
o
S
b ==
oS —
T
o
H

HHH HHT TTH 1T
0.125 0.375 0.375 0.125

3HT 2H2T 3TH
0.25 0.375 0.25

et (5]

OEBPS/images/nsda_06in01.png

OEBPS/images/nsda_1014.png.jpg
0 40 80 120

60 100

20

Pairs Plot of Volume Data
0 40 80 120

¥ 50 P& 0 | Volume

400 800

Users

o

OEBPS/images/nsda_1011.png
100

60

20

®o

40

60

100

OEBPS/images/nsda_0901.png
@) Transition B,B

Transition 1,A

Node Gamma

Sample Graph

OEBPS/images/nsda_1016.png
‘Volume

13

12

1"

10

Using Logscale

06:15 06:23 07:07 07:15
Time (day:hour)

OEBPS/images/nsda_0701.png
Signature

Host Network

Anomaly

OEBPS/images/nsda_0201.png
Layer 7: Application

Layer 6: Presentation

Layer 5: Session

Layer 4: Transport

Layer 3: Network

Layer 2: Data Link

Layer 1: Physical

05! Model

Ethernet, FDDI, 802.11,
ATM

SONET, Twisted Pair, Coax

NNTP, DNS, FTP, HTTP E
i

MIME Layer 4: Application E

i

SsL i

i

___________________ 4

GRE, TCP, UDP Layer 3: Transport i

|

IP, AppleTalk, DECnet Layer 2: Internet i
4

:

i

i

i

i

i

i

i

i

Implementations TCP/IP Model

Service

Domain

OEBPS/images/nsda_1305.png
Before Infection After Infection

OEBPS/images/nsda_0904.png
Ble Bt Vew Go Capture Amayze Statistics Teephony Tooks Internas Help

CoAMI ERXT A ¢s»»F2[EFE QARAE FDS

I — S
Yo _rie—[mm pstmaton

520.070013157.16.226.31 192.168.1.12
530.070035192.168.1.12 157.166.226.31
540.076719157.166.226.31 192.168.1.12
550.076789157.166.226.31 192.168.1.12
560.076806192.168.1.12 157.166.226.31
570.076820192.168.1.12 157.166.226.31
580.076986157.166.241.11 192.168.1.12
590.077017192.168.1.12 157.166.241.11
600.080951157.166.241.11 192.168.1.12
610.081008157.166.241.11 192.168.1.12
620.081024192,168.1.12 157.166.241.11
630.081039192.168.1.12 157.166.241.11
640.084315192.168 157.166.241.11
650.173066157.166.241.11 192.168.1.12
660.173369157.166.241.11 192.168.1.12
670.173461192.168.1.12 157.166.241.11
680.173667157.166.241.11 192.168.1.12
690.173694192,168.1.12 157.166.241.11
700.173970157.166.241.11 192.168.1.12
710.173996192.168.1.12 157.166.241.11
720.179991157.166.241.11 192.168.1.12
730.180037192.168.1.12 157.166.241.11
740.222490192.168.1.12 23.15.9.160
750.222558192.168.1.12 23.15.9.160
760.222651192.168.1.12 23.15.9.160
770.222709192.168.1.12 23.15.9.160
780.222864192.168.1.12 23.15.9.160
790.22719423.15.9.160 192.168.1.12
800.22725723.15.9.160 192.168.1.12
810.227304192.168.1.12 23.15.9.160
820.227576192.168.1.12 23.15.9.160
830.22999523.15.9.160 192.168.1.12
840.23036423.15.9.160 192.168.1.12
850.230412192.168.1.12 23.15.9.160

2

» Frame 64: 1124 bytes on wire (8992 bits), 1124 bytes captured (8992 bits)

» Ethernet II, Src: Apple 46:f9:71 (8c:2d:aa:d6:9:71), Dst: Actionte 92:70:5a (00:1f:90:9:
» Internet Protocol Version 4, Src: 192.168.1.12 (192.168.1.12), Dst: 157.166.241.11 (157.]
» Transmission Control Protocol, Src Port: 50300 (50300), Dst Port: http (80), Seq: 1, Ack:

PGET ZHTTR/LAINM
Host: www..cnn. comr\n

Connection: keep-alive\r\n

Accept: text/htnl,application/xhtml+xnl,application/xml;
User-Agent: Hozilla/5.0 (Macintosh; Intel Mac 05 X 10_8 3) AppleWebKit/537.31 (KHTHL, 1
Accept-Encoding: gzip,deflate,sdch\r\n

Accept-Language: en-US,en;q=0.8\r\n

Accept-Charset: TS0-8859-1,utf-8;G=0.7,*;q=0.3\r\n

[truncated] Cookie: ug=516636460b8ecc0a3d146c16e4002236; optimizelySegnents=%7B%2217096
\rin

Full_request URL: http://wa.cnn.con/

[HTTP request 1/3]

Next request in frame: 1374

0000 00 1f 90 92 70 5a 8c 2d aa 46 9 71 68 00 45 00
0010 04 56 27 f9 40 09 40 06 be 42 O a8 61 Oc 9d a6
0020 1 0b c4 7c 00 50 f7 d4 c7 9e ca el 9 77 80 18
0030 20 2b 5d d5 00 09 01 01 08 0a 21 61 cO 5c 27 77

-F.q..E. z
B.
"

Lt

0040 6 2c 47 45 54 20 2f 20 48 54 54 50 2f 31 2e 31 HTTP/1.1
0050 0d 0a 48 6f 73 74 3a 20 77 77 77 2e 63 6e be 2e wad.cn.
0060 63 6f 6d 0d 0a 43 6f e 6e 65 63 74 69 6f be 3a nection:
0070 20 6b 65 65 70 2d 61 6¢ 69 76 65 0d 0a 41 63 63 ive..Acc

0080 65 70 74 3a 20 74 65 78 74 2f 68 74 6d 6c 2¢ 61 ept: tex t/html,a
0090 70 70 6 60 63 61 74 69 6f Ge 2f 78 68 74 6d 6c pplicati on/xhtml
0020 2b 78 6d 6c 2c 61 70 70 6c 69 63 61 74 69 6f 6e +xnl,app lication
86b0 2f 78 6d 6c 3b 71 3d 30 2e 39 2c 2a 2f 2a 3b 71 /xml;q=0 .9,%/*;q
00c0 3d 30 2e 38 0d 0a 55 73 65 72 2d 41 67 65 be 74 =0.8..Us er-Agent
©00d0 3a 20 4d 6f 7a 69 6c 6c 61 2f 35 2e 30 20 28 4d : Mozill a/5.0 (M
AfeO &1 63 A9 e 74 6f 73 GR_3h D0 40 fe 74 §5 Gc 20 acintnch : Tntel :

e T TR T TS T —Tef_61_63 S TS

OEBPS/images/nsda_1302.png

OEBPS/images/nsda_1009.png
GE

0e

[+

0z

[-1%

OEBPS/images/nsda_1504.png
Port 2001 Host 1, Port 80
Port 2002 Host 2, Port 80
Port 2003 Host 3, Port 80
Port 2004 Host 4, Port 80

Client's view

Host 1, Port 2034

Port 80 Host 2, Port 3096
Host 3, Port 4411
Host 4, Port 2133

Server's view

OEBPS/images/nsda_0203.png
Mirrored port

{A->B: Hi}

Sent Received Receives nothing Receives nothing

OEBPS/images/nsda_0206.png
Ethernet

P

T

upP

ICMP

Octet 1 | Octet 1 Octet 1 | Octet 1
Preamble
Preamble SOF
Destination MAC
Destination MAC Source MAC
Source MAC
Length/Type Data +Pad
Data + Pad.
Checksum
Version IHL DSCP ECN Length
IP Identifier Flags Fragment Offset
TIL | Protocol Checksum
Source Address
Destination Address
Options
Payload
Source Port Destination Port
Sequence Number
Acknowledgment Number
offset [rsv JNS] TCP Flags Window Size
Checksum Urgent Pointer
(Options
Payload
Source Port Destination Port
Length Checksum
Payload
Type Code Checksum

Payload

OEBPS/images/nsda_1303.png
Traffic with known spammers ——
Traffic after spammers removed

+

After Mccolo block

Before Mccolo block

0.03

0.025 -
0.02 [

(11 < @168 yum SISOH|/WNS) JuaIdye0) Buusisn)

Time (Ticks)

OEBPS/images/nsda_0301.png.jpg
Bl vent VR — - -

File Action View Help

@ Event Viewer (Local) | R

% Custom Views Level Date and Time Source EventID Task Category
“ % WindowsLogs |l jnomation 7/21/2013 6:36:58 PM Microsoft Windo. 4624 Logon
8 Adplcaion % Information 7/21/2013 1:00:14 AM Microsoft Windo. 4616 Security State Ch...
8 Seauiy “information 7/21/2013 1:00:14 AM Microsoft Windo. 4616 Security State Ch
; 2:':’"\ “information 7/21/2013 1:00:14 AM Microsoft Windo. 4616 Security State Ch...
b= \‘Infcvmalmnr 7/21/2013 122510 AM rosoft Windo. 4672 Special Logon ;
2 Applications and | EXent 4648, Microsoft Windovs securty auditna. 53
3 Subscriptions. General | Details
[A logon was attempted using explict credentials. -
[Subject:
Seurity ID: SYSTEM
Account Name WIN-HKPBT46IND6$
Account Domain: WORKGROUP
Logon ID: 0:3e7 .
L DY JAnanAAAN.AAAN.ARAN_ANAN-AAAANAAAANNN
Log Name: Security
Source: Microsoft Window: Logged: 1/18/2014 1:35:34 PM
Event 4648 Task Category: Logon
Level: e Keywords: Audit Success
User: N/A Computer: WIN-HKPBT46IND6
OpCode: Info

More Information: ~ Event Loa Online

OEBPS/images/nsda_1503.png
Host 1, Port 2000

Port 1080

Port 2000
Host 1, Port 2001 Server A, Port 80
Host 3, Port 2025 Port 2001 Server B, Port 80
Port 2002
Server C, Port 80

Host 4, Port 3018 Port 2003

Clients Proxy Servers

