

Puppet 3 Beginner's Guide

Start from scratch with the Puppet configuration
management system, and learn how to fully utilize
Puppet through simple, practical examples

John Arundel

BIRMINGHAM - MUMBAI

Puppet 3 Beginner's Guide

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2013

Production Reference: 1050413

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-124-0

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

Credits

Author

John Arundel

Reviewers

Ugo Bellavance

Jason Slagle

Johan De Wit

Acquisition Editor

Joanne Fitzpatrick

Lead Technical Editor

Joanne Fitzpatrick

Technical Editors

Sharvari Baet

Kaustubh S. Mayekar

Project Coordinator

Anugya Khurana

Proofreader

Lawrence A. Herman

Indexer

Monica Ajmera Mehta

Graphics

Ronak Dhruv

Aditi Gajjar

Production Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

About the Author

John Arundel is an infrastructure consultant who helps people make their computer
systems more reliable, useful, and cost-effective and has fun doing it. He has what Larry
Wall describes as the three great virtues of a programmer: laziness, impatience, and hubris.

Laziness, because he doesn't like doing work that a computer could do instead. Impatience,
because he wants to get stuff done right away. Hubris, because he likes building systems that
are as good as he can make them.

He was formerly a senior operations engineer at global telco Verizon, designing resilient,
high-performance infrastructures for corporations such as Ford, McDonald's, and Bank of
America. He now works independently, helping to bring enterprise-grade performance and
reliability to clients with slightly smaller pockets but very big ideas.

He likes writing books, especially about Puppet. It seems that at least some people enjoy
reading them, or maybe they just like the pictures. He also occasionally provides training and
coaching on Puppet, which turns out to be far harder than simply doing the work himself.

Off the clock, he can usually be found driving a Land Rover up some mountain or other.
He lives in a small cottage in Cornwall and believes, like Cicero, that if you have a garden
and a library, then you have everything you need.

You can follow him on Twitter at @bitfield.

Thanks are due to my friend Luke Kanies, who created a configuration
management tool that sucks less, and also to the many proofreaders and
contributors to this book, including Andy Brockhurst, Tim Eilers, Martin
Ellis, Adam Garside, Stefan Goethals, Jennifer Harbison, Kanthi Kiran,
Cristian Leonte, Habeeb Rahman, John Smith, Sebastiaan van Steenis,
Jeff Sussna, Nate Walck, Bryan Weber, and Matt Willsher.

About the Reviewers

Ugo Bellavance has done most of his studies in e-commerce, started using Linux at Red
Hat 5.2, got Linux training from Savoir-Faire-Linux at the age of 20, and got his RHCE on RHEL
6 in 2011. He's been a consultant in the past, but he's now an employee for a provincial
government agency for which he manages the infrastructure (servers, workstations,
network, security, virtualization, SAN/NAS, PBX). He's a big fan of open-source software
and its underlying philosophy. He's worked with Debian, Ubuntu, and SUSE, but what he
knows best is RHEL-based distributions. He's known for his contributions to the MailScanner
project (he has been a technical reviewer for the MailScanner book), but he also gave time to
different open-source projects, such as mondorescue, OTRS, SpamAssassin, pfSense, and a
few others.

I thank my lover, Lysanne, who accepted allowing me some free time slots
for this review even with a 2-year-old and a 6-month-old to take care of.
The presence of these 3 human beings in my life is simply invaluable.

I must also thank my friend Sébastien, whose generosity is only matched
by his knowledge and kindness. I would never have reached that high in my
career if it wasn't for him.

Jason Slagle is a 15-year veteran of Systems and Network administration. Having worked
on everything from Linux systems to Cisco networks and SAN Storage, he is always looking
for ways to make his work repeatable and automated. When he is not hacking at a computer
for work or pleasure, he enjoys running, cycling, and occasionally geocaching.

He is currently employed by CNWR, Inc., an IT and Infrastructure consulting company in his
home town of Toledo, Ohio. There he supports several larger customers in their quest to
automate and improve their infrastructure and development operations.

I'd like to thank my wife, Heather, for being patient through the challenges
of being married to a lifelong systems guy, and my new son, Jacob, for
bringing a smile to my face on even the longest days.

Johan De Wit was an early Linux user and he still remembers those days building a 0.9x
Linux kernel on his brand-new 486 computer that took a whole night, and always had
a great love for the UNIX Operating System.

It is not surprising that he started a career as a UNIX system administrator.

Since 2009, he has been working as an open-source consultant at Open-Future, where he
got the opportunity to work with Puppet. Right now, Puppet has become Johan's biggest
interest, and recently he became a Puppet trainer.

Besides his work with Puppet, he spends a lot of his free time with his two lovely kids
and his two Belgian draft horses, and if time and the weather permit, he likes to drive
his chopper.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
�� Fully searchable across every book published by Packt

�� Copy and paste, print and bookmark content

�� On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1

Chapter 1: Introduction to Puppet	 7
The problem	 8

Configuration management	 8
A day in the life of a sysadmin	 8
Keeping the configuration synchronized	 9
Repeating changes across many servers	 10
Self-updating documentation	 10
Coping with different platforms	 10
Version control and history	 11

Solving the problem	 11
Reinventing the wheel	 11
A waste of effort	 12
Transferable skills	 12
Configuration management tools	 12

Infrastructure as code	 13
Dawn of the devop	 13
Job satisfaction	 14
The Puppet advantage	 14

Welcome aboard	 15
The Puppet way	 15
Growing your network	 16
Cloud scaling	 16

What is Puppet?	 16
The Puppet language	 16
Resources and attributes	 17

Summary	 18
Configuration management	 18
What Puppet does	 18

Table of Contents

[ii]

The Puppet advantage	 19
Scaling	 19
The Puppet language	 19

Chapter 2: First steps with Puppet	 21
What you'll need	 22
Time for action – preparing for Puppet	 22
Time for action – installing Puppet	 23
Your first manifest	 26

How it works	 26
Applying the manifest	 27
Modifying existing files	 28
Exercise	 28

Organizing your manifests	 28
Time for action – creating a directory structure	 29

Creating a nodes.pp file	 29
Time for action – creating a node declaration	 30
Summary	 31

Installing Puppet	 31
Manifests	 31
Nodes	 32

Chapter 3: Packages, Files, and Services	 33
Packages	 34
Time for action – installing Nginx	 34

More about packages	 36
Installing specific versions	 36
Removing packages	 37
Updating packages	 37

Modules	 38
Time for action – creating an Nginx module	 38
Time for action – making a "puppet apply" command	 40
Services	 41
Time for action – adding the Nginx service	 41

Requiring resources	 43
More about services	 44

Starting a service at boot time	 44
Services that don't support "status"	 45
Specifying how to start, stop, or restart a service	 46

Files	 46
Time for action – deploying a virtual host	 46

Notifying other resources	 49

Table of Contents

[iii]

The package–file–service pattern	 49
Exercise	 50

Summary	 50
Packages	 50
Modules	 50
Services	 51

Starting services at boot	 51
Service status options	 51
Service control commands	 51

Resource dependencies	 51
Files	 52

Chapter 4: Managing Puppet with Git	 53
What is version control?	 54
Time for action – importing your manifests into Git	 55
Time for action – committing and inspecting changes	 56

How often should I commit?	 60
Branching	 60

Distributing Puppet manifests	 61
Reliability	 61
Scalability	 61
Simplicity	 61

Time for action – creating a master Git repo	 62
Time for action – cloning the repo to a new machine	 63
Time for action – adding a new node	 65
Time for action – pushing changes to the master repo	 65

Exercise	 66
Pulling changes automatically	 67

Time for action – automatic pull-and-apply script	 67
Learning more about Git	 68
Summary	 68

Why version control?	 69
Getting started with Git	 69
Networking Puppet	 69

Chapter 5: Managing users	 71
Users	 72

Security and access control	 72
What Puppet can do	 72

Time for action – creating a user	 73
Removing user accounts	 74

Table of Contents

[iv]

Access control	 75
What is SSH?	 75
Managing SSH keys	 75

Time for action – adding an SSH authorized key	 76
Generating new SSH keys	 78
Special-purpose keys	 78
Locking user accounts	 78
Managing SSH configuration	 79

Time for action – deploying an SSH configuration file	 79
User privileges	 80

sudo	 81
Time for action – deploying a sudoers file	 81
Summary	 83

Security practices	 83
User resources	 83

Removing or locking accounts	 84
Managing SSH keys	 84

Configuring SSH	 84
Managing privileges with sudo	 85

Chapter 6: Tasks and templates	 87
Running commands with exec resources	 88
Time for action – running an arbitrary command	 88

Running commands selectively	 89
Triggering commands	 90
Chaining commands	 90
Command search paths	 91

Scheduled tasks	 92
Time for action – scheduling a backup	 92

More scheduling options	 94
Running jobs at regular intervals	 94
Running a job as a specified user	 94
Exercise	 94

Distributing files	 95
Time for action – using a recursive file resource	 95
Using templates	 97
Time for action – templating an Nginx virtual host	 97

Inline templates	 101
System facts	 101
Doing the math	 102
Putting it all together	 102

Table of Contents

[v]

Summary	 103
Exec resources	 103
Scheduled jobs	 104
Recursive file resources	 105
Templates	 105

Chapter 7: Definitions and Classes	 107
Grouping resources into arrays	 108
Definitions	 109

Passing parameters to definitions	 111
Optional parameters	 112

Time for action – creating a definition for Nginx websites	 112
Multiple instances of definitions	 115
Exercise	 115

Classes	 115
Defining classes	 115
Putting classes inside modules	 116
Declaring classes	 116
What's the difference between a class and a definition?	 117

Time for action – creating an NTP class	 117
Summary	 120

Arrays	 120
Definitions	 120
Classes	 121

Chapter 8: Expressions and Logic	 123
Conditionals	 123

If statements	 124
else and elsif	 124
Unless statements	 125

Case statements	 125
The default case	 127
Matching multiple cases	 127

Selectors	 127
Expressions	 128

Comparisons	 128
Equality	 128
Magnitude	 129
Substrings	 129

Boolean operators	 130
Combining Boolean operators	 130

Arithmetic operators	 130

Table of Contents

[vi]

Regular expressions	 131
Operators	 132
Syntax	 132
Conditionals	 133

Capture variables	 133

Substitutions	 134
Node definitions	 135

Arrays and hashes	 136
Grouping resources with arrays	 136
Getting values out of arrays	 137
Hashes	 138
Multilevel hashes	 138
Testing hash keys	 139

Summary	 139
Conditionals	 139
Operators	 140
Regular expressions	 140
Text substitution	 141
Arrays	 141
Hashes	 142

Chapter 9: Reporting and troubleshooting	 143
Reporting	 144

Summary reports	 144
Enabling reports	 145
What's in a report?	 145

Time for action – generating a report	 146
Using reports	 150
Debug runs	 150
Noop runs	 151
Syntax checking	 152

Debug output	 152
Notify resources	 153
Exec output	 153

Specifying expected exit status	 155

Monitoring	 155
Managing monitoring with Puppet	 155
What to monitor	 156
Monitoring Puppet status	 156
Problems with Puppet	 157
Staying in sync	 157

Table of Contents

[vii]

Errors	 157
Compilation errors	 158

Diagnosing errors	 158
Missing file sources	 158
Missing parent directory	 159

Mistyped command line options	 160
Summary	 160

Reporting	 160
Debug and dry-run modes	 160
Printing messages	 161
Monitoring Puppet	 161
Common Puppet errors	 161

Chapter 10: Moving on Up	 163
Puppet style	 164

Break out code into modules	 164
Refactor common code into definitions	 164
Keep node declarations simple	 166
Use puppet-lint	 167
Make comments superfluous	 168

Puppet learning resources	 169
Reference	 169

Resource types	 169
Language and syntax	 170
Facts	 170
Style	 170

Modules and code	 171
Puppet Forge	 171
The Puppet Cookbook	 171

Projects	 172
Puppet everywhere	 173
User accounts	 173
System toolbox	 173
Time sync	 173
Monitoring server	 174
Puppetize your key services	 174
Automate backups	 175
Set up staging servers	 175
Automate everything	 175

Last word	 176

Index	 179

Preface
If you work with computer systems, then you know how time-consuming it can be to install
and configure software, to do administration tasks such as backups and user management,
and to keep the machines up to date with security patches and new releases. Maybe you've
already come up with some written procedures, shell scripts, and other ways to document
your work and make it more automated and reliable.

Perhaps you've read about how Puppet can help with this, but aren't sure how to get started.
The online documentation is great for reference, but doesn't really explain the whole thing
from scratch. Many of the books and tutorials available spend a lot of time explaining how to
set up your Puppet server and infrastructure before ever getting to the point where you can
use Puppet to actually do something.

In my work as an infrastructure consultant I do a good deal of Puppet training, mostly for
absolute beginners, and I've found that the most effective and fun way to do this is to get
into some real work right away. In the first five minutes, I have people making changes to
their systems using Puppet. If there was a fire alarm and we had to terminate the class after
that first five minutes, they would still go away knowing something useful that could help
them in their jobs.

I've taken the same approach in this book. Without going into lots of theory or background
detail, I'll show you how to do useful things with Puppet right away: install packages
and config files, create users, set up scheduled jobs, and so on. Every exercise deals with
something real and practical that you're likely to need in your work, and you'll see the
complete Puppet code to make it happen, along with step-by-step instructions for what to
type and what output you'll see.

After each exercise, I'll explain in detail what each line of code does and how it works, so that
you can adapt it to your own purposes, and feel confident that you understand everything
that's happened. By the end of the book, you will have all the skills you need to do real,
useful, everyday work with Puppet.

So let's get started.

What this book covers
Chapter 1, Introduction to Puppet, explains the problem of configuration management and
why traditional manual approaches to them don't scale. It shows how Puppet deals with
these problems efficiently, and introduces the basic architecture of Puppet.

Chapter 2, First Steps with Puppet, guides you through installing Puppet for the first time,
creating a simple manifest, and applying it to a machine. You'll see how to use the Puppet
language to describe and modify resources, such as a text file.

Chapter 3, Packages, Files, and Services, shows you how to use these key resource types,
and how they work together. We'll work through a complete and useful example based on
the Nginx web server.

Chapter 4, Managing Puppet with Git, describes a simple and powerful way to connect
machines together using Puppet, and to distribute your manifests and work on them
collaboratively using the version control system Git.

Chapter 5, Managing Users, outlines some good practices for user administration and shows
how to use Puppet to implement them. You'll also see how to control access using SSH and
manage user privileges using sudo.

Chapter 6, Tasks and Templates, covers more key aspects of automation: scheduling tasks,
and building configuration files from dynamic data using Puppet's template mechanism.

Chapter 7, Definitions and Classes, builds on previous chapters by showing you how to
organize Puppet code into reusable modules and objects. We'll see how to create definitions
and classes, and how to pass parameters to them.

Chapter 8, Expressions and Logic, delves into the Puppet language and shows how to control
flow using conditional statements and logical expressions, and how to build arithmetic and
string expressions. It also covers operators, arrays, and hashes.

Chapter 9, Reporting and Troubleshooting, looks at the practical side of working with
Puppet: how to diagnose and solve common problems, debugging Puppet's operations,
and understanding Puppet error messages.

Chapter 10, Moving on Up, shows you how to make your Puppet code more elegant, more
readable, and more maintainable. It offers some links and suggestions for further reading,
and outlines a series of practical projects that will help you deliver measurable business
value using Puppet.

What you need for this book
You'll need a computer system (preferably, but not essentially, Ubuntu Linux-based) and
access to the Internet. You won't need to be a UNIX expert or an experienced sysadmin;
I'll assume you can log in, run commands, and edit files, but otherwise I'll explain everything
you need as we go.

Who this book is for
This book is aimed at system administrators, developers, and others who need to do system
administration, who have grasped the basics of working with the command line, editing files,
and so on, but want to learn how to use Puppet to get more done, and make their
lives easier.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions on how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation to make sense, so they are followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple-choice questions intended to help you test your own understanding.

Preface

[4]

Have a go hero – heading
These practical challenges give you ideas for experimenting with what you have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "To have
Puppet read a manifest file and apply it to the server, use the puppet apply command."

A block of code is set as follows:

file { '/tmp/hello':
 content => "Hello, world\n",
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

file { '/tmp/hello':
 content => "Hello, world\n",
}

Any command-line input or output is written as follows:

ubuntu@demo:~$ puppet apply site.pp

Notice: /Stage[main]//Node[demo]/File[/tmp/hello]/ensure: defined content
as '{md5}bc6e6f16b8a077ef5fbc8d59d0b931b9'

Notice: Finished catalog run in 0.05 seconds

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "On the Select Destination
Location screen, click on Next to accept the default destination."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata
section of that title.

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address, or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Introduction to Puppet

For a list of all the ways technology has failed to improve the quality of life,
please press three.

 — Alice Kahn

In this chapter, you'll learn what Puppet is, and what it can help you do. Whether you're
a system administrator, a developer who needs to fix servers from time to time, or just
someone who's annoyed at how long it takes to set up a new laptop, you'll have come
across the kind of problems that Puppet is designed to solve.

WORK, YOU
$# * !

LICENSE
INVALID

UNEXPECTED
ERROR NOT

INSTALLED

RETRY

PASSWORD
WRONG

USER NOT
FOUND

A TYPICAL DAY...

Introduction to Puppet

[8]

The problem
We have the misfortune to be living in the present. In the future, of course, computers will
be smart enough to just figure out what we want, and do it. Until then, we have to spend a
lot of time telling telling the computer things it should already know.

When you buy a new laptop, you can't just plug it in, get your e-mail, and start work.
You have to tell it your name, your e-mail address, the address of your ISP's e-mail servers,
and so on.

Also, you need to install the programs you use: your preferred web browser, word processor,
and so on. Some of this software may need license keys. Your various logins and accounts
need passwords. You have to set all the preferences up the way you're used to.

This is a tedious process. How long does it take you to get from a box-fresh computer to
being productive? For me, it probably takes about a week to get things just as I want them.
It's all the little details.

Configuration management
This problem is called configuration management, and thankfully we don't have it with
a new laptop too often. But imagine multiplying it by fifty or a hundred computers, and
setting them all up manually.

When I started out as a system administrator, that's pretty much what I did. A large part
of my time was spent configuring server machines and making them ready for use. This is
more or less the same process as setting up a new laptop: installing software, licensing it,
configuring it, setting passwords, and so on.

A day in the life of a sysadmin
Let's look at some of the tasks involved in preparing a web server, which is something
sysadmins do pretty often. I'll use a fictitious, but all too plausible, website as an example.
Congratulations: you're in charge of setting up the server for an exciting, innovative social
media application called cat-pictures.com.

Assuming the machine has been physically put together, racked, cabled, and powered,
and the operating system is installed, what do we have to do to make it usable as a server
for cat-pictures.com?

�� Add some user accounts and passwords

�� Configure security settings and privileges

�� Install all the packages needed to run the application

Chapter 1

[9]

�� Customize the configuration files for each of these packages

�� Create databases and database user accounts; load some initial data

�� Configure the services that should be running

�� Deploy the cat-pictures application

�� Add some necessary files: uploaded cat pictures, for example

�� Configure the machine for monitoring

That's a lot of work. It may take a day or two if this is the first time you're setting up the
server. If you're smart, you'll write down everything you do, so next time you can simply
run through the steps and copy and paste all the commands you need. Even so, the next
time you build a cat-pictures server, it'll still take you a couple of hours to do this.

If the live server goes down and you suddenly need to build a replacement, that's a couple
of hours of downtime, and with a pointy-haired boss yelling at you, it's a bad couple
of hours.

Wouldn't it be nice if you could write a specification of how the server should be set up,
and you could apply it to as many machines as you liked?

Keeping the configuration synchronized
So the first problem with building servers by hand (artisan server crafting, as it's been called)
is that it's complicated and tedious and it takes a long time. There's another problem. The
next time you need to build an identical server, how do you do it?

Your painstaking notes will no longer be up to date with reality. While you were on vacation,
the developers installed a couple of new Ruby gems that the application now depends on—I
guess they forgot to tell you. Even if everybody keeps the build document up to date with
changes, no one actually tests the modified build process, so there's no way to know if it still
works end-to-end.

Also, the latest version of MySQL in the Linux distribution has changed, and now it doesn't
support some of the configuration parameters you used before. So the differences start
to accumulate.

By the time you've got four or five servers, they're all a little different. Which is the
authoritative one? Or are they all slightly wrong? The longer they're around, the
more they will drift apart.

Wouldn't it be nice if the configuration on all your machines could be regularly checked
and synchronized with a central, standard version?

Introduction to Puppet

[10]

Repeating changes across many servers
The latest feature on cat-pictures.com is that people can now upload movies of their
cats doing adorable things. To roll out the new version to your five web servers, you need
to install a couple of new package dependencies and change a configuration file. And you
need to do this same process on each machine.

Humans just aren't good at accurately repeating complex tasks over and over; that's why
we invented robots. It's easy to make mistakes, leave things out, or be interrupted and lose
track of what you've done.

Changes happen all the time, and it becomes increasingly difficult to keep things up to date
and in sync as your infrastructure grows.

Wouldn't it be nice if you only had to make changes in one place, and they rolled out to
your whole network automatically?

Self-updating documentation
A new sysadmin joins your organization, and she needs to know where all the servers are,
and what they do. Even if you keep scrupulous documentation, it can't always be relied on.
In real life, we're too busy to stop every five minutes and document what we just did.

The only accurate documentation, in fact, is the servers themselves. You can look at a
server to see how it's configured, but that only applies while you still have the machine.
If something goes wrong and you can't access the machine, or the data on it, your only
option is to reconstruct the lost configuration from scratch.

Wouldn't it be nice if you had a configuration document which was guaranteed to be up
to date?

Coping with different platforms
Ideally, all your machines would have the same hardware and the same operating system.
If only things were that easy. What usually happens is that we have a mix of different types
of machines and different operating systems and we have to know about all of them.

The command to create a new user account is slightly different for Red Hat Linux from
the equivalent command for Ubuntu, for example. Solaris is a little different again. Each
command is doing basically the same job, but has differences in syntax, arguments, and
default values.

This means that any attempt to automate user management across your network has to
take account of all these differences, and if you add another platform to the mix, then
that further increases the complexity of the code required to handle it.

Chapter 1

[11]

Wouldn't it be nice if you could just say how things should be, and not worry about the
details of how to make it happen?

Version control and history
Sometimes you start trying to fix a problem and instead make things worse. Or things were
working yesterday, and you want to go back to the way things were then. Sorry, no do-overs.

When you're making manual, ad hoc changes to systems, you can't roll back to a point in
time. It's hard to undo a whole series of changes. You don't have a way of keeping track of
what you did and how things changed.

This is bad enough if there's just one of you. When you're working in a team, it gets even
worse, with everybody making independent changes and getting in each other's way.

When you have a problem, you need a way to know what changed, and when, and who did
it. Ideally, you could look at your configuration document and say, "Hmm, Carol checked in
a change to the FTP server last night, and today no one can log in. It looks like she made a
typo." You can fix or back out of the change, and have Carol buy the team lunch.

Wouldn't it be nice if you could go back in time?

Solving the problem
Most of us have tried to solve these problems of configuration management in various
ways. Some write shell scripts to automate builds and installs, some use makefiles to
generate configurations, some use templates and disk images, and so on. Often these
techniques are combined with version control, to solve the history problem. Systems like
these can be quite effective, and even a little bit of automation is much better than none.

Reinventing the wheel
The disadvantage with this kind of home-brewed solution is that each sysadmin has
to reinvent the wheel, often many times. The ways in which organizations solve the
configuration management problem are usually proprietary and highly site-specific.
So for every new place you work, you need to build a new configuration management
system (CM system).

Because everyone has his own proprietary, unique system, the skills associated with it
aren't transferable. When you get a new job, all the time and effort you spent becoming
a wizard on your organization's CM system goes to waste; you have to learn a new one.

Introduction to Puppet

[12]

A waste of effort
Also, there's a whole lot of duplicated effort. The world really doesn't need more template
engines, for example. Once a decent one exists, it would make sense for everybody to use it,
and take advantage of ongoing improvements and updates.

It's not just the CM system itself that represents duplicated, wasted effort. The configuration
scripts and templates you write could also be shared and improved by others, if only they
had access to them. After all, most server software is pretty widely used. A program in
configuration language that sets up Apache could be used by everybody who uses
Apache—if it were a standard language.

Transferable skills
Once you have a CM system with a critical mass of users, you get a lot of benefits. A new
system administrator doesn't have to write his own CM tool, he just grabs one off the shelf.
Once he learns to use it, and to write programs in the standard language, he can take that
skill with him to other jobs.

He can choose from a large library of existing programs in the standard configuration
language, covering most of the popular software in use. These programs are updated and
improved to keep up with changes in the software and operating systems they manage.

This kind of beneficial network effect is why we don't have a million different operating
systems, or programming languages, or processor chips. There's strong pressure for people
to converge on a standard. On the other hand, we don't have just one of each of those things
either. There's never just one solution that pleases everybody.

If you're not happy with an existing CM system, and you have the skills, you can write one
that works the way you prefer. If enough other people feel the same way, they will form a
critical mass of users for the new system. But this won't happen indefinitely; standardization
pressure means the market will tend to converge on a small number of competing systems.

Configuration management tools
This is roughly the situation we have now. Several different CM systems have been developed
over the years, with new ones coming along all the time, but only a few have achieved
significant market share. At the time of writing, at least for UNIX-like systems, these CM
systems are Puppet, Chef, and CFEngine.

There really isn't much to choose between these different systems. They all solve more or
less the same problems—the ones we saw earlier in this chapter—in more or less the same
way. Some people prefer the Puppet way of doing things; some people are more comfortable
with Chef, and so on.

Chapter 1

[13]

But essentially, these, and many other CM systems, are all great solutions to the CM
problem, and it's not very important which one you choose as long as you choose one.

Infrastructure as code
Once we start writing programs to configure machines, we get some benefits right away.
We can adopt the tools and techniques that regular programmers—who write code in Ruby
or Java, for example—have used for years:

�� Powerful editing and refactoring tools

�� Version control

�� Tests

�� Pair programming

�� Code reviews

This can make us more agile and flexible as system administrators, able to deal with
fast-changing requirements and deliver things quickly to the business. We can also
produce higher-quality, more reliable work.

Dawn of the devop
Some of the benefits are more subtle, organizational, and psychological. There is often
a divide between "devs", who wrangle code, and "ops", who wrangle configuration.
Traditionally, the skill sets of the two groups haven't overlapped much. It was common until
recently for system administrators not to write complex programs, and for developers to
have little or no experience of building and managing servers.

That's changing fast. System administrators, facing the challenge of scaling systems to
enormous size for the web, have had to get smart about programming and automation.
Developers, who now often build applications, services, and businesses by themselves,
couldn't do what they do without knowing how to set up and fix servers.

The term "devops" has begun to be used to describe the growing overlap between these
skill sets. It can mean sysadmins who happily turn their hand to writing code when needed,
or developers who don't fear the command line, or it can simply mean the people for whom
the distinction is no longer useful.

Devops write code, herd servers, build apps, scale systems, analyze outages, and fix bugs.
With the advent of CM systems, devs and ops are now all just people who work with code.

Introduction to Puppet

[14]

Job satisfaction
Being a sysadmin, in the traditional sense, is not usually a very exciting job. Instead of
getting to apply your experience and ingenuity to make things better, faster, and more
reliable, you spend a lot of time just fixing problems, and making manual configuration
changes that could really be done by a machine. The following carefully-researched
diagram shows how traditional system administration compares to some other jobs in
both excitement and stress levels:

Stressful

Relaxing SOFA
TESTER

JET-POWERED
SOFA TESTER

SUPERSPY

Job Stress / Excitement Matrix

Boring Exciting

SYSADMIN

!

We can see from this that manual sysadmin work is both more stressful and more boring
than we would like. Boring, because you're not really using your brain, and stressful, because
things keep going wrong despite your best efforts.

Automating at least some of the dull manual work can make sysadmin work more exciting,
because it frees you for things that are more important and challenging, such as figuring out
how to make your systems more resilient or more performant.

Having an automated infrastructure means your servers are consistent, up to date, and
well-documented, so it can also make your job a little less stressful. Or, at any rate, it can
give you the freedom to be stressed about more interesting things.

The Puppet advantage
So how do you do system administration with Puppet? Well, it turns out, not too differently
from the way you already do it. But because Puppet handles the low-level details of creating
users, installing packages, and so on, you're now free to think about your configuration at
a slightly higher level.

Let's look at an example sysadmin task and see how it's handled the traditional way and then
the Puppet way.

Chapter 1

[15]

Welcome aboard
A new developer has joined the organization. She needs a user account on all the servers.
The traditional approach will be as follows:

1.	 Log in to server 1.

2.	 Run the useradd rachel command to create the new user.

3.	 Create Rachel's home directory.

4.	 Log in to server 2 and repeat these steps.

5.	 Log in to server 3 and repeat these steps.

6.	 Log in to server 4 and repeat these steps.

7.	 Log in to server 5 and repeat these steps.

8.	 The first three steps will be repeated for all the servers.

The Puppet way
Here's what you might do to achieve the same result in a typical Puppet-powered
infrastructure:

Add the following lines to your Puppet code:

user { 'rachel':
 ensure => present,
}

Puppet runs automatically a few minutes later on all your machines and picks up the
change you made. It checks the list of users on the machine, and if Rachel isn't on the list,
Puppet will take action. It detects what kind of operating system is present and knows what
commands need to be run in that environment to add a user. After Puppet has completed its
work, the list of users on the machine will match the ones in your Puppet code.

The key differences from the traditional, manual approach are as follows:

�� You only had to specify the steps to create a new user once, instead of doing
them every time for each new user

�� You only had to add the user in one place, instead of on every machine in
your infrastructure

�� You didn't have to worry about the OS-specific details of how to add users

Introduction to Puppet

[16]

Growing your network
It's not hard to see that, if you have more than a couple of servers, the Puppet way scales
much better than the traditional way. Years ago, perhaps many companies would have had
only one or two servers. Nowadays it's common for a single infrastructure to have tens or
even hundreds of servers.

By the time you've got to, say, five servers, the Puppet advantage is obvious. Not counting
the initial investment in setting up Puppet, you're getting things done five times faster. Your
colleague doing things the traditional, hand-crafted way is still only on machine number 2 by
the time you're heading home.

Above ten servers the traditional approach becomes almost unmanageable. You spend most
of your time simply doing repetitive tasks over and over just to keep up with changes. To look
at it in another, more commercial way, your firm needs ten sysadmins to get as much work
done as one person with Puppet.

Cloud scaling
Beyond ten or so servers, there simply isn't a choice. You can't manage an infrastructure
like this by hand. If you're using a cloud computing architecture, where servers are created
and destroyed minute-by-minute in response to changing demand, the artisan approach to
server crafting just won't work.

What is Puppet?
We've seen the problems that Puppet solves, and how it solves them, by letting you express
the way your servers should be configured in code form. Puppet itself is an interpreter that
reads those descriptions (written in the Puppet language) and makes configuration changes
on a machine so that it conforms to your specification.

The Puppet language
What does this language look like? It's not a series of instructions, such as a shell script or
a Ruby program. It's more like a set of declarations about the way things should be:

package { 'curl':
 ensure => installed,
}

In English, this code says, "The curl package should be installed". This snippet of code
results in Puppet doing the following:

�� Checking the list of installed packages to see if curl is already installed

�� If not, installing it

Chapter 1

[17]

Another example is as follows:

user { 'jen':
 ensure => present,
}

This is Puppet language for the declaration "The jen user should be present." Again, this
results in Puppet checking for the existence of the jen user on the system, and creating
it if necessary.

So you can see that the Puppet program—the Puppet manifest—for your configuration
is a set of declarations about what things should exist, and how they should be configured.

You don't give commands, such as "Do this, then do that." Rather, you describe how things
should be, and let Puppet take care of making it happen. These are two quite different kinds
of programming. The first (procedural style) is the traditional model used by languages, such
as C, Python, shell, and so on. Puppet's is called declarative style because you declare what
the end result should be, rather than specifying the steps to get there.

This means that you can apply the same Puppet manifest repeatedly to a machine and the
end result will be the same, no matter how many times you run the "program". It's better to
think of Puppet manifests as a kind of executable specification rather than as a program in
the traditional sense.

Resources and attributes
This is powerful because the same manifest—"The curl package should be installed and
the jen user should be present"—can be applied to different machines all running different
operating systems.

Puppet lets you describe configuration in terms of resources—what things should exist—and
their attributes. You don't have to get into the details of how resources are created and
configured on different platforms. Puppet just takes care of it.

Here are some of the kinds of resources you can describe in Puppet:

�� Packages

�� Files

�� Services

�� Users

�� Groups

�� YUM repos

�� Nagios configuration

Introduction to Puppet

[18]

�� Log messages

�� /etc/hosts entries

�� Network interfaces

�� SSH keys

�� SELinux settings

�� Kerberos configuration

�� ZFS attributes

�� E-mail aliases

�� Mailing lists

�� Mounted filesystems

�� Scheduled jobs

�� VLANs

�� Solaris zones

In fact, since you can define custom resources to manage anything that's not covered by the
built-in resources, there are no limits. Puppet allows you to automate every possible aspect
of system configuration.

Summary
A quick rundown of what we've learned in this chapter.

Configuration management
Manual configuration management is tedious and repetitive, it's error-prone, and it
doesn't scale well. Puppet is a tool for automating this process.

You describe your configuration in terms of resources such as packages and files.
This description is called a manifest.

What Puppet does
When Puppet runs on a computer, it compares the current configuration to the manifest. It
will take whatever actions are needed to change the machine so that it matches the manifest.

Puppet supports a wide range of different platforms and operating systems, and it will
automatically run the appropriate commands to apply your manifest in each environment.

Chapter 1

[19]

The Puppet advantage
Using Puppet addresses a number of key problems with manual configuration management:

�� You can write a manifest once and apply it to many machines, avoiding
duplicated work

�� You can keep all your servers in sync with each other, and with the manifest

�� The Puppet manifest also acts as live documentation, which is guaranteed to
be up to date

�� Puppet copes with differences between operating systems, platforms, command
syntaxes, and so on

�� Because Puppet manifests are code, you can version and manage them in the
same way as any other source code

Scaling
The problems with manual configuration management become acute when your
infrastructure scales to 5-10 servers. Beyond that, especially when you're operating in
the cloud where servers can be created and destroyed in response to changing demand,
some way of automating your configuration management is essential.

The Puppet language
Puppet manifests are written in a special language for describing system configuration. This
language defines units called resources, each of which describes some aspect of the system:
a user, a file, a software package, and so on:

package { 'curl':
 ensure => installed,
}

Puppet is a declarative programming language: that is, it describes how things should be,
rather than listing a series of actions to take, as in some other programming languages, such
as Perl or shell. Puppet compares the current state of a server to its manifest, and changes
only those things that don't match. This means you can run Puppet as many times as you
want and the end result will be the same.

First steps with Puppet

Beginnings are such delicate times.

 — Frank Herbert, "Dune"

In this chapter you'll learn how to install Puppet, how to write your first manifest, and how
to put Puppet to work configuring a server. You'll also understand how Puppet reads and
applies a manifest.

File Edit View Text Navigation Bundles Window Help

class memcache {
package { 'memcache':
ensure => present,

}
service { 'memcache':
ensure => running,

}
}

ACME
CHAIR

CO

2

First steps with Puppet

[22]

What you'll need
To follow the examples in this chapter, you'll need a computer, preferably running Linux,
connected to the Internet. You'll also need to be able to run commands in a terminal and do
simple editing of the text files. You'll also need to be able to acquire root-level access via sudo.

Although Puppet runs on a number of different platforms, I'm not going to provide detailed
instructions for all of them. Throughout this book I'll be using the Ubuntu 12.04 LTS "Precise"
distribution of Linux for my examples. I'll point out where specific commands or file locations
are likely to be different for other operating systems.

I'm using an Amazon EC2 cloud instance to demonstrate setting up Puppet, though you
may prefer to use a physical server, a Linux workstation, or a Vagrant virtual machine (with
Internet access). I'll log in as the Ubuntu user and use sudo to run commands that need root
privileges (the default setup on Ubuntu).

Time for action – preparing for Puppet
We need to do a few things to make the server ready for installing Puppet.

1.	 Set a suitable hostname for your server (ignore any warning from sudo):

ubuntu@domU-12-31-39-09-51-23:~$ sudo hostname demo

ubuntu@domU-12-31-39-09-51-23:~$ sudo su -c 'echo demo >/etc/
hostname'

sudo: unable to resolve host demo

2.	 Log out and log back in to check that the hostname is now correctly set:

ubuntu@demo:~$

3.	 Find out the local IP address of the server:

ubuntu@demo:~$ ip addr list |grep eth0$

 inet 10.210.86.209/23 brd 10.210.87.255 scope global eth0

4.	 Copy the IP address of your server (here it's 10.210.86.209) and add this to
the /etc/hosts file (use your own hostname and domain):

ubuntu@demo:~$ sudo su -c 'echo 10.210.86.209 demo demo.example.
com >>/etc/hosts'

sudo: unable to resolve host demo

Chapter 2

[23]

Time for action – installing Puppet
You can get a Puppet package for most Linux distributions from Puppet Labs. Here's how to
install the package for Ubuntu 12.04 Precise:

1.	 Download and install the Puppet Labs repo package as follows:

ubuntu@demo:~$ wget http://apt.puppetlabs.com/puppetlabs-release-
precise.deb

--2013-01-09 13:38:24-- http://apt.puppetlabs.com/puppetlabs-
release-precise.deb

Resolving apt.puppetlabs.com (apt.puppetlabs.com)...
96.126.116.126, 2600:3c00::f03c:91ff:fe93:711a

Connecting to apt.puppetlabs.com (apt.puppetlabs.
com)|96.126.116.126|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 3392 (3.3K) [application/x-debian-package]

Saving to: `puppetlabs-release-precise.deb'

100%[======================================>] 3,392 --.-K/s
in 0.001s

2013-01-09 13:38:25 (2.54 MB/s) - `puppetlabs-release-precise.deb'
saved [3392/3392]

ubuntu@demo:~$ sudo dpkg -i puppetlabs-release-precise.deb

Selecting previously unselected package puppetlabs-release.

(Reading database ... 33153 files and directories currently
installed.)

Unpacking puppetlabs-release (from puppetlabs-release-precise.deb)
...

Setting up puppetlabs-release (1.0-5) ...

2.	 Update your APT configuration as follows:

ubuntu@demo:~$ sudo apt-get update

Ign http://us-east-1.ec2.archive.ubuntu.com precise InRelease

Ign http://us-east-1.ec2.archive.ubuntu.com precise-updates
InRelease

Get:1 http://us-east-1.ec2.archive.ubuntu.com precise Release.gpg
[198 B]

Get:2 http://us-east-1.ec2.archive.ubuntu.com precise-updates
Release.gpg [198 B]

First steps with Puppet

[24]

Ign http://apt.puppetlabs.com precise InRelease

Get:3 http://apt.puppetlabs.com precise Release.gpg [836 B]

Get:4 http://apt.puppetlabs.com precise Release [8,859 B]

...

Fetched 12.6 MB in 6s (1,943 kB/s)

Reading package lists... Done

You can find out how to configure your particular system for the Puppet
Labs repos at the following page:

http://docs.puppetlabs.com/guides/puppetlabs_
package_repositories.html

3.	 Install Puppet as follows:

ubuntu@demo:~$ sudo apt-get -y install puppet

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following extra packages will be installed:

 augeas-lenses debconf-utils facter hiera libaugeas-ruby1.8
libaugeas0

 libjson-ruby libreadline5 libruby libruby1.8 libshadow-ruby1.8
puppet-common

 ruby ruby-json ruby1.8

Suggested packages:

 augeas-doc augeas-tools puppet-el vim-puppet libselinux-ruby1.8
ruby-selinux

 librrd-ruby1.8 librrd-ruby1.9 ri ruby-dev ruby1.8-examples ri1.8

Recommended packages:

 rdoc

The following NEW packages will be installed:

 augeas-lenses debconf-utils facter hiera libaugeas-ruby1.8
libaugeas0

 libjson-ruby libreadline5 libruby libruby1.8 libshadow-ruby1.8
puppet

 puppet-common ruby ruby-json ruby1.8

0 upgraded, 16 newly installed, 0 to remove and 76 not upgraded.

Need to get 3,428 kB of archives.

After this operation, 12.2 MB of additional disk space will be

Chapter 2

[25]

used.

Get:1 http://us-east-1.ec2.archive.ubuntu.com/ubuntu/ precise/main
libreadline5 amd64 5.2-11 [128 kB]

...

Setting up puppet (3.0.2-1puppetlabs1) ...

 * Starting puppet agent

puppet not configured to start, please edit /etc/default/puppet to
enable

[OK]

Processing triggers for libc-bin ...

ldconfig deferred processing now taking place

If you're using Red Hat Enterprise Linux, CentOS, or another Linux distribution
that uses the Yum package system, you should run $ sudo yum install
puppet to install Puppet.

If you're on a Mac, you can download and install suitable DMG images from
Puppet Labs:

https://downloads.puppetlabs.com/mac/

If you're using Windows, you can download the MSI packages from the Puppet
Labs website:

https://downloads.puppetlabs.com/windows/

4.	 Run the following command to check that Puppet is properly installed:

ubuntu@demo:~$ puppet --version

3.0.2

If the version of Puppet you've installed is not exactly the same, it doesn't matter; you'll get
whatever is the latest version made available by Puppet Labs. If you're installing Puppet from
a different place, or from source files, then as long as your version is newer than 3.0, you'll
have no trouble running the examples in this book.

If you have a version of Puppet that is older (for example, Puppet 2.6 or 2.7) you may find
that some things don't work or work differently from the way you'd expect. Many changes
in syntax that were deprecated in older versions, for example, no longer work at all in
Puppet 3.0. I recommend that you upgrade to Puppet 3.0 or later if at all possible.

First steps with Puppet

[26]

Your first manifest
To see what Puppet code looks like, and how Puppet makes changes to a machine,
we'll create a manifest file and have Puppet apply it.

Create the file site.pp anywhere you like, with the following contents:

file { '/tmp/hello':
 content => "Hello, world\n",
}

How it works
You can probably guess what this manifest will do, but I'll explain the code in detail first.

file { '/tmp/hello':

The word file begins a resource declaration for a file resource. Recall that a resource is
some bit of configuration that you want Puppet to manage: for example, a file, user account,
or package. A resource declaration looks like this:

RESOURCE { NAME:
 ATTRIBUTE => VALUE,
 ...
}

RESOURCE indicates the type of resource you're declaring; in this case, it's a file.

NAME is a unique identifier that distinguishes this instance of the resource from any other
that Puppet knows about. With file resources, it's usual for this to be the full path to the file,
in this case, /tmp/hello.

There follows a list of attributes that describe how the resource should be configured. The
attributes available depend on the type of resource. For a file, you can set attributes such as
content, owner, group, and mode.

 content => "Hello, world\n",

The content attribute sets the contents of a file to a string value you provide. Here, the
contents of the file are declared to be Hello, world followed by a newline character.

Note that content specifies the entire content of the file; the string you provide will replace
anything already in the file, rather than being appended to it.

Chapter 2

[27]

Applying the manifest
To have Puppet read a manifest file, apply it to the server, and use the puppet apply
command.

Run the following command in the same directory where you created site.pp:

ubuntu@demo:~$ puppet apply site.pp
Notice: /Stage[main]//Node[demo]/File[/tmp/hello]/ensure: defined
content as '{md5}bc6e6f16b8a077ef5fbc8d59d0b931b9'
Notice: Finished catalog run in 0.05 seconds

What just happened?
Here's how your manifest is processed. First, Puppet reads the manifest file and the list
of resources it contains (in this case, there's just one resource).

Puppet then works through the list, applying each resource in turn:

�� First, it checks if the resource exists on the server. If not, Puppet creates it.

�� In the example, we've declared that the file /tmp/hello should exist. The first
time you run puppet apply, this won't be the case, so Puppet will create the file
for you.

�� Then, for each resource, it checks the value of each attribute in the manifest against
what actually exists on the server.

�� In our example, there's just one attribute, content. We've specified that the
content of the file should be Hello, world. If the file is empty, or contains
something else, Puppet will overwrite the file with what the manifest says it
should contain.

�� In this case, the file will be empty the first time you apply the manifest, so Puppet
will write the string Hello, world into it.

To check the results, run the following command:

ubuntu@demo:~$ cat /tmp/hello
Hello, world

First steps with Puppet

[28]

Modifying existing files
What happens if the file already exists when Puppet runs, and it contains something else?
Will Puppet change it?

ubuntu@demo:~$ echo Goodbye, world >/tmp/hello

ubuntu@demo:~$ puppet apply site.pp

Notice:/Stage[main]//File[/tmp/hello]/content: content
changed '{md5}cb2e4f7a21c01004462dd0a5ed9bd02a' to '{md5}
a7966bf58e23583c9a5a4059383ff850'

Notice: Finished catalog run in 0.04 seconds

ubuntu@demo:~$ cat /tmp/hello

Hello, world

The answer is yes. If any attribute of the file, including its contents, doesn't match the
manifest, Puppet will change it so that it does.

This can lead to some surprising results if you manually edit a file managed by Puppet.
If you make changes to a file without also changing the Puppet manifest to match,
Puppet will overwrite the file the next time it runs, and your changes will be lost.

So it's a good idea to add a comment to files that Puppet is managing; something like:

This file is managed by Puppet - any manual edits will be lost

Add this to Puppet's copy of the file when you first deploy it, and it will remind you and
others not to make manual changes.

Exercise
Modify your manifest to have Puppet write a message to the system's /etc/motd file.
It should be a cheerful, encouraging message so that users logging on to the system will
feel that Puppet has things under control.

Organizing your manifests
So far your manifest for this machine is contained in a single file, but we're going to expand
on that. Before things get more complicated, it's a good idea to set up a directory layout to
keep files organized, like any source code.

Chapter 2

[29]

Time for action – creating a directory structure
1.	 The top-level directory for Puppet manifests is usually named puppet, so first of all

create this in your home directory:

ubuntu@demo:~$ cd /home/ubuntu

ubuntu@demo:~$ mkdir puppet

2.	 Within this directory, create a subdirectory named manifests:

ubuntu@demo:~$ cd puppet

ubuntu@demo:~/puppet$ mkdir manifests

3.	 Move your existing site.pp file into the manifests subdirectory:

ubuntu@demo:~/puppet$ mv ../site.pp manifests/

4.	 Check that everything still works:

ubuntu@demo:~/puppet$ puppet apply manifests/site.pp

Notice: Finished catalog run in 0.03 seconds

Your directory structure should now look as shown in the following diagram:

puppet

manifests

site.pp

Creating a nodes.pp file
So far we've only dealt with one server, the demo server. But of course Puppet can manage
many machines, each with different configurations, so we need a way to tell Puppet which
configuration belongs to each machine.

This is done with a node declaration ("node" is the Puppet term for an individual machine
that has a Puppet configuration). A node declaration looks like this:

node NODENAME {
 RESOURCE
 RESOURCE
 ...
}

First steps with Puppet

[30]

Here NODENAME is the hostname of the relevant machine, and RESOURCE is a resource
declaration.

If resources are not contained inside a node declaration, Puppet will always apply them
(as we saw with the /tmp/hello file). But if they are inside a node declaration, Puppet
will apply them only on a machine whose hostname matches the node name.

You could put all your Puppet manifests in a single file, and it would make no difference to
Puppet. But it's much better and easier to manage if you break them up into several files.
Conventionally, the top-level "master" file that includes everything else is named site.pp.
You should put your node declarations in a file named nodes.pp, and we'll do this in the
next example.

Time for action – creating a node declaration
Let's reorganize the manifest to move the /tmp/hello file within a node declaration for the
demo server.

1.	 Create the file manifests/nodes.pp with the following contents:

node 'demo' {
 file { '/tmp/hello':
 content => "Hello, world\n",
 }
}

2.	 Change the manifests/site.pp file so it contains:

import 'nodes.pp'

3.	 Your puppet directory should now look as shown in the following diagram:

puppet

manifests

nodes.pp
site.pp

4.	 Check whether everything still works:

ubuntu@demo:~/puppet$ puppet apply manifests/site.pp

Notice: Finished catalog run in 0.03 seconds

Chapter 2

[31]

What just happened?
When you run puppet apply, Puppet looks at the hostname of the machine (demo in this
case) and tries to find a node declaration that matches it. It finds one:

node 'demo' {
 file { '/tmp/hello':
 content => "Hello, world\n",
 }
}

So it will apply everything within the node 'demo' declaration, which in our example has
already been applied, so there's nothing for Puppet to do for now.

Although Puppet doesn't really mind how you organize your manifests within files—you can
have everything within one big site.pp file if you like—it's a good idea to split them up into
logical divisions. A common practice is to keep site.pp fairly small and just use it to load
other manifest files, such as nodes.pp.

Summary
A quick rundown of what we've learned in this chapter.

Installing Puppet
You can install Puppet by downloading and installing the Puppet Labs APT repo package,
then running apt-get install puppet.

Manifests
A manifest consists of a list of resource declarations. A resource declaration specifies
a particular aspect of system configuration that you want Puppet to manage: a file,
for example.

Resource declarations consist of a name and a list of attributes. The resource name is a
unique identifier, which you can use to refer to this specific resource, if you need to. Its
attributes specify various things about the resource that you want to control with Puppet.

Different types of resources have different attributes, but for a file resource, attributes
include content, which specifies the contents of the file as a string.

First steps with Puppet

[32]

Puppet processes a manifest by comparing the specified resources to what currently exists
on the machine. Any missing resources will be created; attributes that do not match will be
changed to match the manifest.

Manual changes to a file managed by Puppet will be lost when Puppet next applies
the manifest.

Nodes
Node declarations identify a specific machine by its hostname, and tell Puppet which
resources should be applied to that node. Any resources that are not part of a node
declaration will be applied to all nodes. Put your node declarations in nodes.pp.

Packages, Files, and Services
It's not denial. I'm just selective about the reality I accept.

 – Bill Watterson, "Calvin & Hobbes"

The most common types of resources you'll manage with Puppet are packages, files, and
services. They often occur together, with a package providing a service, and the service
requiring a configuration file. In this chapter you'll see how to use Puppet to manage these
resources effectively.

WILL THAT
BE ALL, SIR?

COFFEE

THANKS,
ROBOT

BUTLER!

BACON

3

Packages, Files, and Services

[34]

Packages
Puppet's package resource will install, update, or remove a package for you, using the system
native package management tools (in the case of Ubuntu, that's the Advanced Package Tool
(APT). If you were setting up a server manually, you might run a command such as:

apt-get install nginx

With Puppet, you can give a resource declaration such as:

package { 'nginx':
 ensure => installed,
}

Puppet will take the necessary actions by running apt-get behind the scenes.

Time for action – installing Nginx
Your mission for today is to use Puppet to install the Nginx web server and deploy a holding
page for the cat-pictures.com website. Let's start by recalling what your Puppet
directory structure should look like, as shown in the following diagram:

1.	 Edit the nodes.pp file so it looks like this:

node 'demo' {
 package { 'nginx':
 ensure => installed,
 }
}

Replace demo with the hostname of the machine you're using.

Chapter 3

[35]

2.	 Run Puppet:

ubuntu@demo:~/puppet$ sudo puppet apply manifests/site.pp

Notice: /Stage[main]//Node[demo]/Package[nginx]/ensure: ensure
changed 'purged' to 'present'

Notice: Finished catalog run in 3.10 seconds

What just happened?
Let's look at the preceding code in detail:

node 'demo' {
 ...
}

Remember that the node keyword introduces a node declaration, a list of resources that are
to be applied only to node demo.

package { 'nginx':
 ensure => installed,
}

In this case, there is one resource, of type package. As with the file resource we created
in Chapter 2, First steps with Puppet, the resource declaration consists of the following:

�� The type of resource: package

�� The name of the instance: nginx

�� A list of attributes

Each resource type has a different list of attributes that you can control. A useful attribute
for package resources is ensure. We use this attribute to install (or sometimes remove)
packages.

ensure => installed,

When we apply this manifest, Puppet checks whether the nginx package is installed.
If this is the first time you've applied the manifest, the package probably won't be present,
so Puppet prints a message telling us that the package is being installed:

Notice: /Stage[main]//Node[demo]/Package[nginx]/ensure: ensure changed
'purged' to 'present'

As we saw with the file resource, once the resource has been created the first time,
subsequent Puppet runs will do nothing because the state of the system already matches
the manifest:

ubuntu@demo:~/puppet$ sudo puppet apply manifests/site.pp

Notice: Finished catalog run in 0.08 seconds

Packages, Files, and Services

[36]

More about packages
We've seen how to use the package resource to install packages, but it has a few
other tricks.

Installing specific versions
If you specify ensure => installed for a package, Puppet will install whatever is the
current version of the package available from the repository at the time. This can cause
differences between machines that are built at different times. Say you build webserver1
on Monday, and on Tuesday morning a new version of Nginx is released upstream and
pushed to the Ubuntu repositories. When you build webserver2 on Tuesday afternoon,
it will pick up a different version of Nginx than webserver1. So the machines end up with
different configurations.

We'd prefer that our servers all be in the same state. To make sure this is the case, you can
specify a version identifier for the package instead of installed:

package { 'nginx':
 ensure => '1.1.19-1ubuntu0.1',
}

The exact version string will depend on the Linux distribution and package repository you're
using. To see what version of a package you currently have installed on Ubuntu, you can run
the following command:

ubuntu@demo:~/puppet$ apt-cache policy nginx

nginx:

 Installed: 1.1.19-1ubuntu0.1

 Candidate: 1.1.19-1ubuntu0.1

 Version table:

 *** 1.1.19-1ubuntu0.1 0

 500 http://us-east-1.ec2.archive.ubuntu.com/ubuntu/ precise-
updates/universe amd64 Packages

 100 /var/lib/dpkg/status

 1.1.19-1 0

 500 http://us-east-1.ec2.archive.ubuntu.com/ubuntu/ precise/
universe amd64 Packages

Chapter 3

[37]

What if package names are different on different operating systems? This does
happen; for example, the package that manages NTP may be called ntp on
some distributions and ntpd on others. If you have to write Puppet code that
takes account of platform differences like this, you can use a Puppet construct
called a selector to choose the appropriate package name. This is explained in
detail later in the book, in Chapter 8, Expressions and Logic.

Removing packages
Occasionally you need to make sure a package is removed entirely from a machine, perhaps
because it could cause conflicts with a package you're installing. If you're using the Nginx
web server, for example, it's a good idea to remove the Apache package that ships with
Ubuntu by default. If Apache is running, Nginx can't start, because Apache will grab the web
server port.

package { 'apache2.2-common':
 ensure => absent,
}

Using ensure => absent will remove the package if it's installed.

Updating packages
Another value that ensure can take on a package resource is latest. This will cause
Puppet to check which version of the package is available in the repository (if you're using
Ubuntu, this includes any additional APT sources that you may have configured, such as the
Puppet Labs repo). If it is newer than the installed version, Puppet will upgrade the package
to the latest version.

package { 'puppet':
 ensure => latest,
}

Just because you can do this doesn't mean it's necessarily a good idea. Upgrading a
package version can cause unexpected failures or problems, so I tend to avoid doing this on
production systems. I certainly don't want it happening automatically, in the middle of the
night, when I'm not around to respond to any issues.

If you run a staging server on which you can test any updates or changes before applying
them to production (an approach I heartily endorse), this can be a good way to do it. You can
have your staging server ensure => latest for critical packages and thus find out straight
away if a new upstream package release breaks your system.

Packages, Files, and Services

[38]

Also, ensure => latest can be a good way of managing updates if you control the
package repository (for example, if you run your own APT repo. You can find a recipe to
do this in Chapter 5, Working with Files and Packages of The Puppet Cookbook, Packt
Publishing). In this situation, you only release a package to your repository once you have
tested it thoroughly and verified that it doesn't cause any problems. Once it's available in the
repo, all machines will update their versions automatically using ensure => latest.

Modules
To make your Puppet manifests more readable and maintainable, it's a good idea to arrange
them into modules. A Puppet module is a way of grouping related resources. In our example,
we're going to make an nginx module that will contain all Puppet code relating to Nginx.

Time for action – creating an Nginx module
1.	 In your puppet directory, create the following subdirectories:

ubuntu@demo:~/puppet$ mkdir modules

ubuntu@demo:~/puppet$ mkdir modules/nginx

ubuntu@demo:~/puppet$ mkdir modules/nginx/manifests

2.	 Create the file modules/nginx/manifests/init.pp with the following
contents:

Manage nginx webserver
class nginx {
 package { 'nginx':
 ensure => installed,
 }
}

3.	 Edit the manifests/nodes.pp file as follows:

node 'demo' {
 include nginx
}

4.	 Run Puppet to make sure everything is correct. There should be no changes:

ubuntu@demo:~/puppet$ sudo puppet apply manifests/site.pp
--modulepath=/home/ubuntu/puppet/modules/

Notice: Finished catalog run in 0.08 seconds

Chapter 3

[39]

Your directory structure should now look like this:

What just happened?
We've reorganized the code without changing what it actually does (a process called
refactoring). Before the refactoring, our node declaration looked like this:

node 'demo' {
 package { 'nginx':
 ensure => installed,
 }
}

Now the node declaration looks like this:

node 'demo' {
 include nginx
}

You can see that the nginx resource has been replaced by the line include nginx.
To Puppet, this means, "Look for a class called nginx and include all the resources in
it on this node."

A class in Puppet is simply a named bundle of resources that you want to apply together.
A module might contain many classes, but our example nginx module just contains one
class, also named nginx:

class nginx {
 package { 'nginx':
 ensure => installed,
 }
}

The class keyword declares a group of resources (here, the package resource for Nginx)
identified by the name nginx. We can then use the include keyword elsewhere to include
all the resources in the class at once.

Packages, Files, and Services

[40]

Why do this? Well, for one thing, it means we could include the nginx class on many nodes
without repeating the same resource declarations over and over:

node 'demo' {
 include nginx
}

node 'demo2' {
 include nginx
}

node 'demo3' {
 include nginx
}

But we're getting ahead of ourselves. For now, let's just say that grouping resources into
classes and modules helps us organize our code so it's easy to read and maintain.

Did you notice we used a slightly different form of the puppet apply
command?

puppet apply manifests/site.pp --modulepath=/home/ubuntu/puppet/modules/

We haven't needed to give a modulepath argument before, but now we're
using a module, so we need to tell Puppet where to find it.

Time for action – making a "puppet apply" command
You'll be running puppet apply pretty often, so to save typing I suggest you make a little
script to wrap this command up with all the arguments you need.

1.	 Create the file /usr/local/bin/papply using the following command:

ubuntu@demo:~/puppet$ sudo vi /usr/local/bin/papply

2.	 Add the following contents (the sudo puppet apply... command should all be
on one line):

#!/bin/sh

sudo puppet apply /home/ubuntu/puppet/manifests/site.pp
--modulepath=/home/ubuntu/puppet/modules/ $*

3.	 Set execute permissions on this file:

ubuntu@demo:~/puppet$ sudo chmod a+x /usr/local/bin/papply

Now whenever you need to run Puppet, you can simply run:

ubuntu@demo:~/puppet$ papply

Chapter 3

[41]

Services
So we're using a module to manage Nginx on the server. That's great, but so far we've only
installed the nginx package. In order to run the web server, we would need to start and stop
it manually using the command line. Fortunately, we can automate this with Puppet as well.

Time for action – adding the Nginx service
1.	 Edit the modules/nginx/manifests/init.pp file as follows:

Manage nginx webserver
class nginx {
 package { 'apache2.2-common':
 ensure => absent,
 }

 package { 'nginx':
 ensure => installed,
 require => Package['apache2.2-common'],
 }

 service { 'nginx':
 ensure => running,
 require => Package['nginx'],
 }
}

2.	 Run Puppet as follows:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]/Nginx/Package[apache2.2-common]/ensure:
removed

Notice: /Stage[main]/Nginx/Service[nginx]/ensure: ensure changed
'stopped' to 'running'

Notice: Finished catalog run in 0.47 seconds

What just happened?
Let's look at the code you added in detail:

package { 'apache2.2-common':
 ensure => absent,
}

Packages, Files, and Services

[42]

On Ubuntu, the default setup includes the Apache web server, which would conflict with
Nginx if we tried to run it at the same time. So by specifying ensure => absent, we
remove the Apache package.

The next section declares the nginx package:

package { 'nginx':
 ensure => installed,
 require => Package['apache2.2-common'],
}

The require attribute tells Puppet that this resource depends on another resource,
which must be applied first. In this case, we want the removal of Apache to be applied
before the installation of Nginx. We'll see more about the require attribute in the
Requiring resources section.

Is there any implied order to attributes? In other words, does Puppet do the
ensure part before the require part, or doesn't it matter what order you
list them in? Actually, it doesn't matter; Puppet will consider all the attributes
of a resource before making any changes, so you can think of them as all
being applied at the same time. If a resource uses ensure, it's good style to
put that first, but it doesn't make any difference to Puppet.

Next, we declare the nginx service:

service { 'nginx':
 ensure => running,
 require => Package['nginx'],
}

By now you know that this declares a resource of type service. Service resources manage
daemons, or background processes, on the server. The ensure attribute tells Puppet what
state the service should be in:

ensure => running,

When you ran Puppet, it checked the status of the nginx service and found it stopped,
so Puppet started the service for you:

Notice: /Stage[main]/Nginx/Service[nginx]/ensure: ensure changed
'stopped' to 'running'

If you ran Puppet again, there would be no change because Nginx is already running, so the
server matches the manifest.

Chapter 3

[43]

On Ubuntu, packages that provide a service (such as Nginx) are often
configured to start the service automatically when they're installed. However,
we make this explicit in Puppet by saying the following:

ensure => running,

On other operating systems, services may not be set up to auto-start when
installed, and in any case we want to have Puppet ensure that the service is
always running. If it gets stopped for any reason, Puppet will restart it when
the manifest is applied.

Requiring resources
What about that require attribute? require specifies a dependency between resources.
For example, we have to have the Nginx package installed before we can run the Nginx
service. That makes sense, and the require attribute expresses this relationship between
the two resources.

require => Package['nginx'],

Any resource can have a require attribute, and the value must be another resource
declared somewhere in your manifest.

Did you notice that Package is capitalized? That tells Puppet you're referring
to a named instance of a package resource, with the name following in square
brackets:

Package['nginx']

You might wonder what happens if your resources require each other in a loop: one
resource requires another, which requires another, which requires the first resource,
similar to this:

file { '/tmp/file1':
 require => File['/tmp/file2'],
}
file { '/tmp/file2':
 require => File['/tmp/file3'],
}
file { '/tmp/file3':
 require => File['/tmp/file1'],
}

Packages, Files, and Services

[44]

Will Puppet just go round and round in circles forever? Let's see:

ubuntu@demo:~/puppet$ papply

Error: Could not apply complete catalog: Found 1 dependency cycle:

(File[/tmp/file1] => File[/tmp/file3] => File[/tmp/file2] => File[/tmp/
file1])

Try the '--graph' option and opening the resulting '.dot' file in
OmniGraffle or GraphViz

Sometimes dependency cycles can be more subtle than this, and harder to figure out.
As the error message suggests, you can get some help by giving the --graph option to
Puppet, which will then produce a diagram of the dependency cycle for you.

Note that Puppet can only figure out explicit dependency cycles, as in this example. More
problematic are cycles caused by side effects; if a file notifies a service, and the service itself
causes the file to change, Puppet will detect that the file has changed and so notify the
service, and this will continue forever. Happily, this situation doesn't arise very often, but it
can be hard to work out what's going on when it does.

More about services
Puppet's service resource has a few other facilities, depending on the underlying operating
system and what it supports. Here are some of the features you are most likely to use
(and that are supported on Ubuntu).

Starting a service at boot time
Puppet can control whether a service starts during the system boot process, using the
enable attribute:

service { 'nginx':
 ensure => running,
 enable => true,
}

Setting enable => true will configure the service to start at boot time (specifically, on
Ubuntu, to start in runlevels 2, 3, 4, and 5, and stop in runlevels 0, 1, and 6). To disable
the automatic service startup (for example, if the service is managed by a high-availability
framework such as Heartbeat), set enable => false.

Chapter 3

[45]

Services that don't support "status"
Most init and upstart (service management) scripts on Ubuntu support the start and
stop commands; for example:

ubuntu@demo:~/puppet$ sudo service nginx stop

Stopping nginx: nginx.

ubuntu@demo:~/puppet$ sudo service nginx start

Starting nginx: nginx.

Some also support a status command, which determines whether or not the service is
currently running:

ubuntu@demo:~/puppet$ sudo service nginx status

 * nginx is running

When Puppet manages a service, it will try to use the status command to check the
service's status. In some cases this doesn't work, either because the script doesn't support
the status argument or because it returns an incorrect exit code. If you have this problem,
you can use the hasstatus attribute to change this behavior:

service { 'my-service':
 ensure => running,
 hasstatus => false,
}

If hasstatus is false for a service, Puppet will instead look at the system process list
(such as that produced by the ps command) and see if the service name is listed in it.
If it is, Puppet assumes the service is running. Otherwise, it will attempt to start it.

If the service name itself wouldn't appear in the process list, you can specify a different
pattern for Puppet to search for using the pattern attribute:

service { 'my-service':
 ensure => running,
 hasstatus => false,
 pattern => 'ruby myservice.rb',
}

If the service status can't be detected from the process list, you can give Puppet a command
to run that will return an appropriate exit status (0 for running, any other value for not
running) using the status attribute:

service { 'my-service':
 ensure => running,
 hasstatus => false,
 status => 'grep running /var/lib/myservice/status.txt',
}

Packages, Files, and Services

[46]

Specifying how to start, stop, or restart a service
Sometimes Puppet needs to restart the service (for example, if its config file changes and
you are using notify to tell the service about it). By default Puppet will stop the service,
then start it.

However, some services support a restart or reload command, which may be preferable
to stopping and starting the service. For example, some daemons keep a lot of state
information in memory, and if you stopped the service this would be lost.

In this case, you can specify a command that Puppet should use to restart the service using
the restart attribute:

service { 'ssh':
 ensure => running,
 restart => '/usr/sbin/service ssh reload',
}

If you need to, you can also provide a start or stop attribute, specifying commands to start
or stop the service. This isn't usually necessary, but it's there just in case.

Files
So Nginx is installed and running, but it's not yet serving a website. To do that, we have to
have Puppet install a config file on the server to define an Nginx virtual host. This will tell
Nginx how to respond to requests for the cat-pictures website.

Time for action – deploying a virtual host
First, we'll create a simple website for Nginx to serve.

1.	 Create the directory /var/www/cat-pictures:

ubuntu@demo:~/puppet$ sudo mkdir -p /var/www/cat-pictures

2.	 Add a small HTML file:

ubuntu@demo:~/puppet$ sudo su -c 'echo "I can haz cat pictures?"
>/var/www/cat-pictures/index.html'

Next, we'll create the virtual host file for Puppet to deploy:

3.	 Create the directory modules/nginx/files:

ubuntu@demo:~/puppet$ mkdir modules/nginx/files

Chapter 3

[47]

4.	 Create the file modules/nginx/files/cat-pictures.conf with the
following contents:

server {
 listen 80;
 root /var/www/cat-pictures;
 server_name cat-pictures.com;
}

Next, we'll add a resource that will deploy this file to the server.

5.	 Edit the file modules/nginx/manifests/init.pp so it looks like this:

Manage nginx webserver
class nginx {
 package { 'nginx':
 ensure => installed,
 }

 service { 'nginx':
 ensure => running,
 require => Package['nginx'],
 }

 file { '/etc/nginx/sites-enabled/default':
 source => 'puppet:///modules/nginx/cat-pictures.conf',
 notify => Service['nginx'],
 }
}

Be careful with the source value in the code above. It starts with
puppet followed by three slashes, not two:

puppet:///modules/nginx...

Not
puppet://modules/nginx...

6.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]/Nginx/File[/etc/nginx/sites-enabled/default]/
ensure: defined content as '{md5}0750fd1b8da76b84f2597de76c1b9bce'

Notice: /Stage[main]/Nginx/Service[nginx]: Triggered 'refresh'
from 1 events

Notice: Finished catalog run in 0.36 seconds

Packages, Files, and Services

[48]

7.	 Finally, to make sure everything worked properly, request the website:

ubuntu@demo:~/puppet$ curl localhost

I can haz cat pictures?

What just happened?
Here's the new Puppet code we added:

file { '/etc/nginx/sites-enabled/default':
 source => 'puppet:///modules/nginx/cat-pictures.conf',
 notify => Service['nginx'],
}

Again, we'll go through it line by line.

file { '/etc/nginx/sites-enabled/default':

We're declaring a file resource with the path /etc/nginx/sites-enabled/default.

source => 'puppet:///modules/nginx/cat-pictures.conf',

source is a file attribute that we haven't seen before. Previously we used content to
supply the contents of the file as a string. Here, source tells Puppet where to find a copy
of the file:

puppet:///modules/nginx/cat-pictures.conf

This looks a bit like a URL, but it tells Puppet to look in the modules/nginx/files
directory for a file named cat-pictures.conf.

Notice that the source URL doesn't contain the word files. It's just
puppet:///modules/MODULENAME/FILENAME. When Puppet
translates this URL into a disk path, it becomes modules/MODULENAME/
files/FILENAME. If you find this confusing, you're in good company.

One question that might occur to you is, "What about when I'm running Puppet on several
different machines? Where does the file come from in that case? Will each machine have its
own copy of the file, or will it come from some central place?"

The answer depends on how you run Puppet across multiple machines; whether you use a
central server (known as a Puppetmaster) or whether each machine gets its own copy of the
manifest. We'll explore this in detail later, and build a complete working solution, in Chapter
4, Managing Puppet with Git.

Chapter 3

[49]

Notifying other resources
notify is another attribute that we haven't seen before:

notify => Service['nginx'],

It means "whenever this file is changed, tell Service['nginx'] to restart". That's what we
saw happen as Puppet deployed the file (which of course counts as a change):

Notice: /Stage[main]/Nginx/File[/etc/nginx/sites-enabled/default]/ensure:
defined content as '{md5}0750fd1b8da76b84f2597de76c1b9bce'

Notice:/Stage[main]/Nginx/Service[nginx]: Triggered 'refresh' from 1
events

When a file resource notifies a service resource, the file must be
present before the service is started. So if a file notifies a service, it's just
another way of saying that the service requires the file. You can express the
relationship either way, and the result will be the same.

The package–file–service pattern
The pattern you've just learnt is a very useful one. It'll cover most services that you
need to automate.

class THE_STUFF {
 package { THE_STUFF:
 ensure => installed,
 }

 service { THE_STUFF:
 ensure => running,
 require => Package[THE_STUFF],
 }

 file { '/etc/THE_STUFF.conf':
 source => 'puppet:///modules/THE_STUFF/THE_STUFF.conf',
 notify => Service[THE_STUFF],
 }
}

Packages, Files, and Services

[50]

In English, this says:

�� The service THE_STUFF should be running

�� Before the service THE_STUFF is started, the package THE_STUFF should
be installed

�� Before the service THE_STUFF is started, the file /etc/THE_STUFF.conf
should be present (remember that "A notifies B" implies "B requires A")

�� If the file /etc/THE_STUFF.conf changes, restart the service THE_STUFF

Exercise
Modify the nginx class to create /var/www/cat-pictures and the index.html file you
previously set up manually.

Summary
A quick rundown of what we've learnt in this chapter.

Packages
The package resource is used to manage packages. To install a package, you set the ensure
attribute to installed.

To remove the package, use ensure => absent.

To install a specific version VERSION, use ensure => VERSION.

To install the latest version of the package available in the repo, use ensure => latest.

Modules
To help organize your code, you can put related resources into a module. For example, to
create an nginx module, create the file modules/nginx/manifests/init.pp and put
this in it:

Manage nginx webserver
class nginx {
 ...
}

To apply this to a node, use:

include nginx

Chapter 3

[51]

Services
To manage services, use the service resource type. The ensure attribute controls whether
or not the service should be running. To specify that the service should be running, use
ensure => running. To specify that it should be stopped, use ensure => stopped.

Starting services at boot
The enable attribute controls whether or not a service is started at boot time. To start the
service at boot time, use enable => true. If you don't want it to start on boot (unlikely,
but possible) use enable => false.

Service status options
Puppet will use the service's own control script to determine whether the service is running,
by calling service SERVICENAME status (at least on UNIX-like systems).

If a service's control script doesn't support a status command, you can set hasstatus =>
false for the service resource. In this case, Puppet will look in the system process table to
see if the service is running.

If you need Puppet to search the process table for something other than the service's name,
you can specify what to search for using the pattern attribute.

If searching the process table won't work, you can provide a command for Puppet to use to
determine the service's status, using the status attribute.

Service control commands
If you want to restart a service some other way than just stopping and starting the service,
you can give Puppet the command you want to use via the restart attribute.

You can also specify custom service start and stop commands using the start and
stop attributes.

Resource dependencies
You can specify a dependency between resources using the require attribute:

require => Package['nginx'],

If resource B requires resource A, then Puppet will make sure the resources are applied in
the right order.

Packages, Files, and Services

[52]

Files
You can have Puppet deploy a copy of a file using the source attribute:

file { '/etc/nginx/sites-enabled/default':
 source => 'puppet:///modules/nginx/cat-pictures.conf',
}

File resources can trigger a service to be restarted using the notify attribute. This is useful
for configuration files, for which changes often don't take effect until the relevant service
is restarted:

notify => Service['nginx'],

Managing Puppet with Git

If you do not change direction, you may end up where you are heading.

 – Lao-tzu

In this chapter you'll learn how to use the Git version control system to manage your Puppet
manifests. I'll also show you how to use Git to distribute the manifests to multiple machines,
so that you can start managing your whole network with Puppet.

IT’S GREAT BEING

IN CONTROL!

If you're already familiar with Git, you can save some reading by skipping ahead
to the Time for action – importing your manifests into Git section. If not, here's
a gentle introduction.

4

Managing Puppet with Git

[54]

What is version control?
If you haven't used Git, or a similar version control tool (CVS and Subversion are some other
examples), you might be wondering what it is and why we should use it. To explain this,
let's look back to one of the system administration problems we talked about in Chapter 1,
Introduction to Puppet: the problem of tracking code changes.

Even if you're the only person who works on a piece of source code (for example, Puppet
manifests), it's still useful to be able to see what changes you made, and when. For example,
you might remember that you fixed a bug last week, but not exactly how, and it would be
handy to be able to see exactly what lines in which file were changed.

When you're working on code with others, you need a way to communicate changes to the
rest of the team. A version control tool such as Git not only tracks everyone's changes, but
lets you record a message about what you did and why. For example, a change might be
marked with the following message:

Author: John Arundel <john@bitfieldconsulting.com>

Date: Wed Aug 8 18:57:25 2012 +0100

 Increase conntrack table size on proxy servers (fixes issue #110)

It tells you when the change happened, who made it, and (if the commit message is well
written) why it was made. You can also see what file was changed, and which lines were
added, altered, or removed as follows:

modules/proxy/files/sysctl.conf

+net.ipv4.netfilter.ip_conntrack_max = 256000

Imagine you're trying to track down a bug; having a complete history of code changes would
be a big help. It also means you can, if necessary, roll back the state of the code to any point
in history and examine it.

You might think this introduces a lot of extra complications. In fact, it's very simple. Git keeps
out of your way until you need it, and all you have to do is write a commit message when
you decide to record changes to the code.

Another very important role of version control is to allow several people to work
independently on the code, and to merge all their separate changes back together and
resolve any conflicts. Git provides very powerful tools for doing this. If you're working on
Puppet code in a team, it's critical that you use some kind of version control to handle it.

In this chapter we'll add Git version control to the manifests we've been developing, and I'll
show you some of the useful things Git can do.

Chapter 4

[55]

Time for action – importing your manifests into Git
1.	 Run the following command:

ubuntu@demo:~$ sudo apt-get install git

2.	 Check if Git is correctly installed (the exact version number doesn't matter,
as long as it's reasonably up-to-date):

ubuntu@demo:~$ git --version

git version 1.7.9.5

3.	 Now initialize Git in your /home/ubuntu/puppet directory:

ubuntu@demo:~$ cd puppet

ubuntu@demo:~/puppet$ git init

Initialized empty Git repository in /home/ubuntu/puppet/.git/

4.	 Now set your identification details for Git (use your own name and e-mail):

ubuntu@demo:~/puppet$ git config --global user.name "John Arundel"

ubuntu@demo:~/puppet$ git config --global user.email john@
bitfieldconsulting.com

5.	 Tell Git to manage all the files and subdirectories in this directory:

ubuntu@demo:~/puppet$ git add .

6.	 Finally, have Git take a snapshot of the current state of the code:

ubuntu@demo:~/puppet$ git commit -m "importing"

[master (root-commit) 36f88cb] importing

 4 files changed, 25 insertions(+)

 create mode 100644 manifests/nodes.pp

 create mode 100644 manifests/site.pp

 create mode 100644 modules/nginx/files/cat-pictures.conf

 create mode 100644 modules/nginx/manifests/init.pp

What just happened?
Git tracks changes to a particular set of files. The changes are stored in Git's database, known
as a repository ("repo" for short). When you run the git init command, it tells Git to
create a new repository in the current directory.

When you create a new repo, it contains no files, so the git add command adds files to the
list that Git should track:

git add .

Managing Puppet with Git

[56]

This command adds everything in this directory. The full stop (.) is UNIX shorthand for the
current directory.

Instead of storing every successive version of a file, Git just keeps the differences.
For example, if you add a line to a file and then commit that change, Git stores only
the new line and the details of which file it modifies.

For this to work, of course, there has to be an initial commit; a snapshot of the starting state
that Git will then track changes from. This first commit is what you created when you ran the
following command:

git commit -m "Importing"

The -m switch lets you attach a message to the commit, so that you or other people can see
your comments in the history.

Time for action – committing and inspecting changes
Let's make a change to the manifest and then use Git to see some information about it.

1.	 Edit the file modules/nginx/manifests/init.pp and find the section defining
the nginx service:

service { 'nginx':
 ensure => running,
 require => Package['nginx'],
}

2.	 Add the following line:

service { 'nginx':
 ensure => running,
 enable => true,
 require => Package['nginx'],
}

3.	 Save the file and run the following command:

ubuntu@demo:~/puppet$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

#

modified: modules/nginx/manifests/init.pp

Chapter 4

[57]

#

no changes added to commit (use "git add" and/or "git commit -a")

4.	 Use git diff to show you how the code differs from the snapshot taken at
the last commit:

ubuntu@demo:~/puppet$ git diff

diff --git a/modules/nginx/manifests/init.pp b/modules/nginx/
manifests/init.pp

index b152f17..f272a7c 100644

--- a/modules/nginx/manifests/init.pp

+++ b/modules/nginx/manifests/init.pp

@@ -5,6 +5,7 @@ class nginx {

 service { 'nginx':

 ensure => running,

+ enable => true,

 require => Package['nginx'],

 }

5.	 Add the changed file to the set that will be included in the next commit:

ubuntu@demo:~/puppet$ git add modules/nginx/manifests/init.pp

6.	 Commit the change:

ubuntu@demo:~/puppet$ git commit -m "Have nginx start at boot
time"

[master ad71988] have nginx start at boot time

 1 file changed, 1 insertion(+)

7.	 Check the log of changes:

ubuntu@demo:~/puppet$ git log

commit ad719887ef68535dd6b76bab8bcee9b76edb3c98

Author: John Arundel <john@bitfieldconsulting.com>

Date: Mon Oct 22 17:08:34 2012 +0000

 Have nginx start at boot time

commit 36f88cbf36782bd8e74499bb23a3a8aa5cc44ef9

Author: John Arundel <john@bitfieldconsulting.com>

Date: Mon Oct 22 16:38:58 2012 +0000

 Importing

Managing Puppet with Git

[58]

8.	 Use git whatchanged to have Git display a diff showing what was changed in
the commit:

ubuntu@demo:~/puppet$ git whatchanged -p -n 1

commit ad719887ef68535dd6b76bab8bcee9b76edb3c98

Author: John Arundel <john@bitfieldconsulting.com>

Date: Mon Oct 22 17:08:34 2012 +0000

 Have nginx start at boot time

diff --git a/modules/nginx/manifests/init.pp b/modules/nginx/
manifests/init.pp

index b152f17..f272a7c 100644

--- a/modules/nginx/manifests/init.pp

+++ b/modules/nginx/manifests/init.pp

@@ -5,6 +5,7 @@ class nginx {

 service { 'nginx':

 ensure => running,

+ enable => true,

 require => Package['nginx'],

 }

What just happened?
The line you added to nginx.pp is useful; it tells Puppet to configure the nginx service so
that it starts when the machine boots.

 enable => true,

You have now changed the code so that it differs from that stored in Git's database, and you
can see which files are different using git status:

modified: modules/nginx/manifests/init.pp

To see exactly what the differences are, use git diff:

 service { 'nginx':
 ensure => running,
+ enable => true,
 require => Package['nginx'],
 }

Chapter 4

[59]

The + indicates a line was added.

The next step was to tell Git to include this change in the next commit, by using the
git add command:

ubuntu@demo:~/puppet$ git add modules/nginx/manifests/init.pp

Now you make the actual commit, with a suitable explanatory message:

ubuntu@demo:~/puppet$ git commit -m "have nginx start at boot time"

The change (or more accurately, set of changes; in this case we only made one) is now stored
in Git's database, and we can see it using the git log command:

ubuntu@demo:~/puppet$ git log

commit ad719887ef68535dd6b76bab8bcee9b76edb3c98

Author: John Arundel <john@bitfieldconsulting.com>

Date: Mon Oct 22 17:08:34 2012 +0000

 Have nginx start at boot time

commit 36f88cbf36782bd8e74499bb23a3a8aa5cc44ef9

Author: John Arundel <john@bitfieldconsulting.com>

Date: Mon Oct 22 16:38:58 2012 +0000

 Importing

The long string of hexadecimal characters following commit is called the commit hash,
and it uniquely identifies the commit in this repo:

commit ad719887ef68535dd6b76bab8bcee9b76edb3c98

Whenever you need to refer to a particular commit, you can use this hash to identify it.

As time goes on, you will still be able to see every change you've committed to the repo right
back to the initial import. The git whatchanged command shows you the effect of each
change, just like git diff does for uncommitted changes:

 service { 'nginx':
 ensure => running,
+ enable => true,
 require => Package['nginx'],
 }

Managing Puppet with Git

[60]

You can skip the git add step by using the -a flag to git commit, as
follows:
git commit -a -m "Have nginx start at boot time"

This automatically adds all changed files to the commit. However, it's a good
idea to use git status and git add to see precisely what changes you
are committing. Sometimes you may want to split your changes into two or
more separate commits.

Also, if you have added new files that Git doesn't know about yet, you'll still
need to use git add to tell Git they should be placed under its control.

How often should I commit?
A common practice is to commit when the code is in a consistent, working state, and
have the commit include a set of related changes made for some particular purpose.
So, for example, if you are working to fix bug number 75 in your issue-tracking system,
you might make changes to quite a few separate files and then, once you're happy the
work is complete, make a single commit with a message such as:

Make nginx restart more reliable (fixes issue #75)

On the other hand, if you are making a large number of complicated changes and you are
not sure quite when you'll be done, it might be wise to make a few separate commits along
the way, so that if necessary you can roll the code back to a previous state. Commits cost
nothing, so when you feel a commit is needed, go ahead and make it.

Branching
Git has a powerful feature called branching, which lets you create a parallel copy of the code
(a branch) and make changes to it independently. At any time you can choose to merge those
changes back into the master branch. Or, if changes have been made to the master branch in
the meantime, you can merge those into your working branch and carry on.

This is extremely useful when working with Puppet, because it means you can switch a single
machine to your branch while you're testing it and working on it. The changes you make
won't be visible to other machines that aren't on your branch, so there's no danger
of accidentally rolling out changes before you're ready.

Once you're done, you can merge your changes back into that master and have them roll out
to all machines.

Similarly, two or more people can work independently on their own branches, exchanging
individual commits with each other and with the master branch as they choose. This is a very
flexible and useful way of working.

Chapter 4

[61]

Distributing Puppet manifests
So far in this book we've only applied Puppet manifests to one server, using puppet apply
with a local copy of the manifest. To manage several servers at once, we need to distribute
the Puppet manifests to each machine so that they can be applied.

There are several ways to do this, and Puppet has a built-in server capability (Puppetmaster),
which lets each client machine request its own compiled manifest via HTTP. However, when I
work with clients to help them build Puppet infrastructures, I usually recommend a different
approach, using Git to distribute the manifests.

This has a number of advantages over the Puppetmaster approach, and is in some
ways simpler.

Reliability
Although your master Git server (or even GitHub) may go down, you will still be able to run
Puppet on all your client machines and push changes to them using Git. Git is inherently
distributed, unlike the Puppetmaster architecture.

Scalability
You can keep on adding machines indefinitely, and each one looks after itself. By contrast, using
a Puppetmaster moves all the workload of compiling manifests from the client machine to a
single server, which places heavy demands on that server as the network grows.

Simplicity
All you need to do is clone a Git repo. By contrast, adding new Puppet nodes using a
Puppetmaster requires you to generate a certificate request on the client, and sign it on the
server before Puppet can run. Automating this process adds complexity, and changing the
Puppetmaster SSL certificate (for example, if the master server is replaced) requires resigning
all the client certificates. You can set up autosigning, but this introduces a potentially quite
serious security hole.

It's only fair to admit that there are different opinions about this, and some people favor the
Puppetmaster approach, and even think it's simpler than using Git. However, what's simple
to you depends on what you already know. Lots of people already know how to use Git; if
not, it's a very useful thing to learn, and you can apply that knowledge to more than
just Puppet.

In the following sections, we'll create a "master" repo, use it to distribute our manifests to a
new server, and then set up an automatic method of pulling changes and applying them to
each machine.

Managing Puppet with Git

[62]

Time for action – creating a master Git repo
We're going to make a copy of our existing Puppet repo, which we can then clone on
a new machine.

1.	 Create a directory to hold the repo:

ubuntu@demo:~/puppet$ sudo mkdir /var/git

2.	 Clone the repo, using the --bare flag:

ubuntu@demo:~/puppet$ cd /var/git

ubuntu@demo:/var/git$ sudo git clone --bare /home/ubuntu/puppet

Cloning into bare repository 'puppet.git'...

done.

3.	 Now create a git user that will own the master repo and control access to it:

ubuntu@demo:/var/git$ sudo useradd -d /var/git git

ubuntu@demo:/var/git$ sudo chown -R git:git /var/git

4.	 Just to verify that these steps have worked, check out a temporary clone of the
master repo:

ubuntu@demo:/tmp$ cd /tmp

ubuntu@demo:/tmp$ git clone /var/git/puppet.git

Cloning into 'puppet'...

done.

ubuntu@demo:/tmp$ ls puppet

manifests modules

ubuntu@demo:/tmp$ rm -r puppet

5.	 Now create a secure shell (SSH) keypair for the git user so that it can log in
from remote machines to clone and update the Git repo. When prompted for a
passphrase, just hit Enter.

ubuntu@demo:/tmp$ sudo su - git

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/var/git/.ssh/id_rsa):

Created directory '/var/git/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /var/git/.ssh/id_rsa.

Your public key has been saved in /var/git/.ssh/id_rsa.pub.

Chapter 4

[63]

The key fingerprint is:

87:12:a4:3d:e3:da:79:01:19:d1:0b:1c:15:f8:7c:93 git@demo

The key's randomart image is:

+--[RSA 2048]----+

| .=*o. |

| ++o. |

| . B+ . . |

| . =+.E |

| o S... |

| o o o |

| . o . |

| . |

| |

+-----------------+

The fingerprint and image will be different for your key, but that's fine.

6.	 Create an authorized_keys file for git containing the public key you just
generated:

git@demo:~$ cd .ssh

git@demo:~/.ssh$ ls

git@demo:~/.ssh$ cp id_rsa.pub authorized_keys

7.	 You should now be able to log into the git account via SSH using this key:

git@demo:~/.ssh$ ssh git@localhost

Welcome to Ubuntu 12.04.1 LTS (GNU/Linux 3.2.0-29-virtual x86_64)

...

You now have a master Git repo containing your manifests, and an SSH key that you can use
to check out the repo on other machines.

Time for action – cloning the repo to a new machine
You'll need a second machine similar to the one you have been using so far (either a cloud
instance, a Vagrant VM, or a physical machine, whichever is convenient). Install Puppet and
its dependencies as you did for the first machine in Chapter 2, First steps with Puppet, in the
Time for action – preparing for Puppet and Time for action – installing Puppet sections.

Managing Puppet with Git

[64]

1.	 Once the machine is set up, create the git user:

ubuntu@demo2:~$ sudo useradd -m git

2.	 Create a .ssh directory and private key file, and set appropriate permissions:

ubuntu@demo2:~$ sudo su - git

git@demo2:~$ mkdir .ssh

git@demo2:~$ chmod 700 .ssh

git@demo2:~$ touch .ssh/id_rsa

git@demo2:~$ chmod 600 .ssh/id_rsa

3.	 On your first server, display the SSH private key for git and copy it to the clipboard:

ubuntu@demo:~$ sudo cat ~git/.ssh/id_rsa

-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEA1wR9i+bkwsNIcyd1ojhBH13ecuOhGfoJpjdjSjocBjf2fJRa

...

GOTLXyqpcrez/Ijbc9TJsaFNisnb1HqBR31J/N2StjHmwjtOmlwL

-----END RSA PRIVATE KEY-----

4.	 Now edit the private key file on the new server:

git@demo2:~$ vi .ssh/id_rsa

5.	 Press i to enter insert mode and paste the key from the clipboard:

-----BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEA1wR9i+bkwsNIcyd1ojhBH13ecuOhGfoJpjdjSjocBjf2fJRa
...
GOTLXyqpcrez/Ijbc9TJsaFNisnb1HqBR31J/N2StjHmwjtOmlwL
-----END RSA PRIVATE KEY-----

6.	 Save the file and exit (:wq).

7.	 Test the private key by logging into the old server from the new (use the public IP
address of your first server):

git@demo2:~$ ssh git@23.20.119.201

The authenticity of host '23.20.119.201 (23.20.119.201)' can't be
established.

ECDSA key fingerprint is 29:9d:2a:09:85:d1:2d:24:a2:e5:ff:0a:4a:75
:c2:6b.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '23.20.119.201' (ECDSA) to the list of
known hosts.

Welcome to Ubuntu 12.04.1 LTS (GNU/Linux 3.2.0-29-virtual x86_64)

Chapter 4

[65]

8.	 You should now be able to clone the repo onto the new machine:

git@demo2:~$ git clone 23.20.119.201:/var/git/puppet.git

Cloning into 'puppet'...

remote: Counting objects: 17, done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 17 (delta 1), reused 0 (delta 0)

Receiving objects: 100% (17/17), 1.27 KiB, done.

Resolving deltas: 100% (1/1), done.

Time for action – adding a new node
Before we can run Puppet on the new machine, we need to add a node declaration for it.

1.	 On the new server, edit /home/git/puppet/manifests/nodes.pp and add the
following section:

node 'demo2' {
 include nginx
}

2.	 Now run Puppet:

ubuntu@demo2:~$ sudo puppet apply /home/git/puppet/manifests/site.
pp --modulepath=/home/git/puppet/modules/

Notice: /Stage[main]/Nginx/Package[nginx]/ensure: ensure changed
'purged' to 'present'

Notice: /Stage[main]/Nginx/File[/etc/nginx/sites-enabled/default]/
ensure: defined content as '{md5}0750fd1b8da76b84f2597de76c1b9bce'

Notice: /Stage[main]/Nginx/Service[nginx]/ensure: ensure changed
'stopped' to 'running'

Notice: /Stage[main]/Nginx/Service[nginx]: Triggered 'refresh'
from 1 events

Notice: Finished catalog run in 11.84 seconds

Time for action – pushing changes to the master repo
We have made a change to our working copy of the Puppet repo on demo2, but so far we
haven't committed and pushed the change to the master repo. We need to do this so that
the changes will be available to all other machines using the repo.

Managing Puppet with Git

[66]

1.	 Commit the changes:

ubuntu@demo2:~$ sudo su - git

$ bash

git@demo2:~$ cd puppet

git@demo2:~/puppet$ git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

#

modified: manifests/nodes.pp

#

no changes added to commit (use "git add" and/or "git commit -a")

git@demo2:~/puppet$ git add manifests/nodes.pp

git@demo2:~/puppet$ git commit -m "Adding node demo2"
--author="john@bitfieldconsulting.com"

[master 967cb8b] Adding node demo2

 ...

 1 file changed, 5 insertions(+)

2.	 Now push all changes back to the master repo:

git@demo2:~/puppet$ git push

Counting objects: 7, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 412 bytes, done.

Total 4 (delta 0), reused 0 (delta 0)

To 23.20.119.201:/var/git/puppet.git

 0ce98c0..967cb8b master -> master

Exercise
If you work as part of a team, have one of your colleagues clone the master repo and make
some changes. She'll need the private SSH key you created for git (or you can add her SSH
public key to the authorized_keys file for the git user).

Have her push the changes to the master repo, and then update the working copy on the
demo2 box and apply it.

Chapter 4

[67]

Now everyone in your team can work independently on the Puppet manifests, making and
pushing changes, and applying them to all the machines controlled by Puppet.

Pulling changes automatically
You now have your machines set up so that they can receive changes to the Puppet
manifests using Git, and those changes can then be applied locally. However, you still have to
log into each machine to do this. It would be helpful to have each machine update itself and
apply any changes automatically. Then all you need to do is push a change to the repo, and it
will go out to all your machines within a certain time.

The simplest way to do this is with a cron job, which updates the repo and then runs Puppet
if anything has changed.

Time for action – automatic pull-and-apply script
1.	 Create the file /usr/local/bin/pull-updates with the following contents:

#!/bin/sh
PUPPETDIR=/home/git/puppet
cd ${PUPPETDIR}
git pull && sudo /usr/local/bin/papply

2.	 Create the file /usr/local/bin/papply with the following contents:

#!/bin/sh
PUPPETDIR=/home/git/puppet
/usr/bin/puppet apply --modulepath ${PUPPETDIR}/modules
${PUPPETDIR}/manifests/site.pp

3.	 Set execute permissions on both scripts:

ubuntu@demo2:~$ sudo chmod a+x /usr/local/bin/pull-updates

ubuntu@demo2:~$ sudo chmod a+x /usr/local/bin/papply

4.	 Edit the sudoers file:

ubuntu@demo2:~$ sudo visudo

5.	 Add the following line to give git permission to run the papply script as root:

git ALL = (root) NOPASSWD: /usr/local/bin/papply

6.	 Test that git can run the papply script:

git@demo2:~$ sudo papply

Notice: Finished catalog run in 1.88 seconds

Managing Puppet with Git

[68]

7.	 Test that git can run the pull-updates script:

git@demo2:~$ pull-updates

Already up-to-date.

Notice: Finished catalog run in 1.80 seconds

8.	 Edit the crontab for git:

git@demo2:~$ crontab -e

9.	 Add a cron job for git to run this script automatically, and save the file:

*/10 * * * * /usr/local/bin/pull-updates

10.	Check that the git user's crontab has been updated:

git@demo2:~$ crontab -l |grep update

*/10 * * * * /usr/local/bin/pull-updates

What just happened?
The pull-updates script will now run automatically every 10 minutes. When it runs, it will
attempt to execute git pull in the Puppet repo directory. If there are no changes to pull,
nothing will happen.

If any changes are pulled, the script will go on to run papply to apply the changes.

So now whenever you push a change to the master Puppet repo, the demo2 machine will
automatically pick it up and apply it.

Learning more about Git
As you get familiar with Git, or even if you've been using it for a while, you may find it helpful
to read the excellent "Pro Git" by Scott Chacon, available online here:

http://git-scm.com/book/

Summary
A quick rundown of what we've learned in this chapter.

Chapter 4

[69]

Why version control?
Version control is very useful for tracking changes to any source code, including Puppet
manifests. It's especially important when several people are working on the same code,
so that they can communicate with one another about their changes. Version control can
also detect and alert you to conflicts when the same file is edited by different
people independently.

Getting started with Git
To use the Git version control tool, you create a repo using git init and make an initial
snapshot using git add and git commit. Thereafter, every time you want to record a set
of changes, use git add and git commit again to store them with an appropriate message.

As you're working on a set of changes, you can see how the current code differs from Git's
stored version using git diff. The git status command will show you which files Git
thinks may need to be committed.

You can see the complete history of changes to your repo using the git log command. git
whatchanged will show you the differences in each file before and after the commit.

Networking Puppet
The problem of distributing your Puppet manifests securely and efficiently to a number
of machines can be solved in several ways. The traditional way is to use a special extra
server called a Puppetmaster, which authenticates all the other machines and gives
them their manifests. For small infrastructures, this is overkill; for large infrastructures,
it's slow. Consequently, I usually recommend a different approach: using Git as the
distribution mechanism.

Using Git to distribute your Puppet manifests to multiple machines is a simple, reliable,
and scalable alternative to using a Puppetmaster. All you need is a Git repo from which
each machine clones its own working copy and runs Puppet locally via a cron job.

An easy way to make this secure is to use Git over SSH, with a private key you distribute
to each machine that is authorized to pull Puppet manifests.

Since it's a very good idea to use Git anyway, to manage changes to your Puppet code, and
to enable your team members to work on the Puppet manifests in a distributed way, this is
simply a logical extension of that idea.

You don't need an extra server (which would in any case be a single point of failure), and it
also makes it easy for you to test changes and upgrades using Git branches.

You can set up a script to pull updates from Git and run Puppet automatically if there are any
changes. It's a good idea to trigger the script to run at intervals using cron.

Managing users

The real problem isn't whether machines think but whether people do.

 — B.F. Skinner

In this chapter, you'll learn how to use Puppet to create and manage user accounts,
configure SSH access and keys, and control user privileges via sudo.

UNIX
LOUNGE

YOUR NAME’S NOT DOWN...
YOU’RE NOT COMING IN!

SSH

5

Managing users

[72]

Users
One of the most common system administration tasks is setting up user accounts.
We'll see how Puppet can help with this in a moment, but first a word about the kind
of user configuration we should be aiming for.

Security and access control
Organizations with good security and access control practices tend to use some or all of the
following policies:

�� Everyone who needs access to a machine has her own user account with an SSH key
(not a password)

�� Access to special-purpose accounts, such as those used to deploy and run
applications, or a database, is controlled by authorizing specific SSH keys, rather
than using passwords

�� Accounts that need certain, specific superuser privileges can get them via the
sudo mechanism

�� The root account is not accessible via the network (but there is secure, out-of-band
access to the system console)

�� Third parties, such as contractors and support staff, get temporary access with
limited privileges, which can be revoked once a job is finished

Setting up policies like these, while highly desirable from a security point of view, is
time-consuming to do by hand and difficult to maintain. If a new user arrives, someone
has to add and configure his account on every server. If a user leaves, the accounts have
to be removed or locked everywhere.

It's not surprising that many organizations, under time pressure and needing things to work
right away, don't bother too much about security and access control. In many cases the
simplest thing to do is for everyone to log in as root using the same password, often for all
machines. Even if there are official policies about security, people often don't follow them,
because it's more convenient to do things an insecure way.

What Puppet can do
One of the biggest wins that Puppet can deliver in an organization is making it quick and easy
to manage user accounts securely across a large network. You can add or remove individual
and shared accounts, control their access via SSH, manage their privileges via sudo, and
have the changes immediately applied to every machine under Puppet's control, all without
logging into a single server.

Chapter 5

[73]

When this is the case, it's much easier to ensure that security policies are followed, without
hindering people from doing their jobs. When your SSH key works everywhere, you
don't need to share or write down passwords, and when your account has the necessary
privileges, you don't need to use root. So everybody benefits.

Puppet provides a number of ways to help you manage users. The user resource type
controls user accounts, and the ssh_authorized_key resource type controls SSH access to
accounts. You can use Puppet to control user privileges by managing the sudoers file, and
you can also replace the default SSH configuration file with a more secure version managed
by Puppet.

In the rest of this chapter, we'll see how to use these techniques, again using our
cat-pictures.com example site.

Time for action – creating a user
There's a new developer on the cat-pictures project, named Art Vandelay. You'll need to
create a user account for him on the server using Puppet.

1.	 Edit your manifests/nodes.pp file as follows:

node 'demo' {
 user { 'art':
 ensure => present,
 comment => 'Art Vandelay',
 home => '/home/art',
 managehome => true,
 }
}

2.	 Apply the manifest:

ubuntu@demo:~/puppet$ papply

Notice:/Stage[main]//Node[demo]/User[art]/ensure: created

Notice: Finished catalog run in 0.25 seconds

3.	 Make sure the user has been created correctly:

ubuntu@demo:~/puppet$ sudo su - art

$ pwd

/home/art

Managing users

[74]

What just happened?
Puppet's user resource type creates a user (or modifies it if the user already exists).
The following line declares a user whose login name is art:

user { 'art':

The user should be present:

ensure => present,

We can also specify here some information about the user:

comment => 'Art Vandelay',

The comment attribute sets the user's full name.

home => '/home/art',

The home attribute sets the path to the user's home directory. Puppet will not create this
directory for you unless you also set the managehome attribute:

managehome => true,

So the manifest says that a user named art should exist, whose full name is Art Vandelay,
and that his home directory should be /home/art, and that that directory should exist.

Note that we have not specified a password for the user, and as a result art
will not yet be able to log in. Although Puppet can set passwords for users
(with the password attribute) I recommend you use SSH authentication
instead, which is much more secure than using a password. We'll see how to
do this later in the Access control section.

Removing user accounts
To remove a user from the system altogether, use the ensure => absent attribute:

user { 'art':
 ensure => absent,
}

When you run Puppet, the art account will be removed (though Art's home directory and
any files he owned will remain).

Chapter 5

[75]

Just removing the user resource declaration from your Puppet code won't
actually remove the user's account from your machines. If you think about it,
this makes sense. Otherwise, Puppet would remove all accounts it hasn't been
specifically told about, including root!

So when you want to remove a user, change their ensure attribute from
present to absent, and Puppet will delete the account for you. Once
this change has been applied to all machines, you can remove the user
declaration from your Puppet manifest.

Access control
Having created the user's account, we now need to provide a secure way for him to log in.
We can do this using the SSH protocol.

What is SSH?
SSH is a more secure way of controlling user access than the traditional "username and
password" approach. Instead of using a password, which the user has to keep secret, it uses
two pieces of information: the public key and the private key. Only the private key has to be
secret. You can put your public key on any computer, or publish it to the world if you like.
But no one can log in to an account controlled by your public key unless they also have the
matching private key.

This has the pleasant consequence that you only need one SSH key, and you can use it for
everything. It's a very bad idea to use the same password for multiple accounts, but with
SSH, that's no problem. So long as you keep the private key secret, you can use your public
key everywhere.

Managing SSH keys
Puppet can manage SSH public keys and authorize them for user accounts, using the
ssh_authorized_key resource type.

Managing users

[76]

Time for action – adding an SSH authorized key
1.	 You'll need your own SSH public key for this. If you already have one on your own

computer, display the contents:

john@T-Bone:~$ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEA3ATqENg+GWACa2B
zeqTdGnJhNoBer8x6pfWkzNzeM8Zx7/2Tf2pl7kHdbsiTXEUawq
zXZQtZzt/j3Oya+PZjcRpWNRzprSmd2UxEEPTqDw9LqY5S2B8og/
NyzWaIYPsKoatcgC7VgYHplcTbzEhGu8BsoEVBGYu3IRy5RkAcZik=

2.	 If you don't have an SSH key, you can generate one for this exercise:

ubuntu@demo:~$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/ubuntu/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/ubuntu/.ssh/id_rsa.

Your public key has been saved in /home/ubuntu/.ssh/id_rsa.pub.

3.	 Now display the id_rsa.pub file to see the public key:

ubuntu@demo:~$ cat /home/ubuntu/.ssh/id_rsa.pub

ssh-rsa

CveowByzhgEFMOXi7Ycxr1h958BjVyqGRUTkSoz8bfjqeXmJAvMl/5V3sTl/YV9r9y
sM7Rzu7K51YB+Bg6CQr0QJjABev56rTsbVtyAHi7Ju9zfu6JJ7pfnSfKajwBpHSW0e
yTYm8Fnkry920ikoeQOwN+DsYt5NY3h+sPISb98oXRWe0EetFanJ8AwlUuYQ9DmO+3
kArMyyT

IzgWR7wE6SMKG5RujzWk0Hb7ngGWyjXJtG7F3k3SD06W3UmGPK1AXPRbW4vJDL+hhL
ubuntu@

6FtxIzgWR7wE6SMKG5RujzWk0Hb7ngGWyjXJtG7F3k3SD06W3UmGPK1AXPRbW4vJDL
+hhL ubuntu@demo

The key itself is the long string of numbers and letters, without the ssh-rsa part
at the beginning, or the ubuntu@demo part at the end. It's this string you'll put into
the Puppet manifest in the next step.

4.	 Edit your manifests/nodes.pp file as follows (using your own key string as
the value for key):

node 'demo' {
 user { 'art':
 ensure => present,
 comment => 'Art Vandelay',
 home => '/home/art',
 managehome => true,

Chapter 5

[77]

 }
 ssh_authorized_key { 'art_ssh':
 user => 'art',
 type => 'rsa',
 key => 'AAAAB3NzaC1yc2EAAAABIwAAAIEA3ATqENg+GWAC
a2BzeqTdGnJhNoBer8x6pfWkzNzeM8Zx7/2Tf2pl7kHdbsiTXEUaw
qzXZQtZzt/j3Oya+PZjcRpWNRzprSmd2UxEEPTqDw9LqY5S2B8og/
NyzWaIYPsKoatcgC7VgYHplcTbzEhGu8BsoEVBGYu3IRy5RkAcZik=',
 }
}

5.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]//Node[demo]/Ssh_authorized_key[art_ssh]/
ensure: created

Notice: Finished catalog run in 0.05 seconds

6.	 Now test that you have access to the art account using this key. On a machine that
has your SSH key, run the following command:

$ ssh art@demo

Welcome to Ubuntu 12.04.1 LTS (GNU/Linux 3.2.0-29-virtual x86_64)

What just happened?
The following line declares an ssh_authorized_key resource:

ssh_authorized_key { 'art_ssh':

The name (art_ssh in this case) can be anything you like, so long as it's unique. It will be
added as a comment at the end of the key in the authorized_keys file.

We need to specify the user account for which this key will grant access:

user => 'art',

We also have to tell Puppet the key type (rsa or dsa; you'll know which it is because the key
file itself contains ssh-rsa or ssh-dsa at the beginning):

type => 'rsa',

And lastly the key string, which in this case should be your own key instead of mine:

key => 'AAAAB3NzaC1yc2EAAAABIwAAAIEA3ATqENg+GWACa2B
zeqTdGnJhNoBer8x6pfWkzNzeM8Zx7/2Tf2pl7kHdbsiTXEUawq
zXZQtZzt/j3Oya+PZjcRpWNRzprSmd2UxEEPTqDw9LqY5S2B8og/
NyzWaIYPsKoatcgC7VgYHplcTbzEhGu8BsoEVBGYu3IRy5RkAcZik=',

Managing users

[78]

Puppet will then add this key to the file /home/art/.ssh/authorized_keys. When you
try to log in to Art's account via SSH, the system will look in this file to see if your private key
matches any of the public keys listed there. Assuming it does, you'll be able to log in.

Generating new SSH keys
For managing users other than yourself, you can generate new keys for them using the
ssh-keygen command:

ubuntu@demo:~/puppet$ ssh-keygen -f fabian

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in fabian.

Your public key has been saved in fabian.pub.

Give the user the secret key file (fabian) and put the matching public key into Puppet as an
ssh_authorized_key resource for that user.

Special-purpose keys
Sometimes an automatic process on one machine needs access to another machine.
For example, you might have a daily cron job that uploads logs to a central storage server.
So how do you manage this securely?

One simple way is to create a user account on the target machine dedicated to the purpose:
log uploading, for example. This account is secured with SSH, and access is restricted to a
special private key that you create. The private key is distributed with Puppet to only those
machines that need it, and can be removed or changed at any time.

This is exactly the approach we took in an earlier chapter for setting up automatic access
to a Git server, so that machines can pull their Puppet config at regular intervals and apply
changes. You can use this idea to manage access for any automated task.

For even greater security, you can give each machine its own private key, and authorize the
target machine for all the corresponding public keys.

Locking user accounts
If you want to be able to block a user from logging in, you can do this by temporarily
removing his SSH key in Puppet:

ssh_authorized_key { 'art_ssh':
 user => 'art',

Chapter 5

[79]

 type => 'rsa',
 key => '',
}

The value for key in the example above is an empty single-quoted string (''). This will
disable SSH logins for the user. If you have enabled password authentication (which I don't
recommend, but you might need it in some situations) then this won't stop the user from
logging in using his password. To do this, set a password of a single star (*) in Puppet:

user { 'art':
 ensure => present,
 comment => 'Art Vandelay',
 home => '/home/art',
 managehome => true,
 password => '*',
}

This will block the user from logging in via password (though SSH will still work unless you
also disable that, as shown above). To unlock the account, remove the password attribute
and re-set the user's password using the passwd command.

Managing SSH configuration
Although it's not necessary if you just want to set up user accounts with SSH keys, you can
use Puppet to manage the global SSH configuration for your system, for example, to allow
only a specified list of users to log in. We'll see how to do that in the following section.

Time for action – deploying an SSH configuration file
1.	 Create the directories needed for a new ssh module:

ubuntu@demo:~/puppet$ mkdir modules/ssh

ubuntu@demo:~/puppet$ mkdir modules/ssh/manifests

ubuntu@demo:~/puppet$ mkdir modules/ssh/files

2.	 Create the file modules/ssh/manifests/init.pp with the following contents:

Manage the SSH service
class ssh {
 service { 'ssh':
 ensure => running,
 }

 file { '/etc/ssh/sshd_config':
 source => 'puppet:///modules/ssh/sshd_config',
 notify => Service['ssh'],

Managing users

[80]

 owner => 'root',
 group => 'root',
 }
}

3.	 Create the file modules/ssh/files/sshd_config with the following contents
(if you're not logging in as ubuntu, add the user you're logging in as to the list of
AllowUsers. Only the named users will be able to log in once you've applied this
change with Puppet, so be careful):

Port 22
Protocol 2
PermitRootLogin no
PasswordAuthentication no
AllowUsers ubuntu art
UsePAM yes

4.	 Add this to your node definition in manifests/nodes.pp:

include ssh

5.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]/Ssh/File[/etc/ssh/sshd_config]/content:
content changed '{md5}5f15065f987c4d9851ad3448d4aadfa6' to '{md5}6
e96247a35996ba5adc36acbf34faf9b'

Notice: /Stage[main]/Ssh/Service[ssh]: Triggered 'refresh' from 1
events

Notice: Finished catalog run in 0.23 seconds

6.	 Check that you can still log in from another machine as ubuntu or art:

john@T-Bone:~$ ssh ubuntu@demo

Welcome to Ubuntu 12.04.1 LTS (GNU/Linux 3.2.0-29-virtual x86_64)

User privileges
Linux and other UNIX-like operating systems commonly have two levels of user privilege: the
root user, who can edit system files and perform operations tasks, such as rebooting the
machine, and normal users, who can only edit and read files owned by themselves, and have
no special privileges. This ensures that users don't get access to files or commands that they
shouldn't have. However, sometimes you need to grant special privileges to a user, without
giving her full access to the root account. You can do this using a UNIX command called sudo.

Chapter 5

[81]

sudo
The sudo command allows normal users to run commands with root privileges, if this is
specifically authorized by the system administrator. For example, a developer user might be
given privileges to run service nginx restart as root.

The set of users allowed to assume root privileges, and the specific commands they can
run, is specified in the file /etc/sudoers. We can use Puppet to manage this file, and thus
control user privileges on the machine.

Time for action – deploying a sudoers file
1.	 Create the directories for a sudoers module:

ubuntu@demo:~/puppet$ mkdir modules/sudoers

ubuntu@demo:~/puppet$ mkdir modules/sudoers/manifests

ubuntu@demo:~/puppet$ mkdir modules/sudoers/files

2.	 Create the file modules/sudoers/manifests/init.pp with the following
contents:

Manage the sudoers file
class sudoers {
 file { '/etc/sudoers':
 source => 'puppet:///modules/sudoers/sudoers',
 mode => '0440',
 owner => 'root',
 group => 'root',
 }
}

3.	 Create the file modules/sudoers/files/sudoers with the following contents:

User privilege specification
root ALL = (ALL) ALL
ubuntu ALL = (ALL) NOPASSWD:ALL
art ALL = (ALL) NOPASSWD: /bin/ls

4.	 Check the syntax of the sudoers file:

ubuntu@demo:~/puppet$ visudo -c -f modules/sudoers/files/sudoers

modules/sudoers/files/sudoers: parsed OK

Managing users

[82]

5.	 If there are any errors, correct them before moving on. If you use Puppet to deploy a
sudoers file that contains syntax errors, no users will be able to sudo anything, and
you will need to log in as root in order to fix the problem. So whenever you make a
change to Puppet's copy of the sudoers file, use the visudo command as above to
check the syntax.

6.	 Add this to your node definition in manifests/nodes.pp:

include sudoers

7.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]/Sudoers/File[/etc/sudoers]/content: content
changed '{md5}5755c84fcb480985818c6daa9faa386c' to '{md5}
f9d8dbf9b36280c3e860af7eede92fd1'

Notice: Finished catalog run in 0.10 seconds

8.	 Run the following command as the ubuntu user to verify that the changes have
taken effect:

ubuntu@demo:~/puppet$ sudo whoami

root

9.	 Run the following command as the art user, to test whether he has the privilege to
run /bin/ls as root:

art@demo:~$ sudo /bin/ls -l /

total 80

drwxr-xr-x 2 root root 4096 Aug 22 05:49 bin

drwxr-xr-x 3 root root 4096 Jan 9 13:54 boot

drwxr-xr-x 12 root root 3840 Jan 9 13:47 dev

drwxr-xr-x 89 root root 4096 Jan 14 15:29 etc

drwxr-xr-x 3 root root 4096 Aug 22 05:48 home

What just happened?
When you use Puppet to deploy the sudoers file, the privilege settings listed in the file will
immediately take effect. When any user runs a command using sudo, the system will consult
/etc/sudoers to see whether or not the command is allowed.

The line root ALL = (ALL) ALL allows user root to sudo any command as root
(this might seem unnecessary, but it's included for consistency, and to make sure any scripts
that use sudo don't suddenly fail if run as root).

Chapter 5

[83]

The line ubuntu ALL = (ALL) NOPASSWD:ALL allows user ubuntu to run any
command, on any system, as any user, without having to enter a password. (You can have
sudo require the user's password, if you use passwords, to make things a little more secure.
Generally though, sudoers entries are used for scripts and automated jobs that can't enter
a password anyway.)

The line art ALL = (ALL) NOPASSWD: /bin/ls is more specific. It allows user art to
run only the command /bin/ls (with any arguments). No other commands will work:

art@demo:~$ sudo /sbin/halt

[sudo] password for art:

Sorry, user art is not allowed to execute '/sbin/halt' as root on
demo.

Summary
A quick rundown of what we've learned in this chapter.

Security practices
If you follow good security practices for your network, each user should have her own
named account with SSH (not password) access. Any special-purpose accounts should be
authorized for the SSH keys of the specific users that need access to them. Login as root
should be disallowed (except on a secure console).

User resources
Puppet can manage users directly using the user resource:

user { 'art':
 ensure => present,
 ...
}

You can specify the user's full name with the comment attribute:

comment => 'Art Vandelay',

Create a home directory with the home and managehome attributes:

home => '/home/art',
managehome => true,

Managing users

[84]

Removing or locking accounts
To remove a user, change ensure to absent:

user { 'art':
 ensure => absent,
 ...
}

Just removing the user resource from Puppet won't remove the user account from the
server, so if you need to delete the account, make sure you use ensure => absent.

To lock an account, for example to temporarily disable access, set the ssh_authorized_
key to an empty string and the password to a * character.

Managing SSH keys
You can control the SSH keys authorized to log into the user's account using the
ssh_authorized_key resource type:

ssh_authorized_key { 'art_ssh':
 ...
}

Specify the key metadata with the user, type, and key attributes:

user => 'art',
type => 'rsa',
key => 'AAAAB3...',

If you need to generate new SSH keys for users, you can do it with the ssh-keygen command:

ssh-keygen -f fabian

Configuring SSH
Puppet can also manage global SSH configuration by deploying the /etc/ssh/sshd_
config file. You can limit the list of users allowed to log in by specifying the AllowUsers
parameter in this file:

AllowUsers ubuntu art

Chapter 5

[85]

Managing privileges with sudo
User privileges, and permission for normal users to run certain commands as root, are
controlled by the /etc/sudoers file. By managing this file (carefully) with Puppet you
can control all user sudo rights on a machine, using a syntax like this:

User privilege specification
root ALL = (ALL) ALL
ubuntu ALL = (ALL) NOPASSWD:ALL
art ALL = (ALL) NOPASSWD: /bin/ls

Tasks and templates

You can tell whether a man is clever by his answers. You can tell whether a man
is wise by his questions.

 — Naguib Mahfouz

In this chapter, you'll learn how to use Puppet's resource types to run commands, schedule
regular tasks, and distribute large trees of files. You'll also find out how to insert values
dynamically into files using templates.

11:00 Get groceries
15:00 Pick up kids
18:30 Start dinner

03:00:00 REBOOT WEBSERVER
05:15:00 START BACKUP
07:00:00 WORLD DOMINATION

TASKSCHEDULE

TODO.TXT

6

Tasks and templates

[88]

Running commands with exec resources
We've seen that Puppet lets you model various aspects of a system using resources, such as
user or file resources. You describe how the system should be configured, and Puppet will
run appropriate commands behind the scenes to bring about the desired state.

But what if you want Puppet to run a certain command directly? You can do this using
an exec resource. This is a very flexible and powerful resource, and you can use it to
implement almost anything in Puppet. In this section we'll see how to get the most from
exec resources.

Time for action – running an arbitrary command
1.	 Modify your manifests/nodes.pp file as follows:

node 'demo' {
 exec { 'Run my arbitrary command':
 command => '/bin/echo I ran this command on `/bin/date` >/tmp/
command.output.txt',
 }
}

2.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]//Node[demo]/Exec[Run my arbitrary command]/
returns: executed successfully

Notice: Finished catalog run in 0.14 seconds

3.	 Check the output produced (you won't see exactly the same date and time shown
here, unless you're a Time Lord):

ubuntu@demo:~/puppet$ cat /tmp/command.output.txt

I ran this command on Mon Dec 17 16:14:04 UTC 2012

What just happened?
The line exec { 'Run my arbitrary command': declares an exec resource with the
name Run my arbitrary command. The name can be anything; it's not otherwise used
by Puppet, except that like all resource names it can't be the same as another instance of the
same resource type.

The command to run is specified by the following line:

command => '/bin/echo I ran this command on `/bin/date` >/tmp/command.
output.txt',

Chapter 6

[89]

Note that the UNIX commands, echo and date, are specified with their full path. This is
because Puppet wants to be sure exactly which command you mean.

When Puppet runs, it applies the exec resource by running the command:

/bin/echo I ran this command on `/bin/date` >/tmp/command.output.txt

This command will write the following text to /tmp/command.output.txt:

I ran this command on Mon Dec 17 16:14:04 UTC 2012

Running commands selectively
The exec resource we've created will be applied every time Puppet runs, but that's not
always what we want. Say we are using an exec resource to download a file, for example.
Once the file is downloaded the first time we don't need to do it again. Here's an example:

exec { 'Download public key for John':
 cwd => '/tmp',
 command => '/usr/bin/wget http://bitfieldconsulting.com/files/john.
pub',
 creates => '/tmp/john.pub',
}

The creates attribute specifies the full path to a file. Puppet will check to see if this file
already exists. If it does, the exec won't be run. This is a neat way to have a command run
only if it is needed, and not otherwise.

Did you notice we also added the cwd attribute? This tells Puppet the
directory in which to run the command (cwd stands for current working
directory), so that any files created by the command, like john.pub in this
example, will end up in that directory.

You can also use the unless or onlyif attributes to control when an exec is run. unless
or onlyif both specify a command for Puppet to run to test whether the exec needs to
be applied.

The exit status of the test command determines what Puppet should do. For example:

exec { 'add-cloudera-apt-key':
 command => '/usr/bin/apt-key add /tmp/cloudera.pub',
 unless => '/usr/bin/apt-key list |grep Cloudera',
}

Tasks and templates

[90]

Here, we're using an exec to add an APT repository key to the system keyring. This only
needs to be done once, so the unless command checks whether the key has already been
added. If the grep succeeds, we know the key is already present, so we don't need to do
anything. The exit status will be zero, so Puppet won't apply the exec. On the other hand,
if the grep fails, the exit status will be non-zero so Puppet will apply the exec.

Using onlyif, the opposite logic applies; the exec will be run only if the test command
succeeds (exits with a zero status).

Triggering commands
Another way to control when an exec is run is to use the refreshonly attribute:

exec { 'icinga-config-check':
 command => '/usr/sbin/icinga -v /etc/icinga/icinga.cfg && /usr/
sbin/service icinga restart',
 refreshonly => true,
 subscribe => File['/etc/icinga/icinga.cfg'],
}

When refreshonly is set, Puppet will not apply the exec unless it's triggered by
subscribe or notify from some other resource. In this example, the exec subscribes
to the file /etc/icinga/icinga.cfg. If this file changes, Puppet will run the exec,
but not otherwise.

This is a very useful pattern when you want to take some action if a config file changes,
especially if you want to sanity-check the file's contents (as in the example) before restarting
the service that reads it.

Chaining commands
Often you have a series of commands that need to run in a particular order (for example,
if you're installing software from source, you might need to download a file, unpack it, build
it, and install it). To do this, for short sequences, you can use the shell && construct as shown
in the preceding example:

/usr/sbin/icinga -v /etc/icinga/icinga.cfg && /usr/sbin/service icinga
restart

This will chain the commands together in the order you specify, bailing out if any of the
commands fail.

Chapter 6

[91]

For more complicated sequences, or where you may also need to trigger individual
commands from other resources, you can use the require attribute to specify the
ordering explicitly:

exec { 'command-1':
 command => '/bin/echo Step 1',
}

exec { 'command-2':
 command => '/bin/echo Step 2',
 require => Exec['command-1'],
}

exec { 'command-3':
 command => '/bin/echo Step 3',
 require => Exec['command-2'],
}

Command search paths
As we've seen, Puppet requires us to specify the full path to any command referenced in an
exec resource. However, if you like, you can provide a list of paths for Puppet to search for
commands, using the path attribute. For example:

exec { 'Run my arbitrary command':
 command => 'echo I ran this command on `date` >/tmp/command.output.
txt',
 path => ['/bin', '/usr/bin'],
}

Now when Puppet sees a command name, it will search the directories you specify looking
for the matching commands.

If you want to specify a set of default search paths for all exec resources, you can put this in
your site.pp file:

Exec {
 path => ['/bin', '/usr/bin'],
}

Tasks and templates

[92]

Note the capital E for Exec. This means "make this the default for all exec resources."
Then you can use unqualified commands without an explicit path attribute:

exec { 'Run my arbitrary command':
 command => 'echo I ran this command on `date` >/tmp/command.output.
txt',
}

Puppet will use the default paths you specified: /bin and /usr/bin.

Scheduled tasks
Typically, when you want a command to be run at a certain time of day, or at regular
intervals, you can use the UNIX cron facility. For example, a backup job might run every
night at 4 a.m., or a queue processing task might run every 5 minutes.

Puppet can manage cron jobs directly using the cron resource type. Here's an example.

Time for action – scheduling a backup
1.	 Modify your manifests/nodes.pp file as follows:

node 'demo' {
 cron { 'Back up cat-pictures':
 command => '/usr/bin/rsync -az /var/www/cat-pictures/ /cat-
pictures-backup/',
 hour => '04',
 minute => '00',
 }
}

2.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]//Node[demo]/Cron[Back up cat-pictures]/
ensure: created

Notice: Finished catalog run in 0.12 seconds

3.	 Check that the cron job was correctly configured:

ubuntu@demo:~/puppet$ sudo crontab -l

HEADER: This file was autogenerated on Tue Dec 18 12:50:11 +0000
2012 by puppet.

Chapter 6

[93]

HEADER: While it can still be managed manually, it is definitely
not recommended.

HEADER: Note particularly that the comments starting with
'Puppet Name' should

HEADER: not be deleted, as doing so could cause duplicate cron
jobs.

Puppet Name: Back up cat-pictures

0 4 * * * /usr/bin/rsync -avz /var/www/cat-pictures/ /cat-
pictures-backup/

What just happened?
The line cron { 'Back up cat-pictures': declares a cron resource named Back up
cat-pictures (as with exec resources, the name doesn't matter, but it must be unique).

command => '/usr/bin/rsync -avz /var/www/cat-pictures/ /cat-pictures-
backup/',

The preceding line sets the command to run (in this case, an rsync command to back up
all files and directories under /var/www/cat-pictures to /cat-pictures-backup).
As with exec resources, commands need to be qualified with their full path.

We now go on to specify the time at which the job should run.

hour => '04',

This is in 24-hour format, with 00 being midnight, and 23 being 11 p.m.

minute => '00',

If minute is not specified, it defaults to *; that is, it runs every minute! So always
specify both hour and minute (if there is no hour, the job runs every hour at the
minute you specify).

Note that Puppet adds a helpful header to the crontab file, warning you
not to meddle in the affairs of Puppet. In fact, you can safely add, remove,
and modify any cron jobs not managed by Puppet. Puppet identifies the
cron jobs it's managing by the Puppet Name comment above each job.
So, as the warning suggests, don't remove or edit these comments or
Puppet will think the job is missing and add a new copy of it.

Tasks and templates

[94]

More scheduling options
The cron resources can have several other attributes to set the time for the scheduled job:

�� weekday – the day of the week, for example, Friday

�� month – not often used, but can be used to run jobs only during a specific month,
for example, January

�� monthday – the day of the month, for example 1 to run a job on the first day of
each month

If any of these attributes are not supplied, they default to *; that is, every weekday, every
month, or every day of the month.

Running jobs at regular intervals
If you want to run a job every 5 minutes, say, you can specify an interval such as this:

minute => '*/5',
hour => '*',

You can use the same pattern with the other time attributes, for example, to run a job every
6 hours on the hour:

hour => '*/6',
minute => '00',

Running a job as a specified user
The default user for cron jobs is root, but if you want to run the job as a different user,
just give the cron resource a user attribute:

user => 'www-data',

The job will be added to the crontab file for www-data.

Exercise
Use a cron resource to automate the pull-updates job you set up in Chapter 4, Managing
Puppet with Git, which automatically pulls Git changes and applies Puppet on each machine.
Make this part of every machine's base configuration.

Chapter 6

[95]

Distributing files
We've seen in previous chapters how to use Puppet's file resource to deploy a single file to
a server. Sometimes, though, you need to copy a whole directory tree of files, without having
to list each individual file in your Puppet manifest. The recurse attribute allows you to do
this. We'll see how to use it in the next example.

Time for action – using a recursive file resource
The cat-pictures application is nearly complete, but it needs some pictures of cats added
in time for the launch. The art department has sent over a set of feline stock photos for you
to deploy to the website.

1.	 Create the directories for a new cat-pictures module:

ubuntu@demo:~/puppet$ mkdir modules/cat-pictures

ubuntu@demo:~/puppet$ mkdir modules/cat-pictures/files

2.	 Create a directory for the images, and some placeholder image files (for extra credit,
download some real pictures of cats from the Internet):

ubuntu@demo:~/puppet$ mkdir modules/cat-pictures/files/img

ubuntu@demo:~/puppet$ mkdir modules/cat-pictures/files/img/
cat_001.jpg

ubuntu@demo:~/puppet$ mkdir modules/cat-pictures/files/img/
cat_002.jpg

ubuntu@demo:~/puppet$ mkdir modules/cat-pictures/files/img/
cat_003.jpg

3.	 Modify your manifests/nodes.pp file as follows:

node 'demo' {
 file { '/var/www/cat-pictures':
 ensure => directory,
 }

 file { '/var/www/cat-pictures/img':
 source => 'puppet:///modules/cat-pictures/img',
 recurse => true,
 require => File['/var/www/cat-pictures'],
 }
}

Tasks and templates

[96]

4.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]//Node[demo]/File[/var/www/cat-pictures]/
ensure: created

Notice: /Stage[main]//Node[demo]/File[/var/www/cat-pictures/img]/
ensure: created

Notice: /File[/var/www/cat-pictures/img/cat_002.jpg]/ensure:
created

Notice: /File[/var/www/cat-pictures/img/cat_001.jpg]/ensure:
created

Notice: /File[/var/www/cat-pictures/img/cat_003.jpg]/ensure:
created

Notice: Finished catalog run in 0.08 seconds

What just happened?
First we created a top-level directory for the site files to live in:

file { '/var/www/cat-pictures':
 ensure => directory,
}

We haven't seen a file resource before without either a source or a content attribute.
ensure => directory will create a directory, as you might expect. If you said ensure =>
present instead, with no other attributes, Puppet would create an empty file.

The following code is the part that does the heavy lifting:

file { '/var/www/cat-pictures/img':
 source => 'puppet:///modules/cat-pictures/img',
 recurse => true,
 require => File['/var/www/cat-pictures'],
}

The source attribute is as you've used it before, but the recurse => true attribute tells
Puppet to copy all files and directories contained in the source. This includes our handful of
cat pictures, but it could be thousands of files in a tree of directories many levels deep.

In practice Puppet is rather slow to manage large file trees, because it has
to examine every file in the tree on every run to determine if it is up to
date with the source. In this situation, you might be better off using Git, for
example, to manage large trees of files.

Chapter 6

[97]

Using templates
In a previous example we had Puppet deploy an Nginx virtual host file for the
cat-pictures application. In this case we simply used a file resource with
the cat-pictures.conf file distributed from Puppet.

If we wanted to generalize this solution to manage many different websites, it would quickly
become tedious to supply an almost identical virtual host file for each site, altering only the
name and domain of the site.

What we would prefer is to give Puppet a template file into which it could just insert these
variables for each different site. The template function serves just this purpose. Anywhere
you have multiple files that differ only slightly, or files that need to contain dynamic
information, you can use a template.

Time for action – templating an Nginx virtual host
Things are looking up at cat-pictures.com headquarters. They've just got VC
funding to build three new sites: dog-pictures.com, hamster-pictures.com,
and fish-pictures.com. To prepare for this, your job is to change the Puppet config for
cat-pictures.com to use a template, so that you can later use the same template for the
new sites.

1.	 Modify the modules/nginx/manifests/init.pp file as follows:

Manage nginx webserver
class nginx {
 package { 'nginx':
 ensure => installed,
 }

 service { 'nginx':
 ensure => running,
 enable => true,
 require => Package['nginx'],
 }

 file { '/etc/nginx/sites-enabled/default':
 ensure => absent,
 }
}

Tasks and templates

[98]

2.	 Create a new templates directory in the nginx module:

ubuntu@demo:~/puppet$ mkdir modules/nginx/templates

3.	 Create the file modules/nginx/templates/vhost.conf.erb with the following
contents:

server {
 listen 80;
 root /var/www/<%= @site_name %>;
 server_name <%= @site_domain %>;
}

4.	 Modify your manifests/nodes.pp file as follows:

node 'demo' {
 include nginx

 $site_name = 'cat-pictures'
 $site_domain = 'cat-pictures.com'
 file { '/etc/nginx/sites-enabled/cat-pictures.conf':
 content => template('nginx/vhost.conf.erb'),
 notify => Service['nginx'],
 }
}

5.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice:/Stage[main]//Node[demo]/File[/etc/nginx/sites-enabled/cat-
pictures.conf]/ensure: defined content as '{md5}0750fd1b8da76b84f2
597de76c1b9bce'

Notice: /Stage[main]/Nginx/File[/etc/nginx/sites-enabled/default]/
ensure: removed

Notice: /Stage[main]/Nginx/Service[nginx]: Triggered 'refresh'
from 1 events

Notice: Finished catalog run in 0.74 seconds

6.	 Check the resulting virtual host file:

ubuntu@demo:~/puppet$ cat /etc/nginx/sites-enabled/cat-pictures.
conf

server {

 listen 80;

 root /var/www/cat-pictures;

 server_name cat-pictures.com;

}

Chapter 6

[99]

What just happened?
First some housekeeping; we previously used the file /etc/nginx/sites-enabled/
default as the virtual host for cat-pictures.com, so we need to remove that:

file { '/etc/nginx/sites-enabled/default':
 ensure => absent,
}

We create a template file for the virtual host definition:

server {
 listen 80;
 root /var/www/<%= @site_name %>;
 server_name <%= @site_domain %>;
}

The <%= %> signs mark where parameters will go; we will supply site_name and
site_domain later, when we use the template. Puppet will replace <%= @site_name %>
with the value of the site_name variable.

Then in the nodes.pp file, we include the nginx module on the node:

node 'demo' {
 include nginx

Before using the template, we need to set values for the variables site_name and
site_domain:

$site_name = 'cat-pictures'

$site_domain = 'cat-pictures.com'

Note that when we refer to these variables in Puppet code, we use a $ prefix ($site_name),
but in the template it's an @ prefix (@site_name). This is because in templates we're actually
writing Ruby, not Puppet!

When you use a variable name inside a quoted string, it's a good idea to wrap
it in curly brackets as follows:

"The domain is ${site_domain}"

Not:

"The domain is $site_domain"

This helps to distinguish the variable name from the literal string it's used in
(and any other variables you might be using in the same string).

Tasks and templates

[100]

Now we can use the template to generate the Nginx virtual host file:

file { '/etc/nginx/sites-enabled/cat-pictures.conf':
 content => template('nginx/vhost.conf.erb'),
 notify => Service['nginx'],
}

This looks just like any other file resource, with a content attribute, but we previously
gave the contents of the file as a literal string:

content => "Hello, world\n",

Instead, here there is a call to the template function:

content => template('nginx/vhost.conf.erb'),

The argument to template tells Puppet where to find the template file. The path

nginx/vhost.conf.erb

Translates to

modules/nginx/templates/vhost.conf.erb

Puppet now evaluates the template, inserting the values of any variables referenced in
<%= %> signs, and generates the final output:

server {

 listen 80;

 root /var/www/cat-pictures;

 server_name cat-pictures.com;

}

You might think this is a lot of trouble to go to just to end up with the same file we had
before. Of course, having gone to the trouble of using a template, we can now easily create
virtual hosts for other sites using the same template file:

node 'demo2' {
 include nginx

 $site_name = 'dog-pictures'
 $site_domain = 'dog-pictures.com'
 file { '/etc/nginx/sites-enabled/dog-pictures.conf':
 content => template('nginx/vhost.conf.erb'),
 notify => Service['nginx'],
 }
}

Chapter 6

[101]

Inline templates
You don't need to use a separate template file to take advantage of the power of templates.
The inline_template function lets you put a template string right in your Puppet code:

file { '/tmp/the_answer.txt':
 content => inline_template("What do you get if you multiply six by
nine? <%= 6 * 7 %>.\n")
}

System facts
It's often useful to be able to get information about the system, such as its IP address
or operating system version. Puppet's companion tool, Facter, provides this information.
To see the list of facts available about your system, run the command:

ubuntu@demo:~/puppet$ facter
architecture => amd64
...
uptime_hours => 2109
uptime_seconds => 7593471
virtual => xenu

You can reference any of these facts in a template (or in your Puppet code) just like
a variable:

content => inline_template("My address is <%= @ipaddress %>.\n")

There are a lot of facts. The ones you will most likely use in Puppet manifests are:

�� architecture – reports the system processor architecture and bitness
(32- or 64-bit)

�� fqdn – the fully-qualified domain name of the machine; for example,
demo.cat-pictures.com

�� hostname – just the hostname part; for example, demo

�� ipaddress – the IP address of the primary or first network interface. If there
are multiple interfaces, you can find their addresses with ipaddress_eth0,
ipaddress_eth1, and so on

�� memorysize – the amount of physical memory present

�� operatingsystem – the name of the machine's OS (for example, Ubuntu
or CentOS)

�� operatingsystemrelease – the specific OS version (for example, 12.04
for Ubuntu Precise)

Tasks and templates

[102]

Doing the math
Actually, you can do more than just insert variables and facts in templates. Puppet's
templating engine is called ERB, which uses Ruby, and in fact, everything between the
<%= and %> signs is Ruby code. So you can do math:

Two plus two is <%= 2 + 2 %>

Or call Ruby methods:

The time is <%= Time.now %>

Or evaluate Ruby expressions:

$vagrant_vm = inline_template("<%= FileTest.exists?('/tmp/vagrant-
puppet') ? 'true' : 'false' %>")

Putting it all together
You can combine facts, variables, arithmetic, string operations, and Ruby logic to do some
quite sophisticated things in templates. Here's an example that uses the memorysize fact
to modify a configuration file based on the physical RAM present. Unfortunately for us,
memorysize isn't returned as a simple integer representing the number of megabytes,
say. It's a string that includes the unit, for example 512.20 MB or 31.40 GB.

So before we can do computations with this figure, we need to normalize it to an integer
number of megabytes:

<% raw_memsize = @memorysize
 if raw_memsize.include?("GB")
 mem_in_mb = raw_memsize.to_f * 1024
 else
 mem_in_mb = raw_memsize.to_f
 end
%>
export HADOOP_DATANODE_OPTS="-XX:MaxDirectMemorySize=<%= (mem_in_mb *
0.25).to_i %>M ${HADOOP_DATANODE_OPTS}"

Having copied this code (of mine) from a production system, I see that it isn't really very
good. It assumes the only units returned will be MB or GB, so it will fail on systems with
memory measured in terabytes (TB), for example. But you get the idea, and your code
will be better.

Chapter 6

[103]

Summary
A quick rundown of what we've learned in this chapter.

Exec resources
Anything you can do on the command line, Puppet can do with an exec resource.
Specify the command to run using the command attribute:

exec { 'Run my arbitrary command':
 command => '/bin/echo I ran this command on `/bin/date` >/tmp/
command.output.txt',
}

By default, an exec resource will always be applied, every time you run Puppet. There are
several ways to control whether or when an exec will be applied:

�� creates runs the exec only if a given file doesn't exist

�� onlyif runs the exec only if a given command succeeds

�� unless runs the exec only if a given command fails

To run the command in a specified directory, use the cwd attribute:

exec { 'Download public key for John':
 cwd => '/tmp',
 command => '/usr/bin/wget http://bitfieldconsulting.com/files/john.
pub',
 creates => '/tmp/john.pub',
}

To apply the command only when triggered by some other resource, use the
refreshonly attribute:

exec { 'icinga-config-check':
 command => '/usr/sbin/icinga -v /etc/icinga/icinga.cfg && /usr/
sbin/service icinga restart',
 refreshonly => true,
 subscribe => File['/etc/icinga/icinga.cfg'],
}

This will apply the exec only when the resource it subscribes to (/etc/icinga/icinga.
cfg) is changed. You could have the other resource notify the exec instead, which has the
same effect.

Tasks and templates

[104]

For short sequences of commands, you can chain them in a single exec using
the & shell operator:

/usr/sbin/icinga -v /etc/icinga/icinga.cfg && /usr/sbin/service icinga
restart

For longer sequences using multiple exec resources, you can specify the necessary ordering
using require:

exec { 'command-1':
 command => '/bin/echo Step 1',
}

exec { 'command-2':
 command => '/bin/echo Step 2',
 require => Exec['command-1'],
}

Puppet requires you to specify the full path to each command you run in an exec, unless
you specify a list of paths to search for commands using the path attribute:

exec { 'Run my arbitrary command':
 command => 'echo I ran this command on `date` >/tmp/command.output.
txt',
 path => ['/bin', '/usr/bin'],
}

You can set a default list of paths for all exec resources in your site.pp file:

Exec {
 path => ['/bin', '/usr/bin'],
}

Scheduled jobs
To run commands at a specified time of day, or at regular intervals, you can use a cron
resource:

cron { 'Back up cat-pictures':
 command => '/usr/bin/rsync -az /var/www/cat-pictures/ /cat-pictures-
backup/',
 hour => '04',
 minute => '00',
}

You can use any combination of these attributes to set the scheduled time for the job: hour,
minute, day, weekday, monthday, month.

Chapter 6

[105]

You can run a job at regular intervals (every 5 minutes, for example) with a setting like this:

minute => '*/5',

Cron jobs default to running as root. To make a job execute as a particular user, specify the
user attribute:

user => 'www-data',

Recursive file resources
To have Puppet copy a whole tree of files, use the recurse attribute on a file resource:

file { '/var/www/cat-pictures/img':
 source => 'puppet:///modules/cat-pictures/img',
 recurse => true,
 require => File['/var/www/cat-pictures'],
}

Templates
Templates can be used wherever you need to insert information into a file based on Puppet
variables or Facter facts. You can also use Ruby code in templates to do math or string
computations, or read and write files, anything, in fact, that Ruby can do. Just specify a
template file using the template function:

file { '/etc/nginx/sites-enabled/cat-pictures.conf':
 content => template('nginx/vhost.conf.erb'),
 notify => Service['nginx'],
}

The most common use for templates is simply inserting the value of a variable:

server_name <%= @site_domain %>;

But you can use any valid Ruby code in a template:

The time is <%= Time.now %>

Inline templates don't require a separate template file; you just supply the template to
Puppet as a string in your manifest and call the inline_template function to evaluate it:

file { '/tmp/the_answer.txt':
 content => inline_template("What do you get if you multiply six by
nine? <%= 6 * 7 %>.\n")
}

Definitions and Classes

There are basically two types of people. People who accomplish things, and
people who claim to have accomplished things. The first group is less crowded.

 — Mark Twain

In this chapter, you'll learn how to group resources into reusable clumps that you can refer
to by name, making it easy to create lots of similar resources at once. You can also make your
Puppet manifests shorter, neater, and more readable by eliminating duplicated code.

node 'web' {
include memcache
include rails
include nginx
include my_app

}

This is so
awesome !

Employee of

the Month

GOLD

STAR

7

Definitions and Classes

[108]

Grouping resources into arrays
Suppose you have several instances of the same resource, as follows:

package { 'php5-cli':
 ensure => installed,
}

package { 'php5-fpm':
 ensure => installed,
}

package { 'php-pear':
 ensure => installed,
}

You can make your code shorter and simpler by grouping them into a single resource
declaration with a list of names, as follows:

package { ['php5-cli',
 'php5-fpm',
 'php-pear']:
 ensure => installed,
}

A comma-separated list in square brackets, shown in the following code line, is called
an array:

['php5-cli', 'php5-fpm', 'php-pear']

I've split it over multiple lines to make it more readable, but it's all the same to Puppet.
Arrays are acceptable in many places where otherwise you might use a single value:

require => [Package['ntp'], File['/etc/ntp.conf']],

And they are especially useful when declaring lots of instances of the same resource type,
which only differ in their names:

file { ['/var/www/myapp',
 '/var/www/myapp/releases',
 '/var/www/myapp/shared',
 '/var/www/myapp/shared/config',
 '/var/www/myapp/shared/log',
 '/var/www/myapp/shared/pids',
 '/var/www/myapp/shared/system']:
 ensure => directory,
}

Chapter 7

[109]

Any attributes you add (file ownership or mode, for example) will be the same for every file
in the array. This is a great way to set attributes for a large number of resources all at once.

Definitions
Grouping resources into arrays is very helpful, but it only works with instances of a single
resource type. What if you want to group resources of different types? Let's take an example:
creating scheduled jobs that run a script at a particular time. For each job, we need to have
Puppet deploy the script file itself to the server:

file { '/usr/local/bin/backup_database':
 source => 'puppet:///modules/scripts/backup_database',
 mode => '0755',
}

We also need to create a cron resource to run the script:

cron { 'Run backup_database':
 command => '/usr/local/bin/backup_database',
 hour => '00',
 minute => '00',
}

So far, so good. But when you have ten jobs to run, all this typing gets a little repetitive:

file { '/usr/local/bin/job1':
 source => 'puppet:///modules/scripts/job1',
 mode => '0755',
}
cron { 'Run job1':
 command => '/usr/local/bin/job1',
 hour => '00',
 minute => '00',
}
file { '/usr/local/bin/job2':
 source => 'puppet:///modules/scripts/job2',
 mode => '0755',
}
cron { 'Run job2':
 command => '/usr/local/bin/job2',
 hour => '00',
 minute => '00',
}
...
and so on

Definitions and Classes

[110]

Worse, when you have lots of duplicated code like this, it becomes very difficult to maintain.
If you want to change a parameter for all your jobs (say, to run them all at 1 a.m. instead of
midnight) you have to track down every job in your code and make the same modification.
That's tedious and error-prone.

A better way is to group this pair of resources (the file and the cron job) and give them
a name using the define keyword:

Manages a script plus the cron job to run it
define script_job() {
 file { "/usr/local/bin/${name}":
 source => "puppet:///modules/scripts/${name}",
 mode => '0755',
 }
 cron { "Run ${name}":
 command => "/usr/local/bin/${name}",
 hour => '00',
 minute => '00',
 }
}

You can see that this is exactly the same as the resources we had before, except that the
name of the job has been replaced with ${name}, and the whole thing is wrapped inside
these lines:

define script_job() {
 ...
}

The resource that you create using the define keyword is called a definition. A definition
can be used just like a regular resource type:

script_job { 'backup_database':
}

When Puppet sees this, it effectively replaces it with the following:

file { '/usr/local/bin/backup_database':
 source => 'puppet:///modules/scripts/backup_database',
 mode => '0755',
}
cron { 'Run backup_database':
 command => '/usr/local/bin/backup_database',
 hour => '00',
 minute => '00',
}

Wherever ${name} occurred in the definition, it's been replaced with backup_database.

Chapter 7

[111]

Passing parameters to definitions
So a definition can encapsulate a bunch of different resources and each of them has access
to the $name variable. What if you want to add another variable? For example, in the
preceding script_job example, you might want to make the hour a parameter rather
than running all your jobs at midnight.

To do this, add the name of the parameter in round brackets following the name of
the define:

define script_job($hour) {
 ...
}

You can then refer to $hour anywhere inside the definition and get its value:

cron { "Run ${name}":
 command => "/usr/local/bin/${name}",
 hour => $hour,
 minute => '00',
}

Quotes

If you put double quotes around a string, Puppet will process it for variable
references (replacing ${name} with backup_database, for example).
It will also interpret the special escape sequences such as \n for new line.

If you use single quotes, Puppet will leave the string just as it is. So Puppet
Labs official style guidelines say:

All strings that do not contain variables should be enclosed in single quotes.
Double quotes should be used when variable interpolation is required.

When you declare an instance of script_job, you now have to pass in a value for hour just
like any other resource attribute:

script_job { 'backup_database':
 hour => '05',
}

You can pass more than one parameter using a comma-separated list:

define script_job($hour, $minute) {
 file { "/usr/local/bin/${name}":
 source => "puppet:///modules/scripts/${name}",
 mode => '0755',
 }

Definitions and Classes

[112]

 cron { "Run ${name}":
 command => "/usr/local/bin/${name}",
 hour => $hour,
 minute => $minute,
 }
}

And passing multiple parameters to a definition is just like setting multiple attributes on
a regular resource:

script_job { 'backup_database':
 hour => '05',
 minute => '30',
}

Optional parameters
We don't always care what time a job runs, so it would be nice to have the hour and minute
parameters take some default value (00, say). You can do this by specifying the default value
in the parameter list:

define script_job($hour = '00', $minute = '00') {
 ...
}

Now if we don't specify an hour or minute for a script_job, they will get the default
values. Here is an instance of script_job declared this way, with no parameters:

script_job { 'backup_database':
}

This results in a job that runs at midnight. However, if you pass in values for hour or minute,
they will override the defaults, and a script_job like this will run every hour:

script_job { 'download_tweets':
 hour => "*",
}

Time for action – creating a definition for Nginx websites
Previously we set up an Nginx for the cat-pictures.com site, and created a virtual host
template so we could create many websites that differ only in a couple of parameters. Let's
extend that a little further, and create a definition that includes everything required for an
Nginx website.

Chapter 7

[113]

Following the success of cat-pictures.com and its sister site dog-pictures.com,
the creative department is building a new site where users can upload cute pictures
of all kinds of animals. Your job is to use Puppet to set up a server for the new
adorable-animals.com site.

1.	 In your Puppet repo, create the file modules/nginx/manifests/website.pp
with the following contents:

Manage an Nginx virtual host
define nginx::website($site_domain) {
 include nginx
 $site_name = $name
 file { "/etc/nginx/sites-enabled/${site_name}.conf":
 content => template('nginx/vhost.conf.erb'),
 notify => Service['nginx'],
 }
}

2.	 Modify your manifests/nodes.pp file as follows:

node 'demo' {
 nginx::website { 'adorable-animals':
 site_domain => 'adorable-animals.com',
 }
}

3.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]//Node[demo]/Nginx::Website[adorable-animals]/
File[/etc/nginx/sites-enabled/adorable-animals.conf]/ensure:
defined content as '{md5}53febc966302b52afc5346803606ced3'

Notice: /Stage[main]/Nginx/Service[nginx]: Triggered 'refresh'
from 1 events

Notice: Finished catalog run in 0.35 seconds

What just happened?
When you include this on your node:

nginx::website { 'adorable-animals':
 site_domain => 'adorable-animals.com',
}

Definitions and Classes

[114]

Puppet looks up the definition of nginx::website and finds this:

define nginx::website($site_domain) {

The first step in this definition is:

include nginx

This pulls in the nginx class, which we set up in earlier chapters to manage the Nginx server.

The next line sets up the $site_name variable that we're going to use in the template:

$site_name = $name

You might remember that $name is a special parameter that Puppet sets implicitly for you.
When you declare a resource, you give it a name in quotes after the resource type:

package { 'nginx':
 ...

}

So inside that package definition, $name will have the value nginx. Similarly, we declared
this instance of nginx::website with the name adorable-animals:

nginx::website { 'adorable-animals':

So here, $name will have the value adorable-animals. We assign this value to the variable
$site_name.

Next, we declare a file resource for the Nginx virtual host file:

file { "/etc/nginx/sites-enabled/${site_name}.conf":

We know that $site_name has the value adorable-animals, so the actual file Puppet
creates will be /etc/nginx/sites-enabled/adorable-animals.conf.

The contents of this file will be read from a template:

content => template('nginx/vhost.conf.erb'),

The template file, which we created previously, contains:

server {
 listen 80;
 root /var/www/<%= site_name %>;
 server_name <%= site_domain %>;
}

Chapter 7

[115]

Puppet will interpolate the values for site_name and site_domain into this template,
as we saw in the previous chapter. So the actual contents of the file will be:

server {
 listen 80;
 root /var/www/adorable-animals;
 server_name adorable-animals.com;
}

Multiple instances of definitions
Of course, now that we've made it so easy to set up websites in just a couple of lines of
Puppet code, we can make a few more of them:

nginx::website { 'adorable-animals-staging':
 site_domain => 'staging.adorable-animals.com',
}
nginx::website { 'amusing-animals':
 site_domain => 'funny.adorable-animals.com',
}

Exercise
Extend the nginx::website definition so that it restarts or reloads the nginx service
whenever a virtual host file changes.

Classes
We've seen classes before, when we used the class keyword to group together the Puppet
resources that implement some particular service, such as Nginx:

Manage nginx webserver
class nginx {
 package { 'nginx':
 ensure => installed,
 }
}

Defining classes
The class keyword introduces a new class definition:

class nginx {
 ...
}

Definitions and Classes

[116]

You can also specify some parameters that the class accepts:

class appserver($domain,$database) {
 ...
}

The parameters can take default values, as with a definition:

class hadoop($role = 'node') {
 ...
}

Putting classes inside modules
It's a good idea to organize your classes into modules, just as we did with the nginx class.
Each class should be stored in the modules/MODULE_NAME/manifests directory, in a file
named after the class, with each file containing just one class.

So if we create an nginx::loadbalancer class, the definition should look like this:

class nginx::loadbalancer {
 ...
}

It should go in the file modules/nginx/manifests/loadbalancer.pp.

The exception is the class named after the module (for example, nginx). This should be in
the file modules/nginx/manifests/init.pp.

Declaring classes
There are different ways to declare a class (that is, to create an instance of it and apply it to
the current node) once you've defined it. If you don't need to give the class parameters, the
simplest way is to use include, as we did before:

include nginx

Alternatively, you can use require. This behaves just like include, except it specifies that
everything in the required class must be applied immediately, before Puppet moves on to
the next part of the code:

require nginx

If the class does need parameters, declare it like this (a bit like a resource):

class { 'cluster_node':
 role => 'master',
}

Chapter 7

[117]

You can include the same class from several different places, and Puppet won't mind. But
you can only use a resource-like declaration once (because resources have to be unique).

What's the difference between a class and a definition?
So far, a class looks much like a definition. What's the difference? Why would you use a class
instead of a definition, or vice versa?

Well, there is some overlap between them. Both classes and definitions bundle a group of
different resources into a single named entity that you can create instances of, with some
optional parameters. In older versions of Puppet, classes didn't take parameters, which made
the two types more distinct.

However, there are important differences. Classes are singletons; that is, Puppet only allows
one instance of a class to exist on a node at a time.

This can be very useful when the class has system-wide effects (installing Nginx, for example)
and you want to prevent it from being used multiple times. If you had two Nginx classes,
each specifying a different version of Nginx, that could cause problems.

Definitions, by contrast, can have as many instances as you like. We saw this earlier when we
created multiple websites on the same machine using the nginx::website definition.

So if you're wondering which to use, consider:

�� Will you need to have multiple instances of this on the same node (for example,
a website)? If so, use a definition.

�� Could this cause conflicts with other instances of the same thing on this node
(for example, a web server)? If so, use a class.

Time for action – creating an NTP class
Let's build an example class that manages the NTP time service. The class will take an
optional parameter specifying an NTP server to sync from.

1.	 First, create the directories for an ntp module:

ubuntu@demo:~/puppet$ mkdir modules/ntp

ubuntu@demo:~/puppet$ mkdir modules/ntp/manifests

ubuntu@demo:~/puppet$ mkdir modules/ntp/templates

Definitions and Classes

[118]

2.	 Create the file modules/ntp/manifests/init.pp with the following contents:

Manage NTP server
class ntp($server='UNSET') {
 package { 'ntp':
 ensure => installed,
 }

 file { '/etc/ntp.conf':
 content => template('ntp/ntp.conf.erb'),
 notify => Service['ntp'],
 }

 service { 'ntp':
 ensure => running,
 enable => true,
 require => [Package['ntp'], File['/etc/ntp.conf']],
 }
}

3.	 Create the file modules/ntp/templates/ntp.conf.erb with the following
contents:

driftfile /var/lib/ntp/ntp.drift

<% if server != 'UNSET' -%>
server <%= server %> prefer
<% end -%>
server 0.ubuntu.pool.ntp.org
server 1.ubuntu.pool.ntp.org
server 2.ubuntu.pool.ntp.org
server 3.ubuntu.pool.ntp.org
server ntp.ubuntu.com

restrict -4 default kod notrap nomodify nopeer noquery
restrict -6 default kod notrap nomodify nopeer noquery
restrict 127.0.0.1
restrict ::1

4.	 Modify your manifests/nodes.pp as follows:

node 'demo' {
 class { 'ntp':
 server => 'us.pool.ntp.org',
 }
}

Chapter 7

[119]

5.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]/Ntp/Package[ntp]/ensure: created

Notice: /Stage[main]/Ntp/File[/etc/ntp.conf]/ensure: defined
content as '{md5}65e3b66fbf63d0c6c667179b5d0c5216'

Notice: /Stage[main]/Ntp/Service[ntp]: Triggered 'refresh' from 1
events

Notice: Finished catalog run in 4.99 seconds

What just happened?
Let's take a detailed look at the ntp class definition. First, we give the class name and its
parameters:

class ntp($server='UNSET') {
 ...
}

The class takes one parameter, server, with a default value of UNSET (so the parameter is
optional). It's a good idea to set your default values to something like UNSET, which makes it
very obvious that a value hasn't been provided, rather than using an empty string.

The class will install the ntp package:

package { 'ntp':
 ensure => installed,
}

We will now set up the configuration file /etc/ntp.conf, using a template:

file { '/etc/ntp.conf':
 content => template('ntp/ntp.conf.erb'),
 notify => Service['ntp'],
}

The template contains the following logic:

<% if server != 'UNSET' -%>
server <%= server %> prefer
<% end -%>

This means that if the value of $server is UNSET, everything between the <% if -%> and
<% end -%> tags will be ignored, and the file will contain only the default NTP settings.

Definitions and Classes

[120]

If $server is anything other than UNSET, a line like this will be added to the file:

server us.pool.ntp.org prefer

Here us.pool.ntp.org is the value of $server that we passed in to the class.

Finally, we manage the ntp service itself:

service { 'ntp':
 ensure => running,
 enable => true,
 require => [Package['ntp'], File['/etc/ntp.conf']],
}

Note that this depends on both the ntp package (we can hardly start the service until the
software's installed) and the ntp.conf file. As we saw in Chapter 3, Packages, Files, and
Services, require implies notify, so if the ntp.conf file is changed later on, the service
will be restarted to pick up the changes.

Summary
A quick rundown of what we've learned in this chapter.

Arrays
You can refer to or declare a number of identical resources concisely by giving them
as an array:

package { ['php5-cli', 'php5-fpm', 'php-pear']:
 ensure => installed,
}

Definitions
You can group together resources of any type by using the define keyword to
create a definition:

define script_job() {
 RESOURCE1
 RESOURCE2
 ...
}

Chapter 7

[121]

You create an instance of a definition by declaring it just as though it were a built-in resource:

script_job { 'backup_database': }

Definitions can take parameters, if you specify them in () after the definition name:

define script_job($hour, $minute) {

 ...

}

You can make these parameters optional by giving default values for them:

define script_job($hour = '00', $minute = '00') {
 ...
}

To pass parameters to the definition, specify them just like normal resource attributes:

script_job { 'backup_database':
 hour => '05',
 minute => '30',
}

Classes
Classes are like definitions, and you introduce them with the class keyword:

class nginx::loadbalancer {

If the class takes no parameters, you can use the include or require keywords to create
an instance of the class on a node:

include postfix
require loadbalancer::nginx

If the class takes parameters, you use the class keyword to instantiate it, but in a
resource-like way:

class { 'cluster_node':
 role => 'master',
}

You can include or require the same class in many different places without a problem,
but if the class takes parameters this isn't the case. There can only be one instance of a
parameterized class on each node. This makes parameterized classes more suitable for
things that make system-wide changes that could potentially conflict with other instances
of the same class.

Expressions and Logic

A young man should read five hours in a day, and so may acquire a great deal
of knowledge.

 — Samuel Johnson

In this chapter, you'll learn how to make choices in your Puppet manifests, how to do
arithmetic, logic, and string operations in the Puppet language, and how to use regular
expressions to match patterns in strings. You'll also find out about some useful Puppet
data types: arrays and hashes.

$#!?

$eggs = 61

$bacon = 1.80

$eggs
+$bacon = ?

Conditionals
It's useful to be able to do different things in a manifest depending on the value of some
variable or expression. Puppet provides several ways to do this. The first is the if statement.

8

Expressions and Logic

[124]

If statements
An if statement has the following form:

if EXPRESSION {
 OPTIONAL_SOMETHING
}

The part of the manifest represented by OPTIONAL_SOMETHING will only be applied if the
value of EXPRESSION is true. We'll learn more about expressions later in the chapter, but for
now let's take a simple example:

if $eggs == 61 {
 notify { 'Glory be, eggs have just gone up to 61¢ a dozen!': }
}

Here the EXPRESSION is:

$eggs == 61

The == operator means "is equal to".

Note the difference between $eggs == 61 and $eggs = 61

$eggs = 61 has a different meaning to Puppet. The single = operator has
the effect of assigning the value 61 to the variable $eggs, while the double
== operator tests equality. So in conditional expressions—expressions in an
if statement, for example—we always use ==, not =.

Puppet reads the expression $eggs == 61, and decides whether it evaluates to true or
false. If the variable $eggs does have the value 61, the expression will be true, and if it
doesn't, it will be false.

If the expression is true, Puppet will apply everything inside the braces:

notify { 'Glory be, eggs have just gone up to 61¢ a dozen!': }

If the expression is false, Puppet will simply skip the contents of the braces and proceed to
the next part of the manifest. So if is called a conditional statement; it makes part of the
manifest conditional on some expression being true.

else and elsif
You can extend the if statement by using else:

if $::operatingsystem == 'zx81' {
 notify { 'Enabling experimental Puppet ZX81 support': }
} else {
 notify { 'ZX81 not detected': }
}

Chapter 8

[125]

The contents of the else branch will only be applied if the condition is not true.

To build up more complex conditional statements, you can use elsif to add more tests.
Puppet will try them in sequence:

if $::processorcount >= 16 {
 include cpu_intensive_application
} elsif $::processorcount >= 4 {
 include medium_application
} else {
 include lightweight_application
}

As you can see, the extended form of the if statement looks like this:

if EXPRESSION {
 OPTIONAL_SOMETHING
} elsif ANOTHER_EXPRESSION {
 OPTIONAL_SOMETHING_ELSE
} else {
 OPTIONAL_OTHER_THING
}

You can have as many elsif branches as you want; Puppet will test each of the conditions in
order, and if none of them matches the else branch (if there is one) will be applied instead.

Unless statements
As you might imagine, unless is like if, but with the opposite sense. The block is not
applied if the expression is true. An unless statement has this form:

unless EXPRESSION {
 OPTIONAL_SOMETHING
}

Again, EXPRESSION is a logical expression (one that can evaluate to true or false).
This time, the OPTIONAL_SOMETHING is only applied if EXPRESSION is false.

You can't use elsif or else with unless; Puppet treats this as a syntax error.

Case statements
If you just have one or two choices to make, the if statement is ideal. However, if you need
to choose between several alternatives, it becomes awkward to write:

if $::operatingsystem == 'Ubuntu' {
 include os_specific::ubuntu

Expressions and Logic

[126]

} elsif $::operatingsystem == 'Debian' {
 include os_specific::debian
} elsif $::operatingsystem == 'RedHat' {
 include os_specific::redhat
} else {
 include os_specific::default
}

For situations like this, Puppet provides the case statement:

case $::operatingsystem {
 'Ubuntu': { include os_specific::ubuntu }
 'Debian': { include os_specific::debian }
 'RedHat': { include os_specific::redhat }
 default : { include os_specific::default }
}

case takes an expression and tries to match it against a list of values (the cases). If one
matches, Puppet will apply the corresponding code block. If there is a default case, this
will be applied if none of the other cases match.

The general form of a case statement is:

case EXPRESSION {
 CASE1 { BLOCK1 }
 CASE2 { BLOCK2 }
 CASE3 { BLOCK3 }
 ...
 default : { ... }
}

Note that EXPRESSION can be any expression; it's not restricted to logical expressions as the
if and unless statements are.

The code blocks BLOCK1, BLOCK2, and BLOCK3 can be any Puppet code, though it's a good
idea to keep the blocks short enough so that you can see the whole case statement at once.
If you need to have a lot of code in the blocks, you can use include to apply classes you've
defined somewhere else.

Puppet will apply only the first case that matches, and ignore any subsequent ones, so if it's
possible for there to be multiple matches you should list them in order of preference. The
default case must always come at the end.

Chapter 8

[127]

The default case
It's good practice to always have a default case. If your case statement is supposed to
always match something, then you can have the default case signal an error using the
fail function:

default: { fail('This should never happen') }

This will halt Puppet with the error message you specify.

Alternatively, you can provide an empty code block to default:

default: { }

This makes it clear to anyone reading your code that no action is needed if none of the cases
match. It's a good principle of programming that "explicit is better than implicit."

Matching multiple cases
You can specify two or more cases that will trigger the same code block by separating the
values with commas as shown in the following code snippet:

case $::operatingsystem {
 'Debian', 'Ubuntu': {
 include os_specific::debianlike
 }
}

Selectors
Sometimes you want to choose between a number of different values depending on the
result of some expression. You could do it with a case statement that sets a variable:

case $::operatingsystem {
 'Ubuntu': {
 $os_type = 'Debianlike'
 }
 'RedHat': {
 $os_type = 'Redhatlike'
 }
 'Darwin': {
 $os_type = 'Mac OS'
 }
 default: {
 $os_type = 'UNKNOWN'
 }
}
notify { "You're running a ${os_type} system": }

Expressions and Logic

[128]

But this is a bit tedious and repetitive. For situations like this, Puppet provides the selector,
which is like a case statement, but instead of matching a case and applying a code block, it
matches a case and returns a value.

$os_type = $::operatingsystem ? {
 'Ubuntu' => 'Debianlike',
 'RedHat' => 'Redhatlike',
 'Darwin' => 'Mac OS',
 default => 'UNKNOWN',
}
notify { "You're running a ${os_type} system": }

As with a case statement, Puppet goes through the list in order, returning the first match it
finds. If nothing matches, the value for default is returned.

You can use a selector anywhere that expects a value, but it's good style to assign the value
of a selector to a variable, and then use that variable, as in the $os_type example.

Expressions
It's time to look at expressions in a little more detail, and see what kind of expressions
Puppet allows us to construct.

Comparisons
An important kind of expression is the comparison expression. This compares two values,
and the expression is true or false depending on the result of the comparison.

Equality
We've already seen an expression involving a comparison of two values:

$eggs == '61'

And we know the == operator means "is equal to." Its opposite is the != operator
(not equal to):

$username != 'FOTHERINGTON-THOMAS'

Comparison expressions like these are logical expressions; their value is either true or false.
By the way, true and false are reserved words in Puppet that stand for these logical
values. You can use them like any other literal values:

$raining = true
if $raining {
 include umbrella
}

Chapter 8

[129]

Magnitude
You can also compare values using the following operators:

�� > (greater than)

�� < (less than)

�� >= (greater than or equal to)

�� <= (less than or equal to)

Expressions with these operators are also logical expressions:

if $eggs >= 61 {
 notify { 'YOU KNOW I GOT NO SENSE OF EGGS': }
}

However, their operands (the values they work on) can only be numbers. If you try to say
something as follows:

if $eggs > 'TALBOT?' {
 ...
}

Puppet will not self-destruct like a computer in a bad sci-fi movie, but it will complain:

Error: comparison of Fixnum with String failed

Substrings
Similarly, there is another comparison operator that only works with string operands, in.

if 'eggs' in 'Can you believe the price of eggs?' {
 ...
}

in tests whether the first operand is a substring of the other. For example, this expression
is true:

'spring' in 'springfield'

But this expression is false:

'Paris' in 'the spring'

Expressions and Logic

[130]

Boolean operators
Boolean, or logical, operators work on logical values (things that evaluate to true or false).
You can use them to build up more complex expressions from simpler components. For
example, the and operator takes two logical expressions as operands:

$eggs > 61 and $eggs < 100

This expression is true if both operands are true. So the expression will be true if $eggs is
both greater than 61 and less than 100.

If one or both of the operands is false, the and expression will also be false.

$eggs > 61 and $eggs < 100

The preceding expression will be false if $eggs is 120. Although $eggs > 61 is true, $eggs
< 100 is false, so the and expression evaluates to false.

The or operator is a little more forgiving. It is true if either (or both) of its operands is true:

$eggs > 61 or $today == 'Thursday'

The ! (not) operator takes only one operand, and flips its value. If $raining is true, then !
$raining is false, and vice versa.

Combining Boolean operators
You can combine Boolean operators, but it's helpful to use parentheses to group different
subexpressions together. This makes it clear to you, to Puppet, and to anyone else reading
the code what's intended. For example:

$today == 'Thursday' and ($eggs < 61 or $eggs > 100)

The preceding expression is not the same as this:

($today == 'Thursday' and $eggs < 61) or $eggs > 100

Arithmetic operators
Puppet's arithmetic operators all work with numeric operands, and the value of an
arithmetic expression is always a number (so you can't use it as a test in a conditional
statement, for example). You can use the following familiar operators:

�� + (addition)

�� - (subtraction)

�� * (multiplication)

�� / (division)

Chapter 8

[131]

You can combine these operators in any way you like:

$celsius = ($fahrenheit - 32) * 5 / 9

There are also two bitwise shift operators, << and >>, which multiply and divide integers by
powers of 2.

$x << $y

The preceding expression multiplies $x by 2 to the power of $y. So $x = 1 << 3 evaluates
to 1 times 2 cubed, which is 8.

Regular expressions
We've seen a couple of different ways of testing string values already. You can compare
strings for equality:

if $role == 'webserver' {
 ...
}

You can also test whether one string is a substring of another:

if 'dunk' in 'doughnuts' {
 ...
}

But what if you want to test for patterns of characters? Say, app followed by any characters,
followed by staging. Puppet has a special pattern-matching language you can use for this:

if $::hostname =~ /app.*staging/ {
 ...
}

This expression will be true if $::hostname is any of the following, and many more:

�� app_staging

�� app-1-staging

�� application_staging

�� appstaging

�� my_app_staging_server

Expressions and Logic

[132]

Note the slash characters surrounding the pattern:

/app.*staging/

This kind of pattern is called a regular expression, or regex for short, and Puppet uses the
slash character (/) to mark the start and end of regular expressions.

Operators
The operator which tests whether a string matches a regex, as in the previous example,
is the regex match operator, =~:

VALUE =~ /REGEX/

The operator with the opposite sense is the regex non-match operator, !~:

VALUE !~ /REGEX/

Syntax
The simplest regular expression is just the literal string that you want to match:

$animal =~ /cat/

Wildcards (which match any single character) are represented by a dot:

/c.t/

The preceding expression matches cat, cot, cut, crt, and so on. To match from zero to any
number of wildcard characters, use .*:

/c.*t/

The preceding expression matches ct, cat, count, constitutionalist, and so on.
To match digits only, use the sequence \d:

/app\d*/

The preceding expression matches app, app1, app200, app99999, and so on.

The particular flavor of regular expression language that Puppet recognizes is
the same as that implemented by Ruby, so any valid Ruby regex is just fine with
Puppet. You can find a good introduction to Ruby regular expression syntax here:

http://www.tutorialspoint.com/ruby/ruby_regular_
expressions.htm

Chapter 8

[133]

Conditionals
As we've seen, expressions involving regexes are very useful as the test in a
conditional statement:

if VALUE =~ /REGEX/ {
 DO_SOMETHING
}

So you can use regular expressions with if and unless statements, but you can also use
them as cases in case statements:

case $::ec2_placement_availability_zone {
 /us-.*/: { notify { 'In United States': } }
 /eu-.*/: { notify { 'In Europe': } }
 default: { notify { 'Some other region': } }
}

A regular expression can also be a case in a selector:

$ec2_family = $::ec2_instance_type ? {
 /t1/ => 'micro',
 /m1/ => 'first generation',
 /m2/ => 'high-memory',
 /m3/ => 'second generation',
 /c1/ => 'high-cpu',
 default => 'other',
}

Capture variables
If you need to refer to the actual text that was matched, it will be available in the special
variable called $0. This is called a capture variable. Within the scope of the conditional
statement, you can refer to $0 to get the string that the regex successfully matched, if any:

$uname = generate('/bin/uname','-a')
if $uname =~ /\d+\.\d+\.\d+/ {
 notify { "I have kernel version ${0}": }
}

The output of the command uname -a on a Linux server usually looks something like this:

Linux demo 3.2.0-29-virtual #46-Ubuntu SMP Fri Jul 27 17:23:50 UTC 2012
x86_64 x86_64 x86_64 GNU/Linux

Expressions and Logic

[134]

So the code above looks for a string that matches the regular expression:

/\d+\.\d+\.\d+/

This expression matches three numbers separated by periods. In this case the match
text will be:

3.2.0

So the output is:

Notice: I have kernel version 3.2.0

You can also capture smaller parts of the regular expression, by putting it in parentheses,
like this:

/abc(def)ghi/

The value of anything matched by the characters in parentheses will be available as $1:

$uname = generate('/bin/uname','-a')
if $uname =~ /(\d+)\.\d+\.\d+/ {
 notify { "I have kernel version ${0}, major version ${1}": }
}

Notice: I have kernel version 3.2.0, major version 3

You can use more than one set of parentheses, and the values for each will be available as
$1, $2, and so on.

These capture variables are only good within the block of the conditional expression, so use
them or lose them. If you need to preserve one of these values for later, you can assign it to
a regular variable:

if $uname =~ /(\d+)\.\d+\.\d+/ {
 $major_version = $1
}

Substitutions
Sometimes it's handy to be able to search and replace text within strings. Puppet gives you
this capability with the regsubst function, which matches text with a regular expression
and replaces it with the value you specify:

regsubst(STRING, REGEX, REPLACEMENT)

Chapter 8

[135]

The STRING argument is the input. The REGEX is what you want to match in the input.
The REPLACEMENT is what you want to replace any matched text with. For example:

$output = regsubst('Look at my cat picture', 'cat', 'dog')
notify { $output: }

The output from the preceding code snippet will be:

Notice: Look at my dog picture

The regex can simply be a literal string, as in this example, or it can be more complicated:

$output = regsubst('Look at my cat picture','my .* picture','something
more interesting')
notify { $output: }

The output from the preceding code snippet will be:

Notice: Look at something more interesting

You can also use capture variables, as in conditional statements. Here, the contents of
successive capture variables are named \1, \2, and so on.

$output = regsubst('Look at my cat picture','my (.*) picture','this
adorable \1')
notify { $output: }

The output from the preceding code snippet will be:

Notice: Look at this adorable cat

There are a few syntax differences when using regular expressions with
regsubst. Instead of putting the regular expression within slashes (/
REGEX/) you use quotes ('REGEX'). And as we just saw, the capture
variables are named \1, \2, \3 instead of $1, $2, $3. The makers of Puppet
put these little differences in to make sure you're paying attention.

Node definitions
A handy place to use regular expressions is in node definitions. You can apply a node
definition not merely to a hostname:

node 'demo' {
 ...
}

Expressions and Logic

[136]

Or to a list of hostnames:

node 'demo1', 'demo2', 'demo3' {
 ...
}

You can also apply a node definition to hostnames matching a regular expression:

node /demo.*/ {
 ...
}

This is very useful when you have a number of otherwise identical servers whose hostnames
match some pattern:

node /web.*/ {
 include webserver
}

node /app.*/ {
 include appserver
}

node /db.*/ {
 include dbserver
}

Node definitions don't support capture variables, so you can't capture the
matched text and use it inside the node definition as you can in a conditional
statement. If you want to capture some part of the hostname, you can do
this with regsubst and the $::hostname fact.

Arrays and hashes
So far we've dealt mostly with strings and numbers, but Puppet has a couple of other
data types you can use, which are ways of grouping values together: arrays and hashes.

Grouping resources with arrays
We've encountered arrays before, when we used them to concisely declare several
similar resources:

package { ['php5-cli', 'php5-fpm', 'php-pear']:
 ensure => installed,
}

Chapter 8

[137]

To make an array, all you need to do is put square brackets round it:

['jerry', 'george', 'elaine']

If you use an array in the context where a resource name is expected, this has the effect of
declaring a resource for each member of the array:

$developers = ['jerry', 'george', 'elaine']
notify { $developers: }

The output from the preceding code snippet will be:

Notice: george

Notice: jerry

Notice: elaine

This is why the trick of declaring an array of package names works: it declares a package
resource for each member of the array.

However, this doesn't work if the array is interpolated into a string. In that case, the
members of the array are all simply clumped together in the string:

$developers = ['jerry', 'george', 'elaine']
notify { "The developers are: $developers": }

The output from the preceding code snippet will be:

Notice: The developers are: jerrygeorgeelaine

Getting values out of arrays
To retrieve a specific element of an array (for example, the first element), put the element
number in square brackets after the array name:

$developers[0]

The elements are numbered from 0 upwards, with 0 being the first element, 1 the second,
and so on. If this seems odd to you, you can always refer to element 0 as the zeroth element
instead. Computer scientists and mathematicians will understand you perfectly.

You can also number elements backwards from the end of the array. For example, the last
element of an array is element [-1]:

$developers = ['jerry', 'george', 'elaine']
notify { "The last developer is: ${developers[-1]}": }

Expressions and Logic

[138]

The output from the preceding code snippet will be:

Notice: The last developer is: elaine

The second-to-last element is [-2], and so on.

You can also use the in operator to test if some value is a member of an array:

if $crewmember in ['Frank', 'Dave'] {
 notify { "I'm sorry, ${crewmember}. I'm afraid I can't do that.": }
}

Hashes
A hash is a set of pairs of elements. The first member of each pair is called the key, and the
second is the value. Here's an example:

$interfaces = {
 'lo0' => '127.0.0.1',
 'eth0' => '192.168.0.1',
}

You can think of a hash as being like an array, but instead of looking up elements by number,
you look them up by name (the key):

$address = $interfaces['eth0']
notify { "Interface eth0 has address ${address}": }

The output from the preceding code snippet will be:

Notice: Interface eth0 has address 192.168.0.1

The key must be a string, but the value can be any data type:

$contrived_example = {
 'fish' => 'babel',
 'answer' => 42,
 'crew' => ['Ford Prefect', 'Arthur Dent'],
 'hash' => { 'Warning' => 'Beware of the leopard' }
}

Multilevel hashes
As you can see, the value can be a string, a number, an array, or even another hash. This
means you can construct multilevel hashes, where you use a series of increasingly specific
keys to get what you want. For example:

Chapter 8

[139]

$interfaces = {
 'lo0' => {
 'address' => '127.0.0.1',
 'netmask' => '255.0.0.0',
 },
 'eth0' => {
 'address' => '192.168.0.1',
 'netmask' => '255.255.255.0',
 }
}
$eth0_netmask = $interfaces['eth0']['netmask']
notify { "eth0 has netmask ${eth0_netmask}": }

The output from the preceding code snippet will be:

Notice: eth0 has netmask 255.255.255.0

Note the syntax for looking up keys in a multilevel hash:

$interfaces['eth0']['netmask']

Testing hash keys
The in operator also works with hashes, and tests whether the hash has a certain key:

if 'eth0' in $interfaces {
 ...
}

Summary
A quick rundown of what we've learned in this chapter.

Conditionals
You can conditionally apply a block of Puppet code using an if statement:

if EXPRESSION {
 OPTIONAL_SOMETHING
}

You can add extra elsif clauses and an optional else clause:

if EXPRESSION {
 OPTIONAL_SOMETHING
} elsif ANOTHER_EXPRESSION {

Expressions and Logic

[140]

 OPTIONAL_SOMETHING_ELSE
} else {
 OPTIONAL_OTHER_THING
}

The else clause, if present, will be applied if none of the conditions match.

The case statement lets you conditionally apply code if any of a number of possible cases
are matched:

case EXPRESSION {
 CASE1 { BLOCK1 }
 CASE2 { BLOCK2 }
 CASE3 { BLOCK3 }
 ...
 default : { ... }
}

With a selector, you can test a number of cases and return a value:

$result = EXPRESSION ? {
 CASE1 => VALUE1,
 CASE2 => VALUE2,
 CASE3 => VALUE3,
 default => DEFAULT_VALUE,
}

Operators
You can build expressions using different kinds of operators:

�� Comparison operators (==, !=, <, <=, >, >=)

�� Boolean operators (and, or, !)

�� String, array, or hash membership operators (in)

�� Arithmetic operators (+, -, *, /, <<, >>)

Regular expressions
You can use regular expressions to match patterns of characters:

if $::hostname =~ /app.*staging/ {

Chapter 8

[141]

Regular expressions can also be the cases for selectors and case statements:

case $::ec2_placement_availability_zone {
 /us-.*/: { notify { 'In United States': } }
 ...
}

$ec2_family = $::ec2_instance_type ? {
 /t1/ => 'micro',
 ...
}

The text matched by a regular expression, or part of a regular expression grouped with
parentheses, is available in the capture variables $0, $1, $2, and so on.

if $uname =~ /(\d+)\.\d+\.\d+/ {
 notify { "I have kernel version ${0}, major version ${1}": }
}

Text substitution
To substitute text in strings, use the regsubst function with a suitable regular expression:

$output = regsubst('Look at my cat picture','my (.*) picture','this
adorable \1')
notify { $output: }

The output from the preceding code snippet will be:

Notice: Look at this adorable cat

Regular expressions can also be used to match node definitions:

node /web.*/ {
 include webserver
}

Arrays
Arrays are sets of values surrounded by square brackets:

['jerry', 'george', 'elaine']

You can often use an array in place of a single value:

package { ['php5-cli', 'php5-fpm', 'php-pear']:
 ensure => installed,
}

Expressions and Logic

[142]

To look up an element in an array by number (starting from zero), use square brackets after
the array name:

$developers[0]

Hashes
A hash is a set of key/value pairs grouped inside curly braces:

$interfaces = {
 'lo0' => '127.0.0.1',
 'eth0' => '192.168.0.1',
}

You look up hash values with a string key in square brackets after the hash name:

$address = $interfaces['eth0']

Hash keys must be strings, but hash values can be strings, numbers, arrays, or other hashes:

$interfaces = {
 'lo0' => {
 'address' => '127.0.0.1',
 'netmask' => '255.0.0.0',
 },
 'eth0' => {
 'address' => '192.168.0.1',
 'netmask' => '255.255.255.0',
 }
}

To look up a value in a multilevel hash, use consecutive keys in square brackets:

$interfaces['eth0']['netmask']

Reporting and troubleshooting

Often, the most important piece of information is that something has
gone wrong.

 — Frank Herbert, "God Emperor of Dune"

In this chapter, you'll learn how to get information on what Puppet's doing, when it runs,
the changes it makes, how to monitor Puppet, and what to do about many common errors
you may encounter.

BASIC SOLDERING

ELECTRONICS
FOR DUMMIES

UH-OH...

9

Reporting and troubleshooting

[144]

Reporting
Most of the time you'll probably be happy for Puppet to just run and do its job. In some
situations, however, it can be very useful to have Puppet record information about exactly
what it did and when it did it. This facility in Puppet is called reporting.

For example, if something is not working as you expected, you can look at Puppet's reports
and get a very detailed picture of what's going on. Or you might want to monitor what
Puppet is doing across your whole network and record performance information over time.
You can also see if Puppet runs are failing, and diagnose the reason.

Summary reports
You can get a quick overview of what Puppet is doing on a given run by using the
--summarize flag to puppet apply. It will report some overall statistics on timing and
resources changed:

ubuntu@demo:~/puppet$ papply --summarize

Notice: /Stage[main]//Node[demo]/File[/tmp/test]/ensure: defined content
as '{md5}5d41402abc4b2a76b9719d911017c592'

Notice: Finished catalog run in 0.06 seconds

Changes:

 Total: 1

Events:

 Success: 1

 Total: 1

Resources:

 Changed: 1

 Out of sync: 1

 Skipped: 6

 Total: 9

Time:

 Filebucket: 0.00

 File: 0.00

 Config retrieval: 0.15

 Total: 0.16

 Last run: 1360157807

Version:

 Config: 1360157805

 Puppet: 3.0.2

Chapter 9

[145]

This can be helpful if you want to make sure that Puppet is doing what you think it should.
However, if you need more information, especially about changes to specific resources, you'll
need to enable full reports. We'll see how to do this in the next section.

Enabling reports
Reporting is enabled in the Ubuntu Puppet package by default, but if you're using another
distribution or installing Puppet from another source, this may not be the case. To check
your setting, run the following command:

ubuntu@demo:~/puppet$ sudo puppet config print report

true

If the setting is false, and you want to enable reporting, edit the file /etc/puppet/
puppet.conf and add the following setting:

[main]
report=true

What's in a report?
Puppet produces detailed reports every time it runs, recording the following:

�� The date and time of the run

�� How long the run took

�� The version of Puppet

�� Whether the run failed, changed resources, or left them unchanged

�� How many resources were changed (if any)

�� Every resource in the catalog (the set of resources that apply to this node), with the
following information:

�� The name of the resource

�� The resource type

�� Whether or not the resource was out of sync (didn't match the manifest)

�� Whether or not the resource was changed

�� The number of properties (attribute values) that were out of sync

�� The number of properties that were changed

�� If any properties of a resource were changed, the report includes:

The name of the changed property

The previous value

The new value

Reporting and troubleshooting

[146]

Let's look at an example. We'll have Puppet make a change to a resource, and then examine
the resulting report.

Time for action – generating a report
1.	 Check whether reporting is enabled:

ubuntu@demo:~/puppet$ sudo puppet config print report

true

2.	 If the result is false, follow the instructions in the Enabling reports section.

3.	 Edit your manifests/nodes.pp file as follows:

node 'demo' {
 file { '/tmp/test':
 content => 'Zaphod Beeblebrox, this is a very large drink',
 }
}

4.	 Run Puppet:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]//Node[demo]/File[/tmp/test]/content: content
changed '{md5}e705c4d685bf03258eb5ba0dc767905b' to '{md5}
aea5a3708af83f6e53b4b391b469ae44'

Notice: Finished catalog run in 0.11 seconds

5.	 Find the report file generated by Puppet. First, check where Puppet is configured to
write its reports (the default location on Ubuntu is /var/lib/puppet/reports):

ubuntu@demo:~/puppet$ sudo puppet config print reportdir

/var/lib/puppet/reports

6.	 You will need root privileges to read the report:

ubuntu@demo:~/puppet$ sudo su -

root@demo:~#

7.	 Change to the report directory:

root@demo:~# cd /var/lib/puppet/reports

8.	 You should see a directory with the same name as the hostname of your machine:

root@demo:/var/lib/puppet/reports# ls

demo.compute-1.internal

Chapter 9

[147]

9.	 Change to this directory:

root@demo:/var/lib/puppet/reports# cd demo.compute-1.internal/

10.	Check for the most recently created file:

root@demo:/var/lib/puppet/reports/demo.compute-1.internal# ls -lt
|head -2

total 1084

-rw-r----- 1 root root 6742 Feb 1 13:43 201302011343.yaml

11.	The file's name is generated from the date and time of the Puppet run, so the name
of your file will be different. Display the contents of the file:

root@demo:/var/lib/puppet/reports/demo.compute-1.internal# less
201302011343.yaml

--- !ruby/object:Puppet::Transaction::Report

 status: changed

 kind: apply

 host: demo.compute-1.internal

 configuration_version: 1359726210

 ...

12.	Look for the section relating to the file resource you created:

 File[/tmp/test]: !ruby/object:Puppet::Resource::Status

 resource: File[/tmp/test]

 file: /home/ubuntu/puppet/manifests/nodes.pp

 line: 4

 evaluation_time: 0.016333

 change_count: 1

 out_of_sync_count: 1

 tags:

 - file

 - node

 - demo

 - class

 time: 2013-02-01 13:43:32.529725 +00:00

 events:

 - !ruby/object:Puppet::Transaction::Event

 audited: false

Reporting and troubleshooting

[148]

 property: ensure

 previous_value: !ruby/sym absent

 desired_value: !ruby/sym file

 historical_value:

 message: "defined content as '{md5}
aea5a3708af83f6e53b4b391b469ae44'"

 name: !ruby/sym file_created

 status: success

 time: 2013-02-01 13:43:32.530130 +00:00

 out_of_sync: true

 changed: true

 resource_type: File

 title: /tmp/test

 skipped: false

 failed: false

What just happened?
We'll examine this report in detail to see what information Puppet has recorded about what
it did.

There will be lots of information in the report, about all the other resources on the machine,
as well as some of Puppet's internal data. However, the part we're interested in at the
moment is the Puppet::Resource::Status section relating to the /tmp/test file:

File[/tmp/test]: !ruby/object:Puppet::Resource::Status
 resource: File[/tmp/test]
 file: /home/ubuntu/puppet/manifests/nodes.pp
 line: 4
 evaluation_time: 0.016333
 change_count: 1
 out_of_sync_count: 1

This section gives the name and type of the resource:

resource: File[/tmp/test]

The manifest file and line number where it's defined:

file: /home/ubuntu/puppet/manifests/nodes.pp
line: 4

Chapter 9

[149]

The time it took to compile the resource definition:

evaluation_time: 0.016333

The number of properties of the resource that were changed:

change_count: 1

The number of properties that were found to be out of sync with the manifest:

out_of_sync_count: 1

There's a Puppet::Transaction::Event section for each property that was changed,
in this case, only one.

- !ruby/object:Puppet::Transaction::Event
 audited: false
 property: ensure
 previous_value: !ruby/sym absent
 desired_value: !ruby/sym file
 historical_value:
 message: "defined content as '{md5}
aea5a3708af83f6e53b4b391b469ae44'"
 name: !ruby/sym file_created
 status: success
 time: 2013-02-01 13:43:32.530130 +00:00

This section tells us which property was changed:

property: ensure

Its previous value:

previous_value: !ruby/sym absent

The value requested by the manifest (although we didn't specify ensure => file,
this is implicit for a file resource):

desired_value: !ruby/sym file

Whether the property change was successful:

status: success

The time the change was made:

time: 2013-02-01 13:43:32.530130 +00:00

Reporting and troubleshooting

[150]

Finally, the Puppet::Transaction::Report section provides general data about the
Puppet run:

--- !ruby/object:Puppet::Transaction::Report
 status: changed
 kind: apply
 host: demo.compute-1.internal
 configuration_version: 1359726210

The status field indicates that the configuration of the machine was changed on this
Puppet run. If the Puppet run was successful, but no resources were changed, the status
would be unchanged. If there was an error, the status would be failed.

Using reports
Although you don't often need to see this level of detail about what Puppet's doing, it can be
useful when something's not working right and you need to figure out why.

For example, if you think Puppet should be making a particular change, and it's not
happening, you can use the report to help troubleshoot the problem. Turn on reporting,
run Puppet, and inspect the report as we did in the previous example. Find the resource in
question and you'll be able to see what Puppet thinks it should be, whether it's in sync with
the manifest, and whether there were any failures.

For larger-scale reporting on a whole network of Puppet-managed machines, you can set
up a report server where Puppet will send reports from each machine. These can then
be aggregated and processed, and you can see graphs and results using a tool like Puppet
Dashboard. This is beyond the scope of this book, but you can find out more at:

https://puppetlabs.com/puppet/related-projects/dashboard/

Debug runs
Running Puppet with the --debug flag will not produce as much detail as a report, but still
gives you much more information than a normal Puppet run. For example:

ubuntu@demo:~/puppet$ papply --debug

Debug: importing '/home/ubuntu/puppet/manifests/nodes.pp' in environment
production

Debug: Failed to load library 'selinux' for feature 'selinux'

Debug: Creating default schedules

Debug: Using settings: adding file resource 'graphdir': 'File[/var/lib/
puppet/state/graphs]

:links=>:follow, :backup=>false, :ensure=>:directory, :loglevel=>:debug,
:path=>"/var/lib/puppet/state/graphs"}'

Chapter 9

[151]

...

Notice: Finished catalog run in 0.08 seconds

Debug: Using settings: adding file resource 'rrddir': 'File[/var/
lib/puppet/rrd]{:links=>:follow, :group=>"puppet", :backup=>false,
:ensure=>:directory, :owner=>"puppet", :mode=>"750", :loglevel=>:debug,
:path=>"/var/lib/puppet/rrd"}'

Debug: Finishing transaction 69968312591020

Debug: Received report to process from demo.compute-1.internal

Debug: Processing report from demo.compute-1.internal with processor
Puppet::Reports::Store

Because the --debug flag tells Puppet to output everything it does, this usually produces a
lot of information that isn't interesting, but it may help you in some situations to figure out
why Puppet is doing something it shouldn't, or not doing something it should.

Noop runs
By its very nature, Puppet can produce big changes on a machine in a single run. Depending
on the manifest, it can change or delete files, restart services, drop databases, or do many
other potentially destructive things. So it would be nice to have Puppet tell us what it's going
to do before it does it.

The --noop flag does exactly this. Noop stands for no-operation; in other words, do
everything except actually make changes to the system. This is also sometimes known as
dry-run mode. Let's see an example:

ubuntu@demo:~/puppet$ papply --noop

Notice: /Stage[main]//Node[demo]/File[/tmp/test]/ensure: current_value
absent, should be file (noop)

Notice: Node[demo]: Would have triggered 'refresh' from 1 events

Notice: Class[Main]: Would have triggered 'refresh' from 1 events

Notice: Stage[main]: Would have triggered 'refresh' from 1 events

Notice: Finished catalog run in 0.06 seconds

This is telling us that Puppet has found one resource out of sync:

Notice: /Stage[main]//Node[demo]/File[/tmp/test]/ensure: current_value
absent, should be file (noop)

Reporting and troubleshooting

[152]

The ensure property for the file /tmp/test should be file, but instead it is absent.
In other words, the manifest says there should be a file /tmp/test, but there isn't.
Puppet will fix this by creating the file, when you run Puppet without the --noop flag.

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]//Node[demo]/File[/tmp/test]/ensure: defined content
as '{md5}aea5a3708af83f6e53b4b391b469ae44'

Notice: Finished catalog run in 0.06 seconds

So dry-run mode is very useful for making sure that Puppet will only make the changes you
expected to see. If you're not sure what would change, or you want to make sure that your
changes won't affect a running service, for example, you can use dry-run mode to find out.

Be warned: dry-run mode doesn't come with any guarantees. It's quite
possible to do a dry run with no errors, but then encounter a problem
running Puppet for real. For example, if the manifest tries to install a
package that doesn't exist in the repository, this will succeed in dry-run
mode, because there's no way for Puppet to know in advance that it won't
work. Similarly, exec resources won't actually be run, so dry-run mode
can't tell you whether they will succeed or fail. Test your critical changes in a
staging environment, rather than relying solely on dry-run mode.

Syntax checking
If you want to make sure there are no syntax errors in your manifest, you can use Puppet's
parser validate command to check this:

ubuntu@demo:~/puppet$ puppet parser validate manifests/nodes.pp

Error: Could not parse for environment production: Syntax error at
'server'; expected '}' at /home/ubuntu/puppet/manifests/nodes.pp:3

Validation mode only attempts to compile the manifest and validate the syntax. It won't
actually apply anything, so you can safely run this command anywhere.

You could run this check manually or via a Git hook, for example, to validate the manifest
before committing it to your repository.

Debug output
When Puppet isn't doing what you expect, it can be very difficult to work out why.
A time-honored debugging technique used by many programmers is to print out
information at different points to show you what's going on.

Chapter 9

[153]

Notify resources
A handy way to do this is to use a notify resource. We've sneaked these into the book
several times so far without explaining what they are. A notify resource simply prints out
its name to the console when you run Puppet:

notify { 'Got this far!': }

The preceding manifest produces:

ubuntu@demo:~/puppet$ papply

Notice: Got this far!

Notice: /Stage[main]//Node[demo]/Notify[Got this far!]/message: defined
'message' as 'Got this far!'

Notice: Finished catalog run in 0.07 seconds

A simple message like this can help you figure out whether Puppet is even loading or
applying a particular bit of code. If you want to find out the value of a variable at a certain
point in the manifest, you can interpolate it into a string, like this:

notify { "I think my hostname is ${::hostname}": }

Note that you need double quotes ("like this") around the string or Puppet won't
process it for variables. You'll see an output like this:

ubuntu@demo:~/puppet$ papply

Notice: I think my hostname is demo

Notice: /Stage[main]//Node[demo]/Notify[I think my hostname is demo]/
message: defined 'message' as 'I think my hostname is demo'

Notice: Finished catalog run in 0.06 seconds

Exec output
If you use an exec resource to run a command, and the command fails, Puppet will give you
an error message including the output from the command. For example, if you have an exec
like this:

exec { 'this-will-fail':
 command => '/bin/cat /tmp/doesntexist',
}

You'll see this output:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]//Node[demo]/Exec[this-will-fail]/returns: /bin/cat:
/tmp/doesntexist: No such file or directory

Reporting and troubleshooting

[154]

Error: /bin/cat /tmp/doesntexist returned 1 instead of one of [0]

Error: /Stage[main]//Node[demo]/Exec[this-will-fail]/returns: change from
notrun to 0 failed: /bin/cat /tmp/doesntexist returned 1 instead of one
of [0]

Notice: Finished catalog run in 0.13 seconds

As you can see, Puppet not only reports that the command returned a failed exit status:

Error: /bin/cat /tmp/doesntexist returned 1 instead of one of [0]

But also, the actual output from running the command:

Notice: /Stage[main]//Node[demo]/Exec[this-will-fail]/returns: /bin/cat:
/tmp/doesntexist: No such file or directory

Very useful! But sometimes the command can succeed and yet whatever was supposed to
happen doesn't happen. We'd like to be able to see the output of the command even though
it didn't return an error. To do this, set the logoutput attribute of the exec to true:

exec { 'this-will-succeed-but-give-us-output-anyway':
 command => '/bin/cat /etc/hostname',
 logoutput => true,
}

This will produce output such as the following:

ubuntu@demo:~/puppet$ papply

Notice: /Stage[main]//Node[demo]/Exec[this-will-succeed]/returns: demo

Notice: /Stage[main]//Node[demo]/Exec[this-will-succeed]/returns:
executed successfully

Notice: Finished catalog run in 0.14 seconds

The default value of logoutput is on_failure, which means "only show the command
output if it fails." Setting it to true will always show the command output. If you set it to
false, you'll never see command output even in the case of a failure.

In older versions of Puppet, logoutput defaulted to false, so you needed
to explicitly set it to on_failure if you wanted to see failed command
output. In Puppet 3.0 and later, on_failure is the default.

Chapter 9

[155]

Specifying expected exit status
How does Puppet know whether a command succeeded or failed? UNIX-like systems use a
numeric value called the exit status to indicate this. The convention is to return an exit status
of 0 if all is well, and some non-zero value if there was a problem. Some commands return
different non-zero values depending on the specific error. As you can see in the example, if
you try to use cat on a file that doesn't exist, it returns an exit status of 1.

Puppet interprets a non-zero exit status as failure, and raises an error. If you want to run a
command that returns a non-zero exit status, but you're happy for Puppet to ignore this, you
can specify the returns attribute for the exec, to tell Puppet what exit status to expect:

 exec { 'this-will-fail-but-that-is-ok':
 command => '/bin/cat /tmp/doesntexist',
 returns => 1,
}

In this case, Puppet will only raise an error if the exit status is something other than 1.

Monitoring
Devops people like to say, "If it's not monitored, it's not in production." By "monitored,"
what we really mean is that some automated system is checking whatever it is, and alerting
you if there's a problem. If your customers know the system is down before you do, then you
don't have effective monitoring.

Managing monitoring with Puppet
Puppet can be a big help with monitoring, as it can be with all other aspects of automation
and control. At the least, you can use Puppet to help you set up a monitoring server (using
Nagios, Icinga, Zabbix, or one of the many other freely-available monitoring tools).

Puppet has some built-in support for Nagios in particular, and can automatically generate
monitoring checks for hosts and services that you manage in your Puppet manifest. This
requires PuppetDB, a central database that stores information about your nodes. We haven't
space here to go into the details of PuppetDB and stored configuration, but you can find out
more at:

https://puppetlabs.com/blog/introducing-puppetdb-put-your-data-to-
work/

Reporting and troubleshooting

[156]

What to monitor
However you manage your monitoring infrastructure, there are some basic things you will
want to monitor:

�� Hosts being alive

�� Web sites responding to HTTP requests

�� Processes running

�� Memory and disk space being within limits

You can also monitor Puppet itself. This is especially useful if you are running Puppet
automatically from cron, perhaps using a similar setup to that described in Chapter 4,
Managing Puppet with Git. We'd like to know at least:

�� Whether Puppet has run recently

�� Whether the run succeeded or failed

We'll see how to do this in the next section.

Monitoring Puppet status
You can do this very simply by having Puppet write a file on each server when it runs.
For example:

file { '/tmp/puppet.lastrun':
 content => inline_template('<%= Time.now %>'),
 backup => false,
}

This will write the current date and time to the file /tmp/puppet.lastrun, and you can
check this file with your monitoring system. If you run Puppet every 10 minutes, say, then
the timestamp file should be no more than 10 minutes old. Allowing a little time for the
Puppet run itself, which could take up to a few minutes, you might set your monitoring
system to alert you if the file is, say, 15 minutes old.

Did you notice that we've specified backup => false for the puppet.
lastrun file? Normally, Puppet creates a backup copy of any file it changes,
and stores it on the machine in a place called the clientbucket. This can be handy
if you ever accidentally overwrite an important file, and want to retrieve its
original contents. In this case, however, Puppet will be changing the file every
time it runs, and we don't want to waste space storing lots of useless backup
copies. backup => false tells Puppet never to back up this file.

Chapter 9

[157]

Problems with Puppet
There are many possible reasons for an alert to be triggered by the puppet.lastrun file
becoming too old:

�� The cron job that runs Puppet didn't fire. Maybe it was disabled by someone making
local changes to the machine, who then forgot to re-enable it.

�� Git wasn't able to pull changes. Maybe the Git server is down, or inaccessible, or
the SSH authentication got messed up. Maybe someone made local changes to the
Puppet repo but then didn't commit them, causing git pull to complain.

�� Puppet wasn't able to run. Maybe there's a typo in the manifest, or another error
that means the manifest doesn't compile properly.

Whatever the reason, you'll be able to go in and investigate why Puppet isn't running,
and you'll know which machines are potentially out of sync with the manifest.

Staying in sync
Some people don't like to run Puppet regularly on their machines because they worry that
it might change something unexpectedly. In fact, the best way to avoid this is to run Puppet
all the time. Why? Because if you don't do this, when you eventually do run Puppet on a
machine, there will be lots of changes all happening at once, which makes it difficult to
diagnose any problems you may have.

Also, one of the main benefits of using Puppet is that you know your machines are all in
sync with each other and the manifest. If you make a change to the manifest that could
potentially break something on a machine, it's better for you to find out now so you can fix
it. Running Puppet with --noop can help you make sure that your latest changes haven't
caused problems.

It's a good idea, if your budget allows, to set up some staging servers, and make them as
similar as possible to your production systems. You can then test any changes to Puppet,
package versions, configuration, or software releases on the staging servers and eliminate
any problems before rolling out to production.

If you're very risk-averse, you could run Puppet automatically on the staging servers but only
run it manually on the live servers when you need to push out a change.

Errors
The two main kinds of error you're likely to encounter when running Puppet are compilation
errors—errors in the manifest itself, or in template files—and errors from commands
executed by Puppet when applying the manifest. We'll look at these in turn.

Reporting and troubleshooting

[158]

Compilation errors
If you make a typo in the manifest, or some other kind of error, Puppet will usually alert
you when you run puppet apply (or puppet parser validate). It will tell you:

�� What the error was

�� What source file, and line number, the error occurred in

Diagnosing errors
Let's take an example. If we apply a manifest containing a deliberate typo, like this
(can you spot it?):

file { '/tmp/test':
 contents => 'Hello, world'
}

Puppet will complain with an error message:

ubuntu@demo:~/puppet$ papply

Error: Invalid parameter contents at /home/ubuntu/puppet/manifests/nodes.
pp:4 on node demo.compute-1.internal

We actually should have said content, not contents, and Puppet is quite helpful about
pointing out exactly where the problem is.

Here are some other common errors you might come across, with some hints on what might
cause them.

Missing file sources
A common typo is to specify a file source as:

puppet://modules/sudoers/sudoers

Instead of:

puppet:///modules/sudoers/sudoers

That is, to put a double slash (//) instead of a triple slash (///) before modules.
We're all used to typing web URLs, which typically have a double slash.

The format of the source URI is actually:

puppet://[HOSTNAME]/modules/...

Chapter 9

[159]

The optional HOSTNAME is usually omitted unless you're using a Puppet file server, so the URI
just looks like this:

puppet:///modules/...

If you miss out the third slash, Puppet will think you're trying to specify a HOSTNAME where it
can find the file, and complain:

Error: /Stage[main]//Node[demo]/File[/tmp/test]: Could not evaluate:
getaddrinfo: Name or service not known

Could not retrieve file metadata for puppet://modules/sudoers/sudoers:
getaddrinfo: Name or service not known

If the source URI is correctly formatted, but the source file just doesn't exist (maybe you
forgot to create it), Puppet will say instead:

Error: /Stage[main]//Node[demo]/File[/tmp/test]: Could not evaluate:
Could not retrieve information from environment production source(s)
puppet:///modules/sudoers/sudoers

Missing parent directory
If you specify a file resource with a path like this:

file { '/tmp/testdir/test':
 content => 'Hello, world',
}

Puppet requires that the directory /tmp/testdir exist before it can create the file test in
it. If it doesn't, you'll see an error message similar to:

Error: Could not set 'file' on ensure: No such file or directory - /tmp/
testdir/test.puppettmp_236 at 4:/home/ubuntu/puppet/manifests/nodes.pp

You might expect that Puppet would simply create any missing path components for you.
Alas! there are limits to what even a robot butler can do. You have to create the parent
directory as a separate resource:

file { '/tmp/testdir':
 ensure => directory,
}

file { '/tmp/testdir/test':
 content => 'Hello, world',
}

Puppet is, however, smart enough to figure out the file /tmp/testdir/test depends
on the directory /tmp/testdir being created first, so you don't have to add an explicit
require for this.

Reporting and troubleshooting

[160]

Mistyped command line options
If you mistype an option name on the command line, for example, putting -debug instead of
--debug, Puppet gives a very puzzling error:

ubuntu@demo:~/puppet$ papply -debug

Error: Could not parse for environment production: Syntax error at end of
file at line 1 on node demo.compute-1.internal

If you see this error, check your command line!

Summary
A quick rundown of what we've learned in this chapter.

Reporting
You can get a summary report of what Puppet did on its run by using the --summarize flag
with puppet apply. For more detailed reporting, enable reports by setting report=true
in /etc/puppet/puppet.conf.

Puppet will write report files to (by default, but you can change this) /var/lib/puppet/
reports, in a directory named after the machine's hostname. Each report file will be named
according to the date and time of the Puppet run it covers.

Puppet's report files include some summary data about the run itself, and how many
resources were found to be out of sync with the manifest. This is followed by a detailed list
of all the resources on the server and the number of properties that were changed or out of
sync for each resource.

If any resource was changed, the report will include details of each property that was
changed, with its previous value and updated value.

Debug and dry-run modes
When you don't need a full report, but you do want some more detailed information on
Puppet's activity, you can use the --debug flag with puppet apply. You can also see a
dry-run output of what Puppet thinks is out of sync, and what it would change, by using the
--noop flag.

You can check your Puppet manifest for compilation errors using the puppet parser
validate command.

Chapter 9

[161]

Printing messages
To print out debugging messages, or other information, use a notify resource, which simply
prints out its name to the console during Puppet's run:

notify { "I think my hostname is ${::hostname}": }

Commands run via exec will print their output if the command returns a failed (non-zero)
exit status. To see the output even if the command succeeds, set the logoutput attribute
to true:

exec { 'this-will-succeed-but-give-us-output-anyway':
 command => '/bin/cat /etc/hostname',
 logoutput => true,
}

If a command routinely returns a failed exit status, but you're happy for Puppet to ignore
it and carry on, you can specify the exit status that should be expected using the returns
attribute:

exec { 'this-will-fail-but-that-is-ok':
 command => '/bin/cat /tmp/doesntexist',
 returns => 1,
}

Monitoring Puppet
If you want to be able to monitor whether Puppet is running successfully on a number of
machines, without having to check each one, you can have Puppet write a timestamp file
every time it runs, and check this file with your monitoring system. If the file is not updated
regularly, there may be a problem running Puppet on the system.

Common Puppet errors
When Puppet does encounter a problem, it will usually print out a (more or less) helpful
message, including details of the error and the source file and line number where it
occurred. Some common errors that you may encounter are as follows:

Could not retrieve file metadata for XXX: getaddrinfo: Name or service not known

You may have accidentally typed puppet://modules... in a file source instead
of puppet:///modules....

Reporting and troubleshooting

[162]

Could not evaluate: Could not retrieve information from environment production
source(s) XXX

The source file may not be present or in the right location in the Puppet repo.

Error: Could not set 'file' on ensure: No such file or directory XXX

The file path may specify a parent directory (or directories) that doesn't exist. You can use
separate file resources in Puppet to create these.

Could not parse for environment production: Syntax error at end of file
at line 1

You may have mistyped some command line options (particularly, using a single hyphen
instead of a double hyphen).

10
Moving on Up

There are only two mistakes one can make on the road to truth: not going all
the way and not starting.

 — Buddha

In this chapter, you'll learn some simple principles for writing better Puppet manifests, find
some resources for learning more about Puppet, and get some ideas for practical projects
that will help you start putting your Puppet skills to work.

ADVANCED

PUPPET

MANAGING

HUMANS

Moving on Up

[164]

Puppet style
Just like everyone else, I want to be a nonconformist, too. But when it comes to programming,
conformity is a virtue. When your code looks the same as everybody else's, it's easy to read,
easy to understand, and easy to maintain. Here are some simple Puppet style tips you can
adopt now to help those who work on your code in the future, including yourself.

Break out code into modules
Logical separation of your manifest into modules is a big help when it comes to
understanding and maintaining your code. Although you can structure your modules any way
you want—it makes no difference to Puppet—I find the best strategy is to have each module
control some more or less independent chunk of functionality.

For example, if you're writing code that manages a particular customer-facing service, such
as a website or an API, that could be a module. Similarly, code that manages a specific piece
of software such as Apache, MySQL, or Hadoop should have its own module.

Modules can then be connected together to do useful things; for example, a module to
manage Drupal might use the Apache module, the PHP module, the MySQL module, and
so on. If your modules are well-structured, there should be very little duplication of code.

Refactor common code into definitions
If you find yourself repeating very similar code several times, it's a good idea to refactor the
common code into a definition. For example, the following code has a lot of duplication:

file{ '/etc/init/foo_worker.conf':
 source => 'puppet:///modules/admin/foo_worker.upstart',
 mode => '0755',
}

service { 'foo_worker':
 ensure => running,
 enable => true,
 provider => upstart,
 require => File['/etc/init/foo_worker.conf'],
}

file{ '/etc/init/bar_worker.conf':
 source => 'puppet:///modules/admin/bar_worker.upstart',
 mode => '0755',
}

Chapter 10

[165]

service { 'bar_worker':
 ensure => running,
 enable => true,
 provider => upstart,
 require => File['/etc/init/bar_worker.conf'],
}

file{ '/etc/init/baz_worker.conf':
 source => 'puppet:///modules/admin/baz_worker.upstart',
 mode => '0755',
}

service { 'baz_worker':
 ensure => running,
 enable => true,
 provider => upstart,
 require => File['/etc/init/baz_worker.conf'],
}

It defines three services, foo_worker, bar_worker, and baz_worker, each with an
Upstart script to manage it. The attributes are exactly the same for each of the scripts and
services, so you can make this code much simpler, shorter, and clearer by refactoring it using
a definition like this:

Manage worker services
define worker_service() {
 file{ "/etc/init/${name}_worker.conf":
 source => "puppet:///modules/admin/${name}_worker.upstart",
 mode => '0755',
 }

 service { "${name}_worker":
 ensure => running,
 enable => true,
 provider => upstart,
 require => File["/etc/init/${name}_worker.conf"],
 }
}

worker_service { ['foo', 'bar', 'baz']: }

In other words, identify what is common to several sections of code, and extract that part
into a definition. This not only makes the code easier to understand, but if you need to
modify it later, you only need to change it in one place. It's also more scalable because it's
easy to add another worker_service (or a hundred).

Moving on Up

[166]

Don't take refactoring too far, though; it can overcomplicate your code. Better to have
slightly repetitive code that's easy to understand and extend, than code that's elegant
but difficult to follow.

Keep node declarations simple
One of the benefits of having your infrastructure managed by Puppet is that (in theory) you
can look at the manifest and see what each machine does. To help with this, keep your node
declarations short, clear, and descriptive. For example:

node 'web1' {
 include webserver
}

You can look at this manifest and say, "Ah! web1 is a web server." All the individual resources,
modules, parameters, and other clutter are pushed down into the web server module so that
the node declaration simply says what the box is for.

Another example:

node 'base-server' {
 include admin::basics
 include user::sysops
 include monitoring::target
}

node 'cluster660' inherits 'base-server' {
 class { 'hadoop::node':
 master => 'cluster1',
 }
}

Here, we have a bunch of stuff that is common to all (or most) servers:

include admin::basics
include user::sysops
include monitoring::target

We've extracted this out into a base-server declaration. There's no actual server named
base-server; however, actual servers can inherit from this node declaration and get
everything in it:

node 'cluster660' inherits 'base-server' {

We know what role this machine has because it includes this class:

class { 'hadoop::node':

Chapter 10

[167]

It takes a parameter to identify the cluster master:

master => 'cluster1',

This node declaration contains only the key information that the node needs to do its job,
and tells us at a glance what that job is.

If your node declarations contain business logic, or individual resources, think about
refactoring these into a class or module that the node can include.

Use puppet-lint
puppet-lint is a useful tool that checks your manifest to make sure it conforms to
the Puppet Labs official style guidelines, and catches a number of common problems.
For example, code like this:

node 'demo' {
 file { "/tmp/test":
 content => 'Hello, world',
 mode => 644,
 }
}

The preceding code will produce the following output from puppet-lint:

ubuntu@demo:~/puppet$ puppet-lint manifests/nodes.pp

ERROR: trailing whitespace found on line 2

WARNING: unquoted file mode on line 4

WARNING: double quoted string containing no variables on line 2

WARNING: mode should be represented as a 4 digit octal value or symbolic
mode on line 4

WARNING: indentation of => is not properly aligned on line 4

When we clean it up:

node 'demo' {
 file { '/tmp/test':
 content => 'Hello, world',
 mode => '0644',
 }
}

puppet-lint maintains an approving silence:

ubuntu@demo:~/puppet$ puppet-lint manifests/nodes.pp

ubuntu@demo:~/puppet$

Moving on Up

[168]

You can install puppet-lint with the following command:

ubuntu@demo:~/puppet$ sudo gem install puppet-lint

Successfully installed puppet-lint-0.3.2

1 gem installed

Installing ri documentation for puppet-lint-0.3.2...

Installing RDoc documentation for puppet-lint-0.3.2...

To find out more about puppet-lint and to see what tests it runs on your code, visit the
site https://github.com/rodjek/puppet-lint

If you keep your code lint-clean (which is to say, it passes puppet-lint with no errors or
warnings), you can be reasonably confident that it conforms to style guidelines and doesn't
contain any dangerous or deprecated syntax. This will make it easier and safer to upgrade to
new versions of Puppet as they're released.

It also means your code will be easier for others to understand and work on.

Make comments superfluous
Good code is its own best documentation.

 —Steve McConnell, 'Code Complete'

There is a tendency to sprinkle comments liberally throughout code, often because it's not
clear what the code is doing or why it's there. Instead, rewrite the code so that no comment
is needed. You can do this by using a simple, logical structure for your code and choosing
descriptive names for things.

Assume that anyone reading your code is familiar with Puppet (or at least as familiar as you
are), so you don't need to explain how the language works:

This will run a command
exec { 'do-the-stuff':
 ...
}

If part of your code works by complicated magic, which you feel needs explanation in
comments, simply remove the magic, and rewrite the code in a simple, obvious way.
Similarly, comments like this are a sign of problems:

Not sure exactly why this works - DO NOT TOUCH!!

Chapter 10

[169]

Cleverness, in general, is not a characteristic of robust, reliable code. Samuel Johnson
advised writers, "Read over your compositions and where ever you meet with a passage
which you think is particularly fine, strike it out." He would have been an early proponent
of refactoring.

There are useful comments, however. A good rule of thumb for comments, as with commit
messages, is "Not what, but why." Why is this piece of code necessary?

apache2-utils gives us rotatelogs
package { "apache2-utils": ensure => installed }

Puppet learning resources
There are several helpful web and print resources that you should keep handy when working
with Puppet. This is a small selection of those that I find most useful.

Reference
It might seem obvious, but one of the best sources of reference documentation for Puppet
is the Puppet Labs site itself. To save you a lot of clicking around, here are the links you'll
probably use the most.

Resource types
One link that I keep bookmarked at all times is the Puppet Type Reference:

http://docs.puppetlabs.com/references/latest/type.html

This lists each of the types of Puppet resources—file, exec, user, and so on—with a
complete description of all the attributes of each resource and what they do. Each resource
also has a breakdown of the features supported by its providers or platforms.

Puppet also has some built-in help on resource types, available via the puppet describe
command. For example:

ubuntu@demo:~/puppet$ puppet describe --list

These are the types known to puppet:

augeas - Apply a change or an array of changes to the ...

computer - Computer object management using DirectorySer ...

cron - Installs and manages cron jobs

exec - Executes external commands

file - Manages files, including their content, owner ...

...

Moving on Up

[170]

ubuntu@demo:~/puppet$ puppet describe file

file

====

Manages files, including their content, ownership, and permissions.

...

Parameters

- **backup**

 Whether files should be backed up before

 being replaced.

Language and syntax
Also very important is the Puppet Language Reference:

http://docs.puppetlabs.com/puppet/3/reference/lang_summary.html

This describes every part of the Puppet language and syntax: variables, classes, data types,
and so on. If you need to check how a particular Puppet construct works, or find out what's
available, this is an excellent place to look.

Facts
For working with Facter, use the Core Facts Reference:

http://docs.puppetlabs.com/facter/latest/core_facts.html

This lists all of the standard facts that you can use to get information about machines,
such as fqdn, memorysize, operatingsystem, and so on.

Style
The official Puppet Labs style guidelines (as implemented by puppet-lint, for example)
are here:

http://docs.puppetlabs.com/guides/style_guide.html

You may not agree with all of the style rules (I'm not crazy about some of them), but there
are advantages to using standard coding style. If your organization's coding style is different,
or you need to break the rules for some other reason, go ahead, but it's always good to know
what rules you're breaking.

Chapter 10

[171]

Modules and code
One of the best ways to learn to write code is to look at other people's code, at least, if it's
any good.

Puppet Forge
The Puppet Forge is a community repository of Puppet code:

http://forge.puppetlabs.com/

There you can find open source modules for managing things such as Apache, MySQL,
MongoDB, Ganglia, Sphinx, and many others. These can be very useful to look at and get
ideas from. In some cases you may be able to download and use the module directly in your
infrastructure as is; most of the time, you will need to adapt and modify the code a little to
work in your environment.

Be warned that the code on Puppet Forge is of variable quality. Some modules are excellent,
mature, highly portable, well-documented, and up to date. Others aren't. Often it's quickest,
easiest, and best to simply write your own code. This has the additional advantage that you
learn more about Puppet while you're doing it.

A quick way to find out whether there is any Puppet Forge code relevant to what you're
working on is to use the puppet module search command:

ubuntu@demo:~/puppet$ puppet module search memcached

Notice: Searching https://forge.puppetlabs.com ...

NAME DESCRIPTION AUTHOR KEYWORDS

saz-memcached UNKNOWN @saz debian redhat fedora ubuntu memcached

The Puppet Cookbook
If you've enjoyed this book, you might consider The Puppet Cookbook, by the same author:

http://bitfieldconsulting.com/cookbook

The book is aimed at those who have some familiarity with Puppet (perhaps those who've
worked their way through the Puppet Beginner's Guide) and outlines a number of specific
techniques and recipes for doing things with Puppet:

�� Managing virtual machines with Vagrant

�� Building a Nagios monitoring server

�� Using Augeas to edit config files

�� Managing users with virtual resources

Moving on Up

[172]

�� Managing Rails applications

�� Managing package and gem repositories

�� Managing firewalls with iptables

�� Building high-availability servers with Heartbeat

�� Using HAProxy for load balancing

�� Using tools such as MCollective, Dashboard, and Foreman

The book contains lots of complete, working code to do all the things above and many more.
As in this book, each piece of code is explained line-by-line so that you can see how it works,
and use the same ideas in your own Puppet code.

It also shows you many of the tips, tricks, ideas, and advanced techniques that I've picked up
over many years of working with Puppet, and that there wasn't room to cover in this book,
such as:

�� Using Rake to manage Puppet workflows

�� Producing HTML documentation for your manifests

�� Using tags, run stages, and environments

�� Using class inheritance and overriding

�� Importing data from commands and comma-separated values (CSV) files

�� Creating custom facts

�� Creating custom types and providers

�� Generating manifests automatically

�� Using external node classifiers

Projects
The best way to learn is by doing, so here are some things you might like to try to do with
Puppet that will improve your skills and your infrastructure at the same time. Most of these
projects are fairly small—a few hours of work, maybe—but each will give you a valuable win
and make your life easier. They provide a series of stepping-stones from your first use of
Puppet to a completely automated environment.

Chapter 10

[173]

Puppet everywhere
Project: First, install Puppet on all the machines you're responsible for. Set up a central Git
repo as described in Chapter 4, Managing Puppet with Git, and have each of the machines
pull from the repo and run Puppet automatically. For now, Puppet won't actually manage
anything, so all your node declarations will look like this:

node 'kermit' {
}

That's fine. Once you've got Puppet everywhere, you can start adding things to it.

Win: It's now easy to add configuration to any machine, simply by putting something in its
node declaration.

User accounts
Project: Create a base node definition that which every machine inherits, as described earlier
in this chapter in the Keep node declarations simple section. To this base node, add your own
user account and SSH key as described in Chapter 5, Managing Users. You probably want to
give yourself full sudo privileges as well. Add any other users who need login access
to machines.

Win: You can now easily log in to every machine using your own named account and key,
and run commands with root privileges using sudo.

System toolbox
Project: Add a set of packages to your base node containing software that you find useful for
system administration: for example, htop, dstat, iptraf, tmux, mosh, vim, and so on. If
you have custom configurations for any of these, add the config files to Puppet.

Win: You now have a well-equipped sysadmin environment on every machine, configured
the way you want it.

Time sync
Project: Use Puppet to add the NTP service to all of your machines and set them to the
UTC time zone. If you have a central NTP server, or your ISP does, configure ntp.conf
to use this.

Win: All server clocks are now in sync and in the same time zone, which prevents a variety
of obscure problems, and makes troubleshooting much easier (you can cross-reference
timestamps in logfiles, for example).

Moving on Up

[174]

Monitoring server
Project: If you don't already have a monitoring server such as Icinga, set one up to monitor
your machines as described in Chapter 9, Reporting and Troubleshooting. You don't have to
automate the install of Icinga for now, but have Puppet manage the list of hosts to monitor
(hosts.cfg for Icinga) and the list of services to check (services.cfg).

Win: You now have automated monitoring and you can see the state of your network at a
glance, including whether any hosts are down. In the future, it'll be easy to add new hosts
and services to your monitoring system.

Puppetize your key services
Project: Use Puppet to manage the most important service provided by your machines.

Your priorities for bringing services under Puppet management should be driven by business
considerations. What service or facility is most critical or earns the most money for your
business? Or, if you're a non-profit, the most business for your business?

Once you've decided on the most important thing to Puppetize, make a list of exactly what
needs to be managed. For example, if it's a website, you might list the following things to be
managed by Puppet:

�� Web server installed

�� Virtual host file to serve website

�� Directory where site is deployed

�� Database for website

The list should contain everything you would have to do manually to set up a new server to
serve the website (not including, for example, installing the operating system, since Puppet
requires that, too). You probably also won't include deploying the website itself, unless it
consists of just a few static files. What Puppet needs do to is make the machine ready to
have the site deployed to it, whatever the deployment process is (FTP, Capistrano, shell
scripts, and so on).

Don't attempt to have Puppet manage these things on the existing live server. Instead, set
up a new server and build up the configuration, checking against the live machine as you go
to make sure you have included everything. Then it's easy to know when you're done; when
you can deploy the site to the new machine and it works identically to the live version,
you're done.

You can turn down or repurpose the old machine (keep it around for a little while, though,
just in case there's something you missed).

Chapter 10

[175]

Win: Your key service is under Puppet management, and that service can now be easily and
quickly built on a new server if anything happens to the live one. Also, you have complete
documentation for what's required to run it.

Automate backups
Project: Use Puppet to distribute backup scripts to each machine and run backup jobs
automatically via cron. You should have a local copy of all important data (that is, in a backup
directory on the machine) and an offsite copy of anything that can't easily be reconstructed.
This should be off the machine, off your infrastructure, and out of your ISP's data center
(Amazon S3 is one option).

Monitor the backup jobs with your monitoring server (have the job write a logfile, and you
can monitor that the logfile has been touched, and doesn't contain any error messages).

Use Puppet to build copies of your machines and test restoring the data to them. Write
down the procedure you follow to do this, so that someone else could follow it, and put
the procedure document where it can be easily found. Knowledge of the restore procedure
shouldn't die with you.

Win: Your data (and thus your business) is no longer a hostage to fortune. You needn't just
hope that your hard disks won't fail, or that your ISP won't lose connectivity. In fact, no
sentence that contains the word "hope" is part of a viable operations strategy.

Set up staging servers
Project: Once you've fully Puppetized a server, create a "staging" version that is identical to the
live version. When you need to test upgrades, new releases, or changes to the setup, you can
try them out on the staging server first and avoid any unexpected problems in production.

Win: You have a staging environment where you can try out changes (no more committing
and hoping). Also, it's easy to create copies of your live server, for redundancy, load
balancing, or development VMs.

Automate everything
Project: Extend Puppet management to any remaining parts of your infrastructure that still
require manual setup. For any particular machine or service, ask yourself this question:

If I wipe and reinstall this machine, then run Puppet, will it be in production?

If the answer is No, then you still have some work to do. If the answer is Yes, then do the test
to make sure. (It might be wise to use a replacement server rather than wiping the live one
and finding you can't rebuild it.)

Moving on Up

[176]

If there are manual steps that you can't automate or do without (restoring data from a
backup, say), write down a detailed procedure for what has to be done, so that someone
else could follow it. Write down what you need to type, what you'll see, error messages you
might encounter, and so on.

Your written procedures are business-critical software just like your application source code.
Procedures are just software that runs on humans. Write, test, and maintain procedures with
as much care and pride as you do your computer software.

Win: You can spend less time on day-to-day operations matters, such as building and
configuring servers, and you can concentrate on really valuable tasks, such as making your
systems faster, more resilient, and more cost-effective.

You have more time to communicate with your colleagues, instead of computers.

You can make infrastructure changes quickly and safely, making the business more agile.

You have time for training, learning, research, experimentation, and innovation.

You can share your knowledge with others by helping them use Puppet to achieve what
they need to do. In the process, you'll learn expertise from them about their own domains
and specialties.

Last word
System administration can be a rather conservative profession. ("If it ain't broke, don't fix it.")
Worse, some system administrators suffer from an attitude problem. Perhaps they perceive
themselves as undervalued by colleagues, like a kind of digital janitor. Perhaps they're reluctant
to share what they know, for fear of making themselves dispensable. Perhaps they're simply so
overloaded with time-consuming work that their default response is "Go away!"

This can lead to "BOFH": the system administrator as remote, unfriendly, inaccessible,
enforcing unhelpful and bureaucratic policies, rejecting new ideas. The last person, in fact,
you'd want to ask for help with a problem.

Automation tools such as Puppet are a threat to this kind of sysadmin, because she sees
herself as the guardian of the secret technical information about how the systems work.
"Why, if all that information was in Puppet, everyone would be able to see and understand
it, and they could build and manage their own servers! Then I wouldn't be needed!"

Chapter 10

[177]

Obviously, this isn't you, or you wouldn't be reading this book (unless someone bought it for
you and left it on your desk, pointedly highlighting this section). But if you know someone
who fits that description, share this with them:

�� The more you automate the tedious parts of your job, the more time you have for
the exciting and challenging parts. You know, the ones that need a brain

�� The more opportunity you have to use your brain, the more you can learn about
and explore new technologies and ideas

�� The more automated your systems, the more quickly you can deliver new things,
and the more you can be known as the person who solves problems, instead of
creating them

�� The more you can innovate, improve the status quo, and add value for the business,
the more indispensable you'll be to the business

�� The more you share your knowledge, teach, and inspire others, the more your
colleagues will value you, and the higher the opinion they'll have of your skills
and expertise. And that won't go unnoticed by whoever signs your paycheck

So go to it! And have fun.

Index
Symbols
! $raining 130
-m switch 56
--noop flag 151
! (not) operator 130

A
Advanced Package Tool. See APT
and expression 130
APT 34
arbitrary command

running 88
architecture 101
arithmetic operators 130, 131
arrays

about 120, 136, 141
definitions 120
resources, grouping into 108, 109
resources, grouping with 136, 137
values, getting out 137

artisan server crafting 9
attributes 17
automatic pull-and-apply script 67, 68

B
backup

scheduling 92, 93
base-server declaration 166
bitwise shift operators 131
BOFH syndrome 176
boolean operators

combining 130
branching 60

C
capture variable 133, 134
case statement

about 125, 126
default case 127

cat-pictures.com 8
changes

automatic pulling 67
pushing, to master repo 65, 66
repeating, across servers 10

classes
about 115, 121
and definition, differentiating 117
declaring 116
defining 115
putting, into modules 116

class keyword 39, 115, 117
cloud scaling 16
code

breaking, into modules 164
refactoring, into definitions 164-166

command line options 160
commands

arbitrary command, running 88, 89
chaining 90
running selectively 89, 90
running, with exec resources 88
search paths 91
trigerring 90

comment attribute 74
comments 168, 169
commit 60
comparison expression 128

[180]

comparisons
equality 128
magnitude 129
substrings 129

compilation errors 158
conditionals

about 123, 133, 139
capture variable 133, 134
case statements 125, 126
If statements 124
selectors 127, 128

configuration management 8, 18
configuration management system (CM system)

tools 11, 12, 13
Core Facts Reference

URL 170
creates attribute 89
cron resource 104
current working directory. See cwd
cwd 89

D
daemons 42
debug output

about 152
notify resource 153

debug runs 150
declarative programming language 19
declarative style 17
default case, case statement 127
definition

about 110, 117
common code, refactoring into 164, 165, 166
creating, for Nginx websites 113, 114
multiple instances 115
parameters, passing 111, 112

directory structure
creating 29

DMI images
installing, from Puppet Labs website 25

documentation
self-updating 10

dry-run mode 151, 160

E
else branch 125
elseif statement 124
else statement 124
equality, comparisons 128
ERB 102
errors

about 157
command line options, mistyped 160
compilation errors 158
diagnosing 158
file sources, missing 158, 159
parent directory, missing 159

exec output 153, 154
exec resources

about 103
commands, running with 88

exit status 155
expression

about 128
arithmetic operators 130, 131
boolean operators 130

F
Facter 101, 170
facts, puppet manifest

architecture 101
fqdn 101
hostname 101
ipaddress 101
memorysize 101
operatingsystem 101

files
about 46, 52
virtual host, deploying 46-48

file sources
missing 158, 159

fqdn 101
fully-qualified domain name. See fqdn

G
Git

about 68
manifest, importing 55, 56

git whatchanged command 59

[181]

H
hashes

about 138, 142
hash keys, testing 139
multilevel hashes 138

hasstatus 45
home attribute 74
hostname 101

I
if statements 124
infrastructure as code 13
inline_template function 101
installing, Puppet

prerequisites 22
steps for 23, 24, 25

ipaddress 101
issues

about 8
solving 11

J
jen user 17
jobs

running, as specified user 94
running, at regular intervals 94
scheduled 104

K
key 138

L
logical expression 128

M
magnitude, comparisons 129
manifest

about 18, 26, 31
applying 27
changing 56-59
directory structure, creating 29
distributing 61
existing files, modifying 28

importing, in Git 55, 56
nodes.pp file, creating 29, 30
organizing 28
Puppet, applying 26
reliability 61
scalability 61
simplicity 61

master Git repo
creating 62, 63

master repo
changes, pushing to 65, 66
cloning, to new machine 63-65

memorysize 101
messages

printing 161
modules

about 38, 50
code, breaking into 164
Nginx module, creating 38, 39

monitoring
about 155
managing, with puppet 155
puppet 161
puppet status 156

MSI images
installing, from Puppet Labs website 25

multilevel hash 138, 142

N
Nginx

installing 34
nginx class 116
Nginx module

creating 38, 39
Nginx service

adding 41
Nginx websites

definition, creating for 113, 114
node

adding 65
declarations 166, 167

node declaration
about 29, 32
creating 30

node definitions 135, 136

[182]

nodes.pp file
creating 29, 30

no-operation 151
noop runs 151
notify 49
notify resource 153
NTP class

creating 117-120

O
onlyif attribute 89
operands 129
operatingsystem 101
operators 140
OPTIONAL_SOMETHING 124
or operator 130

P
packages

about 34
Nginx, installing 34
removing 37, 50
specific versions, installing 36
updating 37

parameters
about 121
optional 112
passing, to definition 111, 112

parent directory 159
private key 75
procedural style 17
projects

about 172
automate everything 175, 176
backups, automating 175
key services, puppetizing 174
monitoring server 174
Puppet everywhere 173
staging servers, setting up 175
system toolbox 173
time sync 173
user accounts 173

public key 75
pull-updates script 68

puppet
about 7, 16
advantages 14, 19
code, breaking into modules 164
existing files, modifying 28
features 72, 73
installing, prerequisites for 22
installing, steps for 23-25
issues 157, 161
language 16-19
learning, resources 169
manifest file, applying 27
manifest file, creating 26
manifests, organizing 28
packages 34
monitoring, managing 155
resources 17, 18
scaling 19
style 164
user, creating 73, 74
uses 18

puppet apply command
creating 40

Puppet Cookbook
URL 171

PuppetDB 155
Puppet Forge

URL 171
Puppet Labs style guidelines

URL 170
Puppet Language Reference

URL 170
puppet learning, resources

facts 170
language and syntax 170
modules and code 171
Puppet Cookbook 171, 172
Puppet Forge 171
reference 169
types 169

puppet-lint 168
Puppetmaster 48, 69
Puppet status

monitoring 156
Puppet Type Reference

URL 169

[183]

R
recursive file resource

using 95, 96
refactoring

about 39
common code, into definition 164-166

refreshonly attribute 90, 103
regex. See regular expression
regsubst function 141
regular expression

about 131, 140
conditionals 133
node definitions 135, 136
operators 132
substitutions 134, 135
syntax 132

reporting 144, 160
reports

about 144
enabling 145
generating 146-148
summary reports 144
using 150

repository 55
require attribute 42, 43
resource-like way 121
resources

about 17, 18, 43, 44
dependencies 51
for learning puppet 169, 170
grouping 109, 110
grouping, into arrays 108, 109
grouping, with arrays 136, 137

root account 72
Ruby regular expression syntax

URL 132
Run my arbitrary command 88

S
scheduling

about 92
backup 92
options 94

security and access control 72

selectors 127, 128
service pattern 49
services

about 41, 44, 51
control commands 51
Nginx service, adding 41, 42
restarting 46
starting 46, 51
starting, at boot time 44
status, options 51
stopping 46
with no support status 45

singletons 117
SSH

about 75
authorized key, adding 76, 77
configuration file, deploying 79, 80
configuration, managing 79
configuring 84
keys, generating 78
keys, managing 75, 84
special-purpose keys 78

SSH authentication 74
ssh module 79
STRING argument 135
substitutions 134, 135
substrings, comparisons 129
sudo

privileges, managing with 85
sudo command 81
sudoers file

deploying 81
syntax 81

syntax
checking 152

sysadmin
job satisfaction 14
tasks 8, 9

system administration. See sysadmin

T
tasks

scheduling 92
template

about 105
inline templates 101

[184]

Nginx virtual host 97, 98
using 97

template function 100
text substitution 141

U
unless attribute 89
unless command 90
unless statement 125
user

about 72
accounts, locking 78, 84
accounts, removing 74
creating 73, 74

removing 84
resources 83
security and access control 72

user privileges
about 80
sudo command 81
sudoers file, deploying 81

user resource 74

V
value 138
version control 11, 54, 69
visudo command 82

Thank you for buying

Puppet 3 Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Puppet 2.7 Cookbook
ISBN: 978-1-84951-538-2 Paperback: 300 pages

Build reliable, scalable, secure, high-performance
systems to fully utilize the power of cloud computing

1.	 Shows you how to use 100 powerful advanced
features of Puppet, with detailed step-by-step
instructions

2.	 Covers all the popular tools and frameworks used
with Puppet: Dashboard, Foreman, MCollective,
and more

3.	 Includes the latest features and updates in Puppet
2.7

Instant Puppet 3 Starter
ISBN: 978-1-78216-174-5 Paperback: 50 pages

Gain complete consistency from your systems with
minimal effort using Instant Puppet 3 Starter

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Learn how deterministic results can vastly reduce
your workload

3.	 Deploy Puppet Server as a Ruby-on-Rails application
to handle thousands of clients

Please check www.PacktPub.com for information on our titles

OpenStack Cloud Computing Cookbook
ISBN: 978-1-84951-732-4 Paperback: 318 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, and
Horizon.

1.	 Learn how to install and configure all the core
components of OpenStack to run an environment
that can be managed and operated just like AWS or
Rackspace

2.	 Master the complete private cloud stack from
scaling out compute resources to managing swift
services for highly redundant, highly available
storage

OpenNebula 3 Cloud Computing
ISBN: 978-1-84951-746-1 Paperback: 314 pages

Set-up, manage, and maintain your Cloud and learn
solutions for datacenter virtualization with this
step-by-step practical guide

1.	 Take advantage of open source distributed
file-systems for storage scalability and
high-availability

2.	 Build-up, manage and maintain your Cloud without
previous knowledge of virtualization and cloud
computing

3.	 Install and configure every supported hypervisor:
KVM, Xen, VMware

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Puppet
	The problem
	Configuration management
	A day in the life of a sysadmin
	Keeping configuration synchronized
	Repeating changes across many servers
	Self-updating documentation
	Coping with different platforms
	Version control and history

	Solving the problem
	Reinventing the wheel
	A waste of effort
	Transferable skills
	Configuration management tools

	Infrastructure as code
	Dawn of the devop
	Job satisfaction
	The Puppet advantage
	Welcome aboard
	The Puppet way
	Growing your network
	Cloud scaling

	What is Puppet?
	The Puppet language
	Resources and attributes

	Summary
	Configuration management
	What Puppet does
	The Puppet advantage
	Scaling
	The Puppet language

	Chapter 2: First steps with Puppet
	What you'll need
	Time for action – preparing for Puppet
	Time for action – installing Puppet
	Your first manifest
	How it works
	Applying the manifest
	Modifying existing files
	Exercise

	Organizing your manifests
	Time for action – creating a directory structure
	Creating a nodes.pp file

	Time for action – creating a node declaration
	Summary
	Installing Puppet
	Manifests
	Nodes

	Chapter 3: Packages, Files, and Services
	Packages
	Time for action – installing Nginx
	More about packages
	Installing specific versions
	Removing packages
	Updating packages

	Modules
	Time for action – creating an Nginx module
	Time for action – making a 'puppet apply' command
	Services
	Time for action – adding the nginx service
	Requiring resources
	More about services
	Starting a service at boot time
	Services that don't support "status"
	Specifying how to start, stop, or restart a service

	Files
	Time for action – deploying a virtual host
	Notifying other resources
	The package–file–service pattern
	Exercise

	Summary
	Packages
	Modules
	Services
	Starting services at boot
	Service status options
	Service control commands

	Resource dependencies
	Files

	Chapter 4: Managing Puppet with Git
	What is version control?
	Time for action – importing your manifests into Git
	Time for action – committing and inspecting changes
	How often should I commit?
	Branching

	Distributing Puppet manifests
	Reliability
	Scalability
	Simplicity

	Time for action – creating a master Git repo
	Time for action – cloning the repo to a new machine
	Time for action – adding a new node
	Time for action – pushing changes to the master repo
	Exercise
	Pulling changes automatically

	Time for action – automatic pull-and-apply script
	Learning more about Git
	Summary
	Why version control?
	Getting started with Git
	Networking Puppet

	Chapter 5: Managing users
	Users
	Security and access control
	What Puppet can do

	Time for action – creating a user
	Removing user accounts

	Access control
	What is SSH?
	Managing SSH keys

	Time for action – adding an SSH authorized key
	Generating new SSH keys
	Special-purpose keys
	Locking user accounts
	Managing SSH configuration

	Time for action – deploying an SSH configuration file
	User privileges
	sudo

	Time for action – deploying a sudoers file
	Summary
	Security practices
	User resources
	Removing or locking accounts
	Managing SSH keys

	Configuring SSH
	Managing privileges with sudo

	Chapter 6: Tasks and templates
	Running commands with exec resources
	Time for action – running an arbitrary command
	Running commands selectively
	Triggering commands
	Chaining commands
	Command search paths

	Scheduled tasks
	Time for action – scheduling a backup
	More scheduling options
	Running jobs at regular intervals
	Running a job as a specified user
	Exercise

	Distributing files
	Time for action – using a recursive file resource
	Using templates
	Time for action – templating an Nginx virtual host
	Inline templates
	System facts
	Doing the math
	Putting it all together

	Summary
	Exec resources
	Scheduled jobs
	Recursive file resources
	Templates

	Chapter 7: Definitions and Classes
	Grouping resources into arrays
	Definitions
	Passing parameters to definitions
	Optional parameters

	Time for action – creating a definition for Nginx websites
	Multiple instances of definitions
	Exercise

	Classes
	Defining classes
	Putting classes inside modules
	Declaring classes
	What's the difference between a class and a definition?

	Time for action – creating an NTP class
	Summary
	Arrays
	Definitions
	Classes

	Chapter 8: Expressions and Logic
	Conditionals
	If statements
	else and elsif
	Unless statements

	Case statements
	The default case
	Matching multiple cases

	Selectors

	Expressions
	Comparisons
	Equality
	Magnitude
	Substrings

	Boolean operators
	Combining Boolean operators

	Arithmetic operators

	Regular expressions
	Operators
	Syntax
	Conditionals
	Capture variables

	Substitutions
	Node definitions

	Arrays and hashes
	Grouping resources with arrays
	Getting values out of arrays
	Hashes
	Multilevel hashes
	Testing hash keys

	Summary
	Conditionals
	Operators
	Regular expressions
	Text substitution
	Arrays
	Hashes

	Chapter 9: Reporting and troubleshooting
	Reporting
	Summary reports
	Enabling reports
	What's in a report

	Time for action – generating a report
	Using reports
	Debug runs
	Noop runs
	Syntax checking

	Debug output
	Notify resources
	Exec output
	Specifying expected exit status

	Monitoring
	Managing monitoring with Puppet
	What to monitor
	Monitoring Puppet status
	Problems with Puppet
	Staying in sync

	Errors
	Compilation errors
	Diagnosing errors
	Missing file sources
	Missing parent directory

	Mistyped command line options

	Summary
	Reporting
	Debug and dry-run modes
	Printing messages
	Monitoring Puppet
	Common Puppet errors

	Chapter 10: Moving on Up
	Puppet style
	Break out code into modules
	Refactor common code into definitions
	Keep node declarations simple
	Use puppet-lint
	Make comments superfluous

	Puppet learning resources
	Reference
	Resource types
	Language and syntax
	Facts
	Style

	Modules and code
	Puppet Forge
	The Puppet Cookbook

	Projects
	Puppet everywhere
	User accounts
	System toolbox
	Time sync
	Monitoring server
	Puppetize your key services
	Automate backups
	Set up staging servers
	Automate everything

	Last word

	Index

