


LINEAR ALGEBRA
An Introduction to



http://taylorandfrancis.com


LINEAR ALGEBRA
An Introduction to

Ravi P. Agarwal and Cristina Flaut



 
 
 
 
 
 
 
 
 
 
 
CRC Press 
Taylor & Francis Group 
6000 Broken Sound Parkway NW, Suite 300 
Boca Raton, FL 33487-2742 
 
© 2017 by Taylor & Francis Group, LLC  
CRC Press is an imprint of Taylor & Francis Group, an Informa business 
 
No claim to original U.S. Government works 
 
Printed on acid-free paper 
 
International Standard Book Number-13:  978-1-138-62670-6 (Hardback) 
 
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 
have been made to publish reliable data and information, but the author and publisher cannot assume 
responsibility for the validity of all materials or the consequences of their use. The authors and publishers 
have attempted to trace the copyright holders of all material reproduced in this publication and apologize 
to copyright holders if permission to publish in this form has not been obtained. If any copyright material 
has not been acknowledged please write and let us know so we may rectify in any future reprint. 
 
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information storage 
or retrieval system, without written permission from the publishers. 
 
For permission to photocopy or use material electronically from this work, please access 
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. 
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization 
that provides licenses and registration for a variety of users. For organizations that have been granted a 
photocopy license by the CCC, a separate system of payment has been arranged. 
 
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe. 
 
Visit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com  
 
and the CRC Press Web site at 
http://www.crcpress.com 

www.copyright.com
http://www.copyright.com/) or
http://www.taylorandfrancis.com
http://www.crcpress.com


Dedicated to our mothers:

Godawari Agarwal, Elena Paiu, and Maria Paiu



http://taylorandfrancis.com


Contents

Preface ix

1 Linear Vector Spaces 1

2 Matrices 11

3 Determinants 23

4 Invertible Matrices 31

5 Linear Systems 43

6 Linear Systems (Cont’d) 51

7 Factorization 61

8 Linear Dependence and Independence 67

9 Bases and Dimension 75

10 Coordinates and Isomorphisms 83

11 Rank of a Matrix 89

12 Linear Mappings 97

vii



viii Contents

13 Matrix Representation 107

14 Inner Products and Orthogonality 115

15 Linear Functionals 127

16 Eigenvalues and Eigenvectors 135

17 Normed Linear Spaces 145

18 Diagonalization 155

19 Singular Value Decomposition 165

20 Differential and Difference Systems 171

21 Least Squares Approximation 183

22 Quadratic Forms 189

23 Positive Definite Matrices 197

24 Moore–Penrose Inverse 205

25 Special Matrices 213

Bibliography 225

Index 227



Preface

Linear algebra is a branch of both pure and applied mathematics. It provides
the foundation for multi-dimensional representations of mathematical reason-
ing. It deals with systems of linear equations, matrices, determinants, vectors
and vector spaces, transformations, and eigenvalues and eigenvectors. The
techniques of linear algebra are extensively used in every science where often
it becomes necessary to approximate nonlinear equations by linear equations.
Linear algebra also helps to find solutions for linear systems of differential and
difference equations. In pure mathematics, linear algebra (particularly, vector
spaces) is used in many different areas of algebra such as group theory, module
theory, representation theory, ring theory, Galöis theory, and this list contin-
ues. This has given linear algebra a unique place in mathematics curricula all
over the world, and it is now being taught as a compulsory course at various
levels in almost every institution.

Although several fabulous books on linear algebra have been written, the
present rigorous and transparent introductory text can be used directly in
class for students of applied sciences. In fact, in an effort to bring the subject
to a wider audience, we provide a compact, but thorough, introduction to the
subject in An Introduction to Linear Algebra. This book is intended for
senior undergraduate and for beginning graduate one-semester courses.

The subject matter has been organized in the form of theorems and their
proofs, and the presentation is rather unconventional. It comprises 25 class-
tested lectures that the first author has given to math majors and engineering
students at various institutions over a period of almost 40 years. It is our belief
that the content in a particular chapter, together with the problems therein,
provides fairly adequate coverage of the topic under study.

A brief description of the topics covered in this book follows: In Chapter
1, we define axiomatically terms such as field, vector, vector space, subspace,
linear combination of vectors, and span of vectors. InChapter 2, we introduce
various types of matrices and formalize the basic operations: matrix addition,
subtraction, scalar multiplication, and matrix multiplication. We show that
the set of all m× n matrices under the operations matrix addition and scalar
multiplication is a vector space. In Chapter 3, we begin with the defini-
tion of a determinant and then briefly sketch the important properties of

ix
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determinants. In Chapter 4, we provide necessary and sufficient conditions
for a square matrix to be invertible. We shall show that the theory of deter-
minants can be applied to find an analytical representation of the inverse of a
square matrix. Here we also use elementary theory of difference equations to
find inverses of some band matrices.

The main purpose of Chapters 5 and 6 is to discuss systematically
Gauss and Gauss–Jordan elimination methods to solve m linear equations in
n unknowns. These equations are conveniently written as Ax = b, where A is
an m × n matrix, x is an n × 1 unknown vector, and b is an m × 1 vector.
For this, we introduce the terms consistent, inconsistent, solution space, null
space, augmented matrix, echelon form of a matrix, pivot, elementary row
operations, elementary matrix, row equivalent matrix, row canonical form, and
rank of a matrix. These methods also provide effective algorithms to compute
determinants and inverses of matrices. We also prove several theoretical results
that yield necessary and sufficient conditions for a linear system of equations
to have a solution. Chapter 7 deals with a modified but restricted realization
of Gaussian elimination. We factorize a given m × n matrix A to a product
of two matrices L and U, where L is an m×m lower triangular matrix, and
U is an m× n upper triangular matrix. Here we also discuss various variants
and applications of this factorization.

In Chapter 8, we define the concepts linear dependence and linear inde-
pendence of vectors. These concepts play an essential role in linear algebra
and as a whole in mathematics. Linear dependence and independence distin-
guish between two vectors being essentially the same or different. In Chapter
9, for a given vector space, first we introduce the concept of a basis and then
describe its dimension in terms of the number of vectors in the basis. Here we
also introduce the concept of direct sum of two subspaces. In Chapter 10,
we extend the known geometric interpretation of the coordinates of a vector
in R3 to a general vector space. We show how the coordinates of a vector
space with respect to one basis can be changed to another basis. Here we also
define the terms ordered basis, isomorphism, and transition matrix. In Chap-
ter 11, we redefine rank of a matrix and show how this number is directly
related to the dimension of the solution space of homogeneous linear systems.
Here for a given matrix we also define row space, column space, left and right
inverses, and provide necessary and sufficient conditions for their existence.
In Chapter 12, we introduce the concept of linear mappings between two
vector spaces and extend some results of earlier chapters. In Chapter 13, we
establish a connection between linear mappings and matrices. We also intro-
duce the concept of similar matrices, which plays an important role in later
chapters. In Chapter 14, we extend the familiar concept inner product of two
or three dimensional vectors to general vector spaces. Our definition of inner
products leads to the generalization of the notion of perpendicular vectors,
called orthogonal vectors. We also discuss the concepts projection of a vector
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onto another vector, unitary space, orthogonal complement, orthogonal basis,
and Fourier expansion. This chapter concludes with the well-known Gram–
Schmidt orthogonalization process. In Chapter 15, we discuss a special type
of linear mapping, known as linear functional. We also address such notions
as dual space, dual basis, second dual, natural mapping, adjoint mapping,
annihilator, and prove the famous Riesz representation theorem.

Chapter 16 deals with the eigenvalues and eigenvectors of matrices. We
summarize those properties of the eigenvalues and eigenvectors of matrices
that facilitate their computation. Here we come across the concepts char-
acteristic polynomial, algebraic and geometric multiplicities of eigenvalues,
eigenspace, and companion and circulant matrices. We begin Chapter 17
with the definition of a norm of a vector and then extend it to a matrix.
Next, we drive some estimates on the eigenvalues of a given matrix, and prove
some useful convergence results. Here we also establish well known Cauchy–
Schwarz, Minkowski, and Bessel inequalities, and discuss the terms spectral
radius, Rayleigh quotient, and best approximation.

In Chapter 18, we show that if algebraic and geometric multiplicities of
an n×nmatrix A are the same, then it can be diagonalized, i.e., A = PDP−1;
here, P is a nonsingular matrix and D is a diagonal matrix. Next, we provide
necessary and sufficient conditions for A to be orthogonally diagonalizable,
i.e., A = QDQt, where Q is an orthogonal matrix. Then, we discuss QR fac-
torization of the matrix A. We also furnish complete computationable char-
acterizations of the matrices P,D,Q, and R. In Chapter 19, we develop a
generalization of the diagonalization procedure discussed in Chapter 18. This
factorization is applicable to any real m × n matrix A, and in the literature
has been named singular value decomposition. Here we also discuss reduced
singular value decomposition.

In Chapter 20, we show how linear algebra (especially eigenvalues and
eigenvectors) plays an important role to find the solutions of homogeneous
differential and difference systems with constant coefficients. Here we also de-
velop continuous and discrete versions of the famous Putzer’s algorithm. In
a wide range of applications, we encounter problems in which a given system
Ax = b does not have a solution. For such a system we seek a vector(s) x̂ so
that the error in the Euclidean norm, i.e., ‖Ax̂ − b‖2, is as small as possible
(minimized). This solution(s) x̂ is called the least squares approximate solu-
tion. In Chapter 21, we shall show that a least squares approximate solution
always exists and can be conveniently computed by solving a related system
of n equations in n unknowns (normal equations). In Chapter 22, we study
quadratic and diagonal quadratic forms in n variables, and provide criteria for
them to be positive definite. Here we also discuss maximum and minimum of
the quadratic forms subject to some constraints (constrained optimization).
In Chapter 23, first we define positive definite symmetric matrices in terms
of quadratic forms, and then for a symmetric matrix to be positive definite, we
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provide necessary and sufficient conditions. Next, for a symmetric matrix we
revisit LU -factorization, and give conditions for a unique factorization LDLt,
where L is a lower triangular matrix with all diagonal elements 1, and D is a
diagonal matrix with all positive elements. We also discuss Cholesky’s decom-
position LcL

t
c where Lc = LD1/2, and for its computation provide Cholesky’s

algorithm. This is followed by Sylvester’s criterion, which gives easily verifiable
necessary and sufficient conditions for a symmetric matrix to be positive defi-
nite. We conclude this chapter with a polar decomposition. InChapter 24, we
introduce the concept of pseudo/generalized (Moore–Penrose) inverse which
is applicable to all m×n matrices. As an illustration we apply Moore–Penrose
inverse to least squares solutions of linear equations. Finally, in Chapter 25,
we briefly discuss irreducible, nonnegative, diagonally dominant, monotone,
and Toeplitz matrices. We state 11 theorems which, from the practical point
of view, are of immense value. These types of matrices arise in several diverse
fields, and hence have attracted considerable attention in recent years.

In this book, there are 148 examples that explain each concept and demon-
strate the importance of every result. Two types of 254 problems are also
included, those that illustrate the general theory and others designed to fill
out text material. The problems form an integral part of the book, and every
reader is urged to attempt most, if not all of them. For the convenience of the
reader, we have provided answers or hints to all the problems.

In writing a book of this nature, no originality can be claimed, only a
humble attempt has been made to present the subject as simply, clearly, and
accurately as possible. The illustrative examples are usually very simple, keep-
ing in mind an average student.

It is earnestly hoped that An Introduction to Linear Algebra will
serve an inquisitive reader as a starting point in this rich, vast, and ever-
expanding field of knowledge.

We would like to express our appreciation to our students and Ms. Aastha
Sharma at CRC (New Delhi) for her support and cooperation.

Ravi P. Agarwal
Cristina Flaut



Chapter 1

Linear Vector Spaces

A vector space (or linear space) consists of four things {F, V,+, s.m.}, where F
is a field of scalars, V is the set of vectors, and + and s.m. are binary operations
on the set V called vector addition and scalar multiplication, respectively.
In this chapter we shall define each term axiomatically and provide several
examples.

Fields. A field is a set of scalars, denoted by F, in which two binary op-
erations, addition (+) and multiplication (·), are defined so that the following
axioms hold:

A1. Closure property of addition: If a, b ∈ F, then a+ b ∈ F.

A2. Commutative property of addition: If a, b ∈ F, then a+ b = b+ a.

A3. Associative property of addition: If a, b, c ∈ F, then (a+b)+c = a+(b+c).

A4. Additive identity: There exists a zero element, denoted by 0, in F such
that for all a ∈ F, a+ 0 = 0 + a = a.

A5. Additive inverse: For each a ∈ F, there is a unique element (−a) ∈ F
such that a+ (−a) = (−a) + a = 0.

A6. Closure property of multiplication: If a, b ∈ F, then a · b ∈ F.

A7. Commutative property of multiplication: If a, b ∈ F, then a · b = b · a.
A8. Associative property of multiplication: If a, b, c ∈ F, then (a·b)·c = a·(b·c).
A9. Multiplicative identity: There exists a unit element, denoted by 1, in F
such that for all a ∈ F, a · 1 = 1 · a = a.

A10. Multiplicative inverse: For each a ∈ F, a 6= 0, there is an unique element
a−1 ∈ F such that a · a−1 = a−1a = 1.

A11. Left distributivity: If a, b, c ∈ F, then a · (b + c) = a · b+ a · c.
A12. Right distributivity: If a, b, c ∈ F, then (a+ b) · c = a · c+ b · c.

Example 1.1. The set of rational numbers Q, the set of real numbers R,
and the set of complex numbers C, with the usual definitions of addition and
multiplication, are fields. The set of natural numbers N = {1, 2, · · · }, and the
set of all integers Z = {· · · ,−2,−1, 0, 1, 2 · · · } are not fields.

Let F and F1 be fields and F1 ⊆ F, then F1 is called a subfield of F. Thus,
Q is a subfield of R, and R is a subfield of C.

1



2 Chapter 1

Vector spaces. A vector space V over a field F denoted as (V, F )
is a nonempty set of elements called vectors together with two binary opera-
tions, addition of vectors and multiplication of vectors by scalars, so that the
following axioms hold:

B1. Closure property of addition: If u, v ∈ V, then u+ v ∈ V.

B2. Commutative property of addition: If u, v ∈ V, then u+ v = v + u.

B3. Associativity property of addition: If u, v, w ∈ V, then (u + v) + w =
u+ (v + w).

B4. Additive identity: There exists a zero vector, denoted by 0, in V such
that for all u ∈ V, u+ 0 = 0 + u = u.

B5. Additive inverse: For each u ∈ V, there exists a vector v in V such that
u+ v = v + u = 0. Such a vector v is usually written as −u.
B6. Closure property of multiplication: If u ∈ V and a ∈ F, then the product
a · u = au ∈ V.

B7. If u, v ∈ V and a ∈ F, then a(u+ v) = au+ av.

B8. If u ∈ V and a, b ∈ F, then (a+ b)u = au+ bu.

B9. If u ∈ V and a, b ∈ F, then ab(u) = a(bu).

B10. Multiplication of a vector by a unit scalar: If u ∈ V and 1 ∈ F, then
1u = u.

In what follows, the subtraction of the vector v from u will be written as
u − v, and by this we mean u + (−v), or u + (−1)v. The spaces (V,R) and
(V,C) will be called real and complex vector spaces, respectively.

Example 1.2 (The n-tuple space). Let F be a given field. We
consider the set V of all ordered n-tuples

u =







a1
...
an






(or, (a1, · · · , an))

of scalars (known as components) ai ∈ F. If

v =







b1
...
bn







is in V, the addition of u and v is defined by

u+ v =







a1 + b1
...

an + bn






,
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and the product of a scalar c ∈ F and vector u ∈ V is defined by

cu =







ca1
...
can






.

It is to be remembered that u = v, if and only if their corresponding com-
ponents are equal, i.e., ai = bi, i = 1, · · · , n. With this definition of addition
and scalar multiplication it is easy to verify all the axioms B1–B10, and hence
this (V, F ) is a vector space. In particular, if

w =







c1
...
cn







is in V, then the i-th component of (u+ v) +w is (ai + bi) + ci, which in view
of A3 is the same as ai + (bi + ci), and this is the same as the i-th component
of u + (v + w), i.e., B3 holds. If F = R, then V is denoted as Rn, which
for n = 2 and 3 reduces respectively to the two and three dimensional usual
vector spaces. Similarly, if F = C, then V is written as Cn.

Example 1.3 (The space of polynomials). Let F be a given field.
We consider the set Pn, n ≥ 1 of all polynomials of degree at most n− 1, i.e.,

Pn =

{

a0 + a1x+ · · ·+ an−1x
n−1 =

n−1
∑

i=0

aix
i : ai ∈ F, x ∈ R

}

.

If u =
∑n−1

i=0 aix
i, v =

∑n−1
i=0 bix

i ∈ Pn, then the addition of vectors u and v
is defined by

u+ v =
n−1
∑

i=0

aix
i +

n−1
∑

i=0

bix
i =

n−1
∑

i=0

(ai + bi)x
i,

and the product of a scalar c ∈ F and vector u ∈ Pn is defined by

cu = c

n−1
∑

i=0

aix
i =

n−1
∑

i=0

(cai)x
i.

This (Pn, F ) is a vector space. We remark that the set of all polynomials of
degree exactly n− 1 is not a vector space. In fact, if we choose bn−1 = −an−1,
then u+ v is a polynomial of degree n− 2.

Example 1.4 (The space of functions). Let F be a given field, and
X ⊆ F.We consider the set V of all functions from the set X to F. The sum of
two vectors f, g ∈ V is defined by (f+g), i.e., (f+g)(x) = f(x)+g(x), x ∈ X,
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and the product of a scalar c ∈ F and vector f ∈ V is defined by cf, i.e.,
(cf)(x) = cf(x). This (V, F ) is a vector space. In particular, (C[X ], F ), where
C[X ] is the set of all continuous functions from X to F, with the same vector
addition, and scalar multiplication is a vector space.

Example 1.5 (The space of sequences). Let F be a given field.
Consider the set S of all sequences a = {an}∞n=1, where an ∈ F. If a and
b are in S and c ∈ F, we define a + b = {an} + {bn} = {an + bn} and
ca = c{an} = {can}. Clearly, (S, F ) is a vector space.

Example 1.6. Let F = R and V be the set of all solutions of the homo-
geneous ordinary linear differential equation with real constant coefficients

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ · · ·+ an−1

dy

dx
+ any = 0, a0 6= 0, x ∈ R.

This (V, F ) is a vector space with the same vector addition and scalar mul-
tiplication as in Example 1.4. Note that if the above differential equation is
nonhomogeneous then (V, F ) is not a vector space.

Theorem 1.1. Let V be a vector space over the field F, and let u, v ∈ V.
Then,

1. u+ v = u implies v = 0 ∈ V.

2. 0u = 0 ∈ V.

3. −u is unique.

4. −u = (−1)u.

Proof. 1. On adding −u on both sides of u+ v = u, we have

−u+ u+ v = − u+ u ⇒ (−u+ u) + v = 0 ⇒ 0 + v = 0 ⇒ v = 0.

2. Clearly, 0u = (0 + 0)u = 0u+ 0u, and hence 0u = 0 ∈ V.

3. Assume that v and w are such that u + v = 0 and u + w = 0. Then, we
have

v = v + 0 = v + (u+ w) = (v + u) + w = (u+ v) + w = 0 + w = w,

i.e., −u of any vector u ∈ V is unique.

4. Since

0 = 0u = [1 + (−1)]u = 1u+ (−1)u = u+ (−1)u,

it follows that (−1)u is a negative for u. The uniqueness of this negative vector
now follows from Part 3.

Subspaces. Let (V, F ) and (W,F ) be vector spaces and W ⊆ V, then
(W,F ) is called a subspace of (V, F ). It is clear that the smallest subspace
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(W,F ) of (V, F ) consists of only the zero vector, and the largest subspace
(W,F ) is (V, F ) itself.

Example 1.7. Let F = R,

W =











a1
a2
0



 : a1, a2 ∈ R







and V =











a1
a2
a3



 : a1, a2, a3 ∈ R







.

Clearly, (W,R) is a subspace of (V,R). However, if we let

W =











a1
a2
a3



 : a1 > 0, a2 > 0, a3 > 0







,

then (W,R) is not a subspace of (V,R).

Example 1.8. Let F be a given field. Consider the vector spaces (P4, F )
and (P3, F ). Clearly, (P3, F ) is a subspace of (P4, F ). However, the set of all
polynomials of degree exactly two over the field F is not a subspace of (P4, F ).

Example 1.9. Consider the vector spaces (V, F ) and (C[X ], F ) considered
in Example 1.4. Clearly, (C[X ], F ) is a subspace of (V, F ).

To check if the nonempty subset W of V over the field F is a subspace
requires the verification of all the axioms B1–B10. However, the following
result simplifies this verification considerably.

Theorem 1.2. If (V, F ) is a vector space and W is a nonempty subset of
V, then (W,F ) is a subspace of (V, F ) if and only if for each pair of vectors
u, v ∈W and each scalar a ∈ F the vector au+ v ∈ W.

Proof. If (W,F ) is a subspace of (V, F ), and u, v ∈ W, a ∈ F , then obviously
au + v ∈ W. Conversely, since W 6= ∅, there is a vector u ∈ W, and hence
(−1)u+ u = 0 ∈W. Further, for any vector u ∈ W and any scalar a ∈ F, the
vector au = au + 0 ∈ W. This in particular implies that (−1)u = −u ∈ W.
Finally, we notice that if u, v ∈W, then 1u+ v ∈W. The other axioms can be
shown similarly. Thus (W,F ) is a subspace of (V, F ).

Thus (W,F ) is a subspace of (V, F ) if and only if for each pair of vectors
u, v ∈W,u+ v ∈ W and for each scalar a ∈ F, au ∈W.

Let u1, · · · , un be vectors in a given vector space (V, F ), and c1, · · · , cn ∈ F
be scalars. The vector u = c1u

1 + · · · + cnu
n is known as linear combination

of ui, i = 1, · · · , n. By mathematical induction it follows that u ∈ (V, F ).

Theorem 1.3. Let ui ∈ (V, F ), i = 1, · · · , n(≥ 1), and

W =
{

c1u
1 + · · ·+ cnu

n : ci ∈ F, i = 1, · · · , n
}
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then (W,F ) is a subspace of (V, F ), andW contains each of the vectors ui, i =
1, · · · , n.

Proof. Clearly, each ui is a linear combination of the form

ui =

n
∑

j=1

δiju
j ,

where δij is the Kronecker delta defined by

δij =

{

0, i 6= j
1, i = j.

Thus, each ui ∈ W. Now, if v =
∑n

i=1 ciu
i, w =

∑n
i=1 diu

i and a ∈ F, then
we have

av + w = a

n
∑

i=1

ciu
i +

n
∑

i=1

diu
i =

n
∑

i=1

(aci + di)u
i =

n
∑

i=1

αiu
i, αi ∈ F

which shows that av+w ∈ W. The result now follows from Theorem 1.2.

The subspace (W,F ) in Theorem 1.3 is called the subspace spanned or
generated by the vectors ui, i = 1, · · · , n, and written as Span{u1, · · · , un}.
If (W,F ) = (V, F ), then the set {u1, · · · , un} is called a spanning set for the
vector space (V, F ). Clearly, in this case each vector u ∈ V can be expressed
as a linear combination of vectors ui, i = 1, · · · , n.

Example 1.10. Since

2





2
1
4



− 3





1
0
2



+ 5





3
2
1



−





4
2
0



 =





12
10
7





it follows that




12
10
7



 ∈ Span











2
1
4



 ,





1
0
2



 ,





3
2
1



 ,





4
2
0











.

However,




1
2
3



 6∈ Span











1
0
0



 ,





1
1
0











.

Example 1.11. For the vector space (V, F ) considered in Example 1.2



Linear Vector Spaces 7

the set {e1, · · · , en}, where

ei =

























0
...
0
1
0
...
0

























∈ V (1 at the i-th place)

is a spanning set. Similarly, for the vector space (Pn, F ) considered in Example
1.3, the set {1, x, · · · , xn−1} is a spanning set.

Problems

1.1. Show that the set of all real numbers of the form a+
√
2b, where a

and b are rational numbers, is a field.

1.2. Show that

(i) if u1, · · · , un span V and u ∈ V, then u, u1, · · · , un also span V

(ii) if u1, · · · , un span V and uk is a linear combination of ui, i = 1, · · · ,
n, i 6= k, then ui, i = 1, · · · , n, i 6= k also span V

(iii) if u1, · · · , un span V and uk = 0, then ui, i = 1, · · · , n, i 6= k also
span V.

1.3. Show that the intersection of any number of subspaces of a vector
space V is a subspace of V.

1.4. Let U and W be subspaces of a vector space V. The space

U +W = {v : v = u+ w where u ∈ U, w ∈W}
is called the sum of U and W. Show that

(i) U +W is also a subspace of V

(ii) U and W are contained in U +W

(iii) U + U = U

(iv) U ∪W is a subspace of V ?.

1.5. Consider the following polynomials of degree three:

L1(x) =
(x− x2)(x− x3)(x− x4)

(x1−x2)(x1−x3)(x1−x4)
, L2(x) =

(x− x1)(x− x3)(x− x4)

(x2−x1)(x2−x3)(x2−x4)

L3(x) =
(x− x1)(x− x2)(x − x4)

(x3−x1)(x3−x2)(x3−x4)
, L4(x) =

(x − x1)(x − x2)(x − x3)

(x4−x1)(x4−x2)(x4−x3)
,
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where x1 < x2 < x3 < x4. Show that

(i) if P3(x) ∈ P4 is an arbitrary polynomial of degree three, then P3(x) =
L1(x)P3(x1) + L2(x)P3(x2) + L3(x)P3(x3) + L4(x)P3(x4)

(ii) the set {L1(x), L2(x), L3(x), L4(x)} is a spanning set for (P4, R).

1.6. Prove that the sets {1, 1+x, 1+x+x2, 1+x+x2 +x3} and {1, (1−
x), (1 − x)2, (1− x)3} are spanning sets for (P4, R).

1.7. Let S be a subset of Rn consisting of all vectors with components
ai, i = 1, · · · , n such that a1 + · · ·+ an = 0. Show that S is a subspace of Rn.

1.8. On R3 we define the following operations




x1
x2
x3



+





y1
y2
y3



 =





x1 + y1
0

x3 + y3



 and a





x1
x2
x3



 =





ax1
ax2
ax3



 , a ∈ R.

With these operations, is R3 a vector space over the field R?

1.9. Consider the following subsets of the vector space R3:

(i) V1 = {x ∈ R3 : 3x3 = x1 − 5x2} (ii) V2 = {x ∈ R3 : x21 = x2 + 6x3}
(iii) V3 = {x ∈ R3 : x2 = 0} (iv) V4 = {x ∈ R3 : x2 = a, a ∈ R − {0}}.
Find if the above sets V1, V2, V3, and V4 are vector subspaces of R3.

1.10. Let (V,X) be the vector space of functions considered in Example
1.4 with X = F = R, and W ⊂ V. Show that W is a subspace of V if

(i) W contains all bounded functions

(ii) W contains all even functions (f(−x) = f(x))

(iii) W contains all odd functions (f(−x) = −f(x)).

Answers or Hints

1.1. Verify A1–A12.
1.2. (i) Since u1, · · · , un span V and u ∈ V there exist scalars c1, · · · , cn
such that u =

∑n
i=1 ciu

i. Let W = {v : v =
∑n

i=1 αiu
i + αn+1u}. We need

to show that (V, F ) = (W,F ). Clearly, V ⊆ W. Now let v ∈ W, then v =
∑n

i=1 αiu
i + αn+1

∑n
i=1 ciu

i =
∑n

i=i(αi + αn+1ci)u
i. Hence, W ⊆ V.

(ii) Similar as (i).
(iii) Similar as (i).

1.3. Let U,W be subspaces of V. It suffices to show that U ∩W is also a
subspace of V. Since 0 ∈ U and 0 ∈ W it is clear that 0 ∈ U ∩W. Now let
u,w ∈ U ∩ W, then u,w ∈ U and u,w ∈ W. Further for all scalars a, b ∈
F, au+ bw ∈ U and au+ bw ∈W. Thus au+ bw ∈ U ∩W.
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1.4. (i) Let v1, v2 ∈ U + W, where v1 = u1 + w1, v2 = u2 + w2. Then,
v1 + v2 = u1+w1 +u2+w2 = (u1 +u2)+ (w1 +w2). Now since U and W are
subspaces, u1 + u2 ∈ U and w1 +w2 ∈W. This implies that v1 + v2 ∈ U +W.
Similarly we can show that cv1 ∈ U +W, c ∈ F.

(ii) If u ∈ U, then since 0 ∈W, u = u+ 0 ∈ U +W.

(iii) Since U is a subspace of V it is closed under vector addition, and hence
U + U ⊆ U. We also have U ⊆ U + U from (i).

(iv) U ∪W need not be a subspace of V. For example, consider V = R3,

U =











a1
0
0



 : a1 ∈ R







, W =











0
0
a3



 : a3 ∈ R







.

Then

U ∪W =











a1
0
0



 ,





0
0
a3



 : a1 ∈ R, a3 ∈ R







.

Clearly,





1
0
0



 ∈ U ∪W,





0
0
1



 ∈ U ∪W, but





1
0
1



 6∈ U ∪W.

1.5. (i) The function f(x) = L1(x)P3(x1) + L2(x)P3(x2) + L3(x)P3(x3) +
L4(x)P4(x4) is a polynomial of degree at most three, and f(xi) = Li(xi)×
P3(xi) = P3(xi), i = 1, 2, 3, 4. Thus f(x) = P3(x) follows from the uniqueness
of interpolating polynomials.

(ii) Follows from (i).

1.6. It suffices to note that a + bx + cx2 + dx3 = (a − b) + (b − c)(1 + x) +
(c− d)(1 + x+ x2) + d(1 + x+ x2 + x3).
1.7. Use Theorem 1.2.
1.8. No.
1.9. V1 and V3 are vector subspaces, whereas V2 and V4 are not vector sub-
spaces of R3.
1.10. Use Theorem 1.2.
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Chapter 2

Matrices

Matrices occur in many branches of applied mathematics and social sciences,
such as algebraic and differential equations, mechanics, theory of electrical
circuits, nuclear physics, aerodynamics, and astronomy. It is, therefore, nec-
essary for every young scientist and engineer to learn the elements of matrix
algebra.

A system of m × n elements from a field F arranged in a rectangular
formation along m rows and n columns and bounded by the brackets ( ) is
called an m×n matrix. Usually, a matrix is written by a single capital letter.
Thus,

A =

















a11 a12 · · · a1j · · · a1n
a21 a22 · · · a2j · · · a2n
· · · · · · · · · · · · · · · · · ·
ai1 ai2 · · · aij · · · ain
· · · · · · · · · · · · · · · · · ·
am1 am2 · · · amj · · · amn

















is an m×n matrix. In short, we often write A = (aij), where it is understood
that the suffix i = 1, · · · ,m and j = 1, · · · , n, and ij indicates the i-th row
and the j-th column. The numbers (A)ij = aij are called the elements of the
matrix A. For example, the following matrices A and B are of order 2× 3 and
3× 2,

A =

(

3 5 7
1 4 8

)

, B =





1 + i 1− i
2 + 3i 2− 5i
7 5 + 3i



 , i =
√
−1.

A matrix having a single row, i.e., m = 1, is called a row matrix or a row
vector, e.g., (2 3 5 7).

A matrix having a single column, i.e., n = 1, is called a column matrix or
a column vector, e.g.,





5
7
3



 .

Thus the columns of the matrix A can be viewed as vertical m-tuples (see

11
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Example 1.2), and the rows as horizontal n-tuples. Hence, if we let

aj =







a1j
...

amj






, j = 1, 2, · · · , n

then the above matrix A can be written as

A = (a1, a2, · · · , an).

A matrix having n rows and n columns is called a square matrix of order
n, e.g.,

A =





1 2 3
2 3 4
3 4 5



 (2.1)

is a square matrix of order 3.

For a square matrix A of order n, the elements aii, i = 1, · · · , n, lying
on the leading or principal diagonal are called the diagonal elements of A,
whereas the remaining elements are called the off-diagonal elements. Thus for
the matrix A in (2.1) the diagonal elements are 1, 3, 5.

A square matrix all of whose elements except those in the principal diag-
onal are zero, i.e., aij = 0, |i− j| ≥ 1 is called a diagonal matrix, e.g.,

A =





7 0 0
0 5 0
0 0 1



 .

A diagonal matrix of order n that has unity for all its diagonal elements,
i.e., aii = 1, is called a unit or identity matrix of order n and is denoted by In
or simply by I. For example, identity matrix of order 3 is

I3 =





1 0 0
0 1 0
0 0 1



 ,

and of nth order In = (e1, e2, · · · , en).
If all the elements of a matrix are zero, i.e., aij = 0, it is called a null or

zero matrix and is denoted by 0, e.g.,

0 =





0 0
0 0
0 0



 .

A square matrix A = (aij) is called symmetric when aij = aji. If aij =
−aji, so that all the principal diagonal elements are zero, then the matrix is
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called a skew-symmetric matrix. Examples of symmetric and skew-symmetric
matrices are respectively





a h g
h b f
g f c



 and





0 h −g
−h 0 f
g −f 0



 .

An m × n matrix is called upper triangular if aij = 0, i > j and lower
triangular if aij = 0, j > i. In particular, a square matrix all of whose elements
below the principal diagonal are zero is called an upper triangular matrix, and
a square matrix all of whose elements above the principal diagonal are zero is
called a lower triangular matrix. Thus,





a h g
0 b f
0 0 c



 and





a 0 0
h b 0
g f c





are upper and lower triangular matrices, respectively. Clearly, a square matrix
is diagonal if and only if it is both upper and lower triangular.

Two matrices A = (aij) and B = (bij) are said to be equal if and only if
they are of the same order, and aij = bij for all i and j.

If A and B are two matrices of the same order, then their sum A + B is
defined as the matrix each element of which is the sum of the corresponding
elements of A and B. Thus,





a1 b1
a2 b2
a3 b3



+





c1 d1
c2 d2
c3 d3



 =





a1 + c1 b1 + d1
a2 + c2 b2 + d2
a3 + c3 b3 + d3



 .

Similarly, A − B is defined as a matrix whose elements are obtained by sub-
tracting the elements of B from the corresponding elements of A. Thus,

(

a1 b1
a2 b2

)

−
(

c1 d1
c2 d2

)

=

(

a1 − c1 b1 − d1
a2 − c2 b2 − d2

)

.

The addition of matrices satisfies the following properties:

1. A+B = B +A, commutative law

2. A+ (B + C) = (A+B) + C, associative law

3. A+ 0 = 0 +A = A,

4. A+ (−A) = (−A) +A = 0.

The product of a matrix A by a scalar k ∈ F is a matrix whose every
element is k times the corresponding element of A. Thus,

k

(

a1 b1 c1
a2 b2 c2

)

=

(

ka1 kb1 kc1
ka2 kb2 kc2

)

.
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For such products, the following properties hold:

1. (k1 + k2)A = k1A+ k2A, k1, k2 ∈ F

2. k1(k2A) = (k1k2)A

3. k(A+B) = kA+ kB, distributive law

4. (−1)A = −A
5. 0A = 0

6. k0 = 0.

In what follows we shall denote by Mm×n the set of all m × n matrices
whose elements belong to a certain field F, i.e.,

Mm×n = {A = (aij) : aij ∈ F, i = 1, · · · ,m, n = 1, 2, · · · , n} .

It is clear that with the above definition of addition and scalar multiplication,
(Mm×n, F ) is a vector space. The set of allm×n matrices with real (complex)
elements will be represented by Rm×n (Cm×n).

Two matrices can be multiplied only when the number of columns in the
first matrix is equal to the number of rows in the second matrix. Such matrices
are said to be conformable for multiplication. Thus, if A and B are n×m and
m× p matrices

A =









a11 a12 · · · a1m
a21 a22 · · · a2m
· · · · · · · · · · · ·
an1 an2 · · · anm









and B =









b11 b12 · · · b1p
b21 b22 · · · b2p
· · · · · · · · · · · ·
am1 am2 · · · amp









then A×B, or simply AB is a new matrix of order n× p,

AB =









c11 c12 · · · c1p
c21 c22 · · · c2p
· · · · · · · · · · · ·
cn1 cn2 · · · cnp









,

where

cij = ai1b1j + · · ·+ aimbmj =

m
∑

k=1

aikbkj .

Thus, in particular





a1 b1 c1
a2 b2 c2
a3 b3 c3



×





d1 e1
d2 e2
d3 e3



 =





a1d1 + b1d2 + c1d3 a1e1 + b1e2 + c1e3
a2d1 + b2d2 + c2d3 a2e1 + b2e2 + c2e3
a3d1 + b3d2 + c3d3 a3e1 + b3e2 + c3e3



 .

In the product AB the matrix A is said to be post-multiplied by B, and the
matrix B is said to be pre-multiplied by A. It is possible that AB is defined,
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but BA may not be defined. Further, both AB and BA may exist yet may
not be equal.

Example 2.1. For the matrices

A =





0 1 2
1 2 3
2 3 4



 , B =





1 −2
−1 0
2 −1



 ,

we have

AB =





3 −2
5 −5
7 −8



 .

However, BA is not defined.

Example 2.2. For the matrices

A =





1 1 0
−1 2 1
0 0 2



 , B =





2 3 4
1 2 3

−1 1 2



 ,

we have

AB =





3 5 7
−1 2 4
−2 2 4



 , BA =





−1 8 11
−1 5 8
−2 1 5



 .

Thus, AB 6= BA.

Example 2.3. For the matrices

A =

(

1 1
1 1

)

, B =

(

1 −1
−1 1

)

,

we have AB = 0. Thus AB = 0 does not imply that A or B is a null matrix.

For the multiplication of matrices, the following properties hold:

1. A(BC) = (AB)C, associative law

2. A(B ± C) = AB ± AC and (A±B)C = AC ±BC, distributive law

3. AI = A and IA = A

4. k(AB) = (kA)B = A(kB), k ∈ F

5. A0 = 0 and 0B = 0.

If A is an n×n matrix, then the product AA is denoted as A2. In general,
the m times product AA · · ·A = Am−1A = Am and A0 = I. Also, if m and
p are positive integers, then in view of the associative law, we have AmAp =
Am+p. In particular, I = I2 = I3 = · · · . Further, if A is a diagonal matrix



16 Chapter 2

with diagonal elements (λ1, · · · , λn), then Am is also a diagonal matrix with
diagonal elements (λm1 , · · · , λmn ). Moreover, if A is an upper (lower) triangular
matrix, then Am is also an upper (lower) triangular matrix. Polynomials in the

matrix A are also defined. In fact, if Pm−1(x) =
∑m−1

i=0 aix
i ∈ (Pm, F ), then

Pm−1(A) =
∑m−1

i=0 aiA
i. Clearly, Pm−1(A) is a square matrix. If Pm−1(A) is

the zero matrix, then A is called a zero or root of Pm−1(x).

The transpose of an m × n matrix A = (aij), written as At, is an n ×m
matrix that is obtained by interchanging the rows and columns of A, i.e.,
At = (aji). Thus for the matrices in Example 2.1,

At =





0 1 2
1 2 3
2 3 4



 , Bt =

(

1 −1 2
−2 0 −1

)

.

It follows that for the column vector

a =







a1
...
an







at is the row vector at = (a1, · · · , an), and vice-versa.

For the transpose of matrices, the following hold:

1. (A+B)t = At +Bt

2. (cA)t = cAt, where c is a scalar

3. (At)t = A

4. (AB)t = BtAt (note reversed order).

Clearly, a square matrix A is symmetric if and only if A = At and skew-
symmetric if and only if A = −At. If A is symmetric (skew-symmetric), then
obviously At is symmetric (skew-symmetric).

The trace of a square matrix, written as tr(A), is the sum of the diagonal
elements, i.e., tr(A) = a11 + a22 + · · · + ann. Thus for the matrix A in (2.1)
the trace is 1+3+5 = 9. For the trace of square matrices, the following hold:

1. tr(A+B) = tr(A) + tr(B)

2. tr(A) = tr(At)

3. tr(cA) = c tr(A), where c is a scalar

4. tr(AB) = tr(BA).

Finally, we remark that, especially for computational purposes, a matrix A
can be partitioned into submatrices called blocks, or cells by drawing horizontal
and vertical lines between its rows and columns. This partition is not unique;
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for example, the matrix

A =









1 0 7 3 4
3 5 7 1 0
0 4 3 2 7
6 3 9 0 2









can be partitioned as








1 0 7 3 4
3 5 7 1 0

0 4 3 2 7
6 3 9 0 2









=

(

A11 A12

A21 A22

)

,

or








1 0 7 3 4

3 5 7 1 0
0 4 3 2 7

6 3 9 0 2









=





A11 A12 A13

A21 A22 A23

A31 A32 A33



 .

If A = (Aij)r×s, B = (Bij)s×t and the blocks Aij , Bij are conformable,
then AB = (Cij)r×t, where

Cij =

s
∑

k=1

AikBkj .

In partitioned matrices the blocks can be treated as numbers so that the
basic operations between matrices (with blocks of correct orders) can be per-
formed.

Problems

2.1. Express the following matrix as a sum of a lower triangular matrix
and an upper triangular matrix with zero leading diagonal

A =





1 3 5
2 4 7
6 −5 9



 .

2.2. Let A = (aij), B = (bij) ∈Mn×n be upper triangular matrices. Show
that AB is an upper triangular matrix with diagonal elements aiibii, i =
1, · · · , n.

2.3. For the matrices

A =





−1 2 4
3 6 5
6 5 8



 , B =





3 −6 −5
1 3 5
3 5 7




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find A+B, A−B, 2A+ 3B, 3A− 4B, AB, BA, A2 and B3.

2.4. For the matrices

A =





2 −3 −5
−1 4 5
1 −3 −4



 , B =





−1 3 5
1 −3 −5

−1 3 5



 , C =





2 −2 −4
−1 3 4
1 −3 −4





verify that AB = BA = 0, AC 6= A, and CA = C.

2.5. If

A =

(

cos θ sin θ
− sin θ cos θ

)

show that

An =

(

cosnθ sinnθ
− sinnθ cosnθ

)

.

2.6. Show that (A+B)2 = A2+2AB+B2 and (A+B)(A−B) = A2−B2

if and only if the square matrices A and B commute.

2.7. Consider the set R2×2 with the addition as usual, but the scalar
multiplication as follows:

k

(

a b
c d

)

=

(

ka 0
0 kd

)

.

Show that (R2×2, R) is not a vector space.

2.8. Show that the matrices
(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

span the vector space M2×2 containing all 2× 2 matrices.

2.9. Let B ∈ Rn×n be a fixed matrix, and S = {A : AB = BA, A ∈
Rn×n}. Show that S is a subspace of Rn×n.

2.10. Let Al ∈Mm×n, kl ∈ F, l = 1, 2, · · · ,M. Show that

(i) k1

M
∑

l=1

Al =

M
∑

l=1

k1Al

(ii)

(

M
∑

l=1

kl

)

A1 =
M
∑

l=1

klA1.

2.11. For the matrix multiplication, prove associative and distributive
laws.

2.12. For the transpose of matrices, show that (AB)t = BtAt.
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2.13. The hermitian transpose of a complex m × n matrix A = (aij),
written as AH , is an n × m matrix that is obtained by interchanging the
rows and columns of A and taking the complex conjugate of the elements (if
z = a+ ib, then z̄ = a− ib is its complex conjugate), i.e., AH = (āji). For the
hermitian transpose of matrices, show that

(i) (A+B)H = AH +BH

(ii) (cA)H = c̄AH , where c is a scalar

(iii) (AH)H = A

(iv) (AB)H = BHAH .

2.14. A square complex matrix A is called hermitian if and only if A =
AH , skew-hermitian if and only if A = −AH , and normal if and only if A
commutes with AH , i.e., AAH = AHA. Give some examples of hermitian,
skew-hermitian, and normal matrices.

2.15. Show that

(i) the addition A + B of two symmetric (hermitian) matrices A and B is
symmetric (hermitian), but the product AB is symmetric (hermitian) if and
only if A and B commute, in particular AAt and AtA (AAH and AHA) are
symmetric (hermitian)
(ii) if A is an n×n symmetric (hermitian) matrix and B is any n×m matrix,
then BtAB (BHAB) is symmetric (hermitian)
(iii) if A is a symmetric (hermitian) matrix, then for all positive integers
p, Ap is symmetric (hermitian)
(iv) if A2 is a symmetric (hermitian) matrix, then A need not be symmetric
(hermitian)
(v) a skew–symmetric (skew-hermitian) matrix must be square and its di-
agonal elements must be zero
(vi) for a given square matrix A the matrix A − At (A − AH) is skew–
symmetric (skew-hermitian) while the matrix A+At (A+AH) is symmetric
(hermitian)
(vii) any square matrix can be uniquely written as the sum of a symmetric
(hermitian) and a skew–symmetric (skew-hermitian) matrix
(viii) if A is a skew–symmetric (skew-hermitian) n × n matrix, then for any
u ∈ Rn (Cn), uAut (uAuH) = 0.

2.16. Give an example of two matrices A,B ∈ Cn×n for which AB 6= BA
but tr(AB) = tr(BA), and hence deduce that AB −BA = I cannot be valid.
Further, show that tr(AHA) ≥ 0.

2.17. A real n× n matrix that has nonnegative elements and where each
column adds up to 1 is called a stochastic matrix. If a stochastic matrix also
has rows that add to 1, then it is called a doubly stochastic matrix. Show that
if A and B are n×n stochastic matrices, then AB is also an stochastic matrix.
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Answers or Hints

2.1. U =





0 3 5
0 0 7
0 0 0



 , L =





1 0 0
2 4 0
6 −5 9



 .

2.2. AB = C = (cij), cij = 0 if i > j and cij =
∑j

k=i aikbkj if j ≥ i.
2.3. Direct computation.
2.4. Direct computation.
2.5. Direct computation.
2.6. (A+B)2 = (A+B)(A+B) = A2 +AB +BA+B2.

2.7. Consider A =

(

1 1
1 1

)

. Then 1 · A =

(

1 0
0 1

)

6= A. Hence, B10 is

violated.

2.8.

(

a b
c d

)

=

(

a 0
0 0

)

+

(

0 b
0 0

)

+

(

0 0
c 0

)

+

(

0 0
0 d

)

.

2.9. Let C,D ∈ S and α, β ∈ R. Then, (αC + βD)B = αCB + βDB =
αBC + βBD = B(αC + βD).
2.10. Use the principal of mathematical induction.
2.11. Let A = (aij)m×n, B = (bij)n×p, C = (cij)p×r , then BC and AB are
n× r and m× p matrices, and the ij-th element of A(BC) is

n
∑

µ=1

aiµ

(

p
∑

ν=1

bµνcνj

)

=

n
∑

µ=1

p
∑

ν=1

aiµbµνcνj

and similarly, the ij-th element of (AB)C is

p
∑

ν=1

(

n
∑

µ=1

aiµbµν

)

cνj =

n
∑

µ=1

p
∑

ν=1

aiµbµνcνj .

2.12. Similar to Problem 2.11.
2.13. (iv) (AB)Hij = (

∑n
k=1 aikbkj)

H
ij = (

∑n
k=1 aikbkj)ji = (

∑n
k=1 aikbkj)ji

= (AB)tij = (B
t
A

t
)ij = (BHAH)ij .

2.14. Hermitian:





1 i 2− i
−i 2 5
2 + i 5 3





Skew-hermitian:





i i 2 + i
i 2i 5

−2 + i −5 5i





Normal:

(

−i −2− i
2− i −3i

)

.

2.15. (i) Let AB be hermitian. Then, AB = (AB)H = BHAH = BA, i.e.,
A,B commute. Conversely, let A,B commute. Then, AB = BA = BHAH =
(AB)H , i.e., AB is hermitian.
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(vii) A = 1
2 (A−AH) + 1

2 (A+AH).

2.16. Let A =

(

1 + i 2
1 −i

)

, B =

(

2i 1
1− i 3

)

. tr(AB) − tr(BA) = 0 6=
n = tr(I). tr(AHA) =

∑n
i=1

∑n
j=1 aijaij ≥ 0.

2.17. Check for n = 2, and see the pattern.
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Chapter 3

Determinants

Many complicated expressions, particularly in electrical and mechanical engi-
neering, can be elegantly solved by expressing them in the form of determi-
nants. Further, determinants of orders 2 and 3 geometrically represent areas
and volumes, respectively. Therefore, the working knowledge of determinants
is a basic necessity for all science and engineering students. In this chapter, we
shall briefly sketch the important properties of determinants. The applications
of determinants to find the solutions of linear systems of algebraic equations
will be presented in Chapter 6.

Associated with a square n×n matrix A = (aij) ∈Mn×n there is a scalar
in F called the determinant of order n of A, and it is denoted as det(A), or
|A|, or

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n
a21 a22 · · · a2n
· · ·
an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

.

The determinants of orders 1 and 2 are defined as

|a11| = a11,

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

= a11a22 − a12a21.

If in the matrix A we choose any p rows and any p columns, where p ≤ n,
then the elements at the intersection of these rows and columns form a square
matrix of order p. The determinant of this new matrix is called a minor of
pth order of the matrix A. A minor of any diagonal element of A is called a
principal minor. In particular, an (n − 1)× (n − 1) determinant obtained by
deleting i-th row and j-th column of the matrix A is the minor of (n − 1)th
order, which we denote as ãij , and call αij = (−1)i+j ãij the cofactor of aij .
In terms of cofactors the determinant of A is defined as

|A| =

n
∑

j=1

aijαij =

n
∑

i=1

aijαij . (3.1)

Further,
n
∑

j=1

aijαkj = 0 if i 6= k (3.2)

23
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and
n
∑

i=1

aijαik = 0 if j 6= k. (3.3)

Thus a determinant of order n can be written in terms of n determinants of
order n − 1. Formula (3.1) for computing the determinant of A is called the
Laplace expansion. In particular, for the determinant of order 3, we have
∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

a22 a23
a32 a33

∣

∣

∣

∣

− a12

∣

∣

∣

∣

a21 a23
a31 a33

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

a21 a22
a31 a32

∣

∣

∣

∣

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31)

+a13(a21a32 − a22a31)

= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31

+a13a21a32 − a13a22a31. (3.4)

To find a general expression for the determinants of order n similar to
(3.4), we recall that a permutation σ of the set N = {1, 2, · · · , n} is a one-
to-one mapping of N into itself. Such a permutation is generally denoted as
σ = i1i2 · · · in, where ij = σ(j). It is clear that there are n! permutations of
N. The set of all such permutations is denoted as Sn. As an example, for the
set {1, 2, 3} there are 6 permutations, and S3 = {123, 132, 213, 231, 312, 321}.
If σ ∈ Sn, then the inverse mapping σ−1 ∈ Sn, and if σ, τ ∈ Sn, then the
composite mapping σ ◦ τ ∈ Sn. Further, the identity mapping σ ◦ σ−1 =
12 · · ·n ∈ Sn. By an inversion in σ we mean a pair of integers (i, j) such that
i > j, but i precedes j in σ. We say σ is an even or odd permutation according
to whether there is an even or odd number of inversions in σ. We also define

sgn σ =

{

1 if σ has even permutation
−1 if σ has odd permutation.

Equivalently, we can define a permutation to be even or odd in accordance with
whether the minimum number of interchanges required to put the permutation
in natural order is even or odd. It can be shown that for any n, half of the
permutations in Sn are even and half of them are odd.

With this terminology it follows that

|A| =
∑

σ∈Sn

(sgn σ)a1σ(1)a2σ(2) · · · anσ(n). (3.5)

Example 3.1. In 12 · · ·n the inversion is zero (even), whereas in 321 the
inversion is three (odd) because there are two numbers (3 and 2) greater than
and preceding 1, and one number (3) greater than and preceding 2. In the
set S3 the permutations 123, 231, 312 are even, and 321, 213, 132 are odd, thus
from (3.5) the expansion (3.4) follows. In 4312 ∈ S4, 4 precedes 3, 1 and 2,
and 3 precedes 1 and 2; thus the inversion is 5 (odd).
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Example 3.2. From (3.5) it immediately follows that for the lower trian-
gular and upper triangular matrices A, we have

|A| =

∣

∣

∣

∣

∣

∣

∣

∣

a11 0 · · · 0
a21 a22 · · · 0
· · ·
an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

= a11a22 · · · ann

and

|A| =

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n
0 a22 · · · a2n
· · ·
0 0 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

= a11a22 · · · ann.

Thus, in particular, for the identity matrix |I| = 1. Similarly, it follows that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 · · · 0 a1n
0 0 · · · a2,n−1 a2n
· · ·
0 an−1,2 · · · an−1,n−1 an−1,n

an1 an2 · · · an,n−1 ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)n+1a1n(−1)na2,n−1 · · · (−1)3an−1,2an1

= (−1)(n−1)(n+4)/2a1na2,n−1 · · ·an−1,2an1

and
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1,n−1 a1n
a21 a22 · · · a2,n−1 0
· · ·

an−1,1 an−1,2 · · · 0 0
an1 0 · · · 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−1)(n−1)(n+4)/2a1na2,n−1 · · · an−1,2an1.

We note that for a general determinant the representation (3.5) is only
of theoretical interest; in fact, it has n! terms to sum and each term requires
(n− 1) multiplications, and hence for the computation of |A| we need in total
(n− 1)× n! multiplications, which for large n is a formidable task. To reduce
the computational work considerably we often use the following fundamental
properties of determinants.

1. If any row or column of A has only zero elements, then |A| = 0.

2. If two rows (or columns) of A are equal or have a constant ratio, then
|A| = 0.

3. If any two consecutive rows (or columns) of A are interchanged, then the
determinant of the new matrix A1 is −|A|.
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4. If a row (or column) of A is multiplied by a constant α, then the determinant
of the new matrix A1 is α|A|.
5. If a constant multiple of one row (or column) of A is added to another,
then the determinant of the new matrix A1 is unchanged.

6. |At| = |A|.
7. |AB| = |A||B| = |BA|. This property for the determinants is very inter-
esting. For the matrices A and B given in Example 2.2 we have seen that
AB 6= BA. However, we have

|A| =

∣

∣

∣

∣

∣

∣

1 1 0
−1 2 1
0 0 2

∣

∣

∣

∣

∣

∣

= 6, |B| =

∣

∣

∣

∣

∣

∣

2 3 4
1 2 3

−1 1 2

∣

∣

∣

∣

∣

∣

= − 1,

|AB| =

∣

∣

∣

∣

∣

∣

3 5 7
−1 2 4
−2 2 4

∣

∣

∣

∣

∣

∣

= − 6, |BA| =

∣

∣

∣

∣

∣

∣

−1 8 11
−1 5 8
−2 1 5

∣

∣

∣

∣

∣

∣

= − 6.

Thus, |AB| = |A||B| = |BA|.
8. If each element of a row or a column of A is expressed as the sum of
two numbers, then |A| can be written as the sum of two determinants. For
example,

∣

∣

∣

∣

∣

∣

a11 a12 + b12 a13
a21 a22 + b22 a23
a31 a32 + b32 a33

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

a11 b12 a13
a21 b22 a23
a31 b32 a33

∣

∣

∣

∣

∣

∣

.

9. If the elements of A are polynomial functions of x and two rows or columns
become identical when x = a, then x− a is a factor of |A|.

While a systematic procedure for the computation of determinants of any
order will be given in Chapter 6, the following examples illustrate the useful-
ness of the above properties.

Example 3.3. We have

∆ =

∣

∣

∣

∣

∣

∣

11 3 4
19 6 5
21 7 8

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

3 11 4
6 19 5
7 21 8

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

−1 11 4
1 19 5

−1 21 8

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 19 5
−1 11 4
−1 21 8

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 19 5
0 30 9
0 40 13

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

30 9
40 13

∣

∣

∣

∣

= 30× 13− 9× 40 = 390− 360 = 30.
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Example 3.4. We have

∆ =

∣

∣

∣

∣

∣

∣

a−b−c 2a 2a
2b b−c−a 2b
2c 2c c−a−b

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a+b+c a+b+c a+b+c
2b b−c−a 2b
2c 2c c−a−b

∣

∣

∣

∣

∣

∣

= (a+ b+ c)

∣

∣

∣

∣

∣

∣

1 1 1
2b b− c− a 2b
2c 2c c− a− b

∣

∣

∣

∣

∣

∣

= (a+ b+ c)

∣

∣

∣

∣

∣

∣

1 0 0
2b −b− c− a 0
2c 0 −c− a− b

∣

∣

∣

∣

∣

∣

= (a+ b+ c)

∣

∣

∣

∣

−b− c− a 0
0 −c− a− b

∣

∣

∣

∣

= (a+ b+ c)3.

Example 3.5. The Vandermonde matrix

V =













1 1 · · · 1
x1 x2 · · · xn
x21 x22 · · · x2n
· · ·
xn−1
1 xn−1

2 · · · xn−1
n













plays an important role in polynomial interpolation theory. By induction we
shall show that

|V | =
∏

1≤i<j≤n

(xj − xi).

Indeed, we have
∣

∣

∣

∣

1 1
x1 x2

∣

∣

∣

∣

= (x2 − x1)

and

|V | =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
0 x2 − x1 · · · xn − x1
0 x22 − x2x1 · · · x2n − xnx1
· · ·
0 xn−1

2 − xn−2
2 x1 · · · xn−1

n − xn−2
n x1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
n
∏

j=2

(xj − x1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 · · · 1
x2 x3 · · · xn
x22 x23 · · · x2n
· · ·
xn−2
2 xn−2

3 · · · xn−2
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

n
∏

j=2

(xj − x1)
∏

2≤i<j≤n

(xj − xi) =
∏

1≤i<j≤n

(xj − xi).
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Example 3.6. From the definition of determinants it is clear that for a
given n×n matrix A(x) = (aij(x)) of differentiable functions in an interval J,
the function detA(x) is differentiable in J. We shall compute (detA(x))′ by
using the expansion of detA(x) given in (3.1). Since

detA(x) =
n
∑

j=1

aij(x)αij(x)

it follows that
∂ detA(x)

∂aij(x)
= αij(x)

and hence

(detA(x))′ =
n
∑

j=1

n
∑

i=1

∂ detA(x)

∂aij(x)

daij(x)

dx
=

n
∑

j=1

n
∑

i=1

αij(x)a
′
ij(x),

which is equivalent to

(detA(x))′ =

∣

∣

∣

∣

∣

∣

∣

∣

a′11(x) · · · a′1n(x)
a21(x) · · · a2n(x)
· · ·

an1(x) · · · ann(x)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

a11(x) · · · a1n(x)
a′21(x) · · · a′2n(x)
· · ·

an1(x) · · · ann(x)

∣

∣

∣

∣

∣

∣

∣

∣

+ · · ·

+

∣

∣

∣

∣

∣

∣

∣

∣

a11(x) · · · a1n(x)
a21(x) · · · a2n(x)
· · ·

a′n1(x) · · · a′nn(x)

∣

∣

∣

∣

∣

∣

∣

∣

. (3.6)

Problems

3.1. Evaluate

(i)

∣

∣

∣

∣

∣

∣

∣

∣

21 17 7 10
24 22 6 10
6 8 2 3
5 7 1 2

∣

∣

∣

∣

∣

∣

∣

∣

, (ii)

∣

∣

∣

∣

∣

∣

1 + i 1− i i
1− i i 1 + i
i 1 + i 1− i

∣

∣

∣

∣

∣

∣

.

3.2. Solve the equations

(i)

∣

∣

∣

∣

∣

∣

x+ 2 2x+ 3 3x+ 4
2x+ 3 3x+ 4 4x+ 5
3x+ 5 5x+ 8 10x+ 17

∣

∣

∣

∣

∣

∣

= 0, (ii)

∣

∣

∣

∣

∣

∣

1 + x 2 3
1 2 + x 3
1 2 3 + x

∣

∣

∣

∣

∣

∣

= 0.

3.3. Show that

(i)

∣

∣

∣

∣

∣

∣

∣

∣

1 + a 1 1 1
1 1 + b 1 1
1 1 1 + c 1
1 1 1 1 + d

∣

∣

∣

∣

∣

∣

∣

∣

= abcd

(

1 +
1

a
+

1

b
+

1

c
+

1

d

)
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(ii)

∣

∣

∣

∣

∣

∣

∣

∣

a2 + λ ab ac ad
ab b2 + λ bc bd
ac bc c2 + λ cd
ad bd cd d2 + λ

∣

∣

∣

∣

∣

∣

∣

∣

= λ3(a2 + b2 + c2 + d2 + λ)

(iii)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 · · · 1
1 2 22 · · · 2n−1

1 3 32 · · · 3n−1

· · ·
1 n n2 · · · nn−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 1!2!3! · · · (n− 1)!.

3.4. Show that

(i) if the matrix A ∈ Mn×n is skew-symmetric, then det(A) = (−1)n

× det(A), and hence det(A) = 0 if n is odd

(ii) if the matrix A ∈Mn×n is hermitian, then det(A) is real.

3.5. Let A and B be n × n matrices such that AB = BA. Show that
det(A2 +B2) ≥ 0.

Answers or Hints

3.1. (i) 0.

(ii) 4 + 7i.

3.2. (i) −1,−1,−2.

(ii) 0, 0,−6.

3.3. (i)

∣

∣

∣

∣

∣

∣

∣

∣

1 + a −a −a −a
1 b 0 0
1 0 c 0
1 0 0 d

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1 + a+ a
b + a

c + a
d −a −a −a

0 b 0 0
0 0 c 0
0 0 0 d

∣

∣

∣

∣

∣

∣

∣

∣

(ii) a2b2c2d2

∣

∣

∣

∣

∣

∣

∣

∣

∣

a2+λ
a2 1 1 1

1 b2+λ
b2 1 1

1 1 c2+λ
c2 1

1 1 1 d2+λ
d2

∣

∣

∣

∣

∣

∣

∣

∣

∣

(iii) See Example 3.5.

3.4. (i) det(A) = det(−At) = (−1)ndet(At) = (−1)ndet(A)

(ii) det(A) = det(A
t
) = det(A) =

∑

σ∈Sn
(sgn σ)a1σ(1)a2σ(2) · · ·anσ(n)

=
∑

σ∈Sn
(sgn σ)a1σ(1)a2σ(2) · · · anσ(n) = det(A).

3.5. det(A2 + B2) = det(A + iB)(A − iB) = det(A + iB) det(A − iB) =
det(A+ iB)det(A+ iB) ≥ 0.
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Chapter 4

Invertible Matrices

In this chapter we shall show that the theory of determinants can be applied
to find the inverse of a given square matrix. In particular, we shall provide an-
alytical representations of inverses of some band matrices that are of immense
value in chemistry, physics, and solving two-point boundary value problems
for ordinary differential equations by finite difference methods.

A square matrix A = (aij) ∈Mn×n is said to be invertible or nonsingular
if and only if there exists a matrix B ∈Mn×n such that AB = BA = I. Such
a matrix B is unique. Indeed, if AB = BA = I and AC = CA = I, then
B = BI = B(AC) = (BA)C = IC = C. The matrix B is called the inverse of
A and is denoted by A−1. If A is nonsingular, then since AA−1 = A−1A = I
it follows that (A−1)−1 = A. It is clear that if B is the inverse of A, then A
is the inverse of B. A square matrix is called singular if it has no inverse. We
begin with the following result whose proof follows from the discussion in our
next chapter (see Problem 5.1).

Theorem 4.1. If matrices A = (aij) and B = (bij) are in Mn×n such
that AB = I or BA = I, then A and B both are invertible, and each is the
inverse of the other.

Thus to find the inverse of A it suffices to find the matrix B such that
AB = I or BA = I, i.e., we do not have to check both equalities.

Example 4.1. We shall find the inverse

B =

(

x1 x2
y1 y2

)

of the matrix

A =

(

a b
c d

)

.

For this, we note that AB = I is the same as the systems

ax1 + by1 = 1, ax2 + by2 = 0
cx1 + dy1 = 0, cx2 + dy2 = 1.

If |A| = ad− bc 6= 0, then these systems can be solved uniquely, to obtain

x1 =
d

|A| , y1 = − c

|A| , x2 = − b

|A| , y2 =
a

|A| .

31
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Thus, the inverse B of the matrix A exists if and only if |A| 6= 0, and it appears
as

B =

(

d/|A| −b/|A|
−c/|A| a/|A|

)

=
1

|A|

(

d −b
−c a

)

.

From Example 4.1 it is clear that for a given matrix the inverse may not
exist, and hence there are singular as well as nonsingular matrices.

Theorem 4.2. If A = (aij) and B = (bij) are nonsingular matrices in
Mn×n, then AB is also nonsingular, and (AB)−1 = B−1A−1. Conversely, if
AB is nonsingular, then A and B are nonsingular.

Proof. Since A−1 and B−1 exist,

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1 = AA−1 = I.

Thus Theorem 4.1 implies that AB is nonsingular, and (AB)−1 = B−1A−1.
Conversely, in view of Theorem 4.1 it suffices to note that

I = (AB)(AB)−1 = A(B(AB)−1)

and
I = (AB)−1(AB) = ((AB)−1A)B.

Corollary 4.1. If A is an invertible matrix in Mn×n, then

det(A−1) = (det(A))−1.

Proof. Since AA−1 = I, det(AA−1) = det(A)det(A−1) = 1.

Corollary 4.2. If A,B,C ∈ Mn×n and A is an invertible matrix, then
AB = AC implies B = C.

Corollary 4.3. If Ai ∈ Mn×n, i = 1, 2, · · · ,m are nonsingular matrices,
then A1A2 · · ·Am is nonsingular, and

(A1A2 · · ·Am)−1 = A−1
m A−1

m−1 · · ·A−1
1 .

Theorem 4.3. If A is a nonsingular real (complex) matrix, then At(AH)
are nonsingular, and (At)−1 = (A−1)t ((AH)−1 = (A−1)H).

Proof. Since AA−1 = I, we have (A−1)tAt = I, and similarly from
A−1A = I it follows that (At)(A−1)t = I. These relations imply that
(A−1)t = (At)−1.

Theorem 4.4. The matrix A ∈ Mn×n is nonsingular if and only if
det(A) 6= 0.

The adjoint of a given matrix A ∈Mn×n, written as adjA, is the transpose
of the matrix of cofactors of A, i.e., adjA = (αij)

t = (αji).
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Theorem 4.5. If A ∈Mn×n is a nonsingular matrix, then

A−1 =
adjA

|A| . (4.1)

Proof. From (3.1)–(3.3), we have A (adjA) = (cij), where

cij =

n
∑

k=1

aikαjk =

{

det(A) if i = j
0 if i 6= j.

Hence, A (adjA) = det(A)I, which implies (4.1).

Example 4.2. For the matrix

A =





2 −1 1
3 2 −5
1 3 −2



 ,

we have

|A| =

∣

∣

∣

∣

∣

∣

2 −1 1
3 2 −5
1 3 −2

∣

∣

∣

∣

∣

∣

= 28 and adjA =





11 1 3
1 −5 13
7 −7 7





and hence from (4.1) it follows that

A−1 =







11
28

1
28

3
28

1
28 − 5

28
13
28

1
4 − 1

4
1
4






.

An n×n matrix A = (aij) is said to be a band matrix if there exist integers
r and s, 1 < r, s < n such that aij = 0 for all j − i ≥ r and i − j ≥ s. The
number w = r + s− 1 is called the bandwidth of A. Matrices with r = s = 2
so that w = 3 are called tridiagonal matrices. We shall find the inverse of the
tridiagonal matrix

An(x) =



















x −1
−1 x −1

−1 x −1

· · · · · ·
−1 x −1

−1 x



















, (4.2)

where x ≥ 0. For this, let Dn(x) = Dn = |An(x)|. Then, Dn satisfies the
following second order linear difference equation

Dn = xDn−1 −Dn−2, n = 1, 2, · · · (4.3)
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together with the initial conditions

D−1 = 0, D0 = 1. (4.4)

The general solution of (4.3) can be written as

Dn = Aλn1 +Bλn2 , (4.5)

where λ1, λ2 are the roots of the equation λ2 − xλ + 1 = 0. Using (4.4), it
follows that

Dn =







sinh(n+ 1)θ/ sinh θ if x = 2 cosh θ > 2
n+ 1 if x = 2
sin(n+ 1)θ/ sin θ if 0 ≤ x = 2 cos θ < 2.

(4.6)

Now let Bn = (bij) be the inverse of An(x), i.e., An(x)Bn = I. Then, for
1 ≤ j ≤ n it follows that

−bi−1,j + xbij − bi+1,j =







0, i = 1, · · · , j − 1, b0j = 0
1, i = j
0, i = j + 1, · · · , n, bn+1,j = 0.

(4.7)

Let x = 2 cosh θ > 2. When 1 ≤ i ≤ j − 1, the general solution of (4.7)
is bij = Aλi1 + Bλi2, where once again λ1, λ2 are the roots of the equation
λ2 − xλ + 1 = 0. This solution is valid for 0 ≤ i ≤ j, and in view of b0j = 0
and (4.6) can be written as

bij = 2A sinh iθ = 2ADi−1 sinh θ, 0 ≤ i ≤ j. (4.8)

Similarly, when j+1 ≤ i ≤ n, the general solution of (4.7) is bij = Cλi1+Dλ
i
2,

which is valid for j ≤ i ≤ n+ 1. This solution in view of bn+1,j = 0 and (4.6)
appears as

bij = − 2CDn−ie
(n+1)θ sinh θ, j ≤ i ≤ n+ 1. (4.9)

Now equating (4.8) and (4.9) for i = j, we obtain the equation

ADj−1 + Ce(n+1)θDn−j = 0. (4.10)

Also, substituting (4.8) and (4.9) in (4.7) with i = j, we get the equation

sinh θ
[

ADj + Ce(n+1)θDn−j−1

]

=
1

2
. (4.11)

Solving (4.10) and (4.11), we find

A =
Dn−j

2Dn sinh θ
, C = − Dj−1

2Dne(n+1)θ sinh θ
. (4.12)
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Now substituting (4.12) in (4.8) and (4.9), we obtain

bij =
1

Dn

{

Di−1Dn−j, i ≤ j
Dj−1Dn−i, i ≥ j.

(4.13)

Finally, we remark that the above calculations can be modified to show that
the formula (4.13) holds for 0 ≤ x ≤ 2 also.

We summarize the above result in the following theorem.

Theorem 4.6. For the tridiagonal matrix An(x), x ≥ 0 given in (4.2),
the inverse matrix A−1

n (x) = Bn = (bij) is symmetric, i.e., bij = bji and

bij =
Di−1Dn−j

Dn
> 0, i ≤ j. (4.14)

Example 4.3. To compute A−1
5 (3), first we use (4.3), (4.4), to obtain

D1 = 3, D2 = 8, D3 = 21, D4 = 55, D5 = 144

and then use (4.14) to get

A−1
5 (3) = B5 =

1

144













55 21 8 3 1
21 63 24 9 3
8 24 64 24 8
3 9 24 63 21
1 3 8 21 55













.

Now let x = −y, y ≥ 0. Then, we have

An(x) = An(−y) = −An(y), (4.15)

where

An(y) =



















y 1
1 y 1

1 y 1

· · · · · ·
1 y 1

1 y



















, (4.16)

For the matrix (4.16) a result analogous to Theorem 4.6 is the following:

Theorem 4.7. For the tridiagonal matrix An(y), y ≥ 0 given in (4.16),
the inverse matrix A−1

n (y) = Bn = (βij) is symmetric, i.e., βij = βji and

βij =
(−1)i+jDi−1Dn−j

Dn
, i ≤ j. (4.17)
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Problems

4.1. Which of the following matrices are singular?

A =





1 2 3
1 1 2
1 3 4



 , B =





1 1 1
2 4 8
3 9 25



 , C =





2 5 19
1 −2 −4

−3 2 0





Use (4.1) to find the inverses of nonsingular matrices.

4.2. For what values of x is the following matrix singular?

A =





3− x 2 2
2 4− x 1

−2 −4 −1− x





4.3. Let

A =













−1

2
−
√
3

2
0

−
√
3

2

1

2
0

0 0 0













, P =













1

2

√
3

2
0

−
√
3

2

1

2
0

0 0 1













.

Show that P−1AP is a diagonal matrix.

4.4. Show that the inverse of an upper (lower) triangular nonsingular
square matrix is an upper (lower) triangular square matrix. In particular,
show that the inverse of a diagonal matrix A with nonzero diagonal elements
aii, i = 1, · · · , n is a diagonal matrix A−1 with diagonal elements 1/aii, i =
1, · · · , n.

4.5. Let the square matrices A,B and A+B be nonsingular. Show that
A−1 +B−1 is nonsingular, and

(A−1 +B−1)−1 = A(A+B)−1B = B(A+B)−1A.

4.6. Let A,B ∈ Cn×n. Show that if B is nonsingular, then tr(B−1AB) =
tr(A).

4.7. A real square matrix A is called orthogonal if and only if At = A−1,
i.e., AAt = AtA = I. Thus, det(A) = ±1. A complex square matrix A is
said to be unitary if and only if AH = A−1, i.e., AHA−1 = A−1AH = I. If
A,B ∈Mn×n are unitary matrices, show that AH , A−1, AB are also unitary
matrices.

4.8. Verify that the following matrices are orthogonal:
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(i)















−2

3

1

3

2

3
2

3

2

3

1

3
1

3
−2

3

2

3















, (ii)

























1

2

1

2
−1

2
−1

2
1

3
√
2

2

3

2

3

1

3
√
2

1

2
−1

2

1

2
−1

2
2

3
− 1

3
√
2

− 1

3
√
2

2

3

























.

4.9. Let A be a skew-symmetric matrix and I − A is nonsingular. Show
that the matrix B = (I +A)(I −A)−1 is orthogonal.

4.10. Let W be a 1 × n matrix (row vector) such that WW t = 1. The
n× n matrix H = I − 2W tW is called a Householder matrix. Show that H is
symmetric and orthogonal.

4.11. Let A,B be real square matrices, and let the matrix P be orthogonal
and B = P−1AP. Show that tr(AtA) = tr(BtB).

4.12. For the matrices An(x), x ≥ 0 and An(y), y ≥ 0 given in (4.2) and
(4.16), show that

(i) An(x)An(y) = An(y)An(x)

(ii) [An(x)An(y)]
−1 =

1

x+ y

[

A−1
n (x) +A−1

n (y)
]

, x+ y 6= 0

(iii) [An(x)An(y)]
−1 =

1

x− y

[

A−1
n (y)−A−1

n (x)
]

, x− y 6= 0

(iv) [An(x)An(y)]
−1 =

1

x− y
[A−1

n (y)−A−1
n (x)], x− y 6= 0.

(v) the matrix [A2
n(x)]

−1 = C = (cij) is symmetric, and

cij =
2

(x2 − 4)D2
n

[

DnDn−j

(

i+ 1

2
Di−2 −

i− 1

2
Di

)

+ Di−1

(

j

2
D2n+1−j −

2n+ 2− j

2
Dj−1

)]

, x 6= 2, i ≤ j

=
i(n− j + 1)

6(n+ 1)
[2j(n+ 1)− (i2 + j2) + 1], x = 2, i ≤ j

(vi) the matrix [A2
n(y)]

−1 = Γ = (γij) is symmetric, and γij = (−1)i+jcij .
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4.13. Consider the tridiagonal matrix of order n,

An(x, y) =



















1 + x −1
−1 2 −1

−1 2 −1

· · · · · ·
−1 2 −1

−1 1 + y



















,

where x+ y + (n− 1)xy 6= 0. Show that A−1
n (x, y) = (bij) is symmetric and

bij =
[1 + (i − 1)x][1 + (n− j)y]

x+ y + (n− 1)xy
, i ≤ j.

4.14. Consider the tridiagonal matrix of order n,

An(x, y) =



















1 −y
−x 1 −y

−x 1 −y
· · · · · ·

−x 1 −y
−x 1



















,

where x ≥ 0, y ≥ 0. Show that

(i) its determinant Dn is

Dn =











































1, xy = 0

(xy)n/2
sinh(n+ 1)θ

sinh θ
, cosh θ =

1

2
√
xy
, 0 < xy <

1

4

n+ 1

2n
, xy =

1

4

(xy)n/2
sin(n+ 1)θ

sin θ
, cos θ =

1

2
√
xy
, xy >

1

4

(ii) the elements bij of its inverse matrix B are

bij =
1

Dn

{

yj−iDi−1Dn−j , i ≤ j
xi−jDj−1Dn−i, i ≥ j.

4.15. Consider the matrix An(x, y) = An(−x,−y), where An(x, y) is the
same as in Problem 4.14. Show that the elements αij of the inverse matrix
A−1

n (x, y) are

αij =
1

Dn

{

(−1)i+jyj−iDi−1Dn−j , i ≤ j
(−1)i+jxi−jDj−1Dn−i, i ≥ j
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where Dn is the same as in Problem 4.14.

4.16. The n× n matrix An = (aij), where

aij =















1, j − i = 1
1, i = j

−1, i− j = 1
0, otherwise

is called the Fibonacci matrix. Let Fn = det(An) to show that the Fibonacci
numbers Fn satisfy

(i) Fn = Fn−1 + Fn−2, n = 1, 2, · · · where F−1 = 0, F0 = 1

(ii) Fn =
1

2n+1
√
5

[

(1 +
√
5)n+1 − (1−

√
5)n+1

]

.

Also, find the inverse of the matrix An.

4.17. An n×n matrix is called nilpotent if Ak = 0 for some positive integer
k. Show that

(i) the following matrix is nilpotent

A =





2 11 3
−2 −11 −3
8 35 9





(ii) every nilpotent matrix is singular

(iii) if A is nilpotent, then I −A is nonsingular

(iv) if the matrices A,B are nilpotent and AB = BA, then AB and A + B
are nilpotent.

4.18. An n× n matrix is called idempotent if A2 = A. Show that

(i) matrices I and 0 are idempotent

(ii) if A is idempotent, then At and I −A are idempotent

(iii) every idempotent matrix except I is singular

(iv) if A is idempotent, then 2A− I is invertible and is its own inverse

(v) if the matrices A,B are idempotent and AB = BA, then AB is idem-
potent.

4.19. An n× n matrix that results from permuting the rows of an n × n
identity matrix is called a permutation matrix. Thus, each permutation matrix
has 1 in each row and each column and all other elements are 0. Show that

(i) each permutation matrix P is nonsingular and orthogonal

(ii) product of two permutation matrices is a permutation matrix.
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4.20. Show that the invertible n× n matrices do not form a subspace of
Mn×n.

Answers or Hints

4.1. A is singular. B is nonsingular, and B−1 =
1

8





28 −16 4
−26 22 −6

6 −6 2



 . C

is singular.
4.2. detA = 6x2 − 9x− x3 so x = 0, 3, 3.

4.3. P−1 =







1
2 −

√
3
2 0√

3
2

1
2 0

0 0 1






so P−1AP =





1 0 0
0 −1 0
0 0 0



 .

4.4. If A is upper triangular, then aij = 0, i > j, and hence αij = 0, j > i.
Now use (4.1).
4.5. (B(A+B)−1A)−1 = A−1(A+B)B−1 = A−1(AB−1 + I) = B−1 +A−1.
4.6. Use tr(AB) = tr(BA) to get tr(B−1AB) = tr(ABB−1).
4.7. (AH)H = (A−1)H = (AH)−1. Now A−1 is unitary, as follows from
AH = A−1. Finally, since AH = A−1 and BH = B−1, we have (AB)(AB)H =
ABBHAH = ABB−1A−1 = I. Thus, (AB)H = (AB)−1, and soAB is unitary.

4.8. (i) For the given matrix the inverse is





− 2
3

2
3

1
3

1
3

2
3 − 2

3
2
3

1
3

2
3



 .

(ii) For the given matrix the inverse is











1
2

1
3
√
2

1
2

2
3

1
2

2
3 − 1

2 − 1
3
√
2

− 1
2

2
3

1
2 − 1

3
√
2

− 1
2

1
3
√
2

− 1
2

2
3











.

4.9. Since (I + A)(I − A) = (I − A)(I + A), we have (I − A) = (I +
A)−1(I −A)(I +A), therefore (I −A)(I +A)−1 = (I +A)−1(I −A). Clearly,
(I −A)t = (I −At) and (I +A)t = (I +At), thus Bt = ((I +A)(I −A)−1)t =
((I −A)t)−1(I +A)t = (I −At)−1(I +At) = (I +A)−1(I −A) = B−1.
4.10 (i) Ht = (I − 2W tW )t = I − 2(W t)(W t)t = I − 2W tW = H.

(ii) HtH = H2 = (I − 2W tW )(I −W tW ) = I.

4.11. We use tr(AB) = tr(BA), to have tr(BtB) = tr((P−1AP )t(P−1AP ))
= tr(P tAt(P−1)tP−1AP ) = · · · = tr(AtP t(P−1)tAP−1P ) = tr(AtA).
4.12. (i) Follows directly by computing both the sides.

(ii) Using (4.15), we have An(x)An(y)[A
−1
n (x) + A−1

n (y)] = An(x)An(y)×
A−1

n (x) +An(x)An(y)A−1
n (y) = −An(x)An(−y)A−1

n (x) + An(x) = −An(−y)
×An(x)A

−1
n (x) +An(x) = An(x)−An(−y) = (x+ y)I.

(iii) Follow (ii).
(iv) Follow (ii).
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(v) Use (iii), (4.14) and L’Hôpital’s rule.
(vi) Use (iv), (4.17) and L’Hôpital’s rule.

4.13. Similar to that of (4.2).
4.14. Similar to that of (4.2).
4.15. Similar to that of (4.2).
4.16. Similar to that of (4.2).
4.17. (i) A3 = 0.

(ii) Since Ak = 0, 0 = det(Ak) = (det(A))k. Hence, det(A) = 0.
(iii) −I = Ak − I = (A − I)(Ak−1 + Ak−2 + · · · + I), thus (A − I)−1 =
−(Ak−1 +Ak−2 + · · ·+ I).
(iv) If Ak = Bℓ = 0, for r = max{k, ℓ}, we have (AB)r = ArBr = 0 and
(A+B)k+ℓ = Ak+ℓ+

(

k+ℓ
1

)

Ak+ℓ−1B+
(

k+ℓ
2

)

Ak+ℓ−2B2+ · · ·+
(

k+ℓ
k+ℓ

)

Bk+ℓ = 0.

4.18. (i) Clear from the definition.

(ii) Since A2 = A, At = (A2)t = (AA)t = AtAt = (At)2, (I − A)2 =
I −A−A+A2 = I −A.
(iii) If A 6= I, then for some u ∈ Rn, v = Au where v 6= u. But, then Av =
A2u = Au, i.e., A(v−u) = 0. Now if A−1 exists, then A−1A(v−u) = v−u = 0.
(iv) (2A− I)(2A− I) = 4A2 − 2A− 2A+ I = I.
(v) (AB)2 = (BA)(AB) = BA2B = (BA)B = (AB)B = AB2 = AB.

4.19. (i) Let P be a permutation matrix. From the definition of a permutation
matrix and the property 3 of determinants (Chapter 3), it is clear that det(P )
is either 1 or −1. Thus, P as well as P t both are nonsingular. Clearly, there
are n! permutation matrices of order n×n. Now note that every permutation
matrix is symmetric, i.e., P t = P. We also note that interchanging two rows
is a self-reverse operation, and hence every permutation matrix agrees with
its inverse, i.e., P = P−1, or P 2 = I. Hence, we have P t = P−1, which means
the matrix P is orthogonal.
(ii) If σ and π are two permutations of N = {1, 2, · · · , n} and Pσ and Pπ are
the corresponding permutation matrices, then from matrix multiplication it
follows that PσPπ = Pσ◦π , which implies that PσPπ is a permutation matrix.

4.20. Consider the invertible matrices A =

(

1 3
3 5

)

and B =

(

−1 3
−3 5

)

.
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Chapter 5

Linear Systems

Systems of linear algebraic equations arise in many diverse disciplines, such
as biology, business, engineering, social sciences, and statistics. Therefore, un-
derstanding the basic theory and finding efficient methods for the solutions
of such systems is of great importance. We shall devote this and the next
chapters to study linear systems.

Let F be a given infinite field. Consider the nonhomogeneous linear system
of m equations in n unknowns

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm,

(5.1)

where aij , bi ∈ F. In matrix form this system can be written as

Ax = b, (5.2)

where the matrix A = (aij)m×n and the vectors x = (x1, x2, · · · , xn)t, and
b = (b1, b2, · · · , bm)t. By a solution x to (5.1) we mean an n-tuple that satisfies
(5.1). The system (5.1) is said to be consistent if it has a solution, otherwise
it is called inconsistent. If b = 0, (5.2) reduces to the homogeneous system

Ax = 0. (5.3)

For the homogeneous system (5.3) the zero vector 0 = (0, 0, · · · , 0)t is
always a solution. This solution is called the trivial solution of (5.3). Clearly,
the system (5.3) besides the trivial solution may also have other solutions.
Such solutions we call nontrivial solutions of (5.3). Let Fn be the set of all
solutions of (5.3), i.e., Fn = {x : x ∈ Fn such that Ax = 0}, then it follows
that (Fn, F ) with the same addition and scalar multiplication as in Example
1.2 is a vector space. We call (Fn, F ) the solution space of the homogeneous
system (5.3), or the null space, or the kernel of the matrix A, and denote it as
N (A). It is clear that the set of all solutions of the nonhomogeneous system
(5.2) is not a vector space.

43
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Theorem 5.1. The system (5.2) has either a unique solution, no solution,
or an infinite number of solutions.

Proof. It suffices to show that if u, v are two different solutions of (5.2),
then for any c ∈ F, u+c(u−v) is also a solution of (5.2). But this immediately
follows from

A[u + c(u− v)] = Au+ c(Au−Av) = b+ c(b− b) = b.

Related to the system (5.2), the matrix

(A|b) =











a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

am1 am2 · · · amn bm











(5.4)

is called the augmented matrix, which is a partitioned matrix. Clearly, the
system (5.2) is completely recognized by its augmented matrix (A|b). In fact,
from every augmented matrix of the form (5.4) a corresponding system of
the form (5.2) can be written. Therefore, the study of the system (5.2) is
equivalent to the study of (5.4). We shall use some elementary operations on
(A|b) so that from the reduced matrix the solutions (if any) of the system (5.2)
can be obtained rather easily. For this, we begin with the following definition:

An m × n matrix A is called an echelon matrix if all zero rows, if any,
appear at the bottom of the matrix, and each leading (first) nonzero element
in a row is to the right of the leading nonzero element in the preceding row.
Thus, A is an echelon matrix if there exist nonzero elements a1j1 , a2j2 , · · · , arjr
where j1 < j2 < · · · < jr, and

aij = 0 for

{

i ≤ r, j < ji
i > r.

These elements a1j1 , a2j2 , · · · , arjr are called the pivots of the echelon matrix.

Example 5.1. The following matrix is an echelon matrix

A =

















0 3 7 2 5 1 0 9
0 0 0 5 3 9 7 1
0 0 0 0 0 7 3 5
0 0 0 0 0 0 4 8
0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0

















and for this matrix the elements a1j1 = a12 = 3, a2j2 = a24 = 5, a3j3 = a36 =
7, a4j4 = a47 = 4, a5j5 = a58 = 7 are the pivots.

Let A be a given m × n matrix with R1, · · · , Rm as rows. The following
operations on A are called elementary row operations.
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1. Interchanging Ri and Rj .

2. Replacing Ri by cRi, c ∈ F, c 6= 0.

3. Replacing Ri by Ri + cRj .

Elementary column operations are defined analogously.

Let I be the m × m identity matrix. A new matrix obtained from I by
employing an elementary row operation is called an elementary matrix, and
denoted as E. In what follows we shall denote by Eij , Ei(c), Eij(c) the ele-
mentary matrices obtained from I by employing, respectively, the above ele-
mentary row operations.

Theorem 5.2. An elementary row operation on A is equivalent to EA,
where E is the elementary matrix obtained by employing the same elementary
row operation.

Proof. We shall prove only for the elementary row operation 3. For this,
we note that Eij(c) = I + c(ei)tej , where ei, i = 1, · · · ,m are the m-tuple
unit vectors. Thus, we have

Eij(c)A = (I + c(ei)tej)A = A+ c(ei)tejA.

Now it suffices to note that ejA = Rj , and (ei)tRj is the m×n matrix whose
i-th row is Rj , and all other elements are zero.

Theorem 5.3. Each elementary matrix E is nonsingular, and

(i) E−1
ij = Eji = Eij

(ii) E−1
i (c) = Ei(1/c)

(iii) E−1
ij (c) = Eij(−c).

Proof. (i) It suffices to notice that EjiEij = I. (ii) Clearly, we have
Ei(c)Ei(1/c) = I. (iii) As in Theorem 5.2, we find

Eij(c)Eij(−c) = (I + c(ei)tej)(I − c(ei)tej)

= I + c(ei)tej − c(ei)tej − c2(ei)t[ej(ei)t]ej

= I − c2(ei)
t[0]ej = I.

A matrix B is said to be row equivalent to a matrix A, and written as
B ∼ A, if B can be obtained from A by employing a sequence of elementary
row operations. It is clear that ∼ is an equivalence relation, i.e., 1. A ∼ A.
2. If B ∼ A, then A ∼ B. 3. If A ∼ B and B ∼ C, then A ∼ C. If B is
an echelon matrix, then B is called an echelon form of A. Column equivalent
matrices are defined analogously.

A combination of Theorems 5.2 and 5.3 gives the following result.
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Theorem 5.4. If B is row equivalent to a matrix A, then there exists a
nonsingular matrix C such that B = CA and C−1B = A.

From the above considerations the following results are immediate.

Theorem 5.5. Suppose A = (aij) and B = (bij) are row equivalent
echelon matrices with pivots a1j1 , · · · , arjr and b1k1

, · · · , bsks
, respectively.

Then, r = s and ji = ki, i = 1, · · · , r, i.e., A and B have the same number of
nonzero rows and the pivot elements are in the same position.

Theorem 5.6. Every matrix A is row equivalent to an echelon matrix.
This matrix is called the echelon form of A. However, the echelon form of a
matrix A is not unique.

An m× n matrix A is said to be in row canonical form if it is an echelon
matrix, each pivot element is equal to 1, and each pivot is the only nonzero
element in its column.

Example 5.2. Matrices 0 and I are in row canonical form. The matrix A
in Example 5.1 is not in row canonical form, whereas the following matrix is
in row canonical form

A =













0 1 7 0 5 0 0 9
0 0 0 1 3 0 0 1
0 0 0 0 0 1 0 5
0 0 0 0 0 0 1 8
0 0 0 0 0 0 0 0













.

Theorem 5.7. Every matrix A is row equivalent to a unique matrix in
row canonical form. This unique matrix is called row canonical form of A.

Two linear systems ofm equations in n unknowns are said to be equivalent
if they have the same solution(s). It is clear that an elementary row operation
on the augmented matrix (A|b) is equivalent to applying the corresponding
operation on the linear system (5.2) itself. Further, the new linear system
obtained after applying an elementary row operation on (5.2) is equivalent to
the linear system (5.2). Thus, the linear system corresponding to the matrix
obtained after applying a finite sequence of row operations on the augmented
matrix (A|b) is equivalent to the linear system (5.2). In fact, we have the
following result.

Theorem 5.8. The linear system corresponding to the echelon form (row
canonical form) known as echelon linear system (row canonical linear system)
of the augmented matrix (A|b) is equivalent to the linear system (5.2).

Theorem 5.9. The linear system (5.2) has a solution if and only if the
echelon form (row canonical form) of the augmented matrix (A|b) does not
have a row of the form (0, · · · , 0, d), d 6= 0.
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Theorem 5.10. For the linear system corresponding to the echelon form
(row canonical form) of the augmented matrix (A|b), the following hold:

1. If r = n, then the linear system has a unique solution.

2. If r < n, then the linear system has an infinite number of solutions.
Further, these solutions can be obtained in terms of (n − r) unknowns
{x1, · · · , xn}\{xj1 , · · · , xjr}.

Theorem 5.11. If m = n, the system (5.2) has a unique solution if and
only if A−1 exists. Further, this solution can be written as x = A−1b.

Proof. If (5.2) with m = n has a unique solution, then in view of Theorem
5.10(1) the row canonical form of A is I, and hence from Theorem 5.4 there
exists a nonsingular matrix C such that I = CA. This implies that A−1

exists. Conversely, if A−1 exists, then A(A−1b) = (AA−1)b = b, i.e., A−1b is a
solution. To show its uniqueness, let Au = b, then u = (A−1A)u = A−1(Au) =
A−1b.

Corollary 5.1. If m = n, the homogeneous system (5.3) has only the
trivial solution if and only if det(A) 6= 0. Further, if (5.3) has only the trivial
solution, the nonhomogeneous system (5.2) has a unique solution.

Corollary 5.2. The homogeneous system (5.3) with more unknowns than
equations has a nonzero solution.

The rank of a matrix A, written as rank(A), is equal to the number of pivots
r in an echelon form of A; equivalently, A has at least one non-zero minor of
order r, and every minor of order larger than r vanishes. From Theorems 5.10
and 5.11, and the fact that an echelon form of the augmented matrix (A|b)
automatically yields an echelon form of A, the following result follows.

Theorem 5.12. 1. The system (5.2) has a solution if and only if
rank(A) = rank(A|b).
2. The system (5.2) with m = n has a unique solution if and only if rank(A) =
rank(A|b) = n.

The following example shows how row operations can be used to reduce a
matrix to an echelon (row canonical) form.

Example 5.3. Successively, we have

A =





1 −2 3 1
1 −1 4 3
2 5 7 4





R2 − R1

R3 − 2R1

∼





1 −2 3 1
0 1 1 2
0 9 1 2





R3−9R2

∼





1 −2 3 1
0 1 1 2
0 0 −8 −16





R3/(−8)

(echelon form)
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∼





1 −2 3 1
0 1 1 2
0 0 1 2





R2 − R3

R1 − 3R3

∼





1 −2 0 −5
0 1 0 0
0 0 1 2



(row canonical form).

Clearly, for this matrix rank is 3.

Problems

5.1. Prove Theorem 4.1.

5.2. Show that the system (5.2) has a solution if and only if b is a linear
combination of the columns of the coefficient matrix A, i.e., b is in the span
of the column vectors of A.

5.3. Let u1, · · · , um and v be vectors in Rn. Show that v ∈ Span{u1, · · · ,
um} if and only if the linear system represented by the augmented matrix
(u1, · · · , um|v) has a solution.

5.4. Show that the system (5.2) is always consistent for at least one vector
b.

5.5. Let the system (5.2) with m = n + 1 be consistent. Show that
det(A|b) = 0; however, the converse is not true. In particular, if the system
(5.3) has a nontrivial solution, then det(A) = 0.

5.6. Let the system (5.2) be consistent, and S denote the set of all solutions
of this system. Then, S = u0 +N (A), where u0 is a fixed element of S.

5.7. Show that every m × n matrix A is equivalent to a unique block
matrix of the form

(

I 0
0 0

)

,

where I is the identity matrix of order r.

5.8. Let A and B be m × n matrices. Show that A is equivalent to B if
and only if At is equivalent to Bt.

5.9. Find the values of λ for which the system

(λ− 1)x1 + (3λ+ 1)x2 + 2λx3 = 0
(λ− 1)x1 + (4λ− 2)x2 + (λ+ 3)x3 = 0
2x1 + (3λ+ 1)x2 + 3(λ− 1)x3 = 0

has a nontrivial solution, and find the ratios of x : y : z when λ has the smallest
of these values. What happens when λ has the greatest of these values?
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5.10. Find the values of λ and µ so that the system

2x1 + 3x2 + 5x3 = 9
7x1 + 3x2 − 2x3 = 8
2x1 + 3x2 + λx3 = µ

has (i) no solution, (ii) a unique solution, and (iii) an infinite number of
solutions.

5.11. Use row operations to reduce the following matrices to echelon (row
canonical) form and find their ranks

(i)





1 3 2
1 4 2
2 6 5



 , (ii)









0 1 −3 −1
1 0 1 1
3 1 0 2
1 1 −2 0









, (iii)









1 −2 1
−2 5 −3
3 −6 3
1 −2 2









.

Answers or Hints

5.1. Assume that BA = I. If A is invertible, then we can multiply this
equation on the right by A−1 to get B = A−1, from which it follows that
B−1 = (A−1)−1 = A. This shows that B is invertible, and that A and B are
inverses of one another. To show that A is invertible, in view of Corollary 5.1
it suffices to show that the homogeneous system (5.3) with m = n has only
the trivial solution. For this, if u is any solution of (5.3), then BA = I implies
that u = Iu = (BA)u = B(Au) = B0 = 0. The same argument holds when
AB = I.
5.2. Let C1, · · · , Cn ∈ Rm be the columns of A. Then (5.2) is equivalent to
C1x1 + · · ·+ Cnxn = b.
5.3. The vector v is in Span{u1, · · · , um} if and only if there exist scalars
x1, · · · , xm such that x1u

1 + · · ·+ xmu
m = v.

5.4. For b = 0 the system (5.2) is always consistent.
5.5. Let C1, · · · , Cn ∈ Rn+1 be the columns ofA. Then b−C1x1−· · ·−Cnxn =
0. Hence, det(A|b) = det(A|0) = 0. Consider the system x+ y = 1, 2x+ 2y =
3, 3x+3y = 7. Let x1, · · · , xn be a nontrivial solution of (5.3). We can assume
xn 6= 0. Then the system ai1(x1/xn) + · · ·+ ai,n−1(xn−1/xn) + ai,n = 0, i =
1, · · · , n is consistent.
5.6. Let v ∈ N (A). Then A(u0+ v) = Au0+Av = b+0 = b. Thus u0+ v is a
solution of (5.2). Now suppose that u is a solution of (5.2), then A(u− u0) =
Au−Au0 = b− b = 0. Thus u− u0 ∈ N (A). Since u = u0 + (u− u0), we find
that any solution of (5.2) can be obtained by adding a solution of (5.3) to a
fixed solution of (5.2).
5.7. Reduce A to its row canonical form, and then if necessary use elementary
column operations.
5.8. Use the definitions of equivalence and transpose of matrices.
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5.9. The determinant of the system is 6λ(λ− 3)2. For λ = 0, x = y = z. For
λ = 3 the equations become identical.
5.10. The echelon form of the augmented matrix of the system is




2 3 5 9
0 −15 −39 −47
0 0 λ− 5 µ− 9



 .

(i) λ = 5, µ 6= 9.

(ii) λ 6= 5, µ arbitrary.

(iii) λ = 5, µ = 9.

5.11. (i)





1 3 2
0 1 0
0 0 1



 ,





1 0 0
0 1 0
0 0 1



 , 3.

(ii)









1 0 1 1
0 1 −3 −1
0 0 0 0
0 0 0 0









, 2.

(iii)









1 −2 1
0 1 −1
0 0 1
0 0 0









,









1 0 0
0 1 0
0 0 1
0 0 0









, 3.
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Linear Systems (Cont’d)

We recall that an exact method is an algorithmwith a finite and predetermined
number of steps, at the end of which it provides a solution of the problem.
In this chapter we shall study some exact methods to find the solution(s)
of the linear system (5.2). Some of these methods also provide a systematic
procedure to compute the value of a determinant, and the inverse of a given
matrix.

Cramer’s rule. Suppose m = n and the matrix A is nonsingular so
that A−1 exists. Then, from Theorems 5.11 and 4.5, and the relations (3.1)–
(3.3), it follows that

x = A−1b =
AdjA

|A| b =
(αji)b

|A| =
1

|A| (|A1|, |A2|, · · · , |An|)t, (6.1)

where

|Ai| =

n
∑

j=1

αjibj =

∣

∣

∣

∣

∣

∣

a11 · · · a1,i−1 b1 a1,i+1 · · · a1n
· · ·
an1 · · · an,i−1 bn an,i+1 · · · ann

∣

∣

∣

∣

∣

∣

are the determinants obtained from the determinant |A| by replacing its i-th
column by the column of constant terms. From (6.1) it follows that

x1 =
|A1|
|A| , x2 =

|A2|
|A| , · · · , xn =

|An|
|A| . (6.2)

Thus to solve the system (5.2) with m = n by Cramer’s rule we need to
evaluate (n+1) determinants of order n, which is quite a laborious operation,
especially when the number n is large. For example, for n = 10 we require
359, 251, 210 multiplications and divisions if the usual method of expansion of
determinants in terms of minors is used. However, Cramer’s rule is of theo-
retical interest.

Example 6.1. To apply Cramer’s rule for the system

Ax =





2 −1 1
3 2 −5
1 3 −2









x1
x2
x3



 =
2x1 − x2 + x3 = 0
3x1 + 2x2 − 5x3 = 1
x1 + 3x2 − 2x3 = 4

(6.3)

51
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we need to compute

|A| =

∣

∣

∣

∣

∣

∣

2 −1 1
3 2 −5
1 3 −2

∣

∣

∣

∣

∣

∣

= 28, |A1| =

∣

∣

∣

∣

∣

∣

0 −1 1
1 2 −5
4 3 −2

∣

∣

∣

∣

∣

∣

= 13

|A2| =

∣

∣

∣

∣

∣

∣

2 0 1
3 1 −5
1 4 −2

∣

∣

∣

∣

∣

∣

= 47, |A3| =

∣

∣

∣

∣

∣

∣

2 −1 0
3 2 1
1 3 4

∣

∣

∣

∣

∣

∣

= 21.

Now (6.2) gives the solution

x1 =
13

28
, x2 =

47

28
, x3 =

21

28
=

3

4
.

Gauss elimination method. This is a systematic procedure (al-
gorithm) that is often implemented over a machine provided the size of the
system (5.1) is not too large. It first reduces the augmented matrix (A|b) with
rows R1, · · · , Rm to an echelon form, and then suggests how to solve the linear
system corresponding to the obtained echelon matrix. We describe the method
in the following steps:

1. Find the first column of (A|b) with a nonzero element. Let j1 denote this
column.

2. If necessary, interchange rows of (A|b) so that |a1j1 | = max{|a1j1 |, |a2j1 |,
· · · , |anj1 |}. We once again denote the rows of the rearranged (A|b) by
R1, · · · , Rm.

3. Divide the first row R1 by the pivot a1j1 and use the resulting row to
obtain 0’s below a1j1 by replacing Ri, i = 2, · · · ,m by Ri − (aij1/a1j1)R1.

4. Consider the matrix obtained in Step 3 excluding the first row. For this
submatrix we repeat Steps 1–3. This will give the second pivot a2j2 .

5. Continue Steps 1–4 until all rows (if any) of the submatrix are of the form
(0, · · · , 0, d).

It is clear that Steps 1–5 will reduce (A|b) to an echelon form with the
pivots aiji = 1, i = 1, · · · , r ≤ m.

6. If the echelon form of (A|b) has a row of the form (0, · · · , 0, d), d 6= 0 the
system (5.2) has no solution. Otherwise, the linear system corresponding to
the echelon form will be of the form

xj1 + ã1,j1+1xj1+1 + · · ·+ ã1nxn = dj1

· · ·
xjr−1

+ ãr−1,jr−1+1xjr−1+1 + · · ·+ ãr−1,nxn = djr−1

xjr + ãr,jr+1xjr+1 + · · ·+ ãr,nxn = djr .

(6.4)

If r < n, we compute xji , i = 1, · · · , r (known as basic variables) in terms
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of (n− r) unknowns {x1, · · · , xn}\{xj1 , · · · , xjr} (called free variables) in the
reverse order (back substitution) by the formulae

xji = dji −
n
∑

j=ji+1

ãijxj , i = r, r − 1, · · · , 1. (6.5)

In particular, if r = n, then ji = i, i = 1, · · · , n and the formulae reduce to

xn = dn, xi = di −
n
∑

j=i+1

ãijxj , i = n− 1, n− 2, · · · , 1. (6.6)

Remark 6.1. To solve the system (5.2) with m = n by the Gauss elimi-
nation method, we need a total number of

n

3
(n2 + 3n− 1) = O

(

n3

3

)

(6.7)

multiplications and divisions. In particular, for n = 10 this number is 430,
which is very tiny compared to what we need by Cramer’s rule.

Example 6.2. For the system (6.3), we have

(A|b) =





2 −1 1 0
3 2 −5 1
1 3 −2 4



 ∼





3 2 −5 1
2 −1 1 0
1 3 −2 4





∼







1 2
3 − 5

3
1
3

0 − 7
3

13
3 − 2

3

0 7
3 − 1

3
11
3






∼







1 2
3 − 5

3
1
3

0 1 − 13
7

2
7

0 0 4 3







∼







1 2
3 − 5

3
1
3

0 1 − 13
7

2
7

0 0 1 3
4







and hence, from (6.6), we find

x3 =
3

4
, x2 =

2

7
+

13

7
× 3

4
=

47

28
, x1 =

1

3
− 2

3
× 47

28
+

5

3
× 3

4
=

13

28
.

Example 6.3. For the system

2x1 + x2 + x3 = 1
x1 + 2x2 + x3 = 2
x1 + x2 + 2x3 = 3

5x1 + 4x2 + 3x3 = 8
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we have

(A|b) =









2 1 1 1
1 2 1 2
1 1 2 3
5 4 3 8









∼











1 1
2

1
2

1
2

0 1 1
3 1

0 0 1 3
2

0 0 0 4











and hence it has no solution.

Example 6.4. For the system

2x1 + x2 + x3 = 1
x1 + 2x2 + x3 = 2

we have

(A|b) =

(

2 1 1 1
1 2 1 2

)

∼
(

1 1
2

1
2

1
2

0 1 1
3 1

)

and hence it has an infinite number of solutions x1 = −(1/3)x3, x2 = 1 −
(1/3)x3, where x3 is arbitrary.

The Gauss elimination method can be used to compute the determinant
of a given n × n matrix A. If all ai1 = 0, i = 1, · · · , n then det(A) = 0; oth-
erwise, if necessary we interchange rows of A so that |a11| = max{|a11|, |a21|,
· · · , |an1|}. Now following Step 3 with j1 = 1, we get

|A| = θ1a11

∣

∣

∣

∣

∣

∣

∣

∣

1 α12 · · · α1n

0 α22 · · · α2n

· · ·
0 αn2 · · · αnn

∣

∣

∣

∣

∣

∣

∣

∣

= θ1a11

∣

∣

∣

∣

∣

∣

α22 · · · α2n

· · ·
αn2 · · · αnn

∣

∣

∣

∣

∣

∣

,

where θ1 is −1 or 1 accordingly as the number of rows interchanged is odd or
even, α1j = a1j/a11, 2 ≤ j ≤ n, αij = aij − α1jai1, 2 ≤ i, j ≤ n. Thus, we
could reduce the order of the determinant from n to n− 1. We continue this
process n− 1 times.

Remark 6.2. The total number of multiplications and divisions necessary
for evaluating the determinant |A| by Gauss elimination technique is

(n− 1)

3
(n2 + n+ 3) = O

(

n3

3

)

. (6.8)

Hence, if we compute all (n + 1) required determinants in Cramer’s rule by
the Gauss elimination method, we will need

(n− 1)

3
(n2 + n+ 3)(n+ 1) = O

(

n4

3

)

(6.9)

as the number of multiplications and divisions.
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Example 6.5. For computing the determinant of the matrix A in (6.3),
successively, we have

|A| = (−1)

∣

∣

∣

∣

∣

∣

3 2 −5
2 −1 1
1 3 −2

∣

∣

∣

∣

∣

∣

= (−1)(3)

∣

∣

∣

∣

∣

∣

1 2
3 − 5

3

2 −1 1
1 3 −2

∣

∣

∣

∣

∣

∣

= (−1)(3)

∣

∣

∣

∣

∣

∣

∣

1 2
3 − 5

3

0 − 7
3

13
3

0 7
3 − 1

3

∣

∣

∣

∣

∣

∣

∣

= (−1)(3)

∣

∣

∣

∣

∣

− 7
3

13
3

7
3 − 1

3

∣

∣

∣

∣

∣

= (−1)(3)
(

− 7
3

)

∣

∣

∣

∣

∣

1 − 13
7

7
3 − 1

3

∣

∣

∣

∣

∣

= (−1)(3)
(

− 7
3

)

∣

∣

∣

∣

∣

1 − 13
7

0 4

∣

∣

∣

∣

∣

= (−1)(3)
(

− 7
3

)

(4) = 28.

Systems of the form AX = B, where A = (aij) is an n × n matrix, and
B = (bij), X = (xij) are n× p matrices, can also be solved simultaneously by
the Gauss elimination technique. In fact, if we write the augmented matrix of
the elements of A and B, i.e.,

(A|B) =











a11 · · · a1n b11 · · · b1p
a21 · · · a2n b21 · · · b2p

· · ·
an1 · · · ann bn1 · · · bnp











and assume that det(A) 6= 0, then the Gauss elimination process gives















1 c12 · · · c1,n−1 c1n d11 · · · d1p
1 · · · c2,n−1 c2n d21 · · · d2p

· · ·
1 cn−1,n dn−1,1 · · · dn−1,p

1 dn1 · · · dnp















.

The unknowns xik, k = 1, 2, · · · , p are now obtained from

xnk = dnk, xik = dik −
n
∑

j=i+1

cijxjk, i = n− 1, n− 2, · · · , 1. (6.10)

In particular, if we consider the system AX = I, where X = (xij) is an n× n
matrix and I is the n × n identity matrix, then since X = A−1, the matrix
(xik) formed from (6.10) gives the inverse of the matrix A.
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Example 6.6. For computing the inverse of the matrix A in (6.3), suc-
cessively, we have





2 −1 1 1 0 0
3 2 −5 0 1 0
1 3 −2 0 0 1



 ∼





3 2 −5 0 1 0
2 −1 1 1 0 0
1 3 −2 0 0 1





∼





1 2
3 − 5

3 0 1
3 0

2 −1 1 1 0 0
1 3 −2 0 0 1



 ∼







1 2
3 − 5

3 0 1
3 0

0 − 7
3

13
3 1 − 2

3 0

0 7
3 − 1

3 0 − 1
3 1







(6.11)

∼







1 2
3 − 5

3 0 1
3 0

0 1 − 13
7 − 3

7
2
7 0

0 0 4 1 −1 1






∼







1 2
3 − 5

3 0 1
3 0

0 1 − 13
7 − 3

7
2
7 0

0 0 1 1
4 − 1

4
1
4






.

Now (6.10) gives

A−1 =







11
28

1
28

3
28

1
28 − 5

28
13
28

1
4 − 1

4
1
4






.

Gauss–Jordan elimination method. In the Gauss elimination
method, 0’s are obtained not only below the pivots aiji , i = 1, 2, · · · , r but
above them also, so that in the final reduced matrix each pivot element is
equal to 1 and each pivot is the only nonzero element in its column. Thus
the matrix (A|b) is reduced to row canonical form. Now the solution can be
obtained without using the back substitution. However, then, for the case
m = n, the total number of multiplications and divisions required is

n2

2
(n+ 1) = O

(

n3

2

)

. (6.12)

Hence, the Gauss–Jordan elimination method is more expansive than the
Gauss elimination method. However, it gives a simpler procedure for comput-
ing the inverse of a square matrix A. We simply write the augmented matrix
of A and I, i.e., (A|I), and when the Gauss–Jordan procedure is complete, we
obtain (I|A−1).

Example 6.7. In Example 6.6 we follow up to (6.11), and then we have

∼







1 0 − 3
7

2
7

1
7 0

0 1 − 13
7 − 3

7
2
7 0

0 0 1 1
4 − 1

4
1
4






∼







1 0 0 11
28

1
28

3
28

0 1 0 1
28 − 5

28
13
28

0 0 1 1
4 − 1

4
1
4






.
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Problems

6.1. Find the echelon form of the given matrix A, and find its null space
N (A)

(i) A =





1 3 3 4
2 6 9 9
3 9 12 16



 , (ii) A =









2 4 0 2 3
0 3 3 1 5
2 7 9 7 2
0 0 6 5 3









(iii) A =





0 1 2 0 3 6
1 2 5 3 4 3
1 2 5 6 3 4



 .

6.2. Solve the system (5.2) by Cramer’s rule, Gauss elimination method,
and Gauss–Jordan elimination method, when

(i) A =









2 1 −5 1
1 −3 0 −6
0 2 −1 2
1 4 −7 6









, b =









1
−7
3
5









(ii) A =









2 1 3 1
4 2 2 −2

−2 −4 4 −3
−4 1 0 −1









, b =









17
6

−10
−6









(iii) A =









2 1 0 1
5 −4 1 0
3 0 2 0
1 1 −1 1









, b =









2
1

−2
1









(iv) A =









−4 10 −10 −4
−3 −5 −4 9
−3 −9 −1 6
8 1 1 2









, b =









78
−22
−31
−37









.

6.3. Use the Gauss elimination method to find the solutions, if any, of the
system (5.2) when

(i) A =





2 7 4 3
8 5 3 9
1 3 6 4



 , b =





1
3
7





(ii) A =





5 3 8 1
6 3 8 6
4 8 3 5



 , b =





3
5
7




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(iii) A =









1 1 −3
2 1 −2
1 1 1
1 2 −3









, b =









−1
1
3
1









(iv) A =









2 1 1
1 3 1
1 1 5
2 3 −3









, b =









2
5

−7
14









(v) A =





4 2 −1 1 −1
1 −3 2 1 1
3 −1 3 −1 −1



 , b =





1
−1
2



 .

6.4. Use the Gauss elimination method to find all solutions of the homo-
geneous system (5.3) when the matrix A is as in Problem 6.3.

6.5. Use the Gauss elimination method to find the value of the following
determinants:

(i)

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 3 5
3 7 −8 −4
3 9 2 0
3 0 5 −3

∣

∣

∣

∣

∣

∣

∣

∣

, (ii)

∣

∣

∣

∣

∣

∣

∣

∣

27 13 19 17
−5 −19 −29 −31
11 −13 17 29
3 0 25 4

∣

∣

∣

∣

∣

∣

∣

∣

.

6.6. Compute the inverse of the following matrices by using the Gauss
elimination method, and the Gauss–Jordan elimination method:

(i)





0 1 2
1 2 3
3 1 1



 , (ii)





7 6 2
−1 2 4
3 6 8





(iii)





8 4 −3
2 1 1
1 2 1



 , (iv)









1 1 1 1
1 1 1 −4
1 1 −1 1
1 −1 1 1









.

Answers or Hints

6.1. (i)





1 3 3 4
0 0 3 1
0 0 1 3



 , N (A) = {(−3, 1, 0, 0)t}.

(ii)









2 4 0 2 3
0 3 3 1 5
0 0 6 4 −6
0 0 0 1 9









, N (A) = {(1136 ,− 17
3 , 7,−9, 1)t}.
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(iii)





1 2 5 3 4 3
0 1 2 0 3 6
0 0 0 3 −1 1



 ,

N (A) = {(−1,−2, 1, 0, 0, 0)t, (1,−3, 0, 1/3, 1, 0)t, (10,−6, 0,−1/3, 0, 1)t}.
6.2. (i) x1 = 2, x2 = 1, x3 = 1, x4 = 1.

(ii) x1 = 1, x2 = 2, x3 = 3, x4 = 4.

(iii) x1 = −4, x2 = −4, x3 = 5, x4 = 14.

(iv) x1 = −4, x2 = 3, x3 = −2, x4 = −3.

6.3. (i)
(

62
197 ,− 161

197 ,
300
197 , 0

)t
+
(

− 203
197 ,

41
197 ,− 118

197 , 1
)t
c.

(ii)
(

2, 1355 ,− 53
55 , 0

)t
+
(

−5, 4855 ,
147
55 , 1

)t
c.

(iii) No solution.

(iv) (1, 2,−2)t.

(v) (0, 1, 1, 0, 0)t +
(

− 13
30 ,

9
10 ,

16
15 , 1, 0

)t
c+

(

1
30 ,

7
10 ,

8
15 , 0, 1

)t
d.

6.4. (i)
(

− 203
197 ,

41
197 ,− 118

197 , 1
)t
c.

(ii)
(

−5, 4855 ,
147
55 , 1

)t
c.

(iii) (0, 0, 0)t.

(iv) (0, 0, 0)t.

(v)
(

− 13
30 ,

9
10 ,

16
15 , 1, 0

)t
c+

(

1
30 ,

7
10 ,

8
15 , 0, 1

)t
d.

6.5. (i) −1734
(ii) 517824.

6.6. (i)





1
2 − 1

2
1
2

−4 3 −1
5
2 − 3

2
1
2





(ii)







− 1
5 − 9

10
1
2

1
2

5
4 − 3

4

− 3
10 − 3

5
1
2







(iii)







1
21

10
21 − 1

3
1
21 − 11

21
2
3

− 1
7

4
7 0







(iv)











− 1
5

1
5

1
2

1
2

1
2 0 0 − 1

2
1
2 0 − 1

2 0
1
5 − 1

5 0 0











.
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Chapter 7

Factorization

In this chapter we shall discuss a modified but restricted realization of Gaus-
sian elimination. It factorizes a given m × n matrix A to a product of two
matrices L and U, where L is an m × m lower triangular matrix, and U is
an m× n upper triangular matrix. We shall also discuss various variants and
applications of this factorization.

Theorem 7.1 (LU factorization). Let A be an m × n matrix. If
A can be reduced to echelon form U without interchanging rows, then there
exists an m×m lower triangular matrix L with 1′s on the diagonal such that
A = LU.

Proof. Let E1, E2, · · · , Er be the m ×m elementary matrices that corre-
spond to the row operations which are needed to reduce A to the echelon form
U, i.e.,

(Er · · ·E2E1)A = U. (7.1)

Notice that during our reduction of A to U we are allowed only to add a
multiple of one row to a row below. This means each row operation Ei cor-
responds to an m × m elementary lower triangular matrix with 1′s on the
diagonal. Now from Problems 2.2 and 4.4 it follows that both (Er · · ·E2E1)
and (Er · · ·E2E1)

−1 are m×m lower triangular matrix with 1′s on the diag-
onal. Thus, from (7.1), we have A = LU, where

L = (Er · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

r . (7.2)

Example 7.1. Successively, we have

A =





3 2 3 1
3 1 4 3

−6 4 2 1



 , L =





1 0 0
• 1 0
• • 1





R2 −R1, R3 + 2R1

A ∼





3 2 3 1
0 −1 1 2
0 8 8 3



 , L =





1 0 0
1 1 0

−2 • 1




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R3 + 8R2

U =





3 2 3 1
0 −1 1 2
0 0 16 19



 , L =





1 0 0
1 1 0

−2 −8 1



 .

Example 7.2. Successively, we have

A =













2 1 3
4 3 5
8 2 16

−4 1 −11
−2 3 −5













, L =













1 0 0 0 0
• 1 0 0 0
• • 1 0 0
• • • 1 0
• • • • 1













R2 − 2R1, R3 − 4R1, R4 + 2R1, R5 +R1

A ∼













2 1 3
0 1 −1
0 −2 4
0 3 −5
0 4 −2













, L =













1 0 0 0 0
2 1 0 0 0
4 • 1 0 0

−2 • • 1 0
−1 • • • 1













R3 + 2R2, R4 − 3R2, R5 − 4R2

A ∼













2 1 3
0 1 −1
0 0 2
0 0 −2
0 0 2













, L =













1 0 0 0 0
2 1 0 0 0
4 −2 1 0 0

−2 3 • 1 0
−1 4 • • 1













R4 +R3, R5 −R3

U =













2 1 3
0 1 −1
0 0 2
0 0 0
0 0 0













, L =













1 0 0 0 0
2 1 0 0 0
4 −2 1 0 0

−2 3 −1 1 0
−1 4 1 • 1













.

In L the remaining • is finally replaced by 0.

Remark 7.1 (LDÛ factorization). From the matrix U in Theorem

7.1, we can factor out an m ×m diagonal matrix D so that U = DÛ, where
the nonzero elements in U and Û are at the same position; however, in Û all
pivot elements are 1. Clearly, with such an adjustment A = LDÛ.

Example 7.3. For the matrix in Example 4.2, we have

A =





2 −1 1
3 2 −5
1 3 −2



 =





1 0 0
3
2 1 0
1
2 1 1









2 −1 1

0 7
2 − 13

2
0 0 4




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=





1 0 0
3
2 1 0
1
2 1 1









2 0 0
0 7

2 0
0 0 4









1 − 1
2

1
2

0 1 − 13
7

0 0 1



 .

Thus, det(A) = 1×
(

2× 7
2 × 4

)

× 1 = 28.

Example 7.4. The matrix U in Example 7.1 can be written as U = DÛ,
where

D =





3 0 0
0 −1 0
0 0 16



 and Û =





1 2
3 1 1

3
0 1 −1 −2
0 0 1 19

16



 .

Remark 7.2 (PLU factorization). If A = PB, where P is an
m ×m permutation matrix, and B can be reduced to echelon form without
interchanging rows, then there exists an m×m lower triangular matrix L with
1′s on the diagonal such that A = PLU.

Example 7.5. For the matrix in Problem 5.11(ii), we have

A =









0 1 −3 −1
1 0 1 1
3 1 0 2
1 1 −2 0









=









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

















1 0 1 1
0 1 −3 −1
3 1 0 2
1 1 −2 0









=









0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 1 0 0
3 1 1 0
1 1 0 1

















1 0 1 1
0 1 −3 −1
0 0 0 0
0 0 0 0









.

From this factorization it immediately follows that det(A) = −1× 1× 0 = 0.

If conditions of Theorem 7.1 are satisfied, then the system (5.2) can be
written as

LUx = b. (7.3)

In (7.3), we let
Ux = y (7.4)

so that (7.3) becomes
Ly = b. (7.5)

Thus, solving (5.2) is equivalent to finding solutions of two simplified systems,
namely, first (7.5) to obtain y, and then (7.4) to find x. Since L is a lower
triangular matrix with 1′s on the diagonal, in expended form the system (7.5)
is of the form

ℓi1y1 + ℓi2y2 + · · ·+ ℓi,i−1yi−1 + yi = bi, i = 1, · · · ,m.
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Clearly, this system can be solved recursively (forward substitution), to obtain

yi = bi −
i−1
∑

j=1

ℓijyj , i = 1, · · · ,m. (7.6)

Example 7.6. Consider the system

A(x1, x2, x3, x4)
t = (1, 2,−9)t, (7.7)

where the matrix A is the same as in Example 7.1. For (7.7), the system (7.6)
is

y1 = 1
y2 = 2− y1
y3 = −9 + 2y1 + 8y2

=⇒
y1 = 1
y2 = 1
y3 = 1.

Now the system (7.4) can be written as

3x1 + 2x2 + 3x3 + x4 = 1
−x2 + x3 + 2x4 = 1

16x3 + 19x4 = 1,

which from the backward substitution gives the solution of (7.7),

(x1, x2, x3, x4)
t =

1

48
(43,−45, 3, 0)t + (15, 39,−57, 48)tc.

Example 7.7. Consider the system

A(x1, x2, x3)
t = (1, 2, 5,−3, 0)t, (7.8)

where the matrix A is the same as in Example 7.2. For (7.8), the system (7.6)
is

y1 = 1
y2 = 2− 2y1
y3 = 5− 4y1 + 2y2
y4 = −3 + 2y1 − 3y2 + y3
y5 = y1 − 4y2 − y3

=⇒

y1 = 1
y2 = 0
y3 = 1
y4 = 0
y5 = 0.

Now the system (7.4) can be written as

2x1 + x2 + 3x3 = 1
x2 − x3 = 0

2x3 = 1,

which from the backward substitution gives the solution of (7.8),

(x1, x2, x3)
t =

1

2
(−1, 1, 1)t.
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Remark 7.3. To solve the system (5.2), Gaussian elimination as well as
LU factorization require the same amount of computation, and hence there is
no real advantage of one method over another. However, if we need to solve
several systems with the same A but different b′s, then LU factorization clearly
has the advantage over Gaussian elimination (recall that LU factorization is
done only once). We illustrate this important fact by the following example.

Example 7.8. For the matrix A considered in Example 4.2, we shall use
the LU factorization method to compute its inverse. For this, we need to solve
the systems Ax = e1, Ax = e2, Ax = e3, which will provide, respectively,
the first, second, and third column of A−1. This in view of Example 7.3 is
equivalent to solving the systems

y1 = 1, y1 = 1, 2x1 − x2 + x3 = 1, x1 = 11
28

3
2y1 + y2 = 0, y2 = − 3

2 ,
7
2x2 − 13

2 x3 = − 3
2 , x2 = 1

28
1
2y1 + y2 + y3 = 0, y3 = 1, 4x3 = 1, x3 = 1

4

y1 = 0, y1 = 0, 2x1 − x2 + x3 = 0, x1 = 1
28

3
2y1 + y2 = 1, y2 = 1, 7

2x2 − 13
2 x3 = 1, x2 = − 5

28
1
2y1 + y2 + y3 = 0, y3 = −1, 4x3 = −1, x3 = − 1

4

y1 = 0, y1 = 0, 2x1 − x2 + x3 = 0, x1 = 3
28

3
2y1 + y2 = 0, y2 = 0, 7

2x2 − 13
2 x3 = 0, x2 = 13

28
1
2y1 + y2 + y3 = 1, y3 = 1, 4x3 = 1, x3 = 1

4 .

Problems

7.1. Find LU factorization of the following matrices

(i) A1 =





2 0 5
4 3 12

−14 3 −32



 , (ii) A2 =





2 3 0 5 7
6 14 3 17 22

−6 1 10 −11 −16





(iii) A3 =









3 2 5
6 9 12

−6 6 −6
9 6 15









, (iv) A4 =









4 3 2 1
8 9 6 3
12 15 12 6
16 21 16 13









.

7.2. Use LU factorization to find the determinants of the above matrices
A1 and A4.

7.3. For the matrix

A5 =









8 8 5 −11
12 13 9 −20
4 3 2 −4
16 18 13 −30









show that
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(i) A5 =









1 0 0 0
3
2 1 0 0
1
2 −1 1 0
2 2 0 1

















8 8 5 −11
0 1 3

2 − 7
2

0 0 1 −2
0 0 0 −1









(ii) A5 =









0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

















1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

















4 3 2 −4
0 2 1 −3
0 0 1 −2
0 0 0 −1









(iii) det(A5) = −8.

7.4. For each of the above matricesAi, i = 1, 2, · · · , 5 use LU factorization
to solve the systems Aix = bi, i = 1, 2, · · · , 5, where b1 = (3, 14,−12)t, b2 =
(32, 118,−42)t, b3 = (12, 36, 0, 36)t, b4 = (10, 26, 45, 66)t, b5 = (7, 7, 4, 5)t.

Answers or Hints

7.1. (i)





1 0 0
2 1 0

−7 1 1









2 0 5
0 3 2
0 0 1



 .

(ii)





1 0 0
3 1 0

−3 2 1









2 3 0 5 7
0 5 3 2 1
0 0 4 0 3



 .

(iii)









1 0 0 0
2 1 0 0

−2 2 1 0
3 0 0 1

















3 2 5
0 5 2
0 0 0
0 0 0









.

(iv)









1 0 0 0
2 1 0 0
3 2 1 0
4 3 1 1

















4 3 2 1
0 3 2 1
0 0 2 1
0 0 0 5









.

7.2. (i) 6.

(ii) 120.

7.3. (i) Use LU factorization.

(ii) Use PLU factorization.
(iii) Clear from (i) or (ii).

7.4. (i) (−1, 2, 1)t.

(ii) 1
20 (233, 58, 50, 0, 0)

t + 1
20 (−38,−8, 0, 20, 0)tc+ 1

8 (−31, 2,−6, 0, 8)td.

(iii) 1
5 (12, 12, 0)

t + 1
5 (−7,−2, 5)tc.

(iv) (1, 1, 1, 1)t.

(v) (1, 2, 1, 2)t.



Chapter 8

Linear Dependence and
Independence

The concept of linear dependence and independence plays an essential role in
linear algebra and as a whole in mathematics. These concepts distinguish be-
tween two vectors being essentially the same or different. Further, these terms
are prerequisites to the geometrical notion of dimension for vector spaces.

Let (V, F ) be a vector space, and S = {u1, · · · , un} ⊂ V be a finite
nonempty set. The set of vectors S is said to be linearly dependent if and
only if there exist n scalars c1, · · · , cn ∈ F, not all zero, such that

c1u
1 + · · ·+ cnu

n = 0. (8.1)

The set S is said to be linearly independent if the only solution of (8.1) is
the trivial solution c1 = · · · = cn = 0. Notice that (8.1) always holds for
c1 = · · · = cn = 0, and hence, to prove the linear independence of S it is
necessary to show that c1 = · · · = cn = 0 is the only set of scalars in F
for which (8.1) holds. It is clear that if S is linearly dependent, then there
are infinitely many choices of scalars ci, not all zero, such that (8.1) holds.
However, to prove the linear dependence of S it suffices to find one set of
scalars ci, not all zero, for which (8.1) holds.

The vectors u1, · · · , un are said to be linearly dependent or independent
accordingly as the set S = {u1, · · · , un} is linearly dependent or independent.
An infinite set of vectors is said to be linearly dependent if and only if it
has a finite subset that is linearly dependent. Thus, an infinite set is linearly
independent if and only if its every finite subset is linearly independent.

Example 8.1. The set of vectors S = {e1, · · · , en} is a linearly inde-
pendent set in Rn. Indeed, c1e

1 + · · · + cne
n = 0 immediately implies that

c1 = · · · = cn = 0. If an m × n matrix A is in echelon form, then the set of
nonzero rows of A (considered as vectors in Rn) is linearly independent.

Example 8.2. The vectors (11, 19, 21)t, (3, 6, 7)t, (4, 5, 8)t ∈ R3 are lin-
early independent. Indeed, c1(11, 19, 21)

t + c2(3, 6, 7)
t + c3(4, 5, 8)

t = 0 leads

67
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to the system
11c1 + 3c2 + 4c3 = 0
19c1 + 6c2 + 5c3 = 0
21c1 + 7c2 + 8c3 = 0

for which c1 = c2 = c3 = 0 is the only solution. Now any vector (a, b, c)t ∈ R3

can be written as a linear combination of these vectors, i.e., (a, b, c)t =
α(11, 19, 21)t + β(3, 6, 7)t + γ(4, 5, 8)t, where the unknowns α, β, γ can be ob-
tained by solving the linear system

11α+ 3β + 4γ = a
19α+ 6β + 5γ = b
21α+ 7β + 8γ = c.

Theorem 8.1. In any vector space (V, F ) the following hold:

1. any set containing 0 is linearly dependent,

2. the set {u} is linearly independent if and only if u 6= 0,

3. the set {u, v} is linearly dependent if and only if u = cv, where c is some
scalar,

4. every subset S0 of a linearly independent set S is linearly independent,

5. if S is a finite set of vectors and some subset S0 of S is linearly dependent,
then S is linearly dependent,

6. the set S = {u1, · · · , un} where each uk 6= 0 is linearly dependent if and
only if at least one of the vectors uj is linearly dependent on the preceding
vectors u1, · · · , uj−1.

Proof. 1. If S = {0, u2, · · · , un}, then we can write 1× 0 + 0× u2 + · · ·+
0× un = 0.

2. If u = 0, then in view of 1, the set {u} is linearly dependent. Conversely,
if {u} is linearly dependent, then there exists a nonzero scalar c such that
cu = 0. But, then 0 = c−10 = c−1(cu) = u, i.e., u = 0.

3. If S = {u, v} is linearly dependent, then there exist scalars c1, c2 not both
zero such that c1u + c2v = 0. If c1 = 0, then c2v = 0, and hence v = 0,
which in view of 1. implies that S is linearly dependent. If c1 and c2 both are
nonzero, then clearly we have u = −c−1

1 c2v. Conversely, in u = cv if c = 0,
then we have u = 0, and if c 6= 0, then u− cv = 0.

4. Suppose a linear combination of the vectors S0 is equal to zero, then the
addition of all the terms of the form 0 times the vectors in S\S0 is also zero.
This gives a linear combination of the vectors of S, which is zero. But since
S is linearly independent, all the coefficients in this linear combination must
be zero. Thus S0 is linearly independent.

5. If S is linearly independent, then from 4. S0 must be linearly independent.

6. Suppose uj is linearly dependent on u1, · · · , uj−1, i.e., uj = c1u
1 + · · · +
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cj−1u
j−1, then we have

c1u
1 + · · ·+ cj−1u

j−1 + (−1)uj + 0uj+1 + · · ·+ 0un = 0,

which implies that S is linearly dependent. Conversely, suppose that S is
linearly dependent. We define Sj = {u1, · · · , uj}, j = 1, · · · , n. In view of 2.
S1 is linearly independent. Let Si, 2 ≤ i ≤ n be the first of the Sj that is
linearly dependent. Since Sn is linearly dependent, such an Si exists. We claim
that ui is linearly dependent on the vectors of the set Si−1. For this, we note
that there exist scalars c1, · · · , ci not all zero such that c1u

1 + · · ·+ ciu
i = 0.

We note that ci cannot be zero, otherwise Si−1 will be linearly dependent.
Thus it follows that ui = c−1

i (−c1)u1 + · · ·+ c−1
i (−ci−1)u

i−1.

Theorem 8.2. Let the set S = {u1, · · · , un} span the vector space (V, F ).

1. If uj is linearly dependent on U = {u1, · · · , uj−1, uj+1, · · · , un}, then the
set U also spans (V, F ).

2. If at least one vector of S is nonzero, then there exists a subset W of S
that is linearly independent and spans (V, F ).

Proof. 1. See Problem 1.2(ii).

2. If S is linearly independent there is nothing to prove; otherwise, in view
of 1. we can eliminate one vector from the set S so that the remaining set
will also span V. We can continue this process of eliminating vectors from the
set S until either we get (i) a linearly independent subset W that contains
at least two vectors and spans V, or (ii) a subset W that contains only one
vector, ui 6= 0, say, which spans V. Clearly, in view of Theorem 8.1(2), the set
W = {ui} is linearly independent.

The n vector valued functions u1(x), · · · , um(x) defined in an interval J are
said to be linearly independent in J if the relation c1u

1(x)+ · · ·+cmum(x) = 0
for all x in J implies that c1 = · · · = cm = 0. Conversely, these functions are
said to be linearly dependent if there exist constants c1, · · · , cm not all zero
such that c1u

1(x) + · · ·+ cmu
m(x) = 0 for all x ∈ J.

Let n vector valued functions u1(x), · · · , um(x) be linearly dependent in J
and ck 6= 0, then we have

uk(x) = − c1
ck
u1(x)− · · · − ck−1

ck
uk−1(x) − ck+1

ck
uk+1(x) − · · · − cm

ck
um(x),

i.e., uk(x) (and hence at least one of these functions) can be expressed as a
linear combination of the remaining m − 1 functions. On the other hand, if
one of these functions, say, uk(x), is a linear combination of the remaining
m− 1 functions, so that

uk(x) = c1u
1(x) + · · ·+ ck−1u

k−1(x) + ck+1u
k+1(x) + · · ·+ cmu

m(x),

then obviously these functions are linearly dependent. Hence, if two functions
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are linearly dependent in J, then each one of these functions is identically
equal to a constant times the other function, while if two functions are linearly
independent then it is impossible to express either function as a constant times
the other. The concept of linear independence allows us to distinguish when
the given functions are “essentially” different.

Example 8.3. The functions 1, x, · · · , xm−1 are linearly independent in
every interval J. For this, c1 + c2x + · · · + cmx

m−1 ≡ 0 in J implies that
c1 = · · · = cm = 0. If any ck were not zero, then the equation c1 + c2x+ · · ·+
cmx

m−1 = 0 could hold for at most m − 1 values of x, whereas it must hold
for all x in J.

Example 8.4. The functions

u1(x) =

[

ex

ex

]

, u2(x) =

[

e2x

3e2x

]

are linearly independent in every interval J. Indeed,

c1

[

ex

ex

]

+ c2

[

e2x

3e2x

]

= 0

implies that c1e
x + c2e

2x = 0 and c1e
x + 3c2e

2x = 0, which is possible only
for c1 = c2 = 0.

Example 8.5. The functions

u1(x) =

[

sinx

cosx

]

, u2(x) =

[

0

0

]

are linearly dependent.

For the given n vector valued functions u1(x), · · · , un(x) the determinant
W (u1, · · · , un)(x) or W (x), when there is no ambiguity, defined by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u11(x) · · · un1 (x)

u12(x) · · · un2 (x)

· · ·
u1n(x) · · · unn(x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is called the Wronskian of these functions. This determinant is closely related
to the question of whether or not u1(x), · · · , un(x) are linearly independent.
In fact, we have the following result.

Theorem 8.3. If the Wronskian W (x) of n vector valued functions
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u1(x), · · · , un(x) is different from zero for at least one point in an interval
J, then these functions are linearly independent in J.

Proof. Let u1(x), · · · , un(x) be linearly dependent in J, then there exist
n constants c1, · · · , cn not all zero such that

∑n
i=1 ciu

i(x) = 0 in J. This
is the same as saying the homogeneous system of equations

∑n
i=1 u

i
k(x)ci =

0, 1 ≤ k ≤ n, x ∈ J, has a nontrivial solution. However, from Corollary
5.1 this homogeneous system for each x ∈ J has a nontrivial solution if and
only if W (x) = 0. But, W (x) 6= 0 for at least one x in J, and, therefore
u1(x), · · · , un(x) cannot be linearly dependent.

In general the converse of this theorem is not true. For instance, for

u1(x) =

[

x

1

]

, u2(x) =

[

x2

x

]

,

which are linearly independent in any interval J, W (u1, u2)(x) = 0 in J.
This example also shows that W (u1, u2)(x) 6= 0 in J is not necessary for the
linear independence of u1(x) and u2(x) in J, and W (u1, u2)(x) = 0 in J may
not imply that u1(x) and u2(x) are linearly dependent in J. Thus, the only
conclusion we have isW (x) 6= 0 in J implies that u1(x), · · · , un(x) are linearly
independent in J and linear dependence of these functions in J implies that
W (x) = 0 in J.

Problems

8.1. Find if the given vectors are linearly dependent, and if they are,
obtain a relation between them:

(i) u1 = (1, 3, 4, 2)t, u2 = (3,−5, 2, 2)t, u3 = (2,−1, 3, 2)t

(ii) u1 = (1, 1, 1, 3)t, u2 = (1, 2, 3, 4)t, u3 = (2, 3, 4, 9)t

(iii) u1 = (1, 2, 4)t, u2 = (2,−1, 3)t, u3 = (0, 1, 2)t, u4 = (−3, 7, 2)t.

8.2. Let the set {u1, u2, u3} in (V, F ) be linearly independent. Show that
the sets {u1, u1 + u2, u1 + u2 + u3} and {u1 + u2, u2 + u3, u3 + u1} are also
linearly independent.

8.3. Show that rows (columns) of A ∈ Mn×n are linearly independent if
and only if det(A) 6= 0, i.e., the matrix A is invertible. Thus, the homogeneous
system Ax = 0 has only the trivial solution.

8.4. Show that the nonzero rows of a matrix in echelon form are linearly
independent. Further, columns containing pivots are linearly independent.

8.5. Suppose that {u1, · · · , un} is a linearly independent set of vectors
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in Rn, and A is an n × n nonsingular matrix. Show that {Au1, · · · , Aun} is
linearly independent.

8.6. If the rank of A is n − p (1 ≤ p ≤ n), then show that the system
(5.2) with m = n possesses a solution if and only if

Bb = 0, (8.2)

where B is a p×n matrix whose row vectors are linearly independent vectors
wi, 1 ≤ i ≤ p, satisfying wiA = 0. Further, in the case when (8.2) holds, any
solution of (5.2) can be expressed as

u =

p
∑

i=1

ciu
i + Sb,

where ci, 1 ≤ i ≤ p, are arbitrary constants, ui, 1 ≤ i ≤ p, are p linearly
independent column vectors satisfying Aui = 0, and S is an n × n matrix
independent of b such that ASv = v for any column vector v satisfying Bv = 0.
The matrix S is not unique.

8.7. The Wronskian of n functions y1(x), · · · , yn(x) which are (n − 1)
times differentiable in an interval J , is defined by the determinant

W (x) = W (y1, · · · , yn)(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1(x) · · · yn(x)

y′1(x) · · · y′n(x)

· · ·
y
(n−1)
1 (x) · · · y

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Show that

(i) ifW (y1, · · · , yn)(x) is different from zero for at least one point in J, then
the functions y1(x), · · · , yn(x) are linearly independent in J

(ii) if the functions y1(x), · · · , yn(x) are linearly dependent in J, then the
Wronskian W (y1, · · · , yn)(x) = 0 in J

(iii) the converse of (i) as well as of (ii) is not necessarily true.

8.8. Show that the following sets of functions are linearly dependent in
any interval

(i) {1, cos 2x, sin2 x}
(ii) {cosx, cos 3x, cos3 x}.

8.9. Show that the following sets of functions are linearly independent in
any interval

(i) {eµx, eνx}, µ 6= ν

(ii) {eµx, xeµx}.
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8.10. Show that the following sets are linearly independent in the given
intervals

(i) {sinx, sin 2x, · · · }, [0, π]
(ii) {1, cosx, cos 2x, · · · }, [0, π]
(iii) {1, sinx, cosx, sin 2x, cos 2x, · · · }, [−π, π].

8.11. Let f(x) and g(x) be linearly independent in an interval J. Show that
the functions af(x) + bg(x) and cf(x) + dg(x) are also linearly independent
in J provided ad− bc 6= 0.

8.12. Show that

(i) the set {1, x, x2, · · · } is linearly independent in the space P of all poly-
nomials

(ii) the set {u1, u2, · · · }, where ui is the infinite sequence whose i-th term
is 1 and all other terms are zero, is linearly independent in the space S of all
real sequences.

Answers or Hints

8.1. (i) Linearly dependent u1 + u2 − 2u3 = 0.

(ii) Linearly independent
(iii) Linearly dependent − 9

5u
1 + 12

5 u
2 − u3 + u4 = 0.

8.2. c1u
1+c2(u

1+u2)+c3(u
1+u2+u3) = 0 implies c1+c2+c3 = 0, c2+c3 =

0, c3 = 0.
8.3. If the columns C1, · · · , Cn ofA are linearly independent, then x1C1+· · ·+
xnCn = 0 implies x1 = · · · = xn = 0, i.e., the homogeneous system Ax = 0 has
only the trivial solution. But then by Corollary 5.1, det(A) 6= 0. Conversely,
if det(A) 6= 0, then the homogeneous system (C1, · · · , Cn)(x1, · · · , xn)t = 0
has only the trivial solution, and hence C1, · · · , Cn are linearly independent.
8.4. Recall that in the system (6.4), j1 < · · · < jr. Thus, c1(1, ã1,j1+1, · · · ,
ã1n) + · · ·+ cr(1, ãr,jr+1, · · · , ãr,n) implies that c1 = · · · = cr = 0.
8.5. c1Au

1 + · · · + cnAu
n = 0 if and only if A(c1u

1 + · · · + cnu
n) = 0. Now

since A is nonsingular, it is equivalent to c1u
1 + · · ·+ cnu

n = 0.
8.6. Use Problem 8.3.
8.7. (i) If yi(x), 1 ≤ i ≤ n are linearly dependent, then there exist nontrivial
ci, 1 ≤ i ≤ n such that

∑n
i=1 ciyi(x) = 0 for all x ∈ J. Differentiating this, we

obtain
∑n

i=1 ciy
(k)
i (x) = 0, k = 0, 1, · · · , n− 1 for all x ∈ J. But this implies

W (x) = 0.

(ii) Clear from (i).
(iii) Consider the functions y1(x) = x3, y2(x) = x2|x|.
8.8. (i) cos 2x = 1− 2 sin2 x

(ii) cos 3x = 4 cos3 x− 3 cosx.
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8.9. Use Problem 8.7.
8.10. (i) Use

∫ π

0 (
∑n

i=1 ci sin ix) sin jxdx = πcj/2

(ii) Similar to (i)
(iii) Similar to (i).

8.11. Let for all x ∈ J, α(af(x) + bg(x)) + β(cf(x) + dg(x)) = 0. Then,
(aα+ cβ)f(x)+ (bα+ dβ)g(x) = 0. Now the linear independence of f(x), g(x)
implies that aα+ cβ = 0, bα+dβ = 0, which implies α = β = 0 if ad− bc 6= 0.
8.12. (i) For each n,

∑n
i=0 aix

i = 0 has at most n roots. Alternatively, using
Problem 8.7(i), we have W (1, x, x2, · · · , xn) = 1(1!)(2!) · · · (n!).
(ii) 0 =

∑n
i=1 ciu

i = (c1, c2, · · · , cn)t.



Chapter 9

Bases and Dimension

In this chapter, for a given vector space, first we shall define a basis and then
describe its dimension in terms of the number of vectors in the basis. Here we
will also introduce the concept of direct sum of two subspaces.

The set of vectors S = {u1, · · · , un} in a vector space (V, F ) is said to form
or constitute a basis of V over F if and only if S is linearly independent, and
generates the space V. Thus, every vector v ∈ V can be written as a linear
combination of the vectors u1, · · · , un, i.e.,

v = c1u
1 + · · ·+ cnu

n.

This representation is unique. Indeed, if v = d1u
1 + · · · + dnu

n is also a
representation, then 0 = v − v = (c1 − d1)u

1 + · · ·+ (cn − dn)u
n immediately

implies that c1 − d1 = 0, · · · , cn − dn = 0.

Example 9.1. The set of vectors S = {e1, · · · , en} is a basis of Rn.
Indeed, the set S is linearly independent (see Example 8.1), and an arbitrary
vector u = (u1, · · · , un) ∈ Rn can be written as u =

∑n
i=1 uie

i. The set
{e1, e1 + e2, · · · , e1 + · · ·+ en} is also a basis of Rn.

Theorem 9.1. Let (V, F ) be a vector space, and let S = {u1, · · · , un} be
a basis of V. Let v1, · · · , vm be vectors in V and assume that m > n. Then,
v1, · · · , vm are linearly dependent.

Proof. Since S is a basis, there exist scalars aij , i = 1, · · · ,m, j = 1, · · · , n
in F such that

v1 = a11u
1 + · · ·+ a1nu

n

· · ·
vm = am1u

1 + · · ·+ amnu
n.

Let x1, · · · , xm be scalars, then

x1v
1 + · · ·+ xmv

m

= (x1a11 + · · ·+ xmam1)u
1 + · · ·+ (x1a1n + · · ·+ xmamn)u

m.

Now since m > n, in view of Corollary 5.2, the homogeneous system

x1a11 + · · ·+ xmam1 = 0

· · ·
x1a1n + · · ·+ xmamn = 0

75
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has a nontrivial solution. For such a solution (x1, · · · , xm) we have x1v
1 +

· · ·+ xmv
m = 0, i.e., the vectors v1, · · · , vm are linearly dependent.

Corollary 9.1. Let (V, F ) be a vector space, and let S = {u1, · · · , un}
and T = {v1, · · · , vm} be the basis of V. Then, m = n.

Proof. In view of Theorem 9.1, m > n is impossible. Now since T is also a
basis, n > m is also impossible.

Let (V, F ) be a vector space, and let T = {v1, · · · , vm} ⊂ V. We say that
S = {vk1 , · · · , vkn} ⊆ T is a maximal linearly independent subset of T if S is
linearly independent, and if vi ∈ T \S, then S ∪ {vi} is linearly dependent.

Theorem 9.2. Let T = {v1, · · · , vm} generate the vector space (V, F ),
and let S = {vk1 , · · · , vkn} be a maximal linearly independent subset of T.
Then S is a basis of V.

Proof. We need to show that S = {vk1 , · · · , vkn} generates V. For this,
first we shall prove that each vi ∈ T \S is a linear combination of vk1 , · · · , vkn .
Since S ∪ {vi} is linearly dependent, there exist scalars c1, · · · , cn, x not all
zero such that

c1v
k1 + · · ·+ cnv

kn + xvi = 0.

Clearly, x 6= 0, otherwise, S will be linearly dependent. Thus, it follows that

vi =
−c1
x
vk1 + · · ·+ −cn

x
vkn ,

which confirms that vi is a linear combination of vk1 , · · · , vkn . Now let u ∈ V,
then there exist scalars α1, · · · , αm such that

u = α1v
1 + · · ·+ αmv

m.

In this relation, we replace each vi ∈ T \S by a linear combination of
vk1 , · · · , vkn . The resulting relation on grouping the terms will lead to a linear
combination of vk1 , · · · , vkn for u. Thus S generates V.

Let (V, F ) be a vector space, and let S = {u1, · · · , un} ⊂ V be linearly
independent. We say that S is a maximal linearly independent set of V if and
only if u ∈ V \S, then S ∪ {u} is linearly dependent.

Theorem 9.3. Let S = {u1, · · · , un} be a maximal linearly independent
set of the vector space (V, F ). Then, S is a basis of V.

Proof. The proof is the same as in the first part of Theorem 9.2.

A vector space V over the field F is said to be of finite dimension n, or
n-dimensional, written as dimV = n, if and only if V has a basis consisting of
n vectors. If V = {0}, we say V has dimension 0. If V does not have a finite
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basis, then V is said to be of infinite dimension, or infinite-dimensional. In
the following results we shall consider only finite dimensional vector spaces.

Example 9.2. A field F is a vector space over itself. Its dimension is one,
and the element 1 of F forms a basis of F. The space Rn is n-dimensional.

Theorem 9.4. Let (V, F ) be an n-dimensional vector space, and let S =
{u1, · · · , un} ⊂ V be linearly independent. Then, S is a basis of V.

Proof. In view of Theorem 9.1, S is a maximal linearly independent set of
V. Now, S being a basis follows from Theorem 9.3.

Corollary 9.2. Let (V, F ) be a n–dimensional vector space, and let (W,F )
be a subspace also of dimension n. Then, W = V.

Proof. If S = {u1, · · · , un} is a basis of W, then it must also be a basis of
V.

Corollary 9.3. Let (V, F ) be an n-dimensional vector space, and let
u1, · · · , ur, r < n be linearly independent vectors of V. Then, there are vectors
ur+1, · · · , un in V such that S = {u1, · · · , un} is a basis of V.

Proof. Since r < n, in view of Corollary 9.1, {u1, · · · , ur} cannot form a
basis of V. Thus there exists a vector ur+1 ∈ V that cannot lie in the sub-
space generated by {u1, · · · , ur}. We claim that {u1, · · · , ur, ur+1} is linearly
independent, i.e., the relation

c1u
1 + · · ·+ cru

r + cr+1u
r+1 = 0, ci ∈ F, i = 1, · · · , r, r + 1

implies that c1 = · · · = cr = cr+1 = 0. For this, since {u1, · · · , ur} is linearly
independent it suffices to show that cr+1 = 0. Let cr+1 6= 0, then from the
above relation we have

ur+1 = − c−1
r+1(c1u

1 + · · ·+ cru
r),

which contradicts our assumption that ur+1 does not lie in the space generated
by {u1, · · · , ur}. Now let us assume that ur+1, · · · , us have been found so that
{u1, · · · , ur, ur+1, · · · , us} is linearly independent. Then from Theorem 9.1 it
follows that s ≤ n. If we choose s to be maximal, then we have s = n, and
Theorem 9.4 ensures that {u1, · · · , un} is a basis of V.

In view of our above discussion the set of vectors S = {u1, · · · , um} in Rn

cannot span Rn if m < n. Also, if m > n the set S is linearly dependent.
Further, if m ≥ n, the set may or may not span Rn. Combining these remarks
with Problem 8.4, we find an effective method to extract linearly independent
vectors from a given set of vectors. This combination also suggests the possi-
bility of enlarging a set of linearly independent vectors. We illustrate this in
the following two examples.
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Example 9.3. Since in view of Problems 6.1(iii),





0 1 2 0 3 6
1 2 5 3 4 3
1 2 5 6 3 4



 ∼





1 2 5 3 4 3
0 1 2 0 3 6
0 0 0 3 −1 1



 ,

the vectors (0, 1, 1)t, (1, 2, 2)t, (0, 3, 6)t are linearly independent and form a
basis for R3.

Example 9.4. The vectors (0, 1, 1)t, (1, 2, 2)t are linearly independent.
To find the third linearly independent vector, we consider the matrix whose
columns are (0, 1, 1)t, (1, 2, 2)t, e1, e2, e3, and note that





0 1 1 0 0
1 2 0 1 0
1 2 0 0 1



 ∼





1 2 0 1 0
0 1 1 0 0
0 0 0 −1 1



 .

Thus, the required vector is e2 = (0, 1, 0)t.

Now let U andW be subspaces of a vector space V. Recall that in Problem
1.4 we have defined the sum of U andW as U+W = {z : z = u+w where u ∈
U, w ∈W}. For this sum we shall prove the following result.

Theorem 9.5. Let U and W be subspaces of a vector space V. Then,

dim(U +W ) = dimU + dimW − dim(U ∩W ).

Proof. In view of Problem 1.3, U ∩ W is a subspace of both U and W.
Let dimU = m, dimW = n, and dimU ∩ W = r. Let S1 = {v1, · · · , vr}
be a basis of U ∩ W. By Corollary 9.3 we can extend S1 to a basis of
U, say S2 = {v1, · · · , vr, u1, · · · , um−r} and to a basis of W, say, S3 =
{v1, · · · , vr, w1, · · · , wn−r}. Now let S = S1 ∪ S2 ∪ S3 = {v1, · · · , vr, u1, · · · ,
um−r, w1, · · · , wn−r}. Clearly, S has exactly m+n−r vectors. Thus it suffices
to show that S is a basis of U +W. For this, we note that S2 spans U, and S3

spansW, and hence S2∪S3 = S spans U+W. To show the linear independence
of S, suppose that

a1v
1+ · · ·+arvr+b1u1+ · · ·+bm−ru

m−r+c1w
1+ · · ·+cn−rw

n−r = 0, (9.1)

where ai, bj, ck are scalars. Let

u = a1v
1 + · · ·+ arv

r + b1u
1 + · · ·+ bm−ru

m−r. (9.2)

Then from (9.1), we have

u = − c1w
1 − · · · − cn−rw

n−r. (9.3)

From (9.2) and (9.3), respectively, it follows that u ∈ U and u ∈ W. Thus,
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u ∈ U ∩W, and hence can be written as u = d1v
1 + · · ·+ drv

r, where di are
scalars. Thus, from (9.3) it follows that

d1v
1 + · · ·+ drv

r + c1w
1 + · · ·+ cn−rw

n−r = 0.

But since S3 is a basis ofW, the above relation implies that c1 = · · · = cn−r =
0. Substituting this in (9.1), we get

a1v
1 + · · ·+ arv

r + b1u
1 + · · ·+ bm−ru

m−r = 0.

Finally, since S2 is a basis of U, the above relation implies that a1 = · · · =
ar = b1 = · · · = bm−r = 0.

The vector space V is said to be a direct sum of its subspaces U and W,
denoted as U ⊕W, if for every v ∈ V there exist unique vectors u ∈ U and
w ∈W such that v = u+ w.

Example 9.5. Consider V = R3, U = {(a1, a2, 0)t : a1, a2 ∈ R}, W =
{(0, a2, a3)t : a2, a3 ∈ R}. Then, R3 = U +W but R3 6= U ⊕W, since sums
are not necessarily unique, e.g., (1, 3, 1)t = (1, 1, 0)t + (0, 2, 1)t = (1, 2, 0)t +
(0, 1, 1)t. However, if we let U = {(a1, a2, 0)t : a1, a2 ∈ R}, W = {(0, 0, a3)t :
a3 ∈ R}, then R3 = U ⊕W.

Theorem 9.6. The vector space V is the direct sum of its subspaces U
and W, i.e., V = U ⊕W, if and only if V = U +W, and U ∩W = {0}.

Proof. Suppose V = U ⊕W. Then any v ∈ V can be uniquely written in
the form v = u + w, where u ∈ U and w ∈ W. This in particular implies that
V = U +W. Now let v ∈ U ∩W, then v = v + 0 where v ∈ U, 0 ∈ W ; also,
v = 0 + v where 0 ∈ U, v ∈ W. But, this in view of the uniqueness implies
that v = 0 + 0 = 0 and U ∩W = {0}.

Conversely, suppose that V = U +W and U ∩W = {0}. If v ∈ V, then
there exist u ∈ U and w ∈W such that v = u+w. We need to show that this
sum is unique. For this, let v = u′ +w′ where u′ ∈ U and w′ ∈W is also such
a sum. Then, u + w = u′ + w′, and hence u − u′ = w − w′. But u − u′ ∈ U
and w − w′ ∈W ; therefore in view of U ∩W = {0} it follows that u− u′ = 0
and w − w′ = 0, i.e., u = u′ and w = w′.

Corollary 9.4. Let U and W be subspaces of a vector space V. Then,
dimU ⊕W = dimU + dimW.

Problems

9.1. Find the dimension of the following spaces spanned by all

(i) m× n matrices, and give a basis for this space
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(ii) n× n diagonal matrices

(iii) n× n upper triangular matrices

(iv) n× n symmetric matrices

(v) polynomials of degree n− 1, and give a basis for this space.

(vi) n dimensional real vectors u = (u1, · · · , un) such that u1+ · · ·+un = 0

(vii) n× n real matrices A = (aij) such that tr(A) = 0.

9.2. Suppose that {u1, · · · , un} is a basis for Rn, and A is an n × n
nonsingular matrix. Show that {Au1, · · · , Aun} is also a basis for Rn.

9.3. Let (V, F ) be a n–dimensional vector space, and let W 6= {0} be a
subspace. Show that (W,F ) has a basis, and its dimension is ≤ n.

9.4. Let U and W be subspaces of a vector space V, and let S =
{u1, · · · , uℓ} span U and T = {w1, · · · , wk} span W. Show that S ∪ T spans
U +W.

9.5. Let U and W be subspaces of a vector space V, and let V = U ⊕W.
If S = {u1, · · · , uℓ} and T = {w1, · · · , wk} are linearly independent subsets
of U and W respectively, show that

(i) S ∪ T is linearly independent in V

(ii) if S and T are bases of U and W, then S ∪ T is a basis of V.

9.6. Show that the space R over the field of rational numbers Q with the
usual operations is infinite dimensional.

9.7. Find λ ∈ R so that the vectors u1 = (1, λ, 1)t, u2 = (1, 1, λ)t, u3 =
(1,−1, 1)t form a basis of R3.

9.8. Let V = {u ∈ R5 : u1 + 2u2 − u3 + u4 = 0, u1 + u2 + u3 + u5 = 0}.
Find the dimension of V and find W such that V ⊕W = R5.

Answers or Hints

9.1. (i) mn, {Eij} where the m × n matrix Eij has elements ekℓ = 1 if
k = i, ℓ = j and ekl = 0 if k 6= i, ℓ 6= j.

(ii) n.

(iii) n(n+ 1)/2.

(iv) n(n+ 1)/2.

(v) n, {1, x, · · · , xn−1}. This basis is known as natural, or standard basis for
(Pn, R)

(vi) n− 1

(vii) n2 − 1.
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9.2. c1Au
1 + · · ·+ cnAu

n = 0 implies A(c1u
1 + · · ·+ cnu

n) = 0, and since A
is nonsingular, c1u

1 + · · · + cnu
n = 0, and hence c1 = · · · = cn = 0, i.e., Aui

are linearly independent. Now use Theorem 9.4.
9.3. Let v1 6= 0 be a vector of W. If {v1} is not a maximal set of linearly
independent vectors of W, we can find a vector v2 ∈ W such that {v1, v2} is
linearly independent. Continuing in this manner, one vector at a time, we will
find an integer m ≤ n, such that {v1, · · · , vm} is a maximal set of linearly
independent vectors of W. Now in view of Theorem 9.3 this set is a basis of
W.
9.4. If v ∈ U + W, then v = u + w, where u ∈ U and w ∈ W. Clearly,
u = c1u

1 + · · · + cℓu
ℓ and w = d1w

1 + · · · + dkw
k, where ci, dj are scalars.

Then, v = c1u
1+ · · ·+cℓuℓ+d1w1+ · · ·+dkwk, and hence S∪T spans U +W.

9.5. (i) If c1u
1 + · · · + cℓu

ℓ + d1w
1 + · · · + dkw

k = 0, then (c1u
1 + · · · +

cℓu
ℓ) + (d1w

1 + · · ·+ dkw
k) = 0 = 0 + 0, where 0, c1u

1 + · · ·+ cℓu
ℓ ∈ U and

0, d1w
1 + · · · + dkw

k ∈ W. Now since such a sum for 0 is unique, it follows
that c1u

1 + · · ·+ cℓu
ℓ = 0 and d1w

1 + · · ·+ dkw
k = 0.

(ii) Use Problem 9.4 and (i).

9.6. The number π cannot be represented by finite rational numbers.

9.7.

∣

∣

∣

∣

∣

∣

1 1 1
λ 1 −1
1 λ 1

∣

∣

∣

∣

∣

∣

= λ2 − 1 6= 0, if λ ∈ R − {−1, 1}.

9.8. For A =

(

1 2 −3 1 0
1 1 1 0 1

)

, we have rankA = 2, and hence dimV = 2

with {(1, 2,−3, 1, 0), (1, 1, 1, 0, 1)} as a basis. It follows that dimW = 3. Let

w1 = (0, 1,−1, 2, 1). For A1 =





1 2 −3 1 0
1 1 1 0 1
0 1 −1 2 1



 , we have rankA1 = 3, and

hence w1 ∈ R5 − V. Similarly, w2 = (1,−1, 2, 1, 1), w3 = (0, 1, 0, 1,−1) ∈
R5 − V. Clearly, W = Span{w1, w2, w3}.



http://taylorandfrancis.com


Chapter 10

Coordinates and Isomorphisms

In this chapter we shall extend the known geometric interpretation of the
coordinates of a vector in R3 to a general vector space. We shall also show
how the coordinates of a vector space with respect to one basis can be changed
to another basis.

An ordered basis of an n-dimensional vector space (V, F ) is a fixed sequence
of linearly independent vectors that spans V. If S = {u1, · · · , un} is an ordered
basis, then as we have noted in Chapter 9, every vector u ∈ V can be written
uniquely as u = y1u

1+· · ·+ynun.We call (y1, · · · , yn)t ∈ Fn the coordinates of
u with respect to the basis S, and denote it as yS(u). Clearly, yS is a mapping
that assigns to each vector u ∈ V its unique coordinate vector with respect to
the ordered basis S. Conversely, each n-tuple (y1, · · · , yn)t ∈ Fn corresponds
to a unique vector y1u

1 + · · · + ynu
n in V. Thus the ordered basis S induces

a correspondence yS between V and Fn, which is one-to-one (u 6= v implies
yS(u) 6= yS(v), equivalently, yS(u) 6= yS(v) implies u 6= v) and onto (for every
(y1, · · · , yn)t ∈ Fn there is at least one u ∈ V ). It is also easy to observe that

1. yS(u+ v) = yS(u) + yS(v) for all u, v ∈ V

2. yS(αu) = αyS(u) for all scalars α and u ∈ V, and

3. yS(u) = 0 ∈ Fn if and only if u = 0 ∈ V.

Hence, the correspondence yS between V and Fn preserves the vector space
operations of vector addition and scalar multiplication. This mapping yS :
V → Fn is called an isomorphism or coordinate isomorphism, and the spaces
V and Fn are said to be isomorphic or coordinate isomorphic. One of the
major advantages of this concept is that linear dependence and independence,
basis, span, and dimension of U ⊆ V can be equivalently discussed for the
image set yS(U).

Example 10.1. In Rn the coordinates of a column vector relative to the
ordered basis {e1, · · · , en} are simply the components of the vector. Similarly,
the coordinates of a polynomial a0 + a1x + · · · + an−1x

n−1 in Pn relative to
the ordered basis {1, x, · · · , xn−1} are (a0, a1, · · · , an−1)

t.

83
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Example 10.2. In view of Example 6.1, we have

13

28
(2, 3, 1)t +

47

28
(−1, 2, 3)t +

21

28
(1,−5,−2)t = (0, 1, 4)t

and hence (13/28, 47/28, 21/28)
t
are the coordinates of the vector (0, 1, 4)t

∈ R3 relative to the basis {(2, 3, 1)t, (−1, 2, 3)t, (1,−5,−2)t}.

Now let S = {u1, · · · , un} and T = {v1, · · · , vn} be two ordered bases
of n-dimensional vector space (V, F ). Then, there are unique scalars aij such
that

vj =

n
∑

i=1

aiju
i, j = 1, · · · , n. (10.1)

Let (x1, · · · , xn)t be the coordinates of a given vector u ∈ V with respect to
the ordered basis T. Then, we have

u =

n
∑

j=1

xjv
j ,

and hence from (10.1) it follows that

u =

n
∑

j=1

xj

(

n
∑

i=1

aiju
i

)

=

n
∑

j=1

n
∑

i=1

(aijxj)u
i

=
n
∑

i=1





n
∑

j=1

aijxj



ui.

Now since the coordinates (y1, · · · , yn)t of u with respect to the ordered basis
S are uniquely determined, we find

yi =
n
∑

j=1

aijxj , i = 1, · · · , n, (10.2),

which is exactly the same as (5.1) ((5.2) in matrix notation) with m = n.
Since S and T are linearly independent sets, y = (y1, · · · , yn)t = 0 if and only
if x = (x1, · · · , xn)t = 0. Thus from Corollary 5.1 it follows that the matrix
A in (10.2) is invertible, and

x = A−1y. (10.3)

In terms of coordinate isomorphisms, relations (10.2) and (10.3) for any
u ∈ V can be written as

yS(u) = AxT (u) and xT (u) = A−1yS(u). (10.4)
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We summarize the above discussion in the following theorem.

Theorem 10.1. Let S = {u1, · · · , un} and T = {v1, · · · , vn} be two
ordered bases of an n-dimensional vector space (V, F ). Then there exists a
unique nonsingular matrix A such that for every vector u ∈ V relations (10.4)
hold.

The matrix A in (10.4) is called the transition matrix. A converse of The-
orem 10.1 is the following result.

Theorem 10.2. Let S = {u1, · · · , un} be an ordered basis of an n-
dimensional vector space (V, F ), and let A ∈ Mn×n be a nonsingular matrix
with elements in F. Then there exists an ordered basis T = {v1, · · · , vn} of
(V, F ) such that for every vector u ∈ V relations (10.4) hold.

Proof. It suffices to show that vectors vj , j = 1, · · · , n defined by the
equations in (10.1) form a basis of (V, F ). For this, let A−1 = B = (bij), so
that in view of (3.1) – (3.3) and (4.1), we have

n
∑

j=1

bjkv
j =

n
∑

j=1

bjk

(

n
∑

i=1

aiju
i

)

=

n
∑

j=1

(

n
∑

i=1

aijbjk

)

ui

= uk.

Thus, the subspace spanned by the set T contains S, and hence is equal to
V. Therefore, T is a basis of (V, F ). From the definition of T and Theorem
10.1 it is clear that yS(u) = AxT (u) holds. This also implies that xT (u) =
A−1yS(u).

The equation (10.1) is the same as

(vj1, · · · , vjn) = a1j(u
1
1, · · · , u1n) + · · ·+ anj(u

n
1 , · · · , unn) (10.5)

and hence the j-th column (a1j , · · · , anj)t of the matrix A in Theorem 10.1 is
the solution of the linear system

u11a1j + · · ·+ un1anj = vj1

· · ·
u1na1j + · · ·+ unnanj = vjn.

Thus the matrix A is the solution of the matrix linear system

UA = V, (10.6)

where U = (uji ), A = (aij), and V = (vji ).
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Example 10.3. In R3 consider the ordered bases S = {(2, 3, 1)t, (−1,
2, 3)t, (1,−5,−2)t} and T = {(1, 1, 0)t, (0, 1, 1)t, (1, 0, 1)t}. For these bases the
matrix linear system (10.6) is





2 −1 1
3 2 −5
1 3 −2









a11 a12 a13
a21 a22 a23
a31 a32 a33



 =





1 0 1
1 1 0
0 1 1



 .

Thus from Example 6.6 it follows that





a11 a12 a13
a21 a22 a23
a31 a32 a33



 =







11
28

1
28

3
28

1
28 − 5

28
13
28

1
4 − 1

4
1
4











1 0 1
1 1 0
0 1 1





=







12
28

4
28

14
28

− 4
28

8
28

14
28

0 0 14
28






.

Now consider the vector (0, 1, 4)t ∈ R3 for which the coordinates (x1, x2, x3)
t

relative to the basis T are (−3/2, 5/2, 3/2)
t
. Indeed, we have

−3

2
(1, 1, 0)t +

5

2
(0, 1, 1)t +

3

2
(1, 0, 1)t = (0, 1, 4)t.

The coordinates (y1, y2, y3)
t for (0, 1, 4)t relative to the basis S now can be

obtained by using (10.4) as follows





y1
y2
y3



 =







12
28

4
28

14
28

− 4
28

8
28

14
28

0 0 14
28













− 3
2
5
2
3
2






=







13
28
47
28
21
28






,

which are the same as those obtained in Example 10.1.

Example 10.4. In (P3, R) consider the ordered bases S = {1, x, x2} and
T = {1, 1 + x, 1 + x + x2}. For these bases, (10.5) with j = 1, 2, 3 gives the
system

1 = a11(1) + a21(x) + a31(x
2) = 1(1) + 0(x) + 0(x2)

1 + x = a12(1) + a22(x) + a32(x
2) = 1(1) + 1(x) + 0(x2)

1 + x+ x2 = a13(1) + a23(x) + a33(x
2) = 1(1) + 1(x) + 1(x2).

Thus the matrix A and its inverse A−1 in (10.4) for these ordered bases are

A =





1 1 1
0 1 1
0 0 1



 , A−1 =





1 −1 0
0 1 −1
0 0 1



 .

In particular, consider the polynomial P2(x) = a + bx + cx2 for which the
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coordinates (y1, y2, y3)
t relative to the basis S are (a, b, c)t. The coordinates

(x1, x2, x3)
t for (a, b, c)t relative to the basis T now can be obtained by using

(10.4) as follows:





x1
x2
x3



 =





1 −1 0
0 1 −1
0 0 1









a
b
c



 =





a− b
b− c
c



 .

Therefore, the polynomial P2(x) = a+ bx+ cx2 with respect to the basis T is
P2(x) = (a− b) + (b − c)(1 + x) + c(1 + x+ x2).

Problems

10.1. Find the coordinates of the vector (a, b, c)t ∈ R3 with respect to
the following ordered bases:

(i) {(1, 1, 5)t, (1,−1, 3)t, (7, 2, 1)t}
(ii) {(1,−1, 3)t, (1, 1, 5)t, (7, 2, 1)t}.

10.2. Find the coordinates of the vector (a, b, c, d)t ∈ R4 with respect to
the following ordered basis: {(1, 0, 0, 4)t, (0, 0, 0, 3)t, (0, 0, 2, 5)t, (5, 4, 0, 0)t}.

10.3. Find the coordinates of the matrix

(

a b
c d

)

with respect to the

ordered basis

{(

1 0
−1 0

)

,

(

0 1
1 0

)

,

(

1 −1
0 0

)

,

(

1 0
0 −1

)}

.

10.4. Find the coordinates of the polynomial P3(x) = a+bx+cx2+dx3 ∈
(P4, R) with respect to the following ordered bases:

(i) {1, 1 + x, 1 + x+ x2, 1 + x+ x2 + x3}
(ii) {1, (1− x), (1 − x)2, (1− x)3}.

10.5. In R3 consider the ordered bases S = {(1, 0, 1)t, (−1, 0, 0)t, (0, 1, 2)t}
and T = {(−1, 1, 0)t, (1, 2,−1)t, (0, 1, 0)t}. For these bases compute the tran-
sition matrix and use it to find the coordinates of the vector (7, 3, 4)t with
respect to each of these bases.

10.6. In the vector space of all complex-valued functions on the real line,
consider the ordered bases S = {1, eix, e−ix} and T = {1, cosx, sinx}. For
these bases compute the transition matrix and use it to find the coordinates
of the function 3 + 5 cosx+ 7 sinx with respect to the basis S.

10.7. Consider the vector space (Pn, R) with the ordered basis S =
{1, x, · · · , xn−1}. Show that
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(i) T = {L1(x), · · · , Ln(x)}, where

Li(x) =
(x− x1) · · · (x− xi−1)(x − xi+1) · · · (x− xn)

(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

and x1 < · · · < xn are points in R, is also a basis for (Pn, R)

(ii) the transition matrix for changing the basis S to T is the Vandermonde
matrix given in Example 3.5.

10.8. In Theorem 10.2, let S = {(5, 0, 3)t, (3, 5, 7)t, (−1,−4, 11)t} and

A =





11 3 4
19 6 5
21 7 8



 .

Find the ordered basis T.

10.9. In Theorem 10.2, let T = {(5, 0, 3)t, (3, 5, 7)t, (−1,−4, 11)t} and A
be as in Problem 10.8. Find the ordered basis S.

Answers or Hints

10.1. (i) 1
58 (−7a+ 20b+ 9c, 9a− 34b+ 5c, 8a+ 2b− 2c)t.

(ii) 1
58 (9a− 34b+ 5c,−7a+ 20b+ 9c, 8a+ 2b− 2c)t.

10.2. (a− 5
4 b,− 4

3a+
5
3b− 5

6c+
1
3d,

1
2c,

1
4b)

t.
10.3. 1

2 (a+ b− c+ d, a+ b+ c+ d, a− b + c+ d,−2d)t.
10.4. (i) (a− b, b− c, c− d, d)t.

(ii) (a+ b+ c+ d,−b− 2c− 3d, c+ 3d,−d)t.

10.5.





−2 −5 −2
−1 −6 −2
1 2 1



 , (−11,−4, 22)tT , (−2,−9, 3)tS.

10.6.







1 0 0

0 1
2 − i

2

0 1
2

i
2






, (3, 5, 7)tT , (3,

5−7i
2 , 5+7i

2 )tS .

10.7. (i) See Problem 1.5.

(ii) xj = xj1L1(x) + · · ·+ xjnLn(x), j = 0, 1, · · · , n− 1.

10.8. T = {(91, 11, 397)t, (26, 2, 128)t, (27,−7, 135)t}.
10.9. S = { 1

30 (−83,−263,−213)t, 1
30 (46, 76,−114)t, 1

30 (9, 69, 219)
t}.
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Rank of a Matrix

The rank of a matrix has been briefly defined in Chapter 5. Here we shall
give another equivalent definition of the rank and show how this number is
directly attached to the dimension of the solution space of the homogeneous
linear system (5.3).

For a given matrix A ∈ Cm×n its rows (columns) generate a subspace
of Cn (Cm), called the row space (column space) of A, and denoted as
R(A) (C(A)). It is clear that two row (column) equivalent matrices have the
same row (column) space. The row (column) rank of the matrix A is the di-
mension of the row (column) space of A.

Theorem 11.1. For any matrix A ∈ Cm×n the row rank is equal to its
column rank. (This common rank is called the rank of A, and is denoted as
r(A).)

Proof. Let v1, · · · , vm be the row vectors of A, where vi = (ai1,
· · · , ain), i = 1, · · · ,m. Let r be the row rank of A, i.e., dimR(A) = r.
Further, let the set of vectors {w1, · · · , wr} form a basis for the row space of
A, where wi = (bi1, · · · , bin), i = 1, · · · , r. It follows that

vi = ci1w
1 + · · ·+ cirw

r, i = 1, · · · ,m (11.1)

where cij are uniquely determined scalars. Now equating the coefficients in
(11.1), we get

aij = ci1b1j + · · ·+ cirbrj , i = 1, · · · ,m, j = 1, · · · , n,

which gives









a1j

...

amj









= b1j









c11

...

cm1









+ · · ·+ brj









c1r

...

cmr









, j = 1, · · · , n.

Hence, every column of A is a linear combination of r vectors. Thus, the di-
mension of the column space of A is at most r, i.e., dimC(A) ≤ r = dimR(A).
In exactly the same way we can show that dimR(A) ≤ dimC(A). Therefore,
the row and column ranks of A must be equal.

89
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Corollary 11.1. r(A) = r(At) = r(AH).

Theorem 11.2. Let A ∈ Cm×n and B ∈ Cn×p. Then, r(AB) ≤
min{r(A), r(B)}.

Proof. Let A = (aij), B = (bij) and AB = C = (cij). Since cij =
∑n

k=1 aikbkj , i = 1, · · · ,m, j = 1, · · · , p it follows that









c1j

...

cmj









=









a11

...

am1









b1j + · · ·+









a1n

...

cmn









bnj , j = 1, · · · , p

and hence the columns of AB are dependent on the columns of A; and
similarly, the rows of AB are dependent on the rows of B. Thus, we have
C(AB) ⊆ C(A) and R(AB) ⊆ R(B), and this immediately implies that
r(AB) ≤ r(A) and r(AB) ≤ r(B). Combining these, we obtain r(AB) ≤
min{r(A), r(B)}.

Corollary 11.2. 1. If one matrix in the product AB is nonsingular, then
the rank of AB is equal to the rank of the other matrix.

2. If P and Q are nonsingular matrices, then r(PAQ) = r(A).

Proof. 1. Let the matrix A be nonsingular. From Theorem 11.2 it follows
that r(AB) ≤ r(B), and since B = A−1(AB), r(B) ≤ r(AB). Thus, r(AB) =
r(B).

2. Since P and Q are nonsingular r(PAQ) = r(AQ) = r(A).

Theorem 11.3. Let A,B ∈ Cm×n. Then, r(A +B) ≤ r(A) + r(B).

Proof. Let A = (aij), B = (bij), and let {u1, · · · , up} and {v1, · · · , vq} be
the bases of C(A) and C(B), respectively. Then, it follows that









a1j + b1j

...

amj + bmj









=









a1j

...

amj









+









b1j

...

bmj









=

p
∑

i=1

αiju
i +

q
∑

i=1

βijv
i, j = 1, · · · , n.

Thus, the j-th column of A+ B can be expressed as a linear combination of
the p + q vectors u1, · · · , up, v1, · · · , vq. Hence, the column space of A + B
is generated by the linear combination of these vectors. Therefore, it follows
that

dimC(A+B) = dim

{

p
∑

i=1

siu
i +

q
∑

i=1

tiv
i

}

,
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and hence r(A + B) ≤ p + q. Clearly, r(A + B) = p + q if the set of column
vectors {u1, · · · , up, v1, · · · , vq} is linearly independent.

Corollary 11.3. r(A +B) ≥ |r(A) − r(B)|.

Proof. Clearly, r(A) = r(A+B−B) ≤ r(A+B)+r(−B) = r(A+B)+r(B),
and hence r(A + B) ≥ r(A) − r(B). Similarly, we have r(A + B) ≥ r(B) −
r(A).

Now recall that for a given matrix A ∈ Cm×n the null space N (A) ⊆ Cn

is a vector space. The dimension of N (A) is called the nullity of A and is
denoted by n(A).

Theorem 11.4. If A ∈ Cm×n, then r(A) + n(A) = n.

Proof. Let B be a row reduced echelon form of the matrix A. Since the
rank of the matrix A is r(A), first r(A) rows of B will be nonzero, i.e., B
will have r(A) pivot elements. Thus the linear homogeneous system (5.3) in
its equivalent form Bx = 0 will have r(A) basic variables, and n − r(A) free
variables. Hence, the system (5.3) has a set of n− r(A) linearly independent
solutions, i.e., n(A) = n− r(A).

Corollary 11.4. r(A) + n(At) = m.

Corollary 11.5. If r(A) = n ≤ m, then n columns of A are linearly
independent, and x = 0 is the only solution of the homogeneous linear system
(5.3).

Example 11.1. The row and column echelon form of the matrix

A =





1 2 1 5
1 2 −1 1
2 4 −3 0





are




1 2 1 5
0 0 1 2
0 0 0 0



 and





1 0 0 0
1 2 0 0
2 5 0 0



 .

Thus, r(A) = 2, the set {(1, 2, 1, 5), (0, 0, 1, 2)} generates R(A), and the set
{(1, 1, 2)t, (0, 2, 5)t} generates C(R). From the row echelon form it also follows
that the set {(−2, 1, 0, 0)t, (−3, 0,−2, 1)t} generates N (A), and n(A) = 2.

Example 11.2. For the matrix A in Problem 6.1(i), n = 4, r(A) =
3, n(A) = 1. For the matrix A in Problem 6.1(ii), n = 5, r(A) = 4, n(A) = 1.
For the matrix A in Problem 6.1(iii), n = 6, r(A) = 3, n(A) = 3.

Now for a given matrix A ∈ Mm×n let there exist a matrix L ∈
Mn×m (R ∈ Mn×m) such that LA = I (AR = I). Then, L (R) is called
a left inverse (right inverse) of A.
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Example 11.3. Consider the matrices

A =

(

1 0 1
0 1 0

)

, B =





0 1
0 1
1 −1



 .

Since AB = I, B is a right inverse of A, and A is a left inverse of B. We also
note that the matrix





1 0
0 1
0 0





is also a right inverse of A. Hence right as well as left inverse of a given matrix
is not unique.

Theorem 11.5. If x is a solution of the nonhomogeneous system (5.2)
and the matrix A has a left inverse L, then x = Lb. If A has a right inverse,
then (5.2) has a solution x = Rb.

Proof. Notice that x = Ix = (LA)x = L(Ax) = Lb, and A(Rb) = (AR)b =
Ib = b.

Theorem 11.6. Let A ∈Mm×n and r = r(A). Then A has a right inverse
R if and only if r = m and m ≤ n.

Proof. We note that finding a right inverse matrix R = (rij) of order
n×m is equivalent to solving the matrix linear system AR = I for which the
augmented matrix is (A|I). Now from Theorem 5.12, we know that AR = I
has a solution if and only if r(A) = r(A|I). But, since r(A|I) = r(I) = m the
matrix A has a right inverse if and only if r(A) = m, and thus m ≤ n.

Theorem 11.7. Let A ∈Mm×n and r = r(A). Then A has a left inverse
L if and only if r = n and n ≤ m.

Proof. The proof follows from the fact that LA = I if and only if AtLt =
I.

Thus, to find the left inverse of A we can consider the augmented matrix
(At|I).

Example 11.4. To find the right inverse R of the matrix

A =





1 2 3 4
2 3 4 5
0 4 6 9



 (11.2)

we consider the augmented matrix

(A|I) =





1 2 3 4 1 0 0
2 3 4 5 0 1 0
0 4 6 9 0 0 1



 ,
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which in row canonical form appears as





1 0 0 − 1
2 1 0 − 1

2
0 1 0 0 −6 3 1
0 0 1 3

2 4 −2 − 1
2



 . (11.3)

Let (x1, x2, x3, x4)
t be the first column of R. Then, from (11.3) it follows that

x1 −
1

2
x4 = 1, x2 = − 6, x3 +

3

2
x4 = 4,

which gives (1+ 1
2a,−6, 4− 3

2a, a)
t. Similarly, the second and the third columns

of R are given by (12b, 3,−2− 3
2b, b)

t and (− 1
2 +

1
2c, 1,− 1

2 − 3
2c, c)

t, respectively.
Thus, the right inverse R of the matrix A is











1 + 1
2a

1
2b − 1

2 + 1
2 c

−6 3 1

4− 3
2a −2− 3

2b − 1
2 − 3

2 c

a b c











, (11.4)

where a, b, c ∈ R.

Example 11.5. In view of the above considerations, left inverse L of the
matrix B = At, where A is the same as in (11.2), is the matrix given in (11.4).

Problems

11.1. For the following matrices find the rank, a basis for the row space,
a basis for the column space, and a basis for the nullspace

(i)





1 2 3 4 7
3 4 5 6 9
5 7 9 11 13



 (ii)





1 3 5 7 2 4
2 6 3 5 6 9

−1 −3 1 3 5 4





11.2. Let A ∈ Rm×n. Show that N (AtA) = N (A) and N (AAt) = N (At).

11.3. Let A ∈ Rm×n. Show that r(A) = r(At) = n if and only if r(AtA) =
n, C(At) = C(AtA), and r(A) = m if and only if r(AAt) = m.

11.4. Let A ∈ Rm×n and B ∈ Rn×m with n < m. Show that the matrix
AB is singular.

11.5. Let A ∈ Rm×n. Define Y = {y ∈ Rm : y = Ax for at least one x
∈ Rn}. Show that Y = C(A). The subspace Y ⊆ Rm is called the range of
the matrix A.

11.6. Let A ∈ Rm×n. Show that A has infinitely many right (left) inverses
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if r(A) = m < n (r(A) = n < m). When does A have exactly one right (left)
inverse?

11.7. Let A ∈ Rm×n. Show that A has a right inverse if and only if the
columns of A span Rm.

11.8. Let A ∈ Rm×n. Show that A has a left inverse if and only if At has
a right inverse.

11.9. Let A ∈ Rm×n. Show that if the right inverse R of A exists, then
R = At(AAt)−1.

11.10. Let A ∈ Rm×n. Show that if the left inverse L of A exists, then
L = (AtA)−1At.

11.11. Compute right inverse for the following matrices

(i)





1 2 3 7
−1 4 −2 5
3 7 0 3



 (ii)





5 3 2 1
4 2 1 3
1 5 3 5



 .

11.12. Compute left inverse for the following matrices

(i)









1 1 1
2 3 4
3 4 7
4 5 6









(ii)









1 −3 5
2 4 −2
3 5 2
0 3 7









.

Answers or Hints

11.1. (i) r(A) = 3, {(1, 0,−1,−2, 0), (0, 1, 2, 3, 0), (0, 0, 0, 0, 1)}, {(1, 0, 0)t,
(0, 1, 0)t, (0, 0, 1)t}, {(1,−2, 1, 0, 0)t, (2,−3, 0, 1, 0)t}.
(ii) r(A) = 3, {(1, 3, 5, 7, 2, 4), (0, 0, 7, 9,−2,−1), (0, 0, 0, 16, 61, 62)},
{(1, 0, 0)t, (0, 1, 0)t, (0, 0, 1)t}, {(−3, 1, 0, 0, 0, 0)t, (−20, 0, 83,−61, 16, 0)t,
(−40, 0, 82,−62, 0, 16)t}.
11.2. x ∈ N (A) ⇒ Ax = 0 ⇒ At(Ax) = 0 ⇒ x ∈ N (AtA) ⇒ N (A) ⊆
N (AtA). Next, x ∈ N (AtA) ⇒ AtAx = 0 ⇒ xtAtAx = 0 ⇒ (Ax)t(Ax) =
0 ⇒ Ax = 0 ⇒ x ∈ N (A) ⇒ N (A) ⊆ N (AtA). For the second part, change
A to At.
11.3. A ∈ Rm×n ⇒ AtA ∈ Rn×n. By Theorem 11.4, r(A) + n(A) = n and
r(AtA) + n(AtA) = n. From Problem 11.2, n(A) = n(AtA). Hence, r(A) = n
if and only if r(AtA) = n. C(At) = C(AtA) is equivalent to r(At) = r(AtA).
The third part is similar.
11.4. AB ∈ Rm×m. From Theorem 11.2, r(AB) ≤ n < m.
11.5. See Problem 5.2.
11.6. If for A ∈ Rm×n, r(A) = m < n, then from Theorem 11.6, A has a
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right inverse R. Thus from Theorem 5.12, r(A) = r(A|R) = m < n. Now use
Theorem 5.10.
11.7. From Theorem 11.6, the matrix A has a right inverse if and only if
ej , j = 1, · · · ,m are in C(A).
11.8. There exists L such that LA = I if and only if AtLt = I, i.e., if and
only if Lt = R such that AtR = I.
11.9. Since R exists, from Theorem 11.6 it follows that r(A) = m. Now from
Problem 11.3, we have r(AAt) = m. Since AAt is an m×m matrix, (AAt)−1

exists, and hence (AAt)(AAt)−1 = I.
11.10. Similar to Problem 11.9.

11.11. (i)
1

55









−14 + 155a −21 + 155b 16 + 155c
6− 90a 9− 90b 1− 90c

19− 120a 1− 120b −6− 120c
55a 55b 55c









.

(ii)
1

8









1 + a 1 + b −1 + c
−11− 43a 13− 43b 3− 43c
18 + 58a −22 + 58b −2 + 58c

8a 8b 8c









.

11.12. (i)
1

2





5− 4a −3− 2a 1 2a
−2− 4b 4− 2b −2 2b
−1− 4c −1− 2c 1 2c



 .

(ii)
1

38





18 + 44a 31 + 137a −14− 106a 38a
−10 + 44b −13 + 137b 12− 106b 38b
−2 + 44c −14 + 137c 10− 106c 38c



 .
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Chapter 12

Linear Mappings

In this chapter we shall extend some earlier results to general linear mappings
between two vector spaces. These mappings are of general interest and have
wide applicability, particularly because they preserve the additive structure of
linear combinations. Further, often it is possible to approximate an arbitrary
mapping by a linear mapping, which can be managed rather easily.

Throughout what follows, unless specified, we shall consider the finite
dimensional vector spaces V and W over the same field F. A mapping
L : V → W is called a linear mapping (also known as linear transformation,
and linear operator) if and only if it satisfies the following two conditions:

1. For every pair of vectors u, v ∈ V, L(u+ v) = L(u) + L(v).

2. For any scalar c ∈ F, and vector u ∈ V, L(cu) = cL(u).

Thus the mapping L is linear if it preserves the two basic operations of
a vector space, namely, the vector addition and the scalar multiplication. In
particular, the second condition implies that L(0) = 0. Clearly, the above
two conditions can be unified as follows: L : V → W is a linear mapping if
and only if for any pair of scalars α, β ∈ F and any pair of vectors u, v ∈
V, L(αu + βv) = αL(u) + βL(v). An immediate extension of this condition
gives L(c1u

1+ · · ·+cnun) = c1L(u
1)+ · · ·+cnL(un) for all ci ∈ F and ui ∈ V.

If W = V, then L is said to be a linear mapping on V.

Example 12.1. For a given matrix A ∈Mm×n the mapping LA : Fn →
Fm defined by LA(u) = Au is linear. Indeed, from the properties of matrices,
for all u, v ∈ Fn and c, d ∈ F, we have

LA(cu+ dv) = A(cu+ dv) = cAu+ dAv = cLA(u) + dLA(v).

In particular, when

A =

(

cosφ − sinφ
sinφ cosφ

)

the mapping LA : R2 → R2 rotates the xy-plane through an angle φ.

Example 12.2. Consider V as the infinite dimensional space of all real
integrable functions on an interval J. Then, L =

∫

J is a linear mapping.

97
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Indeed, for all α, β ∈ R and u, v ∈ V, we have

L(αu+ βv) =

∫

J

(αu(x) + βv(x))dx=α

∫

J

u(x)dx+ β

∫

J

v(x)dx=αL(u) + βL(v).

Similarly, on the space V of all real differentiable functions on an interval J ,
the mapping L = d/dx is linear.

Example 12.3. The projection mapping L : R3 → R2 defined by
L(x, y, z) = (x, y, 0)t is linear. However, the translation mapping L : R3 → R3

defined by L(x, y, z) = (x+ 1, y + 2, z + 3)t is not linear (nonlinear), because
L(0) = L(0, 0, 0) = (1, 2, 3)t 6= 0. The mapping L : R3 → R2 defined by
L(x, y, z) = (|x|, yz)t is also nonlinear.

The linear mappings zero (for every u ∈ V, L(u) = 0) and identity (for
every u ∈ V, L(u) = u) are respectively denoted as 0 and I.

Theorem 12.1. Let {u1, · · · , un} be a basis of V. Then, for any vectors
w1, · · · , wn ∈ W there exists a unique linear mapping L : V → W such that
L(ui) = wi, i = 1, · · · , n.

Proof. Let u ∈ V. Since {u1, · · · , un} is a basis of V, there exist unique
scalars c1, · · · , cn such that u = c1u

1 + · · · + cnu
n. We claim that L(u) =

c1w
1 + · · · + cnw

n is the required mapping. For this, first we note that L is
well-defined because ci, i = 1, · · · , n are unique, and since ui = 0u1 + · · · +
0ui−1 + 1ui + 0ui+1 + · · ·+ 0un, we have L(ui) = wi, i = 1, · · · , n. Next, to
show that L is linear, let v = b1u

1 + · · · + bnu
n ∈ V and k ∈ F, then since

u+v = (c1+b1)u
1+· · ·+(cn+bn)u

n, and ku = (kc1)u
1+· · ·+(kcn)u

n, we have
L(u+v) = (c1+b1)w

1+· · ·+(cn+bn)w
n and L(ku) = (kc1)w

1+· · ·+(kcn)w
n,

and hence it follows that L(u+ v) = L(u)+L(v) and L(ku) = kL(u). Finally,
to show the uniqueness of L, let L̃ : V → W be another linear mapping
such that L̃(ui) = wi, i = 1, · · · , n. Then, for every u ∈ V we find L̃(u) =
L̃(c1u

1 + · · ·+ cnu
n) = c1L̃(u

1) + · · ·+ cnL̃(u
n) = c1w

1 + · · ·+ cnw
n = L(u),

which implies that L = L̃.

Now we shall extend the definition of isomorphism given in Chapter 10 to
general vector spaces. The spaces V andW are said to be isomorphic, written
as V ≃ W, if there exists a one-to-one and onto linear mapping L : V → W.
This mapping L is called an isomorphism between V and W. It is clear that
≃ is an equivalence relation, i.e., 1. V ≃ V. 2. If U ≃ V, then V ≃ U. 3. If
U ≃ V and V ≃W, then U ≃W.

Theorem 12.2. V ≃W if and only if dim V = dimW.

Proof. Let V and W be n-dimensional vector spaces. Then, in view of
Chapter 10, V ≃ Fn and W ≃ Fn. Now V ≃ W follows from the fact
that ≃ is an equivalent relation. Conversely, if V ≃ W, then there exists an
isomorphism L : V → W. Assume that dimV = n, and let S = {u1, · · · , un}
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be a basis of V. It suffices to show that T = {L(u1), · · · , L(un)} is a basis for
W. For this, let w ∈ W, then w = L(u) for some u = c1u

1 + · · · + cnu
n ∈ V.

Thus, we have

w = L(u) = L(c1u
1 + · · ·+ cnu

n) = c1L(u
1) + · · ·+ cnL(u

n),

and this means that T spansW. Now suppose that c1L(u
1)+· · ·+cnL(un) = 0.

Then, L(c1u
1 + · · ·+ cnu

n) = 0. Since the mapping L is one-to-one it follows
that c1u

1 + · · ·+ cnu
n = 0. However, since S is linearly independent, we have

c1 = · · · = cn = 0. This means that T is also linearly independent.

Example 12.4. Since the spaces P4 and R2×2 are of dimension four, in
view of Theorem 12.2, P4 ≃ R2×2. In fact, an isomorphic mapping L : P4 →
R2×2 can be defined by mapping a basis of P4 onto a basis of R2×2. For this,
let S = {1, x, x2, x3} be a basis of P4, and

T =

{(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)}

be a basis of R2×2, and define L : S → T as follows

L(1) =

(

1 0
0 0

)

, L(x) =

(

0 1
0 0

)

,

L(x2) =

(

0 0
1 0

)

, L(x3) =

(

0 0
0 1

)

.

Then, it follows that

L(a+ bx+ cx2 + dx3) =

(

a b
c d

)

,

i.e., with this isomorphism the polynomial a+bx+cx2+dx3 acts like a matrix.

Once again, let L : V → W be a linear mapping. The set R(L) = {w ∈
W : L(u) = w for some u ∈ V } is called the range of L, and the set
N (L) = {u ∈ V : L(u) = 0} is called null space, or the kernel of the mapping
L. Clearly, N (L) extends the definition of null space of a matrix A given in
Chapter 5. The rank and the nullity of L are respectively defined by

rank(L) = dimR(L) and nullity(L) = dimN (L).

The following propositions can be established rather easily:

1. R(L) is a subspace of W.

2. N (L) is a subspace of V.

3. If u1, · · · , un span V, then L(u1), · · · , L(un) span R(L).

The linear mapping L : V → W is said to be singular if and only if there
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exists 0 6= u ∈ V such that L(u) = 0. Thus, L is nonsingular if and only if
N (L) = {0}.

Theorem 12.3. Let L : V →W be a linear mapping. Then, L is one-to-
one if and only if N (L) = {0}, i.e., L is nonsingular.

Proof. Since L(0) = 0, it follows that 0 ∈ N (L). If L is one-to-one, then
0 ∈ V is the only vector with image 0 ∈ W. Thus, we have N (L) = {0}.
Conversely, let N (L) = {0}. If L(u) = L(v) for u, v ∈ V, then L(u − v) = 0.
But, this implies that u− v = 0, i.e., u = v. Hence, L is one-to-one.

Corollary 12.1. The equation L(u) = w has at most one solution if and
only if N (L) = {0}.

Corollary 12.2. Let A be an m× n matrix and define T : Rn → Rm by
Tx = Ax. Then, T is one-to-one if and only if the columns of A are linearly
independent.

Example 12.5. The mapping L : R2 → R2 defined by L(x, y) = (2x +
y, x + 2y)t is nonsingular, i.e., one-to-one. For this, it suffices to show that
N (L) = {0}, i.e., the only solution of (2x + y, x + 2y)t = (0, 0)t, which is
equivalent to the system 2x+ y = 0, x+2y = 0 is the zero solution. However,
the mapping L̃ : R4 → R3 defined by L̃(x, y, z, w) = (x + 3y + 4z + 2w, 3x−
5y + 2z + 2w, 2x− y + 3z + 2w)t is singular. Indeed, (1, 7

13 ,− 15
13 , 1)

t ∈ N (L̃).

Theorem 12.4. Let L : V → W be a linear mapping. Then, dimV =
dimR(L) + dimN (L).

Proof. Suppose dimN (L) = r and {u1, · · · , ur} is a basis of N (L). Further,
suppose dimR(L) = s and {w1, · · · , ws} is a basis of R(L). Since L is a linear
mapping for each wj ∈ R(L) there exists vj ∈ V such that L(vj) = wj . It
suffices to show that S = {u1, · · · , ur, v1, · · · , vs} is a basis of V. For this,
let u ∈ V. Then, since L(u) ∈ R(L) there exist scalars cj such that L(u) =
c1w

1 + · · ·+ csw
s. Set ũ = c1v

1 + · · ·+ csv
s − u. Then, it follows that

L(ũ) = L(c1v
1 + · · ·+ csv

s − u)

= c1L(v
1) + · · ·+ csL(v

s)− L(u)

= c1w
1 + · · ·+ csw

s − L(u) = 0.

But this implies that ũ ∈ N (L), and hence there exist scalars ai such that

ũ = a1u
1 + · · ·+ aru

r = c1v
1 + · · ·+ csv

s − u,

which gives
u = c1v

1 + · · ·+ csv
s − a1u

1 + · · · − aru
r

and hence the set S spans the space V. To show that S is linearly independent,
let

x1u
1 + · · ·+ xru

r + y1v
1 + · · ·+ ysv

s = 0, (12.1)
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where xi, yj ∈ F. Then, we have

0 = L(0) = L(x1u
1 + · · ·+ xru

r + y1v
1 + · · ·+ ysv

s)

= x1L(u
1) + · · ·+ xrL(u

r) + y1L(v
1) + · · ·+ ysL(v

s).
(12.2)

However, since ui ∈ N (L), L(ui) = 0, and L(vj) = wj , from (12.2) it follows
that y1w

1+· · ·+ysws = 0. But, since wj are linearly independent, each yj = 0.
Thus, (12.1) reduces to x1u

1 + · · ·+ xru
r = 0. However, since ui are linearly

independent, each xi = 0.

For the linear mappings L : V → W and G : V → W the sum mapping
L + G : V → W , and the scalar product mapping cL : V → W, c ∈ F are
respectively defined as (L +G)(u) = L(u) +G(u) and (cL)(u) = cL(u). It is
clear that the mappings L + G and cL are also linear. The collection of all
mappings from V to W, denoted as Hom(V,W ) (where Hom stands for homo-
morphism), with the above operations of addition and scalar multiplication
forms a vector space. For this space the zero element is the zero mapping,
denoted as 0 from V to W.

Theorem 12.5. Suppose that dimV = n and dimW = m. Then,
dimHom(V,W ) = nm.

Proof. Let S = {u1, · · · , un} and T = {w1, · · · , wm} be ordered bases for V
andW , respectively. For each pair of integers (i, j), i = 1, · · · ,m, j = 1, · · · , n
we define a linear mapping Li,j from V to W as follows:

Li,j(us) =

{

0 if s 6= j
wi if s = j

}

= δsjw
i.

In view of Theorem 12.1 such a unique linear mapping exists. Clearly, the set
{Li,j} contains exactly nm elements, and hence it suffices to show that it is a
basis for Hom(V,W ). For this, let L ∈ Hom(V,W ) be an arbitrary mapping.
Suppose L(uk) = vk, k = 1, · · · , n. Since each vk ∈W is a linear combination
of wi, there exist scalars aik such that

vk = a1kw
1 + · · ·+ amkw

m, k = 1, · · · , n.

Consider the linear mapping

G =

m
∑

i=1

n
∑

j=1

aijL
i,j .

Clearly, we have

G(uτ ) =

m
∑

i=1

n
∑

j=1

aijL
i,j(uτ ) =

m
∑

i=1

aiτw
i = vτ = L(uτ ), τ = 1, · · · , n.
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But, this from Theorem 12.1 implies that G = L. Hence, L is a linear combi-
nation of Li,j, and this means that {Li,j} generates Hom(V,W ). Finally, we
need to show that {Li,j} is linearly independent. For this, let bij be scalars
such that

m
∑

i=1

n
∑

j=1

bijL
i,j = 0.

Then, for uk, k = 1, · · · , n we have

0 = 0(uk) =

m
∑

i=1

n
∑

j=1

bijL
i,j(uk) =

m
∑

i=1

bikw
i.

But since wi are linearly independent, we find bik = 0, i = 1, · · · ,m, k =
1, · · · , n.

Now suppose that V,W , and U are vector spaces over the same field F. Let
L : V → W and G : W → U be linear mappings. We define the composition
mapping G ◦ L : V → U by (G ◦ L)(u) = G(L(u)). Since for any scalars
c1, c2 ∈ F and any vectors u, v ∈ V,

(G ◦ L)(c1u+ c2v) = G(L(c1u+ c2v)) = G(c1L(u) + c2L(v))

= c1G(L(u)) + c2G(L(v))

= c1(G ◦ L)(u) + c2(G ◦ L)(v),

the composition mapping G ◦ L is linear.

Problems

12.1. LetM ∈ Rn×n be a fixed matrix. Show that the mapping L defined
by L(A) = AM +MA for all A ∈ Rn×n is linear.

12.2. Let L : V → W be a nonsingular linear mapping. Show that the
image of any linearly independent set is linearly independent. Is the converse
true?

12.3. Determine if the following linear mappings are singular or nonsin-
gular.

(i) L : R3 → R3 defined by L(x, y, z) = (2x+ y, 2y + z, 2z + x)t

(ii) L : R4 → R4 defined by L(x, y, z, w) = (21x + 17y + 7z + 10w, 24x +
22y + 6z + 10w, 6x+ 8y + 2z + 3w, 5x+ 7y + z + 2w)t

(iii) L : R4 → R3 defined by L(x, y, z, w) = (x + 2y + 3z + w, x + 3y + 5z −
2w, 3x+ 8y + 13z − 3w)t.

12.4. Verify Theorem 12.4 for the mappings given in Problem 12.3.
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12.5. Let V,W , and U be vector spaces over the same field F, and let
L : V → W, L̃ : V → W, G : W → U , and G̃ : W → U be linear mappings.
Show that

(i) G ◦ (L+ L̃) = G ◦ L+G ◦ L̃
(ii) (G+ G̃) ◦ L = G ◦ L+ G̃ ◦ L
(iii) c(G ◦ L) = (cG) ◦ L = G ◦ (cL), c ∈ F.

12.6. Let V,W, and U be vector spaces over the same field F, and L :
V → W and G : W → U be linear mappings. Show that rank(G ◦ L) ≤
min{rank(G), rank(L)}.

12.7. Let L : V → W be a linear mapping, and dimV = dimW. Show
that

(i) if L is one-to-one, then it is onto

(ii) if L is onto, then it is one-to-one.

12.8. Let L : V → W be a linear mapping. Show that

(i) if L is onto, then dimV ≥ dimW

(ii) if L is one-to-one, then dimV ≤ dimW.

12.9. A linear mapping L : V →W is called invertible if and only if there
exists a unique mapping L−1 :W → V such that L◦L−1 = I and L−1◦L = I.
Show that L : V → W is invertible if and only if L is one-to-one and onto.
Moreover, L−1 is a linear mapping, and (L−1)−1 = L.

12.10. Find L−1, if it exists, for mappings L given in Problem 12.3.

12.11. Let L be a linear mapping on V. Show that the following are equiv-
alent:

(i) N = {0}
(ii) L is one-to-one

(iii) L is onto

(iv) L is invertible.

12.12. Let V,W,U be vector spaces over the same field F, and let L :
V →W and G :W → U be isomorphisms. Show that G ◦L is invertible, and
(G ◦ L)−1 = L−1 ◦G−1.

12.13. Let L and G be linear mappings on V. Give an example to show
that L ◦G 6= G ◦ L.

12.14. The vector space Hom(V, V ) is usually denoted as A(V ). Clearly,
the identity mapping I : V → V belongs to A(V ). Show that
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(i) if dim V = n, then dimA(V ) = n2

(ii) if L,G ∈ A(V ), then LG = G ◦ L ∈ A(V )

(iii) if L,G ∈ A(V ) and LG = I, then L is invertible and G = L−1

(iv) if L ∈ A(V ), then Ln ∈ A(V ), n = 1, 2, · · ·
(v) if L,G,H ∈ A(V ) and c ∈ F, then (a) L(G+H) = LG+LH (b) (G+
H)L = GL+HL (c) c(GL) = (cG)L = G(cL) (d) (LG)H = L(GH).

12.15. Let L and G be linear mappings given by

L(x) =

(

ax1 + bx2
cx1 + dx2

)

and G(x) =

(

αx1 + βx2
γx1 + δx2

)

,

where ad− bc = |A| 6= 0. Find the matrix A such that L−1(G(x)) = Ax.

12.16. Let L : R2 → R2 be a linear mapping. A line segment between two
vectors u and v in R2 is defined by tu + (1 − t)v, 0 ≤ t ≤ 1. A set S in R2

is called convex if for every pair of vectors in S, the line segment between the
vectors is in S. Show that

(i) the image of a line segment under the map L is another line segment

(ii) if L is an isomorphism and S is convex, then L(S) is a convex set.

Answers or Hints

12.1. Verify directly.
12.2. Suppose u1, · · · , un ∈ V are linearly independent, and c1L(u

1) + · · ·+
cnL(u

n) = 0. Then, L(c1u
1+ · · ·+ cnu

n) = 0. But since, N (L) = {0} we have
c1u

1 + · · ·+ cnu
n = 0, which implies c1 = · · · = cn = 0.

12.3. (i) Nonsingular.

(ii) Singular.

(ii) Singular.

12.4. (i) dimV = 3, n(L) = 0, dimR(L) = 3.

(ii) dimV = 4, n(L) = 1, dimR(L) = 3.

(iii) dimV = 4, n(L) = 2, dimR(L) = 2.

12.5. Verify directly.
12.6. L(V ) ⊆ W, and hence G(L(V )) ⊆ G(W ). Thus, rank(G ◦ L) =
dim[G(L(V ))] ≤ dim[G(W )] = rank(G). We also have rank(G ◦ L) =
dim[G(L(V ))] ≤ dim[L(V )] = rank(L).
12.7. (i) One-to-one implies N (L) = {0}. Thus dimV = dimW = dimR(L),
and hence L is onto.

(ii) Onto implies R(L) = W. Thus dimV = dimW = dimR(L), and hence
N (L) = {0}.
12.8. (i) In Theorem 12.4, dimR(L) = dimW and dimN (L) ≥ 0.

(ii) In Theorem 12.4, dimN(L) = 0 and dimR(L) ≤ dimW.
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12.9. Let L be invertible. Suppose L(u) = L(v) for u, v ∈ V. Then
L−1(L(u)) = L−1(L(v)), so u = v, i.e., L is one-to-one. If w ∈ W, then
L(L−1(w)) = w, so if we let L−1(w) = u, then L(u) = w. Thus L is onto.
Conversely, suppose L is one-to-one and onto. If w ∈ W, then since L is
onto, w = L(u) for some u ∈ V, and since L is one-to-one, u is unique.
We define G : W → V by G(w) = u. Clearly, L(G(w)) = L(u) = w, so
that L ◦ G = I. Also, since G(L(u)) = G(w) = u we have G ◦ L = I.
Thus G is an inverse of L. To show its uniqueness let G̃ : W → V be such
that L ◦ G̃ = I and G̃ ◦ L = I, then L(G(w)) = w = L(G̃(w)) for any
w ∈ W. But since L is one-to-one, we conclude that G(w) = G̃(w). Hence,
G = G̃. In conclusion, G = L−1. To show L−1 is linear, let w1, w2 ∈ W
where L(v1) = w1 and L(v2) = w2 for v1, v2 ∈ V. Then since for any scalars
c1, c2 ∈ F, L(c1v

1 + c2v
2) = c1L(v

1) + c2L(v
2) = c1w

1 + c2w
2 it follows that

L−1(c1w
1 + c2w

2) = c1v
1 + c2v

2 = c1L
−1(w1) + c2L

−1(w2). Finally, since
L ◦ L−1 = I and L−1 ◦ L = I, and inverses are unique, we have (L−1)−1 = l.
12.10. (i) 1

9 (4a− 2b+ c, a+ 4b− 2c,−2a+ b+ 4c)t.

(ii) Does not exist.
(iii) Does not exist.

12.11. Use Theorem 12.3 and Problems 12.7 and 12.9.
12.12. We have (G ◦ L) ◦ (L−1 ◦G−1) = G ◦ (L ◦ L−1) ◦G−1 = G ◦G−1 = I,
L : V →W, G :W → U, dimV = m, dimW = n, dimU = p, (L−1 ◦G−1) ◦
(G ◦ L) = L−1 ◦ (G−1 ◦G) ◦ L = L−1 ◦ L = I.
12.13. Consider L(x, y) = (x,−y)t and G(x, y) = (y, x)t.
12.14. (i) See Theorem 12.5.

(ii) Verify directly.
(iii) n = rank(I) = rank(LG) ≤ rank(L) ≤ n and hence rank(L) = n. Now
use Problem 12.11. If LL−1 = L−1L = I, then G = IG = L−1L(G) =
L−1(LG) = L−1I = L−1.
(iv) Verify directly.
(v) Verify directly.

12.15.
1

|A|

(

dα− bγ dβ − bδ
−cα+ aγ −cβ + aδ

)

.

12.16. Use definitions.
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Chapter 13

Matrix Representation

In this chapter we shall establish the connection between linear mappings
and matrices. Our discussion, in particular, generalizes Theorems 10.1 and
10.2. We shall also introduce the concept of similar matrices, which plays an
important role in later chapters.

As in Chapter 12, unless specified, here we shall also consider the finite di-
mensional vector spaces V andW over the same field F. Let S = {u1, · · · , un}
and T = {w1, · · · , wm} be ordered bases for V and W, respectively, and
L : V → W be a linear mapping. Then, for each j = 1, · · · , n there exist
unique scalars aij , i = 1, · · · ,m such that

L(uj) = a1jw
1 + · · ·+ amjw

m =

m
∑

i=1

aijw
i. (13.1)

Clearly, (a1j , · · · , amj)
t ∈ Fm are the coordinates of L(uj) in the ordered basis

T. Thus, (13.1) implies that the linear mapping L is completely determined
by the scalars aij . This unique m×n matrix A = (aij) is called the transition
matrix of L relative to the bases S and T. Now let u = x1u

1 + · · ·+ xnu
n be

a vector in V. Then from (13.1) it follows that

L(u) = L





n
∑

j=1

xju
j



 =
n
∑

j=1

xjL(u
j)

=

n
∑

j=1

xj

(

m
∑

i=1

aijw
i

)

=

m
∑

i=1





n
∑

j=1

aijxj



wi.

Thus, if
w = L(u) = y1w

1 + · · ·+ ymw
m, (13.2)

then we have

yi =

n
∑

j=1

aijxj . (13.3)

Hence, if (x1, · · · , xn)tS are the coordinates of u ∈ V and (y1, · · · , ym)tT are
the coordinates of w = L(u) ∈W, then

y = Ax or yT (L(u)) = AxS(u). (13.4)

107
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Therefore, each linear mapping L : V → W can be completely characterized
by the m×n transition matrix A = (aij) relative to the bases S and T. Often,
we shall denote this matrix as AST .

Example 13.1. In (P3, R) and (P2, R) consider the ordered bases S =
{1, x, x2} and T = {1, x}, respectively. Let L : P3 → P2 be the differential
mapping, i.e., L(a+ bx+ cx2) = b + 2cx. For this mapping, we have

L(1) = 0 = 0(1) + 0(x)
L(x) = 1 = 1(1) + 0(x)
L(x2) = 2x = 0(1) + 2(x),

and hence the transition matrix relative to the given bases S and T is

A =

(

0 1 0
0 0 2

)

.

In particular, for the polynomial P3 = P3(x) = 4+3x+7x2 we have xS(P3) =
(4, 3, 7)t, and hence

yT (L(P3)) =

(

0 1 0
0 0 2

)





4
3
7



 =

(

3
14

)

.

This immediately gives L(P3) = 3 + 14x.

Example 13.2. Let L : R3 → R2 be the linear mapping defined by
L(x, y, z) = (x + y − z, x− y + z)t, and let S = {(1, 1, 1)t, (1, 1, 0)t, (1, 0, 0)t}
and T = {(1, 2)t, (2, 1)t}. Since

(α, β)t =
1

3
(2β − α)(1, 2)t +

1

3
(2α− β)(2, 1)t (13.5)

we have

L(u1) = (1, 1)t =
1

3
(1, 2)t +

1

3
(2, 1)t

L(u2) = (2, 0)t = −2

3
(1, 2)t +

4

3
(2, 1)t

L(u3) = (1, 1)t =
1

3
(1, 2)t +

1

3
(2, 1)t

and hence the transition matrix relative to the given bases S and T is

A =

(

1
3 − 2

3
1
3

1
3

4
3

1
3

)

.

Now since

u = (a, b, c)t = c(1, 1, 1)t + (b − c)(1, 1, 0)t + (a− b)(1, 0, 0)t
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from (13.4) it follows that

yT (L(u)) = AxS(u) = A(c, b− c, a− b)t =

(

c− b+
1

3
a, b− c+

1

3
a

)t

.

(13.6)
In view of (13.5), we also have

L(u) = (a+ b− c, a− b+ c)t =

(

c− b +
1

3
a

)

(1, 2)t+

(

b− c+
1

3
a

)

(2, 1)t,

which confirms (13.6).

Conversely, assume that anm×nmatrix A is given. Then from the relation
(13.4) we can compute the coordinates yT (L(u)) for the unknown mapping L.
But, then (13.2) uniquely determines the mapping L : V → W. It can easily
be verified that this mapping is linear. In conclusion, we find that for the two
given vector spaces V and W with fixed ordered bases S and T, there exists a
one-to-one correspondence between the set of all linear mappings L : V →W
and the set of all matrices Mm×n.

Now let S = {u1, · · · , un}, S̃ = {ũ1, · · · , ũn} be ordered bases for V, and
T = {w1, · · · , wm}, T̃ = {w̃1, · · · , w̃m} be ordered bases for W, and L : V →
W be a linear mapping. Since L can be characterized by A = AST = (aij) and
B = AS̃T̃ = (bij), it is natural to know the relation between these matrices.
For this, let

L(uj) =

m
∑

i=1

aijw
i, j = 1, · · · , n (13.7)

L(ũj) =

m
∑

k=1

bkjw̃
k, j = 1, · · · , n (13.8)

uj =
n
∑

µ=1

pµj ũ
µ, j = 1, · · · , n (13.9)

wj =

m
∑

ν=1

qνjw̃
ν , j = 1, · · · ,m. (13.10)

Then, we have

L(uj) = L

(

n
∑

µ=1

pµj ũ
µ

)

=

n
∑

µ=1

pµjL(ũ
µ) =

n
∑

µ=1

m
∑

k=1

pµjbkµw̃
k (13.11)

and

L(uj) =

m
∑

i=1

aijw
i =

m
∑

i=1

aij

(

m
∑

ν=1

qνiw̃
ν

)

=

m
∑

i=1

m
∑

ν=1

aijqνiw̃
ν . (13.12)
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On comparing the coefficients of w̃k in (13.11) and (13.12), we get

m
∑

s=1

qksasj =

n
∑

s=1

bkspsj , j = 1, · · · , n, k = 1, · · · ,m. (13.13)

Thus, if Q = (qks)m×m, A = (asj)m×n, B = (bks)m×n, P = (psj)n×n are the
matrices, then (13.13) is the same as

QA = BP,

and since P is invertible, we have the required relation

B = QAP−1. (13.14)

In the special case when V = W, and S = T = {u1, · · · , un}, S̃ = T̃ =
{ũ1, · · · , ũn}, we have P = Q, and then the relation (13.14) reduces to

B = PAP−1, (13.15)

which is the same as
A = P−1BP. (13.16)

Example 13.3. In addition to L, S, T given in Example 13.2, let S̃ =
{(1, 0, 0)t, (0, 1, 0)t, (0, 0, 1)t} and T̃ = {(1, 0)t, (0, 1)t}. Then, we have

A =

(

1
3 − 2

3
1
3

1
3

4
3

1
3

)

, B =

(

1 1 −1
1 −1 1

)

, Q =

(

1 2
2 1

)

P =





1 1 1
1 1 0
1 0 0



 , P−1 =





0 0 1
0 1 −1
1 −1 0



 .

For these matrices relation (13.14) follows immediately.

Example 13.4. Let L : R2 → R2 be the linear mapping defined
by L(x, y) = (2x + y, x + 2y)t, and let S = {(1, 1)t, (1, 0)t} and S̃ =
{(0, 1)t, (1, 1)t}. Since

L(1, 1) = (3, 3)t = 3(1, 1)t + 0(1, 0)t

L(1, 0) = (2, 1)t = 1(1, 1)t + 1(1, 0)t

L(0, 1) = (1, 2)t = 1(0, 1)t + 1(1, 1)t

L(1, 1) = (3, 3)t = 0(0, 1)t + 3(1, 1)t

(1, 1)t = 0(0, 1)t + 1(1, 1)t

(1, 0)t = −1(0, 1)t + 1(1, 1)t,

we have

A =

(

3 1
0 1

)

, B =

(

1 0
1 3

)

, P =

(

0 −1
1 1

)

, P−1 =

(

1 1
−1 0

)

.
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For these matrices relation (13.15) follows immediately.

Finally, let A and B be two square matrices of the same order. If there
exists a nonsingular matrix P such that (13.16) holds, then the matrices A and
B are called similar, and the matrix P is called a similarity matrix. Clearly,
matrices A and B in Example 13.4 are similar. From our above discussion it is
clear that two matrices A and B are similar if and only if A and B represent
the same linear mapping L : V → V with respect to two ordered bases for V.
It is clear that similarity of matrices is an equivalence relation, i.e., reflexive,
symmetric, and transitive.

Problems

13.1. In (P3, R) and (P4, R) consider the ordered bases S = {1, 1+x, 1+
x + x2} and T = {x3 + x2, x2 + x, x + 1, 1}, respectively. Let L : P3 → P4

be the linear mapping defined by L(a+ bx+ cx2) = (a+ b) + (b+ c)x+ (c+
a)x2 + (a+ b+ c)x3. Find the transition matrix.

13.2. In R3 and R2 consider the ordered bases {(1, 1, 1)t, (1, 1, 0)t,
(1, 0, 0)t} and {(1, 3)t, (1, 2)t}, respectively. Let L : R3 → R2 be the linear
mapping L(x, y, z) = (2x+ z, 3y − z)t. Find the transition matrix.

13.3. In R3 and R4 consider the ordered bases S = {(1, 1, 0)t, (1, 0, 1)t,
(0, 1, 1)t} and T = {(1, 1, 1, 1)t, (1, 1, 1, 0)t, (1, 1, 0, 0)t, (1, 0, 0, 0)t}, respec-
tively. Let L : R3 → R4 be the linear mapping L(x, y, z) = (2x + y + z, x +
2y + z, x+ y + 2z, 2x− y − z)t. Find the transition matrix.

13.4. In Problem 13.1, instead of L let the 4× 3 matrix

A =









1 −1 0
0 3 −2
3 5 2
2 1 1









be given. Find the linear mapping L : P3 → P4.

13.5. In Problem 13.2, instead of L let the 2× 3 matrix

A =

(

2 −1 3
−3 2 1

)

be given. Find the linear mapping L : R3 → R2.

13.6. In Problem 13.3, instead of L let the 4× 3 matrix

A =









−1 1 1
5 3 −2
4 5 2
2 1 −1








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be given. Find the linear mapping L : R3 → R4.

13.7. In addition to L, S, T given in Problem 13.1, let S̃ = {1, 1−x, 1−
x− x2} and T̃ = {x3 − x2, x2 − x, x − 1, 1}. Verify the relation (13.14).

13.8. In addition to L, S, T given in Problem 13.2, let S̃ = {(2, 1, 1)t,
(2, 1, 0)t, (2, 0, 0)t} and T̃ = {(3, 1)t, (2, 1)t}. Verify the relation (13.14).

13.9. In addition to L, S, T given in Problem 13.3, let S̃ = {(0, 1, 1)t,
(1, 0, 1)t, (1, 1, 0)t} and T̃ = {(1, 1, 0, 0)t, (0, 1, 1, 0)t, (0, 0, 1, 1)t, (0, 0, 0, 1)t}.
Verify the relation (13.14).

13.10. Let A and B be similar matrices. Show that

(i) detA = detB

(ii) tr(A) = tr(B)

(iii) rank(A) = rank(B)

(iv) N (A) = N (B)

(v) AB and BA are similar, provided A or B is nonsingular.

Answers or Hints

13.1.









1 2 3
0 −1 −1
0 2 3
1 0 −1









.

13.2.

(

−4 −1 −4
7 3 6

)

.

13.3.









1 1 −2
1 2 5
1 −1 0
0 1 −1









.

13.4. L(a+bx+cx2) = (5a+b−3c)+(3a+5b−8c)x+(a+b−4c)x2+(a−2b+c)x3.
13.5. L(x, y, z) = (4x− 3y − 2z, 11x− 10y − z)t.

13.6. L(x, y, z) =
(

10x, 8x+ z, 92x− 1
2y − 1

2z,− 1
2x− 1

2y +
3
2z
)t
.

13.7. B =









1 0 −1
2 1 −1
2 0 −3
3 0 −3









, Q =









1 0 0 0
2 1 0 0
2 2 1 0
2 2 2 1









A =









1 2 3
0 −1 −1
0 2 3
1 0 −1









, P =





1 2 2
0 −1 0
0 0 −1



 .
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13.8. B =

(

1 −2 4
1 5 −4

)

, Q =

(

−5 −3
8 5

)

, A =

(

−4 −1 −4
7 3 6

)

P =





1 0 0
0 1 0

− 1
2 − 1

2
1
2



 .

13.9. B =









2 3 3
1 −1 0
2 4 2

−4 −3 −1









, Q =









1 1 1 1
0 0 0 −1
1 1 0 1
0 −1 0 −1









A =









1 1 −2
1 2 5
1 −1 0
0 1 −1









, P =





0 0 1
0 1 0
1 0 0



 .

13.10. (i) detA = detP−1detBdetP = detB.

(ii) See Problem 4.6.
(iii) Use Corollary 11.2.
(iv) Follows from Part (iii).
(v) AB = B−1(BA)B.
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Chapter 14

Inner Products and Orthogonality

In this chapter we shall extend the familiar concept-inner product of two or
three dimensional vectors to general vector spaces. Our definition of inner
products leads to the generalization of the notion of perpendicular vectors,
called orthogonal vectors. We shall also discuss the well-known Gram–Schmidt
orthogonalization process.

An inner product on (V,C) is a function that assigns to each pair of vectors
u, v ∈ V a complex number, denoted as (u, v), or simply by u·v, which satisfies
the following axioms:

1. Positive definite property: (u, u) > 0 if u 6= 0, and (u, u) = 0 if and only if
u = 0.

2. Conjugate symmetric property: (u, v) = (v, u).

3. Linear property: (c1u+ c2v, w) = c1(u,w)+ c2(v, w) for all u, v, w ∈ V and
c1, c2 ∈ C.

The vector space (V,C) with an inner product is called a complex inner
product space. From 2. we have (u, u) = (u, u) and hence (u, u) must be real,
and from 2. and 3. it immediately follows that (w, c1u + c2v) = c1(w, u) +
c2(w, v).

The definition of a real inner product space (V,R) remains the same as
above except now for each pair u, v ∈ V, (u, v) is real, and hence in 2. complex
conjugates are omitted. In (V,R) the angle 0 ≤ θ ≤ π between the vectors
u, v is defined by the relation

cos θ =
(u, v)

(u, u)1/2(v, v)1/2
. (14.1)

Further, the projection of u onto the vector v is denoted and defined by

proj(u, v) = projvu =
(u, v)

(v, v)
v. (14.2)

Example 14.1. Let u = (a1, · · · , an)t, v = (b1, · · · , bn)t ∈ Rn. The inner
product in Rn is defined as

(u, v) = utv = a1b1 + · · ·+ anbn =
n
∑

i=1

aibi = vtu.

115
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The inner product in Rn is also called dot product and is denoted as u ·v. The
vector space Rn with the above inner product or dot product is simply called
an inner product, or dot product, or Euclidean n-space.

Thus, for the vectors u = (2, 3, 4)t, v = (1, 0, 7)t in R3, we find

cos θ =
30√
29
√
50

and proj(u, v) =
3

5
(1, 0, 7)t.

Let A = (aij) ∈ Rn×n, then it follows that

(Au, v) = (Au)tv = utAtv = ut(Atv) = (u,Atv),

and hence, we have the relation

(Au, v) = (u,Atv). (14.3)

If A is an orthogonal matrix, then from (14.3) it immediately follows that
(Au,Av) = (u, v).

Clearly, for 1 × n vectors u = (a1, · · · , an), v = (b1, · · · , bn) the above
definition of inner product is (u, v) = uvt =

∑n
i=1 aibi = vut.

Example 14.2. Let u = (a1, · · · , an)t, v = (b1, · · · , bn)t ∈ Cn. The stan-
dard inner (dot) product in Cn is defined as

(u, v) = utv = a1b1 + · · ·+ anbn =

n
∑

i=1

aibi = vHu.

The vector space Cn with the above inner product is called a unitary space.

Clearly, for 1 × n vectors u = (a1, · · · , an), v = (b1, · · · , bn) the above
definition of inner product is (u, v) = uvt = uvH =

∑n
i=1 aibi.

Example 14.3. In the vector space (Cm×n, C) an inner product for each
pair of m× n matrices A = (aij), B = (bij) is defined as

(A,B) = tr(BHA) =
m
∑

i=1

n
∑

j=1

bijaij .

Example 14.4. In the vector space of complex-valued continuous func-
tions C[a, b] an inner product for each pair of functions f, g is defined as

(f, g) =

∫ b

a

f(x)g(x)dx.

Let V be an inner product space. Two vectors u, v ∈ V are said to be
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orthogonal if and only if (u, v) = 0. For example, if u, v ∈ Rn, then the vector
(u− proj(u, v)) is orthogonal to v. Indeed, we have

(u− proj(u, v), v) = (u, v)− (u, v)

(v, v)
(v, v) = 0.

A subset S of V is said to be orthogonal if and only if every pair of vectors
in S is orthogonal, i.e., if u, v ∈ S, u 6= v then (u, v) = 0. Clearly, 0 ∈ V is
orthogonal to every u ∈ V, since (0, u) = (0u, u) = 0(u, u) = 0. Conversely, if
v is orthogonal to every u ∈ V, then in particular (v, v) = 0, and hence v = 0.

The subset Ŝ is called orthonormal if Ŝ is orthogonal and for every û ∈
Ŝ, (û, û) = 1. If S is an orthogonal set and u ∈ S, then the set Ŝ of vectors û =
u/(u, u)1/2 is orthonormal. Indeed, if u, v ∈ S, then for û = u/(u, u)1/2, v̂ =
v/(v, v)1/2 ∈ Ŝ, we have

(û, v̂) =

(

u

(u, u)1/2
,

v

(v, v)1/2

)

=
1

(u, u)1/2(v, v)1/2
(u, v) = 0

and

(û, û) =

(

u

(u, u)1/2
,

u

(u, u)1/2

)

=
1

(u, u)1/2(u, u)1/2
(u, u) = 1.

The above process of normalizing the vectors of an orthogonal set is called
orthonormalization.

Example 14.5. From (14.1) it is clear that in the inner product space
Rn two vectors u = (a1, · · · , an)t, v = (b1, · · · , nn)

t are orthogonal if and
only if (u, v) =

∑n
i=1 aibi = 0. The subset S = {u, v, w} = {(1, 2, 0,−1)t,

(5, 2, 4, 9)t, (−2, 2,−3, 2)t} of R4 is orthogonal. For this, it suffices to note
that utv = vtw = wtu = 0. This set can be orthonormalized, to obtain

Ŝ =

{

u

(u, u)1/2
,

v

(v, v)1/2
,

w

(w,w)1/2

}

=

{

(

1√
6
,
2√
6
, 0,

−1√
6

)t

,

(

5√
126

,
2√
126

,
4√
126

,
9√
126

)t

,

( −2√
21
,

2√
21
,
−3√
21
,

2√
21

)t
}

.

The set {e1, · · · , en} is orthonormal.

Let S be a subset of an inner product space V. The orthogonal complement
of S, denoted as S⊥ (read as “S perp”) consists of those vectors in V that are
orthogonal to every vector v ∈ S, i.e., S⊥ = {u ∈ V : (u, v) = 0 for every v ∈
S}. In particular, for a given vector v ∈ V, we have v⊥ = {u ∈ V : (u, v) = 0},
i.e., v⊥ consists of all those vectors of V that are orthogonal to v.

For a given subset S of an inner product space V it is clear that 0 ∈ S⊥,
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as 0 is orthogonal to every vector in V. Further, if u,w ∈ S⊥, then for all
scalars α, β and u ∈ S, we have (αv + βw, u) = α(v, u) + β(w, u) = 0, i.e.,
αv + βw ∈ S⊥. Thus, S⊥ is a subspace of V.

Example 14.6. Extending the geometric definition of a plane in R3, an
equation of the form a1x1 + · · · + anxn = c is called a hyperplane in Rn. If
c = 0, then the hyperplane passes through the origin. Let ai = (ai1, · · · , ain)t ∈
Rn, i = 1, · · · ,m and x = (x1, · · · , xn)t ∈ Rn. Then, the homogeneous system
(5.3) can be written as ((ai)t, x) = 0, i = 1, · · · ,m. Thus, geometrically, the
solution space N (A) of the system (5.3) consists of all vectors x in Rn that are
orthogonal to every row vector of A, i.e., N (A) is the orthogonal complement
of R(A).

Theorem 14.1. Let (V,C) be an inner product space, and let S =
{u1, · · · , un} be an orthogonal subset of nonzero vectors. Then, S is linearly
independent.

Proof. Suppose

c1u
1 + · · ·+ ci−1u

i−1 + ciu
i + ci+1u

i+1 + · · ·+ cnu
n = 0. (14.4)

Taking the inner product of (14.4) with ui, i = 1, · · · , n we get

0 = (0, ui) = (c1u
1 + · · ·+ ci−1u

i−1 + ciu
i + ci+1u

i+1 + · · ·+ cnu
n, ui)

=

n
∑

k=1,k 6=i

ck(u
i, uk) + ci(u

i, ui)

= 0 + ci(u
i, ui).

Hence, ci = 0, i = 1, · · · , n; and therefore, S is linearly independent.

Corollary 14.1. Let (V,C) be an inner product space, and let S =
{u1, · · · , un} be an orthogonal subset of nonzero vectors. If S generates V,
then S is a basis (orthogonal basis) for V.

The importance of orthogonal bases lies on the fact that working with
these bases requires minimum computation.

Theorem 14.2. Let S = {u1, · · · , un} be an orthogonal basis for an inner
product space (V,C). Then, for any vector v ∈ V,

v =
(v, u1)

(u1, u1)
u1 +

(v, u2)

(u2, u2)
u2 + · · ·+ (v, un)

(un, un)
un =

n
∑

i=1

projuiv. (14.5)

Proof. Suppose v = c1u
1+ · · ·+ cnu

n. Then, as in Theorem 14.1, it follows
that (v, ui) = ci(u

i, ui), i = 1, · · · , n.

The relation (14.5) is called the Fourier expansion of v in terms of the
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orthogonal basis S, and the scalars ci = (v, ui)/(ui, ui), i = 1, · · · , n are
called the Fourier coefficients of v.

Theorem 14.3. Let (V,C) be an inner product space, and let {u1, · · · , ur}
be an orthogonal subset of nonzero vectors. Let v ∈ V, and define

ṽ = v − (c1u
1 + · · ·+ cru

r), ci =
(v, ui)

(ui, ui)
.

Then, ṽ is orthogonal to u1, · · · , ur.

Proof. It suffices to notice that for each i = 1, · · · , r,

(ṽ, ui) = (v − (c1u
1 + · · ·+ cru

r), ui)

= (v, ui)− ci(u
i, ui) = (v, ui)− (v, ui)

(ui, ui)
(ui, ui) = 0.

Theorem 14.4 (Gram–Schmidt orthogonalization pro-
cess). Let (V,C) be an inner product space, and let S = {u1, · · · , un}
be a basis. Then, T = {v1, · · · , vn}, where

vi = ui − (ci1v
1 + · · ·+ ci,i−1v

i−1), cij =
(ui, vj)

(vj , vj)
,

i = 1, · · · , n, j = 1, · · · , i− 1

(14.6)

is an orthogonal basis.

Proof. The proof follows from Theorem 14.3.

Example 14.7. Consider the basis {(0, 1, 1)t, (1, 0, 1)t, (1, 1, 0)t} for R3.
From (14.6), we have

v1 = u1 = (0, 1, 1)t

v2 = u2 − (u2, v1)

(v1, v1)
v1 = (1, 0, 1)t − 1

2
(0, 1, 1)t =

(

1,−1

2
,
1

2

)t

v3 = u3 − (u3, v1)

(v1, v1)
v1 − (u3, v2)

(v2, v2)
v2

= (1, 1, 0)t − 1

2
(0, 1, 1)t − 1

3

(

1,−1

2
,
1

2

)t

=

(

2

3
,
2

3
,−2

3

)t

.

Thus, for R3,
{

(0, 1, 1)t, (1,− 1
2 ,

1
2 )

t, (23 ,
2
3 ,− 2

3 )
t
}

is an orthogonal basis, and
{

1√
2
(0, 1, 1)t,

√

2
3 (1,− 1

2 ,
1
2 )

t,
√
3
2 (23 ,

2
3 ,− 2

3 )
t
}

is an orthonormal basis. Further,

from (14.5) it follows that

(2, 2, 3)t =
5

2
(0, 1, 1)t +

5/2

3/2

(

1,−1

2
,
1

2

)t

+
2/3

4/3

(

2

3
,
2

3
,−2

3

)t

.
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Remark 14.1. From (14.6), we have

ui = (ci1v
1 + · · ·+ ci,i−1v

i−1) + vi, i = 1, · · · , n

and hence if S and T are ordered bases, then for changing the basis from T to
S the transition matrix is lower triangular and nonsingular as each diagonal
element is 1. Then the inverse of this matrix is also lower triangular (see
Problem 4.4), i.e., there exist scalars dij , i = 1, · · · , n, j = 1, · · · , i such that

vi = di1u
1 + · · ·+ diiu

i.

Remark 14.2. Let (V,C) be an n-dimensional inner product space, and
let u1, · · · , ur, r < n be orthogonal vectors of V. Then, from Corollary 9.3 and
Theorem 14.4 it follows that there are vectors ur+1, · · · , un in V such that
S = {u1, · · · , un} is a orthogonal basis of V.

Theorem 14.5. Let (V,C) be an n-dimensional inner product space, and
let U be a subspace of V. Then, V = U ⊕ U⊥.

Proof. In view of Theorem 14.4, there exists an orthogonal basis {u1, · · · ,
ur} of U, and by Remark 14.2, we can extend it to an orthogonal basis
{u1, · · · , un} of V. Clearly, ur+1, · · · , un ∈ U⊥. Now let u ∈ V, then

u = c1u
1 + · · ·+ cru

r + cr+1u
r+1 + · · ·+ cnu

n,

where c1u
1+· · ·+crur ∈ U and cr+1u

r+1+· · ·+cnun ∈ U⊥. Thus, V = U⊕U⊥.
On the other hand, if v ∈ U ⊕ U⊥, then (v, v) = 0, and this implies that
v = 0, and hence U ⊕ U⊥ = {0}. Therefore, from Theorem 9.6, we have
V = U ⊕ U⊥.

Example 14.8. For a given m × n matrix A if {u1, · · · , ur} is a basis
(orthogonal basis) of R(A) and {ur+1, · · · , un} is a basis (orthogonal basis)
for N (A), then from Theorems 11.4 and 14.5 it immediately follows that
{u1, · · · , un} is a basis (orthogonal basis) for Rn. Thus the set of vectors
{(1, 2, 1, 5)t, (0, 0, 1, 2)t, (−2, 1, 0, 0)t, (−3, 0,−2, 1)t} obtained in Example 11.1
form a basis of R4.

Remark 14.3. Theorem 14.5 holds for infinite dimensional inner product
spaces also.

Remark 14.4. In view of Theorem 14.5 every v ∈ V can be uniquely
written as v = u + u′, where u ∈ U and u′ ∈ U⊥. We say u is the orthogonal
projection of v along U, and denote it by proj (v, U), or projUv. In particu-
lar, if U is spanned by an orthogonal set S = {u1, · · · , ur}, then projSv =
projUv = c1u

1 + · · · + cru
r, where ci = (v, ui)/(ui, ui), i = 1, · · · , r. Thus,

projUv =
∑r

i=1 projuiv. In the case where S is ordered, then (c1, · · · , cr)t are
the coordinates of u with respect to the set S.
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Problems

14.1. For the vectors u = (a1, a2, a3)
t, v = (b1, b2, b3)

t ∈ R3 the cross
product (valid only in R3), denoted as u× v ∈ R3, is defined as

u× v = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
t.

Show that for all vectors u, v, w ∈ R3

(i) u× v = −(v × u)

(ii) u× u = 0

(iii) the vector u× v is orthogonal to both u and v

(iv) u× (v + w) = (u× v) + (u× w)

(v) (u× v)× w = (u,w)v − (v, w)u

(vi) (u× v)2 = ((u× v), (u× v)) = (u, u)(v, v)− (u, v)2

(vii) the absolute value of the triple product (u, (v×w)) represents the volume
of the parallelepiped formed by the vectors u, v, w.

14.2. Let u = (a1, · · · , am)t ∈ Rm, v = (b1, · · · , bn)t ∈ Rn. The outer
product of u and v is defined as uvt, which is an m × n matrix. For m = n
show that utv = tr(uvt) = tr(vut).

14.3. Let (V,R) be an n-dimensional vector space, and let S = {u1,
· · · , un} be an ordered basis for V. If u, v ∈ V are such that u = a1u

1 + · · ·+
anu

n and v = b1u
1 + · · · + bnu

n, then show that (u, v) = (yS(u), yS(v)) =
∑n

i=1 aibi is an inner product on V.

14.4. Let (V,R) be an n-dimensional inner product space, and let S =
{u1, · · · , un} be an ordered basis for V. Show that

(i) thematrix of the inner product C = (cij), where cij = (ui, uj) is symmetric

(ii) if a = (a1, · · · , an)t and b = (b1, · · · , bn)t are the coordinates of the
vectors u, v ∈ V, then (u, v) = atCb, i.e., the matrix C determines (u, v) for
every u and v in V.

14.5. Let V and W be finite dimensional inner product spaces with inner
products (·, ·)V and (·, ·)W , and let T : V → W be a linear mapping. The
mapping (if it exists) T ∗ :W → V is called the adjoint mapping of T if for all
u ∈ V and w ∈W, (T (u), w)W = (u, T ∗(w))V . Show that

(i) if T = A ∈ Rm×n, then T ∗ = At

(ii) if T = A ∈ Cm×n, then T ∗ = AH

(iii) (T ∗)∗ = T.

14.6. Find a nonzero vector v that is orthogonal to the given vectors

(i) (1, 3, 5)t, (3, 5, 1)t, v ∈ R3
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(ii) (1, 1, 2, 2)t, (1, 3, 3, 1)t, (5, 5, 1, 1)t, v ∈ R4.

14.7. Find a basis for the subspace u⊥ of R3, where

(i) u = (1, 3, 5)t

(ii) u = (−1, 0, 1)t.

14.8. Let U,W be subsets of an inner product space V. Show that

(i) U ⊆ U⊥⊥

(ii) if U ⊆W, then W⊥ ⊆ U⊥

(iii) U⊥ = span(U)⊥.

14.9. Let U,W be subspaces of a finite dimensional inner product space
V. Show that

(i) U = U⊥⊥

(ii) (U +W )⊥ = U⊥ ∩W⊥

(iii) (U ∩W )⊥ = U⊥ +W⊥.

14.10. Let {ũ1, · · · , ũn} and {ṽ1, · · · , ṽn} be orthonormal ordered basis of
an n-dimensional real inner product space V. Show that the transition matrix
A defined in (10.4) is orthogonal.

14.11. Let A be a real (complex) square matrix. Show that the following
are equivalent

(i) A is orthogonal (unitary)

(ii) the rows of A form an orthonormal set

(iii) the columns of A form an orthonormal set.

14.12. For the matrices given in Problem 11.1 use the method of Example
14.8 to find bases of R5 and R6.

14.13. For the given basis for R3 use the Gram–Schmidt orthogonalization
process to find an orthonormal basis for R3

(i) {(1, 1, 1)t, (−1, 1, 0)t, (−1, 0, 1)t}
(ii) {(1, 0, 1)t, (0,−1, 1)t, (0,−1,−1)t}.

14.14. Enlarge the following sets of linearly independent vectors to or-
thonormal bases of R3 and R4

(i) {(1, 1, 1)t, (1, 1, 2)t}
(ii) {(1, 1, 1, 3)t, (1, 2, 3, 4)t, (2, 3, 4, 9)t}.
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14.15. Show that the set
{

√

2

π
sinnx, n = 1, 2, · · ·

}

is orthonormal on 0 < x < π. This set generates the Fourier sine series.

14.16. Show that the set
{

1√
π
,

√

2

π
cosnx, n = 1, 2, · · ·

}

is orthonormal on 0 < x < π. This set generates the Fourier cosine series.

14.17. Show that the set
{

1√
2π
,

1√
π
cosnx,

1√
π
sinnx, n = 1, 2, · · ·

}

is orthonormal on −π < x < π. This set generates the Fourier trigonometric
series.

14.18. Legendre polynomials, denoted as Pn(x), n = 0, 1, 2, · · · can be
defined by Rodrigues’ formula

Pn(x) =
1

2n n!

dn

dxn
(x2 − 1)n, n = 0, 1, 2, · · · . (14.7)

In fact, from (14.7) we easily obtain

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3), P5(x) =

1

8
(63x5 − 70x3 + 15x), · · · .

Show that the set {P0(x), P1(x), P2(x), · · · } is orthogonal in the interval
[−1, 1].

14.19. Consider the space V of all real infinite sequences u = (a1, a2, · · · )
satisfying

∑∞
i=1 a

2
i < ∞. Addition and scalar multiplication for all u =

(a1, a2, · · · ), v = (b1, b2, · · · ) ∈ V, c ∈ R is defined as (u + v) = (a1 + b1, a2 +
b2, · · · ), cu = (ca1, ca2, · · · ). Show that

(i) V is a vector space

(ii) the inner product (u, v) = a1b1+a2b2+ · · · is well defined, i.e.,∑∞
i=1 aibi

converges absolutely.

This inner product space is called ℓ2-space and is an example of a Hilbert
space.
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14.20. Let u = (a1, · · · , an)t, v = (b1, · · · , bn)t ∈ Rn, and let w1, · · · , wn

be fixed real numbers. Show that

(u, v) = w1a1b1 + w2a2b2 + · · ·+ wnanbn

defines an inner product (known as weighted inner product) in Rn.

Answers or Hints

14.1. Verify directly.
14.2. Verify directly.
14.3. Verify directly.
14.4. (i) (ui, uj) = (uj , ui)

(ii) (u, v) =
∑n

i=1

∑n
j=1 aicijbj.

14.5. See (14.3).
14.6. (i) (11,−7, 2)t.

(ii) (−1, 1,−1, 1)t.

14.7. (i) {(−3, 1, 0)t, (5, 0,−1)t}.
(ii) {(1, 0, 1)t, (0, 1, 0)t}.
14.8. (i) Let u ∈ U. Then (u, v) = 0 for every v ∈ U⊥. Hence u ∈ U⊥⊥, and
therefore, U ⊆ U⊥⊥.

(ii) Let u ∈ W⊥. Then (u, v) = 0 for every v ∈ W. Since U ⊆ W, (u, v) = 0
for every v ∈ U. Thus u ∈ U⊥, and hence W⊥ ⊆ U⊥.
(iii) Clearly, U ⊆ span(U), and hence from (ii), span(U)⊥ ⊆ U⊥. If u ∈ U⊥

and v ∈ span(U), then there exist v1, · · · , vr ∈ U such that v = c1v
1 + · · ·+

crv
r, but then (u, v) = (u, c1v

1 + · · · + crv
r) = c1(u, v

1) + · · · + cr(u, v
r) =

c1(0) + · · ·+ cr(0) = 0. Thus u ∈ span(U)⊥, i.e., U⊥ ⊆ span(U)⊥.

14.9. (i) From Theorem 14.5, V = U ⊕ U⊥ and V = U⊥ ⊕ U⊥⊥. Thus
from Corollary 9.4, we have DimU = DimU⊥⊥. Further, since from Problem
14.8(i), U ⊆ U⊥⊥, it follows that U = U⊥⊥.
14.10. From (10.1) we have δij = (ṽi, ṽj) = (

∑n
k=1 akiũ

k,
∑n

ℓ=1 aℓjũ
ℓ) =

∑n
k=1 akiakj = cij . Now note that AtA = (cij) = I.

14.11. Recall the definition of an orthogonal (unitary) matrix in Problem 4.7.
14.12. (i) {(1, 0,−1,−2, 0)t, (0, 1, 2, 3, 0)t, (0, 0, 0, 0, 1)t, (2,−3, 0, 1, 0)t, (1,
−2, 1, 0, 0)t}.
(ii)

{

(

1, 3, 0, 0, 54 ,
5
2

)t
,
(

0, 0, 1, 0,− 83
16 ,− 41

8

)t
,
(

0, 0, 0, 1, 6116 ,
31
8

)t
, (−3, 1, 0, 0,

0, 0)t,
(

− 5
4 , 0,

83
16 ,− 61

16 , 1, 0
)t
,
(

− 5
2 , 0,

41
8 ,− 31

8 , 0, 1
)t
}

.

14.13. (i) { 1√
3
(1, 1, 1)t, 1√

2
(−1, 1, 0)t, 1√

6
(−1,−1, 2)t}.

(ii) { 1√
2
(1, 0, 1)t, 1√

6
(1, 2,−1)t, 1√

3
(1,−1,−1)t}.

14.14. (i)
{

1√
3
(1, 1, 1), 1√

6
(−1,−1, 2), 1√

2
(1, 1, 0)

}

.

(ii)
{

1
2
√
3
(1, 1, 1, 3)t, 1

2
√
3
(−1, 1, 3,−1)t, 1√

6
(−2,−1, 0, 1)t, 1√

6
(1,−2, 1, 0)t

}

.
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14.15. See Problem 8.10(i).
14.16. See Problem 8.10(ii).
14.17. See Problem 8.10(iii).

14.18. From (14.7), we have 2nn!
∫ 1

−1
Pm(x)Pn(x)dx =

∫ 1

−1
Pm(x) dn

dxn (x
2 −

1)ndx. Now an integration by parts gives
∫ 1

−1 Pm(x) dn

dxn (x
2 − 1)ndx = Pm(x)

× dn−1

dxn−1 (x
2 − 1)n|1−1 −

∫ 1

−1
d
dxPm(x) dn−1

dxn−1 (x
2 − 1)ndx. However, since dn−1(x2

−1)n/dxn−1 contains a factor (x2− 1), it follows that 2nn!
∫ 1

−1
Pm(x)Pn(x)dx

= −
∫ 1

−1
d
dxPm(x) dn−1

dxn−1 (x
2−1)ndx.We can integrate the right side once again,

and continue until we have performed n such integrations. At this stage, we

find 2nn!
∫ 1

−1
Pm(x)Pn(x)dx = (−1)n

∫ 1

−1

(

dn

dxnPm(x)
)

(x2 −1)ndx. There is no
loss of generality if we assume that m ≤ n. If m < n, then dnPm(x)/dxn = 0

and it follows that
∫ 1

−1 Pm(x)Pn(x)dx = 0.

14.19. In
∑∞

i=1(αai + βbi)
2 = α2

∑∞
i=1 a

2
i + αβ

∑∞
i=1 aibi + β2

∑∞
i=1 b

2
i use

aibi ≤ (1/2)(a2i + b2i ).
14.20. Verify directly.
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Chapter 15

Linear Functionals

Let V be a vector space over the field F. A linear mapping φ : V → F is
called a linear functional on V. Since a linear functional is a special type of
linear mapping, all the results presented in Chapters 11 and 12 for general
mappings hold for linear functionals also. Therefore, in this chapter we shall
present only those results that have special significance for linear functionals.
We begin with the following interesting examples.

Example 15.1. Let V = Fn. Then, for u = (u1, · · · , un) ∈ V the projec-
tion mapping φi(u1, · · · , un) = ui is a linear functional.

Example 15.2. Let V = C[a, b] be the space of all continuous real–
valued functions on the interval [a, b]. Then, for f ∈ V the integral mapping

φ(f) =
∫ b

a
f(x)dx is a linear functional. The mapping φ(f) = f(x0), where

x0 ∈ [a, b], but fixed, is also a linear functional.

Example 15.3. Let V = Mn×n. Then, for A = (aij) ∈ V the trace
mapping φ(A) = tr(A) is a linear functional.

Example 15.4. In the inner product space (V,C), let the vector u0 be
fixed. Then, for u ∈ V the mapping (u, u0) is a linear functional; however,
(u0, u) is not a linear functional because (u0, αu) = α(u0, u).

The vector space Hom(V, F ) is called the dual space of V, and is denoted
as V ∗. In view of Theorem 12.5 it is clear that dim V = dimV ∗.

Theorem 15.1. Let S = {u1, · · · , un} be a basis of V, and let φ1, · · · , φn ∈
V ∗ be linear functionals defined by φj(u

i) = δij . Then, S
∗ = {φ1, · · · , φn} is

a basis (called dual basis) of V ∗.

Proof. First we shall show that S∗ spans V ∗. For this, let φ ∈ V ∗ and
suppose that φ(ui) = ci, i = 1, · · · , n. We set ψ = c1φ1 + · · · + cnφn. Then,
we have ψ(ui) = c1φ(u

i) + · · · + cnφn(u
i) = ci = φ(ui), i = 1, · · · , n. Thus,

ψ and φ have the same values on the basis S, and hence must be the same
on V. Therefore, S∗ spans V ∗. To show that S∗ is linearly independent, let
a1φ1 + · · ·+ anφn = 0. Then, we have 0 = 0(ui) = a1φ1(u

i) + · · ·+ anφ(u
i) =

ai, i = 1, · · · , n as required.

Remark 15.1. Let 0 6= v ∈ V, and extend {v} to a basis {v, v2, · · · , vn} of

127
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V. Then, from Theorem 15.1 there exists a unique linear mapping φ : V → F
such that φ(v) = 1 and φ(vi) = 0, i = 2, · · · , n.

Example 15.5. From Example 6.1, we know that S = {u1 = (2,−1, 1),
u2 = (3, 2,−5), u3 = (1, 3,−2)} is a basis of R3. We shall find its dual basis
S∗ = {φ1, φ2, φ3}. We let φ1(x, y, z) = a11x + a12y + a13z, φ2(x, y, z) =
a21x + a22y + a23z, φ3(x, y, z) = a31x + a32y + a33z. Since φj(u

i) = δij , we
need to solve the systems

2a11 − a12 + a13 = 1
3a11 + 2a12 − 5a13 = 0
a11 + 3a12 − 2a13 = 0,

2a21 − a22 + a23 = 0
3a21 + 2a22 − 5a23 = 1
a21 + 3a22 − 2a23 = 0

and
2a31 − a32 + a33 = 0
3a31 + 2a32 − 5a33 = 0
a31 + 3a32 − 2a33 = 1.

Now in view of Example 6.6, solutions of these systems can be written as
(a11, a12, a13) = (11/28, 1/28, 7/28), (a21, a22, a23) = (1/28,−5/28,−7/28),
and (a31, a32, a33) = (3/28, 13/28, 7/28). Thus, it follows that

φ1(x, y, z) =
11

28
x+

1

28
y +

7

28
z

φ2(x, y, z) =
1

28
x− 5

28
y − 7

28
z

φ3(x, y, z) =
3

28
x+

13

28
y +

7

28
z.

Theorem 15.2. Let S = {u1, · · · , un} and T = {v1, · · · , vn} be bases of
V, and let S∗ = {φ1, · · · , φn} and T ∗ = {ψ1, · · · , ψn} be the corresponding
dual bases of V ∗. Further, let A = (aij) be the transition (change-of-basis)
matrix from T to S, and B = (bij) be the change-of-basis matrix from T ∗ to
S∗. Then, AtB = I, i.e., B = (A−1)t.

Proof. In view of (10.1), we have

vi = a1iu
1 + a2iu

2 + · · ·+ aniu
n

and
ψj = b1jφ1 + b2jφ2 + · · ·+ bnjφn.

Thus, it follows that

δij = ψj(v
i) =

n
∑

k=1

bkjφk

(

n
∑

ℓ=1

aℓiu
i

)

=

n
∑

k=1

bkjaki

= (a1i, · · · , ani)(b1j , · · · , bnj)t.

This immediately gives AtB = I.
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Since V ∗ is a vector space, it has a dual space, denoted as V ∗∗, and called
the second dual of V. Thus, V ∗∗ is a collection of all linear functionals on V ∗.
It follows that corresponding to each v ∈ V there is a distinct v̂ ∈ V ∗∗. To
show this, for any φ ∈ V ∗, we define v̂(φ) = φ(v). Now it suffices to show that
the map v̂ : V ∗ → F is linear. For this, we note that for scalars a, b ∈ F and
linear functionals φ, ψ ∈ V ∗, we have

v̂(aφ + bψ) = (aφ+ bψ)(v) = aφ(v) + bψ(v) = av̂(φ) + bv̂(ψ).

Theorem 15.3. Let V be a finite dimensional vector space over the field
F, then the mapping v 7→ v̂, known as natural mapping, is an isomorphism of
V onto V ∗∗.

Proof. For any v, w ∈ V and a, b ∈ F, and φ ∈ V ∗, we have

̂(av + bw)(φ) = φ(av + bw) = aφ(v) + bw(b) = av̂(φ) + bŵ(φ) = (av̂ + bŵ)(φ),

and hence the mapping v 7→ v̂ is linear. Further, from Remark 15.1, for every
0 6= v ∈ V there exists φ ∈ V ∗ so that φ(v) 6= 0. This implies that v̂(φ) =
φ(v) 6= 0, and hence v̂ 6= 0. Thus, we can conclude that the mapping v 7→ v̂ is
nonsingular, which in turn shows that it is an isomorphism.

Now letW be a subset (not necessarily subspace) of the vector space V over
the field F. The annihilator of W is the set W 0 of linear functionals φ ∈ V ∗

such that φ(w) = 0 for every w ∈ W. It follows rather easily that W 0 ⊆ V ∗

is a subspace; if φ ∈ V ∗ annihilates W, then φ annihilates Span(W ), i.e.,
W 0 = [Span(W )]0; if W = {0} then W 0 = V ∗, and if W = V then W 0 is the
null space of V ∗.We also defineW 00 = {u ∈ V : ϕ(u) = 0 for every ϕ ∈ W 0}.

Theorem 15.4. Let V be a finite dimensional vector space over the field
F, and let W be a subspace of V. Then, dimW + dimW 0 = dim V, and
W 00 =W.

Proof. Suppose that dimV = n and dimW = r. We need to show that
dimW 0 = n − r. Let {w1, · · · , wr} be a basis of W. We extend it so that
{w1, · · · , wr, u1, · · · , un−r} is a basis of V. Let {φ1, · · · , φr, ϕ1, · · · , ϕn−r} be
the basis of V ∗, which is dual to this basis of V. Now by the definition of
the dual basis, each ϕj annihilates each wi, and hence ϕ1, · · · , ϕn−r ∈W 0. It
suffices to show that Φ = {ϕ1, · · · , ϕn−r} is a basis of W 0. For this, since Φ
is a subset of a basis of V ∗, it is linearly independent. To show Φ spans W 0,
let ϕ ∈ W 0, then in view of Problem 15.4, we have

ϕ = ϕ(w1)φ1 + · · ·+ ϕ(wr)φr + ϕ(u1)ϕ1 + · · ·ϕ(un−r)ϕn−r

= ϕ(u1)ϕ1 + · · ·ϕ(un−r)ϕn−r.

Example 15.6. We shall find a basis of the annihilatorW 0 of the subspace
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W of R4 spanned by w1 = (1, 2, 0,−1) and w2 = (5, 2, 4, 9). Since W 0 =
[Span(W )]0, it suffices to find a basis of the set of linear functionals φ such that
φ(w1) = 0 and φ(w2) = 0, where φ(w1, w2, w3, w4) = aw1 + bw2 + cw3 + dw4.
For this, the system

φ(w1) = φ(1, 2, 0,−1) = a+ 2b+ 0c− d = 0
φ(w2) = φ(5, 2, 4, 9) = 5a+ 2b+ 4c+ 9d = 0

has solutions with c and d as free variables. We fix c = 1 and d = 0, to get
a = −1 and b = 1/2. Next, we fix c = 0 and d = 1, to get a = −5/2 and
b = 7/4. Hence, the following linear functions

φ1(w
1) = − w1 +

1

2
w2 + w3 and φ2(w

2) = − 5

2
w1 +

7

4
w2 + w4

form the basis of W 0. Similarly, a basis of the annihilator W 0 of the sub-
space W of R4 spanned by w1 = (1, 2, 0,−1), w2 = (5, 2, 4, 9), and w3 =
(−2, 2,−3, 2) is the linear function φ(wi) = −2w1 + w2 + 2w3, i = 1, 2, 3.

Now we shall prove the following important result.

Theorem 15.5 (Riesz representation theorem). Let V be a
finite dimensional vector space over the field F (F = R,C) on which (·, ·) is
an inner product. Let f : V → F be a linear functional on V. Then, there
exists a vector u ∈ V such that f(v) = (v, u) for all v ∈ V.

Proof. Using the Gram–Schmidt orthogonalization process we can find
an orthonormal basis of V, say, {v1, · · · , vn}. Now for an arbitrary vector
v ∈ V, we have v = (v, v1)v1 + · · · + (v, vn)vn. Thus, it follows that f(v) =
(v, v1)f(v1) + · · ·+ (v, vn)f(vn) = (v, v1f(v1) + · · ·+ vnf(vn)). Denoting by
u = v1f(v1) + · · ·+ vnf(vn), the result follows.

Remark 15.2. The vector u in Theorem 15.5 is unique. Indeed, if there are
two vectors u1, u2 such that f(v) = (v, u1) = (v, u2), then (v, u1 − u2) = 0 for
all v ∈ V. But then for v = u1−u2 ∈ V it follows that 0 = (u1−u2, u1−u2) =
‖u1 − u2‖2 = 0, which implies that u1 = u2.

Let V and W be two vector spaces on which inner products are defined.
Let f : V → W be a linear mapping. For each vector w ∈ W, we de-
fine a map fw : V → R as fw(v) = (f(v), w). It follows that this map
is a linear functional. Indeed, we have fw(v

1 + v2) = (f(v1 + v2), w) =
(f(v1)+ f(v2), w) = (f(v1), w)+ (f(v2), w) = fw(v

1)+ fw(v
2), also fw(αv) =

(f(αv), w) = (αf(v), w) = α(f(v), w) = αfw(v).

Example 15.7. Let f : R2 → R3 given by f(v1, v2) = (v1 − 2v2,−7v1,
4v1 − 9v2). Let w = (−3, 1, 2) ∈ R3. Then, we have fw(v) = −3(v1 − 2v2) +
1(−7v1) + 2(4v1 − 9v2) = −2v1 − 12v2.

In view of above notations and Riesz’s Theorem for the linear functional
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fw, there is a vector in V denoted as f∗(w) such that fw(v) = (v, f∗(w)).
Thus, it follows that (f(v), w) = (v, f∗(w)) for all v ∈ V and w ∈ W.

From Remark 15.2, the map f∗ : W → V is well defined and is called the
adjoint of the linear mapping f.

Theorem 15.6. If f : V →W is a linear mapping, then the adjoint map
f∗ :W → V is also a linear mapping.

Proof. For all v ∈ V, we have (v, f∗(w1 + w2)) = (f(v), w1 + w2) =
(f(v), w1)+(f(v), w2) = (v, f∗(w1))+(v, f∗(w2)) = (v, f∗(w1)+f∗(w2)). But
then from Remark 15.2 it follows that f∗(w1 + w2) = f∗(w1) + f∗(w2). Now
for α ∈ R and all v ∈ V, we have (v, f∗(αw)) = (f(v), αw) = α(f(v), w) =
α(v, f∗(w)) = (v, αf∗(w)), which implies that f∗(αw) = αf∗(w).

Example 15.8. We consider the same linear mapping as in Example 15.7,
and let (a, b, c) ∈ R3. Then, from (f(v1, v2), (a, b, c)) = ((v1 − 2v2,−7v1, 4v1 −
9v2), (a, b, c)) = a(v1 − 2v2) + b(−7v1) + c(4v1 − 9v2) = v1(a − 7b + 4c) +
v2(−2a − 9c) = ((v1, v2), (a − 7b + 4c,−2a− 9c)), we have f∗(a, b, c) = (a −
7b+ 4c,−2a− 9c).

Problems

15.1. For the given basis S = {(11, 19, 21), (3, 6, 7), (4, 5, 8)} of R3, find
its dual basis.

15.2. For the given basis S = {(1, 2, 1, 5), (0, 0, 1, 2), (−2, 1, 0, 0), (−3,
0,−2, 1)} of R4, find its dual basis.

15.3. For f ∈ (P3, R) let the linear functionals φ−1, φ0, φ1 be defined
by φ−1(f(x)) = f(−1), φ0(f(x)) = f(0), φ1(f(x)) = f(1). Show that S∗ =
{φ−1, φ0, φ1} is linearly independent, and find the basis S of (P3, R) so that
S∗ is its dual.

15.4. Repeat Problem 15.3 with φ−1(f(x)) =
∫ 0

−1
f(x)dx, φ0(f(x)) =

f(0), φ1(f(x)) =
∫ 1

0 f(x)dx.

15.5. Let V, S and S∗ be as in Theorem 15.1. Then, show that for any
u ∈ V, u =

∑n
i=1 φi(u)u

i, and for any φ ∈ V ∗, φ =
∑n

i=1 φ(u
i)φi.

15.6. Let (V,R) be a real inner product space. For each u ∈ V we define
the linear functional as Lu(v) = (u, v) for all v ∈ V. Show that

(i) the set of all linear functionals Lu, denoted as Ṽ , is a linear space

(ii) Lu = 0 if and only if u = 0
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(iii) for a given functional φ ∈ V ∗ there exists a unique vector u ∈ V such
that φ(v) = (u, v) for all v ∈ V

(iv) the mapping u→ Lu of V into V ∗ is an isomorphism.

15.7. Let f : R3 → R, f(v) = 2v1 − 4v2 + 5v3 and g : R5 → R, g(v) =
5v1 − 7v2 + 8v3 − 5v4 + v5 be two linear functionals. Find the vector u ∈ R3

such that f(v) = (v, u), and the vector w ∈ R5 such that g(v) = (v, w).

15.8. Let f : R3 → R3, f(v) = (v1 − 2v2 + v3,−2v1 + v3,−v2 + v3). For
w = (4,−1, 7) find fw(v) = (f(v), w).

15.9. Let f : R4 → R3, f(v) = (5v1− 2v2+4v3, 4v1+6v3+ v4,−v2+ v4).

(i) Find the adjoint map f∗ : R3 → R4.

(ii) Find the matrices A and B of the maps f and f∗, and note that A = Bt.

(iii) Generalize part (ii) for arbitrary vector spaces V and W.

15.10. Show that Theorem 15.5 does not hold for spaces of infinite dimen-
sions.

Answers or Hints

15.1. φ1 = 1
30 (13x+4y−9z), φ2 = 1

30 (−47x+4y+21z), φ3 = 1
30 (7x−14y+9z).

15.2. φ1 = 1
34 (5x+ 10y − 6z + 3w), φ2 = 1

34 (−11x− 22y + 20z + 7w), φ3 =
1
34 (−10x+ 14y + 12z − 6w), φ4 = 1

34 (−3x− 6y − 10z + 5w).
15.3. S =

{

1
2x(x− 1),−(x+ 1)(x− 1), 12x(x+ 1)

}

.

15.4. S =
{

3
2x
(

x− 2
3

)

,−3
(

x2 − 1
3

)

, 32x
(

x+ 2
3

)}

.
15.5. If u =

∑n
i=1 ciu

i, then φi(u) = ci. Now for all u, φ(u) =
∑n

i=1 φi(u)
×φ(ui) =

(
∑n

i=1 φ(u
i)φi

)

(u).
15.6. (i) From the definition of real inner product Lc1u+c2w = c1Lu + c2Lw

for all u,w ∈ V and c1, c2 ∈ R.

(ii) Follows from the definition of real inner product.
(iii) If S = {u1, · · · , un} is a basis of V, then S̃ = {Lu1 , · · · , Lun} is a basis of
Ṽ . Indeed, if Lu ∈ Ṽ and u = c1u

1 + · · ·+ cnu
n, then Lu = Lc1u1+···+cnun =

c1Lu1 + · · ·+cnLun . Also, if a1Lu1 + · · ·+anLun = 0, then La1u1+···+anun = 0,
which in view of Part (ii) implies that a1u

1 + · · ·+ anu
n = 0. But, then a1 =

· · · = an = 0. Thus, Ṽ is a subspace of V ∗, and since dim V ∗ = dim Ṽ , V ∗ =
Ṽ . Now if φ ∈ V ∗, then there exist unique real numbers bi, i = 1, · · · , n such
that φ = b1Lu1 + · · ·+ bnLun = Lb1u1+···+bnun .
(iv) Use Theorem 12.2.

15.7. u = (2,−4, 5), w = (5,−7, 8,−5, 1).
15.8. fw(v) = 6v1 − 15v2 + 10v3.
15.9. (i) f∗(a, b, c) = (5a+ 4b,−2a− c, 4a+ 6b, b+ c).
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(ii) A =





5 −2 4 0
4 0 6 1
0 −1 0 1



 , B =









5 4 0
−2 0 −1
4 6 0
0 1 1









.

(iii) Let V and W be complex vector spaces, f : V → W be a linear map
with associated matrix A, and f∗ :W → V its adjoint with associated matrix

B. We need to show that A = B
t
. For this, we assume that dimV = n and

dimW = m, and {v1, · · · , vn}, {w1, · · · , wm} are their orthonormal bases.
Clearly, A = (aij) = ((f(vi), wj)), 1 ≤ i ≤ n, 1 ≤ j ≤ m, and B = (bij) =

((f∗(wi), vj)), 1 ≤ i ≤ m, i ≤ j ≤ n. Since (f∗(wi), vj) = (vj , f∗(wi) =

(f(vj), wi), it follows that aij = bji.

15.10. Let V be the space of all polynomials over R with the inner product

(f(x), g(x)) =
∫ 1

0 f(x)g(x)dx, i.e., if f(x) =
∑n

i=0 aix
i and g(x) =

∑m
j=0 bjx

j ,

then (f(x), g(x)) =
∑n

i=0

∑m
j=0(i + j + 1)−1aibj. We consider φ : V → R as

φ(f) = f(0). We shall show that a polynomial g(x) such that f(0) = φ(f) =

(f(x), g(x)) =
∫ 1

0
f(x)g(x)dx does not exist for every f(x). For this, note that

for any f(x) we have φ(xf(x)) = 0. Thus, for any f(x), 0 =
∫ 1

0 xf(x)g(x)dx.

Hence, in particular for f(x) = xg(x), we have 0 =
∫ 1

0 x
2g2(x)dx, which im-

plies that g(x) = 0, and therefore φ(f(x)) = (f(x), 0) = 0. But this contradicts
the fact that φ is a nonzero functional.
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Chapter 16

Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors of a matrix are of great importance in the qual-
itative as well as quantitative study of many physical problems. For example,
stability of an aircraft is determined by the location of the eigenvalues of a cer-
tain matrix in the complex plane. Basic solutions of ordinary differential and
difference equations with constant coefficients are expressed in terms of eigen-
values and eigenvectors of the coefficient matrices. In this chapter we shall
mainly summarize properties of the eigenvalues and eigenvectors of matrices,
which are of immense value.

The number λ, real or complex, is called an eigenvalue (characteristic root,
latent root, proper value) of an n × n matrix A if there exists a nonzero real
or complex vector u such that Au = λu, i.e., Au is parallel to u. The vector
u is called an eigenvector, corresponding to the eigenvalue λ. From Corollary
5.1, λ is an eigenvalue of A if and only if it is a solution of the characteristic
equation

p(λ) = det(A− λI) = 0, (16.1)

which in the expanded form, known as characteristic polynomial of A, can be
written as

p(λ) = (−1)nλn + a1λ
n−1 + · · ·+ an−1λ+ an = 0. (16.2)

Thus from the fundamental theorem of algebra it follows that A has exactly n
eigenvalues counting with their multiplicities, i.e., (16.2) can be rewritten as

p(λ) = (−1)n(λ− λ1)
r1(λ − λ2)

r2 · · · (λ− λm)rm = 0, (16.3)

where λi 6= λj , ri ≥ 1, r1 + · · · + rm = n. The positive number ri is called
the algebraic multiplicity of the eigenvalue λi.

Knowing the distinct eigenvalues λi, i = 1, · · · ,m (≤ n) from (16.3), the
corresponding eigenvectors can be obtained by computing nontrivial solutions
of the homogenous systems (A− λiI)u

i = 0, i = 1, · · · ,m.

Example 16.1. The characteristic polynomial for the matrix

A =





2 1 0
1 3 1
0 1 2



 (16.4)

135
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can be written as

p(λ) = −λ3 + 7λ2 − 14λ+ 8 = − (λ − 1)(λ− 2)(λ− 4) = 0.

Thus, the eigenvalues are λ1 = 1, λ2 = 2, and λ3 = 4. To find the cor-
responding eigenvectors, we need to find nonzero solutions of the systems
(A− λiI)u

i = 0, i = 1, 2, 3. For λ1 = 1, we need to solve

(A− λ1I)u
1 =





1 1 0
1 2 1
0 1 1









u11
u12
u13



 =
u11 + u12 = 0
u11 + 2u12 + u13 = 0
u12 + u13 = 0,

which is the same as
u11 + u12 = 0
u12 + u13 = 0
u12 + u13 = 0.

In this system the last two equations are the same, and we can take u13 = 1
so that u12 = −1, then the first equation gives u11 = 1. Thus, u1 = (1,−1, 1)t.
Similarly, we find u2 = (1, 0,−1)t and u3 = (1, 2, 1)t.

In the case when the eigenvalues λ1, · · · , λn of A are distinct it is easy
to find the corresponding eigenvectors u1, · · · , un. For this, first we note that
for the fixed eigenvalue λj of A at least one of the cofactors of (aii − λj)
in the matrix (A − λjI) is nonzero. If not, then from (3.6) it follows that
p′(λ) = −[cofactor of (a11−λ)]−· · ·−[cofactor of (ann−λ)], and hence p′(λj) =
0, i.e., λj was a multiple root, which is a contradiction to our assumption
that λj is simple. Now let the cofactor of (akk − λj) be different from zero,
then one of the possible nonzero solutions of the system (A − λjI)u

j = 0 is

uji = cofactor of aki in (A − λjI), 1 ≤ i ≤ n, i 6= k, ujk = cofactor of (akk −
λj) in (A − λjI). Since for this choice of uj, it follows from (3.2) that every
equation, except the kth one, of the system (A − λjI)u

j = 0 is satisfied, and
for the kth equation from (3.1), we have

n
∑

i = 1
i 6= k

aki[cofactor of aki]+ (akk −λj)[cofactor of (akk −λj)] = det (A−λjI),

which is also zero. In conclusion this uj is the eigenvector corresponding to
the eigenvalue λj .

Example 16.2. Consider again the matrix A given in (16.4). Since in
(A − λ1I) the cofactor of (a11 − λ1) = 1 6= 0, we can take u11 = 1, and then
u12 = cofactor of a12 = −1, u13 = cofactor of a13 = 1, i.e., u1 = (1,−1, 1)t.
Next, for λ2 = 2 we have

(A− λ2I) =





0 1 0
1 1 1
0 1 0



 .
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Since the cofactor of (a22 − λ2) = 0 the choice u22 = cofactor of (a22 − λ2) is
not correct. However, cofactor of (a11−λ2) = cofactor of (a33−λ2) = −1 6= 0
and we can take u21 = −1 (u23 = −1), then u22 = cofactor of a12 = 0, u23 =
cofactor of a13 = 1 (u21 = cofactor of a31 = 1, u22 = cofactor of a32 = 0), i.e.,
u2 = (−1, 0, 1)t ((1, 0,−1)t). Similarly, we can find u3 = (1, 2, 1)t.

For the eigenvalues and eigenvectors of a given n×nmatrix A the following
properties are fundamental:

P1. There exists at least one eigenvector u associated with each distinct
eigenvalue λ, and ifA and λ are real, then u can be taken as real: det(A−λI) =
0 implies that the linear homogeneous system (A− λI)u = 0 has at least one
nontrivial solution. If A and λ are real, and the eigenvector u = v + iw, then
A(v + iw) = λ(v + iw), i.e., Av = λv and Aw = λw. Now recall that both v
and w are nonzero.

P2. If u is an eigenvector corresponding to the eigenvalue λ, then so is cu for
all scalars c 6= 0: If Au = λu, then A(cu) = λ(cu).

P3. Let Uλ be the set of all eigenvectors associated with a given eigenvalue
λ. Then, Vλ = Uλ ∪ {0} ⊆ Rn is an invariant subspace of A, i.e., Au ∈ Vλ
whenever u ∈ Vλ: Clearly, 0 ∈ Vλ, and if u, v ∈ Vλ and α, β are scalars, then
A(αu + βv) = α(Au) + β(Av) = α(λu) + β(λv) = λ(αu + βv). The space Vλ
is called the eigenspace of A belonging to λ.

P4. If λ1, · · · , λn are distinct eigenvalues of A and u1, · · · , un are the corre-
sponding eigenvectors, then the set S = {u1, · · · , un} is linearly independent
and forms a basis of Rn (Cn): If S is linearly dependent, then in view of
Theorem 8.1 part 6, there exists the first ur that is the linear combination
of the preceding u1, · · · , ur−1, i.e., there exist scalars c1, · · · , cr−1 such that
ur = c1u

1 + · · ·+ cr−1u
r−1. Multiplying this relation by λr, we obtain

λru
r = c1λru

1 + · · ·+ cr−1λru
r−1,

whereas multiplying the same relation by A and using Aui = λiu
i, we have

λru
r = c1λ1u

1 + · · ·+ cr−1λr−1u
r−1.

Subtracting these equations, we find

0 = c1(λr − λ1)u
1 + · · ·+ cr−1(λr − λr−1)u

r−1;

however, since u1, · · · , ur−1 are linearly independent and λr 6= λi, i =
1, · · · , r − 1, it follows that c1 = · · · = cr−1 = 0. But then ur = 0, which
is impossible. The set S forms a basis that follows from Theorem 9.4.

P5. If λ1, · · · , λm are distinct eigenvalues of A, and ui is an eigenvector
corresponding to the eigenvalue λi, then the set S = {u1, · · · , um} is linearly
independent.

P6. If (λ, u) is an eigenpair of A and A−1 exists, then (1/λ, u) is an eigenpair
of A−1: If Au = λu, then A−1(Au) = A−1(λu), i.e., (1/λ)u = A−1u.
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P7. The eigenvalues of A and At are the same; however, in general the eigen-
vectors are different: It follows from the fact that det(A−λI) = det(At−λI).
Now let A be real and have the distinct eigenvalues, and assume that the eigen-
vectors correspond to λ1, · · · , λn, u1, · · · , un, i.e., Aui = λiu

i, i = 1, · · · , n.
Further, let the eigenvectors of At correspond to λ̄1, · · · , λ̄n, v1, · · · , vn,
i.e., Atvj = λ̄jv

j , j = 1, · · · , n. It follows that (vj)HAui = λi(v
j)Hui

and (vj)HAui = λj(v
j)Hui, and hence (λi − λj)(v

j)Hui = 0. Thus, for

i 6= j, (vj)Hui = (vj , ui) = (ui, vj) = 0. Now since {vi} form a basis of
Rn (Cn) we can decompose ui as

ui = c1v
1 + · · ·+ civ

i + · · ·+ cnv
n,

which gives

0 < (ui, ui) = (ui)Hui =
n
∑

k=1

ck(u
i)Hvk =

n
∑

k=1

ck(u
i, vk) = ci(u

i, vi),

and hence (ui)Hvi 6= 0. We can normalize the vectors so that (ui)Hvi = 1. In
conclusion, we have

(vj)Hui =

{

0, j 6= i
1, j = i,

(16.5)

and because of this property these sets of vectors {ui} and {vi} are called
biorthonormal.

P8. The eigenvalues of a hermitian matrix are real, whereas those of a skew-
hermitian matrix are purely imaginary. In particular, the eigenvalues of a real
symmetric matrix are real, whereas of a real skew-symmetric matrix are purely
imaginary: When A = AH , Au = λu is the same as uHA = λuH . Thus, it
follows that uHAu = λuHu and uHAu = λuHu, and hence (λ − λ)uHu = 0,
but since uHu 6= 0, we have λ − λ = 0, and therefore λ is real. Similarly, for
a skew-symmetric matrix it follows that λ+ λ = 0, and hence λ is complex.

P9. The eigenvectors of a real symmetric matrix that correspond to distinct
eigenvalues are orthogonal: When At = A, Au = λu is the same as utA = λut.
Thus, if Av = µv, then since utAv = λutv it follows that µutv = λutv, i.e.,
(µ− λ)utv = 0, and therefore utv = (u, v) = 0.

P10. Let P be a nonsingular matrix. If (λ, u) is an eigenpair of A, then
(λ, P−1u) is an eigenpair of P−1AP : Clearly, det(A − λI) = det(P−1(A −
λI)P ) = det(P−1AP −λP−1P ) = det(P−1AP −λI). Further, since Au = λu,
we have P−1Au = λP−1u, which is the same as (P−1AP )P−1u = λP−1u.

P11. If (λ, u) is an eigenpair of A, then (λm, u) is an eigenpair of Am: It
follows from Amu = Am−1(Au) = Am−1(λu) = λAm−1u. Thus, if Qm(x) is a
polynomial, then Qm(λ) is an eigenvalue of Qm(A). In particular, the matrix
A satisfies its own characteristic equation, i.e.,

p(A) = (−1)nAn + a1A
n−1 + · · ·+ an−1A+ an = 0. (16.6)
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This result is known as the Cayley–Hamilton theorem.

Example 16.3. Multiplying (16.6) by A−1, we find

A−1 = − 1

an

[

(−1)nAn−1 + a1A
n−2 + · · ·+ an−1I

]

. (16.7)

Thus, if Ai, i = 2, 3, · · · , n − 1 are known then the inverse of the matrix A
can be computed. In particular, for the matrix A in (16.4), we have

A−1 = −1

8

[

−A2 + 7A− 14I
]

= −1

8



−





5 5 1
5 11 5
1 5 5



+ 7





2 1 0
1 3 1
0 1 2



− 14





1 0 0
0 1 0
0 0 1









=







5
8 − 2

8
1
8

− 2
8

4
8 − 2

8
1
8 − 2

8
5
8






.

P12. The number of linearly independent eigenvectors corresponding to an
eigenvalue is called its geometric multiplicity. The geometric multiplicity of
an eigenvalue is at most its algebraic multiplicity. Similar matrices A and
B have the same eigenvalues, and these eigenvalues have the same algebraic
and geometric multiplicities: Since there exists a nonsingular matrix P such
that B = P−1AP, we have (B − λI) = P−1AP − λP−1P = P−1(A − λI)P,
i.e., if A and B are similar, then (A − λI) and (B − λI) are also similar.
Thus from Problem 13.10 it follows that det(A − λI) = det(B − λI) and
N (A − λI) = N (B − λI), i.e., A and B have the same eigenvalues with the
same algebraic and geometric multiplicities.

Example 16.4. The eigenvalues of the matrix

A =





2 1 −1
−3 −1 1
9 3 −4





are−1,−1,−1. Further, the only linearly independent eigenvector correspond-
ing to this eigenvalue is (1, 0, 3)t. Hence the algebraic multiplicity of the eigen-
value −1 is 3, whereas its geometric multiplicity is one.

Example 16.5. The eigenvalues of the matrix

A =





−1 0 4
0 −1 2
0 0 1





are −1,−1, 1. Further, linearly independent eigenvectors corresponding to the
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eigenvalue −1 are (1, 0, 0)t and (0, 1, 0)t. Hence the algebraic and geometric
multiplicities of the eigenvalue −1 are 2. The eigenvector corresponding to the
eigenvalue 1 is (2, 1, 1)t.

The method discussed in this chapter to compute eigenvalues and eigen-
vectors is practical only for small matrices.

Problems

16.1. Let λ1, · · · , λn be the (not necessarily distinct) eigenvalues of an
n× n matrix A. Show that

(i) for any constant α the eigenvalues of αA are αλ1, · · · , αλn
(ii)

∑n
i=1 λi = TrA

(iii)
∏n

i=1 λi = detA

(iv) if A is upper (lower) triangular, i.e., aij = 0, i > j (i < j), then the
eigenvalues of A are the diagonal elements of A

(v) if A is real and λ1 is complex with the corresponding eigenvector v1,
then there exists at least one i, 2 ≤ i ≤ n, such that λi = λ1 and for such an
i, v1 is the corresponding eigenvector

(vi) if Ak = 0 for some positive integer k, i.e., A is nilpotent, then 0 is the
only eigenvalue of A

(vii) if A is orthogonal, then |λi| = 1, i = 1, · · · , n.

16.2. Find the eigenvalues and eigenvectors of the following matrices

(i)





4 −2 1
1 3 0
2 8 −1



 (ii)





3 0 0
−4 6 2
16 −15 −5



 (iii)





8 −6 2
−6 7 −4
2 −4 3



 .

16.3. Find the eigenvalues and eigenvectors of the following matrices

(i)

(

4 −2
5 2

)

(ii)





1 0 0
2 1 −2
3 2 1



 (iii)





2 1 −2
−1 0 0
1 1 −1



 .

16.4. Verify the Cayley–Hamilton theorem for the matrices given in Prob-
lem 16.2.

16.5. Use (16.7) to find the inverse of the matrices given in Problem 16.2.

16.6. Find algebraic and geometric multiplicities of each of the eigenvalues
of the following matrices:
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(i)





−1 1 0
0 −1 0
0 0 3



 (ii)





5 −3 −2
8 −5 −4
−4 3 3



 (iii)





2 1 1
0 2 0
0 0 3



 .

16.7. The n× n matrix

P =















0 1 0 · · · 0
0 0 1 · · · 0

· · ·
0 0 0 · · · 1

−an −an−1 −an−2 · · · −a1















is called the companion matrix. Show that its characteristic polynomial is
p(λ) = (−1)n(λn + a1λ

n−1 + · · · + an−1λ + an), and corresponding to the
eigenvalue λ, the eigenvector is (1, λ, λ2, · · · , λn−1)t.

16.8. A circulant matrix of order n is the n× n matrix defined by

C = circ(a1, a2, · · · , an) =















a1 a2 a3 · · · an
an a1 a2 · · · an−1

an−1 an a1 · · · an−2

· · ·
a2 a3 a4 · · · a1















,

i.e., the elements of C in each row are the same as those in the previous row
shifted one position to the right and wrapped around. Show that

(i) C = a1I + a2P + · · ·+ anP
n−1, where P is the n×n companion matrix

with a1 = · · · = an−1 = 0, an = −1

(ii) the eigenvalues λi and eigenvectors ui, i = 1, · · · , n of C are λi =
a1 + a2ωi + · · · + anω

n−1
i and (1, ωi, ω

2
i , · · · , ωn−1

i )t, where ωi, i = 1, · · · , n
are the nth roots of the unity, i.e., ωn

i = 1.

16.9. For the matrix An(x) defined in (4.2), verify that the eigenvalues
are

λi = x− 2 cos
iπ

n+ 1
, i = 1, · · · , n.

In particular, for x = 2 the eigenvalues are

λi = 4 sin2
iπ

2(n+ 1)
, i = 1, · · · , n

and the eigenvector corresponding to λi is

(

sin
iπ

n+ 1
, sin

2iπ

n+ 1
, · · · , sin niπ

n+ 1

)t

.



142 Chapter 16

16.10. Find the eigenvalues of the tridiagonal matrix A = (aij) ∈ Rn×n,
where

aij =















a, i = j
b, j − i = 1
c, i− j = 1
0, |i− j| > 1

and bc > 0.

16.11. Show that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x 1 1
1 x 1

1 x 1

· · · · · ·
1 x 1

1 1 x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

n
∏

i=1

[

x+ 2 cos
2πi

n

]

.

16.12. Show that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x 2a 1 1 2a
2a x 2a 1 1
1 2a x 2a 1

1 2a x 2a 1
· · · · · · · · · · · ·

1 2a x 2a 1
1 1 2a x 2a

2a 1 1 2a x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

n
∏

i=1

[

x+ 2 cos
4πi

n
+ 4a cos

2πi

n

]

.

16.13. Let (V, F ) be an n-dimensional vector space, and let L : V → V
be a linear mapping. A nonzero vector u ∈ V is called an eigenvector of L if
there exists a λ ∈ F such that Au = λu. Show that

(i) if λ1, · · · , λn are distinct eigenvalues of L and u1, · · · , un are the corre-
sponding eigenvectors, then the set S = {u1, · · · , un} is linearly independent,
and forms a basis of V

(ii) L is one-to-one if and only if 0 is not an eigenvalue of L.

16.14. Find the eigenvalues and eigenvectors of L : V → V, where L is
defined by

(i) V = R4, L(x1, x2, x3, x4)
t = (x1, x1 + 5x2 − 10x3, x1 + 2x3, x1 + 3x4)

t

(ii) V the space of twice continuously differential functions satisfying x(0) =
x(1) = 0, L(x) = −x′′
(iii) V = (P2, R), L(a+ bx) = (a+ b) + 2bx.
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16.15. Let A be an n × n matrix with linearly independent eigenvectors
u1, · · · , un and associated eigenvalues λ1, · · · , λn, where |λ1| > |λ2| ≥ |λ3| ≥
· · · ≥ |λn|, i.e., λ1 is the dominant eigenvalue). Further, let û = c1u

1 + · · ·+
cnu

n, where c1 6= 0. Show that limm→∞(1/λm1 )Amû = c1u
1. In particular, for

the matrix A in (16.4) show that

1

48
A8





1
1
1



 =
1

48





11051 21845 10795
21845 43691 21845
10795 21845 11051









1
1
1



 ≃





0.666672
1.333328
0.666672



 ≃ k





1
2
1



 ,

where k is a constant.

Answers or Hints

16.1. (i) (αA)x = (αλ)x.

(ii) det (A− λI) = (a11 − λ) · cofactor (a11 − λ) +
∑n

j=2 a1j · cofactora1j ,
and since each term a1j · cofactora1j is a polynomial of degree at most n− 2,
on comparing the coefficients of λn−1, we get
(−1)n+1

∑n
i=1 λi = coefficient of λn−1 in (a11 − λ) · cofactor (a11 − λ).

Therefore, an easy induction implies
(−1)n+1

∑n
i=1 λi = coefficient of λn−1 in (a11 − λ) · · · (ann − λ)

= (−1)n−1
∑n

i=1 aii.
(iii) In det(A− λI) = (−1)n(λ− λ1) · · · (λ− λn) substitute λ = 0.
(iv) Clear from the expansion of the determinant.
(v) For a polynomial with real coefficients, complex roots occur only in con-
jugate pairs. Thus λ1 = µ+ iν and λ1 = µ− iν both are eigenvalues. Now if
u = v + iw is an eigenvector corresponding to λ1, i.e., Au = λ1u, then since
A is real, Au = λ1u.
(vi) Use P11.
(vii) If A−1 = At, then from P6 and P7, 1/λ = λ, i.e., λ2 = 1.

16.2. (i) 4, (1, 1, 2)t; 3, (0, 1, 2)t; − 1, (−4, 1, 22)t

(ii) 0, (0, 1,−3)t; 1, (0,−2, 5)t; 3, (1, 0, 2)t

(iii) 0, (1, 2, 2)t; 3, (2, 1,−2)t; 15, (2,−2, 1)t.

16.3. (i) 3± 3i, (2, 1∓ 3i)t.

(ii) 1, (−2, 3,−2)t; 1± 2i, (0,±i, 1)t.
(iii) 1, (1,−1, 0)t; ± i, (1,±i, 1).
16.4. Verify directly.

16.5. (i) 1
12





3 −6 3
−1 6 −1
−2 36 −14



 .

(ii) Singular matrix.
(iii) Singular matrix.
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16.6. (i) For λ1 = −1, a.m. is 2 and g.m. is 1. For λ2 = 3, a.m. and g.m. are
1.

(ii) For λ = 1, a.m. is 3 and g.m. is 2.
(iii) For λ1 = 2, a.m. is 2 and g.m. is 1. For λ2 = 3, a.m. and g.m. are 1.

16.7. C1 + λC2 + · · ·+ λn−1Cn.
16.8. (i) Verify directly.

(ii) The characteristic polynomial of P is (−1)n(λn − 1). Use property P12.

16.9. Use (4.6) with x replaced by x− λ. Verify directly.
16.10. λi = a− 2

√
bc cos iπ

n+1 , i = 1, · · · , n.
16.11. The corresponding matrix is circulant with a1 = x, a2 = 1, a3 = · · · =
an−1 = 0, an = 1. Thus from Problem 16.7, its eigenvalues are λk = x+ ωk +
ωn−1
k . Now, since ωk = e2kπi/n, it follows that λk = x + 2 cos(2πk/n). Now

use Problem 16.1(iii).
16.12. The corresponding matrix is circulant with eigenvalues λk = x+2aωk+
ω2
k + ωn−2

k + 2aωn−1
k .

16.13. (i) Similar to P4.

(ii) Similar to Theorem 12.3.

16.14. (i) The eigenvalues and the eigenvectors are 1, 2, 3, 5 and (4,−11,
−4, 0)t, (0, 10, 3, 0)t, (0, 0, 0, 1)t, (0, 1, 0, 0)t.

(ii) −x′′ = λx, x(0) = x(1) = 0, λn = n2π2, xn(t) = sinnπt, n = 1, 2, · · · .
(iii) The eigenvalues and the eigenvectors are 1, 2 and (1, 0)t, (1, 1)t.

16.15. Amû = Am(c1u
1 + · · · + cnu

n) = c1λ
m
1 u

1 + · · · + cnλ
m
n u

n, and hence
1

λm1
Amû = c1u

1 +

(

λ2
λ1

)m

u2 + · · ·+
(

λn
λ1

)m

un.



Chapter 17

Normed Linear Spaces

The distance between a vector and the zero vector is a measure of the length
of the vector. This generalized notion, which plays a central role in the whole
of analysis, is called a norm. We begin this chapter with the definition of a
norm of a vector and then extend it to a matrix. Then we will drive some
estimates on the eigenvalues of a given matrix. Some very useful convergence
results are also proved.

A norm (or length) on a vector space V is a function that assigns to each
vector u ∈ V a nonnegative real number, denoted as ‖u‖, which satisfies the
following axioms:

1. Positive definite property: ‖u‖ ≥ 0, and ‖u‖ = 0 if and only if u = 0,

2. Homogeneity property: ‖cu‖ = |c|‖u‖ for each scalar c,

3. Triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V.

A vector space V with a norm ‖ · ‖ is called a normed linear space, and is
denoted as (V, ‖ · ‖). In the vector space Rn (Cn) the following three norms
are in common use:

absolute norm ‖u‖1 =
n
∑

i=1

|ui|,

Euclidean norm ‖u‖2 =
(

n
∑

i=1

|ui|2
)1/2

=
√

(u, u),

and

maximum norm ‖u‖∞ = max
1≤i≤n

|ui|.

As an example, for the vector u = (1, 2,−3, 5)t, we have ‖u‖1 = 11, ‖u‖2 =√
39, ‖u‖∞ = 5, whereas for the vector u = (1 + i, 2 − 3i, 4), ‖u‖1 =

√
2 +√

13 + 4, ‖u‖2 =
√
31, ‖u‖∞ = 4.

The notations ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ are justified because of the fact that
all these norms are special cases of the general ℓp–norm

‖u‖p =

(

n
∑

i=1

|ui|p
)1/p

, p ≥ 1.

145
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Similarly, in the vector space of real-valued continuous functions C[a, b],
the following three norms are frequently used:

‖f‖1 =
∫ b

a

|f(x)|dx, ‖f‖2 =
(

∫ b

a

f2(x)dx

)1/2

and ‖f‖∞ = max
x∈[a,b]

|f(x)|.

Theorem 17.1 (Cauchy–Schwarz inequality). For any pair of
vectors u, v in an inner product space V, the following inequality holds:

|(u, v)| ≤ ‖u‖2‖v‖2. (17.1)

Proof. If v = 0, there is nothing to prove. If v 6= 0, for λ ∈ R, we have

0 ≤ ‖u− (u, v)λv‖22
= (u− (u, v)λv, u − (u, v)λv)

= (u, u)− (u, v)λ(u, v)− (u, v)λ(v, u) + (u, v)(u, v)λ2(v, v)

= ‖u‖22 − 2λ|(u, v)|2 + |(u, v)|2λ2‖v‖22.

Now let λ = 1/‖v‖22, to obtain

0 ≤ ‖u‖22 −
|(u, v)|2
‖v‖22

,

which immediately gives (17.1).

Using (17.1) in (14.1) it follows that −1 ≤ cos θ ≤ 1, and hence the
angle θ between two vectors in a real inner product space (V,R) exists and is
unique. Thus, in (V,R), |(u, v)| = ‖u‖2‖v‖2 provided θ = 0, i.e., u and v are
orthogonal.

Theorem 17.2 (Minkowski inequality). For any pair of vectors
u, v in an inner product space V, the following inequality holds:

‖u+ v‖2 ≤ ‖u‖2 + ‖v‖2. (17.2)

Proof. In view of the inequality (17.1) and the properties of inner products,
we have

‖u+ v‖22 = (u+ v, u + v) = (u, u) + (u, v) + (v, u) + (v, v)

= ‖u‖22 + (u, v) + (u, v) + ‖v‖22
= ‖u‖22 + 2Re (u, v) + ‖v‖2
≤ ‖u‖22 + 2‖u‖2‖v‖2 + ‖v‖22
= (‖u‖2 + ‖v‖2)2,

which on taking the square root of both sides yields (17.2).
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Example 17.1. For the vectors u = (a1, · · · , an), v = (b1, · · · , nn) ∈ Cn,
inequality (17.1) reduces to

(a1b1 + · · ·+ anbn) ≤ (|a1|2 + · · ·+ |an|2)1/2(|b1|2 + · · ·+ |bn|2)1/2. (17.3)

Example 17.2. For the functions f, g ∈ C[a, b], inequality (17.1) reduces
to

∫ b

a

f(x)g(x)dx ≤
(

∫ b

a

|f(x)|2dx
)1/2(

∫ b

a

|g(x)|2
)1/2

. (17.4)

The set Cn×n can be considered as equivalent to the vector space Cn2

,
with a special multiplicative operation added into the vector space. Thus, a
matrix norm should satisfy the usual three requirements of a vector norm and,
in addition, we require:

4. ‖AB‖ ≤ ‖A‖‖B‖ for all n× n matrices A, B (and hence, in particular, for
every positive integer p, ‖Ap‖ ≤ ‖A‖p),
5. compatibility with the vector norm, i.e., if ‖ · ‖∗ is the norm in Cn, then
‖Au‖∗ ≤ ‖A‖‖u‖∗ for all u ∈ Cn and any n× n matrix A.

Once a norm ‖·‖∗ is fixed, in Cn then an associated matrix norm is usually
defined by

‖A‖ = sup
u6=0

‖Au‖∗
‖u‖∗

= sup
‖u‖∗=1

‖Au‖∗. (17.5)

From (17.5) condition 5 is immediately satisfied. To show 4 we use 5 twice,
to obtain

‖ABu‖∗ = ‖A(Bu)‖∗ ≤ ‖A‖‖Bu‖∗ ≤ ‖A‖‖B‖‖u‖∗
and hence for all u 6= 0, we have

‖ABu‖∗
‖u‖∗

≤ ‖A‖‖B‖,

or

‖AB‖ = sup
u6=0

‖ABu‖∗
‖u‖∗

≤ ‖A‖‖B‖.

The norm of the matrix A induced by the vector norm ‖u‖∗ will be denoted by
‖A‖∗. For the three norms ‖u‖1, ‖u‖2, and ‖u‖∞, the corresponding matrix
norms are

‖A‖1 = max
1≤j≤n

n
∑

i=1

|aij |, ‖A‖2 =
√

ρ(AtA), and ‖A‖∞ = max
1≤i≤n

n
∑

j=1

|aij |,

where for a given n× n matrix A with eigenvalues λ1, · · · , λn not necessarily
distinct, ρ(A) is called the spectral radius of A and is defined as

ρ(A) = max{|λi|, 1 ≤ i ≤ n}.
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Theorem 17.3. For a given square matrix A, ρ(A) ≤ ‖A‖.

Proof. Since Ax = λx, we have ‖λx‖ = ‖Ax‖ ≤ ‖A‖‖x‖, which is the same
as |λ|‖x‖ ≤ ‖A‖‖x‖, and hence |λ| ≤ ‖A‖.

From Theorem 17.3 it follows that all eigenvalues of A lie in or on the disk
|z| ≤ ‖A‖ of the complex plane C; in particular, in the disks

|z| ≤ max
1≤i≤n

n
∑

j=1

|aij | (17.6)

and

|z| ≤ max
1≤j≤n

n
∑

i=1

|aij |. (17.7)

Remark 17.1. Let (λ, u) be an eigenpair ofA, and let |ui| = max{|u1|, · · · ,
|un|}. In component form, Au = λu can be written as

(λ− aii)ui =

n
∑

j=1,j 6=i

aijuj, i = 1, · · · , n,

and hence it follows that

|λ− aii| ≤
n
∑

j=1,j 6=i

|aij |.

Therefore, all the eigenvalues of A lie inside or on the union of the circles

|z − aii| ≤
n
∑

j=1,j 6=i

|aij |, i = 1, · · · , n. (17.8)

Also, since the eigenvalues of A and At are the same, all the eigenvalues of A
lie inside or on the union of the circles

|z − ajj | ≤
n
∑

i=1,i6=j

|aij |, j = 1, · · · , n. (17.9)

The above estimates are attributed to Gershgorin. Since all these bounds are
independent, all the eigenvalues of A must lie in the intersection of these
circles. If any one of these circles is isolated, then it contains exactly one
eigenvalue.

Example 17.3. For the matrix A in (16.4), in view of (17.6) as well as
(17.7), all the eigenvalues lie in or on the circle |z| ≤ 5; whereas, in view of
(17.8) as well as (17.9), all the eigenvalues lie inside or on the union of the
circles |z − 2| ≤ 1 and |z − 3| ≤ 2, which is |z − 3| ≤ 2. Now, since the
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intersection of |z| ≤ 5 and |z − 3| ≤ 2 is |z − 3| ≤ 2, all the eigenvalues of A
lie in or on the circle |z − 3| ≤ 2.

Remark 17.2. If all the elements of A are positive, then the numerically
largest eigenvalue is also positive, and the corresponding eigenvector has pos-
itive coordinates. This result is due to Perron. For the matrix A in (16.4), the
largest eigenvalue is 4 and the corresponding eigenvector is (1, 2, 1)t.

Remark 17.3. Let A be a hermitian matrix with (real) eigenvalues
λ1, · · · , λn. Define λ = min{λ1, · · · , λn} and Λ = max{λ1, · · · , λn}. Then,
for any nonzero vector u ∈ Cn, the following inequality holds:

λ ≤ (Au, u)

(u, u)
≤ Λ. (17.10)

Further, λ = min‖u‖=1(Au, u) and Λ = max‖u‖=1(Au, u). The expression
(Au, u)/(u, u) is called the Rayleigh quotient.

A sequence of vectors {um} in a normed linear space V is said to converge
to u ∈ V if and only if ‖u − um‖ → 0 as m → ∞. A sequence of matrices

{A(m)} with elements (a
(m)
ij ) is said to converge to A = (aij) if and only if

aij = limm→∞ a
(m)
ij . Further, the series

∑∞
m=1A

(m) is convergent if and only

if the sequence of its partial sums, i.e., {∑k
m=1A

(m)}, converges.

In a normed linear space V, norms ‖ · ‖ and ‖ · ‖∗ are said to be equivalent
if there exist positive constants m and M such that for all u ∈ V, m‖u‖ ≤
‖u‖∗ ≤M‖u‖. It is well known (see Problem 17.7) that in a finite dimensional
normed linear space all the norms are equivalent. Thus, if a sequence {um}
converges in one norm then it converges in all the norms.

Theorem 17.4. For a given square matrix A, limm→∞Am = 0 if ‖A‖ <
1.

Proof. Since ‖Am‖ ≤ ‖A‖m and the norm is continuous (see Problem 17.2),
it follows that ‖ limm→∞Am‖ ≤ limm→∞ ‖A‖m = 0.

Theorem 17.5. For a given square matrix A, (I−A)−1 exists if ‖A‖ < 1.
Further,

I +A+A2 + · · · =

∞
∑

m=0

Am = (I −A)−1. (17.11)

Proof. Since

‖(I −A)x‖ = ‖x−Ax‖ ≥ ‖x‖− ‖Ax‖ ≥ ‖x‖− ‖A‖‖x‖ = (1−‖A‖)‖x‖,

(I−A)x 6= 0 for an arbitrary x 6= 0, which implies that (I−A) is a nonsingular
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matrix. Now, after multiplying the identity

(I +A+A2 + · · ·+Am)(I −A) = I −Am+1,

by (I −A)−1, we obtain

(I +A+A2 + · · ·+Am) = (I −Am+1)(I −A)−1.

In the above equality as m→ ∞, (17.11) follows.

Theorem 17.6 (Banach’s lemma). For a given square matrix A,
if ‖A‖ < 1, then

1

1 + ‖A‖ ≤ (I ±A)−1‖ ≤ 1

1− ‖A‖ . (17.12)

Proof. Since

I = (I −A)(I −A)−1 = (I −A)−1 −A(I −A)−1,

we have

‖A‖‖(I −A)−1‖ ≥ ‖A(I −A)−1‖ = ‖(I −A)−1 − I‖ ≥ ‖(I −A)−1‖ − 1,

and hence ‖(I−A)−1‖ ≤ 1/(1−‖A‖).Analogously, letting I = (I+A)(I+A)−1

we find ‖(I +A)−1‖ ≥ 1/(1 + ‖A‖). Finally, since ‖ −A‖ = ‖A‖, inequalities
(17.12) follow.

Problems

17.1. Show that for all vectors u, v ∈ R3,

(i) Lagrange’s identity ‖u× v‖22 = ‖u‖22‖v‖22 − (u · v)2
(ii) ‖u× v‖2 = ‖u‖2‖v‖2 sin θ, where θ is the angle between u and v.

17.2. Show that
|‖u‖ − ‖v‖| ≤ ‖u− v‖.

Thus the norm is a Lipschitz function and, therefore, in particular, a contin-
uous real valued function.

17.3. For any pair of vectors u, v in an inner product space V, show that

(i) ‖u+ v‖22 + ‖u− v‖22 = 2‖u‖22 + 2‖v‖22 (parallelogram law)

(ii) Re (u, v) =
1

4
‖u+ v‖22 −

1

4
‖u− v‖22.

In particular, for the vectors u = (2, 0, 1, 3)t, v = (3, 2, 1, 0)t in R4, verify
the above relations.
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17.4. Let {u1, · · · , ur} be an orthogonal subset of an inner product space
V. Show that the generalized theorem of Pythagoras, i.e.,

‖u1 + · · ·+ ur‖22 = ‖u1‖22 + · · ·+ ‖ur‖22

holds. In particular, verify this theorem for the orthogonal set {(0, 1, 1)t,
(1,− 1

2 ,
1
2 )

t, (23 ,
2
3 ,− 2

3 )
t
}

obtained in Example 14.7.

17.5. Let S = {u1, · · · , ur} be an orthogonal subset of an inner product
space V. Show that for any vector v ∈ V, the following holds:

∥

∥

∥

∥

∥

v −
r
∑

i=1

ciu
i

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

v −
r
∑

i=1

diu
i

∥

∥

∥

∥

∥

2

,

where ci = (ui, v)/(ui, ui), i = 1, · · · , r are the Fourier coefficients, and di, i =
1, · · · , r are arbitrary scalars. Thus, in ℓ2-norm,

∑r
i=1 ciu

i =
∑r

i=1 projuiv =
projSv is the closest (best approximation) to v as a linear combination of
u1, · · · , ur. Thus, in view of Example 14.7 from the vector (2, 2, 3)t to the set
Span {(0, 1, 1)t, (1− 1/2, 1/2)t} , the minimum ℓ2-distance is

∥

∥

∥

∥

∥

(2, 2, 3)t − 5

2
(0, 1, 1)t − 5

3

(

1,−1

2
,
1

2

)t
∥

∥

∥

∥

∥

2

=
1√
3
.

17.6. Let {ũ1, · · · , ũr} be an orthonormal subset of an inner product
space V. Show that for any vector v ∈ V, Bessel’s inequality holds:

r
∑

i=1

|ci|2 ≤ ‖v‖22,

where ci = (v, ũi), i = 1, · · · , r are the Fourier coefficients. Verify this in-

equality for the orthonormal set
{

1√
2
(0, 1, 1)t,

√

2
3 (1,− 1

2 ,
1
2 )

t,
}

and the vector

(2, 2, 3)t.

17.7. Let q ≥ p ≥ 1. Show that

(i) for any x ∈ IRn,

‖x‖q ≤ ‖x‖p ≤ n(q−p)/pq‖x‖q

(ii) for any n× n matrix A,

n(p−q)/pq‖A‖q ≤ ‖A‖p ≤ n(q−p)/pq‖A‖q.

17.8. Let A be an n × n real matrix. Show that AtA has nonnegative
eigenvalues.
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17.9. Let A and B be n × n matrices. The matrix A is nonsingular and
‖A−1B‖ < 1. Show that A+B is nonsingular, and

‖(A+B)−1 −A−1‖ ≤ ‖A−1B‖
1− ‖A−1B‖‖A

−1‖.

17.10. Let V be a normed linear space. The distance function between
two vectors u, v ∈ V is defined by d(u, v) = ‖u− v‖. Show that

(i) d(u, v) ≥ 0, and d(u, v) = 0 if and only if u = v

(ii) d(u, v) = d(v, u)

(iii) d(u, v) ≤ d(u,w) + d(w, v) for every w ∈ V.

For d(u, v) = ‖u− v‖2 the above definition reduces to the familiar Euclidean
distance. In particular, for the vectors u = (1, 2, 3)t, v = (2, 0, 1)t, w =
(1, 3, 0)t in (R3, ‖ · ‖2), verify the above properties.

Answers or Hints

17.1. (i) ‖u × v‖22 = ‖(u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)‖22 = |u2v3 −
u3v2|2 + |u3v1 − u1v3|2 + |u1v2 − u2v1|2 = ‖u‖22‖v‖22 − (u, v)2.

(ii) ‖u× v‖22 = ‖u‖22‖v‖22 − (‖u‖2‖v‖2 cos θ)2.
17.2. ‖u‖ = ‖u− v + v‖ ≤ ‖u− v‖+ ‖v‖.
17.3. (i) ‖u+v‖22+‖u−v‖22 = (u+v, u+v)+(u−v, u−v) = 2(u, u)+2(v, v).

(ii) 1
4‖u+ v‖22 − 1

4‖u− v‖22 = 1
2 [(u, v) + (v, u)].

17.4. ‖∑n
i=1 u

i‖22 = (
∑n

i=1 u
i,
∑n

i=1 u
i) =

∑n
i=1(u

i, ui) +
∑n

i6=j(u
i, uj).

17.5. By Theorem 14.3, v −∑r
i=1 ciu

i is orthogonal to every ui, and hence
orthogonal to any linear combination of u1, · · · , ur. Thus, from Problem 17.5
it follows that
‖v −∑r

i=1 diu
i‖22 = ‖(v −∑r

i=1 ciu
i) + (

∑r
i=1(ci − di)u

i)‖22
= ‖v −∑r

i=1 ciu
i‖22 + ‖∑r

i=1(ci − di)u
i‖22 ≥ ‖v −∑r

i=1 ciu
i‖22.

17.6. 0 ≤ (v − ∑r
i=1 ciũ

i, v − ∑r
i=1 ciũ

i) = ‖v‖2 − 2Re (v,
∑r

i=1 ciũ
i) +

∑r
i=1 |ci|2 = ‖v‖2 −∑r

i=1 |ci|2.
17.7. (i) First we will show that for 0 < p < q, ‖x‖p ≥ ‖x‖q, x ∈ Rn.
If x = 0, then it is obviously true. Otherwise, let yk = |xk|/‖x‖q. Clearly,
yk ≤ 1 for all k = 1, · · · , n. Therefore, ypk ≥ yqk, and hence ‖y‖p ≥ 1, which
implies ‖x‖p ≥ ‖x‖q. To prove the right side of the inequality, we need Hölder’s
inequality

n
∑

i=1

|uivi| ≤
(

n
∑

i=1

|ui|r
)1/r ( n

∑

i=1

|vi|s
)1/s

, r > 1,
1

r
+

1

s
= 1.

In this inequality, we let ui = |xi|p, vi = 1, r = q/p > 1, s = q/(q−p), to get
n
∑

i=1

|xi|p ≤
(

n
∑

i=1

|xi|q
)p/q

(n)(q−p)/q .
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(ii) For q ≥ p ≥ 1, from (i), we have

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

≤ max
x 6=0

‖Ax‖p
‖x‖q

≤ max
x 6=0

n
q−p

pq ‖Ax‖q
‖x‖q

= n
q−p

pq ‖A‖q,

‖A‖p = max
x 6=0

‖Ax‖p
‖x‖p

≥ max
x 6=0

‖Ax‖p
n

q−p

pq ‖x‖q
≥ max

x 6=0

‖Ax‖q
n

q−p

pq ‖x‖q
= n

p−q

pq ‖A‖q.

17.8. Since AtA is real and symmetric, in view of P8 (in Chapter 16), eigen-
values of AtA are real. If λ is an eigenvalue of AtA and u is the corresponding
eigenvector, then ‖Au‖22 = ((Au), (Au)) = (Au)t(Au) = ut(AtA)u = utλu =
λutu = λ‖u‖22, and hence λ is nonnegative.
17.9. Since ‖A−1B‖ < 1 from Theorem 17.5, it follows that the matrix
(I + A−1B) is nonsingular. Now since A + B = A(I + A−1B), the matrix
A + B is nonsingular, and (A + B)−1 − A−1 = (I + A−1B)−1A−1 − A−1 =
[(I +A−1B)−1 − I]A−1. Now use (17.12).
17.10. (i) If u 6= v, then u − v 6= 0. Hence d(u, v) = ‖u − v‖ > 0. Further,
d(u, u) = ‖u− u‖ = ‖0‖ = 0

(ii) d(u, v) = ‖u− v‖ = ‖ − 1(v − u)‖ = | − 1|‖v − u‖ = ‖v − u‖
(iii) d(u, v) = ‖u − v‖ = ‖(u − w) + (w − v)‖ ≤ ‖u − w‖ + ‖w − v‖ =
d(u,w) + d(w, v).
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Diagonalization

An n × n matrix A is said to be diagonalizable if there exists a nonsingular
matrix P and a diagonal matrix D such that A = PDP−1, which is the same
as D = P−1AP. An immediate advantage of diagonalization is that we can
find powers of A immediately. In fact, note that

A2 = (PDP−1)(PDP−1) = PD(P−1P )DP−1 = PD2P−1,

and for any positive integer m, it follows that

Am = PDmP−1.

From Chapter 2, we also recall that if the diagonal elements of D are
(λ1, · · · , λn), then Dm is also diagonal, with diagonal elements (λm1 , · · · , λmn ).

Our main result of this chapter is the following theorem.

Theorem 18.1. An n×n matrix A is diagonalizable if and only if A has n
linearly independent eigenvectors, i.e., algebraic multiplicity of each eigenvalue
is the same as the geometric multiplicity. Further, if D = P−1AP, where D is
a diagonal matrix, then the diagonal elements of D are the eigenvalues of A
and the column vectors of P are the corresponding eigenvectors.

Proof. Let λ1, · · · , λn be the eigenvalues (not necessarily distinct) of A
and let u1, · · · , un be the corresponding linearly independent eigenvectors.
We define an n × n matrix P whose i-th column is the vector ui. Clearly, in
view of Problem 8.3 the matrix P is invertible. Now, since

Aui = λiu
i,

it follows that

AP = A(u1, · · · , un) = (Au1, · · · , Aun) = (λ1u
1, · · · , λnun) = PD,

where D is the diagonal matrix with diagonal elements λ1, · · · , λn. Thus,
AP = PD, and hence D = P−1AP.

Conversely, suppose that A is diagonalizable, i.e., there exist a diagonal
matrix D and an invertible matrix P such that D = P−1AP. Again assume
that the diagonal elements of D are (λ1, · · · , λn) and the column vectors of P

155
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are (u1, · · · , un). Since AP = PD, it follows that Aui = λiu
i, i = 1, · · · , n.

Hence, u1, · · · , un are eigenvectors of A. Since P is invertible, from Problem
8.3 it follows that u1, · · · , un are linearly independent.

Theorem 18.1 says that the matrices A and D are similar, and hence in
view of P12 (in Chapter 16) both have the same eigenvalues.

Corollary 18.1. If A is an n×n matrix with n distinct eigenvalues, then
A is diagonalizable.

Proof. It follows from P4 (in Chapter 16) and Theorem 18.1.

Example 18.1. In view of Example 16.1 for the matrix A in (16.4), we
have

D =





1 0 0
0 2 0
0 0 4



 and P =





1 1 1
−1 0 2
1 −1 1



 .

Now, since

P−1 =
1

6





2 −2 2
3 0 −3
1 2 1





from Theorem 18.1, it follows that




1 0 0
0 2 0
0 0 4



 =
1

6





2 −2 2
3 0 −3
1 2 1









2 1 0
1 3 1
0 1 2









1 1 1
−1 0 2
1 −1 1





and

A =





2 1 0
1 3 1
0 1 2



 =





1 1 1
−1 0 2
1 −1 1









1 0 0
0 2 0
0 0 4





1

6





2 −2 2
3 0 −3
1 2 1



 .

For each postive integer m we also have

Am =





1 1 1
−1 0 2
1 −1 1









1 0 0
0 2m 0
0 0 4m





1
6





2 −2 2
3 0 −3
1 2 1





=









2
6 + 3

62
m + 1

64
m − 2

6 + 2
64

m 2
6 − 3

62
m + 1

64
m

− 2
6 + 2

64
m 2

6 + 4
64

m − 2
6 + 2

64
m

2
6 − 3

62
m + 1

64
m − 2

6 + 2
64

m 2
6 + 3

62
m + 1

64
m









.

Example 18.2. For the matrix A in Example 16.5, we find

D =





−1 0 0
0 −1 0
0 0 1



 and P =





1 0 2
0 1 1
0 0 1



 .
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Now, since

P−1 =





1 0 −2
0 1 −1
0 0 1





from Theorem 18.1, it follows that

A =





−1 0 4
0 −1 2
0 0 1



 =





1 0 2
0 1 1
0 0 1









−1 0 0
0 −1 0
0 0 1









1 0 −2
0 1 −1
0 0 1



 .

Example 18.3. In view of Theorem 18.1, the matrix A in Example 16.4
cannot be diagonalized.

Remark 18.1. The matrix P that diagonalizes the matrix A is not unique.
For example, if in Example 18.1, we take

D =





2 0 0
0 4 0
0 0 1



 and P =





1 1 1
0 2 −1

−1 1 1



 ,

then

A =





2 1 0
1 3 1
0 1 2



 =





1 1 1
0 2 −1

−1 1 1









2 0 0
0 4 0
0 0 1





1

6





3 0 −3
1 2 1
2 −2 2



 .

Similarly, in Example 18.2, we could have taken

D =





−1 0 0
0 1 0
0 0 −1



 and P =





1 2 0
0 1 1
0 1 0



 .

Then,

A =





−1 0 4
0 −1 2
0 0 1



 =





1 2 0
0 1 1
0 1 0









−1 0 0
0 1 0
0 0 −1









1 0 −2
0 0 1
0 1 −1



 .

A linear mapping L : V → V is called diagonalizable if there is a basis S
for V such that the transition matrix A for L relative to S is a diagonalizable
matrix.

Remark 18.2. In the above definition, let S and T be two bases of V,
and let A and B be the corresponding transition matrices. Then, in view of
Chapter 13, A and B are similar, i.e., there exists an invertible matrix Q such
that B = QAQ−1. Thus, if A is diagonalizable, i.e., A = PDP−1, then B =
QPDP−1Q−1 = (QP )D(QP )−1, and hence B is diagonalizable. Therefore,
in the above definition, if L is diagonalizable with respect to one basis, it is
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diagonalizable with respect to all bases. However, with respect to different
bases, the corresponding transition matrices and their diagonalizations may
be different (see Example 18.4 and Problem 18.2).

Example 18.4. Consider the linear mapping L : R3 → R3 as L(x, y, z) =
(11x − y − 4z,−x + 11y − 4z,−4x − 4y + 14z)t and the basis S1 for R3 as
S1 = {e1, e2, e3}. For this mapping, the transition matrix A relative to S1 is

A =





11 −1 −4
−1 11 −4
−4 −4 14



 . (18.1)

For this matrix A the eigenvalues and the corresponding eigenvectors are

λ1 = 6, u1 = (1, 1, 1)t

λ2 = 12, u2 = (−1, 1, 0)t

λ3 = 18, u3 = (−1,−1, 2)t.

Thus this mapping is diagonalizable. Further, it follows that

A = PDP−1 =





1 −1 −1
1 1 −1
1 0 2









6 0 0
0 12 0
0 0 18





1

6





2 2 2
−3 3 0
−1 −1 2



 .

(18.2)

Remark 18.3. The matrix A in (18.1) is symmetric, its eigenvalues are
real, and its eigenvectors are orthogonal, as they should be in view of P8
and P9 (in Chapter 16). The columns of P are orthogonal (but not the row
vectors) and the row vectors of P−1 are also orthogonal (but not the column
vectors). Clearly, we can normalize the above eigenvectors, and then in (18.2)
the matrix P can be replaced by

Q =







1√
3

− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

0 2√
6






.

This matrix Q is orthogonal (rows as well as columns are orthonormal, see
Problem 14.11) and hence Qt = Q−1. Thus, it follows that

A = QDQt =







1√
3

− 1√
2

− 1√
6

1√
3

1√
2

− 1√
6

1√
3

0 2√
6











6 0 0
0 12 0
0 0 18











1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6

− 1√
6

2√
6






.

An n× n matrix A is said to be orthogonally diagonalizable if there exists
an orthogonal matrix Q and a diagonal matrix D such that A = QDQ−1 =
QDQt. Thus the matrix A in (18.1), which is real and symmetric, is orthog-
onally diagonalizable. In fact, we have the following general result.
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Theorem 18.2. A real n × n matrix A is orthogonally diagonalizable if
and only if A is symmetric.

Proof. If A = QDQt, then

At = (QDQt)t = (Qt)tDtQt = QDQt = A,

i.e., At = A, and hence A is symmetric.

For the converse, we note the following facts: From P8 (in Chapter 16),
eigenvalues of a real symmetric matrix are real; from P9 (in Chapter 16),
eigenvectors of a real symmetric matrix that correspond to distinct eigen-
values are orthogonal; for a symmetric matrix, algebraic multiplicity and the
geometric multiplicity of an eigenvalue are the same; however, if the geometric
multiplicity of an eigenvalue is greater than 1, then the corresponding eigen-
vectors (though linearly independent) may not be mutually orthogonal, but
the Gram–Schmidt process can be used to orthogonalize them. All of these
vectors can be orthonormalized.

Example 18.5. For the symmetric matrix

A =









1 1 1 1
1 5

3 − 4
3 − 4

3

1 − 4
3 − 5

6
7
6

1 − 4
3

7
6 − 5

6









,

the eigenvalues and the corresponding eigenvectors are

λ1 = 2, u1 = (3, 1, 1, 1)t

λ2 = 3, u2 = (0,−2, 1, 1)t

λ3 = −2, u3 = (−1, 1, 2, 0)t

λ4 = −2, u4 = (0, 0,−1, 1).

Clearly, the sets S1 = {u1, u2, u3} and S2 = {u1, u2, u4} are orthogonal;
however, the vectors u3 and u4, although linearly independent, are not or-
thogonal. We use the Gram–Schmidt process to orthogonalize the vectors u3

and u4, to obtain v3 = (−1, 1, 2, 0)t and v4 = (−1/3, 1/3,−1/3, 1)t. The set
S = {u1, u2, v3, v4} is orthogonal. Next, we normalize these vectors, to find

Q =















3√
12

0 − 1√
6

− 1√
12

1√
12

− 2√
6

1√
6

1√
12

1√
12

1√
6

2√
6

− 1√
12

1√
12

1√
6

0 3√
12















.

We further note that in the factorization QDQt of the given matrix A, the
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matrix D is

D =









2 0 0 0
0 3 0 0
0 0 −2 0
0 0 0 −2









.

Finally, in this chapter we prove the following theorem, known as QR
factorization.

Theorem 18.3. Let A = (a1, · · · , an) be an m× n matrix with linearly
independent columns. Then, A can be factorized as A = QR, where Q =
(q1, · · · , qn) is an m× n matrix with orthonormal columns and R is an n× n
upper triangular matrix with positive diagonal elements.

Proof. To columns of A we apply the Gram–Schmidt process to obtain the
required matrix Q with orthonormal columns {q1, · · · , qn}. For each aj , 1 ≤
j ≤ n by the Gram–Schmidt process ensures that aj ∈ Span{q1, · · · , qj}.
Thus, from (14.5) it follows that

aj = (aj , q1)q1 + (aj , q2)q2 + · · ·+ (aj , qj)qj . (18.3)

Let rkj = (aj , qk), 1 ≤ j ≤ n, 1 ≤ k ≤ j, and define the matrix

R =











r11 r12 · · · r1n
0 r22 · · · r2n
...

...
...

...
0 0 · · · rnn











.

Now we claim that A = QR. For this, it suffices to note that the j-th column of
QR is exactly (18.3). Now, clearly ak 6∈ Span{q1, · · · , qk−1}, and hence rkk =
(ak, qk) 6= 0. If rkk < 0, without affecting the orthonormality of {q1, · · · , qn},
we replace qk with −qk, which will make rkk > 0. Hence, the diagonal entries
of R can be made positive.

Remark 18.4. Since A = QR, we have QtA = QtQR = R, and hence
once Q is known, the matrix R can be computed immediately.

Example 18.6. From Problem 14.14(ii) it follows that for the matrix

A = (a1, a2, a3) =









1 1 2
1 2 3
1 3 4
3 4 9








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the matrix Q is

Q = (q1, q2, q3) =















1
2
√
3

− 1
2
√
3

− 2√
6

1
2
√
3

1
2
√
3

− 1√
6

1
2
√
3

3
2
√
3

0

3
2
√
3

− 1
2
√
3

1√
6















.

Now, directly or using Remark 18.4, we can compute the matrix R as

R =





r11 r12 r13
0 r22 r23
0 0 r33



=





(a1, q1) (a2, q1) (a3, q1)
0 (a2, q2) (a3, q2)
0 0 (a3, q3)



=









6√
3

9√
3

18√
3

0 3√
3

2√
3

0 0 2√
6









.

Problems

18.1. If possible, diagonalize matrices given in Problems 16.2, 16.3, and
16.6.

18.2. Diagonalize the following matrices

(i)





10 4 −2
−10 24 −2
−20 8 16



 , (ii)









5 −1 −1 −1
−1 5 1 1
−1 1 7 −1
−1 1 −1 7









.

18.3. In Example 18.4 with the given basis Si find the corresponding
matrices P i and Di, i = 2, · · · , 7
(i) S2 = {e2, e3, e1}, (ii) S3 = {e3, e1, e2}, (iii) S4 = {e1, e3, e2},
(iv) S5 = {e2, e1, e3}, (v) S6 = {e3, e2, e1} (vi) S7 = {e1, e1 + e2, e1

+ e2 + e3}.

18.4. Orthogonally diagonalize the following matrices, and the matrix in
Problem 18.2(ii):

(i)







2 0 0

0 3
2 − 1

2

0 − 1
2

3
2






, (ii)





13 2 4
2 10 2
4 2 13



 , (iii)













3
2 0 1

2 0

0 10
9 0 4

9
√
2

1
2 0 3

2 0

0 4
9
√
2

0 17
9













.

18.5. Find QR factorization of the following matrices:
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(i)





0 1 1
1 0 1
1 1 0



 , (ii)









1 0
1 2
1 0

−1 3









, (iii)









1 0 −2
1 2 −1
1 0 3

−1 3 0









.

Answers or Hints

18.1. 16.2(i)





1 0 −4
1 1 1
2 2 22









4 0 0
0 3 0
0 0 −1











1 − 2
5

1
5

−1 3
2 − 1

4

0 − 1
10

1
20






.

16.2(ii)





0 0 1
1 −2 0

−3 5 2









0 0 0
0 1 0
0 0 3









4 −5 −2
2 −3 −1
1 0 0



 .

16.2(iii)





1 2 2
2 1 −2
2 −2 1









0 0 0
0 3 0
0 0 15











1
9

2
9

2
9

2
9

1
9 − 2

9
2
9 − 2

9
1
9






.

16.3(i)

(

2 2
1− 3i 1 + 3i

)(

3 + 3i 0
0 3− 3i

)

(

1
12 (3− i) 1

6 i
1
12 (3 + i) − 1

6 i

)

.

16.3(ii)





−2 0 0
3 i −i

−2 1 1









1 0 0
0 1 + 2i 0
0 0 1− 2i











− 1
2 0 0

− 1
2 − 3

4 i − 1
2 i

1
2

− 1
2 + 3

4 i
1
2 i

1
2






.

16.3(iii)





1 1 1
−1 i −i
0 1 1









1 0 0
0 i 0
0 0 −i











1 0 −1

− 1
2 i − 1

2 i
1
2 + 1

2 i
1
2 i

1
2 i

1
2 − 1

2 i






.

16.6(i), (ii), (iii) None of them are diagonalizable.

18.2. (i)





−1 2 1
0 5 1
5 0 2









20 0 0
0 20 0
0 0 10











− 2
5

4
25

3
25

− 1
5

7
25 − 1

25

1 − 2
5

1
5






.

(ii)









1 2 −1 −1
1 0 1 1
0 1 2 0
0 1 0 2

















4 0 0 0
0 4 0 0
0 0 8 0
0 0 0 8









1
8









2 6 −2 −2
2 −2 2 2

−1 1 3 −1
−1 1 −1 3









.

18.3. Most are approximate values

(i) P 2 =





1 −0.583333− 0.702179i −0.583333+ 0.702179i
1 −0.416667+ 0.702179i −0.416667− 0.702179i
1 1 1





D2 =





6 0 0

0 3
2 (−5 + i

√
71) 0

0 0 − 3
2 (5 + i

√
71)



 .
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(ii) P 3 =





1 −0.416667+ 0.702179i −0.416667− 0.702179i
1 −0.583333− 0.702179i −0.583333+ 0.702179i
1 1 1





D3 =





6 0 0

0 3
2 (−5 + i

√
71) 0

0 0 − 3
2 (5 + i

√
71)



 .

(iii) P 4 =





1 −1.7374 −0.0959285
1 0.737405 −0.904071
1 1 1





D4 =





6 0 0

0 3
2 (−1 +

√
97) 0

0 0 − 3
2 (1 +

√
97)



 .

(iv) P 5 =





1 −1 −1
1 1 −1
1 0 2



 D5 =





6 0 0
0 −12 0
0 0 18



 .

(v) P 6 =









0.603423 −1.25509 0.76072
−0.760381 −0.168228 1.5603

1 1 1









D6 =





15.4894 0 0
0 −12.8983 0
0 0 8.4089



 .

(vi) P 7 =





2.50743 −1.00372− 0.581853i −1.00372+ 0.581853i
−1.45332 0.0391602− 0.80221i 0.0391602+ 0.80221i

1 1 1





D7 =





7.59684 0 0
0 9.70158 + 8.74509i 0
0 0 9.70158− 8.74509i



 .

18.4. (i)









0 1 0
1√
2

0 − 1√
2

1√
2

0 1√
2













1 0 0
0 2 0
0 0 2









0 1√
2

1√
2

1 0 0
0 − 1√

2
1√
2



 , or









0 2√
6

1√
3

1√
2

− 1√
6

1√
3

1√
2

1√
6

− 1√
3













1 0 0
0 2 0
0 0 2













0 1√
2

1√
2

2√
6

− 1√
6

1√
6

1√
3

1√
3

− 1√
3









.

(ii)







− 2
3

1
3

2
3

2
3

2
3

1
3

1
3 − 2

3
2
3











9 0 0
0 9 0
0 0 18











− 2
3

2
3

1
3

1
3

2
3 − 2

3
2
3

1
3

2
3






, or









− 1√
5

− 4
3
√
5

2
3

2√
5

− 2
3
√
5

1
3

0 5
3
√
5

2
3













9 0 0
0 9 0
0 0 18













− 1√
5

2√
5

0

− 4
3
√
5

− 2
3
√
5

5
3
√
5

2
3

1
3

2
3









.
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(iii)













1
2

1
2 − 1

2 − 1
2

1
3
√
2

2
3

2
3

1
3
√
2

1
2 − 1

2
1
2 − 1

2
2
3 − 1

3
√
2

− 1
3
√
2

2
3





















2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2























1
2

1
3
√
2

1
2

2
3

1
2

2
3 − 1

2 − 1
3
√
2

− 1
2

2
3

1
2 − 1

3
√
2

− 1
2

1
3
√
2

− 1
2

2
3















.

18.2(ii)















1√
2

1
2 − 1√

6
− 1

2
√
3

1√
2

− 1
2

1√
6

1
2
√
3

0 1
2

2√
6

− 1
2
√
3

0 1
2 0 3

2
√
3























4 0 0 0
0 4 0 0
0 0 8 0
0 0 0 8





















1√
2

1√
2

0 0

1
2 − 1

2
1
2

1
2

− 1√
6

1√
6

2√
6

0

− 1
2
√
3

1
2
√
3

− 1
2
√
3

3
2
√
3













.

18.5. (i)













0
√

2
3

1√
3

1√
2

− 1
2

√

2
3

1√
3

1√
2

1
2

√

2
3 − 1√

3























2√
2

1√
2

1√
2

0
√

3
2

1
2

√

2
3

0 0 2√
3











.

(ii)















1
2

1
2
√
51

1
2

9
2
√
51

1
2

1
2
√
51

− 1
2

11
2
√
51















(

2 − 1
2

0 51
2
√
51

)

.

(iii) ≃









0.500 0.070 −0.530
0.500 0.630 −0.175
0.500 0.070 0.822

−0.500 0.770 0.117













2.000 −0.500 0.000
0.000 3.571 −0.560
0.000 0.000 3.699



 .



Chapter 19

Singular Value Decomposition

In this chapter, we shall develop another type of factorization, which is a
generalization of the diagonalization procedure discussed in Chapter 18. This
factorization is applicable to any real m × n matrix A, and in the literature
has been named as the singular value decomposition (SVD). Besides solving
linear systems, SVD has a wide variety of applications in diverse fields such as
data compression, noise reduction, storage, estimating the rank of a matrix,
and transmission of digitized information. Before we state the main result of
this chapter, let us recall the following steps:

S1 For an m×n matrix A, the m×m matrix AAt and the n×n matrix AtA
are symmetric.

S2 In view of Problem 17.8, the eigenvalues of AtA are real and nonnegative.
We assume that the eigenvalues λ1, · · · , λr are nonzero and arrange them in
decreasing order, i.e., λ1 ≥ λ2 ≥ · · ·λr > 0.

S3 In view of Theorem 18.2 the matrix AtA has n orthonormal eigenvectors
v1, · · · , vn. Let v1, · · · , vr be those corresponding to the eigenvalues λ1, · · · , λr
of AtA. Clearly, an immediate extension of Problem 11.3 implies that r is the
rank of AtA, which is the same as that of A.

S4 Since AAtAvi = A(λiv
i) = λiAv

i, it follows that vi is an eigenvector of
AtA, which implies that Avi is an eigenvector ofAAt, with the same eigenvalue
λi.

S5 From Problem 17.8 it follows that ‖Avi‖2 = σi‖vi‖2, where σi = λ2i , i =
1, · · · , r. These σi are called the singular values of A. Clearly, σ1 ≥ σ2 ≥ · · · ≥
σr > 0.

S6. Define ui = Avi/σi, i = 1, · · · , r. Then, clearly

(ui, ui) =
1

λi
(Avi, Avi) =

λi
λi

(vi, vi) = 1,

i.e., the vectors ui, i = 1, · · · , r are also normalized. Further,we have

(ui)tAvj = (Avi/σi)
tAvj =

1

σi
(vi)tAtAvj =

1

σi
(vi)tλjv

j =
λj
σi

(vi)tvj ,

which implies that for all 1 ≤ i, j ≤ r, (ui)tAvj = 0 for i 6= j, and σi for i = j.
This means that the set {u1, · · · , ur} is an orthonormal basis for the column
space A.

165
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S7. The matrix V = (v1, · · · , vr|vr+1, · · · , vn) orthogonally diagonalizes
AtA; we use Remark 14.2 to extend the set {u1, · · · , ur} to {u1, · · · , ur|ur+1,
· · · , um}, which forms an orthonormal basis for Rm, and construct the matrix
U = (u1, · · · , ur|ur+1, · · · , um); we define the matrix Σ as follows

Σ =







Drr

... 0r,n−r

· · · · · · · · · · · ·
0m−r,r

... 0m−r,n−r






;

here, Drr is the diagonal matrix

Drr =











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . . · · ·

0 0 · · · σr











and 0kℓ is the k × ℓ zero matrix.

S8. We claim that UΣ = AV. Indeed, we have

UΣ = (σ1u
1, · · · , σrur|0, · · · , 0)

= (Av1, · · · , Avr|Avr+1, · · · , Avn) = AV.

S9. Using the orthogonality of V, it follows that

A = UΣV t. (19.1)

Theorem 19.1. Every m× n matrix A with rank r has a singular value
decomposition, i.e, (19.1) holds.

Proof. The steps S1–S9 provide the constructive proof of (19.1).

It is clear that for a symmetric matrix, singular value decomposition is the
same as orthogonal diagonalization, provided the eigenvalues are arranged in
a decreasing order.

Example 19.1. We shall find singular value decomposition of the matrix

A =

(

2 2 1 0
1 −1 0 1

)

.

For this, we note that

AtA =









5 3 2 1
3 5 2 −1
2 2 1 0
1 −1 0 1









.



Singular Value Decomposition 167

For the matrix AtA, eigenvalues and the corresponding eigenvectors are λ1 =
9, λ2 = 3, λ3 = 0, λ4 = 0 and (2, 2, 1, 0)t, (1 − 1, 0, 1)t, (−1 − 1, 4, 0)t, (−1, 1,
0, 2)t. Thus, σ1 = 3, σ2 =

√
3,

Σ =

(

3 0 0 0

0
√
3 0 0

)

and V =















2
3

1√
3

− 1
3
√
2

− 1√
6

2
3 − 1√

3
− 1

3
√
2

1√
6

1
3 0 4

3
√
2

0

0 1√
3

0 2√
6















.

We also compute

u1 = Av1/σ1 =

(

1
0

)

and u2 = Av2/σ2 =

(

0
1

)

,

and hence

U =

(

1 0
0 1

)

.

From (19.1), now it follows that

(

2 2 1 0
1 −1 0 1

)

=

(

1 0
0 1

)(

3 0 0 0

0
√
3 0 0

)













2
3

2
3

1
3 0

1√
3

− 1√
3

0 1√
3

− 1
3
√
2

− 1
3
√
2

4
3
√
2

0

− 1√
6

1√
6

0 2√
6













.

Remark 19.1. From (19.1) it immediately follows that At = VΣtU t.
Thus, from Example 19.1, we have the following factorization:









2 1
2 −1
1 0
0 1









=















2
3

1√
3

− 1
3
√
2

− 1√
6

2
3 − 1√

3
− 1

3
√
2

1√
6

1
3 0 4

3
√
2

0

0 1√
3

0 2√
6























3 0

0
√
3

0 0
0 0









(

1 0
0 1

)

.

The same factorization can be directly obtained by following the above steps
S1–S9.

Singular value decomposition connects four fundamental spaces of A in a
natural way. We state and prove this result in the following theorem.

Theorem 19.2. Let the m× n matrix A have the rank r, and let UΣV t

be its singular value decomposition; then the following hold:

(i) the set {u1, · · · , ur} is an orthonormal basis for C(A)

(ii) the set {ur+1, · · · , um} is an orthonormal basis for C(A)⊥ = N (At)
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(iii) the set {v1, · · · , vr} is an orthonormal basis for R(A)

(iv) the set {vr+1, · · · , vn} is an orthonormal basis for R(A)⊥ = N (A).

Proof. (i) It has already been shown in S6. (ii) Since from S7,
{u1, · · · , ur|ur+1, · · · , um} extends {u1, · · · , ur} to an orthonormal basis
of Rm, it follows that each vector in {ur+1, · · · , um} is orthogonal to the
Span{u1, · · · , ur} = C(A). Thus, {ur+1, · · · , um} is an orthonormal set of
m − r vectors in C(A)⊥ = N (At). Now from Corollary 11.4, we have
n(At) = m − r, which implies that {ur+1, · · · , um} is an orthonormal ba-
sis for N (At). (iii) and (iv) The set of eigenvectors {v1, · · · , vr|vr+1, · · · , vn}
of AtA is an orthonormal set. These are ordered so that the first r eigen-
vectors correspond to the positive eigenvalues and the remaining n − r to
the zero eigenvalue. Thus, {vr+1, · · · , vn} is an orthonormal set of n− r vec-
tors in the null space of AtA, which in view of Problem 11.2 is the same as
the null space of A. Now from Theorem 11.4 we know that n(A) is n − r,
thus the set {vr+1, · · · , vn} must be an orthonormal basis for N (A). Next,
since each vector of the set {vr+1, · · · , vn} is orthogonal to each vector of the
set {v1, · · · , vr}, it follows that each vector of the set is orthogonal to the
Span{vr+1, · · · , vn} = NA). But this shows that {v1, · · · , vr} is an orthonor-
mal set of r vectors in N (A)⊥ = R(A). Finally, since R(A) has dimension r,
the set {v1, · · · , vr} must be an orthonormal basis for R(A).

Remark 19.2. Following the patricians shown in S7 for the matrices
U,Σ, and V , we can block multiply UΣV t to get the reduced singular value
decomposition of the matrix A as

A = U1DrrV
t
1 = (u1, · · · , ur)











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . . · · ·

0 0 · · · σr

















(v1)t

...
(vr)t






. (19.2)

Remark 19.3. Multiplying the right side of (19.2), we obtain the reduced
singular value expansion of the matrix A as

A = σ1u
1(v1)t + · · ·+ σru

r(vr)t. (19.3)

Example 19.2. In view of Example 19.1 and Remarks 19.2 and 19.3, we
have the reduced singular value decomposition

(

2 2 1 0
1 −1 0 1

)

=

(

1 0
0 1

)(

3 0

0
√
3

)

(

2
3

2
3

1
3 0

1√
3

− 1√
3

0 1√
3

)

and the reduced singular value expansion

(

2 2 1 0
1 −1 0 1

)

= 3

(

1
0

)(

2

3
,
2

3
,
1

3
, 0

)

+
√
3

(

0
1

)(

1√
3
,− 1√

3
, 0,

1√
3

)

.
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Example 19.3. In view of Remarks 19.1–19.3, we have the reduced sin-
gular value decomposition









2 1
2 −1
1 0
0 1









=













2
3

1√
3

2
3 − 1√

3

1
3 0

0 1√
3













(

3 0

0
√
3

)(

1 0
0 1

)

and the reduced singular value expansion









2 1
2 −1
1 0
0 1









= 3











2
3
2
3
1
3

0











(1, 0) +
√
3













1√
3

− 1√
3

0
1√
3













(0, 1).

Remark 19.4. When the matrix A is invertible, i.e., r = n, then σi >
0, i = 1, · · · , n and the singular value decomposition of A takes the form

A = (u1, · · · , un)











σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . . · · ·

0 0 · · · σn

















(v1)t

...
(vn)t






. (19.4)

Example 19.4. In Example 18.3, we have seen that the matrix A in
Example 16.4 cannot be diagonalized; however, it has a singular value decom-
position given by




2 1 −1
−3 −1 1
9 3 −4



 ≃





−0.2192 −0.7939 −0.5671
0.2982 −0.6079 0.7359

−0.9290 −0.0078 0.3700





×





11.0821 0 0
0 0.3442 0
0 0 0.2621









−0.8747 −0.2982 0.3820
0.4826 −0.6079 0.6305

−0.0442 −0.7359 −0.6757



 .

Problems

19.1. Use steps S1–S9 to show that

(

1 2 1 0
2 0 1 1

)

=

(

1√
2

−1√
2

1√
2

1√
2

)

(

3 0 0 0

0
√
3 0 0

)











1√
2

2
3
√
2

2
3
√
2

1
3
√
2

1√
6

−2√
6

0 1√
6

0 1
3

−2
3

2
3−1√

3
0 1√

3
1√
3










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and









1 2
2 0
1 1
0 1









=











1√
2

1√
6

0 −1√
3

2
3
√
2

−2√
6

1
3 0

2
3
√
2

0 −2
3

1√
3

1
3
√
2

1√
6

2
3

1√
3



















3 0

0
√
3

0 0
0 0









(

1√
2

1√
2

−1√
2

1√
2

)

.

19.2. Use steps S1–S9 to show that









1 3
−3 3
−3 1
1 1









=















√
2

2
√
7

√
2√
3

3
√
2

2
√
7

0
√
2√
7

−
√
2

2
√
3

0
√
2

2
√
3















(

2
√
7 0

0 2
√
3

)

( − 1√
2

1√
2

1√
2

1√
2

)

and

(

1 −3 −3 1
3 3 1 1

)

=

( − 1√
2

1√
2

1√
2

1√
2

)

(

2
√
7 0

0 2
√
3

)

×





√
2

2
√
7

3
√
2

2
√
7

√
2√
7

0
√
2√
3

0 −
√
2

2
√
3

√
2

2
√
3



 .

19.3. Use steps S1–S9 to show that





−1 0 1
−1 1 2
0 1 1



 =







1
6

√
6 −1

2

√
2

1
3

√
6 0

1
6

√
6 1

2

√
2







(

3 0 0
0 1 0

)







−1
6

√
6 1

6

√
6 1

3

√
6

1
2

√
2 1

2

√
2 0

1
3

√
3 −1

3

√
3 1

3

√
3






.

19.4. Use steps S1–S9 to show that









1 2 3
2 1 0
1 1 2
0 3 4









≃









−0.559 −0.132 −0.298
−0.140 −0.895 0.413
−0.353 −0.211 −0.710
−0.738 0.370 0.487









×





6.667 0.000 0.000
0.000 2.249 0.000
0.000 0.000 0.700









−0.179 −0.573 −0.800
−0.949 −0.116 0.295
−0.261 0.811 −0.523



 .



Chapter 20

Differential and Difference Systems

In this chapter we shall show how linear algebra (especially eigenvalues and
eigenvectors) plays an important role to find the solutions of homogeneous
differential and difference systems with constant coefficients. Such systems
occur in a wide variety of real world applications.

We recall that a linear homogeneous differential system with constant co-
efficients appears as

u′ = Au, (20.1)

where A = (aij) is an n × n given matrix with constant elements, and
u = u(x) = (u1(x), · · · , un(x))t is the column vector of unknown func-
tions. A solution φ(x) of (20.1) is a column vector valued function u =
φ(x) = (φ1(x), · · · , φn(x))t of differentiable functions that satisfies (20.1),
i.e., φ′(x) = Aφ(x). Clearly, u = 0 is always a solution of (20.1). This solution
is known as the trivial solution or zero solution. Often, we are interested in
finding the solution of (20.1) that satisfies the initial condition

u(x0) = u0. (20.2)

Differential system (20.1) together with the initial condition (20.2) is called
an initial value problem, and it always has a unique solution.

Example 20.1. For the system

u′ = Au =





2 1 0
1 3 1
0 1 2



 u (20.3)

each of the following column vectors is a solution:

φ1(x) =





1
−1
1



 ex, φ2(x) =





−1
0
1



 e2x, φ3(x) =





1
2
1



 e4x. (20.4)

Also, for (20.3) with the initial condition u(0) = (1, 2, 3)t, the unique solution
φ(x) is

φ(x) =
2

3





1
−1
1



 ex +





−1
0
1



 e2x +
4

3





1
2
1



 e4x. (20.5)

171



172 Chapter 20

The following results are basic for the system (20.1):

T1. If φ1(x), · · · , φm(x) are solutions of (20.1) and c1, · · · , cm are arbitrary
constants, then the linear combination φ(x) = c1φ

1(x)+ · · ·+ cmφm(x) is also
a solution of (20.1).

T2. There exist n linearly independent solutions (see Chapter 8) of (20.1).

T3. The set S = {φ1(x), · · · , φn(x)} of n linearly independent solutions is
called a fundamental set of solutions of (20.1), the matrix of these solutions
Φ(x) = (φ1(x), · · · , φn(x)) is called the fundamental matrix solution of (20.1),
and it satisfies the matrix differential system Φ′(x) = AΦ(x), and the linear
combination φ(x) = c1φ

1(x) + · · ·+ cnφ
n(x) = Φ(x)c, where c = (c1, · · · , cn)t

is called the general solution of (20.1). Any solution of (20.1) can be expressed
as a unique linear combination of the solutions in the set S.

For the system (20.3), solutions given in (20.4) are linearly independent
(see Chapter 8, W (φ1, φ2, φ3)(0) 6= 0). Thus, the general solution of (20.3)
appears as

φ(x) = c1





1
−1
1



 ex + c2





−1
0
1



 e2x + c3





1
2
1



 e4x

=





ex −e2x e4x

−ex 0 2e4x

ex e2x e4x









c1
c2
c3



 ,

and from this the solution (20.5) of the initial value problem (20.3), u(0) =
(1, 2, 3)t, can be obtained immediately.

Theorem 20.1. Let the matrix A be diagonalizable (see Theorem 18.1).
Then, the set

φ1(x) = u1eλ1x, · · · , φn(x) = uneλnx (20.6)

is a fundamental set of solutions of (20.1). Here, λ1, · · · , λn are the eigenvalues
(not necessarily distinct) of A and u1, · · · , un are the corresponding linearly
independent eigenvectors.

Proof. Since ui is an eigenvector of A corresponding to the eigenvalue λi,
we find

(φi(x))′ = (uieλix)′ = λiu
ieλix = Auieλix = Aφi(x)

and hence φi(x) is a solution of (20.1). To show that (20.6) is a fundamental
set, we note that W (0) = det (u1, · · · , un) 6= 0, since u1, · · · , un are linearly
independent.

Example 20.2. From Example 16.1 and Theorem 20.1 it is clear that
the column vectors φ1(x), φ2(x), φ3(x) given in (20.4) are the solutions of the
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system (20.3). Similarly, from Example 16.5 and Theorem 20.1 it follows that
for the system

u′ = Au =





−1 0 4
0 −1 2
0 0 1



u

three linearly independent solutions are

φ1(x) =





1
0
0



 e−x, φ2(x) =





0
1
0



 e−x, φ3(x) =





2
1
1



 ex.

Remark 20.1. The general solution of (20.1) can be written as

φ(x) =
n
∑

i=1

cie
λixui = (u1, · · · , un)D(x)(c1, · · · , cn)t,

where D(x) is the diagonal matrix

D(x) =











eλ1x 0 · · · 0
0 eλ2x · · · 0
...

...
. . .

...
0 0 · · · eλnx











.

Since the matrix P = (u1, · · · , un) is nonsingular, P−1 exists, and thus, we
can choose the vector c = (c1, · · · , cn)t as P−1w, where w is an arbitrary
column vector. Hence, when A is diagonalizable, the general solution of (20.1)
in matrix form appears as

φ(x) = PD(x)P−1w. (20.7)

Now for an arbitrary n × n matrix A, we introduce the n × n matrix eA

as follows:

eA =

∞
∑

k=0

Ak

k!
= I +A+

1

2!
A2 +

1

3!
A3 + · · · . (20.8)

This exponential series converges for any matrix A. Indeed, from the definition
of convergence in Chapter 17, we have
∥

∥

∥

∥

∥

m+p
∑

k=0

Ak

k!
−

m
∑

k=0

Ak

k!

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

m+p
∑

k=m+1

Ak

k!

∥

∥

∥

∥

∥

≤
m+p
∑

k=m+1

‖Ak‖
k!

≤
m+p
∑

k=m+1

‖A‖k
k!

≤ e‖A‖.

Hence, for any n× n matrix A, eA is a well defined n× n matrix.

Let λ be an eigenvalue of the diagonalizable matrix A and u be the corre-
sponding eigenvector, then from (20.8) and P11 (in Chapter 16), we have

eAu =
∞
∑

k=0

(

Ak

k!

)

u =
∞
∑

k=0

(

λk

k!

)

u = eλu,
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which shows that eλ is an eigenvalue of the matrix eA, and u is the corre-
sponding eigenvector. Thus, from Problem 16.1(ii) and (iii), we find

det eA =

n
∏

i=1

eλi = eλ1+···+λn = eTrA 6= 0

(this identity in fact holds for an any n×n matrix), and hence the matrix eA

is nonsingular, and therefore diagonalizable.

Summarizing the above considerations, we find that if A is diagonalizable,
then a diagonalization of eAx is PD(x)P−1, and hence (20.7) can be written
as

φ(x) = eAxw. (20.9)

We also note that, since u0 = u(x0) = eAx0w gives w = e−Ax0u0, the solution
of (20.1), (20.2) can be written as

φ(x) = eAxe−Ax0u0 = eA(x−x0)u0. (20.10)

Now we claim that for any n× n matrix A, Φ(x) = eAx is a fundamental
matrix solution of (20.1). For this, it suffices to note that

Φ′(x) = AeAx = AΦ(x) and Φ(0) = eA0 = I.

Thus, (20.9) is not restricted to diagonalizable matrices only, but rather pro-
vides the general solution of (20.1) for any n×n matrix A. However, when the
matrix A is not diagonalizable, the computation of eAx is not straightforward.
Among the several known methods to compute eAx, the following seems to be
the easiest and most popular.

Theorem 20.2 (Putzer’s algorithm). Let λ1, · · · , λn be the eigen-
values of the matrix A, which are arranged in some arbitrary but specified
order. Then,

eAx =

n−1
∑

j=0

rj+1(x)Pj , (20.11)

where P0 = I, Pj =
∏j

k=1(A − λkI), j = 1, · · · , n and r1(x), · · · , rn(x) are
recursively given by

r′1(x) = λ1r1(x), r1(0) = 1

r′j(x) = λjrj(x) + rj−1(x), rj(0) = 0, j = 2, · · · , n.

(Note that each eigenvalue in the list is repeated according to its multiplicity.
Further, since the matrices (A − λiI) and (A − λjI) commute, we can for
convenience adopt the convention that (A− λjI) follows (A− λiI) if i > j.)

Proof. It suffices to show that Φ(x) defined by Φ(x) =
∑n−1

j=0 rj+1(x)Pj
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satisfies Φ′(x) = AΦ(x), Φ(0) = I. For this, we define r0(x) ≡ 0. Then, it
follows that

Φ′(x)− λnΦ(x) =

n−1
∑

j=0

(λj+1rj+1(x) + rj(x))Pj − λn

n−1
∑

j=0

rj+1(x)Pj

=
n−1
∑

j=0

(λj+1 − λn)rj+1(x)Pj +
n−1
∑

j=0

rj(x)Pj

=

n−2
∑

j=0

(λj+1 − λn)rj+1(x)Pj +

n−2
∑

j=0

rj+1(x)Pj+1

=

n−2
∑

j=0

{(λj+1−λn)Pj + (A− λj+1I)Pj} rj+1(x) (20.12)

= (A− λnI)

n−2
∑

j=0

Pjrj+1(x)

= (A− λnI)(Φ(x) − rn(x)Pn−1)

= (A− λnI)Φ(x) − rn(x)Pn, (20.13)

where to obtain (20.12) and (20.13) we have used Pj+1 = (A− λj+1I)Pj and
Pn = (A − λnI)Pn−1, respectively. Now by the Cayley–Hamilton theorem
(Chapter 16), Pn = p(A) = 0, and therefore (20.13) reduces to Φ′(x) =

AΦ(x). Finally, to complete the proof we note that Φ(0) =
∑n−1

j=0 rj+1(0)Pj =
r1(0)I = I.

Example 20.3. Consider a 3× 3 matrix A having all the three eigenval-
ues equal to λ1. To use Theorem 20.2, we note that r1(x) = eλ1x, r2(x) =
xeλ1x, r3(x) = (1/2)x2eλ1x is the solution set of the system

r′1 = λ1r1, r1(0) = 1
r′2 = λ1r2 + r1, r2(0) = 0
r′3 = λ1r3 + r2, r3(0) = 0.

Thus, it follows that

eAx = eλ1x

[

I + x(A− λ1I) +
1

2
x2(A− λ1I)

2

]

. (20.14)

In particular, the matrix

A =





2 1 −1
−3 −1 1
9 3 −4




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has all its eigenvalues equal to −1, and hence from (20.14) we obtain

eAx =
1

2
e−x







2 + 6x− 3x2 2x −2x+ x2

−6x 2 2x

18x− 9x2 6x 2− 6x+ 3x2






.

Example 20.4. Consider a 3× 3 matrix A with eigenvalues λ1, λ1, λ2. To
use Theorem 20.2, we note that r1(x) = eλ1x, r2(x) = xeλ1x,

r3(x) =
xeλ1x

(λ1 − λ2)
+
eλ2x − eλ1x

(λ1 − λ2)2

and hence

eAx = eλ1x

[

I + x(A− λ1I) +

{

x

(λ1 − λ2)
+
e(λ2−λ1)x − 1

(λ1 − λ2)2

}

(A− λ1I)
2

]

.

(20.15)

In particular, the matrix

A =





−1 0 4
0 −1 2
0 0 1





has the eigenvalues −1,−1, 1 and hence from (20.15) we find

eAx =







e−x 0 2(ex − e−x)

0 e−x ex − e−x

0 0 ex






.

Next, we shall consider the difference system

u(k + 1) = Au(k), k ∈ IN = {0, 1, 2, · · · } (20.16)

where againA = (aij) is an n×n given matrix with constant elements, and u =
u(k) = (u1(k), · · · , un(k))t is the column vector of unknown functions defined
for all nonnegative integers. A solution φ(k), k ∈ IN of (20.16) is a column
vector valued function φ(k) = (φ1(k), · · · , φn(k))t that satisfies (20.16), i.e.,
φ(k+1) = Aφ(k). Clearly, u = 0 is always a solution of (20.16). This solution
is known as a trivial solution or the zero solution. Often, we are interested in
finding the solution of (20.16) that satisfies the initial condition

u(0) = u0. (20.17)

Difference system (20.16) together with the initial condition (20.17) is called
an initial value problem, and it always has a unique solution. It is clear that
any (general) solution of (20.16) can be written as

φ(k) = Akc, k ∈ IN (20.18)
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where c is an arbitrary column vector. From (20.18) it immediately follows
that the unique solution of (20.16), (20.17) is φ(k) = Aku0, k ∈ IN. Now when
A is diagonalizable we can state the following result whose proof is similar to
that of Theorem 20.1.

Theorem 20.3. Let the notations and hypotheses of Theorem 20.1 be
satisfied. Then, the set

φ1(k) = u1λk1 , · · · , φn(k) = unλkn, k ∈ IN

is a fundamental set of solutions of (20.16).

Further, we note that like (20.1) the general solution of (20.16) can be
written as

φ(k) = Akc =

n
∑

i=1

ciλ
k
i u

i = PD(k)P−1c, (20.19)

where again P = (u1, · · · , un) is the nonsingular matrix, c = (c1, · · · , cn)t is
the constant vector, and D(k) is the diagonal matrix

D(k) =











λk1 0 · · · 0
0 λk2 · · · 0
...

...
. . .

...
0 0 · · · λkn











.

From (20.19) it follows that Ak = PD(k)P−1 provided the matrix A is diag-
onalizable (see Chapter 18).

Example 20.5. For the discrete system (20.16) with the same matrix as
in (20.3), the fundamental set of solutions is

φ1(k) =





1
−1
1



 , φ2(k) =





−1
0
1



 2k, φ3(k) =





1
2
1



 4k.

Example 20.6. For the discrete system (20.16) with the same matrix as
in Example 20.2, the fundamental set of solutions is

φ1(k) =





1
0
0



 (−1)k, φ2(x) =





0
1
0



 (−1)k, φ3(x) =





2
1
1



 .

If the matrix A is not diagonalizable we compute Ak by using the discrete
version of Theorem 20.2.

Theorem 20.4 (discrete Putzer’s algorithm). Let the notations
and hypotheses of Theorem 20.2 be satisfied. Then, for all k ∈ IN

Ak =

n−1
∑

j=0

wj+1(k)Pj , (20.20)
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where

w1(k + 1) = λ1w1(k), w1(0) = 1

wj(k + 1) = λjwj(k) + wj−1(k), wj(0) = 0, j = 2, · · · , n. (20.21)

Proof. Differentiating (20.11) k times and substituting x = 0 gives (20.20),

where wj(k) = r
(k)
j (0), 1 ≤ j ≤ n.

Remark 20.2. The solution of the system (20.21) is

w1(k) = λk1

wj(k) =

k−1
∑

ℓ=0

λk−1−ℓ
j wj−1(ℓ), j = 2, · · · , n.

Example 20.7. For a 3 × 3 matrix A having all the three eigenvalues
equal to λ1 it follows from (20.14) that

Ak = λk1I + kλk−1
1 (A− λ1I) +

1

2
k(k − 1)λk−2

1 (A− λ1I)
2. (20.22)

In particular, for the matrix A in Example 20.3, we have

Ak =
1

2
(−1)k





2− 3k − 3k2 −2k k + k2

6k 2 −2k
−9k − 9k2 −6k 2 + 3k + 3k2



 .

Example 20.8. For a 3×3 matrix A with eigenvalues λ1, λ1, λ2 it follows
from (20.15) that

Ak = λk1I+kλ
k−1
1 (A−λ1I)+

{

kλk−1
1

(λ1 − λ2)
+

λk2 − λk1
(λ1 − λ2)2

}

(A−λ1I)2. (20.23)

In particular, for the matrix A in Example 20.4, we have

Ak =





(−1)k 0 2(1− (−1)k)
0 (−1)k (1− (−1)k)
0 0 1



 .

Problems

20.1. (i) If A =

(

α β
−β α

)

, show that

eAx = eαx

(

cosβx sinβx

− sinβx cosβx

)

.
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(ii) If A =

(

0 1
−1 −2δ

)

, show that

eAx =









e−δx

(

cosωx+
δ

ω
sinωx

)

1

ω
e−δx sinωx

− 1

ω
e−δx sinωx e−δx

(

cosωx− δ

ω
sinωx

)









,

where ω =
√
1− δ2.

(iii) If

A =









0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0









,

show that

eAx =

















4− 3 cosωx
1

ω
sinωx 0

2

ω
(1− cosωx)

3ω sinωx cosωx 0 2 sinωx

6(−ωx+ sinωx) − 2

ω
(1 − cosωx) 1

1

ω
(−3ωx+ 4 sinωx)

6ω(−1 + cosωx) −2 sinωx 0 −3 + 4 cosωx

















.

(iv) If A2 = αA, show that eAx = I + [(eαx − 1)/α]A.

20.2. Let A and P be n× n matrices given by

A =













λ 1 0 · · · 0
0 λ 1 · · · 0
· · ·
0 0 0 · · · 1
0 0 0 · · · λ













, P =













0 1 0 0 · · · 0
0 0 1 0 · · · 0
· · ·
0 0 0 0 · · · 1
0 0 0 0 · · · 0













.

Show that

(i) Pn = 0

(ii) (λI)P = P (λI)

(iii) eAx = eλx
[

I + xP +
1

2!
x2P 2 + · · ·+ 1

(n− 1)!
xn−1Pn−1

]

.

20.3. Let A and B be two n×n similar matrices, i.e., (13.16) holds. Show
that

(i) u(x) is a solution of (20.1) if and only if v(x) = Pu(x) is a solution of
the differential system v′ = Bv.

(ii) eAx = P−1eBxP.
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20.4. Find the general solution of the differential system (20.1), where
the matrix A is given by

(i)

(

4 −2
5 2

)

(ii)

(

7 6
2 6

)

(iii)





0 1 1
1 0 1
1 1 0



 (iv)





1 −1 4
3 2 −1
2 1 −1





(v)





−1 1 0
0 −1 0
0 0 3



 (vi)





5 −3 −2
8 −5 −4

−4 3 3



 .

20.5. Find the general solution of the difference system (20.16) for each
matrix A given in Problem 20.4.

Answers or Hints

20.1. Verify directly.
20.2. (i) Observe that in each multiplication the position of 1 is shifted by
one column, so in P 2 the nth and (n− 1)th rows are 0.

(ii) Obvious.
(iii) Since A = λI + P, we can use Parts (i) and (ii).

20.3. (i) Verify directly.

(ii) eAx = eP
−1BPx now expand the right side.

20.4. (i) e3x
(

2 cos 3x 2 sin 3x
cos 3x+ 3 sin 3x sin 3x− 3 cos 3x

)(

c1
c2

)

.

(ii)

(

2e10x 3e3x

e10x −2e3x

)(

c1
c2

)

.

(iii)





e2x e−x 0
e2x 0 e−x

e2x −e−x −e−x









c1
c2
c3



 .

(iv)





−ex e−2x e3x

4ex −e−2x 2e3x

ex −e−2x e3x









c1
c2
c3



 .

(v)





0 −e−x xe−x

0 0 e−x

e3x 0 0









c1
c2
c3



 .

(vi) ex





1 0 2x
0 2 4x
2 −3 −2x− 1









c1
c2
c3



 .

20.5. (i) (3
√
2)k

(

cos kπ
4 + 1

3 sin
kπ
4 − 2

3 sin
kπ
4

5
3 sin

kπ
4 cos kπ

4 − 1
3 sin

kπ
4

)

(

c1
c2

)

.
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(ii) 1
7

(

4(10)k + 3(3)k 6(10)k − 6(3)k

2(10)k − 2(3)k 3(10)k + 4(3)k

)(

c1
c2

)

.

(iii) 1
3





2k + 2(−1)k 2k − (−1)k 2k − (−1)k

2k − (−1)k 2k + 2(−1)k 2k − (−1)k

2k − (−1)k 2k − (−1)k 2k + 2(−1)k









c1
c2
c3



 .

(iv) 1
6





−1 (−2)k 3k

4 −(−2)k 2(3)k

1 −(−2)k 3k









−1 2 −3
2 2 −6
3 0 3









c1
c2
c3



 .

(v)





(−1)k k(−1)k−1 0
0 (−1)k 0
0 0 3k









c1
c2
c3



 .

(vi)





1 + 4k −3k −2k
8k 1− 6k −4k
−4k 3k 1 + 2k









c1
c2
c3



 .
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Chapter 21

Least Squares Approximation

We know that the m × n system (5.2) has a solution if and only if r(A) =
r(A : b), i.e., b ∈ C(A). However, in a wide range of applications we encounter
problems in which b may not be in C(A). For such a problem we seek a
vector(s) x̂ ∈ Rn so that the error ‖Ax̂−b‖2 is as small as possible (minimized),
i.e.,

‖Ax̂− b‖2 ≤ ‖Ax− b‖2 (21.1)

for all x ∈ Rn. This solution(s) x̂ is called the least squares approximate so-
lution. We emphasize that to find approximate solutions to such problems
several different error criteria and the corresponding numerical procedures
have been proposed, but among all these the method of least squares approx-
imations is the simplest to implement. We shall provide two different proofs
to the following important theorem.

Theorem 21.1. The set of least squares solutions to the system (5.2) is
given by the consistent n× n system (known as normal equations)

AtAx = Atb. (21.2)

If the columns of A are linearly independent, then there exists a unique least
squares solution to (5.2) and it is given by

x̂ = (AtA)−1Atb. (21.3)

If the columns of A are linearly dependent, then there are an infinite number
of least squares solutions.

First Proof. Consider the error function E(x) = Ax−b, x ∈ Rn. Clearly,
we need to find a vector(s) x that minimizes ‖E(x)‖2. For this, we consider
the scalar function

Φ(x) = ‖E(x)‖22 = (Ax− b, Ax− b)

= (Ax− b)t(Ax − b)

= xtAtAx− xtAtb− btAx+ btb

= xtAtAx− 2xtAtb+ btb.

(21.4)

183
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Now for 0 6= h ∈ Rn, we have

Φ(x + h)− Φ(x) = xtAtAh+ htAtAx+ htAtAh− 2htAtb

= htAtAh+ 2htAtAx− 2htAtb

= ‖Ah‖22 + 2ht(AtAx−Atb).

(21.5)

Clearly, Φ(x) attains a relative minimum (maximum) provided Φ(x+h)−Φ(x)
remains of fixed sign for small values of the vector h, i.e., ‖h‖2 is small.
However, in (21.5) the sign of Φ(x+h)−Φ(x) depends on the term ht(AtAx−
Atb), and hence for an extremum it is necessary that AtAx−Atb = 0. Further,
if this condition is satisfied for x = x̂, then (21.5) reduces to

Φ(x̂+ h)− Φ(x̂) = ‖Ah‖22 ≥ 0,

which ensures that Φ(x) indeed has a minimum at x̂. In conclusion, the least-
squares solutions of (5.2) are the solutions of the system (21.2).

Next, we shall show that the system (21.2) is consistent. For this, we note
that

Atb =







a11
...
a1n






b1 + · · ·+







am1

...
amn






bm

is a linear combination of the columns of At, and hence Atb ∈ C(At). Since
C(At) = C(AtA) (see Problem 11.3), we find that Atb ∈ C(AtA), which in
turn implies that r(AtA) = r(AtA | Atb), i.e., the system (21.2) is consistent.
Now from Problem 11.3 it follows that

r(A) = r(AtA) = r(AtA | Atb). (21.6)

Finally, from Problem 11.2, we have N (A) = N (AtA), and hence from The-
orem 11.4 and (21.6) it follows that dimN (A) = n − r(A) = n − r(AtA) =
dimN (AtA). Thus, if r(A) = n, then N (AtA) = 0, which implies that AtA is
nonsingular, and (AtA)−1 exists. Therefore, in this case a unique solution of
the least squares problem is given by (21.3).

Second Proof. Let S = C(A). In view of Theorem 14.5 and Remark
14.4, the vector b can be written as b = b1+b2, where b1 ∈ S is the orthogonal
projection of b onto S and b2 ∈ S⊥ is the component of b orthogonal to S.
Now as in the First Proof it follows that

‖Ax− b‖2 = ‖(Ax− b1)− b2‖2
= ‖Ax− b1‖2 − 2(Ax− b1, b2) + ‖b2‖2.

Since Ax and b1 are in S and b2 is in S⊥, the middle term vanishes, and thus
we have

‖Ax− b‖2 = ‖Ax− b1‖2 + ‖b2‖2.
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Clearly, the right side is minimized if x is a solution of the system

Ax = b1. (21.7)

Since b1 is in S, this system is consistent. Any solution of this system denoted
as x̂ is a least squares solution of (5.2). Further, this solution is unique provided
the columns of A are lineraly independent.

Now suppose that x̂ is a solution of the system (21.7). Since b2 is orthogonal
to the columns of A, it follows that Atb2 = 0. Thus, we have

AtAx̂ = Atb1 = At(b− b2) = Atb,

i.e., x̂ is a solution of the system (21.2). Conversely, suppose that x̂ is a solution
of (21.2). Then, we have

At(b−Ax̂) = 0.

This means that the vector (b − Ax̂) is orthogonal to each row of At, i.e., to
each column of A. Since S = C(A), we conclude that (b − Ax̂) ∈ S⊥. Hence,
the vector b can be written as

b = Ax̂+ (b−Ax̂),

where Ax̂ ∈ S and (b − Ax̂) ∈ S⊥. But again in view of Theorem 14.5 and
Remark 14.4 such a decomposition is unique, and hence Ax̂ = b1.

Corollary 21.1. Let A be an m× n matrix with r(A) = n, and suppose
A = QR is a QR factorization of A (see Theorem 18.3). Then, the upper
triangular system

Rx = Qtb (21.8)

gives the least squares approximate solution of the system (5.2).

Proof. In view of Theorem 18.3, the system (21.2) can be written as
RtQtQRx = RtQtb. However, since QtQ = I and R is invertible, this sys-
tem is the same as (21.8).

Example 21.1. For the system









1 1 2
1 2 3
1 3 4
3 4 9













x1
x2
x3



 =









2
2
h
k









(21.9)

the echelon form of the augmented matrix appears as









1 1 2 2
0 1 1 0
0 0 2 k − 6
0 0 0 h− 2









.
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Thus, the system has a solution if and only if h = 2, and in such a case the
solution is

(

1

2
(10− k),

1

2
(6− k),−1

2
(6− k)

)t

. (21.10)

Since the columns of the matrix A in (21.9) are linearly independent, from
Corollary 21.1 and Example 18.6, it follows that the unique least squares
solution of (21.9) can be obtained by solving the system









6√
3

9√
3

18√
3

0 3√
3

2√
3

0 0 2√
6













x̂1
x̂2
x̂3



 =















1
2
√
3

− 1
2
√
3

− 2√
6

1
2
√
3

1
2
√
3

− 1√
6

1
2
√
3

3
2
√
3

0

3
2
√
3

− 1
2
√
3

1√
6























2
2
h
k









=









1
2
√
3
(4 + h+ 3k)

1
2
√
3
(3h− k)

1√
6
(k − 6)









.

Using backward process this system gives the unique least squares approxi-
mate solution of (21.9) as

x3 = − 1

2
(6− k), x2 =

1

2
(h− k + 4), x1 =

1

6
(38− 4h− 3k). (21.11)

Clearly, (21.11) is the same as (21.10) for h = 2, as it should be.

For (21.9) the system (21.2) is




12 18 36
18 30 56
36 56 110









x1
x2
x3



 =





4 + h+ 3k
6 + 3h+ 4k
10 + 4h+ 9k



 ,

which as expected gives the same solution as (21.11).

Example 21.2. Consider the system








1 3 2
3 −5 −1
4 2 3
2 2 2













x1
x2
x3



 =









1
2
3
4









. (21.12)

In view of Problem 8.1(i), in this system the columns of the matrix A are
linearly dependent. Further, for this system the echelon form of the augmented
matrix appears as











1 3 2 1

0 1 1
2

1
14

0 0 0 − 2
7

0 0 0 16
7











,
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and hence it has no solution. For (21.12) the system (21.2) is





30 0 15
0 42 21
15 21 18









x1
x2
x3



 =





27
7
17



 . (21.13)

The system (21.13) has an infinite number of solutions

(

9

10
− 1

2
c,

1

6
− 1

2
c, c

)t

. (21.14)

Thus, the system (21.12) has an infinite number of least squares solutions
given by (21.14).

Example 21.3. From Problem 6.3(i), we know that the system





2 7 4 3
8 5 3 9
1 3 6 4













x1
x2
x3
x3









=





1
3
7



 (21.15)

has an infinite number of solutions. For (21.15) the system (21.2) is









69 57 38 82
57 83 61 78
38 61 61 63
82 78 63 106

















x1
x2
x3
x4









=









33
43
55
58









.

This system has an infinite number of solutions:

1

197
(62,−161, 300, 0)t +

1

197
(−203, 41,−118, 198)tc. (21.16)

Thus, the system (21.15) has an infinite number of least squares solutions
given by (21.16). These solutions are exactly the same as given for Problem
6.3(i), as they should be.

Problems

21.1. Find the least squares solution of the system considered in Example
6.3.

21.2. Find the least squares solution of the system considered in Problem
6.3(ii).

21.3. Find the least squares solution of the system considered in Problem
6.3(v).
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21.4. Show that the following system has no solution





1 2 1 5
1 2 −1 1
2 4 −3 0













x1
x2
x3
x4









=





1
1
3



 .

Find its least sqaures solution.

21.5. Show that the following system has no solution













2 1 3
4 3 5
8 2 16

−4 1 −11
−2 3 −5

















x1
x2
x3



 =













1
2
4
2
2













.

Find its least sqaures solution.

Answers or Hints

21.1.
(

1
3 ,

2
3 , 1
)t
.

21.2.
(

2, 1355 ,− 53
55 , 0

)t
+
(

−5, 4855 ,
147
55 , 1

)t
c.

21.3. (0, 1, 1, 0, 0)t +
(

− 13
30 ,

9
10 ,

16
15 , 1, 0

)t
c+

(

1
30 ,

7
10 ,

8
15 , 0, 1

)t
d.

21.4. That the Solution does not exist follows from the echelon form of

the augmented matrix





1 2 1 5 1
0 0 −2 −4 0
0 0 0 0 1



. Its least squares solution is

1
15 (17, 0,−3, 0)t + (−2, 1, 0, 0)tc+ (−3, 0,−2, 1)td.
21.5. That the Solution does not exist follows from the echelon form

of the augmented matrix













2 1 3 1
0 1 −1 0
0 0 2 0
0 0 0 4
0 0 0 3













. Its least squares solution is

1
956 (491, 680,−173)t.
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Quadratic Forms

Quadratic forms occur naturally in physics, economics, engineering (control
theory), and analytic geometry (quadratic curves and surfaces). Particularly,
recall that the equation (quadratic form) of a central quadratic curve in a
plane, after translating the origin of the rectangular coordinate system to the
centre of the curve, appears as

q2(x, y) = (x, y)

(

a b
b c

)(

x
y

)

= ax2 + 2bxy + cy2 = d.

We also know that by rotating the axes (using a proper transformation) this
equation (quadratic form) in a new coordinate system can be reduced to a
“canonical” (diagonal) form:

q2(x
′, y′) = (x′, y′)

(

a′ 0
0 c′

)(

x′

y′

)

= a′x′
2
+ c′y′

2
= d.

In this chapter we shall study quadratic forms in n variables x1, · · · , xn, i.e.,

qn(x1, · · · , xn) =

n
∑

i=1

bix
2
i + 2

n
∑

i<j

cijxixj , bi, cij ∈ R. (22.1)

Clearly, in (22.1) each term is of degree two.

In matrix form, (22.1) can be written as

qn(x) = qn(x1, · · · , xn) = xtAx, (22.2)

where A = (aij) is an n× n symmetric matrix with aii = bi, aij = aji = cij .
In (22.2), if we let x = Py, a linear tranformation of the variables, then it
follows that

qn(y) = (Py)tA(Py) = yt(P tAP )y, (22.3)

i.e, P tAP provides the matrix representation of qn in the new variables. Now
since A is symmetric, in view of Theorem 18.2, we can always find an or-
thonormal matrix Q and the diagonal matrix D consisting of the eigenvalues
of A such that D = Q−1AQ = QtAQ. Thus, with the proper choice of the
matrix P, (22.3) in the new variables can be reduced to a diagonal form,

qn(y) = ytDy. (22.4)

189
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We summarize our above discussion in the following result.

Theorem 22.1. If A is a symmetric matrix, then there exists an orthonor-
mal matrix Q such that the transformation y = Qtx changes the quadratic
form (22.2) into the diagonal quadratic form (22.4).

Example 22.1. Consider the quadratic form

q3(x1, x2, x3) = 11x21 + 11x22 + 14x23 − 2x1x2 − 8x1x3 − 8x2x3, (22.5)

which in matrix form is the same as q3(x) = xtAx, where the symmetric
matrix A is as in (18.1). From Example 18.4 it is clear that (22.5) can be
reduced to a diagonal form,

q3(y1, y2, y3) = (y1, y2, y3)





6 0 0
0 12 0
0 0 18









y1
y2
y3



 = 6y21 + 12y22 + 18y23.

Here, in view of Remark 18.3, the new varible vector y is

y = Qtx =







1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6

− 1√
6

2√
6











x1
x2
x3



 =







1√
3
(x1 + x2 + x3)

1√
2
(−x1 + x2)

1√
6
(−x1 − x2 + 2x3)






.

Example 22.2. Consider the quadratic form

q4(x1, x2, x3, x4) = x21 +
5

3
x22 −

5

6
x23 −

5

6
x24 + 2x1x2 + 2x1x3

+2x1x4 −
8

3
x2x3 −

8

3
x2x4 +

7

3
x3x4,

(22.6)

which in matrix form is the same as q4(x) = xtAx, where the symmetric
matrix A is as in Example 18.5. From this example, it is clear that (22.6) can
be reduced to a diagonal form

q4(y1, q2, q3, q4) = 2y21 + 3y22 − 2y23 − 2y24 .

Here the new variable vector y is

y = Qtx =











1√
12
(3x1 + x2 + x3 + x4)

1√
6
(−2x2 + x3 + x4)

1√
6
(−x1 + x2 + 2x3)

1√
12
(−x1 + x2 − x3 + 3x4)











.

Now we classify the quadratic form (22.2) according as its values: The
quadratic form qn(x) is called positive definite if qn(x) > 0, x ∈ Rn/{0}
and positive semidefinite if qn(x) ≥ 0, x ∈ Rn. The quadratic form qn(x) is
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called negative definite if qn(x) < 0, x ∈ Rn/{0} and negative semidefinite if
qn(x) ≤ 0, x ∈ Rn. The quadratic form qn(x) is called indefinite if it is both
positive and negative for x ∈ Rn.

Theorem 22.2. If A is a symmetric matrix, then the quadratic form
qn(x) = xtAx is positive definite if A has only positive eigenvalues, negative
definite if A has only negative eigenvalues, and indefinite if A has both positive
and negative eigenvalues.

Proof. If λ1, · · · , λn are the eigenvalues of A, then from (22.4) it follows
that

qn(y) = λ1y
2
1 + · · ·+ λny

2
n, (22.7)

where y = Q−1x = Qtx. Thus, if all eigenvalues of A are positive, then from
the fact that y = 0 implies x = 0 (one-to-one correspondence between y and
x), we find qn(x) > 0 for all x ∈ Rn/{0}, i.e., qn(x) is positive definite. If
λk ≤ 0, we can select y = ek, then qn(y) = λk ≤ 0, i.e., qn(x) is not positive
definite. The other cases can be discussed similarly.

Example 22.3. In view of Theorem 22.2 the quadratic form (22.5) is
positive definite, whereas (22.6) is indefinite. From Example 18.1, it is clear
that the quadratic form

q3(x1, x2, x3) = − 11x21 − 11x22 − 14x23 + 2x1x2 + 8x1x3 + 8x2x3 (22.8)

is negative definite (the eigenvalues of the corresponding matrix are −6,−12,
−18).

The rest of the results in this chapter find maximum and minimum of the
quadratic form qn(x) subject to some constraints, and so belong to a broad
field known as constrained optimization.

Lemma 22.1. For the quadratic form qn(x) =
∑n

i=1 bix
2
i subject to the

constraint ‖x‖2 = 1, the following hold:

(i) the maximum value is bk = max{b1, · · · , bn} and attained at x = ek,

(ii) the minimum value is bℓ = min{b1, · · · , bn} and attained at x = eℓ.

Proof. Clearly, qn(x) =
∑n

i=1 bix
2
i ≤ bk

∑n
i=1 x

2
i = bk. Further, at x =

ek, qn(e
k) = bk.

Theorem 22.3. Let the symmetric matrixA in (22.2) have the eigenvalues
λ1 ≤ · · · ≤ λn, and x1, · · · , xn be the corresponding eigenvectors. Then, for
the quadratic form qn(x) = xtAx subject to the constraint ‖x‖2 = 1, the
following hold:

(i) the maximum value is λn and attained at x = xn/‖xn‖2,
(ii) the minimum value is λ1 and attained at x = x1/‖x1‖2.
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Proof. From Theorem 22.1 it follows that the transformation x = Qy re-
duces (22.2) to the diagonal form (22.7); here, Q consists of vectors that are
obtained by orthonormalizing the eigenvectors x1, · · · , xn. Now since y = Qtx
and the matrix Q is orthonormal, we have ‖y‖22 = ‖Qtx‖22 = (Qtx,Qtx) =
(Qtx)t(Qtx) = xt(QQt)x = xtx = (x, x) = ‖x‖22. Thus, ‖y‖2 = 1 if and only
if ‖x‖2 = 1, and hence xtAx and ytDy assume the same set of values as x and
y range over the set of all unit vectors. Now since in view of Lemma 22.1 the
maximum (minimum) value of qn(y) is attained at en (e1), for qn(x) the maxi-
mum (minimum) value is attained at x = Qen (Qe1) = xn/‖xn‖2 (x1/‖x1‖2).

Example 22.4. From Example 22.1 and Theorem 22.3, it follows that

6 ≤ 11x21 + 11x22 + 14x23 − 2x1x2 − 8x1x3 − 8x2x3 ≤ 18

provided x21 + x22 + x23 = 1. The left equality holds for x =
(

1√
3
, 1√

3
, 1√

3

)t

and

the right inequality holds for
(

− 1√
6
,− 1√

6
, 2√

6

)t

.

Example 22.5. From Example 22.2 and Theorem 22.3, it follows that

−2 ≤











x21 +
5

3
x22 −

5

6
x23 −

5

6
x24 + 2x1x2 + 2x1x3

+2x1x4 −
8

3
x2x3 −

8

3
x2x4 +

7

3
x3x4











≤ 3

provided x21 + x22 + x23 + x24 = 1. From Example 18.5 it follows that the

left equality holds for x =
(

− 1√
6
, 1√

6
, 2√

6
, 0
)

,
(

− 1√
12
, 1√

12
,− 1√

12
, 3√

12

)

, and
(

0, 0,− 1√
2
, 1√

2

)

. The right-hand equality holds at
(

0,− 2√
6
, 1√

6
, 1√

6

)

.

Remark 22.1. By letting xi = aizi, 1 ≤ i ≤ n we can transform the
optimization problem qn(x) = xtAx subject to

∑n
i=1 x

2
i /a

2
i = 1 into qn(z) =

(a1z1, · · · , anzn)A(a1z1, · · · , anzn)t subject to ‖z‖2 = 1, for which Theorem
22.3 is applicable. In particular, if ai = a, 1 ≤ i ≤ n, then it simply reduces
to qn(z) = a2qn(x) subject to ‖x‖2 = 1.

Example 22.6. From Remark 22.1 and Example 22.4, it follows that

24 ≤ 11x21 + 11x22 + 14x23 − 2x1x2 − 8x1x3 − 8x2x3 ≤ 72

provided x21 + x22 + x23 = 4. The left equality holds for x =
(

2√
3
, 2√

3
, 2√

3

)t

and

the right inequality holds for
(

− 2√
6
,− 2√

6
, 4√

6

)t

.

Finally, in this chapter we shall prove the following result.
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Theorem 22.4. Let the symmetric matrixA in (22.2) have the eigenvalues
λ1 ≤ · · · ≤ λn and associated u1, · · · , un orthonormal eigenvectors. Then, for
the quadratic form qn(x) = xtAx subject to the constraints ‖x‖2 = 1 and
(x, un) = 0, the following hold:

(i) maximum value is λn−1 and attained at x = un−1,

(ii) minimum value is λ1 and attained at x = u1.

Proof. From (14.5) for a given x ∈ Rn, we have x =
∑n

i=1 ciu
i, where

ci = (x, ui), 1 ≤ i ≤ n, but since cn = 0 it follows that x =
∑n−1

i=1 ciu
i, which

implies that ‖x‖22 =
∑n−1

i=1 c
2
i = 1 (as given). Now we successively have

qn(x) = xtAx = xtA

(

n−1
∑

i=1

ciu
i

)

= xt

(

n−1
∑

i=1

ciAu
i

)

=

(

x,
n−1
∑

i=1

λiciu
i

)

=

(

n−1
∑

i=1

ciu
i,

n−1
∑

i=1

λiciu
i

)

=

n−1
∑

i=1

λic
2
i ≤ λn−1

n−1
∑

i=1

c2i = λn−1.

Next, we note that for x = un−1, cn−1 = 1 and ci = 0, 1 ≤ i ≤ n − 2,
and hence q(un−1) = λn−1, i.e., qn(x) attains its maximum at x = un−1. The
minimum value of qn(x) by the constraint (x, un) = 0 does not change.

Example 22.7. From Example 22.1 and Theorem 22.4, it follows that

6 ≤ 11x21 + 11x22 + 14x23 − 2x1x2 − 8x1x3 − 8x2x3 ≤ 12

provided x21 +x22 +x23 = 1 and −x1 −x2 +2x3 = 0. The left equality holds for

x =
(

1√
3
, 1√

3
, 1√

3

)t

and the right inequality holds for
(

− 1√
2
, 1√

2
, 0
)t

.

The following extension of Theorem 22.4 is immediate.

Theorem 22.5. Let λi and u
i, 1 ≤ i ≤ n be as in Theorem 22.4. Then,

for the quadratic form qn(x) = xtAx subject to the constraints ‖x‖2 = 1 and
(x, un) = (x, un−1) = · · · = (x, uk) = 0 the maximum (minimum) value is
λk−1 (λ1) and attained at x = uk−1 (u1).

Problems

22.1. Find the canonical form for the quadratic form q3(x) = 2x1x2 +
x1x3 − 2x2x3.

22.2. Find the canonical form for the quadratic form q3(x) = x21 +
7
8x

2
2 −

7
8x

2
3 + 2x1x2 + 2x1x3 + x2x3.
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22.3. Show that the quadratic form

(i) q3(x) = 5x21 + x22 + 5x23 + 4x1x2 − 8x1x3 − 4x2x3 is positive definite

(ii) q3(x) = 3x21 + x22 + 5x23 + 4x1x2 − 8x1x3 − 4x2x3 is indefinite

(iii) q4(x) = 2x1x2 + 2x1x3 − 2x1x4 − 2x2x3 + 2x2x4 + 2x3x4 is indefinite.

22.4. Let q2(x, y) = ax2+4bxy+cy2 be a quadratic form, with a, b, c ∈ R.

(i) Find the values of a, b, c so that q2(x, y) is indefinite.

(ii) Find the values of a, b, c so that q2(x, y) is positive definite.

(iii) Find the values of a, b, c so that q2(x, y) is negative definite.

22.5. For the quadratic form q3(x) = x21+x
2
2+5x23−6x1x2+2x1x3−2x2x3,

find the maximum and minimum subject to the constraint ‖x‖2 = 1.

22.6. Consider a rectangle inside the ellipse 9x2 + 16y2 = 144. Find
positive values of x and y so that the rectangle has the maximum area.

22.7. For the quadratic form q3(x) = 5x21 + 6x22 + 7x23 − 4x1x2 + 4x2x3,
find the maximum and minimum subject to the constraints ‖x‖2 = 1 and
−x1 + 2x2 + 2x3 = 0.

22.8. For the quadratic form q3(x) = αx21+x
2
2+x

2
3+2x1x2+2x1x3+6x2x3,

find the values of α so that it is negative definite.

22.9. For the optimization problem (22.2), ‖x‖2 = 1 assume that m and
M are the minimum and maximum values, respectively. Show that for each
number c in the interval m ≤ c ≤ M there is a unit vector uc such that
utcAuc = c.

Answers or Hints

22.1. We let x1 = y1 + y2, x2 = y1 − y2, x3 = y3, to obtain q3(y) = 2y21 −
2y22 − y1y3 + 3y2y3, in the basis {f1 = e1 + e2 = (1, 1, 0)t, f2 = e1 − e2 =
(1,−1, 0)t, f3 = e3 = (0, 0, 1)t}. Clearly, q3(y) = (

√
2y1 − 1

2
√
2
y3)

2 − 1
8y

2
3 −

2y22 + 3y2y3. Denoting z1 =
√
2y1 − 1

2
√
2
y3, z2 = y2, z3 = y3, we find q3(z) =

z21 − 1
8z

2
2 − 2z23 + 3z2z3, in the basis {g1 = 1√

2
f1, g2 = f2, g3 = 1

4f
1 + f3}. It

follows that q3(z) = z21 + (
√
2z2 − 3

2
√
2
z3)

2 + z23 . Now, we let w1 = z1, w2 =√
2z2 − 3

2
√
2
z3, w3 = z3, to get q3(w) = w2

1 + w2
2 + w2

3, in the basis {h1 =

g1, h2 = 1√
2
g2, h3 = 3

4g
2 + g3}.

22.2. q3(x) = (x1 + x2 + x3)
2 − 1

8 (x2 + 4x3)
2 + 1

8x
2
3.

22.3. (i) The eigenvalues of the corresponding matrix are positive 5±2
√
6, 1.

(ii) The eigenvalues of the corresponding matrix are positive and negative
9.097835,−0.384043, 0.286208.
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(iii) The eigenvalues of the corresponding matrix are positive and negative
1, 1, 1,−3.

22.4. The matrix associated to the quadratic form is A =

(

a 2b
2b c

)

with eigenvalues λ1 = (a + c +
√

(a− c)2 + 16b2)/2 and λ1 = (a + c −
√

(a− c)2 + 16b2)/2. Since λ1λ2 = ac − 4b2 and λ1 + λ2 = a + c, it follows
that:

(i) If ac− 4b2 < 0, then q2(x, y) is indefinite.
(ii) If ac− 4b2 > 0 and a+ c > 0, then q2(x, y) is positive definite.
(iii) If ac− 4b2 > 0 and a+ c < 0, then q2(x, y) is negative definite.

22.5. The eigenvalues and eigenvectors of the corresponding matrix are

−2, 3, 6 and (1, 1, 0)t, (−1, 1, 1)t, (1,−1, 2)t. Thus, the maximum is 6 at
(

1√
6
,

− 1√
6
, 2√

6

)t

and the minimum is −2 at
(

1√
2
, 1√

2
, 0
)t

.

22.6. The rectangle’s area is S = 4xy, thus we need to maximize the
quadratic form q2(x, y) = 4xy subject to the constraint 9x2 + 16y2 = 144.
Let x = 3x1, y = 4y1, then we have the equivalent problem: maximize
q2(x1, y1) = 48x1y1 subject to the constraint x21+y

2
1 = 1. Clearly, q2(x1, y1) =

(x1, y1)

(

0 24
24 0

)

(x1, y1)
t, and the matrix A has the eigenvalues −24, 24

and the eigenvectors (−1, 1)t, (1, 1)t. Thus the maximum is 24 and it occurs
for x = 3/

√
2, y = 4/

√
2.

22.7. The eigenvalues and eigenvectors of the corresponding matrix are 3, 6, 9,
and (−2,−2, 1)t, (2,−1, 2)t, (−1, 2, 2)t. Since −x1 + 2x2 + 2x3 = 0, Theorem

22.4 is applicable. The maximum is 6 at
(

2
3 ,− 1

3 ,
2
3

)t
, and the minimum is 3

at
(

− 2
3 ,− 2

3 ,
1
3

)t
.

22.8. For the corresponding matrix the characteristic equation is (λ+2)[−λ2+
(4 + α)λ + (2 − 4α)] = 0. Thus, λ1 = −2, λ2 + λ3 = α + 4, λ2λ3 = 4α − 2.
The quadratic form is negative definite provided λ2 + λ3 < 0 (α < −4) and
λ2λ3 > 0 (α > 2). But, then there is no such α.
22.9. Assume that m < M. Let um and uM be the unit vectors such that
utmAum = m and utMAuM =M. Consider the vector

uc =
√

(M − c)/(M −m)um +
√

(c−m)/(M −m)uM .



http://taylorandfrancis.com


Chapter 23

Positive Definite Matrices

Positive definite matrices occur in certain optimization algorithms in mathe-
matical programming, quantum chemistry, and calculation of molecular vibra-
tions. Positive definite matrices are defined only for the symmetric matrices,
and in a certain sense are analogues to positive numbers. We begin with the
following definition.

Definition 23.1. A symmetric n×nmatrix is called positive definite if the
quadratic form qn(x) = xtAx is positive definite, i.e., qn(x) > 0, x ∈ Rn\{0}.
Symmetric matrices that are negative definite and indefinite are defined anal-
ogously.

From Theorem 22.2 it follows that a symmetric matrixA is positive definite
if it has only positive eigenvalues, negative definite if it has only negative
eigenvalues, and indefinite if it has both positive and negative eigenvalues. In
the following result we provide another proof of this result.

Theorem 23.1. A symmetric matrix A is positive definite if and only if
it has only positive eigenvalues.

Proof. Suppose that A is positive definite. Let λ be an eigenvalue of A and
x be the corresponding eigenvector, then we have

0 < xtAx = xt(λx) = λ(xtx) = λ‖x‖22,
which immediately implies that λ > 0. Conversely, assume that all eigenvalues
of A are positive. Let {x1, · · · , xn} be an orthonormal set of eigenvectors of A,
so that any vector x ∈ Rn can be written as x =

∑n
i=1 cix

i, where ci = (x, xi)
and (x, x) =

∑n
i=1 c

2
i . From this, we have

xtAx = (x,Ax) =

(

n
∑

i=1

cix
i, A

n
∑

i=1

cix
i

)

=

(

n
∑

i=1

cix
i,

n
∑

i=1

ciλix
i

)

=

n
∑

i=1

λic
2
i ≥ (min λi)

n
∑

i=1

c2i > 0,

and hence A is positive definite.

Example 23.1. In view of Example 18.4, the matrix in (18.1) is positive
definite.

197
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Finding eigenvalues of a matrix is not an easy problem. Thus, in what
follows we discuss some other criteria.

Theorem 23.2. If A is a symmetric positive definite matrix, then A is
nonsingular, in fact, det(A) > 0.

Proof. From Theorem 23.1 and Problem 16.1(iii), we have det(A) =
∏n

i=1 λi > 0. We can also show the nonsingularity of A by contradiction: If A
is singular, then Ax = 0 has a nonzero solution, say, x̃, for which x̃tAx̃ = 0.
But this contradicts the fact that A is positive definite.

Remark 23.1. The converse of Theorem 23.2 does not hold. Indeed, for

the matrix A =

(

−2 0
0 −3

)

, det(A) > 0, but the eigenvalues are −2 and

−3.

Definition 23.1. For an n × n matrix A = (aij), the leading principal
submatrices are defined as

A1 = (a11), A2 =

(

a11 a12
a21 a22

)

, A3 =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 , · · · , An = A.

The det(Ak) is called the k-principal minor of A.

Theorem 23.3. For a symmetric positive definite matrix A, all leading
principal submatrices are also positive definite.

Proof. Let 0 6= xk ∈ Rk, 1 ≤ k ≤ n, and set x = (xk, 0, · · · , 0)t ∈ Rn.
Then, in view of A being positive definite, we have

(xk)tAkxk = xtAx > 0.

Since 0 6= xk ∈ Rk is arbitrary, Ak is positive definite.

In Theorem 7.1 we proved that the matrix A has LU -factorization provided
A can be reduced to echelon form without interchanging rows. The following
result provides a class of matrices that can be reduced to echelon form without
interchanging rows.

Theorem 23.4. If all principal minors det(Ak), k = 1, · · · , n of a sym-
metric matrix A are positive, then A can be reduced to echelon form without
interchanging rows. Further, the pivot elements are positive.

Proof. The proof is by induction. If n = 1, then A = (a11) is in echelon form
and 0 < det(A) = a11. Assume that the theorem is true for (n− 1)× (n− 1)
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symmetric matrices. We write the n× n symmetric matrix as

A =























a1n

An−1
...

a(n−1)n

an1 · · ·an(n−1) ann























.

By inductive hypothesis, we can reduce the matrix A to the form

A∗ =















a∗11 a12 · · · a1,n−1 a1n
0 a∗22 · · · ã2,n−1 ã2,n
...

...
. . .

...
...

0 0 · · · a∗n−1,n−1 ãn−1,n

an1 an2 · · · an,n−1 ann















,

where a∗ii, i = 1, · · · , n− 1 are positive. From this it immediately follows that
we can reduce A∗ and hence A to echelon form without interchanging rows,
as

A∗∗ =















a∗11 a12 · · · a1,n−1 a1n
0 a∗22 · · · ã2,n−1 ã2,n
...

...
. . .

...
...

0 0 · · · a∗n−1,n−1 ãn−1,n

0 0 · · · 0 a∗nn















.

Finally, since det(A) > 0, det(An−1) > 0, and det(A) = det(A∗∗) =
det(An−1)a∗nn, it follows that a

∗
nn = det(A)/det(An−1) > 0.

Example 23.2. For the matrix A in (18.1), the echelon form is






11 −1 −4

0 120
11 − 48

11

0 0 54
5






.

For this matrix, it also directly follows that

a∗11 = det(A1) = 11

a∗22 = det(A2)/det(A1) = 120/11

a∗33 = det(A)/det(A2) = 1296/120 = 54/5.

Further, this matrix can be LU factorized as

A = LU =







1 0 0

− 1
11 1 0

− 4
11 − 2

5 1













11 −1 −4

0 120
11 − 48

11

0 0 54
5






.
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Combining Remark 7.1 with Theorem 23.4, we have the following result.

Theorem 23.5. If all principal minors det(Ak), k = 1, · · · , n of a sym-
metric matrix A are positive, then A can be uniquely factored as A = LDLt,
where L is a lower triangular matrix with all diagonal elements 1, and D is a
diagonal matrix with all positive elements.

Proof. In view of Remark 7.1 and Theorem 23.4, the factorizationA = LDÛ
is unique, where the diagonal matrix D has only positive elements. Now since
A is symmetric, we have

LDÛ = A = At = Û tDtLt = Û tDLt,

which immediately implies that Û = Lt.

Remark 23.2. We denote the diagonal elements of D as 0 < dii, i =
1, · · · , n, and define the diagonal matrix D1/2 with elements 0 <

√
dii, i =

1, · · · , n. Then, the above factorization can be written as

A = LDLt = (LD1/2)(D1/2Lt) = (LD1/2)(LD1/2)t = LcL
t
c,

where Lc = LD1/2. The factorization A = LcL
t
c is called Cholesky decomposi-

tion. Now let us denote by Lk−1 the (k− 1)× (k− 1) upper left corner of Lc,
ak the first k− 1 entries in column k of A, ℓk the first k− 1 entries in column
k of Lt

c, and akk and ℓkk the kk entries of A and Lc, respectively. Then, the
Cholesky algorithm is:

L1 =
√
a11 = ℓ11

Lk−1ℓk = ak, compute ℓk

ℓkk =
√

akk − ℓtkℓk

Lk =

(

Lk−1 0
ℓtk ℓkk

)

, k = 2, · · · , n.

Example 23.3. Using the Cholesky algorithm for the matrix A in (18.1),
we successively have

ℓ11 =
√
11, ℓ21 = − 1√

11
, ℓ22 =

√

120

11
,

ℓ31 = − 4√
11
, ℓ32 = −

√

96

55
, ℓ33 =

√

54

5
.

Thus, the Cholesky decomposition of the matrix A in (18.1) is











√
11 0 0

− 1√
11

√

120
11 0

− 4√
11

−
√

96
55

√

54
5





















√
11 − 1√

11
− 4√

11

0
√

120
11 −

√

96
55

0 0
√

54
5











.
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We are now in the position to prove the main result of this chapter.

Theorem 23.6 (Sylvester’s criterion). A symmetric matrix A is
positive definite if and only if all principal minors det(Ak), k = 1, · · · , n are
positive.

Proof. If A is positive definite, then all principal minors are positive, as fol-
lows from Theorems 23.2 and 23.3. Conversely, the matrix A has the Cholesky
decomposition, i.e., A = LcL

t
c. Since det(A) > 0, the matrix Lt

c must be non-
singular, and hence Lt

cx 6= 0 for all x 6= 0. From this, we find

xtAx = xtLcL
t
cx = (Lt

cx)
t(Lt

cx) = ‖Lt
cx‖2 > 0.

Hence, the matrix A is positive definite.

Example 23.4. For the matrix A in (18.1), we have det(A1) = 11 >
0, det(A2) = 120 > 0, det(A3) = 1296 > 0; thus in view of Theorem 23.6, the
matrix A is positive definite. This in turn implies that the quadratic form in
(22.5) is positive definite.

Finally, in this chapter we shall prove the following result.

Theorem 23.7 (polar decomposition). Let the n × n matrix A
have rank r. Then, A can be factored as A = PQ, where P is a symmetric
n × n positive semidefinite matrix of rank r, and Q is an n × n orthogonal
matrix. If r = n, then the matrix P is positive definite.

Proof. We rewrite the singular value decomposition (19.1) as

A = UΣV t = UΣU tUV t = (UΣU t)(UV t) = PQ. (23.1)

In (23.1), the matrix Q = UV t is the product of two orthogonal matrices,
and hence in view of Problem 4.7, is orthogonal. The matrix P = UΣU t

is symmetric, also orthogonally similar to Σ, and hence in view of P12 (in
Chapter 16) P has the same rank and eigenvalues as Σ. This implies that P
is positive semidefinite. Clearly, if r = n then all diagonal elements of Σ are
positive, and thus P is positive definite.

Example 23.5. For the matrix in Problem 16.2(ii), the singular value
decomposition of UΣV t, where

U =





−0.0886 −0.7979 −0.5963
0.3080 −0.5912 0.7454

−0.9472 −0.1176 0.2981



 , Σ =





23.7448 0.0000 0.0000
0.0000 2.6801 0.0000
0.0000 0.0000 0.0000



 ,

V t =





−0.7014 0.6762 0.2254
−0.7128 −0.6654 −0.2218
0.0000 0.3162 −0.9487







202 Chapter 23

and the polar decomposition is PQ, where

P = UΣU t =





1.8927 0.6163 2.2442
0.6163 3.1893 −6.7409
2.2442 −6.7409 21.3406



 ,

Q = UV t =





0.6309 0.2825 0.7227
0.2054 0.8373 −0.5066
0.7482 −0.4680 −0.4702



 .

Problems

23.1. Show that if a symmetric matrix A is positive definite, then the
diagonal elements are positive. Is the converse true?

23.2. Let A be a symmetric positive definite matrix and C be a nonsin-
gular matrix. Show that the matrix CtAC is also symmetric positive definite.

23.3. Let A and B be n × n symmetric positive definite matrices. Show
that A+B, A2, A−1 are also symmetric positive definite. In each case, is the
converse true? What can we say about the matrices BAB and ABA?

23.4. Let A and B be n × n symmetric positive definite matrices such
that AB = BA. Show that AB is positive definite. Is the converse true?

23.5. Let S be the set of all n × n symmetric positive definite matrices.
Is S a subspace of Mn×n?

23.6. Let A ∈ Rn×n be a symmetric positive definite matrix. Show that
for columns vectors the function (u, v) = utAv is an inner product on Rn.

23.7. The matrix C in Problem 14.4 is a symmetric positive definite
matrix.

23.8. Show that the matrix An(2) given in (4.2) is a symmetric positive
definite matrix.

23.9. Use Theorem 23.5 to show that the following symmetric matrices
are positive definite

A =





1 2 3
2 8 12
3 12 34



 , B =









16 4 4 −4
4 10 4 2
4 4 6 −2

−4 2 −2 4









, C =









2 1 1 2
1 3 2 1
1 2 4 3
2 1 3 5









.

23.10. Use Theorem 23.5 to show that the following symmetric matrix is
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not positive definite

D =

















2 1 1 2 1 2
1 3 2 1 3 4
1 2 4 3 1 0
2 1 3 5 1 2
1 3 1 1 0 1
2 4 0 2 1 5

















.

23.11. Find Cholesky decomposition for the symetric matrices A,B, and
C given in Problem 23.9.

23.12. For the quadratic form q3(x1, x2, x3) = x21 +5x22 +2x23 +2αx1x2 +
+2x1x3 + 6x2x3, find the values of α so that it is positive definite.

Answers or Hints

23.1. If A is positive definite, (ek)tAek = akk > 0, k = 1, · · · , n. The converse
is not true; consider the matrix

(

2 5
5 3

)

.

23.2. Let y = Cx 6= 0 for x ∈ Rn\{0}. Then, we have xtCtACx = ytAy > 0,
since A is positive definite.
23.3. If xtAx > 0 and xtBx > 0 for all x ∈ Rn\{0}, then xt(A+B)x > 0, and
hence A + B is positive definite. The converse is not true, in fact, matrices

A =

(

−1 0
0 2

)

and B =

(

3 0
0 −1

)

are not positive definite, but C =

A+B =

(

2 0
0 1

)

is positive definite.

Since A is positive definite, from Theorem 23.2 it is nonsingular. Now from
Problem 23.2 it follows that A2 = AtIA is positive definite. The converse is

not true. In fact, the matrix A =

(

−1 0
0 2

)

is not positive definite, but

A2 =

(

1 0
0 4

)

is positive definite.

Let x ∈ Rn\{0} and y = Ax 6= 0.We have ytA−1y = xtAtA−1Ax = xtAx > 0.
The converse follows by replacing A by A−1.
Since matrices A and B are invertible, from Problem 23.2 it follows that
matrices BAB and ABA are positive definite.
23.4. Since AB = BA and matrices A and B are symmetric, AB is sym-
metric. Suppose λ is an eigenvalue of the matrix AB and x 6= 0 is the cor-
responding eigenvector. Then, ABx = λx implies that xtBABx = λxtBx,
and hence λ = xtBABx/xtBx > 0, since xtBx > 0 and xtBABx > 0.
Thus, AB is positive definite. The converse is not true. For this, note that

the matrix C =

(

3 0
0 4

)

is positive definite, and C = AB = BA where
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A =

(

−1 0
0 2

)

, B =

(

−3 0
0 2

)

. Clearly, the matrices A and B are not

positive definite.
23.5. No, because a positive definite matrix multiplied by a negative scalar
is not a positive definite matrix.
23.6. Because A is positive definite, (u, u) = utAu > 0. Because utAv is
a scalar, (utAv)t = utAv. Also, At = A, because A is symmetric. Thus,
(u, v) = utAv = (utAv)t = vtAtutt = vtAu = (v, u). Finally, for any vectors
u1, u2, v and scalars c1, c2, we have (c1u

1 + c2u
2, v) = (c1u

1t + c2u
2t)Av =

c1u
1tAv + c2u

2tAv = c1(u
1, v) + c2(u

2, v).
23.7. In view of Problem 14.4(i), the matrix C is symmetric. Now let u
be any nonzero vector in Rn. Then, u will be same as the coordinates of
some nonzero vector, say, v in V. Thus, from Problem 14.4(ii) it follows that
utCu = (u, u) > 0.
23.8. From Problem 16.9, the eigenvalues of An(2) are positive.
23.9. det(A1) = 1, det(A2) = 4, det(A3) = 64.
det(B1) = 16, det(B2) = 144, det(B3) = 576, det(B4) = 576.
det(C1) = 2, det(C2) = 5, det(C3) = 13, det(C4) = 19.
23.10. Follows from Problem 23.1. Also, note that det(D1) = 2, det(D2) =
5, det(D3) = 13, det(D4) = 19, det(D5) = −72.

23.11. A =





1 0 0
2 2 0
3 3 4









1 2 3
0 2 3
0 0 4



 .

B =









4 0 0 0
1 3 0 0
1 1 2 0

−1 1 −1 1

















4 1 1 −1
0 3 1 1
0 0 2 −1
0 0 0 1









.

C =









1.4142 0.0000 0.0000 0.0000
0.7071 1.5811 0.0000 0.0000
0.7071 0.9487 1.6125 0.0000
1.4142 0.0000 1.2403 1.2089

















1.4142 0.7071 0.7071 1.4142
0.0000 1.5811 0.9487 0.0000
0.0000 0.0000 1.6125 1.2403
0.0000 0.0000 0.0000 1.2089









.

23.12. The matrix of the quadratic form is A =





1 α 1
α 5 3
1 3 2



. We apply

Sylvester’s criterion: det(A1) = 1 > 0, det(A2) = 5 − α2 > 0, which is true
if α ∈ (−

√
5,
√
5), and det(A3) = (−2)(α − 1)(α − 2) > 0, which is true if

α ∈ (1, 2). Thus, α ∈ (1, 2).
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Moore–Penrose Inverse

In Chapter 4 we discussed the inverse of an n× n matrix. In this chapter we
shall introduce the concept of a pseudo/generalized (Moore–Penrose) inverse,
which is applicable to all m × n matrices. As an illustration we shall apply
Moore–Penrose inverse to least squares solutions of linear equations.

From Remark 19.2 it follows that each n × n invertible matrix A has the
reduced singular value decomposition

A = U1DnnV
t
1 ; (24.1)

where U1 = (u1, · · · , un), V1 = (v1, · · · , vn) are n × n orthogonal matrices,
and Dnn is the diagonal matrix with elements σ1 ≥ · · · ≥ σn > 0. Thus, from
(24.1), we find

A−1 = V1D
−1
nnU

t
1. (24.2)

Since the inverse of a matrix is unique, the right side of (24.2) provides another
(factorized) representation (see (4.1)) of A−1.

Following the lead of the representation (24.2), for any m × n matrix A
with rank r, we define the Moore–Penrose inverse as

A+ = V1D
−1
rr U

t
1; (24.3)

here, V1, D
−1
rr , U

t
1, respectively, are n× r, r × r, r ×m matrices.

Example 24.1. For the matrix A in Example 4.2, (24.2) gives

A−1 ≃





−0.4296 0.8082 0.4028
−0.4667 −0.5806 0.6671
0.7731 0.0986 0.6266









0.1434 0.0000 0.0000
0.0000 0.3742 0.0000
0.0000 0.0000 0.6654





×





0.0546 −0.8732 −0.4843
0.8590 0.2883 −0.4231
0.5091 −0.3929 0.7658



 .

Example 24.2. For the matrix A in Example 19.1, from Example 19.2

205
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and (24.3) it follows that

A+ =













2
3

1√
3

2
3 − 1√

3

1
3 0

0 1√
3













(

1
3 0

0 1√
3

)

(

1 0
0 1

)

.

A formal definition of Moore–Penrose inverse is as follows:

Definition 24.1. For a given m × n matrix A the n ×m matrix A+ is
called Moore–Penrose inverse if the following hold:

(a) AA+A = A, (b) A+AA+= A+, (c) (AA+)t = AA+, (d) (A+A)t = A+A.
(24.4)

From elementary calculations it follows that A+ given in (24.3) satisfies
all the four equations (24.4), and hence every matrix A has a Moore–Penrose
inverse A+. In fact, the equations in (24.4) determine A+ uniquely. For this,
let B+ also be a Moore–Penrose inverse of A, i.e.,

(ã) AB+A = A, (b̃) B+AB+= B+, (c̃) (AB+)t = AB+, (d̃) (B+A)t = B+A.
(24.5)

Now from the eight equations in (24.4) and (24.5), we have

A+ =(b) A+AA+ =(d) At(A+)tA+ =(ã) At(B+)tAt(A+)tA+

=(d̃) B+AAt(A+)tA+ =(d) B+AA+AA+ =(a) B+AA+,

and similarly

B+ =(b̃) B+AB+ =(c̃) B+(B+)tAt =(a) B+(B+)tAt(A+)tAt

=(c) B+(B+)tAtAA+ =(c̃) B+AB+AA+ =(ã) B+AA+.

We summarize our above considerations in the following result.

Theorem 24.1. For any m× n matrix A the Moore–Penrose inverse A+

exists uniquely.

From Example 11.4 it is clear that if the right inverse (and similarly the
left inverse) of an m × n matrix exists then it may not be unique. In what
follows, we shall show that the right and left inverses given in Problems 11.9
and 11.10 are in fact Moore–Penrose inverses, and hence unique. For this, we
recall that an m × n matrix is said to have a full row (column) rank if and
only if AAt (AtA) is invertible, which is equivalent to r(A) = m (r(A) = n).

Theorem 24.2. For an m× n matrix A the Moore–Penrose inverse is

A+ =

{

At(AAt)−1, if r(A) = m

(AtA)−1At, if r(A) = n.
(24.6)
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Proof. Assume that r(A) = n, then from the singular value decomposition
it follows that

AtA = (V1D
t
nnU

t
1)(U1DnnV

t
1 ) = V1Dnn(U

t
1U1)DnnV

t
1 = V1D

2
nnV

t
1 .

Since r(A) = r(AtA) = n, the matrix AtA is invertible, and thus we have

(AtA)−1At = (V1D
−2
nnV

t
1 )(V1D

t
nnU

t
1)

= V1D
−2
nn(V

t
1 V1)DnnU

t
1 = V1D

−1
nnU

t
1 = A+.

Example 24.3. For the matrix A in (11.2), we have r(A) = m = 3, thus
the Moore–Penrose inverse exists uniquely and simple calculations give

A+ = At(AAt)−1 =











25
14 − 3

7 − 4
7

−6 3 1
23
14 − 5

7 − 2
7

11
7 − 6

7 − 1
7











,

which is the same as (11.4) with a = 11/7, b = −6/7, c = −1/7. For other
choices of a, b, c at least one of the four conditions in Definition 24.1 will
fail; for example, if we choose a = b = c = 2, then the condition (d), i.e.,
(A+A)t = A+A, does not hold.

Example 24.4. For the matrix A in Example 19.1, we have r(A) = m = 2,
thus the Moore–Penrose inverse exists uniquely and simple calculations give

A+ = At(AAt)−1 =











2
9

1
3

2
9 − 1

3
1
9 0

0 1
3











.

Our next result provides some basic properties of Moore–Penrose inverse.

Theorem 24.3. Let the m× n matrix A have the rank r, and let A+ be
its Moore–Penrose inverse given in (24.3). Then, the following hold:

(i) for every vector y ∈ Rm the vector A+y ∈ R(A)

(ii) for every vector y ∈ N (A) the vector A+y = 0

(iii) A+ui = vi/σi, i = 1, · · · , r.
Proof. (i) Since A+y = (V1D

−1
rr U

t
1)y = V1(D

−1
rr U

t
1y), it follows that A

+y
is a linear combination of the columns of V1. But this in view of Theorem
19.2(iii) implies that A+y ∈ R(A).

(ii) If y ∈ N (A), then clearly y⊥C(A), which in view of Theorem 19.2(i)
implies that y⊥U1. But this in view of Problem 14.11 implies that U t

1y = 0,
and hence, we have A+y = (V1D

−1
rr )U

t
1y = 0.
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(iii) From (24.3), we have A+U1 = V1D
−1
rr , which on comparing the vectors

on both sides immediately gives A+ui = vi/σi, i = 1, · · · , r.
Now we shall apply Moore–Penrose inverse to least squares solutions of the

m × n linear system (5.2). For this, we recall that Theorem 21.1 assures the
existence of a unique least squares solution (21.3) provided A is a full column
matrix, i.e., r(A) = n. This unique solution in view of Theorem 24.2 can be
written as

x̂ = A+b. (24.7)

Theorem 21.1 also says that if the columns of A are linearly dependent, i.e.,
r(A) 6= n, then there are an infinite number of least squares solutions. How-
ever, since for each m × n matrix A the Moore–Penrose inverse A+ exists
uniquely, the representation (24.7) is meaningful and provides x̂ uniquely.
Further, in view of Theorem 24.3(i), A+b ∈ R(A). In the following result,
we shall show that (24.7) is, in fact, the unique least squares solution of the
system (5.2) even when r(A) 6= n.

Theorem 24.4. For each m× n matrix A and b ∈ Rm, the system (5.2)
has a unique least squares solution given by (24.7).

Proof. From our above discussion and Theorem 21.1 it suffices to show
that x̂ = A+b satisfies the normal equations (21.2), i.e., AtAx̂ = Atb. For this,
from (19.2) and (24.3), we have

(AtA)A+b = (V1DrrU
t
1U1DrrV

t
1 )(V1D

−1
rr U

t
1b)

= V1Drr(U
t
1U1)Drr(V

t
1 V1)D

−1
rr U

t
1b

= V1DrrU
t
1b = Atb,

i.e., A+b is a solution of the normal equations (21.2).

Example 24.5. Consider the system

A(x1, x2, x3, x4)
t = (b1, b2, b3)

t, (24.8)

which has an infinite number of solutions









x1
x2
x3
x4









=











b1 − 1
2b3

−6b1 + 3b2 + b3

4b1 − 2b2 − 1
2b3

0











+











1
2

0

− 3
2

1











c, (24.9)

where c is an arbitrary constant. We also note that from Theorems 24.2 and
24.4 and Example 24.3 the unique least squares solution of (24.8) is

x̂ = A+(b1, b2, b3) =











25
14b1 − 3

7b2 − 4
7b3

−6b1 + 3b2 + b3
23
14b1 − 5

7b2 − 2
7b3

11
7 b1 − 6

7b2 − 1
7b3











. (24.10)
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Clearly, when c = 11
7 b1 − 6

7b2 − 1
7b3, (24.9) becomes the same as (24.10).

Example 24.6. For the matrix A in Example 21.2, r(A) = 2. The reduced
singular value decomposition of this matrix appears as

A = U1DrrV
t
1 =









0.4968 −0.0293
−0.4692 0.8216
0.5874 0.5325
0.4337 0.2013









(

7.5246 0.0000
0.0000 5.7776

)

×
(

0.3065 0.7812 0.5438
0.8599 −0.4722 0.1938

)

.

Thus, the Moore–Penrose inverse is

A+ = V1D
−1
rr U

t
1 =





0.0159 0.1032 0.1031 0.0476
0.0540 −0.1158 0.0175 0.0286
0.0349 −0.0064 0.0603 0.0381



 .

From this, we can directly compute the unique least squares solution of (21.12)
as

x̂ = A+b =





0.7220
−0.0107
0.3554



 .

This shows that in (21.14), c ≃ 0.3554.

Problems

24.1. Show that (i) (At)+ = (A+)t, (ii) A++ = A.

24.2. Show that if in Definition 24.1, A+ satisfies only equation (a), then
it is not unique.

24.3. Give an example to show that (AB)+ 6= B+A+.

24.4. Let the m× n matrix A have the rank r, and let A+ be its Moore–
Penrose inverse given in (24.3). Show that

(i) AA+ is the orthogonal projection of Rm onto C(A)

(ii) A+A is the orthogonal projection of Rn onto R(A).

24.5. Find the Moore–Penrose inverse of the matrices given in Problem
4.1.

24.6. Find the Moore–Penrose inverse of the matrices given in Problems
19.1–19.4.

24.7. Find the unique least squares solutions of Problems 21.1–21.5.
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Answers or Hints

24.1. (i) From (19.2) and (24.3), we have A = U1DrrV
t
1 and A+ = V1D

−1
rr U

t
1.

Thus, At = V1DrrU
t
1 and (At)+ = U1D

−1
rr V

t
1 = (A+)t.

(ii) Since A+ = V1D
−1
rr U

t
1, we have A++ = U1(D

−1
rr )

−1V t
1 = U1DrrV

t
1 = A.

24.2. For every n × m matrix P, the matrix B = A+ + (P − A+APAA+)
satisfies (a).

24.3. For the matrices A = (5, 2), B =

(

1
3

)

, we have A+ ≃
(

0.1724
0.0690

)

,

B+ ≃ (0.1, 0.3), (AB)+ ≃ 0.0909, B+A+ ≃ 0.0379, and hence (AB)+ 6=
B+A+.
24.4. We need to show that R(A)⊕N (A+) = Rm and R(A+)⊕N (A) = Rn.
(i) Since A = U1DrrV

t
1 and A+ = V1D

−1
rr U

t
1 for y ∈ Rm, we have AA+y =

U1(DrrV
t
1 V1D

−1
rr U

t
1y). This means AA+y is a linear combination of the rows

of U1, and thus from Theorem 19.2(i), we have AA+y ∈ C(A).
(ii) For y ∈ Rn, we have A+Ay = V1(D

−1
rr U

t
1U1DrrV

t
1 y), and hence A+Ay is

a linear combination of the rows of V1, and now from Theorem 19.2(iii), we
have A+Ay ∈ R(A).

24.5. A+ =





0.2222 1.0556 −0.6111
−0.1111 −0.7778 0.5556
0.1111 0.2778 −0.0556



 .

B+ =







7
2 −2 1

2

− 13
4

11
4 − 3

4
3
4 − 3

4
1
4






.

C+ =





0.0256 0.0858 −0.1925
−0.0009 −0.0580 0.1229
0.0483 −0.0025 −0.0162



 .

24.6.

(

1 2 1 0
2 0 1 1

)+

=











0 1
3

4
9 − 2

9
1
9

1
9

− 1
9

2
9











.









1 3
−3 3
−3 1
1 1









+

= 1
84

(

11 −9 −13 7
17 9 −1 7

)

.





−1 0 1
−1 1 2
0 1 1





+

= 1
9





−5 −1 4
−4 1 5
1 2 1



 .









1 2 3
2 1 0
1 1 2
0 3 4









+

=





0.1818 0.2273 0.3636 −0.3182
−0.2909 0.5364 −0.7818 0.6091
0.2727 −0.4091 0.5455 −0.2273



 .
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24.7. Problem 21.1, (0.3333, 0.6667, 1.0000)t.
Problem 21.2, (0.1759, 0.5548, 0.0114, 0.3648)t.
Problem 21.3, (0.1990, 0.3026, 0.2828,−0.4877,−0.3693)t.
Problem 21.4, (0.2020, 0.4039,−0.2824, 0.0412)t.
Problem 21.5, (0.5136, 0.7113,−0.1810)t.
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Chapter 25

Special Matrices

In this last chapter we shall briefly discuss irreducible, nonnegative, diagonally
dominant, monotone, and Toeplitz matrices. These matrices frequently occur
in numerical solutions of differential and integral equations, spline functions,
problems and methods in physics, statistics, signal processing, discrete Fourier
transform, and the study of cyclic codes for error correction.

An n × n matrix A = (aij) is said to be reducible if the set of indices
N = {1, 2, · · · , n} can be divided into two nonempty disjoint sets S and T
with N = S ∪ T such that aij = 0 for all i ∈ S and j ∈ T. A square matrix is
called irreducible if it is not reducible.

Example 25.1. The following matrices are reducible

A =





5 3 0
6 4 0
0 6 9



 , B =





3 2 5
0 7 1
0 4 3



 .

Clearly, for the matrix A, if we take S = {1, 2}, T = {3} then a13 = a23 = 0,
whereas for the matrix B if S = {2, 3}, T = {1} then a21 = a31 = 0. The
following matrices are irreducible

C =





5 3 1
6 4 0
0 6 9



 , D =





3 2 5
0 7 1
1 4 3



 .

For this, we need to consider all six possible particians of the set {1, 2, 3}, i.e.,
P1 : S = {1}, T = {2, 3}; P2 : S = {2}, T = {1, 3}; P3 : S = {3}, T = {1, 2};
P4 : S = {1, 2}, T = {3}; P5 : S = {2, 3}, T = {1}; and P6 : S = {1, 3}, T =
{2}. For the matrix C in each of these particians, we have a12 = 3, a21 =
6, a32 = 6, a13 = 1, a21 = 6, a12 = 3. Similarly, for the matrix D, we have
a12 = 2, a23 = 1, a32 = 4, a13 = 5, a31 = 1, a12 = 2.

The following result provides necessary and sufficient conditions for an
n× n matrix to be reducible.

Theorem 25.1. An n×n matrix A is reducible if and only if there exists
a permutation matrix P such that

P tAP =

(

A11 0
A21 A22

)

;

213
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here A11 and A22 are square matrices of orders r and n− r, respectively, A21

is an (n− r) × r matrix, and 0 is the r × (n− r) null matrix, 1 ≤ r ≤ n− 1.

Example 25.2. In view of Theorem 25.1, matrix A in Example 25.1 is
reducible. For the matrix

A =









4 3 5 1
0 2 0 3
3 5 1 2
0 2 0 1









the permutation matrix P = (e4, e2, e1, e3) gives

P tAP =









1 2 0 0
3 2 0 0
1 3 4 5
2 5 3 1









= B. (25.1)

Thus, from Theorem 25.1 it follows that the matrix A is reducible.

Let v1, · · · , vn be n distinct points in the xy–plane. For each aij 6= 0, 1 ≤
i, j ≤ n we connect the points vi with vj with line segments directed from
vi to vj . In graph theory the points v1, · · · , vn are called vertices, nodes, or
points, and the line segments are called edges, arcs, or simply lines. The graph
so constructed is called a directed graph, because edges are directed from one
vertex to another. A graph is called strongly connected if for any ordered pair
of nodes vi, vj , there exists a path vivk1

→ vk1
vk2

→ · · · → vkm
vj connecting

vi to vj .

Theorem 25.2. An n × n matrix A = (aij) is irreducible if and only if
its directed graph is strongly connected.

Example 25.3. Directed graphs of matrices A and C in Example 25.1
appear as

Graph of A

v1 v2

v3

• •

•

Graph of C

v1 v2

v3

••

•

Clearly, the graph of A is not strongly connected, whereas of C is strongly
connected.

From Theorem 25.2 the following corollary is immediate.
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Corollary 25.1. An n × n tridiagonal matrix A = (aij) is irreducible if
and only if ai,i+1 6= 0, i = 1, · · · , n− 1 and ai,i−1 6= 0, i = 2, · · · , n.

Matrices in (4.2) and (4.16) are irreducible.

An m × n matrix A = (aij) is said to be nonnegative (positive) if aij ≥
(>) 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Eigenvalues and eigenvectors of nonnegative
irreducible n× n matrices are described by the following result.

Theorem 25.3 (Perron–Frobenius). If A is an n×n, nonnegative
irreducible matrix, then the following hold:

(i) one of its eigenvalues, say, λ∗ is positive, and if λ is any other eigenvalue,
then |λ| ≤ λ∗

(ii) there is a positive eigenvector v∗ corresponding to the eigenvalue λ∗

(iii) the eigenvalues of modulus λ∗ are simple

(iv) all eigenvalues of modulus λ∗ are of the form

λk = λ∗ exp

(

2πk
√
−1

m

)

, k = 0, 1, · · · ,m− 1.

Example 25.4. For the matrix C in Example 25.1, λ∗ ≃ 10.740084, v∗

≃ (1, 0.890197, 3.069495)t, and for the matrix D, λ∗ ≃ 8.074555, v∗ = (1,
0.688283, 0.739598)t.

An n × n matrix A = (aij) is said to be diagonally dominant if for every
row of the matrix, the magnitude of the diagonal entry in a row is larger than
or equal to the sum of the magnitudes of all the other (non-diagonal) entries
in that row, i.e.,

|aii| ≥
n
∑

j=1,j 6=i

|aij | for all 1 ≤ i ≤ n. (25.2)

If in (25.2) a strict inequality holds, then A is called strictly diagonally domi-
nant.

Example 25.5. None of the matrices A,B,C,D in Example 25.1 are
diagonally dominant. Matrix An(x) defined in (4.2) is diagonally dominant if
|x| = 2, and strictly diagonally dominant if |x| > 2. Consider the matrices

A =





5 3 0
6 8 0
0 6 9



 , B =





5 3 2
8 8 0
0 9 9



 .

The matrix A is strictly diagonally dominant but not irreducible, whereas
matrix B is diagonally dominant and irreducible. In view of Corollary 25.1, if
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|x| = 2, then the matrix An(x) in (4.2) is diagonally dominant and irreducible,
and if |x| > 2, then it is strictly diagonally dominant and irreducible.

Theorem 25.4. If an n× n matrix A is strictly diagonally dominant, or
diagonally dominant and irreducible, then A is invertible.

Example 25.6. From Theorem 25.4 it is clear that the matrix An(x) in
(4.2) for |x| ≥ 2 is invertible. In particular, A5(3) is invertible; see Example
4.3. Matrices A and B in Example 25.5 are invertible and their inverses appear
as

A−1 =







4
11 − 3

22 0

− 3
11

5
22 0

2
11 − 5

33
1
9






, B−1 =







1
4 − 1

32 − 1
18

− 1
4

5
32

1
18

1
4 − 5

32
1
18






.

The converse of Theorem 25.4 does not hold. For this, we note that the matri-
ces A and B in Example 25.1 are neither diagonally dominant nor irreducible,
but their inverse exists:

A−1 =







2 − 3
2 0

−3 5
2 0

2 − 5
3

1
9






, B−1 =







1
3

14
51 − 11

17

0 3
17 − 1

17

0 − 4
17

7
17






.

Let A = (aij) be an m × n matrix. In what follows by A ≥ 0, we mean
that the matrix A is nonnegative. An n× n matrix A is said to be monotone
if Au ≥ 0 implies that u is nonnegative, i.e., u = (u1, · · · , un)t ≥ 0.

If a matrix A is monotone, and Au ≤ 0, then it follows that −Au ≥ 0,
which implies that A(−u) ≥ 0, and hence −u ≥ 0, or u ≤ 0. Thus, if A is
monotone, and Au = 0, then u must simultaneously satisfy u ≥ 0 and u ≤ 0,
i.e., u = 0. This simple observation leads to the following result.

Theorem 25.5. If an n× n matrix A is monotone, then det(A) 6= 0, i.e,
it is nonsingular.

Example 25.7. The converse of Theorem 25.5 does not hold. For this,
it suffices to note that for the matrix B in Example 25.1, det(B) = 51 and
B(1, 1,−1)t = (0, 6, 1).

The following result provides necessary and sufficient conditions so that
an n× n matrix A is monotone.

Theorem 25.6. An n× n matrix A is monotone if and only if A−1 ≥ 0.

Example 25.8. From Theorem 25.6 and Example 25.6 it follows that ma-
trices A and B in Examples 25.1 are 25.5 are not monotone. Thus, reducible,
irreducible, and diagonally dominant matrices are not necessarily monotone.
In view of Example 4.3, the matrix A5(3) is monotone.
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The following easily verifiable results provide sufficient conditions for an
n× n matrix A to be monotone.

Theorem 25.7. Let (in addition to irreducibility) an n × n matrix A =
(aij) satisfy the following conditions:

(i) aij ≤ 0, i 6= j, 1 ≤ i, j ≤ n

(ii)
∑n

j=1 aij ≥ 0, 1 ≤ i ≤ n with strict inequality for at least one i.

Then, the matrix A is monotone.

Example 25.9. In view of Corollary 25.1, the matrix An(x) for x ≥ 2
satisfies all conditions of Theorem 25.7. Consider the matrices

A =





5 −3 −2
−8 8 0
0 −9 10



 , B =





−5 3 3
8 −8 0
0 9 −9



 , C =





5 −3 0
−6 4 0
0 −6 9





and their inverses

A−1 =







5 3 1

5 25
8 1

9
2

45
16 1






, B−1 =







1 3
4

1
3

1 5
8

1
3

1 5
8

2
9






, C−1 =







2 3
2 0

3 5
2 0

2 5
3

1
9






.

From Theorem 25.6 all three matrices A,B, and C are monotone, but only A
satisfies all conditions of Theorem 25.7.

Remark 25.1. From the matrices in Example 25.9, we note that A + B is
a singular matrix, and hence Theorem 25.5 implies that the addition of two
monotone matrices may not be monotone. In view of Theorem 25.6, matrix
A−1 is not monotone, and hence the inverse of a monotone matrix may not
be monotone. However, from (AB)−1 = B−1A−1 it is clear that if A and B
are monotone, then both AB and BA are also monotone.

Theorem 25.8. Let the n× n matrices A and C be monotone, and the
matrix B be such that A ≤ B ≤ C. Then, the matrix B is also monotone.

Example 25.10. Clearly, the following matrices

A =





1 −1 −1
−2 3 1
−1 1 2



 , B =





1 −1 −1
−2 4 1
−1 1 3



 , C =





1 −1 −1
−1 5 1
−1 1 5





satisfy A ≤ B ≤ C, and since

A−1 =





5 1 2
3 1 1
1 0 1



 and C−1 =







3
2

1
4

1
4

1
4

1
4 0

1
4 0 1

4






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matrices A and C are monotone. Thus, Theorem 25.8 is applicable, and the
matrix B must be monotone, indeed we have

B−1 =







11
4

1
2

3
4

5
4

1
2

1
4

1
2 0 1

2






.

Theorem 25.9. Let the n× n matrix A be written as A = I −B, where
B = (bij) ≥ 0 and (in any norm) ‖B‖ < 1. Then, the matrix A is monotone.

Example 25.11. Consider the following matrix and its inverse

A =







1 − 1
2 − 1

4

− 1
4

1
2 − 1

6

− 1
6 − 1

3 1






, A−1 =







32
19

42
19

15
19

20
19

69
19

33
38

12
19

30
19

27
19






.

From Theorem 26.6 it follows that the matrix A is monotone. Since

A = I −B =





1 0 0
0 1 0
0 0 1



−







0 1
2

1
4

1
4

1
2

1
6

1
6

1
3 0







the matrix B satisfies all conditions of Theorem 25.9, and hence matrix A is
monotone.

Theorem 25.10. Let the n×n matrix A be symmetric, positive definite,
and written as A = I − B, where B = (bij) ≥ 0. Then, the matrix A is
monotone.

Example 25.12. For the matrix

A =











1 − 1
3 0 0

− 1
3 1 − 1

3 0

0 − 1
3 1 − 1

3

0 0 − 1
3 1











eigenvalues are

5

6
− 1

6

√
5,

1

6

√
5 +

5

6
,

7

6
− 1

6

√
5,

1

6

√
5 +

7

6

positive, and thus it is positive definite. We can write A = I −B, where

B =











0 1
3 0 0

1
3 0 1

3 0

0 1
3 0 1

3

0 0 1
3 0











.
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Since ‖B‖∞ < 1, conditions of Theorem 25.10 are satisfied, and thus the
matrix A is monotone. Indeed, we find

A−1 =
1

55









63 24 9 3
24 72 27 9
9 27 72 24
3 9 24 63









.

An m× n matrix A = (aij) is called a Toeplitz matrix if aij = ai+1,j+1 =
ai−j . An n× n Toeplitz matrix has the form

A =

















a0 a−1 a−2 · · · · · · a−(n−1)

a1 a0 a−1 · · · · · · a−(n−2)

a2 a1 a0 · · · · · · a−(n−3)

· · · · · · · · · · · · · · · · · ·
an−2 · · · · · · a1 a0 a−1

an−1 · · · · · · a2 a1 a0

















.

In the above matrix A all diagonal elements are equal to a0. Further, we note
that this matrix has only 2n− 1 degrees of freedom compared to n2, thus it
is easier to solve the systems Ax = b. For this, Levinson’s algorithm is well
known. An n × n Toeplitz matrix A = (aij) is called symmetric provided
aij = b|i−j|.

Example 25.13. For n = 4, Toeplitz and symmetric Toeplitz matrices,
respectively, appear as

A =









a0 a−1 a−2 a−3

a1 a0 a−1 a−2

a2 a1 a0 a−1

a3 a2 a1 a0









, B =









b0 b1 b2 b3
b1 b0 b1 b2
b2 b1 b0 b1
b3 b2 b1 b0









.

A symmetric Toeplitz matrix B is said to be banded if there is an integer
d < n−1 such that bℓ = 0 if ℓ ≥ d. In this case, we say that B has bandwidth d.
Thus, an n×n banded symmetric Toeplitz matrix with bandwidth 2 appears
as

B =



















b0 b1
b1 b0 b1

b1 b0 b1

· · · · · ·
b1 b0 b1

b1 b0



















. (25.3)

Clearly, matrices (4.2) and (4.16) are symmetric Toeplitz matrices with band-
width 2. For the matrix B in (25.3), following as in Problem 16.9, we find that
the eigenvalues and the corresponding eigenvectors are

λi = b0 + 2b1 cos

(

iπ

n+ 1

)

, 1 ≤ i ≤ n
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and

ui =

(

sin
iπ

n+ 1
, sin

2iπ

n+ 1
, · · · , sin niπ

n+ 1

)t

, 1 ≤ i ≤ n,

also

det(B) =

n
∏

i=1

[

b0 + 2b1 cos

(

iπ

n+ 1

)]

.

Example 25.14. For the matrix B in (25.3) with n = 4, it follows that

λ1 = b0+
1+

√
5

2
b1, λ2 = b0+

1−
√
5

2
b1, λ3 = b0−

1−
√
5

2
b1, λ4 = b0−

1+
√
5

2
b1,

u1 =













1

1+
√
5

2

1+
√
5

2

1













, u2 =













1

1−
√
5

2

1−
√
5

2

1













, u3 =













−1

1−
√
5

2

−1+
√
5

2

1













, u4 =













−1

1+
√
5

2

− 1+
√
5

2

1













,

det(B) = (b21 − b20 − b0b1)(b0b1 − b20 + b21).

In Toeplitz matrix A, if we take ai = a−(n−i), 1 = 1, · · · , n − 1, then it
reduces to a circulant matrix (see Problem 16.8),

A = circ(a0, a1, · · · , a−(n−1))

=

















a0 a−1 a−2 · · · · · · a−(n−1)

a−(n−1) a0 a−1 · · · · · · a−(n−2)

a−(n−2) a−(n−1) a0 · · · · · · a−(n−3)

· · · · · · · · · · · · · · · · · ·
a−2 · · · · · · a−(n−1) a0 a−1

a−1 · · · · · · a−(n−2) a−(n−1) a0

















.
(25.4)

Example 25.15. For n = 4, the eigenvalues of the matrix A in (25.4) are

λ1 = a0 − a−1 + a−2 − a−3, λ2 = a0 + a−1 + a−2 + a−3,

λ3 = a0 − a−2 − i(a−3 − a−1), λ4 = a0 − a−2 + i(a−3 − a−1).

Theorem 25.11. For any two given circulant matrices A and B, the sum
A+B is circulant, the product AB is circulant, and AB = BA.

Example 25.16. For the matrices A = circ(2, 1, 5), B = circ(4, 3,−1),
we have A+B = circ(6, 4, 4) and AB = BA = circ(22, 5, 21).
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Problems

25.1. Use Theorem 25.1 to show that the following matrices are reducible:

A =









2 3 5 2
0 5 3 0
0 3 2 0
0 4 1 0









, B =









0 1 3 2
0 5 0 7
2 0 0 1
0 3 0 2









.

25.2. Prove Theorem 25.2.

25.3. Use Theorem 25.2 to determine whether the following matrices are
reducible or irreducible:

A =

(

0 2
3 4

)

, B =

(

3 2
0 4

)

, C =





4 0 7
11 8 0
0 5 8



 .

25.4. Prove Theorem 25.4.

25.5. Use Theorem 25.4 to show that the following matrices are invertible:

A =





7 2 3
1 5 2
3 4 8



 , B =





5 4 1
3 3 0
0 6 6



 .

25.6. Prove Theorem 25.6.

25.7. Show that the matrices C and D in Example 25.1 are not monotone.

25.8. Let A = (aij) and B = (bij) be n × n monotone matrices. Show
that if A ≥ B, i.e., aij ≥ bij , 1 ≤ i, j ≤ n, then A−1 ≤ B−1.

25.9. Use Theorem 25.6 to show that the following matrices are monotone

A =





2 2 −3
−3 2 2
2 −3 2



 , B =





28 −7 1
−42 −28 70
14 35 −27



 .

25.10. Prove Theorem 25.9.

25.11. Find the eigenvalues and eigenvectors of the following matrices:

A =









1 3 0 0
3 1 3 0
0 3 1 3
0 0 3 1









, B =









a0 0 a−2 0
0 a0 0 a−2

a−2 0 a0 0
0 a−2 0 a0









.
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25.12. Show that circ(1,−1, 2, 3)circ(4, 1, 5,−3) = circ(20, 6, 3, 6).

Answers or Hints

25.1.









2 3 0 0
3 5 0 0
1 4 0 0
5 3 2 2









=









0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0









A









0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0









.









5 7 0 0
3 2 0 0
1 2 0 3
0 1 2 0









=









0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0









B









0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0









.

25.2. Let A be an irreducible matrix and suppose that its directed graph
G is not strongly connected. We suppose that G has n edges. Then, there
are vertices vi and vj such that between them there does not exist any path.
We denote with S the set of edges connected to vj and with T the rest of
the edges. It is clear that the sets S and T are non-empty, since vj ∈ S and
vi ∈ T. This implies that no edge v ∈ S is connected with an edge w ∈ T,
since otherwise w ∈ S, which is false. If we reorder the edges in the graph G
and suppose that the first q edges are in S and the next n–q vertices are in
T, then we have ars = 0 for r ∈ S, s ∈ T. But this contradicts our assumption
that A is irreducible. The converse requires a similar argument.
25.3. A irreducible, B reducible, C irreducible.
25.4. Assume that A is strictly dominated and noninvertible. Then, at
least one of the eigenvalues of A, say, λm = 0. Let the eigenvector corre-
sponding to λm be u = (u1, · · · , un). Since Au = λmu = 0, it follows that
∑n

j=1 aijuj = 0, 1 ≤ i ≤ n. Let ‖u‖∞ = max1≤i≤n |ui| = |uk|. Then, we
have akkuk = −∑n

j=1,j 6=k akjuj, which gives |akk| ≤
∑n

j=1,j 6=k |akj ||uj/uk|,
or |akk| ≤

∑n
j=1,j 6=k |akj |. But this contradicts our assumption that A is di-

agonally dominated.
25.5. Matrix A is strictly diagonally dominant and its inverse is

1
187





32 −4 −17
−2 47 −17

−17 −34 51



 . Matrix B is diagonally dominant and irreducible

and its inverse is 1
12





6 −6 −1
−6 10 1
6 −10 1



 .

25.6. Let A be monotone and A−1 = (b1, · · · , bn). Then, Abj = ej ≥ 0, 1 ≤
j ≤ n implies bj ≥ 0, 1 ≤ j ≤ n. Thus, A−1 ≥ 0. Conversely, if A−1 ≥ 0 and
Au ≥ 0, then u = (A−1A)u = A−1(Au) ≥ 0.
25.7. In view of Theorem 25.6 it suffices to observe that not all elements of
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the matrices C−1 and D−1 are nonnegative:

C−1 =







2
3 − 7

18 − 2
27

−1 5
6

1
9

2
3 − 5

9
1
27






, D−1 =







17
18

7
9 − 11

6
1
18

2
9 − 1

6

− 7
18 − 5

9
7
6






.

25.8. Follows from the identity B−1 −A−1 = B−1(A−B)A−1.

25.9. A−1 = 1
5





2 1 2
2 2 1
1 2 2



 , B−1 = 1
308





11 1 3
1 5 13
7 7 7



 .

25.10. From Theorem 17.5, it suffices to note that A−1 =
∑∞

k=1 B
k and

B ≥ 0.
25.11. For A in Example 25.14 take b0 = 1, b1 = 3.
For the matrix B, λ1 = λ2 = a0 + a−2, λ3 = λ4 = a0 − a−2, v

1 =
(0, 1, 0, 1)t, v2 = (1, 0, 1, 0)t, v3 = (0,−1, 0, 1)t, v4 = (−1, 0, 1, 0)t.
25.12. Verify by direct multiplication.
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