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Preface

Linear algebra is a branch of both pure and applied mathematics. It provides
the foundation for multi-dimensional representations of mathematical reason-
ing. It deals with systems of linear equations, matrices, determinants, vectors
and vector spaces, transformations, and eigenvalues and eigenvectors. The
techniques of linear algebra are extensively used in every science where often
it becomes necessary to approximate nonlinear equations by linear equations.
Linear algebra also helps to find solutions for linear systems of differential and
difference equations. In pure mathematics, linear algebra (particularly, vector
spaces) is used in many different areas of algebra such as group theory, module
theory, representation theory, ring theory, Galdis theory, and this list contin-
ues. This has given linear algebra a unique place in mathematics curricula all
over the world, and it is now being taught as a compulsory course at various
levels in almost every institution.

Although several fabulous books on linear algebra have been written, the
present rigorous and transparent introductory text can be used directly in
class for students of applied sciences. In fact, in an effort to bring the subject
to a wider audience, we provide a compact, but thorough, introduction to the
subject in An Introduction to Linear Algebra. This book is intended for
senior undergraduate and for beginning graduate one-semester courses.

The subject matter has been organized in the form of theorems and their
proofs, and the presentation is rather unconventional. It comprises 25 class-
tested lectures that the first author has given to math majors and engineering
students at various institutions over a period of almost 40 years. It is our belief
that the content in a particular chapter, together with the problems therein,
provides fairly adequate coverage of the topic under study.

A brief description of the topics covered in this book follows: In Chapter
1, we define axiomatically terms such as field, vector, vector space, subspace,
linear combination of vectors, and span of vectors. In Chapter 2, we introduce
various types of matrices and formalize the basic operations: matrix addition,
subtraction, scalar multiplication, and matrix multiplication. We show that
the set of all m x n matrices under the operations matrix addition and scalar
multiplication is a vector space. In Chapter 3, we begin with the defini-
tion of a determinant and then briefly sketch the important properties of
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determinants. In Chapter 4, we provide necessary and sufficient conditions
for a square matrix to be invertible. We shall show that the theory of deter-
minants can be applied to find an analytical representation of the inverse of a
square matrix. Here we also use elementary theory of difference equations to
find inverses of some band matrices.

The main purpose of Chapters 5 and 6 is to discuss systematically
Gauss and Gauss—Jordan elimination methods to solve m linear equations in
n unknowns. These equations are conveniently written as Az = b, where A is
an m X n matrix, z is an n X 1 unknown vector, and b is an m x 1 vector.
For this, we introduce the terms consistent, inconsistent, solution space, null
space, augmented matrix, echelon form of a matrix, pivot, elementary row
operations, elementary matrix, row equivalent matrix, row canonical form, and
rank of a matrix. These methods also provide effective algorithms to compute
determinants and inverses of matrices. We also prove several theoretical results
that yield necessary and sufficient conditions for a linear system of equations
to have a solution. Chapter 7 deals with a modified but restricted realization
of Gaussian elimination. We factorize a given m X n matrix A to a product
of two matrices L and U, where L is an m x m lower triangular matrix, and
U is an m x n upper triangular matrix. Here we also discuss various variants
and applications of this factorization.

In Chapter 8, we define the concepts linear dependence and linear inde-
pendence of vectors. These concepts play an essential role in linear algebra
and as a whole in mathematics. Linear dependence and independence distin-
guish between two vectors being essentially the same or different. In Chapter
9, for a given vector space, first we introduce the concept of a basis and then
describe its dimension in terms of the number of vectors in the basis. Here we
also introduce the concept of direct sum of two subspaces. In Chapter 10,
we extend the known geometric interpretation of the coordinates of a vector
in R? to a general vector space. We show how the coordinates of a vector
space with respect to one basis can be changed to another basis. Here we also
define the terms ordered basis, isomorphism, and transition matrix. In Chap-
ter 11, we redefine rank of a matrix and show how this number is directly
related to the dimension of the solution space of homogeneous linear systems.
Here for a given matrix we also define row space, column space, left and right
inverses, and provide necessary and sufficient conditions for their existence.
In Chapter 12, we introduce the concept of linear mappings between two
vector spaces and extend some results of earlier chapters. In Chapter 13, we
establish a connection between linear mappings and matrices. We also intro-
duce the concept of similar matrices, which plays an important role in later
chapters. In Chapter 14, we extend the familiar concept inner product of two
or three dimensional vectors to general vector spaces. Our definition of inner
products leads to the generalization of the notion of perpendicular vectors,
called orthogonal vectors. We also discuss the concepts projection of a vector
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onto another vector, unitary space, orthogonal complement, orthogonal basis,
and Fourier expansion. This chapter concludes with the well-known Gram-—
Schmidt orthogonalization process. In Chapter 15, we discuss a special type
of linear mapping, known as linear functional. We also address such notions
as dual space, dual basis, second dual, natural mapping, adjoint mapping,
annihilator, and prove the famous Riesz representation theorem.

Chapter 16 deals with the eigenvalues and eigenvectors of matrices. We
summarize those properties of the eigenvalues and eigenvectors of matrices
that facilitate their computation. Here we come across the concepts char-
acteristic polynomial, algebraic and geometric multiplicities of eigenvalues,
eigenspace, and companion and circulant matrices. We begin Chapter 17
with the definition of a norm of a vector and then extend it to a matrix.
Next, we drive some estimates on the eigenvalues of a given matrix, and prove
some useful convergence results. Here we also establish well known Cauchy—
Schwarz, Minkowski, and Bessel inequalities, and discuss the terms spectral
radius, Rayleigh quotient, and best approximation.

In Chapter 18, we show that if algebraic and geometric multiplicities of
an n x n matrix A are the same, then it can be diagonalized, i.e., A = PDP~!;
here, P is a nonsingular matrix and D is a diagonal matrix. Next, we provide
necessary and sufficient conditions for A to be orthogonally diagonalizable,
ie., A= QDQ!, where Q is an orthogonal matrix. Then, we discuss QR fac-
torization of the matrix A. We also furnish complete computationable char-
acterizations of the matrices P, D, (@, and R. In Chapter 19, we develop a
generalization of the diagonalization procedure discussed in Chapter 18. This
factorization is applicable to any real m x n matrix A, and in the literature
has been named singular value decomposition. Here we also discuss reduced
singular value decomposition.

In Chapter 20, we show how linear algebra (especially eigenvalues and
eigenvectors) plays an important role to find the solutions of homogeneous
differential and difference systems with constant coefficients. Here we also de-
velop continuous and discrete versions of the famous Putzer’s algorithm. In
a wide range of applications, we encounter problems in which a given system
Az = b does not have a solution. For such a system we seek a vector(s) & so
that the error in the Euclidean norm, i.e., ||[AZ — bl|2, is as small as possible
(minimized). This solution(s) & is called the least squares approximate solu-
tion. In Chapter 21, we shall show that a least squares approximate solution
always exists and can be conveniently computed by solving a related system
of n equations in n unknowns (normal equations). In Chapter 22, we study
quadratic and diagonal quadratic forms in n variables, and provide criteria for
them to be positive definite. Here we also discuss maximum and minimum of
the quadratic forms subject to some constraints (constrained optimization).
In Chapter 23, first we define positive definite symmetric matrices in terms
of quadratic forms, and then for a symmetric matrix to be positive definite, we
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provide necessary and sufficient conditions. Next, for a symmetric matrix we
revisit LU-factorization, and give conditions for a unique factorization LDL?,
where L is a lower triangular matrix with all diagonal elements 1, and D is a
diagonal matrix with all positive elements. We also discuss Cholesky’s decom-
position L.L. where L. = LD'/2, and for its computation provide Cholesky’s
algorithm. This is followed by Sylvester’s criterion, which gives easily verifiable
necessary and sufficient conditions for a symmetric matrix to be positive defi-
nite. We conclude this chapter with a polar decomposition. In Chapter 24, we
introduce the concept of pseudo/generalized (Moore—Penrose) inverse which
is applicable to all m x n matrices. As an illustration we apply Moore—Penrose
inverse to least squares solutions of linear equations. Finally, in Chapter 25,
we briefly discuss irreducible, nonnegative, diagonally dominant, monotone,
and Toeplitz matrices. We state 11 theorems which, from the practical point
of view, are of immense value. These types of matrices arise in several diverse
fields, and hence have attracted considerable attention in recent years.

In this book, there are 148 examples that explain each concept and demon-
strate the importance of every result. Two types of 254 problems are also
included, those that illustrate the general theory and others designed to fill
out text material. The problems form an integral part of the book, and every
reader is urged to attempt most, if not all of them. For the convenience of the
reader, we have provided answers or hints to all the problems.

In writing a book of this nature, no originality can be claimed, only a
humble attempt has been made to present the subject as simply, clearly, and
accurately as possible. The illustrative examples are usually very simple, keep-
ing in mind an average student.

It is earnestly hoped that An Introduction to Linear Algebra will
serve an inquisitive reader as a starting point in this rich, vast, and ever-
expanding field of knowledge.

We would like to express our appreciation to our students and Ms. Aastha
Sharma at CRC (New Delhi) for her support and cooperation.

Ravi P. Agarwal
Cristina Flaut



Chapter 1

Linear Vector Spaces

A vector space (or linear space) consists of four things { F, V, +,s.m.}, where F’
is a field of scalars, V' is the set of vectors, and + and s.m. are binary operations
on the set V called vector addition and scalar multiplication, respectively.
In this chapter we shall define each term axiomatically and provide several
examples.

Fields. A field is a set of scalars, denoted by F, in which two binary op-
erations, addition (+) and multiplication (-), are defined so that the following
axioms hold:

Al. Closure property of addition: If a,b € F, then a + b € F.

A2. Commutative property of addition: If a,b € F, then a +b =0+ a.

A3. Associative property of addition: If a,b, c € F, then (a+b)+c = a+(b+c).
A4. Additive identity: There exists a zero element, denoted by 0, in F' such
that foralla € F, a+0=0+a = a.

A5, Additive inverse: For each a € F, there is a unique element (—a) € F
such that a + (—a) = (—a) + a = 0.

AG6. Closure property of multiplication: If a,b € F, then a-b € F.

A7. Commutative property of multiplication: If a,b € F, then a-b=5-a.
A8. Associative property of multiplication: If a, b, ¢ € F, then (a-b)-c = a-(b-c).
A9. Multiplicative identity: There exists a unit element, denoted by 1, in F'
such that foralla € F, a-1=1-a=a.

A10. Multiplicative inverse: For each a € F, a # 0, there is an unique element
a~ '€ Fsuchthata-a ' =a"ta =1.

A11. Left distributivity: If a,b,c € F,thena-(b+c¢)=a-b+a-c.

A12. Right distributivity: If a,b,c € F, then (a+b)-c=a-c+b-c.

Example 1.1. The set of rational numbers @, the set of real numbers R,
and the set of complex numbers C, with the usual definitions of addition and
multiplication, are fields. The set of natural numbers N = {1,2,---}, and the
set of all integers Z = {---,—-2,—-1,0,1,2---} are not fields.

Let F and Fj be fields and Fy C F, then F} is called a subfield of F. Thus,
Q@ is a subfield of R, and R is a subfield of C.
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Vector spaces. A wvector space V over a field F' denoted as (V, F)
is a nonempty set of elements called vectors together with two binary opera-
tions, addition of vectors and multiplication of vectors by scalars, so that the
following axioms hold:

B1. Closure property of addition: If u,v € V, then u+v € V.

B2. Commutative property of addition: If u,v € V, then u 4+ v =v 4 u.

B3. Associativity property of addition: If u,v,w € V, then (u +v) + w =
u+ (v +w).

B4. Additive identity: There exists a zero vector, denoted by 0, in V such
that forallu e V, u4+0=0+4+u = u.

B5. Additive inverse: For each u € V, there exists a vector v in V' such that
u+ v =v-+u=0.Such a vector v is usually written as —u.

B6. Closure property of multiplication: If w € V and a € F, then the product
a-u=aueV.

B7. If u,v € V and a € F, then a(u +v) = au + av.

B8. If u € V and a,b € F, then (a + b)u = au + bu.

B9. If u € V and a,b € F, then ab(u) = a(bu).

B10. Multiplication of a vector by a unit scalar: If w € V and 1 € F, then
lu = u.

In what follows, the subtraction of the vector v from u will be written as
u — v, and by this we mean u + (—v), or u + (—1)v. The spaces (V, R) and
(V,C) will be called real and complex vector spaces, respectively.

Example 1.2 (The n-tuple space). Let F be a given field. We
consider the set V' of all ordered n-tuples

a1
U = : (or, (ai,---,an))

29
of scalars (known as components) a; € F. If
b1
bn
is in V, the addition of v and v is defined by

a1+ by
u+v = )
an + by
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and the product of a scalar ¢ € F' and vector u € V is defined by

cal

cay,

It is to be remembered that v = v, if and only if their corresponding com-
ponents are equal, i.e., a; = b;, i = 1,--- ,n. With this definition of addition
and scalar multiplication it is easy to verify all the axioms B1-B10, and hence
this (V, F) is a vector space. In particular, if

is in V, then the i-th component of (v +v) +w is (a; + b;) + ¢;, which in view
of A3 is the same as a; + (b; + ¢;), and this is the same as the i-th component
of u+ (v + w), i.e.,, B3 holds. If F = R, then V is denoted as R"™, which
for n = 2 and 3 reduces respectively to the two and three dimensional usual
vector spaces. Similarly, if F' = C, then V is written as C™.

Example 1.3 (The space of polynomials). Let F be a given field.
We consider the set P,,, n > 1 of all polynomials of degree at most n — 1, i.e.,

n—1
P, = {a0+a1x+-~-—|—an_1x"_1:Zaixi:aieF, xGR}.
i=0

If u = Z?:_ol a;zt, v = ZZ:Ol bzt € P, then the addition of vectors u and v
is defined by

n—1 n—1 n—1
utv = Z a;x’ + Z bt = Z(ai + b))z,
i=0 i=0 i=0
and the product of a scalar ¢ € F' and vector u € P, is defined by
n—1 n—1
cu = ¢ Z a;xt = Z(cai)xz.
i=0 i=0

This (Pn, F') is a vector space. We remark that the set of all polynomials of
degree exactly n — 1 is not a vector space. In fact, if we choose b,,_1 = —a,_1,
then u + v is a polynomial of degree n — 2.

Example 1.4 (The space of functions). Let F be a given field, and
X C F. We consider the set V' of all functions from the set X to F. The sum of
two vectors f, g € V is defined by (f+g), i.e., (f+9)(z) = f(x)+g(x), v € X,
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and the product of a scalar ¢ € F and vector f € V is defined by cf, i.e.,
(ef)(x) = cf(x). This (V, F) is a vector space. In particular, (C[X], F'), where
C[X] is the set of all continuous functions from X to F, with the same vector
addition, and scalar multiplication is a vector space.

Example 1.5 (The space of sequences). Let F be a given field.
Consider the set S of all sequences a = {a,}>2,, where a, € F. If a and
b are in S and ¢ € F, we define a +b = {an} + {bn} = {an + b,} and
ca = c{an} = {ca,}. Clearly, (S, F) is a vector space.

Example 1.6. Let F = R and V be the set of all solutions of the homo-
geneous ordinary linear differential equation with real constant coefficients

dn n—1

Yy dy
e d 1 —= 2y = 0, 0, € R.
aodx"+a1dx"—1+ +a 1dx—|—ay ag # T

This (V, F') is a vector space with the same vector addition and scalar mul-
tiplication as in Example 1.4. Note that if the above differential equation is
nonhomogeneous then (V, F') is not a vector space.

Theorem 1.1. Let V be a vector space over the field F, and let u,v € V.
Then,

l.u4+v=uimpliecsv=0€V.

2.0u=0eV.
3. —u is unique.
4. —u = (—1)u.

Proof. 1. On adding —u on both sides of u + v = u, we have
—u+ut+v = —ut+u = (—utu)+v=0= 04+v=0 = v=0.

2. Clearly, Ou = (0 + 0)u = Ou + Ou, and hence Ou =0 € V.

3. Assume that v and w are such that v +v = 0 and u + w = 0. Then, we
have

v=0v4+0 =v+@utw) = v+u)+w = (u+v)+w = 0+w = w,

i.e., —u of any vector u € V is unique.

4. Since
0 =0u=[14+CDu=1ut+(-Du = u+ (-1,

it follows that (—1)u is a negative for u. The uniqueness of this negative vector
now follows from Part 3. |

Subspaces. Let (V,F) and (W, F) be vector spaces and W C V, then
(W, F) is called a subspace of (V,F). It is clear that the smallest subspace
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(W, F) of (V,F) consists of only the zero vector, and the largest subspace
(W, F)is (V, F) itself.

Example 1.7. Let F =R,

ay ai
W = ao tay,a2 € R and V = a9 tai,az,a3 € R
0 as

Clearly, (W, R) is a subspace of (V, R). However, if we let

aj
W = as tap >0,a2 >0,a3 >0,
as

then (W, R) is not a subspace of (V, R).

Example 1.8. Let F be a given field. Consider the vector spaces (P4, F)
and (Ps, F). Clearly, (Ps, F') is a subspace of (Py, F'). However, the set of all
polynomials of degree exactly two over the field F is not a subspace of (Py, F).

Example 1.9. Consider the vector spaces (V, F) and (C[X], F) considered
in Example 1.4. Clearly, (C[X], F) is a subspace of (V, F').

To check if the nonempty subset W of V over the field F' is a subspace
requires the verification of all the axioms B1-B10. However, the following
result simplifies this verification considerably.

Theorem 1.2. If (V, F) is a vector space and W is a nonempty subset of
V, then (W, F) is a subspace of (V, F) if and only if for each pair of vectors
u,v € W and each scalar a € F' the vector au +v € W.

Proof. If (W, F) is asubspace of (V, F), and u,v € W, a € F, then obviously
au + v € W. Conversely, since W # (), there is a vector v € W, and hence
(—=1)u+u =0 € W. Further, for any vector u € W and any scalar a € F, the
vector au = au + 0 € W. This in particular implies that (—1)u = —u € W.
Finally, we notice that if u,v € W, then 1u + v € W. The other axioms can be
shown similarly. Thus (W, F') is a subspace of (V, F). |

Thus (W, F) is a subspace of (V, F) if and only if for each pair of vectors
u,v € W,u+v € W and for each scalar a € F, au € W.

Let ul,--- ,u™ be vectors in a given vector space (V, F),and ¢y, -+ ,¢, € F
be scalars. The vector u = cju! + - - - + ¢, u™ is known as linear combination
of u*, i =1,---,n. By mathematical induction it follows that u € (V, F).

Theorem 1.3. Letu‘e€ (V,F), i=1,---,n(>1), and

w = {61u1+...+cnu" ¢ eF, i=1,~-~,n}
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then (W, F) is a subspace of (V, F), and W contains each of the vectors u?, i =
]_7 ... 7n.

Proof. Clearly, each ' is a linear combination of the form

ui = Z 51‘]‘ uj,
j=1
where §;; is the Kronecker delta defined by
_ )0 i#j
0ij = { 1, i=j.

Thus, each u* € W. Now, if v = > | cu’, w =1 diu’ and a € F, then
we have

av +w = aZciui + Zdiui = Z(aci + di)ui = Zaiui, a; € F
i=1 i=1 i=1 i=1
which shows that av+w € W. The result now follows from Theorem 1.2. [ |

The subspace (W, F) in Theorem 1.3 is called the subspace spanned or
generated by the vectors u?, i = 1,--- ,n, and written as Span{ul,-- u"}.
If (W,F) = (V,F), then the set {ul,--- u"} is called a spanning set for the
vector space (V, F). Clearly, in this case each vector u € V' can be expressed
as a linear combination of vectors v, i =1,--- ,n.

Example 1.10. Since

2 1 3 4 12
21 1 ) =310 J+51 2 |- 2 = 10
4 2 1 0 7

it follows that

12 2 1 3 4
10 € Span 11,10 |, 2 |, 2
7 4 2 1 0
However,
1 1 1
2 ¢ Span 0], 1
3 0 0

Example 1.11. For the vector space (V, F) considered in Example 1.2
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the set {el, - ,e"}, where
0
' 0
e = 1 € V (1 atthe i-th place)
0
0
is a spanning set. Similarly, for the vector space (P,,, F') considered in Example
1.3, the set {1,z,---,2" '} is a spanning set.
Problems

1.1. Show that the set of all real numbers of the form a + v/2b, where a
and b are rational numbers, is a field.

1.2. Show that

(i) iful,---,u" span V and u € V, then u,u!,--- ,u™ also span V

(ii) if u',---,u™ span V and u* is a linear combination of u, i = 1,---,
n, i #k,then u*, i =1,--- ,n, i # k also span V'

(iii) if w',---,u™ span V and v* = 0, then u’, i = 1,---,n, i # k also
span V.

1.3. Show that the intersection of any number of subspaces of a vector
space V is a subspace of V.
1.4. Let U and W be subspaces of a vector space V. The space

U+W = {v:iv=u+w where ueU, weW}
is called the sum of U and W. Show that

(i) U+ W is also a subspace of V
(i) U and W are contained in U + W
(i) U+U=U
(iv) UUW is a subspace of V7.
1.5. Consider the following polynomials of degree three:

(@ — @2)(x — w3)(® — w4) (@ —a1)(x — w3)(x — x4)

L) = (x1—x2) (21 —23) (21 —24) La(z) = (x2—z1) (22— 73) (T2 —T4)
_ (@ —m)(@—xo)(x — 34) o) = (&= z)(@ —a2)(z — 23)
La(z) = (23 —x1)(v3—22) (T3 —24) Lale) = (24 —1)(va—22)(T4—23)’
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where 1 < 9 < x3 < x4. Show that

(i) it P3(x) € P4 is an arbitrary polynomial of degree three, then Ps(z) =
Ll(l‘)Pg(l‘l) + Lg(x)Pg(Ig) + Lg(l‘)Pg(l‘g) + L4(.13)P3(.134)
(ii) the set {Li(x), La(x), L3(x), L4(x)} is a spanning set for (P4, R).

1.6. Prove that the sets {1,1+x,1+z+ 2%, 1+x+22+23} and {1, (1 —
z),(1 — )2, (1 — x)3} are spanning sets for (Py, R).

1.7. Let S be a subset of R" consisting of all vectors with components
a;, ©=1,--- ,nsuch that a; +---+ a, = 0. Show that .S is a subspace of R™.

1.8. On R? we define the following operations

1 Y1 1+ Y1 T1 axy
T + 1 v = 0 and a | o = azs , a € R.
T3 Y3 T3+ Y3 T3 azxs

With these operations, is R® a vector space over the field R?
1.9. Consider the following subsets of the vector space R>:

(i) Vi={z€eR®:3z3=x1 -5z} (ii) Va={zr€ R®: 2% =1+ 623}
(iii) Vs={z€eR¥:22=0} (iv) Va={r € R} :23=0a, a€ R—{0}}.

Find if the above sets Vi, Vs, Va, and V, are vector subspaces of R3.

1.10. Let (V, X) be the vector space of functions considered in Example
1.4 with X = F = R, and W C V. Show that W is a subspace of V if

(i) W contains all bounded functions
(ii) W contains all even functions (f(—z) = f(x))

(iii) W contains all odd functions (f(—z) = —f(x)).

Answers or Hints

1.1. Verify A1-A12.

1.2. (i) Since u',---,u™ span V and u € V there exist scalars c1,--- , ¢,
such that uw = Y"1 ciu’. Let W = {v : v = Y" | ayu’ + apyru}. We need
to show that (V,F) = (W, F). Clearly, V C W. Now let v € W, then v =
St + g Yy cut =Y (a; + angrc;)ut. Hence, W C V.

(ii) Similar as (i).

(iii) Similar as (i).

1.3. Let U, W be subspaces of V. It suffices to show that U N W is also a
subspace of V. Since 0 € U and 0 € W it is clear that 0 € U N W. Now let
u,w € UNW, then u,w € U and u,w € W. Further for all scalars a,b €
F, au+bw € U and au+ bw € W. Thus au+bw € UNW.
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1.4. (i) Let v',v? € U+ W, where v! = u! + w', v? = u? + w?. Then,
v 402 =ul +wl +u? +w? = (u! +u?) + (w! +w?). Now since U and W are
subspaces, u! +u? € U and w' +w? € W. This implies that v! +v2 € U + W.
Similarly we can show that cv* € U+ W, c € F.

(i) HwueU, thensince0eW, u=u+0eU+W.

(iii) Since U is a subspace of V' it is closed under vector addition, and hence
U+ U CU. We also have U CU + U from (i).

(iv) U UW need not be a subspace of V. For example, consider V = R3,

aiq 0
U= 0 a1 €ERY, W= 0 a3 € R
0 as
Then
ap
UUW = 0 a1 €ER, a3 €R
0
Clearly,
1 0 1
0 |eUUW, 0 | eUUW, but 0 | ¢UUW.
0 1 1

1.5. (i) The function f(z) = Li(x)Ps(x1) + Lo(z)Ps(x2) + Ls(x)P3(x3) +
Ly(z)Py(x4) is a polynomial of degree at most three, and f(x;) = L;(x;)X
Ps(z;) = P3(x;), i =1,2,3,4. Thus f(x) = P3(z) follows from the uniqueness
of interpolating polynomlals.

(ii) Follows from (i).

1.6. It suffices to note that a + bz + cx? + da® = (a —b) + (b —¢)(1 + 2) +
(c—d)(1+z+2?) +d(1+z+ 2% +23).

1.7. Use Theorem 1.2.

1.8. No.

1.9. Vi and V3 are vector subspaces, whereas V5 and Vj are not vector sub-
spaces of R3.

1.10. Use Theorem 1.2.
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Chapter 2

Matrices

Matrices occur in many branches of applied mathematics and social sciences,
such as algebraic and differential equations, mechanics, theory of electrical
circuits, nuclear physics, aerodynamics, and astronomy. It is, therefore, nec-
essary for every young scientist and engineer to learn the elements of matrix
algebra.

A system of m x n elements from a field F' arranged in a rectangular
formation along m rows and n columns and bounded by the brackets ( ) is
called an m x n matriz. Usually, a matrix is written by a single capital letter.
Thus,

aii @12 - Q1 v QAln

a1 Q22 - Q25 v A2p
A =

a1 L0 e ¢ 7 B ¢ 2773

Gm1 Am2 - Qmj " Gmn

is an m x n matrix. In short, we often write A = (a;;), where it is understood
that the suffix i = 1,--- ;m and j = 1,--- ,n, and 4j indicates the i-th row
and the j-th column. The numbers (A4);; = a;; are called the elements of the
matrix A. For example, the following matrices A and B are of order 2 x 3 and
3 X2,

5 5 o 14+i 1—3
A = (1 ) 8), B= | 2+3 2-5 |, i=+v-1
7 5+ 3i

A matrix having a single row, i.e., m = 1, is called a row matriz or a row
vector, e.g., (2 3 5 7).

A matrix having a single column, i.e., n = 1, is called a column matriz or

a column vector, e.g.,
5

7
3

Thus the columns of the matrix A can be viewed as vertical m-tuples (see

11
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Example 1.2), and the rows as horizontal n-tuples. Hence, if we let

Amj

A matrix having n rows and n columns is called a square matriz of order
n, e.g.,

12 3
A= |23 14 (2.1)
345

is a square matrix of order 3.

For a square matrix A of order n, the elements a;;, ¢ = 1,---,n, lying
on the leading or principal diagonal are called the diagonal elements of A,
whereas the remaining elements are called the off-diagonal elements. Thus for
the matrix A in (2.1) the diagonal elements are 1,3, 5.

A square matrix all of whose elements except those in the principal diag-
onal are zero, i.e., a;; =0, |i — j| > 1 is called a diagonal matriz, e.g.,

7 0 0
A = 0 5 0
0 0 1

A diagonal matrix of order n that has unity for all its diagonal elements,
i.e., a; =1, is called a unit or identity matriz of order n and is denoted by I,
or simply by I. For example, identity matrix of order 3 is

Iy =

o O =

0 0
10 |,
0 1

and of nth order I, = (et,e2,--- ,em).

If all the elements of a matrix are zero, i.e., a;; = 0, it is called a null or
zero matriz and is denoted by 0, e.g.,

0 0
0 = 0 0
0 0

A square matrix A = (a;;) is called symmetric when a;; = aj;. If a;; =
—aj;, so that all the principal diagonal elements are zero, then the matrix is
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called a skew-symmetric matriz. Examples of symmetric and skew-symmetric
matrices are respectively

a h g 0 h —g
h b f and —h 0o f
g f ¢ g —f 0

An m X n matrix is called upper triangular if a;; = 0, ¢ > j and lower
triangularif a;; = 0, j > 4. In particular, a square matrix all of whose elements
below the principal diagonal are zero is called an upper triangular matriz, and
a square matrix all of whose elements above the principal diagonal are zero is
called a lower triangular matriz. Thus,

a h g a 0 0
0 b f and h b 0
0 0 ¢ g [ c

are upper and lower triangular matrices, respectively. Clearly, a square matrix
is diagonal if and only if it is both upper and lower triangular.

Two matrices A = (a;;) and B = (b;;) are said to be equal if and only if
they are of the same order, and a;; = b;; for all 7 and j.

If A and B are two matrices of the same order, then their sum A + B is

defined as the matrix each element of which is the sum of the corresponding
elements of A and B. Thus,

ar by c dy ar+c bi+d;
az ba |+ | co do = az +c2 by+ds
az bz c3 ds a3 +c3 b3+ds

Similarly, A — B is defined as a matrix whose elements are obtained by sub-
tracting the elements of B from the corresponding elements of A. Thus,

ay b1 . C1 d1 . ayp — C1 b1 — d1
an b2 (6] d2 - ag — C9 b2 — d2 ’

The addition of matrices satisfies the following properties:
1. A+ B = B+ A, commutative law
2. A+ (B+C)=(A+ B)+ C, associative law
3LA+0=0+A=A,
4. A+ (-A)=(-A)+A=0.

The product of a matrix A by a scalar k € F' is a matrix whose every
element is k times the corresponding element of A. Thus,

k a1 b1 C1 . k;al k)bl k;cl
ag b2 C2 - k)ag k)bg kJCQ ’
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For such products, the following properties hold:

1. (k1 + ko)A = k1 A+ koA, ki, ks € F
2. k1(koA) = (k1k2)A

3. k(A+ B) = kA + kB, distributive law
4. (-1)A=-A

5.0A=0

6. k0 = 0.

In what follows we shall denote by M™*™ the set of all m x n matrices
whose elements belong to a certain field F i.e.,

M™" = {A=(ay):a; €F, i=1,---,m, n=1,2,--- ,n}.

It is clear that with the above definition of addition and scalar multiplication,
(M™*" F) is a vector space. The set of all m x n matrices with real (complex)
elements will be represented by R™*™ (C™*™).

Two matrices can be multiplied only when the number of columns in the
first matrix is equal to the number of rows in the second matrix. Such matrices
are said to be conformable for multiplication. Thus, if A and B are n x m and
m X p matrices

ailr a2 v Qim bir bz - by

a a P a b b .« .. b
A — 21 Q22 2m and B — 21 22 2p

Gn1  Ap2 - Gnm am1 aAm2 - Amp

then A x B, or simply AB is a new matrix of order n X p,

Ci1 Ci2 -+ Cip
C21 C22 (2

AB = L
Cnl1 Cp2 - Cnp

where

m
cij = ainbij + -+ @imbm; = E Qikbrj-
k=1

Thus, in particular

ap b1 o di ex ardy + bids + c1ds  are; + biea + cres
ag b2 C2 X d2 () = a2d1 + b2d2 + Czdg azeq + b2€2 + Co€3
as bz c3 ds e3 azdy + bsds + c3ds  aszei + bzes + c3es

In the product AB the matrix A is said to be post-multiplied by B, and the
matrix B is said to be pre-multiplied by A. It is possible that AB is defined,
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but BA may not be defined. Further, both AB and BA may exist yet may
not be equal.

Example 2.1. For the matrices

01 2 1 -2
A = 1 2 3|, B = -1 01,
2 3 4 2 -1
we have
3 -2
AB = 5 -5
7 -8
However, BA is not defined.
Example 2.2. For the matrices
1 1 0 2 3 4
A = -1 2 1|, B = 1 2 31,
0 0 2 -1 1 2
we have
3 5 7 -1 8 11
AB = -1 2 4 |, BA = -1 5 8
-2 2 4 -2 1 5

Thus, AB # BA.

Example 2.3. For the matrices

11 1 -1
()=
we have AB = 0. Thus AB = 0 does not imply that A or B is a null matrix.

For the multiplication of matrices, the following properties hold:

1. A(BC) = (AB)C, associative law

2. A(B+C)=AB+ AC and (A+ B)C = AC £ BC, distributive law
3.AI=Aand IA=A

1. k(AB) = (kA)B = A(kB), ke F

5. A0 =0and 0B = 0.

If A is an n x n matrix, then the product AA is denoted as A2. In general,
the m times product AA---A = A" 1A = A™ and A° = I. Also, if m and
p are positive integers, then in view of the associative law, we have A™ AP =
A™*P_ In particular, I = I? = I3 = .. . Further, if A is a diagonal matrix
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with diagonal elements (A1,---, A, ), then A™ is also a diagonal matrix with
diagonal elements (A7*, - -+, A™). Moreover, if A is an upper (lower) triangular
matrix, then A™ is also an upper (lower) triangular matrix. Polynomials in the
matrix A are also defined. In fact, if Pp,_1(z) = Z?Z)l a;z' € (Pm, F), then
Pn_1(4) = Z;';Ol a; Al Clearly, P,,_1(A) is a square matrix. If P,,_1(A) is
the zero matrix, then A is called a zero or root of P,_1(x).

The transpose of an m x n matrix A = (a;;), written as A, is an n x m
matrix that is obtained by interchanging the rows and columns of A, i.e.,
A" = (aj;). Thus for the matrices in Example 2.1,

0 1 2
A= |12 3|, B = ( _; _é _? ).
2 3 4
It follows that for the column vector
ai
a =
an
a® is the row vector at = (a1, ,a,), and vice-versa.

For the transpose of matrices, the following hold:
A+ B)t = At + B!

cA)t = cAt where c is a scalar

At =

AB)t = BtAt (note reversed order).

L (
2. (
3. (
4. (

Clearly, a square matrix A is symmetric if and only if A = A? and skew-
symmetric if and only if A = —A?. If A is symmetric (skew-symmetric), then
obviously A? is symmetric (skew-symmetric).

The trace of a square matrix, written as tr(A), is the sum of the diagonal
elements, i.e., tr(A) = a1; + ags + - -+ + appn. Thus for the matrix A in (2.1)
the trace is 1 +3 + 5 = 9. For the trace of square matrices, the following hold:
1. tr(A + B) = tr(A4) + tr(B)

2. tr(A) = tr(A?)
3. tr(cA) = ¢ tr(A), where ¢ is a scalar
4. tr(AB) = tr(BA).
Finally, we remark that, especially for computational purposes, a matrix A

can be partitioned into submatrices called blocks, or cells by drawing horizontal
and vertical lines between its rows and columns. This partition is not unique;
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for example, the matrix

1 0 7 3 4
35 7 10
4= 0 4 3 2 7
6 3 9 0 2
can be partitioned as
1 07 3 4
3 5|7 10 _ Ann A
0 4|3 2 7 - Aoy Asy )’
6 3|19 0 2
or
110 7|3 4
A A Asg
3|15 7|1 0
= Ag1 Ay A
0|4 3|2 7 A A A
613 910 2 31 32 33
If A= (Aij)rxs, B = (Bij)sxt and the blocks A;;, B;; are conformable,

then AB = (Cij;)rxt, where
Cij = ZAszkj
k=1

In partitioned matrices the blocks can be treated as numbers so that the
basic operations between matrices (with blocks of correct orders) can be per-
formed.

Problems

2.1. Express the following matrix as a sum of a lower triangular matrix
and an upper triangular matrix with zero leading diagonal

1 3 5
A = 2 47
6 =5 9

2.2. Let A = (a;5), B = (b;;) € M™*" be upper triangular matrices. Show
that AB is an upper triangular matrix with diagonal elements a;;b;;, i =
1’ DRI ,n.

2.3. For the matrices

1 2 4 3 -6 -5
A = 36 5|, B=|1 3 5
6 5 8 3 5 7
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find A+ B, A— B, 2A+ 3B, 3A— 4B, AB, BA, A? and B®.

2.4. For the matrices

2 -3 -5 -1 3 5 2 —2 —4
A=|-1 4 5)|,B=| 1 -3 5], Cc=(-1 3 4
1 -3 —4 -1 3 5 1 -3 —4

verify that AB = BA =0, AC # A, and CA =C.
cosf sinf
4 = ( —sinf cosf )

A — ( cosnb sinn9>

2.5. If

show that
—sinnf cosnb

2.6. Show that (A+ B)? = A2+2AB+ B? and (A+ B)(A— B) = A?> - B?
if and only if the square matrices A and B commute.

2.7. Consider the set R?*? with the addition as usual, but the scalar
multiplication as follows:

@ b _ ka 0
c d o 0 kd )~
Show that (R?*2, R) is not a vector space.
2.8. Show that the matrices
10 0 1 0 0 0 0
0 0 )’ 0 0 )’ 1 0 )’ 0 1
span the vector space M2*2 containing all 2 x 2 matrices.

2.9. Let B € R"*" be a fixed matrix, and S = {A: AB = BA, A €
R™™}. Show that S is a subspace of R™*™.

2.10. Let A4y € M™*", ky € F, | =1,2,---, M. Show that

M M
i) kY A=) kA
=1 =1

M M
(ii) (Z k;l) A = Z ki A;.
=1 =1

2.11. For the matrix multiplication, prove associative and distributive
laws.

2.12. For the transpose of matrices, show that (AB)" = B'A*.
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2.13. The hermitian transpose of a complex m x n matrix A = (a;;),
written as A¥, is an n x m matrix that is obtained by interchanging the
rows and columns of A and taking the complex conjugate of the elements (if
z = a+ib, then z = a —ib is its complex conjugate), i.e., A = (a;;). For the
hermitian transpose of matrices, show that

(i) (A+B)" =A4"4BH
(i) (cA)f = CAH where ¢ is a scalar
(iii) (AH)H
( (AB)H BHAH

2.14. A square complex matrix A is called hermitian if and only if A =
AH - skew-hermitian if and only if A = —AH and normal if and only if A
commutes with A7, ie., AAT = AT A. Give some examples of hermitian,
skew-hermitian, and normal matrices.

2.15. Show that

(i)  the addition A + B of two symmetric (hermitian) matrices A and B is
symmetric (hermitian), but the product AB is symmetric (hermitian) if and
only if A and B commute, in particular AA* and A*A (AA” and AH A) are
symmetric (hermitian)

(ii) if Ais annxn symmetric (hermitian) matrix and B is any n X m matrix,
then B'AB (BY AB) is symmetric (hermitian)

(iii) if A is a symmetric (hermitian) matrix, then for all positive integers
p, AP is symmetric (hermitian)

(iv) if A? is a symmetric (hermitian) matrix, then A need not be symmetric
(hermitian)

(v) a skew—symmetric (skew-hermitian) matrix must be square and its di-
agonal elements must be zero

(vi) for a given square matrix A the matrix A — A* (A — AH) is skew—
symmetric (skew-hermitian) while the matrix A + A* (4 + AH) is symmetric
(hermitian)

(vil) any square matrix can be uniquely written as the sum of a symmetric
(hermitian) and a skew—symmetric (skew-hermitian) matrix

(viii) if A is a skew—symmetric (skew-hermitian) n x n matrix, then for any
u € R™ (C™), uAu! (uAufl) =0

2.16. Give an example of two matrices A, B € C™*" for which AB # BA
but tr(AB) = tr(BA), and hence deduce that AB — BA = I cannot be valid.
Further, show that tr(Af A) > 0.

2.17. A real n x n matrix that has nonnegative elements and where each
column adds up to 1 is called a stochastic matriz. If a stochastic matrix also
has rows that add to 1, then it is called a doubly stochastic matriz. Show that
if A and B are n X n stochastic matrices, then AB is also an stochastic matrix.
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Answers or Hints

0 3 5 1 0 0
21.U=0 0 7|, L=(2 4 o0
0 0 0 6 —5 9
2.2, AB:C:(Cij), cij:Oifi>jandcij:Z§€:iaikbkj lf]Z’L

2.3. Direct computation.
2.4. Direct computation.

2.5. Direct computation.

2.6. (A+B)?=(A+B)(A
1
1

2.7. Consider A = < 1

violated. , ,
a a 0 0 0 0 0 0
2o (5 a)=(6 o)+ (00)=(20)«(03)
2.9. Let C,D € S and o, € R. Then, (aC + 8D)B = aCB + DB =
aBC + fBD = B(aC + D).
2.10. Use the principal of mathematical induction.

2.11. Let A = (aij)mxn, B = (bij)nxp, C = (¢ij)pxr, then BC and AB are
n X r and m X p matrices, and the ij-th element of A(BC) is

n P n P
§ [Zm § b/LuCl/j = § § ai/Lb[LVcDj
p=1 v=1

p=1v=1

B) = A2 + AB + BA + B2

+
>.Then1-A:((1) ?)#A.Hence,BlOis

and similarly, the ij-th element of (AB)C is

p n n p
Z (Z aiubwj> Cuj = Z Z ambch,}j.

v=1 \p=1 pn=1lv=1

2.12. Similar to Problem 2.11. ~

2.18. (iv) (AB)fj = (Xj_y airbij)ii = ey airbri)ji = (O p—y Tirbrj)ji
—_ —t—t

= (AB)j; = (B A);; = (B AM);;.

1 i 2—1
2.14. Hermitian: - 2 5
241 5 3
1 i 241
Skew-hermitian: ) 21 5
—2+4+1 =5  5i

- —2—3
Normal: < 9_i 3 ) .
2.15. (i) Let AB be hermitian. Then, AB = (AB)? = BHAH = BA, ie.,

A, B commute. Conversely, let A, B commute. Then, AB = BA = BHAH =
(AB)H i.e., AB is hermitian.
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(vii)) A= %(A — Ay 4 %(A + A,

2.16. Let A — ( bz ) B— ( 2 5 ).tr(AB)—tr(BA):O;A
n= tI‘(I). tr(AHA) = Z?:l Z?:l Q455 > 0.

2.17. Check for n = 2, and see the pattern.
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Chapter 3

Determinants

Many complicated expressions, particularly in electrical and mechanical engi-
neering, can be elegantly solved by expressing them in the form of determi-
nants. Further, determinants of orders 2 and 3 geometrically represent areas
and volumes, respectively. Therefore, the working knowledge of determinants
is a basic necessity for all science and engineering students. In this chapter, we
shall briefly sketch the important properties of determinants. The applications
of determinants to find the solutions of linear systems of algebraic equations
will be presented in Chapter 6.

Associated with a square n x n matrix A = (a;;) € M™*™ there is a scalar
in F called the determinant of order n of A, and it is denoted as det(A), or
4], or

ailz aiz2 - Qin
@21 a2 - A2p
an1 An2 e Ann

The determinants of orders 1 and 2 are defined as

ailr a2

= 11022 — 412021
a1 a2

\Cl11| = aii,

If in the matrix A we choose any p rows and any p columns, where p < n,
then the elements at the intersection of these rows and columns form a square
matrix of order p. The determinant of this new matrix is called a minor of
pth order of the matrix A. A minor of any diagonal element of A is called a
principal minor. In particular, an (n — 1) x (n — 1) determinant obtained by
deleting i-th row and j-th column of the matrix A is the minor of (n — 1)th
order, which we denote as a;;, and call o5 = (—1)i+jdij the cofactor of a;;.
In terms of cofactors the determinant of A is defined as

n n
‘A| = Zaijozij = Zaijaij. (31)
7j=1 i=1

Further,
Zaijakj = 0 if 275141 (32)
j=1



24 Chapter 8

and
n
> aijoi = 0 if j#k. (3.3)
i=1
Thus a determinant of order n can be written in terms of n determinants of

order n — 1. Formula (3.1) for computing the determinant of A is called the
Laplace expansion. In particular, for the determinant of order 3, we have

a11 aiz2 @13
a21 Q22 a23 | = 411
azr asz2 ass

a1 a23
as1 ass

a22 A23
asz2 ass

a1  a22

+ a3
asy  asg

= ai1(agass — azzasz) — aiz(aziasz — azzasy)
+aiz(az1as2 — azgasi)
= (11022033 — 311023032 — G12021033 + 412023031

+a13a21a32 — 113022031 (3.4)

To find a general expression for the determinants of order n similar to
(3.4), we recall that a permutation o of the set N = {1,2,---,n} is a one-
to-one mapping of N into itself. Such a permutation is generally denoted as
0 = i1 - - iy, where i; = o(j). It is clear that there are n! permutations of
N. The set of all such permutations is denoted as S,,. As an example, for the
set {1,2,3} there are 6 permutations, and S3 = {123,132,213,231, 312, 321}.
If o0 € S,, then the inverse mapping c~! € S,,, and if o,7 € S,, then the
composite mapping o o 7 € S,,. Further, the identity mapping ¢ o 0~} =
12-.-n € S,,. By an inversion in o we mean a pair of integers (i, j) such that
i > j, but ¢ precedes j in 0. We say o is an even or odd permutation according
to whether there is an even or odd number of inversions in 0. We also define

om0 — 1 if 0 has even permutation
Sen g = —1 if o has odd permutation.

Equivalently, we can define a permutation to be even or odd in accordance with
whether the minimum number of interchanges required to put the permutation
in natural order is even or odd. It can be shown that for any n, half of the
permutations in S,, are even and half of them are odd.

With this terminology it follows that

‘A| = Z (sgn a)alg(l)a%(z) e a’no’(n)- (35)
oESy

Example 3.1. In 12---n the inversion is zero (even), whereas in 321 the
inversion is three (odd) because there are two numbers (3 and 2) greater than
and preceding 1, and one number (3) greater than and preceding 2. In the
set S3 the permutations 123,231, 312 are even, and 321,213, 132 are odd, thus
from (3.5) the expansion (3.4) follows. In 4312 € Sy, 4 precedes 3,1 and 2,
and 3 precedes 1 and 2; thus the inversion is 5 (odd).
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Example 3.2. From (3.5) it immediately follows that for the lower trian-
gular and upper triangular matrices A, we have

a1 0 - 0
A = | G2 a2 o 0 .
| \ = = 11022 Qnn
an1 an2 e Ann
and
11 a2 -+ Ain
Al — 0 a2 -+ a2
| ‘ = . = G11G22 Ann
0 0 - apn

Thus, in particular, for the identity matrix |I| = 1. Similarly, it follows that

0 0 e 0 A1n

0 0 S Ao n—1 a2n

0 an—1,2 T Gn—-1n—1 0an—1,n
An1 an2 e An,n—1 Qnn

= (_1)n+1a1n(_1)na27n_1 . (_1)3an_172an1

= (1) DO+ 20505 1 an_10an1

and
aii a2 Glp-1 Qlp
a1 aze - azp—1 O
n-1,1 Qp—1,2 *-° 0 0
an1 0 cee 0 0

= (=)D 201 a9 01+ Gno1,2G01 .

We note that for a general determinant the representation (3.5) is only
of theoretical interest; in fact, it has n! terms to sum and each term requires
(n — 1) multiplications, and hence for the computation of |A| we need in total
(n — 1) x n! multiplications, which for large n is a formidable task. To reduce
the computational work considerably we often use the following fundamental
properties of determinants.

1. If any row or column of A has only zero elements, then |A| = 0.

2. If two rows (or columns) of A are equal or have a constant ratio, then
|A| = 0.

3. If any two consecutive rows (or columns) of A are interchanged, then the
determinant of the new matrix A; is —|A]|.
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4. If arow (or column) of A is multiplied by a constant «, then the determinant
of the new matrix A; is alA|.

5. If a constant multiple of one row (or column) of A is added to another,
then the determinant of the new matrix A; is unchanged.

6. |A| = |A|.

7. |AB| = |A||B| = |BA|. This property for the determinants is very inter-
esting. For the matrices A and B given in Example 2.2 we have seen that
AB # BA. However, we have

110 2 3 4
Al = | -1 2 1| =6 [Bl=| 123|= -1,

00 2 ~1 1 2

35 7 -1 8 11
AB| = | -1 2 4| = —6, |BA| = | -1 5 8| = —6.

2 2 4 -2 1 5

Thus, |AB| = |A||B| = |BA].

8. If each element of a row or a column of A is expressed as the sum of
two numbers, then |A| can be written as the sum of two determinants. For
example,

ain a2 +bi2 ais ailr a2 ais ain bz ais
a1 G2 + b as3 = a21 a2 Qg3 |+ | a2 bae aos
azr azz2 +bszx asz azy a3z 033 a3y b3z ass

9. If the elements of A are polynomial functions of z and two rows or columns
become identical when x = a, then « — a is a factor of |A|.

While a systematic procedure for the computation of determinants of any
order will be given in Chapter 6, the following examples illustrate the useful-
ness of the above properties.

Example 3.3. We have

11 3 4 3 11 4 -1 11 4
A = 19 6 5| = 6 19 5| = — 1 19 5
21 7 8 7 21 8 -1 21 8
1 19 5 1 19 5
= -1 11 4| =10 30 9| = ’ ?18 lg ’
-1 21 8 0 40 13

30 x13-9x40 = 390 - 360 = 30.
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Example 3.4. We have

a—b—c 2a 2a a+b+c a+b+c a+b+c
A = 2b b—c—a 2b = 2b b—c—a 2b
2¢c 2¢c c—a—b 2c 2c c—a—b
1 1 1
=(a+b+c)| 20 b—c—a 2b
2¢ 2¢ c—a—2>b
1 0 0
= (a+b+c¢)| 2b -b—c—a 0
2¢ 0 —c—a—>
_ —-b—c—a 0 _ 3
= (a+b+¢) 0 ce—a—b | T (a+b+c).
Example 3.5. The Vandermonde matriz
1 1 1
X1 o In
V = 23 x3 2
x{“l a;gH an—l

plays an important role in polynomial interpolation theory. By induction we

shall show that
vi=I] (z—=)

1<i<j<n
Indeed, we have
1 1
= (x2 —x
- (2 — 1)
and
1 1 1
0 To — I Ty — T1
V| = 0 T3 — 9w 2 — x,1
0 l'g_l xg—le 1’271 x272x1
1 1 1
n To X3 In
= (xj—z1)| = 3 x2
= J 1 2 3 n
=2
—2 n—2 n—2
) 1'3 Lo

= H(xj_xl) H (xj_xi) = H (:cj—xi).

2<i<j<n 1<i<j<n

j=

[ V)
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Example 3.6. From the definition of determinants it is clear that for a
given n x n matrix A(z) = (a;;(x)) of differentiable functions in an interval J,
the function det A(z) is differentiable in J. We shall compute (det A(x))" by

using the expansion of det A(x) given in (3.1). Since

det A(x Z aij(x)oy;(x
it follows that
Odet A(x) 013 ()
daij () N
and hence
;S Odet A(z) da” .
(det A(.’E)) - Z Z aa” (Jf) Z a’LJ
j=11i=1 j=11i=1
which is equivalent to
ay () ahn () a1 () a1n(7)
(det A(z)) = az () azn (1) + as () alzn(x)
Aanl (1’) an’n(x) anl( ) Ann (Z’)
a11(x) an ()
n a91(x) aop, ()
a1 (2) U (2)
Problems

3.1. Evaluate
21 17 7 10

. 24 22 6 10 .. . ) )
(i) 6 8 2 3 | (i) | 1—4 4 1+1

5 7 1 2
3.2. Solve the equations
r+2 220+3 3x+4 1+ 2 3
(i) 20+3 3z+4 4x+5 |=0, (i) 1 24z 3
3r+5 Hr+8 10x+17 1 2 3+z
3.3. Show that

l4a 1 1 1
. 1 1+b 1 1 | 11 1 1
(i) 1 1 l4c 1 _“de(1+E+E+E+3)
1 11 14
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a® + A ab ac ad
.. ab b2 +)\ bC bd _ 3/ .2 2 2 2
(ii) ac be PN ed = X(@+b+c*+d°+ N
ad bd cd d?+ X
1 1 1 - 1
1 2 22 ... on-l
(iii) 1 3 32 ... 3ol = 11213!-- - (n — 1)L
1 n n2 ... pnl

3.4. Show that

(i) if the matrix A € M™*" is skew-symmetric, then det(A4) = (—1)"
x det(A), and hence det(A) =0 if n is odd

(ii)  if the matrix A € M™*™ is hermitian, then det(A) is real.

3.5. Let A and B be n x n matrices such that AB = BA. Show that
det(A? + B?) > 0.

Answers or Hints

3.1. (i) 0.
(i) 4+ 7i.
3.2, (i) —1,-1,-2
(i) 0,0,—6
14a —a —a -—a l+a+3+%+5 —a —a —a
. 1 b 0 0 0 b 0 0
3.3. (i) 1 0 ¢ 0] 0 0 ¢ 0
1 0 0 d 0 0 0 d
ai}-)\ 1 1
1 g 1
s 2b2 2d2 b2
(il) a®b*c ) 1 62;2”\ 1
1 1 1 d2+/\

(iii) See Example 3.5.

3.4. (i) det(A) = det(—A?) = (—1)"det(A?) = (=1)"det(A)

.. —t — _ _ _

(i) det(A) =det(A) =det(A) =), g (580 0)A10(1)T20(2) " Tno(n)
= ZUESn (bgn U)ala(l)a2o’(2) ©Qpo(n) = det(A)

3.5. det(A? + B?) = det(A + iB)(A —iB) = det(A + iB) det(A —iB) =
det(A +iB)det(A +iB) > 0.
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Chapter 4

Invertible Matrices

In this chapter we shall show that the theory of determinants can be applied
to find the inverse of a given square matrix. In particular, we shall provide an-
alytical representations of inverses of some band matrices that are of immense
value in chemistry, physics, and solving two-point boundary value problems
for ordinary differential equations by finite difference methods.

A square matrix A = (a;;) € M™*™ is said to be invertible or nonsingular
if and only if there exists a matrix B € M™*" such that AB = BA = I. Such
a matrix B is unique. Indeed, if AB = BA = I and AC = CA = I, then
B =BI=B(AC) = (BA)C = IC = C. The matrix B is called the inverse of
A and is denoted by A~!. If A is nonsingular, then since AA™! = A71A =1
it follows that (A=1)~! = A. It is clear that if B is the inverse of A, then A
is the inverse of B. A square matrix is called singular if it has no inverse. We
begin with the following result whose proof follows from the discussion in our
next chapter (see Problem 5.1).

Theorem 4.1. If matrices A = (a;;) and B = (b;;) are in M™ ™ such
that AB =1 or BA = I, then A and B both are invertible, and each is the
inverse of the other.

Thus to find the inverse of A it suffices to find the matrix B such that
AB =1 or BA =1, i.e., we do not have to check both equalities.

Example 4.1. We shall find the inverse
T
Yy Y2
a b
4 = (c d).

For this, we note that AB = I is the same as the systems

of the matrix

ary1 +byy = 1, axea+by = 0
cx1+dy; = 0, cxo +dy; = 1.
If |A| = ad — be # 0, then these systems can be solved uniquely, to obtain
d c b a
xlzm, wz—m, xzz—m, yzzw~

31
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Thus, the inverse B of the matrix A exists if and only if |A| # 0, and it appears

as
B — ( d/|A| —b/|A) _ L( d —b>
—c/|A]  a/|A] A\ —¢ a )’
From Example 4.1 it is clear that for a given matrix the inverse may not

exist, and hence there are singular as well as nonsingular matrices.

Theorem 4.2. If A = (a;;) and B = (b;;) are nonsingular matrices in
M"™ " then AB is also nonsingular, and (AB)~! = B~1A~1. Conversely, if
AB is nonsingular, then A and B are nonsingular.

Proof. Since A=! and B~ exist,
(AB)(B7'A™Y) = ABB ™ HA™! = ADA™ = A4 = I

Thus Theorem 4.1 implies that AB is nonsingular, and (AB)~! = B~1A~1.
Conversely, in view of Theorem 4.1 it suffices to note that

I = (AB)(AB)™' = A(B(AB)™)

and
I = (AB)"Y(AB) = ((AB)™'A)B. 1

Corollary 4.1. If A is an invertible matrix in M™*", then
det(A™1) = (det(A))~L.
Proof. Since AA™! =1, det(AA™!) = det(A)det(A~) = 1.

Corollary 4.2. If A,B,C € M™ ™ and A is an invertible matrix, then
AB = AC implies B = C.

Corollary 4.3. If A; € M™ ", i =1,2,--- ,m are nonsingular matrices,
then A;As--- A, is nonsingular, and

(AjAg - Ap)™t = APACL AT
Theorem 4.3. If A is a nonsingular real (complex) matrix, then A*(AH)
are nonsingular, and (A*)~! = (A1) ((AH)~1 = (A~HH).

Proof. Since AA=! = I, we have (A71)!A" = I, and similarly from
A7YA = T it follows that (A?)(A7!)! = I. These relations imply that
(A—l)t — (At)—l_ ]

Theorem 4.4. The matrix A € M™*" is nonsingular if and only if
det(A) # 0.

The adjoint of a given matrix A € M™*™ written as adj A, is the transpose
of the matrix of cofactors of A, ie., adj A = (a;;)" = (aji).
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Theorem 4.5. If A€ M™ " is a nonsingular matrix, then

adj A

ATt = :
|A]

Proof. From (3.1)-(3.3), we have A (adj A) = (c;;), where

N~ det(A) ifi=

ey = ) o = { 0 if i j.
k=1

Hence, A (adj A) = det(A)I, which implies (4.1). |

Example 4.2. For the matrix

2 -1 1
A = 3 2 =5 ],
1 3 -2
we have
2 -1 1 11 1 3
[Al = |3 2 —5| =28 and adjd = 1 -5 13
1 3 =2 T -7 7

and hence from (4.1) it follows that

11 3

28 28 28

-1 _ 1 _5 13
A - 28 28 28
1.1 1

4 4 4

An n xn matrix A = (a;;) is said to be a band matriz if there exist integers
rand s, 1 <r,s < n such that a;; =0 forall j —¢ > randi—j > s. The
number w = r + s — 1 is called the bandwidth of A. Matrices with r = s = 2
so that w = 3 are called tridiagonal matrices. We shall find the inverse of the
tridiagonal matrix

z —1
-1 r -1
-1 r —1
Ap(z) = : (42)
-1 r -1
-1 x

where x > 0. For this, let D,(z) = D, = |A,(z)|. Then, D,, satisfies the
following second order linear difference equation

Dp = Dy —Dp_o, n=12- (4.3)
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together with the initial conditions
Dy =0, Dy = L (4.4)
The general solution of (4.3) can be written as
D, = AX! + BM)}, (4.5)

where A1, Ay are the roots of the equation A2 — 2\ + 1 = 0. Using (4.4), it
follows that

sinh(n +1)0/sinh @ if x =2coshf > 2
Dy, = { n+1 if z=2 (4.6)
sin(n +1)0/ sin 6 if 0<z=2cosf<2.

Now let B,, = (b;;) be the inverse of A,(z), i.e., An(x)B,, = I. Then, for
1 < j < n it follows that

Oa 2217?]_17 bOj:O
_bi—l,j + Z‘bij — bi+1,j = 1, i=3 (47)
0, i:j+1,~-~,n, bn+1’j:0.

Let z = 2coshf > 2. When 1 < i < j — 1, the general solution of (4.7)
is bj; = A/\?l + Bz\g, where once again A, A2 are the roots of the equation
A2 — 2\ + 1 = 0. This solution is valid for 0 < i < j, and in view of bo; =0
and (4.6) can be written as

Similarly, when j+1 < i < n, the general solution of (4.7) is b;; = CA} + DA},
which is valid for j <4 <n + 1. This solution in view of b,4+1,; = 0 and (4.6)
appears as

bij = —20D, ;™ Vsinhe, j<i<n+l. (4.9)
Now equating (4.8) and (4.9) for ¢ = j, we obtain the equation

AD;_y +Ce VD, = 0. (4.10)

Also, substituting (4.8) and (4.9) in (4.7) with ¢ = j, we get the equation

1
sinh 6 [ADj + O, ] = o (4.11)
Solving (4.10) and (4.11), we find
D,_; D,_
A= "7 ¢ = I (4.12)

2D,, sinh §’ 2D, e(mtD0ginh g’
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Now substituting (4.12) in (4.8) and (4.9), we obtain

1 D; 1D, ;, i<j
bij = D_n{ D; 1Dy, i2>3]. (4.13)

Finally, we remark that the above calculations can be modified to show that
the formula (4.13) holds for 0 < = < 2 also.

We summarize the above result in the following theorem.

Theorem 4.6. For the tridiagonal matrix A,(x), @ > 0 given in (4.2),
the inverse matrix A, !(x) = B,, = (b;;) is symmetric, i.e., b;; = b;; and

D;_1D,_;

bij = D

>0, i<j. (4.14)

Example 4.3. To compute Az '(3), first we use (4.3), (4.4), to obtain
D=3, Dy=8, Dy=21, D,=55 Ds=144
and then use (4.14) to get

55 21 8 3 1
21 63 24 9 3
8 24 64 24 8
3 9 24 63 21
1 3 8 21 55

1

A51(3) = Bs = m

Now let z = —y, y > 0. Then, we have

where
y 1
1 y 1
1 Y 1
Anly) = » (4.16)
1 y 1
Ly

For the matrix (4.16) a result analogous to Theorem 4.6 is the following:

Theorem 4.7. For the tridiagonal matrix A, (y), ¥ > 0 given in (4.16),
the inverse matrix A, ! (y) = B,, = (B;;) is symmetric, i.e., 8;; = 8j; and

(=1)"*"Di 1Dy

Bij = D, ;

i<j. (4.17)
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Problems

4.1. Which of the following matrices are singular?

1 23 11 1 2 5 19
A=[112]), B=|24 8], Cc= 1 -2 —4
1 3 4 39 25 -3 2 0

Use (4.1) to find the inverses of nonsingular matrices.

4.2. For what values of x is the following matrix singular?

33— 2 2
A = 2 4—=x 1
-2 —4 —-1-=x
4.3. Let
LB V3
2 2 2 2
A= _ﬁ 1 0 , Po= _é 1 0
2 2 2 2
0 0 0 0 0 1

Show that P! AP is a diagonal matrix.

4.4. Show that the inverse of an upper (lower) triangular nonsingular
square matrix is an upper (lower) triangular square matrix. In particular,
show that the inverse of a diagonal matrix A with nonzero diagonal elements
aii, i =1,---,nis a diagonal matrix A~! with diagonal elements 1/a, i =
1, ,n.

4.5. Let the square matrices A, B and A + B be nonsingular. Show that
A~! 4+ B~ is nonsingular, and

(A +B™ ™! = A(A+B)"'B = B(A+B)'A.

4.6. Let A, B € C™*". Show that if B is nonsingular, then tr(B~'AB) =
tr(A).

4.7. A real square matrix A is called orthogonal if and only if A* = A~1,
ie.,, AA! = A'A = I. Thus, det(A) = +1. A complex square matrix A is
said to be unitary if and only if A7 = A7! ie, AHA™ = A71AH =] If
A, B € M™ ™ are unitary matrices, show that A7, A=', AB are also unitary
matrices.

4.8. Verify that the following matrices are orthogonal:
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1 1
2 1 2 2 2 22
"3 3 3 1 2 2 b
3 3
O - PN I
1 2 2 2 2 2 2
3 3 3 2 1 1 2
332 3/2 3

4.9. Let A be a skew-symmetric matrix and I — A is nonsingular. Show
that the matrix B = (I + A)(I — A)~! is orthogonal.

4.10. Let W be a 1 x n matrix (row vector) such that WW? = 1. The
n x n matrix H = I — 2W*'W is called a Householder matriz. Show that H is
symmetric and orthogonal.

4.11. Let A, B be real square matrices, and let the matrix P be orthogonal
and B = P7'AP. Show that tr(A'A) = tr(B!B).

4.12. For the matrices A, (x), * > 0 and A, (y), y > 0 given in (4.2) and
(4.16), show that

(i) (@A) = = (47 @) + A W] 2y £ 0
(i) [0 (0] = = [47'0) = 47" @), 2=y £0
() (@) A )] = A7) — A7 @) e =y £ 0.
(v)  the matrix [42 (x)]7! = C = (¢;5) is symmetric, and
2 141 1 —1
= g PP (5P )
+ D4 <%D2n+1—j - %Dj—l)] , T#E2, 1<
%m(nﬂ) — (P 1, =2, i<j

(vi) the matrix [AZ(y)]~! =T = (v;;) is symmetric, and v;; = (—1)"¢;;.
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4.13. Consider the tridiagonal matrix of order n,

1+ -1
-1 2 -1
-1 2 -1
An(xay) - ?
-1 2 -1
-1 14y

where x +y + (n — 1)zy # 0. Show that A, !(x,y) = (b;;) is symmetric and

(14 (= D]l + (n = )y

bij = ANy
/ z4+y+(n—1zy J
4.14. Consider the tridiagonal matrix of order n,
L~y
-z 1 —y
-z 1 —y
An(x7y) - ’
—T 1 —y
—T 1
where x > 0, y > 0. Show that
(i)  its determinant D, is
1, zy =10
ny2sinh(n +1)0 ho— 1 0 < oy < 1
(zy) sinhg P 2.7y’ Wy
Ty = —
on Y=
ny2sin(n +1)0 09— 1 -
(zy) sinf o8 2. /7y’ Wy

(ii) the elements b;; of its inverse matrix B are

b - L Y Di 1Dy, i<
Y D, | ®7D;j_1Dy_i, i>}].

4.15. Consider the matrix A, (z,y) = A,(—x, —y), where A, (x,y) is the
same as in Problem 4.14. Show that the elements «a;; of the inverse matrix
A (2, y) are

1 (=1)"yi="D;_1Dp_j, <]
(—1)i+jl‘i_ij_1Dn_i, 7 Z]
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where D,, is the same as in Problem 4.14.

4.16. The n x n matrix A, = (a;;), where

1, j—i=1
17 Z_J
YTy 21, i—j=1

0, otherwise

is called the Fibonacci matriz. Let F,, = det(A,,) to show that the Fibonacci
numbers F, satisfy

(1) Fn:Fn1+Fn 2, n=1,2,--- where F_1 =0, Fh =1

(i) Fo= gz [ VB - - VA

Also, find the inverse of the matrix A,.

4.17. An n xn matrix is called nilpotent if A* = 0 for some positive integer
k. Show that

(i)  the following matrix is nilpotent

2 11 3
A= -2 -11 -3
8 35 9

(ii) every nilpotent matrix is singular

(iii) if A is nilpotent, then I — A is nonsingular

(iv) if the matrices A, B are nilpotent and AB = BA, then AB and A+ B
are nilpotent.

4.18. An n x n matrix is called idempotent if A2 = A. Show that
i)  matrices I and 0 are idempotent
ii) if A is idempotent, then A* and I — A are idempotent

(

(

(iii) every idempotent matrix except I is singular

(iv) if A is idempotent, then 2A — I is invertible and is its own inverse
(

v) if the matrices A, B are idempotent and AB = BA, then AB is idem-
potent.

4.19. An n X n matrix that results from permuting the rows of an n x n
identity matrix is called a permutation matriz. Thus, each permutation matrix
has 1 in each row and each column and all other elements are 0. Show that
(i)  each permutation matrix P is nonsingular and orthogonal

(ii) product of two permutation matrices is a permutation matrix.
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4.20. Show that the invertible n x n matrices do not form a subspace of
M’I’LXTL.

Answers or Hints

] ( 28 —16 4 )
4.1. A is singular. B is nonsingular, and B~! == | —26 22 -6 |.C
8 6 —6 2
is singular.

4.2. detA =622 — 92z — 2% sox =0,3,3.

- 1 00

% 0 soPlAP:(O -1 0).
0 1 0 00
4.4. If Ais upper triangular, then a;; = 0, ¢ > j, and hence a;; =0, j > i.
Now use (4.1).

4.5. (B(A+B) 1A '=A Y A+B) B '=A"AB '+ 1) =B~ 1+ 471
4.6. Use tr(AB) = tr(BA) to get tr(B~'AB) = tr(ABB™!).

4.7. (ADH = (A=HH = (AH)~1 Now A~! is unitary, as follows from
A = A~ Finally, since A = A= and B = B~! We have (AB)(AB)H =
ABBHAH = ABB~'A~! = I. Thus, (AB)¥ = (AB) , and so AB is unitary.

4.3. P71 =

o”@wl»—t

2 2 1
‘i’ 5 3
4.8. (i) For the given matrix the inverse is 3 35 —5 |-
2 1 2
3 3 3
11 1 2
2 3v2 2 3
1 2 _ 1 1
. . . . . 2 3 2
(ii) For the given matrix the inverse is 1 3 1 3y2
T2 32 T332
-1 1 _1 2
2 3V2 2 3

4.9. Since (I + A)(I — A) = (I — A)(I + A), we have (I —A) = ({I+
A)H(I — A)(I + A), therefore (I — A)(I+A)~t = (I +A)~1(I - A). Cl early,
(I-Af=I—-A" and (I+A)" = (I+A"), thus B" = ((I+A)(I A)~hHt =
(I-AHY T +A ' =I-A)TT+A)=I+A)(I-A)=B""
4.10 (i) Ht = -2W'W) =T -2WH(WHt =T - 2W'W = H.

(i) H'H=H?=(I-2W'W)(I-W'W)=1I.

4.11. We use tr(AB) = tr(BA), to have tr(B'B) = tr((P~*AP)!(P~1AP))
=tr(PAY (P Y)IPTIAP) = - - = tr(A'PY(P~1) AP~ P) = tr(AA).

4.12. (i) Follows directly by computing both the sides.

(i) Using (4.15), we have A, (z)A, (y)[A4,(z) + .A Yy)] = An(z)An(y)x
AT () + A (2) An () A () = — A (2) A (—5) A (2) + An(2) = — An(—p)
XA (@) A7 () + An(2) = An(2) — An(—y) = (4 )T,

(iii) Follow (ii).

(iv) Follow (ii).
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(v) Use (iii), (4.14) and L’Hopital’s rule.

(vi) Use (iv), (4.17) and L'Hépital’s rule.

4.13. Similar to that of (4.2).

4.14. Similar to that of (4.2).

4.15. Similar to that of (4.2).

4.16. Similar to that of (4.2).

4.17. (i) A% =0.

(i) Since A* =0, 0 = det(A*) = (det(A))*. Hence, det(A) = 0.

(i) —I = AF — T = (A—- DAt + A2 4 ... 4 1), thus (A - I)7! =
_(Alcfl +Ak72 +"'+I)-

(iv) If A¥ = BY = 0, for r = max{k,(}, we have (AB)" = A"B" = 0 and
(A4 B = A (A (A2 (0
4.18. (i) Clear from the definition.

(ii) Since A2 = A, A! = (A?)! = (AA) = AtA! = (AH? (I — A)? =
I-A-A+A*=1-A

(iii) If A # I, then for some v € R", v = Au where v # u. But, then Av =
A%u = Au,ie., A(v—u) = 0. Now if A~ exists, then A~ A(v—u) =v—u=0.
(iv) (2A—I)(2A—1)=4A2 24 24+ =1.

(v) (AB)? = (BA)(AB) = BA’B = (BA)B = (AB)B = AB? = AB.

4.19. (i) Let P be a permutation matrix. From the definition of a permutation
matrix and the property 3 of determinants (Chapter 3), it is clear that det(P)
is either 1 or —1. Thus, P as well as P? both are nonsingular. Clearly, there
are n! permutation matrices of order n x n. Now note that every permutation
matrix is symmetric, i.e., P! = P. We also note that interchanging two rows
is a self-reverse operation, and hence every permutation matrix agrees with
its inverse, i.e., P = P!, or P?> = I. Hence, we have P! = P~!, which means
the matrix P is orthogonal.

(ii) If o and 7 are two permutations of N = {1,2,--- ,n} and P, and P, are
the corresponding permutation matrices, then from matrix multiplication it
follows that P, P, = P,or, which implies that P, P, is a permutation matrix.

4.20. Consider the invertible matrices A = ( il)) g ) and B = < :il)) g ) .
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Chapter 5

Linear Systems

Systems of linear algebraic equations arise in many diverse disciplines, such
as biology, business, engineering, social sciences, and statistics. Therefore, un-
derstanding the basic theory and finding efficient methods for the solutions
of such systems is of great importance. We shall devote this and the next
chapters to study linear systems.

Let F' be a given infinite field. Consider the nonhomogeneous linear system
of m equations in n unknowns

a;1r1 + 1222 + - + a1p Ty = b
az171 + g2 + - + a2 Tp = by
(5.1)
am1%1 + Qa2 + 0+ Amnln = b,
where a;j, b; € F. In matrix form this system can be written as
Az = b, (5.2)
where the matrix A = (a;j)mxn and the vectors z = (z1,22, - ,2,)", and
b= (by,b2, -+ ,by)t. By asolution x to (5.1) we mean an n-tuple that satisfies

(5.1). The system (5.1) is said to be consistent if it has a solution, otherwise
it is called inconsistent. If b = 0, (5.2) reduces to the homogeneous system
Az = 0. (5.3)
For the homogeneous system (5.3) the zero vector 0 = (0,0,---,0)" is
always a solution. This solution is called the trivial solution of (5.3). Clearly,
the system (5.3) besides the trivial solution may also have other solutions.
Such solutions we call nontrivial solutions of (5.3). Let F),, be the set of all
solutions of (5.3), i.e., F,, = {& : x € F™ such that Az = 0}, then it follows
that (Fy,, F') with the same addition and scalar multiplication as in Example
1.2 is a vector space. We call (F,,, F') the solution space of the homogeneous
system (5.3), or the null space, or the kernel of the matrix A, and denote it as
N (A). Tt is clear that the set of all solutions of the nonhomogeneous system
(5.2) is not a vector space.

43
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Theorem 5.1. The system (5.2) has either a unique solution, no solution,
or an infinite number of solutions.

Proof. It suffices to show that if u,v are two different solutions of (5.2),
then for any ¢ € F, u+c(u—w) is also a solution of (5.2). But this immediately
follows from

Alu+c(u—v)] = Au+c(Au— Av) = b+e(b—0b) = b. |

Related to the system (5.2), the matrix

aii a2 - Q1n b1
a1 Q22 - A2n b2

(A]p) = : (5.4)
Am1 Am2 e Amn | bm

is called the augmented matriz, which is a partitioned matrix. Clearly, the
system (5.2) is completely recognized by its augmented matrix (A|d). In fact,
from every augmented matrix of the form (5.4) a corresponding system of
the form (5.2) can be written. Therefore, the study of the system (5.2) is
equivalent to the study of (5.4). We shall use some elementary operations on
(A]d) so that from the reduced matrix the solutions (if any) of the system (5.2)
can be obtained rather easily. For this, we begin with the following definition:

An m x n matrix A is called an echelon matriz if all zero rows, if any,
appear at the bottom of the matrix, and each leading (first) nonzero element
in a row is to the right of the leading nonzero element in the preceding row.
Thus, A is an echelon matrix if there exist nonzero elements ai;,, as;,, - - , Grj,
where j; < jo < -+ < j, and

<r <
a;; = 0 for {zr J = Ji
1>
These elements a1, , azj,, " - - , arj, are called the pivots of the echelon matrix.

Example 5.1. The following matrix is an echelon matrix

0 3 725109
0 005 3 9 71
A — 0 000O0T7T 35
0 000 OO0 4 8
0000 O0O0O0T7
0000 O0OO0TO0FO O

and for this matrix the elements a1, = a12 = 3, agj, = a24 = 5, azj, = a3 =
7, a4, = asr =4, asj, = asg = 7 are the pivots.

Let A be a given m x n matrix with Ry,---, R, as rows. The following
operations on A are called elementary row operations.
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1. Interchanging R; and R;.
2. Replacing R; by cR;, c€ F, ¢ # 0.
3. Replacing R; by R; + cR;.

Elementary column operations are defined analogously.

Let I be the m x m identity matrix. A new matrix obtained from I by
employing an elementary row operation is called an elementary matriz, and
denoted as E. In what follows we shall denote by E;;, E;(c), E;j(c) the ele-
mentary matrices obtained from I by employing, respectively, the above ele-
mentary row operations.

Theorem 5.2. An elementary row operation on A is equivalent to EA,
where FE is the elementary matrix obtained by employing the same elementary
row operation.

Proof. We shall prove only for the elementary row operation 3. For this,
we note that Ejj(c) = I + c(e’)'e’, where €', i = 1,--- ,m are the m-tuple
unit vectors. Thus, we have

Eij()A = (I+c(e)fel)A = A+c(eh)el A

Now it suffices to note that e/ A = R;, and (e?)*R; is the m x n matrix whose
i-th row is R;, and all other elements are zero. [ |

Theorem 5.3. Each elementary matrix E is nonsingular, and
(i) Ej'=Ej=E;

(i) B '(c) = Ei(1/c)

(i) 7' (¢) = Big(—c).

Proof. (i) It suffices to notice that E;E;; = I. (ii) Clearly, we have
Ei(c)E;(1/c) =I. (iii) As in Theorem 5.2, we find

Eij(c)Eij(—c) = (I +c(e")'ed)(I —cle)'e)
= T+c(et)ted —clet)ted — c2(ef)t[el (e?)t]ed
= I-c2(e)t[0]e? = I [

A matrix B is said to be row equivalent to a matrix A, and written as
B ~ A, if B can be obtained from A by employing a sequence of elementary
row operations. It is clear that ~ is an equivalence relation, i.e., 1. A ~ A.
2. f B~ A then A~ B.3. f A~ B and B~ C, then A ~ C. If B is
an echelon matrix, then B is called an echelon form of A. Column equivalent
matrices are defined analogously.

A combination of Theorems 5.2 and 5.3 gives the following result.
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Theorem 5.4. If B is row equivalent to a matrix A, then there exists a
nonsingular matrix C such that B = CA and C~'B = A.

From the above considerations the following results are immediate.

Theorem 5.5. Suppose A = (a;;) and B = (b;;) are row equivalent
echelon matrices with pivots aij,, -+ ,arj. and byg,, - ,bsk,, respectively.
Then, r =sand j; = k;, i=1,---,r,i.e., A and B have the same number of
nonzero rows and the pivot elements are in the same position.

Theorem 5.6. Every matrix A is row equivalent to an echelon matrix.
This matrix is called the echelon form of A. However, the echelon form of a
matrix A is not unique.

An m x n matrix A is said to be in row canonical form if it is an echelon
matrix, each pivot element is equal to 1, and each pivot is the only nonzero
element in its column.

Example 5.2. Matrices 0 and I are in row canonical form. The matrix A
in Example 5.1 is not in row canonical form, whereas the following matrix is
in row canonical form

b

|
cocoooco
coo o~
cocoo
cooro
oo o w
cor oo
o~ oo o
o w vt~ ©

Theorem 5.7. Every matrix A is row equivalent to a unique matrix in
row canonical form. This unique matrix is called row canonical form of A.

Two linear systems of m equations in 7 unknowns are said to be equivalent
if they have the same solution(s). It is clear that an elementary row operation
on the augmented matrix (A|b) is equivalent to applying the corresponding
operation on the linear system (5.2) itself. Further, the new linear system
obtained after applying an elementary row operation on (5.2) is equivalent to
the linear system (5.2). Thus, the linear system corresponding to the matrix
obtained after applying a finite sequence of row operations on the augmented
matrix (A|b) is equivalent to the linear system (5.2). In fact, we have the
following result.

Theorem 5.8. The linear system corresponding to the echelon form (row
canonical form) known as echelon linear system (row canonical linear system)
of the augmented matrix (A|b) is equivalent to the linear system (5.2).

Theorem 5.9. The linear system (5.2) has a solution if and only if the

echelon form (row canonical form) of the augmented matrix (Alb) does not
have a row of the form (0,---,0,d), d # 0.
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Theorem 5.10. For the linear system corresponding to the echelon form
(row canonical form) of the augmented matrix (A|b), the following hold:

1. If r = n, then the linear system has a unique solution.

2. If r < n, then the linear system has an infinite number of solutions.
Further, these solutions can be obtained in terms of (n — r) unknowns

{xla ce axn}\{lev e 7xjr}'

Theorem 5.11. If m = n, the system (5.2) has a unique solution if and
only if A=1 exists. Further, this solution can be written as x = A~1b.

Proof. If (5.2) with m = n has a unique solution, then in view of Theorem
5.10(1) the row canonical form of A is I, and hence from Theorem 5.4 there
exists a nonsingular matrix C such that I = CA. This implies that A~!
exists. Conversely, if A~! exists, then A(A71b) = (AA"1)b=1b,ie, A bisa
solution. To show its uniqueness, let Au = b, then u = (A~ A)u = A~ (Au) =
A7, 1

Corollary 5.1. If m = n, the homogeneous system (5.3) has only the
trivial solution if and only if det(A) # 0. Further, if (5.3) has only the trivial
solution, the nonhomogeneous system (5.2) has a unique solution.

Corollary 5.2. The homogeneous system (5.3) with more unknowns than
equations has a nonzero solution.

The rank of a matrix A, written as rank(A), is equal to the number of pivots
r in an echelon form of A; equivalently, A has at least one non-zero minor of
order r, and every minor of order larger than r vanishes. From Theorems 5.10
and 5.11, and the fact that an echelon form of the augmented matrix (A|b)
automatically yields an echelon form of A, the following result follows.

Theorem 5.12. 1. The system (5.2) has a solution if and only if
rank(A) = rank(A[b).

2. The system (5.2) with m = n has a unique solution if and only if rank(A) =
rank(A|b) = n.

The following example shows how row operations can be used to reduce a
matrix to an echelon (row canonical) form.

Example 5.3. Successively, we have

1 -2 3 1 1 -2 3 1
A= |1 -1 4 3 ~[o0o 11 2
2 5 7 4 )non 0 9 1 2

R3 — 2R R3—9R>
1 -2 3 1
~ 0 1 1 2 (echelon form)

0 0 =8 <16 ), o
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1 -2 3 1 1 -2 0 -5
~ 0 1 1 2 ~| 0 1 0 0 |(rowcanonical form).
0 0 1 2 ) r,—nr, 0 01 2
R — 3R3
Clearly, for this matrix rank is 3.
Problems

5.1. Prove Theorem 4.1.

5.2. Show that the system (5.2) has a solution if and only if b is a linear
combination of the columns of the coefficient matrix A, i.e., b is in the span
of the column vectors of A.

5.3. Let u!,---,u™ and v be vectors in R". Show that v € Span{u?,- -,
u™} if and only if the linear system represented by the augmented matrix
(ul, - ,u™v) has a solution.

5.4. Show that the system (5.2) is always consistent for at least one vector
b.

5.5. Let the system (5.2) with m = n + 1 be consistent. Show that
det(A|b) = 0; however, the converse is not true. In particular, if the system
(5.3) has a nontrivial solution, then det(A4) = 0.

5.6. Let the system (5.2) be consistent, and S denote the set of all solutions
of this system. Then, S = u® + N(A), where u" is a fixed element of S.

5.7. Show that every m X n matrix A is equivalent to a unique block

matrix of the form
I 0
0 0 )’

where [ is the identity matrix of order r.

5.8. Let A and B be m x n matrices. Show that A is equivalent to B if
and only if A is equivalent to BY.

5.9. Find the values of A\ for which the system

(/\ — 1)%‘1 + (3/\ + 1)$2 + 23 0
(/\ — 1)]}1 + (4/\ — 2)$2 + ()\ + 3)]}3 = 0
221 +(3)\+1)LE2 +3()\— 1)LE3 0

has a nontrivial solution, and find the ratios of z : y : z when X has the smallest
of these values. What happens when A has the greatest of these values?
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5.10. Find the values of A and p so that the system

2x1 + 322 +5x3 = 9
Trx14+ 320 — 223 = 8
201 +3x2+ Az = p

has (i) no solution, (ii) a unique solution, and (iii) an infinite number of
solutions.

5.11. Use row operations to reduce the following matrices to echelon (row
canonical) form and find their ranks

01 -3 -1 1 -2 1

13 2
: 10 1 1 | -2 5 =3
11 -2 0 1 -2 2

Answers or Hints

5.1. Assume that BA = I. If A is invertible, then we can multiply this
equation on the right by A=! to get B = A~!, from which it follows that
B~1 = (A71)~! = A. This shows that B is invertible, and that A and B are
inverses of one another. To show that A is invertible, in view of Corollary 5.1
it suffices to show that the homogeneous system (5.3) with m = n has only
the trivial solution. For this, if u is any solution of (5.3), then BA = I implies
that u = Ju = (BA)u = B(Au) = B0 = 0. The same argument holds when
AB=1.

5.2. Let Cy,---,C, € R™ be the columns of A. Then (5.2) is equivalent to
Ciz1 4+ -+ Chxy =0.

5.3. The vector v is in Span{u!,---,u™} if and only if there exist scalars
Z1, -+, Tm such that z u! + - 4+ 2,,u™ = v.

5.4. For b =0 the system (5.2) is always consistent.

5.5. Let Cq, -+ ,C, € R"! be the columns of A. Then b—Chz1— - -—Chrxy, =
0. Hence, det(A|b) = det(A]0) = 0. Consider the system x +y = 1,2z + 2y =
3,3x+3y ="7.Let x1,- -+ ,x, be a nontrivial solution of (5.3). We can assume

@y, # 0. Then the system a;1(x1/2n) + -+ QGin—1(Tn-1/Tn) +ain =0, i =
1,---,n is consistent.

5.6. Let v € N(A). Then A(u®+v) = Au®+Av =b+0=0b. Thusu’ +vis a
solution of (5.2). Now suppose that u is a solution of (5.2), then A(u —u°) =
Au— Au® =b—b=0. Thus u — u® € N(A). Since u = u° + (u — u?), we find
that any solution of (5.2) can be obtained by adding a solution of (5.3) to a
fixed solution of (5.2).

5.7. Reduce A to its row canonical form, and then if necessary use elementary
column operations.

5.8. Use the definitions of equivalence and transpose of matrices.
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5.9. The determinant of the system is 6A(A — 3)2. For A =0, z =y = z. For
A = 3 the equations become identical.
5.10. The echelon form of the augmented matrix of the system is
2 3 5 9
0 —-15 =39 | —47
0 0 A=5|p—-9
i) A=5p#9.
(ii) X # 5, p arbitrary.
(iii) A=5,pu=09.

1 3 2 100
5a1.6) (o1 0], [o1 0], 3
00 1 00 1

10 1 1

. 0 1 -3 —1

(ii) 0000,2.
00 0 0
1 —2 1 100

o 1 41 01 0

@ 1o o 10" loo1 | *
0 0 0 00 0




Chapter 6

Linear Systems (Cont’d)

We recall that an exact method is an algorithm with a finite and predetermined
number of steps, at the end of which it provides a solution of the problem.
In this chapter we shall study some exact methods to find the solution(s)
of the linear system (5.2). Some of these methods also provide a systematic
procedure to compute the value of a determinant, and the inverse of a given
matrix.

Cramer’s rule. Suppose m = n and the matrix A is nonsingular so
that A=! exists. Then, from Theorems 5.11 and 4.5, and the relations (3.1)-
(3.3), it follows that

) AdjA, (a;)b 1
r = A 1b = b = J - _(|A1 ) A2 s Ty An )t7 (61)
VT TR VT el i
where
n aiy 0 Ais—1 b1 aiiy1r o0 g
Al = D ajib; =
j=1 ap1  *°°  Qng—1 bn Gpi+1  °°  Gpp

are the determinants obtained from the determinant |A| by replacing its i-th
column by the column of constant terms. From (6.1) it follows that

ool Ml A
A’ TRV

(6.2)

Thus to solve the system (5.2) with m = n by Cramer’s rule we need to
evaluate (n+ 1) determinants of order n, which is quite a laborious operation,
especially when the number n is large. For example, for n = 10 we require
359,251, 210 multiplications and divisions if the usual method of expansion of
determinants in terms of minors is used. However, Cramer’s rule is of theo-
retical interest.

Example 6.1. To apply Cramer’s rule for the system

2 -1 1 T 21 — x9 + 3 = 0
Az = 3 2 =5 T = 3zx1+2x3—b5xg = 1 (6.3)
1 3 -2 T3 1 +3x9— 223 = 4
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we need to compute

2 -1 1 0 -1 1
Al={3 2 —5|=28 |A=|1 2 -—5]|=13
1 3 -2 4 3 -2
2 0 1 2 -1 0
Ao]=|3 1 =5 |=47, |As]=|3 2 1 |=2L
1 4 -2 1 3 4

Now (6.2) gives the solution
13 47 21 3

r = —, X2 = — r3 — = -.

28’ 28’ 28 4

Gauss elimination method. This is a systematic procedure (al-
gorithm) that is often implemented over a machine provided the size of the
system (5.1) is not too large. It first reduces the augmented matrix (A|b) with
rows Ry, -, Ry, to an echelon form, and then suggests how to solve the linear
system corresponding to the obtained echelon matrix. We describe the method
in the following steps:

1. Find the first column of (A|b) with a nonzero element. Let j; denote this

column.

2. If necessary, interchange rows of (A|b) so that |a1;,| = max{|a1,,|,|az;, ],
-, lanj, |}. We once again denote the rows of the rearranged (A|b) by

R17 ) Rm

3. Divide the first row R; by the pivot ai; and use the resulting row to

obtain 0’s below a1, by replacing R;, i =2,--- ,m by R; — (asj, /a1, )R1.

4. Consider the matrix obtained in Step 3 excluding the first row. For this

submatrix we repeat Steps 1-3. This will give the second pivot asj,.

5. Continue Steps 1-4 until all rows (if any) of the submatrix are of the form

(0,---,0,d).

It is clear that Steps 1-5 will reduce (A|b) to an echelon form with the
pivots a;;, =1, i =1,--- ,r <m.

6. If the echelon form of (A|b) has a row of the form (0,---,0,d), d # 0 the
system (5.2) has no solution. Otherwise, the linear system corresponding to
the echelon form will be of the form

Tjy + 015,11 %5 41+ F Qe = djy
(6.4)
Tj—y T Q=1 41T5, 41+ -+ A1 nTn = djr—l
x.jr + ar,jr+1xjr+1 + e + a’"‘snxn = dj7"

If r < n, we compute z;,, ¢ = 1,---,r (known as basic variables) in terms
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of (n —r) unknowns {x1,--- ,zn}\{2;,, -+ ,2;, } (called free variables) in the
reverse order (back substitution) by the formulae

n
Zj, = dji_ Z dijl‘j, iZT,T—1,~'~ ,1. (65)
Jj=gi+1
In particular, if r = n, then j; =4, i =1,--- ,n and the formulae reduce to
n
Ty = dp, m = di— Y dyrj;, i=n-—1ln-2--1 (6.6)
J=it+1

Remark 6.1. To solve the system (5.2) with m = n by the Gauss elimi-
nation method, we need a total number of

ngHM—u::o<@> (6.7)

multiplications and divisions. In particular, for n = 10 this number is 430,
which is very tiny compared to what we need by Cramer’s rule.

Example 6.2. For the system (6.3), we have

2 -1 110 3 2 —5|1
Aap = [ 3 2 —s|1 | ~[2 -1 1]0
1 3 214 1 3 214
2 _§| 1 2 _§|l
3 3 3 3 313
N o2 | o foo1 -2
3 3 3 717
;s B 00 4]3
2 _§|l
3 313
13 | 2
~ 101 =27
0 0 1]2
and hence, from (6.6), we find
ga=S g2, 18 8 4 1 2 4 5 3_138
BTy Pt Ty T3 372w 371 2w
Example 6.3. For the system
201+ a9 +x3 = 1
T+ 20 +2x3 = 2
T+ To+ 23 = 3
5x1 +4xo +3x3 = 8
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we have
111
2 1 1)1 2 ? 2
0 1 |1
(Alb) = 12 1|2 | T |
11 2|3 0 0 1 | %
54 3|8 00 04
and hence it has no solution.
Example 6.4. For the system
201+ a9 +x3 = 1
xr1 + 20 +2x3 =
we have
ap = (2111 L 1 3 303
1 2 12 0 1 % | 1
and hence it has an infinite number of solutions z; = —(1/3)x3, z2 = 1 —

(1/3)xs, where x5 is arbitrary.

The Gauss elimination method can be used to compute the determinant
of a given n x n matrix A. If all a;; =0, ¢ = 1,--- ,n then det(A4) = 0; oth-
erwise, if necessary we interchange rows of A so that |a;1| = max{]ai1|, |a21],
-+« ,|an1|}. Now following Step 3 with j; = 1, we get

1 a2 - ain
0 Qg - Qg -+ Qgp
n
|A| = 6han = bOian | --- )
Qp2 e [0 7%)
0 Qn2 Tt Qpn

where 67 is —1 or 1 accordingly as the number of rows interchanged is odd or
even, aj = aij/ain, 2 < j < n, oy = a;; — a4, 2 < 4,5 < n. Thus, we
could reduce the order of the determinant from n to n — 1. We continue this
process n — 1 times.

Remark 6.2. The total number of multiplications and divisions necessary
for evaluating the determinant |A| by Gauss elimination technique is

m%)(nunm) = o(%?’) (6.8)

Hence, if we compute all (n 4+ 1) required determinants in Cramer’s rule by
the Gauss elimination method, we will need

n

(=1 i) = O <_4> (6.9)

3 3

as the number of multiplications and divisions.
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Example 6.5. For computing the determinant of the matrix A in (6.3),
successively, we have

3 2 -5 1 2 -3
A = =2 -1 1] =D 2 -1 1
1 3 -2 1 3 -2
15 -3 _7 13
= L@ -5 Bl =ne) ;3
05— b
1 L 1 -1
- o]y |- evoen|,
3 3
= (-1DB)(-I)(4) = 23

Systems of the form AX = B, where A = (a;5) is an n x n matrix, and
B = (b;j), X = (z45) are n x p matrices, can also be solved simultaneously by
the Gauss elimination technique. In fact, if we write the augmented matrix of
the elements of A and B, i.e.,

air 0 @ig | b oo by

asi - A | ba o by
(AB) = [ . |

an1 - Ann | bnl e bnp

and assume that det(A) # 0, then the Gauss elimination process gives

1 c2 -+ cipn—1 Cin din - dip
1 - con-1  c2n do1 -+ dyp
1 Cn—1,n dnfl,l e dnfl,p
1 dn1 oo dnp
The unknowns x;,, kK =1,2,---,p are now obtained from

n

Tk = dpg, Tix = dig — Z CijxTjk, t=n—1n—2,---,1. (6.10)
j=it+1

In particular, if we consider the system AX = I, where X = (z;;) isann xn
matrix and I is the n x n identity matrix, then since X = A~!, the matrix
(z;) formed from (6.10) gives the inverse of the matrix A.
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Example 6.6. For computing the inverse of the matrix A in (6.3), suc-
cessively, we have

2 -1 1|1 0 0 3 2 -5]0 10
3 2 —5/0 10 |~[2 -1 1100
1 3 —2|0 0 1 1 3 —2|0 0 1
2 5 1
L3 —flo o0 Log sl 5
~l2 -1 1]100]|~|0 % 2|1 -2
_ 7 1 1
1 3 —2l0 01 0 I -llo -1
(6.11)
RSN g0 4o
31 3 2 3] _3 2
~ o1 =F[-3 3 ~ 1 -2]{-3 20
00 4] 1 -1 0 1| i -3 1
Now (6.10) gives
1 3
28 28 28
AT = | % % =
111
4 4 4

Gauss—Jordan elimination method. In the Gauss elimination
method, 0’s are obtained not only below the pivots a;j,, ¢ = 1,2,--- ,r but
above them also, so that in the final reduced matrix each pivot element is
equal to 1 and each pivot is the only nonzero element in its column. Thus
the matrix (A|b) is reduced to row canonical form. Now the solution can be
obtained without using the back substitution. However, then, for the case
m = n, the total number of multiplications and divisions required is

2 3

n n

—Mn+1) = 0—=]. 6.12

S = o) (6.12)
Hence, the Gauss—Jordan elimination method is more expansive than the
Gauss elimination method. However, it gives a simpler procedure for comput-
ing the inverse of a square matrix A. We simply write the augmented matrix

of A and I, i.e., (A|]), and when the Gauss—Jordan procedure is complete, we
obtain (I|A™1).

Example 6.7. In Example 6.6 we follow up to (6.11), and then we have

3] 2 1 11 3
1 0 7| 7 7 0 0 |28 28 28
13 3 2 1 5 13

~f 01 -2[-3 2 0|~ |55 —5 %
1 1 1 1 1 1

0 0 1§ -1 1 1 3 -1 1
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Problems

6.1. Find the echelon form of the given matrix A, and find its null space

N(4)
13 3 4 RERR.
i) A= 26 9 9 |, @) 4=
3 9 12 16 2. T 9 T2
0 06 5 3
01 20 3 6
(i) A = 1 2 5 3 4 3
1 2 5 6 3 4

6.2. Solve the system (5.2) by Cramer’s rule, Gauss elimination method,
and Gauss—Jordan elimination method, when

2 1 -5 1 1
. 1 -3 0 —6 -7
O A=14y 9 4 9| b= 3
1 4 -7 6 5
2 1.3 1 17
. 4 2 2 -2 6
@ A=1 5 4 4 3| =1 _1
4 1 0 -1 —6
2 1 0 1 9
5 ~4 1 0 1
(i) A = 3 0 5 o | b 9
1 1 -1 1 1
4 10 —10 -4 78
. 3 5 -4 9 —929
(v) A=1 3 o 1 6| 2= | -3
8 1 12 —37

6.3. Use the Gauss elimination method to find the solutions, if any, of the
system (5.2) when

= Oy Ot = 00 N
O W W W ot
W 0o 0o O Wk
U O W
Nt Ww W
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1 1 -3 -1
2 1 =2 1
(i) A = 11 1| b= 3
1 2 -3 1
2 1 1 2
. 1 3 1 5
(iv) A = 115 | b= 7
2 3 -3 14
4 2 -1 1 -1 1
v) A= |1 -3 2 1 1], b= -1
3 -1 3 -1 -1 2

6.4. Use the Gauss elimination method to find all solutions of the homo-
geneous system (5.3) when the matrix A is as in Problem 6.3.

6.5. Use the Gauss elimination method to find the value of the following
determinants:

1 -1 3 5 27 13 19 17
) 3 7T -8 —4 (i) -5 -19 -29 -31
39 2 0} 11 -13 17 29
3 0 5 =3 3 0 25 4

6.6. Compute the inverse of the following matrices by using the Gauss
elimination method, and the Gauss—Jordan elimination method:

0 1 2 7 6 2
(i) 12 3|, G) [ -1 2 4
3 1 1 3 6 8
oy (1
@ (2 1 1], (v
1 2 1 1 1 -1 1
1 -1 1 1
Answers or Hints
1 3 3 4
6.1. ) [ 0 0 3 1 |, N(A) ={(-3,1,0,0)}.
0 0 1 3
2 4 0 2 3
0 3 3 1 5
(ll) 0 0 6 4 —6 ’ N(A) = {(%a _13_7a 77 _97 1)f}
0 0 0 1 9
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1 2 5 3 4 3
Gi) o 120 3 6|,
000 3 -1 1
N(A) = {( 27 1a070a0)t’ (17 —370, 1/37 1a0)t’ (107 _67Oa
6.2. () x1—2, 1’2:1, 1’3:1, LU4:1.
(11) LU1:1, LU2:2, 1’3:3, 1’4:4.
(111) xrp = —4, Xro = —4, xr3 = 5, Xry4 = 14.
(iV) Tl = —4, To = 3, Ir3 = —2 Ty = —3.
. t
6.3. () (57 —1o7 197, 0) + (—16% 107 — o7, 1) ©
(i) (28.-8.0 + (585 1)
(iii) No solution.
(iv) (1,2,-2)%.
(v) (0.1,1,0,0) + (5. 5. 12, 1.0) e + (g5 15 35, 0,1) .
6.4. (i) ( %837149177_$ 1)
(i) (_57 2271545771)
(i) (0,0,0)"
(iv) (0,0,0)"
t t
) (s 1m0 15 50) e+ (55 10 15.0:1) d:
6.5. (i) —1734
(i) 517824
1 _1 1
2 2 2
6.6. (i) | -4 3 -1
5 _3 1
2 2 2
1 _ 9 L
5 10 2
(i) ( = )
3 _3 1
10 5 2
1 0 _1
21 21 3
(i) ( = -4 g)
440
_1 1 1 1
5 5 2 2
1 1
S 0 0 — =
(iv) f L 2
O (e )
Lot

—1/3,0,1)'}.
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Chapter 7

Factorization

In this chapter we shall discuss a modified but restricted realization of Gaus-
sian elimination. It factorizes a given m x n matrix A to a product of two
matrices L and U, where L is an m X m lower triangular matrix, and U is
an m X n upper triangular matrix. We shall also discuss various variants and
applications of this factorization.

Theorem 7.1 (LU factorization). Let A be an m x n matrix. If
A can be reduced to echelon form U without interchanging rows, then there
exists an m x m lower triangular matrix L with 1’s on the diagonal such that
A=LU.

Proof. Let E|, Es,---,E, be the m x m elementary matrices that corre-
spond to the row operations which are needed to reduce A to the echelon form
U, i.e.,

(Bp---EqE)A = U. (7.1)

Notice that during our reduction of A to U we are allowed only to add a
multiple of one row to a row below. This means each row operation E; cor-
responds to an m X m elementary lower triangular matrix with 1’s on the
diagonal. Now from Problems 2.2 and 4.4 it follows that both (E,. --- Eo2E})
and (E, - EgEl)*1 are m X m lower triangular matrix with 1’s on the diag-
onal. Thus, from (7.1), we have A = LU, where

L = (B.---FE)™' = Ey'E; - E7L B (7.2)

Example 7.1. Successively, we have
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R34+ 8Rs
3 2 3 1 1 0 0
0 -1 1 2 , L = 1 1 0 .
0 0 16 19 -2 -8 1
Example 7.2. Successively, we have
2 1 3 1 0 0 0 O
4 3 5 e 1 0 0 O
82 16|, L=]ee100
—4 1 -11 e o o 1 O
-2 3 -5 e o o o 1
Ry —2R1,R3 — 4Ry, R4 + 2Ry, Bs + Ry
2 1 3 1 0 0 0 O
0 1 -1 21 0 0 0
0 -2 4|, L= 4 ¢ 100
0 3 =5 -2 e o 1 0
0 4 -2 —1 o e o 1
R3 + 2R3, Ry — 3R2, Rs — 4Rs
2 1 3 1 0 0 0 O
0 1 -1 2 1 0 0 O
0 0 2 , L = 4 -2 1 0 O
0 0 -2 —2 3 ¢ 1 O
0 0 2 —1 4 o o 1
R4+ R3,R5 — R3
2 1 3 1 0 0 0 O
01 -1 2 1 0 0 O
v=1o00 2| 1-= 4 =2 1.0 0
0 0 0 —2 3 -1 1 0
0 0 0 -1 4 1 e 1

In L the remaining e is finally replaced by 0

Remark 7.1 (LDU faCtOI‘izatiOIl) From the matrix U in Theorem

7.1, we can factor out an m x m diagonal matrix D so that U = DU, where
the nonzero elements in U and U are at the same position; however, in U all
pivot elements are 1. Clearly, with such an adjustment A = LDU.

Example 7.3. For the matrix in Example 4.2, we have

2 -1 1 1 0 0 2 -1 1
A=[3 2 5| =[5 10 0o I -L
L3 -2 : 11 0o 0 4
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== O
= O O
S O N
OoONIN O
= O O
SO =
O = D=
|
H\]|<':M|>—‘

Example 7.4. The matrix U in Example 7.1 can be written as U = DU,
where

30 0 12 1 3
D = 0 -1 0 and U = 01 -1 -2
0 0 16 00 1 1

Remark 7.2 (PLU factorization). If A = PB, where P is an
m X m permutation matrix, and B can be reduced to echelon form without
interchanging rows, then there exists an m x m lower triangular matrix L with
1’s on the diagonal such that A = PLU.

Example 7.5. For the matrix in Problem 5.11(ii), we have

01 -3 -1 01 0 O 1 0 1 1
Ao lro ) _froo0o|for -3
- 3 1 0 2 - 0 0 1 0 3 1 0 2
1 1 -2 0 0 0 0 1 1 1 -2 0
01 0 0 1 0 0 O 1 0 1 1
_ 1 0 0 O 01 0 O 01 -3 -1
- 0 0 1 0 3 1 1 0 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0 0
From this factorization it immediately follows that det(A) = —1 x 1 x 0 = 0.

If conditions of Theorem 7.1 are satisfied, then the system (5.2) can be
written as

LUz = b. (7.3)
In (7.3), we let

Uz =y (7.4)
so that (7.3) becomes

Ly = b. (7.5)

Thus, solving (5.2) is equivalent to finding solutions of two simplified systems,
namely, first (7.5) to obtain y, and then (7.4) to find z. Since L is a lower
triangular matrix with 1’s on the diagonal, in expended form the system (7.5)
is of the form

Cayy +lisya + -+ lii a1 +yi = by, i=1,---,m.
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Clearly, this system can be solved recursively (forward substitution), to obtain
i—1

Y = bi_zéijyj’ i:1,~'~ , M. (76)
j=1

Example 7.6. Consider the system
A(£1,£2,$3,£4)t = (172a_9)t7 (77)

where the matrix A is the same as in Example 7.1. For (7.7), the system (7.6)
is

yl = 1 yl = 1
Y2 = 2 — Y1 E=4 Y2 = 1
ys = —9+2y1 +8y2 ys = L

Now the system (7.4) can be written as

3r1+2x2+3x3+x4 = 1
—rot+x3+2x4 = 1
1623+ 1924 = 1,

which from the backward substitution gives the solution of (7.7),
1
(21, 72,23, 24)" = 5(43, —45,3,0)" + (15,39, —57, 48)"c.
Example 7.7. Consider the system

A($17x2ax3)t = (1v275a_3a0)t7 (78)

where the matrix A is the same as in Example 7.2. For (7.8), the system (7.6)
is

yi =1 yi = 1
Yo = 2—2y y2 = 0
ys = 5 —4dy1 + 2y = y3 = 1
Ys = —3+2y1 —3ys +ys3 ya = 0
Ys = y1—4Y2—y3 ys = 0.

Now the system (7.4) can be written as

201 + 2+ 323 = 1
Tro — T3 = 0
2.]33 = 1,

which from the backward substitution gives the solution of (7.8),

1
(1’1,1’2,$3)t = 5(—1, ]., 1)t.
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Remark 7.3. To solve the system (5.2), Gaussian elimination as well as
LU factorization require the same amount of computation, and hence there is
no real advantage of one method over another. However, if we need to solve
several systems with the same A but different b's, then LU factorization clearly
has the advantage over Gaussian elimination (recall that LU factorization is
done only once). We illustrate this important fact by the following example.

Example 7.8. For the matrix A considered in Example 4.2, we shall use
the LU factorization method to compute its inverse. For this, we need to solve
the systems Az = e', Az = e, Az = e*, which will provide, respectively,
the first, second, and third column of A~!. This in view of Example 7.3 is

equivalent to solving the systems

, y1 =1, yn = ?}7 25517—562 -gx?, = }

L YS! +yY2 = 0, Y2 = —3, L2 — 53 = —35,
syity2tys = 0, y3 = 1, drg = 1,
Y1 = 0, Yy = 0, 2x1 —xo+2a3 = 0,

Sty = 1, yo = 1, Twg—Bag = 1,
Tyt tys = 0, y3 = —1, dzz = —1,

yi = 0, y1 = 0, 23 —22+23 = 0,
7 EP

0
Sty = 0, y2 = 0, T2 — 5 x3 =
ity tys =1, y3 = 1, dzy = 1,

Problems

7.1. Find LU factorization of the following matrices

20 5 2 3 0

i) A'= 43 12 |, (i) A2= 6 14 3
—14 3 —32 6 1 10
32 5 4 3 2
6 9 12 8 9 6

cee 3_ . 4_

@) A= ¢ 5 g [ ™A= 19 15 1
9 6 15 16 21 16 1

7.2. Use LU factorization to find the determinants of the above matrices

Al and A%,
7.3. For the matrix

8§ 8 5 11
12 13 9 =20
4 3 2 -4
16 18 13 —-30

A =

show that

xr1 =

T2

xr3 =

Tr1 =
To =
r3 —

xr1 =
X9 =
xr3 =

5
17
—11

1
3
6
3

]

[
=

|Uvg|»—‘ ]

[N}
|00

=R

7
22
—16
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1 00 0 8§ 8 5 —11
210 0 o1 2 -1I
5 __ 2 2
O A=11 419 00 1 -2
2 20 1 00 0 -1
0100 100 0 4 3 2 —4
00 10 210 0 02 1 -3
5 __
i@ A"=17 9 0 o 3210 00 1 -2
0001 43 2 1 000 -1

(ii) det(A%) = —8.

7.4. For each of the above matrices A%, i = 1,2,---, 5 use LU factorization
to solve the systems Alx = b*, i = 1,2,---,5, where b = (3,14, —12)¢, b =
(32,118, —42)%, b = (12, 36,0,36)", b* = (10,26, 45,66)%, b> = (7,7,4,5)".

Answers or Hints

\]
[y
—
—
=
N RN
== O
= o O
S O N
S W o
= DN Ot

A
-
=
N—
w
[
o
o o
o ot w
w o
=3 VR
W = =

|
w
—
B

(i) | 5

O NN = O
O = O O
— o O O
O OO W
O O Ut
O O N Ot

—

=

<

N
IO JURN NI
w N = o
= =0 O
= o O O
OO O =
OO W Ww
O N NN
Tl ===

2. (i) 6.
120.
. (i) Use LU factorization.
Use PLU factorization.
Clear from (i) or (ii).
. (i) (=1,2,1)%
75(233,58,50,0,0)" + 55(—38,-8,0,20,0)'c + £(—31,2,-6,0,8)"d.
1(12,12,0)" + 1 (-7, -2,5)'c.
(1,1,1,1)%
(1,2,1,2)%

TN N
ELE 0 E

—~
=
)

~—

—~ o~ o~
< =X
o < oBEL 2
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Chapter 8

Linear Dependence and
Independence

The concept of linear dependence and independence plays an essential role in
linear algebra and as a whole in mathematics. These concepts distinguish be-
tween two vectors being essentially the same or different. Further, these terms
are prerequisites to the geometrical notion of dimension for vector spaces.

Let (V,F) be a vector space, and S = {u',--- ,u"} C V be a finite
nonempty set. The set of vectors S is said to be linearly dependent if and

only if there exist n scalars ¢1,--- , ¢, € F, not all zero, such that

caul+ -+ epu® = 0. (8.1)
The set S is said to be linearly independent if the only solution of (8.1) is
the trivial solution ¢; = --- = ¢, = 0. Notice that (8.1) always holds for
cp = -+ = ¢, = 0, and hence, to prove the linear independence of S it is
necessary to show that ¢; = -+ = ¢, = 0 is the only set of scalars in F

for which (8.1) holds. It is clear that if S is linearly dependent, then there
are infinitely many choices of scalars ¢;, not all zero, such that (8.1) holds.
However, to prove the linear dependence of S it suffices to find one set of
scalars ¢;, not all zero, for which (8.1) holds.

The vectors u',--- ,u™ are said to be linearly dependent or independent
accordingly as the set S = {ul,--- ,u"} is linearly dependent or independent.
An infinite set of vectors is said to be linearly dependent if and only if it
has a finite subset that is linearly dependent. Thus, an infinite set is linearly
independent if and only if its every finite subset is linearly independent.

Example 8.1. The set of vectors S = {e!, - ,e"} is a linearly inde-
pendent set in R™. Indeed, cie! + --- + ¢p,e” = 0 immediately implies that
cg =+ =c¢p, =0.If an m X n matrix A is in echelon form, then the set of
nonzero rows of A (considered as vectors in R™) is linearly independent.

Example 8.2. The vectors (11,19,21)%, (3,6,7)%, (4,5,8)" € R® are lin-
early independent. Indeed, ¢;(11,19,21)" 4 ¢2(3,6,7)" + ¢3(4,5,8)" = 0 leads

67
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to the system

1le1 +3co+4c3 = 0
19¢1 +6¢c2 +5c3 = 0
2lcy +7ca+8c3 = 0

for which ¢; = ¢3 = ¢3 = 0 is the only solution. Now any vector (a, b, c)t € R3
can be written as a linear combination of these vectors, i.e., (a,b,c)! =
a(11,19,21) + B(3,6,7)t + (4, 5,8)!, where the unknowns o, 3,7 can be ob-
tained by solving the linear system

1la+36+4y = a
19a4+68+5y = b
2la+780+8y = ¢

Theorem 8.1. In any vector space (V, F') the following hold:

1. any set containing 0 is linearly dependent,
2. the set {u} is linearly independent if and only if u # 0,

3. the set {u,v} is linearly dependent if and only if u = cv, where ¢ is some
scalar,

4. every subset Sy of a linearly independent set S' is linearly independent,

5. if S is a finite set of vectors and some subset Sy of S is linearly dependent,
then S is linearly dependent,

6. the set S = {ul,--- ,u"} where each u* # 0 is linearly dependent if and
only if at least one of the vectors u’ is linearly dependent on the preceding
vectors u', -, ul L.

Proof. 1. If S ={0,u? --- ,u"}, then we can write 1 x 0+ 0 x u® +--- +
0xu™=0.

2. If w =0, then in view of 1, the set {u} is linearly dependent. Conversely,
if {u} is linearly dependent, then there exists a nonzero scalar ¢ such that
cu = 0. But, then 0 = ¢710 = ¢ (cu) = u, ie., u = 0.

3. If S = {u, v} is linearly dependent, then there exist scalars 1, c2 not both
zero such that ciu + cov = 0. If ¢ = 0, then cov = 0, and hence v = 0,
which in view of 1. implies that S is linearly dependent. If ¢; and ¢y both are
nonzero, then clearly we have u = —61_1821]. Conversely, in u = cv if ¢ = 0,
then we have v = 0, and if ¢ # 0, then u — cv = 0.

4. Suppose a linear combination of the vectors Sy is equal to zero, then the
addition of all the terms of the form 0 times the vectors in S\ Sy is also zero.
This gives a linear combination of the vectors of S, which is zero. But since
S is linearly independent, all the coefficients in this linear combination must
be zero. Thus Sy is linearly independent.

5. If S is linearly independent, then from 4. Sy must be linearly independent.

6. Suppose v/ is linearly dependent on u',- -, u/~! ie., v/ = cpul +--- +
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cj,luj’l, then we have
cut + e T (=)W 0T 0w = 0,

which implies that S is linearly dependent. Conversely, suppose that S is
linearly dependent. We define S; = {u',--- ,u/}, j=1,--- ,n. In view of 2.
Sy is linearly independent. Let S;, 2 < ¢ < n be the first of the S; that is
linearly dependent. Since .S, is linearly dependent, such an S; exists. We claim
that ! is linearly dependent on the vectors of the set S;_;. For this, we note
that there exist scalars ci, - - - , ¢; not all zero such that ciu! + -+ + ¢;u? = 0.
We note that ¢; cannot be zero, otherwise S;_1 will be linearly dependent.
Thus it follows that v = ¢; ' (—ci)ul + -+ + ¢ (—cimr)ui™t. B

Theorem 8.2. Let the set S = {u!, - ,u"} span the vector space (V, F).

1. If w/ is linearly dependent on U = {u!,--- ,u/~ 1, u/*1 ... 4"}, then the
set U also spans (V, F).

2. If at least one vector of S is nonzero, then there exists a subset W of S
that is linearly independent and spans (V, F').

Proof. 1. See Problem 1.2(ii).

2. If S is linearly independent there is nothing to prove; otherwise, in view
of 1. we can eliminate one vector from the set S so that the remaining set
will also span V. We can continue this process of eliminating vectors from the
set S until either we get (i) a linearly independent subset W that contains
at least two vectors and spans V) or (ii) a subset W that contains only one
vector, u’ # 0, say, which spans V. Clearly, in view of Theorem 8.1(2), the set
W = {u'} is linearly independent. |

The n vector valued functions u!(z), - - - ,u™(z) defined in an interval .J are
said to be linearly independent in J if the relation ciul(x)+- - - +cpu™(z) =0
for all z in J implies that ¢; = --- = ¢;;, = 0. Conversely, these functions are
said to be linearly dependent if there exist constants ci,--- , ¢, not all zero
such that ciul(x) + -+ + cpu™(z) = 0 for all z € J.

Let n vector valued functions u'(z),--- ,u™(z) be linearly dependent in .J
and ¢g # 0, then we have

Wh(a) = = Zul(a) o = Eub T (2) - T @) - - 2 (a),
Ck Ck Ck Ck

i.e., u®(x) (and hence at least one of these functions) can be expressed as a
linear combination of the remaining m — 1 functions. On the other hand, if
one of these functions, say, u*(z), is a linear combination of the remaining
m — 1 functions, so that

uF(z) = cut(@) + -+ 1w H2) + e TN @) 4+ -+ epu™(2),

then obviously these functions are linearly dependent. Hence, if two functions
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are linearly dependent in J, then each one of these functions is identically
equal to a constant times the other function, while if two functions are linearly
independent then it is impossible to express either function as a constant times
the other. The concept of linear independence allows us to distinguish when
the given functions are “essentially” different.

Example 8.3. The functions 1,z,---,2™! are linearly independent in
every interval J. For this, ¢; + coz + - + ¢,pe™ ™! = 0 in J implies that
¢ =---=cy = 0. If any ¢, were not zero, then the equation ¢; + cox + - -+ +

cmz™ ! = 0 could hold for at most m — 1 values of 2, whereas it must hold
for all x in J.

Example 8.4. The functions

T 2z
1 ¢ 2 €
u \xr = 5 u - \x =
are linearly independent in every interval J. Indeed,
e® e2a: 0
C =
P oes 3e2e

implies that cie® 4+ coe®® = 0 and c1e® + 3c2e?* = 0, which is possible only
for ¢; = co = 0.

+CQ

Example 8.5. The functions

sinx 0
ul(x) - [cosx ]7 u2(x) B [0]

are linearly dependent.

For the given n vector valued functions u!(x),--- ,u"(x) the determinant
W(ul,--- u™)(z) or W(x), when there is no ambiguity, defined by

ui() - ui()
uy(x) - ug()
Uy, () up ()

is called the Wronskian of these functions. This determinant is closely related
to the question of whether or not u'(z),--- ,u"(z) are linearly independent.
In fact, we have the following result.

Theorem 8.3. If the Wronskian W (z) of n vector valued functions
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ul(x), - ,u™(x) is different from zero for at least one point in an interval
J, then these functions are linearly independent in J.

Proof. Let u'(z), - ,u"(z) be linearly dependent in J, then there exist
n constants ci,---,c, not all zero such that > ;"  c;ui(z) = 0 in J. This
is the same as saying the homogeneous system of equations >\, u} (z)c; =
0, 1 <k <n, x € J, has a nontrivial solution. However, from Corollary
5.1 this homogeneous system for each x € J has a nontrivial solution if and
only if W(x) = 0. But, W(x) # 0 for at least one z in J, and, therefore
ul(x), -+ ,u™(x) cannot be linearly dependent. |

In general the converse of this theorem is not true. For instance, for

which are linearly independent in any interval J, W(u!,u?)(z) = 0 in J.
This example also shows that W (u!,u?)(x) # 0 in J is not necessary for the
linear independence of u!(z) and u?(x) in J, and W (u',u?)(z) = 0 in J may
not imply that u'(z) and u?(z) are linearly dependent in J. Thus, the only
conclusion we have is W (z) # 0 in J implies that u'(z),- -+, u"(x) are linearly
independent in J and linear dependence of these functions in J implies that
W(z)=01in J.

Problems

8.1. Find if the given vectors are linearly dependent, and if they are,
obtain a relation between them:

() wl=(1,3,4,2)" u?=(3,-5,2,2)", u® = (2,—1,3,2)!
(i) w'=(1,1,1, 3) w2 =(1,2,3,4), ud = (2,3,4,9)!
(i) u!=(1,2,4), (2,—1,3)2 ud = (0,1,2)f, ut = (=3,7,2)".

8.2. Let the set {u!,u? u®} in (V, F) be linearly independent. Show that
the sets {ul,u! +u? ul + u? + w3} and {u! + w2 u? + v, u + u'} are also
linearly independent.

8.3. Show that rows (columns) of A € M™*™ are linearly independent if
and only if det(A) # 0, i.e., the matrix A is invertible. Thus, the homogeneous
system Ax = 0 has only the trivial solution.

8.4. Show that the nonzero rows of a matrix in echelon form are linearly
independent. Further, columns containing pivots are linearly independent.

8.5. Suppose that {ul, - u"} is a linearly independent set of vectors



72 Chapter 8

in R, and A is an n x n nonsingular matrix. Show that {Au!,--- Au"} is
linearly independent.

8.6. If the rank of A isn —p (1 < p < n), then show that the system
(5.2) with m = n possesses a solution if and only if

Bb = 0, (8.2)

where B is a p X n matrix whose row vectors are linearly independent vectors
w', 1 <14 < p, satisfying w*A = 0. Further, in the case when (8.2) holds, any
solution of (5.2) can be expressed as

p
u = Zciui + Sb,
i=1

where ¢;, 1 < i < p, are arbitrary constants, u’, 1 < i < p, are p linearly
independent column vectors satisfying Au’ = 0, and S is an n x n matrix
independent of b such that ASv = v for any column vector v satisfying Bv = 0.
The matrix S is not unique.

8.7. The Wronskian of n functions y;(z), - ,yn(x) which are (n — 1)
times differentiable in an interval J, is defined by the determinant

/ /
vi(z) Yn(z
W) = Wy, ,yn)(z) = -
n—1 n—1
S CO I G

Show that
(i) it W(yr,- -+ ,yn)(x) is different from zero for at least one point in .J, then
the functions yi(x),- -+ ,yn(z) are linearly independent in J

(ii) if the functions yi(x),---,yn(z) are linearly dependent in J, then the
Wronskian W (y1,- -+ ,yn)(x) =0in J

(iii) the converse of (i) as well as of (ii) is not necessarily true.
8.8. Show that the following sets of functions are linearly dependent in
any interval
(i)  {1,cos2z,sin®z}
(i) {cosz,cos3z,cos® x}.

8.9. Show that the following sets of functions are linearly independent in
any interval

() {ers e}, p#v

(i) {er*, zer*}.



Linear Dependence and Independence 73

8.10. Show that the following sets are linearly independent in the given
intervals

(i) {sinz,sin2z,---}, [0,7]
(ii) {1,cosz,cos2z,---}, [0,7]
(i) {1,sinz,cosz,sin2z,cos2x, -}, [—m, 7.

8.11. Let f(z) and g(x) be linearly independent in an interval J. Show that
the functions af(x) + bg(x) and cf(x) + dg(x) are also linearly independent
in J provided ad — bc # 0.

8.12. Show that

(i)  the set {1,x,2% ---} is linearly independent in the space P of all poly-
nomials

(ii) the set {u',u? ---}, where u’ is the infinite sequence whose i-th term
is 1 and all other terms are zero, is linearly independent in the space S of all
real sequences.

Answers or Hints

8.1. (i) Linearly dependent u' + u? — 2u® = 0.

(ii) Linearly independent

(iii) Linearly dependent —2u! 4+ 2u? — v® + u* = 0.

8.2. crul +co(ut +u?) +ez(ut +u +u?) = 0 implies ¢y +ca+c3 =0, ca+c3 =
O, C3 = 0.

8.3. If the columns C1, - - - , C), of A are linearly independent, then x1C1+- - -+
2, Cp, = 0implies 1 = -+ - = x,, = 0, i.e., the homogeneous system Az = 0 has
only the trivial solution. But then by Corollary 5.1, det(A) # 0. Conversely,
if det(A) # 0, then the homogeneous system (Cy,---, Cp)(x1,- - ,2,)t =0
has only the trivial solution, and hence C,--- ,C),, are linearly independent.
8.4. Recall that in the system (6.4), j1 < --- < jr. Thus, ¢1(1,@1,j,+1, -
ain)+ - +c(1,8r5,41, - ,0rrn) implies that ¢; = --- = ¢, = 0.

8.5. ciAul + - -+ + ¢, Au™ = 0 if and only if A(ciu® +--- + c,u™) = 0. Now
since A is nonsingular, it is equivalent to ciu! + - -+ + c,u™ = 0.

8.6. Use Problem 8.3.

8.7. (i) If y;(x), 1 <4 < n are linearly dependent, then there exist nontrivial
¢, 1 <i<nsuchthat Y ;" ¢;y;(z) =0 for all z € J. Differentiating this, we
obtain Y i, ciygk)(x) =0, k=0,1,--- ,n—1 for all x € J. But this implies
W(z) =0.

(ii) Clear from (i).

(iii) Consider the functions y;(x) = 23, ya(x) = 22|z

8.8. (i) cos2z =1—2sin’x

(ii) cos3z =4cos®x — 3cosz.

)
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8.9. Use Problem 8.7.

8.10. (i) Use [ (X1, ¢;siniz)sin jzde = mc;/2

(ii) Similar to (i)

(iii) Similar to (i).

8.11. Let for all x € J, a(af(z) + bg(x)) + Bef(x) + dg(x)) = 0. Then,
(aa+cB) f(z) + (ba+dB)g(xz) = 0. Now the linear independence of f(x), g(x)
implies that aa+ ¢ = 0,ba+ df = 0, which implies a = § = 0 if ad — be # 0.
8.12. (i) For each n, Z?:o a;x" = 0 has at most n roots. Alternatively, using
Problem 8.7(i), we have W (1,z,22,--- ,2™) = 1(11)(2!) - - - (n!).

(H) 0= Z?:l Ciui = (017027 T vcn)t~



Chapter 9

Bases and Dimension

In this chapter, for a given vector space, first we shall define a basis and then
describe its dimension in terms of the number of vectors in the basis. Here we
will also introduce the concept of direct sum of two subspaces.

The set of vectors S = {u!, - ,u"} in a vector space (V, F) is said to form
or constitute a basis of V over F if and only if S is linearly independent, and
generates the space V. Thus, every vector v € V can be written as a linear
combination of the vectors u!,--- ,u”, i.e.,

v = cput 4 -+ e u™.

This representation is unique. Indeed, if v = dyu! + --- + dpu™ is also a
representation, then 0 = v —v = (¢; — dy)ut + - - + (¢, — dy,)u™ immediately
implies that ¢; —d; =0,--- ,¢, — d,, = 0.

Example 9.1. The set of vectors S = {el,---,e"} is a basis of R™.
Indeed, the set S is linearly independent (see Example 8.1), and an arbitrary
vector w = (u1, -+ ,u,) € R™ can be written as u = Y., uzet. The set
{et,el +¢€2,--- el + .-+ e} is also a basis of R".

Theorem 9.1. Let (V, F) be a vector space, and let S = {u!,--- u"} be

a basis of V. Let v!,--- ,v™ be vectors in V and assume that m > n. Then,
vl,---,v™ are linearly dependent.
Proof. Since S is a basis, there exist scalars a;;, i =1, ,m, j=1,---,n
in F such that

vt = apul + -+ agu

™ = amul 4+ ampu.
Let 21, -+, x,, be scalars, then

Tl - T v™
= (zra11 4+ + Tmam)ut + -+ (T1a10 + -+ Tin Qi )u™
Now since m > n, in view of Corollary 5.2, the homogeneous system

r1a11 + + TmGmr = 0

T1Q1n + 0+ T Qmn = 0

75
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has a nontrivial solution. For such a solution (z1,---,z,,) we have x4+
<o 4 2,v™ = 0, i.e., the vectors vl --- 0™ are linearly dependent. [ |

Corollary 9.1. Let (V,F) be a vector space, and let S = {u!,--- ,u"}
and T = {v!,--- ,v™} be the basis of V. Then, m = n.

Proof. In view of Theorem 9.1, m > n is impossible. Now since 7T is also a
basis, n > m is also impossible. [ |

Let (V, F) be a vector space, and let T = {v!,--- ,o™} C V. We say that
S = {vk ... Wk} C T is a maximal linearly independent subset of T if S is
linearly independent, and if v* € T\S, then S U {v*} is linearly dependent.

Theorem 9.2. Let T = {v!,--- ,v™} generate the vector space (V, F),
and let S = {v*1, ... v*»} be a maximal linearly independent subset of 7.
Then S is a basis of V.

Proof. We need to show that S = {vF1 ... vk} generates V. For this,
first we shall prove that each v* € T\ S is a linear combination of v¥* ... v*n»,
Since S U {v'} is linearly dependent, there exist scalars cq,- -+ ,cp, 2z not all
zero such that

clvkl + 4+ cnvk” + 20" = 0.

Clearly, x # 0, otherwise, S will be linearly dependent. Thus, it follows that

. —C1 —C
,Uz = —rUkl + e+ _’ﬂ,Ukn,
T T
which confirms that v* is a linear combination of v*1,- .-, v*». Now let u € V,
then there exist scalars aq, - - - , a,, such that
u = agvt + -+ amo™.

In this relation, we replace each v* € T\S by a linear combination of
vF1 ... v, The resulting relation on grouping the terms will lead to a linear
combination of v*1, ...  v*n for u. Thus S generates V. |

Let (V,F) be a vector space, and let S = {ul,--- ,u"} C V be linearly
independent. We say that .S is a mazimal linearly independent set of V' if and
only if u € V\ S, then S U {u} is linearly dependent.

Theorem 9.3. Let S = {u!,---,u"} be a maximal linearly independent
set of the vector space (V, F'). Then, S is a basis of V.

Proof. The proof is the same as in the first part of Theorem 9.2. |

A vector space V over the field F is said to be of finite dimension n, or
n-dimensional, written as dim V' = n, if and only if V" has a basis consisting of
n vectors. If V' = {0}, we say V has dimension 0. If V' does not have a finite
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basis, then V is said to be of infinite dimension, or infinite-dimensional. In
the following results we shall consider only finite dimensional vector spaces.

Example 9.2. A field F is a vector space over itself. Its dimension is one,
and the element 1 of F' forms a basis of F. The space R™ is n-dimensional.

Theorem 9.4. Let (V, F) be an n-dimensional vector space, and let S =
{ul,--- u"} C V be linearly independent. Then, S is a basis of V.

Proof. In view of Theorem 9.1, S is a maximal linearly independent set of
V. Now, S being a basis follows from Theorem 9.3. |

Corollary 9.2. Let (V, F) be a n—dimensional vector space, and let (W, F)
be a subspace also of dimension n. Then, W = V.

Proof. If § = {ul, -, u"} is a basis of W, then it must also be a basis of
V. |

Corollary 9.3. Let (V,F) be an n-dimensional vector space, and let
ul,---,u", r < n be linearly independent vectors of V. Then, there are vectors

™t .. u™in V such that S = {u!, - ,u"} is a basis of V.

Proof. Since r < n, in view of Corollary 9.1, {u!,--- ,u"} cannot form a
basis of V. Thus there exists a vector «™t! € V that cannot lie in the sub-
space generated by {u!,--- ,u"}. We claim that {u!, - ,u", u"*} is linearly
independent, i.e., the relation

cut + o teu" deput =0, G €F, =1, ,rr41

implies that ¢; = --+ = ¢, = ¢,11 = 0. For this, since {u!,--- ,u"} is linearly
independent it suffices to show that ¢,4+1 = 0. Let ¢,+1 # 0, then from the
above relation we have

1 -1 1
o =~ (aut + o),

which contradicts our assumption that ©"+! does not lie in the space generated
by {ul,---,u"}. Now let us assume that u" ™1, ... u® have been found so that
{ul, -+ Ju",u"t .. uf} is linearly independent. Then from Theorem 9.1 it
follows that s < n. If we choose s to be maximal, then we have s = n, and

Theorem 9.4 ensures that {ul,--- u"} isa basisof V. 1

In view of our above discussion the set of vectors S = {u!,--- ,u™} in R"
cannot span R"™ if m < n. Also, if m > n the set S is linearly dependent.
Further, if m > n, the set may or may not span R". Combining these remarks
with Problem 8.4, we find an effective method to extract linearly independent
vectors from a given set of vectors. This combination also suggests the possi-
bility of enlarging a set of linearly independent vectors. We illustrate this in
the following two examples.
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Example 9.3. Since in view of Problems 6.1(iii),

—_ = O

1
2
2

Tt Ot N
DS WO
W = W
=~ w o

1
~ 0
0

S =N
S N ot
w o w
— W
—= o W

the vectors (0,1,1)%,(1,2,2)%,(0,3,6)t are linearly independent and form a
basis for R3.

Example 9.4. The vectors (0,1,1)(1,2,2)! are linearly independent.
To find the third linearly independent vector, we consider the matrix whose
columns are (0,1,1)(1,2,2) e!, €2, €3, and note that

0
1
1

NN =
O O =
O = O
= O O
[RE s R Y
— o O

1
~ 0
0

[awll ol V]
o = O

Thus, the required vector is e? = (0,1, 0)%.

Now let U and W be subspaces of a vector space V. Recall that in Problem
1.4 we have defined the sum of U and W asU+W = {z: z = u+w where u €
U, w € W}. For this sum we shall prove the following result.

Theorem 9.5. Let U and W be subspaces of a vector space V. Then,
dim(U + W) = dimU +dim W — dim(U 0 W).

Proof. In view of Problem 1.3, U N W is a subspace of both U and W.
Let dimU = m, dimW = n, and dimU N W = r. Let S; = {v*,--- 0"}
be a basis of U N W. By Corollary 9.3 we can extend S; to a basis of
U, say Sz = {vt,--- 0" ul,--- Jum™ "} and to a basis of W, say, S5 =
{vl, - Jom wh oo Jw™T} Now let S = S5 U S U S = {vl, -+ o ul, oo
u™ " wt, - Jw" "} Clearly, S has exactly m+mn—r vectors. Thus it suffices
to show that S is a basis of U 4+ W. For this, we note that S, spans U, and Ss
spans W, and hence SoUS3 = S spans U+ W. To show the linear independence

of S, suppose that
a4 a" Fbut 4 A byt Tt o™ = 0, (9.1)
where a;,b;, ¢, are scalars. Let
u = a4 4 av” +Fbhut 4+ by t™ T (9.2)
Then from (9.1), we have
1

U = —cw — - —cCp_pw” ", (9.3)

From (9.2) and (9.3), respectively, it follows that v € U and u € W. Thus,
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u € UN W, and hence can be written as u = dyv' + - + d,v", where d; are
scalars. Thus, from (9.3) it follows that

divt + -+ dov" +qwt -+ e pw™ T = 0.

But since S5 is a basis of W, the above relation implies that ¢y = -+ = ¢, =
0. Substituting this in (9.1), we get

av' - F a0 bt by u™T = 0.

Finally, since S5 is a basis of U, the above relation implies that a; = --- =
ar=by=--=bp_r=0. [ |

The vector space V is said to be a direct sum of its subspaces U and W,
denoted as U @ W, if for every v € V there exist unique vectors v € U and
w € W such that v = u + w.

Example 9.5. Consider V = R3, U = {(a1,a2,0)! : a1,a2 € R}, W =
{(0,az2,a3)t : az,az € R}. Then, R® = U + W but R® # U @& W, since sums
are not necessarily unique, e.g., (1,3,1)" = (1,1,0)" + (0,2,1)" = (1,2,0)" +
(0,1,1)%. However, if we let U = {(a1,a2,0)! : ai,a2 € R}, W = {(0,0,a3)* :
as € R}, then R*=U o W.

Theorem 9.6. The vector space V is the direct sum of its subspaces U
and W, ie, V=U®W,ifand only if V=U+ W, and UNW = {0}.

Proof. Suppose V= U @ W. Then any v € V can be uniquely written in
the form v = u 4+ w, where v € U and w € W. This in particular implies that
V=U+W. Nowlet v e UNW, then v = v+ 0 where v € U, 0 € W, also,
v =0+ v where 0 € U, v € W. But, this in view of the uniqueness implies
that v=04+0=0and UNW = {0}.

Conversely, suppose that V. =U 4+ W and UNW = {0}. If v € V, then
there exist w € U and w € W such that v = u + w. We need to show that this
sum is unique. For this, let v = ' +w’ where v’ € U and w’ € W is also such
a sum. Then, u +w = v + w’, and hence u —v' = w —w'. But u —v' € U
and w — w' € W; therefore in view of U N W = {0} it follows that u —u' =0
and w —w' =0, ie., u=v and w=w'". |

Corollary 9.4. Let U and W be subspaces of a vector space V. Then,
dimU & W =dimU + dim W.
Problems

9.1. Find the dimension of the following spaces spanned by all

(i)  m x n matrices, and give a basis for this space
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ii) n xn diagonal matrices

iii) n x n upper triangular matrices

iv) n X n symmetric matrices

v) polynomials of degree n — 1, and give a basis for this space.

vi) n dimensional real vectors u = (ug,--- ,uy) such that uy +---+u, =0
vii) n x n real matrices A = (a;;) such that tr(4) = 0.

9.2. Suppose that {ul,--- u"} is a basis for R", and A is an n x n
nonsingular matrix. Show that {Au!,---, Au"} is also a basis for R".

9.3. Let (V, F) be a n—dimensional vector space, and let W # {0} be a
subspace. Show that (W, F') has a basis, and its dimension is < n.

9.4. Let U and W be subspaces of a vector space V, and let § =
{u',--- ,u’} span U and T = {w',--- ,w*} span W. Show that S U T spans
U+w.

9.5. Let U and W be subspaces of a vector space V, and let V. =U @& W.
If S = {ul, - ,u'} and T = {w!,--- ,w*} are linearly independent subsets
of U and W respectively, show that
(i)  SUT is linearly independent in V'
(ii) it S and T are bases of U and W, then SUT is a basis of V.

9.6. Show that the space R over the field of rational numbers @) with the
usual operations is infinite dimensional.

9.7. Find X € R so that the vectors u! = (1,\, 1), v? = (1,1, )}, u? =
(1,—1,1)! form a basis of R3.

9.8. Let V={u€ R°:u;+2us —uz+us =0, ug +ug +uz +us = 0}.
Find the dimension of V and find W such that V & W = R5.
Answers or Hints

. (1) mn, {E;;j} where the m x n matrix E;; has elements eg, = 1 if
i,0=jand ey =0if k #1i,0+# j.

> ©
[l =

n(n+1)/2.

~ o~
- e =
< B =
-
3 3
—~

3

_|_

—

N

~

[N}

v) n, {1,x,---,2""1}. This basis is known as natural, or standard basis for

—~

—~~
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9.2. c;Au! + - + ¢, Au™ = 0 implies A(ciu' + -+ ¢,u™) = 0, and since A
is nonsingular, ciu! + - -- 4+ c,u™ = 0, and hence ¢; = --- = ¢, = 0, i.e., Au?
are linearly independent. Now use Theorem 9.4.

9.3. Let v! # 0 be a vector of W. If {v'} is not a maximal set of linearly
independent vectors of W, we can find a vector v? € W such that {v!,v?} is
linearly independent. Continuing in this manner, one vector at a time, we will
find an integer m < n, such that {v!,--- 0™} is a maximal set of linearly
independent vectors of W. Now in view of Theorem 9.3 this set is a basis of
W.

9.4. If v € U+ W, then v = u + w, where u € U and w € W. Clearly,
u=crul + -+ cut and w = dyw' + --- + dw”, where ci,d; are scalars.
Then, v = cru' +- - -+ cpul + dyw' + - - -+ dpw®, and hence SUT spans U + W.
9.5. (i) If qqut + -+ + cou’ + dyw' + -+ + dpw® = 0, then (cyu! +--- +
cou®) + (dyw' + - -+ dpw®) = 0= 0+ 0, where 0, cyu' + --- + cou € U and
0, dyw' + --- + dpw® € W. Now since such a sum for 0 is unique, it follows
that ciul + -+ + couf = 0 and dyw! + - - - + dpw® = 0.

(ii) Use Problem 9.4 and (i).

9.6. The number 7 cannot be represented by finite rational numbers.

1 1 1
9.7. | A 1 —1|=A-14£0ifxeR—{-1,1}.
1 A 1
9.8. For A = 1 ? _il)) (1) (1) ) , we have rank A = 2, and hence dimV = 2
with {(1,2,-3,1,0),(1,1,1,0,1)} as a basis. It follows that dim W = 3. Let
12-310
w! = (0,1,-1,2,1). For A = | 11 101 |, we have rank A! = 3, and
01-121

hence w! € R® — V. Similarly, w? = (1,-1,2,1,1), w® = (0,1,0,1,—1) €
R5 — V. Clearly, W = Span{w?, w?, w?}.
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Chapter 10

Coordinates and Isomorphisms

In this chapter we shall extend the known geometric interpretation of the
coordinates of a vector in R? to a general vector space. We shall also show
how the coordinates of a vector space with respect to one basis can be changed
to another basis.

An ordered basis of an n-dimensional vector space (V, F) is a fixed sequence
of linearly independent vectors that spans V. If S = {u!,--- ,u"} is an ordered
basis, then as we have noted in Chapter 9, every vector u € V' can be written
uniquely as u = yyul+- - -+y,u™. We call (y1,- -+ ,yn)! € F™ the coordinates of
u with respect to the basis S, and denote it as yg(u). Clearly, ys is a mapping
that assigns to each vector u € V its unique coordinate vector with respect to
the ordered basis S. Conversely, each n-tuple (y1,--- ,yn)t € F™ corresponds
to a unique vector yiu' + - -- 4+ y,u” in V. Thus the ordered basis S induces
a correspondence ygs between V' and F"™, which is one-to-one (u # v implies
ys(u) # ys(v), equivalently, ys(u) # ys(v) implies u # v) and onto (for every
(Y1, ,yn)t € F™ there is at least one u € V). It is also easy to observe that

1. ys(u+v) =ys(u) + ys(v) forallu, v eV
2. ys(au) = ays(u) for all scalars o and v € V, and
3. ys(u)=0€ F*ifand only if u =0 € V.

Hence, the correspondence yg between V and F" preserves the vector space
operations of vector addition and scalar multiplication. This mapping yg :
V — F™ is called an isomorphism or coordinate isomorphism, and the spaces
V and F™ are said to be isomorphic or coordinate isomorphic. One of the
major advantages of this concept is that linear dependence and independence,
basis, span, and dimension of U C V can be equivalently discussed for the
image set ys(U).

Example 10.1. In R" the coordinates of a column vector relative to the

ordered basis {e!, - €™} are simply the components of the vector. Similarly,
the coordinates of a polynomial ag + a1z + --- + a,_12" ! in P, relative to
the ordered basis {1,z,---,2" "'} are (ag, a1, ,an—1)".

83
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Example 10.2. In view of Example 6.1, we have

13 47 21
28( L3, 1)+ 28( 123)-i—28

and hence (13/28,47/28,21/28)" are the coordinates of the vector (0,1,4)
€ R3 relative to the basis {(2,3,1)%,(-1,2,3), (1, -5, -2)}.

(1 =9, — ) = (07174)t

Now let S = {ul,--- ,u"} and T = {v!,--- ,v"} be two ordered bases
of n-dimensional vector space (V, F'). Then, there are unique scalars a;; such
that

n
= > aiu’, j=1,--,n. (10.1)
i=1
Let (x1,--- ,2,)" be the coordinates of a given vector u € V with respect to

the ordered basis T. Then, we have
n
= > o,
j=1

and hence from (10.1) it follows that

)

n
E : aijTj)u

11¢=1

M:

J

M:

.
I

n

NgE

Qi T;
i=1 \j=1
Now since the coordinates (y1,- -+, y,)? of u with respect to the ordered basis
S are uniquely determined, we find
n
= Y agxj, i=1,-,n, (10.2),
j=1

which is exactly the same as (5.1) ((5.2) in matrix notation) with m = n.
Since S and T are linearly independent sets, y = (y1,- -+ ,y»)? = 0 if and only
if x = (z1,--- ,2,)" = 0. Thus from Corollary 5.1 it follows that the matrix
A in (10.2) is invertible, and

r = Aly. (10.3)

In terms of coordinate isomorphisms, relations (10.2) and (10.3) for any
w € V can be written as

ys(u) = Azr(u) and  zr(u) = A 'ys(u). (10.4)
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We summarize the above discussion in the following theorem.

Theorem 10.1. Let S = {u',---,u"} and T = {v!,--- ,v"} be two
ordered bases of an n-dimensional vector space (V, F'). Then there exists a
unique nonsingular matrix A such that for every vector u € V relations (10.4)
hold.

The matrix A in (10.4) is called the transition matriz. A converse of The-
orem 10.1 is the following result.

Theorem 10.2. Let S = {ul,---,u"} be an ordered basis of an n-
dimensional vector space (V, F'), and let A € M™*" be a nonsingular matrix
with elements in F. Then there exists an ordered basis T' = {v!,--- 0"} of
(V, F) such that for every vector u € V relations (10.4) hold.

Proof. It suffices to show that vectors v/, j = 1,---,n defined by the
equations in (10.1) form a basis of (V, F). For this, let A=' = B = (b;5), so
that in view of (3.1) — (3.3) and (4.1), we have

ijkvj = ijk (Z aijui>
j=1 =1

Jj=1
n n

= E E aijb]k u
j=1 \i=1

= uk.

Thus, the subspace spanned by the set T contains S, and hence is equal to
V. Therefore, T is a basis of (V, F'). From the definition of T" and Theorem
10.1 it is clear that ys(u) = Azp(u) holds. This also implies that zp(u) =
Alys(u). H

The equation (10.1) is the same as
(U{?'“ 7,ng) = alj(u%v"' vu;) +"'+anj(u?7"' , Uy ) (10.5)

and hence the j-th column (aij,- -+ ,an;)" of the matrix A in Theorem 10.1 is
the solution of the linear system

ujay; + - tufan; = vf

ubarj + - +ula,; = vl.
Thus the matrix A is the solution of the matrix linear system

UA =V, (10.6)

where U = (u]), A= (a;), and V = (v).
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Example 10.3. In R? consider the ordered bases S = {(2,3,1), (-1,
2,3)%,(1,-5,-2)"} and T = {(1,1,0), (0,1, 1)%,(1,0,1)*}. For these bases the
matrix linear system (10.6) is

2 -1 1 ain a1z @13 1 01
3 2 -5 a21 Q22 A923 = 1 1 0
I3 =2 as as ass 01 1
Thus from Example 6.6 it follows that
11 1
a1l aiz  a13 28 28 28 1 0 1
_ 1 5 13
G21 a2 a23 = 38 38 38 110
as1 as2 as3 1 _1 1 0 1 1
1 1 1
12 4 14
28 28 28
— _4 8 14
= 28 28 28
14
0 0

Now consider the vector (0,1,4)" € R3 for which the coordinates (1, z2,3)"
relative to the basis T are (—3/2,5/2,3/2)" . Indeed, we have

_§(17170)t + g

5 (0,1,1)f+§(1,0,1)t = (0,1,4)".

2

The coordinates (y1,y2,y3)" for (0,1,4)" relative to the basis S now can be
obtained by using (10.4) as follows

12 04 1 3 13
Y1 28 28 28 2 28
— _4 8 14 5 — 47

Y2 = 28 28 28 2 = 28 |
Ys 14 3 21
0 0 53 2 28

which are the same as those obtained in Example 10.1.

Example 10.4. In (Ps, R) consider the ordered bases S = {1, z,2%} and
T = {1,1+ 2,1 + z + 2?}. For these bases, (10.5) with j = 1,2, 3 gives the
system

1 = a1 (1) +a(2) +azi(2?) = 1(1) + 0(z) + 0(x?)
1+z = a2(l)+ag(@) +az(@?) = 1(1) + 1(z) + 0(z?)
1+(L’+.’E2 = a13(1)+a23(x)+a33(x2) = 1(1)+1($)+1(.’E2)

Thus the matrix A and its inverse A~! in (10.4) for these ordered bases are

111 1 -1 0
A= 01 1|, At= [0 1 -1
00 1 0 0 1

In particular, consider the polynomial P(x) = a + bz + cx? for which the
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coordinates (y1,¥2,ys3)! relative to the basis S are (a,b,c)t. The coordinates
(21,2, 23)! for (a,b,c)t relative to the basis T now can be obtained by using
(10.4) as follows:

T 1 -1 0 a a—2b
To = 0 1 -1 b = b—ec
T3 0 0 1 c c

Therefore, the polynomial Py(x) = a + bz + cx? with respect to the basis T is
Py(x)=(a—b)+ (b—c)(1+z)+c(l+x+2?).

Problems

10.1. Find the coordinates of the vector (a,b,c)! € R? with respect to
the following ordered bases:

(i) {(1,1,5)%(1,-1,3)%,(7,2,1)"}
(H) {(17 _17 3)t7 (17 17 5)t7 (77 27 1)t}

10.2. Find the coordinates of the vector (a,b,c,d)! € R* with respect to
the following ordered basis: {(1,0,0,4)%,(0,0,0,3),(0,0,2,5)%, (5,4,0,0)t}.

3
10.3. Find the coordinates of the matrix < d) with respect to the

{1 9)(2 3¢ )¢ 9}

10.4. Find the coordinates of the polynomial P3(z) = a+ bz +cx? +dx? €
(P4, R) with respect to the following ordered bases:

(i) {Ll+z,1+x+2%1+2+22+23}
(i) {1,(1—2z),(1—2)*(1—x)}

10.5. In R? consider the ordered bases S = {(1,0,1)%,(—1,0,0)%, (0,1, 2)}
and T = {(—1,1,0)%, (1,2, —1)",(0,1,0)"}. For these bases compute the tran-
sition matrix and use it to find the coordinates of the vector (7,3,4)" with
respect to each of these bases.

10.6. In the vector space of all complex-valued functions on the real line,
consider the ordered bases S = {1,e", e~} and T = {1,cosx,sinz}. For
these bases compute the transition matrix and use it to find the coordinates
of the function 3 + 5 cosz + 7sinx with respect to the basis S.

10.7. Counsider the vector space (P, R) with the ordered basis S =
{1,z,--- 2”1}, Show that
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(i) T ={Li(z), -+ ,Lp(x)}, where

_ o m) @ ma)(@ = @) - (2 2)
(i —21) (g — 2im1) (X5 — Tig1) - (T — 2n)

and 1 < --- < x, are points in R, is also a basis for (P,, R)
(ii)  the transition matrix for changing the basis S to T' is the Vandermonde

matrix given in Example 3.5.

10.8. In Theorem 10.2, let S = {(5,0,3)*,(3,5,7)%, (—1,—4,11)"} and

11 3 4
A = 19 6 5
21 7 8

Find the ordered basis T

10.9. In Theorem 10.2, let T = {(5,0,3), (3,5,7)", (-1, —4,11)"} and A
be as in Problem 10.8. Find the ordered basis S.

Answers or Hints

10.1. (i) =5(—7a+ 20b+ 9c,9a — 34b+ 5¢,8a + 2b — 2c)".
(i) 2 (9a — 34b+ 5, —Ta + 20b + 9c, 8a+2b—2c)t.
10.2. (a — 3b,—3a+ 3b— 2c+ 3d, 3¢, $b)".

10.3. 1(a+b—c+d,a+b+c+d, a—b+c+d—2d)
10.4. (i) (a—0b,b—c,c—d,d)".

(i) (a+b+c+d,—b—2c—3d,c+3d,—d)".

-2 -5 -2
10.5. | -1 —6 -2 |, (=11,-4,22)L, (-2,-9,3).
1 2 1
0 0
10.6. [ 0 & —% |, (3,57, (3,357, 3L,
o 1L i
2 2

10.7. (i) See Problem 1.5.

(i) 2/ =alLi(z)+ - +a)Ly(x), j=0,1,---,n—1.
10.8. T = {(91,11,397), (26, 2, 128)* ,(27 -7, 135) }
10.9. S = {35(—83,—263, —213)", 25(46, 76, —114)", 35(9, 69, 219)"}.
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Rank of a Matrix

The rank of a matrix has been briefly defined in Chapter 5. Here we shall
give another equivalent definition of the rank and show how this number is
directly attached to the dimension of the solution space of the homogeneous
linear system (5.3).

For a given matrix A € C™*™ its rows (columns) generate a subspace
of C™ (C™), called the row space (column space) of A, and denoted as
R(A) (C(A)). It is clear that two row (column) equivalent matrices have the
same row (column) space. The row (column) rank of the matrix A is the di-
mension of the row (column) space of A.

Theorem 11.1. For any matrix A € C™*" the row rank is equal to its
column rank. (This common rank is called the rank of A, and is denoted as

r(4).)

Proof. Let v',---,v™ be the row vectors of A, where v* = (a;,
“ @), © = 1,--- ,m. Let r be the row rank of A, i.e., dim R(A) = r.
Further, let the set of vectors {w!,--- ,w"} form a basis for the row space of

A, where w' = (b;1, -+ ,bin), i =1,--- 7. It follows that
Vo=t e, i=1,---,m (11.1)

where ¢;; are uniquely determined scalars. Now equating the coefficients in
(11.1), we get

aij = b+ +cipbyy, i=1,---m, j=1,---,n,
which gives
atj 11 Cir
:blj ++br] ) ]Zlvvn
Amj Cm1 Cmr

Hence, every column of A is a linear combination of r vectors. Thus, the di-
mension of the column space of A is at most r, i.e., dim C(A4) < r = dim R(A).
In exactly the same way we can show that dim R(A) < dim C(A). Therefore,
the row and column ranks of A must be equal. |

89
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Corollary 11.1. r(A) = r(A4) = r(AH).
Theorem 11.2. Let A € C™ ™ and B € C"*P. Then, r(AB) <
min{r(A),r(B)}.
Proof. Let A = (a;j), B = (bi;) and AB = C = (c;5). Since ¢;; =
Sor_y aikbrj, i=1,---,m, j=1,--- pit follows that

C1j a1 A1n

= : bij+ -+ : buj, j=1,---,p
Cmj am1 Cmn

and hence the columns of AB are dependent on the columns of A; and
similarly, the rows of AB are dependent on the rows of B. Thus, we have
C(AB) C C(A) and R(AB) C R(B), and this immediately implies that
r(AB) < r(A) and r(AB) < r(B). Combining these, we obtain r(AB) <
min{r(A),r(B)}. 1

Corollary 11.2. 1. If one matrix in the product AB is nonsingular, then
the rank of AB is equal to the rank of the other matrix.

2. If P and @ are nonsingular matrices, then r(PAQ) = r(A).

Proof. 1. Let the matrix A be nonsingular. From Theorem 11.2 it follows
that r(AB) < r(B), and since B = A1 (AB), r(B) < r(AB). Thus, r(AB) =
r(B).

2. Since P and @ are nonsingular r(PAQ) = r(AQ) =r(4). 1

Theorem 11.3. Let 4, B € C"™*". Then, r(A+ B) < r(A) +r(B).

Proof. Let A= (a;;), B= (bi;), and let {u!, - uP} and {v!, -+ v9} be
the bases of C'(A) and C(B), respectively. Then, it follows that

ayj +b1j aij blj

_|_

amj + bmj Amj binj

p q

§ QiU + § Bijvv J:17"'7n'
i=1 i=1

Thus, the j-th column of A + B can be expressed as a linear combination of
the p + ¢ vectors u',--- ,uP,v!,---  v?. Hence, the column space of A + B

is generated by the linear combination of these vectors. Therefore, it follows

that
P q
dimC(A+ B) = dim {Z siu' + Ztivi} ,
i=1 i=1
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and hence r(A + B) < p+ q. Clearly, 7(A + B) = p + q if the set of column

vectors {ul, - ,uP vl --- w7} is linearly independent. |

Corollary 11.3. r(A+ B) > |r(4) — r(B)|.

Proof. Clearly, r(A) = r(A+B—B) < r(A+B)+r(—B) = r(A+B)+r(B),
and hence r(A + B) > r(A) — r(B). Similarly, we have r(A + B) > r(B) —
r(A). 1

Now recall that for a given matrix A € C™*"™ the null space N'(4) C C"
is a vector space. The dimension of N(A) is called the nullity of A and is
denoted by n(A).

Theorem 11.4. If A€ C™*", then r(A) + n(A) = n.

Proof. Let B be a row reduced echelon form of the matrix A. Since the
rank of the matrix A is r(A), first r(A) rows of B will be nonzero, i.e., B
will have r(A) pivot elements. Thus the linear homogeneous system (5.3) in
its equivalent form Bz = 0 will have r(A) basic variables, and n — r(A) free
variables. Hence, the system (5.3) has a set of n — r(A) linearly independent
solutions, i.e., n(A) =n—r(4). N

Corollary 11.4. r(A)+n(A") =

Corollary 11.5. If 7(4) = n < m, then n columns of A are linearly
independent, and x = 0 is the only solution of the homogeneous linear system
(5.3).

Example 11.1. The row and column echelon form of the matrix

1 2 1 5
A = 1 2 -1 1
2 4 =30
are
1 2 1 5 1 0 0 0
0 0 1 2 1 2 0 0
0 0 0 O 2 5 00
Thus, r(A) = 2, the set {(1,2,1,

b

5),(0,0,1,2)} generates R(A), and the set
{(1,1,2)%,(0,2,5)"} generates ( ) From the row echelon form it also follows
that the set {(—2, 1,0,0)% (=3,0,—2,1)'} generates N'(A), and n(A4) = 2.

Q

Example 11.2. For the matrix A in Problem 6.1(i), n = 4,r(A) =
3,n(A) = 1. For the matrix A in Problem 6.1(ii), n = 5,7(A4) = 4,n(A) = 1.
For the matrix A in Problem 6.1(iii), n = 6,7(A) = 3,n(A) = 3.

Now for a given matrix A € M™*™ let there exist a matrix L €
Mm>m (R € M™ ™) such that LA = I (AR = I). Then, L (R) is called
a left inverse (right inverse) of A.
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Example 11.3. Consider the matrices

0 1
i (308 s (0o
1 -1

Since AB = I, B is a right inverse of A, and A is a left inverse of B. We also
note that the matrix

1 0
0 1
0 0

is also a right inverse of A. Hence right as well as left inverse of a given matrix
is not unique.

Theorem 11.5. If z is a solution of the nonhomogeneous system (5.2)
and the matrix A has a left inverse L, then x = Lb. If A has a right inverse,
then (5.2) has a solution z = Rb.

Proof. Notice that 2 = Iz = (LA)x = L(Ax) = Lb, and A(Rb) = (AR)b =
Ib=b. |

Theorem 11.6. Let A € M™*" and r = r(A). Then A has a right inverse
R if and only if r = m and m < n.

Proof. We note that finding a right inverse matrix R = (r;;) of order
n X m is equivalent to solving the matrix linear system AR = I for which the
augmented matrix is (A|I). Now from Theorem 5.12, we know that AR = I
has a solution if and only if r(A) = r(A|I). But, since r(A|l) = r(I) = m the
matrix A has a right inverse if and only if 7(4) = m, and thus m <n. 1

Theorem 11.7. Let A€ M™*" and r = r(A). Then A has a left inverse
L if and only if r = n and n < m.

Proof. The proof follows from the fact that LA = T if and only if A*L? =
1. [ |

Thus, to find the left inverse of A we can consider the augmented matrix

(A[I).

Example 11.4. To find the right inverse R of the matrix

1 2 3 4
A = 2 3 45 (11.2)
0 4 6 9
we consider the augmented matrix
1 2 3 471 0 0
(AlI) = 2 3 4 5|01 0],
0 4 6 9|0 0 1
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which in row canonical form appears as

100 -3 1 o0 -1
010 0[-6 3 1 (11.3)
001 3| 4 -2 -4

Let (21, 22,3, 74) be the first column of R. Then, from (11.3) it follows that

1 3
x1—§x4:1, To = —6, 1’3-1—51'4:4,

which gives (14 %a, —6,4— %a, a)t. Similarly, the second and the third columns

of R are given by (£b,3,—2—32b,b)" and (-3 + 3¢, 1, —3 — 3¢, ¢)', respectively.

2
Thus, the right inverse R of the matrix A is

1+ 3a b —%+3cC
—6 3 1
11.4)
3 3 13 ) (
4—§a —2—§b —§—§C
a b c

where a,b,c € R.

Example 11.5. In view of the above considerations, left inverse L of the
matrix B = A’, where A is the same as in (11.2), is the matrix given in (11.4).
Problems

11.1. For the following matrices find the rank, a basis for the row space,
a basis for the column space, and a basis for the nullspace

123 4 7 1 35 7 2 4
G [ 345 6 9| (i 2 635 6 9
5 7 9 11 13 -1 -3 1 3 5 4

11.2. Let A € R™*™. Show that N'(A'A) = N'(A) and N (AAY) = N(AY).

11.3. Let A € R™*". Show that r(A) = r(A") = n if and only if r(A'A) =
n, C(A?) = C(A*A), and r(A4) = m if and only if r(4A?) = m.

11.4. Let A € R™*™ and B € R"*™ with n < m. Show that the matrix
AB is singular.

11.5. Let A € R™*". Define Y = {y € R™ : y = Ax for at least one x
€ R™}. Show that Y = C(A). The subspace Y C R™ is called the range of
the matrix A.

11.6. Let A € R™*™. Show that A has infinitely many right (left) inverses
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if r(A) =m < n (r(A) =n <m). When does A have exactly one right (left)
inverse?

11.7. Let A € R™*™. Show that A has a right inverse if and only if the
columns of A span R™.

11.8. Let A € R™*". Show that A has a left inverse if and only if A* has
a right inverse.

11.9. Let A € R™*™. Show that if the right inverse R of A exists, then
R = A'(AAYH)!

11.10. Let A € R™*™. Show that if the left inverse L of A exists, then
L= (AA)"1AL

11.11. Compute right inverse for the following matrices

12 37 5 3 2 1
(i) -1 4 -2 5 G [ 4 2 1 3.
37 0 3 1535

11.12. Compute left inverse for the following matrices

11 1 1 -3 5
2 3 . 2 4 —2
@ 3 4 7 135 5 o
45 6 0o 3 7

Answers or Hints

11.1. (i) r(A) =3, {(1,0,—1,—2,0), ( ,1,2,3,0),(0,0,0,0,1)}, {(1,0,0)t,
(0,1,0)%, (0,0, 1)}, {(1,-2,1, 0 J0)%,(2,-3,0,1,0)'}.

(i) r(A) =3, {(1,3,5,7,2,4),(0,0,7,9,~2,—1),(0,0,0,16,61,62)},
{(1,0,O)t,(0,1,0)t,(0,07 )} {(-3,1,0, O,O,O)t,(—20,0,83,—61,16,0)t7
(—40,0,82,—62,0,16)"}

11.2. 2z € N(A) = Az = 0 = A'(Az) = 0 = z € N(A'A) = N(A) C
N(A'A). Next, x € N(A'A) = A'Ar = 0 = 2'A'Az = 0 = (Ar)'(Azx) =
0= Az =0=2 € N(A) = N(4) C N(A'A). For the second part, change
A to A'.

11.3. A € R™*™ = A'A € R™™". By Theorem 11.4, 7(A) + n(A) = n and
r(A'A) + n(A*A) = n. From Problem 11.2, n(A) = n(A*A). Hence, r(A) =n
if and only if 7(A*A) = n. C(A") = C(A'A) is equivalent to r(A?) = r(AA).
The third part is similar.

11.4. AB € R™*™. From Theorem 11.2, r(AB) <n < m.

11.5. See Problem 5.2.

11.6. If for A € R™*"™, r(A) = m < n, then from Theorem 11.6, A has a



Rank of a Matriz 95

right inverse R. Thus from Theorem 5.12, r(A) = r(A|R) = m < n. Now use
Theorem 5.10.
11.7. From Theorem 11.6, the matrix A has a right inverse if and only if
ed, j=1,--- ,m are in C(A).
11.8. There exists L such that LA = I if and only if A*L* = I, i.e., if and
only if L' = R such that A*R = 1.
11.9. Since R exists, from Theorem 11.6 it follows that r(A) = m. Now from
Problem 11.3, we have r(AA?) = m. Since AA" is an m x m matrix, (4A%)~1
exists, and hence (AA!)(AAY) "L =1.
11.10. Similar to Problem 11.9.

—14 +155a —21+ 1550 16 + 155¢

1 6 — 90a 9-90b  1-—90c
11.11. (i) 5 19 — 120a 1—120b6 —6 — 120c
55a 55b 85¢

1+a 1+5b -1+c

(i) l —11 —43a 13 —43b 3 —43c
8 18 +58a —22+ 58 —2+ 58¢
8a 8b 8¢
5—4a —-3-—2a 1 2a
—2—4b 4-2b -2 2b
—1—4¢ -1-2c 1 2¢
18 + 44a 31+ 137¢ —14 —106a 38a
(i) — —10+44b —-13+137b 12 —106b 38b
—2+44¢ —-14+137¢ 10 — 106¢c  38¢
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Chapter 12

Linear Mappings

In this chapter we shall extend some earlier results to general linear mappings
between two vector spaces. These mappings are of general interest and have
wide applicability, particularly because they preserve the additive structure of
linear combinations. Further, often it is possible to approximate an arbitrary
mapping by a linear mapping, which can be managed rather easily.

Throughout what follows, unless specified, we shall consider the finite
dimensional vector spaces V and W over the same field F. A mapping
L:V — W is called a linear mapping (also known as linear transformation,
and linear operator) if and only if it satisfies the following two conditions:

1. For every pair of vectors u,v € V, L(u+v) = L(u) + L(v).
2. For any scalar ¢ € F, and vector v € V, L(cu) = cL(u).

Thus the mapping L is linear if it preserves the two basic operations of
a vector space, namely, the vector addition and the scalar multiplication. In
particular, the second condition implies that L(0) = 0. Clearly, the above
two conditions can be unified as follows: L : V' — W is a linear mapping if
and only if for any pair of scalars «, 3 € F and any pair of vectors u,v €
V, L(ou + pv) = aL(u) + SL(v). An immediate extension of this condition
gives L(ciul + -+ -+ cpu™) = c; L(ut) +- - -+ ¢, L(u™) for all ¢; € F and u® € V.
If W =V, then L is said to be a linear mapping on V.

Example 12.1. For a given matrix A € M™*" the mapping L4 : F™ —
F™ defined by L 4(u) = Au is linear. Indeed, from the properties of matrices,
for all u,v € F™ and ¢,d € F, we have

La(cu+dv) = A(cu+dv) = cAu+dAv = cLy(u) + dLa(v).

In particular, when

A — (cosng —sinq5>

sin ¢ cos ¢
the mapping L4 : R? — R? rotates the xy-plane through an angle ¢.

Example 12.2. Consider V as the infinite dimensional space of all real
integrable functions on an interval J. Then, L = [ ; is a linear mapping.

97
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Indeed, for all a, 8 € R and u,v € V, we have

L(au + pv) z/J(ozu(x) + ﬂv(x))dx:a/Ju(x)dx—i— B/Jv(x)dx:aL(u) + BL(v).

Similarly, on the space V of all real differentiable functions on an interval J,
the mapping L = d/dz is linear.

Example 12.3. The projection mapping L : R?® — R? defined by
L(z,y,z) = (x,y,0)! is linear. However, the translation mapping L : R® — R3
defined by L(z,y,2) = (z + 1,y + 2,2 + 3)! is not linear (nonlinear), because
L(0) = L(0,0,0) = (1,2,3)! # 0. The mapping L : R®> — R? defined by
L(z,y,2) = (Jz|,y2)? is also nonlinear.

The linear mappings zero (for every u € V, L(u) = 0) and identity (for
every u € V, L(u) = u) are respectively denoted as 0 and I.

Theorem 12.1. Let {u',---,u"} be a basis of V. Then, for any vectors

w!,--- ,w™ € W there exists a unique linear mapping L : V — W such that

Lu)=w! i=1,---,n.

Proof. Let u € V. Since {u',---,u"} is a basis of V, there exist unique
scalars c1,- -+, ¢, such that u = cjul + -+ + c,u™. We claim that L(u) =
cw' + -+ + c,w" is the required mapping. For this, first we note that L is
well-defined because ¢;, i = 1,--- ,n are unique, and since v’ = Qu' + --- +

0w =1 + 1u® + Ou'tt 4 -+ + 0u”, we have L(u') = w®, i = 1,--- ,n. Next, to
show that L is linear, let v = bju! + -+ + by,u™ € V and k € F, then since
u+v = (c1+by)ut+- -+ (cp+by)u”, and ku = (key)ul +- - -+ (ke,)u™, we have
L(u+v) = (c1+b))w' 4+ -+ (¢ +bp)w™ and L(ku) = (kep)w' 4 - -+ (ke )w™,
and hence it follows that L(u+v) = L(u)+ L(v) and L(ku) = kL(u). Finally,
to show the uniqueness of L, let L :V — W be another linear mapping
such that L(u®) = w', i = 1,--- ,n. Then, for every u € V we find L(u) =
L(ciu' + -+ cqu™) = et L(u) + -+ en L(u™) = crw' + - + c,w™ = L(u),
which implies that L = L. |

Now we shall extend the definition of isomorphism given in Chapter 10 to
general vector spaces. The spaces V and W are said to be isomorphic, written
as V ~ W, if there exists a one-to-one and onto linear mapping L : V — W.
This mapping L is called an isomorphism between V and W. It is clear that
~ is an equivalence relation, i.e., 1. V>~ V. 2. If U ~V, then V ~ U. 3. If
U~V and V ~ W, then U ~ W.

Theorem 12.2. V ~ W if and only if dim V = dim W.

Proof. Let V and W be n-dimensional vector spaces. Then, in view of
Chapter 10, V. ~ F™ and W ~ F™ Now V ~ W follows from the fact
that ~ is an equivalent relation. Conversely, if V ~ W, then there exists an
isomorphism L : V — W. Assume that dimV = n, and let S = {u!, -+ u"}
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be a basis of V. It suffices to show that T = {L(u'),---, L(u™)} is a basis for
W. For this, let w € W, then w = L(u) for some u = ciul + - + c,u™ € V.
Thus, we have

w = L(u) = Liciu* +---+cpu™) = e L(u') + -+ c, L(u™),

and this means that T spans W. Now suppose that ¢; L(u')+- - -+¢, L(u™) = 0.
Then, L(ciu® + -+ + c,u™) = 0. Since the mapping L is one-to-one it follows
that cyul +--- + c,u™ = 0. However, since S is linearly independent, we have
¢y =-+- = ¢, =0. This means that T is also linearly independent. [ |

Example 12.4. Since the spaces P, and R2*? are of dimension four, in
view of Theorem 12.2, Py ~ R?*2, In fact, an isomorphic mapping L : Py —
R?%2 can be defined by mapping a basis of P4 onto a basis of R2*2. For this,
let S = {1,x,2% 23} be a basis of Py, and

e ) () () (50

be a basis of R?*2, and define L : S — T as follows

=g o) s@=(g ).
v =(90) ze=(0 7).

Then, it follows that
L(a + bz + ca® + dz®) = < (Cl cbi ) ,

i.e., with this isomorphism the polynomial a+bx+ cx?+dx> acts like a matrix.

Once again, let L : V — W be a linear mapping. The set R(L) = {w €
W : L(u) = w forsome u € V} is called the range of L, and the set
N(L)={ueV:L(u) =0} is called null space, or the kernel of the mapping
L. Clearly, N (L) extends the definition of null space of a matrix A given in
Chapter 5. The rank and the nullity of L are respectively defined by

rank(L) = dimR(L) and nullity(L) = dimN(L).

The following propositions can be established rather easily:
1. R(L) is a subspace of W.
2. N(L) is a subspace of V.
3. If ul,--- ,u™ span V, then L(u'),---, L(u") span R(L).

The linear mapping L : V — W is said to be singular if and only if there
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exists 0 # u € V such that L(u) = 0. Thus, L is nonsingular if and only if
N(L) = {0}.

Theorem 12.3. Let L:V — W be a linear mapping. Then, L is one-to-
one if and only if N (L) = {0}, i.e., L is nonsingular.

Proof. Since L(0) = 0, it follows that 0 € AV(L). If L is one-to-one, then
0 € V is the only vector with image 0 € W. Thus, we have N (L) = {0}.
Conversely, let V(L) = {0}. If L(u) = L(v) for u,v € V, then L(u — v) = 0.
But, this implies that u — v = 0, i.e., u = v. Hence, L is one-to-one. |

Corollary 12.1. The equation L(u) = w has at most one solution if and
only if N'(L) = {0}.

Corollary 12.2. Let A be an m x n matrix and define 7 : R* — R™ by
Tx = Az. Then, T is one-to-one if and only if the columns of A are linearly
independent.

Example 12.5. The mapping L : R? — R? defined by L(z,y) = (27 +
y,x + 2y)t is nonsingular, i.e., one-to-one. For this, it suffices to show that
N(L) = {0}, i.e., the only solution of (2z + y,x + 2y)! = (0,0)*, which is
equivalent to the system 2z +y = 0, x+ 2y = 0 is the zero solution. However,
the mapping L : R* — R3 defined by L(z,y, z,w) = (x + 3y + 4z + 2w, 3z —

5y + 22 + 2w, 2z — y + 32 + 2w)? is singular. Indeed, (1, 15, —12,1)* € N(L).

Theorem 12.4. Let L : V — W be a linear mapping. Then, dimV =
dim R(L) + dim N (L).
Proof. Suppose dim (L) = r and {u,--- ,u"} is a basis of N'(L). Further,
suppose dim R(L) = s and {w!,---  w®} is a basis of R(L). Since L is a linear
mapping for each w’ € R(L) there exists v/ € V such that L(v?) = w. Tt
suffices to show that S = {u!,--- ,u",v!,--- v®} is a basis of V. For this,
let w € V. Then, since L(u) € R(L) there exist scalars ¢; such that L(u) =
crw! + -+ cowd. Set 4 = cjv! + -+ + ¢sv° — u. Then, it follows that
L(@) = L(civ' + -+ +csv® —u)
= cL(vY) + -+ csL(v®) — L(u)
= cw!+--+cw®—L(u) = 0.

But this implies that @ € N'(L), and hence there exist scalars a; such that
= aut+--+au = ot 440 —u,

which gives
u = cot 4+ vt —aut 4+ —apu”
and hence the set S spans the space V. To show that S is linearly independent,

let
zrut 4 U’ vt eyt =0, (12.1)
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where x;,y; € F. Then, we have

0 = L0) = L(zyut+- - +zu” +y0t +- - +ys0°)

xiL(ut) + -+ 2. L(u") +y1 L(vY) + - - + ys L(v*).
(12.2)

However, since u € N (L), L(u*) =0, and L(v?) = w?, from (12.2) it follows

that yyw!+- - -+ysw® = 0. But, since w’ are linearly independent, each y; = 0.

Thus, (12.1) reduces to ziul + -+ zu” = 0. However, since ut are linearly

independent, each x; = 0. |

For the linear mappings L : V — W and G : V — W the sum mapping
L+ G :V — W, and the scalar product mapping c¢L : V — W, ¢ € F are
respectively defined as (L + G)(u) = L(u) + G(u) and (cL)(u) = cL(u). It is
clear that the mappings L + G and cL are also linear. The collection of all
mappings from V to W, denoted as Hom(V, W) (where Hom stands for homo-
morphism), with the above operations of addition and scalar multiplication
forms a vector space. For this space the zero element is the zero mapping,
denoted as 0 from V to W.

Theorem 12.5. Suppose that dimV = n and dimW = m. Then,
dim Hom(V, W) = nm.

Proof. Let S = {ul,--- ,u"}and T = {w!, - ,w™} be ordered bases for V'
and W, respectively. For each pair of integers (¢,5), i =1,--- ,m, j=1,---,n
we define a linear mapping L*/ from V to W as follows:

i s O lfS ] i
Lo (uf) = {w ifsig,} = Syu'.

In view of Theorem 12.1 such a unique linear mapping exists. Clearly, the set
{L"7} contains exactly nm elements, and hence it suffices to show that it is a
basis for Hom(V, W). For this, let L € Hom(V, W) be an arbitrary mapping.
Suppose L(u*) =v*, k=1,---,n. Since each v*¥ € W is a linear combination
of w?, there exist scalars a;;, such that

oF = apgw' + -t agew™, k=1, n.

Consider the linear mapping
m n
5
i=1 j=1
Clearly, we have

Gu™) = izn:aijLi’j(uT) = iahwi =" = L), 7=1,---,n.
i=1

i=1 j=1
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But, this from Theorem 12.1 implies that G = L. Hence, L is a linear combi-
nation of L, and this means that {L%/} generates Hom(V,W). Finally, we
need to show that {L*/} is linearly independent. For this, let b;; be scalars

such that o
SSn -0
i=1j=1
Then, for u*, k=1,--- ,n we have
i=1 j=1 i=1
But since w’ are linearly independent, we find b, = 0, 4 = 1,--- ,m, k =
1,---,n. [ |

Now suppose that V, W, and U are vector spaces over the same field F. Let
L:V — W and G : W — U be linear mappings. We define the composition
mapping Go L : V. — U by (G o L)(u) = G(L(u)). Since for any scalars
c1,c2 € F and any vectors u,v € V,

(GoL)(cru+ cov) = G(L(ciu+ cov)) = G(erL(u) + e L(v))
c1G(L(u)) + c2G(L(v))
c1(G o L)(u) + ca(G o L)(v),

the composition mapping G o L is linear.

Problems

12.1. Let M € R™ " be a fixed matrix. Show that the mapping L defined
by L(A) = AM + M A for all A € R™*" is linear.

12.2. Let L : V — W be a nonsingular linear mapping. Show that the
image of any linearly independent set is linearly independent. Is the converse
true?

12.3. Determine if the following linear mappings are singular or nonsin-
gular.
(i) L:R?— R3 defined by L(z,y,2) = 2z + y,2y + 2,2z + x)°
(ii) L :R*— R*defined by L(x,y,2,w) = (2lz + 17y + 7z + 10w, 24z +
22y + 62 + 10w, 6x + 8y + 22 + 3w, 5x + Ty + 2 + 2w)?
(iii) L:R* — R3 defined by L(x,y,z,w) = (x + 2y + 32 + w,x + 3y + 5z —
2w, 3z + 8y + 13z — 3w)*.

12.4. Verify Theorem 12.4 for the mappings given in Problem 12.3.
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12.5. Let V,W, and U be vector spaces over the same field F, and let
L: VW L: VW G:W —U,and G:W — U be linear mappings.
Show that

(i) Go(L+L)=GoL+GolL
(i) (G+G)oL=GoL+GolL
(i) ¢«(GoL)=(cG)oL=Gol(cL), c€eF.
12.6. Let V,W, and U be vector spaces over the same field F, and L :

V. — Wand G : W — U be linear mappings. Show that rank(G o L) <
min{rank(G), rank(L)}.

12.7. Let L : V — W be a linear mapping, and dim V' = dim W. Show
that

(i) if L is one-to-one, then it is onto

(ii) if L is onto, then it is one-to-one.
12.8. Let L:V — W be a linear mapping. Show that

(i) it L is onto, then dimV > dim W
(ii) if L is one-to-one, then dim V' < dim W.

12.9. A linear mapping L : V — W is called invertible if and only if there
exists a unique mapping L~! : W — V such that LoL™!' = T and L~ 'oL = I.

Show that L : V. — W is invertible if and only if L is one-to-one and onto.
Moreover, L~! is a linear mapping, and (L)~ = L.

12.10. Find L1, if it exists, for mappings L given in Problem 12.3.

12.11. Let L be a linear mapping on V. Show that the following are equiv-
alent:

i) N=A{0}
ii) L is one-to-one
iii) L is onto
iv) L is invertible.

12.12. Let V,W,U be vector spaces over the same field F, and let L :
V — W and G : W — U be isomorphisms. Show that G o L is invertible, and
(GoL)™'=L"1toG™!.

12.13. Let L and G be linear mappings on V. Give an example to show
that LoG # Go L.

12.14. The vector space Hom(V, V) is usually denoted as A(V'). Clearly,
the identity mapping I : V' — V belongs to A(V'). Show that
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(i) if dimV = n, then dim A(V) = n?

(i) if L,G € A(V), then LG = Go L € A(V)

(iii) if L,G € A(V) and LG = I, then L is invertible and G = L~!

(iv) it L€ A(V), then L™ € A(V), n=1,2,---

(v) U L,G,HeAV)andcé€ F, then (a) L(G+H)=LG+LH (b) (G+

H)L=GL+ HL (c) ¢(GL) = (¢G)L =G(cL) (d) (LG)H = L(GH).
12.15. Let L and G be linear mappings given by

. axi + bxy . axy + Bro
L(z) = (cxl + dxo > and - G(z) = ( vy + 0T2 >’

where ad — be = |A| # 0. Find the matrix A such that L=(G(z)) = Az.

12.16. Let L : R? — R? be a linear mapping. A line segment between two
vectors u and v in R? is defined by tu + (1 —t)v, 0 <t < 1. A set S in R?
is called convex if for every pair of vectors in S, the line segment between the
vectors is in S. Show that

(i)  the image of a line segment under the map L is another line segment

(ii) if L is an isomorphism and S is convex, then L(S) is a convex set.

Answers or Hints

12.1. Verify directly.

12.2. Suppose ul,--- ,u™ € V are linearly independent, and c¢; L(u') + - - +
enL(u™) = 0. Then, L(ciu' +---+c,u™) = 0. But since, N (L) = {0} we have
ciut 4 -+ + cpu™ = 0, which implies ¢; = -+~ = ¢, = 0.

12.3. (i) Nonsingular.

(ii) Singular.

(ii) Singular.

12.4. (i) dimV =3, n(L) =0, dim R(L) = 3.

(ii) dimV =4, n(L) =1, dimR(L) = 3.

(ili) dimV =4, n(L) =2, dimR(L) = 2.

12.5. Verify directly.

12.6. L(V) € W, and hence G(L(V)) C G(W). Thus, rank(G o L) =
dim[G(L(V))] < dim[G(W)] = rank(G). We also have rank(G o L) =
dim[G(L(V))] < dim[L(V)] = rank(L).

12.7. (i) One-to-one implies N'(L) = {0}. Thus dim V = dim W = dim R(L),
and hence L is onto.

(ii) Onto implies R(L) = W. Thus dimV = dim W = dim R(L), and hence
N(L) = {0}.

12.8. (i) In Theorem 12.4, dim R(L) = dim W and dim A/ (L) > 0.

(ii) In Theorem 12.4, dim N(L) = 0 and dim R(L) < dim W.
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12.9. Let L be invertible. Suppose L(u) = L(v) for u,v € V. Then
L= Y(L(u)) = L™Y(L(v)), so u = v, i.e., L is one-to-one. If w € W, then
L(L7Y(w)) = w, so if we let L~!(w) = u, then L(u) = w. Thus L is onto.
Conversely, suppose L is one-to-one and onto. If w € W, then since L is
onto, w = L(u) for some u € V, and since L is one-to-one, u is unique.
We define G : W — V by G(w) = u. Clearly, L(G(w)) = L(u) = w, so
that L o G = I. Also, since G(L(u)) = G(w) = u we have Go L = 1I.
Thus G is an inverse of L. To show its uniqueness let G : W — V be such
that Lo G = I and G o L = I, then L(G(w)) = w = L(G(w)) for any
w € W. But since L is one-to-one, we conclude that G(w) = G(w). Hence,
G = G. In conclusion, G = L~1. To show L~ is linear, let w!,w? € W
where L(v') = w! and L(v?) = w? for v!,v? € V. Then since for any scalars
c1,c2 € F, L(civ! + cav?) = 1 L(vY) + coL(v?) = cyw! + cow? it follows that
L7 (ciw! + cow?) = vt + cov? = e L7 H(w!) + co L~ (w?). Finally, since
LoL '=Tand L7'o L = I, and inverses are unique, we have (L=1)~! = [.
12.10. (i) §(4a—2b+c,a+4b—2c,—2a+ b+ 4c)".
(i) Does not exist.
(iii) Does not exist.
12.11. Use Theorem 12.3 and Problems 12.7 and 12.9.
12.12. We have (GoL)o (L™ ' oG ) =Go (Lo L™ oGl =Go G =1,
L: V=W G:W-—=U, dmV =m, dimW =n, dimU =p, (L oG 1o
(GoL)=L 1o(Gl'oG)oL=L"1'oL=1
12.13. Consider L(z,y) = (z,—y)" and G(z,y) = (y,z)".
12.14. (i) See Theorem 12.5.
(ii) Verify directly.
(iii) n = rank(/) = rank(LG) < rank(L)
use Problem 12.11. If LL™" = L7'L =
L YLG) =L~ =L\
(iv) Verity directly.
(v)  Verity directly.

1 do—by  dB—bd
12.15. o ( Cetay B+ >
12.16. Use definitions.

n and hence rank(L) = n. Now

<
I, then G = IG = L7'L(G) =
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Chapter 13

Matrix Representation

In this chapter we shall establish the connection between linear mappings
and matrices. Our discussion, in particular, generalizes Theorems 10.1 and
10.2. We shall also introduce the concept of similar matrices, which plays an
important role in later chapters.

As in Chapter 12, unless specified, here we shall also consider the finite di-

mensional vector spaces V and W over the same field F. Let S = {u!,---  u"}
and T = {w!,--- ,w™} be ordered bases for V and W, respectively, and
L :V — W be a linear mapping. Then, for each j = 1,--- ,n there exist
unique scalars a;;, ¢ = 1,--- ,m such that
m
L(Uj) — aljwl 4. +amjwm = Za’ijwl' (131)
i=1
Clearly, (a1, ,am;)" € F™ are the coordinates of L(u”) in the ordered basis

T. Thus, (13.1) implies that the linear mapping L is completely determined
by the scalars a;;. This unique m x n matrix A = (a,;) is called the transition
matriz of L relative to the bases S and T. Now let u = ziu' + - - - + z,u™ be
a vector in V. Then from (13.1) it follows that

L En:xjuj = En:ij(uj)
j=1 j=1

L(u)

n m m n
E Z; E Qi W = E E ai;r; | w'
j=1 i=1

i=1 \j=1

Thus, if
w = L(u) = yrw' + - +ynw™, (13.2)

then we have

Yi = Zaijxj. (133)
j=1

Hence, if (21, ,x,)% are the coordinates of u € V and (y1,--- ,ym)5 are
the coordinates of w = L(u) € W, then
y = Az or  yr(L(uw) = Azg(u). (13.4)

107
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Therefore, each linear mapping L : V' — W can be completely characterized
by the m x n transition matrix A = (a;;) relative to the bases S and T'. Often,
we shall denote this matrix as Agr.

Example 13.1. In (Ps, R) and (P2, R) consider the ordered bases S =
{1,z,2%} and T = {1,x}, respectively. Let L : P3 — Py be the differential
mapping, i.e., L(a + bz + cx?) = b + 2cx. For this mapping, we have

L(1) = 0 = 0(1)+0(x)
Lzy =1 = 1(1)+0(z)
L(x?) = 2x = 0(1)+2(),

and hence the transition matrix relative to the given bases S and T is

010
A‘(002>'

In particular, for the polynomial Py = Ps(x) = 4+ 3z + 7z? we have zg(P;) =

(4,3,7)%, and hence
4
0 3 = 3 .
2 7 14

This immediately gives L(P3) = 3 + 14z.

yr(L(P3)) = <8 (1)

Example 13.2. Let L : R? — R? be the linear mapping defined by
and T = {(1,2)%, (2,1)"}. Since

(@,8) = 5(26-a)(1,2) + 320~ B)(2, 1)’ (13.5
we have

Lu') = (L)' = %(1,2)%%(2,1?

L) = (2,0 = —%(1,2)t+§(2,1)f

L) = (1) = 51,2+ 52,0

and hence the transition matrix relative to the given bases S and T is

A:< )

u = (a,b,c)" = ¢(1,1,1)" + (b —¢)(1,1,0)" + (a — b)(1,0,0)"

W= W
Wk win
W= W

Now since
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from (13.4) it follows that

¢
yr(L(u)) = Azs(u) = A(c,b—c,a—b)' = (c—b—l—%a,b—c—i—%a) .

(13.6)
In view of (13.5), we also have

L(u) = (a+b—c,a—b+c) = (c—b—i—%a) (1,2)t+<b—c+§a) (2,11,

which confirms (13.6).

Conversely, assume that an m xn matrix A is given. Then from the relation
(13.4) we can compute the coordinates yr(L(u)) for the unknown mapping L.
But, then (13.2) uniquely determines the mapping L : V' — W. It can easily
be verified that this mapping is linear. In conclusion, we find that for the two
given vector spaces V and W with fixed ordered bases S and T, there exists a
one-to-one correspondence between the set of all linear mappings L : V — W
and the set of all matrices M™*™.

Now let S = {u',---,u"}, § = {a',---, 4"} be ordered bases for V, and
T = {wh, -, wm}, T = {w!, -, W™} be ordered bases for W, and L : V —
W be a linear mapping. Since L can be characterized by A = Asr = (a;;) and
B = Ag; = (byj), it is natural to know the relation between these matrices.
For this, let

Sagu', j=1n (13.7)
=1
= > byu*, j=1,--.n (13.8)
k=1
> puit, j=1,---,n (13.9)
= > quw”, j=1,---,m. (13.10)

Then, we have
L(u)) = L(mea”> = > puLa") = ZZ Pujbrp @ (13.11)
pn=1 pn=1 p=1k=1
and

m m m m m
Zaijwi = Zaij (quwy> = ZzaijQVin~ (13.12)
=1 =1 v=1

i=1v=1
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On comparing the coefficients of @" in (13.11) and (13.12), we get

D Gkstsj = Y brepejs j=1cn, k=1, ,m. (13.13)

s=1 s=1
Thus, if Q) = (ka)mxma A= (asj)mxm B = (bks)mxm P= (psj)nxn are the
matrices, then (13.13) is the same as

QA = BP,
and since P is invertible, we have the required relation
B = QAP (13.14)

In the special case when V = W, and S = T = {u!,--- ,u"}, S=T=
{at,---,a"}, we have P = @, and then the relation (13.14) reduces to

B=PAP (13.15)

which is the same as
A = P 'BP. (13.16)

Example 13.3. In addition to L, S, T given in Example 13.2, let S =
{(1,0,0)%,(0,1,0)%,(0,0,1)!} and T = {(1,0)%,(0,1)*}. Then, we have

1 2 1
_ (3 73 3 (1 1 -1 (12
A‘(; él)’ B_(1—1 1) @=12 1
3 3 3
111 0 0 1
Pp=110 |, P!'=l0 1 -1
1 00 1 -1 0

For these matrices relation (13.14) follows immediately.

Example 13.4. Let L : R* — R? be the linear mapping defined
by L(z,y) = (2z + y,x + 2y)!, and let S = {(1,1)%,(1,0)'} and S =
{(0,1)%,(1,1)}. Since

L(1,1) = (3,3)! = 3(1,1)'4+0(1,0)?
L(1,0) = (2,1) = 1(1,1)* +1(1,0)*
L(0,1) = (1,2)* = 1(0,1)* +1(1,1)*
L(1,1) = (3,3)! = 0(0,1)! +3(1,1)*
(1,1)! = 0(0,1)t +1(1,1)

(1,08 = —1(0,1)" +1(1,1)t,
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For these matrices relation (13.15) follows immediately.

Finally, let A and B be two square matrices of the same order. If there
exists a nonsingular matrix P such that (13.16) holds, then the matrices A and
B are called similar, and the matrix P is called a similarity matriz. Clearly,
matrices A and B in Example 13.4 are similar. From our above discussion it is
clear that two matrices A and B are similar if and only if A and B represent
the same linear mapping L : V — V with respect to two ordered bases for V.
It is clear that similarity of matrices is an equivalence relation, i.e., reflexive,
symmetric, and transitive.

Problems

13.1. In (Ps, R) and (P4, R) consider the ordered bases S = {1,1+z,1+
r+ 2%} and T = {23 + 22,22 + 2,2 + 1,1}, respectively. Let L : P3 — Py
be the linear mapping defined by L(a + bz + cx?) = (a +b) + (b+ )z + (c +
a)z? + (a + b+ c)x®. Find the transition matrix.

13.2. In R® and R? consider the ordered bases {(1,1,1) (1,1,0)?,
(1,0,0)'} and {(1,3)%,(1,2)'}, respectively. Let L : R®> — R? be the linear
mapping L(z,y,z) = (22 + 2,3y — z)!. Find the transition matrix.

13.3. In R?® and R* consider the ordered bases S = {(1,1,0)%,(1,0,1)¢,
(0,1,1)'} and T = {(1,1,1,1)%,(1,1,1,0)%,(1,1,0,0),(1,0,0,0)'}, respec-
tively. Let L : R®> — R* be the linear mapping L(z,y,2) = 2r +y + 2,2 +
2y +z,x + 1y + 22,22 —y — z)t. Find the transition matrix.

13.4. In Problem 13.1, instead of L let the 4 x 3 matrix

1 -1 0
0 3 -2
4= 3 5 2
2 1 1

be given. Find the linear mapping L : P35 — Pj.

13.5. In Problem 13.2; instead of L let the 2 x 3 matrix

2 -1 3
A‘(—?, 21)

be given. Find the linear mapping L : R® — R2.

13.6. In Problem 13.3, instead of L let the 4 x 3 matrix

-1 1 1
5 3 -2
4= 4 5 2

2 1 -1
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be given. Find the linear mapping L : R? — R*.

13.7. In addition to L, S, T given in Problem 13.1, let S = {1,1—2,1-
r—2%} and T = {a® — 22, 2% — x,x — 1, 1}. Verify the relation (13.14).

13.8. In addition to L, S, T given in Problem 13.2, let S = {(2,1,1),
(2,1,0)%,(2,0,0)'} and T = {(3,1)%,(2,1)*}. Verify the relation (13.14).

13.9. In addition to L, S, T given in Problem 13.3, let S = (0,1,1),
(1,0,1)%,(1,1,0)!} and T = {(1,1,0,0)(0,1,1,0)(0,0,1,1)% (0,0,0,1)'}.
Verify the relation (13.14).

13.10. Let A and B be similar matrices. Show that
(i) detA=detB
(ii) tr(A) = tr(B)

(iii) rank(A) = rank(B)
(iv) N(A) = N(B)
(

v) AB and BA are similar, provided A or B is nonsingular.

Answers or Hints

1 2 3

0 -1 -1
131, |-

1 0 -1

—4 -1 —4
13.2.( - 6).

11 -2

1 2 5
1331 7 o]

0 1 -1

13.5. L(x,y,2) = (4o — 3y — 22,11z — 10y —

13.4. L(a+bz+ca?) = (5a+b—3c)+(3a+5b—8c)x+(a+b—4c)z?+(a—2b+c)x>.
(z,y )t
13.6. L(x,y,z = (10x78x+z7 %x_ %y_

) bo—da - b+ §2)"
10 -1 1000
2 1 -1 2 10 0
BIB=15 49 3192|2210
30 -3 2 2 2 1
oo 12 2
A= . P=(0 -1 o].
0 2 3 0 o0 1
1 0 -1
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1 -2 4 -5 -3
13.8.B—(1 p _4>,Q—< 3 5>,A—<
1 0 0
P= 0 1 0
111
2 2 2
2 3 3 11
1 -1 0 0 0
13.9. B = s 4 9 |Q=| 1 |
-4 -3 -1 0 -1
1 ; _52) 0 0 1
A= ,P=10 10
1 -1 0 L0 o
0 1 -1

13.10. (i) det A = det P~!det Bdet P = det B.
(ii) See Problem 4.6.

(iii) Use Corollary 11.2.

(iv) Follows from Part (iii).

(v) AB=B"1(BA)B.

oSO O

-1

-1
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Chapter 14

Inner Products and Orthogonality

In this chapter we shall extend the familiar concept-inner product of two or
three dimensional vectors to general vector spaces. Our definition of inner
products leads to the generalization of the notion of perpendicular vectors,
called orthogonal vectors. We shall also discuss the well-known Gram—Schmidt
orthogonalization process.

An inner product on (V, C) is a function that assigns to each pair of vectors
u,v € V a complex number, denoted as (u, v), or simply by u-v, which satisfies
the following axioms:

1. Positive definite property: (u,u) > 0 if w # 0, and (u,u) = 0 if and only if
u = 0.

2. Conjugate symmetric property: (u,v) = (v, u).
3. Linear property: (ciu+ cov,w) = ¢1(u, w) + c2(v, w) for all u,v,w € V and
C1,C € C.

The vector space (V,C) with an inner product is called a complez inner
product space. From 2. we have (u,u) = (u,u) and hence (u,u) must be real,
and from 2. and 3. it immediately follows that (w,ciu + cov) = ¢ (w,u) +
Ca(w,v).

The definition of a real inner product space (V, R) remains the same as
above except now for each pair u,v € V, (u,v) is real, and hence in 2. complex
conjugates are omitted. In (V, R) the angle 0 < 6§ < 7 between the vectors
u, v is defined by the relation

(u, )
(u, u)/2(v,v)1/2"

Further, the projection of u onto the vector v is denoted and defined by

cos = (14.1)

proj(u,v) = proj,u = (w.0),, (14.2)

(v, 0)

Example 14.1. Let u = (a1, - ,a,)t, v = (b1, -+ ,by)* € R". The inner
product in R™ is defined as

(u,v) = u'v = aby +--+apb, = Zaibi = vlu.
i=1

115
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The inner product in R™ is also called dot product and is denoted as u-v. The
vector space R™ with the above inner product or dot product is simply called
an inner product, or dot product, or Fuclidean n-space.

Thus, for the vectors u = (2,3,4)", v = (1,0,7)" in R3, we find

30 3
cos) = ——— and proj(u,v) = =(1,0,7).

Let A = (a;5) € R™™", then it follows that
(Au,v) = (Auw)'v = u'Av = u'(A) = (u, A'),
and hence, we have the relation
(Au,v) = (u, A'v). (14.3)

If A is an orthogonal matrix, then from (14.3) it immediately follows that
(Au, Av) = (u,v).

Clearly, for 1 x n vectors v = (a1,--+ ,an),v = (b1, - ,b,) the above
definition of inner product is (u,v) = wv' = > | a;b; = vu'.

Example 14.2. Let u = (a1, -+ ,a,)t,v = (b1, - ,b,)" € C™. The stan-
dard inner (dot) product in C™ is defined as

n
(u,v) = u'T = a1by + - +apb, = Zaigi = ol
i=1

The vector space C™ with the above inner product is called a unitary space.

Clearly, for 1 x n vectors v = (a1, ,an),v = (b1, -+ ,b,) the above

definition of inner product is (u,v) = uv® = wo =377 | a;b;.

Example 14.3. In the vector space (C"™*™, () an inner product for each
pair of m x n matrices A = (a;;), B = (b;;) is defined as

(A,B) = tI‘(BHA) = Zzgijaij.
i=1 j—1

Example 14.4. In the vector space of complex-valued continuous func-
tions C[a, b] an inner product for each pair of functions f, g is defined as

b
(f.9) = / F(2)9(z)dz.

Let V be an inner product space. Two vectors u,v € V are said to be
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orthogonal if and only if (u,v) = 0. For example, if u,v € R™, then the vector
(u — proj(u,v)) is orthogonal to v. Indeed, we have

(u — proj(u,v),v) = (u,v) — ) (v,v) = 0.

A subset S of V is said to be orthogonal if and only if every pair of vectors
in S is orthogonal, i.e., if u,v € S, u # v then (u,v) = 0. Clearly, 0 € V is
orthogonal to every u € V, since (0,u) = (Ou,u) = 0(u, u) = 0. Conversely, if
v is orthogonal to every u € V, then in particular (v,v) = 0, and hence v = 0.

The subset S is called orthonormal if S is orthogonal and for every @ €
S, (i, 4) = 1. If S is an orthogonal set and u € S, then the set S of vectors 4 =
u/(u,u)'/? is orthonormal. Indeed, if u,v € S, then for @ = u/(u,u)'/?, © =
v/(v,v)/% € S, we have

U v 1

@) = (G o) = G -

and

A U U 1
@) = (G ) = Gt = b

The above process of normalizing the vectors of an orthogonal set is called
orthonormalization.

Example 14.5. From (14.1) it is clear that in the inner product space
R"™ two vectors u = (a1, -+ ,a,), v = (b1, -+ ,ny,)" are orthogonal if and
only if (u,v) = Y i~ a;b; = 0. The subset S = {u,v,w} = {(1,2,0,-1)",
(5,2,4,9)%, (=2,2,-3,2)'} of R? is orthogonal. For this, it suffices to note
that u'v = v'w = w'u = 0. This set can be orthonormalized, to obtain

(5 2 4 9>t(—22—3 2)t
V126° V1267 V1267 v/126/) " \V21 V21 V21" v21) |
The set {e!, -+ ,e"} is orthonormal.

Let S be a subset of an inner product space V. The orthogonal complement
of S, denoted as St (read as “S perp”) consists of those vectors in V' that are
orthogonal to every vector v € S, i.e., ST = {u € V : (u,v) = 0 for every v €

S}. In particular, for a given vector v € V, we have vt = {u € V : (u,v) = 0},
i.e., v consists of all those vectors of V' that are orthogonal to v.

For a given subset S of an inner product space V it is clear that 0 € S+,
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as 0 is orthogonal to every vector in V. Further, if u,w € S+, then for all
scalars a, f and u € S, we have (aw + fw,u) = a(v,u) + B(w,u) = 0, ie.,
av + Bw € 8. Thus, ST+ is a subspace of V.

Example 14.6. Extending the geometric definition of a plane in R?, an
equation of the form aixy + -+ 4+ anx, = c is called a hyperplane in R™. If
¢ = 0, then the hyperplane passes through the origin. Let a* = (a1, ,ain)t €
R i=1,--- ,mandz = (x1, - ,2,)" € R™. Then, the homogeneous system
(5.3) can be written as ((a’)!,z) =0, i = 1,--- ,m. Thus, geometrically, the
solution space N (A) of the system (5.3) consists of all vectors 2 in R™ that are

orthogonal to every row vector of A, i.e., N'(A4) is the orthogonal complement
of R(A).

Theorem 14.1. Let (V,C) be an inner product space, and let S =
{ul,---  u"} be an orthogonal subset of nonzero vectors. Then, S is linearly
independent.

Proof. Suppose
aut + - Feout T+ qut + ci+1ui+1 + - +ecu” =0. (14.4)

Taking the inner product of (14.4) with u?, i =1,--- ,n we get

0 = (0,u) = (crut + -+ 1u™ + ut + ciputt 4+ - 4 cpu™, ub)
n
= Z cr(ut, uF) 4 ¢ (u?, ub)
k=1,k%i

= 0+ ¢;(ut,ub).
Hence, ¢; =0, i =1,--- ,n; and therefore, S is linearly independent. [ |

Corollary 14.1. Let (V,C) be an inner product space, and let S =
{ul,---  u™} be an orthogonal subset of nonzero vectors. If S generates V,
then S is a basis (orthogonal basis) for V.

The importance of orthogonal bases lies on the fact that working with
these bases requires minimum computation.

Theorem 14.2. Let S = {u',---,u"} be an orthogonal basis for an inner

product space (V, C). Then, for any vector v € V,
(Uaul) 1 (Uvuz) 2 (Uaun) - .

_ sy U)o . (145

VS ) T T 2 proder (149)

Proof. Suppose v = cju! +-- -+ ¢,u™. Then, as in Theorem 14.1, it follows
that (v, u’) = ¢;(ut,u?), i=1,--- ,n. |

The relation (14.5) is called the Fourier expansion of v in terms of the
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orthogonal basis S, and the scalars ¢; = (v,u’)/(u?,u?), i = 1,--- ,n are
called the Fourier coefficients of v.

Theorem 14.3. Let (V,C) be an inner product space, and let {u!, .-, u"}
be an orthogonal subset of nonzero vectors. Let v € V, and define

B o o), 6 =
Then, ¢ is orthogonal to u',--- ,u".
Proof. It suffices to notice that for each i =1,--- ,r,
({}v ul) = (U - (Clul +eee c?”ur)v uz)
= ) —att) = G- G =0 W

Theorem 14.4 (Gram—Schmidt orthogonalization pro-
cess). Let (V,C) be an inner product space, and let S = {u!,---, u"}
be a basis. Then, T' = {v!, - 0"}, where

(u?,v7)
(vj,.vj)’ (14.6)

vto= ut— (Cﬂvl + -+ Cm‘_ﬂ/i_l), Cij =
is an orthogonal basis.
Proof. The proof follows from Theorem 14.3. |

Example 14.7. Consider the basis {(0,1,1)’,(1,0,1)%,(1,1,0)*} for R3.
From (14.6), we have

vl = ut = (0,1,1)

2 1 t
2 _ 2_(“»”)1_ t_l t o _ll
V¢ = 7(1}171}1)@ = (1,0,1) 2(0,1,1) = (1, 53
P O R G

(vl,o1) (v2,0?)

1 1 1 1\* 2 2 2\'
= (1.Lo)Y—=011)—-=(1,—=.2) = (2.2 -2} .
(1,1,0) 2(”) 3(’2’2) (33 3)

{\%(0, 1,1) \/g(l, —1, L2 (3,2, —%)t} is an orthonormal basis. Further,
from (14.5) it follows that

5 5/2 11\" 2/3/22 2\
2,2,3) = =(0,1,1)' + L= (1,-=, = 222 -2) .
(2,2,3) 5O L1+ ( 2’2) +4/3(3’3’ 3)
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Remark 14.1. From (14.6), we have
ut = (CﬂUl + -+ Ci,i—lviil) +Ui, t=1,---,n

and hence if S and T are ordered bases, then for changing the basis from 7" to
S the transition matrix is lower triangular and nonsingular as each diagonal
element is 1. Then the inverse of this matrix is also lower triangular (see
Problem 4.4), i.e., there exist scalars d;;, i =1,--- ,n, j=1,---,i such that

’Ui = d11u1—|——|—d“ul

Remark 14.2. Let (V,C) be an n-dimensional inner product space, and

let u', -+ ,u", r < n be orthogonal vectors of V. Then, from Corollary 9.3 and
Theorem 14.4 it follows that there are vectors u"*1,--- 4™ in V such that
S = {ul, -, u"} is a orthogonal basis of V.

Theorem 14.5. Let (V,C) be an n-dimensional inner product space, and
let U be a subspace of V. Then, V =U @ U+.

Proof. In view of Theorem 14.4, there exists an orthogonal basis {u!,--- |
u"} of U, and by Remark 14.2, we can extend it to an orthogonal basis
{ul,--- um} of V. Clearly, u"+!,--- ju™ € U+. Now let u € V, then

u = cqut +-+cu + cH_luTH + o+ epu”,

where ciul+- - -4¢,u” € U and cr+1ur+1—|—~ cdcpu® € UL Thus, V =UsU* .
On the other hand, if v € U @ U™, then (v,v) = 0, and this implies that
v = 0, and hence U & U+ = {0}. Therefore, from Theorem 9.6, we have
V=UaU+. 1

Example 14.8. For a given m x n matrix A if {ul,--- u"} is a basis
(orthogonal basis) of R(A) and {u"*1 --- u"} is a basis (orthogonal basis)
for N'(A), then from Theorems 11.4 and 14.5 it immediately follows that
{ul,---  u"} is a basis (orthogonal basis) for R". Thus the set of vectors
{(1,2,1,5)%,(0,0,1,2)%, (-2,1,0,0)%, (—3,0,—2,1)'} obtained in Example 11.1
form a basis of R*.

Remark 14.3. Theorem 14.5 holds for infinite dimensional inner product
spaces also.

Remark 14.4. In view of Theorem 14.5 every v € V can be uniquely
written as v = u 4+ «/, where v € U and v’ € UL. We say u is the orthogonal
projection of v along U, and denote it by proj (v,U), or projyv. In particu-

lar, if U is spanned by an orthogonal set S = {ul‘, e ,u"}, then projgv =
projyv = ciul + - -+ + ¢,u”, where ¢; = (v,u?)/(ut,u?), i = 1,---,r. Thus,
projy;v = Y _._, proj,:v. In the case where S is ordered, then (c1,--- ,¢,)" are

the coordinates of u with respect to the set S.
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Problems

14.1. For the vectors u = (a1,az,a3)',v = (b1, b, b3)' € R3 the cross
product (valid only in R?), denoted as u x v € R3, is defined as

uxv = (asbs — agba,asby — a1bs,arbs — asb)".
Show that for all vectors u, v, w € R>
i) uxv=—(vxu)

i) uxu=0

~—

iii) the vector u x v is orthogonal to both v and v

(

(

(

(iv) ux (v+w)=(uxv)+ (uXw)

(v) (uxv)xw=(u,w)v— (v,w)u

(vi) (uxv)?=((uxv),(uxv))=(uu)(v,v)— (u,v)?

(vii) the absolute value of the ¢riple product (u, (v x w)) represents the volume
of the parallelepiped formed by the vectors u, v, w.

14.2. Let v = (a1, - ,am)t € R™, v = (b1, - ,by)t € R™ The outer
product of v and v is defined as wv?, which is an m x n matrix. For m = n
show that ufv = tr(uv?) = tr(vut).

14.3. Let (V,R) be an n-dimensional vector space, and let S = {u
-,u"} be an ordered basis for V. If u,v € V are such that u = aju® + - - -
anu™ and v = bjul + -+ + byu”, then show that (u,v) = (ys(u),ys(v))
>i 1 a;b; is an inner product on V.

[

14.4. Let (V,R) be an n-dimensional inner product space, and let S =
{ul,--+ ,u"} be an ordered basis for V. Show that
(i) the matriz of the inner product C = (c;;), where ¢;; = (u®, u’) is symmetric
(i) if @ = (a1, -+ ,a,)" and b = (by,---,b,)t are the coordinates of the

vectors u,v € V, then (u,v) = a*Cb, i.e., the matrix C determines (u,v) for
every v and v in V.

14.5. Let V and W be finite dimensional inner product spaces with inner
products (+,-)y and (-,-)w, and let T : V' — W be a linear mapping. The
mapping (if it exists) T* : W — V is called the adjoint mapping of T if for all
ueVandwe W, (T'(u),w)w = (u, T*(w))yv. Show that
(i) ifT=AeR™", then T* = A
(i) if T =A¢e C™", then T* = AH
(i) (T*)*=T.

14.6. Find a nonzero vector v that is orthogonal to the given vectors

i) (1,3,5) (3,5,1)t, veR3
i (
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(i) (1,1,2,2)%, (1,3,3,1) (5,5,1,1), v € R
14.7. Find a basis for the subspace u’ of R3, where

(i) w=(1,3,5)
(i) w=(-1,0,1)".

14.8. Let U, W be subsets of an inner product space V. Show that
(i) UcCUt
(i) if U C W, then Wt C Ut
(iii) U+ = span(U)* .

14.9. Let U, W be subspaces of a finite dimensional inner product space
V. Show that

(i) U=U*+*
(i) (U+W)t=U+rnwt
(i) (UNW)t=U++Ww.

14.10. Let {a',--- ,a"} and {o',---, 9"} be orthonormal ordered basis of
an n-dimensional real inner product space V. Show that the transition matrix
A defined in (10.4) is orthogonal.

14.11. Let A be a real (complex) square matrix. Show that the following
are equivalent

(i) A is orthogonal (unitary)

(ii) the rows of A form an orthonormal set

(iii) the columns of A form an orthonormal set.

14.12. For the matrices given in Problem 11.1 use the method of Example
14.8 to find bases of R and R°.

14.13. For the given basis for R? use the Gram-Schmidt orthogonalization
process to find an orthonormal basis for R3

(1) {(17171)t7(_17170)t7(_17071)t}
(ii) {(1»071)t’(07_171)t7(07_1’_1)t}'

14.14. Enlarge the following sets of linearly independent vectors to or-
thonormal bases of R? and R*

0 {1,1)(1,1,2)%}
i) {(1,1,1,3)%(1,2,3,4)",(2,3,4,9)"}.
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14.15. Show that the set

[2
{ —sinnz, n:1,2,~-~}
T

is orthonormal on 0 < & < 7. This set generates the Fourier sine series.

14.16. Show that the set

1 \/5 Lo
— —cosnz, n=1,2,---
NZ s ’

is orthonormal on 0 < & < 7. This set generates the Fourier cosine series.

14.17. Show that the set

1 1 1
——, —cosnx, —sinnx, n=1,2,---
{x/ﬁ VT VT }

is orthonormal on —7 < & < 7. This set generates the Fourier trigonometric
series.

14.18. Legendre polynomials, denoted as P,(z), n = 0,1,2,--- can be
defined by Rodrigues’ formula

1 da

Pul@) = o i

(21", n=0,1,2,---. (14.7)
In fact, from (14.7) we easily obtain
1, 1,
Py(z) = 1, Pi(z) = z, Py(z)= 5(3x —-1), Ps(z) = 5(5x — 3z),
1 1
Py(z) = g(3s>ac4 — 3022 +3), Ps(z) = g(63ac5 — 7023 4 15x), - - - .

Show that the set {Pp(x), Pi(x), P2(z), -} is orthogonal in the interval
[—1,1].

14.19. Consider the space V of all real infinite sequences u = (a1, as, - )
satisfying >, a? < oo. Addition and scalar multiplication for all u =
(a1,a2,-+),v = (b1,ba,--+) €V, ¢c € R is defined as (v +v) = (a1 + b1, a2 +
ba,---), cu = (cay,caz,---). Show that

(i) V is a vector space

(ii)  the inner product (u,v) = a1b; +agba+- - - is well defined, i.e., Zfil a;b;
converges absolutely.

This inner product space is called fo-space and is an example of a Hilbert
space.
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14.20. Let u = (a1, -+ ,an)t,v = (by, - ,by)t € R, and let wy, -, wy,
be fixed real numbers. Show that

(u,v) = wia1by + waagbs + - - - + wpanby

defines an inner product (known as weighted inner product) in R™.

Answers or Hints

14.1. Verify directly.

14.2. Verify directly.

14.3. Verify directly.

14.4. (i) (u',w?) = (u?,u?)

(i) (u,v) =320 Yo7y aicijby.

14.5. See (14.3).

14.6. (i) (11,-7,2)t.

(i) (=1,1,—-1,1)%

14.7. (i) {(=3,1,0)%,(5,0,—1)}.

(i)  {(1,0,1)%,(0,1,0)'}.

14.8. (i) Let u € U. Then (u,v) = 0 for every v € Ut. Hence u € U+, and

therefore, U C UL+,

(ii) Let u € W=. Then (u,v) = 0 for every v € W. Since U C W, (u,v) =0

for every v € U. Thus u € U+, and hence W+ C U™,

(iii) Clearly, U C span(U), and hence from (ii), span(U)*+ C U+. If u € Ut

and v € span(U), then there exist v!,--- v" € U such that v = cjv + -+ +
v", but then (u,v) = (u,civt + -+ c0") = cp(u,vt) + - + e (u,v") =

c1(0) + -+ +¢-(0) = 0. Thus u € span(U)*, i.e., U+ C span(U)*.

14.9. (i) From Theorem 14.5, V = U & U+ and V = U+ & U+, Thus

from Corollary 9.4, we have Dim U = Dim U~+. Further, since from Problem

14.8(i), U C Ut it follows that U = U++.

14.10. From (10.1) we have &§;; = (¢°,97) = (3 ,_, ar@F, > ), agat) =

22:1 ag;ar; = ¢;j. Now note that A'A = (¢;;) = 1.

14.11. Recall the definition of an orthogonal (unitary) matrix in Problem 4.7.

14.12. (i) {(1,0,—1,-2,0)%,(0,1,2,3,0)t(0,0,0,0,1)t, (2, —3,0,1,0)¢, (1,

—2,1,0,0)'}.

(ii) {(1 3,0,0,2,2)",(0,0,1,0,—53, —41)" (o,

0,
t
0,00, (~5,0, 5, -54,1,0)", (=3,0, 4, -2, 0,1)}.
14.13. (i) {X(1,1,1)t, 2 (~1,1,0), 2 (-1,-1,2)

07 1, ?é? 381) 7(_37 170707

V3 V2 V6 b

() {5(1,0,1)", (1,2, 1), (1,1, -1},
14.14. (i) {% 1,1,1),%(—1,—1,2),%(1,1,0)}.

(
(ll) {;%(1’171’3)2%ﬁ(_lylasy_l)taﬁ( 27 1 O 1) %( a_2a170)t}'
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14.15. See Problem 8.10(i).
14.16. See Problem 8.10(ii).
14.17. See Problem 8.10(iii).

14.18. From (14.7), we have 2”n'f1 P, )P (x)dx = fil P (7) L5 (22 -

1)"dx. Now an mtegratlon by parts glvesf Py (2) 25 (2% — 1)"dx = Py (2
xdd:n_ll (22— 1) f 1 dde (z )d‘i;,_ll (22 — 1)"dx. However, since d"~ ! (x?
—1)"/0!33”_1 contains a factor (z2 — 1), it follows that 2"n! f_ll P ()P, (x)dx
=— f 1 s ddnn 11 (22 —1)"dz. We can integrate the right side once again,
and contlnue untll we have performed n such mtegrations. At this stage, we
find 2"n! f_ll P, (z)P,(x)dx = (— f_ (ddg;; (z)) (z? —1)"dx. There is no

loss of generality if we assume that m < n. If m <n, then d"P,,(z)/dz™ =0
and it follows that f_ll P (z)P,(2x)dz = O

14.19. In Y02 (ca; + Bb)? = o232 a? + aB Y ooy aibi + B2 o0, b2 use
14.20. Verify directly.
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Chapter 15

Linear Functionals

Let V be a vector space over the field F. A linear mapping ¢ : V — F is
called a linear functional on V. Since a linear functional is a special type of
linear mapping, all the results presented in Chapters 11 and 12 for general
mappings hold for linear functionals also. Therefore, in this chapter we shall
present only those results that have special significance for linear functionals.
We begin with the following interesting examples.

Example 15.1. Let V = F". Then, for u = (uy,--- ,u,) € V the projec-
tion mapping ¢;(u1,- -+ ,u,) = u; is a linear functional.

Example 15.2. Let V = Cla,b] be the space of all continuous real-
valued functions on the interval [a,b]. Then, for f € V the integral mapping
o(f) = fab f(x)dz is a linear functional. The mapping ¢(f) = f(zo), where
xo € [a, b], but fixed, is also a linear functional.

Example 15.3. Let V. = M™*". Then, for A = (a;;) € V the trace
mapping ¢(A) = tr(A) is a linear functional.

Example 15.4. In the inner product space (V,C), let the vector u° be
fixed. Then, for u € V the mapping (u,ug) is a linear functional; however,
(up, u) is not a linear functional because (ug, au) = @(ug, u).

The vector space Hom(V, F) is called the dual space of V, and is denoted
as V*. In view of Theorem 12.5 it is clear that dim V = dim V*.

Theorem 15.1. Let S = {u!, -+ ,u"} be abasis of V, and let ¢, -+ , ¢y, €
V* be linear functionals defined by ¢;(u’) = &;;. Then, S* = {¢1, -, P, } is
a basis (called dual basis) of V*.

Proof. First we shall show that S* spans V*. For this, let ¢ € V* and
suppose that ¢(u?) = ¢;, i = 1,--- ,n. We set ¢ = c1¢p1 + - -+ + cpdp. Then,
we have ¥(u') = c1p(u?) + - + cpdn(u’) = ¢; = ¢p(u?), i = 1,--- ,n. Thus,
1 and ¢ have the same values on the basis S, and hence must be the same
on V. Therefore, S* spans V*. To show that S* is linearly independent, let
aj¢1 + -+ andy, = 0. Then, we have 0 = 0(u;) = a1 (u®) + -+ + anp(ul) =
a;, 1 =1,---,n as required. |

Remark 15.1. Let 0 # v € V, and extend {v} to a basis {v, v, -+ ,v,} of
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V. Then, from Theorem 15.1 there exists a unique linear mapping ¢ : V — F
such that ¢(v) =1 and ¢(v;) =0, i =2,---,n

Example 15.5. From Example 6.1, we know that S = {u! = (2,-1,1),
u? = (3,2,-5), u® = (1,3,-2)} is a basis of R®. We shall find its dual basis

= {¢1,02,03}. We let ¢1(z,y,2) = anzx + a2y + a3z, ¢2(z,y,2) =
anT + any + azsz, ¢3(x,y,2) = a1 + as2y + azzz. Since ¢;(u') = 6;;, we
need to solve the systems

2a11 — a12 + a3 =1 2a21 — ag2 + a3 = 0
3a11 + 2a12 — 5a13 = 0 3ao1 + 2a09 — Hasy = 1
a11 +3a12 —2a13 = 0, a1 + 3az2 —2a23 = 0
and
2a31 — az2 + as3 = 0
3az1 +2a32 —Sazz = 0
az1 + 3azs — 2as3 = 1.

Now in view of Example 6.6, solutions of these systems can be written as
(a11,a12,a13) = (11/28, 1/28,7/28), (agl,agg,azg) = (1/28,—5/28,—7/28),
and (ag1, as2,as3) = (3/28,13/28,7/28). Thus, it follows that

11 1 7
o1(z,y,2) = 3% %y+%
1 5 7
QSQ(.’E,:Z/,Z) - % 28y_ %
3 13 7
¢53(.’E,y,2) - _8 T+ 2_8y+ %

Theorem 15.2. Let S = {u', - ,u"} and T = {v',--- ,v"} be bases of
V, and let S* = {¢1,-++ ,¢n} and T* = {¢1,--- ,9,} be the corresponding
dual bases of V*. Further, let A = (a;;) be the transition (change-of-basis)
matrix from T to S, and B = (b;;) be the change-of-basis matrix from T* to
S*. Then, A'B=1,ie., B=(A"1).

Proof. In view of (10.1), we have

1 2
vt = apu 4+ agut + -+ apiu”

and
Yy = b1jp1 +bajda + -+ bpjdn.
Thus, it follows that

(=9
<
I
&
=
<
)
=
[

S b (z) = S b
k=1 =1 k=1
- (afliy"' 7ani)(b1ja”' abnj)t~

This immediately gives A*B = I. |
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Since V* is a vector space, it has a dual space, denoted as V**| and called
the second dual of V. Thus, V** is a collection of all linear functionals on V*.
It follows that corresponding to each v € V there is a distinct v € V**. To
show this, for any ¢ € V*, we define 9(¢) = ¢(v). Now it suffices to show that
the map v : V* — F is linear. For this, we note that for scalars a,b € F' and
linear functionals ¢, € V*, we have

b(ag +bp) = (ap+by)(v) = ad(v) +bip(v) = ad () + bo(¢).

Theorem 15.3. Let V be a finite dimensional vector space over the field
F, then the mapping v — 0, known as natural mapping, is an isomorphism of
V onto V**.

Proof. For any v,w € V and a,b € F, and ¢ € V*, we have

—

(av + bw)(¢) = P(av + bw) = ad(v) + bw(b) = ad(p) + b (P) = (ad + bw)(¢),

and hence the mapping v + ¢ is linear. Further, from Remark 15.1, for every
0 # v € V there exists ¢ € V* so that ¢(v) # 0. This implies that 6(¢) =
¢(v) # 0, and hence ¥ # 0. Thus, we can conclude that the mapping v — o is
nonsingular, which in turn shows that it is an isomorphism. [ |

Now let W be a subset (not necessarily subspace) of the vector space V over
the field F. The annihilator of W is the set W° of linear functionals ¢ € V*
such that ¢(w) = 0 for every w € W. It follows rather easily that W° C V*
is a subspace; if ¢ € V* annihilates W, then ¢ annihilates Span(W), i.e.,
WO = [Span(W)]% if W = {0} then W° = V* and if W =V then W is the
null space of V*. We also define W% = {u € V : ¢(u) = 0 for every ¢ € WO}.

Theorem 15.4. Let V be a finite dimensional vector space over the field
F, and let W be a subspace of V. Then, dimW + dim W° = dim V, and
WOO = W.

Proof. Suppose that dimV = n and dim W = r. We need to show that
dimW? = n —r. Let {w!,--- ,w"} be a basis of W. We extend it so that
{wl, -+ Jw",ul, - u"""} is a basis of V. Let {¢1,+ , ¢, 01, , Pn_r} be
the basis of V*, which is dual to this basis of V. Now by the definition of
the dual basis, each ¢; annihilates each w’, and hence p1, -, on_, € WO It
suffices to show that ® = {1, -+ ,pn_,} is a basis of W°. For this, since ®
is a subset of a basis of V*, it is linearly independent. To show ® spans W©°,
let ¢ € WO, then in view of Problem 15.4, we have

¢ = pw)or+-+ oW )or +p(u)pr + - o(U" ) pn_r
= e+ U ") on_p

Example 15.6. We shall find a basis of the annihilator W of the subspace
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W of R* spanned by w! = (1,2,0,—1) and w? = (5,2,4,9). Since W° =
[Span(W)]°, it suffices to find a basis of the set of linear functionals ¢ such that
é(w!) = 0 and ¢(w?) = 0, where ¢(wy, ws, w3, wy) = aw; + bwy + cws + dwy.
For this, the system

p(w') = ¢(1,2,0,-1) = a+2b+0c—d = 0
p(w?) = ¢(5,2,4,9) = Ba+2b+4c+9d = 0

has solutions with ¢ and d as free variables. We fix ¢ = 1 and d = 0, to get
a =—1and b = 1/2. Next, we fix ¢ = 0 and d = 1, to get a = —5/2 and
b = 7/4. Hence, the following linear functions

1 5 7
pr(w') = —wi + Jwz +ws and  ¢a(w®) = — Wi+ Jw2 +wy
form the basis of W?. Similarly, a basis of the annihilator W° of the sub-
space W of R* spanned by w! = (1,2,0,-1), w? = (5,2,4,9), and w® =
(—2,2,-3,2) is the linear function ¢(w') = —2w; + wa + 2ws, i =1,2,3.

Now we shall prove the following important result.

Theorem 15.5 (Riesz representation theorem). Let V be a
finite dimensional vector space over the field F' (F = R, C) on which (-,-) is
an inner product. Let f : V — F be a linear functional on V. Then, there
exists a vector w € V' such that f(v) = (v,u) for all v € V.

Proof. Using the Gram-Schmidt orthogonalization process we can find
an orthonormal basis of V, say, {v!,---,v"}. Now for an arbitrary vector
v € V, we have v = (v,v)v! + -+ + (v,v™)v™. Thus, it follows that f(v) =
(v, o) f(01) + -+ (v,0") f(v") = (v,v' f(v!) + -+ + 0" f(v")). Denoting by
u=vlf(vl)+ -+ o f(v"), the result follows. |

Remark 15.2. The vector v in Theorem 15.5 is unique. Indeed, if there are
two vectors u', u? such that f(v) = (v,u!) = (v,u?), then (v,u! —u?) = 0 for
all v € V. But then for v = u! —u? € V it follows that 0 = (u! —u? u' —u?) =

lul —u?||?2 = 0, which implies that u! = u?.

Let V and W be two vector spaces on which inner products are defined.
Let f : V — W be a linear mapping. For each vector w € W, we de-
fine a map f, : V — R as fu(v) = (f(v),w). It follows that this map
is a linear functional. Indeed, we have f,(v! + v?) = (f(v! + v?),w) =
(f(@) + f(v*),w) = (f(v"),w) + (f(v*),w) = fu(v') + fu(v?), also fu(av) =
(f(av),w) = (af (v), w) = a(f(v),w) = afu(v).

Example 15.7. Let f: R? — R3 given by f(v1,v2) = (v1 — 209, —Tv1,
4vy — 9va). Let w = (—3,1,2) € R3. Then, we have f,(v) = —3(v; — 2v9) +
1(=Tv1) + 2(4v; — Yvg) = —201 — 120s.

In view of above notations and Riesz’s Theorem for the linear functional
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fuw, there is a vector in V' denoted as f*(w) such that f,(v) = (v, f*(w)).
Thus, it follows that (f(v),w) = (v, f*(w)) for all v € V and w € W.

From Remark 15.2, the map f*: W — V is well defined and is called the
adjoint of the linear mapping f.

Theorem 15.6. If f:V — W is a linear mapping, then the adjoint map
f*: W — V is also a linear mapping.

Proof. For all v € V, we have (v, f*(
(f(v), wh)+(f(v),w?) = (v, f*(wh)) + (v, f*(w?)) =
then from Remark 15.2 it follows that f*(w! 4+ w
for « € R and all v € V, we have (v, f*(aw)) =
a(v, f*(w)) = (v, af*(w)), which implies that f*(
Example 15.8. We consider the same linear mapping as in Example 15.7,
and let (a,b,c) € R3. Then, from (f(vy,v2), (a,b,c)) = ((v1 — 2ve, —Tvy, 4v1 —
9ua), (a,b,¢)) = a(vy — 2v3) + b(—Tv1) + ¢(4v1 — va) = vi(a — 7b + 4¢) +
va(—2a — 9¢) = ((v1,v2), (a — 7b + 4¢,—2a — 9¢)), we have f*(a,b,c) = (a —
b+ 4c, —2a — 9c¢).

Problems

15.1. For the given basis S = {(11,19,21),(3,6,7),(4,5,8)} of R3, find
its dual basis.

15.2. For the given basis S = {(1,2,1,5),(0,0,1,2),(-2,1,0,0), (-3,
0,—2,1)} of R%, find its dual basis.

15.3. For f € (Ps, R) let the linear functionals ¢_1, ¢, »1 be defined
by ¢_1(f(2)) = f(=1), ¢o(f(x)) = f(0), ¢1(f(x)) = f(1). Show that 5* =
{¢—1, b0, 1} is linearly independent, and find the basis S of (Ps, R) so that
S* is its dual.

15.4. Repeat Problem 15.3 with ¢_1(f(z)) = [°, f(x)dz, ¢o(f(x)) =
1(0), d1(f(@) = Jy f(x)da.

15.5. Let V.S and S* be as in Theorem 15.1. Then, show that for any
weV, u=>" ¢;(u)ul, and for any ¢ € V*, ¢ =37 | d(u')e;.

15.6. Let (V, R) be a real inner product space. For each u € V' we define
the linear functional as L, (v) = (u,v) for all v € V. Show that

(i)  the set of all linear functionals L,,, denoted as V, is a linear space
(i) L,=0ifand only if u=0
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(iii) for a given functional ¢ € V* there exists a unique vector u € V such
that ¢(v) = (u,v) for allv e V

(iv) the mapping u — L, of V into V* is an isomorphism.

15.7. Let f: R®* - R, f(v) =2v1 —4va +5v3 and g : R5 — R, g(v) =
501 — Tvg + 8vs — 5va + v5 be two linear functionals. Find the vector u € R®
such that f(v) = (v,u), and the vector w € R® such that g(v) = (v, w).

15.8. Let f: R3 — R3, f(v) = (v1 — 2v2 + v3, —2v1 + v3, —v2 + v3). For
w=(4,-1,7) find fi,(v) = (f(v),w).

15.9. Let f: R* — R?, f(v) = (5v1 — 2vg +4v3, 4v1 + 603 + v4, —v2 +04).

(i)  Find the adjoint map f*: R3 — R*.
(ii) Find the matrices A and B of the maps f and f*, and note that A = B?.

(iii) Generalize part (ii) for arbitrary vector spaces V and W.

15.10. Show that Theorem 15.5 does not hold for spaces of infinite dimen-
sions.
Answers or Hints

15.1. ¢y = = (1324+4y—92), ¢ = = (— 47x+4y—|—21z) b3 = o (Tz—14y+92).
152 o1 = 34(590—1—103/ 6,z+3 )7 O = ( 11z — 22y + 20z + Tw), ¢3 =

( 10z 4+ 14y + 122 — 6w), ¢ ( 3 —6y—10,z+5w)
15.3. 5 — {3z(z-1), (:c+1)( 1) tx (x+1)}
15.4. 5 = {3 (x——) ,—3 ( —%)»%x(ﬂ 5} i
15.5. If u =3 cu’, then ¢;(u) = ¢;. Wfor all u, ¢(u) = >, ¢i(u)

x(ut) = (X1 o(u)or) (u).

15.6. (i) From the definition of real inner product L¢,y+cow = ¢1Ly + 2Ly

for all u,w € V and ¢1,¢ € R.

(ii) Follows from the definition of real inner product.

(iti) IfS = {u',---,u™} is a basis of V, then S = {Ly1,--- , Ly} is a basis of

V. Indeed, if L, € V and u = cyu! 4 - -+ + cou™, then L, = Lejwiede,ur =

ciLly+- -4 cpLyn. Also, if a1 Ly 4+ -+ apLyn =0, then Ly, y1q..qq,un =0,

which in view of Part (ii) implies that aju! + - -+ + a,u™ = 0. But, then a; =
-+=ap=0. Thus, Vis a subspace of V*, and since dim V* = dim V, V=

V. Now if ¢ € V*, then there exist unique real numbers b;, i = 1,--- ,n such

that ¢ =b1Ly1 + -+ bpLyn = Lyt poogp, un-

(iv) Use Theorem 12.2.

15.7. u=(2,-4,5), w=(5,~7,8,—5,1).

15.8. f,(v) = 6v; — 15v2 + 10vs.

15.9. (i) f*(a,b,c) = (5a +4b,—2a — c¢,4a + 6b,b + ¢).



Linear Functionals 133

5 -2 4 0 _23_(1)

(M A=[4 06 1|, B=| ", ¢
0 -1 0 1

01 1

(ili) Let V and W be complex vector spaces, f : V — W be a linear map
with associated matrix A, and f* : W — V its adjoint with associated matrix
B. We need to show that A = B'. For this, we assume that dimV = n and
dimW = m, and {o!,--- 0"}, {w!,--- ,w™} are their orthonormal bases.
Clearly, A = (a;5) = (f(v*),w?)), 1 <i<n, 1 <j<m,and B = (b;) =
((f*(wh),v?)), 1 <i <m, i <j < n. Since (f*(w?),v?) = (v7, f*(w') =
(f(v7),w), it follows that a;; = bj;.

15. 10 Let V be the bpace of all polynomials over R with the inner product
(f(z fo x)dz, ie., if f(x) =31 a;x’ and g(x) = 37" bja?
then (f(x),g(x)) = ZZ:O ijo(l +j +1)"'a;b;. We consider ¢ : V. — R as
¢(f) = f(O) We bhall 5how that a polynomial g(z) such that f(0) = ¢(f) =
(f(z fo x)dx does not exist for every f ( ). For this, note that
for any f( )We have qb(xf( )) = 0. Thus, for any f(x O—fo xf(z)g(x)dz

Hence, in particular for f(z) = zg(x), we have 0 = fo 2?g?(z)dz, Wthh im-
plies that g(z) = 0, and therefore ¢(f(z)) = (f(x),0) = 0. But this contradicts
the fact that ¢ is a nonzero functional.
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Chapter 16

Eigenvalues and FEigenvectors

Eigenvalues and eigenvectors of a matrix are of great importance in the qual-
itative as well as quantitative study of many physical problems. For example,
stability of an aircraft is determined by the location of the eigenvalues of a cer-
tain matrix in the complex plane. Basic solutions of ordinary differential and
difference equations with constant coefficients are expressed in terms of eigen-
values and eigenvectors of the coefficient matrices. In this chapter we shall
mainly summarize properties of the eigenvalues and eigenvectors of matrices,
which are of immense value.

The number A, real or complex, is called an eigenvalue (characteristic root,
latent root, proper value) of an n x n matrix A if there exists a nonzero real
or complex vector u such that Au = Au, i.e., Au is parallel to u. The vector
u is called an eigenvector, corresponding to the eigenvalue A. From Corollary
5.1, A is an eigenvalue of A if and only if it is a solution of the characteristic
equation

p(A) = det(A— ) = 0, (16.1)

which in the expanded form, known as characteristic polynomial of A, can be
written as

p(A) = (=1)"N'"+a N+ a1 A +a, = 0. (16.2)

Thus from the fundamental theorem of algebra it follows that A has exactly n
eigenvalues counting with their multiplicities, i.e., (16.2) can be rewritten as

pAA) = (=D"A=A)" (A= A)™ - (A= Am)™ = 0, (16.3)

where \; # Aj, 7 > 1, 11 4+ -+ + rp, = n. The positive number r; is called
the algebraic multiplicity of the eigenvalue \;.

Knowing the distinct eigenvalues \;, i = 1,--- ,m (< n) from (16.3), the
corresponding eigenvectors can be obtained by computing nontrivial solutions
of the homogenous systems (4 — A\ )u* =0, i=1,--- ,m.

Example 16.1. The characteristic polynomial for the matrix

A = (16.4)

O = N

1
3
1

N = O

135



136 Chapter 16

can be written as
pA) ==X +7A - 14X +8 = —(A-1(A—-2)(A—4) = 0.

Thus, the eigenvalues are A\; = 1, A2 = 2, and A3 = 4. To find the cor-
responding eigenvectors, we need to find nonzero solutions of the systems
(A= XNDu* =0, i =1,2,3. For \y = 1, we need to solve

110 ui ul +ud =0
(A= M\IDu' = 12 1 ud = ui+2uj+uy = 0
011 ul ud +ud = 0,
which is the same as
ui +ul = 0
uy+uiy = 0
ud+ul = 0.

In this system the last two equations are the same, and we can take u} = 1
so that ui = —1, then the first equation gives u = 1. Thus, u! = (1, —1,1)%.
Similarly, we find u? = (1,0, —1)! and u® = (1,2,1)*.

In the case when the eigenvalues A1,---, A, of A are distinct it is easy
to find the corresponding eigenvectors u', - - - ,u™. For this, first we note that
for the fixed eigenvalue A; of A at least one of the cofactors of (a;; — Aj)
in the matrix (A — A\;I) is nonzero. If not, then from (3.6) it follows that
p'(A) = —[cofactor of (a1;—\)]—- - -—[cofactor of (ann—A)], and hence p/(};) =
0, i.e., A; was a multiple root, which is a contradiction to our assumption
that \; is simple. Now let the cofactor of (agxr — A;) be different from zero,
then one of the possible nonzero solutions of the system (4 — \;I)u/ = 0 is
uz = cofactor of ag; in (A— N\;I), 1 <i<mn, i#k, uff = cofactor of (agr —
A;) in (A — \;I). Since for this choice of u/, it follows from (3.2) that every
equation, except the kth one, of the system (A — \;I)u/ = 0 is satisfied, and
for the kth equation from (3.1), we have

Z agi[cofactor of ag;] + (arkr — Aj)[cofactor of (agr —A;)] = det (A—\;I),
=

which is also zero. In conclusion this u/ is the eigenvector corresponding to
the eigenvalue A;.

Example 16.2. Consider again the matrix A given in (16.4). Since in
(A — A\ I) the cofactor of (a;; — A1) = 1 # 0, we can take ul = 1, and then
ud = cofactor of a;a = —1, ui = cofactor of a13 = 1, i.e., ul = (1,—1,1)%.

Next, for Ay = 2 we have

(A= Dol) =

S = O
— =
O = O
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Since the cofactor of (az2 — A2) = 0 the choice u3 = cofactor of (ag2 — o) is
not correct. However, cofactor of (a11 — A2) = cofactor of (az3 —A2) = —1#0
and we can take u? = —1 (u3 = —1), then u3 = cofactor of a;a = 0, u3 =

cofactor of a3 = 1 (u? = cofactor of az; = 1, u3 = cofactor of azs = 0), i.e.,
u? = (—1,0,1)" ((1,0, —1)!). Similarly, we can find u*® = (1,2, 1)".

For the eigenvalues and eigenvectors of a given n xn matrix A the following
properties are fundamental:

P1. There exists at least one eigenvector u associated with each distinct
eigenvalue A, and if A and A are real, then u can be taken asreal: det(A—\I) =
0 implies that the linear homogeneous system (A — AI)u = 0 has at least one
nontrivial solution. If A and A are real, and the eigenvector u = v + iw, then
A +iw) = A(v + iw), ie., Av = dv and Aw = Aw. Now recall that both v
and w are nonzero.

P2. If u is an eigenvector corresponding to the eigenvalue A, then so is cu for
all scalars ¢ # 0: If Au = Au, then A(cu) = A(cu).

P3. Let Uy be the set of all eigenvectors associated with a given eigenvalue
A. Then, V), = U, U {0} C R™ is an invariant subspace of A, i.e., Au € V)
whenever u € Vy: Clearly, 0 € V), and if u,v € V), and «, 8 are scalars, then
A(ou + pv) = a(Au) + S(Av) = a(iu) + B(Av) = AMau + Sv). The space Vy
is called the eigenspace of A belonging to .

P4. If Ay, ---, A\, are distinct eigenvalues of A and u!,--- u™ are the corre-
sponding eigenvectors, then the set S = {u!,--- u"} is linearly independent
and forms a basis of R™ (C™): If S is linearly dependent, then in view of
Theorem 8.1 part 6, there exists the first u” that is the linear combination
of the preceding u!,--- ,u""!, i.e., there exist scalars c1,--- ,cr—1 such that
u” = ciu' + - + ¢,_1u" . Multiplying this relation by )., we obtain

Mu' = e hut + 4 e Aum T
whereas multiplying the same relation by A and using Au’ = A\;u’, we have
Au" = e hut 4+ e A"
Subtracting these equations, we find
0 = (N — Al)ul +F oA — )\T,l)ur_l;

however, since u',---,u""! are linearly independent and X\, # X\;, i =

1,---,r =1, it follows that ¢; = --- = ¢,—1 = 0. But then «” = 0, which
is impossible. The set S forms a basis that follows from Theorem 9.4.

P5. If Ay, ---, A\, are distinct eigenvalues of A, and u’ is an eigenvector
corresponding to the eigenvalue );, then the set S = {u!, - ,u™} is linearly
independent.

P6. If (A, u) is an eigenpair of A and A~! exists, then (1/\,u) is an eigenpair
of A=t If Au = Au, then A= (Au) = A7), ie., (1/N)u = A"1u.
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P7. The eigenvalues of A and A? are the same; however, in general the eigen-
vectors are different: It follows from the fact that det(A—\I) = det(A? — \I).
Now let A be real and have the distinct eigenvalues, and assume that the eigen-
vectors correspond to Ap, -+, A, ul,---,u”, e, Aut = \ut, i =1,--- ,n.
Further, let the eigenvectors of A! correspond to Ap,---,\,, v',---, 0",
e, Alvi = N, j = 1,---,n. It follows that (v/)7Au’ = X\;(v7)Hu!
and (v)7Au' = X\;(v7)Hu?, and hence (A; — Aj)(v¥)Hu’ = 0. Thus, for
i # 4, (v)Hu = (v/,u') = (ui,v9) = 0. Now since {v'} form a basis of
R™ (C™) we can decompose u’ as

u' = vt vt e

which gives

n n
0 < (uhu') = (u)u! = ch(ui)Hvk = ch(ui,vk) = ¢i(u',v?),
k=1 k=1

and hence (u?)#v? # 0. We can normalize the vectors so that (u’)fvi = 1. In
conclusion, we have
(W)l = { 0. J7i (16.5)
L Jj=u '

and because of this property these sets of vectors {u’} and {v'} are called
biorthonormal.

P8. The eigenvalues of a hermitian matrix are real, whereas those of a skew-
hermitian matrix are purely imaginary. In particular, the eigenvalues of a real
symmetric matrix are real, whereas of a real skew-symmetric matrix are purely
imaginary: When A = A7 Au = Mu is the same as u? A = \uf’. Thus, it
follows that uf Au = Aufu and v Au = Aufu, and hence (A — N)ufu = 0,
but since uu # 0, we have A — X = 0, and therefore \ is real. Similarly, for
a skew-symmetric matrix it follows that A + X = 0, and hence X is complex.

P9. The eigenvectors of a real symmetric matrix that correspond to distinct
eigenvalues are orthogonal: When A* = A, Au = Au is the same as utA = \u’.
Thus, if Av = pwv, then since u*Av = Aulv it follows that pulv = Mulv, ie.,
(i — Nulv = 0, and therefore u'v = (u,v) = 0.

P10. Let P be a nonsingular matrix. If (A\,u) is an eigenpair of A, then
(A, P~tu) is an eigenpair of P71AP: Clearly, det(4 — \I) = det(P~(A4 —
M) P) = det(P7YAP —AP~'P) = det(P~1AP — \I). Further, since Au = \u,
we have P~1 Ay = AP~ !u, which is the same as (P~'AP)P~lu = AP~ 1u.
P11. If (A, u) is an eigenpair of A, then (A, u) is an eigenpair of A™: It
follows from A™u = A™ 1 (Au) = A™ 1 (\u) = AA™ Lu. Thus, if Q,(2) is a
polynomial, then @,,()) is an eigenvalue of @,,(A). In particular, the matrix
A satisfies its own characteristic equation, i.e.,

p(A) = (-1)"A"+a A"+t an 1At a, = 0. (16.6)



Figenvalues and Eigenvectors 139

This result is known as the Cayley—Hamilton theorem.
Example 16.3. Multiplying (16.6) by A~!, we find

1
ATl = - — ()" AT @ AT ap ] (16.7)

429

Thus, if A%, i = 2,3,---,n — 1 are known then the inverse of the matrix A
can be computed. In particular, for the matrix A in (16.4), we have

— 1 2
Alz—g[—A+7A—14I]
1 5 5 1 2 10 100
= —g|-| > w5 #7131 -14f 0 10
1 55 01 2 001
5 .2 1
8 8 8
- | -2 4 _2
8 8 8 |-
12 5)
8 8 8

P12. The number of linearly independent eigenvectors corresponding to an
eigenvalue is called its geometric multiplicity. The geometric multiplicity of
an eigenvalue is at most its algebraic multiplicity. Similar matrices A and
B have the same eigenvalues, and these eigenvalues have the same algebraic
and geometric multiplicities: Since there exists a nonsingular matrix P such
that B = PL1AP, we have (B — A\[) = P"'AP — AP7'P = P71(A - \I)P,
ie, if A and B are similar, then (A — AI) and (B — AI) are also similar.
Thus from Problem 13.10 it follows that det(A — M) = det(B — AI) and
N(A—=X) =N(B—\),ie., A and B have the same eigenvalues with the
same algebraic and geometric multiplicities.

Example 16.4. The eigenvalues of the matrix

2 1 -1
A = -3 -1 1
9 3 —4

are —1, —1, —1. Further, the only linearly independent eigenvector correspond-
ing to this eigenvalue is (1,0, 3)t. Hence the algebraic multiplicity of the eigen-
value —1 is 3, whereas its geometric multiplicity is one.

Example 16.5. The eigenvalues of the matrix

A:

o O

0 4
-1 2
01

are —1, —1, 1. Further, linearly independent eigenvectors corresponding to the
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eigenvalue —1 are (1,0,0)% and (0,1,0)%. Hence the algebraic and geometric
multiplicities of the eigenvalue —1 are 2. The eigenvector corresponding to the
eigenvalue 1is (2,1,1)%.

The method discussed in this chapter to compute eigenvalues and eigen-
vectors is practical only for small matrices.

Problems
16.1. Let Ay,---, A, be the (not necessarily distinct) eigenvalues of an
n X n matrix A. Show that
i)  for any constant « the eigenvalues of A are aAy,- - ,a\,

(i
i) >r,Nn=TrA

(i) TP, A =detA

(iv) if A is upper (lower) triangular, i.e., a;; = 0, ¢ > j (i < j), then the
eigenvalues of A are the diagonal elements of A

(v) if A is real and A; is complex with the corresponding eigenvector vl

then there exists at least one i, 2 < i < n, such that \; = A and for such an
i, o' is the corresponding eigenvector

(vi) if A¥ = 0 for some positive integer k, i.e., A is nilpotent, then 0 is the
only eigenvalue of A

(vii) if A is orthogonal, then [A\;| =1, i=1,--+ ,n.

16.2. Find the eigenvalues and eigenvectors of the following matrices

4 -2 1 30 0 8 -6 2
G (1 3 oG [ -4 6 2 |G| -6 7 —4
2 8 -1 16 —15 —5 2 -4 3

16.3. Find the eigenvalues and eigenvectors of the following matrices
4 —9 1 0 O 2 1 =2
(1) ( 5 9 ) (ii) 2 1 =2 (iii) -1 0 O
3 2 1 1 1 -1

16.4. Verify the Cayley—Hamilton theorem for the matrices given in Prob-
lem 16.2.

16.5. Use (16.7) to find the inverse of the matrices given in Problem 16.2.

16.6. Find algebraic and geometric multiplicities of each of the eigenvalues
of the following matrices:
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-1 1 0 5 -3 =2 2 1 1
(i) 0O -1 0 (ii) 8 -5 —4 (iii) 0 2 0
0 0 3 —4 3 3 0 0 3
16.7. The n x n matrix
0 1 0 0
0 0 1 0
P f—
0 0 0 e 1
—Qn —Aanp—1 —Aanp—2 e —ax

is called the companion matriz. Show that its characteristic polynomial is
p(A) = (=1D)"(A\" + a3 A"t + -+ + ap_1A + ay), and corresponding to the
eigenvalue )\, the eigenvector is (1, A, A2, ... ,A”*l)t,

16.8. A circulant matriz of order n is the n X n matrix defined by

ai as a3 -+ Qp

Gnp a1 az - Ap—1
C = circ(ay,ag, -+ ,a,) = p—1 Gn Q1 "+ Qp-2

az as a4 -+ ap

i.e., the elements of C' in each row are the same as those in the previous row
shifted one position to the right and wrapped around. Show that

(i) C=al+ayP+---+a,P" !, where P is the n x n companion matrix
withay =---=a,-1=0, a, = —1

(ii) the eigenvalues \; and eigenvectors u’, i = 1,---,n of C are \; =
a1 + agw; + -+ + apw! ! and (1,wi, w2, w1, where w;, i =1,-+ 0
are the nth roots of the unity, i.e., w} = 1.

16.9. For the matrix A, (z) defined in (4.2), verify that the eigenvalues
are .
N = x—QCosL, i=1,---,n.
n+1
In particular, for x = 2 the eigenvalues are
5 M

No= dsin®
sin 3n+ 1)

and the eigenvector corresponding to \; is

. T . 2im .om t
sin ——,sin ——, - - -, sin .
n+1 n+1 n—+1
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16.10. Find the eigenvalues of the tridiagonal matrix A = (a;;) € R™*",
where

a, 1=
_ b, j—i=1
YT Y e i-j=1
and be > 0.
16.11. Show that
z 1 1
1 =z 1
Iz 1 " 2mi
= H[x—i—?cos—]
1=1
1 = 1
1 1 =z
16.12. Show that
r 2a 1 1 2a
20 x 2a 1 1

1 2¢ x 2a 1
1 2a r 2a 1
1 2a r 2a 1
1 1 2a =z 2a
20 1 1 2a =«

. j o
H [a:—!—2cos——|—4acos—Z

n
i=1

16.13. Let (V, F) be an n-dimensional vector space, and let L : V. — V
be a linear mapping. A nonzero vector u € V is called an eigenvector of L if
there exists a A € F' such that Au = Au. Show that
(i) if A1,---, A, are distinct eigenvalues of L and u!,--- ,u™ are the corre-
sponding eigenvectors, then the set S = {u!,---  u"} is linearly independent,
and forms a basis of V
(ii) L is one-to-one if and only if 0 is not an eigenvalue of L.

16.14. Find the eigenvalues and eigenvectors of L : V' — V| where L is
defined by
(i) V =R*Y L(xy,x0,23,24)" = (x1, 21 + 5xg — 1023, 71 + 273,71 + 374)°
(ii) V the space of twice continuously differential functions satisfying x(0) =
z(1) =0, L(z) = ="

(iii) V = (P2, R), L(a+bx) = (a +b) + 20x.
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16.15. Let A be an n x n matrix with linearly independent eigenvectors
ul, -+ u™ and associated eigenvalues A, -+, A\, where [A\1]| > [A2| > |A3| >
- > |Anl, ice., A1 is the dominant eigenvalue). Further, let 4 = ciu® + --- +
cpu™, where ¢ # 0. Show that lim,, o (1/A]*)A™ 0 = cyul. In particular, for

the matrix A in (16.4) show that

1 1 1 11051 21845 10795 1 0.666672 1
4—8A8 1] = Y 21845 43691 21845 1]~ (1333328 ~k | 2],
1 10795 21845 11051 1 0.666672 1

where k is a constant.

Answers or Hints

16.1. (i) (ad)z = (a))z.
(ii) det (A —AI) = (a11 — A) - cofactor (a11 — A) + 37, a; - cofactorayy,
and since each term a,; - cofactoray; is a polynomial of degree at most n — 2,
on comparing the coefficients of A"~!, we get
(=) N = coefficient of A" in (a1; — A) - cofactor (a1; — N).
Therefore, an easy induction implies
()" N = coefficient of A" in (a11 — A) -+ (@np — )
= (D)"Y a
(iii) In det(A—AI) = (=1)"(A— A1) --- (A — Ay,) substitute A = 0.
(iv) Clear from the expansion of the determinant.
(v)  For a polynomial with real coefficients, complex roots occur only in con-
jugate pairs. Thus A\; = p 4 iv and A\; = p — iv both are eigenvalues. Now if
u = v + jw is an eigenvector corresponding to A1, i.e., Au = Aju, then since
A is real, Au = \7.
(vi) Use P11.
(vii) If A=1 = A?, then from P6 and P7, 1/A = ), ie., A2 = 1.
16.2. (1) 4, (1,1,2)% 3, (0,1,2)% —1, (—4,1,22)
(H) ( 717 ) 1, (07_275)t; 37 (17072)t
(iii) O, (1,2,2 , (2,1,-2)% 15, (2,-2,1)%
)
(-

2,2)% 3
16.3. (i) 3+ 3i, (21;31)
2,3, —

(i) 1, ,3,—2)% 14 2d, (0,44,1)%
(iii) 1, (1,-1,0)% =4, (1,44,1).
16.4. Verify directly.

3 -6 3
16.5. () 5| -1 6 -1

-2 36 -4

(ii) Singular matrix.
(iii) Singular matrix.
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16.6. (i) For A\; = —1, a.m. is 2 and g.m. is 1. For A2 = 3, a.m. and g.m. are
1.

(i) For A =1, a.m. is 3 and g.m. is 2.

(iii) For A\; =2, a.m. is 2 and g.m. is 1. For A2 = 3, a.m. and g.m. are 1.
16.7. C1 + A\Co + - - + A" 1C,,.

16.8. (i) Verify directly.

(ii) The characteristic polynomial of P is (—1)™(A™ — 1). Use property P12.
16.9. Use (4.6) with z replaced by x — A. Verify directly.

16.10. \; = a — 2\/Ecosni—L, i=1,---,n.

16.11. The corresponding matrix is circulant with a1 = x,a0 =1,a3 =--- =
an—1 = 0,a, = 1. Thus from Problem 16.7, its eigenvalues are A\, = = + wy +
wi ™. Now, since wy, = 7/" it follows that A\, = = + 2cos(27k/n). Now
use Problem 16.1(iii).

16.12. The corresponding matrix is circulant with eigenvalues Ay, = r+2awg+
w? 4+ w2 + 2awp L

16.13. (i) Similar to P4.

(ii) Similar to Theorem 12.3.

16.14. (i) The eigenvalues and the eigenvectors are 1,2,3,5 and (4, —11,
—4,0),(0,10,3,0),(0,0,0,1)%,(0,1,0,0)*.

(i) —z2" =Xz, 2(0) =2(1) =0, A\, = 0272, 2,(t) =sinnnt, n=1,2,---.
(iii) The eigenvalues and the eigenvectors are 1,2 and (1,0)?, (1,1)".

16.15. A4 = A™(crul + -+ + cpu™) = e APul + -+ + e, ™™, and hence

1 A\ A\
—A™MG = 1 ) 24 ... on ",
/\71” U= Cciu +()\1> u® 4+ +(>\1) U
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Normed Linear Spaces

The distance between a vector and the zero vector is a measure of the length
of the vector. This generalized notion, which plays a central role in the whole
of analysis, is called a norm. We begin this chapter with the definition of a
norm of a vector and then extend it to a matrix. Then we will drive some
estimates on the eigenvalues of a given matrix. Some very useful convergence
results are also proved.

A norm (or length) on a vector space V is a function that assigns to each
vector u € V' a nonnegative real number, denoted as |lu||, which satisfies the
following axioms:

1. Positive definite property: ||u|| > 0, and ||u| = 0 if and only if u = 0,
2. Homogeneity property: ||cu|| = |c|||u| for each scalar c,

3. Triangle inequality: ||u+ v|| < ||u| + |jv| for all u,v € V.

A vector space V' with a norm || - || is called a normed linear space, and is
denoted as (V,]| - ||). In the vector space R™ (C™) the following three norms
are in common use:

n

absolute norm ||ul; = Z luil,
i=1

n 1/2
Euclidean norm |julj2 = (Z ui2> = v (u,u),
i=1
and

maximum norm ||uljec = max |u;].
1<i<n

As an example, for the vector v = (1,2, —3,5)?, we have |Jull; = 11, |lull2 =
V39, |[ullee = 5, whereas for the vector u = (1 +4,2 — 3i,4), |lul1 = V2 +
VI3 +4, flullz = V31, |lufe = 4.

The notations | - [|1, |- [l2, and || - || are justified because of the fact that
all these norms are special cases of the general £,—norm

n 1/p
lull, = (Zuﬂ) , p>1L
=1

145
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Similarly, in the vector space of real-valued continuous functions Cfa, b],
the following three norms are frequently used:

b b 1/2
Hf\h:/ [f(@)ldz, [If]l2 = (/ fz(x)dx> and [ fllo = max |f(z)]

z€la,b

Theorem 17.1 (Cauchy—Schwarz inequality). For any pair of
vectors u, v in an inner product space V, the following inequality holds:

[(uw, 0)] < lull2ffv]]2- (17.1)

Proof. If v =0, there is nothing to prove. If v # 0, for A € R, we have

0 < Ju—(u,v)\|3
= (u— (u,v)Av,u — (u,v)\v) -
= (u,u) — (u,v)Mu,v) — (u,V)Mv,u) + (u,v)(u, v)A\2(v,v)

= [lull3 = 2A[(u, v)I* + [(u, ) PA?[|v]3.

Now let A = 1/|v||3, to obtain

[(u,v)|?

2

which immediately gives (17.1). |

Using (17.1) in (14.1) it follows that —1 < cosf < 1, and hence the
angle 6 between two vectors in a real inner product space (V, R) exists and is
unique. Thus, in (V, R), |(u,v)| = ||ull2]|v|2 provided § = 0, i.e., v and v are
orthogonal.

Theorem 17.2 (Minkowski inequality). For any pair of vectors
u, v in an inner product space V, the following inequality holds:

lutolla < Jlullz +vll2- (17.2)

Proof. In view of the inequality (17.1) and the properties of inner products,
we have

lutolld = (utovutv) = (uu)+(u0)+(v,u)+(0,0)
[ull3 + (u, v) + (u,0) + [|v]I3
[ull3 + 2Re (u, v) + [|v]|?

[ull3 + 2llull2llv]l2 + 03

(llullz + [lvll2)?,

IN I

which on taking the square root of both sides yields (17.2). |
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Example 17.1. For the vectors u = (ay, -+ ,a,),v = (b1, -+ ,n,) € C",
inequality (17.1) reduces to

(a1by + -+ anbn) < (lar)® + -+ Jan|>)V2(b|? + - + [baH)Y2. (17.3)

Example 17.2. For the functions f, g € C|a,b], inequality (17.1) reduces

to
b b 1/2 b 1/2
/ f@)g@)de < ( / |f<x>|2dx> ( / g<x>|2> S ara

The set C™*™ can be considered as equivalent to the vector space C’"?,
with a special multiplicative operation added into the vector space. Thus, a
matrix norm should satisfy the usual three requirements of a vector norm and,
in addition, we require:

4. |ABJ| < ||A||I|B]| for all n x n matrices A, B (and hence, in particular, for
every positive integer p, ||AP| < ||4|P),

5. compatibility with the vector norm, i.e., if || - ||« is the norm in C™, then
[Au]l« < ||A]l||u||« for all w € C™ and any n x n matrix A.

Once a norm || - ||, is fixed, in C™ then an associated matrix norm is usually
defined by

[[Aul[«
Al = 5171}3 Tal = Hsll‘lngAuH*. (17.5)

From (17.5) condition 5 is immediately satisfied. To show 4 we use 5 twice,
to obtain

[ABull. = [[A(Bu)ll. < [[AllBull. < [|A[[BI[[lx]-

and hence for all u # 0, we have

—ﬁf”* < JAIBI,
or AB
14B] = sup 2B gz
P Tl

The norm of the matrix A induced by the vector norm ||u||. will be denoted by
||A]|«. For the three norms ||ull1, ||ul|2, and |||/, the corresponding matrix
norms are

IAlx = max Y lagl, (Al = V/p(AP4), and [|A] = max > |ail,
i=1 j=1

1<j<n 1<isn

where for a given n x n matrix A with eigenvalues Ay, -- - , A\, not necessarily
distinct, p(A) is called the spectral radius of A and is defined as

p(A) = max{|\], 1<i<n}.
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Theorem 17.3. For a given square matrix A, p(A) < ||A]|.

Proof. Since Ax = Az, we have | \z| = || Az| < ||Al|||z||, which is the same
as Mlzll < [ A]z], and hence | < [[4]. B

From Theorem 17.3 it follows that all eigenvalues of A lie in or on the disk
|z| < ||A]l of the complex plane C; in particular, in the disks

2] < ﬁgﬁg;:£:|amW (17.6)

Sisn

and .
|z < max Z|a¢j|. (17.7)

1<j<n
SI= =1

Remark 17.1. Let (), u) be an eigenpair of A, and let |u;| = max{|uq],--- ,
|tn|}. In component form, Au = Au can be written as

n
()\—aii)ui = E aijuj, 1= 1,-“ ,n,
j=157

and hence it follows that

n

N—aul < > ay]

J=1,j#i
Therefore, all the eigenvalues of A lie inside or on the union of the circles

n

|Z_aii| S Z ‘aij|a izla"'a

j=1.j#i

(17.8)

S

Also, since the eigenvalues of A and A? are the same, all the eigenvalues of A
lie inside or on the union of the circles

n

|Z—ajj| < Z ‘aij‘v J:]-?an (179)
1=1,i#]

The above estimates are attributed to Gershgorin. Since all these bounds are
independent, all the eigenvalues of A must lie in the intersection of these
circles. If any one of these circles is isolated, then it contains exactly one
eigenvalue.

Example 17.3. For the matrix A in (16.4), in view of (17.6) as well as
(17.7), all the eigenvalues lie in or on the circle |z| < 5; whereas, in view of
(17.8) as well as (17.9), all the eigenvalues lie inside or on the union of the
circles |z — 2| < 1 and |z — 3] < 2, which is |z — 3| < 2. Now, since the
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intersection of |z| < 5 and |z — 3| < 2 is |z — 3| < 2, all the eigenvalues of A
lie in or on the circle |z — 3| < 2.

Remark 17.2. If all the elements of A are positive, then the numerically
largest eigenvalue is also positive, and the corresponding eigenvector has pos-
itive coordinates. This result is due to Perron. For the matrix A in (16.4), the
largest eigenvalue is 4 and the corresponding eigenvector is (1,2, 1)%.

Remark 17.3. Let A be a hermitian matrix with (real) eigenvalues
AL,y Ap. Define A = min{Ay,---, A} and A = max{As, -+, A,}. Then,
for any nonzero vector u € C™, the following inequality holds:

(Au, u)
(u, u)

A<

< A (17.10)

Further, A\ = min, =i (Au,u) and A = max, = (Au,u). The expression
(Au,u)/(u,u) is called the Rayleigh quotient.

A sequence of vectors {u™} in a normed linear space V is said to converge
touw € V if and only if ||lu — ™| — 0 as m — oo. A sequence of matrices
{AM)} with elements (al(;n)) is said to converge to A = (a;;) if and only if
Zn) Further, the series Y, A(™) is convergent if and only

if the sequence of its partial sums, i.e., {Z’:nzl A™Y ] converges.

aij = limy, o0 @

In a normed linear space V, norms || - || and || - ||« are said to be equivalent
if there exist positive constants m and M such that for all w € V, m|lu| <
[lul« < Mu||. It is well known (see Problem 17.7) that in a finite dimensional
normed linear space all the norms are equivalent. Thus, if a sequence {u™}
converges in one norm then it converges in all the norms.

Theorem 17.4. For a given square matrix A, lim,, ., A™ =0 if [|A]| <
1.

Proof. Since |A™|| < ||A||™ and the norm is continuous (see Problem 17.2),
it follows that || limy,— 0o A™|| < limy,— o0 ||A]™ = 0. [}

Theorem 17.5. For a given square matrix A, (I —A)~! exists if [|A| < 1.
Further,

T+A+ A%+ = Y A" = (I-A)" (17.11)
m=0

Proof. Since
[(I=A)z|| = [lz—Az[| > [z —[Az[| = [l=|—[Alllzll = @ —[AD]]

(I—A)x # 0 for an arbitrary x # 0, which implies that (I — A) is a nonsingular



150 Chapter 17
matrix. Now, after multiplying the identity
(I+A+A 4+ AT - A) = - A
by (I — A)~!, we obtain
(I+A+A 4 A™) = (I =A™ (1 - A7
In the above equality as m — oo, (17.11) follows. |

Theorem 17.6 (Banach’s lemma). For a given square matrix A,
if ||A]| < 1, then

1 1

T < (I+A)71 < AT (17.12)
Proof. Since
I = (I-AT-A)"1 = T-A)"1—AT-A)71,
we have
JANI =7 = A=A = |- =1 = (1 =47 -1,

and hence ||(I—A)~Y|| < 1/(1—||A]]). Analogously, letting I = (I+A)(I+A)~!
we find ||(I + A)71|| > 1/(1+ || A]|). Finally, since || — A|| = || 4]|, inequalities
(17.12) follow. |

Problems

17.1. Show that for all vectors u,v € R3,
() Lagrange’s identity Ju x v]3 = [ul3][v]3 - (u-v)?

(i) |lu x v||2 = ||u|l2|lv]|2 sin @, where 0 is the angle between u and v.

17.2. Show that
ull = [[vll] < flu—v]

Thus the norm is a Lipschitz function and, therefore, in particular, a contin-
uous real valued function.

17.3. For any pair of vectors u, v in an inner product space V, show that
@) llu+vlld+ lu— vl = 2(ul3 + 2[v]3 (parallelogram law)
.. 1 1
(i) Re(u,0) = gllutolf - 5lu— vl

In particular, for the vectors u = (2,0,1,3)!, v = (3,2,1,0)! in R*, verify
the above relations.
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17.4. Let {u',--- ,u"} be an orthogonal subset of an inner product space
V. Show that the generalized theorem of Pythagoras, i.e.,

lul + a3 = (a1 4+ uT3

holds. In particular, verify this theorem for the orthogonal set {(0,1,1)%
(1,-4, 1), (%, %, —%)t} obtained in Example 14.7.

17.5. Let S = {ul,---,u"} be an orthogonal subset of an inner product
space V. Show that for any vector v € V| the following holds:

T T
v — E ciu’ v— E d;u’
i=1 i=1

where ¢; = (u®,v)/(u,u?), i = 1,--- ,r are the Fourier coefficients, and d;, i =
1,--- ,r are arbitrary scalars. Thus, in ¢3-norm, 22:1 ciut = 22:1 proj,:v =
projgv is the closest (best approzimation) to v as a linear combination of
ul,--- ,u". Thus, in view of Example 14.7 from the vector (2,2,3)? to the set

Span{(0,1,1)%, (1 — 1/2,1/2)*}, the minimum fo-distance is

<

)

2

2

L
NeL

5 5 1 1\"
t__ t__ - =
(2,2,3)' ~ 5(0,1,1) 3(1, 2,2) 2

17.6. Let {a',---,a"} be an orthonormal subset of an inner product
space V. Show that for any vector v € V| Bessel’s inequality holds:

T

Yo lal® < o3,

i=1

where ¢; = (v,4'), i = 1,---,r are the Fourier coefficients. Verify this in-
equality for the orthonormal set {%(0, 1, 1) \/%(1, -1, 4, } and the vector
(2,2,3)%

17.7. Let ¢ > p > 1. Show that
(i) for any x € R",

lzlly < Nally, < nl PP,

(ii) for any n x m matrix A,

n(pfq)/quAHq < 4], < n(qu)/pq”AHq.

17.8. Let A be an n x n real matrix. Show that A*A has nonnegative
eigenvalues.
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17.9. Let A and B be n x n matrices. The matrix A is nonsingular and
|A71B|| < 1. Show that A + B is nonsingular, and

|A~1B]

A+ By toAYy < 2=~

1AM

17.10. Let V be a normed linear space. The distance function between
two vectors u,v € V' is defined by d(u,v) = |ju — v||. Show that

(i)  d(u,v) >0, and d(u,v) =0 if and only if u = v

(i) d(u,v) = d(v,u)

(iii) d(u,v) < d(u,w) + d(w,v) for every w € V.

For d(u,v) = ||lu — v||2 the above definition reduces to the familiar Euclidean
distance. In particular, for the vectors v = (1,2,3)!, v = (2,0,1)!, w =

(1,3,0)! in (R3,]| - ||2), verify the above properties.

Answers or Hints

17.1. (i) |Ju x v||3 = [[(uavs — ugva, uzvy — Uiv3, Urv2 — ugv1)||3 = |ugvs —
ugva|? + |uzvr — urvs|? + [urvy — ugvr > = ||ull3]|v]|5 — (u, v)?.
i) flux ol = [ul3llel3 — (ulallell2 cos 0.

17.2. [Jul] = [lu — v+ v[| < [lu — o[ +[Jo].

17.3. (i) [[u+v|3+|lu—v|3 = (u+v,ut+v)+(u—v,u—2v) = 2(u,u) +2(v, v).
(i) lu+olf - Hu—ol} = Huwo) + @u) o

17.4. || 200 w3 = (i, w30 wh) = 20 (uh,u) + 300 (u ul).

17.5. By Theorem 14.3, v — >/, c;u' is orthogonal to every u’, and hence
orthogonal to any linear combination of u!,--- ,u”. Thus, from Problem 17.5
it follows that

o= Sy e = 0 = 30y ) + (S0 (e~ dyu)3

= o =S 3 4+ I e — d)uilE S o= S . |
176. 0 < (v =Y.  gu,v—>" i) = ||v]]? —2Re(v,> |, i) +
S el = ol S50 el

17.7. (i) First we will show that for 0 < p < ¢, |lz|l, > ||zl = € R™.
If + = 0, then it is obviously true. Otherwise, let yr = |zi|/||z|q. Clearly,
yp < 1forall k =1,---,n. Therefore, y§ > y}, and hence ||y||, > 1, which
implies ||z||, > ||z||4- To prove the right side of the inequality, we need Holder’s
inequality

n n 1/r n 1/s 1 1
> fuiv| < (Zu) (Zwﬁ) s>l =1
i=1 i=1 i=1

In this inequality, we let u; = |x;|P, v;: 1, r=q/p>1, s=q/(qg—p), to get

n n p/q
Z |z|P < (Z |xi|q> (n)la—p/a,
i=1 i=1
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(i) For g > p>1, from (i), we have

A A )| A -
||A||p — max H x”P < H x”P S max n rd H x”q — H%HAHW
2#0 ||96H1iz4 z#0 H33||qA w20 |lzllq N
lAll, = maxw > maXUfpin > max Lﬂ = ”%”A”cr
220 ||z|p 70 na |zl 0 nE ||zl

17.8. Since A!A is real and symmetric, in view of P8 (in Chapter 16), eigen-
values of A*A are real. If \ is an eigenvalue of A*A and v is the corresponding
eigenvector, then ||Aul|3 = ((Au), (Au)) = (Au)'(Au) = vt (A'A)u = ullu =
Autu = A||lul|3, and hence A is nonnegative.

17.9. Since ||[A7!B|| < 1 from Theorem 17.5, it follows that the matrix
(I + A~'B) is nonsingular. Now since A + B = A(I + A~!'B), the matrix
A+ B is nonsingular, and (A+ B)™! — A"t = (I +A7'B)71A71 - A7l =
[(I+ A='B)~t — IJA~L. Now use (17.12).

17.10. (i) If u # v, then u — v # 0. Hence d(u,v) = ||u — v|| > 0. Further,
(o) = llu— ul| = 0] = 0

(i) d(u,v) = [lu—v] = [[ = 1(v = w)[| = | = Uljo —ul = [[v—ull

(iii) d(u,v) = flu —vl} = [[(u—w) + (w = V)| < [lu—wl]+|w—-2] =
d(u, w) + d(w,v).
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Chapter 18

Diagonalization

An n x n matrix A is said to be diagonalizable if there exists a nonsingular
matrix P and a diagonal matrix D such that A = PDP~!, which is the same
as D = P7'AP. An immediate advantage of diagonalization is that we can
find powers of A immediately. In fact, note that

A? = (PDP Y (PDP™') = PD(P7'P)DP~! = PD?P!,
and for any positive integer m, it follows that
A™ = pp™pTl.
From Chapter 2, we also recall that if the diagonal elements of D are
(M, -+, An), then D™ is also diagonal, with diagonal elements (A7*, -, AT™).
Our main result of this chapter is the following theorem.

Theorem 18.1. An n xn matrix A is diagonalizable if and only if A has n
linearly independent eigenvectors, i.e., algebraic multiplicity of each eigenvalue
is the same as the geometric multiplicity. Further, if D = P~' AP, where D is
a diagonal matrix, then the diagonal elements of D are the eigenvalues of A
and the column vectors of P are the corresponding eigenvectors.

Proof. Let A\i,---,\, be the eigenvalues (not necessarily distinct) of A
and let u!,--- ,u™ be the corresponding linearly independent eigenvectors.
We define an n x n matrix P whose i-th column is the vector u’. Clearly, in
view of Problem 8.3 the matrix P is invertible. Now, since

Aut = Mul,
it follows that
AP = A(ut, - u™) = (Au',--, Au"™) = (Mt \u") = PD,

where D is the diagonal matrix with diagonal elements Aq,---, A,. Thus,
AP = PD, and hence D = P"'AP.

Conversely, suppose that A is diagonalizable, i.e., there exist a diagonal
matrix D and an invertible matrix P such that D = P~'AP. Again assume
that the diagonal elements of D are (A1,--- , ;) and the column vectors of P

155
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are (ul,---,u"). Since AP = PD, it follows that Au’ = \ju?, i = 1,--- ,n
Hence, u',--- ,u™ are eigenvectors of A. Since P is invertible, from Problem
8.3 it follows that u!,--- ,u" are linearly independent. |

Theorem 18.1 says that the matrices A and D are similar, and hence in
view of P12 (in Chapter 16) both have the same eigenvalues.

Corollary 18.1. If A is an n x n matrix with n distinct eigenvalues, then
A is diagonalizable.

Proof. Tt follows from P4 (in Chapter 16) and Theorem 18.1. |

Example 18.1. In view of Example 16.1 for the matrix A in (16.4), we
have

1 00 1 11
D = 0 2 0 and P = -1 0 2
0 0 4 1 -1 1
Now, since
1 2 -2 2
Pt = 6 3 0 -3
1 2 1
from Theorem 18.1, it follows that
100 2 -2 2 2 1 0 1 11
0 20 =-(3 0 -3 1 3 1 -1 0 2
0 0 4 1 2 1 0 1 2 1 -1 1
and
2 1 0 1 11 100 1 2 -2 2
A= 1 3 1 |= -1 0 2 0 2 0 6 3 0 -3
0 1 2 1 -1 1 0 0 4 1 2 1
For each postive integer m we also have
1 11 2 -2 2
A™ = -1 0 2 0 2m 0 % 3 0 -3
1 -1 1 1 2 1
2 3om 1 m 2 2, m 2 3om 1m
6t s2" t5d __+64 652" Tt
2 2 m 2, 4 m 2 . 24m
2 3om 1 m 2 2 1m 2 3om 1 m
5—22M 4 4™ -2+ 24 s+ 52M+ 54

Example 18.2. For the matrix A in Example 16.5, we find

-1
D:

o

0 0
-1 0 and P =
0 1

O O =

0
1
0

o
— = N
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Now, since
1 0 =2
Pt=101 -1
0 0 1
from Theorem 18.1, it follows that
-1 0 4 1 0 2 -1 0 0 1 0 =2
A= 0 -1 2 |=(011 0 -1 0 01 -1
0 0 1 0 0 1 0 0 1 0 0 1

Example 18.3. In view of Theorem 18.1, the matrix A in Example 16.4
cannot be diagonalized.

Remark 18.1. The matrix P that diagonalizes the matrix A is not unique.
For example, if in Example 18.1, we take

2 0 0 1 1 1
D = 0 4 0 and P = 0o 2 -1 |,
0 0 1 -1 1 1
then
2 1 0 1 1 1 2 0 0 1 3 0 -3
A= 1 3 1 = 0 2 -1 0 4 0 G 1 2 1
0 1 2 -1 1 1 0 0 1 2 =2 2

Similarly, in Example 18.2, we could have taken

-1 0 0 1 2 0
D = 0 1 0 and P = 0 1 1
00 -1 01 0
Then,
-1 0 4 1 2 0 -1 0 0 1 0 -2
A= 0O -1 2 |=1011 0 1 0 0 0 1
0 0 1 0 1 0 0 0 -1 01 -1

A linear mapping L : V — V is called diagonalizable if there is a basis S
for V such that the transition matrix A for L relative to S is a diagonalizable
matrix.

Remark 18.2. In the above definition, let S and T be two bases of V,
and let A and B be the corresponding transition matrices. Then, in view of
Chapter 13, A and B are similar, i.e., there exists an invertible matrix ) such
that B = QAQ ™. Thus, if A is diagonalizable, i.e., A = PDP~!, then B =
QPDP~'Q~! = (QP)D(QP)~!, and hence B is diagonalizable. Therefore,
in the above definition, if L is diagonalizable with respect to one basis, it is
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diagonalizable with respect to all bases. However, with respect to different
bases, the corresponding transition matrices and their diagonalizations may
be different (see Example 18.4 and Problem 18.2).

Example 18.4. Consider the linear mapping L : R? — R3 as L(z,y,2) =
(1lz —y — 4z, —x + 11y — 42, —4x — 4y + 142)! and the basis S; for R3 as
S1 = {el,e?, e3}. For this mapping, the transition matrix A relative to S is

11 -1 —4
A= | -1 11 -1 ]. (18.1)
—4 -4 14

For this matrix A the eigenvalues and the corresponding eigenvectors are

Moo= 6, wl=(1,1,1)
Ao = 12, u?=(-1,1,0)
A3 = 18, ud=(-1,-1,2)%

1 -1 -1 6 0 01, 2 2 2
A=pPDP'=|1 1 -1 0 12 0 5 -3 30
1 0 2 0 0 18 -1 -1 2

(18.2)

Remark 18.3. The matrix A in (18.1) is symmetric, its eigenvalues are
real, and its eigenvectors are orthogonal, as they should be in view of P8
and P9 (in Chapter 16). The columns of P are orthogonal (but not the row
vectors) and the row vectors of P! are also orthogonal (but not the column
vectors). Clearly, we can normalize the above eigenvectors, and then in (18.2)
the matrix P can be replaced by

Q =

‘:3§|"‘§|H
|

S-S
Shs-5l-

This matrix @ is orthogonal (rows as well as columns are orthonormal, see
Problem 14.11) and hence Q' = Q~!. Thus, it follows that

1 1 1 1 1 1

R B R W AR ooV
A=QpQ'=| 5 5 o~ {02 o)l -5 5 0
w0 F /N0 0O BIN-% % %

An n x n matrix A is said to be orthogonally diagonalizable if there exists
an orthogonal matrix @ and a diagonal matrix D such that A = QDQ ! =
QDQ?. Thus the matrix A in (18.1), which is real and symmetric, is orthog-
onally diagonalizable. In fact, we have the following general result.
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Theorem 18.2. A real n x n matrix A is orthogonally diagonalizable if
and only if A is symmetric.

Proof. If A= QDQ?, then
b= (QDQRY = (@")'D'Q' = QDQ' = A

i.e., At = A, and hence A is symmetric.

For the converse, we note the following facts: From P8 (in Chapter 16),
eigenvalues of a real symmetric matrix are real; from P9 (in Chapter 16),
eigenvectors of a real symmetric matrix that correspond to distinct eigen-
values are orthogonal; for a symmetric matrix, algebraic multiplicity and the
geometric multiplicity of an eigenvalue are the same; however, if the geometric
multiplicity of an eigenvalue is greater than 1, then the corresponding eigen-
vectors (though linearly independent) may not be mutually orthogonal, but
the Gram—Schmidt process can be used to orthogonalize them. All of these
vectors can be orthonormalized. |

Example 18.5. For the symmetric matrix

S

Il
S g Y
U~ BTt Wl

Wl Wl W|UT—

QU1 O Wk =

the eigenvalues and the corresponding eigenvectors are

Moo= 2, wl=(3,1,1,1)
o = 3, wul=(0,-2,1,1)
A3 = -2, ud=(-1,1,2,0)
)\4 = 2, u4 (0,0, 1,1)
Clearly, the sets S; = {u',v? 43} and Sy = {u',u? u?} are orthogonal;

however, the vectors u3 and u*, although linearly independent, are not or-
thogonal. We use the Gram-Schmidt process to orthogonalize the vectors u3
and u?, to obtain v* = (-1,1,2,0)" and v* = (-1/3,1/3,-1/3,1)%. The set
S = {u',u?,v3 v*} is orthogonal. Next, we normalize these vectors, to find

1

1

O
I
< &b 5 5
o Sl sk
|
555

S-S-Ek o

1

We further note that in the factorization QD@? of the given matrix A, the
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matrix D is
0

0
0 0
-2 0
0 -2

O O oW
o O wo

Finally, in this chapter we prove the following theorem, known as QR
factorization.

Theorem 18.3. Let A = (a',---,a") be an m x n matrix with linearly
independent columns. Then, A can be factorized as A = QR, where Q =
(¢', -+ ,q") is an m x n matrix with orthonormal columns and R is an n x n
upper triangular matrix with positive diagonal elements.

Proof. To columns of A we apply the Gram—Schmidt process to obtain the
required matrix @ with orthonormal columns {¢*,--- ,¢"}. For each a7, 1 <
j < n by the Gram—Schmidt process ensures that a/ € Span{q',---,¢’}.
Thus, from (14.5) it follows that

o = (al,¢")q" +(,¢*)q" + -+ (@, ¢)d. (18.3)

Let 7 = (a’,¢*), 1 < j <n,1 <k <3, and define the matrix

Ti1 Ti2 -+ Tin
0 mro2 -+ T2

R =
0 0 - 7w

Now we claim that A = QR. For this, it suffices to note that the j-th column of
QR is exactly (18.3). Now, clearly a* & Span{q!,---,¢*"'}, and hence ry =
(a*,q*) # 0. If 74 < 0, without affecting the orthonormality of {¢*,- -, ¢"},
we replace ¢* with —g¢*, which will make ry, > 0. Hence, the diagonal entries
of R can be made positive. [ |

Remark 18.4. Since A = QR, we have QA = Q*QR = R, and hence
once @ is known, the matrix R can be computed immediately.

Example 18.6. From Problem 14.14(ii) it follows that for the matrix

A = (a',a? d®) =

W = =
W N =
O B W N



Diagonalization 161

the matrix Q is

1 1 2
23 23 V6
1 1 1
Q= (e = | W
b 1 3
i 25
3 1 1
23 23 V6

69 18
11 T12 T13 (alyql) (027611) (a3,q1) V3 V3 V3
R=| 0 ra ra |= 0 (a%¢) (&) |=| 0% &
0 0 rs 0 0 (a¢°) 0 0 2
V6
Problems

18.1. If possible, diagonalize matrices given in Problems 16.2, 16.3, and
16.6.

18.2. Diagonalize the following matrices

5 -1 -1 -1

10 4 -2
(i) -10 24 -2 |, (i) j f ; _1
-20 8 16

—1 1 -1 7
18.3. In Example 18.4 with the given basis S; find the corresponding
matrices P* and D*, i =2,---,7
(i) So={e? e e}, (ii) S3={e3 el e}, (iii) Sy = {et,e?, e?},
(iv) S5 ={e? el e3}, (v) Se={e3 e et} (vi) Sy ={e!,e! +e? ¢!
+e? +e?}.

18.4. Orthogonally diagonalize the following matrices, and the matrix in
Problem 18.2(ii):

5 03 0

2 0 0 13 2 4 0 B oo 4

.. 9v2

(i) 0 % —% , (i) 2 10 2 |, (i) 1 0 3 0
0o -1 3 4 2 13 2 2

2 2 0 4 0 17

9v2 9

18.5. Find QR factorization of the following matrices:
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16.6(i), (ii), (iii) None of them are diagonalizable.
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1 —0.4166674 0.702179: —0.416667 — 0.7021797

(i) PP= [ 1 —0.583333—0.702179i —0.583333+ 0.702179i
1 1 1
6 0 0
D*=| 0 2(-5+iVT71) 0
0 0 —3(5+4V/T1)
1 —1.7374 —0.0959285
(iii) P*=| 1 0.737405 —0.904071
1 1 1
6 0 0
D=0 (- 1+\/—) 0
0 ~3(1+ V7
1 —1 ~1 6 0 0
1 1 D=0 —-12 0
(1 0 0 18

0.603423  —1.25509 0.76072
—0760381 —0.168228 1.5603

1 1
15.4894 0
Db = 0 —12. 8983 0
0 8.4089

2. 50743 —1.00372 — 0.581853¢ —1.00372 4 0.581853:
—1. 45332 0.0391602 — 0.80221:  0.0391602 4+ 0.80221%

1 1
7.59684 0 0
D7 = 0 9.70158 4 8.745091 0
0 0 9.70158 — 8.74509¢
0 1 0 1 1
X X 1 0 0 0 5 &
184. i) | 53 0 —5 020 1 0 0|, or
1 1
0 2 L 0 L 1
V6 V3 1 00 V2 V2
I S 1 0 2 0 2 _ 1 1
V2 V6 V3 V6 V6 V6
a1 1 1 0 0 2 N R
V2 V6 V3 V3 V3 V3
_2 12 _2 2 1
3 3 3 9 0 O 3 3 3
(i) 2 2 1 09 0 12 2| or
12 2 0 0 18 5 1 2
3 3 3 3 3 3
_i a2 L T2y
V5 3vs 3 9 0 O NG V5
2 __2_ 1 0 9 0 4  __2 5
NG 3vE 3 3v5 3vV5  3V5
0o 5 2 0 0 18 2 1 2
3v5 3 3 3 3
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Chapter 19

Singular Value Decomposition

In this chapter, we shall develop another type of factorization, which is a
generalization of the diagonalization procedure discussed in Chapter 18. This
factorization is applicable to any real m x n matrix A, and in the literature
has been named as the singular value decomposition (SVD). Besides solving
linear systems, SVD has a wide variety of applications in diverse fields such as
data compression, noise reduction, storage, estimating the rank of a matrix,
and transmission of digitized information. Before we state the main result of
this chapter, let us recall the following steps:

S1 For an m x n matrix A, the m x m matrix AA* and the n x n matrix A*A
are symmetric.

S2 In view of Problem 17.8, the eigenvalues of A*A are real and nonnegative.
We assume that the eigenvalues Aq,--- , A\, are nonzero and arrange them in
decreasing order, i.e., Ay > Ao > --- A\ > 0.

S3 In view of Theorem 18.2 the matrix A’ A has n orthonormal eigenvectors
vl ,v™ Let vl, -+, v" be those corresponding to the eigenvalues A1, - -+ , A,
of AtA. Clearly, an immediate extension of Problem 11.3 implies that r is the
rank of A*A, which is the same as that of A.

S4 Since AA'Avt = A(A\v') = \;Av', it follows that v® is an eigenvector of
At A, which implies that Av® is an eigenvector of AA?, with the same eigenvalue
PYR

S5 From Problem 17.8 it follows that ||Avi||2 = o;[[v||2, where 0; = A2, i =
1,---,r. These o; are called the singular values of A. Clearly, 01 > 09 > --- >
or > 0.

S6. Define u® = Avi/o;, i =1,--- ,r. Then, clearly

(ui,ui) = /\%(Avi,Avi) = i—i(vi,vi) =1,

i.e., the vectors u’, i = 1,--- ,r are also normalized. Further,we have
it A,d i t Ad Lo ine At a1 Lot j Aj it
(W) Av? = (Av'/o;) A = —(*)'A"Av) = —(v")'\v) = —=(v")",
0; g; g;
which implies that for all 1 < i,j < r, (u?)!Av? = 0 for i # j, and o; for i = j.
This means that the set {u!,--- ,u"} is an orthonormal basis for the column
space A.

165
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S7. The matrix V = (v!, - ,o"[v"T! ... v™) orthogonally diagonalizes
At A; we use Remark 14.2 to extend the set {u',--- ,u"} to {ul, -+ u"|u"T
-, u™}, which forms an orthonormal basis for R™, and construct the matrix
U= (ul, - ,u"|u"t, .-+ u™); we define the matrix ¥ as follows
S I F
Omfr,r Omfr,nfr

(o} 0 0

0 g9 0
Drr - .

0 0 o,

and Oy is the k x £ zero matrix.
S8. We claim that UX = AV. Indeed, we have

Uy = (oput, -+ 0u"0,---,0)
(Avt - JAvT|AvTTL o AT) = AV
S9. Using the orthogonality of V| it follows that

A = UsV. (19.1)

Theorem 19.1. Every m x n matrix A with rank r has a singular value
decomposition, i.e, (19.1) holds.

Proof. The steps S1-S9 provide the constructive proof of (19.1). |

It is clear that for a symmetric matrix, singular value decomposition is the
same as orthogonal diagonalization, provided the eigenvalues are arranged in
a decreasing order.

Example 19.1. We shall find singular value decomposition of the matrix

2 210
A‘<1—101>'

For this, we note that

A'A =

— N W Ot
O~ NN
|
—
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For the matrix A*A, eigenvalues and the corresponding eigenvectors are A\; =
9, X2 = 3,23 = 0,\y =0 and (2,2,1,0)%, (1 — 1,0,1), (=1 — 1,4,0)%, (1,1,
0,2)t. Thus, o1 = 3,02 = V/3,

w
»—ASH
V)

§|’° o §|"‘ §|H

and V =

™
I
7N
S W
Qo
o O
o o
N~~~

O WiH Wi Wi
S o S-Sk
w
g,

w
o N

We also compute

u' = Av'/oy = <é> and u? = Av?/oy = <(1)>,

and hence

2 2 1

3 5 3 O

I 0 L

(2 210)_(1 0)(3 000> V3 V3 V3
- 1 1 4

1 -1 0 1 010\/5003ﬁ 55 75 O

_ 1 1 0 2

V6 VG V6

Remark 19.1. From (19.1) it immediately follows that A = VX!U?.
Thus, from Example 19.1, we have the following factorization:

2 1 1 _ 1
2 -1 | _ |3 "3 "wE 0\/§<10>
1 0 L 0 = 0 0 0 0 1
0 1 0 L 0 2 0 0
V3 V6

The same factorization can be directly obtained by following the above steps
S1-59.

Singular value decomposition connects four fundamental spaces of A in a
natural way. We state and prove this result in the following theorem.

Theorem 19.2. Let the m x n matrix A have the rank r, and let USV?
be its singular value decomposition; then the following hold:

(i)  theset {u',--- ,u"} is an orthonormal basis for C(A)
(ii) the set {u"*! ... 4™} is an orthonormal basis for C'(A)+ = N(A?)
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(iii) the set {vl,--- v"} is an orthonormal basis for R(A)
(iv) the set {v"*1 ... v"} is an orthonormal basis for R(A)* = N(A).

Proof. (i) It has already been shown in S6. (ii) Since from S7,
{ul, - Jumu - ) ™) extends {ul,---,u"} to an orthonormal basis
of R™, it follows that each vector in {u"*! ... 4™} is orthogonal to the
Span{ul,--- ,u"} = C(A). Thus, {u"*1 .- u™} is an orthonormal set of
m — r vectors in C(A)t = N(A!). Now from Corollary 11.4, we have
n(A') = m — r, which implies that {u"*1 ... 4™} is an orthonormal ba-
sis for N'(A?). (iii) and (iv) The set of eigenvectors {vl, - jo"[v" T ... o7}
of A*A is an orthonormal set. These are ordered so that the first r eigen-
vectors correspond to the positive eigenvalues and the remaining n — r to
the zero eigenvalue. Thus, {v"+!, ... v"} is an orthonormal set of n — r vec-
tors in the null space of A*A, which in view of Problem 11.2 is the same as
the null space of A. Now from Theorem 11.4 we know that n(A) is n — r,
thus the set {v"*1 ... o™} must be an orthonormal basis for N'(A). Next,
since each vector of the set {v"*1 ... 0"} is orthogonal to each vector of the
set {vl,--- ,v"}, it follows that each vector of the set is orthogonal to the
Span{v"*! ... o™} = NA). But this shows that {v!,--- v"} is an orthonor-
mal set of r vectors in AN(A)~ = R(A). Finally, since R(A) has dimension r,
the set {v!,--- 0"} must be an orthonormal basis for R(A). |

Remark 19.2. Following the patricians shown in S7 for the matrices
U,%, and V, we can block multiply UXV? to get the reduced singular value
decomposition of the matrix A as

g1 0 0 1\t

_ t_ 1 o 0 oz .- 0 (U)
A= UD V=@, )| . . (9.2)

(') 0 Ur ('UT)f,

Remark 19.3. Multiplying the right side of (19.2), we obtain the reduced
singular value expansion of the matrix A as

A = o) 4+ o (") (19.3)

Example 19.2. In view of Example 19.1 and Remarks 19.2 and 19.3, we
have the reduced singular value decomposition

(3G 06 A -

and the reduced singular value expansion

(720 )= (0)E0) 5 (0) (G 50%)

§|H wlvo

o Wi
S o
N————
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Example 19.3. In view of Remarks 19.1-19.3, we have the reduced sin-
gular value decomposition

2 1
2 1 3 VB
2 1| |3 -5s /3 oN[/10
1 o | o l\o0o V3 0 1

3
0 1 1

0 ——=

V3

and the reduced singular value expansion

2 1

2 1 3 V3

2 —1 2 -
Lo =3 |ao+VvB “g (0,1).

0 1 0 )

73

Remark 19.4. When the matrix A is invertible, i.e., 7 = n, then o; >

0, i=1,---,n and the singular value decomposition of A takes the form
i 0 - 0
01 o (v1)t
A = (ul,...’un) ' ' . ' (194)
0 0 o) N

Example 19.4. In Example 18.3, we have seen that the matrix A in
Example 16.4 cannot be diagonalized; however, it has a singular value decom-
position given by

2 1 -1 —0.2192 —-0.7939 -0.5671
-3 -1 1 ~ 0.2982 —0.6079 0.7359
9 3 —4 —0.9290 -0.0078 0.3700
11.0821 0 0 —0.8747 —0.2982 0.3820
X 0 0.3442 0 0.4826 —0.6079 0.6305
0 0 0.2621 —0.0442 —-0.7359 —0.6757
Problems

19.1. Use steps S1-S9 to show that

i 2 2 1

1 =1 ?ngﬁ
(121o>_<% —2>(3 000)76 Z 0 %
-\ L L1 i =2 2

2 0 1 1 ﬁﬂoﬁoo,ﬁ)g?ﬁ
VR B
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and
11 g =L
1 2 §/§ NG V3 3 0
I S 3 EES
S I TGRS B B IO I IR
11 ENG 0 = 7 0 0 5 7
0 1 11 2 L 0 0
3v2 V6 3 V3
19.2. Use steps S1-S9 to show that
V2 V2
2V7 V3
1 3 3\/5 1 1
-3 3 | _ | a7 0 <2\/7 o)(‘%ﬁ
- - V2 V2 1 1
31 7 A 0 2v3 VoA
1 1
0 N2
23
and
1 1
(1—3 -3 1)_(‘% 7§><2ﬁ 0)
= 1 1
3 3 11 % % 0 2v3
N2 3v2 V2 0
% 2VT 2VT7 V7
V2 0 —Y2 V2
V3 2V3  2V3
19.3. Use steps S1-S9 to show that
Soaay (B REY (6 RE G
-1 1 2]=|3%/6 0010>%2§20
o W6 12 V3 V3 V3
19.4. Use steps S1-S9 to show that
1 2 3 —0.559 —0.132 —0.298
2 10 - —0.140 —-0.895 0.413
1 1 2 - —0.353 -0.211 -0.710
0 3 4 —0.738  0.370  0.487
6.667 0.000 0.000 —0.179 —-0.573 —0.800
x | 0.000 2.249 0.000 —0.949 -0.116  0.295

0.000 0.000 0.700 —0.261 0.811

—0.523
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Differential and Difference Systems

In this chapter we shall show how linear algebra (especially eigenvalues and
eigenvectors) plays an important role to find the solutions of homogeneous
differential and difference systems with constant coefficients. Such systems
occur in a wide variety of real world applications.

We recall that a linear homogeneous differential system with constant co-
efficients appears as

v = Au, (20.1)
where A = (a;;) is an n x n given matrix with constant elements, and
u = u(z) = (ur(z), -+ ,un(x))t is the column vector of unknown func-

tions. A solution ¢(z) of (20.1) is a column vector valued function v =
o) = (p1(x), -+, dn(x))t of differentiable functions that satisfies (20.1),
ie., ¢'(x) = Ap(x). Clearly, u = 0 is always a solution of (20.1). This solution
is known as the trivial solution or zero solution. Often, we are interested in
finding the solution of (20.1) that satisfies the initial condition

u(zo) = uP. (20.2)

Differential system (20.1) together with the initial condition (20.2) is called
an initial value problem, and it always has a unique solution.

Example 20.1. For the system

u = Au =

S =N
o

0
1 |u (20.3)
2

each of the following column vectors is a solution:

1 -1 1
)= -1 |e® ¢*(z)= 0 |e*, ¢*(x)=| 2 |e* (204)
1 1 1

Also, for (20.3) with the initial condition «(0) = (1,2, 3)*, the unique solution
o) s

2 4
¢(x):§ —1 |e*+ 0 |e*+-| 2 |e*~ (20.5)

171
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The following results are basic for the system (20.1):

T1. If ¢'(x), - ,¢™(x) are solutions of (20.1) and ¢1,--- , ¢, are arbitrary
constants, then the linear combination ¢(z) = c1¢' (x) +- - - + @™ () is also
a solution of (20.1).

T2. There exist n linearly independent solutions (see Chapter 8) of (20.1).

T3. The set S = {¢p'(z), -+ ,¢"(z)} of n linearly independent solutions is
called a fundamental set of solutions of (20.1), the matrix of these solutions
®(x) = (¢'(z), - ,¢"(x)) is called the fundamental matriz solution of (20.1),
and it satisfies the matrix differential system ®'(z) = A®(z), and the linear
combination ¢(z) = c1¢*(x) + - + c,¢"(x) = ®(x)c, where ¢ = (c1,--+ ,¢n)t
is called the general solution of (20.1). Any solution of (20.1) can be expressed
as a unique linear combination of the solutions in the set S.

For the system (20.3), solutions given in (20.4) are linearly independent
(see Chapter 8, W (¢!, #%, $*)(0) # 0). Thus, the general solution of (20.3)
appears as

-1 1
oplz) = a| -1 |e"+c 0 |e®4ce| 2 |t
1 1
ex _621 e4.’r c1
= —e” 0 2¢t® c |,
ex eQz €4$ s

and from this the solution (20.5) of the initial value problem (20.3), u(0) =
(1,2,3)t, can be obtained immediately.

Theorem 20.1. Let the matrix A be diagonalizable (see Theorem 18.1).
Then, the set

¢1 (37) = ule>\11’ e 7¢n('r) = uneAnz (206)
is a fundamental set of solutions of (20.1). Here, A1, - - - , A, are the eigenvalues
(not necessarily distinct) of A and u!,--- ,u™ are the corresponding linearly

independent eigenvectors.

Proof. Since ' is an eigenvector of A corresponding to the eigenvalue \;,
we find

(¢z(x))/ — (uie)\iz)/ — /\iuie/\“” — Auiez\ix — Ad)z(x)

and hence ¢(z) is a solution of (20.1). To show that (20.6) is a fundamental
set, we note that W (0) = det (ul,--- ,u™) # 0, since u',--- ,u™ are linearly
independent. [ |

Example 20.2. From Example 16.1 and Theorem 20.1 it is clear that
the column vectors ¢! (), ¢*(z), ¢>(x) given in (20.4) are the solutions of the
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system (20.3). Similarly, from Example 16.5 and Theorem 20.1 it follows that
for the system

-1 0 4
v = Au = 0 -1 2 |u
0 01
three linearly independent solutions are
1 0 2
)= 0 |e ™ *z)=| 1 |e® )= 1 |~
0 0 1

Remark 20.1. The general solution of (20.1) can be written as
ole) = e ul = (', u)D()(er, o)
i=1

where D(x) is the diagonal matrix

eMT 0
0 el 0
D(z) =
0 0 - eMn®
Since the matrix P = (ul,--- ,u™) is nonsingular, P~! exists, and thus, we
can choose the vector ¢ = (c1,---,¢,)t as P~ lw, where w is an arbitrary

column vector. Hence, when A is diagonalizable, the general solution of (20.1)
in matrix form appears as

(z) = PD(z)P lw. (20.7)

Now for an arbitrary n x n matrix A, we introduce the n x n matrix e

as follows:

=, Ak 1 1

A — 2 A3 ...

e’ = kg X I+A+2!A —|—3!A +oee (20.8)
=0

This exponential series converges for any matrix A. Indeed, from the definition
of convergence in Chapter 17, we have

m+p Lk m m+p k m+p k m+p k

A At A A" Al Al
Zkg_zk!‘_ Z k! = Z k! = Z k! = el
k=0 k=0 k=m-+1 k=m+1 k=m+1

Hence, for any n x n matrix A, e? is a well defined n x n matrix.

Let A be an eigenvalue of the diagonalizable matrix A and u be the corre-
sponding eigenvector, then from (20.8) and P11 (in Chapter 16), we have

ety = i(é—f)u = i(;—:@)u = eu,

k=0
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which shows that e* is an eigenvalue of the matrix e?, and wu is the corre-

sponding eigenvector. Thus, from Problem 16.1(ii) and (iii), we find
dete? = HeAi — et Jdra £ 0
i=1

(this identity in fact holds for an any n x n matrix), and hence the matrix e

is nonsingular, and therefore diagonalizable.

Summarizing the above considerations, we find that if A is diagonalizable,
then a diagonalization of e is PD(z)P~!, and hence (20.7) can be written
as

o(z) = etw. (20.9)

We also note that, since u® = u(zg) = eA*0w gives w = e~ 4%y, the solution

of (20.1), (20.2) can be written as

o(x) = eATe= ATy 0 oA(z—0)y,0 (20.10)

Now we claim that for any n x n matrix A, ®(z) = e4? is a fundamental
matrix solution of (20.1). For this, it suffices to note that

d'(z) = Ae = Ad®(z) and @(0) = 0 = 1.

Thus, (20.9) is not restricted to diagonalizable matrices only, but rather pro-
vides the general solution of (20.1) for any n x n matrix A. However, when the
matrix A is not diagonalizable, the computation of e4? is not straightforward.
Among the several known methods to compute 4%, the following seems to be
the easiest and most popular.

Theorem 20.2 (Putzer’s algorithm). Let \;,---,\, be the eigen-
values of the matrix A, which are arranged in some arbitrary but specified
order. Then,

n—1
e = N ria(@)P;, (20.11)
j=0

where Py =1, Pj = Hizl(A — X)), j=1,---,nand ri(x), - ,r,(z) are
recursively given by
ri(x) = Mri(z), r(0) =1

ri(@) = Ajrj(z) +rj-1(x), 7;(0) =0, j=2,---,n.

(Note that each eigenvalue in the list is repeated according to its multiplicity.
Further, since the matrices (A — A;I) and (A — A\;I) commute, we can for
convenience adopt the convention that (A — A;I) follows (A — A1) if i > j.)

Proof. It suffices to show that ®(x) defined by ®(z) = Z?:_Ol ri+1(x)P;
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satisfies ®'(z) = A®(x), ®(0) = I. For this, we define 79(x) = 0. Then, it
follows that

n—1

() = M@(z) = ) (Njrrj41(@) +75(2) P — A ZTJH
=0
= Y 1 = A @B+ )P,
=0 =0
n—2 n—2
= > N1 = A (@) P+ Y () P
J=0 J=0
n—2
= D> {Njr1=A) Py + (A= N P} rja (@) (20.12)
=0
n—2
= (A=2uD) Y Pirjia(a)
3=0
= (A= X1 (P(z) — rn(x)Pr_1)
— (A= \D)®(@) — () Py, (20.13)

where to obtain (20.12) and (20.13) we have used Pj4+1 = (A — A\j411)P; and

= (A — M\ I)P,_1, respectively. Now by the Cayley—Hamilton theorem
(Chapter 16), P, = p(A) = 0, and therefore (20.13) reduces to ®'(z) =
A®(z). Finally, to complete the proof we note that ®(0) = Z?;Ol ri+1(0)P; =
1 (0)] =1 [ |

Example 20.3. Consider a 3 x 3 matrix A having all the three eigenval-

ues equal to ;. To use Theorem 20.2, we note that r1(z) = eM? ro(x) =
zeM?®, r3(x) = (1/2)x2eM?® is the solution set of the system
’/‘/1 = )\1’/‘1, 7“1(0) =1
rh = Mra+r, 12(0) = 0
rh = A\irs+ro, (0) = 0.
Thus, it follows that
1
e = M L a(A—NI)+ §x2(A —\I)%. (20.14)

In particular, the matrix

2 1 -1
A = -3 -1 1
9 3 —4
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has all its eigenvalues equal to —1, and hence from (20.14) we obtain
) 2462 — 322 22 -2z + 22
e = §e_z —6x 2 2z
18z — 922 6x 2 — 62 + 322
Example 20.4. Consider a 3 x 3 matrix A with eigenvalues A1, A1, Ao. To
use Theorem 20.2, we note that r1(z) = eM®, ro(z) = veM?,

xe/\liv e)\QéE _ e/\lw

r3(x) = =) + Or =)

and hence
(/\27)\1)93 _ 1
Az _ iz x € 2
e’ =e¢ I—i—xA—)\I—i—{ + }A—)\I}.
( 1) o) T T o ( 1)
(20.15)
In particular, the matrix
-1 0 4
A = 0 -1 2
0 01
has the eigenvalues —1, —1,1 and hence from (20.15) we find
e 0 2(e"—e )
e = 0 e® e¥—e®
0 0 e’
Next, we shall consider the difference system
u(k+1) = Au(k), keN={0,1,2,---} (20.16)

where again A = (a;;) is an nxXn given matrix with constant elements, and u =
w(k) = (u1(k), - ,un(k))t is the column vector of unknown functions defined
for all nonnegative integers. A solution ¢(k), k € IN of (20.16) is a column
vector valued function ¢(k) = (¢1(k), -+, dn(k))? that satisfies (20.16), i.e.,
d(k+1) = Ag(k). Clearly, u = 0 is always a solution of (20.16). This solution
is known as a trivial solution or the zero solution. Often, we are interested in
finding the solution of (20.16) that satisfies the initial condition

w(0) = O (20.17)

Difference system (20.16) together with the initial condition (20.17) is called
an initial value problem, and it always has a unique solution. It is clear that
any (general) solution of (20.16) can be written as

o(k) = Afe, keN (20.18)
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where ¢ is an arbitrary column vector. From (20.18) it immediately follows
that the unique solution of (20.16), (20.17) is ¢(k) = A*u°, k € IN. Now when
A is diagonalizable we can state the following result whose proof is similar to
that of Theorem 20.1.

Theorem 20.3. Let the notations and hypotheses of Theorem 20.1 be
satisfied. Then, the set

d)l(k) = ul)"fa"' ad)n(k) = unAfLa k€N
is a fundamental set of solutions of (20.16).

Further, we note that like (20.1) the general solution of (20.16) can be
written as

p(k) = AFc = Zci)\fui = PD(k)P e, (20.19)
i=1
where again P = (u!,--- ,u™) is the nonsingular matrix, ¢ = (c1,--- ,c,)? is
the constant vector, and D(k) is the diagonal matrix
A0 0
0 X - 0
D(k) = T .
0O 0 ... )k

n

From (20.19) it follows that A¥ = PD(k)P~! provided the matrix A is diag-
onalizable (see Chapter 18).

Example 20.5. For the discrete system (20.16) with the same matrix as
in (20.3), the fundamental set of solutions is

1 -1 1
ot k)= -1 |, &*k)=| 0 |2 ¢*k)=| 2 |4~
1 1 1

Example 20.6. For the discrete system (20.16) with the same matrix as
in Example 20.2, the fundamental set of solutions is

1 0 2
otk)=1{ 0 | (-1~ ¢*(@)=| 1 | (-1~ ¢*@)=| 1
0 0 1

If the matrix A is not diagonalizable we compute A by using the discrete
version of Theorem 20.2.

Theorem 20.4 (discrete Putzer’s algorithm). Let the notations
and hypotheses of Theorem 20.2 be satisfied. Then, for all k € IN

n—1
AF =Y wia (k)P (20.20)
j=0
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where
wi ( ) 1wi(k), w1(0) | 0.2
wi(k+1) = Nw;k) +wia(k), w;(0) =0, j=2-,n.

Proof. Differentiating (20.11) k times and substituting = 0 gives (20.20),
where w; (k) = r§k) 0), 1<j<n. |

Remark 20.2. The solution of the system (20.21) is
w1 (]4}) = )\If

k-1
w;(k) = Z)\?flfewjfl(f)v J=2,,n.
=0

Example 20.7. For a 3 x 3 matrix A having all the three eigenvalues
equal to Ap it follows from (20.14) that

1
AR = N AN A - M) + Sk — DAR=2(A =\ 1)2 (20.22)

In particular, for the matrix A in Example 20.3, we have
2 -3k — 3k —2k k+ k2

AR = Z(=1)F 6k 2 —2k
—9k —9k®  —6k 2+ 3k + 3k?

Example 20.8. For a 3 x 3 matrix A with eigenvalues A, A1, Az it follows
from (20.15) that

k! LM
(A =22) (A1 = Ag)?

AR = )\’fI+k)\’f1(A—)\1[)+{ }(A—)\ll)z. (20.23)

In particular, for the matrix A in Example 20.4, we have

-DF 0 21— (-1)")
AR = 0 (=) (1—-(-1k )
0 0 1

Problems

L ™

. _ (0%
20.1. (i) IfA_(_ﬁ

cos fx  sin fSx
eAm — eam( >

) , show that

—sinfBz cosfx
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.. 1
(i) A= ( _01 95 ) , show that
1
e o (cos wx + — sin wx) Ze % sinwa
eAa: _ w w
1 —ox 3 —ox ( : > 7
——e Tsinwz e CcoOSwx — — sinwx
w w

where w = /1 — 62.
(iii) If

0 1 0 0
3w 0 0 2w
4= 0 0 0 1 ’
0 —2w 0 0
show that
1 . 2
4 — 3coswz — sinwz 0 —(1 — coswx)
w w
4 3w sinwx COswWx 0 2sinwz
e = 2 1
6(—wz + sinwz) —;(1 —coswzx) 1 5(—3wx+4sinwx)
6w(—1+ coswx) —2sinwx 0 —3 +4coswz

(iv) If A% = A, show that 4% = I + [(e®® — 1) /a]A.

20.2. Let A and P be n x n matrices given by

A1 0 -~ 0 0100 --- 0
o x 1 - 0 0o 010 --- 0
A: oo R P: e
0 0 O 1 0 0 0 O 1
0 0 0 A 0 0 0 0 0
Show that
i) P*"=0
(i) (A)P =P(A])
1 1
Az _ Az ~ 2p2 n—1 pn—1
(ili) e =e I—l—xP—i—Q!xP + —|—(n_1)!x P

20.3. Let A and B be two n X n similar matrices, i.e., (13.16) holds. Show
that

(i)  wu(z) is a solution of (20.1) if and only if v(x) = Pu(x) is a solution of
the differential system v’ = Bw.
(i) eA* = p~leBop,
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20.4. Find the general solution of the differential system (20.1), where
the matrix A is given by

011 1 -1 4
(i) <§_§>(ii)<;2>(iii) 101 | @Gy |3 2 -1
110 2 1 -1

-1 10 5 -3 -2

(v) 0 -1 0 (vi) 8§ —5 —4

0 0 3 -4 3 3

20.5. Find the general solution of the difference system (20.16) for each
matrix A given in Problem 20.4.

Answers or Hints

20.1. Verify directly.

20.2. (i) Observe that in each multiplication the position of 1 is shifted by
one column, so in P? the nth and (n — 1)th rows are 0.

(ii) Obvious.

(iii) Since A = AI 4 P, we can use Parts (i) and (ii).

20.3. (i) Verify directly.

(i) eA* = eP™'BPT now expand the right side.

20.4. (i) 6337( 2cos3x 2sin 3z ) < c1 )

cos3x + 3sin3x  sin3x — 3cos3x Co

(ii) 2el07 3¢z c1
u elOw _263z Co .

e T 0 c1
(iii) e?® 0 e " 2
2T _eTT 7% c3
—e® e—2z 633" c1
(iv) 4e®  —eT2  2e3 Co
T _672w 6393 s
0 —e™* ge® c1
(v) 0 0 e " Co
GSI 0 0 C3
1 0 2x c1
(vi) e 0 2 dx )
2 -3 —2z-1 c3

kn 1 i k7w 2 i km
COoS =~ + 3 SIn - — % sin =+
20.5. (i) (3@)’6( 1o I ) ( “ >

§SIDT COS——gsln—
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1+4k

—4k

(a0 36
—2(3)
2’<+2 (—1)k 2k — (—1)k 2k — (—1)*
( —1)k 2k+2( 2k — (—1)k)(
)k
(=
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Yk 6(10)F — 6(3)F c1
Ve 3(10)F 4 4(3)F c2 )’

2’c 2F 4 2(—1)k

)

k

2 —1 2 -3 c1

2 —6 Co

b )( )

-3k —2k

1—6k —4k .
H%) ()

C1
C2
C3

) |

) |
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Chapter 21

Least Squares Approximation

We know that the m x n system (5.2) has a solution if and only if r(A) =
r(A:b), e, be C(A). However, in a wide range of applications we encounter
problems in which b may not be in C(A4). For such a problem we seek a
vector(s) & € R™ so that the error || AZ—b||2 is as small as possible (minimized),
ie.,

JAz bz < [ Az — b3 (21.1)

for all z € R™. This solution(s) & is called the least squares approzimate so-
lution. We emphasize that to find approximate solutions to such problems
several different error criteria and the corresponding numerical procedures
have been proposed, but among all these the method of least squares approx-
imations is the simplest to implement. We shall provide two different proofs
to the following important theorem.

Theorem 21.1. The set of least squares solutions to the system (5.2) is
given by the consistent n x n system (known as normal equations)

AlAz = A'b. (21.2)

If the columns of A are linearly independent, then there exists a unique least
squares solution to (5.2) and it is given by

& = (ATA)TTA. (21.3)

If the columns of A are linearly dependent, then there are an infinite number
of least squares solutions.

First Proof. Consider the error function E(x) = Az —b, x € R™. Clearly,
we need to find a vector(s) = that minimizes || E(x)||2. For this, we consider
the scalar function

O(z) = |E@)Z = (Az—b,Az—1b)
(Az — b)t(Az — b)
2t At Ax — 2t Atb — bt Az + YD
= 2t A*Az — 22T A'b + b'D.

(21.4)

183
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Now for 0 # h € R™, we have

O(z+h)—P(x) = 2A'Ah+ htA' Az + htA*Ah — 2Rt At
—  RLA'AR 20 At Az — 21t A (21.5)
— | ARJ2 + 2ht(Af Az — A'D).

Clearly, ®(z) attains a relative minimum (maximum) provided ®(z+h)—®(x)
remains of fixed sign for small values of the vector h, i.e., ||h]2 is small.
However, in (21.5) the sign of ®(x+h) — ®(z) depends on the term hf(A* Az —
Atb), and hence for an extremum it is necessary that A* Az — A%b = 0. Further,
if this condition is satisfied for « = &, then (21.5) reduces to

®(@ +h) - ®(z) = |Ah[3 > 0,

which ensures that ®(z) indeed has a minimum at . In conclusion, the least-
squares solutions of (5.2) are the solutions of the system (21.2).

Next, we shall show that the system (21.2) is consistent. For this, we note
that
a1 (m1
Atb — bl 4+ 4 bm
A1n Amn

is a linear combination of the columns of A?, and hence A'b € C(A?). Since
C(AY) = C(A'A) (see Problem 11.3), we find that A'» € C(A*A), which in
turn implies that r(A*A) = r(A*A | A'b), i.e., the system (21.2) is consistent.
Now from Problem 11.3 it follows that

r(A) = r(A'A) = r(A'A| A'D). (21.6)

Finally, from Problem 11.2, we have N'(A) = N(A'A), and hence from The-
orem 11.4 and (21.6) it follows that dimN(A4) = n —r(4) = n — r(A'A4) =
dim N (At A). Thus, if 7(A) = n, then N(A*A) = 0, which implies that A*A is
nonsingular, and (A*A)~! exists. Therefore, in this case a unique solution of
the least squares problem is given by (21.3).

Second Proof. Let S = C(A). In view of Theorem 14.5 and Remark
14.4, the vector b can be written as b = b! +b2, where b; € S is the orthogonal
projection of b onto S and b?> € St is the component of b orthogonal to S.
Now as in the First Proof it follows that

[Az —blla = [I(Az = b%) = b||2
= Az — bl — 2(Az — b1, b2) + |22

Since Az and b' are in S and b? is in S+, the middle term vanishes, and thus
we have

|Az —blly = | Az — bY|s + [[B?]|2.
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Clearly, the right side is minimized if = is a solution of the system
Az = bt (21.7)

Since b! is in S, this system is consistent. Any solution of this system denoted
as I is a least squares solution of (5.2). Further, this solution is unique provided
the columns of A are lineraly independent.

Now suppose that & is a solution of the system (21.7). Since b? is orthogonal
to the columns of A, it follows that A*6? = 0. Thus, we have

AtAz = A'bt = A'(b—b?) = A'b,

i.e., Z is a solution of the system (21.2). Conversely, suppose that Z is a solution
of (21.2). Then, we have

Al(b— Az) = 0.
This means that the vector (b — A%) is orthogonal to each row of A%, i.e., to
each column of A. Since S = C(A), we conclude that (b — AZ) € S+. Hence,
the vector b can be written as

b = Ai+ (b— Ad),

where Az € S and (b — A%) € St. But again in view of Theorem 14.5 and
Remark 14.4 such a decomposition is unique, and hence Az = b!. [ |

Corollary 21.1. Let A be an m x n matrix with r(A4) = n, and suppose
A = QR is a QR factorization of A (see Theorem 18.3). Then, the upper
triangular system

Rr = Q' (21.8)
gives the least squares approximate solution of the system (5.2).

Proof. 1In view of Theorem 18.3, the system (21.2) can be written as
R'Q'QRx = R!'Q'. However, since Q*Q = I and R is invertible, this sys-
tem is the same as (21.8). |

Example 21.1. For the system

11 2 . 2
1 2 3 ! 2
L 3 4 T = N (21.9)
3 49 T3 k

the echelon form of the augmented matrix appears as

1 1 2 2
0 1 1 0
0 0 2| k-6
0 0 0| h—-2
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Thus, the system has a solution if and only if h = 2, and in such a case the
solution is

(%(10-@,%(6-@,-%(6-@) . (21.10)

Since the columns of the matrix A in (21.9) are linearly independent, from
Corollary 21.1 and Example 18.6, it follows that the unique least squares
solution of (21.9) can be obtained by solving the system

1 2
6 9 18 2v3 23 V6 9
NEEVERVE] i 1 1 _ L
0 B 2 N _ 23 23 V6 2
V3 V3 T2 - 1 3 0 h
0 0 2 X3 2v/3 2V/3 k
V6 3 __1 1
23 23 V6
7(4+h+3k)
= 7(3h—/€)
75k = 6)

Using backward process this system gives the unique least squares approxi-
mate solution of (21.9) as

1 1 1
Clearly, (21.11) is the same as (21.10) for h = 2, as it should be.

For (21.9) the system (21.2) is

12 18 36 1 44+ h+ 3k
18 30 56 T2 = 6+ 3h + 4k ,
36 56 110 T3 10+ 4h + 9k

which as expected gives the same solution as (21.11).

Example 21.2. Consider the system

1 3 2 . 1
3 -5 —1 ! 2
2 2 2 3 4

In view of Problem 8.1(i), in this system the columns of the matrix A are
linearly dependent. Further, for this system the echelon form of the augmented
matrix appears as

13 2| 1
01 4] &
00 o0]-2 [’
00 0 %

~
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and hence it has no solution. For (21.12) the system (21.2) is

30 0 15 7 27
0 42 21 w | = 7 ]. (21.13)
15 21 18 3 17

The system (21.13) has an infinite number of solutions

1 1 1 K
(% — §C, 6 — 56, C> . (2114)

Thus, the system (21.12) has an infinite number of least squares solutions
given by (21.14).

Example 21.3. From Problem 6.3(i), we know that the system

2 7 4 3 x 1
8 5 3 9 T (21.15)
1 36 4 s 7
z3
has an infinite number of solutions. For (21.15) the system (21.2) is
69 57 38 82 1 33
57 83 61 78 T _ 43
38 61 61 63 x3 o 55
82 78 63 106 T4 58
This system has an infinite number of solutions:
1 1
(62, —161, 300, 0)f + —— (—203,41, —118, 198)’c. (21.16)

197 197

Thus, the system (21.15) has an infinite number of least squares solutions
given by (21.16). These solutions are exactly the same as given for Problem
6.3(i), as they should be.

Problems

21.1. Find the least squares solution of the system considered in Example
6.3.

21.2. Find the least squares solution of the system considered in Problem
6.3(ii).

21.3. Find the least squares solution of the system considered in Problem
6.3(v).
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21.4. Show that the following system has no solution

1 2 15 o1 1

1 2 -1 1 S S

2 4 -3 0 3 3
T4

Find its least sqaures solution.
21.5. Show that the following system has no solution

3
5 I
16 xIo =
—11 I3
-5

N = 00 = N
W~ N W
NN =N

Find its least sqaures solution.
Answers or Hints

2
§
13 53 48 147
5_ %’0> ( 5, 55’ 55 ’1>
13 16 1
21.3. (0,1,1,0,0)" + ( 30’ 107 5 1 0) (307 107 1570 1) d.
21.4. That the Solution does not exist follows from the echelon form of
1 2 511

1
the augmented matrix 0 0 —2 —4]0 |. Its least squares solution is
00 0 o0f1

11—5(17, 0,-3,0)* + (=2,1,0,0)tc + (=3,0,—2,1)td.

21.5. That the Solution do;s ot e§<is‘51 follows from the echelon form

-1
2
0
0

of the augmented matrix . Its least squares solution is

OO OO
O OO —=B ~
W ks OO

355 (491,680, —173)".
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Quadratic Forms

Quadratic forms occur naturally in physics, economics, engineering (control
theory), and analytic geometry (quadratic curves and surfaces). Particularly,
recall that the equation (quadratic form) of a central quadratic curve in a
plane, after translating the origin of the rectangular coordinate system to the
centre of the curve, appears as

b
q@(x,y) = (x,y)(z . ) < ;) = az? 4 2bzy + ¢y’ = d.

We also know that by rotating the axes (using a proper transformation) this
equation (quadratic form) in a new coordinate system can be reduced to a
“canonical” (diagonal) form:

ron ’o a 0 z a2 rr2
w) = @) (5 o) (0) = anren = a

In this chapter we shall study quadratic forms in n variables x1,--- , x,, i.e.,
n n

qn(fL'l,'-' ,[L’n) = Zbl.’bf "l‘QZCijxixj» bi,Cij € R. (221)
i=1 i<j

Clearly, in (22.1) each term is of degree two.

In matrix form, (22.1) can be written as
Gn(x) = gul@1,--- ,2n) = z'Az, (22.2)

where A = (a;5) is an n X n symmetric matrix with a; = b;, a;; = aj; = ¢;j5.
In (22.2), if we let x = Py, a linear tranformation of the variables, then it
follows that

an(y) = (Py)'A(Py) = y'(P'AP)y, (223)

i.e, P! AP provides the matrix representation of ¢, in the new variables. Now
since A is symmetric, in view of Theorem 18.2, we can always find an or-
thonormal matrix @) and the diagonal matrix D consisting of the eigenvalues
of A such that D = Q7 'A4Q = Q'AQ. Thus, with the proper choice of the
matrix P, (22.3) in the new variables can be reduced to a diagonal form,

a(y) = y'Dy. (22.4)

189
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We summarize our above discussion in the following result.

Theorem 22.1. If A is a symmetric matrix, then there exists an orthonor-
mal matrix @ such that the transformation y = Q*x changes the quadratic
form (22.2) into the diagonal quadratic form (22.4).

Example 22.1. Consider the quadratic form
qs(x1,x2,23) = 11x% + 11x% + 14x§ — 2x119 — 82123 — L2223, (22.5)

which in matrix form is the same as g3(x) = z'Ax, where the symmetric
matrix A is as in (18.1). From Example 18.4 it is clear that (22.5) can be
reduced to a diagonal form,

0 0 Y1
12 0 Yo = 6y? +12y3 + 18y3.
0 18 Y3

a1, y2,y3) = (Y1,y2,v3)

OO

Here, in view of Remark 18.3, the new varible vector y is

1 1 1 1
t ?5 ? 7 1 $(1'1 + x2 + x3)
y:Qx: —\/—§ W 0 X9 = W(—xl +x2)
—\/Lg —% % xs3 %(—.’El — X2 + 2&63)

Example 22.2. Consider the quadratic form

5 ) 5
qa(x1, 2,3, 4) = x% + gxg — gx?,, — Exi + 2x1x0 + 27123
g (22.6)
+2x114 — 30203 — 3Ty + 33T,

which in matrix form is the same as q4(x) = z'Az, where the symmetric
matrix A is as in Example 18.5. From this example, it is clear that (22.6) can
be reduced to a diagonal form

a1(y1, 42,03, q1) = 295 + 3y3 — 2y3 — 2.

Here the new variable vector y is

(3z1 + 22 + 3 + 24)
209 + x3 + LU4)

x1 + 2 + 2x3)

(—x1 4+ 22 — x3 + 324)

X

12

=

5=
(—

)

6

o

Now we classify the quadratic form (22.2) according as its values: The
quadratic form ¢, (z) is called positive definite if g,(z) > 0, x € R"/{0}
and positive semidefinite if q,(x) > 0, x € R™. The quadratic form ¢, (z) is
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called negative definite if ¢,(x) < 0, z € R™/{0} and negative semidefinite if
gn(x) <0, € R™. The quadratic form g, (x) is called indefinite if it is both
positive and negative for z € R"™.

Theorem 22.2. If A is a symmetric matrix, then the quadratic form
qn(x) = 2t Az is positive definite if A has only positive eigenvalues, negative
definite if A has only negative eigenvalues, and indefinite if A has both positive
and negative eigenvalues.

Proof. If \;,---, )\, are the eigenvalues of A, then from (22.4) it follows
that
an(y) = Myi+-+ Aayr, (22.7)

where y = Q7 'z = Q*x. Thus, if all eigenvalues of A are positive, then from
the fact that y = 0 implies 2 = 0 (one-to-one correspondence between y and
x), we find g,(z) > 0 for all z € R"/{0}, i.e., g,(x) is positive definite. If
Ar < 0, we can select y = €¥, then ¢, (y) = M\x <0, i.e., ¢.(z) is not positive
definite. The other cases can be discussed similarly. [ |

Example 22.3. In view of Theorem 22.2 the quadratic form (22.5) is
positive definite, whereas (22.6) is indefinite. From Example 18.1, it is clear
that the quadratic form

qs(x1,2,3) = — 113:% — 113:3 — 143:?,, + 2x129 + 8123 + 8xows  (22.8)

is negative definite (the eigenvalues of the corresponding matrix are —6, —12,
—18).

The rest of the results in this chapter find maximum and minimum of the
quadratic form ¢, (z) subject to some constraints, and so belong to a broad
field known as constrained optimization.

Lemma 22.1. For the quadratic form g,(z) = Y .-, b;z? subject to the
constraint ||z||2 = 1, the following hold:

(i)  the maximum value is b, = max{by,--- ,b,} and attained at = = e*,

(i) the minimum value is by = min{by,--- ,b,} and attained at x = e*.

Proof. Clearly, g,(z) = Y0 bjz? < by y ., 27 = by. Further, at = =
ek, qn(e*) = by. |

Theorem 22.3. Let the symmetric matrix A in (22.2) have the eigenvalues
A < --- < Ay, and 2!, ---, 2" be the corresponding eigenvectors. Then, for
the quadratic form ¢, (z) = z'Az subject to the constraint ||z||s = 1, the
following hold:

(i)  the maximum value is A, and attained at x = z™/||z"||2,

(ii) the minimum value is A\; and attained at x = x'/||2!]|2.
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Proof. From Theorem 22.1 it follows that the transformation z = Qy re-
duces (22.2) to the diagonal form (22.7); here, ) consists of vectors that are
obtained by orthonormalizing the eigenvectors z!,- - - ,2™. Now since y = Q*x
and the matrix @ is orthonormal, we have |y||3 = [|Q'z|]3 = (Q'x, Q'x) =
(Q'z) (Qlz) = 2'(QQYx = a2tz = (x,2) = ||z||3. Thus, ||y|l2 = 1 if and only
if ||z||2 = 1, and hence 2! Az and y' Dy assume the same set of values as = and
y range over the set of all unit vectors. Now since in view of Lemma 22.1 the
maximum (minimum) value of ¢, (y) is attained at e™ (e!), for ¢, (x) the maxi-
mum (minimum) value is attained at = Qe™ (Qe') = 2™ /||2"||2 (z*/||z*||2)-
|

Example 22.4. From Example 22.1 and Theorem 22.3, it follows that
6 < 11x? + 1122 + 1423 — 22109 — 82123 — 81913 < 18

t
provided z% + 23 + 23 = 1. The left equality holds for z = (— ) %) and

1
V3’

Sl

t
the right inequality holds for (—\/Lg, —%, %) .

Example 22.5. From Example 22.2 and Theorem 22.3, it follows that

5 5 5
xf + —a;g — —x% — —xi + 2x129 + 22123
92 < 3 86 6 <3
+2r114 — 5%21’3 — 51’21’4 + 51’3%4

provided z3 + 23 + 23 + 23 = 1. From Example 18.5 it follows that the

. = 2 1113
left equality holds for z = ( o \/_ \/6’0) ( L, \/_, \/_, \/_) o
(0 0, — \/— \/—> The right-hand equality holds at (0 _\/__ \/_ \}_ )

Remark 22.1. By letting ; = a;2;, 1 < i < n we can transform the
optimization problem g, (z) = 2! Az subject to >_;  2?/a? = 1 into g, (z) =
(121, ,anzn)A(a121, -+ ,anzn)t subject to ||z]|2 = 1, for which Theorem
22.3 is applicable. In particular, if a; = a, 1 < i < n, then it simply reduces
to gn(2) = a®q.(z) subject to ||z]|2 = 1.

Example 22.6. From Remark 22.1 and Example 22.4, it follows that

24 < 112? + 1123 + 1423 — 22129 — 8123 — Swow3 < T2

Sl

%7

t
provided z? + 22 + 22 = 4. The left equality holds for z = ( 2 ) %) and

t
the right inequality holds for (—\/ié, —%, %) .

Finally, in this chapter we shall prove the following result.
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Theorem 22.4. Let the symmetric matrix A in (22.2) have the eigenvalues
A1 < --- <\, and associated u!, - - ,u™ orthonormal eigenvectors. Then, for

the quadratic form ¢,(z) = x'Az subject to the constraints ||z = 1 and
(z,u™) = 0, the following hold:

(i) maximum value is \,,_; and attained at z = u"~!,

(i) minimum value is A\; and attained at z = u'.

Proof. From (14.5) for a given x € R™, we have z = .., c;u’, where
¢; = (z,u?), 1 <i<mn,butsince ¢, = 0 it follows that z = Z?;ll c;u®, which

implies that ||z]|2 = 3277 ¢2 = 1 (as given). Now we successively have

i=1
n—1 n—1
xt A (Z ciui> =zt (Z ciAuZ)
i=1 i=1
n—1 n—1 n—1
([E, Z )\iciui> = (Z ciui, Z )\iciui>
i=1 i=1 i=1

n—1 n—1
Nic2 < X 2 = A
iG> n—1 ¢ = n—1-
i=1 i=1

Next, we note that for x = v !, ¢p_1 = land ¢ =0, 1 <3 < n—2,
and hence q(u"~ 1) = \,_1, i.e., ¢,(v) attains its maximum at z = u"~*. The
minimum value of ¢, (x) by the constraint (z,u"™) = 0 does not change. |

qn(z) = 2t Az

Example 22.7. From Example 22.1 and Theorem 22.4, it follows that
6 < 11x7+ 11z + 1425 — 27122 — Sx123 — 81273 < 12
provided 2% 4+ 23 + 23 = 1 and —z1 — x5 + 223 = 0. The left equality holds for
T = (%, %, %)f and the right inequality holds for (—%, %, O)t .
The following extension of Theorem 22.4 is immediate.

Theorem 22.5. Let )\; and u?, 1 <4 < n be as in Theorem 22.4. Then,
for the quadratic form ¢, (z) = 2' Az subject to the constraints ||z||2 = 1 and
(z,u") = (z,u""!) = ... = (x,u*) = 0 the maximum (minimum) value is
Me—1 (A1) and attained at z = uF~! (ul).

Problems

22.1. Find the canonical form for the quadratic form g¢3(z) = 2z122 +
13 — 2.132.133.

22.2. Find the canonical form for the quadratic form g3(z) = 23 + Z23 —
%x% + 2x129 + 22123 + T2 3.
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22.3. Show that the quadratic form
(i)  qs(z) = 52?3 + 23 + 523 + 4w1709 — 87123 — 42273 is positive definite
(i) g3(x) = 322 + 23 + 523 + 42129 — 83175 — 42273 is indefinite

(i) qa(x) = 22129 + 20123 — 2w124 — 2@223 + 22024 + 22314 is indefinite.
22.4. Let go(x,y) = ax®+4bxy+ cy? be a quadratic form, with a, b, c € R.

(i)  Find the values of a,b, ¢ so that ¢ga2(x,y) is indefinite.
(ii) Find the values of a,b, ¢ so that g2(x,y) is positive definite.
(iii) Find the values of a,b, ¢ so that ¢ga2(z,y) is negative definite.

22.5. For the quadratic form g3(z) = 22 +23+52% — 621224221203 — 22073,
find the maximum and minimum subject to the constraint ||z||2 = 1.

22.6. Consider a rectangle inside the ellipse 922 4 16y?> = 144. Find
positive values of x and y so that the rectangle has the maximum area.

22.7. For the quadratic form gz(z) = 527 + 623 + 722 — 4z179 + 42073,
find the maximum and minimum subject to the constraints ||z||2 = 1 and
—x1 + 220 4+ 223 = 0.

22.8. For the quadratic form g3(z) = az?+23+23+ 22109+ 271 73+ 62273,
find the values of « so that it is negative definite.

22.9. For the optimization problem (22.2), ||z||2 = 1 assume that m and
M are the minimum and maximum values, respectively. Show that for each
number ¢ in the interval m < ¢ < M there is a unit vector u. such that
utAu. = c.

Answers or Hints

22.1. We let x1 = y1 + y2,72 = y1 — y2,73 = y3, to obtain g3(y) = 2y$ —
2y3 — y1y3 + 3yays, in the basis {f! = e! + €% = (1,1,0)%, f2 = el — % =
(1,=1,0)%, f* = €* = (0,0,1)}. Clearly, gs3(y) = (vV2y1 — 55593)* — 143 —
2y2 + 3yoy3. Denoting z; = v2y; — Qlﬁyg,zz = Yo, 23 = y3, we find ¢3(2) =
22— %z% — 222 + 32923, in the basis {g' = \/Lifl,g2 = f2,¢% = %fl + 21 It
follows that g3(z) = 27 + (V229 — %23)2 + 23. Now, we let w1 = 21, ws =

V2zy — %23,103 = z3, to get gs(w) = w} + w3 + w3, in the basis {h!
g .1 = 2502 1% = 197 + g%}

22.2. Q3(1‘) = (le + 22 + $3)2 — %(Z'Q + 4%‘3)2 + %x%

22.3. (i) The eigenvalues of the corresponding matrix are positive 5+2v/6, 1.

(i) The eigenvalues of the corresponding matrix are positive and negative
9.097835, —0.384043, 0.286208.
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(ili) The eigenvalues of the corresponding matrix are positive and negative
1,1,1,-3.

22.4. The matrix associated to the quadratic form is A = < 2ab ZCb )

with eigenvalues A1 = (a + ¢ + /(a —¢)?2 +16b2)/2 and Ay = (a + ¢ —
(a — )2 +16b2)/2. Since A\j Ao = ac — 4b? and \; + X2 = a + ¢, it follows

that:

(i) If ac — 4b? < 0, then ga(z,y) is indefinite.

(i) If ac —4b? > 0 and a + ¢ > 0, then gz(z,y) is positive definite.

(iii) If ac —4b? > 0 and a + ¢ < 0, then g2(z,y) is negative definite.

22.5. The eigenvalues and eigenvectors of the corresponding matrix are

t t t : ; 1
—2,3,6 and (1,1,0)%,(—1,1,1)",(1,—1,2)". Thus, the maximum is 6 at <\/_gv
t t
—%, %) and the minimum is —2 at (\%, \%,O) .
22.6. The rectangle’s area is S = 4xy, thus we need to maximize the
quadratic form g¢o(z,y) = 4xy subject to the constraint 922 + 16y? = 144.
Let x = 321,y = 4y;, then we have the equivalent problem: maximize
q2(w1,91) = 487191 subject to the constraint 2?2 +1? = 1. Clearly, ga(21,y1) =
(z1,41) ( 204 204 ) (x1,y1)t, and the matrix A has the eigenvalues —24, 24

and the eigenvectors (—1,1)%,(1,1)!. Thus the maximum is 24 and it occurs
for z = 3/\/§,y = 4/\/§

22.7. The eigenvalues and eigenvectors of the corresponding matrix are 3, 6,9,
and (—2,-2,1)%(2,—-1,2)% (-1,2,2)% Since —x1 + 222 + 223 = 0, Theorem

22.4 is applicable. The maximum is 6 at (2 —1 2)t, and the minimum is 3

. 3'7 33

at (<3,-2,3)".

22.8. For the corresponding matrix the characteristic equation is (A+2)[—A2+
(4—|—O&))\—|— (2 — 40()} = 0. Thus, A1 = =2, 2 + A3 = a+ 4, \2A3 = 4a — 2.
The quadratic form is negative definite provided A2 + A3 < 0 (o < —4) and
A2A3 > 0 (a > 2). But, then there is no such a.

22.9. Assume that m < M. Let u,, and up; be the unit vectors such that
ul, Auy, = m and ul; Aupr = M. Consider the vector

we = /(M — )] (M — m)uuys + /(e —m)/ (M —m)uns.
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Chapter 23

Positive Definite Matrices

Positive definite matrices occur in certain optimization algorithms in mathe-
matical programming, quantum chemistry, and calculation of molecular vibra-
tions. Positive definite matrices are defined only for the symmetric matrices,
and in a certain sense are analogues to positive numbers. We begin with the
following definition.

Definition 23.1. A symmetric nxn matrix is called positive definite if the
quadratic form ¢, (z) = 2 Az is positive definite, i.e., g,(z) > 0, = € R"\{0}.
Symmetric matrices that are negative definite and indefinite are defined anal-
ogously.

From Theorem 22.2 it follows that a symmetric matrix A is positive definite
if it has only positive eigenvalues, negative definite if it has only negative
eigenvalues, and indefinite if it has both positive and negative eigenvalues. In
the following result we provide another proof of this result.

Theorem 23.1. A symmetric matrix A is positive definite if and only if
it has only positive eigenvalues.

Proof. Suppose that A is positive definite. Let A be an eigenvalue of A and
x be the corresponding eigenvector, then we have

0 < 2"z = 2'(\x) = Azlz) = \|z|3,

which immediately implies that A > 0. Conversely, assume that all eigenvalues
of A are positive. Let {z!,--- , 2"} be an orthonormal set of eigenvectors of A,
so that any vector z € R™ can be written as z = Y, ¢;a*, where ¢; = (x,2")

and (z,z) = Y., ¢7. From this, we have

*Ar = (z,Ax) = (icixi,Azn:cixi>

i=1 i=1
(icixi,iq)\ixi) = zn:/\ic? > (min/\i)zn:cl2 > 0,
i=1 i=1 i=1

i=1

and hence A is positive definite. |

Example 23.1. In view of Example 18.4, the matrix in (18.1) is positive
definite.

197
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Finding eigenvalues of a matrix is not an easy problem. Thus, in what
follows we discuss some other criteria.

Theorem 23.2. If A is a symmetric positive definite matrix, then A is
nonsingular, in fact, det(4) > 0.

Proof. From Theorem 23.1 and Problem 16.1(iii), we have det(A4) =
[T;-; A > 0. We can also show the nonsingularity of A by contradiction: If A
is singular, then Az = 0 has a nonzero solution, say, &, for which A% = 0.
But this contradicts the fact that A is positive definite. |

Remark 23.1. The converse of Theorem 23.2 does not hold. Indeed, for
the matrix A = ( _(2) _g > , det(A) > 0, but the eigenvalues are —2 and

Definition 23.1. For an n x n matrix A = (a;;), the leading principal
submatrices are defined as

a1 a2 G13

1 2 ai;p a2 3 n

A* = (an1), A :(a21 s >, A= a2 axp a3 |, -, A"=A.
asi asz ass

The det(A¥) is called the k-principal minor of A.

Theorem 23.3. For a symmetric positive definite matrix A, all leading
principal submatrices are also positive definite.

Proof. Let 0 # 2F € R, 1 <k < n, and set 2 = (2,0,--- ,0)* € R™.
Then, in view of A being positive definite, we have

() Akzk = 2'Az > 0.
Since 0 # 2* € R* is arbitrary, A* is positive definite. [ |

In Theorem 7.1 we proved that the matrix A has LU-factorization provided
A can be reduced to echelon form without interchanging rows. The following
result provides a class of matrices that can be reduced to echelon form without
interchanging rows.

Theorem 23.4. If all principal minors det(A*), k= 1,---,n of a sym-
metric matrix A are positive, then A can be reduced to echelon form without
interchanging rows. Further, the pivot elements are positive.

Proof. The proofis by induction. If n = 1, then A = (aj1) is in echelon form
and 0 < det(A) = a11. Assume that the theorem is true for (n — 1) x (n — 1)
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symmetric matrices. We write the n X n symmetric matrix as

A1n
An—l
A =
A(n—1)n
Anl - Gp(n—-1) Gpn

By inductive hypothesis, we can reduce the matrix A to the form

aj, a2 - a1,n—1 Ain
0 032 e a2’n,1 a2,n
A" = ,
0 o - a:—l,n—l An—1,n
anl1  Qap2 - An,n—1 Qnn
where a;,i =1,--- ,n — 1 are positive. From this it immediately follows that

we can reduce A* and hence A to echelon form without interchanging rows,

as

aj; aig - a1,n—1 A1n
0 a3 - G2n-1 azn
A** —
0 0 - ap1p1 Gn-1n
*
0 0o - 0 ar.,

Finally, since det(4) > 0, det(A""!) > 0, and det(A) = det(A**)
det(A""1)az,,, it follows that a¥, = det(A)/det(A"~1) > 0. [ |

Example 23.2. For the matrix A in (18.1), the echelon form is

11 -1 —4
0 B -
o o 2
For this matrix, it also directly follows that
af; = det(4}) = 11
ary = det(A?%)/det(AY) = 120/11
aty = det(A)/det(A%) = 1296/120 = 54/5.
Further, this matrix can be LU factorized as
1 0 0 1 -1 -4
A= LU = =4 1 0 0o o &
-4 -2 1 o o &
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Combining Remark 7.1 with Theorem 23.4, we have the following result.

Theorem 23.5. 1If all principal minors det(A*), &k =1,---,n of a sym-
metric matrix A are positive, then A can be uniquely factored as A = LDL?,
where L is a lower triangular matrix with all diagonal elements 1, and D is a
diagonal matrix with all positive elements.

Proof. Inview of Remark 7.1 and Theorem 23.4, the factorization A = LDU
is unique, where the diagonal matrix D has only positive elements. Now since
A is symmetric, we have

LDU = A = A' = U'D'L' = U'DLY,
which immediately implies that U=L" |

Remark 23.2. We denote the diagonal elements of D as 0 < dy;, i =
1,---,n, and define the diagonal matrix D'/? with elements 0 < +/dy;, i
1,--- ,n. Then, the above factorization can be written as

A = LDL' = (LDY?)(DY?LY) = (LD'?)(LDY?! = L.L!,

where L, = LD'/?. The factorization A = L.L is called Cholesky decomposi-
tion. Now let us denote by Li—_1 the (k—1) x (k — 1) upper left corner of L.,
ay, the first k£ — 1 entries in column k of A, £ the first k — 1 entries in column
k of Lt, and agx and fx) the kk entries of A and L., respectively. Then, the
Cholesky algorithm is:

Ly = Va1 = fn

Ly 10y = ai, compute /£
Lik = Vape — L
_ ( Le-1 O _
Lk - ( 62 Ek:k: ) ) k= 27 ) TV

Example 23.3. Using the Cholesky algorithm for the matrix A in (18.1),
we successively have

1 120
g = \/]_]_7 g = ——, g = -,
11 21 \/ﬁ 22 11
4 96 54
g = -, g = — —-—, g = —_—
31 \/ﬁ 32 5 33 5

1 4

VIT 0 0 VIT - -4

1 120 120 96

RV i 0 0 Vit V=
4 96 54

T Vm VE 00 V¥



Positive Definite Matrices 201

We are now in the position to prove the main result of this chapter.

Theorem 23.6 (Sylvester’s criterion). A symmetric matrix A is
positive definite if and only if all principal minors det(A*), k =1,--- n are
positive.

Proof. If A is positive definite, then all principal minors are positive, as fol-
lows from Theorems 23.2 and 23.3. Conversely, the matrix A has the Cholesky
decomposition, i.e., A = L.L. Since det(A) > 0, the matrix L%, must be non-
singular, and hence Liz # 0 for all  # 0. From this, we find

2'Ar = o'L.Llx = (Ll2)'(Liz) = ||Liz|* > o.
Hence, the matrix A is positive definite.

Example 23.4. For the matrix A in (18.1), we have det(A!) = 11 >
0, det(A?) =120 > 0, det(A®) = 1296 > 0; thus in view of Theorem 23.6, the
matrix A is positive definite. This in turn implies that the quadratic form in
(22.5) is positive definite.

Finally, in this chapter we shall prove the following result.

Theorem 23.7 (polar decomposition). Let the n x n matrix A
have rank r. Then, A can be factored as A = PQ, where P is a symmetric
n X n positive semidefinite matrix of rank r, and @ is an n x n orthogonal
matrix. If » = n, then the matrix P is positive definite.

Proof. We rewrite the singular value decomposition (19.1) as
A = UxV! = USUUVY = (USUHUVYH = PQ. (23.1)

In (23.1), the matrix Q@ = UV? is the product of two orthogonal matrices,
and hence in view of Problem 4.7, is orthogonal. The matrix P = UXU?
is symmetric, also orthogonally similar to ¥, and hence in view of P12 (in
Chapter 16) P has the same rank and eigenvalues as ¥. This implies that P
is positive semidefinite. Clearly, if 7 = n then all diagonal elements of ¥ are
positive, and thus P is positive definite. [ |

Example 23.5. For the matrix in Problem 16.2(ii), the singular value
decomposition of ULV, where

—0.0886 —0.7979 —0.5963 23.7448 0.0000 0.0000
U= 0.3080 —0.5912  0.7454 |, ¥ = 0.0000 2.6801 0.0000 |,
—-0.9472 -0.1176  0.2981 0.0000 0.0000 0.0000

—0.7014  0.6762  0.2254
vt = —0.7128 —0.6654 —0.2218
0.0000  0.3162 —0.9487
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and the polar decomposition is PQ, where

1.8927  0.6163  2.2442
P = UXU" = 0.6163  3.1893 —6.7409 |,
2.2442 —6.7409 21.3406

0.6309  0.2825  0.7227
Q =UV' = 0.2054  0.8373 —0.5066
0.7482 —0.4680 —0.4702

Problems

23.1. Show that if a symmetric matrix A is positive definite, then the
diagonal elements are positive. Is the converse true?

23.2. Let A be a symmetric positive definite matrix and C' be a nonsin-
gular matrix. Show that the matrix C*AC is also symmetric positive definite.

23.3. Let A and B be n X n symmetric positive definite matrices. Show
that A+ B, A%, A~ are also symmetric positive definite. In each case, is the
converse true? What can we say about the matrices BAB and ABA?

23.4. Let A and B be n x n symmetric positive definite matrices such
that AB = BA. Show that AB is positive definite. Is the converse true?

23.5. Let S be the set of all n x n symmetric positive definite matrices.
Is S a subspace of M™*"™?

23.6. Let A € R™™™ be a symmetric positive definite matrix. Show that
for columns vectors the function (u,v) = u’Av is an inner product on R™.

23.7. The matrix C in Problem 14.4 is a symmetric positive definite
matrix.

23.8. Show that the matrix A, (2) given in (4.2) is a symmetric positive
definite matrix.

23.9. Use Theorem 23.5 to show that the following symmetric matrices
are positive definite

1 2 3 16 4 4 —4 2 1 1 2
A=|2 8 12|, B= 4 10 4 2 O = 1 3 2 1
3 12 34 4 4 6 -2 1 2 4 3

-4 2 =2 4 21 3 5

23.10. Use Theorem 23.5 to show that the following symmetric matrix is
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not positive definite

2112 1 2
1 3 21 3 4
1 2 43 10
b= 21 3 5 1 2
1 3 1 1 01
24 0 2 15

23.11. Find Cholesky decomposition for the symetric matrices A, B, and
C given in Problem 23.9.

23.12. For the quadratic form g3(x1, 72, 23) = 23 + 523 + 223 + 2aw122 +
+2x173 + 62223, find the values of a so that it is positive definite.

Answers or Hints

23.1. If A is positive definite, (e*)* Ae* = apr > 0, k = 1,--- , n. The converse
2 5

5 3 )°

23.2. Let y = Cz # 0 for x € R™\{0}. Then, we have z!C*ACz = y' Ay > 0,
since A is positive definite.

23.3. If 2! Az > 0 and 2* Bz > 0 for all z € R"\{0}, then z!(A+B)z > 0, and
hence A 4+ B is positive definite. The converse is not true, in fact, matrices

A= < _(1) g ) and B = < g _(1) ) are not positive definite, but C =

is not true; consider the matrix

2 0
0 1
Since A is positive definite, from Theorem 23.2 it is nonsingular. Now from
Problem 23.2 it follows that A2 = A*IA is positive definite. The converse is

-1 . " .
0 ) is not positive definite, but

A+ B= is positive definite.

not true. In fact, the matrix A = < 0 2

s (10
A% = 0 4
Let z € R"\{0} andy = Az # 0. We have y! A=ty = 2' A'A"1 Az = 2! Az > 0.
The converse follows by replacing A by A~1.

Since matrices A and B are invertible, from Problem 23.2 it follows that
matrices BAB and ABA are positive definite.

23.4. Since AB = BA and matrices A and B are symmetric, AB is sym-
metric. Suppose A is an eigenvalue of the matrix AB and z # 0 is the cor-
responding eigenvector. Then, ABx = Az implies that z'BABx = \z'Buz,

and hence A = z'BABx/z'Bx > 0, since z'Bx > 0 and 2'BABz > 0.
Thus, AB is positive definite. The converse is not true. For this, note that

the matrix C' = < g Z ) is positive definite, and C = AB = BA where

is positive definite.
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A= ( _é (2) ) , B= ( _8 (2) ) . Clearly, the matrices A and B are not

positive definite.

23.5. No, because a positive definite matrix multiplied by a negative scalar
is not a positive definite matrix.

23.6. Because A is positive definite, (u,u) = u'Au > 0. Because ufAv is
a scalar, (u'Av)t = utAv. Also, A® = A, because A is symmetric. Thus,
(u,v) = utAv = (vt Av)t = vt Atu?' = v* Au = (v,u). Finally, for any vectors
ul,u?, v and scalars ci, co, we have (ciul + cou?,v) = (crul® + cou?)Av =
cutt Av + cou Av = ¢ (ut, v) + ca(u?, v).

23.7. In view of Problem 14.4(i), the matrix C' is symmetric. Now let u
be any nonzero vector in R™. Then, u will be same as the coordinates of
some nonzero vector, say, v in V. Thus, from Problem 14.4(ii) it follows that
u'Cu = (u,u) > 0.

23.8. From Problem 16.9, the eigenvalues of A,,(2) are positive.

23.9. det(A') = 1,det(A?) = 4,det(A3) = 64.

det(B') = 16, det(B?) = 144, det(B3) = 576, det(B*) = 576.

det(C1) = 2,det(C?) = 5,det(C?) = 13, det(C*) = 19.

23.10. Follows from Problem 23.1. Also, note that det(D!) = 2,det(D?) =
5,det(D?) = 13, det(D*) = 19,det(D®) = —72.

1 00 1 2 3
23.11. A= 2 2 0 0 2 3
3 3 4 0 0 4
4 0 0 0 4 1 1 -1
B— 13 0 0 0 3 1 1
11 2 0 00 2 -1
-1 1 -1 1 0 0 0 1

1.4142 0.0000 0.0000 0.0000 1.4142 0.7071 0.7071 1.4142
- 0.7071 1.5811 0.0000 0.0000 0.0000 1.5811 0.9487 0.0000
0.7071 0.9487 1.6125 0.0000 0.0000 0.0000 1.6125 1.2403
1.4142 0.0000 1.2403 1.2089 0.0000 0.0000 0.0000 1.2089
1 o 1
23.12. The matrix of the quadratic form is A = a 5 3 |. We apply
1 3 2
> 0,det(A?) = 5 — a? > 0, which is true
(—2)(a — 1)(av — 2) > 0, which is true if

Sylvester’s criterion: det(A') = 1
if @ € (—5,v/5), and det(A%) =
€ (1,2). Thus, o € (1,2).
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Moore—Penrose Inverse

In Chapter 4 we discussed the inverse of an n X n matrix. In this chapter we
shall introduce the concept of a pseudo/generalized (Moore-Penrose) inverse,
which is applicable to all m x n matrices. As an illustration we shall apply
Moore-Penrose inverse to least squares solutions of linear equations.

From Remark 19.2 it follows that each n x n invertible matrix A has the
reduced singular value decomposition

A = U D,V (24.1)

where U; = (ul,---,u"), Vi = (v!,---,v") are n x n orthogonal matrices,
and D, is the diagonal matrix with elements oy > --- > ¢, > 0. Thus, from
(24.1), we find

A7 = viD; UL (24.2)

Since the inverse of a matrix is unique, the right side of (24.2) provides another
(factorized) representation (see (4.1)) of A1

Following the lead of the representation (24.2), for any m x n matrix A
with rank r, we define the Moore—Penrose inverse as

AT = VD UL (24.3)
here, Vi, D}, Ut, respectively, are n x 7,7 X r,7 X m matrices.

Example 24.1. For the matrix A in Example 4.2, (24.2) gives

—0.4296  0.8082 0.4028 0.1434 0.0000 0.0000
A7l ~ —0.4667 —0.5806 0.6671 0.0000 0.3742 0.0000
0.7731  0.0986 0.6266 0.0000 0.0000 0.6654

0.0546 —0.8732 —0.4843
x| 0.8590  0.2883 —0.4231
0.5091 —0.3929  0.7658

Example 24.2. For the matrix A in Example 19.1, from Example 19.2

205
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and (24.3) it follows that
At =

(s

A formal definition of Moore—Penrose inverse is as follows:

= O
N~

O wi= WY W
N
o Wi
s o

§|H o §|“ §|’_‘

Definition 24.1. For a given m x n matrix A the n x m matrix A% is
called Moore—Penrose inverse if the following hold:

(a) AATA = A, (b) ATAAT = AT, (c) (AAT) = AAT, (d) (ATA)! = ATA.
(24.4)
From elementary calculations it follows that A1 given in (24.3) satisfies
all the four equations (24.4), and hence every matrix A has a Moore-Penrose
inverse AT. In fact, the equations in (24.4) determine AT uniquely. For this,
let BT also be a Moore-Penrose inverse of A, i.e.,

(@) ABYA = A, (b) BFABT = B*, (¢) (ABM! = AB*, (d) (BTA)! = BTA.
(24.5)
Now from the eight equations in (24.4) and (24.5), we have

At —(b) AT AAT _(d) At(A+)tA+ —(a) At(B+)tAt(A+)tA+
—(@)  BTAAUATYAT =D BTAATAAT =) BTAAT

and similarly

Bt =0 BtABt =@ B+(Bt)iAt =@ B+(BH)LAN(AT) Al
=(©) B*(B*)!A'AAT = BtABTAAT =@ B+AA*.

We summarize our above considerations in the following result.

Theorem 24.1. For any m x n matrix A the Moore-Penrose inverse AT
exists uniquely.

From Example 11.4 it is clear that if the right inverse (and similarly the
left inverse) of an m x n matrix exists then it may not be unique. In what
follows, we shall show that the right and left inverses given in Problems 11.9
and 11.10 are in fact Moore—Penrose inverses, and hence unique. For this, we
recall that an m x n matrix is said to have a full row (column) rank if and
only if AA! (A*A) is invertible, which is equivalent to 7(A) = m (r(A) = n).

Theorem 24.2. For an m x n matrix A the Moore—Penrose inverse is

o+ {At(AAt)l, it r(4)=m
=n.

(AtA)~LAL if r(A) (24.6)
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Proof. Assume that 7(A) = n, then from the singular value decomposition
it follows that

A'A = WD, UN)(UiDpnVY) = ViDuu(UiU1)DunVi = ViD}, VY.
Since r(A) = r(A'A) = n, the matrix A'A is invertible, and thus we have

(ATA)~1AY = (ViD;2V) (ViDL UY)
= WD;2(ViV)D,, Ul = ViD Ut = A*. 1

Example 24.3. For the matrix A in (11.2), we have r(A) = m = 3, thus
the Moore—Penrose inverse exists uniquely and simple calculations give

25
4
—6
23
14
11
7
which is the same as (11.4) with a = 11/7,b = —6/7,¢ = —1/7. For other
choices of a,b,c at least one of the four conditions in Definition 24.1 will
fail; for example, if we choose a = b = ¢ = 2, then the condition (d), i.e.,
(AT A)t = AT A, does not hold.

w W

AT = AY(AANT =

|
<o e

ENIESEN | SRS [N

Example 24.4. For the matrix A in Example 19.1, we have r(A) = m = 2,
thus the Moore—Penrose inverse exists uniquely and simple calculations give

Wi O W= Wl

AT = Af(AAYH)T =

O ©l= O N

Our next result provides some basic properties of Moore-Penrose inverse.

Theorem 24.3. Let the m x n matrix A have the rank r, and let AT be
its Moore—Penrose inverse given in (24.3). Then, the following hold:

(i) for every vector y € R™ the vector ATy € R(A)

(i) for every vector y € N'(A) the vector ATy =0

(iii) Atul =vi/o;, i=1,---,r

Proof. (i) Since Aty = (ViD;;}UY)y = Vi(D;;1Uty), it follows that ATy
is a linear combination of the columns of V. But this in view of Theorem
19.2(iii) implies that Aty € R(A).

(i) Ify € N(A), then clearly yLC(A), which in view of Theorem 19.2(i)
implies that y LU;. But this in view of Problem 14.11 implies that Uly = 0,
and hence, we have ATy = (V1 D,.1)Uly = 0.
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(iii) From (24.3), we have ATU; = V1 D,.!1, which on comparing the vectors

rr o

on both sides immediately gives A*u® = vi/o;, i =1,--- 7. [ |

Now we shall apply Moore—Penrose inverse to least squares solutions of the
m x n linear system (5.2). For this, we recall that Theorem 21.1 assures the
existence of a unique least squares solution (21.3) provided A4 is a full column
matrix, i.e., 7(A) = n. This unique solution in view of Theorem 24.2 can be
written as
& = ATh. (24.7)
Theorem 21.1 also says that if the columns of A are linearly dependent, i.e.,
r(A) # n, then there are an infinite number of least squares solutions. How-
ever, since for each m x n matrix A the Moore-Penrose inverse AT exists
uniquely, the representation (24.7) is meaningful and provides & uniquely.
Further, in view of Theorem 24.3(i), ATh € R(A). In the following result,
we shall show that (24.7) is, in fact, the unique least squares solution of the
system (5.2) even when r(A) # n.

Theorem 24.4. For each m x n matrix A and b € R™, the system (5.2)
has a unique least squares solution given by (24.7).

Proof. From our above discussion and Theorem 21.1 it suffices to show
that & = ATb satisfies the normal equations (21.2), i.e., At A% = A'b. For this,
from (19.2) and (24.3), we have

(AtA)A*Ty = (VD UlUL D, V})(Vi D, Utb)
= WD (ULUL) D (VEVI) DU LD
= VlDrrUltb = Atbv

i.e., ATb is a solution of the normal equations (21.2). |

Example 24.5. Consider the system

A($17x2,$3,l’4)t = (bl,bz,bg)t, (248)
which has an infinite number of solutions
by — Lb, 1
Z1
—6by +3b2 + b 0
T2 | P . e (24.9)
zs3 4b1 — 2by — 5()3 -5
4 0 1

where ¢ is an arbitrary constant. We also note that from Theorems 24.2 and
24.4 and Example 24.3 the unique least squares solution of (24.8) is

i — 32— 11
—6b1 + 3ba + b3
22— 32— 2

11 6 1
01— 7by — 2bs

& = AT (by,babs) = (24.10)
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Clearly, when ¢ = by — Sby — 2b3, (24.9) becomes the same as (24.10).

Example 24.6. For the matrix A in Example 21.2, r(A) = 2. The reduced
singular value decomposition of this matrix appears as

0.4968 —0.0293
—0.4692  0.8216
_ -
A = UiD, Vi = 0.5874  0.5325 (

0.4337  0.2013

0.3065  0.7812 0.5438
0.8599 —0.4722 0.1938 )°

7.5246 0.0000
0.0000 5.7776

Thus, the Moore—Penrose inverse is

0.0159  0.1032 0.1031 0.0476
At = ViD;'UP = | 00540 —0.1158 0.0175 0.0286
0.0349 —0.0064 0.0603 0.0381

From this, we can directly compute the unique least squares solution of (21.12)
as

0.7220
2 = ATb = —0.0107
0.3554
This shows that in (21.14), ¢ ~ 0.3554.
Problems

24.1. Show that (i) (A1)* = (A™)t, (i) A™+ = A.

24.2. Show that if in Definition 24.1, A satisfies only equation (a), then
it is not unique.

24.3. Give an example to show that (AB)* # BT AT,

24.4. Let the m x n matrix A have the rank r, and let AT be its Moore—
Penrose inverse given in (24.3). Show that
(i) AAT is the orthogonal projection of R™ onto C(A)
(i) ATA is the orthogonal projection of R™ onto R(A).

24.5. Find the Moore—Penrose inverse of the matrices given in Problem
4.1.

24.6. Find the Moore—Penrose inverse of the matrices given in Problems
19.1-19.4.

24.7. Find the unique least squares solutions of Problems 21.1-21.5.
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Answers or Hints

24.1. (i) From (19.2) and (24.3), we have A = Uy D,.,.V{ and AT = V; D ;1 U}.
Thus, A = Vi D,,.U! and (A" = U, D}V = (AT)L
(ii) Since AT = Vi D 1UL, we have AT+ = Uy (D,;}) "V = U1 D,.,. Vi = A.
24.2. For every n X m matrix P, the matrix B = AT + (P — ATAPAA™T)
satisfies (a).

1 0.1724

24.3. For the matrices A = (5,2), B = 3 0.0690 |

BT ~ (0.1,0.3), (AB)T ~ 0.0909, BTAT ~ 0.0379, and hence (AB)T #
BTAT.
24.4. We need to show that R(A) &N (AT) = R™ and R(AT)®N(A) = R™.
(i) Since A = Uy D,V and AT = Vi D ,1UY for y € R™, we have AATy =
U1(D, ViVi D} Uty). This means AATy is a linear combination of the rows
of Uy, and thus from Theorem 19.2(i), we have AATy € C(A).
(ii) For y € R", we have AT Ay = V1(D,.'UtU, D,..V}'y), and hence A+ Ay is
a linear combination of the rows of Vi, and now from Theorem 19.2(iii), we
have AT Ay € R(A).

0.2222 1.0556 —0.6111

, we have AT ~

24.5. AT = —0.1111 -0.7778  0.5556
0.1111 0.2778 —0.0556
T _9 1
2 2
pro| 8o
3 _3 1
4 4 1

0.0256  0.0858 —0.1925
Ct =1 -0.0009 —0.0580  0.1229
0.0483 —0.0025 —0.0162

0o
+ 4 _2
246 (L 2 1V = o 9
2 0 1 1 11
9 9
_1 2
9 9
1 3\"
33| /11 -9 -13 7
-3 1 si\ 17 9 -1 7
11
-1 0 1\" -5 —1 4
-1 1 2 =:| 4 15
01 1 1 21
12 3\°
5 1 0 0.1818  0.2273  0.3636 —0.3182
L1 o | = —02909 05364 07818  0.6091
0 3 4 0.2727 —0.4091  0.5455 —0.2273
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24.7. Problem 21.1, (0.3333,0.6667,1.0000)".

Problem 21.2, (0.1759, 0.5548,0.0114, 0.3648)".

Problem 21.3, (0.1990, 0.3026,0.2828, —0.4877, —0.3693)".
Problem 21.4, (0.2020, 0.4039, —0.2824, 0.0412)*.
Problem 21.5, (0.5136,0.7113, —0.1810)".
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Chapter 25

Special Matrices

In this last chapter we shall briefly discuss irreducible, nonnegative, diagonally
dominant, monotone, and Toeplitz matrices. These matrices frequently occur
in numerical solutions of differential and integral equations, spline functions,
problems and methods in physics, statistics, signal processing, discrete Fourier
transform, and the study of cyclic codes for error correction.

An n x n matrix A = (a;;) is said to be reducible if the set of indices
N = {1,2,--- ,n} can be divided into two nonempty disjoint sets S and T
with N = S UT such that a;; =0 for all ¢ € S and j € T. A square matrix is
called irreducible if it is not reducible.

Example 25.1. The following matrices are reducible

5 3 0 3 25
A=16 40, B=|o071
06 9 0 4 3

Clearly, for the matrix A, if we take S = {1,2}, T = {3} then a3 = azs =0,
whereas for the matrix B if S = {2,3}, T = {1} then as1 = a1 = 0. The
following matrices are irreducible

5 3 1 3 2 5
c=|640], D=1[071
06 9 1 4 3

For this, we need to consider all six possible particians of the set {1,2,3}, i.e.,
P S={1},T={2,3}; P,:S={2},T={1,3}; P,: S ={3},T = {1,2};
Py:S={1,2},T={3}; P5:5={2,3},)T={1}; and s : S ={1,3},T =
{2}. For the matrix C in each of these particians, we have a1z = 3,a21 =
6,a32 = 6,a13 = 1,a21 = 6,a12 = 3. Similarly, for the matrix D, we have
alg = 2,&23 = 1,a32 = 4,&13 = 5,&31 = 1,a12 = 2.

The following result provides necessary and sufficient conditions for an
n X n matrix to be reducible.

Theorem 25.1. An n x n matrix A is reducible if and only if there exists
a permutation matrix P such that

A 0
PfAP _ 11 .
< A21 A22 > ’

213
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here A1 and Ass are square matrices of orders r and n — r, respectively, Aog
is an (n —7) X r matrix, and 0 is the r X (n — r) null matrix, 1 <r <n —1.

Example 25.2. In view of Theorem 25.1, matrix A in Example 25.1 is
reducible. For the matrix

N Ot N W
O = O Ot
=N W=

S WO

the permutation matrix P = (e, €2, el, e?) gives

P'AP = = B. (25.1)

N = W=
T W NN
Wk OO
— ot o O

Thus, from Theorem 25.1 it follows that the matrix A is reducible.

Let vy, -+, v, be n distinct points in the zy-plane. For each a;; # 0, 1 <
i,7 < n we connect the points v; with v; with line segments directed from
v; to v;. In graph theory the points vy,--- ,v, are called vertices, nodes, or

points, and the line segments are called edges, arcs, or simply lines. The graph
so constructed is called a directed graph, because edges are directed from one
vertex to another. A graph is called strongly connected if for any ordered pair
of nodes v;,vj, there exists a path v;vr, — vg, vk, — -+ — Vg, v; connecting
v; to v;.

m

Theorem 25.2. An n x n matrix A = (a;;) is irreducible if and only if
its directed graph is strongly connected.

Example 25.3. Directed graphs of matrices A and C in Example 25.1
appear as

Graph of A Graph of C
U1 & p U2 V1 & p U2

'\(

U3 U3

Clearly, the graph of A is not strongly connected, whereas of C' is strongly
connected.

From Theorem 25.2 the following corollary is immediate.
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Corollary 25.1. An n x n tridiagonal matrix A = (a;;) is irreducible if
and only if a; ;41 #0, i=1,---,n—1land a; ;-1 #0, i =2,--- ,n.

Matrices in (4.2) and (4.16) are irreducible.

An m x n matrix A = (a;;) is said to be nonnegative (positive) if a;; >
(>)0, 1 <i < m,1 < j < n. Eigenvalues and eigenvectors of nonnegative
irreducible n x n matrices are described by the following result.

Theorem 25.3 (Perron—Frobenius). If A is an n x n, nonnegative
irreducible matrix, then the following hold:

(i) one of its eigenvalues, say, A* is positive, and if A is any other eigenvalue,
then |A| < \*

(ii) there is a positive eigenvector v* corresponding to the eigenvalue \*
(iii) the eigenvalues of modulus A\* are simple

(iv) all eigenvalues of modulus A* are of the form

2mky/—1

)\k:)\*exp( ), k=0,1,--- ,m—1.
m

Example 25.4. For the matrix C' in Example 25.1, \* ~ 10.740084, v*

~ (1,0.890197, 3.069495)%, and for the matrix D, \* ~ 8.074555, v* = (1,
0.688283,0.739598)¢.

An n x n matrix A = (a,;) is said to be diagonally dominant if for every
row of the matrix, the magnitude of the diagonal entry in a row is larger than
or equal to the sum of the magnitudes of all the other (non-diagonal) entries
in that row, i.e.,

lai;| > Z la;;| forall 1<i<nmn. (25.2)
=L

If in (25.2) a strict inequality holds, then A is called strictly diagonally domi-
nant.

Example 25.5. None of the matrices A, B,C,D in Example 25.1 are
diagonally dominant. Matrix A, (x) defined in (4.2) is diagonally dominant if
|z| = 2, and strictly diagonally dominant if |z| > 2. Consider the matrices

5 3 0 5 3 2
A = 6 8 0|, B = 8 8 0
0 6 9 09 9

The matrix A is strictly diagonally dominant but not irreducible, whereas
matrix B is diagonally dominant and irreducible. In view of Corollary 25.1, if
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|z| = 2, then the matrix A, (x) in (4.2) is diagonally dominant and irreducible,
and if |x| > 2, then it is strictly diagonally dominant and irreducible.

Theorem 25.4. If an n x n matrix A is strictly diagonally dominant, or
diagonally dominant and irreducible, then A is invertible.

Example 25.6. From Theorem 25.4 it is clear that the matrix A, (z) in
(4.2) for |x| > 2 is invertible. In particular, A5(3) is invertible; see Example
4.3. Matrices A and B in Example 25.5 are invertible and their inverses appear
as

4 3 1 1 1

T —3 O i T3 18

-1 _| _3 5 S
A - 11 22 O ’ B - 4 32 18
2 5 1 1.5 1

11 33 9 4 32 18

The converse of Theorem 25.4 does not hold. For this, we note that the matri-
ces A and B in Example 25.1 are neither diagonally dominant nor irreducible,
but their inverse exists:

_3 1014 _1n

2 2 O 3 51 17

-1 _ _ 5 -1 _ 3 _1
AT = 3 5 0], B = 0 7 7
5 1 4 7

2 -3 3 0 - 1

Let A = (ai;) be an m x n matrix. In what follows by A > 0, we mean
that the matrix A is nonnegative. An n X n matrix A is said to be monotone
if Au > 0 implies that u is nonnegative, i.e., u = (u1,- -+ ,u,)* > 0.

If a matrix A is monotone, and Au < 0, then it follows that —Au > 0,
which implies that A(—u) > 0, and hence —u > 0, or u < 0. Thus, if A is
monotone, and Au = 0, then v must simultaneously satisfy © > 0 and v < 0,
i.e., w = 0. This simple observation leads to the following result.

Theorem 25.5. If an n x n matrix A is monotone, then det(A) # 0, i.e,
it is nonsingular.

Example 25.7. The converse of Theorem 25.5 does not hold. For this,
it suffices to note that for the matrix B in Example 25.1, det(B) = 51 and
B(1,1,-1) = (0,6,1).

The following result provides necessary and sufficient conditions so that
an n X n matrix A is monotone.

Theorem 25.6. An n x n matrix A is monotone if and only if A=! > 0.

Example 25.8. From Theorem 25.6 and Example 25.6 it follows that ma-
trices A and B in Examples 25.1 are 25.5 are not monotone. Thus, reducible,
irreducible, and diagonally dominant matrices are not necessarily monotone.
In view of Example 4.3, the matrix As(3) is monotone.
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The following easily verifiable results provide sufficient conditions for an
n X n matrix A to be monotone.

Theorem 25.7. Let (in addition to irreducibility) an n x n matrix 4 =
(ai;) satisfy the following conditions:

(i) a;;<0,i#yj, 1<i,j<n
(ii) Z?Zl ai; > 0, 1 <4 < n with strict inequality for at least one 1.

Then, the matrix A is monotone.

Example 25.9. In view of Corollary 25.1, the matrix A, (z) for x > 2
satisfies all conditions of Theorem 25.7. Consider the matrices

5 -3 =2 -5 3 3 5 =3 0
A= -8 8 0|, B= 8 -8 0|, C= —6 4 0
0 -9 10 0 9 -9 0 6 9
and their inverses
5 31 IR 2 30
-1 25 -1 5 1 -1 5
9 45 5 2 5 1
7 16 | L g 3 2 3 3

From Theorem 25.6 all three matrices A, B, and C are monotone, but only A
satisfies all conditions of Theorem 25.7.

Remark 25.1. From the matrices in Example 25.9, we note that A + B is
a singular matrix, and hence Theorem 25.5 implies that the addition of two
monotone matrices may not be monotone. In view of Theorem 25.6, matrix
A~ is not monotone, and hence the inverse of a monotone matrix may not
be monotone. However, from (AB)~! = B=1A~! it is clear that if A and B
are monotone, then both AB and BA are also monotone.

Theorem 25.8. Let the n x n matrices A and C be monotone, and the
matrix B be such that A < B < C. Then, the matrix B is also monotone.

Example 25.10. Clearly, the following matrices

1 -1 -1 1 -1 -1 1 -1 -1
A=|-2 3 1],B=|-2 4 1|,c=|-1 5 1
-1 1 2 -1 1 3 -1 1 5

satisfy A < B < C, and since

3 11

5 1 2 2 14 1
A= [3 11 and C7' = [ 1 1 0
1 01 1 g 1

1 1



218 Chapter 25

matrices A and C are monotone. Thus, Theorem 25.8 is applicable, and the
matrix B must be monotone, indeed we have

[
[,

=
-
Il
I[NNI

vl alor |
O NI N[

Theorem 25.9. Let the n x n matrix A be written as A = I — B, where
B = (b;j) > 0 and (in any norm) ||B|| < 1. Then, the matrix A is monotone.

Example 25.11. Consider the following matrix and its inverse

32 42 15

1 1 1 42
2 1 9 19 19
1 1 1 -1 20 69 33
A = 4 2 6 ;A - 19 19 38
1 1 1 12 30 27
6 3 9 19 19

From Theorem 26.6 it follows that the matrix A is monotone. Since

100 0 3 7
A=I-B= (010 |-| 3+ L1
0 0 1 1 1 9

6 3

the matrix B satisfies all conditions of Theorem 25.9, and hence matrix A is
monotone.

Theorem 25.10. Let the n x n matrix A be symmetric, positive definite,
and written as A = I — B, where B = (b;;) > 0. Then, the matrix A is
monotone.

Example 25.12. For the matrix

O O W =
[
O Wi = Wi

b
Il

W= = W= O
[ L s S )

eigenvalues are
5 1 1 5 7 1 1 7
6_6\/57 6\/54-6, 6—6\/5, 6\/54-6

positive, and thus it is positive definite. We can write A = I — B, where

0+ 00
53 0030
P=l01 02
3 3
00 % 0
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Since ||Bllsc < 1, conditions of Theorem 25.10 are satisfied, and thus the
matrix A is monotone. Indeed, we find

63 24 9 3
g L2 2o o9
55 9 27 72 2
39 24 63

An m x n matrix A = (a;;) is called a Toeplitz matrix if a;; = a;41,j4+1 =
ai—j. An n x n Toeplitz matriz has the form

ag a_1 a_o ‘e ‘e a*(nfl)
a1 ag a_1 ‘e ‘e a*(n72)
a a a e e A_(r_
A — 2 1 0 (n—3)
Ap—2 . ‘e a ag a_1
Ap—1 . ‘e as a ag

In the above matrix A all diagonal elements are equal to ag. Further, we note
that this matrix has only 2n — 1 degrees of freedom compared to n?, thus it
is easier to solve the systems Az = b. For this, Levinson’s algorithm is well
known. An n x n Toeplitz matrix A = (a;;) is called symmetric provided
aij = bji—j-

Example 25.13. For n = 4, Toeplitz and symmetric Toeplitz matrices,
respectively, appear as

ap a—-1 a—2 a_3 bo b1 b2 bg

. al ap a—_1 a-» . b1 bo b1 b2

4 = an al ap a_1 ’ B = b2 b1 bo b1
as as aiy ao bg b2 b1 bo

A symmetric Toeplitz matrix B is said to be banded if there is an integer
d < n—1such that by = 0 if £ > d. In this case, we say that B has bandwidth d.
Thus, an n x n banded symmetric Toeplitz matrix with bandwidth 2 appears
as

bo by
br by b
by by by
B = . (25.3)
by by b1
b1 by

Clearly, matrices (4.2) and (4.16) are symmetric Toeplitz matrices with band-
width 2. For the matrix B in (25.3), following as in Problem 16.9, we find that
the eigenvalues and the corresponding eigenvectors are

VT .
A = b0+2blcos<n—+1>, 1<i<n
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and

: . im . 2r i\’ ,
u' = sm—,sm?,-~-,sm 1) 1<1<n,
n n n

also

det(B) = ﬁ[bo—l-%lcos(ni—:l)}.

i=1

Example 25.14. For the matrix B in (25.3) with n = 4, it follows that

f 1- f \/— 1+v5

AL = bo+ b1, A2 = bo+——=—b1, A3 = bo— b1, Ay = bo— Tbl,
1 1 -1 -1
1+v5 1-v5 1-v5 1+v5
1 _ 2 2 2 3 _ 2 4 2
ST w0 T s Y T ot |0 Vs |’
2 2 2
1 1 1 1

det(B) = (b7 — bg — bob1)(bob1 — bj + b7).

In Toeplitz matrix A, if we take a; = a_¢,—;), 1 =1,---,n — 1, then it
reduces to a circulant matrix (see Problem 16.8),

A = circ(ag, a1, -+ ,a_(n—1))
ag a_1 a_o e PPN a_(n_l)
a_(n_l) ag a_1 e e a_(n_z)
_ A_(n—2) A—(n-1) ag t co a_(n—3) (254)
a_2 e e ai(nfl) a/O a/_l
- a_(n—2) Q—(n-1) ao

Example 25.15. For n = 4, the eigenvalues of the matrix A in (25.4) are

Al = ap—a_1+a_z —a_s, A2 = ap+a-1+a2+a_s,

A3 = ag—a_g — i(a_g — a_l), A4 ag — a_2 + i(a_g — a_l).

Theorem 25.11. For any two given circulant matrices 4 and B, the sum
A + B is circulant, the product AB is circulant, and AB = BA.

Example 25.16. For the matrices A = circ(2,1,5), B = cire(4,3, 1),
we have A+ B = circ(6,4,4) and AB = BA = circ(22,5,21).
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Problems

25.1. Use Theorem 25.1 to show that the following matrices are reducible:

2 3 5 2 01 3 2
05 3 0 05 0 7
4= 03 2 0 » B = 2 0 01
0 410 0 3 0 2

25.2. Prove Theorem 25.2.

25.3. Use Theorem 25.2 to determine whether the following matrices are
reducible or irreducible:

40 7
A:<g Z) B:(g i) c=| 11 8 o0
0 5 8

25.4. Prove Theorem 25.4.

25.5. Use Theorem 25.4 to show that the following matrices are invertible:

g
4
3
6

7 2 3 1
A= |15 2]|, B= 0
3 4 8 6

S W Ot

25.6. Prove Theorem 25.6.
25.7. Show that the matrices C' and D in Example 25.1 are not monotone.

25.8. Let A = (ai;) and B = (b;;) be n x n monotone matrices. Show
that if A > B, i.e., a;; > by, 1 <4,j < n, then Al < Bt

25.9. Use Theorem 25.6 to show that the following matrices are monotone

2 2 -3 2 -7 1
A= -3 2 2|, B=| -42 —28 10
2 -3 2 14 35 —27

25.10. Prove Theorem 25.9.

25.11. Find the eigenvalues and eigenvectors of the following matrices:

13 00 ao 0 a-o O
3130 B 0 a 0 a_y
4 = 0 3 1 3 ’ B = a_o 0 aq 0
0 0 3 1 0 a_o 0 Qg
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25.12. Show that circ(1, —1,2, 3)circ(4, 1,5, —3) = circ(20, 6, 3, 6).

Answers or Hints

2 3 0 0 0010 000 1
350 0 0100 0100
251ty 00 looo1 |2 1000
53 2 2 1000 0010
5 70 0 010 0 00 1 0
3200 | (o001 ]|[1000
120 3 1000 000 1
01 2 0 00 1 0 01 00

25.2. Let A be an irreducible matrix and suppose that its directed graph
G is not strongly connected. We suppose that G has n edges. Then, there
are vertices v; and v; such that between them there does not exist any path.
We denote with S the set of edges connected to v; and with T the rest of
the edges. It is clear that the sets S and T" are non-empty, since v; € S and
v; € T. This implies that no edge v € S is connected with an edge w € T,
since otherwise w € S, which is false. If we reorder the edges in the graph G
and suppose that the first ¢ edges are in S and the next n—q vertices are in
T, then we have a,; = 0 for r € S, s € T. But this contradicts our assumption
that A is irreducible. The converse requires a similar argument.

25.3. A irreducible, B reducible, C' irreducible.

25.4. Assume that A is strictly dominated and noninvertible. Then, at
least one of the eigenvalues of A, say, A\, = 0. Let the eigenvector corre-

sponding to A, be u = (u1,--+ ,uy,). Since Au = \jpu = 0, it follows that
i aguy =0, 1 < i < n. Let |lulloo = maxi<i<y |ui| = |ug|. Then, we
have agruy, = — 327 oy akjug, which gives [apx| < 301, oy lawg||uj/ukl,

or |agk| < Z;L:Lj#k |ak;|. But this contradicts our assumption that A is di-
agonally dominated.
25.5. Matrix A is strictly diagonally dominant and its inverse is

32 -4 -17
1%7 -2 47 —17 | . Matrix B is diagonally dominant and irreducible
—-17 —-34 51
6 -6 -1
and its inverse is 11—2 —6 10 1
6 —10 1

25.6. Let A be monotone and A=t = (b!,--- [ b"). Then, AV =¢/ >0, 1<
j < n implies b >0, 1 < j < n. Thus, A~ > 0. Conversely, if A=! > 0 and
Au >0, then u = (A1 A)u = A=1(Au) > 0.

25.7. In view of Theorem 25.6 it suffices to observe that not all elements of
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the matrices C~! and D~! are nonnegative:

2 _ 1T _2 17 T _1

3 18 27 18 9 6

-1 5 1 -1 1 2 1

co=(-1 5 9| D= w § s

2 _>5 L _T _5 7

3 9 27 18 9 6

25.8. Follows from the identity B~ — A~! = B~1(A - B)A~!

2 1 2 1 1 3
25.9. Al=1(2 2 1|, Bt=2L| 15 13
1 2 2 O

25.10. From Theorem 17.5, it suffices to note that A=1 = Y2 B
B >0.

25.11. For A in Example 25.14 take bg = 1,1 = 3.

For the matrix B, \y = Ay = a9 +a—2, \3 = Ay = a9 — a_3, v
(0,1,0,1)%, v? =(1,0,1,0)%, v* = (0,-1,0,1)!, v* = (-1,0,1,0).
25.12. Verify by direct multiplication.
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