
Contents

1: Getting Started with Apache Spark
Chapter 1: Getting Started with Apache Spark
Introduction
Leveraging�Databricks Cloud
Deploying Spark using Amazon EMR
Installing Spark from binaries
Building the Spark source code with Maven
Launching Spark on Amazon EC2
Deploying Spark on a cluster in standalone mode
Deploying Spark on a cluster with Mesos
Deploying Spark on a cluster with YARN
Understanding SparkContext and SparkSession
Understanding resilient distributed dataset - RDD

2: Developing Applications with Spark
Chapter 2: Developing Applications with Spark
Introduction
Exploring the Spark shell
Developing a Spark applications in Eclipse with Maven
Developing a Spark applications in Eclipse with SBT
Developing a Spark application in IntelliJ IDEA with Maven
Developing a Spark application in IntelliJ IDEA with SBT
Developing applications using the Zeppelin notebook
Setting up Kerberos to do authentication
Enabling Kerberos authentication for Spark

3: Spark SQL
Chapter 3: Spark SQL
Understanding the evolution of schema awareness
Understanding the Catalyst optimizer
Inferring schema using case classes
Programmatically specifying the schema
Understanding the Parquet format
Loading and saving data using the JSON format
Loading and saving data from relational databases
Loading and saving data from an arbitrary source
Understanding joins
Analyzing nested structures

4: Working with External Data Sources

Chapter 4: Working with External Data Sources
Introduction
Loading data from the local filesystem
Loading data from HDFS
Loading data from Amazon S3
Loading data from Apache Cassandra

5: Spark Streaming
Chapter 5: Spark Streaming
Introduction
WordCount using Structured Streaming
Taking a closer look at Structured Streaming
Streaming Twitter data
Streaming using Kafka
Understanding streaming challenges

6: Getting Started with Machine Learning
Chapter 6: Getting Started with Machine Learning
Introduction
Creating vectors
Calculating correlation
Understanding feature engineering
Understanding Spark ML
Understanding hyperparameter tuning

7: Supervised Learning with MLlib � Regression
Chapter 7: Supervised Learning with MLlib � Regression
Introduction
Using linear regression
Understanding the cost function
Doing linear regression with lasso
Doing ridge regression

8: Supervised Learning with MLlib � Classification
Chapter 8: Supervised Learning with MLlib � Classification
Introduction
Doing classification using logistic regression
Doing binary classification using SVM
Doing classification using decision trees
Doing classification using random forest
Doing classification using gradient boosted trees

Doing classification with Na�ve Bayes
9: Unsupervised Learning

Chapter 9: Unsupervised Learning
Introduction
Clustering using k-means
Dimensionality reduction with principal component analysis
Dimensionality reduction with singular value decomposition

10: Recommendations Using Collaborative Filtering
Chapter 10: Recommendations Using Collaborative Filtering
Introduction
Collaborative filtering using explicit feedback
Collaborative filtering using implicit feedback

11: Graph Processing Using GraphX and GraphFrames
Chapter 11: Graph Processing Using GraphX and GraphFrames
Introduction
Fundamental operations on graphs
Using PageRank
Finding connected components
Performing neighborhood aggregation
Understanding GraphFrames

12: Optimizations and Performance Tuning
Chapter 12: Optimizations and Performance Tuning
Optimizing memory
Leveraging speculation
Optimizing joins
Using compression to improve performance
Using serialization to improve performance
Optimizing the level of parallelism
Understanding project Tungsten

Chapter 1. Getting Started with Apache
Spark
In this chapter, we will set up Spark and configure it. This chapter contains the
following recipes:

Leveraging Databricks Cloud
Deploying Spark using Amazon EMR
Installing Spark from binaries
Building the Spark source code with Maven
Launching Spark on Amazon EC2
Deploying Spark on a cluster in standalone mode
Deploying Spark on a cluster with Mesos
Deploying Spark on a cluster with YARN
Understanding SparkContext and SparkSession
Understanding Resilient Distributed Datasets (RDD)

Introduction

Apache Spark is a general-purpose cluster computing system to process big
data workloads. What sets Spark apart from its predecessors, such as
Hadoop MapReduce, is its speed, ease of use, and sophisticated analytics.

It was originally developed at AMPLab, UC Berkeley, in 2009. It was made
open source in 2010 under the BSD license and switched to the Apache 2.0
license in 2013. Toward the later part of 2013, the creators of Spark founded
Databricks to focus on Spark's development and future releases.

Databricks offers Spark as a service in the Amazon Web Services(AWS)
Cloud, called Databricks Cloud. In this book, we are going to maximize the use
of AWS as a data storage layer.

Talking about speed, Spark can achieve subsecond latency on big data
workloads. To achieve such low latency, Spark makes use of memory for
storage. In MapReduce, memory is primarily used for the actual computation.
Spark uses memory both to compute and store objects.

Spark also provides a unified runtime connecting to various big data storage
sources, such as HDFS, Cassandra, and S3. It also provides a rich set of high-
level libraries for different big data compute tasks, such as machine learning,
SQL processing, graph processing, and real-time streaming. These libraries
make development faster and can be combined in an arbitrary fashion.

Though Spark is written in Scala--and this book only focuses on recipes on
Scala--it also supports Java, Python, and R.

Spark is an open source community project, and everyone uses the pure open
source Apache distributions for deployments, unlike Hadoop, which has
multiple distributions available with vendor enhancements.

The following figure shows the Spark ecosystem:

Spark's runtime runs on top of a variety of cluster managers, including YARN
(Hadoop's compute framework), Mesos, and Spark's own cluster manager
called Standalone mode. Alluxio is a memory-centric distributed file system
that enables reliable file sharing at memory speed across cluster frameworks.
In short, it is an off-heap storage layer in memory that helps share data across
jobs and users. Mesos is a cluster manager, which is evolving into a data
center operating system. YARN is Hadoop's compute framework and has a
robust resource management feature that Spark can seamlessly use.

Apache Spark, initially devised as a replacement of MapReduce, had a good
proportion of workloads running in an on-premises manner. Now, most of the
workloads have been moved to public clouds (AWS, Azure, and GCP). In a
public cloud, we see two types of applications:

Outcome-driven applications
Data transformation pipelines

For outcome-driven applications, where the goal is to derive a predefined
signal/outcome from the given data, Databricks Cloud fits the bill perfectly.
For traditional data transformation pipelines, Amazon's Elastic MapReduce
(EMR) does a great job.

Leveraging Databricks Cloud

Databricks is the company behind Spark. It has a cloud platform that takes out
all of the complexity of deploying Spark and provides you with a ready-to-go
environment with notebooks for various languages. Databricks Cloud also has
a community edition that provides one node instance with 6 GB of RAM for
free. It is a great starting place for developers. The Spark cluster that is
created also terminates after 2 hours of sitting idle.

Note

All the recipes in this book can be run on either the InfoObjects
Sandbox or Databricks Cloud community edition. The entire data
for the recipes in this book has also been ported to a public bucket
called sparkcookbook on S3. Just put these recipes on the
Databricks Cloud community edition, and they will work
seamlessly.

How to do it...

1. Go to https://community.cloud.databricks.com:

https://community.cloud.databricks.com

2. Click on Sign Up :

3. Choose COMMUNITY EDITION (or full platform):

4. Fill in the details and you'll be presented with a landing page, as
follows:

5. Click on Clusters, then Create Cluster (showing community edition
below it):

6. Enter the cluster name, for example, myfirstcluster, and choose
Availability Zone (more about AZs in the next recipe). Then click on
Create Cluster:

7. Once the cluster is created, the blinking green signal will become solid
green, as follows:

8. Now go to Home and click on Notebook. Choose an appropriate notebook
name, for example, config, and choose Scala as the language:

9. Then set the AWS access parameters. There are two access parameters:
ACCESS_KEY: This is referred to as fs.s3n.awsAccessKeyId in
SparkContext's Hadoop configuration.
SECRET_KEY: This is referred to as fs.s3n.awsSecretAccessKey
in SparkContext's Hadoop configuration.

10. Set ACCESS_KEY in the config notebook:

 sc.hadoopConfiguration.set("fs.s3n.awsAccessKeyId", "<replace
 with your key>")

11. Set SECRET_KEY in the config notebook:

 sc.hadoopConfiguration.set("fs.s3n.awsSecretAccessKey","
 <replace with your secret key>")

12. Load a folder from the sparkcookbook bucket (all of the data for the
recipes in this book are available in this bucket:

 val yelpdata =
 spark.read.textFile("s3a://sparkcookbook/yelpdata")

13. The problem with the previous approach was that if you were to publish
your notebook, your keys would be visible. To avoid the use of this
approach, use Databricks File System (DBFS).

Note

DBFS is Databricks Cloud's internal file system. It is a layer
above S3, as you can guess. It mounts S3 buckets in a user's
workspace as well as caches frequently accessed data on worker
nodes.

14. Set the access key in the Scala notebook:

 val accessKey = "<your access key>"

15. Set the secret key in the Scala notebook:

 val secretKey = "<your secret key>".replace("/","%2F")

16. Set the bucket name in the Scala notebook:

 val bucket = "sparkcookbook"

17. Set the mount name in the Scala notebook:

 val mount = "cookbook"

18. Mount the bucket:

 dbutils.fs.mount(s"s3a://$accessKey:$secretKey@$bucket"
 s"/mnt/$mount")

19. Display the contents of the bucket:

 display(dbutils.fs.ls(s"/mnt/$mount"))

Note

The rest of the recipes will assume that you would have set up
AWS credentials.

How it works...

Let's look at the key concepts in Databricks Cloud.

Cluster

The concept of clusters is self-evident. A cluster contains a master node and
one or more slave nodes. These nodes are EC2 nodes, which we are going to
learn more about in the next recipe.

Notebook

Notebook is the most powerful feature of Databricks Cloud. You can write
your code in Scala/Python/R or a simple SQL notebook. These notebooks
cover the whole 9 yards. You can use notebooks to write code like a
programmer, use SQL like an analyst, or do visualization like a Business
Intelligence (BI) expert.

Table

Tables enable Spark to run SQL queries.

Library

Library is the section where you upload the libraries you would like to attach
to your notebooks. The beauty is that you do not have to upload libraries
manually; you can simply provide the Maven parameters and it would find the
library for you and attach it.

Deploying Spark using Amazon EMR

There is a reason why deploying Spark on Amazon EMR is added as one of the
first recipes in this edition of the book. The majority of the production
deployments of Spark happen on EMR (in fact, the majority, and increasingly
so, big data deployments happen on EMR). If you understand this recipe well,
you may skip the rest of the recipes in this chapter, unless you are doing an on-
premises deployment.

Note

Since this topic is of paramount importance in the current context,
a lot more theory is being provided than what a typical cookbook
would have. You can skip the theory section and directly go to the
How to do it.. section, but I encourage you not to do so.

What it represents is much bigger than what it looks

What EMR represents is far more than meets the eye. Most of the enterprise
workloads are migrating to public clouds at an accelerated pace. Once
migrated, these workloads get rearchitected to leverage cloud-based services
as opposed to simply using it as Infrastructure as a Service (IaaS). EC2 is
an IaaS compute service of AWS, while EMR is the leading Platform as a
Service (PaaS) service of AWS, with more big data workloads running on
EMR than the alternatives combined.

EMR's architecture

Hadoop's core feature is data locality, that is, taking compute to where the
data is. AWS disrupts this concept by separating storage and compute. AWS
has multiple storage options, including the following:

Amazon S3: S3 is general-purpose object storage.
Amazon Redshift: This is a distributed cloud data warehouse.
Amazon DynamoDB: This is a NoSQL database.
Amazon Aurora: This is a cloud-based relational database.

Amazon S3 is the cheapest and most reliable cloud storage available, and this
makes it the first choice, unless there is a compelling reason not to do so. EMR
also supports attaching elastic block storage (EBS) volumes to compute
instances (EC2) in order to provide a lower latency option.

Which option to choose depends upon what type of cluster is being created.
There are two types of clusters:

Persistent cluster: It runs 24 x 7. Here, there is a continuous analysis of
data for use cases such as fraud detection in the financial industry or
clickstream analytics in ad tech. For these purposes, HDFS mounted on
EBS is a good choice.
Transient cluster: Here, workloads are run inconsistently, for example,
genome sequencing or holiday surge in retail. In this case, the cluster is
only spawned when needed, making Elastic Map Reduce File System
(EMRFS) based on S3 a better choice.

How to do it...

1. Log in to https://aws.amazon.com with your credentials.
2. Click on Services and select/search for EMR:

https://aws.amazon.com

3. Click on Create cluster and select the last option in the
Applications option box:

4. Click on Create Cluster and the cluster will start as follows:

5. Once the cluster is created with the given configuration, the My Cluster
status will change to Waiting, as shown in the following screenshot:

6. Now add a step to select the JAR file; it takes the input file from the S3
location and produces the output file and stores it in the desired S3
bucket:

7. The wordcount step's status will change to completed, indicating a
successful completion of the step, as shown in the following screenshot:

8. The output will be created and stored in the given S3 location. Here, it is
in the output folder under the io.playground bucket:

How it works...

Let's look at the options shown in step 3:

Cluster name: This is where you provide an appropriate name for the
cluster.
S3 folder: This is the folder location where the S3 bucket's logs for this
cluster will go to.
Launch mode:

Cluster: The cluster will continue to run until you terminate it.
Step execution: This is to add steps after the application is
launched.

Software configuration:
Vendor: This is Amazon EMI with the open source Hadoop versus
MapR's version.
Release: This is self-evident.
Applications:

Core Hadoop: This is focused on the SQL interface.

HBase: This is focused on partial no-SQL-oriented workloads.
Presto: This is focused on ad-hoc query processing.
Spark: This is focused on Spark.

Hardware configuration:
Instance type: This topic will be covered in detail in the next
section.
Number of instances: This refers to the number of nodes in the
cluster. One of them will be the master node and the rest slave
nodes.

Security and access:
EC2 key pair: You can associate an EC2 key pair with the cluster
that you can use to connect to it via SSH.
Permissions: You can allow other users besides the default Hadoop
user to submit jobs.
EMR role: This allows EMR to call other AWS services, such as
EC2, on your behalf.
EC2 instance profile: This provides access to other AWS services,
such as S3 and DynamoDB, via the EC2 instances that are launched
by EMR.

EC2 instance types

EC2 instances are the most expensive part of a company's AWS bill. So,
selecting the right instance type is the key through which you can optimize your
bill. The following section is a quick overview of the different instance types.
Instance types, both in the cloud and on premises, are defined by four factors:

Number of cores
Memory
Storage (size and type)
Network performance

To see a quick illustration of how these factors affect each other, visit
http://youtube.com/infoobjects.

In the EC2 world, these factors have been modified slightly to vCPU. vCPU is
a virtualized unit of:

http://youtube.com/infoobjects

Memory
Storage (size and type)
Network performance

Instance type families are defined by the ratio of these factors, especially
vCPU to memory. In a given family, this ratio remains unchanged (T2
excluded). Different instance families serve different purposes, almost like
different types of automobiles. In fact, we are going to use the automobile
metaphor in this section to illustrate these families.

T2 - Free Tier Burstable (EBS only)

The T2 instance type is a gateway drug in the AWS world, the reason being it
belongs to Free Tier. Developers who sign up for AWS get this instance type
for up to a year. This tier has six subtypes:

Instance Type vCPUsCPU Credit/HrMemory (GiB)

t2.micro 1 6 1

t2.small 1 12 2

t2.medium 2 24 4

t2.large 2 36 6

t2.xlarge 4 54 6

t2.2xlarge 8 81 32

M4 - General purpose (EBS only)

M4 is the instance type you use when in doubt. Developers who sign up for
AWS get this instance type for up to a year. This tier has six subtypes:

Instance Type vCPUsMemory (GiB)Dedicated Bandwidth

m4.large 2 8 450 mbps

m4.xlarge 4 16 750 mbps

m4.2xlarge 8 32 1,000 mbps

m4.4xlarge 16 64 2,000 mbps

m4.10xlarge 40 160 4,000 mbps

m4.16xlarge 64 256 10,000 mbps

C4 - Compute optimized

This tier has five subtypes:

Instance Type vCPUsMemory (GiB)Dedicated Bandwidth

c4.large 2 3.75 500 mbps

c4.xlarge 4 7.5 750 mbps

c4.2xlarge 8 15 1,000 mbps

c4.4xlarge 16 30 2,000 mbps

c4.8xlarge 36 60 4,000 mbps

X1 - Memory optimized

This tier has two subtypes:

Instance Type vCPUsMemory (GiB)Dedicated Bandwidth

x1.16xlarge 2 8 450 mbps

x1.32xlarge 4 16 750 mbps

R4 - Memory optimized

This tier has six subtypes:

Instance Type vCPUsMemory (GiB)Dedicated Bandwidth

r4.large 2 15.25 10 gbps

r4.xlarge 4 30.5 10 gbps

r4.2xlarge 8 61 10 gbps

r4.4xlarge 16 122 10 gbps

r4.8xlarge 32 244 10 gbps

r4.16xlarge 64 488 20 gbps

P2 - General purpose GPU

This tier has three subtypes:

Instance Type vCPUsMemory (GiB)GPUsGPU Memory (GiB)

p2.xlarge 4 61 1 12

p2.8xlarge 32 488 8 96

p2.16xlarge 64 732 16 192

I3 - Storage optimized

This tier has six subtypes:

Instance Type vCPUsMemory (GiB)Storage (GB)

i3.large 2 15.25 475 NVMe SSD

i3.xlarge 4 30.5 950 NVMe SSD

i3.2xlarge 8 61 1,900 NVMe SSD

i3.4xlarge 16 122 2x1,900 NVMe SSD

i3.8xlarge 32 244 4x1,900 NVMe SSD

i3.16xlarge 64 488 8x1,900 NVMe SSD

D2 - Storage optimized

This tier is for massively parallel processing (MPP), data warehouse, and so
on type usage. This tier has four subtypes:

Instance Type vCPUsMemory (GiB)Storage (GB)

d2.xlarge 4 30.5 3x2000 HDD

d2.2xlarge 8 61 6x2000 HDD

d2.4xlarge 16 122 12x2000 HDD

d2.8xlarge 32 244 24x2000 HDD

Installing Spark from binaries

You can build Spark from the source code, or you can download precompiled
binaries from http://spark.apache.org. For a standard use case, binaries are
good enough, and this recipe will focus on installing Spark using binaries.

Getting ready

At the time of writing, Spark's current version is 2.1. Please check the latest
version from Spark's download page at
http://spark.apache.org/downloads.html. Binaries are developed with the most
recent and stable version of Hadoop. To use a specific version of Hadoop, the
recommended approach is that you build it from sources, which we will cover
in the next recipe.

All the recipes in this book are developed using Ubuntu Linux, but they should
work fine on any POSIX environment. Spark expects Java to be installed and
the JAVA_HOME environment variable set.

In Linux/Unix systems, there are certain standards for the location of files and
directories, which we are going to follow in this book. The following is a
quick cheat sheet:

DirectoryDescription

/bin This stores essential command binaries

/etc This is where host-specific system configurations are located

/opt This is where add-on application software packages are located

http://spark.apache.org
http://spark.apache.org/downloads.html

/var This is where variable data is located

/tmp This stores the temporary files

/home This is where user home directories are located

How to do it…

Here are the installation steps:

1. Open the terminal and download the binaries using the following
command:

$ wget http://d3kbcqa49mib13.cloudfront.net/spark-2.1.0-bin-hadoop2.7.tgz

2. Unpack the binaries:

$ tar -zxf spark-2.1.0-bin-hadoop2.7.tgz

3. Rename the folder containing the binaries by stripping the version
information:

$ sudo mv spark-2.1.0-bin-hadoop2.7 spark

4. Move the configuration folder to the /etc folder so that it can be turned
into a symbolic link later:

$ sudo mv spark/conf/* /etc/spark

5. Create your company-specific installation directory under /opt. As the
recipes in this book are tested on the infoobjects sandbox, use
infoobjects as the directory name. Create the /opt/infoobjects
directory:

$ sudo mkdir -p /opt/infoobjects

6. Move the spark directory to /opt/infoobjects, as it's an add-on
software package:

$ sudo mv spark /opt/infoobjects/

7. Change the permissions of the spark home directory, namely 0755 =
user:read-write-execute group:read-execute world:read-

execute:

$ sudo chmod -R 755 /opt/infoobjects/spark

8. Move to the spark home directory:

$ cd /opt/infoobjects/spark

9. Create the symbolic link:

$ sudo ln -s /etc/spark conf

10. Append Spark binaries path to PATH in .bashrc:

$ echo "export PATH=$PATH:/opt/infoobjects/spark/bin" >> /home/hduser/.bashrc

11. Open a new terminal.
12. Create the log directory in /var:

$ sudo mkdir -p /var/log/spark

13. Make hduser the owner of Spark's log directory:

$ sudo chown -R hduser:hduser /var/log/spark

14. Create Spark's tmp directory:

$ mkdir /tmp/spark

15. Configure Spark with the help of the following command lines:

 $ cd /etc/spark
 $ echo "export HADOOP_CONF_DIR=/opt/infoobjects/hadoop/etc/hadoop" >> spark-env.sh
 $ echo "export YARN_CONF_DIR=/opt/infoobjects/hadoop/etc/Hadoop" >> spark-env.sh
 $ echo "export SPARK_LOG_DIR=/var/log/spark" >> spark-env.sh

 $ echo "export SPARK_WORKER_DIR=/tmp/spark" >> spark-env.sh

16. Change the ownership of the spark home directory to root:

$ sudo chown -R root:root /opt/infoobjects/spark

Building the Spark source code with Maven

Installing Spark using binaries works fine in most cases. For advanced cases,
such as the following (but not limited to), compiling from the source code is a
better option:

Compiling for a specific Hadoop version
Adding the Hive integration
Adding the YARN integration

Getting ready

The following are the prerequisites for this recipe to work:

Java 1.8 or a later version
Maven 3.x

How to do it...

The following are the steps to build the Spark source code with Maven:

1. Increase MaxPermSize of the heap:

$ echo "export _JAVA_OPTIONS="-XX:MaxPermSize=1G"" >>
 /home/hduser/.bashrc

2. Open a new terminal window and download the Spark source code from
GitHub:

$ wget https://github.com/apache/spark/archive/branch-2.1.zip

3. Unpack the archive:

$ unzip branch-2.1.zip

4. Rename unzipped folder to spark:

 $ mv spark-branch-2.1 spark

5. Move to the spark directory:

$ cd spark

6. Compile the sources with the YARN-enabled, Hadoop version 2.7, and
Hive-enabled flags and skip the tests for faster compilation:

$ mvn -Pyarn -Phadoop-2.7 -Dhadoop.version=2.7.0 -Phive -
 DskipTests clean package

7. Move the conf folder to the etc folder so that it can be turned into a
symbolic link:

$ sudo mv spark/conf /etc/

8. Move the spark directory to /opt as it's an add-on software package:

$ sudo mv spark /opt/infoobjects/spark

9. Change the ownership of the spark home directory to root:

$ sudo chown -R root:root /opt/infoobjects/spark

10. Change the permissions of the spark home directory, namely 0755 =
user:rwx group:r-x world:r-x:

$ sudo chmod -R 755 /opt/infoobjects/spark

11. Move to the spark home directory:

$ cd /opt/infoobjects/spark

12. Create a symbolic link:

$ sudo ln -s /etc/spark conf

13. Put the Spark executable in the path by editing .bashrc:

$ echo "export PATH=$PATH:/opt/infoobjects/spark/bin" >>
 /home/hduser/.bashrc

14. Create the log directory in /var:

$ sudo mkdir -p /var/log/spark

15. Make hduser the owner of Spark's log directory:

$ sudo chown -R hduser:hduser /var/log/spark

16. Create Spark's tmp directory:

$ mkdir /tmp/spark

17. Configure Spark with the help of the following command lines:

$ cd /etc/spark
$ echo "export HADOOP_CONF_DIR=/opt/infoobjects/hadoop/etc/hadoop"
 >> spark-env.sh
$ echo "export YARN_CONF_DIR=/opt/infoobjects/hadoop/etc/Hadoop"
 >> spark-env.sh
$ echo "export SPARK_LOG_DIR=/var/log/spark" >> spark-env.sh
$ echo "export SPARK_WORKER_DIR=/tmp/spark" >> spark-env.sh

Launching Spark on Amazon EC2

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizable compute instances in the cloud. Amazon EC2 provides the
following features:

On-demand delivery of IT resources via the Internet
Provisioning of as many instances as you like
Payment for the hours during which you use instances, such as your utility
bill
No setup cost, no installation, and no overhead at all
Shutting down or terminating instances when you no longer need them
Making such instances available on familiar operating systems

EC2 provides different types of instances to meet all your compute needs, such
as general-purpose instances, microinstances, memory-optimized instances,
storage-optimized instances, and others. They also have a Free Tier of
microinstances for trial purposes.

Getting ready

The spark-ec2 script comes bundled with Spark and makes it easy to launch,
manage, and shut down clusters on Amazon EC2.

Before you start, do the following things: log in to the Amazon AWS account
via http://aws.amazon.com.

1. Click on Security Credentials under your account name in the top-
right corner.

2. Click on Access Keys and Create New Access Key:

http://aws.amazon.com

3. Download the key file (let's save it in the /home/hduser/kp folder as
spark-kp1.pem).

4. Set permissions on the key file to 600.
5. Set environment variables to reflect access key ID and secret

access key (replace the sample values with your own values):

$ echo "export AWS_ACCESS_KEY_ID="AKIAOD7M2LOWATFXFKQ"" >> /home/hduser/.bashrc
$ echo "export
 AWS_SECRET_ACCESS_KEY="+Xr4UroVYJxiLiY8DLT4DLT4D4sxc3ijZGMx1D3pfZ2q"" >>
 /home/hduser/.bashrc
$ echo "export PATH=$PATH:/opt/infoobjects/spark/ec2" >> /home/hduser/.bashrc

How to do it…

1. Spark comes bundled with scripts to launch the Spark cluster on Amazon
EC2. Let's launch the cluster using the following command:

$ cd /home/hduser
$ spark-ec2 -k <key-pair> -i <key-file> -s <num-slaves> launch <cluster-name>
<key-pair> - name of EC2 keypair created in AWS
<key-file> the private key file you downloaded
<num-slaves> number of slave nodes to launch
<cluster-name> name of the cluster

2. Launch the cluster with the example value:

$ spark-ec2 -k kp-spark -i /home/hduser/keypairs/kp-spark.pem --hadoop-major-
 version 2 -s 3 launch spark-cluster

3. Sometimes, the default availability zones are not available; in that case,
retry sending the request by specifying the specific availability zone you
are requesting:

$ spark-ec2 -k kp-spark -i /home/hduser/keypairs/kp-spark.pem -z us-east-1b --
 hadoop-major-version 2 -s 3 launch spark-cluster

4. If your application needs to retain data after the instance shuts down,
attach EBS volume to it (for example, 10 GB space):

$ spark-ec2 -k kp-spark -i /home/hduser/keypairs/kp-spark.pem --hadoop-major-
 version 2 -ebs-vol-size 10 -s 3 launch spark-cluster

5. If you use Amazon's spot instances, here is the way to do it:

$ spark-ec2 -k kp-spark -i /home/hduser/keypairs/kp-spark.pem -spot-price=0.15
 --hadoop-major-version 2 -s 3 launch spark-cluster

Note

Spot instances allow you to name your own price for Amazon
EC2's computing capacity. You simply bid for spare Amazon EC2
instances and run them whenever your bid exceeds the current spot
price, which varies in real time and is based on supply and
demand (source: www.amazon.com).

6. After completing the preceding launch process, check the status of the
cluster by going to the webUI URL that will be printed at the end:

7. Check the status of the cluster:

https://www.amazon.com/

8. Now, to access the Spark cluster on EC2, connect to the master node
using secure shell protocol (SSH):

$ spark-ec2 -k spark-kp1 -i /home/hduser/kp/spark-kp1.pem login spark-cluster

9. The following image illustrates the result you'll get:

10. Check the directories in the master node and see what they do:

Directory Description

ephemeral-
hdfs

This is the Hadoop instance for which data is ephemeral and
gets deleted when you stop or restart the machine.

persistent-
hdfs

Each node has a very small amount of persistent storage
(approximately 3 GB). If you use this instance, data will be
retained in that space.

hadoop-
native

This refers to the native libraries that support Hadoop, such as
snappy compression libraries.

scala This refers to the Scala installation.

shark
This refers to the Shark installation (Shark is no longer
supported and is replaced by Spark SQL).

spark This refers to the Spark installation.

spark-ec2 This refers to the files that support this cluster deployment.

tachyon This refers to the Tachyon installation.

11. Check the HDFS version in an ephemeral instance:

$ ephemeral-hdfs/bin/hadoop version
Hadoop 2.0.0-chd4.2.0

12. Check the HDFS version in a persistent instance with the following
command:

$ persistent-hdfs/bin/hadoop version
Hadoop 2.0.0-chd4.2.0

13. Change the configuration level of the logs:

$ cd spark/conf

14. The default log level information is too verbose, so let's change it to
Error:

 Create the log4.properties file by renaming the template:

$ mv log4j.properties.template log4j.properties

Open log4j.properties in vi or your favorite editor:

$ vi log4j.properties

Change the second line from | log4j.rootCategory=INFO, console
to | log4j.rootCategory=ERROR, console.

15. Copy the configuration to all the slave nodes after the change:

$ spark-ec2/copydir spark/conf

16. You should get something like this:

17. Destroy the Spark cluster:

$ spark-ec2 destroy spark-cluster

See also

http://aws.amazon.com/ec2

http://aws.amazon.com/ec2

Deploying Spark on a cluster in standalone
mode

Compute resources in a distributed environment need to be managed so that
resource utilization is efficient and every job gets a fair chance to run. Spark
comes with its own cluster manager, which is conveniently called standalone
mode. Spark also supports working with YARN and Mesos cluster managers.

The cluster manager you choose should be mostly driven by both legacy
concerns and whether other frameworks, such as MapReduce, share the same
compute resource pool. If your cluster has legacy MapReduce jobs running and
all of them cannot be converted into Spark jobs, it is a good idea to use YARN
as the cluster manager. Mesos is emerging as a data center operating system to
conveniently manage jobs across frameworks, and it is very compatible with
Spark.

If the Spark framework is the only framework in your cluster, then the
standalone mode is good enough. As Spark is evolving as a technology, you
will see more and more use cases of Spark being used as the standalone
framework, serving all your big data compute needs. For example, some jobs
may use Apache Mahout at present because MLlib does not have a specific
machine-learning library, which the job needs. As soon as MLlib gets its
library, this particular job can be moved to Spark.

Getting ready

Let's consider a cluster of six nodes as an example setup--one master and five
slaves (replace them with the actual node names in your cluster):

Master
m1.zettabytes.com
Slaves
s1.zettabytes.com
s2.zettabytes.com

s3.zettabytes.com
s4.zettabytes.com
s5.zettabytes.com

How to do it…

1. Since Spark's standalone mode is the default, all you need to do is have
Spark binaries installed on both master and slave machines. Put
/opt/infoobjects/spark/sbin in the path on every node:

$ echo "export PATH=$PATH:/opt/infoobjects/spark/sbin" >> /home/hduser/.bashrc

2. Start the standalone master server (SSH to master first):

hduser@m1.zettabytes.com~] start-master.sh

Note

Master, by default, starts on port 7077, which slaves use to
connect to it. It also has a web UI at port 8088.

3. Connect to the master node using a Secure Shell (SSH) connection and
then start the slaves:

hduser@s1.zettabytes.com~] spark-class org.apache.spark.deploy.worker.Worker
 spark://m1.zettabytes.com:7077

Argument Meaning

-h
<ipaddress/HOST> and--
host <ipaddress/HOST>

IP address/DNS service to listen on

-p <port> and --port Port for the service to listen on

<port>

--webui-port <port>
This is the port for the web UI (by default, 8080
is for the master and 8081 for the worker)

-c <cores> and --cores
<cores>

These refer to the total CPU core Spark
applications that can be used on a machine
(worker only)

-m <memory> and --memory
<memory>

These refer to the total RAM Spark applications
that can be used on a machine (worker only)

-d <dir> and --work-dir
<dir>

These refer to the directory to use for scratch
space and job output logs

Note

For fine-grained configuration, the above parameters work with
both master and slaves. Rather than manually starting master and
slave daemons on each node, it can also be accomplished using
cluster launch scripts. Cluster launch scripts are outside the scope
of this book. Please refer to books about Chef or Puppet.

4. First, create the conf/slaves file on a master node and add one line per
slave hostname (using an example of five slave nodes, replace the
following slave DNS with the DNS of the slave nodes in your cluster):

hduser@m1.zettabytes.com~] echo "s1.zettabytes.com" >> conf/slaves
hduser@m1.zettabytes.com~] echo "s2.zettabytes.com" >> conf/slaves
hduser@m1.zettabytes.com~] echo "s3.zettabytes.com" >> conf/slaves
hduser@m1.zettabytes.com~] echo "s4.zettabytes.com" >> conf/slaves
hduser@m1.zettabytes.com~] echo "s5.zettabytes.com" >> conf/slaves

Once the slave machine is set up, you can call the following scripts to

start/stop the cluster:

Script name Purpose

start-master.shStarts a master instance on the host machine

start-slaves.shStarts a slave instance on each node of the slaves file

start-all.sh Starts both the master and slaves

stop-master.sh Stops the master instance on the host machine

stop-slaves.sh Stops the slave instance on all the nodes of the slaves file

stop-all.sh Stops both the master and slaves

5. Connect an application to the cluster through Scala code:

 val sparkContext = new SparkContext(new
 SparkConf().setMaster("spark://m1.zettabytes.com:7077")Setting master URL for
 spark-shell

6. Connect to the cluster through Spark shell:

$ spark-shell --master spark://master:7077

How it works…

In standalone mode, Spark follows the master-slave architecture, very much
like Hadoop, MapReduce, and YARN. The compute master daemon is called
Spark master and runs on one master node. Spark master can be made highly

available using ZooKeeper. You can also add more standby masters on the fly
if needed.

The compute slave daemon is called a worker, and it exists on each slave
node. The worker daemon does the following:

Reports the availability of the compute resources on a slave node, such as
the number of cores, memory, and others, to the Spark master
Spawns the executor when asked to do so by the Spark master
Restarts the executor if it dies

There is, at most, one executor per application, per slave machine.

Both Spark master and the worker are very lightweight. Typically, memory
allocation between 500 MB to 1 GB is sufficient. This value can be set in
conf/spark-env.sh by setting the SPARK_DAEMON_MEMORY parameter. For
example, the following configuration will set the memory to 1 gigabits for both
the master and worker daemon. Make sure you have sudo as the super user
before running it:

$ echo "export SPARK_DAEMON_MEMORY=1g" >> /opt/infoobjects/spark/conf/spark-env.sh

By default, each slave node has one worker instance running on it. Sometimes,
you may have a few machines that are more powerful than others. In that case,
you can spawn more than one worker on that machine with the following
configuration (only on those machines):

$ echo "export SPARK_WORKER_INSTANCES=2" >> /opt/infoobjects/spark/conf/spark-env.sh

The Spark worker, by default, uses all the cores on the slave machine for its
executors. If you would like to limit the number of cores the worker could use,
you can set it to the number of your choice (for example, 12), using the
following configuration:

$ echo "export SPARK_WORKER_CORES=12" >> /opt/infoobjects/spark/conf/spark-env.sh

The Spark worker, by default, uses all of the available RAM (1 GB for
executors). Note that you cannot allocate how much memory each specific
executor will use (you can control this from the driver configuration). To

assign another value to the total memory (for example, 24 GB) to be used by
all the executors combined, execute the following setting:

$ echo "export SPARK_WORKER_MEMORY=24g" >> /opt/infoobjects/spark/conf/spark-env.sh

There are some settings you can do at the driver level:

To specify the maximum number of CPU cores to be used by a given
application across the cluster, you can set the spark.cores.max
configuration in Spark submit or Spark shellas follows:

$ spark-submit --conf spark.cores.max=12

To specify the amount of memory that each executor should be allocated
(the minimum recommendation is 8 GB), you can set the
spark.executor.memory configuration in Spark submit or Spark
shell as follows:

$ spark-submit --conf spark.executor.memory=8g

The following diagram depicts the high-level architecture of a Spark cluster:

See also

To find more configuration options, refer to the following URL:

http://spark.apache.org/docs/latest/spark-standalone.html

http://spark.apache.org/docs/latest/spark-standalone.html

Deploying Spark on a cluster with Mesos

Mesos is slowly emerging as a data center operating system for managing all
the compute resources across a data center. Mesos runs on any computer
running the Linux operating system. It is built using the same principles as the
Linux kernel. Let's see how we can install Mesos.

How to do it…

Mesosphere provides a binary distribution of Mesos. The most recent package
of the Mesos distribution can be installed from the Mesosphere repositories by
performing the following steps:

1. Execute Mesos on a Ubuntu OS with the trusty version:

$ sudo apt-key adv --keyserver keyserver.ubuntu.com --recv E56151BF
 DISTRO=$(lsb_release -is | tr '[:upper:]' '[:lower:]') CODENAME=$(lsb_release
 -cs)
$ sudo vi /etc/apt/sources.list.d/mesosphere.list
deb http://repos.mesosphere.io/Ubuntu trusty main

2. Update the repositories:

$ sudo apt-get -y update

3. Install Mesos:

$ sudo apt-get -y install mesos

4. To connect Spark to Mesos and to integrate Spark with Mesos, make
Spark binaries available to Mesos and configure the Spark driver to
connect to Mesos.

5. Use the Spark binaries from the first recipe and upload them to HDFS:

$ hdfs dfs -put spark-2.1.0-bin-hadoop2.7.tgz spark-2.1.0-bin-hadoop2.7.tgz

6. The master URL of a single master Mesos is mesos://host:5050; the
master URL of a ZooKeeper-managed Mesos cluster is
mesos://zk://host:2181.

7. Set the following variables in spark-env.sh:

$ sudo vi spark-env.sh
export MESOS_NATIVE_LIBRARY=/usr/local/lib/libmesos.so
export SPARK_EXECUTOR_URI= hdfs://localhost:9000/user/hduser/spark-2.1.0-bin-
 hadoop2.7.tgz

8. Run the following commands from the Scala program:

Val conf = new SparkConf().setMaster("mesos://host:5050")
Val sparkContext = new SparkContext(conf)

9. Run the following command from the Spark shell:

$ spark-shell --master mesos://host:5050

Note

Mesos has two run modes:

Fine-grained: In the fine-grained (default) mode, every Spark
task runs as a separate Mesos task.

Coarse-grained: This mode will launch only one long-
running Spark task on each Mesos machine

10. To run in the coarse-grained mode, set the spark.mesos.coarse
property:

Conf.set("spark.mesos.coarse","true")

Deploying Spark on a cluster with YARN

Yet Another Resource Negotiator (YARN) is Hadoop's compute framework
that runs on top of HDFS, which is Hadoop's storage layer.

YARN follows the master-slave architecture. The master daemon is called
ResourceManager and the slave daemon is called NodeManager. Besides this
application, life cycle management is done by ApplicationMaster, which
can be spawned on any slave node and would be alive during the lifetime of an
application.

When Spark is run on YARN, ResourceManager performs the role of the
Spark master and NodeManagers works as executor nodes.

While running Spark with YARN, each Spark executor is run as a YARN
container.

Getting ready

Running Spark on YARN requires a binary distribution of Spark that has
YARN support. In both the Spark installation recipes, we have taken care of
this.

How to do it…

1. To run Spark on YARN, the first step is to set the configuration:

HADOOP_CONF_DIR: to write to HDFS
YARN_CONF_DIR: to connect to YARN ResourceManager
$ cd /opt/infoobjects/spark/conf (or /etc/spark)
$ sudo vi spark-env.sh
export HADOOP_CONF_DIR=/opt/infoobjects/hadoop/etc/Hadoop
export YARN_CONF_DIR=/opt/infoobjects/hadoop/etc/hadoop

You can see this in the following screenshot:

2. The following command launches YARN Spark in the yarn-client
mode:

$ spark-submit --class path.to.your.Class --master yarn --deploy-mode client
 [options] <app jar> [app options]

Here's an example:

$ spark-submit --class com.infoobjects.TwitterFireHose --master yarn --deploy-
 mode client --num-executors 3 --driver-memory 4g --executor-memory 2g --
 executor-cores 1 target/sparkio.jar 10

3. The following command launches Spark shell in the yarn-client
mode:

$ spark-shell --master yarn --deploy-mode client

4. The command to launch the spark application in the yarn-cluster mode
is as follows:

$ spark-submit --class path.to.your.Class --master yarn --deploy-mode cluster
 [options] <app jar> [app options]

Here's an example:

$ spark-submit --class com.infoobjects.TwitterFireHose --master yarn --deploy-
 mode cluster --num-executors 3 --driver-memory 4g --executor-memory 2g --
 executor-cores 1 target/sparkio.jar 10

How it works…

Spark applications on YARN run in two modes:

yarn-client: Spark Driver runs in the client process outside of the
YARN cluster, and ApplicationMaster is only used to negotiate the
resources from ResourceManager.
yarn-cluster: Spark Driver runs in ApplicationMaster, spawned by
NodeManager on a slave node.

The yarn-cluster mode is recommended for production deployments, while
the yarn-client mode is good for development and debugging, where you
would like to see the immediate output. There is no need to specify the Spark
master in either mode as it's picked from the Hadoop configuration, and the
master parameter is either yarn-client or yarn-cluster.

The following figure shows how Spark is run with YARN in the client mode:

The following figure shows how Spark is run with YARN in the cluster mode:

In the YARN mode, the following configuration parameters can be set:

--num-executors: To configure how many executors will be allocated
--executor-memory: RAM per executor
--executor-cores: CPU cores per executor

Understanding SparkContext and
SparkSession

SparkContext and SparkSession are the entry points into the world of Spark, so
it is important you understand both well.

SparkContext

SparkContext is the first object that a Spark program must create to access the
cluster. In spark-shell, it is directly accessible via spark.sparkContext.
Here's how you can programmatically create SparkContext in your Scala code:

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
val conf = new SparkConf().setAppName("my app").setMaster("master url")
new SparkContext(conf)

SparkSession

SparkContext, though still supported, was more relevant in the case of RDD
(covered in the next recipe). As you will see in the rest of the book, different
libraries have different wrappers around SparkContext, for example,
HiveContext/SQLContext for Spark SQL, StreamingContext for Streaming, and
so on. As all the libraries are moving toward DataSet/DataFrame, it makes
sense to have a unified entry point for all these libraries as well, and that is
SparkSession. SparkSession is available as spark in the spark-shell.
Here's how you do it:

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
val sparkSession = SparkSession.builder.master("master url").appName("my app").getOrCreate()

Understanding resilient distributed dataset -
RDD

Though RDD is getting replaced with DataFrame/DataSet-based APIs, there
are still a lot of APIs that have not been migrated yet. In this recipe, we will
look at how the concept of lineage works in RDD.

Externally, RDD is a distributed, immutable collection of objects. Internally, it
consists of the following five parts:

Set of partitions (rdd.getPartitions)
List of dependencies on parent RDDs (rdd.dependencies)
Function to compute a partition, given its parents
Partitioner, which is optional (rdd.partitioner)
Preferred location of each partition, which is optional
(rdd.preferredLocations)

The first three are needed for an RDD to be recomputed in case data is lost.
When combined, it is called lineage. The last two parts are optimizations.

A set of partitions is how data is divided into nodes. In the case of HDFS, it
means InputSplits, which are mostly the same as the block (except when a
record crosses block boundaries; in that case, it will be slightly bigger than a
block).

How to do it...

Let's revisit our word count example to understand these five parts. This is
how an RDD graph looks for wordCount at the dataset level view:

Basically, this is how the flow goes:

1. Load the words folder as an RDD:

scala> val words = sc.textFile("hdfs://localhost:9000/user/hduser/words")

The following are the five parts of the words RDD:

Part Description

Partitions One partition per HDFS inputsplit/block
(org.apache.spark.rdd.HadoopPartition)

DependenciesNone

Compute
function To read the block

Preferred
location The HDFS block's location

Partitioner None

2. Tokenize the words of the words RDD with each word on a separate line:

scala> val wordsFlatMap = words.flatMap(_.split("W+"))

The following are the five parts of the wordsFlatMap RDD:

Part Description

Partitions Same as the parent RDD, that is, words
(org.apache.spark.rdd.HadoopPartition)

DependenciesSame as the parent RDD, that is, words
(org.apache.spark.OneToOneDependency)

Compute
function

To compute the parent and split each element, which flattens the
results

Preferred
location Ask parent RDD

Partitioner None

3. Transform each word in the wordsFlatMap RDD into the (word,1) tuple:

scala> val wordsMap = wordsFlatMap.map(w => (w,1))

The following are the five parts of the wordsMap RDD:

Part Description

Partitions Same as the parent RDD, that is, wordsFlatMap
(org.apache.spark.rdd.HadoopPartition)

DependenciesSame as the parent RDD, that is, wordsFlatMap
(org.apache.spark.OneToOneDependency)

Compute
function To compute the parent and map it to PairRDD

Preferred
Location Ask parent RDD

Partitioner None

4. Reduce all the values of a given key and sum them up:

scala> val wordCount = wordsMap.reduceByKey(_+_)

The following are the five parts of the wordCount RDD:

Part Description

Partitions One per reduce task
(org.apache.spark.rdd.ShuffledRDDPartition)

Dependencies Shuffle dependency on each parent
(org.apache.spark.ShuffleDependency)

Compute
function To perform additions on shuffled data

Preferred
location None

Partitioner HashPartitioner (org.apache.spark.HashPartitioner)

This is how an RDD graph of wordcount looks at the partition level view:

Chapter 2. Developing Applications with
Spark
In this chapter, we will cover the following recipes:

Exploring the Spark shell
Developing a Spark applications in Eclipse with Maven
Developing a Spark applications in Eclipse with SBT
Developing a Spark application in IntelliJ IDEA with Maven
Developing a Spark application in IntelliJ IDEA with SBT
Developing applications using the Zeppelin notebook
Setting up Kerberos to do authentication
Enabling Kerberos authentication for Spark

Introduction

Before we start this chapter, it is important that we discuss some trends that
directly affect how we develop applications.

Big data applications can be divided into the following three categories:

Batch
Interactive
Streaming or continuous applications

When Hadoop was designed, the primary focus was to provide cost-effective
storage for large amounts of data. This remained the main show until it was
upended by S3 and other cheaper and more reliable cloud storage alternatives.
Compute on this large amounts of data in the Hadoop environment was
primarily in the form of MapReduce jobs. Since Spark took the ball from
Hadoop (OK! Snatched!) and started running with it, Spark also reflected batch
orientation focus in the initial phase, but it did a better job than Hadoop in the
case of exploiting in-memory storage.

Note

The most compelling factor of the success of Hadoop was that the
cost of storage was hundreds of times lower than traditional data
warehouse technologies, such as Teradata.

All these trends were good, but end users still treated it as a sideshow (siloed
applications somewhere in the dark alleys of the enterprise) while keeping
their low-latency BI/query platforms, running on traditional databases, as the
main show. Databases have three decades of head start, so it is understandable
that they have optimized the stack to the last bit to improve performance.

During the same time, analytics itself was going through its own
transformation. Analytics, which was mostly descriptive (also known

as business intelligence (BI)/reporting), has evolved into predictive and
prescriptive stages. It means that even if Spark had evolved into an engine for
traditional BI/dashboarding, it would not have been enough. Spark has
notebooks to fill this gap.

Notebooks provide an interactive playground where you can do queries in
multiple languages (SQL/Python/Scala). You can run machine learning jobs.
You can schedule jobs to be run at a certain time. There are two types of
notebooks on the market:

Open source offerings: Zeppelin and Jupyter
Commercial XaaS offerings: Databricks Cloud

In this chapter, we will start with the Spark shell, which is a lightweight shell,
that this book is focused on. We will also cover a combination of
Maven/SBT and Eclipse/IDEA for IDE purposes. In the end, we will explore
the notebooks offerings.

Note

Please note that all the commands that run on this shell can run as
Scala code bundled as JARs (using spark-submit flag). The
same code can also be executed on any of the notebooks "as is"
without making any changes.

Exploring the Spark shell

Spark comes bundled with a read–eval–print loop (REPL) shell, which is a
wrapper around the Scala shell. Though the Spark shell looks like a command
line for simple things, in reality, a lot of complex queries can also be executed
using it. A lot of times, the Spark shell is used in the initial development phase
and once the code is stabilized, it is written as a class file and bundled as a jar
to be run using spark-submit flag. This chapter explores different
development environments in which Spark applications can be developed.

How to do it...

Hadoop MapReduce's word count, which takes at least three class files and
one configuration file, namely project object model (POM), becomes very
simple with the Spark shell. In this recipe, we are going to create a simple
one-line text file, upload it to the Hadoop distributed file system (HDFS),
and use Spark to count the occurrences of words. Let's see how:

1. Create the words directory using the following command:

$ mkdir words

2. Get into the words directory:

$ cd words

3. Create a sh.txt text file and enter "to be or not to be" in it:

$ echo "to be or not to be" > sh.txt

4. Start the Spark shell:

$ spark-shell

5. Load the words directory as RDD:

 scala> val words =
 sc.textFile("hdfs://localhost:9000/user/hduser/words")

6. Count the number of lines (result is 1):

 scala> words.count

7. Divide the line (or lines) into multiple words and flatten the results:

Scala> val wordsFlatMap = words.flatMap(_.split("\\W+"))

8. Convert word to (word, 1), that is, the output 1 as the value of each
occurrence of word as a key (the word or in the sentence has occurred
once):

Scala> val wordsMap = wordsFlatMap.map(w => (w,1))

9. Use the reduceByKey method to add the number of occurrences of each
word as a key (the function works on two consecutive values at a time,
represented by a and b):

Scala> val wordCount = wordsMap.reduceByKey((a,b) => (a+b))

10. Sort the results:

Scala> val wordCountSorted = wordCount.sortByKey(true)

11. Print the RDD:

Scala> wordCountSorted.collect.foreach(println)

12. Doing all of the preceding operations in one step is as follows:

Scala> sc.textFile("hdfs://localhost:9000/user/hduser/words").
 flatMap(_.split("W+")).map(w => (w,1)). reduceByKey((a,b)
 => (a+b)).sortByKey(true).collect.foreach(println)

13. This gives us the following output:

(or,1)
 (to,2)
 (not,1)

 (be,2)

There's more...

Now that you have understood the basics, load HDFS with a large amount of
text, for example, stories.

If you have the files in a compressed format, you can load them as is in HDFS.
Both Hadoop and Spark have codecs for unzipping, which they use based on
file extensions.

When wordsFlatMap was converted into the wordsMap RDD, there was an
implicit conversion. This converts the RDD into PairRDD. This is an implicit
conversion, which does not require anything to be done. If you are doing it in
Scala code, add the following import statement:

import org.apache.spark.SparkContext._

Developing a Spark applications in Eclipse
with Maven

Maven as a build tool has become the de-facto standard over the years. It's not
surprising if we look a little deeper into what Maven brings. Maven has two
primary features and they are:

Convention over configuration: Tools built prior to Maven gave
developers the freedom to choose where to put source files, test files,
compiled files, and so on. Maven takes away this freedom. Because of
this, all the confusion about locations also disappears. In Maven, there is
a specific directory structure for everything. The following table shows a
few of the most common locations:

/src/main/scala Source code in Scala

/src/main/java Source code in Java

/src/main/resources
Resources to be used by the source code, such as
configuration files

/src/test/scala Test code in Scala

/src/test/java Test code in Java

/src/test/resources
Resources to be used by the test code, such as
configuration files

Declarative dependency management: In Maven, every library is
defined by the following three coordinates:

groupId
A logical way of grouping libraries similar to a package in
Java/Scala, which has to be at least the domain name you own,
for example, org.apache.spark.

artifactIdThe name of the project and JAR

version Standard version numbers

In pom.xml file (the configuration file that provides Maven all the information
about a project), dependencies are declared in the form of these three
coordinates. There is no need to search the internet and download, unpack, and
copy libraries. All you need to do is provide three coordinates of the
dependency JAR you need and Maven will do the rest for you. The following
is an example of using a spark-core dependency:

<dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.11</artifactId>
 <version>2.1.0</version>
</dependency>

This makes dependency management, including transitive dependencies, very
easy. Build tools that came after Maven, such as simple build tool (SBT) and
Gradle, also follow these two rules as is and provide enhancements in other
aspects.

Getting ready

From this recipe onward, this chapter assumes you have installed Eclipse.
Please visit http://www.eclipse.org for details.

http://www.eclipse.org

How to do it...

Let's see how to install the Maven plugin for Eclipse:

1. Open Eclipse and navigate to Help | Install New Software.
2. Click on the Work with drop-down menu.
3. Select the <eclipse version> update site.
4. Click on Collaboration tools.
5. Check Maven Integration for Eclipse, as in the following

screenshot:

6. Click on Next and then click on Finish.

7. There will be a prompt to restart Eclipse, and Maven will be installed
after the restart.

Now let's see how we can install the Scala plugin for Eclipse:

1. Open Eclipse and navigate to Help | Install New Software.
2. Click on the Work with drop-down menu.
3. Type http://download.scala-

ide.org/sdk/helium/e38/scala210/stable/site.
4. Press Enter.
5. Select Scala IDE for Eclipse:

6. Click on Next and then click on Finish. You will be prompted to restart
Eclipse, and Scala will be installed after the restart.

7. Navigate to Window | Open Perspective | Scala.

Eclipse is now ready for Scala development.

Developing a Spark applications in Eclipse
with SBT

SBT is a build tool made especially for Scala-based development. SBT
follows Maven-based naming conventions and declarative dependency
management.

SBT provides the following enhancements over Maven:

Dependencies are in the form of key-value pairs in the build.sbt file, as
opposed to the pom.xml file in Maven
It provides a shell that makes it very handy to perform build operations
For simple projects without dependencies, you do not even need the
build.sbt file

In the build.sbt file, the first line is the project definition:

lazy val root = (project in file("."))

Each project has an immutable map of key-value pairs. This map is changed by
the settings in SBT, as follows:

lazy val root = (project in file(".")).
 settings(
 name := "wordcount"
)

Every change in the settings field leads to a new map, as it's an immutable
map.

How to do it...

Here's how we go about adding the sbteclipse plugin:

1. Add this to the global plugin file:

$ mkdir /home/hduser/.sbt/0.13/plugins
 $ echo addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "5.1.0") > /home/hduser/.sbt/0.13/plugins/plugin.sbt

2. Alternatively, you can add the following to your project:

$ cd <project-home>
 $ echo addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "5.1.0") > plugin.sbt

3. Start the SBT shell without any arguments:

$ sbt

4. Type eclipse command and it will make an Eclipse-ready project:

$ eclipse

5. Navigate to File | Import | Import existing project into the
workspace to load the project into Eclipse:

Now you can develop the Spark application in Scala using Eclipse and SBT.

Developing a Spark application in IntelliJ
IDEA with Maven

IntelliJ IDEA comes bundled with support for Maven. We will see how to
create a new Maven project in this recipe.

How to do it...

Perform the following steps to develop a Spark application on IntelliJ IDEA
with Maven:

1. Select Maven in the new project window and click on Next:

2. Enter the three dimensions of the project:

3. Enter the project name and location:

4. Click on Finish and the Maven project will be ready.

Developing a Spark application in IntelliJ
IDEA with SBT

Before Eclipse became famous, IntelliJ IDEA was considered the best of the
breed in IDEs. IDEA has not shed its former glory yet, and a lot of developers
love IDEA. IDEA also has a community edition, which is free. It provides
native support for SBT, which makes it ideal for SBT and Scala development.

How to do it...

Perform the following steps to develop a Spark application on IntelliJ IDEA
with SBT:

1. Add the sbt-idea plugin.
2. Add SBT to the global plugin file:

$ mkdir /home/hduser/.sbt/0.13/plugins
 $ echo addSbtPlugin("com.github.mpeltone" % "sbt-idea" % "1.6.0") > /home/hduser/.sbt/0.12/plugins/plugin.sbt

3. Alternatively, you can add the SBT plugin to your project as well:

$ cd <project-home>
 $ echo addSbtPlugin("com.github.mpeltone" % "sbt-idea" % "1.6.0") > plugin.sbt

IDEA is ready for use with SBT.

Now you can develop the Spark code using Scala and build it using SBT.

Developing applications using the Zeppelin
notebook

Apache Zeppelin is a web-based notebook that enables interactive data
analytics. In this recipe, we will discuss how to install Zeppelin and the basic
developer applications.

How to do it...

1. Download the Zeppelin source code:

 $ git clone https://github.com/apache/zeppelin.git
 $ cd zeppelin

2. Explore the archive:

 $ mvn clean package -DskipTests

3. Change the directory to conf:

 $ cd conf

4. Rename zeppelin-env.sh.template to zeppelin-env.sh:

 $ mv zeppelin-env.sh.template zeppelin-env.sh

5. Rename zeppelin-site.xml.template to zeppelin-site.xml:

 $ mv zeppelin-site.xml.template zeppelin-site.xml

6. Open zeppelin-env.sh in your favorite editor and change SPARK_HOME
to the appropriate value:

 export SPARK_HOME=/opt/infoobjects/spark

7. Start Zeppelin:

 $ bin/zeppelin.sh

8. Go to http://localhost:8080 in your web browser and your screen
should look like the following:

9. On the top menu, right next to the Zeppelin logo, click on Notebook and
then on Create new note. Select spark as the Default Interpreter.
Enter the Note Name as myfirstnote (or whatever you would like):

10. Click on Create Note:

11. Enter the following to get the RDD:

Setting up Kerberos to do authentication

User security contains three parts:

Authentication
Authorization
Audit

Authentication simply means verifying who the user claims to be. There are
three factors of authentication:

Who you are
What you know
What you have

I am sure you have heard the term two-factor authentication everywhere. The
more factors you use, the more secure authentication is. More factors also
mean more inconvenience; otherwise, three-factor authentication is always
used.

Let's understand it with a few examples. Let's say you go to an ATM to
withdraw money. How many factors are used? You pull out your ATM card
(what you have), insert it, and enter your pin (what you know). This is two-
factor authentication.

How about online banking? You enter your username/password (what you
know) and you are logged in. So only one factor. This is the reason why for
commercial banking, banks give you a mobile token (what you have) using
which you get a unique code each time, called one time password (OTP).
These days, banks also send a code to your mobile device via text to enable
the second factor of authentication.

Spark uses MIT Kerberos for authentication, like Hadoop. In this recipe, we
will learn how to set Kerberos up.

The first step in setting up Kerberos is setting the key distribution center
(KDC). The authentication realm used in this recipe is INFOOBJECTS.COM
(please replace it with your value).

How to do it...

1. Making sure /etc/hosts directory reflects the correct fully qualified
domain name (FQDN) (for example, sandbox.infoobjects.com):

 $ cat /etc/hosts
 ...
 127.0.0.1 localhost infoobjects.com
 ...

2. Install the admin server:

 $ sudo apt-get install krb5-kdc krb5-admin-server

3. During the installation, it would ask for:

 Default Kerberos version 5 realm: INFOOBJECTS.COM
 Kerberos servers for your realm: infoobjects.com
 Administrative server for your Kerberos realm: infoobjects.com

4. Check/validate krb5.conf:

 $ cat /etc/krb5.conf

5. Configure the Kerberos server. Before you begin, a new realm must be
created; this step normally takes a long time. You can use a hack like a
random number generator to expedite the process:

 $ sudo apt-get install rng-tools -y
 $ sudo rngd -r /dev/urandom -o /dev/random #not for production
 though

6. Create a new realm:

 $ sudo krb5_newrealm
 #enter a master key password and keep it safe or remember it.

http://www.infoobjects.com/

7. The Kerberos realm is administered using the kadmin utility.
Running admin.local as the root user on KDC allows the administrator
to authenticate without having an existing principal. To add a new
principal:

 $ sudo kadmin.local

8. Add the infouser principal:

 kadmin.local: addprinc infouser
 Enter password for principal "infouser@INFOOBJECTS.COM":
 Re-enter password for principal "infouser@INFOOBJECTS.COM":
 Principal "infouser@INFOOBJECTS.COM" created.
 kadmin.local: quit

9. To test the newly created principal, use kinit command. A successful
Kerberos setup will return no error if you use the following command:

 $ kinit infouser@INFOOBJECTS.COM
 Password for infouser@INFOOBJECTS.COM:

There's more...

Let's understand Kerberos with an example.

Let's say you (client) want to go to a multiplex and watch a movie. It is a
special type of multiplex where you may be allowed to watch one movie, two
movies, n movies, or all the movies depending upon your special ticket. You
get this special ticket from a counter outside called authentication service
(AS). Since this special ticket gives you the power to get an actual ticket, let's
call it ticket-granting ticket (TGT).

To get a regular ticket to watch a movie, you need to show TGT to a special
counter called ticket-granting server (TGS), and TGS will issue you a ticket
(or service ticket). You can present the service ticket to a special movie theater
it is valid in and you will be allowed in.

The combination of AS and TGS is called a key distribution center (KDC).

The beauty of TGT is that you do not have to go outside the multiplex, stand in
the line, and show your credit card every time.

Kerberos also needs an authentication realm that is simply the domain name
fully capitalized. So for infoobjects.com, it will be INFOOBJECTS.COM.
Each server in the Kerberos authentication realm should have an FQDN, for
example, dn5.infoobjects.com, and it should be forward (FQDN resolving
to IP address) and reverse (IP address resolving to FQDN) resolvable.

Enabling Kerberos authentication for Spark

To authenticate against a Kerberos-enabled cluster, the Kerberos configuration
needs to be verified first. The configuration can be found in krb5.conf file,
which includes the locations of KDCs and admin servers of Kerberos's realms
of interest, defaults for the current realm and Kerberos applications, and
mappings of the host names onto Kerberos's realms.

Check the config file for the correct location of KDC, realm, and so on. You
can find this file in the /etc directory. Alternatively, you can override the
default location by setting the KRB5_CONFIG environment variable.

How to do it...

To connect to a Kerberos cluster, you need to use the keytab file (pairs
of principals and encrypted keys—derived from passwords).

To create a keytab file using MIT Kerberos, we will use ktutil here.
Remember that encryption types (case-sensitive) should be supported and they
should be in krb5.conf. This is based on the assumption that
infouser@INFOOBJECTS.COM is there on the Kerberos/respective database.
See the following steps to create the keytab file for authentication:

1. Add the principal RC4-HMAC to the key list:

 $ ktutil
 ktutil : addent -password -p infouser@INFOOBJECTS.COM -k 1 -e
 RC4-HMAC
 Password for infouser@INFOOBJECTS.COM: [enter your password]

2. Add the principal aes256-cts to the key list:

 ktutil : addent -password -p infouser@INFOOBJECTS.COM -k 1 -e
 aes256-cts
 Password for infouser@INFOOBJECTS.COM: [enter your password]

3. Add the principal aes128-cts to key list:

 ktutil : addent -password -p infouser@INFOOBJECTS.COM -k 1 -e
 aes128-cts
 Password forinfouser@INFOOBJECTS.COM: [enter your password]

4. Write the current key list in the Kerberos V5 keytab file:

 ktutil : wkt infouser.keytab
 ktutil : quit

5. Make sure permissions are correct:

 $ chmod 600 infouser.keytab

6. Test whether the generated keytab is correct:

 $ kinitinfouser@INFOOBJECTS.COM -k -t infouser.keytab

7. Now, the principal and keytab file can be passed with spark-submit
(with yarn only):

 spark-submit --keytab "infouser.keytab" --principal
 "infouser@INFOOBJECTS.COM" ...

8. To do it programmatically, use:

 UserGroupInformation ugi = UserGroupInformation.loginUserFromKeytabAndReturnUGI(“infouser@INFOOBHECTS.COM”, “infouser.keytab”);
 //User principal has maximum life span, so renew accordingly use:
 ugi.reloginFromKeytab(); //as per the need of the application

There's more...

Besides user security, another aspect of security is data security. The best way
to understand data security is using an example. Let's consider your money is
stored in a bank. The bank has to make sure that the money is not only secure
while stored in the bank, but also while it is moving between different
branches in a van. This brings two types of data security:

Data security while data is at rest
Data security while data is in motion or transit

Securing data at rest

Data at rest can be compromised in multiple ways:

Someone can steal the disks
Data can be transferred to a different medium

The most popular method is disk-level encryption. This encrypts the whole
disk. This is known as the broad-brush approach; it is not very efficient,
though. The reason being all of the data on the disk does not have the same
level of sensitivity. Let's take an example of a customer's data. There is some
data which no one, except the authorized user, should ever be able to see, such
as social security number (SSN). There is other information, such as a
customer's address, which is still private but is not personally identifiable
information (PII).

Note

PII is the kind of information that can be used on its own or with
other information to identify, contact, or locate a single person.

To encrypt at a finer level of granularity, column level and row level
encryption works best. The reliability of encryption also depends upon the
algorithm being used. Advanced encryption standard (AES) is the default
algorithm that comes in two flavors—128 bits and 256 bits—depending upon
the size of the encryption keys.

Note

Encryption is of two types: symmetric encryption and asymmetric
encryption. If the same key is used to encrypt and decrypt data, it's
called symmetric encryption. If different keys are used for
encryption and decryption, it's called asymmetric encryption.
Asymmetric encryption involves a public and private key pair.

Securing data in transit

In simple words, data in transit is secured using a tunnel. The old protocol for
the tunnel was security socket layer (SSL), which has been replaced by
transport level security protocol (TLS).

Chapter 3. Spark SQL
Spark SQL is a Spark module for processing structured data. It had a humble
start, but now it has become the most important Spark library (as
DataFrames/Datasets are replacing RDDs).

This chapter is divided into the following recipes:

Understanding the evolution of schema awareness
Understanding the Catalyst optimizer
Inferring schema using case classes
Programmatically specifying the schema
Understanding the Parquet format
Loading and saving data using the JSON format
Loading and saving data from relational databases
Loading and saving data from an arbitrary source
Understanding joins
Analyzing nested structures

We will start with a small journey down memory lane to see how schema
awareness has slowly evolved into a Spark framework and has now become
the core of it. After this, we will discuss how the Catalyst optimizer, the core
engine of Spark, works. In the next two recipes, we will focus on converting
data from raw format into DataFrames. Then we will discuss how to
seamlessly pull and load data into Parquet, JSON, relational, and other
formats. Lastly, we will discuss joins and nested structures.

Understanding the evolution of schema
awareness

Spark can process data from various data sources, such as HDFS, Cassandra,
and relational databases. Big data frameworks (unlike relational database
systems) do not enforce a schema while writing data into it. HDFS is a perfect
example of where any arbitrary file is welcome during the write phase. The
same is true with Amazon S3. Reading data is a different story, however. You
need to give some structure to even completely unstructured data to make sense
out of it. With this structured data, SQL comes in very handy, when it comes to
making sense out of some data.

Getting ready

Spark SQL is a component of the Spark ecosystem, introduced in Spark 1.0 for
the first time. It incorporates a project named Shark, which was an attempt to
make Hive run on Spark.

Hive is essentially a relational abstraction; it converts SQL queries into
MapReduce jobs. See the following figure:

Shark replaced the MapReduce part with Spark while retaining most of the
code base:

Initially, it worked fine, but very soon, Spark developers hit roadblocks and
could not optimize it any further. Finally, they decided to write the SQL engine
from scratch, and this gave birth to Spark SQL. Refer to the following image

for a better understanding:

Spark SQL took care of all the performance challenges, but it had to provide
compatibility with Hive, and for that reason, a new wrapper context,
HiveContext, was created on top of SQLContext.

Spark SQL supports accessing of data using standard SQL queries and
HiveQL, a SQL-like query language that Hive uses. In this chapter, we will
explore the different features of Spark SQL. It supports a subset of HiveQL as
well as a subset of SQL 92. It runs SQL/HiveQL queries alongside or replaces
the existing Hive deployments.

Running SQL is only a part of the reason for the creation of Spark SQL. One
big reason is that it helps create and run Spark programs faster. It lets
developers to write less code, the program to read less data, and the Catalyst
optimizer to do all the heavy lifting.

DataFrames

Spark SQL uses a programming abstraction called DataFrame. It is a

distributed collection of data, organized in named columns. DataFrame is
equivalent to a database table but provides a much finer level of optimization.
The DataFrame API also ensures that Spark's performance is consistent across
different language bindings.

Let's contrast DataFrames with RDDs. An RDD is an opaque collection of
objects with no idea about the format of the underlying data. In contrast,
DataFrames have a schema associated with them. You can also look at
DataFrames as RDDs with schema added to them. In fact, until Spark 1.2, there
was an artifact called SchemaRDD, which has now evolved into the
DataFrame API. They provide much richer functionality than SchemaRDDs.

This extra information about schema makes it possible for you to do a lot of
optimizations, which were not possible otherwise.

DataFrames also transparently load data from various data sources, such as
Hive tables, Parquet files, JSON files, and external databases, using JDBC.
DataFrames can be viewed as RDDs of row objects that allow users to call
procedural Spark APIs, such as a map.

The DataFrame API is available in Scala, Java, Python, and also R, starting
from Spark 1.4.

Users can perform relational operations on DataFrames using a domain-
specific language (DSL). DataFrames support all the common relational
operators, and they take expression objects in a limited DSL that lets Spark
capture the structure of the expression.

We will start with the entry point to Spark SQL, that is, SQLContext. We will
also cover HiveContext, which is a wrapper around SQLContext to support the
Hive functionality. Note that HiveContext is more battle-tested and provides a
richer functionality, so it is strongly recommended that you use it even if you
do not plan to connect to Hive. Slowly, SQLContext will come to the same
level of functionality as HiveContext.

There are two ways to associate the schema with RDDs to create DataFrames.
The easy way is to leverage Scala case classes, which we are going to cover
first. Spark uses Java reflection to deduce schema from the case classes. There

is also a way to programmatically specify the schema for advanced needs,
which we will cover next.

Spark SQL provides an easy way to load and save the Parquet files, which
will also be covered. Lastly, we will cover how to load from and save data to
JSON.

Starting from version 2.0 onward, the need to directly call SQLContext or
HiveContext has reduced drastically, and most of the functions can now be
done by directly dealing with DataFrames.

Datasets

Datasets were added to Spark 1.6 to provide strong typing to DataFrames. In
Spark 2.0, Dataset and the DataFrame API were merged to provide one single
abstraction. At the bare level, a DataFrame can be considered a Dataset of Row
objects. This will be enhanced in various places, as you will see in subsequent
chapters (for example, in Machine Learning a Dataset of (label, BestVector)).

Datasets provide a rich set of transformation APIs, such as RDDs. It is
recommended that you use Datasets as much as possible.

Schema-aware file formats

Having schema-aware building blocks, such as DataFrames, is not enough. It is
painful to apply the schema after the fact that is trying to figure out the schema
and applying it while reading the data (schema-on-read). The best approach is
that schema is embedded with the data when it is stored. This is where
schema-aware file formats come into the picture, and this is the reason why
they are becoming a standard.

The most popular schema-aware file format in the big data world is Parquet.
JSON (the XML killer) is very popular in the web domain. The Optimized
Row Columnar (ORC) format is Hortonworks' and Microsoft's answer to
Twitter's and Cloudera's Parquet.

Note

The primary difference between parquet and ORC is that ORC has
indexes, but it does not support nested data. Parquet beautifully
handles nested data arbitrarily.

Understanding the Catalyst optimizer

Most of the power of Spark SQL comes from the Catalyst optimizer, so it
makes sense to spend some time understanding it. The following diagram
shows where exactly the optimization occurs along with the queries:

The Catalyst optimizer primarily leverages functional programming constructs

of Scala, such as pattern matching. It offers a general framework for
transforming trees, which we use to perform analysis, optimization, planning,
and runtime code generation.

This optimizer has two primarilly goals:

To make adding new optimization techniques easy
To enable external developers to extend the optimizer

Spark SQL uses Catalyst's transformation framework in four phases:

1. Analyzing a logical plan to resolve references.
2. Logical plan optimization.
3. Physical planning.
4. Code generation, to compile the parts of the query to Java byte-code.

Analysis

The analysis phase involves two parts, the first part being:

1. Looking at a SQL query or a DataFrame/Dataset
2. Making sure there are no syntax errors
3. Creating a logical plan out of it
4. This logical plan is still unresolved (as the columns referred to may not

exist or may be of a wrong datatype)

The second part of the analysis phase involves:

1. Resolving this plan using the Catalog object (which connects to the
physical data source)

2. Creating a logical plan, as shown in the following diagram:

Logical plan optimization

The logical plan optimization phase applies standard rule-based optimizations
to the logical plan. These include constant folding, predicate pushdown,
projection pruning, null propagation, Boolean expression simplification, and
other rules.

I would like to draw special attention to the predicate the pushdown rule here.
The concept is simple: if you issue a query in one place to run against some
massive data, which is in another place, it can lead to the movement of a lot of
unnecessary data across the network.

If we can push down the part of the query where the data is stored and thus
filter out unnecessary data, it will reduce network traffic significantly. The
following image illustrates this:

Physical planning

In the Physical Planning phase, Spark SQL takes a logical plan and generates
one or more physical plans. It then measures the cost of each Physical Plan
and generates one Physical Plan based on it. Refer to the following figure that
illustrates this:

Code generation

The final phase of query optimization involves generating the Java byte-code
to run on each machine. It uses a special Scala feature called Quasi quotes to
accomplish this. The following figure illustrates this:

Inferring schema using case classes

In schema-aware formats, such as Parquet and JSON. This is far from the
reality, though. A lot of the time data comes in raw format. The next two
recipes will cover how to attach a schema to raw data.

In an ideal world, data is stored in schema-aware formats, such as Parquet and
JSON. This is far from the reality, though. A lot of the time, data comes in raw
format. The next two recipes will cover how to attach a schema to raw data.
Case classes are special classes in Scala that provide you with the boilerplate
implementation of the constructor, getters (accessors), equals, and hashCode to
implement Serializable. Case classes work really well to encapsulate data as
objects. Readers familiar with Java, can relate it to plain old Java objects
(POJOs) or Java beans.

The beauty of case classes is that all that grunt work, which is required in
Java, can be done with the case classes in a single line of code. Spark uses the
reflection feature of the Java programming language on case classes to infer
schema.

Note

Scala is a Java virtual machine based language. What that means is
that Scala code compiles to byte-code. This is the reason Spark,
which is written in Scala, can seamlessly leverage Java features
such as reflection.

How to do it...

1. Start the Spark shell or the Databricks Cloud Scala notebook:

 $ spark-shell

2. Create the Person case class:

scala> case class Person(first_name:String, last_name:String,
 age:Int)

3. Load the person directory as a Dataset:

 scala> val p = spark.read.textFile("s3a://sparkcookbook/person")

4. Check the first item to kick the tires:

scala> p.first

5. Split each line into an array of strings, based on a comma as the delimiter:

 scala>val pmap = p.map(line => line.split(","))

6. Convert the Dataset of Array[String] into the Dataset of Person case
objects:

scala> val personDS = pmap.map(p => Person(p(0),p(1),p(2).toInt))

7. Register personDS as a view:

 scala> personDS.createOrReplaceTempView("person")

8. Run a SQL query against it:

 scala> val people = spark.sql("select * from person")

9. Get the output values from people:

 scala> people.show

There's more...

This recipe was about learning how to use case classes to attach schema and
the input data we used here is in CSV format. Also, there is another way to load
data:

scala> val people = spark.read.format("csv").load("s3a://sparkcookbook/person")

The output looks like this:

+------+-------+---+
| _c0| _c1|_c2|
+------+-------+---+
Barack	Obama	55
George	Bush	70
Bill	Clinton	70
+------+-------+---+

Now there are two ways to fix this. The first approach is to supply custom
column names, such as the following:

scala> val people = spark.read.format("csv").load("s3a://sparkcookbook/person").select($"_c0".as("first_name"),$"_c1".as("last_name"),$"_c2".as("age").cast("Int"))

The second way is to load data that already has column headers, such as the
following:

scala> val p = spark.read.format("csv").option("header","true").load("s3a://sparkcookbook/people")

Let's see how the schema looks:

scala> p.printSchema
root
 |-- First Name: string (nullable = true)
 |-- Last Name: string (nullable = true)
 |-- Age: string (nullable = true)

So, it did the job but not as we expected. We expected Age to be an integer. So
let's fix this issue:

val p = spark.read.format("csv").option("header","true").option("inferschema","true").load("s3a://sparkcookbook/people")

What if the data is not in CSV but separated by some other delimiter? Let's redo
the previous command by treating the comma as a general delimiter:

val p = spark.read.option("delimiter",",").option("header","true").option("inferschema","true").csv("s3a://sparkcookbook/people")

Programmatically specifying the schema

There are a few cases where case classes might not work; one of these cases is
where case classes cannot take more than 22 fields. Another case can be that
you do not know about the schema beforehand. In this approach, data is loaded
as an RDD of the Row objects. The schema is created separately using the
StructType and StructField objects, which represent a table and a field,
respectively. The schema is applied to the Row RDD to create a DataFrame.

How to do it...

1. Start the Spark shell or Databricks Cloud Scala notebook:

$ spark-shell

2. Import the Spark SQL datatypes and Row objects:

 scala> import org.apache.spark.sql._
 scala> import org.apache.spark.sql.types._

3. Create the schema using the StructType and StructField objects. The
StructField object takes parameters in the form of param name, param
type, and nullability:

scala> val schema = StructType(
 Array(StructField("first_name",StringType,true),
StructField("last_name",StringType,true),
StructField("age",IntegerType,true)
))

4. Load the person data in a Dataset and attach the schema to it:

scala> val personDS =
 spark.read.schema(schema).csv("s3a://sparkcookbook/person")

5. Register personDS as a view:

scala> personDS.createOrReplaceTempView("person")

6. Run a SQL query against it:

scala> val persons = spark.sql("select * from person")

7. Get the output values from persons:

scala> persons.show

In this recipe, you learned how to create a DataFrame by programmatically
specifying the schema.

How it works...

A StructType object defines the schema. You can consider it equivalent to a
table or a row in the relational world. StructType takes in an array of the
StructField objects, as in the following signature:

StructType(fields: Array[StructField])

A StructField object has the following signature:

StructField(name: String, dataType: DataType, nullable: Boolean = true, metadata: Metadata = Metadata.empty)

Here is some more information on the parameters used:

name: This represents the name of the field.
dataType: This shows the datatype of the field.
 The following datatypes are allowed:

IntegerType

FloatType

BooleanType

ShortType

LongType

ByteType

DoubleType

StringType

nullable: This shows whether the field can be null.
metadata: This shows the metadata of the field. Metadata is a wrapper
over Map (String, Any) so that it can contain any arbitrary metadata.

Understanding the Parquet format

the Google Dremel paper. In Parquet, data in a single column is stored
contiguously.

Apache Parquet is a columnar data storage format, specifically designed for
big data storage and processing. It is based on record shredding and the
assembly algorithm from the Google Dremel paper. In Parquet, data in a single
column is stored contiguously. The columnar format gives Parquet some unique
benefits. For example, if you have a table with 100 columns and you mostly
access 10 columns in a row-based format, you will have to load all the 100
columns, as the granularity level is at the row level. But, in Parquet, you will
only need to load 10 columns. Another benefit is that since all of the data in a
given column is of the same datatype (by definition), compression is much
more efficient.

While we are discussing Parquet and its merits, it's a good idea to discuss the
economic reason behind Parquet's success. There are two factors that every
practitioner would like to drive down to zero, and they are latency and cost. In
short, we all want fast query speeds at the least cost possible. General-purpose
stores, such as Amazon S3 and HDFS, are as cheap as it can get. So the
question arises: how to bring these new data storage systems to the same level
of performance as seen in traditional database systems. This is where Parquet
comes to the rescue. Parquet is very popular but is not the only shining star
there when it comes to ad hoc query processing, especially on a public cloud.
Facebook-born Presto on S3 is gaining a lot of traction and is worth paying
attention to. In fact, AWS released a new service called Athena, which runs on
this combo.

How to do it...

1. Start the Spark shell or Scala notebook in the Databricks Cloud:

$ spark-shell

2. Create a case class for Person:

scala> case class Person(firstName: String, lastName: String,
 age:Int)

3. Load the person data as a DataSet and map it to the Person case class:

 scala> val personDS =
 spark.read.textFile("s3a://sparkcookbook/person").map(line =>
 line.split(",")).map(p => Person(p(0),p(1),p(2).toInt))

4. Register the person DataSet as a temp table so that SQL queries can be
run against it. Note that the DataFrame name does not have to be the same
as the table name:

 scala> person.createOrReplaceTempView("person")

5. Select all persons whose age is over 60 years:

scala> val sixtyPlus = spark.sql("select * from person where
 age > 60")

6. Print the values:

scala> sixtyPlus.show

7. Save this sixtyPlus DataFrame in the Parquet format:

 scala> sixtyPlus.write.parquet(
 "hdfs://localhost:9000/user/hduser/sp.parquet")

Note

What if you would like to write data in a compressed format, for
example, snappy? Use the following code:

sixtyPlus.write.option("compression","snappy").parquet("hdfs://localhost:9000/user/hduser/sp.parquet")

8. The previous step created a directory called sp.parquet in the HDFS
root. You can run the hdfs dfs -ls command in another shell to make
sure that it's created:

$ hdfs dfs -ls sp.parquet

9. Load the contents of the Parquet files in the Spark shell:

scala> val parquetDF = spark.read.parquet
 ("hdfs://localhost:9000/user/hduser/sp.parquet")

10. Register the loaded Parquet DataFrame as a temp view:

 scala> parquetRDD.createOrReplaceTempView("sixty_plus")

11. Run a query against the preceding temp view:

scala> spark.sql("select * from sixty_plus")

How it works...

Let's spend some time understanding the Parquet format at a deeper level. The
following is some sample data represented in a table format:

First_Name Last_Name Age

Barack Obama 55

George Bush 70

Bill Clinton 70

In the row format, the data will be stored like this:

BarackObama55GeorgeBush70BillClinton70

In the columnar layout, the data will be stored like this:

BarackGeorgeBillObamaBushClinton567070

The following diagram illustrates how the data is laid out in a file:

Here's a brief description of the different parts:

Row group: This shows the horizontal partitioning of the data into rows.
A row group consists of column chunks.
Column chunk: A column chunk has data for a given column in a row
group. A column chunk is always physically contiguous. A row group has
only one column chunk per column.
Page header: Every column chunk has a shared page header.
Page: A column chunk is divided into pages. A page is a unit of storage
and cannot be further divided. Pages are written back to back in a column
chunk. The data on a page can be compressed.

If a column has null values, it's not stored. If a column chunk has null values,
even the column chunk is not stored.

Data in Parquet is not only compressed but also encoded. This leads to a
significant reduction in disk footprint, network I/O footprint, and memory
footprint. There is a slight increase in CPU cycles as data needs to be
compressed/decompressed and encoded/decoded.

Partitioning

Parquet has built-in support for partitioning. This works great when you need
to partition data by selecting a column, for example, by year, month, date, or
hour. The flip side is that it makes ad hoc queries slow.

Predicate pushdown

Parquet only pulls data that is filtered for a row group, column chunks, and
select partitions. This makes queries both fast and light. A natural question that
comes to mind is: what is the big deal about it, every database does it? The big
deal is that Parquet is not a database, just a file format--files that can be stored
in a regular store, such as HDFS or S3.

Parquet Hive interoperability

If there is already some data in a Hive table, say, the person table, you can
directly save it in the Parquet format by performing the following steps:

1. Create a table named person_parquet with the schema, the same as
person, but in the Parquet storage format (for Hive 0.13 onward):

hive> create table person_parquet like person stored as parquet

2. Insert data in the person_parquet table by importing it from the person
table:

 hive> insert overwrite table person_parquet select * from person;

3. Sometimes, data imported from other sources, such as Impala, saves the
string in the binary form. To convert it into a string while reading, set the
following property in SparkConf, as shown in the following code:

 scala> spark.setConf("spark.sql.parquet.binaryAsString","true")

Loading and saving data using the JSON
format

JSON is a lightweight data-interchange format. It is based on a subset of the
JavaScript programming language. JSON's popularity is directly related to
XML getting unpopular. XML was a great solution to provide a structure to the
data in plain text format. With time, XML documents became heavier, and the
overhead was not worth it.

JSON solved this problem by providing a structure with minimal overhead.
Some people call JSON fat-free XML.

JSON's syntax follows these rules:

Data is in the form of key-value pairs:

 "firstName" : "Bill"

There are four datatypes in JSON:
String ("firstName" : "Barack")

Number ("age" : 56)

Boolean ("alive": true)

null ("manager" : null)

Data is delimited by commas
Curly braces {} represents an object:

 { "firstName" : "Bill", "lastName": "Clinton", "age": 70 }

Square brackets [] represent an array:

 [{ "firstName" : "Bill", "lastName": "Clinton", "age": 70 }
 {"firstName": "Barack","lastName": "Obama", "age": 55}]

In this recipe, we will explore how to save and load data in the JSON format.

How to do it...

1. Open the terminal and create the person data in the JSON format:

$ mkdir jsondata
$ vi jsondata/person.json
{"first_name" : "Barack", "last_name" : "Obama", "age" : 55}
{"first_name" : "George", "last_name" : "Bush", "age" : 70 }
{"first_name" : "Bill", "last_name" : "Clinton", "age" : 70 }

2. Upload the jsondata directory to HDFS:

$ hdfs dfs -put jsondata /user/hduser/jsondata

3. Start the spark-shell:

$ spark-shell

4. Load the jsondata directory from HDFS:

 scala> val person = spark.read.json
 ("hdfs://localhost:9000/user/hduser/jsondata")

5. Register the person DataFrame (DF) as a temp table so that the SQL
queries can be run against it:

scala> jsondata.createOrReplaceTempView("person")

6. Select all the persons whose age is over 60 years:

scala> val sixtyPlus = spark.sql("select * from person where
 age > 60")

7. Print the values:

 scala> sixtyPlus.show

8. Let's save this sixtyPlus DF in the JSON format:

scala> sixtyPlus.write.format("json").save
 ("hdfs://localhost:9000/user/hduser/sp")

9. In the last step, you created a directory called sp in the HDFS root. You
can run the hdfs dfs -ls command in another shell to make sure it's
created:

$ hdfs dfs -ls sp

How it works...

The spark.read.json internally uses TextInputFormat, which processes
one line at a time. Therefore, one JSON record cannot be on multiple lines. It
would be a valid JSON format if you use multiple lines, but it will not work
with Spark and will throw an exception.

It is allowed to have more than one object in a line. For example, you can have
the information of two persons in one line as an array, as follows:

[{"firstName":"Barack", "lastName":"Obama"},{"firstName":"Bill", "lastName":"Clinton"}]

This recipe concludes the saving and loading of data in the JSON format using
Spark.

Loading and saving data from relational
databases

Loading data into Spark from relational databases is very common. As the
Spark-based big data lake is becoming a replacement for traditional Enterprise
Data warehouses, Spark needs to connect to support for JDBC.

Getting ready

Make sure that the JDBC driver JAR is visible on the client node and all the
slave nodes on which the executor will run.

How to do it...

1. Create a table named person in MySQL using the following DDL:

 CREATE TABLE 'person' (
 'person_id' int(11) NOT NULL AUTO_INCREMENT,
 'first_name' varchar(30) DEFAULT NULL,
 'last_name' varchar(30) DEFAULT NULL,
 'gender' char(1) DEFAULT NULL,
 'age' tinyint(4) DEFAULT NULL,
 PRIMARY KEY ('person_id')
)

2. Insert some data:

 Insert into person values('Barack','Obama','M',55);
 Insert into person values('Bill','Clinton','M',70);
 Insert into person values('Hillary','Clinton','F',69);
 Insert into person values('Bill','Gates','M',61);
 Insert into person values('Michelle','Obama','F',52);

3. Download mysql-connector-java-x.x.xx-bin.jar from
http://dev.mysql.com/downloads/connector/j/.

http://dev.mysql.com/downloads/connector/j/

4. Make the MySQL driver available to the spark-shell and launch it:

$ spark-shell --driver-class-path/path-to-mysql-jar/mysql-
 connector-java-5.1.34-bin.jar

Note

Note that path-to-mysql-jar is not the actual path name. You
need to use your pathname. This is just a syntax.

5. Construct a JDBC URL:

scala> val url="jdbc:mysql://localhost:3306/hadoopdb"

6. Create a connection properties object with a username and password:

scala> val prop = new java.util.Properties
scala> prop.setProperty("user","hduser")
scala> prop.setProperty("password","********")

7. Load the DataFrame with the JDBC data source (url, table name,
and properties):

scala> val people = sqlContext.read.jdbc(url,"person",prop)

8. Show the results in a nice tabular format by executing the following
command:

scala> people.show

9. This has loaded the whole table. What if I would like to only load males
(url, table name, predicates, and properties)? To do this, run the
following command:

scala> val males = spark.read.jdbc
 (url,"person",Array("gender='M'"),prop)
scala> males.show

10. Show only the first names by executing the following command:

scala> val first_names = people.select("first_name")

scala> first_names.show

11. Show only people below 60 years of age by executing the following
command:

scala> val below60 = people.filter(people("age") < 60)
scala> below60.show

12. Group people by gender as follows:

scala> val grouped = people.groupBy("gender")

13. Find the number of males and females by executing the following
command:

scala> val gender_count = grouped.count
scala> gender_count.show

14. Find the average age of males and females by executing the following
command:

scala> val avg_age = grouped.avg("age")
scala> avg_age.show

15. Now if you'd like to save this avg_age data to a new table, run the
following command:

scala> gender_count.write.jdbc(url,"gender_count",prop)

16. Save the people DataFrame in the Parquet format:

scala> people.write.parquet("people.parquet")

17. Save the people DataFrame in the JSON format:

scala> people.write.json("people.json")

Loading and saving data from an arbitrary
source

So far, we have covered five data sources that are built-in with DataFrames:
Parquet (default), text, json, csv, and jdbc. DataFrames are not limited to
these five and can load and save to any arbitrary data source by specifying the
format manually.

In this recipe, we will cover the loading and saving of data from arbitrary
sources.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Load the data from Parquet; since parquet is the default data source, you
do not have to specify it:

scala> val people = spark.read.load("hdfs://localhost:
 9000/user/hduser/people.parquet")

3. Load the data from parquet by manually specifying the format:

scala> val people = spark.read.format("parquet").load
 ("hdfs://localhost:9000/user/hduser/people.parquet")

4. For inbuilt datatypes, you do not have to specify the full format name;
only specifying "parquet", "json", or "jdbc" would work:

scala> val people = spark.read.format("parquet").load
 ("hdfs://localhost:9000/user/hduser/people.parquet")

Note

When writing data, there are four save modes: append,
overwrite, errorIfExists, and ignore. The append mode adds
data to a data source, overwrite overwrites it, errorIfExists
throws an exception that the data already exists, and ignore does
nothing when the data already exists.

5. Save people as JSON in the append mode:

scala> val people = people.write.format("json").mode
 ("append").save ("hdfs://localhost:9000/user/hduser/people.json")

There's more...

The Spark SQL's data source API saves to a variety of data sources. For more
information, visit http://spark-packages.org/.

http://spark-packages.org/

Understanding joins

A SQL join is a process of combining two datasets based on a common
column. Joins come in really handy for extracting extra values by combining
multiple tables.

Getting ready

We are going to use Yelp data as part of this recipe, which is provided by Yelp
for Yelp Data Challenge. The data is divided into the following six files:

yelp_academic_dataset_business.json

yelp_academic_dataset_review.json

yelp_academic_dataset_user.json

yelp_academic_dataset_checkin.json

yelp_academic_dataset_tip.json

photos (from the photos auxiliary file)

We are going to use this data for multiple purposes across the book. This data
really works for this recipe as it has joins everywhere.

Note

This data is already loaded in the
s3a://sparkcookbook/yelpdata Amazon S3 bucket for your
convenience. Spark provides a convenient way to access S3 using
the S3a prefix. This is not the standard way to access S3 buckets
though. S3 buckets are accessed using HTTP URL. There are a few
ways to specify the URL. For example, in the case of
the sparkcookbook bucket, the following options are valid:
http://sparkcookbook.s3.amazonaws.com and http://s3.amazonaws.com/sparkcookbook

How to do it...

1. Start the Spark shell or Databricks Cloud Scala notebook:

 $ spark-shell

2. Load business data as a DataFrame:

 scala> val businesses = spark.read.format("json").load
 ("s3a://sparkcookbook/yelpdata/
 yelp_academic_dataset_business.json")

3. Print the schema:

 scala> businesses.printSchema
 root
 |-- address: string (nullable = true)
 |-- attributes: array (nullable = true)
 | |-- element: string (containsNull = true)
 |-- business_id: string (nullable = true)
 |-- categories: array (nullable = true)
 | |-- element: string (containsNull = true)
 |-- city: string (nullable = true)
 |-- hours: array (nullable = true)
 | |-- element: string (containsNull = true)
 |-- is_open: long (nullable = true)
 |-- latitude: double (nullable = true)
 |-- longitude: double (nullable = true)
 |-- name: string (nullable = true)
 |-- neighborhood: string (nullable = true)
 |-- postal_code: string (nullable = true)
 |-- review_count: long (nullable = true)
 |-- stars: double (nullable = true)
 |-- state: string (nullable = true)
 |-- type: string (nullable = true)

4. Do the count:

 scala> businesses.count
 Long = 144072

Note

The size of the dataset helps us determine the join strategy. Here's
an example: if one data size is significantly smaller than the other,
we can use the broadcast join.

5. Load reviews as a DataFrame:

 scala> val reviews = spark.read.format("json").load
 ("s3a://sparkcookbook/yelpdata/
 yelp_academic_dataset_review.json")

6. Print the schema:

 scala> reviews.printSchema
 root
 |-- business_id: string (nullable = true)
 |-- cool: long (nullable = true)
 |-- date: string (nullable = true)
 |-- funny: long (nullable = true)
 |-- review_id: string (nullable = true)
 |-- stars: long (nullable = true)
 |-- text: string (nullable = true)
 |-- type: string (nullable = true)
 |-- useful: long (nullable = true)
 |-- user_id: string (nullable = true)

7. Count the number of reviews:

 scala> reviews.count
 Long = 4153150

8. Load users as a DataFrame:

 scala> val users = spark.read.format("json").load
 ("s3a://sparkcookbook/yelpdata/
 yelp_academic_dataset_user.json")

9. Print the schema:

 scala> users.printSchema
 root
 |-- average_stars: double (nullable = true)
 |-- compliment_cool: long (nullable = true)
 |-- compliment_cute: long (nullable = true)

 |-- compliment_funny: long (nullable = true)
 |-- compliment_hot: long (nullable = true)
 |-- compliment_list: long (nullable = true)
 |-- compliment_more: long (nullable = true)
 |-- compliment_note: long (nullable = true)
 |-- compliment_photos: long (nullable = true)
 |-- compliment_plain: long (nullable = true)
 |-- compliment_profile: long (nullable = true)
 |-- compliment_writer: long (nullable = true)
 |-- cool: long (nullable = true)
 |-- elite: array (nullable = true)
 | |-- element: string (containsNull = true)
 |-- fans: long (nullable = true)
 |-- friends: array (nullable = true)
 | |-- element: string (containsNull = true)
 |-- funny: long (nullable = true)
 |-- name: string (nullable = true)
 |-- review_count: long (nullable = true)
 |-- type: string (nullable = true)
 |-- useful: long (nullable = true)
 |-- user_id: string (nullable = true)
 |-- yelping_since: string (nullable = true)

10. Count the number of users:

 scala> users.count
 Long = 1029432

11. Load tips as a DataFrame:

 scala> val tips = spark.read.format("json").load
 ("s3a://sparkcookbook/yelpdata/
 yelp_academic_dataset_tip.json")

12. Print the schema:

 scala> tips.printSchema
 root
 |-- business_id: string (nullable = true)
 |-- date: string (nullable = true)
 |-- likes: long (nullable = true)
 |-- text: string (nullable = true)
 |-- type: string (nullable = true)
 |-- user_id: string (nullable = true)

13. Count the tips:

 scala> tips.count
 Long = 946600

14. Load reviews and tips as temporary views:

 scala> reviews.createOrReplaceTempView("reviews")
 scala> tips.createOrReplaceTempView("tips")

15. Do a Shuffle hash join on reviews and tips:

 scala> val reviews_tips = spark.sql("select * FROM reviews JOIN
 tips ON reviews.user_id = tips.user_id and
 reviews.business_id = tips.business_id")

16. Do a count on reviews_tips:

 scala> reviews_tips.count
 Long = 372288

This count is much lower than the individual DataFrame count in reviews and
tips, and the reason behind this is that the businesses for which the user has
provided tips need not be the same as the businesses for which reviews are
written.

17. What if we would like all the reviews, regardless of whether they have
associated tips or not:

 scala> val all_reviews_tips = spark.sql("select * FROM reviews
 LEFT JOIN tips ON reviews.user_id = tips.user_id and
 reviews.business_id = tips.business_id")

How it works...

There are primarily three types of joins in Spark:

Shuffle hash join (default)
Broadcast hash join
Cartesian join

Shuffle hash join

The Shuffle hash join is the most basic type of join and is derived from the
joins in MapReduce. Let's say we would like to join the review data and tip
data for every user. A Shuffle hash join will go through the following steps:

1. Map through the review DataFrame using user_id, business_id as a
key.

2. Map through the tip DataFrame using user_id, business_id as a key.
3. Shuffle review data by user_id, business_id.
4. Shuffle tip data by user_id, business_id.
5. Join both the datasets using the reduce phase. Data with the same keys

will be on the same machine and sorted.

As in MapReduce, the Shuffle hash join works best when data is not skewed
and evenly distributed among the keys.

Broadcast hash join

The easiest optimization is that if one of the datasets is small enough to fit in
memory, it should be broadcasted to every compute node. This use case is very
common as data needs to be combined with side data, such as a dictionary, all
the time.

Mostly joins are slow due to too much data being shuffled over the network.
With the Broadcast join, the smaller dataset is copied to all the worker nodes
so the original parallelism of the larger DataFrame is maintained.

The cartesian join

Cartesian join happens when every row of one DataFrame is joined with every
row of the other DataFrame. This can explode the number of rows very fast.
Two DataFrames, each with a modest 100 K rows, can result in 10 billion
rows with a cartesian join.

There's more...

You can also check which execution strategy is being used using explain:

 scala> mydf.explain
 scala> mydf.queryExecution.executedPlan

Analyzing nested structures

There is a reason why the nested structures recipe is right after that of joins.
Nested structures have traditionally been associated with web-based
applications and hyper-scale companies. The most common format of nested
structures is JSON. JSON inherited nested structures from XML, which JSON
made irrelevant.

Getting ready

The power of nested structures goes far beyond traditional use cases, though. It
has been very difficult to represent hierarchical data in highly normalized
databases. Data needs to be joined across tables as needed. This does provide
us with flexibility. Let's understand it with the example we covered in the
previous recipe. In the Yelp dataset, a user reviews a business, which is
represented by yelp_academic_dataset_review.json. In reality, a user
reviews multiple businesses and a business is reviewed by multiple users. One
would argue that it represents standard NxN relationships between entities, so
what's the big deal here? The challenges come in how distributed systems
operate. To make a join happen, the data needs to be shuffled over the network,
which is very costly.

A high degree of normalization definitely saves us some disk space and
minimizes redundancy, but in the big data world, both are not real issues. The
real issue is latency. The question that arises is: how should we represent
nested data? Should users be nested inside businesses or businesses under
users? There is no perfect answer here as it depends on what your query is. If
you would like to query both ways, you'll need two nested structures. Once the
structure is created, we can retain default parallelism at the node level, and no
shuffle is required.

One question that arises is: how are nested structures different than
denormalized data structures? The difference is that the amount of data stored
is much less, which leads to efficiencies.

How to do it...

1. Start the Spark shell or Databricks Cloud Scala notebook:

 $ spark-shell

2. Load the reviews as a DataFrame:

 scala> val reviews = spark.read.format("json").option
 ("inferschema","true").load("s3a://sparkcookbook/yelpdata/
 yelp_academic_dataset_review.json").withColumn("rtype",
 ($"type")).drop("type")

3. Print the schema:

 scala> reviews.printSchema
 root
 |-- business_id: string (nullable = true)
 |-- cool: long (nullable = true)
 |-- date: string (nullable = true)
 |-- funny: long (nullable = true)
 |-- review_id: string (nullable = true)
 |-- stars: long (nullable = true)
 |-- text: string (nullable = true)
 |-- useful: long (nullable = true)
 |-- user_id: string (nullable = true)
 |-- rtype: string (nullable = true)

4. Create the Review case class:

 scala> case class Review(business_id:String,cool:Long,date:
 String,funny:Long,review_id:String,stars:
 Long,text:String,rtype:String,useful:Long,user_id:String)

5. Convert the review DF into a DataSet:

 scala> val reviewsDS = reviews.as[Review]

6. Create the BusinessReviews case class to represent all the reviews for a
given business:

 scala> case class BusinessReviews(business_id:String,
 reviews:List[Review])

7. Create the nesting function:

 scala> val nestingFunction = (key: String, iter:
 Iterator[Review]) => BusinessReviews(business_id=key,
 reviews=iter.toList)

8. Group reviews by business_id and convert it into a nested format:

 scala> val nestedreviews = reviewDS.groupByKey(_.business_id)
 .mapGroups((key,iter) => nestingFunction(key,iter))

9. Save nestedreviews to the s3 bucket (change it to the appropriate
bucket, otherwise the following command will fail):

 scala> nestedreviews.write.json("s3a://io.playground/nested")

10. Load the bucket:

 scala> val r = spark.read.format("json").load
 ("s3a://io.playground/nested")

11. Print the schema:

 scala> r.printSchema
 root
 |-- business_id: string (nullable = true)
 |-- reviews: array (nullable = true)
 | |-- element: struct (containsNull = true)
 | | |-- business_id: string (nullable = true)
 | | |-- cool: long (nullable = true)
 | | |-- date: string (nullable = true)
 | | |-- funny: long (nullable = true)
 | | |-- review_id: string (nullable = true)
 | | |-- rtype: string (nullable = true)
 | | |-- stars: long (nullable = true)
 | | |-- text: string (nullable = true)
 | | |-- useful: long (nullable = true)
 | | |-- user_id: string (nullable = true)

12. Import SQL functions, such as explode:

 scala> import org.apache.spark.sql.functions._

13. Use the explode function so that business_id is repeated for every
review:

 scala> val exploded = n.select($"business_id",
 explode($"reviews"))

14. Display the exploded DataFrame:

 scala> display(exploded)

Chapter 4. Working with External Data
Sources
Apache Spark depends upon the big data pipeline to get data. The pipeline
starts with source systems. The source system data ingress can be arbitrarily
complex due to the following reasons:

Nature of the data (relational, non-relational)
Data being dirty (yes, it's more of a rule than exception)
Source data being at a different level of normalization (SAP data, for
example, has an extremely high degree of normalization)
Lack of consistency in the data (data needs to be harmonized so that it
speaks the same language)

In this chapter, we will explore how Apache Spark connects to various data
sources. This chapter is divided into the following recipes:

Loading data from the local filesystem
Loading data from HDFS
Loading data from Amazon S3
Loading data from Apache Cassandra

Introduction

Spark provides a unified runtime for big data. Hadoop Distributed File
System (HDFS) has traditionally been the most used storage platform for
Spark as it has provided the most cost-effective storage for unstructured and
semi-structured data on commodity hardware. This has been upended by public
cloud storage systems, especially Amazon S3. This edition of the book reflects
that reality with special emphasis on connectivity to S3.

That being said, Spark exclusively leverages Hadoop's InputFormat and
OutputFormat interfaces. InputFormat is responsible for creating
InputSplits from input data and dividing it further into records.
OutputFormat is responsible for writing to storage. Following image
illustrates InputFormat metaphorically:

We will start by writing to the local filesystem and then move over to loading
data from HDFS. In the Loading data from HDFS recipe, we will cover the
most common file format: regular text files. We will also explore loading data
stored in Amazon S3, a leading cloud storage platform. Finally, we will
explore loading data from Apache Cassandra, which is a NoSQL database.

Loading data from the local filesystem

Though the local filesystem is not a good fit to store big data due to disk size
limitations and lack of distributed nature, technically you can load data in
distributed systems using the local filesystem. But then the file/directory you
are accessing has to be available on each node.

Note

Please note that if you are planning to use this feature to load side
data, it is not a good idea. To load side data, Spark has a broadcast
variable feature, which will be discussed in upcoming chapters.
Enriching data with side data is a very common use-case and we
will cover how to do it in the subsequent chapters.

In this recipe, we will look at how to load data in Spark from the local
filesystem.

How to do it...

Let's start with the example of Shakespeare's "to be or not to be":

1. Create the words directory by using the following command:

$ mkdir words

2. Get into the words directory:

$ cd words

3. Create the sh.txt text file and enter "to be or not to be" in it:

$ echo "to be or not to be" > sh.txt

4. Start the Spark shell:

$ spark-shell

5. Load the words directory as a DataFrame:

scala> val wdf = spark.read.text("file:///home/hduser/words")

6. Convert wdf dataset into a dataset of strings wds :

scala> val wds = wdf.as[String]

Note

It is very important to convert a DataFrame into a dataset before
doing operations, which were done by RDDs in the past.
DataFrame, essentially, is a collection of rows, and converting it
into a more meaningful data type usually helps. There is also an
easier way: val wds =
spark.read.textFile("file:///home/hduser/words")

7. Divide the line (or lines) into multiple words:

words.flatMap(_.split("\\W+")) (add one more '\' before W)

8. Convert word to (word,1), that is, output 1 as the value for each
occurrence of word as a key:

scala> val wordsMap = wordsFlatMap.map(w => (w,1))

9. Count the occurrence of words:

scala> val wordCount = wordsMap.groupByKey(_._1).count

10. Print the dataset:

scala> wordCount.show
+-----+--------+

|value|count(1)|
+-----+--------+
not	1
be	2
or	1
to	2
+-----+--------+

11. This has no real column names, let's fix it:

scala> val wordCountDF = wordCount.toDF("words","count")

12. Let's also sort it:

scala> val wordCountSorted = wordCountDF.sort(wordCountDF("words"))

13. Print the dataset again:

scala> wordCountSorted.show
+-----+-----+
|words|count|
+-----+-----+
be	2
not	1
or	1
to	2
+-----+-----+

Loading data from HDFS

HDFS is the second most widely used big data storage system after Amazon
S3. One of the reasons for the wide adoption of HDFS is schema on read.
What this means is that HDFS does not put any restriction on data when data is
being written. Any and all kinds of data are welcome and can be stored in a
raw format. This feature makes it the ideal storage for raw unstructured data
and semi-structured data.

When it comes to reading data, even unstructured data needs to be given some
structure to make sense. Hadoop uses InputFormat to determine how to read
the data. Spark provides complete support for Hadoop's InputFormat, so
anything that can be read by Hadoop can be read by Spark as well.

The default InputFormat is TextInputFormat. TextInputFormat takes the
byte offset of a line as a key and the content of a line as a value. Spark uses the
spark.read.textFile method to read using TextInputFormat. It ignores
the byte offset and creates a dataset of strings.

In this recipe, we will look at how to load data in the Spark shell from HDFS.

How to do it...

Let's do the word count, which counts the number of occurrences of each word.
In this recipe, we will load data from HDFS:

1. Create the words directory by using the following command:

$ mkdir words

2. Create the sh.txt text file and enter "to be or not to be" in it:

$ echo "to be or not to be" > words/sh.txt

3. Upload words:

$ hdfs dfs -put words

4. Start the Spark shell:

$ spark-shell

5. Load the words directory as a dataset:

scala> val words = spark.read.textFile("hdfs://localhost:9000/user/hduser/words")

Note

The spark.read method also supports passing an additional
option for the number of partitions, such
as spark.read.repartition(10).textFile(...) . By default,
Spark creates one partition for each InputSplit class, which
roughly corresponds to one block. You can ask for a higher number
of partitions. It works really well for compute-intensive jobs, such
as in machine learning. As one partition cannot contain more than
one block, having fewer partitions than blocks is not allowed.

6. Count the number of lines:

scala> words.count

7. Divide the line (or lines) into multiple words:

scala> val wordsFlatMap = words.flatMap(_.split("\W+"))

8. Convert word to (word,1)—that is, output 1 as a value for each
occurrence of word as a key:

scala> val wordsMap = wordsFlatMap.map(w => (w,1))

9. Count the occurrences:

scala> val wordCount = wordsMap.groupByKey(_._1).count.toDF("word","count")

10. Print the dataset:

scala> wordCount.show

Loading data from Amazon S3

If Spark is a MapReduce killer, Amazon S3 is an HDFS killer. S3 is what the
ultimate dream of cloud storage can be thought of as. S3 is a foundational
service on Amazon Web Services (AWS), and almost every application
running on AWS uses S3 for storage. Not only end-user applications but also
other AWS services use S3 extensively; following are a few examples:

Amazon Kinesis uses S3 as target storage
Amazon Elastic MapReduce has one storage mode in S3
Amazon Elastic Block Store (EBS) uses S3 to store snapshots
Amazon Relation Database Service (RDS) uses S3 to store snapshots
Amazon Redshift uses S3 for data staging
Amazon DynamoDB uses S3 for data staging

Following are some of the salient features of S3:

11 9's of durability
4 9's of availability
Typical cost being $30/TB per month while even lower cost options are
available

Amazon Simple Storage Service (S3) provides developers and IT teams with
a secure, durable, and scalable storage platform. The biggest advantage of
Amazon S3 is that there is no upfront IT investment, and companies can build
capacity (just by clicking a button) as they need.

Though Amazon S3 can be used with any compute platform, it integrates really
well with Amazon's cloud services, such as Amazon Elastic Compute Cloud
(EC2) and Amazon Elastic Block Store (EBS). For this reason, companies
that use Amazon Web Services are likely to use it as they have significant data
already stored on Amazon S3.

This makes a good case for loading data in Spark from Amazon S3, and that is

exactly what this recipe is about.

How to do it...

Let's start with the AWS portal:

1. Go to http://aws.amazon.com, and log in with your username and
password.

2. Once logged in, navigate to Storage | S3 | Create Bucket:

3. Enter the bucket name, for example, com.infoobjects.wordcount.
Please make sure you enter a unique bucket name (no two S3 buckets can
have the same name globally).

4. Select Region, click onCreate and then on the bucket name you created,
and you will see the following screen:

5. Click on Create Folder and enter words as the folder name.

6. Create the sh.txt text file on the local filesystem:

$ echo "to be or not to be" > sh.txt

http://aws.amazon.com

7. Navigate to Words | Upload | Add Files, and choose sh.txt from the
dialog box, as shown in the following screenshot:

8. Click on Start Upload.
9. Select sh.txt, and click on Properties, and it will show you details of

the file:

10. Set AWS_ACCESS_KEY and AWS_SECRET_ACCESS_KEY as environment
variables.

11. Open the Spark shell, and load the words directory from s3 in the
words dataset:

scala> val words = spark.read.textFile("s3a://com.infoobjects.wordcount/words")

Now the dataset is loaded, and you can continue doing regular transformations
and actions on the dataset.

You can also load data from S3 directly into DataFrames in other formats. For
example, here's how you will load JSON data:

scala> val ufos = spark.read.format("json").load("s3a://infoobjects.ufo/ufos")

Note

Sometimes there is confusion between s3:// and s3a://. s3a://
means a regular file sitting in the S3 bucket but readable and
writable by the outside world. This filesystem puts a 5 GB limit on
the file size. s3:// means an HDFS file sitting in the S3 bucket. It
is a block-based filesystem. The filesystem requires you to
dedicate a bucket for this filesystem and is not interoperable with
other S3 tools. There is no limit on the file size in this system.

Loading data from Apache Cassandra

Apache Cassandra is a NoSQL database, with a masterless ring cluster
structure. While HDFS is a good fit for streaming data access, it does not work
well with random access. For example, HDFS will work well when your
average file size is 100 MB and you want to read the whole file. If you
frequently access the nth line in a file or some other part as a record, HDFS
would be too slow.

Relational databases have traditionally provided a solution to that, providing
low latency, random access, but they do not work well with big data. NoSQL
databases, such as Cassandra, fill the gap by providing relational database
type access but in a distributed architecture on commodity servers.

In this recipe, we will load data from Cassandra as a Spark DataFrame. To
make that happen, Datastax, the company behind Cassandra, has contributed
spark-cassandra-connector. This package lets you load Cassandra tables
as DataFrames, write back to Cassandra, and execute CQL queries.

How to do it...

Perform the following steps to load data from Cassandra:

1. Create a keyspace named people in Cassandra using the CQL shell:

cqlsh> CREATE KEYSPACE people WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 1 };

2. Create a column family (from CQL 3.0 onwards, it can also be called a
table) person :

cqlsh> use people:
cqlsh> create table person(id int primary key,first_name varchar,last_name varchar,age int);

3. Insert a few records in the column family:

cqlsh> insert into person(id, first_name, last_name, age) values(1,'Barack','Obama',55);
cqlsh> insert into person(id, first_name, last_name, age) values(2,'Joe','Smith',14);

4. Now start the Spark shell with Cassandra connector dependency added:

$ spark-shell --packages datastax:spark-cassandra-connector:2.0.0-M2-s_2.11 --

5. Load the person table as a DataFrame:

scala> val person = spark.read.format("org.apache.spark.sql.cassandra").options(Map("keyspace" ->"people", "table" -> "person")).load

6. Print the schema:

scala> person.printSchema
root
 |-- name: string (nullable = true)
 |-- age: integer (nullable = true)

7. Count the number of records in the DataFrame:

scala> person.count

8. Print persons DataFrame:

scala> person.show
+---+---+----------+---------+
| id|age|first_name|last_name|
+---+---+----------+---------+
1	55	Barack	Obama
2	14	Joe	Smith
3	18	Billy	Kid
+---+---+----------+---------+

9. Retrieve the first row:

scala> val firstRow = person.first

10. Create a Person case class:

scala> case class Person(first_name:String, last_name:String, age:Int)

11. Create a temporary view out of person DataFrame:

scala> person.createOrReplaceTempView("persons")

12. Create a DataFrame of teenagers:

scala> val teens = spark.sql("select * from persons where age > 12 and age < 20")

13. Print the teens DataFrame:

scala> teens.show

14. Convert it into dataset:

scala> val teensDS = teens.as[Person]

Note

There are different ways to look at the difference between
DataFrame and dataset. Folks who have a hangover from the Hive
and Pig days can think of DataFrame being an equivalent of Hive
and dataset, Pig.

How it works

Let's discuss the Cassandra architecture.

Here are some of the salient features of the Cassandra architecture:

Cassandra has a masterless ring architecture
Data can be written to any node and read from any node
By default, three replicas are created
Cassandra comes with built-in datacenter support

CAP Theorem

The CAP Theorem suggests that in distributed architecture, you can pick only
two of the following three:

Consistency: Every read gets the most recent copy of the data

Availability: Every request receives a response
(Network) Partition Tolerance: The system continues to operate despite
network partition

Another way to look at the CAP theorem is: When the network gets partitioned,
either consistency or availability can be guaranteed, not both. The following
diagram illustrates how the CAP theorem works when the network is
partitioned:

A row is updated in Node 1 as shown in the preceding figure. Before Node 3
receives the update propagation, it gets a request for the same row. Now Node
3 has two choices--either provide the copy of the row it has (which may be
stale) or deny the request. In the first case, it is compromising on consistency
and in the second case, on availability.

In essence, every distributed database needs to pick its poison. Cassandra has
picked consistency to provide high availability.

Cassandra partitions

In Cassandra, the data is stored in the nodes in partitions. A partition is
analogous to a row in a relational database. A partition's key is passed to the
murmur3 algorithm to generate a token. The token is used to identify the

location of the partition in the cluster. The token is an integer whose value is
between 2-63 and 263-1. Hashing distributes data across the cluster so that
there is minimum shuffling of partitions when nodes are added or removed.
Each node is responsible for partitions belonging to the hash range it has been
assigned.

To further ease the pain of redistribution, Cassandra has virtual nodes, or v-
nodes, which bundle partitions together. With v-nodes, you do not have to
calculate and assign tokens to each node, which helps to rebuild the node faster
in case of failure. The following given figure shows rings with and without v-
nodes:

Consistency levels

For read operations, the following three consistency levels are possible:

One: The lowest latency, but dirty reads are possible
Quorum: The middle path
All: The slowest, but data is always good

For write operations, the following three consistency levels are possible:

One: The fastest
Quorum: The middle path
All: The slowest, but data is guaranteed to be written to all the replicas

Cassandra has more fine-grained consistency levels for both read and write,
but the aforementioned three are mostly used.

Consistency is a combination of the write and read, and you can have any
combination of the two, for example:

write one, read one
write one, read quorum
write quorum, read quorum (recommended)

Chapter 5. Spark Streaming
Spark Streaming adds the holy grail of big data processing—that is, real-time
analytics—to Apache Spark. It enables Spark to ingest live data streams and
provides real-time intelligence at a very low latency of a few seconds.

In this chapter, we are going to cover the following recipes:

WordCount using Structured Streaming
Diving into Structured Streaming
Streaming Twitter data
Streaming using Kafka
Understanding streaming challenges

Introduction

Streaming is the process of dividing continuously flowing input data into
discrete units so that it can be processed easily. Familiar examples in real life
are streaming video and audio content (though a user can download the full
movie before he/she can watch it, a faster solution is to stream data in small
chunks that start playing for the user while the rest of the data is being
downloaded in the background).

Real-world examples of streaming, besides multimedia, are the processing of
market feeds, weather data, electronic stock trading data, and so on. All these
applications produce large volumes of data at very fast rates and require
special handling of the data so that you can derive insight from the data in real
time.

Streaming has a few basic concepts; it'll be better if we discuss them before
we focus on Spark Streaming. The rate at which a streaming application
receives data is called data rate and is expressed in the form of kilobytes per
second (Kbps) or megabytes per second (Mbps).

One important use case of streaming is complex event processing (CEP). In
CEP, it is important to control the scope of the data being processed. This
scope is called window, which can be either based on time or size. An
example of a time-based window is analyzing data that has come in the last 1
minute. An example of a size-based window can be the average asking price of
the last 100 trades of a given stock.

Spark Streaming is Spark's library that provides support to process live data.
This stream can come from any source, such as Twitter, Kafka, or Flume.

Spark Streaming has a few fundamental building blocks that you need to
understand well before diving into the recipes.

Classic Spark Streaming

Spark Streaming has a context wrapper called StreamingContext, which
wraps around SparkContext and is the entry point to the Spark Streaming
functionality. Streaming data, by definition, is continuous and needs to be time-
sliced into the process. This slice of time is called a batch interval, which is
specified when StreamingContext is created. There is one-to-one mapping
of an RDD and batch; that is, each batch results in one RDD. As you can see in
the following image, Spark Streaming takes continuous data, breaks it into
batches, and feeds it to Spark:

Batch interval is important to optimize your streaming application. Ideally, you
want to process data at least as fast as it is getting ingested; otherwise, your
application will develop a backlog. Spark Streaming collects data for the
duration of a batch interval, say, 2 seconds. The moment this 2-second interval
is over, data collected in that interval will be given to Spark for processing,
and Streaming will focus on collecting data for the next batch interval. Now,
this 2-second batch interval is all Spark has to process data for, as it should be
free to receive data from the next batch. If Spark can process the data faster,
you can reduce the batch interval to, say, 1 second. If Spark is not able to keep
up with this speed, you will have to increase the batch interval.

A continuous stream of RDDs in Spark Streaming needs to be represented in
the form of an abstraction through which it can be processed. This abstraction
is called Discretized Stream (DStream). Any operation applied to DStream

results in an operation on underlying RDDs.

Every input, DStream is associated with a receiver (except for the file stream).
A receiver receives data from the input source and stores it in Spark's memory.
There are two types of streaming sources:

Basic sources, such as file and socket connections
Advanced sources, such as Kafka and Flume

Spark Streaming also provides windowed computations in which you can
apply the transformation over a sliding window of data. A sliding window
operation is based on two parameters:

Window length: This is the duration of the window. For example, if you
want to get analytics of the last 1 minute of data, the window length will
be 1 minute.
Sliding interval: This depicts how frequently you want to perform an
operation. Say, you want to perform the operation every 10 seconds. This
means that every 10 seconds, 1 minute of the window will have 50
seconds of data, which would be common for the last window as well,
and 10 seconds of new data.

Structured Streaming

The current API for Spark Streaming is based on DataFrames. This chapter
will focus on this new API called Structured Streaming. It is strongly
recommended that you use this API, but since it's in beta, some caution needs
to be exercised.

WordCount using Structured Streaming

Let's start with a simple example of streaming in which in one terminal, we
will type some text and the streaming application will capture it in another
window.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Create a DataFrame to read what's coming on port 8585:

scala> val lines = spark.readStream.format("socket").option("host","localhost").option("port",8585).load

3. Cast the lines from DataFrame to Dataset with the String datatype and
then flatten it:

scala> val words = lines.as[String].flatMap(_.split(" "))

4. Do the word count:

scala> val wordCounts = words.groupBy("value").count()

5. Start the netcat server in a separate window:

$ nc -lk 8585

6. Come back to the previous terminal and print the complete set of counts to
the console every time it is updated:

scala> val query = wordCounts.writeStream.outputMode("complete").format("console").start()

7. Now go back to the terminal where you started netcat and enter different
lines, such as to be or not to be:

to be or not to be

8. See the output live on the other screen:

Batch: 0

+-----+-----+
|value|count|
+-----+-----+
not	1
be	2
hi	1
or	1
to	2
+-----+-----+

Taking a closer look at Structured
Streaming

Structured Streaming has been introduced in various places in this chapter, but
let's use this recipe to discuss some more details. Structured Streaming is
essentially a stream-processing engine built on top of the Spark SQL engine.

An alternative way to look at streaming data is to think of it as an
infinite/unbounded table that gets continuously appended as new data arrives.

The four fundamental concepts in Structured Streaming are:

Input table: To input the table
Trigger: How often the table gets updated
Result table: The final table after every trigger update
Output table: What part of the result to write to storage after every
trigger

A query may be interested in only newly appended data (since the last query),
all of the data that has been updated (including appended obviously), or the
whole table; this leads to the three output modes in Structured Streaming, as
follows:

Append
Update
Complete

The DataFrame/Dataset API that is used for bounded tables works here in
exactly the same way and that means that continuously streaming data can be
queried using regular SQL or DSL commands. Let's do an example of how it
differs from the static DataFrame.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Read diabetes data from s3 as DataFrame (static):

scala> val sdf = spark.read.format("libsvm").load("s3a://sparkcookbook/patientdata")

3. Extract schema from sdf DataFrame:

scala> val schema = sdf.schema

4. Read diabetes data as Streaming DataFrame:

scala> val st_df = spark.readStream.schema(schema).format("libsvm").load("s3a://sparkcookbook/patientdata

5. Choose only the data that is positive, that is, has diabetes:

scala> val result = st_df.where($"label" === 1.0)

6. Write this data to hdfs:

scala> result.writeStream.option("checkpointLocation","cp").format("parquet").start("tested-positive")

There's more...

One addition that Structured Streaming has done under the hood is adding the
incremental plan execution. To understand it better, let's revisit a diagram from
the Understanding the Catalyst optimizer recipe from Chapter 3, Spark SQL:

So the planner is aware that when streaming the logical plan, it should be
converted into incremental physical execution plans.

Streaming Twitter data

Twitter is a famous microblogging platform. It produces a massive amount of
data with around 500 million tweets sent each day. Twitter allows its data to
be accessed by APIs, and that makes it the poster child of testing any big data
streaming application.

In this recipe, we will see how we can live stream data in Spark using Twitter-
streaming libraries. Twitter is just one source of providing streaming data to
Spark and has no special status. Therefore, there are no built-in libraries for
Twitter. Spark does provide some APIs to facilitate the integration with
Twitter libraries, though.

An example use of a live Twitter data feed can be to find trending tweets in the
last 5 minutes.

How to do it...

1. Create a Twitter account if you do not already have one.
2. Go to http://apps.twitter.com.
3. Click on Create New App.
4. Fill out the Name, Description, Website, and Callback URL fields and

then click on Create your Twitter Application. You will receive a
screen like this:

http://apps.twitter.com

5. You will reach the Application Management screen.
6. Navigate to Keys and Access Tokens | Create my access Token:

7. Note down the four values on this screen; we will use them in step 14:

Consumer key (the API Key)
Consumer secret (the API Secret)
Access token
Access token secret

8. Fill in the values on this screen in some time, but, for now, let's download
the third-party libraries needed from Maven central:

$ wget http://central.maven.org/maven2/org/apache/spark/spark-streaming-twitter_2.10/1.2.0/spark-streaming-twitter_2.10-1.2.0.jar
$ wget http://central.maven.org/maven2/org/twitter4j/twitter4j-stream/4.0.2/twitter4j-stream-4.0.2.jar

$ wget http://central.maven.org/maven2/org/twitter4j/twitter4j-core/4.0.2/twitter4j-core-4.0.2.jar

9. Open the Spark shell, supplying the preceding three JARs as
dependencies:

$ spark-shell --packages org.twitter4j:twitter4j-core:4.0.5,org.twitter4j:twitter4j-stream:4.0.5 --jars dstream-twitter_2.11-0.1.0.jar

10. Perform imports that are Twitter-specific:

scala> import org.apache.spark.streaming.twitter._
scala> import twitter4j.auth._
scala> import twitter4j.conf._

11. Stream specific imports:

scala> import org.apache.spark.streaming.{Seconds, StreamingContext}

12. Do necessary imports:

scala>import org.apache.spark._
scala> import org.apache.spark.streaming._
scala> import org.apache.spark.streaming.StreamingContext._

13. Create StreamingContext with a 10-second batch interval:

scala> val ssc = new StreamingContext(spark.sparkContext, Seconds(10))

14. Create StreamingContext with a 2-second batch interval:

scala> val cb = new ConfigurationBuilder
scala>cb.setDebugEnabled(true)
 .setOAuthConsumerKey("FKNryYEKeCrKzGV7zuZW4EKeN")
 .setOAuthConsumerSecret("x6Y0zcTBOwVxpvekSCnGzbi3NYN rM5b8ZMZRIPI1XRC3pDyOs1")
 .setOAuthAccessToken("31548859-DHbESdk6YoghCLcfhMF8 8QEFDvEjxbM6Q90eoZTGl")
 .setOAuthAccessTokenSecret("wjcWPvtejZSbp9cgLejUdd6W1 MJqFzm5lByUFZl1NYgrV")
val auth = new OAuthAuthorization(cb.build)

Note

These are sample values; you put your own values.

15. Create Twitter's DStream:

scala> val tweets = TwitterUtils.createStream(ssc,auth)

16. Filter out English tweets:

scala> val englishTweets = tweets.filter(_.getLang()=="en")

17. Get the text out of the tweets:

scala> val status = englishTweets.map(status => status.getText)

18. Set the checkpoint directory:

scala> ssc.checkpoint("hdfs://localhost:9000/user/hduser/checkpoint")

19. Start StreamingContext:

scala> ssc.start
scala> ssc.awaitTermination

20. You can put all these commands together using :paste:

scala> :paste
import org.apache.spark.streaming.twitter._
import twitter4j.auth._
import twitter4j.conf._
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
val ssc = new StreamingContext(sc, Seconds(10))
val cb = new ConfigurationBuilder
cb.setDebugEnabled(true).setOAuthConsumerKey("FKNryYEKe CrKzGV7zuZW4EKeN")
 .setOAuthConsumerSecret("x6Y0zcTBOwVxpvekSCnGzbi3NYNr M5b8ZMZRIPI1XRC3pDyOs1")
 .setOAuthAccessToken("31548859-DHbESdk6YoghCLcfhMF88Q EFDvEjxbM6Q90eoZTGl")
 .setOAuthAccessTokenSecret("wjcWPvtejZSbp9cgLejUdd6W1 MJqFzm5lByUFZl1NYgrV")
val auth = new OAuthAuthorization(cb.build)
val tweets = TwitterUtils.createStream(ssc,Some(auth))
val englishTweets = tweets.filter(_.getLang()=="en")
val status = englishTweets.map(status => status.getText)
status.print
ssc.checkpoint("hdfs://localhost:9000/checkpoint")

ssc.start
ssc.awaitTermination

Streaming using Kafka

Kafka is a distributed, partitioned, and replicated commit log service. In
simple words, it is a distributed messaging server. Kafka maintains the
message feed in categories called topics. An example of a topic can be the
ticker symbol of a company you would like to get news about, for example,
CSCO for Cisco.

Processes that produce messages are called producers and those that consume
messages are called consumers. In traditional messaging, the messaging
service has one central messaging server, also called the broker. Since Kafka
is a distributed messaging service, it has a cluster of brokers, which
functionally acts as one Kafka broker, as shown here:

For each topic, Kafka maintains the partitioned log. This partitioned log
consists of one or more partitions spread across the cluster, as shown in the
following figure:

Kafka borrows a lot of concepts from Hadoop and other big data frameworks.
The concept of partition is very similar to the concept of InputSplit in
Hadoop. In the simplest form, while using TextInputFormat, an InputSplit
is the same as a block. A block is read in the form of a key-value pair in
TextInputFormat, where the key is the byte offset of a line and the value is
the content of the line itself. In a similar way, in a Kafka partition, records are
stored and retrieved in the form of key-value pairs, where the key is a
sequential ID number called the offset and the value is the actual message.

In Kafka, message retention does not depend on the consumption of a
consumer. Messages are retained for a configurable period of time. Each
consumer is free to read messages in any order they like. All they need to do is
retain an offset. Another analogy can be reading a book in which the page
number is analogous to the offset, while the page content is analogous to the
message. The reader is free to read whichever way he/she wants as long as
they remember the bookmark (the current offset).

To provide functionality similar to pub/sub and PTP (queues) in traditional
messaging systems, Kafka has the concept of consumer groups. A consumer
group is a group of consumers, which the Kafka cluster treats as a single unit.
In a consumer group, only one consumer needs to receive a message. If the C1

consumer, in the following diagram, receives the first message for the topic
T1, all the following messages on that topic will also be delivered to this
consumer. Using this strategy, Kafka guarantees the order of message delivery
for a given topic.

In extreme cases, when all consumers are in one consumer group, the Kafka
cluster acts like PTP/queue. In another extreme case, if every consumer
belongs to a different group, it acts like pub/sub. In practice, each consumer
group has a limited number of consumers:

This recipe will show you how to perform a word count using the data coming
from Kafka.

Getting ready

This recipe assumes you already have Kafka up and running. Let us create a
topic oscars in Kafka for this recipe:

$ kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic oscars

How to do it...

1. Start the Spark shell with the Kafka integration package:

$ spark-shell --packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.1.1

2. Create a stream to listen to messages for the oscars topic:

scala> val data = spark.readStream.format("kafka").option("kafka.bootstrap.servers","localhost:9092").option("subscribe","oscars").load()

3. To find out if it is really a streaming DataFrame or not:

scala> data.isStreaming

4. Get the schema of data DataFrame:

scala> data.printSchema

5. Create a stream to listen to messages for the oscars topic:

scala> val data = spark.readStream.format("kafka").option("kafka.bootstrap.servers","localhost:9092").option("subscribe","oscars").load()

6. Cast the stream to String datatype:

scala> val kvstream = data.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)")

7. Write the stream to console based receiver and keep it running until
terminated:

scala> val feed = kvstream.writeStream.format("console").start
scala> feed.awaitTermination

8. Publish a message on the oscars topic in Kafka in another window:

$ kafka-console-producer.sh --broker-list localhost:9092 --topic oscars

9. Now, publish messages on Kafka by pressing Enter at step 8 and after
every message.

10. Now as you publish messages on Kafka, you will see them in the Spark

shell.

Understanding streaming challenges

There are certain challenges every streaming application faces. In this recipe,
we will develop some understanding of these challenges.

Late arriving/out-of-order data

If there is leader selection in streaming challenges, it would go to the late data.
This is such a streaming-specific issue that folks not very familiar with
streaming find it surprising that this issue is so prevalent.

There are two notions of time in streaming:

Event time: This is the time when an event actually happened, for
example, measuring the temperature on a drive to an industrial site.
Almost always, this event will contain this time as part of the record.
Processing time: This is measured by the program that processed the
event, for example, if the time series IoT event is processed in the cloud,
then the processing time is the time this event reached the component (like
Kinesis), which is doing the processing.

In stream-processing applications, this time lag between the event time and
processing time varies, and this leads to late or out-of-order data. There are
various reasons for this delay, for example:

Network latencies
Variance in data load
Batching of events

In Spark Streaming based on DStream, it is not easy to incorporate event time.

Maintaining the state in between batches

In microbatch-based streaming systems, such as Spark, sometimes the state
needs to be maintained and/or updated in between batches. In the current Spark
implementation, there are various ways to do this, for example, windowing and
updateStateByKey. In all these ways, essentially, a join operation is done on
batches to maintain the state. This can get very expensive if the window length
is long. Another option is to maintain the state in a database. There are in-
memory databases, such as MemSQL, but they come with the cost of
maintaining the overhead of another database system.

Structured Streaming has rewritten state management to maintain this running
intermediate state in the memory, backed by write ahead logs (WAL) in the
file system for fault-tolerance.

Message delivery reliability

There are a few message delivery semantics on which message delivery
guarantees (or lack of them) are based:

At most one delivery: This means the message will be delivered zero or
one times. It means the message may be lost. It's the cheapest way and is
also known as fire and forget.
At least one delivery: This means in multiple delivery attempts, there
may be a chance that the message may be duplicated, but it will not be
lost for sure.
Exactly one delivery: This means that the message is only delivered
once. It's neither getting lost or duplicated.

Structured Streaming provides an end-to-end and exactly one message delivery
guarantee based on the following features:

Offset tracking in WAL
State management (using the in-memory state and WAL)
Fault-tolerant sources and sinks (using WAL)

Streaming is not an island

Streaming apps are never standalone applications, but part of a larger
ecosystem. First, a streaming application may ingest data from complex data
sources. Data may come from relational and non-relational sources. Data can
be of various formats, such as .json and .avro. Data can be at various levels
of normalization. To add to it, every real data source has tons of dirty data; this
can lead to a massive cycle of data cleaning and data preparation.

Streaming applications may interface with interactive analytics apps or
machine-learning apps. It means there are throughput and scalability challenges
that need to be resolved differently in each case. There are a few tips that can
help in this optimization:

Data temperature awareness: All of the data is not created in the same
way, and all of the data does not need to be treated the same way. There is
the temperature of the data (how recent the data is) and the importance of
data, which are correlated. One example can be online machine learning
for fraud detection where the latency service level agreement (SLA) is
in milliseconds. You may also want to update your ML model in real time,
based on the data you are getting.
Avoiding persisting on disk: Persisting/checkpointing data on the disk is
an expensive operation and something that killed MapReduce (besides
other factors). Maximize the use of memory.

Chapter 6. Getting Started with Machine
Learning
This chapter is divided into the following recipes:

Creating vectors
Calculating correlation
Understanding feature engineering
Understanding Spark ML
Understanding hyperparameter tuning

Introduction

The following is Wikipedia's definition of machine learning:

"Machine learning is a scientific discipline that explores the
construction and study of algorithms that can learn from data."

Essentially, machine learning is the process of using past data to make
predictions about the future. Machine learning heavily depends upon statistical
analysis and methodology.

In statistics, there are four types of measurement scales:

Scale type Description

Nominal
scale

=, ≠
Identifies categories
Can't be numeric
Example: male, female

Ordinal scale

=, ≠, <, >
Nominal scale +
Ranks from least important to most important
Example: corporate hierarchy

Interval scale

=, ≠, <, >, +, -
Ordinal scale + distance between observations
Numbers assigned to observations indicate order
Difference between any consecutive values is same as
others
60° temperature is not doubly hot than 30°

Ratio scale
=, ≠, <, >, +, ×, ÷
Interval scale +ratios of observations
$20 is twice as costly as $10

Another distinction that can be made among the data is continuous versus
discrete data. Continuous data can take any value, for example, house price.
Most data belonging to the interval and ratio scale is continuous.

Discrete variables can take on only particular values, and there are clear
boundaries between the values. For example, a house can have two or three
rooms but not 2.75 rooms. Data belonging to the nominal and ordinal scale is
always discrete.

MLlib is Spark's library for machine learning. Like other libraries, MLlib's
algorithms have slowly been ported to make them DataFrame-based as
opposed to RDD-based. These ported algorithms are sometimes called ML;
technically, however, it is still MLlib. In this chapter, we will focus on the
fundamentals of machine learning.

Creating vectors

Before understanding vectors, let's focus on what a point is. A point is just a
set of numbers. This set of numbers or coordinates defines the point's position
in space. The number of coordinates determines the dimensions of the space.

We can visualize space with up to three dimensions. A space with more than
three dimensions is called hyperspace. Let's put this spatial metaphor to use.

Getting ready

Let's start with a house. A house may have the following dimensions:

Area
Lot size
Number of rooms

We are working in three-dimensional space here. Thus, the interpretation of
point (4500, 41000, 4) would be 4500 sq. ft area, 41k sq. ft lot size, and four
rooms.

Points and vectors are the same thing. Dimensions in vectors are called
features. In another way, we can define a feature as an individual measurable
property of a phenomenon being observed.

Spark has local vectors and matrices and also distributed matrices. A
distributed matrix is backed by one or more RDDs. A local vector has numeric
indices and double values and is stored on a single machine.

There are two types of local vectors in MLlib: dense and sparse. A dense
vector is backed by an array of its values, while a sparse vector is backed by
two parallel arrays, one for indices and another for values.

So, house data (4500, 41000, 4) will be represented as [4500, 41000, 4] using

dense vector and as (3, [0, 1, 2], [4500.0, 41000.0, 4.0]) using sparse vector
format.

Whether to make a vector sparse or dense depends upon how many null values
or 0s it has. Let's take the case of a vector with 10,000 values, 9,000 of them
being 0. If we use the dense vector format, it would be a simple structure, but
90 per cent of the space will be wasted. The sparse vector format would work
out better here as it would only keep indices, which are non-zero.

Sparse data is very common, and Spark now natively supports the libsvm
format for it, which stores one feature vector per line.

How to do it...

1. Start the Spark shell:

 $ spark-shell

2. Import the MLlib vector explicitly (not to be confused with other vector
classes in collections):

 scala> import org.apache.spark.ml.linalg.{Vector,Vectors

3. Create a dense vector:

scala> val denseHouse = Vectors.dense(4500d,41000d,4d)

4. Create a sparse vector:

 scala> val sparseHouse =
Vectors.sparse(3,Array(0,1,2),Array(4500d,41000d,4d))

5. Create a vector of all zeroes:

 scala> val zeroes = Vectors.zeros(3)

How it works...

The following is the method signature of vectors.dense:

def dense(values: Array[Double]): Vector

Here, values represent a double array of elements in the vector.

The following is the method signature of Vectors.sparse:

def sparse(size: Int, indices: Array[Int], values: Array[Double]): Vector

Here, size represents the size of the vector, indices is an array of indices,
and values is an array of values as doubles. Do make sure you specify
double as a datatype or use decimal in at least one value; otherwise, it will
throw an exception for the dataset, which has only integer.

Calculating correlation

Correlation is a statistical relationship between two variables such that when
one variable changes, it leads to a change in the other variable. Correlation
analysis measures the extent to which the two variables are correlated.We see
correlation in our daily life. The height of a person is correlated with the
weight of a person, the load carrying capacity of a truck is correlated with the
number of wheels it has, and so on.

If an increase in one variable leads to an increase in another, it is called a
positive correlation. If an increase in one variable leads to a decrease in the
other, it is a negative correlation.

Spark supports two correlation algorithms: Pearson and Spearman. The
Pearson algorithm works with two continuous variables, such as a person's
height and weight or house size and house price. Spearman deals with one
continuous and one categorical variable, for example, zip code and house
price.

Getting ready

Let's use some real data so that we can calculate correlation more
meaningfully. The following were the sizes and prices of houses in the City of
Saratoga, California, in early 2014:

House size (sq ft)Price

2100 $1,620,000

2300 $1,690,000

2046 $1,400,000

4314 $2,000,000

1244 $1,060,000

4608 $3,830,000

2173 $1,230,000

2750 $2,400,000

4010 $3,380,000

1959 $1,480,000

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Create a DataFrame of house price and size:

 scala> val houses = spark.createDataFrame(Seq(
 (1620000d,2100),
 (1690000d,2300),
 (1400000d,2046),
 (2000000d,4314),
 (1060000d,1244),
 (3830000d,4608),

 (1230000d,2173),
 (2400000d,2750),
 (3380000d,4010),
 (1480000d,1959)
)).toDF("price","size")

3. Compute the correlation:

 scala> houses.stat.corr("price","size")
 correlation: Double = 0.8577177736252574

Note

Since we do not have a specific algorithm here, it is, by default,
Pearson. The corr method is overloaded to take the algorithm
name as the third parameter. 0.85 means a very strong positive
correlation.

4. Compute the correlation with Pearson passed explicitly as a parameter:

 scala> houses.stat.corr("price","size","pearson")
 correlation: Double = 0.8577177736252574

Understanding feature engineering

When working on a data pipeline, there are two activities that take up most of
the time: data cleaning/data preparation and feature extraction. We already
covered data cleaning in the previous chapters. In this recipe, we are going to
discuss different aspects of feature engineering.

Feature selection

When it comes to feature selection, there are two primary aspects:

Quality of features
Number of features

Quality of features

Every feature is created different from others. Consider the house pricing
problem again. Let's look at some of the features of a house:

House size
Lot size
Number of rooms
Number of bathrooms
Type of parking garage (carport versus covered)
School district
Number of dogs barking in the house
Number of birds chirping in backyard trees

The last two features may look ridiculous to you, and you might wonder what
that has got to do with the house price, and you are right. At the same time, if
these features are given to the machine learning algorithm, it may come up with
a non-zero correlation to your surprise. This is where domain knowledge
comes into the picture. It could be a data scientist wearing a domain expert hat

or a domain expert wearing a data scientist hat, who would most likely do this
job.

Number of features

Having too many and irrelevant features adds unnecessary noise. They also
make machine learning models difficult and more expensive to train.

At the same time, what if we take another extreme. What if we use only house
size as a feature to make predictions. As we saw in the previous recipe, house
size is the most influential feature, but it would not bring the quality of
prediction to an acceptable level. We need a reasonable number of features to
make accurate predictions.

Feature scaling

Features can be on four scales as we covered in the introduction of this
chapter. Models do not care about nominal features but are very sensitive to
the scale of ratio or numerical features. In the house example, the house size
and lot size are on a different scale, and that may make the model think that the
lot size is more important than the house size, though the truth is quite the
opposite. In a lot of real-life modeling scenarios, scale difference can be in
hundreds, if not in thousands.

There are different ways of doing feature scaling, such as the following:

Dividing a feature value with a maximum value, which will put every
feature in the range
Dividing a feature value with the range, that is, maximum value-minimum
value
Subtracting a feature value by its mean and then dividing by the range
Subtracting a feature value by its mean and then dividing by the standard
deviation

Feature extraction

We can only select features if we have them in the first place. This is where the
role of feature extraction comes.

TF-IDF

Term frequency inverse document frequency (TF-IDF), is a numerical
statistic that is intended to reflect how important a word is to a document in a
collection or corpus. Let's denote a term by t, document by d, and corpus by D.

Term frequency

Let us say we mean a page by a document (could be a chapter as well) and the
whole book by a corpus. In a document, we can simply measure how many
times a term has occurred. The more times a term has occurred, the more
important it is in the document. But is that really the case? We will end up with
articles (a/an/the) being on top of the list every time. Let's define term
frequency as TF(t, d).

Inverse document frequency

What if we also measure how many times a term has occurred across the
corpus. If a term has occurred across the corpus with the same frequency, then
it is not so important to the specific document. Let's say term frequency across
the corpus is DF(t, D). Average frequency per document will be as follows:

DF(t, D)/|D|

Here, |D| is the number of documents. Since the importance of a term is
inversely proportional to DF(t, D), let's inverse it and take a log:

log |D|/DF(t, D)

Now it looks good, except that when the number of documents is 0, the log
becomes undefined. So let's add 1 to both the numerator and the denominator
to avoid the boundary condition:

(log |D| + 1)/ (DF(t, D) + 1)

This is called inverse document frequency:

IDF(t, D) = (log |D| + 1)/ (DF(t, D) + 1)

Multiplying TF and IDF results in TF-IDF:

TFIDF(t,d,D) = TF(t,d)⋅IDF(t,D)

How to do it...

1. Load Spark shell or Databricks Cloud:

 $ spark-shell

2. Do the necessary imports:

 scala> import org.apache.spark.ml.feature._

3. Load the Charles Dickens novel Hard Times:

 scala> val sentenceData =
 spark.read.option("delimiter","\n").csv
 ("s3a://sparkcookbook/hardtimes").toDF("sentence")

4. Create a transformer to tokenize sentences:

 scala> val tokenizer = new
 Tokenizer().setInputCol("sentence").setOutputCol("words")

5. Tokenize sentences:

 scala> val wordsData = tokenizer.transform(sentenceData)

6. Create a hashing transformer:

 scala> val hashingTF = new HashingTF()
.setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)

7. Map the sequence of terms to term frequencies:

 scala> val featurizedData = hashingTF.transform(wordsData)

8. Create an IDF estimator:

 scala> val idf = new
 IDF().setInputCol("rawFeatures").setOutputCol("features")

9. Train the IDF model:

 scala> val idfModel = idf.fit(featurizedData)

10. Rescale TF based on the IDF model:

 scala> val rescaledData = idfModel.transform(featurizedData)

11. Print the results:

 scala> rescaledData.show()

Understanding Spark ML

Spark ML is a nickname for the DataFrame-based MLLib API. Spark ML is the
primary library now, and the RDD-based API has been moved to maintenance
mode.

Getting ready

Let's first understand some of the basic concepts in Spark ML. Before that, let's
quickly go over how the learning process works. Following are the steps:

1. A machine learning algorithm is provided a training dataset along with the
right hyperparameters.

2. The result of training is a model. The following figure illustrates the
model building by applying machine learning algorithm on training data
with hyperparameters:

3. The model is then used to make predictions on test data as shown here:

In Spark ML, an estimator is provided as a DataFrame (via the fit method),
and the output after training is a Transformer:

Now, the Transformer takes one DataFrame as input and outputs another
transformed (via the transform method) DataFrame. For example, it can take
a DataFrame with the test data and enrich this DataFrame with an additional
column for predictions and then output it as shown here:

Transformers are not just limited to doing predictions on models but can also
be used to do feature transformation. An easy way to understand feature
transformation is to compare it to the map function in RDDs.

A machine learning pipeline is defined as a sequence of stages; each stage can
be either an estimator or a Transformer.

The example we are going to use in this recipe is whether or not someone is a
basketball player. For this, we are going to have a pipeline of one estimator
and one Transformer.

The estimator gets the training data to train the algorithms, and then the
Transformer makes predictions.

Please note that both Transformer.transform() and Estimator.fit() are
stateless.

For now, assume LogisticRegression to be the machine learning algorithm
we are using. We will explain the details about LogisticRegression along
with other algorithms in the subsequent chapters.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Do the imports:

scala> import org.apache.spark.ml.classification.LogisticRegression
scala> import org.apache.spark.ml.linalg.{Vector, Vectors}

3. Create a tuple for Lebron, who is a basketball player, is 80 inches tall,
and weighs 250 lbs:

scala> val lebron = (1.0,Vectors.dense(80.0,250.0))

4. Create a tuple for Tim, who is not a basketball player, is 70 inches tall,
and weighs 150 lbs:

scala> val tim = (0.0,Vectors.dense(70.0,150.0))

5. Create a tuple for Brittany, who is a basketball player, is 80 inches tall,
and weighs 207 lbs:

scala> val brittany = (1.0,Vectors.dense(80.0,207.0))

6. Create a tuple for Stacey, who is not a basketball player, is 65 inches tall,
and weighs 120 lbs:

scala> val stacey = (0.0,Vectors.dense(65.0,120.0))

7. Create a training DataFrame:

scala> val training = spark.createDataFrame(Seq
 (lebron,tim,brittany,stacey)).toDF("label","features")

8. Create a LogisticRegression estimator:

 scala> val estimator = new LogisticRegression

9. Create a transformer by fitting the estimator with the training DataFrame:

 scala> val transformer = estimator.fit(training)

10. Now, let's create a test data—John is 90 inches tall, weighs 270 lbs, and
is a basketball player:

 scala> val john = Vectors.dense(90.0,270.0)

11. Create more test data—Tom is 62 inches tall, weighs 150 lbs, and is not a
basketball player:

scala> val tom = Vectors.dense(62.0,120.0)

12. Create a test data DataFrame:

 scala> valtest=spark.createDataFrame(Seq(
(1.0, john),
(0.0,tom)
)).toDF("label","features")

13. Do the prediction using the transformer:

 scala> val results = transformer.transform(test)

14. Print the schema of the results DataFrame:

 scala> results.printSchema

 root
 |-- label: double (nullable = false)
 |-- features: vector (nullable = true)
 |-- rawPrediction: vector (nullable = true)
 |-- probability: vector (nullable = true)

 |-- prediction: double (nullable = true)

As you can see, besides prediction, the transformer has also added
rawPrediction and a probability column.

15. Print the DataFrame results:

scala> results.show

 +-----+------------+----------------+--------------------+-------+
 |label| features| rawPrediction| probability|prediction|
 +-----+------------+----------------+--------------------+-------+
 | 1.0|[90.0,270.0]|[-61.884758625897...|[1.32981373684616...| 1.0|
 | 0.0|[62.0,120.0]|[31.4607691062275...|[0.99999999999997...| 0.0|
 +-----+------------+----------------+--------------------+-------+

16. Let's select only features and prediction:

scala> val predictions = results.select
 ("features","prediction").show

 +------------+----------+
 | features|prediction|
 +------------+----------+
 |[90.0,270.0]| 1.0|
 |[62.0,120.0]| 0.0|
 +------------+----------+

Understanding hyperparameter tuning

Every ML algorithm (let's start calling it estimator from now on) needs some
hyperparameters to be set before it can be trained. These hyperparameters
have traditionally been set by hand. Some examples of hyperparameters are
step size, number of steps (learning rate), regularization parameters, and so
on.

Typically, hyperparameter tuning is a detour in model selection as you already
need to know the best value of hyperparameters for training the model. At the
same time, to find the right hyperparameters, you need to be able to look ahead
at the accuracy. This is where evaluators come into the picture.

In this recipe, we are going to consider an example of linear regression. The
focus here is on hyperparameter tuning, so details about linear regression are
skipped and covered in depth in the next chapter.

How to do it...

1. Start Spark shell:

 $ spark-shell

2. Do the necessary imports:

 scala> import org.apache.spark.ml.regression.LinearRegression
 scala> import org.apache.spark.ml.evaluation.RegressionEvaluator
 scala> import org.apache.spark.ml.tuning.{ParamGridBuilder,
 TrainValidationSplit}

3. Load data as DataFrame:

 scala> val data =
 spark.read.format("libsvm").load
 ("s3a://sparkcookbook/housingdata/realestate.libsvm")

4. Split data into training and test sets:

 scala> val Array(training, test) = data.randomSplit
 (Array(0.7, 0.3))

5. Instantiate linear regression:

 scala> val lr = new LinearRegression().setMaxIter(10)

6. Create a parameter grid:

 scala> val paramGrid = new ParamGridBuilder()
 .addGrid(lr.regParam, Array(0.1,0.01))
 .addGrid(lr.fitIntercept)
 .addGrid(lr.elasticNetParam, Array(0.0, 0.5, 1.0))
 .build()

7. Create a training validation split:

 scala> val trainValidationSplit = new TrainValidationSplit()
 .setEstimator(lr)
 .setEvaluator(new RegressionEvaluator)
 .setEstimatorParamMaps(paramGrid)
 .setTrainRatio(0.8)

8. Train the model:

 scala> val model = trainValidationSplit.fit(training)

9. Do the predictions on the test dataset:

 scala> val predictions = model.transform(test)

10. Evaluate the predictions:

 scala> val evaluator = new RegressionEvaluator()
 scala> evaluator.evaluate(predictions)

Chapter 7. Supervised Learning with MLlib
— Regression
This chapter is divided into the following recipes:

Using linear regression
Understanding the cost function
Doing linear regression with lasso
Doing ridge regression

Introduction

The following is Wikipedia's definition of supervised learning:

"Supervised learning is the machine learning task of inferring a
function from labeled training data."

There are two types of supervised learning algorithms:

Regression: This predicts a continuous valued output, such as a house
price.
Classification: This predicts a discreet valued output (0 or 1) called
label, such as whether an e-mail is a spam or not. Classification is not
limited to two values (binomial); it can have multiple values
(multinomial), such as marking an e-mail important, unimportant, urgent,
and so on (0, 1, 2...).

We are going to cover regression in this chapter and classification in the next.

We will use the recently sold house data of the City of Saratoga, CA, as an
example to illustrate the steps of supervised learning in the case of regression:

1. Get the labeled data:

How labeled data is gathered differs in every use case. For example,
to convert paper documents into a digital format, documents can be
given to Amazon Mechanical Turk to label them.
The size of the labeled data needs to be sufficiently larger than the
number of features in the vector. If the size is small compared to the
number of features, it can result in overfitting.

2. Split the labeled data into two parts:

Randomly split the data based on a certain ratio, for example, 70:30.
This split needs to be done randomly every time to avoid bias.
The first set is called the training dataset, which will be used to train
the model.
The second set is called the test dataset or validation set, which will
be used to measure the accuracy of the model.
Sometimes, data is divided into three sets: training, cross-validation,
and test. In this case, the test dataset is only used for measuring
accuracy, not for training the model (keeping it outside the random
split).

3. Train the algorithm with the training dataset. Once an algorithm is trained,
it is called a model:

Model training/creation also involves tuning another parameter
called hyperparameter. One easy way to understand
hyperparameters is to think of them as configuration parameters.
Traditionally, hyperparameters are set by hand (hit and trial), but
nowadays, there are whole sets of algorithms and methodologies
specifically designed for hyperparameter tuning.

4. Use a test dataset to ask another set of questions to the trained algorithm.

The following figure shows a model getting trained by a training dataset:

Hypothesis, for what it does, may sound like a misnomer here, and you may
think that prediction function may be a better name, but the word hypothesis is
used for historic reasons.

If we use only one feature to predict the outcome, it is called bivariate
analysis. When we have multiple features, it is called multivariate analysis.
In fact, we can have as many features as we like. One such algorithm, support
vector machines (SVM), which we will cover in the next chapter, allows you
to have an infinite number of features.

This chapter covers how to do supervised learning.

Note

Mathematical explanations have been provided in as simple a way
as possible, but you can feel free to skip the math and directly go

to the How to do it... section.

Using linear regression

Linear regression is the approach to model the value of a response or outcome
variable y, based on one or more predictor variables or features, represented
by x.

Getting ready

Let's use some housing data to predict the price of a house based on its size.
The following are the sizes and prices of houses in the City of Saratoga, CA, in
early 2014:

House size (sq. ft.) Price

2100 $ 1,620,000

2300 $ 1,690,000

2046 $ 1,400,000

4314 $ 2,000,000

1244 $ 1,060,000

4608 $ 3,830,000

2173 $ 1,230,000

2750 $ 2,400,000

4010 $ 3,380,000

1959 $ 1,480,000

Here's a graphical representation of the same:

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Import the statistics and related classes:

scala> import org.apache.spark.ml.linalg.Vectors
scala> import org.apache.spark.ml.regression.LinearRegression

3. Create a DataFrame with the house price as the label:

scala> val points = spark.createDataFrame(Seq(
 (1620000,Vectors.dense(2100)),
 (1690000,Vectors.dense(2300)),

 (1400000,Vectors.dense(2046)),
 (2000000,Vectors.dense(4314)),
 (1060000,Vectors.dense(1244)),
 (3830000,Vectors.dense(4608)),
 (1230000,Vectors.dense(2173)),
 (2400000,Vectors.dense(2750)),
 (3380000,Vectors.dense(4010)),
 (1480000,Vectors.dense(1959))
)).toDF("label","features")

4. Initialize linear regression:

scala> val lr = new LinearRegression()

5. Train a model using this data:

scala> val model = lr.fit(points)

6. Create some test data:

scala> val test = spark.createDataFrame(Seq(Vectors.dense(2100)).map(Tuple1.apply)).toDF("features")

7. Make predictions for the test data:

scala> val predictions = model.transform(test)

There's more...

House size is just one predictor variable. A house price depends upon other
variables, such as the lot size, age of the house, and so on. The more variables
you have, the better your prediction will be.

In this recipe, since the dataset is small and we are just getting started, we
have just checked the prediction for one vector. In reality, we need to compute
the area under the curve and the area under ROC for measuring accuracy.

Let's do the same exercise with more data. The link for this
is http://sparkcookbook.amazonaws.com/housingdata/realestate.libsvm

The data in the preceding link contains housing data for 2,800 houses. Let us
repeat the same exercise for the aforementioned dataset:

1. Start the Spark shell:

$ spark-shell

2. Do the necessary imports:

scala> import org.apache.spark.ml.regression.LinearRegression
scala> import org.apache.spark.ml.evaluation.RegressionEvaluator

3. Load the data in Spark as a dataset:

scala> val data = spark.read.format("libsvm").load("s3a://sparkcookbook/housingdata/realestate.libsvm")

4. Divide the data into training and test datasets:

scala> val Array(training, test) = data.randomSplit(Array(0.7, 0.3))

5. Instantiate the LinearRegression object:

scala> val lr = new LinearRegression()

6. Fit/train the model:

scala> val model = lr.fit(training)

7. Make predictions on the test dataset:

scala> val predictions = model.transform(test)

8. Instantiate RegressionEvaluator:

scala> val evaluator = new RegressionEvaluator()

9. Evaluate the predictions:

scala> evaluator.evaluate(predictions)

Understanding the cost function

The cost function or loss function is a very important function in machine
learning algorithms. Most algorithms have some form of cost function, and the
goal is to minimize this. Parameters, which affect cost functions, such as
stepSize, are called hyperparameters; they need to be set by hand.
Therefore, understanding the whole concept of the cost function is very
important.

In this recipe, we are going to analyze the cost function in linear regression.
Linear regression is a simple algorithm to understand, and it will help you
understand the role of cost functions for even complex algorithms.

Let's go back to linear regression. The goal is to find the best-fitting line so that
the mean square of the error would be minimum. Here, we are referring to an
error as the difference between the value as per the best-fitting line and the
actual value of the response variable of the training dataset.

For a simple case of a single predicate variable, the best-fitting line can be
written as:

This function is also called the hypothesis function and can be written as:

The goal of linear regression is to find the best-fitting line. On this line, θ0
represents the intercept on the y axis, and θ1 represents the slope of the line, as
is obvious from the following equation:

We have to choose θ0 and θ1 in a way that h(x) would be closest to y in the
case of the training dataset. So, for the ith data point, the square of the distance
between the line and the data point is:

To put it in words, this is the square of the difference between the predicted
house price and the actual price the house got sold for. Now, let's take the
average of this value across the training dataset:

The preceding equation is called the cost function J for linear regression. The
goal is to minimize this cost function:

This cost function is also called the squared error function. Both θ0 and θ1
follow a convex curve independently if they are plotted against J.

Let's take a very simple example of a dataset with three values—(1,1), (2,2),
and (3,3)—to make the calculation easy:

Let's assume θ1 is 0, that is, the best-fitting line parallel to the x axis. In the
first case, assume that the best-fitting line is the x axis, that is, y=0. In that
case, the following will be the value of the cost function:

Move this line up to y=1. The following will be the value of the cost function
now:

Now let's move this line further up to y=2. Then, the following will be the

value of the cost function:

When we move this line further up to y=3, the following will be the value of
the cost function:

When we move this line further up to y=4, the following will be the value of
the cost function:

So, you saw that the value of the cost function first decreased and then
increased again like this:

Now let's repeat the exercise by making θ0 as 0 and using different values of
θ1.

In the first case, assume the best-fitting line is the x axis, that is, y=0. The
following will be the value of the cost function in this scenario:

Use a slope of 0.5. The following will be the value of the cost function now:

Now use a slope of 1. The following will be the value of the cost function:

When you use a slope of 1.5, the following will be the value of the cost
function:

When you use a slope of 2.0, the following will be the value of the cost
function:

As you can see, in both the graphs, the minimum value of J is when the slope or
gradient of the curve is 0:

When both θ0 and θ1 are mapped to a 3D space, it becomes like the shape of a

bowl with the minimum value of the cost function at the bottom of it.

This approach to arrive at the minimum value is called gradient descent. In
Spark, the implementation is referred to as this: stochastic gradient descent.

There's more...

Gradient descent is part of a larger family of optimization techniques called
hill climbing algorithms. Another noteworthy algorithm in this family, which is
used extensively in Spark, is called Limited-memory BFGS (LBFGS). These
algorithms seek a stationary point of a function where the gradient is zero.

Doing linear regression with lasso

Lasso is a shrinkage and selection method for linear regression. It minimizes
the usual sum of squared errors with an upper bound on the sum of the absolute
values of the coefficients. It is based on the original lasso paper found
at http://statweb.stanford.edu/~tibs/lasso/lasso.pdf.

The least square method we used in the last recipe is also called ordinary
least squares (OLS). OLS has two challenges:

Prediction accuracy: Predictions made using OLS usually have low
forecast bias and high variance. Prediction accuracy can be improved by
shrinking some coefficients (or even making them zero). There will be
some increase in bias, but the overall prediction accuracy will improve.
Interpretation: As a large number of predictors are available, it is
desirable that we find a subset of them that exhibits the strongest effect
(correlation).

Bias versus variance

There are two primary reasons behind a prediction error: bias and variance.
The best way to understand bias and variance is to look at a case where we are
doing predictions on the same dataset multiple times. Bias is an estimate of
how far the predicted results are from the actual values, and variance is an
estimate of the difference in predicted values among different predictions.
Generally, adding more features helps reduce bias, as can be understood
easily. If, while building a prediction model, we leave out some features with
significant correlation, it would lead to a significant error. If your model has
high variance, you can remove features to reduce it. A bigger dataset also helps
reduce variance.Here, we are going to use a simple dataset that is ill-posed.
An ill-posed dataset is a dataset where the sample data size is smaller than the
number of predictors, as shown here:

http://statweb.stanford.edu/~tibs/lasso/lasso.pdf

yx0x1x2x3x4x5x6x7x8

15 3 1 2 1 3 2 2 1

29 8 8 9 7 9 8 7 9

You can easily guess that out of the nine predictors, only two have a strong
correlation with y: x0 and x1. We will use this dataset with the lasso algorithm
to see its validity.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Import the statistics and related classes:

scala> import org.apache.spark.ml.linalg.Vectors
scala> import org.apache.spark.ml.regression.LinearRegression

3. Create the dataset with the value we created earlier:

scala> val points = spark.createDataFrame(Seq(
 (1d,Vectors.dense(5,3,1,2,1,3,2,2,1)),
 (2d,Vectors.dense(9,8,8,9,7,9,8,7,9))
)).toDF("label","features")

4. Initialize the linear regression estimator with elastic net param 1 (means
lasso or L1 regularization):

scala> val lr = new LinearRegression().setMaxIter(10).setRegParam(.3).setFitIntercept(false).setElasticNetParam(1.0)

5. Train a model:

scala> val model = lr.fit(points)

6. Check how many predictors have their coefficients set to zero:

scala> model.coefficients
 org.apache.spark.ml.linalg.Vector = [0.17372423795367625,0.025461270520367753,0.0,0.0,0.0,0.015585497064731741,0.0,0.0,0.0]

As you can see, six out of the nine predictors have got their coefficients set to
zero. This is the primary feature of lasso: any predictor it thinks is not useful, it
literally moves them out of the equation by setting their coefficients to zero.

Doing ridge regression

An alternate way to improve prediction quality is to do ridge regression. In
lasso, a lot of the features get their coefficients set to zero and, therefore,
eliminated from the equation. In ridge, predictors or features are penalized, but
never set to zero. How to do it...

1. Start the Spark shell:

$ spark-shell

2. Import the statistics and related classes:

scala> import org.apache.spark.ml.linalg.Vectors
scala> import org.apache.spark.ml.regression.LinearRegression

3. Create the dataset with the value we created earlier:

scala> val points = spark.createDataFrame(Seq(
 (1d,Vectors.dense(5,3,1,2,1,3,2,2,1)),
 (2d,Vectors.dense(9,8,8,9,7,9,8,7,9))
)).toDF("label","features")

4. Initialize the linear regression estimator with elastic net param 1 (means
ridge or L2 regularization):

scala> val lr = new LinearRegression().setMaxIter(10).setRegParam(.3).setFitIntercept(false).setElasticNetParam(0.0)

5. Train a model:

scala> val model = lr.fit(points)

6. Check how many predictors have their coefficients set to zero:

scala> model.coefficients
 org.apache.spark.ml.linalg.Vector = [0.1132933163345012,0.039370733000466666,0.002369276442275222,

 0.01041698759881142,0.004328988574203182,0.026236646722551202,
 0.015282817648377045,0.023597219133656675,0.0011928984792447484]

As you can see, unlike lasso, ridge regression does not assign any predictor
coefficients the value zero, but it does assign some very close to zero.

Chapter 8. Supervised Learning with MLlib
— Classification
This chapter is divided into the following recipes:

Doing classification using logistic regression
Doing binary classification using SVM
Doing classification using decision trees
Doing classification using random forest
Doing classification using gradient boosted trees
Doing classification with Naïve Bayes

Introduction

The classification problem is like the regression problem discussed in the
previous chapter, except that the outcome variable y takes only a few discrete
values. In binary classification, y takes only two values: 0 or 1. You can also
think of the values that the response variable takes in classification as a
representation of categories.

Doing classification using logistic regression

In classification, the response variable y has discreet values as opposed to
continuous values. Some examples are e-mail (spam/non-spam), transactions
(safe/fraudulent), and so on.

The y variable can take two values, namely 0 or 1, as illustrated in the
following equation:

Here, 0 is referred to as a negative class and 1 means a positive class. Though
we are calling them positive or negative, it is only for convenience's sake.
Algorithms are neutral about this assignment. Algorithms have no emotions,
and 1 does not mean higher than or better than 0.

Though linear regression works well with regression tasks, it hits a few
limitations when it comes to classification tasks. These include:

The fitting process is very susceptible to outliers
There is no guarantee that the hypothesis function h(x) will fit in the range
of 0 (negative class) to 1 (positive class)

Logistic regression guarantees that h(x) will fit between 0 and 1. Though
logistic regression has the word "regression" in it, it is more of a misnomer; it
is very much a classification algorithm:

In linear regression, the hypothesis function is as follows:

In logistic regression, we slightly modify the hypothesis equation like this:

The g function is called the sigmoid function or logistic function and is
defined for a real number t as follows:

This is how the sigmoid function appears as a graph:

As you can see, when t approaches negative infinity, g(t) approaches 0;
likewise, when t approaches infinity, g(t) approaches 1. This guarantees that
the hypothesis function's output will never fall out of the 0 to 1 range.

Now the hypothesis function can be rewritten as:

Here, h(x) is the estimated probability indicating that y equals 1 for a given
predictor x; therefore, h(x) can also be rewritten as:

In other words, the hypothesis function is showing the probability of y being 1,
given the feature matrix x, parameterized by θ. This probability can be any real
number between 0 and 1, but our goal of classification does not allow us to
have continuous values; we can only have two values—0 or 1—to indicate
either the negative or positive class.

Let's say that we predict y = 1 if h(x)≥0.5 and y = 0. If you look at the sigmoid
function graph again, you will realize that when the t≥0 sigmoid function is
≥0.5, that is, for positive values of t, it will predict the positive class:

This means for

, the positive class will be predicted. To better illustrate this, let's expand it to
a non-matrix form for a bivariate case:

The plane represented by the equation

will decide whether a given vector belongs to the positive or negative class.
This line is called the decision boundary.

This boundary does not have to be linear depending on the training set. If the
training data does not separate between positive and negative sets across a
linear decision boundary, high-level polynomial features can be added to
facilitate it. An example can be to add two new features by squaring x1 and x2,
as follows:

Note that to the learning algorithm, this enhancement is exactly the same as the
following equation:

The learning algorithm will treat the introduction of polynomials as just
another feature. This gives you great power when dealing with the fitting
process. It means any complex decision boundary can be created with the right
choice of polynomials and parameters.

Let's spend some time trying to understand how to choose the right value for
the parameters, like we did in the case of linear regression. The cost function J
in the case of linear regression was:

As you know, we are averaging the cost of this cost function. Let's represent
this in terms of a cost term:

In other words, the cost term is the cost the algorithm has to pay if it predicts
h(x) for a real response variable value y:

This cost works fine for linear regression, but for logistic regression, this cost
function is non-convex (that is, it leads to multiple local minimums), and we
need to find a better way to estimate the cost.

Cost functions that work well with logistic regression are as follows:

Let's put these two cost functions into one by combining the two:

Let's put this cost function back to J:

The goal would be to minimize the cost, that is, minimize the value of
J(θ). You can do this using the gradient descent algorithm. Spark MLLib has
two classes that support logistic regression:

LogisticRegressionWithSGD

LogisticRegressionWithLBFGS

Both Stochastic Gradient Descent (SGD) and the Limited Broyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithm are part of hill climbing
algorithms. We have seen in the previous chapters that SGD requires the tuning
of two hyperparameters: step size and the number of steps. LBFGS does this
hyperparameter tuning automatically.

Spark ML has only one LogisticRegression library.

Getting ready

In 2006, Suzuki, Tsurusaki, and Kodama did some research on the distribution
of an endangered burrowing spider on different beaches in Japan. Refer to
https://www.jstage.jst.go.jp/article/asjaa/55/2/55_2_79/_pdf for more
information.

Here's some data about the grain size and the presence of the spiders:

Grain size (mm)Spider present

0.245 Absent

0.247 Absent

0.285 Present

0.299 Present

0.327 Present

0.347 Present

0.356 Absent

0.36 Present

0.363 Absent

https://www.jstage.jst.go.jp/article/asjaa/55/2/55_2_79/_pdf

0.364 Present

0.398 Absent

0.4 Present

0.409 Absent

0.421 Present

0.432 Absent

0.473 Present

0.509 Present

0.529 Present

0.561 Absent

0.569 Absent

0.594 Present

0.638 Present

0.656 Present

0.816 Present

0.853 Present

0.938 Present

1.036 Present

1.045 Present

We will use this data to train the algorithm. The result Absent will be denoted
by 0 and Present by 1.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Import the statistics and related classes:

scala> import org.apache.spark.ml.classification.
 {BinaryLogisticRegressionSummary, LogisticRegression}
 scala> import org.apache.spark.ml.linalg.{Vector, Vectors}

3. Create a dataset with either the presence or absence of spiders as the
label:

scala> val trainingDataSet = spark.createDataFrame(Seq(
 (0.0,Vectors.dense(0.245)),
 (0.0,Vectors.dense(0.247)),
 (1.0,Vectors.dense(0.285)),

 (1.0,Vectors.dense(0.299)),
 (1.0,Vectors.dense(0.327)),
 (1.0,Vectors.dense(0.347)),
 (0.0,Vectors.dense(0.356)),
 (1.0,Vectors.dense(0.36)),
 (0.0,Vectors.dense(0.363)),
 (1.0,Vectors.dense(0.364)),
 (0.0,Vectors.dense(0.398)),
 (1.0,Vectors.dense(0.4)),
 (0.0,Vectors.dense(0.409)),
 (1.0,Vectors.dense(0.421)),
 (0.0,Vectors.dense(0.432)),
 (1.0,Vectors.dense(0.473)),
 (1.0,Vectors.dense(0.509)),
 (1.0,Vectors.dense(0.529)),
 (0.0,Vectors.dense(0.561)),
 (0.0,Vectors.dense(0.569)),
 (1.0,Vectors.dense(0.594)),
 (1.0,Vectors.dense(0.638)),
 (1.0,Vectors.dense(0.656)),
 (1.0,Vectors.dense(0.816)),
 (1.0,Vectors.dense(0.853)),
 (1.0,Vectors.dense(0.938)),
 (1.0,Vectors.dense(1.036)),
 (1.0,Vectors.dense(1.045)))).toDF("label","features")

4. Train a model using this data:

scala> val lr = new LogisticRegression
scala> val model = lr.fit(trainingDataSet)

5. Create model.summary:

scala> val trainingSummary = model.summary

6. Cast it as an instance of the binomial logistic regression summary:

scala> val binarySummary =
 trainingSummary.asInstanceOf[BinaryLogisticRegressionSummary]

7. Print the area under Receiver Operating Characteristic (ROC):

 scala> println(s"areaUnderROC: ${binarySummary.areaUnderROC}")

There's more...

What happened to all the grunt work which was supposed to be done before
finding the area under the curve and area under ROC? The underlying process
is still the same, that is:

1. Get the labeled data.
2. Divide it into training and test or validation sets.
3. Train the algorithm using the training set.
4. Validate it using the test set.
5. Report its accuracy using the area under the curve/ROC.

In this case, the libraries did the process automatically.

What is ROC?

ROC is a statistical tool to assess the accuracy of predictions. The accuracy of
predictions plays a major role in how predictions would be used.

Quoting Prof. Andrew Ng, Stanford University, chief scientist at Baidu, here
for reference:

"The difference between 95% accuracy versus 99% accuracy is
between you sometimes making use of it versus using it all the time ."

ROC curves provide a visually appealing way to summarize the accuracy of
predictions.

Doing binary classification using SVM

Classification is a technique to put data into different classes based on its
utility. For example, an e-commerce company can apply two labels,
namely will buy or will not buy, to the potential visitors.

This classification is done by providing some already labeled data to machine-
learning algorithms called training data, as you know already. The challenge
is how to mark the boundary between the two classes. Let's take a simple
example, as shown in the following figure:

In the preceding case, we designated gray and black to the "will not buy" and
"will buy" labels, respectively. Here, drawing a line between the two classes

is easy, as follows:

Is this the best we can do? Not really. Let's try to do a better job. The black
classifier is not really equidistant from the will buy and will not buy carts.
Let's make a better attempt:

This looks good, doesn't it? This, in fact, is what the SVM algorithm does. You
can see in the preceding diagram that there are only three carts that decide the
slope of the line: two black carts above the line and one gray cart below the
line. These carts are called support vectors, and the rest of the carts, that is,
the vectors, are irrelevant.

Sometimes it's not easy to draw a line and a curve may be needed to separate
two classes, such as the following:

Sometimes, even that is not enough. In such cases, we need more than two
dimensions to resolve the problem. Rather than a classified line, what we need
is a hyperplane. In fact, whenever data is too cluttered, adding extra
dimensions will help you find a hyperplane to separate the classes. The
following diagram illustrates this:

This does not mean that adding extra dimensions is always a good idea. Most
of the time, our goal is to reduce dimensions and keep only the relevant
dimensions/features. A whole set of algorithms is dedicated to dimensionality
reduction; we will cover them in later chapters.

Getting ready

In this recipe, we are going to use the Pima Indians Diabetes Database. This
database is owned by the National Institute of Diabetes and Digestive and

Kidney Diseases. The original CSV files contain features in the following
order:

Number of times pregnant
Plasma glucose concentration at 2 hours in an oral glucose tolerance test
Diastolic blood pressure (mmHg)
Triceps skinfold thickness (mm)
2-hour serum insulin (mu U/ml)
Body mass index (weight in kg/(height in m2)
Diabetes pedigree function
Age (years)
Class variable (0 or 1)

The ninth value here is the label that tells whether the given person has
diabetes or not. For your convenience, the CSV file is loaded in the following
public s3
location: http://sparkcookbook.s3.amazonaws.com/medicaldata/diabetes.csv.

Data has also been converted into libsvm and loaded
at http://sparkcookbook.s3.amazonaws.com/medicaldata/diabetes.libsvm.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Do the required imports:

 scala> import org.apache.spark.mllib.util.MLUtils
 scala> import org.apache.spark.mllib.classification.SVMWithSGD

3. Load the data as an RDD:

scala> val data =
 MLUtils.loadLibSVMFile(sc,"s3a://sparkcookbook
 /medicaldata/diabetes.libsvm")

4. Count the number of records:

http://sparkcookbook.s3.amazonaws.com/medicaldata/diabetes.csv
http://sparkcookbook.s3.amazonaws.com/medicaldata/diabetes.libsvm

scala> data.count

5. Divide the dataset into equal halves of training data and testing data:

scala> val trainingAndTest = data.randomSplit(Array(0.5,0.5))

6. Assign the training and test data:

scala> val trainingData = trainingAndTest(0)
scala> val testData = trainingAndTest(1)

7. Train the algorithm and build the model for 100 iterations (you can try
different iterations, but at a certain point of inflection , you'll see that the
results start to converge and that point of inflection is the right number of
iterations to choose):

scala> val model = SVMWithSGD.train(trainingData,100)

8. Now you can use this model to predict a label for any dataset. Predict the
label for the first point in the test data:

 scala> val label = model.predict(testData.first.features)

9. Create a tuple that has the first value as a prediction for the test data and
the second value as the actual label, which will help us compute the
accuracy of our algorithm:

scala> val predictionsAndLabels = testData.map(r =>
 (model.predict(r.features),r.label))

10. You can count how many records have predictions and actual label
mismatches:

scala> predictionsAndLabels.filter(p => p._1 != p._2).count

Doing classification using decision trees

Decision trees are the most intuitive among machine-learning algorithms. We
use decision trees in our daily lives all the time.

Decision tree algorithms have a lot of useful features:

Easy to understand and interpret
Work with both categorical and continuous features
Work with missing features
Do not require feature scaling

Decision tree algorithms work in an upside-down order in which an
expression containing a feature is evaluated at every level and this splits the
dataset into two categories. We will help you understand this with a simple
dumb charades example, which most of us may have played in college. I
guessed an animal and asked my coworker to ask me questions to work out my
choice. Here's how her questioning went:

Q1: Is it a big animal?

Answer: Yes.

Q2: Does this animal live for more than 40 years?

Answer: Yes.

Q3: Is this animal an elephant?

Answer: Yes.

This is obviously an oversimplified case in which she knew I had postulated
an elephant (what else would you guess in a big data world?). Let's expand this
example to include some more animals, as in the following figure (dark grayed
boxes are classes):

The preceding example is a case of multinomial classification. In this recipe,
we are going to focus on binomial classification.

Getting ready

Whenever someone has to take tennis lessons in the morning, the night before,
the instructor checks the weather report and decides whether the next morning
would be good to play tennis. This recipe will use this as an example to build
a decision tree.

Let's decide on the features of weather that affect the decision whether to play
tennis in the morning or not:

Rain
Wind speed
Temperature

Let's build a table using different combinations of these features:

RainWindyTemperature Play tennis?

Yes Yes Hot No

Yes Yes Normal No

Yes Yes Cool No

No Yes Hot No

No Yes Cool No

No No Hot Yes

No No Normal Yes

No No Cool No

Now how do we build a decision tree? We can start with one of the three
features: rain, wind speed, or temperature. The rule is to start in such a way
that maximum information gain would be possible.

Note

Information gain means identifying the fastest way to reach a
decision. In fact, it is a concept that we use in everyday life. Being
a busy executive, I get hundreds of e-mails every day. We get a mix
of spam and important client inquiries in the same e-mail stream.

So no e-mail can be ignored without being processed. My goal
while processing e-mails is to maximize information gain. The
action item for me in this case is to determine whether I'm looking
for information or an outcome. I start with the subject and then
proceed to the first few lines. By this time, I have an idea about
what needs to be done with the e-mail: for example, send a quick
reply, forward/delegate it, star it for later processing, mark as
spam, block the sender, and so on. Every now and then, I get e-
mails that are complete essays, but due to the inefficiency of
information gain, they get ignored.

On a rainy day, as you can see in the table, other features do not matter and
there is no play. The same is true for high wind velocity.

Decision trees, like most other algorithms, take feature values only as double
values. So let's do the mapping:

The positive class is 1.0 and the negative class is 0.0. Let's load the data using
the CSV format, with the first value as a label:

$ vi tennis.csv
0.0,1.0,1.0,2.0
0.0,1.0,1.0,1.0
0.0,1.0,1.0,0.0
0.0,0.0,1.0,2.0
0.0,0.0,1.0,0.0
1.0,0.0,0.0,2.0
1.0,0.0,0.0,1.0
0.0,0.0,0.0,0.0

How to do it...

1. Start the Spark shell:

 $ spark-shell

2. Perform the required imports:

scala> import org.apache.spark.mllib.tree.DecisionTree
 scala> import org.apache.spark.mllib.regression.LabeledPoint
 scala> import org.apache.spark.mllib.linalg.Vectors
 scala> import org.apache.spark.mllib.tree.configuration.Algo._
 scala> import org.apache.spark.mllib.tree.impurity.Entropy

3. Load the file:

 scala> val data = sc.textFile("tennis.csv")

4. Parse the data and load it into LabeledPoint:

scala> val parsedData = data.map {
line => val parts = line.split(',').map(_.toDouble)
 LabeledPoint(parts(0), Vectors.dense(parts.tail)) }

5. Train the algorithm with this data:

 scala> val model = DecisionTree.train(parsedData,
 Classification, Entropy, 3)

6. Create a vector for no rain, high wind, and cool temperature:

scala> val v=Vectors.dense(0.0,1.0,0.0)

7. Predict whether tennis should be played:

scala> model.predict(v)

How it works...

Let's draw a decision tree for the tennis example we created in this recipe:

This model has a depth of three levels. Which attribute to select depends upon
how we can maximize information gain. We compute this by measuring the
purity of the split. Purity means that irrespective of whether the certainty of
playing tennis is increasing, the given dataset will be considered positive or
negative. In this example, this equates to whether the chances of play are
increasing or the chances of not playing are increasing.

Purity is measured using entropy. Entropy is a measure of disorder in a
system. In this context, it is easier to understand it as a measure of uncertainty:

The highest level of purity is 0 and the lowest is 1. Let's try to determine
purity, in this case, using a formula.

When rain is yes, the probability of playing tennis is p+, which is 0/3 = 0. The
probability of not playing tennis is p-, which is 3/3 = 1:

This is a pure set.

When rain is no, the probability of playing tennis is p+, which is 2/5 = 0.4.
The probability of not playing tennis is p-, which is 3/5 = 0.6:

This is almost an impure set. The most impure would be the case where the
probability is 0.5.

Spark uses three measures to determine impurity:

Gini impurity (classification)
Entropy (classification)
Variance (regression)

Information gain is the difference between the parent node impurity and the
weighted sum of two child node impurities. Let's look at the first split, which
partitions data of size 8 into two datasets of size 3 (left) and 5 (right). Let's
call the first split s1, the parent node rain, the left child no rain, and the right
child wind. So the information gain would be:

As we have already calculated the impurity for no rain and wind for the
entropy, let's calculate the entropy for rain:

Let's calculate the information gain now:

So the information gain is 0.2 in the first split. Is this the best we can achieve?
Let's see what our algorithm comes up with. First, let's find out the depth of the
tree:

scala> model.depth
Int = 2

Here, the depth is 2 compared to 3, which we have built intuitively, so this
model seems to be better optimized. Let's look at the structure of the tree:

scala> model.toDebugString
String = "DecisionTreeModel classifier of depth 2 with 5 nodes
If (feature 1 <= 0.0)
 If (feature 2 <= 0.0)
 Predict: 0.0
 Else (feature 2 > 0.0)
 Predict: 1.0
Else (feature 1 > 0.0)
 Predict: 0.0

Let's build it visually to get a better understanding:

We will not go into detail here, as we have already done this in the previous
model. We will straightaway calculate the information gain:

As you can see, in this case, the information gain is 0.44, which is more than
double of the first model.

If you look at the second level nodes, the impurity is zero. In this case, it is
great as we got it at a depth of 2. Imagine a situation in which the depth is 50.
In that case, the decision tree would work well for training data and would do
badly for test data. This situation is called overfitting.

One solution to avoid overfitting is pruning. You divide your training data into
two sets: the training set and validation set. You train the model using the
training set. Now you test with the model against the validation set by slowly
removing the left nodes. If removing the leaf node (which is mostly a singleton,
that is, it contains only one data point) improves the performance of the model,
then the leaf node is pruned from the model.

There's more...

Let's apply the decision tree to the diabetes dataset we worked on in the
previous recipe:

1. Start the Spark shell or the DatabricksCloud shell and do the necessary
imports:

 $ spark-shell
 scala> import
 org.apache.spark.ml.classification.DecisionTreeClassifier
 scala> import
 org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

2. Read the diabetes data as a DataFrame:

 scala> val data =
 spark.read.format("libsvm").option("inferschema","true")
 .load("s3a://sparkcookbook/medicaldata/diabetes.libsvm")

3. Split it into training and test datasets:

 scala> val Array(trainingData, testData) =
 data.randomSplit(Array(0.7, 0.3))

4. Initialize the decision tree classifier:

 scala> val dt = new DecisionTreeClassifier()

5. Train the model using the training data:

 scala> val model = dt.fit(trainingData)

6. Do predictions on the test dataset:

 scala> val predictions = model.transform(testData)

7. Initialize the evaluator:

 scala> val evaluator = new BinaryClassificationEvaluator()

8. Evaluate the predictions:

 scala> val auroc = evaluator.evaluate(predictions)

9. Print the area under the curve:

 scala> println(s"Area under ROC = $auroc")
 Area under ROC = 0.7624556737588652

Note

We used the decision tree classifier here without tweaking a
hyperparameter and got 76 percent of the area under the curve.
Why don't you tweak hyperparameters yourselves and see whether
you can improve it even further?

Doing classification using random forest

Sometimes, one decision tree is not enough, so a set of decision trees is used to
produce more powerful models. These are called ensemble learning
algorithms. Ensemble learning algorithms are not limited to using decision
trees as base models.

The most popular ensemble learning algorithm is random forest. In random
forest, rather than growing one single tree, K number of trees are grown. Every
tree is given a random subset S of training data. To add a twist to it, every tree
only uses a subset of features. When it comes to making predictions, a majority
vote is done on the trees and that becomes the prediction.

Let me explain this with an example. The goal is to make a prediction for a
given person about whether he/she has good credit or bad credit.

To do this, we will provide labeled training data—in this case, a person with
features and labels indicating whether he/she has good credit or bad credit.
Now we do not want to create feature bias, so we will provide a randomly
selected set of features. There is another reason to provide a randomly
selected subset of features: most real-world data has hundreds, if not
thousands, of features. Text classification algorithms, for example, typically
have 50k-100k features.

In this case, to add flavor to the story, we are not going to provide features, but
we will ask different people why they think a person has good or bad credit.
Now, by definition, different people are exposed to the different features
(sometimes overlapping) of a person, which gives us the same functionality as
randomly selected features.

Our first example features Jack, who carries a bad credit label. We start with
Joey, who works at Jack's favorite bar, the Elephant Bar. The only way a
person can deduce why a label is given to an individual is by asking yes/no
questions. Let's see what Joey says:

Question 1: Does Jack tip well? (feature: generosity)

Answer: No

Question 2: Does Jack spend at least $60 per visit? (feature: spendthrift)

Answer: Yes

Question 3: Does he tend to get into bar fights even at the smallest
provocation? (feature: volatile)

Answer: Yes

That explains why Jack has bad credit.

We now ask Jack's girlfriend, Stacey:

Question 1: When you hang out, does Jack always cover the bill? (feature:
generosity)

Answer: No

Question 2: Has Jack paid you back the $500 he owes? (feature:
responsibility)

Answer: No

Question 3: Does he overspend sometimes just to show off? (feature:
spendthrift)

Answer: Yes

That explains why Jack has bad credit.

We now ask Jack's best friend, George:

Question 1: When both you and Jack hang out at your apartment, does he
clean up himself? (feature: organized)

Answer: No

Question 2: Did Jack arrive empty-handed during the Super Bowl
potluck? (feature: care)

Answer: Yes

Question 3: Has he used the "I forgot my wallet at home" excuse for you
to cover his tab at restaurants? (feature: responsibility)

Answer: Yes

That explains why Jack has bad credit.

Now we talk about Jessica who has good credit. Let's ask Stacey, who
happens to be Jessica's sister:

Question 1: Whenever you run short of money, does Jessica offer help?
(feature: generosity)

Answer: Yes

Question 2: Does Jessica pay her bills on time? (feature: responsibility)

Answer: Yes

Question 3: Does Jessica offer to babysit your child? (feature: care)

Answer: Yes

That explains why Jessica has good credit.

Now we ask George who happens to be her husband:

Question 1: Does Jessica keep the house tidy? (feature: organized)

Answer: Yes

Question 2: Does she expect expensive gifts? (feature: spendthrift)

Answer: No

Question 3: Does she get upset when you forget to mow the lawn?
(feature: volatile)

Answer: No

That explains why Jessica has good credit.

Now let's ask Joey, the bartender at the Elephant Bar:

Question 1: Whenever she comes to the bar with friends, is she mostly the
designated driver? (feature: responsible)

Answer: Yes

Question 2: Does she always take leftovers home? (feature: spendthrift)

Answer: Yes

Question 3: Does she tip well? (feature: generosity)

Answer: Yes

That explains why she has a good credit.

The way random forest works is that it does a random selection on two levels:

A subset of the data
A subset of features to split that data

Both these subsets can overlap.

In our example, we have six features and we are going to assign three features
to each tree. This way, there is a good chance we will have an overlap.

Let's add eight more people to our training dataset:

NamesLabelGenerosityResponsibilityCare OrganizationSpendthriftVolatile

Jack 0 0 0 0 0 1 1

Jessica1 1 1 1 1 0 0

Jenny 0 0 0 1 0 1 1

Rick 1 1 1 0 1 0 0

Pat 0 0 0 0 0 1 1

Jeb 1 1 1 1 0 0 0

Jay 1 0 1 1 1 0 0

Nat 0 1 0 0 0 1 1

Ron 1 0 1 1 1 0 0

Mat 0 1 0 0 0 1 1

Getting ready

Let's put the data we created into the libsvm format in the following file:

rf_libsvm_data.txt
0 5:1 6:1

1 1:1 2:1 3:1 4:1
0 3:1 5:1 6:1
1 1:1 2:1 4:1
0 5:1 6:1
1 1:1 2:1 3:1 4:1
0 1:1 5:1 6:1
1 2:1 3:1 4:1
0 1:1 5:1 6:1

This file has been uploaded to S3 for your convenience.

How to do it...

1. Start the Spark shell:

 $ spark-shell

2. Perform the required imports:

scala> import org.apache.spark.ml.classification.
 {RandomForestClassificationModel,RandomForestClassifier}
 scala> import
 org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator

3. Load and parse the data:

scala> val data =
 spark.read.format("libsvm").load("s3a://sparkcookbook/rf")

4. Split the data into training and test datasets:

scala> val Array(training, test) = data.randomSplit(Array(0.7, 0.3))

5. Create a classification as a tree strategy (random forest also supports
regression):

scala> val rf = new RandomForestClassifier().setNumTrees(3)

6. Train the model:

scala> val model = rf.fit(training)

7. Evaluate the model on test instances and compute the test error:

 scala> val predictions = model.transform(test)
 scala> val evaluator = new
 MulticlassClassificationEvaluator().setMetricName("accuracy")
 scala> val accuracy = evaluator.evaluate(predictions)

8. Check the model:

 scala> model.toDebugString
 "RandomForestClassificationModel (uid=rfc_ac46ea5af585) with 3 trees
 Tree 0 (weight 1.0):
 If (feature 1 <= 0.0)
 Predict: 0.0
 Else (feature 1 > 0.0)
 Predict: 1.0
 Tree 1 (weight 1.0):
 If (feature 5 <= 0.0)
 Predict: 1.0
 Else (feature 5 > 0.0)
 Predict: 0.0
 Tree 2 (weight 1.0):
 If (feature 5 <= 0.0)
 Predict: 1.0
 Else (feature 5 > 0.0)
 Predict: 0.0
 "

9. We used toy data to illustrate the value of random forest, but now, let's do
the same exercise on the diabetes data by replacing step 3 with the
following and running steps 4 to 7 again:

scala> val data =
 spark.read.format("libsvm").load("s3a://sparkcookbook/patientdata")

Now the accuracy has reached 74.6 percent.

Doing classification using gradient boosted
trees

Another ensemble learning algorithm is gradient boosted trees (GBTs).
GBTs train one tree at a time, where each new tree improves upon the
shortcomings of the previously trained trees.

As GBTs train one tree at a time, they can take longer than random forest.

Getting ready

Let us do GBT on the same patient data and see how the accuracy differs.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Perform the required imports:

scala> import org.apache.spark.ml.classification.{GBTClassificationModel,
 GBTClassifier}
scala> import
 org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator

3. Load and parse the data:

 scala> val data =
 spark.read.format("libsvm").load("s3a://sparkcookbook/patientdata")

4. Split the data into training and test datasets:

scala> val Array(training, test) = data.randomSplit(Array(0.7, 0.3))

5. Create a classification as a boosting strategy and set the number of
iterations to 3:

scala> val gbt = new GBTClassifier().setMaxIter(10)

6. Train the model:

scala> val model = gbt.fit(training)

7. Evaluate the model on the test instances and compute the test error:

scala> val predictions = model.transform(test)
 scala> val evaluator = new
 MulticlassClassificationEvaluator().setMetricName("accuracy")
 scala> val accuracy = evaluator.evaluate(predictions)

In this case, the accuracy of the model is 75 percent, which is almost the same
as what we got for a random forest.

Doing classification with Naïve Bayes

Let's consider building an e-mail spam filter using machine learning. Here we
are interested in two classes: spam for unsolicited messages and non-spam for
regular e-mails:

The first challenge is that given an e-mail, how do we represent it as feature
vector x. An e-mail is just a bunch of text or a collection of words (therefore,
this problem domain falls into a broader category called text classification).
Let's represent an e-mail with a feature vector with the length equal to the size
of the dictionary. If a given word in a dictionary appears in an e-mail, the
value will be 1, otherwise 0. Let's build a vector representing the e-mail with
the online pharmacy sale content:

The dictionary of words in this feature vector is called vocabulary, and the
dimensions of the vector are the same as the size of the vocabulary. If the
vocabulary size is 10,000, the possible values in this feature vector will be
210,000.

Our goal is to model the probability of x given y. To model P(x|y), we will
make a strong assumption, and that assumption is that x's are conditionally

independent. This assumption is called the Naïve Bayes assumption, and the
algorithm based on this assumption is called the Naïve Bayes classifier.

For example, for y =1, which means spam, the probability of online appearing
and pharmacy appearing are independent. This is a strong assumption that has
nothing to do with reality but works out really well when it comes to getting
good predictions.

Getting ready

We are going to use the same diabetes data we used in the previous recipe.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Perform the required imports:

scala> import org.apache.spark.ml.classification.NaiveBayes
scala> import
 org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator

3. Load the data into the DataFrame from S3:

scala> val data =
 spark.read.format("libsvm").load("s3a://sparkcookbook/patientdata")

4. Split the data into training and test datasets:

scala> val Array(trainingData, testData) =
 data.randomSplit(Array(0.7, 0.3))

5. Train the model with the training dataset:

 scala> val model = new NaiveBayes().fit(trainingData)

6. Do the prediction:

 scala> val predictions = model.transform(testData)

7. Evaluate the accuracy:

 scala> val evaluator = new MulticlassClassificationEvaluator()
 .setMetricName("accuracy")
 scala> val accuracy = evaluator.evaluate(predictions)

Here the accuracy is only 55 percent, which shows Naive Bayes is not the best
algorithm for this dataset.

Chapter 9. Unsupervised Learning
This chapter will cover how we can do unsupervised learning using MLlib,
Spark's machine learning library.

This chapter is divided into the following recipes:

Clustering using k-means
Dimensionality reduction with principal component analysis
Dimensionality reduction with singular value decomposition

Introduction

The following is Wikipedia's definition of unsupervised learning:

"In machine learning, the problem of unsupervised learning is that of
trying to find hidden structure in unlabeled data."

In contrast to supervised learning, where we have labeled data to train an
algorithm, in unsupervised learning, we ask the algorithm to find a structure on
its own. Let's take a look at the following sample dataset:

As you can see in the preceding graph, the data points are forming two clusters,
as follows:

In fact, clustering is the most common type of unsupervised learning algorithm.

Clustering using k-means

Cluster analysis or clustering is the process of grouping data into multiple
groups so that the data in one group would be similar to the data in other
groups.

The following are a few examples where clustering is used:

Market segmentation: Dividing the target market into multiple segments
so that the needs of each segment can be served better
Social network analysis: Finding a coherent group of people in the social
network for ad targeting through a social networking site, such as
Facebook
Data center computing clusters: Putting a set of computers together to
improve performance
Astronomical data analysis: Understanding astronomical data and
events, such as galaxy formations
Real estate: Identifying neighborhoods based on similar features
Text analysis: Dividing text documents, such as novels or essays, into
genres

The k-means algorithm is best illustrated using imagery, so let's look at our
sample figure again:

The first step in k-means is to randomly select two points called cluster
centroids:

The k-means algorithm is an iterative algorithm and works in two steps:

1. Cluster assignment step: This algorithm will go through each data point,
and it will be assigned the centroid it is nearer to and, in turn, the cluster
it represents

2. Move centroid step: This algorithm will take each centroid and move it

to the mean of the data points in the cluster

Let's see how our data looks after the cluster assignment:

Now let's move the cluster centroids to the mean value of the data points in a
cluster, as follows:

In this case, one iteration is enough; further iterations will not move the cluster
centroids. For most real data, multiple iterations are required to move the

centroid to the final position.

The k-means algorithm takes a number of clusters as input.

Getting ready

Let's use some different housing data from the City of Saratoga, CA. This time,
we will look at the lot size and house price:

Lot size House price (in $1,000)

12,839 2,405

10,000 2,200

8,040 1,400

13,104 1,800

10,000 2,351

3,049 795

38,768 2,725

16,250 2,150

43,026 2,724

44,431 2,675

40,000 2,930

1,260 870

15,000 2,210

10,032 1,145

12,420 2,419

69,696 2,750

12,600 2,035

10,240 1,150

876 665

8,125 1,430

11,792 1,920

1,512 1,230

1,276 975

67,518 2,400

9,810 1,725

6,324 2,300

12,510 1,700

15,616 1,915

15476 2,278

13,390 2,497.5

1,158 725

2,000 870

2,614 730

13,433 2,050

12,500 3,330

15,750 1,120

13,996 4,100

10,450 1,655

7,500 1,550

12,125 2,100

14,500 2,100

10,000 1,175

10,019 2,047.5

48,787 3,998

53,579 2,688

10,788 2,251

11,865 1,906

Let's convert this data into a comma-separated value (CSV) file called
saratoga.csv and draw it as a scatter plot:

Finding the number of clusters is a tricky task. Here, we have the advantage of
visual inspection, which is not available for data on hyperplanes (more than
three dimensions). Let's roughly divide the data into four clusters as follows:

Run the k-means algorithm to do the same and see how close our results come.

How to do it...

1. Start the Spark shell:

$ spark-shell

2. Do the necessary imports:

scala> import org.apache.spark.ml.linalg.Vectors
 scala> import org.apache.spark.ml.clustering.KMeans

3. Create a DataFrame with the features vector:

scala> val data = spark.createDataFrame(Seq(
 Vectors.dense(12839,2405),
 Vectors.dense(10000,2200),
 Vectors.dense(8040,1400),
 Vectors.dense(13104,1800),
 Vectors.dense(10000,2351),
 Vectors.dense(3049,795),
 Vectors.dense(38768,2725),
 Vectors.dense(16250,2150),
 Vectors.dense(43026,2724),
 Vectors.dense(44431,2675),
 Vectors.dense(40000,2930),
 Vectors.dense(1260,870),
 Vectors.dense(15000,2210),
 Vectors.dense(10032,1145),
 Vectors.dense(12420,2419),
 Vectors.dense(69696,2750),
 Vectors.dense(12600,2035),
 Vectors.dense(10240,1150),
 Vectors.dense(876,665),
 Vectors.dense(8125,1430),
 Vectors.dense(11792,1920),
 Vectors.dense(1512,1230),
 Vectors.dense(1276,975),
 Vectors.dense(67518,2400),
 Vectors.dense(9810,1725),
 Vectors.dense(6324,2300),
 Vectors.dense(12510,1700),
 Vectors.dense(15616,1915),
 Vectors.dense(15476,2278),
 Vectors.dense(13390,2497.5),
 Vectors.dense(1158,725),
 Vectors.dense(2000,870),
 Vectors.dense(2614,730),
 Vectors.dense(13433,2050),
 Vectors.dense(12500,3330),
 Vectors.dense(15750,1120),
 Vectors.dense(13996,4100),

 Vectors.dense(10450,1655),
 Vectors.dense(7500,1550),
 Vectors.dense(12125,2100),
 Vectors.dense(14500,2100),
 Vectors.dense(10000,1175),
 Vectors.dense(10019,2047.5),
 Vectors.dense(48787,3998),
 Vectors.dense(53579,2688),
 Vectors.dense(10788,2251),
 Vectors.dense(11865,1906)
).map(Tuple1.apply)).toDF("features")

4. Create a k-means estimator for the four clusters:

scala> val kmeans = new KMeans().setK(4).setSeed(1L)

5. Train the model:

scala> val model = kmeans.fit(data)

6. Now compare the cluster assignments by k-means versus the ones we
have done individually. The k-means algorithm gives the cluster IDs,
starting from 0. Once you inspect the data, you will find that the mapping
between the A and D cluster IDs we gave versus k-means is this: A=>3,
B=>0, C=>2, D=>1.

7. Pick some data from different parts of the chart and predict which cluster
it belongs to.

8. Look at the data for the 19th house, which has a lot size of 876 sq. ft. and
is priced at $665K:

 scala> val prediction = model.transform(spark.createDataFrame
 (Seq(Vectors.dense(876,665)).map(Tuple1.apply)).toDF("features"))
 scala> prediction.first.get(1)
 resxx: Any = 3

9. Next, look at the data for the 36th house with a lot size of 15,750 sq. ft.
and a price of $1.12 million:

 scala> val prediction = model.transform(spark.createDataFrame
 (Seq(Vectors.dense(15750,1120)).map(Tuple1.apply)).toDF("features"))
 scala> prediction.first.get(1)
 resxx: Any = 0

10. Now look at the data for the 7th house, which has a lot size of 38,768 sq.
ft. and is priced at $2.725 million:

scala> val prediction = model.transform(spark.createDataFrame
 (Seq(Vectors.dense(38768,2725)).map(Tuple1.apply)).toDF("features"))
 scala> prediction.first
resxx: Any = 2

11. Moving on, look at the data for the 16th house, which has a lot size of
69,696 sq. ft. and is priced at $2.75 million:

scala> val prediction = model.transform(spark.createDataFrame
 (Seq(Vectors.dense(69696,2750)).map(Tuple1.apply)).toDF("features"))
 scala> prediction.first
resxx: Any = 1

You can test prediction capability with more data. Let's do some neighborhood
analysis to see what meaning these clusters carry. Most of the houses in cluster
3 are near downtown. Cluster 2 houses are on a hilly terrain.

In this example, we dealt with a very small set of features; common sense and
visual inspection would also lead us to the same conclusions. The beauty of the
k-means algorithm is that it does the clustering of the data with an unlimited
number of features. It is a great tool to use when you have raw data and would
like to know the patterns in that data.

Dimensionality reduction with principal
component analysis

Dimensionality reduction is the process of reducing the number of dimensions
or features. A lot of real data contains a very high number of features. It is not
uncommon to have thousands of features. So we need to drill down to features
that matter.

Dimensionality reduction serves several purposes, such as:

Data compression
Visualization

When the number of dimensions is reduced, it reduces the disk and memory
footprint. Last but not least, it helps algorithms to run faster. It also helps
reduce highly correlated dimensions to one.

Humans can only visualize three dimensions, but data has access to a much
higher number of dimensions. Visualization can help find hidden patterns in a
particular piece of data. Dimensionality reduction helps visualization by
compacting multiple features into one.

The most popular algorithm for dimensionality reduction is principal
component analysis (PCA).

Let's look at the following dataset:

Let's say the goal is to divide this two-dimensional data into one dimension.
The way to do this would be to find a line on which we can project this data.
Let's find a line that is good for projecting this data on:

This is the line that has the shortest projected distance from the data points.
Let's check this out further by dropping the shortest lines from each data point
to this projected line:

Another way to look at this is to find a line to project the data on so that the
sum of the square distances of the data points from this line would be
minimized. The gray line segments are also called projection errors.

Getting ready

Let's look at the three features of the housing data of the City of Saratoga, CA,
that is, house size, lot size, and price. Using PCA, we will merge the house
size and lot size features into one feature, namely z. Let's call this feature z
density of a house.

It is worth noting that it is not always possible to give meaning to the new
feature created. In this case, it is easy as we have only two features to combine
and we can use common sense to combine the effect of the two. In a more
practical case, you may have 1,000 features that you are trying to project to
100 features. It may not be possible to give real-life meaning to each one of
those 100 features.

In this exercise, we will derive the housing density using PCA and then we
will do linear regression to see how this density affects the house price.

There is a preprocessing stage before we delve into PCA: feature scaling.
Feature scaling comes into the picture when two features have ranges that are
at different scales. Here, house size varies in the range of 800 sq. ft. to 7,000

sq. ft., while the lot size varies between 800 sq. ft. to a few acres.

Why did we not have to do feature scaling before? The answer is that we
really did not have to put features on a level-playing field. Gradient descent is
another area where feature scaling is very useful.

There are different ways of doing feature scaling:

Dividing a feature value with a maximum value that will put every feature
in the -1 ≤x ≤1 range
Dividing a feature value with the range, that is, maximum value-minimum
value
Subtracting a feature value by its mean and then dividing it by the range
Subtracting a feature value by its mean and then dividing it by the
standard deviation

We are going to use the fourth choice to scale in the best way possible. The
following is the data we are going to use for this recipe:

House
size

Lot
size

Scaled house
size

Scaled lot
size

House price (in
$1,000)

2,524 12,839 -0.025 -0.231 2,405

2,937 10,000 0.323 -0.4 2,200

1,778 8,040 -0.654 -0.517 1,400

1,242 13,104 -1.105 -0.215 1,800

2,900 10,000 0.291 -0.4 2,351

1,218 3,049 -1.126 -0.814 795

2,722 38,768 0.142 1.312 2,725

2,553 16,250 -0.001 -0.028 2,150

3,681 43,026 0.949 1.566 2,724

3,032 44,431 0.403 1.649 2,675

3,437 40,000 0.744 1.385 2,930

1,680 1,260 -0.736 -0.92 870

2,260 15,000 -0.248 -0.103 2,210

1,660 10,032 -0.753 -0.398 1,145

3,251 12,420 0.587 -0.256 2,419

3,039 69,696 0.409 3.153 2,750

3,401 12,600 0.714 -0.245 2,035

1,620 10,240 -0.787 -0.386 1,150

876 876 -1.414 -0.943 665

1,889 8,125 -0.56 -0.512 1,430

4,406 11,792 1.56 -0.294 1,920

1,885 1,512 -0.564 -0.905 1,230

1,276 1,276 -1.077 -0.92 975

3,053 67,518 0.42 3.023 2,400

2,323 9,810 -0.195 -0.412 1,725

3,139 6,324 0.493 -0.619 2,300

2,293 12,510 -0.22 -0.251 1,700

2,635 15,616 0.068 -0.066 1,915

2,298 15,476 -0.216 -0.074 2,278

2,656 13,390 0.086 -0.198 2,497.5

1,158 1,158 -1.176 -0.927 725

1,511 2,000 -0.879 -0.876 870

1,252 2,614 -1.097 -0.84 730

2,141 13,433 -0.348 -0.196 2,050

3,565 12,500 0.852 -0.251 3,330

1,368 15,750 -0.999 -0.058 1,120

5,726 13,996 2.672 -0.162 4,100

2,563 10,450 0.008 -0.373 1,655

1,551 7,500 -0.845 -0.549 1,550

1,993 12,125 -0.473 -0.274 2,100

2,555 14,500 0.001 -0.132 2,100

1,572 10,000 -0.827 -0.4 1,175

2,764 10,019 0.177 -0.399 2,047.5

7,168 48,787 3.887 1.909 3,998

4,392 53,579 1.548 2.194 2,688

3,096 10,788 0.457 -0.353 2,251

2,003 11,865 -0.464 -0.289 1,906

Let's take the scaled house size and scaled house price data and save it as
scaledhousedata.csv.

How to do it...

1. Load scaledhousedata.csv to HDFS:

$ hdfs dfs -put scaledhousedata.csv scaledhousedata.csv

2. Start the Spark shell:

$ spark-shell

3. Import the statistics and related classes:

scala> import org.apache.spark.mllib.linalg.Vectors
scala> import org.apache.spark.mllib.linalg.distributed.RowMatrix

4. Load scaledhousedata.csv as an RDD:

scala> val data = sc.textFile("scaledhousedata.csv")

5. For your convenience, data has already been loaded into S3, and you can
load it using the following command:

scala> val data =
 sc.textFile("s3a://sparkcookbook/saratoga/scaledhousedata.csv")

6. Transform the data into an RDD of dense vectors:

scala> val parsedData = data.map(line =>

 Vectors.dense(line.split(',').map(_.toDouble)))

7. Create RowMatrix from parsedData:

scala> val mat = new RowMatrix(parsedData)

8. Compute one principal component:

scala> val pc= mat.computePrincipalComponents(1)

9. Project the rows to the linear space spanned by the principal component:

scala> val projected = mat.multiply(pc)

10. Convert the projected RowMatrix object back to the RDD:

scala> val projectedRDD = projected.rows

11. Save projectedRDD to HDFS:

scala> projectedRDD.saveAsTextFile("phdata")

Now we will use this projected feature, which we have decided to call
housing density, and plot it against the house price and see whether any new
pattern emerges:

1. Download the HDFS directory phdata to the local directory phdata:

scala> hdfs dfs -get phdata phdata

2. Trim the start and end brackets in the data and load it into MS Excel, next
to the house price. The following is the plot of the house price versus the
housing density:

Let's draw some patterns of this data as follows:

What patterns do we see here? For moving from very high-density to low-
density housing, people are ready to pay a heavy premium. As the housing
density reduces, the premium flattens out. For example, people will pay a
heavy premium to move from condominiums and town homes to a single-family
home, but the premium for a single-family home with a three-acre lot size is
not going to be much different from a single-family house with a two-acre lot
size in a comparable built-up area.

Dimensionality reduction with singular
value decomposition

Often, the original dimensions do not represent data in the best way possible.
As we saw in PCA, you can, sometimes, project data to fewer dimensions and
still retain most of the useful information.

Sometimes, the best approach is to align dimensions along the features that
exhibit the most number of variations. This approach helps eliminate
dimensions that are not representative of the data.

Let's look at the following figure again, which shows the best-fitting line on
two dimensions:

The projection line shows the best approximation of the original data with one
dimension. If we take the points where the gray line is intersecting with the
black line and isolating it, we will have a reduced representation of the
original data with as much variation retained as possible, as shown in the
following figure:

Let's draw a line perpendicular to the first projection line, as shown in the
following figure:

This line captures as much variation as possible along the second dimension of
the original dataset. It does a bad job at approximating the original data as this
dimension exhibits less variation to start with. It is possible to use these
projection lines to generate a set of uncorrelated data points that will show
subgroupings in the original data, not visible at first glance.

This is the basic idea behind Singular Value Decomposition (SVD). Take a
high dimension, a highly variable set of data points, and reduce it to a lower
dimensional space that exposes the structure of the original data more clearly
and orders it from having the most amount of variation to the least. What makes
SVD very useful, especially for NLP application, is that you can simply ignore
variation below a certain threshold to massively reduce the original data,
making sure that the original relationship interests are retained.

Let's get into theory now. SVD is based on a theorem of linear algebra that a
rectangular matrix A can be broken down into a product of three matrices: an
orthogonal matrix U, a diagonal matrix S, and the transpose of an orthogonal
matrix V. We can show this as follows:

U and V are orthogonal matrices:

The columns of U are orthonormal eigenvectors of AAT, and the columns of V
are orthonormal eigenvectors of ATA. S is a diagonal matrix containing the
square roots of eigenvalues from U or V in descending order.

Getting ready

Let's look at an example of a term-document matrix. We are going to look at
two news items about the US presidential elections.

The following are the links to the two documents:

Fox:http://www.foxnews.com/politics/2015/03/08/top-2016-gop-
presidential-hopefuls-return-to-iowa-to-hone-message-including/
Npr: http://www.npr.org/blogs/itsallpolitics/2015/03/09/391704815/in-
iowa-2016-has-begun-at-least-for-the-republican-party

Let's build the presidential candidate matrix out of these two news items:

http://www.foxnews.com/politics/2015/03/08/top-2016-gop-presidential-hopefuls-return-to-iowa-to-hone-message-including/
http://www.npr.org/blogs/itsallpolitics/2015/03/09/391704815/in-iowa-2016-has-begun-at-least-for-the-republican-party

Let's put this matrix in a CSV file and then put it in HDFS. We will apply SVD
to this matrix and analyze the results.

How to do it...

1. Load pres.csv to HDFS:

$ hdfs dfs -put pres.csv

2. Start the Spark shell:

$ spark-shell

3. Import the statistics and related classes:

scala> import org.apache.spark.mllib.linalg.Vectors
scala> import org.apache.spark.mllib.linalg.distributed.RowMatrix

4. Load pres.csv as an RDD:

scala> val data = sc.textFile("pres.csv")

5. Transform data into an RDD of dense vectors:

scala> val parsedData = data.map(line =>
 Vectors.dense(line.split(',').map(_.toDouble)))

6. Create RowMatrix from parsedData:

scala> val mat = new RowMatrix(parsedData)

7. Compute svd:

scala> val svd = mat.computeSVD(2,true)

8. Calculate the U factor (eigenvector):

scala> val U = svd.U

9. Calculate the matrix of singular values (eigenvalues):

scala> val s = svd.s

10. Calculate the V factor (eigenvector):

scala> val s = svd.s

If you look at s, you will realize that it gave a much higher score to the Npr
article than the Fox article.

Chapter 10. Recommendations Using
Collaborative Filtering
In this chapter, we will cover the following recipes:

Collaborative filtering using explicit feedback
Collaborative filtering using implicit feedback

Introduction

The following is Wikipedia's definition of recommender systems:

"Recommender systems are a subclass of information filtering system
that seeks to predict the rating or preference that user would give to an
item."

Recommender systems have gained immense popularity in recent years.
Amazon uses them to recommend books, Netflix for movies, and Google News
to recommend news stories. As the proof is in the pudding, here are some
examples of the impact recommendations can have (source: Celma, Lamere,
2008):

Two-thirds of the movies watched on Netflix are recommended
38 % of the news clicks on Google News are recommended
35 % of the sales at Amazon sales are the result of recommendations

As we saw in the previous chapters, features and feature selection play a
major role in the efficacy of machine learning algorithms. Recommender
engine algorithms discover these features, called latent features,
automatically. In short, there are latent features responsible for a user to like
one movie and dislike another. If another user has corresponding latent
features, there is a good chance that this person will also have a similar taste
for movies.

To understand this better, let's look at some sample movie ratings:

Movie RichBobPeterChris

Titanic 5 3 5 ?

GoldenEye 3 2 1 5

Toy Story 1 ? 2 2

Disclosure 4 4 ? 4

Ace Ventura4 ? 4 ?

Our goal is to predict the missing entries shown with the ? symbol. Let's see if
we can find some features associated with the movies. At first, you will look at
the genres, as shown here:

Movie Genre

Titanic Action and Romance

GoldenEye Action, Adventure, and Thriller

Toy Story Animation, Children's, and Comedy

Disclosure Drama and Thriller

Ace VenturaComedy

Now, each movie can be rated for each genre from 0 to 1. For example,
GoldenEye is not primarily a romance, so it may have 0.1 rating for romance,
but a 0.98 rating for action. Therefore, each movie can be represented as a
feature vector.

In this chapter, we are going to use the MovieLens dataset from
grouplens.org/datasets/movielens/ for F. Maxwell Harper and Joseph A.
Konstan, 2015. Go to The MovieLens Dataset: History and Context, ACM
Transactions on Interactive Intelligent Systems (TiiS) 5, 4, Article 19
(December 2015), 19 pages. DOI http://dx.doi.org/10.1145/2827872.

The InfoObjects big data sandbox comes loaded with 1 million movie
ratings. In this recipe, we are using 20 million ratings, which have been loaded
on S3 for your convenience. Since it will require heavy-duty compute, we
recommend using either Databricks Cloud or EMR. Feel free to use Sandbox if
you have a machine with server-level configuration.

We are going to use two files from this dataset:

ratings.csv: This has a comma-separated list of movie ratings in the
following format:

 user id , movie id , rating , epoch time

Since we are not going to need the timestamp, we are going to filter it out from
the data in our recipe

movies.csv: This has a comma-separated list of movies in the following
format:

 movie id | movie title | genre

This chapter will cover how we can make recommendations using Spark ML.

http://grouplens.org/datasets/movielens/
http://dx.doi.org/10.1145/2827872

Collaborative filtering using explicit
feedback

Collaborative filtering is the most commonly used technique for recommender
systems. It has an interesting property—it learns the features on its own. So, in
the case of movie ratings, we do not need to provide actual human feedback on
whether the movie is romantic or action.

As we saw, in the preceding section, movies have some latent features, such as
genre, in the same way, users have some latent features, such as age, gender,
and more. Collaborative filtering does not need them; it figures out latent
features on its own.

We are going to use an algorithm called alternating least squares (ALS) in
this example. This algorithm explains the association between a movie and a
user based on a small number of latent features. It uses three training
parameters: rank, number of iterations, and lambda (explained later in
the chapter). The best way to figure out the optimum values of these three
parameters is to try different values and see which value has the smallest
amount of root mean square error (RMSE). This error is like a standard
deviation, but it is based on model results rather than actual data.

Getting ready

We are going to use the moviedata folder in S3:

s3a://sparkcookbook/moviedata

We are going to add some personalized ratings to this database so that we can
test the accuracy of the recommendations.

You can look at movie.ratings to pick some movies and rate them. Feel free
to choose the movies you would like to rate and provide your own ratings. The

following are some movies I chose, alongside my ratings:

Movie IDMovie name Rating (1-5)

1721 Titanic 5

10 GoldenEye 3

1 Toy Story 1

225 Disclosure 4

344 Ace Ventura: Pet Detective 4

480 Jurassic Park 5

589 Terminator 2 5

780 Independence Day 4

1049 The Ghost and the Darkness4

The highest user ID is 138493, so we are going to add the new user as 138494
to associate with these ratings further down in the recipe.

How to do it...

1. Start Spark shell or Scala shell in Databricks Cloud:

 $ spark-shell

2. Import the Alternating Least Squares (ALS) and rating classes:

 scala> import org.apache.spark.ml.recommendation.ALS
 scala> import
 org.apache.spark.ml.evaluation.RegressionEvaluator

3. Create a Rating case class:

 scala> case class Rating(userId: Int, movieId: Int, rating: Double, timestamp: Long)

4. Load the ratings data as a Rating dataset:

scala> val ratings = spark.read.option("header","true").option("inferschema","true").csv("s3a://sparkcookbook/moviedata/ratings.csv").as[Rating].cache

5. Split into test and training dataset:

scala> val Array(training, test) = ratings.randomSplit(Array(0.7, 0.3))

6. Initialize ALS() function:

scala> val als = new ALS().setMaxIter(30).setRegParam(.065).setUserCol("userId").setItemCol("movieId")
 .setRatingCol("rating")

7. Do model training:

scala> val model = als.fit(training)

8. Calculate predictions on the test dataset:

scala> val predictions = model.transform(test).na.drop

Note

df.na.drop drops any rows containing null values. For the
curious, this method is in the
class org.apache.spark.sql.DataFrameNaFunctions. Go to
GitHub and take a dive into the code.

9. Initialize the evaluator:

scala> val evaluator = new RegressionEvaluator()
 .setMetricName("rmse")
 .setLabelCol("rating")
 .setPredictionCol("prediction")

10. Calculate root-mean-square error (rmse):

 scala> val rmse = evaluator.evaluate(predictions)

11. Print rmse:

scala> println(s"Root-mean-square error = $rmse")
Root-mean-square error = 0.7914419472440173

Note

Root-mean-square error is mainly how much variance the
predictions have from labels. The value is measured relative to the
range outcome variable and has the same units as the outcome
variable (in this case, ratings 0-5).

Adding my recommendations and then testing predictions

It is good to see the evaluation metric, but to make it more fun, let's add my
recommendations as created in the preceding section and then make
predictions on some interesting movies:

1. Let's redo training by adding my recommendations to the training data:

 val myrecs = spark.createDataFrame(Seq(
 (138494,1721,5,1489789319),
 (138494,10,3,1489789319),
 (138494,1,1,1489789319),
 (138494,225,4,1489789319),
 (138494,344,4,1489789319),
 (138494,480,5,1489789319),
 (138494,589,5,1489789319),
 (138494,780,4,1489789319),

 (138494,1049,4,1489789319)
)).toDF("userId","movieId","rating","timestamp").as[Rating]

2. Create a new training set by adding myrecs to the training set:

 scala> val trainingWithMyRecs = training.union(myrecs)

3. Train the model again:

 scala> val model = als.fit(trainingWithMyRecs)

4. Let's start with creating a dataset for the original Terminator with movie
ID 1240:

 scala> val terminator = spark.createDataFrame(Seq(
 (138494,1240))).toDF("userId","movieId")

5. Let's run the prediction:

 scala> val p = model.transform(terminator)

6. Let's see the result:

scala> p.show
 +------+-------+----------+
 |userId|movieId|prediction|
 +------+-------+----------+
 |138494| 1240 | 4.091806|
 +------+-------+----------+

Since I rated Terminator 2 as 5, this is a reasonable prediction.

7. Let's try Ghost with movie ID 587:

 scala> val ghost = spark.createDataFrame(Seq((138494,587)
 scala> val p = model.transform(ghost)
 scala> p.show
 +------+-------+----------+
 |userId|movieId|prediction|
 +------+-------+----------+
 |138494| 587| 3.8229413|
 +------+-------+----------+

Good guess.

Let's try The Ghost and the Darkness, the movie I already rated, with the ID
1049:

scala> val gnd = spark.createDataFrame(Seq(
 (138494,1049)
)).toDF("userId","movieId")
scala> val p = model.transform(gnd)
scala> p.show
+------+-------+----------+
|userId|movieId|prediction|
+------+-------+----------+
|138494| 1049| 3.7397728|
+------+-------+----------+

Very close prediction, knowing that I rated the movie 4.

There's more...

There are two types of recommender algorithms:

Content-based filtering
Collaborative filtering

In content-based filtering, each user is assumed to operate independently.
Recommendations to the user are based on keywords, which represent an item.

In collaborative filtering, an item is associated with the ratings users have
provided about this item collectively. The basic premise of collaborative
filtering is this, if two users like a subset of items, there is a good chance
they will like the rest of the items in the set too.

The most interesting characteristic of collaborative filtering is that it is neutral
to the type of item being rated.

Collaborative filtering using implicit
feedback

Sometimes, the feedback available is not in the form of ratings but in the form
of audio tracks played, movies watched, and so on. This data, at first glance,
may not look as good as explicit ratings by users, but this is much more
exhaustive.

How to do it...

We are going to use the million song data from
http://www.kaggle.com/c/msdchallenge/data. You need to download three
files:

kaggle_visible_evaluation_triplets

kaggle_users.txt

kaggle_songs.txt

We still need to do some more preprocessing. ALS in MLlib takes both user
and product IDs as integers. The Kaggle_songs.txt file has song IDs and a
sequence number next to it. The Kaggle_users.txt file does not have a
sequence number. Our goal is to replace the userid and songid in
the triplets data with the corresponding integer sequence numbers. To do
this, follow these steps:

1. Start Spark shell or Databricks Cloud (preferred):

 $ spark-shell

2. Do the necessary imports:

 import org.apache.spark.ml.recommendation.ALS
 import org.apache.spark.sql.functions._
 import org.apache.spark.ml.evaluation.RegressionEvaluator

http://www.kaggle.com/c/msdchallenge/data

3. Initialize the ALS() function:

 val als = new ALS()
 .setImplicitPrefs(true)
 .setUserCol("userId")
 .setItemCol("songId")
 .setRatingCol("plays")

4. Load the kaggle_songs.txt data as a DataFrame:

 scala> val songs = spark.read.option("delimiter"," ").option("inferschema","true").csv("s3a://sparkcookbook/songdata/kaggle_songs.txt").toDF("song","songId")

5. Load as temporary view:

 scala> songs.createOrReplaceTempView("songs")

6. Load the user data as a DataFrame:

scala> val users = spark.read.textFile("s3a://sparkcookbook/songdata/kaggle_users.txt").toDF("user").withColumn("userId",monotonically_increasing_id)

7. Cast userId as integer (by default, it gets loaded as long, but maximum
value fits well in the integer range, ALS expects UserId and ItemId to
be an integer):

 scala> val u = users.withColumn("userId",users.col("userId").cast("integer"))

8. Create temporary view:

 scala> u.createOrReplaceTempView("users")

9. Load the triplets (user, song, plays) data as a dataset:

scala> val triplets = spark.read.option("delimiter","t").option("inferschema","true").csv("s3a://sparkcookbook/songdata/kaggle_visible_evaluation_triplets.txt").toDF("user","song","plays")

10. Cast plays to double:

scala> val t = triplets.withColumn("plays",triplets.col("plays").cast("double"))

11. Load as temporary view:

scala> t.createOrReplaceTempView("plays")

12. Create DataFrame with userId, songId, plays tuple:

scala> val plays = spark.sql("select userId,songId,plays from plays p join users u on p.user = u.user join songs s on p.song = s.song")

13. Create training, test split:

scala> val Array(training, test) = plays.randomSplit(Array(0.7, 0.3))

14. Train the model:

scala> val model = als.fit(training)

15. Do predictions on the test dataset:

scala> val predictions = model.transform(test).na.drop

16. Load evaluator:

scala> val evaluator = new RegressionEvaluator()
 .setMetricName("mae")
 .setLabelCol("plays")
 .setPredictionCol("prediction")

17. Evaluate results:

scala> val rmse = evaluator.evaluate(predictions)

Chapter 11. Graph Processing Using
GraphX and GraphFrames
This chapter will cover how we can do graph processing using GraphX,
Spark's graph processing library.

The chapter is divided into the following recipes:

Fundamental operations on graphs
Using PageRank
Finding connected components
Performing neighborhood aggregation
Understanding GraphFrames

Introduction

Graph analysis is much more commonplace in our life than we think. To take
the most common example, when we ask a Global Positioning System (GPS)
to find the shortest route to a destination, it uses a graph-processing algorithm.

Let's start by understanding graphs. A graph is a representation of a set of
vertices, where some pairs of vertices are connected by edges. When these
edges move from one direction to another, it's called a directed graph or
digraph.

GraphX is the Spark API for graph processing. It provides a wrapper around
an RDD called a resilient distributed property graph. The property graph is
a directed multigraph, with properties attached to each vertex and edge.

There are two types of graphs—directed graphs (digraphs) and regular graphs.
Directed graphs have edges that run in one direction; for example, from vertex
A to vertex B. A Twitter follower is a good example of a digraph. If John is
David's Twitter follower, it does not mean that David is John's follower. On
the other hand, Facebook is a good example of a regular graph. If John is
David's Facebook friend, David is also John's Facebook friend.

A multigraph is a graph that is allowed to have multiple edges (also called
parallel edges). Since every edge in GraphX has properties, each edge has its
own identity.

Traditionally, for distributed graph processing, there have been two types of
systems:

Data parallel
Graph parallel

GraphX aims to combine the two together in one system. The GraphX API
enables users to view the data both as graphs and as collections (RDDs),
without data movement.

Fundamental operations on graphs

In this recipe, we will learn how to create graphs and do basic operations on
them.

Getting ready

As a starting example, we will have three vertices, each representing the city
center of three cities in California—Santa Clara, Fremont, and San Francisco.
The following is a roughly drawn out geographic position of the three cities
(not to scale):

The following is the distance between these cities:

Source Destination Distance (miles)

Santa Clara, CA Fremont, CA 20

Fremont, CA San Francisco, CA44

San Francisco, CASanta Clara, CA 53

How to do it...

1. Import the graphx related classes:

scala> import org.apache.spark.graphx._
scala> import org.apache.spark.rdd.RDD

2. Load the vertex data in an array:

scala> val vertices = Array((1L, ("Santa Clara","CA")),(2L,
 ("Fremont","CA")),(3L, ("San Francisco","CA")))

3. Load the array of vertices into the RDD of vertices:

scala> val vrdd = sc.parallelize(vertices)

4. Load the edge data in an array:

scala> val edges = Array(Edge(1L,2L,20),Edge(2L,3L,44)
 ,Edge(3L,1L,53))

5. Load the data into the RDD of edges:

scala> val erdd = sc.parallelize(edges)

6. Create the graph:

scala> val graph = Graph(vrdd,erdd)

7. Print all the vertices of the graph:

scala> graph.vertices.collect.foreach(println)

8. Print all the edges of the graph:

scala> graph.edges.collect.foreach(println)

9. Print the edge triplets; a triplet is created by adding source and
destination attributes to an edge:

scala> graph.triplets.collect.foreach(println)

10. An in-degree of a graph is the number of inward-directed edges it has.
Print the in-degree of each vertex (as VertexRDD[Int]):

scala> graph.inDegrees.foreach(println)

Using PageRank

PageRank measures the importance of each vertex in a graph. PageRank was
started by Google's founders, who used the theory that the most important
pages on the Internet are the pages with the most links leading to them.
PageRank also looks at the importance of a page leading to the target page. So,
if a given web page has incoming links from higher rank pages, it will be
ranked higher.

Getting ready

We are going to use Wikipedia's page link data to calculate the page rank.
Wikipedia publishes its data in the form of a database dump. We are going to
use link data from, which has the data in two files:

links-simple-sorted.txt

titles-sorted.txt

Note

I have put both of them on Amazon S3 at
s3a://com.infoobjects.wiki/links and
s3a://com.infoobjects.wiki/nodes. Since the data size is
larger, it is recommended that you run it on either Databricks
Cloud or EMR.

How to do it...

1. Import the graphx related classes:

scala> import org.apache.spark.graphx._

2. Load the edges from Amazon S3:

scala> val edgesFile = sc.textFile(
 "s3a://com.infoobjects.wiki/links",20)

Note

The links file has links in the sourcelink: link1 link2 ... format.

3. Flatten and convert edgesFile into an RDD of link1, link2 format,
and then convert it into an RDD of Edge objects:

scala> val edges = edgesFile.flatMap { line =>
 val links = line.split("\\W+")
 val from = links(0)
 val to = links.tail
 for (link <- to) yield (from,link)
 }.map(e => Edge(e._1.toLong,e._2.toLong,1))

Note

Use the paste to copy multi-line code, and then execute using
Ctrl+D.

4. Load the edges from Amazon S3:

scala> val verticesFile = sc.textFile
 ("s3a://com.infoobjects.wiki/nodes",20)

5. Provide an index to the vertices, and then swap it to make it in the
(index, title) format:

scala> val vertices = verticesFile.zipWithIndex.map(_.swap)

6. Create the graph object:

scala> val graph = Graph(vertices,edges)

7. Run pageRank function, and get the vertices:

scala> val ranks = graph.pageRank(0.001).vertices

8. As ranks are in the (vertex ID, pagerank) format, swap it to make it
in the (pagerank, vertex ID) format:

scala> val swappedRanks = ranks.map(_.swap)

9. Sort to get the highest ranked pages first:

scala> val sortedRanks = swappedRanks.sortByKey(false)

10. Get the highest ranked page:

scala> val highest = sortedRanks.first

11. The preceding command gives the vertex ID, which you still have to look
up to see the actual title with the rank. Let's do a join:

scala> val join = sortedRanks.join(vertices)

12. Sort the joined RDD again after converting from the (vertex ID, (page
rank, title)) format to the (page rank, (vertex ID, title))
format:

scala> val result = join.map (v => (v._2._1,
 (v._1,v._2._2))).sortByKey(false)

13. Print the top five ranked pages:

scala> result.take(5).collect.foreach(println)

14. Here's what the output should be:

 (12406.054646736622,
 (5302153,United_States'_Country_Reports_on_Human_Rights_Practices))
 (7925.094429748747,(84707,2007,_Canada_budget))
 (7635.6564216408515,(88822,2008,_Madrid_plane_crash))
 (7041.479913258444,(1921890,Geographic_coordinates))
 (5675.169862343964,(5300058,United_Kingdom's))

Finding connected components

A connected component is a subgraph (a graph whose vertices are a subset of
the vertex set of the original graph and whose edges are a subset of the edge set
of the original graph) in which any two vertices are connected to each other by
an edge or a series of edges.

An easy way to understand it would be by taking a look at the road network
graph of Hawaii. This state has numerous islands, which are not connected by
roads. Within each island, most roads will be connected to each other. The
goal of finding the connected components is to find these clusters.

The connected components algorithm labels each connected component of the
graph with the ID of its lowest-numbered vertex.

Getting ready

We will build a small graph here for the clusters we know and use connected
components to segregate them. Let's look at the following data:

FollowerFollowee

John Pat

Pat Dave

Gary Chris

Chris Bill

The preceding data is a simple one, with six vertices and two clusters. Let's
put this data in the form of two files: nodes.csv and edges.csv.

The following is the content of nodes.csv:

1,John
2,Pat
3,Dave
4,Gary
5,Chris
6,Bill

The following is the content of edges.csv:

1,2,follows
2,3,follows
4,5,follows
5,6,follows

We should expect a connected component algorithm to identify two clusters,
the first one is identified by (1,John) and the second by (4,Gary).

You can load the files to HDFS using the following commands:

$ hdfs dfs -mkdir data/cc
$ hdfs dfs -put nodes.csv data/cc/nodes.csv
$ hdfs dfs -put edges.csv data/cc/edges.csv

How to do it...

1. Load the spark-shell:

$ spark-shell

2. Import the graphx related classes:

scala> import org.apache.spark.graphx._

3. Load the edges from hdfs:

scala> val edgesFile = sc.textFile(
 "hdfs://localhost:9000/user/hduser/data/cc/edges.csv")

4. Convert the edgesFile RDD into the RDD of edges:

scala> val edges = edgesFile.map(_.split(",")).map(e =>
 Edge(e(0).toLong,e(1).toLong,e(2)))

5. Load the vertices from HDFS:

scala> val verticesFile = sc.textFile(
 "hdfs://localhost:9000/user/hduser/data/cc/nodes.csv")

6. Map the vertices:

scala> val vertices = verticesFile.map(_.split(",")).map(e =>
 (e(0).toLong,e(1)))

7. Create the graph object:

scala> val graph = Graph(vertices,edges)

8. Calculate the connected components using
graph.connectedComponents:

scala> val cc = graph.connectedComponents

9. Find the vertices for the connected components (which is a subgraph):

scala> val ccVertices = cc.vertices

10. Print the ccVertices:

 scala> ccVertices.collect.foreach(println)
 (4,4)

 (6,4)
 (2,1)
 (1,1)
 (3,1)
 (5,4)

As you can see in the output, vertices 1, 2, and 3 are pointing to 1, while 4, 5,
and 6 are pointing to 4. Both of these are the lowest-indexed vertices in their
respective clusters.

Performing neighborhood aggregation

GraphX does most of the computation by isolating each vertex and its
neighbors. It makes it easier to process the massive graph data on distributed
systems. This makes the neighborhood operations very important. GraphX has
a mechanism to do it at each neighborhood level in the form of the
aggregateMessages method. It does it in two steps:

1. In the first step (the first function of the method), messages are sent to the
destination vertex or source vertex (similar to the Map function in
MapReduce).

2. In the second step (the second function of the method), aggregation is done
on these messages (similar to the Reduce function in MapReduce).

Getting ready

Let's build a small dataset of the followers:

FollowerFollowee

John Barack

Pat Barack

Gary Barack

Chris Mitt

Rob Mitt

Our goal is to find out how many followers each node has. Let's load this data
in the form of two files: nodes.csv and edges.csv.

The following is the content of nodes.csv:

1,Barack
2,John
3,Pat
4,Gary
5,Mitt
6,Chris
7,Rob

The following is the content of edges.csv:

2,1,follows
3,1,follows
4,1,follows
6,5,follows
7,5,follows

You can load the files to hdfs using the following commands:

$ hdfs dfs -mkdir data/na
$ hdfs dfs -put nodes.csv data/na/nodes.csv
$ hdfs dfs -put edges.csv data/na/edges.csv

How to do it...

1. Load the spark-shell:

$ spark-shell

2. Import the graphx related classes:

scala> import org.apache.spark.graphx._

3. Load the edges from HDFS:

scala> val edgesFile = sc.textFile(

 "hdfs://localhost:9000/user/hduser/data/na/edges.csv")

4. Convert the edges into the RDD of edges:

scala> val edges = edgesFile.map(_.split(",")).map(e =>
 Edge(e(0).toLong,e(1).toLong,e(2)))

5. Load the vertices from HDFS:

scala> val verticesFile = sc.textFile(
 "hdfs://localhost:9000/user/hduser/data/cc/nodes.csv")

6. Map the vertices:

scala> val vertices = verticesFile.map(_.split(",")).map(e =>
 (e(0).toLong,e(1)))

7. Create the graph object:

scala> val graph = Graph(vertices,edges)

8. Do the neighborhood aggregation by sending messages to the followees
with the number of followers from each follower, that is, 1, and then
adding the number of followers:

scala> val followerCount = graph.aggregateMessages[(Int)](t =>
 t.sendToDst(1), (a, b) => (a+b))

9. Print followerCount in the form of (followee, number of
followers):

scala> followerCount.collect.foreach(println)

10. You should get an output similar to the following:

(1,3)
 (5,2)

Understanding GraphFrames

As everything in the Spark world has moved to DataFrames, it is natural to
wonder how GraphX is still RDD based. This is where GraphFrames comes
into the picture. GraphFrames is still not directly included in the Spark library
and is being developed separately as a Spark package. It is just a matter of
time before it is considered stable enough to be included in the main API.

In this recipe, we will understand GraphFrames. The GraphFrames has two
primary DataFrames:

The vertices DataFrame, which needs to have a mandatory column called
id

The edges DataFrame, which needs to have two mandatory
columns, src and dst

Besides these requirements, both the vertices and edges DataFrames can
have any arbitrary number and type of columns to represent attributes.

How to do it...

To get started with the recipe, we first need to perform the following steps:

1. Start spark-shell with the graphframes package:

 $ spark-shell --packages graphframes:graphframes:0.2.0-
 spark2.0-s_2.11

Note

If you are getting an error downloading slf4j, please use
following command to download it explicitly:$ mvn
org.apache.maven.plugins:maven-dependency-
plugin:2.4:get -DartifactId=slf4j-api -
DgroupId=org.slf4j -Dversion=1.7.7

2. Do the necessary imports:

 scala> import org.graphframes._

3. Load the vertex DataFrame:

 scala> val vertices = spark.sqlContext.createDataFrame
 (List(("sc","Santa Clara","CA"),("fr","Fremont","CA"),
 ("sf","San Francisco","CA"))).toDF("id","city","state")

4. Load the edge DataFrame:

 scala> val edges = spark.sqlContext.createDataFrame
 (List(("sc","fr",20),("fr","sf",44),
 ("sf","sc",53))).toDF("src","dst","distance")

5. Create a GraphFrame:

scala> val g = GraphFrame(vertices, edges)

6. Show all vertices:

 scala> g.vertices.show

7. Show all edges:

 scala> g.edges.show

8. Get in-degrees of each vertex:

 scala> g.inDegrees.show

Now that we have played with the toy dataset, let's do some exercise on a real
dataset. We are going to use the California road network dataset as part of the
Stanford Network Analysis Project (SNAP) dataset at Stanford
(http://snap.stanford.edu/data):

1. Start spark-shell with the graphframes package:

 $ spark-shell --packages graphframes:graphframes:0.2.0-
 spark2.0-s_2.11

http://snap.stanford.edu/data

2. Do the necessary imports:

 scala> import org.graphframes._

3. Let's load the road data (tab separated):

 scala> val edges = spark.read.option("delimiter","\t").option
 ("header","true").option("inferschema","true")
 .csv("s3a://sparkcookbook/roads/ca")

4. Data is in the format of (intersection/endpoint
intersection/endpoint) , so to create a vertex DataFrame, we need
to extract the maximum value of vertex from edges:

 scala> val vertices = edges.select("src").union
 (edges.select("dst")).distinct.toDF("id")

5. Create a GraphFrame:

 scala> val g = GraphFrame(vertices, edges)

6. We think that in California, all roads are connected to each other. Let's see
how many connected components there are (it is recommended to be run
on DataBricks Cloud or EMR as it would need some heavy duty
computations):

 scala> val cc = g.connectedComponents.run

7. Let's print the cc schema:

 scala> cc.printSchema
 root
 |-- id: integer (nullable = true)
 |-- component: long (nullable = true)

8. We are interested in knowing how many connected components there are.
So, let's select the component column and do the count:

 scala> cc.select("component").distinct.count
 (1) Spark Jobs
 res7: Long = 2638

 So, the value comes to 2638. So in California, every road is not connected
with each other, unlike what we would expect. It looks like freeways are not
added to this list, and that explains the 2638 clusters.

Chapter 12. Optimizations and
Performance Tuning
This chapter covers various optimization and performance tuning best
practices when working with Spark.

The chapter is divided into the following recipes:

Optimizing memory
Leveraging speculation
Optimizing joins
Using compression to improve performance
Using serialization to improve performance
Optimizing level of parallelism
Understanding project Tungsten

Optimizing memory

Spark is a complex distributed computing framework and has many moving
parts. Various cluster resources, such as memory, CPU, and network
bandwidth, can become bottlenecks at various points. As Spark is an in-
memory compute framework, the impact of the memory is the biggest.

Another issue is that it is common for Spark applications to use a huge amount
of memory, sometimes more than 100 GB. This amount of memory usage is not
common in traditional Java applications.

In Spark, there are two places where memory optimization is needed: one at
the driver level and the other at the executor level. The following diagram
shows the two levels (driver level and executor level) of operations in Spark:

How to do it...

1. Set the driver memory using the spark-shell command:

 $ spark-shell --drive-memory 8g

2. Set the driver memory using the spark-submit command:

$ spark-submit --drive-memory 8g

3. Set the executor memory using the spark-shell command:

$ spark-shell --executor-memory 8g

4. Set the executor memory using the spark-submit command:

 $ spark-submit --executor-memory 8g

5. Sometimes master and worker daemons are starved of memory for their
own house-keeping. You can set the daemon memory using the spark-
shell command:

 $ spark-shell --daemon-memory 8g

6. Set the daemon memory using the spark-submit command:

$ spark-submit --daemon-memory 8g

How it works...

Now, the question arises: how do we decide how much executor memory we
should allocate? To do this calculation, let's think of a hypothetical cluster with
the following nodes:

16 nodes
16 cores per node
256 GB RAM per node

Every node has one worker, each worker has multiple executors, and each

executor has multiple tasks as shown in the preceding diagram. So, before
deciding how much memory we should allocate to each executor, we have to
decide how many executors we would like per core. One extreme can be
having one executor per core and allocating 15 GB of RAM per executor.
There are two challenges here:

The system overhead also needs some CPU cycles and memory. So let's
give it one core and 16 GB RAM, and that leaves us with 15 cores and
240 GB RAM.
Every executor has multiple tasks, which share the cached data. If we
only assign one executor per core, we are losing the chance to have
parallelism in the executor.

How about we go to the other extreme, that is, having one executor per node?
The challenge here is the fourth parameter in the cluster, which we have not
discussed yet, and that is storage. With one executor, storage parallelism will
suffer. So, the best idea is to keep around five cores per executor, and that
makes it three executors per node. This gives each executor 80 GB.

Executor memory controls the total heap size, but we need to provision some
capacity for off-heap memory, which takes care of things such as Java Virtual
Machine (JVM) overhead, internal strings, and so on. This is controlled by
the spark.yarn.executor.memory.overhead parameter, and it's default
value is 384 MB or 10 percent. So, that brings the --executor-memory value
to 80/1.1 ~ 72 GB.

Garbage collection

To understand memory optimization, it is a good idea to understand how
memory management works in Java. Objects reside in heap in Java. Heap is
created when JVM starts, and it can resize itself when needed (based on the
minimum and maximum size, that is, -Xms and -Xmx, respectively, assigned in
the configuration).

Heap is divided into two spaces or generations: young space and old space, as
shown in the following figure:

The young space is reserved for the allocation of new objects. The young
space consists of an area called Eden and two smaller survivor spaces. When
the young space becomes full, garbage is collected by running a special
process called young collection, where all the objects that have lived long
enough are promoted to the old space. When the old space becomes full, the
garbage is collected there by running a process called old collection.

The logic behind nursery/young space is that most objects have a very short
lifespan. A young collection is designed to be fast at finding newly allocated
objects and moving them to the old space.

Mark and sweep

JVM uses the mark and sweep algorithm for garbage collection. Mark and
sweep collection consists of two phases.

During the mark phase, all the objects that have live references are marked
alive, the rest are presumed candidates for garbage collection. During the
sweep phase, the space occupied by the garbage collectable candidates is
added to the free list, that is, they are available to be allocated to the new
objects.

There are two improvements to mark and sweep. One is concurrent mark and
sweep (CMS), and the other is parallel mark and sweep. CMS focuses on
lower latency, while the latter focuses on higher throughput. Both strategies
have performance trade-offs. CMS does not do compaction, while parallel
garbage collector (GC) performs only whole-heap compaction, which results
in pause times. As a thumb rule, for real-time streaming, CMS should be used;
parallel GC otherwise.

G1

If you would like to have both low latency and high throughput, Java 1.7 update
4 onwards has another option called garbage-first GC (G1). G1 is a server-
style garbage collector, primarily meant for multicore machines with large
memories. It is planned as a long-term replacement for CMS. So, to modify our
thumb rule, if you are using Java 7 onwards, simply use G1.

G1 partitions the heap into a set of equal-sized regions, where each set is a
contiguous range of virtual memory. Each region is assigned a role, such as
Eden, Survivor, Old. G1 performs a concurrent global marking phase to
determine the live references of objects throughout the heap. After the mark
phase is over, G1 knows which regions are mostly empty. It collects objects
with no live references, in these regions first, and this frees the larger amount
of memory. A typical G1 heap may look like this:

The regions selected by G1 as candidates for garbage collection are garbage

collected using evacuation. G1 copies objects from one or more regions of the
heap to a single region on the heap, and it both compacts and frees up memory.
This evacuation is performed in parallel on multiple cores to reduce pause
times and increase throughput. So, each garbage collection round reduces
fragmentation while working within user-defined pause times.

There are three aspects in memory optimization in Java:

Memory footprint
Cost of accessing objects in memory
Cost of garbage collection

Java objects, in general, are fast to access but consume much more space than
the actual data inside them.

JVM garbage collection can be a challenge if you have a lot of short-lived
RDDs. JVM needs to go over all the objects to find the ones it needs to
garbage collect. The cost of the garbage collection is proportional to the
number of objects the GC needs to go through. Therefore, using fewer objects
and the data structures that use fewer objects (simpler data structures, such as
arrays) helps.

Serialization also shines here as a byte array needs only one object to be
garbage collected.

Spark memory allocation

By default, Spark uses 60 percent of the JVM heap for Spark's execution and
storage needs and 40 percent for user objects and metadata. Out of this 60
percentage, 50 percentage of the executor memory is for cache
RDDs/DataFrames (storage) and the other 50 percent for execution.
Sometimes, you may not need 60 percent for RDDs and can reduce this limit so
that more space is available for object creation (and less need for GC).

You can set the memory allocated for the RDD/DataFrame cache to 40
percent by starting the Spark shell and setting the memory fraction:

$ spark-shell -conf spark.memory.storageFraction=0.4

Spark also has another property, which expresses memory as a fraction to total
JVM head space (the default being 0.6):

$ spark-shell -conf spark.memory.fraction=0.7

Leveraging speculation

Like MapReduce, Spark uses speculation to spawn additional tasks if it
suspects a task is running on a straggler node. A good use case would be to
think of a situation when 95 percent or 99 percent of your job finishes really
fast and then gets stuck (we have all been there).

How to do it...

There are a few settings you can use to control speculation. The examples are
provided only to show how to change values. Mostly, just turning on
speculation is good enough:

1. Setting spark.speculation (the default is false):

$ spark-shell -conf spark.speculation=true

2. Setting spark.speculation.interval (the default is 100 milliseconds)
(denotes the rate at which Spark examines tasks to see whether
speculation is needed):

$ spark-shell -conf spark.speculation.interval=200

3. Setting spark.speculation.multiplier (the default is 1.5) (denotes
how many times a task has to be slower than median to be a candidate for
speculation):

$ spark-shell -conf spark.speculation.multiplier=1.5

4. Setting spark.speculation.quantile (the default is 0.75) (denotes the
percentage of tasks to be completed before triggering speculation):

$ spark-shell -conf spark.speculation.quantile=0.95

Optimizing joins

This topic was covered briefly when discussing Spark SQL, but it is a good
idea to discuss it here again as joins are highly responsible for optimization
challenges.

There are primarily three types of joins in Spark:

Shuffle hash join (default):
Classic map-reduce type join
Shuffle both datasets based on output key
During reduce, join the datasets for same output key

Broadcast hash join:
When one dataset is small enough to fit in memory

Cartesian join
When every row of one table is joined with every row of the other
table

The easiest optimization is that if one of the datasets is small enough to fit in
memory, it should be broadcast (broadcast join) to every compute node. This
use case is very common as data needs to be combined with side data like a
dictionary all the time.

Mostly, joins are slow due to too much data being shuffled over the network.

How to do it...

You can also check which execution strategy is being used using explain:

scala> mydf.explain
scala> mydf.queryExecution.executedPlan

Using compression to improve performance

Data compression involves encoding information using fewer bits than the
original representation. Compression has an important role to play in big data
technologies. It makes both storage and transport of data more efficient.

When data is compressed, it becomes smaller, so both disk I/O and network
I/O become faster. It also saves storage space. Every optimization has a cost,
and the cost of compression comes in the form of added CPU cycles to
compress and decompress data.

Hadoop needs to split data to put them into blocks, irrespective of whether the
data is compressed or not. Only a few compression formats are splittable.

The two most popular compression formats for big data loads are Lempel-
Ziv-Oberhumer (LZO) and Snappy. Snappy is not splittable, while LZO is.
Snappy, on the other hand, is a much faster format.

If the compression format is splittable like LZO, the input file is first split into
blocks and then compressed. Since compression happened at the block level,
decompression can happen at the block level as well as the node level.

If the compression format is not splittable, compression happens at the file
level, and then it is split into blocks. In this case, blocks have to be merged
back to file before they can be decompressed, so decompression cannot
happen at the node level.

For supported compression formats, Spark will deploy codecs automatically to
decompress, and no action is required from the user's side.

How to do it...

To persist a DataFrame in a specific compression format, all you have to do is
to provide compression as an option like this:

scala> mydf.write.option("compression","snappy").parquet("hdfs://localhost:9000/user/hduser/mydata")

Spark also supports lz4 and lzf, besides Snappy.

Using serialization to improve performance

Serialization plays an important part in distributed computing. There are two
persistence (storage) levels that support serializing RDDs:

MEMORY_ONLY_SER: This stores RDDs as serialized objects. It will create
one byte array per partition.
MEMORY_AND_DISK_SER: This is similar to MEMORY_ONLY_SER, but it
spills partitions that do not fit in the memory to disk.

How to do it...

The following are the steps to add appropriate persistence levels:

1. Start the Spark shell:

$ spark-shell

2. Import the StorageLevel object as enumeration of persistence levels and
the implicits associated with it:

scala> import org.apache.spark.storage.StorageLevel._

3. Create a dataset:

scala> val words = spark.read.textFile("words")

4. Persist the dataset:

scala> words.persist(MEMORY_ONLY_SER)

Though serialization reduces the memory footprint substantially, it adds extra
CPU cycles due to deserialization.

Note

By default, Spark uses Java's serialization. Since the Java
serialization is slow, the better approach is to use the Kryo library.
Kryo is much faster and sometimes even 10 times more compact
than the default.

There's more...

You can use Kryo by doing the following settings in your SparkConf:

1. Start the Spark shell by setting Kryo as a serializer:

$ spark-shell --conf spark.serializer=org.apache.spark.serializer.KryoSerializer

2. Kryo automatically registers most of the core Scala classes, but if you
would like to register your own classes, you can use the following
command:

scala> sc.getConf.registerKryoClasses(Array(classOf[com.infoobjects.CustomClass1],classOf[com.infoobjects.CustomClass2])

Optimizing the level of parallelism

Optimizing the level of parallelism is very important to fully utilize the cluster
capacity. In the case of HDFS, it means that the number of partitions is the
same as the number of input splits, which is mostly the same as the number of
blocks. The default block size in HDFS is 128 MB, and that works well in
case of Spark as well.

In this recipe, we will cover different ways to optimize the number of
partitions.

How to do it...

Specify the number of partitions when loading a file into RDD with the
following steps:

1. Start the Spark shell:

$ spark-shell

2. Load the RDD with a custom number of partitions as a second parameter:

scala> sc.textFile("hdfs://localhost:9000/user/hduser/words",10)

Another approach is to change the default parallelism by performing the
following steps:

1. Start the Spark shell with the new value of default parallelism:

$ spark-shell --conf spark.default.parallelism=10

Note

Have the number of partitions two to three times the number of

cores to maximize parallelism.

2. Check the default value of parallelism:

scala> sc.defaultParallelism

Note

You can also reduce the number of partitions using an RDD method
called coalesce(numPartitions), where numPartitions is the
final number of partitions you would like. If you want the data to
be reshuffled over the network, you can call the RDD method
called repartition(numPartitions), where numPartitions is
the final number of partitions you would like.

Understanding project Tungsten

Project Tungsten, starting with Spark Version 1.4, was the initiative to bring
Spark closer to bare metal, which has become a first-class integral feature
now. The goal of this project is to substantially improve the memory and CPU
efficiency of the Spark applications and push the limits of the underlying
hardware.

In distributed systems, conventional wisdom has been to always optimize
network I/O as that has been the most scarce and bottlenecked resource. This
trend has changed in the last few years. Network bandwidth in the last 5 years
has changed from 1 gigabit per second to 10 gigabit per second. In fact,
Amazon Web Services is poised to make 40 Gbps standard, and there are
already instances available at 20 Gbps.

On similar lines, the disk bandwidth has increased from 50 MB/s to 500 MB/s,
and solid state drives (SSDs) are being deployed more and more. Pruning
unneeded input data and predicate push-down have made the speed gains even
larger effectively. Compressed data formats, in the same way, have also helped
I/O.

CPU clock speed, on the other hand, was ~3 GHz 5 years back and is still the
same. This has unseated the network and made CPU the new bottleneck in
distributed processing.

Another trend that has put more load on CPU performance is the new
compressed data formats, such as Parquet. Both compression and serialization,
as we saw in the previous recipes in this chapter, lead to more CPU cycles.
This trend has also pushed the need for CPU optimization to reduce the CPU
cycle cost.

On similar lines, let's look at the memory footprint. In Java, GC does memory
management. GC has done an amazing job at taking away the memory
management from the programmer and making it transparent. To do this, Java
has to put a lot of overhead, and that substantially increases the memory

footprint. For example, a simple string abcd, which should ideally take 4
bytes, takes 48 bytes in Java.

How to do it...

1. Tungsten is enabled by default, but you can change it using following
command:

 $ spark-shell --conf spark.sql.tungsten.enabled=false

2. To re-enable Tungsten use the following command:

 $ spark-shell --conf spark.sql.tungsten.enabled=true

How it works...

Let's understand the evolution of Tungsten in two phases.

Tungsten phase 1

One of the biggest features of Tungsten is to make Java GC irrelevant. Let's
look deeper into it.

Bypassing GC

What if we do away with GC and manage memory manually like in lower-
level programming languages, such as C? Java does provide a way to do that
since version 1.7, and it is called sun.misc.Unsafe. Unsafe essentially means
that you can build long regions of memory without any safety checks. Utilizing
unsafe rows and off-heap memory and doing manual memory management was
the first feature of project Tungsten.

Manual memory management by leveraging application semantics, which can
be very risky if you do not know what you are doing, is a blessing with Spark.
We used our knowledge of data schema (DataFrames) to directly lay out the
memory ourselves. It not only gets rid of GC overheads but lets you minimize

the memory footprint.

The second point is storing data in CPU cache versus memory. Everyone
knows CPU cache is great, as it takes three cycles to get data from the main
memory versus one cycle in the cache. This is the second feature of project
Tungsten.

Cache conscious computation

Algorithms and data structures are used to exploit memory hierarchy and
enable more cache-aware computation.

CPU caches are small pools of memory that store the data the CPU is going to
need next. CPUs have two types of caches: instruction cache and data cache.
Data caches are arranged in a hierarchy of L1, L2, and L3:

L1 cache is the fastest and most expensive cache in a computer. It stores
the most critical data and is the first place the CPU looks for information.
L2 cache is slightly slower than L1 but is still located on the same
processor chip. It is the second place the CPU looks for information.
L3 cache is still slower but is shared by all cores, such as dynamic
random-access memory (DRAM).

These can be seen in the following diagram:

Code generation for expression evaluation

The third point is that Java is not very good at byte code generation for things
such as expression evaluation. If this code generation is done manually, it is
much more efficient. Code generation is the third feature of project Tungsten.

This involves exploiting modern compliers and CPUs to allow efficient
operations directly on binary data. It reduces virtual function calls and
interpretation overhead.

Tungsten phase 2

Now let's understand phase 2.

Wholesale code generation

Wholesale code generation essentially does fusing of operators together so that
it looks like custom-written code, just to run one single query.

In-memory columnar format

As we saw in the previous chapter, file formats such as Parquet already use the

columnar format; the same benefits are being realized with Spark using a
columnar format in memory. Some of the benefits are as follows:

Denser storage
Compatibility with external already columnar formats, such as Parquet
TensorFlow

	Chapter 1. Getting Started with Apache SparkIn this chapter, we will set up Spark and configure it. This chapter contains the following recipes:Leveraging Databricks CloudDeploying Spark using Amazon EMRInstalling Spark from binariesBuilding the Spark source code with MavenLaunching Spark on Amazon EC2Deploying Spark on a cluster in standalone modeDeploying Spark on a cluster with MesosDeploying Spark on a cluster with YARNUnderstanding SparkContext and SparkSessionUnderstanding Resilient Distributed Datasets (RDD)
	Chapter 1. Getting Started with Apache Spark
	Chapter 2. Developing Applications with SparkIn this chapter, we will cover the following recipes:Exploring the Spark shellDeveloping a Spark applications in Eclipse with MavenDeveloping a Spark applications in Eclipse with SBTDeveloping a Spark application in IntelliJ IDEA with MavenDeveloping a Spark application in IntelliJ IDEA with SBTDeveloping applications using the Zeppelin notebookSetting up Kerberos to do authenticationEnabling Kerberos authentication for Spark
	Chapter 2. Developing Applications with Spark
	Chapter 3. Spark SQLSpark SQL is a Spark module for processing structured data. It had a humble start, but now it has become the most important Spark library (as DataFrames/Datasets are replacing RDDs).This chapter is divided into the following recipes:Understanding the evolution of schema awarenessUnderstanding the Catalyst optimizerInferring schema using case classesProgrammatically specifying the schemaUnderstanding the Parquet formatLoading and saving data using the JSON formatLoading and saving data from relational databasesLoading and saving data from an arbitrary sourceUnderstanding joinsAnalyzing nested structuresWe will start with a small journey down memory lane to see how schema awareness has slowly evolved into a Spark framework and has now become the core of it. After this, we will discuss how the Catalyst optimizer, the core engine of Spark, works. In the next two recipes, we will focus on converting data from raw format into DataFrames. Then we will discuss how to seamle
	Chapter 3. Spark SQL
	Chapter 4. Working with External Data SourcesApache Spark depends upon the big data pipeline to get data. The pipeline starts with source systems. The source system data ingress can be arbitrarily complex due to the following reasons:Nature of the data (relational, non-relational)Data being dirty (yes, it's more of a rule than exception)Source data being at a different level of normalization (SAP data, for example, has an extremely high degree of normalization)Lack of consistency in the data (data needs to be harmonized so that it speaks the same language)In this chapter, we will explore how Apache Spark connects to various data sources. This chapter is divided into the following recipes:Loading data from the local filesystemLoading data from HDFSLoading data from Amazon S3Loading data from Apache Cassandra
	Chapter 4. Working with External Data Sources
	Chapter 5. Spark StreamingSpark Streaming adds the holy grail of big data processing—that is, real-time analytics—to Apache Spark. It enables Spark to ingest live data streams and provides real-time intelligence at a very low latency of a few seconds.In this chapter, we are going to cover the following recipes:WordCount using Structured StreamingDiving into Structured StreamingStreaming Twitter dataStreaming using KafkaUnderstanding streaming challenges
	Chapter 5. Spark Streaming
	Chapter 6. Getting Started with Machine LearningThis chapter is divided into the following recipes:Creating vectorsCalculating correlationUnderstanding feature engineeringUnderstanding Spark MLUnderstanding hyperparameter tuning
	Chapter 6. Getting Started with Machine Learning
	Chapter 7. Supervised Learning with MLlib — RegressionThis chapter is divided into the following recipes:Using linear regressionUnderstanding the cost functionDoing linear regression with lassoDoing ridge regression
	Chapter 7. Supervised Learning with MLlib — Regression
	Chapter 8. Supervised Learning with MLlib — ClassificationThis chapter is divided into the following recipes:Doing classification using logistic regressionDoing binary classification using SVMDoing classification using decision treesDoing classification using random forestDoing classification using gradient boosted treesDoing classification with Naïve Bayes
	Chapter 8. Supervised Learning with MLlib — Classification
	Chapter 9. Unsupervised LearningThis chapter will cover how we can do unsupervised learning using MLlib, Spark's machine learning library.This chapter is divided into the following recipes:Clustering using k-meansDimensionality reduction with principal component analysisDimensionality reduction with singular value decomposition
	Chapter 9. Unsupervised Learning
	Chapter 10. Recommendations Using Collaborative FilteringIn this chapter, we will cover the following recipes:Collaborative filtering using explicit feedbackCollaborative filtering using implicit feedback
	Chapter 10. Recommendations Using Collaborative Filtering
	Chapter 11. Graph Processing Using GraphX and GraphFramesThis chapter will cover how we can do graph processing using GraphX, Spark's graph processing library.The chapter is divided into the following recipes:Fundamental operations on graphsUsing PageRankFinding connected componentsPerforming neighborhood aggregationUnderstanding GraphFrames
	Chapter 11. Graph Processing Using GraphX and GraphFrames
	Chapter 12. Optimizations and Performance TuningThis chapter covers various optimization and performance tuning best practices when working with Spark.The chapter is divided into the following recipes:Optimizing memoryLeveraging speculationOptimizing joinsUsing compression to improve performanceUsing serialization to improve performanceOptimizing level of parallelismUnderstanding project Tungsten
	Chapter 12. Optimizations and Performance Tuning

